

 [image: (missing alt)]

 Table of Contents

 Enterprise Application Development with Ext JS and Spring

 Credits

 About the Author

 Acknowledgments

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers and more

 Why Subscribe?

 Free Access for Packt account holders

 Preface

 What the book covers

 What you need for this book

 Who this book is for

 Application architects

 Java developers

 Ext JS developers

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. Preparing Your Development Environment

 Installing MySQL

 Installing the Java SE Development Kit (JDK)

 Installing the NetBeans IDE

 Introducing Maven

 Creating the Maven Web Application project

 Understanding the POM and dependency management

 Understanding dependency scope

 Defining Maven properties

 Understanding Maven-build plugins

 Executing the Maven build

 Starting the GlassFish 4 server

 Running the Task Time Tracker project

 Summary

 2. The Task Time Tracker Database

 Connecting NetBeans with MySQL

 The 3T database

 The company table

 The projects table

 The tasks table

 The user table

 The task log table

 Enterprise options for the 3T database

 Password encryption

 LDAP integration

 Audit trails

 Logon activity audits

 Custom audit tables

 Summary

 3. Reverse Engineering the Domain Layer with JPA

 Understanding the reasons for using JPA

 Understanding JPA implementations

 Reverse engineering with NetBeans

 Introducing the persistence.xml file

 Refactoring the Java classes

 The Company.java file

 The @Entity annotation

 The @Table annotation

 The @Id annotation

 The @GeneratedValue annotation

 The @Basic annotation

 The @Column annotation

 The @NotNull and @Size annotations

 The @OneToMany annotation

 The @NamedQueries annotation

 The Projects.java file

 The @ManyToOne annotation

 Bidirectional mapping and owning entities

 The Task.java file

 The User.java file

 The TaskLog.java file

 Introducing the Java Persistence Query Language

 Defining named queries

 Refactoring Java equals() and hashCode()

 Summary

 4. Data Access Made Easy

 Defining the DAO interfaces

 Adding the CompanyDao interface

 Adding the ProjectDao interface

 Defining a generic DAO interface

 The TaskDao interface

 The UserDao interface

 The TaskLogDao interface

 Defining the generic DAO implementation

 The Simple Logging Facade for Java

 The@PersistenceContext(unitName = "tttPU") line

 The @Transactional annotation

 The Propagation.REQUIRED property

 The Propagation.SUPPORTS property

 The readOnly property

 Other transaction properties

 Defining the DAO implementations

 The CompanyDaoImpl class

 The ProjectDaoImpl class

 The TaskDaoImpl class

 The UserDaoImpl class

 The TaskLogDaoImpl class

 A better domain layer

 Exercise – a simple change request

 Summary

 5. Testing the DAO Layer with Spring and JUnit

 Unit testing overview

 The benefits of unit testing

 Configuring the test environment

 The jdbc.properties file

 The logback.xml file

 The test-persistence.xml file

 Introducing the Spring IoC container

 Exploring the testingContext.xml file

 The Spring XML namespaces

 The property file configuration

 Creating the JDBC DataSource

 Defining helper beans

 Defining the EntityManagerFactory class

 Configuring the transaction manager

 Autowiring beans

 Thanks for the plumbing!

 Enabling the Maven environment for testing

 Defining a test case superclass

 Defining the CompanyDao test case

 Running the JUnit test cases with Maven

 Running the CompanyDaoTest.java file

 The results for the CompanyDaoTests.testMerge test case

 The results for the CompanyDaoTests.testFindAll test case

 The results for the CompanyDaoTests.testFind test case

 Results for the CompanyDaoTests.testPersist test case

 Results for the CompanyDaoTests.testRemove test case

 JPA traps for the unwary

 Exercises

 Summary

 6. Back to Business – The Service Layer

 Service layer considerations

 Building the service layer

 The Result Data Transfer Object

 The AbstractService.java class

 The service layer interfaces

 Implementing the service layer

 Authentication, authorization, and security

 The CompanyService implementation

 The TaskService implementation

 The TaskLogService implementation

 Testing the service layer

 Automating the service layer tests

 Exercises

 Summary

 7. The Web Request Handling Layer

 A brief history of Web MVC

 Request handling for enterprise web applications

 Building the request handling layer

 Preparing for JSON generation

 Implementing the Company addJson method

 Implementing the Project addJson method

 Implementing the Task addJson method

 Implementing the User addJson method

 Implementing the TaskLog addJson method

 A note on JSON

 Creating the request handlers

 Defining the AbstractHandler superclass

 Defining the SecurityHandler class

 The @Controller and @RequestMapping annotations

 The @ResponseBody annotation

 The @RequestParam annotation

 Authenticating a user

 Logging out

 Defining the CompanyHandler class

 Defining the ProjectHandler class

 The Spring HandlerInterceptor interface

 The Spring MVC configuration

 Defining the TaskLogHandler class

 The @InitBinder annotation

 More on Spring MVC

 Exercises

 Summary

 8. Running 3T on GlassFish

 Configuring the 3T web application

 The Spring applicationContext.xml file

 The web.xml file

 The glassfish-web.xml file

 Configuring the Maven pom.xml file

 Adding eclipselink.target-server to the persistence.xml file

 Adding the logback.xml file to your resources directory

 Configuring the GlassFish server

 Renaming the setup directory

 Starting the GlassFish server in NetBeans

 Configuring the JDBC connection pool

 Configuring the JDBC resource

 Running 3T

 Managing GlassFish without NetBeans

 Summary

 9. Getting Started with Ext JS 4

 The importance of application design

 Ext JS 4 MVC concepts

 Model

 View

 Controller

 Ext JS 4 flexibility

 Ext JS 4 design conventions and concepts

 Practical conventions

 Project structure

 Naming conventions

 Naming stores and models

 Naming views

 Naming controllers

 Naming xtypes

 The Ext JS 4 development environment

 Installing Sencha Cmd

 Installing Ext JS 4 SDK

 Generating the 3T Ext JS 4 application skeleton

 The index.html file

 The app.js and Application.js files

 The bootstrap.js and bootstrap.css files

 The app/Viewport.js and app/view/Main.js files

 The app/controller/Main.js file

 Creating components using Sencha Cmd

 Generating model skeletons

 Generating views and controllers using Sencha Cmd

 Summary

 10. Logging On and Maintaining Users

 Layouts, screens, and workflows

 Defining view components

 Building our views

 Defining the Logon window

 Using the initComponent() function

 Defining the viewport

 The MainHeader.js view

 The MainCards.js file

 Defining the Welcome panel

 Defining the user management components

 The ManageUsers.js file

 The UserForm.js file

 The UserList.js file

 The User store

 Models and persistence

 Defining the proxy

 Comparing AJAX and REST proxies

 Defining the reader

 Defining the writer

 Defining validations

 Controlling the Logon and Viewport actions

 The MainController.js file

 Controlling our user views

 The doAddUser function

 The doSelectUser function

 The doSaveUser function

 The doDeleteUser function

 Let's log on!

 Let's maintain users

 Summary

 11. Building the Task Log User Interface

 Task log workflows and layouts

 Building our task log views

 The ManageTaskLogs.js file

 The TaskLogForm.js file

 The TaskLogList.js file

 Defining our models

 The TaskLog Model

 The Project model

 The Task Model

 Defining our stores

 The TaskLog store

 The Project store

 The Task store

 Controlling the TaskLog actions

 Testing the task log interface

 Summary

 12. 3T Administration Made Easy

 Administration workflows and layouts

 Building the 3T administration interface

 The ManageTasks.js file

 The CompanyForm.js file

 The ProjectForm.js file

 The TaskForm.js file

 The CompanyTree.js file

 Introducing the Ext.data.TreeStore class

 Generating a JSON tree in the CompanyHandler class

 The CompanyHandler.getTreeNodeId() method

 The CompanyHandler.getCompanyTreeJson() method

 Controlling the 3T administration

 Defining the Company model and store

 The doAfterActivate function

 The doSelectTreeItem function

 The doSave functions

 The doDelete functions

 The doAdd functions

 Testing the 3T administration interface

 Dynamically loading tree nodes

 Displaying multiple tree columns

 Drag-and-drop made easy

 Summary

 13. Moving Your Application to Production

 Compiling with Sencha Cmd

 Ext JS 4 theming

 Compiling for production use

 Integrating Sencha Cmd compiling with Maven

 Adding the build version and timestamp

 Building a slimmer WAR file

 Deploying the WAR file to GlassFish

 Opening the GlassFish admin console

 GlassFish security basics

 Deploying the WAR file using the admin console

 Deploying the WAR file using asadmin

 Further deployment information and reading

 GlassFish performance tuning and optimization

 Summary

 A. Introducing Spring Data JPA

 Index

 Enterprise Application Development with Ext JS and Spring

Enterprise Application Development with Ext JS and Spring

Copyright © 2013 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: December 2013
Production Reference: 1131213
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78328-545-7
www.packtpub.com
Cover Image by Kerry Thomson (<kezthommo@activ8.net.au>)

Credits

Author
Gerald Gierer
Reviewers
Eric Mansfield
Justin Rodenbostel
Ernst Schmidt
Alexandre Arcanjo de Queiroz
Acquisition Editor
Joanne Fitzpatrick
Lead Technical Editor
Susmita Panda
Copy Editors
Alisha Aranha
Roshni Banerjee
Sarang Chari
Janbal Dharmaraj
Tanvi Gaitonde
Mradula Hegde
Dipti Kapadia
Gladson Monteiro
Deepa Nambiar
Karuna Narayanan
Kirti Pai
Laxmi Subramanian
Technical Editors
Ritika Singh
Pratish Soman
Harshad Vairat
Project Coordinator
Anugya Khurana
Proofreader
Jonathan Todd
Indexer
Priya Subramani
Graphics
Yuvraj Mannari
Production Coordinator
Shantanu Zagade
Cover Work
Shantanu Zagade

About the Author

Gerald Gierer has been involved in enterprise web application projects for more than 15 years and continues to find his work challenging and rewarding. He started his software development career working with C, PowerBuilder, and Unix, until the rise of the Internet and Java caught his attention. In 2000, he made a conscious decision to focus on Internet application development using the Java language.
The frustration of working with the first Enterprise JavaBeans (EJB) implementations was the predominant reason he investigated the alternatives that could make enterprise development more productive. In 2004, he first heard of the Spring framework and quickly realized how comprehensive and well-designed an alternative this was to EJB. Since then he has architected and developed many Spring projects using a range of view technologies including JSP, JSF, Struts, Tiles, Freemarker, DWR, and YUI.
In 2009, he became aware of Ext JS and was immediately struck by the power of this JavaScript framework. Having spent countless hours building complex web pages from scratch, Ext JS was a breath of fresh air for the client realm. He has been working with Ext JS ever since.
He lives in Geelong, Australia, but often spends time in Europe, having lived and worked for five years in Munich. In his spare time, he enjoys keeping fit, brewing beer, being outdoors, and rock climbing—a passion that has kept him sane for more than 25 years.

Acknowledgments

Most of all I would like to thank my loving wife Katja for her boundless love and support for everything I do. Without her understanding, patience, and positive encouragement this book would simply not have been possible. Thank you meine Suesse!
To my loving parents, who have given me the gift of seeing the world with a positive outlook that can make such a difference when the going gets tough; you are, and continue to be, an inspiration.
To my friend Gabriel Bezas, thank you for showing me the path so many years ago. Your friendship and advice has been invaluable.
To my colleagues over the years I would like to thank (in no particular order) Alfred Merk, Steve Terry, Hans Hochreiter, Karin Langner, Steffen Haigis, Arthur Marschall, Ralf Haeussler, Zoltan Levardy, and Ernst Schmidt. Each of you has contributed to the evolution of this book.
Finally, thanks to the team at Gieman IT Solutions; Adam, Ben, Di (3T logos and design), Jane (book illustrations), Tracy, and Reece. You gave me a reason to write this book.

About the Reviewers

Eric Mansfield has 20 years of development experience at some of the world's largest media and entertainment conglomerates—including Sony Music, Universal, Scripps, Sony Pictures, and MTV—that brings a detailed, practical approach to building high-quality applications. He has been an early adopter of the Spring framework and has a passion for clean, user-friendly design and doing things right the first time. He lives in Austin, Texas with his wife and enjoys golfing and playing the piano.
Justin Rodenbostel is a senior software architect with Redpoint Technologies, based in Chicago, Illinois. He has more than 12 years' experience in full-stack application development using a variety of technologies, including Spring, Grails, Rails, .NET, and various JavaScript frameworks. On the Web, he can be found blogging at http://justinrodenbostel.com. Apart from his work, he stays busy as a husband and father of three, and when he's lucky, can be found brewing beer in his garage.
Ernst Schmidt is a designer and frontend engineer with a focus on rich web applications. He has worked with Sencha frameworks from the very beginning and has an in-depth understanding of Ext JS internals and architecture.
Recently, he is working with Sony Music and Universal Music Group leading the design and implementation of user interface frameworks for digital supply chain applications.
He lives in the Bay Area with his wife and two sons.
Alexandre Arcanjo de Queiroz, a Brazilian software developer, graduated from the Faculty of Technology of São Paulo, a renowned institution of his country. He has experience in developing backend and frontend applications using the Java EE platform in the Unix environment. He is also a GNU/Linux user.
Currently, he is working in Indra Company, a Spanish multinational company present in more than 128 countries, developing applications for the telecommunications segment.

I would like to thank my family who supports me at every moment of my life and my friends who believe in my potential.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers and more]
http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print and bookmark content
	On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.

Preface

Enterprise application development is an art form rarely acknowledged in this fast-paced technical world. This book describes the patterns and strategies that will simplify large-scale development projects using two of the most popular technologies available: the Spring Framework and Sencha Ext JS. Each chapter defines and builds a concise layer in the enterprise application stack, condensing an approach to web development that was gained from many years of developing real-world projects. We cover quite an extensive conceptual ground, so be prepared for an interesting journey!
This book is not an introduction to Java, JavaScript, or any web development concepts. There are significant amounts of practical code in both Java and JavaScript languages, so an understanding of these technologies is required. If you are not familiar with Java and associated concepts such as object-oriented programming, you may be challenged when following the examples and explanations. The same can be said for Ext JS development; you need to have some experience with the fundamental concepts, including the framework APIs, to follow most examples.
You do not need to be an expert, but beginners may wish to start their journey elsewhere.
Regardless of your experience and background, the practical examples provided in this book are written in a way to thoroughly cover each concept before moving on to the next chapter.
What the book covers

Chapter 1, Preparing Your Development Environment, discusses the installation and configuration for the development environment, including the Java Development Kit, NetBeans, and MySQL. We will also introduce Maven, create a new NetBeans project, and deploy the project to the GlassFish 4 application server.
Chapter 2, The Task Time Tracker Database, defines the Task Time Tracker (3T) database design and helps configure NetBeans as a client of the MySQL server. We create and populate all the tables and identify the possible enhancements that could be appropriate for enterprise use.
Chapter 3, Reverse Engineering the Domain Layer with JPA, helps us reverse engineer the 3T database using the NetBeans IDE to create a domain layer of JPA entities. These entities are explored and refactored as we examine and define core JPA concepts.
Chapter 4, Data Access Made Easy, introduces the Data Access Object (DAO) design pattern and helps implement a robust data access layer using the domain classes we defined in the previous chapter. Java generics and interfaces, the Simple Logging Facade for Java (SLF4J), the JPA EntityManager, and transactional semantics are also introduced.
Chapter 5, Testing the DAO Layer with Spring and JUnit, introduces the configuration of a JUnit testing environment and the development of test cases for several of our DAO implementations. We introduce the Spring Inversion of Control (IoC) container and explore the Spring configuration to integrate Spring-managed JUnit testing with Maven.
Chapter 6, Back to Business – The Service Layer, examines the role of the service layer in enterprise application development. Our 3T business logic is then implemented by the Data Transfer Objects (DTO) design pattern using Value Objects (VO). We also examine writing test cases prior to coding the implementation—a core principle of test-driven development and extreme programming.
Chapter 7, The Web Request Handling Layer, defines a request handling layer for web clients that generates JSON data using the Java API for JSON processing, which is a new API introduced in Java EE 7. We implement the lightweight Spring controllers, introduce Spring handler interceptors, and configure Spring MVC using Java classes.
Chapter 8, Running 3T on GlassFish, completes our Spring configuration and allows us to deploy the 3T application to the GlassFish 4 server. We also configure the GlassFish 4 server to run independently of the NetBeans IDE, as would be the case in enterprise environments.
Chapter 9, Getting Started with Ext JS 4, introduces the powerful Ext JS 4 framework and discusses the core Ext JS 4 MVC concepts and practical design conventions. We install and configure our Ext JS development environment using Sencha Cmd and the Ext JS 4 SDK to generate our 3T application skeleton.
Chapter 10, Logging On and Maintaining Users, helps us develop the Ext JS 4 components that are required for logging on to the 3T application and maintaining users. We will discuss the Ext JS 4 model persistence, build a variety of views, examine application concepts, and develop two Ext JS controllers.
Chapter 11, Building the Task Log User Interface, continues to enhance our understanding of the Ext JS 4 components as we implement the task log user interface.
Chapter 12, 3T Administration Made Easy, enables us to develop the 3T Administration interface and introduces the Ext JS 4 tree component. We examine dynamic tree loading and implement drag-and-drop tree actions.
Chapter 13, Moving Your Application to Production, will help us prepare, build, and deploy our 3T project to the GlassFish server. We introduce Ext JS theming, integrate Sencha Cmd compiling with Maven to automate the Ext JS 4 app-all.js file generation process, and learn how to deploy our production build on the GlassFish server.
Appendix, Introducing Spring Data JPA, provides a very brief introduction to Spring Data JPA as an alternative to the implementation discussed in Chapter 4, Data Access Made Easy.

What you need for this book

The examples in this book can be run on any Windows, Mac, or Linux platform that supports the following software:
	Java Development Kit (JDK) 1.7
	NetBeans 7.4+
	MySQL 5+
	Sencha Cmd

All of the software are available for free download at the websites listed in the appropriate chapters.

Who this book is for

This book is particularly relevant to those working in large-scale web application development projects, including application architects, Java developers, and Ext JS developers.
Application architects

Architects understand the big picture from a technical perspective and are responsible for laying out a blueprint for development standards. This book will introduce you to the power of the Spring Framework and Sencha Ext JS and how you can best leverage these technologies when designing your next project.

Java developers

Regardless of your level of understanding, you will learn how the Spring Framework encourages good programming practices. This includes a clean, layered structure that is easy to enhance and maintain. Those new to Spring will be surprised at how little effort is required to achieve significant results. For both new and experienced Spring developers, the focus will be best practices for enterprise web development to allow seamless integration with Sencha Ext JS clients. If you have never worked with Sencha Ext JS, you will be surprised at how quickly powerful UIs can bring backend data to life.

Ext JS developers

Sencha Ext JS is a powerful framework that is used to build enterprise applications that are cross-browser compliant. This book will solve real-world problems right from analysis to providing fully functional solutions. You will see the many stages of development that are usually hidden from Ext JS developers; you will also get introduced to the steps required to produce JSON data for client consumption. The chapters focusing on the Ext JS components will introduce simple strategies for maintainable development based on the latest MVC design patterns.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text, folder names, filenames, file extensions, pathnames, dummy URLs, and user input are shown as follows: "The ManageTaskLogs definition is as follows:"
A block of code is set as follows:
Ext.define('TTT.store.Task', {
 extend: 'Ext.data.Store',
 requires: ['TTT.model.Task'],
 model: 'TTT.model.Task',
 proxy: {
 type: 'ajax',
 url:'task/findAll.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 }
});

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
controllers: [
 'MainController',
 'UserController',
 'TaskLogController'
],
models: [
 'User',
 'Project',
 'Task',
 'TaskLog'
],
stores: [
 'User',
 'Project',
 'Task',
 'TaskLog'
]

Any command-line input or output is written as follows:

sencha –sdk ext compile -classpath=app page -yui -in index.html -out build/index.html

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "Adding a new task log will preserve the currently selected Date and Project, if present:".
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Chapter 1. Preparing Your Development Environment

This chapter will install and configure your development environment. The Rapid Application Development (RAD) tool is NetBeans, an open source, cross-platform Integrated Development Environment (IDE) that can be used for creating visual desktop, mobile, web, and Service-Oriented Architecture (SOA) applications. NetBeans officially supports Java, PHP, JavaScript, and C/C++ programming languages, but it is best known for providing a complete toolset for all the latest Java Enterprise Edition (Java EE) standards (currently Java EE 7).
The database of choice for this book is MySQL, the world's most widely used open source Relational Database Management System (RDBMS). MySQL is the most popular choice of database for web applications hosted on Linux platforms and continues to deliver outstanding performance in a multitude of applications. Its small footprint and ease of use makes it perfect for development use on a single computer.
The application server used in this book is GlassFish 4, which comes bundled with the NetBeans download. GlassFish is installed as part of the NetBeans installation, and the tight integration between the two makes configuring GlassFish a simple process. GlassFish is an open source, production-quality application server that implements all the Java EE 7 features. It has enterprise-grade reliability and is considered by many to be the best open source application server available. GlassFish 4 is the Reference Implementation (RI) for the Java EE 7 specification, a full description of which can be found at https://glassfish.java.net/downloads/ri/.
All of these development tools are freely available for PC, Mac, and Linux. Each tool has extensive examples, comprehensive tutorials, and online support forums available.
It should be noted that although this chapter focuses on NetBeans, MySQL, and GlassFish, it is possible for you to configure any appropriate combination of tools that they are familiar with. The development tasks outlined in this book can just as easily be followed using Eclipse, Oracle, and JBoss—although some described configuration details may require minor modifications.
In this chapter, we will perform the following tasks:
	Install the MySQL Database server
	Install the Java SDK
	Install and configure the NetBeans IDE
	Create the application project and explore Maven
	Run the project in GlassFish

Installing MySQL

MySQL can be downloaded from http://www.mysql.com/downloads/mysql. Select the appropriate MySQL Community server for your operating system and architecture. It is important to follow the instructions, making note of installation directories and paths for future reference. After downloading and running the setup file, you should select the Developer Default installation for this book.
[image: Installing MySQL]
Choosing the default settings is best unless you are familiar with MySQL. This will include setting the default port to 3306, enabling TCP/IP networking, and opening the required firewall port for network access (not strictly required for a developer machine where all apps are running on the same environment, but required if you are configuring a dedicated MySQL server).
Regardless of the environment, it is important to set a root user password during the installation process. We will use the root user to connect to the running MySQL server to execute commands.
[image: Installing MySQL]
Note
The rest of this book will assume the root user has the password adminadmin. This is not a very secure password but should be easy to remember!

We recommend that the MySQL server is configured to start when the operating system starts. How this is done will depend on your environment, but it is usually performed at the end of the Initial Configuration action. Windows users will have the option to start the MySQL server at system startup. Mac users will need to install the MySQL Startup Item after the server has been installed.
Should you decide not to start MySQL when the operating system starts, you will need to start the MySQL server manually whenever required. How this is done will once again depend on your environment, but you should start your server now to confirm that the installation was successful.
Note
Unix and Linux users will need to install MySQL as appropriate for their operating system. This may include the use of Advanced Packaging Tool (APT) or Yet another Setup Tool (YaST), or even the installation of MySQL from source. There are detailed instructions for various operating systems found at http://dev.mysql.com/doc/refman/5.7/en/installing.html.

At the end of the configuration process, you will have a running MySQL server ready to be used in Chapter 2, The Task Time Tracker Database.

Installing the Java SE Development Kit (JDK)

The Java
 SE Development Kit (JDK) can be downloaded from http://www.oracle.com/technetwork/java/javase/downloads/index.html. You may choose to skip this step if you already have the JDK 7 Update 45 (or later) installed on your system.
Note
Do not select the NetBeans bundle as it does not contain the GlassFish server.

[image: Installing the Java SE Development Kit (JDK)]
You will need to accept the JDK 7 License Agreement before selecting the appropriate distribution. After downloading the JDK, run the setup program and follow the instructions and prompts.

Installing the NetBeans IDE

NetBeans can be downloaded from https://netbeans.org/downloads/. The distribution requires a valid JDK to be already installed on your platform. At the time of this writing, I used JDK 7 Update 45, but any JDK 7 (or higher) version would be fine. There are several distribution bundles; you will need to select the Java EE bundle.
[image: Installing the NetBeans IDE]
The latest version at the time of this writing was NetBeans 7.4, which introduced significant new features, including extended HTML5 and JavaScript support. For the first time, NetBeans also included editing and code completion support for the Ext JS framework.
To install the software, simply download and follow the detailed instructions available from the NetBeans website. This will take you through a sequence of setup screens as follows:
	The GlassFish 4 server is automatically selected. You do not need to install Tomcat.
	Accept the terms in the license agreement.
	Accept the terms of the JUnit license agreement. JUnit is used for testing in Chapter 5, Testing the DAO Layer with Spring and JUnit.
	Note the installation path of the NetBeans IDE for future reference. Select the appropriate JDK that was installed previously (if there is more than one JDK on your system).
	Note the installation path for the GlassFish 4 server for future reference.
	The final screen summarizes the installation. Ensure to Check for Updates before clicking on Install to start the process.

The process may take several minutes depending on your platform and hardware.
When the installation is complete, you can run NetBeans for the first time. If you had a previous version of NetBeans installed, you may be prompted to Import Settings. The default opening screen will then be displayed as follows:
[image: Installing the NetBeans IDE]
The most useful panels can now be opened from the menu:
	Projects: This panel is the main entry point to your project sources. It shows a logical view of important project content, grouped into appropriate contexts.
	Files: This panel shows the actual file structure of the project node as it exists on your filesystem.
	Services: This panel displays your runtime resources. It shows a logical view of important runtime resources such as the servers and databases that are registered with the IDE.

At this stage, the first two panels will be empty but the Services panel will have several entries. Opening the Servers panel will display the installed GlassFish 4 Server as seen in the following screenshot:
[image: Installing the NetBeans IDE]

Introducing Maven

Apache Maven is a tool that is used for building and managing Java-based projects. It is an open source project hosted at http://maven.apache.org and comes bundled with the NetBeans IDE. Maven simplifies many steps common to all Java development projects and provides numerous features, including the following:
	The provision of convention over configuration. Maven comes with a series of predefined targets for performing certain well-defined tasks including compilation, testing, and packaging of projects. All tasks are managed through a single configuration file: pom.xml.
	A consistent coding structure and project framework. Each Maven project has the same directory structure and location for source files, test files, build files, and project resources. This common structure brings us easily up to speed with projects.
	A consistent build system with numerous plugins to make common tasks easy.
	The ability to execute tests as part of the build process.
	A highly flexible and powerful dependency management system. This allows software developers to publish information and share Java libraries through (external or remote) Maven repositories hosted on the Internet. Libraries are then downloaded and cached locally by Maven for use in the project.

We encourage you to visit the Maven website to explore the many features available. NetBeans will use Maven to create and manage the web application project.

Creating the Maven Web Application project

A NetBeans project encapsulates all the source code and related components required to maintain and develop an application. Navigate to File | New Project from the menu to start the process:
[image: Creating the Maven Web Application project]
Select Maven in the Categories listing and Web Application from the Projects listing, as shown in the preceding screenshot, before selecting the Next button. This will present you with the project configuration screen with the following fields:
	Project Name: This specifies the display name of the project in the project window. This name is also used to create the project folder and must not contain spaces.Note
Our project is called Task Time Tracker. This tool will allow users to manage the time spent on different tasks for different projects. The project name field is the lowercase, nonspaced translation of the name of the project: task-time-tracker.

	Project Location: This specifies the filesystem root folder where you want to store the project metadata and source code. We normally create a project-specific folder at the root level of a drive, rather than burying it deep within a folder structure under NetBeans. This makes it easier to find and copy files into the project.Note
Windows users should create a project folder under c:\projects. Mac users may wish to replace this with /Users/{username}/projects and Unix users with /home/{username}/projects. The rest of the book will refer to this location in all examples as the project folder.

	Project Folder: The project folder is read-only and generated based on the name of the project and the project location.
	Artifact Id: This is a read-only Maven-specific property to identify the project and is based on the project name.
	Group Id: This is another Maven property that represents a top-level container for multiple artifacts. It usually represents the Top-Level Domain (TLD) of the organization owning the project.Note
The Group Id for the project is com.gieman, the company of the author.

	Version: This is another Maven property that represents the version of the artifact. The default version is 1.0-SNAPSHOT, which we will change to 1.0. As projects evolve and new versions are released, Maven will keep track of the different builds based on their versions.
	Package: The IDE will automatically create a Java source package structure based on this field. We will use the package com.gieman.tttracker.

You should now have entered the following project details:
[image: Creating the Maven Web Application project]
Click on the Next button to view the final screen. Do not change the default GlassFish Server 4.0 and Java EE 7 settings before clicking on the Finish button. You will now see activity in the Project Creation output tab as the project is created and configured. Opening the Project and Files panels will allow you to see the project structure:
Tip
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

[image: Creating the Maven Web Application project]
Right-clicking on the project name in either tab will allow you to select the Properties for the project. This will display all properties and paths relevant to the project under different categories:
[image: Creating the Maven Web Application project]
You should not need to change these properties for the remainder of the book.
Understanding the POM and dependency management

Each Maven project has a pom.xml configuration file at the root level of the NetBeans project. Click on the Files view and double-click on the pom.xml file to open it in the editor:
[image: Understanding the POM and dependency management]
Note
You should see the Navigator window open in the bottom-left panel. This displays an outline of the file being edited and is very helpful when navigating through large files. Double-clicking on a node in the Navigator will position the cursor at the appropriate line in the editor.
 If the Navigator window does not open (or has been closed), you can open it manually by navigating to Window | Navigating | Navigator from the menu.

The Project Object Model (POM) fully defines the project and all required Maven properties and build behaviors. There is only one dependency shown in pom.xml:
<dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

This dependency identifies that the project requires Java EE 7 for building. This entry ensures the full Java EE 7 APIs are available for Java coding in the Task Time Tracker project. Our project also requires the Spring Framework, which must now be added as additional dependencies. Typing in the editor will result in autocompletion help to determine the correct dependencies. After adding the Spring Framework groupId and artifactId entries, as shown in the following screenshot, the Ctrl + Space bar keyboard shortcut will open the available matching entries for the artifactId starting with the text spring:
[image: Understanding the POM and dependency management]
If this autocomplete list is not available, it may be due to the Maven repository being indexed for the first time. In this situation you will then see the following screenshot at the bottom of the editor:
[image: Understanding the POM and dependency management]
Be patient and in a few minutes the indexing will be finished and the autocomplete will become available. Indexing is required to download available entries from the Maven repository.
The required Spring Framework components are as follows:
	spring-context: This is the central artifact required for Spring's dependency injection container
	spring-tx: This is the transaction management abstraction required for implementing transactional behavior
	spring-context-support: These are various application context utilities, including Ehcache, JavaMail, Quartz, and FreeMarker integration
	spring-jdbc: This is the JDBC data access library
	spring-orm: This is the Object-to-Relation-Mapping (ORM) integration for JPA development
	spring-instrument: This is for the weaving of classes
	spring-webmvc: This is the Spring Model-View-Controller (MVC) for Servlet environments
	spring-test: This is the support for testing Spring applications with JUnit

To add these dependencies using the latest Spring release version (3.2.4) requires the following additions to the pom.xml file:
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>3.2.4.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context-support</artifactId>
 <version>3.2.4.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-tx</artifactId>
 <version>3.2.4.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>3.2.4.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-orm</artifactId>
 <version>3.2.4.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-instrument</artifactId>
 <version>3.2.4.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>3.2.4.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>3.2.4.RELEASE</version>
</dependency>

Understanding dependency scope

The final Spring Framework dependency is only required for testing. We can define this by adding a scope attribute with value test. This tells Maven that the dependency is only required when running the testing phase of the build and is not required for deployment.
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>3.2.4.RELEASE</version>
 <scope>test</scope>
</dependency>

The javaee-web-api dependency that was automatically created by NetBeans has a scope of provided. This means the dependency is not required for deployment and is provided by the target server. The GlassFish 4 server itself is the provider of this dependency.
If the scope attribute has not been included, the dependency JAR will be included in the final build. This is the equivalent of providing a scope entry of compile. As a result, all the Spring Framework dependency JARs will be included in the final build file.
A full explanation of the Maven dependency mechanism and scoping can be found at http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html.

Defining Maven properties

The Spring Framework dependencies defined in pom.xml all have the same version (3.2.4.RELEASE). This duplication is not ideal, especially when we wish to upgrade to a newer version at a later time. Changes would be required in multiple places, one for each Spring dependency. A simple solution is to add a property to hold the release version value as shown in the following code:
<properties>
<endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<spring.version>3.2.4.RELEASE</spring.version>
</properties>

This custom property, which we have named spring.version, can now be used to replace the multiple duplicates as follows:
<dependency>
<groupId>org.springframework</groupId>
 <artifactId>spring-context-support</artifactId>
 <version>${spring.version}</version>
</dependency>

The ${spring.version} placeholder will then be substituted with the properties value during the build process.

Understanding Maven-build plugins

The Maven build process executes each defined build plugin during the appropriate build phase. A full list of build plugins can be found at http://maven.apache.org/plugins/index.html. We will introduce plugins as needed in subsequent chapters, but the default plugins created by the NetBeans IDE are of interest now.
The maven-compiler-plugin controls and executes the compilation of Java source files. This plugin allows you to specify both the source and target Java versions for compilation as shown in the following code:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <compilerArguments>
 <endorseddirs>${endorsed.dir}</endorseddirs>
 </compilerArguments>
 </configuration>
</plugin>

Changing these values to 1.6 may be required when compiling projects for older Java servers running on the earlier versions of Java.
The maven-war-plugin builds a WAR file for the project as follows:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </configuration>
</plugin>

The default generated WAR filename is {artifactId}-{version}.war, which can be changed by including the warName configuration property. We will be adding properties to this plugin when building the project for production release in the final chapter. A full list of maven-war-plugin options may be found at http://maven.apache.org/plugins/maven-war-plugin/war-mojo.html.
The maven-dependency-plugin copies dependency JAR files to the defined output directory as shown in the following code:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <phase>validate</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <outputDirectory>${endorsed.dir}</outputDirectory>
 <silent>true</silent>
 <artifactItems>
 <artifactItem>
 <groupId>javax</groupId>
 <artifactId>javaee-endorsed-api</artifactId>
 <version>7.0</version>
 <type>jar</type>
 </artifactItem>
 </artifactItems>
 </configuration>
 </execution>
 </executions>
</plugin>

This is useful to see which JARs are used by the project and to identify what transitive dependencies are required (dependencies of dependencies).
We will modify this plugin to copy all compile-time dependencies of the project to a directory in ${project.build.directory}. This special build directory is under the root folder of the project and is named target, the target destination of the build process. The updated entry will now look as follows:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <id>copy-endorsed</id>
 <phase>validate</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <outputDirectory>${endorsed.dir}</outputDirectory>
 <silent>true</silent>
 <artifactItems>
 <artifactItem>
 <groupId>javax</groupId>
 <artifactId>javaee-endorsed-api</artifactId>
 <version>7.0</version>
 <type>jar</type>
 </artifactItem>
 </artifactItems>
 </configuration>
 </execution>
 <execution>
 <id>copy-all-dependencies</id>
 <phase>compile</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${project.build.directory}/lib
 </outputDirectory>
 <includeScope>compile</includeScope>
 </configuration>
 </execution>
 </executions>
</plugin>

As we are now performing two executions in the single plugin, each execution needs its own <id>. The second execution, with ID copy-all-dependencies, will copy all dependent JARs with the scope compile to the target/lib directory.

Executing the Maven build

The simplest way to execute a build is to click on the Clean and Build Project button in the toolbar. You can also right-click on the project node in the Projects tab and select Clean and Build from the menu. The build process will then execute each defined phase in the POM, resulting in Java code compilation, dependency resolution (and copying), and finally, WAR file generation. Opening the target directory structure will display the build result as follows:
[image: Executing the Maven build]
Even though we have not written a single line of code, the generated WAR file task-time-tracker-1.0.war can now be deployed to the GlassFish server.

Starting the GlassFish 4 server

Opening the Services tab and expanding the Servers node will list the GlassFish server that was installed during the NetBeans installation process. You can now right-click on the GlassFish Server 4.0 node and select Start as shown in the following screenshot:
[image: Starting the GlassFish 4 server]
The Output panel should now open at the bottom of your NetBeans IDE and display the startup results. Select the GlassFish Server 4.0 tab to view the details.
[image: Starting the GlassFish 4 server]
The fifth-last line identifies that the server has started and is listening to port 8080, written as 8,080 in the log:
INFO: Grizzly Framework 2.3.1 started in: 16ms - bound to [/0.0.0.0:8,080]
You can now open your preferred browser and view the page http://localhost:8080.
Note
Note that depending on your environment, you may have other applications listening to port 8080. In these circumstances, you will need to substitute the correct port, as defined in the GlassFish server output, in place of 8080.

[image: Starting the GlassFish 4 server]
You can now stop the server by right-clicking on the GlassFish Server 4.0 node and clicking on Stop.
[image: Starting the GlassFish 4 server]

Running the Task Time Tracker project

We have already built the project successfully; it is now time to run the project in GlassFish. Click on the Run toolbar item to start the process as follows:
[image: Running the Task Time Tracker project]
The output should display the process, first building the project followed by starting and deploying to the GlassFish server. The final step will open your default browser and display the world-renowned message that is loved by all developers, as shown in the following screenshot:
[image: Running the Task Time Tracker project]
Congratulations! You have now configured the core components for developing, building, and deploying a Spring Java project. The final step is to change the text on the default page. Open the index.html file as shown in the following screenshot:
[image: Running the Task Time Tracker project]
Change <title> to Task Time Tracker Home Page and the <h1> text to Welcome to Task Time Tracker!. Save the page and refresh your browser to see the change.
[image: Running the Task Time Tracker project]
Note
Didn't see the updated text change on browser refresh? Under some circumstances, after deploying to GlassFish for the first time, the changes made in the index.html file may not be seen in the browser when you refresh the page. Restarting your NetBeans IDE should fix the issue and ensure subsequent changes are immediately deployed to GlassFish when any project resource is saved.

Summary

In this chapter, you have been introduced to some of the key technologies we will be using in this book. You have downloaded and installed the MySQL database server, the JDK, and the NetBeans IDE. We then introduced Maven and how it is used to simplify the building and management of Java projects. We finally deployed our skeleton Task Time Tracker project to GlassFish without writing a single line of code.
Although we have added the Spring Framework to our project, we are yet to delve into how it is used. Likewise, we are yet to mention Sencha Ext JS. Be patient, there is plenty more to come! The next chapter will introduce our Task Time Tracker database tables and start our development journey.

Chapter 2. The Task Time Tracker Database

This chapter defines the Task Time Tracker (3T) database design and configures NetBeans as a client of MySQL server.
The 3T application will be used to keep track of the time spent on different tasks for different company projects. The main entities are:
	Company: This is the entity that owns zero or more projects. A company is independent and can exist in its own right (it has no foreign keys).
	Project: This represents a grouping of tasks. Each project belongs to exactly one company and may contain zero or more tasks.
	Tasks: These represent activities that may be undertaken for a project. A task belongs to exactly one project.
	Users: They are participants who undertake tasks. Users can assign time spent to different tasks.
	Task log: This is a record of the time spent by a user on a task. The time spent is stored in minutes.

These entity definitions result in a very simple database design:
[image: The Task Time Tracker Database]
We will prefix all of our 3T tables with ttt_. Large enterprise databases may contain hundreds of tables, and you will soon appreciate the prefixing of table names to group related tables.
Connecting NetBeans with MySQL

Click on the Services tab in the NetBeans IDE, and navigate to Databases | Drivers. You will see that NetBeans comes with several different database drivers:
[image: Connecting NetBeans with MySQL]
Right-click on the Databases node, and click on Register MySQL Server…as shown in the following screenshot:
[image: Connecting NetBeans with MySQL]
For Windows users, this will open a dialog box with default settings. Enter the admin password used when installing MySQL server in the previous chapter, and check the Remember Password option:
[image: Connecting NetBeans with MySQL]
Mac users will see a different window prior to setting the connection properties. Select the MySQL driver before clicking on the Next button:
[image: Connecting NetBeans with MySQL]
This will then allow you to specify the required database connection details:
[image: Connecting NetBeans with MySQL]
When finished with these tasks, you will see MySQL
 Server listed in the Databases node. Right-click on the server, and select Connect to connect to the server (if not already connected):
[image: Connecting NetBeans with MySQL]
This will connect NetBeans to MySQL server and list the available databases. Right-click on the server, and select Create Database as shown in the following screenshot:
[image: Connecting NetBeans with MySQL]
Enter the database name as shown in the following screenshot, and click on OK to create the database:
[image: Connecting NetBeans with MySQL]
The final step is to connect to the newly created task_time_tracker database. Right-click on task_time_tracker and select Connect… as shown in the following screenshot:
[image: Connecting NetBeans with MySQL]
This will add a MySQL database connection entry for the task_time_tracker database, which can be opened by right-clicking on it whenever required:
[image: Connecting NetBeans with MySQL]
Now you can right-click on the database connection and select the Execute Command… option to open the SQL Command editor in the workspace:
[image: Connecting NetBeans with MySQL]
The SQL Command editor is where you will type and execute commands against the database:
[image: Connecting NetBeans with MySQL]

The 3T database

The following SQL statements define the MySQL tables used in 3T. It is possible to use any database, and MySQL-specific code is highlighted to identify differences with ANSI SQL.
The company table

A company has projects for which we need to keep track of the time spent on different tasks. The company is, hence, the first table that needs to be defined. It is a very simple structure:
create table ttt_company(
 id_company int unsigned not null auto_increment,
 company_name varchar(200) not null,
 primary key(id_company)
);

The auto_increment keyword is used by MySQL to identify a number column that should automatically be incremental (the default rate of increment is by one number) based on the current highest value in the column. This is used to generate the id_company primary key values. Let's add some company data:
insert into ttt_company(company_name) values ('PACKT Publishing');
insert into ttt_company(company_name) values ('Gieman It Solutions');
insert into ttt_company(company_name) values ('Serious WebDev');

After entering these statements into the SQL Command editor, you can execute the statements by clicking on the button in the top-right corner of the following screenshot (the Run SQL button is circled):
[image: The company table]
The output of these statements will be shown at the bottom of the IDE:
[image: The company table]
You can now view the inserted data by executing the following statement in the SQL Command editor:
select * from ttt_company;

Alternatively, you can also right-click on the table node in the databases and select View Data…:
[image: The company table]
This will result in the following screenshot:
[image: The company table]

The projects table

A company may have any number of projects with each project belonging to exactly one company. The table definition is as follows:
create table ttt_project(
 id_project int unsigned not null auto_increment,
 project_name varchar(200) not null,
 id_company int unsigned not null,
 primary key(id_project),
 foreign key(id_company) references ttt_company(id_company)
);

Once again, we can add some data:
insert into ttt_project(project_name, id_company) values('Enterprise Application Development with Spring and ExtJS', 1);
insert into ttt_project(project_name, id_company) values ('TheSpring Framework for Beginners', 1);
insert into ttt_project(project_name, id_company) values('Advanced Sencha ExtJS4 ', 1);
insert into ttt_project(project_name, id_company) values ('The 3TProject', 2);
insert into ttt_project(project_name, id_company) values('Breezing', 2);
insert into ttt_project(project_name, id_company) values ('GiemanWebsite', 2);
insert into ttt_project(project_name, id_company) values('Internal Office Projects', 3);
insert into ttt_project(project_name, id_company) values('External Consulting Tasks', 3);

In these insert statements, we have provided the foreign key to the company table and once again allowed MySQL to generate the primary keys. Executing these commands and browsing the ttt_project table data should be displayed as shown in the following screenshot:
[image: The projects table]

The tasks table

A project may have any number of tasks with each task belonging to exactly one project. The table and test data can now be added as follows:
create table ttt_task(
 id_task int unsigned not null auto_increment,
 id_project int unsigned not null,
 task_name varchar(200) not null,
 primary key(id_task),
 foreign key(id_project) references ttt_project(id_project)
);

We will now add a range of tasks for some of our projects:
insert into ttt_task(id_project, task_name)values (1, 'Chapter 1');
insert into ttt_task(id_project, task_name)values (1, 'Chapter 2');
insert into ttt_task(id_project, task_name)values (1, 'Chapter 3');

insert into ttt_task(id_project, task_name)values (2, 'Chapter 1');
insert into ttt_task(id_project, task_name)values (2, 'Chapter 2');
insert into ttt_task(id_project, task_name)values (2, 'Chapter 3');

insert into ttt_task(id_project, task_name)values (3, 'Preface');
insert into ttt_task(id_project, task_name)values (3, 'Appendix');
insert into ttt_task(id_project, task_name)values (3, 'Illustrations');

insert into ttt_task(id_project, task_name)values (4, 'DatabaseDevelopment');
insert into ttt_task(id_project, task_name)values (4, 'Javadevelopment');
insert into ttt_task(id_project, task_name)values (4, 'SenchaDevcelopment');
insert into ttt_task(id_project, task_name)values (4, 'Testing');

Executing these commands and browsing the ttt_task table data will display the following screenshot:
[image: The tasks table]

The user table

The next table in our design holds user information:
create table ttt_user(
 username varchar(10) not null,
 first_name varchar(100) not null,
 last_name varchar(100) not null,
 email varchar(100) not null unique,
 password varchar(100) not null,
 admin_role char(1) not null,
 primary key(username)
);

Note that the admin_role column will be used to identify if a user has administrative permissions in the 3T application. We will now add two users:
insert into ttt_user(username, first_name, last_name, email,password, admin_role) values ('jsmith', 'John', 'Smith', 'js@tttracker.com', 'admin','N');
insert into ttt_user(username, first_name, last_name, email,password, admin_role) values ('bjones', 'Betty', 'Jones', 'bj@tttracker.com','admin','Y');

Running this set of commands will create the user table and then insert our two test users as displayed in the following screenshot:
[image: The user table]

The task log table

The final table will be used to enter the time spent on different tasks.
create table ttt_task_log(
 id_task_log int unsigned not null auto_increment,
 id_task int unsigned not null,
 username varchar(10) not null,
 task_description varchar(2000) not null,
 task_log_date date not null,
 task_minutes int unsigned not null,
 primary key(id_task_log),
 foreign key(id_task) references ttt_task(id_task),
 foreign key(username) references ttt_user(username)
);

We will now add some data to this table for our user John Smith (jsmith). Note that the time spent on each task is in minutes and that the MySQL function now() is used to return the current timestamp:
insert into ttt_task_log (id_task, username, task_description,task_log_date,task_minutes)values(1,'jsmith','Completed Chapter 1 proof reading',now(),120);
insert into ttt_task_log (id_task, username, task_description,task_log_date,task_minutes)values(2,'jsmith','Completed Chapter 2 draft',now(), 240);
insert into ttt_task_log (id_task, username, task_description,task_log_date,task_minutes)values(3,'jsmith','Completed preparation work for initialdraft',now(), 90);
insert into ttt_task_log (id_task, username, task_description,task_log_date,task_minutes)values(3,'jsmith','Prepared database for Ch3 task',now(), 180);

In a similar way, we will insert some test data for Betty Jones (bjones):
insert into ttt_task_log (id_task, username, task_description,task_log_date,task_minutes)values(1,'bjones','Started Chapter 1 ',now(), 340);
insert into ttt_task_log (id_task, username, task_description,task_log_date,task_minutes)values(2,'bjones','Finished Chapter 2 draft',now(), 140);
insert into ttt_task_log (id_task, username, task_description,task_log_date,task_minutes)values(3,'bjones','Initial draft work completed',now(), 450);
insert into ttt_task_log (id_task, username, task_description,task_log_date,task_minutes)values(3,'bjones','Database design started',now(), 600);

The result of these insert statements can now be viewed as shown in the following screenshot:
[image: The task log table]

Enterprise options for the 3T database

The table and column definitions provided previously are the simplest required for our 3T project. There are, however, several potential options that could be added to enhance the structure for enterprise use.
Password encryption

Enterprise applications would require that the password field be encrypted for security purposes using a unidirectional algorithm. Passwords should never be stored in plain text, and it should never be possible to view the password in the database (as we can currently do). It is beyond the scope of this book to cover password security strategies, but a very good explanation of the core principles can be found at http://www.jasypt.org/howtoencryptuserpasswords.html.
MySQL provides a number of password encryption functions that could be used for this purpose. We suggest you browse the documentation at https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html to understand the different options available.

LDAP integration

Many enterprises use LDAP (Lightweight Directory Access Protocol) for maintaining users within their organization. LDAP is most commonly used to provide single sign-on, where one password for a user is shared between many services. The password column in the user table would, hence, not be required for such scenarios. If an organization spans many geographical locations, there may be several LDAP realms spread across different continents. Such a scenario may require a new table to store LDAP authorization servers. Each user may then be assigned an authorization LDAP server to process their logon.

Audit trails

Enterprise systems often require extensive audit trails (when and why an action took place and who committed it). This is especially the case for large organizations that are publicly held. The
Sarbanes-Oxley Act (SOX), for example, requires that all publicly held companies based in the United States must establish internal controls and procedures to reduce the possibility of corporate fraud. Such processes include identifying authorized and unauthorized changes or potentially suspicious activity over any period of time.
The questions "Who, When, and Why" are the basis of audit trails that need to be considered when designing an enterprise database. Simply adding a few additional columns to all tables is a very good start:
who_created varchar(10) not null
who_updated varchar(10) not null
when_created datetime default current_timestamp
when_updated datetime on update current_timestamp

Note that this syntax is for MySQL, but similar functionality will be available for most databases. The who_created and who_updated columns will need to be updated programmatically. The developer will need to ensure that these fields are set correctly during processing of the relevant action. The when_created and when_updated columns do not need to be considered by the developer. They are automatically maintained by MySQL. The when_created field will be automatically set to the current_timestamp MySQL function that represents the query start time to establish the exact moment in time that the record is inserted into the database. The when_updated field will auto update each time the record itself is updated. Adding these four additional columns will ensure that a basic level of audit tracking is available. We now have the ability to view who created the record and when in addition to who performed the last update and when. The ttt_company table, for example, could be redesigned as follows:
create table ttt_company(
 id_company int unsigned not null auto_increment,
 company_name varchar(200) not null,
 who_created varchar(10) not null,
 who_updated varchar(10) not null,
 when_created datetime default current_timestamp,
 when_updated datetime on update current_timestamp,
 primary key(id_company)
);

Logon activity audits

This provides the ability to track basic user activity including who logged on, when they logged on, and from where they logged on. It is another crucial piece of the enterprise audit trail and should also include tracking of invalid logon attempts. This information will need to be maintained programmatically and requires a table with a structure similar to the following code:
create table ttt_user_log(
 id_user_log int unsigned not null auto_increment,
 username varchar(10) not null,
 ip_address varchar(20) not null,
 status char not null,
 log_date datetime default current_timestamp,
 primary key(id_user_log)
);

The status field could be used to identify the logon attempt (for example, S could represent successful and F could represent failed while M could represent a successful mobile device logon). The information required would need to be defined in the context of the compliance requirements of the enterprise.

Custom audit tables

There is often the need to audit every action and data change for a particular table. In situations such as this, the "when" and "who" updated fields are not enough. This situation requires an audit (or snapshot) table that contains all fields in the original table. Each time a record is updated, the current snapshot is written to the audit table so that each change is available for auditing purposes. Such tables may also be called archive tables as the evolution of data is archived on every change. Custom audit tables such as these are usually not maintained programmatically and are managed by the RDBMS, either by triggers or by built-in logging/archiving functionality.

Summary

This chapter has defined a database structure that will be used to build the 3T application. We have connected to the MySQL server and executed a series of SQL statements to create and populate a set of tables. Each table uses autoincrement columns to allow MySQL to automatically manage and generate primary keys. Although the table structures are not complex, we have also identified possible enhancements that could be appropriate for enterprise use.
In Chapter 3, Reverse Engineering the Domain Layer with JPA, we will start our Java journey by reverse engineering our database to create a set of Java Persistence API (JPA) entities. Our JPA domain layer will become the data heart of our 3T application.

Chapter 3. Reverse Engineering the Domain Layer with JPA

The domain layer represents the real-world entities that model the heart of your application. At the highest level, the domain layer represents the application's business domain and fully describes the entities, their attributes, and their relationships with one another. At its most basic level, the domain layer is a set of Plain Old Java Objects (POJOs) that define the Java representation of the database tables being mapped onto your application. This mapping is achieved through JPA.
The Java Persistence API (JPA) is one of the most significant advances in the Java EE 5 platform, replacing the complex and cumbersome entity beans with the far simpler POJO-based programming model. JPA provides a standard set of rules for Object Relational Mapping (ORM), which are simple, intuitive, and easy to learn. Database relationships, attributes, and constraints are mapped onto POJOs using JPA annotations.
In this chapter we will do the following:
	Reverse engineer the 3T database using the NetBeans IDE
	Explore and define JPA annotations for our domain layer
	Introduce the Java Persistence Query Language (JPQL)

Understanding the reasons for using JPA

JPA is a productivity tool that allows developers to focus on business rather than write low-level SQL and JDBC codes. It completely eliminates the need to map a Java ResultSet to Java domain objects and greatly reduces the amount of effort required to produce a usable and functional application. A JPA-based application will be easier to maintain, test, and enhance. More importantly, the quality of your application code will significantly increase and the domain entities will become self-documenting.
From personal experience, I estimate the time taken to write a traditional SQL application (without JPA, coding the CRUD SQL statements directly) to be in the order of 10-15 times longer than with the JPA approach. This translates into an enormous saving of time and effort for enterprise applications where cost saving can amount to many man-months of work. During the lifecycle of an application, when maintenance, bug fixes, and enhancements are taken into account, cost savings alone may be the difference between success and failure.

Understanding JPA implementations

The JPA specification initially evolved from the combined experiences of key ORM implementations including TopLink (from Oracle), Hibernate, and Kodo to name a few. These products revolutionized Java database interactions by abstracting the underlying SQL from the domain layer and simplifying the development effort required to implement the core CRUD operations (Create, Read, Update, and Delete). Each implementation supports the JPA standards in addition to their own proprietary APIs. TopLink, for example, provides caching enhancements that are outside of the JPA specification as well as sophisticated query optimizations for Oracle databases. The implementation that you select may depend on the requirements of your application (for example, distributed caching) and also on the underlying database itself.
The GlassFish 4 server comes bundled with the open source EclipseLink JPA implementation, and this is what we will be using in our book. More information about the EclipseLink project can be found at http://www.eclipse.org/eclipselink/. You don't need to download any files as the EclipseLink dependencies will be automatically added to your pom.xml file during the reverse engineering process.

Reverse engineering with NetBeans

The New Entity Classes from Database wizard is one of the most helpful and time-saving wizards in NetBeans. It generates a set of entity classes from an existing database connection, extracting and annotating all the fields and defining relationships between the classes. To access the wizard, navigate to File | New File. This will open the New File window, where you can then select the Persistence category followed by the Entity Classes From Database file type:
[image: Reverse engineering with NetBeans]
Click on Next to display the Database Tables screen where you can create a New Data Source:
[image: Reverse engineering with NetBeans]
This will allow you to enter the JNDI Name and to select the Database Connection that was created in the previous chapter:
[image: Reverse engineering with NetBeans]
The wizard will now read all the tables and display them in the Available Tables list. Select all the tables and add them to the Selected Tables list as shown:
[image: Reverse engineering with NetBeans]
Click on the Next button. This will display the following screen with entity class generation properties. Change the Class Name for each entity to remove the Ttt prefix by double-clicking on each Class Name row to edit this property as shown (the screenshot shows the User entity prior to editing). Why do we remove this Ttt? Simply because the reverse engineering process automatically creates a class name based on the table name and the Ttt prefix does not add anything to our design. The next change has to be done in the package name. Add domain to the package name as shown. This will generate new entity classes in the com.gieman.tttracker.domain package that will represent our business domain objects and the associated helper classes. Keeping our classes in well-defined, separate packages according to usage or purpose enhances our ability to maintain the application easily. For large enterprise applications, a well-defined Java package structure is crucial.
The final step is to uncheck the Generate JAXB Annotations checkbox. We don't need to generate XML via JAXB, so we will not need the additional annotations.
[image: Reverse engineering with NetBeans]
Now click on the Next button, which will show the following screen. The final step involves selecting the appropriate Collection Type. There are three different types of collections that can be used and all can be used with equal success. We will change the default Collection Type to java.util.List as the sort order is often important in an application's business logic and the other types do not allow sorting. On a more personal level, we prefer using the java.util.List API over the java.util.Set and java.util.Collection APIs.
[image: Reverse engineering with NetBeans]
Click on the Finish button to start the reverse engineering process. When the process is complete, you can open the src/java nodes to view the generated files, as shown in the following screenshot:
[image: Reverse engineering with NetBeans]

Introducing the persistence.xml file

The persistence.xml file is generated during the reverse engineering process and defines the JPA configuration for a set of entity classes. This file is always located in the META-INF directory at the root of the classpath. Maven projects have a special directory named resources located in the src/main directory, which contains additional resources applicable for building the Java project. The resources directory is automatically copied by Maven to the root of the classpath when building the project. Open the file by double-clicking on it to display the Design view of the file in the editor:
[image: Introducing the persistence.xml file]
The Design view contains several properties that are used to configure the persistence unit behavior. We will stick to the simplest settings, but we encourage you to explore the different strategies that may be useful for your own application's needs. For example, projects that require tables to be automatically created will appreciate the Table Generation Strategy of Create or Drop and Create. Selecting the different options and switching to the Source view will help us to quickly identify the appropriate properties in the persistence.xml file.
Click on the Source button at the top to view the default file contents in the text format:
[image: Introducing the persistence.xml file]
Change the default persistence-unit node name attribute value to tttPU instead of the long autogenerated name. This value will be used in your Java code to refer to this persistence unit and is easy to remember. The provider node value is automatically set to the appropriate EclipseLink class, and the jta-data-source node value is automatically set to the data source used during the reverse engineering wizard. The exclude-unlisted-classes setting will define whether the classpath is scanned for annotated entity classes. Change this to false. For large projects, this is the safest way of ensuring that classes are not omitted accidentally. It is also possible to specify each class explicitly in the following way:
[image: Introducing the persistence.xml file]
This is fine for small projects but not very practical if you have hundreds of entity classes. In the previous example, the exclude-unlisted-classes property is set to true, meaning that only the specified classes will be loaded without the need for classpath scanning. We prefer the first method for defining our JPA classes, where the classpath is scanned for all the annotated entity classes by setting exclude-unlisted-classes to false.
The final configuration item of interest is the transaction-type attribute. There are two different types of transactions supported by this item, of which we have JTA set by default. JTA (Java Transaction API) denotes that transactions will be managed by a Java EE transaction manager provided by the GlassFish server in our application. We will explore the RESOURCE_LOCAL alternative to JTA when we build our test cases in Chapter 5, Testing the DAO Layer with Spring and JUnit. In this situation, the transactions will be managed locally without a Java EE container.

Refactoring the Java classes

The classes generated by the reverse engineering process can be improved upon with a little refactoring to make the code more readable and easier to understand. Some of the autogenerated properties and fields have id in their name when we are actually referring to classes, while the collection of java.util.List objects have list in their name. Let's start with the Company.java file.
The Company.java file

This file represents the Company entity. Double-click on the file to open it in the editor and browse through the contents. This class is a simple POJO with set and get methods for each property in addition to the standard hashCode, equals, and toString methods. The class has a no-arg constructor (required by the JPA specification as domain objects must be created dynamically without any properties), a second constructor that takes only the primary key, and a full (all arguments) constructor. We will make the code more readable by making a few minor changes to the Company.java file.
The first change is to rename the field projectList to projects everywhere in the file. This can be easily achieved by selecting the projectList field, and then selecting Refactor | Rename from the menu:
[image: The Company.java file]
You can now change the field name to projects. Make sure that you also select the Rename Getters and Setters option before clicking on the Refactor button.
[image: The Company.java file]
Making these changes will change the field name and generate new get and set methods for the projects field.
The final change for the Company.java file is renaming the mappedBy property from idCompany to company. The appropriate lines should now look like the following code:
@OneToMany(cascade = CascadeType.ALL, mappedBy = "company")
private List<Project> projects;

The final refactored Company.java file should now look like the following code snippet:
package com.gieman.tttracker.domain;

import java.io.Serializable;
import java.util.List;
import javax.persistence.Basic;
import javax.persistence.CascadeType;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.OneToMany;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "ttt_company")
@NamedQueries({
 @NamedQuery(name = "Company.findAll", query = "SELECT c FROM Company c"),
 @NamedQuery(name = "Company.findByIdCompany", query = "SELECT c FROM Company c WHERE c.idCompany = :idCompany"),
 @NamedQuery(name = "Company.findByCompanyName", query = "SELECT c FROM Company c WHERE c.companyName = :companyName")})
public class Company implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Basic(optional = false)
 @Column(name = "id_company")
 private Integer idCompany;
 @Basic(optional = false)
 @NotNull
 @Size(min = 1, max = 200)
 @Column(name = "company_name")
 private String companyName;
 @OneToMany(cascade = CascadeType.ALL, mappedBy = "company")
 private List<Project> projects;

 public Company() {
 }

 public Company(Integer idCompany) {
 this.idCompany = idCompany;
 }

 public Company(Integer idCompany, String companyName) {
 this.idCompany = idCompany;
 this.companyName = companyName;
 }

 public Integer getIdCompany() {
 return idCompany;
 }

 public void setIdCompany(Integer idCompany) {
 this.idCompany = idCompany;
 }

 public String getCompanyName() {
 return companyName;
 }

 public void setCompanyName(String companyName) {
 this.companyName = companyName;
 }

 public List<Project> getProjects() {
 return projects;
 }

 public void setProjects(List<Project> projects) {
 this.projects = projects;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (idCompany != null ? idCompany.hashCode() : 0);
 return hash;
 }

 @Override
 public boolean equals(Object object) {
 if (!(object instanceof Company)) {
 return false;
 }
 Company other = (Company) object;
 if ((this.idCompany == null && other.idCompany != null) || (this.idCompany != null && !this.idCompany.equals(other.idCompany))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "com.gieman.tttracker.domain.Company[idCompany=" + idCompany + "]";
 }

}

JPA uses the convention-over-configuration concept to simplify the configuration of entities. This is achieved by using annotations with sensible defaults to keep the entity definitions lean. Now, let's look at the key JPA annotations in this file.
The @Entity annotation

This is a marker annotation that indicates to the JPA persistence provider that the Company class is an entity. JPA scans for the @Entity annotations when exclude-unlisted-classes is set to false in the persistence.xml file. Without the @Entity annotation, the persistence engine will ignore the class.

The @Table annotation

The @Table annotation defines the underlying database table that is represented by this entity class. The @Table(name = "ttt_company") line tells the persistence provider that the Company class represents the ttt_company table. Only one table annotation can be defined in any entity class.

The @Id annotation

The @Id annotation defines the primary key field in the class and is required for each entity. The persistence provider will throw an exception if the @Id annotation is not present. The Company class property representing the primary key in the ttt_company table is the Integer idCompany field. There are three additional annotations attached to this field, of which the following annotation is specific to primary keys.

The @GeneratedValue annotation

This annotation identifies how the persistence engine should generate new primary key values for the insertion of records into the table. The strategy=GenerationType.IDENTITY line will use the MySQL autoincrement strategy in the background to insert records into the ttt_company table. Different databases may require different strategies. For example, an Oracle database table could use a sequence as the basis for primary key generation by defining the following generator annotations:
@GeneratedValue(generator="gen_seq_company")
@SequenceGenerator(name="gen_seq_company", sequenceName="seq_id_company")

Note
The primary key generation is independent of the class itself. The persistence engine will handle the generation of the primary key for you as defined by the generation strategy.

The @Basic annotation

This is an optional annotation that is used to identify the nullability of the field. The @Basic(optional = false) line is used to specify that the field is not optional (may not be null). Likewise, the @Basic(optional = true) line could be used for other fields that may be nullable.

The @Column annotation

This annotation specifies the column to which the field is mapped. The @Column(name = "id_company") line will, hence, map the id_company column in the ttt_company table to the idCompany field in the class.

The @NotNull and @Size annotations

These annotations are part of the javax.validation.constraints package (the Bean Validation package was introduced in Java EE 6) and define that the field cannot be null as well as the minimum and maximum sizes for the field. The company_name column in the ttt_company table was defined as varchar(200) not null, which is the reason why these annotations were created during the reverse engineering process.

The @OneToMany annotation

A Company class may have zero or more Projects entities. This relationship is defined by the @OneToMany annotation. In words, we can describe this relationship as One Company can have Many Projects. In JPA, an entity is associated with a collection of other entities by defining this annotation with a mappedBy property. We have refactored the original mappedBy value to company. This will be the name of the field in the Project.java file after we have refactored the Project file in the next section.

The @NamedQueries annotation

The @NamedQueries annotations deserve an explanation in their own right. We will look at these in detail later.

The Projects.java file

As you may have guessed by now, this file represents the Project entity and maps to the ttt_project table. Double-click on the file to open it in the editor and browse the contents. We will once again do a bit of refactoring to clarify the autogenerated fields:
	Rename the autogenerated idCompany field to company using the refactoring process. Don't forget to rename the get and set methods.
	Rename the autogenerated taskList field to tasks. Don't forget the get and set methods again!
	Rename the mappedBy value from idProject to project.

The final refactored file should now look like the following code:
package com.gieman.tttracker.domain;

import java.io.Serializable;
import java.util.List;
import javax.persistence.Basic;
import javax.persistence.CascadeType;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.OneToMany;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "ttt_project")
@NamedQueries({
 @NamedQuery(name = "Project.findAll", query = "SELECT p FROM Project p"),
 @NamedQuery(name = "Project.findByIdProject", query = "SELECT p FROM Project p WHERE p.idProject = :idProject"),
 @NamedQuery(name = "Project.findByProjectName", query = "SELECT p FROM Project p WHERE p.projectName = :projectName")})
public class Project implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Basic(optional = false)
 @Column(name = "id_project")
 private Integer idProject;
 @Basic(optional = false)
 @NotNull
 @Size(min = 1, max = 200)
 @Column(name = "project_name")
 private String projectName;
 @JoinColumn(name = "id_company", referencedColumnName = "id_company")
 @ManyToOne(optional = false)
 private Company company;
 @OneToMany(cascade = CascadeType.ALL, mappedBy = "project")
 private List<Task> tasks;

 public Project() {
 }
 public Project(Integer idProject) {
 this.idProject = idProject;
 }

 public Project(Integer idProject, String projectName) {
 this.idProject = idProject;
 this.projectName = projectName;
 }

 public Integer getIdProject() {
 return idProject;
 }

 public void setIdProject(Integer idProject) {
 this.idProject = idProject;
 }

 public String getProjectName() {
 return projectName;
 }

 public void setProjectName(String projectName) {
 this.projectName = projectName;
 }

 public Company getCompany() {
 return company;
 }

 public void setCompany(Company company) {
 this.company = company;
 }

 public List<Task> getTasks() {
 return tasks;
 }

 public void setTasks(List<Task> tasks) {
 this.tasks = tasks;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (idProject != null ? idProject.hashCode() : 0);
 return hash;
 }

 @Override
 public boolean equals(Object object) {
 if (!(object instanceof Project)) {
 return false;
 }
 Project other = (Project) object;
 if ((this.idProject == null && other.idProject != null) || (this.idProject != null && !this.idProject.equals(other.idProject))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "com.gieman.tttracker.domain.Project[idProject=" + idProject + "]";
 }

}

The @ManyToOne annotation

This annotation represents a relationship between entities; it is the reverse of the @OneToMany annotation. For the Project entity, we can say that Many Projects have One Company. In other words, a Project entity belongs to a single Company class, and (inversely) a Company class can have any number of Projects entities. This relationship is defined at the database level (that is, the foreign key relationship in the underlying tables) and is achieved in the @JoinColumn annotation:
@JoinColumn(name = "id_company", referencedColumnName = "id_company")

The name property defines the name of the column in the ttt_project table that is the foreign key to the referencedColumnName column in the ttt_company table.

Bidirectional mapping and owning entities

It is essential to grasp the very important concept of how one entity is related to another through the @ManyToOne and @OneToMany annotations. The Company class has a list of mapped Projects entities defined as follows:
 @OneToMany(cascade = CascadeType.ALL, mappedBy = "company")
 private List<Project> projects;

Whereas, the Project class has exactly one mapped Company entity:
 @JoinColumn(name="id_company", referencedColumnName="id_company")
 @ManyToOne(optional=false)
 private Company company;

This is known as bidirectional mapping, one mapping on each class for each direction. A many-to-one mapping back to the source, as in the Project entity back to the Company entity, implies a corresponding one-to-many mapping on the source (Company) back to the target (Project). The terms source and target can be defined as follows:
	Source: This is an entity that can exist in a relationship in its own right. The source entity does not require the target entity to exist and the @OneToMany collection can be empty. In our example, a Company entity can exist without a Project entity.
	Target: This is an entity that cannot exist on its own without a reference to a valid source. The @ManyToOne entity defined on the target cannot be null. A Project entity cannot exist in our design without a valid Company entity.

The owning entity is an entity that understands the other entity from a database perspective. In simple terms, the owning entity has the @JoinColumn definition describing the underlying columns that form the relationship. In the Company-Project relationship, Project is the owning entity. Note that an entity can be both a target as well as a source as shown in the following Project.java file snippet:
 @OneToMany(cascade = CascadeType.ALL, mappedBy = "project")
 private List<Task> tasks;

Here, Project is the source for the Task entity relationship and we would expect a reverse @ManyToOne annotation on the Task class. This is exactly what we will find.

The Task.java file

This file defines the Task entity that represents the ttt_task table. Open the file and perform the following refactoring:
	Delete the autogenerated taskLogList field and also delete the associated get and set methods. Why do we do this? There may be many millions of task logs in the system for each Task instance and it is not advisable to hold a reference to such a large set of TaskLog instances within the Task object.
	Rename the autogenerated idProject field to project. Don't forget to delete the get and set methods again.

After making the preceding changes, you will see that some of the imports are no longer required and are highlighted by the NetBeans IDE:
[image: The Task.java file]
The keyboard combination of Ctrl + Shift + I will remove all the unused imports. Another alternative is to click on the icon, shown in the following screenshot, to open the menu and select a Remove option:
[image: The Task.java file]
It is good practice to have clean code and removing the unused imports is a simple process.
The final refactored file should now look like the following code snippet:
package com.gieman.tttracker.domain;

import java.io.Serializable;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "ttt_task")
@NamedQueries({
 @NamedQuery(name = "Task.findAll", query = "SELECT t FROM Task t"),
 @NamedQuery(name = "Task.findByIdTask", query = "SELECT t FROM Task t WHERE t.idTask = :idTask"),
 @NamedQuery(name = "Task.findByTaskName", query = "SELECT t FROM Task t WHERE t.taskName = :taskName")})
public class Task implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Basic(optional = false)
 @Column(name = "id_task")
 private Integer idTask;
 @Basic(optional = false)
 @NotNull
 @Size(min = 1, max = 200)
 @Column(name = "task_name")
 private String taskName;
 @JoinColumn(name = "id_project", referencedColumnName = "id_project")
 @ManyToOne(optional = false)
 private Project project;

 public Task() {
 }

 public Task(Integer idTask) {
 this.idTask = idTask;
 }

 public Task(Integer idTask, String taskName) {
 this.idTask = idTask;
 this.taskName = taskName;
 }

 public Integer getIdTask() {
 return idTask;
 }

 public void setIdTask(Integer idTask) {
 this.idTask = idTask;
 }

 public String getTaskName() {
 return taskName;
 }

 public void setTaskName(String taskName) {
 this.taskName = taskName;
 }

 public Project getProject() {
 return project;
 }

 public void setProject(Project project) {
 this.project = project;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (idTask != null ? idTask.hashCode() : 0);
 return hash;
 }

 @Override
 public boolean equals(Object object) {
 if (!(object instanceof Task)) {
 return false;
 }
 Task other = (Task) object;
 if ((this.idTask == null && other.idTask != null) || (this.idTask != null && !this.idTask.equals(other.idTask))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "com.gieman.tttracker.domain.Task[idTask=" + idTask + "]";
 }
}

Note the @ManyToOne annotation referencing the Project class using the @JoinColumn definition. The Task object owns this relationship.

The User.java file

The User entity represents the underlying ttt_user table. The generated class has a @OneToMany definition for the relationship to the TaskLog class:
 @OneToMany(cascade = CascadeType.ALL, mappedBy = "username")
 private List<TaskLog> taskLogList;

Refactoring in this file will once again delete this relationship completely. As noted in the Tasks.java section, a User entity may also have many thousands of task logs. By understanding the application's requirements and data structure, it is often far cleaner to remove unnecessary relationships completely.
You will also note that the @Pattern annotation is commented out by default during the reverse engineering process. The email field name indicated to NetBeans that this might be an e-mail field and NetBeans added the annotation for use if required. We will uncomment this annotation to enable e-mail pattern checking for the field and add the required import:
import javax.validation.constraints.Pattern;

The refactored User.java file will now look like the following code snippet:
package com.gieman.tttracker.domain;

import java.io.Serializable;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Pattern;
import javax.validation.constraints.Size;

@Entity
@Table(name = "ttt_user")
@NamedQueries({
 @NamedQuery(name = "User.findAll", query = "SELECT u FROM User u"),
 @NamedQuery(name = "User.findByUsername", query = "SELECT u FROM User u WHERE u.username = :username"),
 @NamedQuery(name = "User.findByFirstName", query = "SELECT u FROM User u WHERE u.firstName = :firstName"),
 @NamedQuery(name = "User.findByLastName", query = "SELECT u FROM User u WHERE u.lastName = :lastName"),
 @NamedQuery(name = "User.findByEmail", query = "SELECT u FROM User u WHERE u.email = :email"),
 @NamedQuery(name = "User.findByPassword", query = "SELECT u FROM User u WHERE u.password = :password"),
 @NamedQuery(name = "User.findByAdminRole", query = "SELECT u FROM User u WHERE u.adminRole = :adminRole")})
public class User implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull
 @Size(min = 1, max = 10)
 @Column(name = "username")
 private String username;
 @Basic(optional = false)
 @NotNull
 @Size(min = 1, max = 100)
 @Column(name = "first_name")
 private String firstName;
 @Basic(optional = false)
 @NotNull
 @Size(min = 1, max = 100)
 @Column(name = "last_name")
 private String lastName;
 @Pattern(regexp="[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?", message="Invalid email")
 @Basic(optional = false)
 @NotNull
 @Size(min = 1, max = 100)
 @Column(name = "email")
 private String email;
 @Basic(optional = false)
 @NotNull
 @Size(min = 1, max = 100)
 @Column(name = "password")
 private String password;
 @Column(name = "admin_role")
 private Character adminRole;

 public User() {
 }

 public User(String username) {
 this.username = username;
 }

 public User(String username, String firstName, String lastName, String email, String password) {
 this.username = username;
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 this.password = password;
 }

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public Character getAdminRole() {
 return adminRole;
 }

 public void setAdminRole(Character adminRole) {
 this.adminRole = adminRole;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (username != null ? username.hashCode() : 0);
 return hash;
 }

 @Override
 public boolean equals(Object object) {
 if (!(object instanceof User)) {
 return false;
 }
 User other = (User) object;
 if ((this.username == null && other.username != null) || (this.username != null && !this.username.equals(other.username))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "com.gieman.tttracker.domain.User[username=" + username + "]";
 }
}

The TaskLog.java file

The final entity in our application represents the ttt_task_log table. The refactoring required here is to rename the idTask field to task (remember to also rename the get and set methods) and then rename the username field to user. The file should now look like the following code snippet:
package com.tttracker.domain;

import java.io.Serializable;
import java.util.Date;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.persistence.Temporal;
import javax.persistence.TemporalType;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "ttt_task_log")
@NamedQueries({
 @NamedQuery(name = "TaskLog.findAll", query = "SELECT t FROM TaskLog t"),
 @NamedQuery(name = "TaskLog.findByIdTaskLog", query = "SELECT t FROM TaskLog t WHERE t.idTaskLog = :idTaskLog"),
 @NamedQuery(name = "TaskLog.findByTaskDescription", query = "SELECT t FROM TaskLog t WHERE t.taskDescription = :taskDescription"),
 @NamedQuery(name = "TaskLog.findByTaskLogDate", query = "SELECT t FROM TaskLog t WHERE t.taskLogDate = :taskLogDate"),
 @NamedQuery(name = "TaskLog.findByTaskMinutes", query = "SELECT t FROM TaskLog t WHERE t.taskMinutes = :taskMinutes")})
public class TaskLog implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Basic(optional = false)
 @Column(name = "id_task_log")
 private Integer idTaskLog;
 @Basic(optional = false)
 @NotNull
 @Size(min = 1, max = 2000)
 @Column(name = "task_description")
 private String taskDescription;
 @Basic(optional = false)
 @NotNull
 @Column(name = "task_log_date")
 @Temporal(TemporalType.DATE)
 private Date taskLogDate;
 @Basic(optional = false)
 @NotNull
 @Column(name = "task_minutes")
 private int taskMinutes;
 @JoinColumn(name = "username", referencedColumnName = "username")
 @ManyToOne(optional = false)
 private User user;
 @JoinColumn(name = "id_task", referencedColumnName = "id_task")
 @ManyToOne(optional = false)
 private Task task;

 public TaskLog() {
 }

 public TaskLog(Integer idTaskLog) {
 this.idTaskLog = idTaskLog;
 }

 public TaskLog(Integer idTaskLog, String taskDescription, Date taskLogDate, int taskMinutes) {
 this.idTaskLog = idTaskLog;
 this.taskDescription = taskDescription;
 this.taskLogDate = taskLogDate;
 this.taskMinutes = taskMinutes;
 }

 public Integer getIdTaskLog() {
 return idTaskLog;
 }

 public void setIdTaskLog(Integer idTaskLog) {
 this.idTaskLog = idTaskLog;
 }

 public String getTaskDescription() {
 return taskDescription;
 }

 public void setTaskDescription(String taskDescription) {
 this.taskDescription = taskDescription;
 }

 public Date getTaskLogDate() {
 return taskLogDate;
 }

 public void setTaskLogDate(Date taskLogDate) {
 this.taskLogDate = taskLogDate;
 }

 public int getTaskMinutes() {
 return taskMinutes;
 }

 public void setTaskMinutes(int taskMinutes) {
 this.taskMinutes = taskMinutes;
 }

 public User getUser() {
 return user;
 }

 public void setUser(User user) {
 this.user = user;
 }

 public Task getTask() {
 return task;
 }

 public void setTask(Task task) {
 this.task = task;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (idTaskLog != null ? idTaskLog.hashCode() : 0);
 return hash;
 }

 @Override
 public boolean equals(Object object) {
 if (!(object instanceof TaskLog)) {
 return false;
 }
 TaskLog other = (TaskLog) object;
 if ((this.idTaskLog == null && other.idTaskLog != null) || (this.idTaskLog != null && !this.idTaskLog.equals(other.idTaskLog))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "com.tttracker.domain.TaskLog[idTaskLog=" + idTaskLog + "]";
 }
}

Introducing the Java Persistence Query Language

Everyone reading this book should be familiar with SQL queries and how they work. Constructing a simple query against the ttt_company table to retrieve all records would look something like:
select * from ttt_company

Restricting the result set to companies starting with G would look like the following code line:
select * from ttt_company where company_name like "G%"

In JPA, we are dealing with entities and relationships between entities. The Java Persistence Query Language (JPQL) is used to formulate queries in a similar way to SQL. The previously mentioned statement will be written in JPQL as follows:
SELECT c FROM Company c

And the statement that follows is written as such:
SELECT c FROM Company c WHERE c.companyName LIKE 'G%'

The following are the major differences between SQL and JPQL:
	JPQL class and field names are case sensitive. When we are dealing with classes, the class name must start with an uppercase letter. All the fields must have the exact case as defined in the class. The following statement will not compile as the company entity starts with a lowercase c:SELECT c FROM company c WHERE c.companyName LIKE 'G%'

	JPQL keywords are case insensitive. The preceding statement could just as well have been written as follows:select c from Company c where c.companyName like 'G%'

	JPQL uses aliases to define instances and relationships between the instances. In the previous examples, the lowercase c is used as the alias in the SELECT and WHERE clauses.
	JPQL queries may be static (defined in an annotation) or dynamic (built and executed at runtime). Static queries are compiled once and looked up whenever required. This makes static queries faster to use and more performant.
	JPQL queries are translated into SQL; they are then executed against the underlying database. This translation allows for database-specific query optimization in the persistence engine.
	JPQL has a rich set of functions to define conditional expressions. These expressions are translated into the correct SQL for the underlying database. This means that developers no longer need to write database-specific SQL statements. Switching between databases will not require any coding as the JPQL statements abstract the underlying SQL required to execute the statement.

Note
We strongly recommend you spend time learning about JPQL. There are many excellent books available that are dedicated to JPA and JPQL; they explain advanced usage. There are also many online tutorials and JPQL examples on the Internet. It is beyond the scope of this book to go beyond the basics, and we leave it to you to delve into this rich language further.

Defining named queries

The reverse engineering process generated a set of @NamedQuery annotations in each class, one for each persistent field. The Company class, for example, had the following named queries defined:
@NamedQueries({
 @NamedQuery(name = "Company.findAll", query = "SELECT c FROM Company c"),
 @NamedQuery(name = "Company.findByIdCompany", query = "SELECT c FROM Company c WHERE c.idCompany = :idCompany"),
 @NamedQuery(name = "Company.findByCompanyName", query = "SELECT c FROM Company c WHERE c.companyName = :companyName")})

Each @NamedQuery name must be unique within the persistence engine; hence, it is prefixed with the name of the class. The first query name, Company.findAll, represents the full list of the Company objects. The second query uses a named parameter, idCompany, as a placeholder for a value provided at runtime. Named parameters are always prefixed with the colon symbol. You should spend some time browsing the queries generated in the Java classes to become familiar with the basic JPQL syntax. We will learn more about named queries and how they are used in the following chapters.

Refactoring Java equals() and hashCode()

Our domain layer entity classes have autogenerated equals and
hashCode methods defined. The Company class, for example, defines these methods as shown:
[image: Refactoring Java equals() and hashCode()]
It is best practice to always provide correctly implemented equals and hashCode methods that use the entity ID to calculate the value that is returned. These methods are used by JPA to determine the equality between entities. Our autogenerated equals method will work correctly with JPA as the ID entity is used in the comparison for each method. However, the //TODO: Warning message on line 83 (see the previous screenshot) indicates an issue that can be avoided if we regenerate the equals method with the NetBeans IDE.
Delete the equals method and right-click on the Company.java file in the editor using the mouse to display the context menu. Select the Insert Code… option:
[image: Refactoring Java equals() and hashCode()]
From the pop-up menu, select the equals()… option and ensure that the idCompany : Integer field is selected in the Generate equals() pop up:
[image: Refactoring Java equals() and hashCode()]
Click on Generate to create the new equals method:
[image: Refactoring Java equals() and hashCode()]
Click on the information icon (circled) over line 92 to display the context information:
[image: Refactoring Java equals() and hashCode()]
Click on The if statement is redundant to clean your code further and replace the if statement with the following line:
return Objects.equals(this.idCompany, other.idCompany);

The Objects class was introduced in Java 1.7 and consists of static utility methods for operating on objects. The Objects.equals method takes into account null values and solves the potential //TODO: Warning issue with the autogenerated equals method. From the Java 1.7 JavaDoc for the Objects.equals method:
Note
Returns true if the arguments are equal to each other and false otherwise. Consequently, if both the arguments are null, true is returned, and if exactly one argument is null, false is returned. Otherwise, the equality is determined using the equals method of the first argument.

You can now replace the autogenerated equals method of the Project, Task, User, and TaskLog entity classes in a similar way.

Summary

In this chapter we have reverse engineered the 3T database into a set of Java classes. Each Java class represents a JPA entity with annotations defining the relationship between entities as well as the mapping of database columns to Java fields. We have had a brief introduction to JPQL through named query definitions and introduced key JPA annotations.
Although this chapter has introduced many key concepts, the scope of JPA and JPQL leaves much for you to learn. JPA is a key tool in enterprise application development, allowing for easy enhancements and database-agnostic programming.
The next chapter will introduce the Data Access Object (DAO) design pattern and implement a robust data access layer using the domain classes we have just defined. Our JPA journey has just started!

Chapter 4. Data Access Made Easy

The Data Access Object (DAO) design pattern is a simple and elegant way of abstracting database persistence from application business logic. This design ensures a clear separation of the two core parts of any enterprise application: the data access layer and the service (or business logic) layer. The DAO pattern is a well-understood Java EE programming structure, initially brought to prominence by Sun Microsystems in its Java EE Design Blueprints that has since been adopted by other programming environments such as the .NET framework.
The following image illustrates where the DAO layer sits in the overall application structure:
[image: Data Access Made Easy]
Changing an implementation in the DAO layer should not affect the service layer in any way. This is achieved by defining DAO interfaces to encapsulate the persistence operations that the service layer can access. The DAO implementation itself is hidden to the service layer.
Defining the DAO interfaces

An interface in the Java programming language defines a set of method signatures and constant declarations. Interfaces expose behaviors (or what can be done) and define a contract that implementing classes promise to provide (how it is done). Our DAO layer will contain one interface and one implementing class per domain object.
Note
The use of interfaces is an often misunderstood pattern in enterprise programming. The argument goes along the line, "Why add another set of Java objects to your codebase when they are not required". Interfaces do add to the number of lines of code that you write, but their beauty will be appreciated as soon as you are asked to refactor an aging project that was written with interfaces from the start. I have migrated an SQL-based persistence layer to a JPA persistence layer. The new DAO implementation replaced the old without any significant change in the service layer, thanks to the use of interfaces. Development was done in parallel to supporting the existing (old) implementation until we were ready to swap in the new implementation. This was a relatively painless process that would not have been as easily achieved without the use of interfaces.

Let's start with the company interface.
Adding the CompanyDao interface

	Navigate to File | New File from the menu and select Java Interface as shown in the following screenshot:[image: Adding the CompanyDao interface]

	Click on the Next button and fill in the details as shown in the following screenshot:[image: Adding the CompanyDao interface]

The name of the interface is CompanyDao. We could have named this interface using the uppercase acronym CompanyDAO. In keeping with the newer Java EE naming styles, we have decided to use the camel case form of the acronym. Recent examples of this style include the Html*, Json*, and Xml* classes and interfaces, an example of which is javax.json.JsonObject. We also believe that this form is easier to read. However, this does not prohibit you from using the uppercase acronym; there are many of these examples in Java EE as well (EJB*, JAXB*, and JMS* interfaces and classes to name a few). Whatever you choose, be consistent. Do not mix forms and create CompanyDAO and ProjectDao interfaces!
Note that the package com.gieman.tttracker.dao does not exist yet and will be created for you. Click on Finish to create your first interface, after which NetBeans will open the file in the editor.
[image: Adding the CompanyDao interface]
The Company interface will define the persistence methods that we will use in our application. The core methods must include the ability to perform each CRUD operation in addition to any other operations appropriate to our business needs. We will add the following methods to this interface:
	persist: This method inserts a new company record
	merge: This method updates an existing company record
	remove: This method deletes a company record
	find: This method selects a company record using a primary key
	findAll: This method returns all the company records

Note that the JPA terminologies persist, merge, remove, and find are equivalent to the SQL operations insert, update, delete, and select. Add the methods to CompanyDao as shown in the following code:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Company;
import java.util.List;
public interface CompanyDao {

 public Company find(Integer idCompany);

 public List<Company> findAll();

 public void persist(Company company);

 public Company merge(Company company);

 public void remove(Company company);
}

We have defined a contract that the implementing class must promise to deliver. We will now add the ProjectDao interface.

Adding the ProjectDao interface

The ProjectDao interface will define a similar set of methods to the CompanyDao interface:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Company;
import com.gieman.tttracker.domain.Project;
import java.util.List;

public interface ProjectDao {

 public Project find(Integer idProject);

 public List<Project> findAll();

 public void persist(Project project);

 public Project merge(Project project);

 public void remove(Project project);
}

You will note that all method signatures in the ProjectDao interface are identical to the CompanyDao interface. The only difference is in class types where Company is replaced by project. The same situation will occur in all the other interfaces that we are going to add (TaskDao, UserDao, and TaskLogDao). Each of the interfaces will require a definition for the find method that will look like the following code:
public Company find(Integer idCompany); // in CompanyDao
public Project find(Integer idProject); // in ProjectDao
public Task find(Integer idTask); // in TaskDao
public User find(Integer idUser); // in UserDao
public TaskLog find(Integer idTaskLog); // in TaskLogDao

As you can see, the only functional difference in each of these methods is the returned type. The same can be said for the persist, merge, and remove methods. This situation lends itself perfectly to the use of Java generics.

Defining a generic DAO interface

This interface will be extended by each of our DAO interfaces. The GenericDao interface uses generics to define each method in a way that can be used by each descendent interface. These methods will then be available free of cost to the extending interfaces. Rather than defining a find(Integer id) method in each of the CompanyDao, ProjectDao, TaskDao, UserDao, and TaskLogDao interfaces, the GenericDao interface defines the generic method that is then available for all descendants.
Note
This is a powerful technique for enterprise application programming and should always be considered when designing or architecting an application framework. A well-structured design using Java generics will simplify change requests and maintenance for many years to come.

The generic interface definition looks like this:
package com.gieman.tttracker.dao;

public interface GenericDao<T, ID> {

 public T find(ID id);

 public void persist(T obj);

 public T merge(T obj);

 public void remove(T obj);
}

We can now refactor the CompanyDao interface as follows:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Company;
import java.util.List;

public interface CompanyDao extends GenericDao<Company, Integer>{

 public List<Company> findAll();

}

Note the way in which we have extended the GenericDao interface using the <Company, Integer> types. The type parameters <T, ID> in the GenericDao interface become placeholders for the types specified in the CompanyDao definition. A T or ID that is found in the GenericDao interface will be replaced with Company and Integer in the CompanyDao interface. This automatically adds the find, persist, merge, and remove methods to CompanyDao.
Generics allow the compiler to check type correctness at compile-time. This improves code robustness. A good explanation of Java generics can be found at http://docs.oracle.com/javase/tutorial/extra/generics/index.html.
In a similar way, we can now refactor the ProjectDao interface:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Company;
import com.gieman.tttracker.domain.Project;
import java.util.List;

public interface ProjectDao extends GenericDao<Project, Integer>{

 public List<Project> findAll();

}

Let's continue with the missing interfaces in the same manner.

The TaskDao interface

Apart from the common generic methods, we will once again need a findAll method. This interface looks like the following code:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Project;
import com.gieman.tttracker.domain.Task;
import java.util.List;

public interface TaskDao extends GenericDao<Task, Integer>{

 public List<Task> findAll();
}

The UserDao interface

We will need a list of all the users in the system as well as a few finder methods to identify a user by different parameters. These methods will be required when we develop our frontend user interfaces and service layer functionality. The UserDao interface looks like the following code:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.User;
import java.util.List;

public interface UserDao extends GenericDao<User, String> {

 public List<User> findAll();

 public User findByUsernamePassword(String username, String password);

 public User findByUsername(String username);

 public User findByEmail(String email);
}

Note that the UserDao interface extends GenericDao with a String ID type. This is because the User domain entity has a String primary key type.

The TaskLogDao interface

The TaskLogDao interface will also need a few additional methods to be defined in order to allow different views into the task log data. These methods will once again be required when we develop our frontend user interfaces and service layer functionality.
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Task;
import com.gieman.tttracker.domain.TaskLog;
import com.gieman.tttracker.domain.User;
import java.util.Date;
import java.util.List;

public interface TaskLogDao extends GenericDao<TaskLog, Integer>{

 public List<TaskLog> findByUser(User user, Date startDate, Date endDate);

 public long findTaskLogCountByTask(Task task);

 public long findTaskLogCountByUser(User user);
}

Note that our finder methods for the TaskLogDao interface have descriptive names that identify the purpose of the method. Each finder method will be used to retrieve a subset of task log entries that are appropriate for the business needs of the application.
This covers all the required interfaces for our application. It is now time to define the implementations for each of our interfaces.

Defining the generic DAO implementation

We will once again use Java generics to define a common ancestor class that will be extended by each of our implementation classes (CompanyDaoImpl, ProjectDaoImpl, TaskDaoImpl, TaskLogDaoImpl, and UserDaoImpl). The GenericDaoImpl and all other implementing classes will be added to the same com.gieman.tttracker.dao package as our DAO interfaces. Key lines of code in GenericDaoImpl are highlighted and will be explained in the following sections:
package com.gieman.tttracker.dao;

import java.io.Serializable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

public class GenericDaoImpl<T, ID extends Serializable> implements GenericDao<T, ID> {

 final protected Logger logger = LoggerFactory.getLogger(this.getClass());

 @PersistenceContext(unitName = "tttPU")
 protected EntityManager em;

 private Class<T> type;

 public GenericDaoImpl(Class<T> type1) {
 this.type = type1;
 }

 @Override
 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 public T find(ID id) {
 return (T) em.find(type, id);
 }

 @Override
 @Transactional(readOnly = false, propagation = Propagation.REQUIRED)
 public void persist(T o) {
 em.persist(o);
 }

 @Override
 @Transactional(readOnly = false, propagation = Propagation.REQUIRED)
 public T merge(T o) {

 o = em.merge(o);
 return o;
 }
 @Override
 @Transactional(readOnly = false, propagation = Propagation.REQUIRED)
 public void remove(T o) {

 // associate object with persistence context
 o = merge(o);
 em.remove(o);

 }
}

There are a lot of new concepts in this class! Let's tackle them one at a time.
The Simple Logging Facade for Java

The Simple Logging Facade for Java or SLF4J is a simple abstraction for key logging frameworks including java.util.logging, log4j and logback. SLF4J allows the end user to plug in the desired logging framework at deployment time by simply including the appropriate implementation library. More information about SLF4J can be found at http://slf4j.org/manual.html. Logging not only allows developers to debug code, but it can also provide a permanent record of actions and application state within your application. Examples of application state could be current memory usage, the number of authorized users currently logged on, or the number of pending messages awaiting processing. Log files are usually the first place to look at when analyzing production bugs, and they are an important component of any enterprise application.
Although the default Java logging is adequate for simple uses, it would not be appropriate for more sophisticated applications. The log4J framework (http://logging.apache.org/log4j/1.2) and the logback framework (http://logback.qos.ch) are examples of highly configurable logging frameworks. The logback framework is usually considered the successor of log4j as it offers some key advantages over log4j including better performance, less memory consumption, and automatic reloading of configuration files. We will use logback in our application.
The required SLF4J and logback libraries will be added to the application by adding the following dependency to pom.xml:
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
 </dependency>

You will also need to add the additional logback.version property to pom.xml:
 <properties>
 <endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <spring.version>3.2.4.RELEASE</spring.version>
 <logback.version>1.0.13</logback.version>
 </properties>

You can now perform a Clean and Build Project to download the logback-classic, logback-core, and slf4j-api JAR files. This will then enable us to add the imports defined in GenericDaoImpl as well as the logger definition:
final protected Logger logger = LoggerFactory.getLogger(this.getClass());

All descendent classes will now be able to use the logger (it is declared as protected) but will not be able to change it (it is declared as final). We will start using the logger in Chapter 5, Testing the DAO Layer with Spring and JUnit, where we will examine the logback.xml configuration file in detail.

The@PersistenceContext(unitName = "tttPU") line

This one line annotating the EntityManager interface method is all that's required for Spring Framework to plug in or inject the EclipseLink implementation during runtime. The EntityManager interface defines methods for interacting with the persistence context such as persist, merge, remove, and find. A full listing of the EntityManager interface methods can be found at http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html.
Our persistence context is defined in persistence.xml in which we have named it as tttPU. This is what binds EntityManager in GenericDaoImpl to the persistence context through the @PersistenceContext annotation unitName property. A persistence context is a set of entity instances (in our application, these are the Company, Project, Task, User, and TaskLog objects) in which, for any persistent entity, there is a unique entity instance. Within the persistence context, the entity instances and their lifecycle is managed.
The EntityManager API is used to create and remove persistent entity instances, to find entities by their primary key, and to query over entities. In our GenericDaoImpl class, the EntityManager instance em is used to perform the generic CRUD operations. Each descendent class will hence have access to these methods as well as the em instance itself (it is declared as protected).

The @Transactional annotation

The @Transactional annotation is the cornerstone of Spring's declarative transaction management. It allows you to specify transactional behavior at an individual method level and is very simple to use. This option has the least impact on application code, and it does not require any complex configuration. In fact, it is completely non-invasive as there is no Java coding required for commits and rollbacks.
Spring recommends that you only annotate classes (and methods of classes) with the @Transactional annotation as opposed to annotating interfaces (a full explanation can be found at http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/html/transaction.html). For this reason, we will annotate all appropriate methods in the generic and implementing classes with one of the following:
@Transactional(readOnly = false, propagation = Propagation.REQUIRED)
@Transactional(readOnly = true, propagation = Propagation.SUPPORTS)

The @Transactional annotation is metadata that specifies that a method must have transactional semantics. For example, we could define metadata that defines starting a brand new read-only transaction when this method is invoked, suspending any existing transaction. The default @Transactional settings are as follows:
	propagation setting is Propagation.REQUIRED
	readOnly is false

It is a good practice to define all properties including default settings, as we have done previously. Let's examine these properties in detail.
The Propagation.REQUIRED property

It is the default value for transactions that do not specify a propagation setting. This property supports a current transaction if one exists or creates a new one if none exists. This ensures that the Propagation.REQUIRED annotated method will always have a valid transaction available and should be used whenever the data is modified in the persistence storage. This property is usually combined with readOnly=false.

The Propagation.SUPPORTS property

This property supports a current transaction if one exists or executes non-transactionally if none exists. The Propagation.SUPPORTS property should be used if the annotated method does not modify the data (will not execute an insert, update, or delete statement against the database). This property is usually combined with readOnly=true.

The readOnly property

This just serves as a hint for the actual transaction subsystem to allow optimization of executed statements if possible. It may be possible that the transaction manager may not be able to interpret this property. For self-documenting code, however, it is a good practice to include this property.

Other transaction properties

Spring allows us to fine-tune transactional properties with additional options that are beyond the scope of this book. Browse the link that was mentioned earlier to find out more about how transactions can be managed in more complex scenarios including multiple transactional resources.

Defining the DAO implementations

The following DAO implementations will inherit the core CRUD operations from GenericDaoImpl and add their own class-specific methods as defined in the implemented interface. Each method will use the @Transactional annotation to define the appropriate transactional behavior.
The CompanyDaoImpl class

The full listing for our CompanyDaoImpl class is as follows:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Company;
import java.util.List;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

@Repository("companyDao")
@Transactional
public class CompanyDaoImpl extends GenericDaoImpl<Company, Integer>
 implements CompanyDao {

 public CompanyDaoImpl() {
 super(Company.class);
 }

 @Override
 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 public List<Company> findAll() {
 return em.createNamedQuery("Company.findAll")
 .getResultList();
 }
}

The first thing to notice is the @Repository("companyDao") annotation. This annotation is used by Spring to automatically detect and process DAO objects when the application is loaded. The Spring API defines this annotation as follows:
Note
It indicates that an annotated class is a Repository, originally defined by Domain-Driven Design (Evans, 2003) as a mechanism for encapsulating storage, retrieval, and search behavior that emulate a collection of objects.

The purpose of the annotation is to allow Spring to auto detect implementing classes through the classpath scanning and to process this class for data access exception translation (used by Spring to abstract database exception messages from the underlying implementation). The Spring application will then hold a reference to the implementing class under the key companyDao. It is considered as the best practice to match the key value with the name of the implemented interface.
The CompanyDaoImpl class also introduces the use of the JPA named queries that were defined during the reverse engineering process in the previous chapter. The method call em.createNamedQuery("Company.findAll") creates the named query defined by the unique identifier "Company.findAll" in the persistence engine. This named query was defined in the Company class. Calling getResultList() executes the query against the database, returning a java.util.List of Company objects. Let's now review the named query definition in the Company class:
@NamedQuery(name = "Company.findAll", query = "SELECT c FROM Company c")

We will make a minor change to this named query to arrange the results by companyName in ascending order. This will require the addition of an ORDER BY clause in the query statement. The final named queries definition in the Company class will now look like the following code:
@NamedQueries({
 @NamedQuery(name = "Company.findAll", query = "SELECT c FROM Company c ORDER BY c.companyName ASC "),
 @NamedQuery(name = "Company.findByIdCompany", query = "SELECT c FROM Company c WHERE c.idCompany = :idCompany"),
 @NamedQuery(name = "Company.findByCompanyName", query = "SELECT c FROM Company c WHERE c.companyName = :companyName")})

The ProjectDaoImpl class

This implementation is defined as:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Company;
import com.gieman.tttracker.domain.Project;
import java.util.List;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

@Repository("projectDao")
@Transactional
public class ProjectDaoImpl extends GenericDaoImpl<Project, Integer>
 implements ProjectDao {

 public ProjectDaoImpl() {
 super(Project.class);
 }

 @Override
 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 public List<Project> findAll() {
 return em.createNamedQuery("Project.findAll")
 .getResultList();
 }
}

Once again, we will add the ORDER BY clause to the Project.findAll named query in the Project class:
@NamedQuery(name = "Project.findAll", query = "SELECT p FROM Project p ORDER BY p.projectName")

The TaskDaoImpl class

This class is defined as:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Project;
import com.gieman.tttracker.domain.Task;
import java.util.List;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

@Repository("taskDao")
@Transactional
public class TaskDaoImpl extends GenericDaoImpl<Task, Integer> implements TaskDao {

 public TaskDaoImpl() {
 super(Task.class);
 }

 @Override
 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 public List<Task> findAll() {
 return em.createNamedQuery("Task.findAll")
 .getResultList();
 }
}

Once again, we will add the ORDER BY clause to the Task.findAll named query in the Task class:
@NamedQuery(name = "Task.findAll", query = "SELECT t FROM Task t ORDER BY t.taskName")

The UserDaoImpl class

This UserDaoImpl class will require an additional named query in the User domain class to test a user's logon credentials (username/password combination). The
UserDaoImpl class definition follows:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.User;
import java.util.List;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

@Repository("userDao")
@Transactional
public class UserDaoImpl extends GenericDaoImpl<User, String> implements UserDao {

 public UserDaoImpl() {
 super(User.class);
 }

 @Override
 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 public List<User> findAll() {
 return em.createNamedQuery("User.findAll")
 .getResultList();
 }

 @Override
 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 public User findByUsernamePassword(String username, String password) {

 List<User> users = em.createNamedQuery("User.findByUsernamePassword")
 .setParameter("username", username)
 .setParameter("password", password)
 .getResultList();

 return (users.size() == 1 ? users.get(0) : null);
 }

 @Override
 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 public User findByUsername(String username) {
 List<User> users = em.createNamedQuery("User.findByUsername")
 .setParameter("username", username)
 .getResultList();

 return (users.size() == 1 ? users.get(0) : null);
 }

 @Override
 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 public User findByEmail(String email) {

 List<User> users = em.createNamedQuery("User.findByEmail")
 .setParameter("email", email)
 .getResultList();

 return (users.size() == 1 ? users.get(0) : null);
 }
}

The missing named query is User.findByUsernamePassword that is used to verify a user with the given username and password. The query definition must be added to the User class as follows:
@NamedQuery(name = "User.findByUsernamePassword", query = "SELECT u FROM User u WHERE u.password = :password AND (u.email = :username OR u.username = :username)")

Note that this definition allows a user to be matched by either the username or e-mail field. As is the common practice in web applications, a user may log on with either their unique logon name (username) or their e-mail address.
The findByEmail, findByUsername, and findByUsernamePassword methods can only ever return null (no match found) or a single result as there cannot be more than one record in the database with these unique fields. Instead of using the getResultList() method to retrieve a List of results and testing for a list size of one, we could have used the code that is similar to the following:
public User findByEmail(String email) {

 User user = (User) em.createNamedQuery("User.findByEmail")
 .setParameter("email", email)
 .getSingleResult();

 return user;
}

The getSingleResult() method returns exactly one result or throws an exception if a single result could not be found. You will also notice the need to cast the returned result to the required User type. The calling method would also need to catch any exceptions that would be thrown from the getSingleResult() method unless the sample code given previously is changed to catch the exception.
public User findByEmail(String email) {

 User user = null;

 try {
 user = (User) em.createNamedQuery("User.findByEmail")
 .setParameter("email", email)
 .getSingleResult();

 } catch(NoResultException nre){

 }
 return user;
}

We believe that the code in our UserDaoImpl interface is cleaner than the previous example that uses the try/catch function to wrap the getSingleResult() method. In both cases, however, the method returns null if the record cannot be found.
Note
Exceptions should be used judiciously in enterprise programming and only for truly exceptional circumstances. Throwing exceptions should be avoided unless the exception indicates a situation that the calling code cannot recover from. It is far cleaner to return null (or perhaps true/false in appropriate scenarios) to indicate that a situation is not as expected.

We do not consider being unable to find a record by ID, or by e-mail or by e-mail address as an exceptional circumstance; it is possible that a different user has deleted the record, or there is simply no record with the e-mail specified. Returning null clearly identifies that the record was not found without the need to throw an exception.
Regardless of whether you throw exceptions to indicate a record that cannot be found or use null as is our preference, your API should be documented to indicate the behavior. The UserDaoImpl.findByUsernamePassword method could, for example, be documented as follows:
/**
 * Find a User with the username/password combination or return null
 * if a valid user could not be found.
 * @param username
 * @param password
 * @return valid User object or null if not found.
 */

Users of your API will then understand the expected behavior and code their interactions accordingly.

The TaskLogDaoImpl class

The final DAO class in our application follows:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Task;
import com.gieman.tttracker.domain.TaskLog;
import com.gieman.tttracker.domain.User;
import java.util.Date;
import java.util.List;
import javax.persistence.TemporalType;

public class TaskLogDaoImpl extends GenericDaoImpl<TaskLog, Integer> implements TaskLogDao {

 public TaskLogDaoImpl() {
 super(TaskLog.class);
 }

 @Override
 public List<TaskLog> findByUser(User user, Date startDate, Date endDate) {
 return em.createNamedQuery("TaskLog.findByUser")
 .setParameter("user", user)
 .setParameter("startDate", startDate, TemporalType.DATE)
 .setParameter("endDate", endDate, TemporalType.DATE)
 .getResultList();
 }

 @Override
 public long findTaskLogCountByTask(Task task) {
 Long count = (Long) em.createNamedQuery("TaskLog.findTaskLogCountByTask")
 .setParameter("task", task)
 .getSingleResult();
 return count;
 }

 @Override
 public long findTaskLogCountByUser(User user) {
 Long count = (Long) em.createNamedQuery("TaskLog.findTaskLogCountByUser")
 .setParameter("user", user)
 .getSingleResult();

 return count;
 }
}

This time, we will refactor the TaskLog named queries as follows:
@NamedQueries({
 @NamedQuery(name = "TaskLog.findByUser", query = "SELECT tl FROM TaskLog tl WHERE tl.user = :user AND tl.taskLogDate BETWEEN :startDate AND :endDate order by tl.taskLogDate ASC"),
 @NamedQuery(name = "TaskLog.findTaskLogCountByTask", query = "SELECT count(tl) FROM TaskLog tl WHERE tl.task = :task "),
 @NamedQuery(name = "TaskLog.findTaskLogCountByUser", query = "SELECT count(tl) FROM TaskLog tl WHERE tl.user = :user ")
})

We have removed several queries that will not be required and added three new ones as shown. The TaskLog.findByUser query will be used to list task logs assigned to a user for the given date range. Note the use of the BETWEEN key word to specify the date range. Also note the use of the TemporalType.DATE when setting the parameter in the TaskLogDaoImpl.findByUser method. This will ensure a strict date comparison, ignoring any time component, if present, in the arguments.
The TaskLog.findTaskLogCountByTask and TaskLog.findTaskLogCountByUser named queries will be used in our service layer to test if deletions are permitted. We will implement checks to ensure that a user or a task may not be deleted if valid task logs are assigned.

A better domain layer

Let's now revisit the domain layer created in Chapter 3, Reverse Engineering the Domain Layer with JPA. Defining an ancestor class for all entities in this layer is not only the best practice but will also make our domain layer far easier to enhance in the future. Our ancestor class is defined as follows:
package com.gieman.tttracker.domain; 
import java.io.Serializable;

public abstract class AbstractEntity implements Serializable{

}

Although this class has an empty implementation, we will add functionality in subsequent chapters.
We will also define an appropriate interface that has one generic method to return the ID of the entity:
package com.gieman.tttracker.domain;

public interface EntityItem<T> {

 public T getId();

}

Our domain layer can now extend our base AbstractEntity class and implement the EntityItem interface. The changes required to our Company class follows:
public class Company extends AbstractEntity implements EntityItem<Integer> {

// many more lines of code here

 @Override
 public Integer getId() {
 return idCompany;
 }
}

In a similar way, we can change the remaining domain classes:
public class Project extends AbstractEntity implements EntityItem<Integer> {

// many more lines of code here

 @Override
 public Integer getId() {
 return idProject;
 }
}
public class Task extends AbstractEntity implements EntityItem<Integer> {

// many more lines of code here

 @Override
 public Integer getId() {
 return idTask;
 }
}
public class User extends AbstractEntity implements EntityItem<String> {

// many more lines of code here

 @Override
 public String getId() {
 return username;
 }
}
public class TaskLog extends AbstractEntity implements EntityItem<Integer> {

// many more lines of code here

 @Override
 public Integer getId() {
 return idTaskLog;
 }
}

We will now be well prepared for future changes in the domain layer.

Exercise – a simple change request

This simple exercise will again demonstrate the power of generics. Each record inserted into the database should now be logged at using logger.info() with the message:
The "className" record with ID=? has been inserted

In addition, records that are deleted should be logged using logger.warn() with the message:
The "className" record with ID=? has been deleted

In both cases, the ? token should be replaced with the ID of the entity being inserted or deleted while the className token should be replaced with the class name of the entity being inserted or deleted. This is a trivial change when using generics, as the code can be added to the persist and remove methods of the GenericDaoImpl class. Without the use of generics, each of the CompanyDaoImpl, ProjectDaoImpl, TaskDaoImpl, UserDaoImpl, and TaskLogDaoImpl classes would need to have this change made. When you consider that enterprise applications may have 20, 30, 40, or more tables represented in the DAO layer, such a trivial change may not be so trivial without the use of generics.
Your task is to implement the change request as outlined previously. Note that this exercise will introduce you to the instanceof operator.

Summary

This chapter has introduced the Data Access Object design pattern and defined a set of interfaces that will be used in our 3T application. The DAO design pattern clearly separates the persistence layer operations from the business logic of the application. As will be introduced in the next chapter, this clear separation ensures that the data access layer is easy to test and maintain.
We have also introduced Java Generics as a technique to simplify application design by moving common functionality to an ancestor. The GenericDao interface and the GenericDaoImpl class define and implement methods that will be available free of cost to the extending components. Our implementations also introduced SLF4J, transactional semantics, and working with JPA named queries.
Our journey will now continue with Chapter 5, Testing the DAO Layer with Spring and JUnit, where we will configure a testing environment and develop test cases for several of our DAO implementations.

Chapter 5. Testing the DAO Layer with Spring and JUnit

Everyone would agree that software testing should be a fundamental part of the development process. Thorough testing will ensure that the business requirements are met, the software works as expected, and that the defects are discovered before your client finds them. Although testing can never completely identify all the bugs, it is commonly believed that the earlier an issue is found, the cheaper it is to fix. It is far quicker to fix a NullPointerException in a block of code during development than when the system has been deployed to your client's production server. When developing enterprise systems, it becomes even more critical to deliver high-quality code. The reputation of your company is at stake; identifying and fixing issues before delivery is an important reason to make testing a critical part of the development lifecycle.
There are many different types of testing, including but not limited to, unit testing, integration testing, regression testing, black/white box testing, and acceptance testing. Each of these testing strategies could warrant a chapter in their own right but are beyond the scope of this book. An excellent article covering software testing in general can be found here: https://en.wikipedia.org/wiki/Software_testing. We will focus on unit testing.
Unit testing overview

Unit testing is a strategy for testing discrete units of source code. From a programmer's perspective, a unit is the smallest testable part of an application. A unit of source code is usually defined as a public method that is callable within the application and has a specific purpose. Unit testing of the DAO layer will ensure that each public method has at least one appropriate test case. In practice, we will need many more test cases than just a single one for each public method. For example, every DAO find(ID) method requires at least two test cases: one with an outcome returning a valid found object and one with an outcome that does not find a valid object. As a result, for every line of code written, developers often need several lines of test code.
Unit testing is an art form that takes time to master. Our goal is to establish a set of tests that cover as many scenarios as possible. This is inherently opposite to what we are trying to achieve as developers, where our goal is to ensure that a task is performed to meet the precise functional requirements. Consider the following business requirement: take the cost value in cents and convert it to the euro equivalent according to the exchange rate of the day.
The solution may seem self-explanatory, but what happens if the exchange rate is not available? Or the date is in the future? Or the cost value is null? What is the expected behavior if the value cannot be calculated? These are all valid scenarios that should be considered when crafting test cases.
With unit testing we define how the program should behave. Each unit test should tell a well-documented story of how that part of the program should act in a specific scenario. The tests become a contract that describes what should happen from the client code's point of view under the various reproducible conditions.
The benefits of unit testing

Unit testing gives us confidence that the code we have written works correctly. The unit testing process also encourages us to think about how our code will be used and what conditions need to be met. There are many benefits including:
	Identifying problems early: Unit tests will help identify coding issues early in the development lifecycle when it is far easier to fix.
	Higher quality: We don't want customers to find bugs, resulting in downtime and expensive release cycles. We want to build software that has as few bugs as possible in the first place.
	Confidence: Developers are reluctant to touch code that is fragile. Well-tested code with solid test cases can be approached with confidence.
	Regression proofing: Test cases build and evolve with the application. Enhancements and new functionalities may break the old code silently, but a well-written test suite will go a long way in identifying such scenarios.

Enterprise applications, with many programmers doing parallel development across different modules, are even more vulnerable. Coding side effects may result in far-reaching consequences if not caught early.
Note
A helper method was used to trim a Java String passed in as an argument. The argument was tested for null and the method returned an empty string " " if this was the case. The helper method was used everywhere in the application. One day, a developer changed the helper method to return null if the passed-in argument was null (they needed to identify the difference between null and an empty string). A simple test case would have ensured that this change did not get checked in to version control. The sheer number of null pointer exceptions when using the application was amazing!

Configuring the test environment

Our strategy for unit testing is to create a set of test cases that can be run in an automated manner at any time during the development lifecycle. "Automated" means that no developer interaction is required; the tests can be run as part of the build process and do not require user input. The entire process is managed seamlessly through the use of Maven, JUnit, and Spring. Maven convention expects a test directory structure under the src directory with testing resources and Java test cases in subdirectories as shown in the following screenshot:
[image: Configuring the test environment]
Note how Maven uses the same directory structure for both source and testing layouts. All resources required to execute test cases will be found in the src/test/resources directory. Likewise, all the resources required for deployment will be found in the src/main/resources directory. The "convention over configuration" paradigm once again reduces the number of decisions that the developer needs to make. Maven-based testing will work without the need for any further configuration as long as this directory structure is followed. If you do not already have this directory structure, then you will need to create it manually by right-clicking on the required folder:
[image: Configuring the test environment]
After adding the directory structure, we can create individual files as shown:
[image: Configuring the test environment]
We will start by using NetBeans to create the jdbc.properties file.
The jdbc.properties file

Right-click on the test/resources folder and navigate to New | Other. The New File wizard will open where you can select Other from Categories and Properties File as shown:
[image: The jdbc.properties file]
Select Next and type in jdbc as the filename:
[image: The jdbc.properties file]
Click on the Finish button to create the jdbc.properties file. NetBeans will then open the file in the editor where you can add the following code:
[image: The jdbc.properties file]
The jdbc.properties file is used to define the database connection details that will be used by Spring to configure our DAO layer for unit testing. Enterprise projects usually have one or more dedicated test databases that are prefilled with appropriate data for all testing scenarios. We will use the database that was generated and populated in Chapter 2, The Task Time Tracker Database.

The logback.xml file

Create this file by using the New File wizard XML category as shown:
[image: The logback.xml file]
After creating the logback.xml file, you can enter the following content:
<?xml version="1.0" encoding="UTF-8"?>
<configuration scan="true" scanPeriod="30 seconds" >
 <contextName>TaskTimeTracker</contextName>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{5} - %msg%n</pattern>
 </encoder>
 </appender>

 <logger name="com.gieman.tttracker" level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>
 <logger name="com.gieman.tttracker.dao" level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>
 <logger name="com.gieman.tttracker.domain" level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>
 <logger name="com.gieman.tttracker.service" level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>
 <logger name="com.gieman.tttracker.web" level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>

 <root level="INFO">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

For those who are familiar with log4j, the syntax of the logback logger definitions is very similar. We have set the root log level to INFO, which will cover all the loggers that are not explicitly defined (note that the default level is DEBUG but this will usually result in extensive logging at the root level). Each individual logger, with the name matching a com.gieman.tttracker package, is set to log level DEBUG. This configuration gives us considerable flexibility and control over package-level logging properties. In production we would normally deploy a WARN level for all loggers to minimize logging. If an issue is encountered, we would then selectively enable logging in different packages to help identify any problems. Unlike log4j, this dynamic reloading of logger properties can be done on the fly thanks to logback's scan="true" scanPeriod="30 seconds" option in the <configuration> node. More information about the logback configuration can be found here: http://logback.qos.ch/manual/configuration.html.

The test-persistence.xml file

Follow the New File steps outlined in the previous section to create the test-persistence.xml file. Enter the following persistence context definition:
<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="tttPU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.gieman.tttracker.domain.Company</class>
 <class>com.gieman.tttracker.domain.Project</class>
 <class>com.gieman.tttracker.domain.Task</class>
 <class>com.gieman.tttracker.domain.TaskLog</class>
 <class>com.gieman.tttracker.domain.User</class>
 <exclude-unlisted-classes>true</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.logging.level" value="WARNING"/>
 </properties>
 </persistence-unit>
</persistence>

This persistence unit definition is slightly different from the one created in Chapter 3, Reverse Engineering the Domain Layer with JPA:
<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="tttPU" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>jdbc/tasktimetracker</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties/>
 </persistence-unit>
</persistence>

Note that the testing persistence-unit transaction type is RESOURCE_LOCAL rather than JTA. Our testing environment uses a local (Spring-managed) transaction manager rather than the one provided by our GlassFish server container (which is JTA). In both cases, the tttPU persistence unit name matches the @PersistenceContext unitName annotation of the EntityManager field in the GenericDaoImpl:
@PersistenceContext(unitName = "tttPU")
protected EntityManager em;

The second difference is the way the classes are discovered. During testing our domain entities are explicitly listed and we exclude any classes that are not defined. This simplifies processing and ensures that only the required entities are loaded for testing without scanning the classpath. This is an important point for Windows users; on some Windows versions, there's a limit to the length of the command-line statement, and therefore, a limit on how long you can make your classpath argument. Using classpath scanning, the loading of domain entities for testing may not work, resulting in strange errors such as:
org.springframework.dao.InvalidDataAccessApiUsageException: Object: com.tttracker.domain.Company[idCompany=null] is not a known entity type.; nested exception is java.lang.IllegalArgumentException: Object: com.tttracker.domain.Company[idCompany=null] is not a known entity type.

Always ensure that your testing persistence XML definitions include all domain classes in your application.

Introducing the Spring IoC container

The modern Spring Framework is an extensive suite of framework "stacks" based on architectural concepts that go back to the start of the century. The Spring Framework first came to prominence with Expert One-on-One J2EE Design and Development, Rod Johnson, in 2002. Spring's implementation of the Inversion of Control (IoC) principle, sometimes also known as Dependency Injection (DI), was a breakthrough in enterprise application design and development. The Spring IoC container provided a simple way of configuring objects (JavaBeans) and injecting dependencies through constructor arguments, factory methods, object properties, or setter methods. We have already seen the @PersistenceContext annotation in our DAO layer that is used by Spring to identify whether an EntityManager object should be injected into the GenericDaoImpl class. The sophisticated configuration options available make the Spring Framework a very flexible foundation for enterprise development.
It is beyond the scope of this book to cover more than the basics of the Spring Framework configuration as is required by our project needs. However, we recommend that you browse through the detailed description of how the IoC container works at http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html#beans-definition to enhance their knowledge of the core principles.
Exploring the testingContext.xml file

This is the main configuration file used by Spring to configure and load the IoC bean container. The XML-based configuration has been the default way to configure Spring applications since the very start, but with Spring 3 Framework, it became possible to use the Java-based configuration. Both options achieve the same result—a fully configured Spring container. We will use the XML approach as it does not require any Java coding and is more intuitive and simple to use.
Note
There have been many articles written over the years about the "complexities" of the Spring XML configuration. Prior to Java 1.5 and the introduction of annotations, there could have been a case made for such comments. Configuration files were lengthy and daunting for new users. This is no longer the case. Configuring a Spring container with XML is now a trivial process. Be wary of anyone who tells you otherwise!

The testingContext.xml configuration file completely defines the Spring environment required for testing the DAO layer. The full file listing is:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.0.xsd">

 <bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"
 p:location="classpath:jdbc.properties" />

 <bean id="tttDataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 p:driverClassName="${jdbc.driverClassName}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}"/>

 <bean id="loadTimeWeaver" class="org.springframework.instrument.classloading.InstrumentationLoadTimeWeaver" />

 <bean id="jpaVendorAdapter" class="org.springframework.orm.jpa.vendor.EclipseLinkJpaVendorAdapter"
 p:showSql="true"
 p:databasePlatform="org.eclipse.persistence.platform.database.MySQLPlatform" />
 <bean id="entityManagerFactory" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"
 p:dataSource-ref="tttDataSource"
 p:jpaVendorAdapter-ref="jpaVendorAdapter"
 p:persistenceXmlLocation="test-persistence.xml"
 />

 <!-- Transaction manager for a single JPA EntityManagerFactory (alternative to JTA) -->
 <bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager"
 p:dataSource-ref="tttDataSource"
 p:entityManagerFactory-ref="entityManagerFactory"/>

 <!-- checks for annotated configured beans -->
 <context:annotation-config/>

 <!-- Scan for Repository/Service annotations -->
 <context:component-scan base-package="com.gieman.tttracker.dao" />

 <!-- enable the configuration of transactional behavior based on annotations -->
 <tx:annotation-driven />

</beans>

Let's look at each section in detail.
The Spring XML namespaces

For those not familiar with XML, you can simply ignore the xmlns definitions and schema location URLs. Consider them as "shortcuts" or "qualifiers" in the configuration file that provide the ability to validate the entries. Spring understands what <tx:annotation-driven /> means in the context of loading the Spring environment.
Each Spring application configuration file will have multiple namespace declarations depending on the resources your application needs. Defining the schema location in addition to the namespaces will allow NetBeans to provide helpful hints on configuration options:
[image: The Spring XML namespaces]
The list of valid properties for different namespaces is very useful when new to Spring configuration.

The property file configuration

The following bean loads the jdbc.properties file and makes it available for use in the configuration file:
<bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"
 p:location="classpath:jdbc.properties" />

The ${} syntax can then be used anywhere in the testingContext.xml file to replace the token with the required jdbc property.

Creating the JDBC DataSource

DAO testing requires a connection to the MySQL database. The following Spring bean definition instantiates and makes available a fully configured DataSource:
<bean id="tttDataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 p:driverClassName="${jdbc.driverClassName}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}"
 />

The placeholders are automatically set with the properties loaded from the jdbc.properties file:
jdbc.driverClassName=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/task_time_tracker
jdbc.username=root
jdbc.password=adminadmin

This very simple Spring configuration snippet replaces many lines of equivalent Java code if we had to implement the DataSource instantiation ourselves. Note how simple it would be to change any of the database properties for different testing scenarios, or for example, even change the database server from MySQL to Oracle. This flexibility makes the Spring IoC container very powerful for enterprise use.
You should note that the org.springframework.jdbc.datasource.DriverManagerDataSource should only be used for testing purposes and is not for use in a production environment. The GlassFish server will provide a connection-pooled DataSource for production use.

Defining helper beans

The loadTimeWeaver and jpaVendorAdapter bean definitions help configure the entityManagerFactory bean that is used to load the persistence context. Note the way in which we identify the database platform (MySQL) and JPA implementation (EclipseLink) by using specific Spring bean classes:
<bean id="jpaVendorAdapter"
class="org.springframework.orm.jpa.vendor.EclipseLinkJpaVendorAdapter"
 p:showSql="true"
 p:databasePlatform="org.eclipse.persistence.platform.database.MySQLPlatform" />

Spring provides a large number of database and JPA implementations as can be seen when using autocomplete in NetBeans (the Ctrl + Space bar combination in NetBeans triggers the autocomplete options):
[image: Defining helper beans]
Helper beans are used to define implementation-specific properties. It is very easy to swap implementation strategies for different enterprise environments. For example, developers may use MySQL databases running locally on their own environment for development purposes. Production enterprise servers may use an Oracle database running on a different physical server. Only very minor changes are required to the Spring XML configuration file to implement such differences for the application environment.

Defining the EntityManagerFactory class

This Spring bean defines the EntityManagerFactory class that is used to create and inject the EntityManager instance into the GenericDaoImpl class:
<bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"
 p:dataSource-ref="tttDataSource"
 p:jpaVendorAdapter-ref="jpaVendorAdapter"
 p:persistenceXmlLocation="test-persistence.xml"
/>

This definition references the tttDataSource and jpaVendorAdapter beans that are already configured, as well as the test-persistence.xml persistence context definition file. Once again, Spring does a lot of work in the background by creating and configuring the EntityManager instance and making it available for use in our code.

Configuring the transaction manager

The Spring bean used to manage transactions is defined as follows:
<bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager"
 p:dataSource-ref="tttDataSource"
 p:entityManagerFactory-ref="entityManagerFactory"/>

This bean wires together the tttDataSource and entityManagerFactory instance to enable transactional behavior in our application. This behavior is applied to all classes with @Transactional annotations; in our current situation this applies to all the DAO objects. Spring scans for this annotation and applies a transactional wrapper to each annotated method when the following line is included in the configuration file:
<tx:annotation-driven />

Which classes are scanned for the @Transactional annotation? The following line defines that Spring should scan the com.gieman.tttracker.dao package:
<context:component-scan base-package="com.gieman.tttracker.dao"/>

Autowiring beans

Autowiring is a Spring term used to automatically inject a resource into a managed bean. The following line enables autowiring in beans that have the @Autowired annotation:
<context:annotation-config/>

We do not have any autowired annotations as of yet in our code; the next section will introduce how this annotation is used.

Thanks for the plumbing!

The Spring configuration file, when loaded by the Spring container, will do an enormous amount of work in the background configuring and wiring together the many supporting classes required by our application. The tedious and often error-prone "plumbing" code is done for us. Never again will we need to commit a transaction, open a database connection, or close a JDBC resource. These low-level operations will be handled very elegantly for us by the Spring Framework.
Note
As enterprise application developers we can and should focus most of our time and energy on core application concerns: business logic, user interfaces, requirements, testing, and, of course, our customers. Spring makes sure we can stay focused on these tasks.

Enabling the Maven environment for testing

The Maven build process includes the ability to execute test suites. We will now need to add this functionality to the pom.xml file. The required changes to the existing file are highlighted in the following code snippet:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.gieman</groupId>
 <artifactId>task-time-tracker</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>

 <name>task-time-tracker</name>

 <properties>
 <endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <spring.version>3.2.4.RELEASE</spring.version>
 <logback.version>1.0.13</logback.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>2.1.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>eclipselink</artifactId>
 <version>2.5.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>org.eclipse.persistence.jpa.modelgen.processor</artifactId>
 <version>2.5.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.26</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context-support</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-tx</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-orm</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-instrument</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>${spring.version}</version>
 <scope>test</scope>
 </dependency>

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <compilerArguments>
 <endorseddirs>${endorsed.dir}</endorseddirs>
 </compilerArguments>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <warName>${project.build.finalName}</warName>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>copy-endorsed</id>
 <phase>validate</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <outputDirectory>${endorsed.dir}</outputDirectory>
 <silent>true</silent>
 <artifactItems>
 <artifactItem>
 <groupId>javax</groupId>
 <artifactId>javaee-endorsed-api</artifactId>
 <version>7.0</version>
 <type>jar</type>
 </artifactItem>
 </artifactItems>
 </configuration>
 </execution>
 <execution>
 <id>copy-all-dependencies</id>
 <phase>compile</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${project.build.directory}/lib</outputDirectory>
 <includeScope>compile</includeScope>
 </configuration>
 </execution>

 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.14.1</version>
 <configuration>
 <skipTests>false</skipTests>
 <includes>
 <include>**/dao/*Test.java</include>
 </includes>
 <argLine>-javaagent:target/lib/spring-instrument-${spring.version}.jar</argLine>
 </configuration>
 </plugin>

 </plugins>
 </build>
 <repositories>
 <repository>
 <url>http://download.eclipse.org/rt/eclipselink/maven.repo/</url>
 <id>eclipselink</id>
 <layout>default</layout>
 <name>Repository for library EclipseLink (JPA 2.1)</name>
 </repository>
 </repositories>
</project>

The first two changes add the mysql-connector-java and junit dependencies. Without these we will not be able to connect to the database or write test cases. These dependencies will download the appropriate Java libraries for inclusion into our project.
The most important settings are in the Maven plugin that performs the actual work. Adding the maven-surefire-plugin will allow the test case execution based on the contents of the main/src/test directory structure. This clearly separates the testing classes from our application classes. The main configuration properties for this plugin are:
	<skipTests>: This property can be true (to disable testing) or false (to enable testing).
	<includes>: This property includes a list of file sets during testing. The setting <include>**/dao/*Test.java</include> specifies that all the classes in any dao subdirectory with the filename ending in Test.java should be loaded and included in the testing process. You may specify any number of file sets.
	<argLine>-javaagent:target/lib/spring-instrument-${spring.version}.jar</argLine>: This property is used to configure the Java Agent for the testing JVM and is required by Spring for the load-time weaving of classes, a discussion of which is beyond the scope of this text.

Now that we have configured the Spring and Maven testing environments, we can start writing test cases.

Defining a test case superclass

The first step is to create a superclass that all of our DAO test cases will inherit. This abstract class looks like the following code snippet:
package com.gieman.tttracker.dao;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.AbstractTransactionalJUnit4SpringContextTests;

@ContextConfiguration("/testingContext.xml")
public abstract class AbstractDaoForTesting extends AbstractTransactionalJUnit4SpringContextTests {

 protected final Logger logger = LoggerFactory.getLogger(this.getClass());
 @Autowired(required = true)
 protected CompanyDao companyDao;
 @Autowired(required = true)
 protected ProjectDao projectDao;
 @Autowired(required = true)
 protected TaskDao taskDao;
 @Autowired(required = true)
 protected UserDao userDao;
 @Autowired(required = true)
 protected TaskLogDao taskLogDao;
}

The AbstractDaoForTesting class is marked as abstract so that it cannot be instantiated directly. It provides member variables that are accessible to all the subclasses, thus removing the need to replicate code in the descendents. As a result, each subclass will have access to the DAO instances as well as the SLF4J logger. There are two new Spring annotations:
	@ContextConfiguration: This annotation defines the Spring application context used to load the bean container. The testingContext.xml file has been covered in detail in the previous sections.
	@Autowired: This annotation indicates to Spring that the container-managed bean with matching type should be dependency injected into the class. For example, the CompanyDao companyDao definition will result in Spring querying the container for an object with type CompanyDao. There is only one object with this type: the CompanyDaoImpl class that was discovered and configured by Spring when scanning the com.gieman.tttracker.dao package via the <context:component-scan base-package="com.gieman.tttracker.dao"/> entry in the testingContext.xml file.

The final important thing to notice is that the AbstractDaoForTesting class extends the Spring AbstractTransactionalJUnit4SpringContextTests class. Apart from being a very long class name, this class provides transparent transactional rollbacks at the end of each test method. This means the database state at the end of any DAO testing operations (including any insert, update, or delete) will be the same as at the start of testing. If this behavior is not required, you should extend AbstractJUnit4SpringContextTests instead. In this case any testing database operations can be examined and confirmed after the tests have been run. It is also possible to mark a single method with @Rollback(false) when using AbstractTransactionalJUnit4SpringContextTests to commit changes if required.
Let's now write our first test case for the CompanyDao operation.

Defining the CompanyDao test case

Each CompanyDao method should have at least one test method defined. We will include exactly one test method per implemented CompanyDao method. In enterprise applications, we would expect many more scenarios to be covered than the ones identified in the code snippet that follows.
We have also included minimum logging, just enough to split the output when running the test cases. You may wish to add more logging to help analyze the results. The test code assumes that the ttt_company table has appropriate data. In Chapter 2, The Task Time Tracker Database, we added three rows so that we know there is data available. Additional checks would need to be done if we do not have a database with consistent testing data. The file listing is:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Company;
import java.util.List;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class CompanyDaoTest extends AbstractDaoForTesting {

 public CompanyDaoTest(){}

 @Test
 public void testFind() throws Exception {

 logger.debug("\nSTARTED testFind()\n");
 List<Company> allItems = companyDao.findAll();

 assertTrue(allItems.size() > 0);

 // get the first item in the list
 Company c1 = allItems.get(0);

 int id = c1.getId();

 Company c2 = companyDao.find(id);

 assertTrue(c1.equals(c2));
 logger.debug("\nFINISHED testFind()\n");
 }

 @Test
 public void testFindAll() throws Exception {

 logger.debug("\nSTARTED testFindAll()\n");
 int rowCount = countRowsInTable("ttt_company");

 if(rowCount > 0){

 List<Company> allItems = companyDao.findAll();
 assertTrue("Company.findAll list not equal to row count of table ttt_company", rowCount == allItems.size());

 } else {
 throw new IllegalStateException("INVALID TESTING SCENARIO: Company table is empty");
 }
 logger.debug("\nFINISHED testFindAll()\n");
 }

 @Test
 public void testPersist() throws Exception {

 logger.debug("\nSTARTED testPersist()\n");
 Company c = new Company();
 final String NEW_NAME = "Persist Test Company name";
 c.setCompanyName(NEW_NAME);

 companyDao.persist(c);

 assertTrue(c.getId() != null);
 assertTrue(c.getCompanyName().equals(NEW_NAME));

 logger.debug("\nFINISHED testPersist()\n");
 }

 @Test
 public void testMerge() throws Exception {

 logger.debug("\nSTARTED testMerge()\n");
 final String NEW_NAME = "Merge Test Company New Name";

 Company c = companyDao.findAll().get(0);
 c.setCompanyName(NEW_NAME);

 c = companyDao.merge(c);

 assertTrue(c.getCompanyName().equals(NEW_NAME));

 logger.debug("\nFINISHED testMerge()\n");

 }

 @Test
 public void testRemove() throws Exception {

 logger.debug("\nSTARTED testRemove()\n");
 Company c = companyDao.findAll().get(0);

 companyDao.remove(c);

 List<Company> allItems = companyDao.findAll();

 assertTrue("Deleted company may not be in findAll List", !allItems.contains(c));

 logger.debug("\nFINISHED testRemove()\n");
 }
}

Running the JUnit test cases with Maven

The pom.xml configuration file will automatically run the test cases using <skipTests>false</skipTests> when doing Clean and Build Project (task-time-tracker) by clicking on the toolbar icon:
[image: Running the JUnit test cases with Maven]
It is also possible to only run the testing phase of the project by navigating to Run | Test Project (task-time-tracker):
[image: Running the JUnit test cases with Maven]
The results of the testing process can now be examined in the Output – task-time-tracker panel. Note that you may need to dock the output panel to the bottom of the IDE if it is minimized, as shown in the following screenshot (the minimized panel is usually in the bottom-left corner of the NetBeans IDE). The [surefire:test] plugin output is displayed at the start of the testing process. There are many lines of output for configuring Spring, connecting to the database, and loading the persistence context:
[image: Running the JUnit test cases with Maven]
We will examine the key testing output in detail soon. Scroll through the output until you reach the end of the test section:
[image: Running the JUnit test cases with Maven]
There were five tests executed in total with no errors—a great start!
Running the CompanyDaoTest.java file

You can execute a single test case file by right-clicking on the file displayed in the editor and selecting the Test File option:
[image: Running the CompanyDaoTest.java file]
This will execute the file's test cases, producing the same testing output as shown previously, and present you with the results in the Test Results panel. This panel should appear under the file editor but may not be docked (it may be floating at the bottom of the NetBeans IDE; you can change the position and docking as required). The individual file testing results can then be examined:
[image: Running the CompanyDaoTest.java file]
Single test file execution is a practical and quick way of debugging and developing code. We will continue to execute and examine single files during the rest of the chapter.
Let's now examine the results of each test case in detail.
Note
In all of the following testing outputs, the SLF4J-specific messages have been removed. This will include timestamps, threads, and session information. We will only focus on the generated SQL.

The results for the CompanyDaoTests.testMerge test case

The output for this test case is:
STARTED testMerge()
SELECT id_company, company_name FROM ttt_company ORDER BY company_name ASC
FINISHED testMerge()

A merge call is used to update a persistent entity. The testMerge method is very simple:
final String NEW_NAME = "Merge Test Company New Name";
Company c = companyDao.findAll().get(0);
c.setCompanyName(NEW_NAME);
c = companyDao.merge(c);
assertTrue(c.getCompanyName().equals(NEW_NAME));

We find the first Company entity (the first item in the list returned by findAll) and then update the name of the company to the NEW_NAME value. The companyDao.merge call then updates the Company entity state in the persistence context. This is tested using the assertTrue() test.
Note that the testing output only has one SQL statement:
SELECT id_company, company_name FROM ttt_company ORDER BY company_name ASC

This output corresponds to the findAll method call. Note that there is no SQL update statement executed! This may seem strange because the entity manager's merge call should result in an update statement being issued against the database. However, the JPA implementation is not required to execute such statements immediately and may cache statements when possible, for performance and optimization purposes. The cached (or queued) statements are then executed only when an explicit commit is called. In our example, Spring executes a rollback immediately after the testMerge method returns (remember, we are running transactional test cases thanks to our AbstractTransactionalJUnit4SpringContextTests extension), and hence the persistence context never needs to execute the update statement.
We can force a flush to the database by making a slight change to the GenericDaoImpl class:
@Override
@Transactional(readOnly = false, propagation = Propagation.REQUIRED)
public T merge(T o) {
 o = em.merge(o);
 em.flush();
 return o;
}

The em.flush() method results in an immediate update statement being executed; the entity manager is flushed with all pending changes. Changing this code in the GenericDaoImpl class and executing the test case again will result in the following testing output:
SELECT id_company, company_name FROM ttt_company ORDER BY company_name ASC
UPDATE ttt_company SET company_name = ? WHERE (id_company = ?)
 bind => [Merge Test Company New Name, 2]

The update statement now appears as expected. If we now check the database directly after executing the test case, we find:
[image: The results for the CompanyDaoTests.testMerge test case]
As expected, Spring has rolled back the database at the end of the testMerge method call, and the company name of the first record has not changed.
Note
In enterprise applications, it is recommended not to call em.flush() explicitly and to allow the JPA implementation to optimize statements according to their transactional behavior. There may be situations, however, where an immediate flush is required but these are rare.

The results for the CompanyDaoTests.testFindAll test case

The output for this test case is:
STARTED testFindAll()
SELECT id_company, company_name FROM ttt_company ORDER BY company_name ASC
FINISHED testFindAll()

Even though the testMerge method uses the findAll method to retrieve the first item in the list, we should always include a separate findAll test method to compare the size of the result set with the database table. This is easy when using the Spring helper method countRowsInTable:
int rowCount = countRowsInTable("ttt_company");

We can then compare the size of the findAll result list with rowCount using the assertTrue statement:
assertTrue("Company.findAll list not equal to row count of table ttt_company", rowCount == allItems.size());

Note how the assertTrue statement is used; the message is displayed if the assertion is false. We can test the statement by slightly modifying the assertion so that it fails:
assertTrue("Company.findAll list not equal to row count of table ttt_company", rowCount+1 == allItems.size());

It will now fail and result in the following output when the test case is executed:
[image: The results for the CompanyDaoTests.testFindAll test case]

The results for the CompanyDaoTests.testFind test case

The output for this test case is:
STARTED testFind()
SELECT id_company, company_name FROM ttt_company ORDER BY company_name ASC
FINISHED testFind()

This may seem a bit surprising for those new to JPA. The SELECT statement is executed from the code:
List<Company> allItems = companyDao.findAll();

But where is the expected SELECT statement when calling the find method using the id attribute?
int id = c1.getId(); // find ID of first item in list
Company c2 = companyDao.find(id);

JPA does not need to execute the SELECT statement using the primary key statement on the database as the entity with the required ID has already been loaded in the persistence context. There will be three entities loaded as a result of the findAll method with IDs 1, 2, and 3. When asked to find the entity using the ID of the first item in the list, JPA will return the entity it has already loaded in the persistence context with the matching ID, avoiding the need to execute a database select statement.
This is often a trap in understanding the behavior of JPA-managed applications. When an entity is loaded into the persistence context it will remain there until it expires. The definition of what constitutes "expires" will depend on the implementation and caching properties. It is possible that small sets of data will never expire; in our Company example with only a few records, this will most likely be the case. Performing an update statement directly on the underlying table, for example, changing the company name of the first record, may never be reflected in the JPA persistence context as the persistence context entity will never be refreshed.
Note
If an enterprise application expects data modification from multiple sources (for example, through stored procedures or web service calls via a different entity manager), a caching strategy to expire stale entities will be required. JPA does not automatically refresh the entity state from the database and will assume that the persistence context is the only mechanism for managing persistent data. EclipseLink provides several caching annotations to solve this problem. An excellent guide can be found here: http://wiki.eclipse.org/EclipseLink/Examples/JPA/Caching.

Results for the CompanyDaoTests.testPersist test case

We have added a few minor changes to the GenericDaoImpl.persist method as a result of the exercises from the previous chapter. The modified persist method in the GenericDaoImpl implementation is:
em.persist(o);

em.flush();

if (o instanceof EntityItem) {
 EntityItem<ID> item = (EntityItem<ID>) o;
 ID id = item.getId();
 logger.info("The " + o.getClass().getName() + " record with ID=" + id + " has been inserted");
}

You will notice the em.flush() method in GenericDaoImpl after the em.persist() method. Without this flush to the database ,we cannot guarantee that a valid primary key has been set on the new Company entity. The output for this test case is:
STARTED testPersist()
INSERT INTO ttt_company (company_name) VALUES (?)
 bind => [Persist Test Company name]
SELECT LAST_INSERT_ID()
The com.gieman.tttracker.domain.Company record with ID=4 has been inserted
FINISHED testPersist()

Note that the logging outputs the newly generated primary key value of 4. This value is retrieved when JPA queries MySQL using the SELECT LAST_INSERT_ID() statement. In fact, removing the em.flush() method from GenericDaoImpl and executing the test case would result in the following output:
STARTED testPersist()
The com.gieman.tttracker.domain.Company record with ID=null has been inserted

The assertion assertTrue(c.getId() != null) will fail and we will not even display the FINISHED testPersist() message. Our test case fails before the debug message is reached.
Once again we see the JPA optimization in action. Without the em.flush() method, JPA will wait until a transaction is committed in order to execute any changes in the database. As a result, the primary key may not be set as expected for any subsequent code using the newly created entity object within the same transaction. This is another trap for the unwary developer, and the persist method identifies the only situation where an entity manager flush() to the database may be required.

Results for the CompanyDaoTests.testRemove test case

This is probably the most interesting test case so far. The output is:
STARTED testRemove()

SELECT id_company, company_name FROM ttt_company ORDER BY company_name ASC
SELECT id_project, project_name, id_company FROM ttt_project WHERE (id_company = ?)
 bind => [2]
SELECT id_task, task_name, id_project FROM ttt_task WHERE (id_project = ?)
 bind => [4]
SELECT id_task, task_name, id_project FROM ttt_task WHERE (id_project = ?)
 bind => [5]
SELECT id_task, task_name, id_project FROM ttt_task WHERE (id_project = ?)
 bind => [6]
The com.gieman.tttracker.domain.Company record with ID=2 has been deleted
DELETE FROM ttt_task WHERE (id_task = ?)
 bind => [10]
DELETE FROM ttt_task WHERE (id_task = ?)
 bind => [12]
DELETE FROM ttt_task WHERE (id_task = ?)
 bind => [11]
DELETE FROM ttt_task WHERE (id_task = ?)
 bind => [13]
DELETE FROM ttt_project WHERE (id_project = ?)
 bind => [4]
DELETE FROM ttt_project WHERE (id_project = ?)
 bind => [6]
DELETE FROM ttt_project WHERE (id_project = ?)
 bind => [5]
DELETE FROM ttt_company WHERE (id_company = ?)
 bind => [2]
SELECT id_company, company_name FROM ttt_company ORDER BY company_name ASC

FINISHED testRemove()

The first SELECT statement is executed as a result of finding the first company in the list:
Company c = companyDao.findAll().get(0);

The second SELECT statement may not be as obvious:
SELECT id_project, project_name, id_company FROM ttt_project WHERE (id_company = ?)
 bind => [2]

Why does deleting a company result in a SELECT statement on the ttt_project table? The reason is that each Company entity may have one or more related Projects entities as defined in the Company class definition:
 @OneToMany(cascade = CascadeType.ALL, mappedBy = "company")
 private List<Project> projects;

JPA understands that deleting a Company requires a check against the ttt_project table to see if there are any dependent Projects. In the @OneToMany annotation, the cascade = CascadeType.ALL property defines the behavior if a Company is deleted; the change should be cascaded to any dependent entities. In this example, deleting a company record will require the deletion of all related project records. Each Project entity in turn owns a collection of Task entities as defined in the Project class definition:
 @OneToMany(cascade = CascadeType.ALL, mappedBy = "project")
 private List<Task> tasks;

The result of removing a Company entity has far-reaching consequences as all related Projects and their related Tasks are deleted from the underlying tables. A cascade of DELETE statements in the testing output is the result of the final deletion being that of the company itself. This may not be suitable behavior for enterprise applications; in fact, such a cascading of deletions is usually never implemented without extensive checks to ensure data integrity. A simple change in the cascade annotation in the Company class will ensure that the deletion is not propagated:
@OneToMany(cascade = {CascadeType.MERGE, CascadeType.PERSIST}, mappedBy ="company")
private List<Project> projects;

Now only the MERGE and PERSIST operations on the Company entity will be cascaded to the related Project entities. Running the test case again after making this change will result in:
Internal Exception: com.mysql.jdbc.exceptions.jdbc4.MySQLIntegrityConstraintViolationException: Cannot delete or update a parent row: a foreign key constraint fails (`task_time_tracker`.`ttt_project`, CONSTRAINT `ttt_project_ibfk_1` FOREIGN KEY (`id_company`) REFERENCES `ttt_company` (`id_company`))

As the cascade type for REMOVE was not included, JPA does not check for related rows in the ttt_project table and simply attempts to execute the DELETE statement on the ttt_company table. This will fail, as there are related records on the ttt_project table. It will now only be possible to remove a Company entity if there are no related Project entities (the projects field is an empty list).
Note
Changing the CascadeType as outlined in this section adds business logic to the DAO layer. You will no longer be able to perform certain actions through the persistence context. There may, however, be a legitimate situation where you do want a cascading delete of a Company entity and this will no longer be possible. CascadeType.ALL is the most flexible option, allowing all possible scenarios. Business logic such as deletion strategies should be implemented in the service layer, which is the subject of the next chapter.

We will continue to use the cascade = CascadeType.ALL property and allow JPA-managed deletions to propagate. The business logic to restrict these actions will be implemented in the service layer.

JPA traps for the unwary

There are some JPA traps worthy of special examination. We will start by creating the following test case:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Company;
import com.gieman.tttracker.domain.Project;
import com.gieman.tttracker.domain.User;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class JpaTrapTest extends AbstractDaoForTesting {

 @Test
 public void testManyToOne() throws Exception {

 logger.debug("\nSTARTED testManyToOne()\n");

 Company c = companyDao.findAll().get(0);
 Company c2 = companyDao.findAll().get(1);

 Project p = c.getProjects().get(0);

 p.setCompany(c2);
 p = projectDao.merge(p);

 assertTrue("Original company still has project in its collection!",
 !c.getProjects().contains(p));
 assertTrue("Newly assigned company does not have project in its collection",
 c2.getProjects().contains(p));

 logger.debug("\nFINISHED testManyToOne()\n");

 }

 @Test
 public void testFindByUsernamePassword() throws Exception {

 logger.debug("\nSTARTED testFindByUsernamePassword()\n");

 // find by username/password combination
 User user = userDao.findByUsernamePassword("bjones", "admin");

 assertTrue("Unable to find valid user with correct username/password combination",
 user != null);

 user = userDao.findByUsernamePassword("bjones", "ADMIN");

 assertTrue("User found with invalid password",
 user == null);

 logger.debug("\nFINISHED testFindByUsernamePassword()\n");
 }
}

Running this test case may surprise you:
[image: JPA traps for the unwary]
The first failure arises from the userDao.findByUsernamePassword statement, which uses the uppercase password:
user = userDao.findByUsernamePassword("bjones", "ADMIN");

Why was the user found with an obviously incorrect password? The reason is very simple and is a trap for the unwary developer. Most databases, by default, are case insensitive when matching text fields. In this situation the uppercase ADMIN will match the lowercase admin in the password field. Not exactly what we want when checking passwords! The database term that describes this behavior is collation; we need to modify the password column to use a case-sensitive collation. This can be achieved in MySQL with the following SQL command:
ALTER TABLE ttt_user MODIFY
 password VARCHAR(100)
 COLLATE latin1_general_cs;

Other databases will have similar semantics. This will change the collation on the password field to be case sensitive (note the _cs appended in latin1_general_cs). Running the test case will now result in expected behavior for case-sensitive password checking:
[image: JPA traps for the unwary]
The testManyToOne failure is another interesting case. In this test case, we are reassigning the project to a different Company. The p.setCompany(c2); line will change the assigned company to the second one in the list. We would expect that after calling the merge method on the project, the collection of projects in the c2 company would contain the newly reassigned project. In other words, the following code line should equate to true:
c2.getProjects().contains(p)

Likewise, the old company should no longer contain the newly reassigned project and hence should be false:
c.getProjects().contains(p)

This is obviously not the case and identifies a trap for developers new to JPA.
Although the persistence context understands the relationship between entities using @OneToMany and @ManyToOne, the Java representation of the relationship needs to be handled by the developer when collections are concerned. The simple changes required are as follows:
p.setCompany(c2);
p = projectDao.merge(p);

c.getProjects().remove(p);
c2.getProjects().add(p);

When the projectDao.merge(p) line is executed, the persistence context has no way of knowing the original parent company (if there is one at all; this may be a newly inserted project). The original Company entity in the persistence context still has a collection of projects assigned. This collection will never be updated during the lifetime of the Company entity within the persistence context. The additional two lines of code are used to remove the project (using remove) from the original company's project list and we add (using add) the project to the new company to ensure that the persistence context entities are updated to the correct state.

Exercises

1. Add test assertions to the CompanyDaoTest.find() method to test for the following scenarios:
	Attempting to find a company with a null primary key
	Attempting to find a company with a negative primary key

What do you consider to be the expected results?
2. Create the missing test case files for the ProjectDao, TaskDao, UserDao, and TaskLogDao implementations.
3. Create a test case to determine if removing (deleting) a project will automatically remove the project from the owning company's project collection.

Summary

We have once again covered a lot of territory. Unit testing is a critical part of enterprise application development, and the combination of NetBeans, Maven, JUnit, and Spring provides us with a solid platform to launch both automated and single file test cases. Writing comprehensive test cases is an art form that is always appreciated and valued in any high-quality development team; never underestimate the confidence gained from working with well-tested code with a solid suite of test cases!
In the next chapter, we will examine the role of the service layer in enterprise application development. Our 3T business logic will then be implemented using the Data Transfer Objects (DTO) design pattern.

Chapter 6. Back to Business – The Service Layer

The service layer is the nucleus of the application; it is where the business logic resides. The business logic encapsulates the rules that define the working application and it is where a significant amount of development time is spent. Enhancements, changing requirements, and ongoing maintenance will usually require modifications to the service layer. Business rules may include such operations as restricting access to specific roles, security constraints, calculations, validations, compliance checks, and logging, to name a few.
Some typical business logic examples could include the following:
	Only administrators can change the country assigned to a user
	Administrators can only change a user to a country in their own geographical region
	If payment is made in a currency other that USD, an exchange rate premium of 5 percent must be added
	An Australian zip code must be exactly four digits
	Reassigning an invoice to the Canadian affiliate can only be performed during East Coast business hours
	Each new invoice must be logged onto a separate file, if not originating from one of the five largest business clients

The core business rules we will be implementing in this chapter are far simpler:
	A user must be authenticated prior to accessing any resources
	Only a 3T administrator can maintain the 3T configuration
	Users may only update and add task logs for themselves

Service layer considerations

It is important to have clearly defined entry points for service layer operations. This will again be achieved through Java interfaces that define the operations exposed by the service layer. Clients of the service layer will interact with the business logic through these interfaces, not the implementing classes.
For similar reasons, it is important that the service layer itself is decoupled from the underlying DAO implementation. We have already achieved this by ensuring that our DAO layer exposes its persistence operations through interfaces. The service layer should know nothing about how the persistence layer is implemented and there should not be any persistence operations coded within the service layer classes.
Enterprise application clients come in many different forms, most commonly web browsers and web services. However, there may be other types of clients; for example, standalone servers using RMI. In all cases, the service layer must be as independent as possible of the client implementation. As such, the service layer should never incorporate presentation logic and should know nothing about how the data is used. The following diagram illustrates where the service layer sits in the overall application structure:
[image: Service layer considerations]
The service layer interacts with the data access layer via domain objects. There is a clear demarcation of roles with this design. The DAO layer is responsible for interacting with the database and the service layer has no knowledge of how this is done. Likewise, the DAO layer has no interest in how the domain objects are consumed. This is the role of the service layer where business logic controls decide what can and should be done with the domain objects.
A well-architected service layer should have a simple interface that allows any type of request handling layer to work with the underlying application business logic. If a list of Company entities are requested from the service layer, the exposed interface method that provides this functionality does not need to know whether the list is being used to render a web page, to execute a web service call, or to send an e-mail with an attached Excel spreadsheet. The request handling layer will be discussed in detail in the following chapter.

Building the service layer

The service layer classes and interfaces will follow the same naming conventions of our DAO layer, where Service simply replaces the Dao equivalent name:
[image: Building the service layer]
Our first definition will be for the Result class.
The Result Data Transfer Object

The service layer will communicate with the request handling tier through interfaces that return Result Data Transfer Objects (DTO). The DTO design pattern is commonly used in enterprise application programming to transfer data between different layers or subsystems. Our Result DTO will have the following three properties:
	boolean success: This property is used if the action was successful and an appropriate data payload is available
	String msg: This is a message that may be used by the client for logging or informational purposes
	<T> data: This is a generically typed data payload that will be consumed by the request handling layer

The Result class is also a Value Object (VO), an immutable object whose state cannot be changed after creation. Each instance variable is marked final and we will use an appropriate ResultFactory method to create the value object instance. Value objects are a concept used in Domain-Driven Design to represent data without any conceptual identity. You can find out more about Domain-Driven Design at http://en.wikipedia.org/wiki/Domain-driven_design. The definition of the Result class follows:
package com.gieman.tttracker.vo;

import java.io.Serializable;
import java.util.List;
import java.util.Objects;

public class Result<T> implements Serializable {

 final private boolean success;
 final private T data;
 final private String msg;

 Result(boolean success, T data) {
 this.success = success;
 this.data = data;
 this.msg = null;
 }

 Result(boolean success, String msg) {
 this.success = success;
 this.data = null;
 this.msg = msg;
 }

 public boolean isSuccess() {
 return success;
 }

 public T getData() {
 return data;
 }

 public String getMsg() {
 return msg;
 }

 @Override
 public String toString() {

 StringBuilder sb = new StringBuilder("\"Result{\"");
 sb.append("success=").append(success);
 sb.append(", msg=").append(msg);

 sb.append(", data=");

 if(data == null){

 sb.append("null");

 } else if(data instanceof List){

 List castList = (List) data;
 if(castList.isEmpty()){

 sb.append("empty list");

 } else {
 Object firstItem = castList.get(0);

 sb.append("List of ").append(firstItem.getClass());
 }

 } else {
 sb.append(data.toString());
 }

 sb.append("}");

 return sb.toString();

 }

 @Override
 public int hashCode() {
 int hash = 7;
 hash = 89 * hash + (this.success ? 1 : 0);
 hash = 89 * hash + Objects.hashCode(this.data);
 return hash;
 }

 @Override
 public boolean equals(Object obj) {
 if (obj == null) {
 return false;
 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 final Result<?> other = (Result<?>) obj;
 if (this.success != other.success) {
 return false;
 }
 return Objects.deepEquals(this.data, other.data);
 }
}

You will notice that the Result constructors are package-private (cannot be created by classes outside of the package). The Result value object instantiation will be managed by the ResultFactory class:
package com.gieman.tttracker.vo;

public class ResultFactory {

 public static <T> Result<T> getSuccessResult(T data) {
 return new Result(true, data);
 }
 public static <T> Result<T> getSuccessResult(T data, String msg) {
 return new Result(true, msg);
 }

 public static <T> Result<T> getSuccessResultMsg(String msg) {
 return new Result(true, msg);
 }

 public static <T> Result<T> getFailResult(String msg) {
 return new Result(false, msg);
 }
}

The static utility methods will create and return Result instances configured for the appropriate purpose in our service layer.
In our design, a failure is considered to be a recoverable state of the application. Attempting to log in with an invalid username/password combination would be an example of a failed action. Not having permission to perform a delete would be another possible failure action. The client of the service layer can recover from such actions and present graceful messages to the user by examining the msg of the Result. An alternate design pattern for handling failures is through Java-checked exceptions; an exception is thrown when a failure is encountered. Implementing such a design pattern forces the client to catch the exception, determine the cause of the exception, and handle processing accordingly. We prefer our design for handling failures and recommend you to not use checked exceptions unless a truly exceptional situation has occurred. The resulting code is cleaner to read and we can avoid the overhead of working with exceptions.

The AbstractService.java class

All service layer implementations will extend the AbstractService class to provide common functionality. We will simply define a logger, @Autowire, the UserDao implementation, and add a convenience method for checking if a user is valid.
package com.gieman.tttracker.service;

import com.gieman.tttracker.dao.UserDao;
import com.gieman.tttracker.domain.User;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;

public abstract class AbstractService {

 final protected Logger logger = LoggerFactory.getLogger(this.getClass());

 @Autowired
 protected UserDao userDao;

 protected final String USER_INVALID = "Not a valid user";
 protected final String USER_NOT_ADMIN = "Not an admin user";

 protected boolean isValidUser(String username){

 User user = userDao.findByUsername(username);
 return user != null;
 }
}

As discussed in the previous chapter, Spring injects the container-managed bean with matching type for each of the @Autowired annotated fields. Each service layer implementation that extends the AbstractService class will hence have access to the UserDao instance.
Our service layer will implement very basic security to differentiate between normal users and administrator users. The admin_role column in the ttt_user table is used to identify if a user has administrator privileges. Enterprise applications will most likely have LDAP realms with appropriate roles configured for different user groups but the principle is the same; we need to be able to identify if a user is allowed to perform an action. The administrator role will be the only role on our 3T application and we will now add a helper method to the User class to identify whether the user is an administrator:
 public boolean isAdmin(){
 return adminRole == null ? false : adminRole.equals('Y');
 }

The service layer implementations will use this new method to test if the user is an administrator.

The service layer interfaces

The service layer interfaces define methods that will be exposed to clients. These methods define the core actions required by our 3T application. Each method has a String actionUsername argument to identify the user executing this request. The actionUsername can be used in the implementation for logging purposes or to ensure a valid user is requesting data. The definition of valid will depend on the action being performed. Each interface will use generic types to define the returned Result value object.
The CompanyService interface will return a data payload that is either a Company object (Result<Company>) or a list of Company objects (Result<List<Company>>). The definition of this interface follows:
package com.gieman.tttracker.service;

import java.util.List;
import com.gieman.tttracker.domain.Company;
import com.gieman.tttracker.vo.Result;

public interface CompanyService {

 public Result<Company> store(
 Integer idCompany,
 String companyName,
 String actionUsername);

 public Result<Company> remove(Integer idCompany, String actionUsername);
 public Result<Company> find(Integer idCompany, String actionUsername);
 public Result<List<Company>> findAll(String actionUsername);

}

Note we have defined a single store method that will be used to save data to persistent storage. The implementing method will decide if a persist or merge is required. In a similar way, we can define the remaining interfaces (package and import definitions have been removed).
public interface ProjectService {

 public Result<Project> store(
 Integer idProject,
 Integer idCompany,
 String projectName,
 String actionUsername);

 public Result<Project> remove(Integer idProject, String actionUsername);
 public Result<Project> find(Integer idProject, String actionUsername);
 public Result<List<Project>> findAll(String actionUsername);

}
public interface TaskService {

 public Result<Task> store(
 Integer idTask,
 Integer idProject,
 String taskName,
 String actionUsername);

 public Result<Task> remove(Integer idTask, String actionUsername);
 public Result<Task> find(Integer idTask, String actionUsername);
 public Result<List<Task>> findAll(String actionUsername);
}
public interface TaskLogService {

 public Result<TaskLog> store(
 Integer idTaskLog,
 Integer idTask,
 String username,
 String taskDescription,
 Date taskLogDate,
 int taskMinutes,
 String actionUsername);

 public Result<TaskLog> remove(Integer idTaskLog, String actionUsername);
 public Result<TaskLog> find(Integer idTaskLog, String actionUsername);
 public Result<List<TaskLog>> findByUser(String username, Date startDate, Date endDate, String actionUsername);
}
public interface UserService {
 public Result<User> store(
 String username,
 String firstName,
 String lastName,
 String email,
 String password,
 Character adminRole,
 String actionUsername);

 public Result<User> remove(String username, String actionUsername);
 public Result<User> find(String username, String
 actionUsername);
 public Result<List<User>> findAll(String actionUsername);
 public Result<User> findByUsernamePassword(String username, String password);
}

Implementing the service layer

Each interface defined previously will have an appropriate implementation. The implementing classes will follow our DAO naming conventions by adding Impl to the interface names resulting in CompanyServiceImpl, ProjectServiceImpl, TaskServiceImpl, TaskLogServiceImpl, and UserServiceImpl. We will define the CompanyServiceImpl, TaskServiceImpl, and TaskLogServiceImpl classes and leave the ProjectServiceImpl and UserServiceImpl as an exercise.
The service layer implementations will process business logic with one or more calls to the DAO layer, validating parameters, and confirming user authorization as required. The 3T application security is very simple as mentioned in the following list:
	A valid user is required for all actions. The actionUsername must represent a valid user in the database.
	Only an administrator can modify the Company, Project, or Task data.
	Only an administrator can modify or add users.

Our service layer implementation will use the isValidUser method in the AbstractService class to check if the user is valid.
Authentication, authorization, and security

Application security is a critical part of enterprise application development and it is important to understand the difference between authentication and authorization.
	Authentication verifies who you are. It involves verifying the username/password combination and is performed once during the initial login to the 3T application.
	Authorization verifies what you are allowed to do. 3T administrators are allowed to perform more actions than normal users.

A 3T user must have a valid record in the ttt_user table; the service layer will simply test if the provided username represents a valid user. The actual authorization of the user will be covered in the next chapter when we develop the request handling layer.
Securing an enterprise application is beyond the scope of this book but no discussion of this topic would be complete without mentioning Spring Security, an overview of which can be found at http://static.springframework.org/spring-security/site/index.html. Spring Security has become the de facto standard for securing Spring-based applications and an excellent book called Spring Security 3, by Packt Publishing, that covers all concepts can be found here at http://www.springsecuritybook.com. We recommend you learn more about Spring Security to understand the many different ways you can authenticate users and secure your service layer.

The CompanyService implementation

The CompanyServiceImpl class is defined as:
package com.gieman.tttracker.service;

import com.gieman.tttracker.dao.CompanyDao;
import java.util.List;
import com.gieman.tttracker.domain.*;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;
import com.gieman.tttracker.vo.Result;
import com.gieman.tttracker.vo.ResultFactory;
import org.springframework.beans.factory.annotation.Autowired;

@Transactional
@Service("companyService")
public class CompanyServiceImpl extends AbstractService implements CompanyService {

 @Autowired
 protected CompanyDao companyDao;

 public CompanyServiceImpl() {
 super();
 }

 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 @Override
 public Result<Company> find(Integer idCompany, String actionUsername) {

 if (isValidUser(actionUsername)) {
 Company company = companyDao.find(idCompany);
 return ResultFactory.getSuccessResult(company);

 } else {
 return ResultFactory.getFailResult(USER_INVALID);
 }
 }

 @Transactional(readOnly = false, propagation = Propagation.REQUIRED)
 @Override
 public Result<Company> store(
 Integer idCompany,
 String companyName,
 String actionUsername) {

 User actionUser = userDao.find(actionUsername);

 if (!actionUser.isAdmin()) {
 return ResultFactory.getFailResult(USER_NOT_ADMIN);
 }

 Company company;

 if (idCompany == null) {
 company = new Company();
 } else {

 company = companyDao.find(idCompany);

 if (company == null) {
 return ResultFactory.getFailResult("Unable to find company instance with ID=" + idCompany);
 }
 }

 company.setCompanyName(companyName);

 if (company.getId() == null) {
 companyDao.persist(company);
 } else {
 company = companyDao.merge(company);
 }

 return ResultFactory.getSuccessResult(company);

 }

 @Transactional(readOnly = false, propagation = Propagation.REQUIRED)
 @Override
 public Result<Company> remove(Integer idCompany, String actionUsername) {

 User actionUser = userDao.find(actionUsername);

 if (!actionUser.isAdmin()) {
 return ResultFactory.getFailResult(USER_NOT_ADMIN);
 }

 if (idCompany == null) {
 return ResultFactory.getFailResult("Unable to remove Company [null idCompany]");
 }

 Company company = companyDao.find(idCompany);

 if (company == null) {
 return ResultFactory.getFailResult("Unable to load Company for removal with idCompany=" + idCompany);
 } else {

 if (company.getProjects() == null || company.getProjects().isEmpty()) {

 companyDao.remove(company);

 String msg = "Company " + company.getCompanyName() + " was deleted by " + actionUsername;
 logger.info(msg);
 return ResultFactory.getSuccessResultMsg(msg);
 } else {
 return ResultFactory.getFailResult("Company has projects assigned and could not be deleted");
 }
 }

 }

 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 @Override
 public Result<List<Company>> findAll(String actionUsername) {

 if (isValidUser(actionUsername)) {
 return ResultFactory.getSuccessResult(companyDao.findAll());
 } else {
 return ResultFactory.getFailResult(USER_INVALID);
 }
 }
}

Each method returns a Result object that is created by the appropriate ResultFactory static method. Each method confirms the actionUsername method that identifies a valid user for the action. Methods that modify the Company entity require an administrative user (the store and remove methods). Other methods that retrieve data (the find* method) simply require a valid user; one that exists in the ttt_user table.
Note the reuse of the if(isValidUser(actionUsername)) and if(!actionUser.isAdmin()) code blocks in each method. This is not considered a good practice as this logic should be part of the security framework and not replicated on a per method basis. Using Spring Security, for example, you can apply security to a service layer bean by using annotations.
@Secured("ROLE_USER")
public Result<List<Company>> findAll(String actionUsername) {
// application specific code here

@Secured("ROLE_ADMIN")
public Result<Company> remove(Integer idCompany, String actionUsername) {
// application specific code here

The @Secured annotation is used to define a list of security configuration attributes that are applicable to the business methods. A user would then be linked to one or more roles by the security framework. Such a design pattern is less intrusive, easier to maintain, and easier to enhance.
Note
We once again recommend you learn more about Spring Security for use in real-world enterprise applications.

Any action that cannot be performed as expected is considered to have "failed". In this case, the ResultFactory.getFailResult method is called to create the failure Result object.
A few points to note:
	Each service layer class uses the @Service annotation to identify this as a Spring-managed bean. The Spring Framework will be configured to scan for this annotation using <context:component-scan base-package="com.gieman.tttracker.service"/> in the application context configuration file. Spring will then load the CompanyServiceImpl class into the bean container under the companyService name.
	The store method is used to both persist and merge a Company entity. The service layer client has no need to know if this will be an insert statement or an update statement. The appropriate action is selected in the store method based on the existence of the primary key.
	The remove method checks if the company has projects assigned. The business rule implemented will only allow a company deletion if there are no projects assigned and then check if company.getProjects().isEmpty() is true. If projects are assigned, the remove method fails.
	Transactional attributes depend on the action being implemented. If data is being modified, we use @Transactional(readOnly = false, propagation = Propagation.REQUIRED) to ensure a transaction is created if not already available. If data is not being modified in the method, we use @Transactional(readOnly = true, propagation = Propagation.SUPPORTS).

All service layer implementations will follow a similar pattern.

The TaskService implementation

The TaskServiceImpl class is defined as follows:
package com.gieman.tttracker.service;

import com.gieman.tttracker.dao.ProjectDao;
import com.gieman.tttracker.dao.TaskDao;
import com.gieman.tttracker.dao.TaskLogDao;
import java.util.List;
import com.gieman.tttracker.domain.*;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;
import com.gieman.tttracker.vo.Result;
import com.gieman.tttracker.vo.ResultFactory;
import org.springframework.beans.factory.annotation.Autowired;

@Transactional
@Service("taskService")
public class TaskServiceImpl extends AbstractService implements TaskService {

 @Autowired
 protected TaskDao taskDao;
 @Autowired
 protected TaskLogDao taskLogDao;
 @Autowired
 protected ProjectDao projectDao;

 public TaskServiceImpl() {
 super();
 }

 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 @Override
 public Result<Task> find(Integer idTask, String actionUsername) {

 if(isValidUser(actionUsername)) {
 return ResultFactory.getSuccessResult(taskDao.find(idTask));
 } else {
 return ResultFactory.getFailResult(USER_INVALID);
 }

 }

 @Transactional(readOnly = false, propagation = Propagation.REQUIRED)
 @Override
 public Result<Task> store(
 Integer idTask,
 Integer idProject,
 String taskName,
 String actionUsername) {

 User actionUser = userDao.find(actionUsername);

 if (!actionUser.isAdmin()) {
 return ResultFactory.getFailResult(USER_NOT_ADMIN);
 }

 Project project = projectDao.find(idProject);

 if(project == null){
 return ResultFactory.getFailResult("Unable to store task without a valid project [idProject=" + idProject + "]");
 }

 Task task;

 if (idTask == null) {

 task = new Task();
 task.setProject(project);
 project.getTasks().add(task);

 } else {

 task = taskDao.find(idTask);

 if(task == null) {

 return ResultFactory.getFailResult("Unable to find task instance with idTask=" + idTask);

 } else {

 if(! task.getProject().equals(project)){

 Project currentProject = task.getProject();
 // reassign to new project
 task.setProject(project);
 project.getTasks().add(task);
 // remove from previous project
 currentProject.getTasks().remove(task);
 }
 }
 }

 task.setTaskName(taskName);

 if(task.getId() == null) {
 taskDao.persist(task);
 } else {
 task = taskDao.merge(task);
 }

 return ResultFactory.getSuccessResult(task);
 }

 @Transactional(readOnly = false, propagation = Propagation.REQUIRED)
 @Override
 public Result<Task> remove(Integer idTask, String actionUsername){
 User actionUser = userDao.find(actionUsername);

 if (!actionUser.isAdmin()) {
 return ResultFactory.getFailResult(USER_NOT_ADMIN);
 }

 if(idTask == null){

 return ResultFactory.getFailResult("Unable to remove Task [null idTask]");

 } else {

 Task task = taskDao.find(idTask);
 long taskLogCount = taskLogDao.findTaskLogCountByTask(task);

 if(task == null) {

 return ResultFactory.getFailResult("Unable to load Task for removal with idTask=" + idTask);

 } else if(taskLogCount > 0) {

 return ResultFactory.getFailResult("Unable to remove Task with idTask=" + idTask + " as valid task logs are assigned");

 } else {

 Project project = task.getProject();

 taskDao.remove(task);

 project.getTasks().remove(task);

 String msg = "Task " + task.getTaskName() + " was deleted by " + actionUsername;
 logger.info(msg);
 return ResultFactory.getSuccessResultMsg(msg);
 }
 }
 }

 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 @Override
 public Result<List<Task>> findAll(String actionUsername){

 if(isValidUser(actionUsername)){
 return ResultFactory.getSuccessResult(taskDao.findAll());
 } else {
 return ResultFactory.getFailResult(USER_INVALID);
 }
 }
}

This class implements the following business rules:
	Removing a task is not allowed if task logs are assigned
	Only administrators can modify a task

Note that in the remove method we check if task logs are assigned to the task using the code:
long taskLogCount = taskLogDao.findTaskLogCountByTask (task);

The taskLogDao.findTaskLogCountByTask method uses the getSingleResult() method on the Query interface to return a long value as defined in the TaskLogDaoImpl. It would have been possible to code a method as follows to find the taskLogCount:
List<TaskLog> allTasks = taskLogDao.findByTask(task);
long taskLogCount = allTasks.size();

However this option would result in JPA loading all TaskLog entities assigned to the task into memory. This is not an efficient use of resources as there could be millions of TaskLog records in a large system.

The TaskLogService implementation

The TaskLogService implementation will be the final class we will go through in detail.
package com.gieman.tttracker.service;

import com.gieman.tttracker.dao.TaskDao;
import com.gieman.tttracker.dao.TaskLogDao;
import java.util.List;
import com.gieman.tttracker.domain.*;
import java.util.Date;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;
import com.gieman.tttracker.vo.Result;
import com.gieman.tttracker.vo.ResultFactory;
import org.springframework.beans.factory.annotation.Autowired;

@Transactional
@Service("taskLogService")
public class TaskLogServiceImpl extends AbstractService implements TaskLogService {

 @Autowired
 protected TaskLogDao taskLogDao;
 @Autowired
 protected TaskDao taskDao;

 public TaskLogServiceImpl() {
 super();
 }

 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 @Override
 public Result<TaskLog> find(Integer idTaskLog, String actionUsername) {

 User actionUser = userDao.find(actionUsername);

 if(actionUser == null) {
 return ResultFactory.getFailResult(USER_INVALID);
 }

 TaskLog taskLog = taskLogDao.find(idTaskLog);

 if(taskLog == null){
 return ResultFactory.getFailResult("Task log not found with idTaskLog=" + idTaskLog);
 } else if(actionUser.isAdmin() || taskLog.getUser().equals(actionUser)){
 return ResultFactory.getSuccessResult(taskLog);
 } else {
 return ResultFactory.getFailResult("User does not have permission to view this task log");
 }
 }

 @Transactional(readOnly = false, propagation = Propagation.REQUIRED)
 @Override
 public Result<TaskLog> store(
 Integer idTaskLog,
 Integer idTask,
 String username,
 String taskDescription,
 Date taskLogDate,
 int taskMinutes,
 String actionUsername) {

 User actionUser = userDao.find(actionUsername);
 User taskUser = userDao.find(username);

 if(actionUser == null || taskUser == null) {
 return ResultFactory.getFailResult(USER_INVALID);
 }

 Task task = taskDao.find(idTask); 
 if(task == null) {
 return ResultFactory.getFailResult("Unable to store task log with null task");
 }

 if(!actionUser.isAdmin() && ! taskUser.equals(actionUser)){
 return ResultFactory.getFailResult("User performing save must be an admin user or saving their own record");
 }

 TaskLog taskLog;

 if (idTaskLog == null) {
 taskLog = new TaskLog();
 } else {
 taskLog = taskLogDao.find(idTaskLog);
 if(taskLog == null) {
 return ResultFactory.getFailResult("Unable to find taskLog instance with ID=" + idTaskLog);
 }
 }

 taskLog.setTaskDescription(taskDescription);
 taskLog.setTaskLogDate(taskLogDate);
 taskLog.setTaskMinutes(taskMinutes);
 taskLog.setTask(task);
 taskLog.setUser(taskUser);

 if(taskLog.getId() == null) {
 taskLogDao.persist(taskLog);
 } else {
 taskLog = taskLogDao.merge(taskLog);
 }

 return ResultFactory.getSuccessResult(taskLog);

 }

 @Transactional(readOnly = false, propagation = Propagation.REQUIRED)
 @Override
 public Result<TaskLog> remove(Integer idTaskLog, String actionUsername){

 User actionUser = userDao.find(actionUsername);

 if(actionUser == null) {
 return ResultFactory.getFailResult(USER_INVALID);
 }

 if(idTaskLog == null){
 return ResultFactory.getFailResult("Unable to remove TaskLog [null idTaskLog]");
 }

 TaskLog taskLog = taskLogDao.find(idTaskLog);

 if(taskLog == null) {
 return ResultFactory.getFailResult("Unable to load TaskLog for removal with idTaskLog=" + idTaskLog);
 }

 // only the user that owns the task log may remove it
 // OR an admin user
 if(actionUser.isAdmin() || taskLog.getUser().equals(actionUser)){
 taskLogDao.remove(taskLog);
 return ResultFactory.getSuccessResultMsg("taskLog removed successfully");
 } else {
 return ResultFactory.getFailResult("Only an admin user or task log owner can delete a task log");
 }
 }

 @Transactional(readOnly = true, propagation = Propagation.SUPPORTS)
 @Override
 public Result<List<TaskLog>> findByUser(String username, Date startDate, Date endDate, String actionUsername){

 User taskUser = userDao.findByUsername(username);
 User actionUser = userDao.find(actionUsername);

 if(taskUser == null || actionUser == null) {
 return ResultFactory.getFailResult(USER_INVALID);
 }

 if(startDate == null || endDate == null){
 return ResultFactory.getFailResult("Start and end date are required for findByUser ");
 }

 if(actionUser.isAdmin() || taskUser.equals(actionUser)){
 return ResultFactory.getSuccessResult(taskLogDao.findByUser(taskUser, startDate, endDate));
 } else {
 return ResultFactory.getFailResult("Unable to find task logs. User does not have permission with username=" + username);
 }
 }
}

Once again there is a lot of business logic in this class. The main business rules implemented are:
	Only the owner of the TaskLog or an administrator can find a task log
	An administrator can add a task log for any other user
	A normal user can only add a task log for themselves
	Only the owner of a task log or an administrator can remove a task log
	A normal user can only retrieve their own task logs
	An administrator can retrieve anyone's task logs
	The findByUser method requires a valid start and end date

We leave the remaining service layer classes (UserServiceImpl and ProjectServiceImpl) for you to implement as exercises.
It is now time to configure the testing environment for our service layer.

Testing the service layer

Service layer testing is a critical part of the enterprise application development. As mentioned previously, the service layer encapsulates the business rules that define the working application and is where a significant amount of development time is spent. Business logic evolves as the application is enhanced, new modules are added, and business rules change. The test cases for the service layer will therefore represent the evolution of the application. Well-documented test cases will enhance the knowledge base of the application lifecycle, define changes, and explain the purpose of the change. The service layer test cases will become a repository of information appreciated by all developers working on the project.
The only change required to enable service layer testing is to add the following to the testingContext.xml file defined in the previous chapter:
<context:component-scan base-package="com.gieman.tttracker.service" />

Test case classes added to the directory src/test/java/com/gieman/tttracker/service will then be available for testing. We will add the following classes to the service package:
[image: Testing the service layer]
The AbstractServiceForTesting superclass will once again extend AbstractTransactionalJUnit4SpringContextTests, define the @ContextConfiguration configuration file, and override the default Spring logger with the slf4j logger.
package com.gieman.tttracker.service;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.AbstractTransactionalJUnit4SpringContextTests;

@ContextConfiguration("/testingContext.xml")
public abstract class AbstractServiceForTesting extends AbstractTransactionalJUnit4SpringContextTests {

 final protected Logger logger = LoggerFactory.getLogger(this.getClass());

}
The CompanyServiceTest class is defined as:
package com.gieman.tttracker.service;

import com.gieman.tttracker.dao.ProjectDao;
import com.gieman.tttracker.domain.Company;
import com.gieman.tttracker.domain.Project;
import com.gieman.tttracker.vo.Result;
import java.util.List;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
import org.springframework.beans.factory.annotation.Autowired;

public class CompanyServiceTest extends AbstractServiceForTesting {

 protected final String TEST_USERNAME = "bjones";
 @Autowired
 protected CompanyService companyService;
 @Autowired
 protected ProjectDao projectDao;

 @Test
 public void testFind() throws Exception {

 logger.debug("\nSTARTED testFind()\n");
 Result<List<Company>> allItems = companyService.findAll(TEST_USERNAME);

 assertTrue(allItems.getData().size() > 0);

 // get the first item in the list
 Company c1 = allItems.getData().get(0);

 int id = c1.getId();

 Result<Company> c2= companyService.find(id, TEST_USERNAME);

 assertTrue(c1.equals(c2.getData()));
 logger.debug("\nFINISHED testFind()\n");
 }

 @Test
 public void testFindAll() throws Exception {

 logger.debug("\nSTARTED testFindAll()\n");
 int rowCount = countRowsInTable("ttt_company");

 if(rowCount > 0){

 Result<List<Company>> allItems = companyService.findAll(TEST_USERNAME);
 assertTrue("Company.findAll list not equal to row count of table ttt_company", rowCount == allItems.getData().size());

 } else {
 throw new IllegalStateException("INVALID TESTING SCENARIO: Company table is empty");
 }
 logger.debug("\nFINISHED testFindAll()\n");
 }

 @Test
 public void testAddNew() throws Exception {

 logger.debug("\nSTARTED testAddNew()\n");
 //Company c = new Company();
 final String NEW_NAME = "New Test Company name";
 //c.setCompanyName(NEW_NAME);

 Result<Company> c2 = companyService.store(null, NEW_NAME, TEST_USERNAME);

 assertTrue(c2.getData().getId() != null);
 assertTrue(c2.getData().getCompanyName().equals(NEW_NAME));

 logger.debug("\nFINISHED testAddNew()\n");
 }

 @Test
 public void testUpdate() throws Exception {

 logger.debug("\nSTARTED testUpdate()\n");
 final String NEW_NAME = "Update Test Company New Name";

 Result<List<Company>> ar1 = companyService.findAll(TEST_USERNAME);
 Company c = ar1.getData().get(0);

 companyService.store(c.getIdCompany(), NEW_NAME, TEST_USERNAME);

 Result<Company> ar2 = companyService.find(c.getIdCompany(), TEST_USERNAME);

 assertTrue(ar2.getData().getCompanyName().equals(NEW_NAME));

 logger.debug("\nFINISHED testMerge()\n");

 }

 @Test
 public void testRemove() throws Exception {

 logger.debug("\nSTARTED testRemove()\n");
 Result<List<Company>> ar1 = companyService.findAll(TEST_USERNAME);
 Company c = ar1.getData().get(0);

 Result<Company> ar = companyService.remove(c.getIdCompany(), TEST_USERNAME);
 Result<Company> ar2 = companyService.find(c.getIdCompany(), TEST_USERNAME);

 // should fail as projects are assigned
 assertTrue(! ar.isSuccess());
 // finder still works
 assertTrue(ar2.getData() != null);

 logger.debug("\ntestRemove() - UNABLE TO DELETE TESTS PASSED\n");
 // remove all the projects
 c = ar2.getData();

 for(Project p : c.getProjects()){
 projectDao.remove(p);

 }
 c.getProjects().clear();

 logger.debug("\ntestRemove() - removed all projects\n");

 ar = companyService.remove(c.getIdCompany(), TEST_USERNAME);
 // remove should have succeeded
 assertTrue(ar.isSuccess());

 ar2 = companyService.find(c.getIdCompany(), TEST_USERNAME);
 // should not have been found
 assertTrue(ar2.getData() == null);
 assertTrue(ar2.isSuccess());

 logger.debug("\nFINISHED testRemove()\n");
 }
}

Running this test case by right-clicking on the file in the editor and selecting the Test File option should result in the following output:
[image: Testing the service layer]
The UserServiceTest class is defined as:
package com.gieman.tttracker.service;

import com.gieman.tttracker.dao.TaskLogDao;
import com.gieman.tttracker.dao.UserDao;
import com.gieman.tttracker.domain.TaskLog;
import com.gieman.tttracker.domain.User;
import com.gieman.tttracker.vo.Result;
import java.util.Calendar;
import java.util.List;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
import org.springframework.beans.factory.annotation.Autowired;

public class UserServiceTest extends AbstractServiceForTesting {

 @Autowired
 protected UserService userService;
 @Autowired
 protected TaskLogDao taskLogDao;
 @Autowired
 protected UserDao userDao;
 private final String TEST_USERNAME = "jsmith";

 @Test
 public void testAddNew() throws Exception {

 String ADMIN_USERNAME = "bjones";

 logger.debug("\nSTARTED testAddNew()\n");

 Result<User> ar = userService.store("nusername", "David", "Francis", "df@tttracker.com", "admpwd", 'N', ADMIN_USERNAME);

 // should succeed
 logger.debug(ar.getMsg());
 assertTrue(ar.isSuccess());

 ar = userService.store(this.TEST_USERNAME, "David", "Francis", "df@tttracker.com", "admpwd", 'Y', ADMIN_USERNAME);
 logger.debug(ar.getMsg());
 assertTrue("Cannot assign email that is currently assigned to other user", !ar.isSuccess());

 ar = userService.store("user100", "David", "Francis", "user100@tttracker.com", "", 'Y', ADMIN_USERNAME);

 logger.debug(ar.getMsg());
 assertTrue("Cannot set empty password for user", !ar.isSuccess());

 ar = userService.store("user101", "David", "Francis", " ", "validpwd", 'Y', ADMIN_USERNAME);

 logger.debug(ar.getMsg());
 assertTrue("Cannot set empty email for user", !ar.isSuccess());

 ar = userService.store(this.TEST_USERNAME, "David", "Francis", "diff@email.com", "validpwd", 'Y', ADMIN_USERNAME);

 logger.debug(ar.getMsg());
 assertTrue("Assigning new email to user is allowed", ar.isSuccess());

 logger.debug("\nFINISHED testAddNew()\n");
 }

 @Test
 public void testRemove() throws Exception {

 String ADMIN_USERNAME = "bjones";
 Calendar DEFAULT_START_DATE = Calendar.getInstance();
 Calendar DEFAULT_END_DATE = Calendar.getInstance();
 DEFAULT_START_DATE.set(Calendar.YEAR, 1900);
 DEFAULT_END_DATE.set(Calendar.YEAR, 3000);

 logger.debug("\nSTARTED testRemove()\n");

 User user1 = userDao.find(TEST_USERNAME);

 List<TaskLog> logs = taskLogDao.findByUser(user1, DEFAULT_START_DATE.getTime(), DEFAULT_END_DATE.getTime());
 Result<User> ar;

 if (logs.isEmpty()) {

 ar = userService.remove(TEST_USERNAME, ADMIN_USERNAME);
 logger.debug(ar.getMsg());
 assertTrue("Delete of user should be allowed as no task logs assigned!", ar.isSuccess());

 } else {

 // this user has task log assigned
 ar = userService.remove(TEST_USERNAME, ADMIN_USERNAME);
 logger.debug(ar.getMsg());
 assertTrue("Cascading delete of user to task logs not allowed!", !ar.isSuccess());

 }

 logs = taskLogDao.findByUser(user1, DEFAULT_START_DATE.getTime(), DEFAULT_END_DATE.getTime());
 if (logs.isEmpty()) {

 ar = userService.remove(TEST_USERNAME, ADMIN_USERNAME);
 logger.debug(ar.getMsg());
 assertTrue("Delete of user should be allowed as empty task log list!", ar.isSuccess());

 } else {

 // this user has task log assigned
 ar = userService.remove(TEST_USERNAME, ADMIN_USERNAME);
 logger.debug(ar.getMsg());
 assertTrue("Cascading delete of user to task logs not allowed!", !ar.isSuccess());

 }

 ar = userService.remove(ADMIN_USERNAME, ADMIN_USERNAME);
 logger.debug(ar.getMsg());
 assertTrue("Should not be able to delete yourself", !ar.isSuccess());

 logger.debug("\nFINISHED testRemove()\n");
 }

 @Test
 public void testLogon() {

 Result<User> ar = userService.findByUsernamePassword("jsmith", "admin");

 assertTrue("Valid user could not be found for valid user/pwd", ar.getData() != null);
 assertTrue(ar.isSuccess());

 ar = userService.findByUsernamePassword("jsmith", "ADMIN");

 assertTrue("Invalid logic - valid user found with UPPERCASE password", ar.getData() == null);
 assertTrue(!ar.isSuccess());

 ar = userService.findByUsernamePassword("JS@tttracker.com", "admin");

 assertTrue("Valid user could not be found for valid email/pwd", ar.getData() != null);
 assertTrue(ar.isSuccess());

 ar = userService.findByUsernamePassword("jsmith", "invalidadmin");
 assertTrue("Invalid user verified with wrong password", ar.getData() == null);
 assertTrue(!ar.isSuccess());

 ar = userService.findByUsernamePassword("blah", "blah");
 assertTrue("Invalid user verified with wrong username and password", ar.getData() == null);
 assertTrue(!ar.isSuccess());
 }
}

Note we have not yet defined the implementation of the UserService interface but we have already written test cases. Thanks to the use of Java interfaces, we are able to define test cases before the implementation has been coded. This is one of the key concepts of Test-driven Development (TDD), where developers write test cases that define the desired behavior before writing the actual code that passes the tests. This strategy is also part of the test-first programming concept of Extreme Programming (http://en.wikipedia.org/wiki/Extreme_programming), where test cases are written before the implementation coding starts.
Executing the UserServiceTest test file when the UserServiceImpl has been coded should result in the following output:
[image: Testing the service layer]

Automating the service layer tests

Updating the pom.xml as follows will include the service layer test cases during the Maven build process:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.14.1</version>
 <configuration>
 <skipTests>false</skipTests>
 <includes>
 <include>**/dao/*Test.java</include>
 <include>**/service/*Test.java</include>
 </includes>
 <argLine>-javaagent:target/lib/spring-instrument-${spring.version}.jar</argLine>
 </configuration>
</plugin>

Selecting Run | Test Project from the NetBeans menu will then execute all test cases from both the dao and service packages, resulting in the following output:
[image: Automating the service layer tests]
We leave it to you to add test cases for the remaining service layer implementations.

Exercises

Implement the ProjectServiceImpl and UserServiceImpl interfaces as required by their interface definitions. Business logic to consider when implementing the UserServiceImpl are as follows:
	Only an admin user may modify data
	The email address may not be empty
	The password may not be zero length
	The adminRole flag must be either Y or N
	Users are not allowed to delete themselves
	Users cannot be deleted if they have task logs assigned

Confirm your UserServiceImpl implementation by executing the UserServiceTest test case.

Summary

The service layer is the most valuable asset an enterprise application possesses. It is the core of all business logic processing and is the layer that holds the most detailed code. Our service layer has no coupling with the DAO implementation and is independent of how the data is used. It is purely focused on business logic operations, delivering data through a simple, generically typed value object using the data transfer object design pattern.
Our service layer implementation has clearly defined entry points for business logic operations. This is achieved through Java interfaces that define all publicly accessible methods. The use of interfaces also enables us to write test cases prior to coding the implementations—a core principle of test-driven development and extreme programming. In the following chapter, we will use these interfaces to define a request handling layer for web clients.

Chapter 7. The Web Request Handling Layer

The request handling layer is the glue that binds the HTTP client to the services provided by your application. It is the interpretation of requests and the transfer of data that is the realm of this layer. Our focus will be on the data that is consumed and submitted by Ext JS 4 clients. This data is in JSON format and we will hence discuss JSON parsing and generation using the Java API for JSON Processing. It is important to note, however, that any type of data can be exposed by an appropriate request handling implementation. It is just as easy to implement an RMI or RESTful interface, if required.
A brief history of Web MVC

It may seem strange to discuss the Model-View-Controller (MVC) paradigm in a historical context, as a majority of web applications still use this technology today. The MVC design pattern first came to prominence in the early 2000's with the open source Struts framework. This framework encouraged the use of MVC architecture to promote a clear demarcation of responsibilities when processing and serving requests. The MVC paradigm for server-side Java development has been around ever since in a variety of formats, culminating in the well-designed and powerful Spring MVC framework.
The rationale for using an MVC approach is quite simple. The web layer implementing interactions between the clients and the application can be divided into the following three different kinds of objects:
	Model objects that represent the data
	View objects that have the responsibility of displaying the data
	Controller objects that respond to actions and provide model data for the view object to process

Each MVC object would behave independently with loose coupling. For example, the view technology was of no concern to the controller. It did not matter if the view was generated by a FreeMarker template, an XSLT transformation, or a combination of Tiles and JSPs. The controller would simply pass on the responsibility to the view object to process the model data.
One important point to note in this historical discussion is that all of the MVC processing was performed on the server. With the rise in the number of JavaScript frameworks, in particular for Ext JS 4, the MVC paradigm has been moved from the server to the client browser. This is a fundamental change to how web applications are being developed and is the very reason that you are reading this book!

Request handling for enterprise web applications

The following diagram clearly identifies where the request handling layer resides in the overall application architecture:
[image: Request handling for enterprise web applications]
The request handling layer accepts client requests and forwards the respective action to the appropriate service layer method. The returned DTO (or Value Object as it is also known in Domain-Driven Design) is examined and an appropriate response is then sent to the client. Unlike the historical server-side MVC programming, the request handling layer has no knowledge of presentation and simply acts as a request-processing interface to the application.

Building the request handling layer

The web request handling layer for Ext JS 4 clients is a JSON-generating proxy to the service layer interfaces. The domain entities are converted into JSON representations within this layer; so our first step is to create some helper code to make this task easier.
There are several excellent open source JSON generation projects that can assist in this task including Jackson (http://jackson.codehaus.org) and Google Gson (http://code.google.com/p/google-gson/). Such libraries parse POJOs into an appropriate JSON representation via their declared fields. With the release of Java EE 7, we no longer have a need for third-party libraries. The Java API for JSON Processing (JSR-353) is available in all Java EE 7-compliant application servers including GlassFish 4. We will leverage this API for generating and parsing JSON data.
Note
If you are unable to use a Java EE 7 application server, you will need to select an alternate JSON-generating strategy, such as Jackson or Google Gson.

Preparing for JSON generation

Our first addition is a new domain interface:
package com.gieman.tttracker.domain;

import javax.json.JsonObject;
import javax.json.JsonObjectBuilder;

public interface JsonItem{

 public JsonObject toJson();
 public void addJson(JsonObjectBuilder builder);

}

This very simple interface defines two methods to help with JSON generation. The toJson method creates a JsonObject that represents the entity. The addJson method adds the entity properties to a JsonObjectBuilder interface. We will see how these two methods are used very soon.
Each of our domain entities will need to implement the JsonItem interface, and this can be achieved by simply adding the interface to the abstract superclass of all the domain entities:
package com.gieman.tttracker.domain;

import java.io.Serializable;
import java.text.SimpleDateFormat;
import javax.json.Json;
import javax.json.JsonObject;
import javax.json.JsonObjectBuilder;
public abstract class AbstractEntity implements JsonItem, Serializable{

 @Override
 public JsonObject toJson() {

 JsonObjectBuilder builder = Json.createObjectBuilder();
 addJson(builder);
 return builder.build();
 }

}

The JsonObjectBuilder interface defines a set of methods that add the name/value pairs to the JSON object associated with the builder. The builder instance adds the fields defined in the descendent classes that implement the addJson method. We will start with the Company object.
Implementing the Company addJson method

The addJson method that needs to be added to the Company class is as follows:
@Override
public void addJson(JsonObjectBuilder builder) {
 builder.add("idCompany", idCompany)
 .add("companyName", companyName);
}

The JsonObject representation of the Company instance is created by calling the builder.build() method in the superclass. The generated JsonObject can then be written by a JsonWriter instance to an output source.

Implementing the Project addJson method

The addJson method that needs to be added to the Project class is as follows:
@Override
public void addJson(JsonObjectBuilder builder) {

 builder.add("idProject", idProject)
 .add("projectName", projectName);

 if(company != null){
 company.addJson(builder);
 }
}

Note that it is always a good practice to perform null object tests before accessing the object methods. It is possible to create a project object without a company instance and hence we perform the company != null test prior to adding the company JSON properties to the project builder instance. We could have used the following code to add the company properties to the project builder instance directly:
builder.add("idProject", idProject)
 .add("projectName", projectName)
.add("idCompany", company.getIdCompany())
 .add("companyName", company.getCompanyName());

However, we would now have replicated the builder.add("idCompany"…) code across two classes (Company.addJson and Project.addJson), thus making the future maintenance prone to errors. Changing the JSON property name from idCompany to companyId, for example, would require the scanning of code to check for possible usage across all classes, not just the Company class. The creation of Company JSON should belong with the Company class as we have implemented.

Implementing the Task addJson method

This Task class will implement the addJson method as follows:
@Override
public void addJson(JsonObjectBuilder builder) {

 builder .add("idTask", idTask)
 .add("taskName", taskName);

 if(project != null){
 project.addJson(builder);

 Company company = project.getCompany();
 company.addJson(builder);
 }
}

Note once again how we chain the call to addJson for both the project and company classes to add their JSON properties to the task's builder instance.

Implementing the User addJson method

The User.addJson method is defined as follows:
@Override
public void addJson(JsonObjectBuilder builder) {

 builder.add("username", username)
 .add("firstName", firstName)
 .add("lastName", lastName)
 .add("email", email)
 .add("adminRole", adminRole + "")
 .add("fullName", firstName + " " + lastName);
}

The fullName property is for convenience only; we can just as easily create a fullName field that concatenates the firstName and lastName fields in our Ext JS code. However, keeping this code at the source of the JSON generation allows for easier maintenance. Consider the business change request "add a middleName field to the User entity". The fullName inclusion of the new middleName field is then a trivial exercise and would be available to the Ext JS client without any further changes.

Implementing the TaskLog addJson method

The addJson method adds all of the TaskLog fields to the builder instance. The DATE_FORMAT_yyyyMMdd constant is used to format the taskLogDate to an 8-digit representation of the year/month/day and is added to the TaskLog class as follows:
static final SimpleDateFormat DATE_FORMAT_yyyyMMdd = new SimpleDateFormat("yyyyMMdd");

The addJson method will use the SimpleDateFormat instance to format the taskLogDate field:
public void addJson(JsonObjectBuilder builder) {

 builder.add("idTaskLog", idTaskLog)
 .add("taskDescription", taskDescription)
 .add("taskLogDate", taskLogDate == null ? "" : DATE_FORMAT_yyyyMMdd.format(taskLogDate))
 .add("taskMinutes", taskMinutes);

 if (user != null) {
 user.addJson(builder);
 }
 if (task != null) {
 task.addJson(builder);
 }
}

The taskLogDate field is being formatted in a way that cannot be misunderstood when converting to a JavaScript Date object in Ext JS clients. Without the use of the SimpleDateFormat instance, the builder instance would call the default toString method on the taskLogDate object to retrieve the String representation, resulting in an output similar to the following:
Wed Aug 14 00:00:00 EST 2013

Using the SimpleDateFormat instance configured with a date pattern of yyyyMMdd will ensure that such a date is formatted to 20130814.
Note
Date formatting in enterprise applications can cause many issues if not approached with a standard strategy. This is even more applicable when we are developing applications to be used worldwide, with multiple timezones and different languages. The dates should always be formatted in a way that can be interpreted in the same way regardless of language, timezone, and user preferences.

A note on JSON

We will be using JSON to transmit data between the GlassFish server and the Ext JS client. The transfer is bidirectional; the server will send the JSON data to the Ext JS client, and the Ext JS client will be sending the data in the JSON format back to the server. The server and client will consume and produce the JSON data.
There are no rules for structuring the JSON data as long as it conforms to the specifications (http://tools.ietf.org/html/rfc4627). Ext JS 4 models allow any form of valid JSON structure through the use of associations; our approach keeps the JSON structure to its simplest form. The previously defined addJson methods return simple, flat data structures without nesting or arrays. As an example, a task instance could be serialized into the following JSON object (formatting included for readability):
{
 success: true,
 data: {
 "idTask": 1,
 "taskName": "Write Chapter 7",
 "idProject": 1,
 "projectName": "My Book Project",
 "idCompany": 1,
 "companyName": "PACKT Publishing"
 }
}

The data payload represents the task object that will be consumed by the Ext JS 4 client. We could have defined the JSON representation of the task object as follows:
{
 success: true,
 data: {
 "idTask": 1,
 "taskName": "Write Chapter 7",
 "project": {
 "idProject": 1,
 "projectName": "My Book Project ",
 "company": {
 "idCompany": 1,
 "companyName": "PACKT Publishing"
 }
 }
 }
}

In this structure we see that the task instance belongs to a project, which in turn belongs to a company. Both these JSON representations are legal; they both contain the same task data in valid JSON format. However, which of these two will be easier to parse? Which will be easier to debug? As an enterprise application developer we should always keep the KISS principle in mind. The Keep It Simple, Stupid (KISS)principle states that most systems work best if they are kept simple and unnecessary complexities should be avoided.
Note
Keep your JSON simple! We know that complex structures are possible; this is achieved only through additional complexities when defining the Ext JS 4 models along with the associated data processing when reading or writing JSON data. A simple JSON structure is easier to understand and maintain.

Creating the request handlers

We will now build the handlers that are used to serve the HTTP requests from our Ext JS client. These handlers will be added to a new web directory, as shown in the following screenshot:
[image: Creating the request handlers]
Each handler will use the Spring Framework @Controller annotation to indicate that the class serves the role of a "controller". Strictly speaking, the handlers that we will be defining are not controllers in the traditional sense of a Spring MVC application. We will only be using a very small portion of the available Spring controller functionality to process requests. This will ensure that our request handling layer is very lightweight and easy to maintain. As always, we will start by creating a base class that all the handlers will implement.
Defining the AbstractHandler superclass

The AbstractHandler superclass defines several important methods that are used to simplify JSON generation. As we are working toward integration with Ext JS 4 clients, the structure of the JSON object generated by our handlers is specific to data structures expected by Ext JS 4 components. We will always generate a JSON object with a success property that holds a Boolean true or false value. Likewise, we will always generate a JSON object with a payload property named data. This data property will have a valid JSON object as its value, either as a simple JSON object or as a JSON array.
Note
Remember that all of the generated JSON objects will be in a format that can be consumed by Ext JS 4 components without the need for additional configuration.

The definition of the AbstractHandler class is as follows:
package com.gieman.tttracker.web;

import com.gieman.tttracker.domain.JsonItem;
import java.io.StringReader;
import java.io.StringWriter;
import java.util.List;
import javax.json.Json;
import javax.json.JsonArrayBuilder;
import javax.json.JsonNumber;
import javax.json.JsonObject;
import javax.json.JsonObjectBuilder;
import javax.json.JsonReader;
import javax.json.JsonValue;
import javax.json.JsonWriter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public abstract class AbstractHandler {

 protected final Logger logger = LoggerFactory.getLogger(this.getClass());

 public static String getJsonSuccessData(List<? extends JsonItem> results) {

 final JsonObjectBuilder builder = Json.createObjectBuilder();
 builder.add("success", true);
 final JsonArrayBuilder arrayBuilder = Json.createArrayBuilder();

 for (JsonItem ji : results) {

 arrayBuilder.add(ji.toJson());
 }

 builder.add("data", arrayBuilder);

 return toJsonString(builder.build());
 }

 public static String getJsonSuccessData(JsonItem jsonItem) {

 final JsonObjectBuilder builder = Json.createObjectBuilder();
 builder.add("success", true);
 builder.add("data", jsonItem.toJson());

 return toJsonString(builder.build());

 }

 public static String getJsonSuccessData(JsonItem jsonItem, int totalCount) {

 final JsonObjectBuilder builder = Json.createObjectBuilder();
 builder.add("success", true);
 builder.add("total", totalCount);
 builder.add("data", jsonItem.toJson());

 return toJsonString(builder.build());
 }

 public static String getJsonErrorMsg(String theErrorMessage) {

 return getJsonMsg(theErrorMessage, false);

 }

 public static String getJsonSuccessMsg(String msg) {

 return getJsonMsg(msg, true);
 }
 public static String getJsonMsg(String msg, boolean success) {

 final JsonObjectBuilder builder = Json.createObjectBuilder();
 builder.add("success", success);
 builder.add("msg", msg);

 return toJsonString(builder.build());

 }

 public static String toJsonString(JsonObject model) {

 final StringWriter stWriter = new StringWriter();

 try (JsonWriter jsonWriter = Json.createWriter(stWriter)) {
 jsonWriter.writeObject(model);
 }

 return stWriter.toString();
 }

 protected JsonObject parseJsonObject(String jsonString) {

 JsonReader reader = Json.createReader(new StringReader(jsonString));
 return reader.readObject();

 }
 protected Integer getIntegerValue(JsonValue jsonValue) {

 Integer value = null;

 switch (jsonValue.getValueType()) {

 case NUMBER:
 JsonNumber num = (JsonNumber) jsonValue;
 value = num.intValue();
 break;
 case NULL:
 break;
 }

 return value;
 }
}

The overloaded getJsonSuccessData methods will each generate a JSON string with the success property set to true and an appropriate data JSON payload. The getJsonXXXMsg variants will also generate a JSON String with an appropriate success property (either true for a successful action or false for a failed action) and an msg property that holds the appropriate message for consumption by the Ext JS component.
The parseJsonObject method will parse a JSON string into a JsonObject using the JsonReader instance. The toJsonString method will write a JsonObject to its JSON string representation using the JsonWriter instance. These classes are part of the Java EE 7 javax.json package, and they make working with JSON very easy.
The getIntegerValue method is used to parse a JsonValue object into an Integer type. A JsonValue object may be of several different types as defined by the javax.json.jsonValue.ValueType constants, and appropriate checks are performed on the value prior to attempting to parse the JsonValue object into an Integer. This will allow us to send JSON data from Ext JS clients in the following form:
{
 success: true,
 data: {
 "idCompany":null,
 "companyName": "New Company"
 }
}

Note that the idCompany property has a value of null. The getIntegerValue method allows us to parse integers that may be null, something that is not possible when using the default JsonObject.getInt(key) method (which throws an exception if a null value is encountered).
Let's now define our first handler class that will process user authentication.

Defining the SecurityHandler class

We first define a simple helper class that can be used to verify whether a user session is active:
package com.gieman.tttracker.web;

import com.gieman.tttracker.domain.User;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

public class SecurityHelper {
 static final String SESSION_ATTRIB_USER = "sessionuser";

 public static User getSessionUser(HttpServletRequest request) {
 User user = null;
 HttpSession session = request.getSession(true);
 Object obj = session.getAttribute(SESSION_ATTRIB_USER);

 if (obj != null && obj instanceof User) {
 user = (User) obj;
 }
 return user;
 }
}

The static constant SESSION_ATTRIB_USER will be used as the name of the session property that holds the authenticated user. All handler classes will call the SecurityHelper.getSessionUser method to retrieve the authenticated user from the session. A user session may time out due to inactivity, and the HTTP session will then be removed by the application server. When this happens, the SecurityHelper.getSessionUser method will return null, and the 3T application must handle this gracefully.
The SecurityHandler class is used to authenticate the user credentials. If a user is successfully authenticated, the user object is stored in the HTTP session using the SESSION_ATTRIB_USER attribute. It is also possible for the user to log out of the 3T application by clicking on the Log Out button. In this case the user is removed from the session.
The verification and logout functionalities are implemented as follows:
package com.gieman.tttracker.web;

import com.gieman.tttracker.domain.User;
import com.gieman.tttracker.service.UserService;
import com.gieman.tttracker.vo.Result;
import static com.gieman.tttracker.web.AbstractHandler.getJsonErrorMsg;
import static com.gieman.tttracker.web.SecurityHelper.SESSION_ATTRIB_USER;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.ResponseBody;

@Controller
@RequestMapping("/security")
public class SecurityHandler extends AbstractHandler {

 @Autowired
 protected UserService userService;

 @RequestMapping(value = "/logon", method = RequestMethod.POST, produces = {"application/json"})
 @ResponseBody
 public String logon(
 @RequestParam(value = "username", required = true) String username,
 @RequestParam(value = "password", required = true) String password,
 HttpServletRequest request) {

 Result<User> ar = userService.findByUsernamePassword(username, password);

 if (ar.isSuccess()) {
 User user = ar.getData();
 HttpSession session = request.getSession(true);
 session.setAttribute(SESSION_ATTRIB_USER, user);
 return getJsonSuccessData(user);
 } else {
 return getJsonErrorMsg(ar.getMsg());
 }
 }

 @RequestMapping(value = "/logout", produces = {"application/json"})
 @ResponseBody
 public String logout(HttpServletRequest request) {

 HttpSession session = request.getSession(true);
 session.removeAttribute(SESSION_ATTRIB_USER);
 return getJsonSuccessMsg("User logged out...");
 }
}

The
SecurityHandler class introduces many new Spring annotations and concepts that need to be explained in detail.
The @Controller and @RequestMapping annotations

The @Controller annotation indicates that this class serves the role of a Spring controller. The @Controller annotated classes are autodetected by Spring component scanning, the configuration of which is defined later in this chapter. But what exactly is a controller?
A Spring controller is part of the Spring MVC framework and usually acts with models and views to process requests. We have no need for either models or views; in fact, our processing lifecycle is managed entirely by the controller itself. Each controller is responsible for a URL mapping as defined in the class-level @RequestMapping annotation. This mapping maps a URL path to the controller. In our 3T application, any URL starting with /security/ will be directed to the SecurityHandler class for further processing. Any subpath will then be used to match a method-level @RequestMapping annotation. We have two methods defined, each with their own unique mapping. This results in the following URL path-to-method mappings:
	/security/logon will map to the logon method
	/security/logout will map to the logout method

Any other URL starting with /security/ will not match the defined methods and would produce a 404 error.
The name of the method is not important; it is the @RequestMapping annotation that defines the method used to serve a request.
There are two additional properties defined in the logon @RequestMapping annotation. The method=RequestMethod.POST property specifies that the logon request URL /security/logon must be submitted as a POST request. If any other request type was used for the /security/logon submission, a 404 error would be returned. Ext JS 4 stores and models using AJAX will submit POST requests by default. Actions that read data, however, will be submitted using a GET request unless configured otherwise. The other possible methods used in RESTful web services include PUT and DELETE, but we will only define the GET and POST requests in our application.
Note
It is considered a best practice to ensure that each @RequestMapping method has an appropriate RequestMethod defined. The actions that modify data should always be submitted using a POST request. The actions that hold sensitive data (for example, passwords) should also be submitted using a POST request to ensure that the data is not sent in a URL-encoded format. The read actions may be sent as either a GET or a POST request depending on your application needs.

The produces = {"application/json"} property defines the producible media types of the mapped request. All of our requests will produce JSON data that has the media type application/json. Each HTTP request submitted by a browser has an Accept header, such as:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

If the Accept request does not include the produces property media type, then the following 406 Not Acceptable error is returned by the GlassFish 4 server:
The resource identified by this request is only capable of generating responses with characteristics not acceptable according to the request "accept" headers.

All modern browsers will accept the application/json content type.

The @ResponseBody annotation

This annotation is used by Spring to identify the methods that should return the content directly to the HTTP response output stream (not placed in a model or interpreted as a view name, which is the default Spring MVC behavior). How this is achieved will depend on the return type of the method. All of our request handling methods will return Java Strings, and Spring will internally use a StringHttpMessageConverter instance to write the String to the HTTP response output stream with a Content-Type of value text/plain. This is a very easy way of returning JSON data object String to an HTTP client and thus makes request handling a trivial process.

The @RequestParam annotation

This annotation on a method argument maps a request parameter to the argument itself. In the logon method we have the following definition:
@RequestParam(value = "username", required = true) String username,
@RequestParam(value = "password", required = true) String password,

Assuming that the logon method was of the type GET (it is set to POST in the SecurityHandler class, and hence the following URL encoding would not work), a URL such as the following would call the method with a username value of bjones and a password value of admin:
/security/logon.json?username=bjones&password=admin
We could just as easily have written this method with the following definition:
@RequestParam(value = "user", required = true) String username,
@RequestParam(value = "pwd", required = true) String password,

This would then map a URL of the following form:
/security/logon.json?user=bjones&pwd=admin
Note that it is the value property of the @RequestParam annotation that maps to the request parameter name.
The required property of the @RequestParam annotation defines if this parameter is a required field. The following URL would result in an exception:
/security/logon.json?username=bjones
The password parameter is obviously missing, which does not adhere to the required=true definition.
Note that the required=true property only checks for the existence of a request parameter that matches the value of the @RequestParam annotation. It is entirely valid to have a request parameter that is empty. The following URL would not throw an exception:
/security/logon.json?username=bjones&password=
Optional parameters may be defined by using the required=false property and may also include a defaultValue. Consider the following method argument:
@RequestParam(value = "address", required = false, defaultValue = "Unknown address") String address

Also consider the following three URLs:
	/user/address.json?address=Melbourne
	/user/address.json?address=
	/user/address.json?

The first URL will result in an address value Melbourne, the second URL will have a null address, and the third URL will have an "unknown address". Note that the defaultValue will only be used if the request does not have a valid address parameter, and not if the address parameter is empty.

Authenticating a user

The logon method in our SecurityHandler class is very simple thanks to our implementation of the service-layer business logic. We call the userService.findByUsernamePassword(username, password) method and check the returned Result. If the Result is successful, the SecurityHandler.logon method will return a JSON representation of the authenticated user. This is achieved by the line getJsonSuccessData(user), which will result in the following output being written to the HTTP response:
{
 "success": true,
 "data": {
 "username": "bjones",
 "firstName": "Betty",
 "lastName": "Jones",
 "email": "bj@tttracker.com",
 "adminRole": "Y",
 "fullName": "Betty Jones"
 }
}

Note that the preceding formatting is for readability only. The actual response will be a stream of characters. The authenticated user is then added to the HTTP session with the attribute SESSION_ATTRIB_USER. We are then able to identify the authenticated user by calling SecurityHelper.getSessionUser(request) in our request handlers.
A Result instance that has failed will call the getJsonErrorMsg(ar.getMsg()) method, which will result in the following JSON object being returned in the HTTP response:
{
 "success": false,
 "msg": "Unable to verify user/password combination!"
}

The msg text is set on the Result instance in the UserServiceImpl.findByUsernamePassword method. The Ext JS frontend will process each result differently depending on the success property.

Logging out

The logic in this method is very simple: remove the user from the session and return a successful JSON message. The Ext JS frontend will then take an appropriate action. There is no RequestMethod defined in the @RequestMapping annotation as no data is being sent. This means that any RequestMethod may be used to map this URL (GET, POST, and so on). The JSON object returned from this method is as follows:
{
 "success": true,
 "msg": "User logged out..."
}

Defining the CompanyHandler class

This handler processes company actions and is mapped to the /company/ URL pattern.
package com.gieman.tttracker.web;

import com.gieman.tttracker.domain.*;
import com.gieman.tttracker.service.CompanyService;
import com.gieman.tttracker.service.ProjectService;

import com.gieman.tttracker.vo.Result;
import static com.gieman.tttracker.web.SecurityHelper.getSessionUser;

import java.util.List;
import javax.json.JsonObject;
import javax.servlet.http.HttpServletRequest;
import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RequestParam;

@Controller
@RequestMapping("/company")
public class CompanyHandler extends AbstractHandler {

 @Autowired
 protected CompanyService companyService;
 @Autowired
 protected ProjectService projectService;
 @RequestMapping(value = "/find", method = RequestMethod.GET, produces = {"application/json"})
 @ResponseBody
 public String find(
 @RequestParam(value = "idCompany", required = true) Integer idCompany,
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);
 if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
 }

 Result<Company> ar = companyService.find(idCompany, sessionUser.getUsername());

 if (ar.isSuccess()) {

 return getJsonSuccessData(ar.getData());

 } else {

 return getJsonErrorMsg(ar.getMsg());

 }
 }

 @RequestMapping(value = "/store", method = RequestMethod.POST, produces = {"application/json"})
 @ResponseBody
 public String store(
 @RequestParam(value = "data", required = true) String jsonData,
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);
 if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
 }

 JsonObject jsonObj = parseJsonObject(jsonData);

 Result<Company> ar = companyService.store(
 getIntegerValue(jsonObj.get("idCompany")),
 jsonObj.getString("companyName"),
 sessionUser.getUsername());

 if (ar.isSuccess()) {

 return getJsonSuccessData(ar.getData());

 } else {

 return getJsonErrorMsg(ar.getMsg());

 }
 }

 @RequestMapping(value = "/findAll", method = RequestMethod.GET, produces = {"application/json"})
 @ResponseBody
 public String findAll(HttpServletRequest request) {

 User sessionUser = getSessionUser(request);
 if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
 }

 Result<List<Company>> ar = companyService.findAll(sessionUser.getUsername());

 if (ar.isSuccess()) {

 return getJsonSuccessData(ar.getData());

 } else {

 return getJsonErrorMsg(ar.getMsg());

 }
 }

 @RequestMapping(value = "/remove", method = RequestMethod.POST, produces = {"application/json"})
 @ResponseBody
 public String remove(
 @RequestParam(value = "data", required = true) String jsonData,
 HttpServletRequest request) {
 User sessionUser = getSessionUser(request);
 if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
 }

 JsonObject jsonObj = parseJsonObject(jsonData);

 Result<Company> ar = companyService.remove(
 getIntegerValue(jsonObj.get("idCompany")),
 sessionUser.getUsername());

 if (ar.isSuccess()) {

 return getJsonSuccessMsg(ar.getMsg());

 } else {

 return getJsonErrorMsg(ar.getMsg());

 }
 }
}

Each method is mapped to a different sub URL as defined by the method-level @RequestMapping annotation. The CompanyHandler class will hence be mapped to the following URLs:
	/company/find will map it to the find method using a GET request
	/company/store will map it to the store method using a POST request
	/company/findAll will map it to the findAll method using a GET request
	/company/remove will map it to the remove method using a POST request

The following are a few things to note:
	Each handler method is defined with either a RequestMethod.POST or RequestMethod.GET. The GET method is used for finder methods, and the POST method is used for data-modifying methods. These method types are the defaults used by Ext JS for each action.
	Each method retrieves the user from the HTTP session by calling getSessionUser(request) and then tests if the user value is null. If the user is not in session, the message "User is not logged on" is returned in the JSON-encoded HTTP response.
	The POST methods have a single request parameter that holds the JSON data submitted by the Ext JS client. This JSON string is then parsed into a JsonObject before calling the appropriate service layer method using the required parameters.

A typical JSON data payload for adding a new company would look like the following:
{"idCompany":null,"companyName":"New Company"}

Note that the idCompany value is null. If you are modifying an existing company record, the JSON data payload must contain a valid idCompany value:
{"idCompany":5,"companyName":"Existing Company"}

Note also that the JSON data holds exactly one company record. It is possible to configure Ext JS clients to submit multiple records per request by submitting a JSON array similar to the following array:
[
 {"idCompany":5,"companyName":"Existing Company"},
 {"idCompany":4,"companyName":"Another Existing Company"}
]

However, we will restrict our logic to processing a single record per request.

Defining the ProjectHandler class

The ProjectHandler class processes the project actions and is mapped to the /project/ URL pattern as follows:
package com.gieman.tttracker.web;

import com.gieman.tttracker.domain.*;
import com.gieman.tttracker.service.ProjectService;
import com.gieman.tttracker.vo.Result;
import static com.gieman.tttracker.web.SecurityHelper.getSessionUser;

import java.util.List;
import javax.json.JsonObject;
import javax.servlet.http.HttpServletRequest;
import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RequestParam;

@Controller
@RequestMapping("/project")
public class ProjectHandler extends AbstractHandler {

 @Autowired
 protected ProjectService projectService;

 @RequestMapping(value = "/find", method = RequestMethod.GET, produces = {"application/json"})
 @ResponseBody
 public String find(
 @RequestParam(value = "idProject", required = true) Integer idProject,
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);
 if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
 }

 Result<Project> ar = projectService.find(idProject, sessionUser.getUsername());

 if (ar.isSuccess()) {
 return getJsonSuccessData(ar.getData());
 } else {
 return getJsonErrorMsg(ar.getMsg());
 }
 }

 @RequestMapping(value = "/store", method = RequestMethod.POST, produces = {"application/json"})
 @ResponseBody
 public String store(
 @RequestParam(value = "data", required = true) String jsonData,
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);
 if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
 }
 JsonObject jsonObj = parseJsonObject(jsonData);

 Result<Project> ar = projectService.store(
 getIntegerValue(jsonObj.get("idProject")),
 getIntegerValue(jsonObj.get("idCompany")),
 jsonObj.getString("projectName"),
 sessionUser.getUsername());

 if (ar.isSuccess()) {
 return getJsonSuccessData(ar.getData());
 } else {
 return getJsonErrorMsg(ar.getMsg());
 }
 }

 @RequestMapping(value = "/remove", method = RequestMethod.POST, produces = {"application/json"})
 @ResponseBody
 public String remove(
 @RequestParam(value = "data", required = true) String jsonData,
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);
 if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
 }

 JsonObject jsonObj = parseJsonObject(jsonData);

 Result<Project> ar = projectService.remove(
 getIntegerValue(jsonObj.get("idProject")),
 sessionUser.getUsername());

 if (ar.isSuccess()) {
 return getJsonSuccessMsg(ar.getMsg());
 } else {
 return getJsonErrorMsg(ar.getMsg());
 }
 }

 @RequestMapping(value = "/findAll", method = RequestMethod.GET, produces = {"application/json"})
 @ResponseBody
 public String findAll(
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);
 if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
 }

 Result<List<Project>> ar = projectService.findAll(sessionUser.getUsername());

 if (ar.isSuccess()) {
 return getJsonSuccessData(ar.getData());
 } else {
 return getJsonErrorMsg(ar.getMsg());
 }
 }
}

The ProjectHandler class will hence be mapped to the following URLs:
	/project/find will map to the find method using a GET request
	/project/store will map to the store method using a POST request
	/project/findAll will map to the findAll method using a GET request
	/project/remove will map to the remove method using a POST request

Note that in the store method, we are once again retrieving the required data from the parsed JsonObject. The structure of the JSON data payload when adding a new project is in the following format:
{"idProject":null,"projectName":"New Project","idCompany":1}

When updating an existing project, the JSON structure is as follows:
{"idProject":7,"projectName":"Existing Project with ID=7","idCompany":1}

You will also notice that we once again have the same block of code replicated in each method, as we did in the CompanyHandler class:
if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
}

Every method in each of the remaining handlers will also require the same check; a user must be in session to perform the action. This is precisely why we will simplify our code by introducing the concept of Spring request handler interceptors.

The Spring HandlerInterceptor interface

Spring's request handling mapping mechanism includes the ability to intercept requests by using handler interceptors. These interceptors are used to apply some type of functionality to the requests as in our example of checking whether a user is in session. The interceptors must implement the HandlerInterceptor interface from the org.springframework.web.servlet package where it is possible to apply the functionality in the following three ways:
	Before the handler method is executed by implementing the preHandle method
	After the handler method is executed by implementing the postHandle method
	After the complete request has finished execution by implementing the afterCompletion method

The HandlerInterceptorAdapter abstract class, along with the predefined empty implementations for each method, is normally used to implement custom handlers. Our UserInSessionInterceptor class is defined as follows:
package com.gieman.tttracker.web;

import com.gieman.tttracker.domain.User;
import static com.gieman.tttracker.web.SecurityHelper.getSessionUser;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.web.servlet.handler.HandlerInterceptorAdapter;

public class UserInSessionInterceptor extends HandlerInterceptorAdapter {

 private final Logger logger = LoggerFactory.getLogger(this.getClass());

 @Override
 public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler)
 throws Exception {

 logger.info("calling preHandle with url=" + request.getRequestURI());

 User sessionUser = getSessionUser(request);

 if (sessionUser == null) {
 String json = "{\"success\":false,\"msg\":\"A valid user is not logged on!\"}";
 response.getOutputStream().write(json.getBytes());
 return false;
 } else {
 return true;
 }
 }
}

When intercepting a request with the UserInSessionInterceptor, the code in the preHandle method checks if there is a user in session. If a sessionUser is found, the handler returns true to indicate that normal processing should continue. Normal processing may result in additional handler interceptors being called, if configured, before finally reaching the mapped handler method.
If a sessionUser is not found, a simple JSON string is immediately sent to the response output stream. The preHandle method then returns false to indicate that the interceptor has already dealt with the response and no further processing is required.
By applying the UserInSessionInterceptor to each request that requires the user session test, we can remove the following code from each handler method:
if (sessionUser == null) {
 return getJsonErrorMsg("User is not logged on");
}

How do we apply the interceptor to the appropriate handler methods? This is done when we customize the Spring MVC configuration.

The Spring MVC configuration

The Spring MVC framework can be configured with XML files or Java configuration classes. We will configure our application using Spring MVC configuration classes, the first being the WebAppConfig class:
package com.gieman.tttracker.web;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

@EnableWebMvc
@Configuration
@ComponentScan("com.gieman.tttracker.web")
public class WebAppConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(new UserInSessionInterceptor())
 .addPathPatterns(new String[]{
 "/**"
 }).excludePathPatterns("/security/**");
 }
}

The WebAppConfig class extends WebMvcConfigurerAdapter, which is a convenient base class that provides empty implementations for each of the WebMvcConfigurer interface methods. We override the addInterceptors method to register our UserInSessionInterceptor and define the handler mappings that will be used to apply the interceptor. The path pattern /** will intercept all the mappings from which we exclude the /security/** mappings. The security mappings should not include a user session check because the user has not yet been authenticated and will not be in session.
The @ComponentScan("com.gieman.tttracker.web") annotation will trigger a scan for @Controller annotated classes in the com.gieman.tttracker.web package. Our handler classes will then be identified and loaded by Spring. The @EnableWebMvc annotation identifies this class as a Spring web MVC configuration class. This annnotation results in Spring loading the required WebMvcConfigurationSupport configuration properties. The remaining @Configuration annotation identifies the class as a candidate for component scanning during Spring application startup. The WebAppConfig class is then automatically loaded for use in the Spring MVC container.
The WebAppConfig class configures the MVC environment; it is the WebApp class that configures the servlet container:
package com.gieman.tttracker.web;

import org.springframework.web.servlet.support.AbstractAnnotationConfigDispatcherServletInitializer;

public class WebApp extends AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected String[] getServletMappings() {
 return new String[]{
 "/ttt/*"
 };
 }

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class<?>[0];
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[]{WebAppConfig.class};
 }
}

The AbstractAnnotationConfigDispatcherServletInitializer class was introduced in Spring 3.2 as a base class for WebApplicationInitializer implementations. These implementations register a DispatcherServlet configured with annotated classes as defined in the WebAppConfig class (note how this class is returned in the getServletConfigClasses method).
The final configuration item of interest is the getServletMappings method, which maps incoming requests to the WebAppConfig set of handlers that are discovered via the @ComponentScan annotation. Every URL in our application that starts with /ttt/ will be directed to an appropriate request handler for processing. Some example URLs submitted from an Ext JS 4 client could include the following:
	/ttt/company/findAll.json will map to the CompanyHandler.findAll method
	/ttt/project/find.json?idProject=5 will map to the ProjectHandler.find method

Note that the /ttt/ prefix in the URL defines the entry point to our Spring MVC components. URLs that do not start with /ttt/ will not be handled by the Spring MVC container.
We will now implement one more handler to introduce data binding in Spring controllers.

Defining the TaskLogHandler class

The TaskLogHandler class processes the task log actions and is mapped to the /taskLog/ URL pattern:
package com.gieman.tttracker.web;

import com.gieman.tttracker.domain.*;
import com.gieman.tttracker.service.TaskLogService;
import com.gieman.tttracker.vo.Result;
import static com.gieman.tttracker.web.SecurityHelper.getSessionUser;
import java.text.ParseException;
import java.text.SimpleDateFormat;

import java.util.Date;
import java.util.List;
import javax.json.JsonObject;
import javax.servlet.http.HttpServletRequest;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.propertyeditors.CustomDateEditor;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.WebDataBinder;
import org.springframework.web.bind.annotation.InitBinder;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RequestParam;

@Controller
@RequestMapping("/taskLog")
public class TaskLogHandler extends AbstractHandler {

 static final SimpleDateFormat DATE_FORMAT_yyyyMMdd = new SimpleDateFormat("yyyyMMdd");

 @Autowired
 protected TaskLogService taskLogService;
 @InitBinder
 public void initBinder(WebDataBinder binder) {

 binder.registerCustomEditor(Date.class, new CustomDateEditor(DATE_FORMAT_yyyyMMdd, true));

 }

 @RequestMapping(value="/find", method = RequestMethod.GET, produces = {"application/json"})
 @ResponseBody
 public String find(
 @RequestParam(value = "idTaskLog", required = true) Integer idTaskLog,
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);

 Result<TaskLog> ar = taskLogService.find(idTaskLog, sessionUser.getUsername());

 if (ar.isSuccess()) {
 return getJsonSuccessData(ar.getData());
 } else {
 return getJsonErrorMsg(ar.getMsg());
 }
 }
 @RequestMapping(value = "/store", method = RequestMethod.POST, produces = {"application/json"})
 @ResponseBody
 public String store(
 @RequestParam(value = "data", required = true) String jsonData,
 HttpServletRequest request) throws ParseException {

 User sessionUser = getSessionUser(request);

 JsonObject jsonObj = parseJsonObject(jsonData);

 String dateVal = jsonObj.getString("taskLogDate");

 Result<TaskLog> ar = taskLogService.store(
 getIntegerValue(jsonObj.get("idTaskLog")),
 getIntegerValue(jsonObj.get("idTask")),
 jsonObj.getString("username"),
 jsonObj.getString("taskDescription"),
 DATE_FORMAT_yyyyMMdd.parse(dateVal),
 jsonObj.getInt("taskMinutes"),
 sessionUser.getUsername());

 if (ar.isSuccess()) {
 return getJsonSuccessData(ar.getData());
 } else {
 return getJsonErrorMsg(ar.getMsg());
 }
 }

 @RequestMapping(value = "/remove", method = RequestMethod.POST, produces = {"application/json"})
 @ResponseBody
 public String remove(
 @RequestParam(value = "data", required = true) String jsonData,
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);

 JsonObject jsonObj = parseJsonObject(jsonData);

 Result<TaskLog> ar = taskLogService.remove(
 getIntegerValue(jsonObj.get("idTaskLog")),
 sessionUser.getUsername());
 if (ar.isSuccess()) {
 return getJsonSuccessMsg(ar.getMsg());
 } else {
 return getJsonErrorMsg(ar.getMsg());
 }
 }

 @RequestMapping(value = "/findByUser", method = RequestMethod.GET, produces = {"application/json"})
 @ResponseBody
 public String findByUser(
 @RequestParam(value = "username", required = true) String username,
 @RequestParam(value = "startDate", required = true) Date startDate,
 @RequestParam(value = "endDate", required = true) Date endDate,
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);

 Result<List<TaskLog>> ar = taskLogService.findByUser(
 username,
 startDate,
 endDate,
 sessionUser.getUsername());

 if (ar.isSuccess()) {
 return getJsonSuccessData(ar.getData());
 } else {
 return getJsonErrorMsg(ar.getMsg());
 }
 }
 }

The TaskLogHandler class will, hence, be mapped to the following URLs:
	/taskLog/find will map to the find method using a GET request
	/taskLog/store will map to the store method using a POST request
	/taskLog/findByUser will map to the findByUser method using a GET request
	/taskLog/remove will map to the remove method using a POST request

We have also introduced a new annotation: the @InitBinder annotation.
The @InitBinder annotation

The @InitBinder annotation is used to mark a method as "data binding aware". The method initializes the WebDataBinder object with editors that are used to transform String parameters into their Java equivalent. The most common need for this transformation is in the case of dates.
A date can be represented in many different ways. All of the following dates are equivalent:
	06-Dec-2013
	6 Dec 2013
	06-12-2013 (UK date, short form)
	12-06-2013 (U.S. date, short form)
	06-Dez-2013 (German date)
	December 6, 2013

Sending date representations via HTTP requests can be confusing to say the least! We all understand what most of these dates represent, but how can we convert these dates into a java.util.Date object? This is where the @InitBinder method is used. The code to specify the required date format involves registering a CustomDateEditor constructor for the Date class:
binder.registerCustomEditor(Date.class, new CustomDateEditor(DATE_FORMAT_yyyyMMdd, true));

This will allow Spring to use the DATE_FORMAT_yyyyMMdd instance to parse the dates sent by clients in the yyyyMMdd format. The following URL will now be transformed correctly for the arguments required in the findByUser method:
/taskLog/findByUser?username=bjones&startDate=20130719&endDate=20130812
The true argument in the CustomDateEditor constructor ensures that empty dates are given the value null.

More on Spring MVC

Our handler methods and Spring MVC implementations use only a small portion of the Spring MVC framework. There will be scenarios that the real-world applications encounter that have not been covered in this chapter. These include requirements such as the following:
	URI template patterns to access portions of a URL through path variables. They are especially useful to simplify RESTful processing and allow the handler methods to access the variables in URL patterns. The company find method could then be mapped to a URL such as /company/find/5/, where 5 represents the idCompany value. This is achieved through the use of the @PathVariable annotations and mappings in the form of /company/find/{idCompany}.
	Using the @SessionAttrribute annotation to store data in the HTTP session between requests.
	Mapping cookie values with the @CookieValue annotation to allow a method parameter to be bound to the value of an HTTP cookie.
	Mapping request header attributes with the @RequestHeader annotation to allow a method parameter to be bound to a request header.
	Asynchronous request processing to allow the main servlet container thread to be released and allowed to process other requests.
	Integrating Spring MVC with Spring Security (highly recommended for enterprise applications).
	Parsing multipart requests to allow the users to upload files from HTML forms.

The testing of the handler classes using the Spring MVC Test framework should also be considered for enterprise Spring MVC applications. For more information, see the comprehensive guide at http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/testing.html#spring-mvc-test-framework. The framework provides JUnit support for testing the client- and server-side Spring MVC applications.
There is much more to the Spring MVC framework than can ever be covered in a single chapter. We recommend users find out more about Spring MVC capabilities from the excellent online resource at http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html.

Exercises

Implement the UserHandler and TaskHandler classes, mapping the requests to the following methods:
	/task/find will map to the TaskHandler.find method using a GET request
	/task/store will map to the TaskHandler.store method using a POST request
	/task/findAll will map to the TaskHandler.findAll method using a GET request
	/task/remove will map to the TaskHandler.remove method using a POST request
	/user/find will map to the UserHandler.find method using a GET request
	/user/store will map to the UserHandler.store method using a POST request
	/user/findAll will map to the UserHandler.findAll method using a GET request
	/user/remove will map to the UserHandler.remove method using a POST request

Summary

Our Java web interface is now complete—we have created a fully functional request handling layer that is optimized for Ext JS 4 clients. The HTTP client-accessible URLs are mapped to the request-handling classes through the @RequestMapping annotations at the class and method levels. Each handler method interacts with the service layer through well-defined interfaces and processes the Result data transfer objects before returning JSON data in the HTTP response. We have configured the Spring Web MVC container with Java configuration classes and implemented a Spring interceptor to check whether a user has been authenticated.
In Chapter 8, Running 3T on GlassFish, we will complete our Spring configuration and deploy the 3T application on the GlassFish 4 server. Each layer in our application stack will then be ready to play its part in serving the Ext JS 4 client requests.

Chapter 8. Running 3T on GlassFish

In this chapter we will deploy our 3T application on the GlassFish 4 server. A successful deployment will require several new configuration files as well as updates to existing files. You will already be familiar with some of these files from the testing configuration defined in Chapter 5, Testing the DAO Layer with Spring and JUnit, but a few new files specific to GlassFish will be introduced.
We will also be configuring the GlassFish server to run independent of the NetBeans IDE. Enterprise environments will usually have many GlassFish server instances running on different hosts. Understanding basic GlassFish configuration is an important skill and we will cover connection pool configuration in detail.
At the end of this chapter you will be able to see dynamic HTTP responses based on the URLs you have mapped so carefully in Chapter 7, The Web Request Handling Layer.
Configuring the 3T web application

The web application configuration requires several new files that will need to be added to the WEB-INF directory, as shown in the following screenshot. Create these files now:
[image: Configuring the 3T web application]
Note that the beans.xml file was created by NetBeans but is not required for our configuration. Let's now look at each of these files in detail.
The Spring applicationContext.xml file

The applicationContext.xml file configures the Spring container and is very similar to the testingContext.xml file we created in Chapter 5, Testing the DAO Layer with Spring and JUnit. The contents of the file are as follows:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.2.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.2.xsd">
 <bean id="loadTimeWeaver"
class="org.springframework.instrument.classloading.glassfish.GlassFishLoadTimeWeaver" />
 <bean id="entityManagerFactory"
 p:persistenceUnitName="tttPU"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"
 />

 <!-- Transaction manager for JTA -->
 <tx:jta-transaction-manager />
 <!-- enable the configuration of transactional behavior based on annotations -->
 <tx:annotation-driven />

 <!-- checks for @Autowired beans -->
 <context:annotation-config/>

 <!-- Scan for Repository/Service annotations -->
 <context:component-scan base-package="com.gieman.tttracker.dao"/>
 <context:component-scan base-package="com.gieman.tttracker.service"/>
</beans>

This file is used by Spring to initialize and configure the JPA EntityManagerFactory and TransactionManager DAO and Service layer objects. Comparing the applicationContext.xml file with the testingContext.xml file identifies the key differences between a simple Java container and a Java EE container provided by an enterprise application server:
	The data source is retrieved via JNDI (Java Naming and Directory Interface) from the GlassFish application server and is not created or managed by Spring in the applicationContext.xml file. The JNDI configuration setting in the persistence.xml file is defined later in this chapter.
	The load time weaver is specific to GlassFish.
	The transaction manager is JTA-based (Java Transaction API) and is provided by the GlassFish server. It is not created or managed by Spring. The <tx:jta-transaction-manager /> and <tx:annotation-driven /> definitions are all that is required to configure transactional behavior within the Spring container.

Note
You should be familiar with the remaining configuration properties. Note that component scanning is performed against both the dao and service packages to ensure the auto-wiring of Spring beans in these classes.

When the applicationContext.xml file is loaded by the Spring container, the MVC configuration classes defined in Chapter 7, The Web Request Handling Layer, are automatically discovered by classpath scanning and are loaded to configure the web application components.

The web.xml file

The web.xml web application deployment descriptor file represents the configuration of a Java web application. It is used to configure the servlet container and map URLs to each configured servlet. Each Java web application must have a web.xml in the WEB-INF directory of the web application root.
The 3T web application requires the following web.xml definition:
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/applicationContext.xml</param-value>
 </context-param>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 <session-config>
 <session-timeout>30</session-timeout>
 <cookie-config>
 <name>JSESSIONID_3T</name>
 </cookie-config>
 </session-config>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

Some key points are as follows:
	The context-param element defining the contextConfigLocation value is optional if the Spring configuration file is named applicationContext.xml (this is the expected default filename if not supplied). However, we always include this property for completeness. It defines the location of the main Spring configuration file.
	The listener with class org.springframework.web.context.ContextLoaderListener is used by Spring to initialize loading of the application context. It is the entry point to boot the Spring container and attempts to load the contextConfigLocation file. An exception is thrown if the file cannot be resolved or is invalid.
	The session-config properties define the session timeout (30 minutes of inactivity) and the session cookie name.
	The welcome-file-list identifies the file that will be served by GlassFish, if not specified explicitly in the URL.

The glassfish-web.xml file

The
glassfish-web.xml file configures GlassFish with additional web application properties specific to the GlassFish server:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE glassfish-web-app PUBLIC "-//GlassFish.org//DTD GlassFish Application Server 3.1 Servlet 3.0//EN" "http://glassfish.org/dtds/glassfish-web-app_3_0-1.dtd">
<glassfish-web-app>
<context-root>/</context-root>
</glassfish-web-app>

The context-root property identifies the web application's server path for deployment. We will deploy the 3T application to the context root of the server. This means that 3T request handlers can be accessed directly from the root of the web application as in the following example:
/ttt/company/findAll.json
Changing the context-root property to /mylocation, for example, will require a URL of the following format:
/mylocation/ttt/company/findAll.json

Configuring the Maven pom.xml file

You may have changed various pom.xml settings when experimenting with dependencies and plugins in the previous chapters. It is important to now revisit this file and confirm that the properties are correct for building and deploying the project. You should have the following basic pom.xml configuration:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.gieman</groupId>
 <artifactId>task-time-tracker</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>
 <name>task-time-tracker</name>
 <properties>
 <endorsed.dir>
 ${project.build.directory}/endorsed
 </endorsed.dir>
 <project.build.sourceEncoding>
 UTF-8
 </project.build.sourceEncoding>
 <spring.version>3.2.4.RELEASE</spring.version>
 <logback.version>1.0.13</logback.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>2.1.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>eclipselink</artifactId>
 <version>2.5.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>
 org.eclipse.persistence.jpa.modelgen.processor
 </artifactId>
 <version>2.5.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.26</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context-support</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-tx</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-orm</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-instrument</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>${spring.version}</version>
 <scope>test</scope>
 </dependency>

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <compilerArguments>
 <endorseddirs>
 ${endorsed.dir}
 </endorseddirs>
 </compilerArguments>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <warName>${project.build.finalName}</warName>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>copy-endorsed</id>
 <phase>validate</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <outputDirectory>
 ${endorsed.dir}
 </outputDirectory>
 <silent>true</silent>
 <artifactItems>
 <artifactItem>
 <groupId>javax</groupId>
 <artifactId>
 javaee-endorsed-api
 </artifactId>
 <version>7.0</version>
 <type>jar</type>
 </artifactItem>
 </artifactItems>
 </configuration>
 </execution>
 <execution>
 <id>copy-all-dependencies</id>
 <phase>compile</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>
 ${project.build.directory}/lib
 </outputDirectory>
 <includeScope>compile</includeScope>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.14.1</version>
 <configuration>
 <skipTests>true</skipTests>
 <includes>
 <include>**/dao/*Test.java</include>
 <include>**/service/*Test.java</include>
 </includes>
 <argLine>
-javaagent:target/lib/spring-instrument-${spring.version}.jar
 </argLine>
 </configuration>
 </plugin>

 </plugins>
 </build>
 <repositories>
 <repository>
 <url>
 http://download.eclipse.org/rt/eclipselink/maven.repo/
 </url>
 <id>eclipselink</id>
 <layout>default</layout>
 <name>
 Repository for library EclipseLink (JPA 2.1)
 </name>
 </repository>
 </repositories>
</project>

Several of these dependencies were added during the reverse engineering process, as was the <repository> definition for EclipseLink. There are only a few changes required:
	Add the MySQL connector: The most recent version should be used for the mysql-connector-java dependency. The MySQL connector is not provided by GlassFish and will be copied to the application server in a section later in this chapter. The scope is set to provided so as not to include this JAR when building the WAR file.
	Turn off the Surefire testing plugin: Your deployments will be much faster if you turn off testing during the build process. Change the maven-surefire-plugin entry skipTests to true. This will skip the testing phase when building and deploying the project locally.Note
Building enterprise applications is usually performed on a dedicated build server that executes test cases and reports on the success or failure of the build process. Disabling the test phase should only be done on developer machines to speed the build and deployment process. Developers will not appreciate waiting for 30 minutes to execute the testing suite every time they change a class. The testing phase should never be disabled for execution on the build server.

Adding eclipselink.target-server to the persistence.xml file

The persistence.xml file requires the inclusion of the eclipselink.target-server property to fully enable transactional behavior. The persistence.xml file located at src/main/resources/META-INF should look like the following:
<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">

 <persistence-unit name="tttPU" transaction-type="JTA">
 <provider>
 org.eclipse.persistence.jpa.PersistenceProvider
 </provider>
 <jta-data-source>jdbc/tasktimetracker</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.target-server"
 value="SunAS9"/>
 <property name="eclipselink.logging.level"
 value="INFO"/>
 </properties>
 </persistence-unit>
</persistence>

Without this addition, transactions will not be available in your application. The eclipselink.logging.level may also be changed to increase or decrease logging output as desired.

Adding the logback.xml file to your resources directory

The logback.xml file should be added to src/main/resources/ in order to enable logging into your application. The contents of this file will be the same as the testing logback.xml file as follows:
<?xml version="1.0" encoding="UTF-8"?>
<configuration scan="true" scanPeriod="30 seconds" >
 <contextName>TaskTimeTracker</contextName>
 <appender name="STDOUT"
 class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>
 %d{HH:mm:ss.SSS} [%thread] %-5level %logger{5} - %msg%n
 </pattern>
 </encoder>
 </appender>
 <logger name="com.gieman.tttracker"
 level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>
 <logger name="com.gieman.tttracker.dao"
 level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>
 <logger name="com.gieman.tttracker.domain"
 level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>
 <logger name="com.gieman.tttracker.service"
 level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>
 <logger name="com.gieman.tttracker.web"
 level="DEBUG" additivity="false">
 <appender-ref ref="STDOUT" />
 </logger>
 <root level="INFO">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

Configuring the GlassFish server

The GlassFish 4 server bundled with NetBeans is automatically configured the first time you run the project. This means any required resources are set up dynamically based on the current state of the project. All such properties are copied to the glassfish-resources.xml file in the setup directory, as shown in the following screenshot:
[image: Configuring the GlassFish server]
The glassfish-resources.xml file was modified during the database reverse engineering process to include the database connection pool and JDBC resources required by JPA. As a result, the contents of this file define the required GlassFish connection pool details.
It is important to understand that this file is used by NetBeans to dynamically configure the GlassFish server assigned to the project. In a real-world situation, the GlassFish server is configured by administrators and deploying a web application is done either from the command line or through the GlassFish administration console. You will not be deploying your application through NetBeans in a normal enterprise environment and it is hence very useful to have a fundamental understanding of how GlassFish is configured from first principals. This section is dedicated to configuring the GlassFish server connection pool for use with 3T. Although this is not strictly required to run 3T on NetBeans, we strongly recommend you take the time to configure your GlassFish server fully via the following steps.
This will ensure you understand what is required to configure a GlassFish server on a different physical server for running the 3T application.
	The first step in configuring your GlassFish server is to perform a Clean and Build:[image: Configuring the GlassFish server]

	When the build is complete, navigate to target/lib as shown in the following screenshot to view the JAR files required by your project:[image: Configuring the GlassFish server]

	Open a file explorer window (Windows Explorer or OS X Finder) to navigate to this directory and copy the mysql-connector-java-5.1.26.jar file to your GlassFish domain libs directory, as shown in the following screenshot:[image: Configuring the GlassFish server]

Renaming the setup directory

The setup directory, located at src/main/, contains the glassfish-resources.xml file and should be renamed to ensure NetBeans does not dynamically configure GlassFish with these properties. We suggest renaming the directory to setup-original.

Starting the GlassFish server in NetBeans

Navigate to the Services tab; by right-clicking on the GlassFish Server 4.0 node, select Start as shown in the following screenshot:
[image: Starting the GlassFish server in NetBeans]
You should see server output at the bottom of the NetBeans IDE and the GlassFish Server 4.0 node reload. You can now right-click on the GlassFish Server 4.0 node and select View Domain Admin Console:
[image: Starting the GlassFish server in NetBeans]
This will start your default browser and load the Domain Admin Console.

Configuring the JDBC connection pool

This section will use the GlassFish admin console to configure the JDBC connection pool and JDBC resource required by the 3T application.
	Open the Resources node and navigate to the JDBC Connection Pools tab:[image: Configuring the JDBC connection pool]
Note
You may see a connection pool named mysql_task_time_tracker_rootPool or something similar, as shown in the preceding screenshot. This was created by NetBeans during a previous run using the properties specified in the glassfish-resources.xml file. The remaining section may be skipped if you wish to continue using this connection pool. We recommend you delete this entry and continue to follow these steps to understand how to configure a GlassFish connection pool.

	Click on the New button and enter the following details before clicking on the Next button:[image: Configuring the JDBC connection pool]

	The next screen looks daunting but only a few entries are required. Scroll all the way down until you can view the Additional Properties section:[image: Configuring the JDBC connection pool]

	There are many properties here! Thankfully only a few are required unless you are familiar with MySQL database administration. You may safely delete all the listed properties to keep the configuration simple, and then enter the following properties that correspond to the original glassfish-resources.xml file:[image: Configuring the JDBC connection pool]

	The basic fields that are required are URL, User, and Password. Saving these settings will return you to the JDBC Connection Pools screen:[image: Configuring the JDBC connection pool]

	Click on the 3TPool name to open the settings again and click on the Ping button to test the connection. You should now see the following result:[image: Configuring the JDBC connection pool]

Configuring the JDBC resource

The final step is to create a JDBC Resource. Click on this node to display the configured resources:
[image: Configuring the JDBC resource]
Click on the New… button and enter the following details:
[image: Configuring the JDBC resource]
The JNDI Name must be the same as the <jta-data-source> property defined in the persistence.xml file and is hence set to jdbc/tasktimetracker. Click on the OK button to save the resource configuration. The refreshed node should now show the newly created resource.
You have now finished configuring the GlassFish JDBC settings.

Running 3T

Now we recommend you stop GlassFish and restart NetBeans to ensure all changes made previously are up-to-date in the IDE. The final step is to run the 3T application:
[image: Running 3T]
This should result in considerable output culminating in deployment of the 3T application to the GlassFish server:
[image: Running 3T]
Note that the final WARNING in the GlassFish Server 4.0 output can be ignored; this is a known issue when deploying an application to the root context from within NetBeans.
The final action by NetBeans will be to open your default browser to the welcome page displayed in Chapter 1, Preparing Your Development Environment. You should note that the URL in the browser will now be:
http://localhost:8080/
Instead of the original:
http://localhost:8080/task-time-tracker
This is due to the <context-root>/</context-root> property in glassfish-web.xml, which defines the root of the web application path. The 3T web application is now deployed to the context root and no prefix is required to reach the deployed 3T application.
You can now try to load a mapped URL such as /ttt/company/findAll.json. Enter this in the browser as shown and hit the Enter key. You should see the following result:
[image: Running 3T]
This message is coming from the UserInSessionInterceptor we implemented in the last chapter. The session check fails as we are not currently logged on, returning the preceding JSON message to the browser. The logger.info message in the class should also be visible in the GlassFish output:
[image: Running 3T]
You can now try a logon action with parameters as shown in the following screenshot:
[image: Running 3T]
This result may surprise you. The request URL is mapped to the SecurityHandler.logon method, which is defined with method = RequestMethod.POST in the @RequestMapping annotation. This restricts access to this method to POST requests only, while the URL-encoded parameters submitted by the browser is a GET request. The GlassFish 405 HTTP status message is the result. In Chapter 10, Logging On and Maintaining Users, we will be implementing the logon process using the appropriate POST request.
You should note that all handler URLs will be accessed by AJAX calls from the Ext JS 4 application, which will be developed in subsequent chapters. You will never see these URLs in the browser as shown previously.

Managing GlassFish without NetBeans

Starting and stopping GlassFish in NetBeans is easy and convenient. However, in enterprise environments the stop/start process will be managed by scripts wrapping the asadmin utility. A full description of the utility can be found in the GlassFish User Administration Guide at https://glassfish.java.net/docs/4.0/administration-guide.pdf.
The asadmin utility is used to perform administrative tasks for the GlassFish server from the command line or from a script. You can use this utility instead of the GlassFish administration console interface we used earlier in this chapter. Almost every action that can be performed in the administration console has an equivalent command that can be executed with asadmin.
The asadmin utility is found in the {as-install}/bin directory. Commands should be run from within this directory if the full path to asadmin is not provided. To start the domain, you can execute the following command:

asadmin start-domain domain1

The domain1 argument represents the name of the domain to start. Executing this command from the Windows command prompt will result in the following output:
[image: Managing GlassFish without NetBeans]
Stopping a running GlassFish domain is just as simple. Use the following command:

asadmin stop-domain domain1

This will result in the following output:
[image: Managing GlassFish without NetBeans]
We will continue to start and stop GlassFish within NetBeans but will revisit asadmin in Chapter 13, Moving Your Application to Production.

Summary

This chapter has focused on the steps required to configure the 3T web application for deployment to the GlassFish 4 server. The Spring configuration files were defined and the web.xml file configured to load the Spring container on startup. You were guided through the GlassFish connection pool configuration process and the 3T web application was deployed to the context root of the GlassFish 4 server.
This is a pivotal point in our enterprise application development process. We have now fully covered the realm of the Java developer, building a functional backend system that will serve dynamic requests for any JSON client. Chapter 9, Getting Started with Ext JS 4, will introduce the powerful Ext JS 4 framework and begin our frontend development journey.

Chapter 9. Getting Started with Ext JS 4

Ext JS 4 is, by far, the most sophisticated JavaScript library available and provides an amazing set of widgets for almost all practical design concerns. It does everything we could possibly want in order to develop complex, cross-browser compatible applications that require a high degree of user interaction. In this chapter, we will:
	Learn about core Ext JS 4 MVC concepts
	Explore practical project design and development conventions
	Install the Ext JS 4 development framework and introduce Sencha Cmd
	Generate an Ext JS 4 application skeleton for the 3T application

Ext JS has come a long way since starting out as an extension to the Yahoo User Interface (YUI) library. Each new version has been a significant improvement on the previous one and Ext JS 4 is no exception. Those new to Ext JS will appreciate the elegant framework design and consistent API, while those transitioning from Ext JS 3 will appreciate the improvements in many areas, including the introduction of the MVC design pattern. Regardless of your background, this chapter will help you be productive with Ext JS 4.
It should be noted that Ext JS 4 is not the only JavaScript MVC framework available today. Angular.js and Backbone.js, for example, are both very capable development frameworks, with MVC features similar to Ext JS 4. They do not, however, have the extensive documentation, build tools, and commercial support that make Ext JS 4 so appropriate for enterprise application development.
The importance of application design

Technology aside, a thoughtful and consistent application design is critical when developing enterprise applications. The quality of the application's architecture will determine the maintainability, scalability, and overall cost of the application during the project lifecycle. The benefits of a well-designed application include the following:
	The application will be easier to understand. New team members will quickly come up to speed if there is a consistent way of doing things.
	The application will be easier to maintain. Enhancements and new functionalities will be far simpler to implement if you have consistent application design guidelines.
	Code consistency. A well-designed application will have well-documented naming conventions, directory structures, and coding standards.
	The application will be multideveloper friendly. On large projects, many people will be involved and a consistent design strategy will ensure that everyone is on the same page.

Less-tangible benefits are often overlooked when you start a new project and excitedly work on the first prototype for the proof-of-concept presentation. The ability to refactor and scale a project from simple beginnings is often a key factor in enterprise application development. Regardless of how small the project may seem in the initial phases, you can be certain that business users will want to change workflows and layouts as soon as they become familiar with the application. New functionality will be requested and old functionality will be deprecated. Components will be moved and redesigned as the application evolves over time. A consistent and well-thought-out application design will make these project lifecycle processes less daunting. Thankfully, the Ext JS 4 application architecture itself encourages a formal and well-structured application design.

Ext JS 4 MVC concepts

When the MVC design pattern was introduced for the first time in Ext JS 4, it completely revolutionized the Ext JS framework. Although MVC was well known as a design pattern, this was the first time a sophisticated JavaScript framework had implemented the strategy. There are several key benefits as follows:
	The MVC design pattern organizes code into logical realms or component types, which makes the code easier to understand
	MVC modularity can simplify component testing and refactoring as each object has a well-defined purpose
	The MVC design pattern architecture encourages cleaner code, clearly separating data access, presentation, and business logic

These were a huge advantage over the previous Ext JS 3 where the only true MVC component was the V (View). It was left to the Ext JS 3 developer to architect the M (Model) and C (Controller) as best they could, which often led to confusing and inconsistent code. Let's now look at how Ext JS 4 defines the MVC design pattern.
Model

An Ext JS 4 model is a collection of properties that represent a domain entity. It may not come as a surprise that our 3T application will require a Company, Project, Task, User, and TaskLog model definition, just like they are represented in our Java domain layer. The main difference with our Java domain objects is that the Ext JS 4 model equivalent will be persistence aware. Thanks to the Ext JS 4 data package, each model instance will know how to persist and manage its state.

View

The Ext JS 4 view represents a logical visual component block and may itself include panels, toolbars, grids, forms, trees, and charts. An Ext JS 4 view always resides in its own file and should be as dumb as possible. This means that there should be no JavaScript business logic in the view; its purpose is to present data and provide interactive ability for the user.

Controller

The Ext JS 4 controller can be loosely described as the glue that binds together your application logic. Controllers are central in handling event processing and cross-view interactions and define the application workflows. The vast majority of JavaScript business logic code will reside in controllers.

Ext JS 4 flexibility

Although we have a clear definition of the different MVC components, there is considerable implementation flexibility in the Ext JS 4 framework itself. We do not need to use controllers or models; in fact, we could easily build a fully working Ext JS 4 application using the same strategies followed in Ext JS 3. This would be a mistake, however, and should be avoided at all costs. The benefits of leveraging the MVC architecture for enterprise application development are significant, including, but not limited to, a simpler and more robust code base.

Ext JS 4 design conventions and concepts

The Sencha Ext JS 4 team has done an enormous amount of work in defining conventions, which you should consider following, for building enterprise applications. These include a standard directory structure, naming conventions, and detailed design best practices. We strongly urge you to browse the many tutorials and guides on the Sencha Ext JS 4 Docs website at http://docs.sencha.com/extjs/4.2.2 to become familiar with their application design recommendations.
This book will adhere to the common design strategies outlined by the Ext JS 4 team, with minor differences noted and explained upon being introduced in their relevant sections. It is beyond the scope of the book to cover basic Ext JS 4 concepts and you may need to refer to the Sencha Ext JS 4 Docs to fine-tune your understanding.

Practical conventions

A well-structured Ext JS 4 project with consistent naming conventions will be a joy to work with. Enterprise applications with hundreds of files should be structured in a way that is easy to learn and maintain. It should be a rare occurrence when you ask a colleague, "Where is the file that displays the editing toolbar for the xyz widget?".
Project structure

The Ext JS 4 directory structure, comprising a top-level app and subdirectories named controller, model, store, and view, should always be used. This is the default directory structure for any Ext JS 4 application and allows out-of-the-box integration with the Sencha Cmd build tools.
Large projects have many hundreds of JavaScript files, so it is important to have a consistent project structure. Practical namespacing, especially in the view directory, can simplify a project structure and make it easier to find components. In Chapter 10, Logging On and Maintaining Users, Chapter 11, Building the Task Log User Interface, and Chapter 12, 3T Administration Made Easy, for example, we will be creating a view structure containing the files displayed in the following screenshot (on the left-hand side):
[image: Project structure]
The preceding screenshot displays all views (on its right-hand side) in the same directory. Which is the better way? That depends on the nature of the project and the number of files. Enterprise projects are usually namespaced at a modular level with many subdirectories logically grouping related components. Smaller projects can just as easily have a flat structure where all files are found in the same directory. Whichever structure you choose, be consistent! It should be easy for any new developer to find a component without searching through a large number of files and directories.

Naming conventions

We recommend defining a consistent naming convention that is easy to understand and follow. It should be easy to locate files, both on the filesystem and in the IDE you are using.
Naming stores and models

Each model should be named as the singular of the entity it represents (for example, Company, Project, Task, TaskLog, and User). Each store should be named in a similar singular manner. We have seen Store added as a postfix to store names in Ext JS 3 (for example, ProjectStore), but this is not recommended for Ext JS 4. Controllers automatically create a get function for each store by adding Store to the store name. Naming a store ProjectStore will result in a function named getProjectStoreStore in each controller that the store is referenced. For this reason, we recommend that you use store names without the Store postfix.
The store name in its singular form is often replaced with the plural version. For example, a Project store is often named Projects. Once again, consistency is the key. If you decide to use the plural form, use it for each store name. In our application, this would result in Companies, Projects, Tasks, TaskLogs, and Users stores. This tends to sometimes cause confusion in spelling; we have seen both Companies and Companys used for the plural version of Company. When English is not your first language, it may be difficult to know the correct plural name for entities, such as territories, countries, companies, currencies, and statuses. For this reason, we prefer using the singular version when naming stores.

Naming views

Consider the following situation, in which we have been researching panels on the Sencha Docs website:
[image: Naming views]
There are four different Panel files open (Ext.grid.Panel, Ext.tab.Panel, Ext.form.Panel, and Ext.panel.Panel). It is frustrating to try and locate the Ext.grid.Panel file in this situation; in the worst case, you will need to click on four different tab items. In a large project, there may be many panel containers worthy of the name Panel. We recommend giving each file a unique name, regardless of how it is namespaced. Unlike models and stores, where the same filename is used for the model and store namespaces, we do not recommend using the same filename between view classes. For example, the files app.view.user.List and app.view.tasklog.List cannot be easily differentiated in an IDE tab bar without examining the file content. It is far easier to make these filenames unique, even though they may exist in different namespaces.
The use of postfixing class types is another issue worthy of discussion. Ext JS 3 used typed postfixing on class names. This resulted in GridPanel, FormPanel, TabPanel, and Panel filenames. They were all panels. It was easy to identify what the class was by examining the filename. Ext JS 4 took a namespaced approach and dropped the descriptive name. The preceding examples became Ext.grid.Panel, Ext.tab.Panel, Ext.form.Panel, and Ext.panel.Panel. Each file is named Panel, which is not very helpful without knowledge of the directory it resides in.
Whatever naming convention you implement, it is important to be consistent. We will use the following naming conventions:
	All namespacing folder names will be lowercase.
	Any class that is used to represent a list of items will have the class name postfixed with List. The implementation of List is not important; we do not care if the listing is created using a grid, simple template, or data view.
	Any class that is a form will be postfixed with Form.
	Any class that is a tree will be postfixed with Tree.
	Any class that is a window will be postfixed with Window.
	Any component that manages the positioning and layout of a set of related components will be prefixed with Manage. Such a class will usually contain toolbars, lists, forms, and tab panels arranged in an appropriate layout.

You may wish to introduce other conventions appropriate for your development environment. This is fine; the important point is to be consistent and ensure that everyone understands and adheres to your conventions.

Naming controllers

We recommend that all controller class names be postfixed with Controller. This makes them easy to identify in any IDE. The controller responsible for user maintenance, for example, would hence be named UserController.

Naming xtypes

We recommend using the lowercase class name as xtype for each class. This is another very good reason to ensure that the filename for each view class is unique. The UserList xtype is userlist, the UserForm xtype is userform, and the ManageUsers xtype is manageusers. There can be no confusion.

The Ext JS 4 development environment

There are two core components required for Ext JS 4 development as follows:
	The Sencha Cmd Tool: This is a cross-platform, Java-based, command-line tool that provides many options to help manage the lifecycle of your applications
	Ext JS 4 SDK (Software Development Kit): This contains all source files, examples, resources, and minified scripts required for application development

We will now examine and install each of these components.
Installing Sencha Cmd

The Sencha Cmd Tool can be downloaded from http://www.sencha.com/products/sencha-cmd/download. The file is approximately 46 MB and needs to be unzipped before running the setup process.
[image: Installing Sencha Cmd]
Click on Next to view the License Agreement section. You will need to accept the agreement before clicking on the Next button:
[image: Installing Sencha Cmd]
The screen shown in the following screenshot prompts for an Installation Directory. We recommend that you install the Sencha Cmd Tool on a directory that is easily accessible (/Users/Shared/ for Mac users and C:\ for Windows users):
[image: Installing Sencha Cmd]
Click on Next to continue. This will show a prompt indicating that setup is now ready to begin installing Sencha Cmd on your computer. Click on Next again to continue the installation. The final prompt will confirm the installation of Sencha Cmd:
[image: Installing Sencha Cmd]
You can now view the installed files as shown in the following screenshot:
[image: Installing Sencha Cmd]
To confirm the installation, open a command prompt (Windows) or terminal (Mac), type sencha, and press the Enter key. This will confirm that Sencha Cmd has been added to your system path and should result in output similar to that shown in the following screenshot:
[image: Installing Sencha Cmd]
Note that any currently open console/terminal windows will need to be closed and reopened to ensure that the installation path changes are reloaded. The final step is to check whether or not there are any upgrades available by typing:

sencha upgrade –-check

This command should display an appropriate message as shown in the following screenshot:
[image: Installing Sencha Cmd]
It is possible to upgrade versions of Sencha Cmd by omitting the ––check argument. For a full list of Sencha command-line options, refer to http://docs.sencha.com/extjs/4.2.2/#!/guide/command. This page also contains many helpful troubleshooting tips and explanations. In addition, you may also use the command-line help by executing sencha help. Executing the sencha help command will display detailed help options:
[image: Installing Sencha Cmd]

Installing Ext JS 4 SDK

The SDK can be downloaded from http://www.sencha.com/products/extjs. The previous step will have created a Sencha directory in the following location:
	C:\Sencha for Windows users
	/Users/Shared/Sencha for Mac users

After downloading the SDK, you should create an ext-xxx directory within this Sencha directory where xxx represents the version of the Ext JS 4 framework. You can then unzip the SDK into this directory resulting in the structure shown in the following screenshot:
[image: Installing Ext JS 4 SDK]
You are now ready to initialize the Ext JS 4 3T application skeleton.

Generating the 3T Ext JS 4 application skeleton

The format of the skeleton generation command is:

sencha -sdk /path/to/sdk generate app MyApp /path/to/MyApp

Running this command will copy all required SDK files to the /path/to/MyApp directory and create a skeleton of the resources ready for development. You must use full paths for both the SDK and MyApp directories.
It is important to remember that the 3T application is a Maven project and that the web content root is the webapp directory located within the Maven directory structure. The project folder that was created in Chapter 1, Preparing Your Development Environment, and the webapp directory (on Windows) can be found at C:\projects\task-time-tracker\src\main\webapp.
On Mac, it can be found at /Users/{username}/projects/task-time-tracker/src/main/webapp.
The 3T application skeleton can now be generated by executing the following command (for Windows platforms):

sencha –sdk C:\Sencha\ext-4.2.2 generate app TTT C:\projects\task-time-tracker\src\main\webapp

Note that this command must be on a single line. The TTT argument represents the application name and will be used to generate the application namespace. We could have used TaskTimeTracker, but the abbreviated form is easier to write!
Executing the command from the terminal should produce considerable output, ending with some red errors:
[image: Generating the 3T Ext JS 4 application skeleton]
Don't be too concerned with the [ERR] warnings; Sencha Cmd has identified the presence of the index.html file and replaced it with the Sencha Cmd version. The original file was copied to index.html.$old. We don't need the backup file (it was created during the NetBeans project creation process); it can safely be deleted.
Opening the NetBeans IDE will now display many new files and directories within the webapp directory of the 3T project:
[image: Generating the 3T Ext JS 4 application skeleton]
You can now run the project to view the output in the browser:
[image: Generating the 3T Ext JS 4 application skeleton]
This output is the default Ext JS 4 application content in the index.html page, created by the generate app command when building the project skeleton. Let's now look at the key files that have been generated.
The index.html file

The index.html file consists of the following listings:
<!DOCTYPE HTML>
<html>
<head>
 <meta charset="UTF-8">
 <title>TTT</title>
 <!-- <x-compile> -->
 <!-- <x-bootstrap> -->
 <link rel="stylesheet" href="bootstrap.css">
 <script src="ext/ext-dev.js"></script>
 <script src="bootstrap.js"></script>
 <!-- </x-bootstrap> -->
 <script src="app.js"></script>
 <!-- </x-compile> -->
</head>
<body></body>
</html>

Note the x-compile and x-bootstrap tags within the page content. These are used by the Sencha Cmd Tool and allow the compiler to identify the scripts at the root of your application (the default file is always app.js). The compiler also ignores the bootstrap part of the framework that is used only during development. When generating a production application, all of the required files are pulled in during the build process. This will be covered in detail in Chapter 13, Moving Your Application to Production.
You should note that the ext-dev.js file is the only Ext JS 4 framework resource required. This file is used for dynamic JavaScript class loading during the development phase. The framework will then dynamically retrieve any JavaScript resources required by the application.

The app.js and Application.js files

The app.js file is the entry point of the application. The contents of the file, including generated comments, looks as follows:
/*
 This file is generated and updated by Sencha Cmd. You can edit this file as needed for your application, but these edits will have to be merged by Sencha Cmd when upgrading.
*/
Ext.application({
 name: 'TTT',
 extend: 'TTT.Application',
 autoCreateViewport: true
});

The Ext.application extends the TTT.Application class, which is defined in the app/Application.js file as follows:
Ext.define('TTT.Application', {
 name: 'TTT',
 extend: 'Ext.app.Application',
 views: [
 // TODO: add views here
],
 controllers: [
 // TODO: add controllers here
],
 stores: [
 // TODO: add stores here
]
});

It is the Application.js file that will contain our 3T application-specific code.
Note
You should note that this is a different setup to that described in earlier Ext JS 4 tutorials where the app.js file contains application-specific properties (views, controllers, stores, and application functions). The approach outlined previously keeps all application-specific code within the app directory.

Our first change to the autogenerated Application.js file is to add the launch function:
Ext.define('TTT.Application', {
 name: 'TTT',
 extend: 'Ext.app.Application',
 views: [
 // TODO: add views here
],
 controllers: [
 // TODO: add controllers here
],
 stores: [
 // TODO: add stores here
],
 launch: function() {
 Ext.create('TTT.view.Viewport');
 }
});

We can now remove autoCreateViewport:true from the app.js file as the logic for creating the viewport is now in the launch function. The launch function itself will be enhanced in the next chapter to implement the user logon, so there is plenty of code to come! The updated app.js file is as follows:
Ext.application({
 name: 'TTT',
 extend: 'TTT.Application'
});

The bootstrap.js and bootstrap.css files

The bootstrap.js and bootstrap.css files were generated by Sencha Cmd and should not be edited. They are used internally to initialize and configure the development environment.

The app/Viewport.js and app/view/Main.js files

An Ext JS 4 viewport is a container that resizes itself to use the entire browser window. The Viewport.js definition is as follows:
Ext.define('TTT.view.Viewport', {
 extend: 'Ext.container.Viewport',
 requires:[
 'Ext.layout.container.Fit',
 'TTT.view.Main'
],
 layout: {
 type: 'fit'
 },
 items: [{
 xtype: 'app-main'
 }]
});

There is only one view added to the items array; the TTT.view.Main, function, which has an xtype function called app-main:
Ext.define('TTT.view.Main', {
 extend: 'Ext.container.Container',
 requires:[
 'Ext.tab.Panel',
 'Ext.layout.container.Border'
],
 xtype: 'app-main',
 layout: {
 type: 'border'
 },
 items: [{
 region: 'west',
 xtype: 'panel',
 title: 'west',
 width: 150
 },{
 region: 'center',
 xtype: 'tabpanel',
 items:[{
 title: 'Center Tab 1'
 }]
 }]
});

The preceding file defines the border layout and textual content of the two regions that are displayed in the browser.
Note
Not confident with Ext JS views, xtypes, viewports, border layouts, or panels? We recommend browsing and reviewing the basic Ext JS 4 component concepts at http://docs.sencha.com/extjs/4.2.2/#!/guide/components.

The app/controller/Main.js file

The final generated file we will examine is the Main.js controller:
Ext.define('TTT.controller.Main', {
 extend: 'Ext.app.Controller'
});

There is no functionality in this class as there is nothing yet to control.

Creating components using Sencha Cmd

It is possible to use Sencha Cmd to generate skeleton components. The most useful of these commands are those used to generate basic models.
Generating model skeletons

A model skeleton can be generated very easily using the Sencha Cmd Tool. The syntax is as follows:

sencha generate model ModelName [field1:fieldType,field2:fieldType…]

This command must be executed in the application root (the directory in which the app.js file is found). Note that there must not be any spaces in the comma-separated field listing. The company model skeleton can be generated by executing the following command:

sencha generate model Company idCompany:int,companyName:string

The final string for the companyName field is not strictly required as the default property type is string, if not specified. The output from this command looks as shown in the following screenshot:
[image: Generating model skeletons]
The generated Company.js file is written into the app/model directory and has the following content:
Ext.define('TTT.model.Company', {
 extend: 'Ext.data.Model',
 fields: [
 { name: 'idCompany', type: 'int' },
 { name: 'companyName', type: 'string'}
]
});

This is a very simple model and has two fields as expected. We can also generate more complex models using different data types:

sencha generate model TaskLog idTaskLog:int,taskDescription:string,taskLogDate:date,taskMinutes:int,hours:float,username:string,userFullName:string,idTask:int,taskName:string,idProject:int,projectName:string,idCompany:int,companyName:string

The preceding command will generate the TaskLog model with fields of types int, string, date, and float.
Ext.define('TTT.model.TaskLog', {
 extend: 'Ext.data.Model',
 fields: [
 { name: 'idTaskLog', type: 'int' },
 { name: 'taskDescription', type: 'string' },
 { name: 'taskLogDate', type: 'date' },
 { name: 'taskMinutes', type: 'int' },
 { name: 'hours', type: 'float' },
 { name: 'username', type: 'string' },
 { name: 'userFullName', type: 'string' },
 { name: 'idTask', type: 'int' },
 { name: 'taskName', type: 'string' },
 { name: 'idProject', type: 'int' },
 { name: 'projectName', type: 'string' },
 { name: 'idCompany', type: 'int' },
 { name: 'companyName', type: 'string' }
]
});

The model skeletons for the three remaining entities can be created by executing the following commands:

sencha generate model Project idProject:int,projectName:string, idCompany:int,companyName:string
sencha generate model Task idTask:int,taskName:string,idProject:int,projectName:string, idCompany:int,companyName:string
sencha generate model User username:string,firstName:string,lastName:string,fullName:string,email:string,password:string,adminRole:string

Note that each of these models matches the JSON structure generated by the addJson (JsonObjectBuilder) method in the equivalent Java domain classes. You should now have the files shown in the following screenshot in the app/model directory:
[image: Generating model skeletons]
Although we have used the Sencha Cmd Tool to generate these model skeletons, it would have been just as easy to create the appropriate files and definitions in the NetBeans IDE.

Generating views and controllers using Sencha Cmd

It is also possible to generate basic view and controller skeletons, but the contents of these files are very limited. The following command will create a view named ManageUsers:

sencha generate view ManageUsers

The ManageUsers.js file will be written to the app/view directory and have the following contents:
Ext.define("TTT.view.ManageUsers", {
 extend: 'Ext.Component',
 html: 'Hello, World!!'
});

In a similar manner, you could create a controller skeleton for UserController:

sencha generate controller UserController

The UserController.js file would be written to the app/controller directory and have the following contents:
Ext.define('TTT.controller.UserController', {
 extend: 'Ext.app.Controller'
});

We believe it is simpler to create views and controllers in the NetBeans IDE and will not be using Sencha Cmd for this purpose.

Summary

This chapter has configured the Ext JS 4 development environment and introduced practical design conventions and concepts. We have installed Sencha Cmd and generated the 3T application skeleton, examining the core generated files to understand the recommended application structure. Our model entities have been generated using Sencha Cmd and are ready for enhancement in the following chapters. The scene has been set for building our 3T application frontend.
In Chapter 10, Logging On and Maintaining Users, we will develop the Ext JS 4 components required to log on to the 3T application and maintain users. Our creative journey through User Interface (UI) design is just starting!

Chapter 10. Logging On and Maintaining Users

The most creative part of the enterprise application lifecycle revolves around the user interface design. Your goal as an enterprise application developer is to create a user interface that is intuitive, consistent, and easy to use. User interface design requires a thorough understanding of the tools you have available. Thankfully, Ext JS 4 has a comprehensive range of widgets that cover the core functionality required for any enterprise application. If you have not already visited the examples page, then take some time now to become familiar with the full range of Ext JS 4 components at http://docs.sencha.com/extjs/4.2.2/#!/example.
This chapter will focus on building the logon and user administration interfaces. We will develop a set of view components and wire them together with controllers to perform the following:
	Log on to the application
	Display the main application viewport
	Provide a user maintenance interface

The user maintenance interface will introduce model persistence and validation properties that are used for CRUD operations. We have quite a bit to do, so let's start by examining the application layouts and workflow.
Layouts, screens, and workflows

The application starts by displaying the logon window. Without a successful logon you will be unable to reach the main application viewport. The logon window has a very simple design as shown in the following screenshot:
[image: Layouts, screens, and workflows]
A successful logon will be displayed on the welcome screen as shown in the following screenshot:
[image: Layouts, screens, and workflows]
The welcome screen has a number of buttons in the header dependent on your permissions. A normal user will only see the Task Logs button and the Logoff button. An admin user will see the additional 3T Admin and Users buttons. We will leave the 3T Admin and Task Log modules for the subsequent chapters.
The user administration interface is based on the most common design pattern in modern enterprise applications. This layout displays a list of users in the left-hand side panel and the user details in the right-hand side panel:
[image: Layouts, screens, and workflows]
Each of these screen designs has icons and a logo that are not part of the Ext JS framework. The code in the following sections will define the appropriate styles but you will need to include the required resources to achieve the same look and feel. The full source code including resources can be downloaded from this book's website.
Defining view components

One of the hardest decisions to make when implementing wireframes and UI mockups is how to split up the view. Consider our user maintenance screen as shown in the following screenshot:
[image: Defining view components]
How many separate views should we create? If we create too many views, they become difficult to manage. If there are too few views, we lose flexibility. Striking the right balance comes only with experience. We tend to encourage a middle-road approach based on logical regions within the layout itself. The previous design, for example, could be split into the following view components:
[image: Defining view components]
This is the structure we will be implementing. However, we could easily implement the following design:
[image: Defining view components]
The second version would use a single view to encapsulate the user grid, form, and toolbar. The resulting ManageUsers.js file would be approximately 200 lines long; not a large file by any stretch of the imagination. From a functional perspective there would be no difference between the two designs. However, the first approach gives us more flexibility. We can easily rearrange the views on the page or refactor the interface without much effort (for example, moving UserForm to a pop-up window and allowing the user list to fill the entire width of the screen). This would not be as easy with the second design version.
When in doubt, you should err on the side of simplicity. Complex views with many hundreds or even thousands of lines of code should be avoided at all costs. Think of your views as discrete objects with specific purposes and keep them simple.

Building our views

Now that we have some practical guidelines to building views, it is time to create our application interface. A user must be able to log on successfully to work with the application, so let's start with the logon window.
Defining the Logon window

The Task Time Tracker Logon window is the first thing a user will see, which is shown in the following screenshot:
[image: Defining the Logon window]
The logon window definition follows the given code:
Ext.define('TTT.view.LogonWindow', {
 extend: 'Ext.window.Window',
 xtype: 'logonwindow',
 closable: false,
 iconCls: 'logo-small',
 width: 300,
 bodyPadding: 10,
 title: 'Task Time Tracker Logon',
 requires: ['Ext.form.field.Text'],
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'textfield',
 fieldLabel: 'User Name',
 name: 'username',
 allowBlank: false,
 validateOnBlur: true,
 emptyText: 'Enter a Username'
 }, {
 xtype: 'textfield',
 name: 'password',
 fieldLabel: 'Password',
 inputType: 'password',
 validateOnBlur: true,
 allowBlank: false
 }, {
 xtype: 'toolbar',
 ui: 'footer',
 layout: {
 pack: 'end',
 type: 'hbox'
 },
 items: [{
 xtype: 'button',
 text: 'Logon'
 }]
 }]
 });
 me.callParent(arguments);
 }
});

This window definition extends the Ext.window.Window and adds the two text fields and logon button. The LogonWindow class is namespaced to view and will hence reside in the app/view directory. The defined xtype property is the lowercase version of the class name and will be used in the controller to reference the LogonWindow instance.
Note
An xtype property is a symbolic name (alias or shortcut) for a class. The xtype property is a powerful concept in Ext JS that allows components to be configured, but not rendered, until the owning container deems it necessary. A full explanation of components' lazy initialization by xtype can be found here http://docs.sencha.com/extjs/4.2.2/#!/guide/components.

The MVC design pattern encourages Ext JS 4 developers to implement business logic in the controller layer, leaving the views as dumb objects. The only meta logic we are applying in this window is the allowBlank:false property combined with validateOnBlur:true. This will give the user a visual clue if moving off the field without entering text.
Using the initComponent() function

The initComponent function is a template function that is invoked by the constructor during object creation. The template design pattern allows subclasses to define specific behavior without changing the semantics of the base class processing algorithm. A detailed explanation of this pattern can be found here: http://en.wikipedia.org/wiki/Template_method_design_pattern. Ext JS uses the template design pattern to allow developers to specify logic during certain well-defined phases in the component's lifecycle. The initComponent function is probably the most used but there are many other template hooks that can be implemented. A full list of component template functions can be found here: http://docs.sencha.com/extjs/4.2.2/#!/guide/components.
The initComponent function is used to initialize data, set up configurations, and attach event handlers to the component. The recommended usage pattern for this function (or any template function) includes:
	Reference the current scope as a local closured variable using var me = this. Use the me reference everywhere in the function when referring to the object instance. This will help with correct JavaScript closure for complex objects by ensuring me and this refer to the correct object scope.
	Use Ext.applyIf to add class-specific properties to the configuration. Note that we are not using Ext.apply, which will override properties that are already defined; only new properties that do not exist in me will be copied. This ensures that xtype-based configuration properties take precedence.
	Complete the initComponent function by calling the parent function with the supplied arguments using me.callParent(arguments).

These three points outline some advanced concepts that may be a bit beyond the intermediate reader. Don't despair if some of this doesn't make sense yet; follow the design pattern and things will become clearer with experience!

Defining the viewport

The Viewport view uses a vbox layout to split the view into two regions, the header and the main content areas, as shown in the following screenshot:
[image: Defining the viewport]
We could have used a border layout to achieve the same visual result but the vbox layout is a lighter weight component. Only use the border layout if your application needs additional functionality such as expandable/collapsible regions or resizable split views.
The Viewport definition is as follows:
Ext.define('TTT.view.Viewport', {
 extend: 'Ext.container.Viewport',
 cls: 'x-border-layout-ct',
 requires: ['TTT.view.MainHeader', 'TTT.view.MainCards', 'Ext.layout.container.VBox'],
 padding: 5,
 layout: {
 type: 'vbox',
 align: 'stretch'
 },
 items: [{
 xtype: 'mainheader',
 height: 80
 }, {
 xtype: 'maincards',
 flex: 1
 }]
});

There are two views that now need to be defined: one for the main header, the second for the main region card layout.
The MainHeader.js view

The MainHeader defines and positions the 3T logo and buttons as shown in the following code:
Ext.define('TTT.view.MainHeader', {
 extend: 'Ext.container.Container',
 xtype: 'mainheader',
 requires: ['Ext.toolbar.Toolbar'],
 layout: {
 align: 'stretch',
 type: 'hbox'
 },
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'container',
 cls: 'logo',
 width: 300
 }, {
 xtype: 'toolbar',
 flex: 1,
 ui: 'footer',
 layout: {
 pack: 'end',
 padding: '20 20 0 0',
 type: 'hbox'
 },
 items: [{
 xtype: 'button',
 itemId: 'taskLogsBtn',
 iconCls: 'tasklog',
 text: 'Task Logs'
 }, {
 xtype: 'button',
 itemId: 'taskAdminBtn',
 iconCls: 'admin',
 hidden: !TTT.getApplication().isAdmin(),
 text: '3T Admin'
 }, {
 xtype: 'button',
 itemId: 'userAdminBtn',
 hidden: !TTT.getApplication().isAdmin(),
 iconCls: 'users',
 text: 'Users'
 }, '->',
 {
 xtype: 'button',
 itemId: 'logoffBtn',
 iconCls: 'logoff',
 text: 'Logoff'
 }]
 }]
 });
 me.callParent(arguments);
 }
});

Each button defines an itemId property to help uniquely identify the button when using selectors in the controller. The two administrative buttons use the hidden property to hide the button if the user is not an administrator. The TTT.getApplication().isAdmin() function has not been defined as yet but this will be added to the Application.js function in the section ahead.

The MainCards.js file

The MainCards component is a card layout container that holds all the components that will be rendered in the main content area as shown in the following code:
Ext.define('TTT.view.MainCards', {
 extend: 'Ext.container.Container',
 xtype: 'maincards',
 requires: ['Ext.layout.container.Card', 'TTT.view.Welcome', 'TTT.view.user.ManageUsers'],
 layout: 'card',
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'welcome',
 itemId: 'welcomCard'
 }, {
 xtype: 'manageusers',
 itemId: 'manageUsersCard'
 }]
 });
 me.callParent(arguments);
 }
});

We will be adding items to the MainCards as we build our functionality. For this chapter we will focus on the Welcome and ManageUsers components.

Defining the Welcome panel

The Welcome panel uses an XTemplate to render a simple welcome message based on the logged-on user. The user data is retrieved from the application using the TTT.getApplication().getUser() function that will be added to the Application.js function after a successful logon.
Ext.define('TTT.view.Welcome', {
 extend: 'Ext.panel.Panel',
 xtype: 'welcome',
 requires: ['Ext.XTemplate'],
 initComponent: function() {
 var me = this;
 var tpl = new Ext.XTemplate('<tpl for=".">', '<p>Welcome {fullName}!</p>', '<p>You are logged on as {username} [{email}]</p>', '</tpl>');
 var welcomeHtml = tpl.apply(TTT.getApplication().getUser());
 Ext.applyIf(me, {
 items: [{
 xtype: 'container',
 padding: 10,
 html: welcomeHtml
 }]
 });
 me.callParent(arguments);
 }
});

Defining the user management components

The user management interface consists of three view files as shown in the following screenshot:
[image: Defining the user management components]
In addition to the views we will also need to define a user store that manages the data displayed in the user listing.
The ManageUsers.js file

The ManageUsers file is a simple hbox layout that displays the UserList and UserForm. The toolbar contains the single Add User button. This file has a very simple definition, which is as follows:
Ext.define('TTT.view.user.ManageUsers', {
 extend: 'Ext.panel.Panel',
 xtype: 'manageusers',
 requires: ['Ext.toolbar.Toolbar', 'TTT.view.user.UserList', 'TTT.view.user.UserForm'],
 layout: {
 type: 'hbox',
 align: 'stretch'
 },
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 xtype: 'button',
 itemId: 'addUserBtn',
 iconCls: 'addnew',
 text: 'Add user'
 }]
 }],
 items: [{
 xtype: 'userlist',
 width: 400,
 margin: 1
 }, {
 xtype: 'userform',
 flex: 1
 }]
 });
 me.callParent(arguments);
 }
});

The UserForm.js file

This UserForm.js file displays the user details as shown in the following code:
Ext.define('TTT.view.user.UserForm', {
 extend: 'Ext.form.Panel',
 xtype: 'userform',
 requires: ['Ext.form.FieldSet', 'Ext.form.field.Radio', 'Ext.form.RadioGroup', 'Ext.toolbar.Toolbar'],
 layout: {
 type: 'anchor'
 },
 bodyPadding: 10,
 border: false,
 autoScroll: true,
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'fieldset',
 padding: 10,
 width: 350,
 fieldDefaults: {
 anchor: '100%'
 },
 title: 'User',
 items: [{
 xtype: 'textfield',
 name: 'username',
 fieldLabel: 'Username'
 }, {
 xtype: 'textfield',
 name: 'firstName',
 fieldLabel: 'First Name'
 }, {
 xtype: 'textfield',
 name: 'lastName',
 fieldLabel: 'Last Name'
 }, {
 xtype: 'textfield',
 name: 'email',
 fieldLabel: 'Email'
 }, {
 xtype: 'textfield',
 name: 'password',
 inputType: 'password',
 fieldLabel: 'Password'
 }, {
 xtype: 'radiogroup',
 fieldLabel: 'Administrator',
 items: [{
 boxLabel: 'Yes',
 name: 'adminRole',
 inputValue: 'Y'
 }, {
 boxLabel: 'No',
 name: 'adminRole',
 inputValue: 'N'
 }]
 }, {
 xtype: 'toolbar',
 ui: 'footer',
 layout: {
 pack: 'end',
 type: 'hbox'
 },
 items: [{
 xtype: 'button',
 itemId: 'deleteBtn',
 iconCls: 'delete',
 text: 'Delete'
 }, {
 xtype: 'button',
 itemId: 'saveBtn',
 iconCls: 'save',
 text: 'Save'
 }]
 }]
 }]
 });
 me.callParent(arguments);
 }
});

Each button has an itemId property defined to allow us to uniquely identify them in the controller. Each field name in the form exactly matches the field name in the User model defined in the previous chapter. This will allow us to easily load a user model instance into the form.

The UserList.js file

The UserList file is a grid panel with the following definition:
Ext.define('TTT.view.user.UserList', {
 extend: 'Ext.grid.Panel',
 xtype: 'userlist',
 store: 'User',
 title: 'User List',
 viewConfig: {
 markDirty: false,
 stripeRows: false
 },
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 tools: [{
 type: 'refresh',
 tooltip: 'Refresh user list'
 }],
 columns: [{
 xtype: 'gridcolumn',
 dataIndex: 'username',
 flex: 1,
 text: 'Username'
 }, {
 xtype: 'gridcolumn',
 dataIndex: 'firstName',
 flex: 1,
 text: 'First Name'
 }, {
 xtype: 'gridcolumn',
 flex: 1,
 dataIndex: 'lastName',
 text: 'Last Name'
 }, {
 xtype: 'gridcolumn',
 flex: 2,
 dataIndex: 'email',
 text: 'Email'
 }]
 });
 me.callParent(arguments);
 }
});

The grid columns use the flex config property to define the relative width of each column. The email column will hence be twice the width of the other columns.
The markDirty:false in the viewConfig is used to remove the dirty cell indicator when a cell value is modified. Without this property the grid would render changed cell values as shown, even after the record has been successfully saved:
[image: The UserList.js file]
The User store is yet to be defined, so let's add it now.

The User store

The User store loads users from the ttt/user/findAll.json URL. which is mapped to the UserHandler.findAll method. Readers should recall that the ttt/ prefix URL corresponds to the servlet mapping specified in the com.gieman.tttracker.web.WebApp.getServletMappings() method in Chapter 7, The Web Request Handling Layer. Each user record in the JSON array will result in the creation of a TTT.model.User model instance. The store definition is explained in the following code:
Ext.define('TTT.store.User', {
 extend: 'Ext.data.Store',
 requires: ['TTT.model.User'],
 model: 'TTT.model.User',
 proxy: {
 type: 'ajax',
 url: 'ttt/user/findAll.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 }
});

The User model was defined in the previous chapter and currently looks like the following:
Ext.define('TTT.model.User', {
 extend: 'Ext.data.Model',

 fields: [
 { name: 'username', type: 'string' },
 { name: 'firstName', type: 'string' },
 { name: 'lastName', type: 'string' },
 { name: 'fullName', type: 'string' },
 { name: 'email', type: 'string' },
 { name: 'password', type: 'string' },
 { name: 'adminRole', type: 'string' }
]
});

Ext JS 4 models are a key part of the MVC framework and we will now spend some time learning about these important objects.

Models and persistence

Ext JS 4 models are similar to JPA entities in that they define data fields that represent columns in the underlying database tables. Each model instance represents a row in the table. The primary key field is defined using the idProperty of the model, which must match one of the field names. The User model can now be updated as shown:
Ext.define('TTT.model.User', {
 extend: 'Ext.data.Model',

 fields: [
 { name: 'username', type: 'string' },
 { name: 'firstName', type: 'string' },
 { name: 'lastName', type: 'string' },
 { name: 'fullName', type: 'string' },
 { name: 'email', type: 'string' },
 { name: 'password', type: 'string' },
 { name: 'adminRole', type: 'string' }
],
 idProperty: 'username'
});

Defining the proxy

Each model can be made persistent aware by configuring an appropriate proxy. All loading and saving of data is then handled by the proxy when the load, save, or destroy method on the model is called. There are several different types of proxies but the most widely used is the Ext.data.ajax.Proxy (alternate name Ext.data.AjaxProxy). The AjaxProxy uses AJAX requests to read and write data from the server. Requests are sent as GET or POST methods depending on the operation.
A second useful proxy is Ajax.data.RestProxy. The RestProxy is a specialization of the AjaxProxy that maps the four CRUD actions to the appropriate RESTful HTTP methods (GET, POST, PUT, and DELETE). The RestProxy would be used when connecting to RESTful web services. Our application will use AjaxProxy.
The User model definition including proxy follows:
Ext.define('TTT.model.User', {
 extend: 'Ext.data.Model',

 fields: [
 { name: 'username', type: 'string' },
 { name: 'firstName', type: 'string' },
 { name: 'lastName', type: 'string' },
 { name: 'fullName', type: 'string', persist:false },
 { name: 'email', type: 'string' },
 { name: 'password', type: 'string' },
 { name: 'adminRole', type: 'string' }
],
 idProperty: 'username',
 proxy: {
 type: 'ajax',
 idParam:'username',
 api:{
 create:'ttt/user/store.json',
 read:'ttt/user/find.json',
 update:'ttt/user/store.json',
 destroy:'ttt/user/remove.json'
 },
 reader: {
 type: 'json',
 root: 'data'
 },
 writer: {
 type: 'json',
 allowSingle:true,
 encode:true,
 root:'data',
 writeAllFields: true
 }
 }
});

The proxy is defined as type ajax and specifies the primary key field in the model with the idParam property. The idParam is used when generating the URL for the read operation. For example, if trying to load the user record with username bjones, the proxy would generate a URL as follows:
ttt/user/find.json?username=bjones
If the idParam property was omitted, the URL generated would be as follows:
ttt/user/find.json?id=bjones
The api properties define the URLs to call on CRUD action methods. Each URL maps to an appropriate handler method in UserHandler. Note that the update and create URLs are the same as both actions are handled by the UserHandler.store method.
It is important to note that the AjaxProxy read operation uses a GET request while all other operations use POST requests. This is different from the RestProxy method, which uses a different request method for each operation.

Comparing AJAX and REST proxies

Our request handling layer has been designed to consume AJAX requests in a format submitted by Ext JS 4 clients. Each handler that processes an update action is configured with RequestMethod.POST and expects a data parameter that holds the JSON object applicable to the action.
We could have implemented the request handling layer as a RESTful API where each method is mapped to an appropriate request method type (GET, POST, PUT, or DELETE). Implementing a delete action would then encode the id of the item in the URL of a DELETE submitted request. Deleting the bjones user, for example, could be achieved by submitting a DELETE request method URL as follows:
user/bjones
The UserHandler.remove method could then be defined as:
@RequestMapping(value = "/user/{username}",
method=RequestMethod.DELETE)
@ResponseBody
public String remove(final @PathVariable String username, final HttpServletRequest request) {
// code continues…

The @PathVariable extracts the username (in our sample URL this is bjones) from the URL, which is then used in the call to the userService.remove method. The @RequestMapping method of RequestMethod.DELETE ensures the method is only executed when a DELETE request matching the URL path of /user/{username} is submitted.
The RESTful API is a specific style of using HTTP that encodes the item you want to retrieve or manipulate in the URL itself (via its ID) and encodes what action you want to perform on it in the HTTP method used (GET for retrieving, POST for changing, PUT for creating, DELETE for deleting). The Rest proxy in Ext JS is a specialization of the AjaxProxy that simply maps the four CRUD actions to their RESTful HTTP equivalent method.
There is no significant difference in implementing either the AJAX or REST alternative in Ext JS 4. Configuring the proxy with type:'ajax' or type:'rest' is all that is required. The request handling layer, however, would need to be implemented in a very different way to process the @PathVariable parameters. We prefer the AJAX implementation for the following reasons:
	REST has traditionally been used for server-to-server communication, most notably in web services, and not for browser-server interactions.
	The URLs for CRUD AJAX requests are unique and become self-documenting.
	The 3T application is not a web service and is based on HTML 5.
	The HTML 5 specification no longer supports PUT and DELETE as HTTP methods for form elements (see http://www.w3.org/TR/2010/WD-html5-diff-20101019/#changes-2010-06-24).
	REST is not a flexible solution and is usually based around atomic actions (one item processed per request). AJAX and Ext JS combine to allow more complex interactions with bulk updating possible (many updates in a single request are possible for all create, update, and destroy URLs. This will be explained later in the Defining the writer section).
	PUT and DELETE requests are often considered a security risk (in addition to OPTIONS, TRACE, and CONNECT methods) and are often disabled in enterprise web application environments. Applications that specifically require these methods (for example, web services) usually expose these URLs to a limited number of trusted users under secure conditions (usually with SSL certificates).

There is no definitive or compelling reason to use AJAX over REST or vice versa. In fact the online discussions around when to use REST over AJAX are quite extensive, and often very confusing. We have chosen what we believe to be is the simplest and most flexible implementation by using AJAX without the need for REST.

Defining the reader

The reader with type json instantiates a Ext.data.reader.Json instance to decode the server's response to an operation. It reads the JSON data node (identified by the root property of the reader) and populates the field values in the model. Executing a read operation for the User model using ttt/user/find.json?username=bjones will return:
{
 success: true,
 data: {
 "username": "bjones",
 "firstName": "Betty",
 "lastName": "Jones",
 "fullName": "Betty Jones",
 "email": "bj@tttracker.com",
 "adminRole": "Y"
 }
}

The reader will then parse the JSON file and set the corresponding field values on the model.

Defining the writer

The writer with type json instantiates an Ext.data.writer.Json instance to encode any request sent to the server in the JSON format. The
encode:true property combines with the root property to define the HTTP request parameter that holds the JSON data. This combination ensures that a single request parameter with name data will hold the JSON representation of the model. For example, saving the previous bjones user record will result in a request being submitted with one parameter named data holding the following string:
{
 "username": "bjones",
 "firstName": "Betty",
 "lastName": "Jones",
 "email": "bj@tttracker.com",
 "password": "thepassword",
 "adminRole": "Y"
}

It should be noted that this representation is formatted for readability; the actual data will be a string of characters on one line. This representation is then parsed into a JsonObject in the UserHandler.store method:
JsonObject jsonObj = parseJsonObject(jsonData);

The appropriate jsonObject values are then extracted as required.
The writeAllFields property will ensure that all fields in the model are sent in the request, not just the modified fields. Our handler methods require all model fields to be present. However, note that we have added the persist:false property to the fullName field. This field is not required as it is not a persistent field in the User domain object.
The final writer property that needs explanation is allowSingle:true. This is the default value and ensures a single record is sent without a wrapping array. If your application performs bulk updates (multiple records are sent in the same single request) then you will need to set this property to false. This would result in single records being sent within an array, as shown in the following code:
[{
 "username": "bjones",
 "firstName": "Betty",
 "lastName": "Jones",
 "email": "bj@tttracker.com",
 "password": "thepassword",
 "adminRole": "Y"
}]

The 3T application does not implement bulk updates and always expects a single JSON record to be sent in each request.

Defining validations

Each model has built-in support for validating field data. The core validation functions include checks for presence, length, inclusion, exclusion, format (using regular expressions), and email. A model instance can be validated by calling the validate function, which returns an Ext.data.Errors object. The errors object can then be tested to see if there are any validation errors.
The User model validations are as follows:
validations: [
 {type: 'presence', field: 'username'},
 {type: 'length', field: 'username', min: 4},
 {type: 'presence', field: 'firstName'},
 {type: 'length', field: 'firstName', min: 2},
 {type: 'presence', field: 'lastName'},
 {type: 'length', field: 'lastName', min: 2},
 {type: 'presence', field: 'email'},
 {type: 'email', field: 'email'},
 {type: 'presence', field: 'password'},
 {type: 'length', field: 'password', min: 6},
 {type: 'inclusion', field: 'adminRole', list:['Y','N']}
]

The presence validation ensures that a value is present for the field. The length validation checks for field size. Our validations require a minimum password size of six characters and a minimum username of four characters. First and last names have a minimum size of two characters. The inclusion validation tests to ensure the field value is one of the entries in the defined list. As a result, our adminRole value must be either a Y or N. The email validation ensures the e-mail field has a valid e-mail format.
The final code listing for our User model can now be defined as:
Ext.define('TTT.model.User', {
 extend: 'Ext.data.Model',

 fields: [
 { name: 'username', type: 'string' },
 { name: 'firstName', type: 'string' },
 { name: 'lastName', type: 'string' },
 { name: 'fullName', type: 'string', persist:false },
 { name: 'email', type: 'string' },
 { name: 'password', type: 'string' },
 { name: 'adminRole', type: 'string' }
],
 idProperty: 'username',
 proxy: {
 type: 'ajax',
 idParam:'username',
 api:{
 create:'ttt/user/store.json',
 read:'ttt/user/find.json',
 update:'ttt/user/store.json',
 destroy:'ttt/user/remove.json'
 },
 reader: {
 type: 'json',
 root: 'data'
 },
 writer: {
 type: 'json',
 allowSingle:true,
 encode:true,
 root:'data',
 writeAllFields: true
 }
 },
 validations: [
 {type: 'presence', field: 'username'},
 {type: 'length', field: 'username', min: 4},
 {type: 'presence', field: 'firstName'},
 {type: 'length', field: 'firstName', min: 2},
 {type: 'presence', field: 'lastName'},
 {type: 'length', field: 'lastName', min: 2},
 {type: 'presence', field: 'email'},
 {type: 'email', field: 'email'},
 {type: 'presence', field: 'password'},
 {type: 'length', field: 'password', min: 6},
 {type: 'inclusion', field: 'adminRole', list:['Y','N']}
]
});

Controlling the Logon and Viewport actions

We are now ready to define the MainController that will be used to process the core application actions. These include logging on, logging off, and clicking on the header buttons to display the different management panels in the main content area.
The MainController.js file

The MainController.js definition is as the following code:
Ext.define('TTT.controller.MainController', {
 extend: 'Ext.app.Controller',
 requires: ['Ext.window.MessageBox'],
 views: ['TTT.view.MainHeader', 'TTT.view.MainCards', 'TTT.view.LogonWindow'],
 refs: [{
 ref: 'mainCards',
 selector: 'maincards'
 }, {
 ref: 'usernameField',
 selector: 'logonwindow textfield[name=username]'
 }, {
 ref: 'passwordField',
 selector: 'logonwindow textfield[name=password]'
 }],
 init: function(application) {
 this.control({
 'mainheader button': {
 click: this.doHeaderButtonClick
 },
 'logonwindow button': {
 click: this.doLogon
 }
 });
 },
 doHeaderButtonClick: function(button, e, options) {
 var me = this;
 if (button.itemId === 'userAdminBtn') {
 me.getMainCards().getLayout().setActiveItem('manageUsersCard');
 } else if (button.itemId === 'taskAdminBtn') {
 me.getMainCards().getLayout().setActiveItem('manageTasksCard');
 } else if (button.itemId === 'taskLogsBtn') {
 me.getMainCards().getLayout().setActiveItem('taskLogCard');
 } else if (button.itemId === 'logoffBtn') {
 me.doLogoff();
 }
 },
 doLogon: function() {
 var me = this;
 if (me.getUsernameField().validate() && me.getPasswordField().validate()) {
 Ext.Ajax.request({
 url: 'ttt/security/logon.json',
 params: {
 username: me.getUsernameField().getValue(),
 password: me.getPasswordField().getValue()
 },
 success: function(response) {
 var obj = Ext.JSON.decode(response.responseText);
 if (obj.success) {
 TTT.getApplication().doAfterLogon(obj.data);
 } else {
 Ext.Msg.alert('Invalid Logon', 'Please enter a valid username and password');
 }
 }
 });
 } else {
 Ext.Msg.alert('Invalid Logon', 'Please enter a valid username and password');
 }
 },
 doLogoff: function() {
 Ext.Msg.confirm('Confirm Logout', 'Are you sure you want to log out of 3T?', function(button) {
 if (button === 'yes') {
 Ext.Ajax.request({
 url: 'ttt/security/logout.json',
 success: function() {
 window.location.reload();
 }
 });
 }
 });
 }
});

The MainController is responsible for managing three views as defined in the views configuration array: MainHeader, MainCards, and LogonWindow. Each ref defines a component that is needed by the controller to perform an action. The ref value is used during initialization of the controller to automatically create a getter function that can be used to access the component. In our MainController the ref value mainCards will result in a getMainCards function being created. This function is used in the doHeaderButtonClick function to access the MainCards component.
Note
The name of a function should identify the core purpose of the code it defines. We will prefix all functions that perform actions with do. In our example, it should be clear to any developer what the purpose of the doHeaderButtonClick function is.

The MainController.init() function calls the control() function to configure event handling in the views. The control() function is a convenient method to assign a set of event listeners in one action. The mainheader button selector configures the click event on all button objects in the MainHeader. Whenever a button in the header is clicked the doHeaderButtonClick function is called. This function will then determine which button has been clicked by examining the itemId of the button argument. The appropriate card in the MainCards is then activated.
Note
Note we have added code to display the manageTasksCard and taskLogCard even though they are not currently available. These user interfaces will be developed in the following chapters.

The logonwindow button selector configures the click event on the Logon button of the LogonWindow. The doLogon function is called when the button is clicked to trigger the logon process. This function validates the username and password fields and, if both are valid, submits an AJAX request to authenticate the user. A successful logon will then call the TTT.getApplication().doAfterLogon() function passing the user JSON data as the argument.
The doLogoff function is triggered when the user clicks on the Logout button in the header. A prompt is presented to the user and if confirmed the logout action is processed. This will clear the session in the backend before reloading the browser window and presenting the user with the LogonWindow once again.

Controlling our user views

The glue that links the three user views together is the UserController. It is here that we place all logic for managing user maintenance. You have seen that each view defined earlier is dumb in that there is only presentation logic defined. Actions, validations, and selections are all handled within the UserController and are explained in the following code:
Ext.define('TTT.controller.UserController', {
 extend: 'Ext.app.Controller',
 views: ['user.ManageUsers'],
 refs: [{
 ref: 'userList',
 selector: 'manageusers userlist'
 }, {
 ref: 'userForm',
 selector: 'manageusers userform'
 }, {
 ref: 'addUserButton',
 selector: 'manageusers #addUserBtn'
 }, {
 ref: 'saveUserButton',
 selector: 'manageusers userform #saveBtn'
 }, {
 ref: 'deleteUserButton',
 selector: 'manageusers userform #deleteBtn'
 }, {
 ref: 'userFormFieldset',
 selector: 'manageusers userform fieldset'
 }, {
 ref: 'usernameField',
 selector: 'manageusers userform textfield[name=username]'
 }],
 init: function(application) {
 this.control({
 'manageusers #addUserBtn': {
 click: this.doAddUser
 },  'userlist': {
 itemclick: this.doSelectUser,
 viewready: this.doInitStore
 },
 'manageusers userform #saveBtn': {
 click: this.doSaveUser
 },
 'manageusers userform #deleteBtn': {
 click: this.doDeleteUser
 },
 'manageusers userform': {
 afterrender: this.doAddUser
 },
 'userlist header tool[type="refresh"]': {
 click: this.doRefreshUserList
 }
 });
 },
 doInitStore: function() {
 this.getUserList().getStore().load();
 },
 doAddUser: function() {
 var me = this;
 me.getUserFormFieldset().setTitle('Add New User');
 me.getUsernameField().enable();
 var newUserRec = Ext.create('TTT.model.User', {
 adminRole: 'N'
 });
 me.getUserForm().loadRecord(newUserRec);
 me.getDeleteUserButton().disable();
 },
 doSelectUser: function(grid, record) {
 var me = this;
 me.getUserForm().loadRecord(record);
 me.getUserFormFieldset().setTitle('Edit User ' + record.get('username'));
 me.getUsernameField().disable();
 me.getDeleteUserButton().enable();
 },
 doSaveUser: function() {
 var me = this;
 var rec = me.getUserForm().getRecord();
 if (rec !== null) {
 me.getUserForm().updateRecord();
 var errs = rec.validate();
 if (errs.isValid()) {
 rec.save({
 success: function(record, operation) {
 if (typeof record.store === 'undefined') {
 // the record is not yet in a store
 me.getUserList().getStore().add(record);
 }
 me.getUserFormFieldset().setTitle('Edit User ' + record.get('username'));
 me.getUsernameField().disable();
 me.getDeleteUserButton().enable();
 },
 failure: function(rec, operation) {
 Ext.Msg.alert('Save Failure', operation.request.scope.reader.jsonData.msg);
 }
 });
 } else {
 me.getUserForm().getForm().markInvalid(errs);
 Ext.Msg.alert('Invalid Fields', 'Please fix the invalid entries!');
 }
 }
 },
 doDeleteUser: function() {
 var me = this;
 var rec = me.getUserForm().getRecord();
 Ext.Msg.confirm('Confirm Delete User', 'Are you sure you want to delete user ' + rec.get('fullName') + '?', function(btn) {
 if (btn === 'yes') {
 rec.destroy({
 failure: function(rec, operation) {
 Ext.Msg.alert('Delete Failure', operation.request.scope.reader.jsonData.msg);
 }
 });
 me.doAddUser();
 }
 });
 },
 doRefreshUserList: function() {
 this.getUserList().getStore().load();
 }
});

The UserController is defined with a single view to manage users as shown in the following code:
views: [
 'user.ManageUsers'
]

This allows us to define a set of references using the component query language starting with the manageusers root selector. We can hence reference the save button on the UserForm by the selector:
'manageusers userform #saveBtn'

The #saveBtn refers to the component with itemId saveBtn on the userform within the manageusers component.
Note
Only define references that are used by the controller to process business logic. Do not create a reference for components that are never accessed within your code. Keep your code simple and clean!

The init function defines the listeners that should be processed in the interface. Each button click is matched to an appropriate handler function. The user list itemclick event is handled by the doSelectUser function. The viewready event on the userlist triggers the initial load of the grid's store. Each listener event is handled by a single function with a clear purpose. Let's now examine the core functions in detail.
The doAddUser function

The doAddUser function is called when the Add User button is clicked. We set the title on the form fieldset to display Add New User and then enable the username field as shown in the following code:
me.getUserFormFieldset().setTitle('Add New User');
me.getUsernameField().enable();

We only enable the username field when adding a new user; the username field is not editable for existing users as it represents the primary key. We then create a new User model and load the record into the user form:
var newUserRec = Ext.create('TTT.model.User', {
 adminRole: 'N'
});
me.getUserForm().loadRecord(newUserRec);

At this stage the user form would look like the following screenshot:
[image: The doAddUser function]
The Delete button serves no useful purpose for adding a new user and hence we disable it as shown in the following code:
me.getDeleteUserButton().disable();

This gives us the following Add New User interface as shown in the following screenshot:
[image: The doAddUser function]
We could just as easily have hidden the delete button instead of disabling it; your approach will depend on your client specifications.
The form is now ready for entering a new user.

The doSelectUser function

The doSelectUser function handles the itemclick event on the userlist grid panel. The arguments to this function are the grid itself and the selected record. This makes loading the form with the selected user record a simple task:
var me = this;
me.getUserForm().loadRecord(record);
me.getUserFormFieldset().setTitle('Edit User ' + record.data.username);
me.getUsernameField().disable();
me.getDeleteUserButton().enable();

The fieldset title is changed to reflect the user being edited and the username field is disabled. We also ensure the Delete button is enabled as we require the option to delete an existing record. Clicking on the Betty Jones record in the user list would then display the following screenshot:
[image: The doSelectUser function]
Note
Readers will note that the Password field is empty. This means that saving a user record via the form will require a password to be set. The backend handler method and service layer also require a valid password when saving a user. In the real world this would not be the case; you do not want an administrator changing the password every time they save user details! A Change Password form, perhaps in a pop-up window, would normally trigger a separate AJAX request to change the user's password.

It is now time to code the Save button action.

The doSaveUser function

The doSaveUser function processes the saving of a user record. In most applications the save function will contain the most code as validations and user feedback are important steps in the process.
The first step is to retrieve the user record instance that was loaded in the form as shown in the following code:
var rec = me.getUserForm().getRecord();

If valid, the record is updated with the values entered in the form text fields as shown in the following code:
me.getUserForm().updateRecord();

At this stage the user record will be in sync with the fields entered in the form. This means all fields in the form will have been copied to the model instance. We can now validate the user record as given in the following code:
var errs = rec.validate();

If there are no validation errors, the record is saved using the save() function on the record itself. There are two possible callbacks depending on the returned JSON response. A successful save will trigger the success handler as shown in the following code:
success: function(record, operation) {
 if (typeof record.store === 'undefined') {
 // the record is not yet in a store
 me.getUserList().getStore().add(record);
 // select the user in the grid
 me.getUserList().getSelectionModel().select(record,true);
 }
 me.getUserFormFieldset().setTitle('Edit User ' + record.data.username);
 me.getUsernameField().disable();
 me.getDeleteUserButton().enable();
}

The success callback will check if the record exists in the store. If not, the record is added to the User store and selected in the user list. The Delete button will then be enabled and the fieldset title set appropriately.
The failure action will simply inform the user of the cause as shown in the following code:
failure: function(rec, operation) {
 Ext.Msg.alert('Save Failure', operation.request.scope.reader.jsonData.msg);
}

If there are errors encountered during validation, we mark the invalid fields and display a generic error message as shown in the following code:
me.getUserForm().getForm().markInvalid(errs);
Ext.Msg.alert('Invalid Fields', 'Please fix the invalid entries!');

Trying to save a user record without a valid e-mail or password would then display a message as follows:
[image: The doSaveUser function]

The doDeleteUser function

The final handler processes the delete action. The doDeleteUser function prompts the user for confirmation before triggering the destroy function on the record if required:
Ext.Msg.confirm('Confirm Delete User', 'Are you sure you want to delete user ' + rec.data.fullName + '?', function(btn) {
 if (btn === 'yes') {
 rec.destroy({
 failure: function(rec, operation) {
 Ext.Msg.alert('Delete Failure', operation.request.scope.reader.jsonData.msg);
 }
 });
 me.doAddUser();
 }
});

The User store will automatically remove the successfully destroyed user model from the store itself. Any failure will inform the user of the reason. Attempting to delete the record for John Smith will result in the message shown in the following code:
[image: The doDeleteUser function]
Where is this message coming from? It is generated in the service layer UserServiceImpl.remove method that was coded when implementing the business logic for the delete action. What about trying to delete the currently logged-on user? This will result in the following message:
[image: The doDeleteUser function]
Once again this is coming from the service layer business logic.

Let's log on!

It is now time to enable our controllers and test the functionality. Update the Application.js file as displayed in the following code:
Ext.define('TTT.Application', {
 name: 'TTT',
 extend: 'Ext.app.Application',
 requires: ['TTT.view.Viewport', 'TTT.view.LogonWindow'],
 models: ['User'],
 controllers: ['MainController', 'UserController'],
 stores: ['User'],
 init: function(application){
 TTT.URL_PREFIX = 'ttt/';
 Ext.Ajax.on('beforerequest', function(conn, options, eOpts){
 options.url = TTT.URL_PREFIX + options.url;
 });
 },
 launch: function() {
 var me = this;
 TTT.console = function(output) {
 if (typeof console !== 'undefined') {
 console.info(output);
 }
 };
 me.logonWindow = Ext.create('TTT.view.LogonWindow');
 me.logonWindow.show();
 },
 doAfterLogon: function(userObj) {
 TTT.console(userObj);
 var me = this;
 me.getUser = function() {
 return userObj;
 };
 me.isAdmin = function() {
 return userObj.adminRole === 'Y';
 };
 Ext.create('TTT.view.Viewport');
 me.logonWindow.hide();
 }
});

The Application.js represents the entire application and defines all components bundled in the application (models, stores, and controllers). Note that views are not listed here as they are managed by the controllers directly.
We have defined a requires array containing the TTT.view.LogonWindow and TTT.view.Viewport classes. Although this is strictly not essential, as these definitions also reside in the appropriate controllers, it is considered best practice to always include requires entries for all Ext.create() function calls in the class. We create both the TTT.view.LogonWindow and TTT.view.Viewport using Ext.create(), so have included these in the requires list.
Our controllers array contains the MainController and UserController as expected. We have also added the User model as this is the only model we currently need. Likewise the User store has been added to the stores array.
The init function is a template method that is called when the application boots. We have added code to the Ext.Ajax beforerequest event to prefix all URLs with the servlet path configured in the com.gieman.tttracker.web.WebApp.getServletMappings() method; this is shown in the following code:
protected String[] getServletMappings() {
 return new String[]{
 "/ttt/*"
 };
}

The ttt/ prefix is added to each Ext.Ajax request URL to ensure the correct mapping to the request handling layer. Without this beforerequest event code each URL would need to be prefixed with ttt as we have already coded in the User model api, the User store URL, and the Ajax.request URLs for logon actions in the MainController. We can now omit the ttt/ prefix in all URLs that access servlet resources. The User model api can now be changed to the following code:
api:{
 create: 'user/store.json',
 read: 'user/find.json',
 update: 'user/store.json',
 destroy: 'user/remove.json'
}

In a similar way we can now remove the ttt/ prefix from the User store and MainController.doLogon/Logoff URLs.
Note
This technique of using the beforerequest event to prefix all Ajax URLs may only be used for simple projects that consume resources from a single mapped servlet. If multiple mappings are used, a different strategy would need to be implemented.

The launch function is another template method called when the page is ready and all JavaScript has been loaded. The TTT.console function defines a lightweight logger that sends the output to the browser console, if available. It is not a replacement for the Ext.log() function but is simpler to use. We encourage you to use the TTT.console function liberally to analyze your code and debug processing.
The final step in the launch function creates and assigns the LogonWindow instance to the application scoped variable logonWindow. This will display the logon window when the application is loaded.
The doAfterLogon function is used to postprocess the successful logon and initialises the application environment. The doAfterLogon argument is the JSON data object returned after a successful logon and has the following structure:
{
 "username": "bjones",
 "firstName": "Betty",
 "lastName": "Jones",
 "fullName": "Betty Jones",
 "email": "bj@tttracker.com",
 "adminRole": "Y"
}

This function will create two helper functions that can be called by any component to retrieve user details and to test if the user is an administrator. An example of calling these functions in code has already been shown in the MainHeader.js. The TTT namespace is used to access the application functions via TTT.getApplication().isAdmin() and TTT.getApplication().getUser().
The final step in the doAfterLogon process is to create the application viewport and hide the logon window. We will be calling the doAfterLogon function, strangely enough, after we have successfully logged on!
Run the application and test the logon screen with username bjones and password admin. You should see the interface with all header buttons enabled, as Betty Jones is an admin user:
[image: Let's log on!]
Test the logon screen with username jsmith and password admin. You should see the interface without the admin buttons, as John Smith is a normal user:
[image: Let's log on!]
Try clicking on the Logoff button. You should be prompted with a confirmation window as shown:
[image: Let's log on!]
Selecting the Yes option will trigger the MainController.doLogoff function to log out the user and reload the browser to display the LogonWindow again.

Let's maintain users

Log on as the bjones user and click on the Users button. The following screen will be displayed:
[image: Let's maintain users]
Enter the letter A in all fields and click the Save button. The Invalid Fields message will then be displayed:
[image: Let's maintain users]
Enter valid entries (remembering the validation rules!) and click the Save button. The new user record should then be added to the user list:
[image: Let's maintain users]
You can now try to delete and update users to test the different functions you have written. There is a lot of activity hidden from view when you are performing such tests. You can open the JavaScript console appropriate for your browser (Safari Web Inspector, Firefox Firebug, Chrome Developer Tools, or the generic Fiddler http://fiddler2.com/get-fiddler) to inspect the requests being sent. Try logging on again as bjones, clicking on the Users button, adding a new user, and then deleting this new user. You will see the following requests being sent to the server:
[image: Let's maintain users]
Liberal use of TTT.console() in your functions will also help in debugging properties and application state. Adding the statement TTT.console(userObj); to the first line of the Application.js doAfterLogon(userObj) function will output the following to the console after a successful logon:
[image: Let's maintain users]
Take your time to test and experiment with the different functions you have written. We have covered a lot of concepts in this chapter!

Summary

This chapter has introduced Ext JS 4 view and controller concepts, building the logon window, and user maintenance interfaces. We have also introduced key model concepts including persistence and validations. The pieces of the puzzle have finally fallen into place, with our frontend actions interacting with backend business logic. Chapter 11, Building the Task Log User Interface, will continue to enhance our understanding of Ext JS 4 components as we implement the Task Log user interface.

Chapter 11. Building the Task Log User Interface

The task log user interface allows users to keep track of the time spent on different tasks. This interface allows task log searching and data entry. A user will be able to:
	Search for task logs within a specified time period
	Sort the list of task log entries
	Edit existing task logs
	Add new task log entries
	View the total time spent on tasks within a time period

The interface we will be building looks like the following screenshot:
[image: Building the Task Log User Interface]
The Start Date and End Date fields are prefilled with the current month's start and end dates. Clicking on the Search button will trigger a search and fill the Task Logs grid with matching records. Clicking on a record from the list will open the item in the Edit Task Log For {task name} form. Clicking on the Add New button in the toolbar will clear the task log form fields and set the title to Add Task Log. Let's now look at these actions in detail.
Task log workflows and layouts

Searching for task logs will require a valid start and end date. An appropriate message will be displayed if either field is missing after clicking on the Search button:
[image: Task log workflows and layouts]
Selecting a task log item from the list will open the record in the Edit Task Log For Testing form. The Project dropdown in the task log form will display the company name in addition to the project name when the list is shown:
[image: Task log workflows and layouts]
The selection of a Project from this list will filter the tasks displayed in the Task combobox:
[image: Task log workflows and layouts]
If a Project that has no assigned tasks is selected, the following message is displayed:
[image: Task log workflows and layouts]
Adding a new task log will preserve the currently selected Date and Project, if present:
[image: Task log workflows and layouts]
Deleting a task log will ask the user to confirm their action:
[image: Task log workflows and layouts]
Note
This should be the standard practice for all deletions when developing enterprise projects; never delete a record without first confirming the action with the user!

Selecting Yes will delete the task log record and remove the record from the search results.

Building our task log views

The task log user interface contains a variety of different components including date pickers and combo boxes. We will implement the UI by dividing the screen into three views. The outermost ManageTaskLogs view will contain a toolbar and define a border layout to hold the TaskLogList and TaskLogForm views:
[image: Building our task log views]
The ManageTaskLogs.js file

We have chosen the border layout for this view to allow resizing of the TaskLogForm view that is initially fixed to a width of 400px in the east region. The ManageTaskLogs definition is as follows:
Ext.define('TTT.view.tasklog.ManageTaskLogs', {
 extend: 'Ext.panel.Panel',
 xtype: 'managetasklogs',
 requires: ['Ext.toolbar.Toolbar', 'Ext.layout.container.Border', 'Ext.form.field.Date', 'TTT.view.tasklog.TaskLogList', 'TTT.view.tasklog.TaskLogForm'],
 layout: {
 type: 'border'
 },
 initComponent: function() {
 var me = this;
 var now = new Date();
 Ext.applyIf(me, {
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 xtype: 'datefield',
 labelAlign: 'right',
 name: 'startDate',
 format: 'd-M-Y',
 fieldLabel: 'Start Date',
 value: Ext.Date.getFirstDateOfMonth(now),
 width: 180,
 labelWidth: 70
 }, {
 xtype: 'datefield',
 labelAlign: 'right',
 name: 'endDate',
 format: 'd-M-Y',
 fieldLabel: 'End Date',
 value: Ext.Date.getLastDateOfMonth(now),
 width: 180,
 labelWidth: 70
 }, {
 xtype: 'button',
 iconCls: 'search',
 itemId: 'searchBtn',
 text: 'Search'
 }, {
 xtype: 'button',
 iconCls: 'addnew',
 itemId: 'addTaskLogBtn',
 text: 'Add New'
 }]
 }],
 items: [{
 xtype: 'taskloglist',
 region: 'center',
 margin: 1
 }, {
 xtype: 'tasklogform',
 region: 'east',
 split: true,
 width: 400
 }]
 });
 me.callParent(arguments);
 }
});

This class is defined in the view.tasklog namespace. You will need to create the view/tasklog sub directory before adding the ManageTaskLogs.js file.
The date fields are initialized with the start and end dates of the current month using the Ext.Date.getFirstDateOfMonth() and Ext.Date.getLastDateOfMonth() functions. Manipulating the dates is a common task in Ext JS 4 development, and there are many helpful functions in the Ext.Date class that make such tasks easy.
The TaskLogList view has been placed in the center region of the border layout, while the TaskLogForm view has been given an initial fixed width of 400 in the east region. This will ensure that larger screen resolutions scale the task log list to give a balanced view. A screen width of 1200px would hence show the following layout:
[image: The ManageTaskLogs.js file]
The border layout also allows resizing of the TaskLogForm view should the user wish to increase the width of the data entry fields.

The TaskLogForm.js file

The TaskLogForm view is used to display a task log record:
Ext.define('TTT.view.tasklog.TaskLogForm', {
 extend: 'Ext.form.Panel',
 xtype: 'tasklogform',
 requires: ['Ext.form.FieldSet', 'Ext.form.field.ComboBox', 'Ext.form.field.Date', 'Ext.form.field.Number', 'Ext.form.field.TextArea', 'Ext.toolbar.Toolbar'],
 layout: {
 type: 'anchor'
 },
 bodyPadding: 10,
 border: false,
 autoScroll: true,
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'fieldset',
 hidden: true,
 padding: 10,
 fieldDefaults: {
 anchor: '100%'
 },
 title: 'Task Log Entry',
 items: [{
 xtype: 'combobox',
 name: 'project',
 fieldLabel: 'Project',
 queryMode: 'local',
 store: 'Project',
 valueField: 'idProject',
 listConfig: {
 minWidth: 300
 },
 tpl: Ext.create('Ext.XTemplate', '<tpl for=".">', '<div class="x-boundlist-item">{companyName}: {projectName}</div>', '</tpl>'),
 displayTpl: Ext.create('Ext.XTemplate', '<tpl for=".">', '{projectName}', '</tpl>')
 }, {
 xtype: 'combobox',
 name: 'idTask',
 fieldLabel: 'Task',
 displayField: 'taskName',
 queryMode: 'local',
 store: 'Task',
 valueField: 'idTask'
 }, {
 xtype: 'datefield',
 name: 'taskLogDate',
 format: 'd-M-Y',
 fieldLabel: 'Date'
 }, {
 xtype: 'numberfield',
 name: 'hours',
 minValue: 0,
 decimalPrecision: 2,
 itemId: 'taskHours',
 fieldLabel: 'Hours'
 }, {
 xtype: 'textareafield',
 height: 100,
 name: 'taskDescription',
 fieldLabel: 'Description',
 emptyText: 'Enter task log description here...'
 }, {
 xtype: 'toolbar',
 ui: 'footer',
 layout: {
 pack: 'end',
 type: 'hbox'
 },
 items: [{
 xtype: 'button',
 iconCls: 'delete',
 itemId: 'deleteBtn',
 disabled: true,
 text: 'Delete'
 }, {
 xtype: 'button',
 iconCls: 'save',
 itemId: 'saveBtn',
 text: 'Save'
 }]
 }]
 }]
 });
 me.callParent(arguments);
 }
});

The Project combobox defines two different templates: one for rendering the list and one for rendering the selected item text. The tpl property combines the company name and project name for display in the dropdown:
[image: The TaskLogForm.js file]
When an item is selected, only the project name is shown as rendered by the displayTpl template.

The TaskLogList.js file

The TaskLogList view is defined as:
Ext.define('TTT.view.tasklog.TaskLogList', {
 extend: 'Ext.grid.Panel',
 xtype: 'taskloglist',
 viewConfig: {
 markDirty: false,
 emptyText: 'There are no task log records to display...'
 },
 title: 'Task Logs',
 store: 'TaskLog',
 requires: ['Ext.grid.feature.Summary', 'Ext.grid.column.Date', 'Ext.util.Point'],
 features: [{
 ftype: 'summary',
 dock: 'bottom'
 }],
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 columns: [{
 xtype: 'datecolumn',
 dataIndex: 'taskLogDate',
 format: 'd-M-Y',
 width: 80,
 text: 'Date'
 }, {
 xtype: 'gridcolumn',
 dataIndex: 'taskName',
 text: 'Task'
 }, {
 xtype: 'gridcolumn',
 dataIndex: 'taskDescription',
 flex: 1,
 text: 'Description',
 summaryType: 'count',
 summaryRenderer: function(value, summaryData, dataIndex) {
 return Ext.String.format('<div style="font-weight:bold;text-align:right;">{0} Records, Total Hours:</div>', value);
 }
 }, {
 xtype: 'gridcolumn',
 dataIndex: 'taskMinutes',
 width: 80,
 align: 'center',
 text: 'Hours',
 summaryType: 'sum',
 renderer: function(value, metaData, record) {
 return record.get('hours');
 },
 summaryRenderer: function(value, summaryData, dataIndex) {
 var valHours = value / 60;
 return Ext.String.format('{0}', valHours);
 }
 }]
 });
 me.callParent(arguments);
 }
});

The viewConfig properties are used to create an instance of the Ext.grid.View class, which provides a grid-specific view functionality. We will be performing updates on a per record basis, not by using batch updates via the store. The markDirty:false property will ensure that the records saved successfully are not rendered with the dirty flag in the grid. If a task log search returns no records, the emptyText value will be displayed in the grid to give the user immediate feedback.
The TaskLogList view uses the summary feature to display a total row containing the Records count and Total Hours displayed in the search listing. The summaryType and summaryRender definitions are used to configure the feature displayed in the footer of the taskDescription and taskMinutes columns. The summary value may be one of count, sum, min, max, or average, of which we are using the count and sum values. More information about the summary feature can be found at http://docs.sencha.com/extjs/4.2.2/#!/api/Ext.grid.feature.Summary. The following screenshot displays the summary feature in use:
[image: The TaskLogList.js file]
There is also some code to note in the column representing the hours of work assigned to the task:
{
 xtype: 'gridcolumn',
 dataIndex: 'taskMinutes',
 width:80,
 align:'center',
 text: 'Hours',
 summaryType:'sum',
 renderer:function(value, metaData, record){
 return record.get('hours');
 },
 summaryRenderer: function(value, summaryData, dataIndex) {
 var valHours = value/60;
 return Ext.String.format('{0}', valHours);
 }
}

The time worked per task log is stored in the database in minutes but displayed on the frontend as hours. The column is bound to the taskMinutes field in the model. The renderer displays the (calculated) hours field of the TaskLog model (this will be defined in the section that follows). The summary feature uses the taskMinutes field to calculate the total time as the feature requires a real (not converted) model field to act on. This total time in minutes is then converted in the summaryRenderer function to hours for display.

Defining our models

Our Project, Task, and TaskLog models were created with basic fields using Sencha Cmd in Chapter 9, Getting Started with Ext JS 4, but they lacked in persistence or validation logic. It is now time to add the required code.
The TaskLog Model

The TaskLog model is the most complicated model in our application. The complete TaskLog model with all required logic is as follows:
Ext.define('TTT.model.TaskLog', {
 extend: 'Ext.data.Model',
 fields: [
 { name: 'idTaskLog', type: 'int', useNull:true },
 { name: 'taskDescription', type: 'string' },
 { name: 'taskLogDate', type: 'date', dateFormat:'Ymd' },
 { name: 'taskMinutes', type: 'int' },
 { name: 'hours', type: 'float', persist:false, convert:function(value, record){
 return record.get('taskMinutes') / 60;
 }},
 { name: 'username', type: 'string' },
 { name: 'userFullName', type: 'string', persist:false },
 { name: 'idTask', type: 'int', useNull:true },
 { name: 'taskName', type: 'string', persist:false },
 { name: 'idProject', type: 'int', persist:false },
 { name: 'projectName', type: 'string', persist:false },
 { name: 'idCompany', type: 'int', persist:false },
 { name: 'companyName', type: 'string', persist:false }
],
 idProperty: 'idTaskLog',
 proxy: {
 type: 'ajax',
 idParam:'idTaskLog',
 api:{
 create:'taskLog/store.json',
 read:'taskLog/find.json',
 update:'taskLog/store.json',
 destroy:'taskLog/remove.json'
 },
 reader: {
 type: 'json',
 root: 'data'
 },
 writer: {
 type: 'json',
 allowSingle:true,
 encode:true,
 root:'data',
 writeAllFields: true
 }
 },
 validations: [
 {type: 'presence', field: 'taskDescription'},
 {type: 'length', field: 'taskDescription', min: 2},
 {type: 'presence', field: 'username'},
 {type: 'presence', field: 'taskLogDate'},
 {type: 'presence', field: 'idTask'},
 {type: 'length', field: 'idTask', min: 1},
 {type: 'length', field: 'taskMinutes', min: 0}
]
});

This is the first time we have used the useNull property on a field. The useNull property is important when converting JSON data into an int, float, Boolean, or String type. When a value cannot be parsed by the reader, the following default values are set for the model field:
	
Field type

	
Default value with useNull:true

	
Default value with useNull:false

	
int

	
null

	
0

	
float

	
null

	
0

	
boolean

	
null

	
false

	
String

	
null

	
"" (empty string)

	
Date

	
null

	
null

If the value cannot be parsed by the reader, null will be assigned to the field value if the field is configured with useNull:true. Otherwise, a default value for that type will be used as displayed in the third column in the preceding table. Note that the Date fields are always set to null if the value cannot be parsed. In most circumstances, it is important to be able to discern whether a field is null after reading the record, and hence, we recommend setting the useNull:true property for all primary key fields.
This is also the first time that we have used the dateFormat property. This property defines the format of the date while encoding or decoding JSON date fields via the configured writer and reader classes. The YYYYMMDD format string represents an 8-digit number. For example, the date 18th August, 2013, is equivalent to 20130818. The other format strings are documented in the Ext.Date API at http://docs.sencha.com/extjs/4.2.2/#!/api/Ext.Date. It is strongly recommended that you always specify an explicit date format for any date field.
The use of the convert function for the hours field is also new. It converts a value provided by the reader class and stores it in the configured name field of the model. In our TaskLog model, the number of minutes is converted into a decimal value and stored in the hours field. It will be far more convenient for the 3T user to enter a value of 2.5 hours rather than 150 minutes.
Note that we have once again used the persist:false property to restrict the fields that are not required for persistence in our TaskLogHandler methods. Our validations for the TaskLog model should also be self-explanatory!

The Project model

The Project model defines our usual proxy and validation properties:
Ext.define('TTT.model.Project', {
 extend: 'Ext.data.Model',
 fields: [
 { name: 'idProject', type: 'int', useNull:true },
 { name: 'projectName', type: 'string' },
 { name: 'idCompany', type:'int', useNull:true },
 { name: 'companyName', type:'string', persist:false }
],
 idProperty: 'idProject',
 proxy: {
 type: 'ajax',
 idParam:'idProject',
 api:{
 create:'project/store.json',
 read:'project/find.json',
 update:'project/store.json',
 destroy:'project/remove.json'
 },
 reader: {
 type: 'json',
 root: 'data'
 },
 writer: {
 type: 'json',
 allowSingle:true,
 encode:true,
 root:'data',
 writeAllFields: true
 }
 },
 validations: [
 {type: 'presence', field: 'projectName'},
 {type: 'length', field: 'projectName', min: 2},
 {type: 'presence', field: 'idCompany'},
 {type: 'length', field: 'idCompany', min: 1}
]
});

There is no need to include the companyName field while persisting a record and hence the field includes the persist:false property.

The Task Model

The Task model also has a simple structure:
Ext.define('TTT.model.Task', {
 extend: 'Ext.data.Model',
 fields: [
 { name: 'idTask', type: 'int', useNull:true },
 { name: 'taskName', type: 'string' },
 { name: 'idProject', type: 'int', useNull:true },
 { name: 'projectName', type: 'string', persist:false },
 { name: 'idCompany', type: 'int', useNull:true, persist:false },
 { name: 'companyName', type: 'string', persist:false }

],
 idProperty: 'idTask',
 proxy: {
 type: 'ajax',
 idParam:'idTask',
 api:{
 create:'task/store.json',
 read:'task/find.json',
 update:'task/store.json',
 destroy:'task/remove.json'
 },
 reader: {
 type: 'json',
 root: 'data'
 },
 writer: {
 type: 'json',
 allowSingle:true,
 encode:true,
 root:'data',
 writeAllFields: true
 }
 },
 validations: [
 {type: 'presence', field: 'taskName'},
 {type: 'length', field: 'taskName', min: 2},
 {type: 'presence', field: 'idProject'},
 {type: 'length', field: 'idProject', min: 1}
]
});

Once again we have several fields that do not need to be persisted and are hence configured with the persist:false property. It is now time to define the stores required to build our task log user interface.

Defining our stores

The TaskLogList and TaskLogForm views require stores to function. The TaskLogList view requires a TaskLog store, while the TaskLogForm view requires a Project and a Task store. Let's define them now.
The TaskLog store

We define this store with a helper method to allow easy loading for the task log searches. The definition is as follows:
Ext.define('TTT.store.TaskLog', {
 extend: 'Ext.data.Store',
 requires: ['TTT.model.TaskLog'],
 model: 'TTT.model.TaskLog',
 proxy: {
 type: 'ajax',
 url: 'taskLog/findByUser.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 },
 doFindByUser: function(username, startDate, endDate) {
 this.load({
 params: {
 username: username,
 startDate: Ext.Date.format(startDate, 'Ymd'),
 endDate: Ext.Date.format(endDate, 'Ymd')
 }
 });
 }
});

Note that we are formatting the start and end dates in the doFindByUser method using the Ext.Date.format function. This is to ensure that the dates sent to the server are in the expected 8-digit yyyymmdd format.

The Project store

The Project store will be sorted to achieve the required company name grouping that is displayed in the Project combobox:
Ext.define('TTT.store.Project', {
 extend: 'Ext.data.Store',
 requires: ['TTT.model.Project'],
 model: 'TTT.model.Project',
 sorters: [{
 property: 'companyName',
 direction: 'ASC'
 }, {
 property: 'projectName',
 direction: 'ASC'
 }],
 proxy: {
 type: 'ajax',
 url: 'project/findAll.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 }
});

Note that all the project records will be loaded by the project/findAll.json URL that is mapped to the findAll method in the ProjectHandler Java class. The sorters property configures the sorting routine that will be applied to the results after loading the store. The records will first be sorted by the companyName field in the ascending order after which the projectName field will be used to apply a secondary sort.

The Task store

The Task store has a very simple structure. The following definition should hold no surprises for you:
Ext.define('TTT.store.Task', {
 extend: 'Ext.data.Store',
 requires: ['TTT.model.Task'],
 model: 'TTT.model.Task',
 proxy: {
 type: 'ajax',
 url:'task/findAll.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 }
});

All the task records will be loaded by the task/findAll.json URL that is mapped to the findAll method in the TaskHandler Java class.

Controlling the TaskLog actions

The TaskLogController definition is the most complex controller definition we have yet developed. The definition that follows excludes the refs and init configuration. You can download the full source code from this book's website:
Ext.define('TTT.controller.TaskLogController', {
 extend: 'Ext.app.Controller',
 views: ['tasklog.ManageTaskLogs'],
 stores: ['TaskLog', 'Project', 'Task'],
 refs: omitted…
 init: omitted…
 doAfterActivate: function() {
 var me = this;
 me.getTaskStore().load();
 me.getProjectStore().load();
 },
 doSelectProject: function(combo, records) {
 var me = this;
 var rec = records[0];
 if (!Ext.isEmpty(rec)) {
 me.getTaskCombo().getStore().clearFilter();
 me.getTaskCombo().getStore().filter({
 property: 'idProject',
 value: rec.get('idProject'),
 exactMatch: true
 });
 me.getTaskCombo().setValue('');
 if (me.getTaskCombo().getStore().getCount() === 0) {
 Ext.Msg.alert('No Tasks Available', 'There are no tasks assigned to this project!');
 }
 }
 },
 doSelectTaskLog: function(grid, record) {
 var me = this;
 me.getTaskCombo().getStore().clearFilter();
 me.getTaskCombo().getStore().filter({
 property: 'idProject',
 value: record.get('idProject'),
 exactMatch: true
 });
 me.getProjectCombo().setValue(record.get('idProject'));
 me.getTaskLogForm().loadRecord(record);
 me.getTaskLogFormFieldset().show();
 me.getTaskLogFormFieldset().setTitle('Edit Task Log For ' + record.get('taskName'));
 me.getTaskLogForm().getForm().clearInvalid();
 me.getDeleteTaskLogButton().enable();
 },
 doAddTaskLog: function() {
 var me = this;
 me.getTaskLogFormFieldset().show();
 me.getTaskLogFormFieldset().setTitle('Add Task Log');
 var taskLogDate = me.getTaskLogDateField().getValue();
 if (Ext.isEmpty(taskLogDate)) {
 taskLogDate = new Date();
 }
 var tl = Ext.create('TTT.model.TaskLog', {
 taskDescription: '',
 username: TTT.getApplication().getUser().username,
 taskLogDate: taskLogDate,
 taskMinutes: 0,
 idTask: null
 });
 me.getTaskLogForm().loadRecord(tl);
 me.getDeleteTaskLogButton().disable();
 var idProject = me.getProjectCombo().getValue();
 if (Ext.isEmpty(idProject)) {
 var firstRec = me.getProjectCombo().getStore().getAt(0);
 me.getProjectCombo().setValue(firstRec.get('idProject'), true);
 me.getTaskCombo().getStore().clearFilter();
 me.getTaskCombo().getStore().filter({
 property: 'idProject',
 value: firstRec.get('idProject'),
 exactMatch: true
 });
 me.getTaskCombo().setValue('');
 }
 },
 doDeleteTaskLog: function() {
 var me = this;
 var rec = me.getTaskLogForm().getRecord();
 Ext.Msg.confirm('Confirm Delete', 'Are you sure you want to delete this task log?', function(btn) {
 if (btn === 'yes') {
 rec.destroy({
 failure: function(rec, operation) {
 Ext.Msg.alert('Delete Failure', operation.request.scope.reader.jsonData.msg);
 }
 });
 me.doAddTaskLog();
 }
 });
 },
 doSaveTaskLog: function() {
 var me = this;
 var rec = me.getTaskLogForm().getRecord();
 if (!Ext.isEmpty(rec)) {
 me.getTaskLogForm().updateRecord();
 // update the minutes field of the record
 var hours = me.getTaskHoursField().getValue();
 rec.set('taskMinutes', hours * 60);
 var errs = rec.validate();
 if (errs.isValid() && me.getTaskLogForm().isValid()) {
 rec.save({
 success: function(record, operation) {
 if (typeof record.store === 'undefined') {
 me.getTaskLogStore().add(record);
 }
 me.getTaskLogFormFieldset().setTitle('Edit Task Log For ' + record.get('taskName'));
 me.getDeleteTaskLogButton().enable();
 },
 failure: function(rec, operation) {
 Ext.Msg.alert('Save Failure', operation.request.scope.reader.jsonData.msg);
 }
 });
 } else {
 me.getTaskLogForm().getForm().markInvalid(errs);
 Ext.Msg.alert('Invalid Fields', 'Please fix the invalid entries!');
 }
 }
 },
 doSearch: function() {
 var me = this;
 var startDate = me.getStartDateField().getValue();
 if (Ext.isEmpty(startDate)) {
 Ext.Msg.alert('Start Date Required', 'Please select a valid start date to perform a search');
 return;
 }
 var endDate = me.getEndDateField().getValue();
 if (Ext.isEmpty(endDate)) {
 Ext.Msg.alert('End Date Required', 'Please select a valid end date to perform a search');
 return;
 }
 me.getTaskLogStore().doFindByUser(TTT.getApplication().getUser().username, startDate, endDate);
 me.getTaskLogFormFieldset().hide();
 }
});

The TaskLogController section defines the three stores that are used by the views. The Project and Task stores are loaded in the doAfterActivate function that is triggered when the ManageTaskLogs panel is activated. This ensures that the Task and Project comboboxes have valid data to operate on.
Each ref item defined in the controller is used in one or more functions to access the underlying component and perform an appropriate action. The autogenerated set method for each ref item makes referencing the components in our code easy.
Note
It is important to note that the ref item will always return a single object, so it cannot be used like the Ext.ComponentQuery.query function to retrieve a collection of components. To retrieve objects dynamically (without using refs) or to retrieve a collection of objects, the ComponentQuery.query function should be used. For more information, see http://docs.sencha.com/extjs/4.2.2/#!/api/Ext.ComponentQuery.

Each possible user action is handled by an appropriately named function. The function arguments will depend on the event source. The click event handler function for a button object will always pass a reference to the button itself as the first argument of the event handler. The grid itemclick event handling function will always receive a reference to the grid itself as the first argument followed by the record that was clicked on. You should examine the Sencha Ext JS 4 docs to become familiar with the event handling function arguments of common components.
Performing a search requires a valid start and end date. The doSearch function will validate the two date fields before allowing a search. Note the use of the TTT.getApplication().getUser() function to access the user who is currently logged in.
A successful search will list the task log records that match the search criteria. A user can then click on an item in the list to load the task log form. This is done in the doSelectTaskLog function.
Adding a new task log will create a new TaskLog model record and load the form. The record will have the currently logged in username property set. The currently selected Project in the project combo is retained if available; otherwise, the first item in the combo is selected.
Selecting a project will filter the task store to only display the tasks assigned to the project. This is achieved in the doSelectProject function:
me.getTaskCombo().getStore().filter({
property:'idProject',
value:rec.get('idProject'),
exactMatch:true
});

Note that we are defining an exactMatch on the idProject field. Without this property, partial matches would be returned (for example, filtering with an idProject value of 2 would match a task with an idProject value of 20; a trap for unwary developers!).
The doSaveTaskLog and doDeleteTaskLog functions perform the appropriate actions on the record that was loaded into the task log form. Just like in the previous chapter, the form is used to display and enter data but the data is never submitted. All the save data actions are triggered via the model instance.

Testing the task log interface

Before running the application and testing your new files, you need to add the TaskLogController as well as the new stores and models to your Application.js file:
controllers: [
 'MainController',
 'UserController',
 'TaskLogController'
],
models: [
 'User',
 'Project',
 'Task',
 'TaskLog'
],
stores: [
 'User',
 'Project',
 'Task',
 'TaskLog'
]

You also need to add the ManageTaskLogs view to the MainCards view's items array as shown:
Ext.define('TTT.view.MainCards', {
 extend: 'Ext.container.Container',
 xtype: 'maincards',
 requires: ['Ext.layout.container.Card', 'TTT.view.Welcome', 'TTT.view.user.ManageUsers', 'TTT.view.tasklog.ManageTaskLogs'],
 layout: 'card',
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'welcome',
 itemId: 'welcomCard'
 }, {
 xtype: 'manageusers',
 itemId: 'manageUsersCard'
 }, {
 xtype: 'managetasklogs',
 itemId: 'taskLogCard'
 }]
 });
 me.callParent(arguments);
 }
});

You can now run the application in the GlassFish server and test the Task Logs interface. Start by logging in as the jsmith user with the password admin and perform searches with different date ranges. The data should be displayed for when you loaded the 3T tables in MySQL:
[image: Testing the task log interface]
Try performing searches that do not return any records. You should see the emptyText value defined in the viewConfig property of the TaskLogList view:
[image: Testing the task log interface]
You can now try to add new records and edit the existing task logs to test the full range of the functionality. Can you make the following message pop up?
[image: Testing the task log interface]
We will build the 3T administration interface in the next chapter to stop this from happening!

Summary

The task log user interface brought together multiple component interactions between the views, models, and stores. We introduced the summary feature for grids and filtered records in both the Project and Task stores. Searching for the TaskLog records required us to parse the dates into an appropriate format for backend processing, while our basic model skeletons were enhanced with persistence and validation properties. We have once again explored interesting Ext JS 4 territory and worked with a variety of components.
In Chapter 12, 3T Administration Made Easy, we will develop the 3T Administration interface and introduce the Ext JS 4 tree component. The Ext.tree.Panel is a very versatile component that is perfectly suited to displaying the Company-Project-Task relationship.

Chapter 12. 3T Administration Made Easy

The 3T administration interface allows a user to maintain company, project, and task relationships. As the relationship is hierarchical, we will be working with one of the most versatile components in Ext JS: Ext.tree.Panel.
The interface we will be building looks like the following screenshot:
[image: 3T Administration Made Easy]
Selecting an item in the tree will display the appropriate record on the panel to the right, while the Add New Company button will allow the user to enter the name of a new company. Let's now examine these actions in detail.
Administration workflows and layouts

There are three different entities that may be edited (company, project, and task), with the preceding screenshot showing the company. Selecting a project in the tree will display the Edit Project form:
[image: Administration workflows and layouts]
Selecting a task will display the Edit Task form:
[image: Administration workflows and layouts]
Selecting the Add New Company button will display an empty company form:
[image: Administration workflows and layouts]
Note that the Delete and Add Project buttons are disabled. When an action is not allowed, the appropriate button will be disabled in all the screens. In this situation, you cannot add a project to a company that has not yet been saved.
The tree tools will allow the user to expand, collapse, and refresh the tree:
[image: Administration workflows and layouts]
When the user first displays the administration interface, the
Add New Company screen is shown. When any item is deleted, the Please select an item from the tree… message is displayed:
[image: Administration workflows and layouts]
Now that we have defined the interfaces and their behavior, it is time to define our views.

Building the 3T administration interface

The 3T administration interface will require us to build the components displayed in the following screenshot. The ProjectForm and TaskForm views are not visible and will be displayed when required in a card layout:
[image: Building the 3T administration interface]
The ManageTasks view is an hbox layout that equally splits the left and right parts of the screen. The toolbar contains a single button to add a new company, while the region to the right is a card layout containing the CompanyForm, ProjectForm, and TaskForm views. Let's now look at each component in detail.
The ManageTasks.js file

The ManageTasks view defines the toolbar with the Add New Company button and splits the view into an hbox layout. The companytree panel and container defined with the card layout are configured by xtype. The card layout container contains the CompanyForm, ProjectForm, and TaskForm. The ManageTasks view is defined as follows:
Ext.define('TTT.view.admin.ManageTasks', {
 extend: 'Ext.panel.Panel',
 xtype: 'managetasks',
 requires: ['TTT.view.admin.CompanyTree', 'TTT.view.admin.TaskForm', 'TTT.view.admin.ProjectForm', 'TTT.view.admin.CompanyForm', 'Ext.toolbar.Toolbar',
 'Ext.layout.container.Card'],
 layout: {
 type: 'hbox',
 align: 'stretch'
 },
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 xtype: 'button',
 itemId: 'addCompanyBtn',
 iconCls: 'addnew',
 text: 'Add New Company'
 }]
 }],
 items: [{
 xtype: 'companytree',
 flex: 1,
 margin: 1
 }, {
 xtype: 'container',
 itemId: 'adminCards',
 activeItem: 0,
 flex: 1,
 layout: {
 type: 'card'
 },
 items: [{
 xtype: 'container',
 padding: 10,
 html: 'Please select an item from the tree...'
 }, {
 xtype: 'companyform'
 }, {
 xtype: 'projectform'
 }, {
 xtype: 'taskform'
 }]
 }]
 });
 me.callParent(arguments);
 }
});

Note the use of a simple container as the first item of the card layout to display the Please select an item from the tree... message.

The CompanyForm.js file

The CompanyForm view has a very simple interface that only has one data entry field: companyName. This can be seen in the following lines of code:
Ext.define('TTT.view.admin.CompanyForm', {
 extend: 'Ext.form.Panel',
 xtype: 'companyform',
 requires: ['Ext.form.FieldSet', 'Ext.form.field.Text', 'Ext.toolbar.Toolbar'],
 layout: {
 type: 'anchor'
 },
 bodyPadding: 10,
 border: false,
 autoScroll: true,
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'fieldset',
 hidden: false,
 padding: 10,
 width: 350,
 fieldDefaults: {
 anchor: '100%'
 },
 title: 'Company Entry',
 items: [{
 xtype: 'textfield',
 name: 'companyName',
 fieldLabel: 'Name',
 emptyText: 'Enter company name...'
 }, {
 xtype: 'toolbar',
 ui: 'footer',
 layout: {
 pack: 'end',
 type: 'hbox'
 },
 items: [{
 xtype: 'button',
 iconCls: 'delete',
 itemId: 'deleteBtn',
 disabled: true,
 text: 'Delete'
 }, {
 xtype: 'button',
 iconCls: 'addnew',
 itemId: 'addProjectBtn',
 disabled: true,
 text: 'Add Project'
 }, {
 xtype: 'button',
 iconCls: 'save',
 itemId: 'saveBtn',
 text: 'Save'
 }]
 }]
 }]
 });
 me.callParent(arguments);
 }
});

Note the initial state of the Delete and Add Project buttons are disabled until a valid company is loaded.

The ProjectForm.js file

The layout and structure of the ProjectForm view is very similar to the company form we have just defined:
Ext.define('TTT.view.admin.ProjectForm', {
 extend: 'Ext.form.Panel',
 xtype: 'projectform',
 requires: ['Ext.form.FieldSet', 'Ext.form.field.Text', 'Ext.toolbar.Toolbar'],
 layout: {
 type: 'anchor'
 },
 bodyPadding: 10,
 border: false,
 autoScroll: true,
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'fieldset',
 hidden: false,
 padding: 10,
 width: 350,
 fieldDefaults: {
 anchor: '100%'
 },
 title: 'Project Entry',
 items: [{
 xtype: 'textfield',
 name: 'projectName',
 fieldLabel: 'Project Name',
 emptyText: 'Enter project name...'
 }, {
 xtype: 'toolbar',
 ui: 'footer',
 layout: {
 pack: 'end',
 type: 'hbox'
 },
 items: [{
 xtype: 'button',
 iconCls: 'delete',
 itemId: 'deleteBtn',
 disabled: true,
 text: 'Delete'
 }, {
 xtype: 'button',
 iconCls: 'addnew',
 itemId: 'addTaskBtn',
 disabled: true,
 text: 'Add Task'
 }, {
 xtype: 'button',
 iconCls: 'save',
 itemId: 'saveBtn',
 text: 'Save'
 }]
 }]
 }]
 });
 me.callParent(arguments);
 }
});

Once again the initial state of the Delete and Add Task buttons is disabled until a valid project is loaded.

The TaskForm.js file

The TaskForm view is again similar to the previous forms but will only need two buttons that are defined as follows:
Ext.define('TTT.view.admin.TaskForm', {
 extend: 'Ext.form.Panel',
 xtype: 'taskform',
 requires: ['Ext.form.FieldSet', 'Ext.form.field.Text', 'Ext.toolbar.Toolbar'],
 layout: {
 type: 'anchor'
 },
 bodyPadding: 10,
 border: false,
 autoScroll: true,
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'fieldset',
 hidden: false,
 padding: 10,
 width: 350,
 fieldDefaults: {
 anchor: '100%'
 },
 title: 'Task Entry',
 items: [{
 xtype: 'textfield',
 name: 'taskName',
 fieldLabel: 'Name',
 emptyText: 'Enter task name...'
 }, {
 xtype: 'toolbar',
 ui: 'footer',
 layout: {
 pack: 'end',
 type: 'hbox'
 },
 items: [{
 xtype: 'button',
 iconCls: 'delete',
 itemId: 'deleteBtn',
 disabled: true,
 text: 'Delete'
 }, {
 xtype: 'button',
 iconCls: 'save',
 itemId: 'saveBtn',
 text: 'Save'
 }]
 }]
 }]
 });
 me.callParent(arguments);
 }
});

Once again, the initial state of the Delete button is disabled until a valid task has been loaded.

The CompanyTree.js file

The final view is the CompanyTree view that represents the relationship between the company, project, and task.
[image: The CompanyTree.js file]
This view is defined as follows:
Ext.define('TTT.view.admin.CompanyTree', {
 extend: 'Ext.tree.Panel',
 xtype: 'companytree',
 title: 'Company -> Projects -> Tasks',
 requires: ['TTT.store.CompanyTree'],
 store: 'CompanyTree',
 lines: true,
 rootVisible: false,
 hideHeaders: true,
 viewConfig: {
 preserveScrollOnRefresh: true
 },
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 tools: [{
 type: 'expand',
 qtip: 'Expand All'
 }, {
 type: 'collapse',
 qtip: 'Collapse All'
 }, {
 type: 'refresh',
 qtip: 'Refresh Tree'
 }],
 columns: [{
 xtype: 'treecolumn',
 dataIndex: 'text',
 flex: 1
 }]
 });
 me.callParent(arguments);
 }
});

The CompanyTree view extends Ext.tree.Panel that requires a specialized Ext.data.TreeStore implementation which manages tree nodes and the relationship between items. The Ext JS 4 tree is a very flexible component and we recommend you become familiar with the core tree concepts at http://docs.sencha.com/extjs/4.2.2/#!/guide/tree.

Introducing the Ext.data.TreeStore class

The Ext.data.TreeStore class is the default store implementation used by Ext.tree.Panel. The TreeStore function provides many convenient functions for loading and managing hierarchical data. A TreeStore function may be defined with a model but this is not required. If a model is provided, it is decorated with the fields, methods, and properties of Ext.data.NodeInterface that are required for use in the tree. This additional functionality is applied to the prototype of the model to allow the tree to maintain the state and relationships between models.
If a model is not provided, one such model will be created by the store in a way that it implements the Ext.data.NodeInterface class. We recommend you browse the NodeInterface API documentation to see the full set of fields, methods, and properties available on nodes.
Our CompanyTree store definition for use in our tree is as follows:
Ext.define('TTT.store.CompanyTree', {
 extend: 'Ext.data.TreeStore',
 proxy: {
 type: 'ajax',
 url: 'company/tree.json'
 }
});

All the tree stores consume data that is in a hierarchical structure, either in JSON or XML format. We will generate JSON data in our request handling layer with the following structure:
{
 "success": true,
 "children": [
 {
 "id": "C_1",
 "text": "PACKT Publishing",
 "leaf": false,
 "expanded": true,
 "children": [
 {
 "id": "P_1",
 "text": "EAD with Spring and ExtJS",
 "leaf": false,
 "expanded": true,
 "children": [
 {
 "id": "T_1",
 "text": "Chapter 1",
 "leaf": true
 },
 {
 "id": "T_2",
 "text": "Chapter 2",
 "leaf": true
 },
 {
 "id": "T_3",
 "text": "Chapter 3",
 "leaf": true
 }
]
 },
 {
 "id": "P_2",
 "text": "The Spring Framework for Beginners",
 "leaf": false,
 "expanded": true,
 "children": [
 {
 "id": "T_4",
 "text": "Chapter 1",
 "leaf": true
 },
 {
 "id": "T_5",
 "text": "Chapter 2",
 "leaf": true
 },
 {
 "id": "T_6",
 "text": "Chapter 3",
 "leaf": true
 }
]
 }
]
 }
]
}

This structure defines the core properties used by any tree including id, children, text, leaf, and expanded.
The children property defines an array of nodes that exist at the same level and belong to the same parent. The top-level children in the structure belong to the root node and will be added to the root level of the tree. The tree panel property, rootVisible:false, will hide the root level from the view, displaying only the children. Enabling root-level visibility by setting the property to rootVisible:true will display the root node as defined in the TreeStore class. For example, adding the following definition to the tree store will result in the Companies node being displayed as shown in the following screenshot:
root: {
 text: 'Companies',
 expanded: true
}

[image: Introducing the Ext.data.TreeStore class]
We wish to display each company at the top level of the tree and hence will be hiding the root node from the view.
The id property is used internally to uniquely identify each node. There can be no duplicates for this property within the tree structure, and we will hence prefix the id value with the type of node. A node representing a company will be prefixed with C_, a project node with P_, and a task node with T_. This id format will allow us to determine both the node type and the primary key of the node. If an ID is not provided, the store would generate one for us.
The ID can also be used to dynamically assign an iconCls class to the node. We do this through the use of the append listener of the store and define this later in the controller. Note that we could just as easily define the iconCls property in JSON itself:
{
 "success": true,
 "children": [
 {
 "id": "C_1",
 "iconCls": "company",
 "text": "PACKT Publishing",
 "leaf": false,
 "expanded": true,
 "children": [
 {
 "id": "P_1",
 "iconCls": "project",
 "text": "EAD with Spring and ExtJS",
 "leaf": false,
 "expanded": true,
 "children": [etc…

However, we are now combining data with the presentation, and the Java method that generates JSON should not be concerned with how data is displayed.
The text field of the JSON tree is used to display the node's text. For simple trees, without multiple columns, this is the default field name if not explicitly set with a column definition (tree columns will be discussed later in this chapter).
The leaf property identifies whether this node can have children. All the task nodes have the "leaf":true setting. The leaf property defines whether the expand icon is shown next to the node.
The last property of interest is the expanded property that indicates whether the node should be displayed in an expanded state. This property must be set to true on each node that has children if we're loading an entire tree at once; otherwise, the proxy will attempt to load children for these nodes dynamically when they are expanded. Our JSON data will contain the entire tree, and hence we set the expanded property to true for each parent node.

Generating a JSON tree in the CompanyHandler class

It is now time to enhance the CompanyHandler class to generate the required JSON to load the tree store and display the company tree. We will create two new methods to implement this functionality.
The CompanyHandler.getTreeNodeId() method

The CompanyHandler.getTreeNodeId() helper method generates a unique ID based on the ID of the EntityItem class. It will be used to generate type-specific IDs for each node.
private String getTreeNodeId(EntityItem obj){
 String id = null;

 if(obj instanceof Company){
 id = "C_" + obj.getId();
 } else if(obj instanceof Project){
 id = "P_" + obj.getId();
 } else if(obj instanceof Task){
 id = "T_" + obj.getId();
 }
 return id;
}

The CompanyHandler.getCompanyTreeJson() method

The CompanyHandler getCompanyTreeJson() method is mapped to the company/tree.json URL and has the following definition:
@RequestMapping(value="/tree", method=RequestMethod.GET, produces={"application/json"})
@ResponseBody
public String getCompanyTreeJson(HttpServletRequest request) {

 User sessionUser = getSessionUser(request);

 Result<List<Company>> ar = companyService.findAll(sessionUser.getUsername());
 if (ar.isSuccess()) {

 JsonObjectBuilder builder = Json.createObjectBuilder();
 builder.add("success", true);
 JsonArrayBuilder companyChildrenArrayBuilder =
 Json.createArrayBuilder();

 for(Company company : ar.getData()){

 List<Project> projects = company.getProjects();

 JsonArrayBuilder projectChildrenArrayBuilder = Json.createArrayBuilder();

 for(Project project : projects){

 List<Task> tasks = project.getTasks();

 JsonArrayBuilder taskChildrenArrayBuilder = Json.createArrayBuilder();

 for(Task task : tasks){

 taskChildrenArrayBuilder.add(
 Json.createObjectBuilder()
 .add("id", getTreeNodeId(task))
 .add("text", task.getTaskName())
 .add("leaf", true)
);
 }

 projectChildrenArrayBuilder.add(
 Json.createObjectBuilder()
 .add("id", getTreeNodeId(project))
 .add("text", project.getProjectName())
 .add("leaf", tasks.isEmpty())
 .add("expanded", tasks.size() > 0)
 .add("children", taskChildrenArrayBuilder)
);

 }

 companyChildrenArrayBuilder.add(
 Json.createObjectBuilder()
 .add("id", getTreeNodeId(company))
 .add("text", company.getCompanyName())
 .add("leaf", projects.isEmpty())
 .add("expanded", projects.size() > 0)
 .add("children", projectChildrenArrayBuilder)
);
 }

 builder.add("children", companyChildrenArrayBuilder);

 return toJsonString(builder.build());

 } else {

 return getJsonErrorMsg(ar.getMsg());

 }
}

This method performs the following tasks:
	It creates a JsonArrayBuilder object with the name companyChildrenArrayBuilder to hold the set of company JsonObjectBuilder instances that will be created in the main for loop when iterating through the company list.
	It loops through each project assigned to each company, adding each project's JsonObjectBuilder tree node representation to the projectChildrenArrayBuilder JsonArrayBuilder instance. The projectChildrenArrayBuilder instance is then added as the children property of the owning company JsonObjectBuilder instance.
	It loops through each task assigned to each project, adding each task's JsonObjectBuilder tree node representation to the taskChildrenArrayBuilder JsonArrayBuilder instance. The taskChildrenArrayBuilder instance is then added as the children property of the owning project, the JsonObjectBuilder instance.
	It adds the companyChildrenArrayBuilder as the children property of the builder instance that will be used to build and return JSON from the method with success property true.

The getCompanyTreeJson method returns a hierarchical JSON structure that encapsulates the relationship between the company, project, and task in a format that can be consumed by the CompanyTree store.

Controlling the 3T administration

The TTT.controller.AdminController ties together the views and implements the many actions that are possible in this user interface. You must download the source code to see the complete definition of this controller as it is not reproduced completely within the following text.
The AdminController has references to the four stores required for processing actions. Each store is reloaded after an update or delete action to ensure the store is in sync with the database. For multiuser applications, this is an important point to consider; can view data be changed by a different user during the lifetime of a session? Unlike the task log interface, where data belongs to the user in the session, the 3T administration module may be actively used by different users at the same time.
Note
It is beyond the scope of this book to discuss strategies for data integrity in multiuser environments. This is usually achieved through the use of per record timestamps that indicate the last update time. Appropriate logic in the service layer would test the submitted record timestamp against the timestamp in the database and then process the action accordingly.

There is one store and model that is yet to be fully defined; we will do so now.
Defining the Company model and store

The Company model was first defined using Sencha Cmd in Chapter 9, Getting Started with Ext JS 4, but we now need to add the appropriate proxy and validations. The full definition is as follows:
Ext.define('TTT.model.Company', {
 extend: 'Ext.data.Model',
 fields: [
 { name: 'idCompany', type: 'int', useNull:true },
 { name: 'companyName', type: 'string'}
],
 idProperty: 'idCompany',
 proxy: {
 type: 'ajax',
 idParam:'idCompany',
 api:{
 create:'company/store.json',
 read:'company/find.json',
 update:'company/store.json',
 destroy:'company/remove.json'
 },
 reader: {
 type: 'json',
 root: 'data'
 },
 writer: {
 type: 'json',
 allowSingle:true,
 encode:true,
 root:'data',
 writeAllFields: true
 }
 },
 validations: [
 {type: 'presence', field: 'companyName'},
 {type: 'length', field: 'companyName', min: 2}
]
});

The Company store will load all the company records through the company/findAll.json URL as follows:
Ext.define('TTT.store.Company', {
 extend: 'Ext.data.Store',
 requires: [
 'TTT.model.Company'
],
 model: 'TTT.model.Company',
 proxy: {
 type: 'ajax',
 url: 'company/findAll.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 }
});

The Company model and store are our simplest definitions to date. We will now examine the core actions in our AdminController.

The doAfterActivate function

The three stores that are required for 3T administration are loaded when the ManageTasks panel is activated. This will ensure that valid records are available in each store when selecting an item in the tree. The doAfterActivate function can be used for initializing the state of any components belonging to the AdminController. This is especially useful when configuring the drag-and-drop action at the end of this chapter.
Note that we are adding the append listener to the tree store view and assigning the doSetTreeIcon function. It is not possible to do this in the init function control config as the view is not yet configured and ready at this point in time. Assigning the doSetTreeIcon function to the listener after the activation ensures the component is fully configured. The doSetTreeIcon function dynamically assigns an iconCls class to each node depending on the node type.
The final step in the doAfterActivate function is to load the tree store to display the data in the tree.

The doSelectTreeItem function

The doSelectTreeItem function is called when a user selects an item in the tree. The node ID is retrieved and split to allow us to determine the type of node:
var recIdSplit = record.getId().split('_');

For each node, the primary key value is determined and used to retrieve the record from the appropriate store. The record is then loaded into the form, which is then set to be the active item in the admin card's layout.

The doSave functions

Each save function retrieves the record from the form and updates the record with the form values. The record is saved if the validation is successful and the form updated to reflect the changing button state. The store that owns the record is then reloaded to sync with the database.

The doDelete functions

Each delete function confirms the user action before calling the destroy method of the model. If successful, the active item in the admin card's layout is set to display the default message: Please select an item from the tree. If the deletion was not successful, an appropriate message is displayed to inform the user.

The doAdd functions

The Add buttons are on the form that is the parent for the Add action. You can only add a project to a company or add a task to a project. Each doAdd function retrieves the parent and creates an instance of the child before loading the appropriate form. Buttons on the child form are disabled as needed.

Testing the 3T administration interface

We now need to add our new components to our Application.js file:
models:[
 'Company',
 'Project',
 'Task',
 'User',
 'TaskLog'
],
controllers: [
 'MainController',
 'UserController',
 'AdminController',
 'TaskLogController'
],
stores: [
 'Company',
 'CompanyTree',
 'Project',
 'Task',
 'User',
 'TaskLog'
]

We also need to add the ManageTasks view to our MainCards:
Ext.define('TTT.view.MainCards', {
 extend: 'Ext.container.Container',
 xtype: 'maincards',
 requires: ['Ext.layout.container.Card', 'TTT.view.Welcome', 'TTT.view.user.ManageUsers', 'TTT.view.tasklog.ManageTaskLogs', 'TTT.view.admin.ManageTasks'],
 layout: 'card',
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 items: [{
 xtype: 'welcome',
 itemId: 'welcomCard'
 }, {
 xtype: 'manageusers',
 itemId: 'manageUsersCard'
 }, {
 xtype: 'managetasklogs',
 itemId: 'taskLogCard'
 }, {
 xtype: 'managetasks',
 itemId: 'manageTasksCard'
 }]
 });
 me.callParent(arguments);
 }
});

You can now run the application in the GlassFish server and test the 3T administration interface by logging on as the bjones user (or any other user who has administrator permission).

Dynamically loading tree nodes

Enterprise applications usually have data sets that prohibit the loading of the full tree in a single JSON request. Large trees can be configured to load children on a per node basis by expanding levels on demand. A few minor changes to our code can allow us to implement this dynamic loading of node children.
When a node is expanded, the tree store proxy submits a request that contains a node parameter with the ID of the node being expanded. The URL submitted is that which is configured in the proxy. We will change our tree store proxy as follows:
proxy: {
 type: 'ajax',
 url: 'company/treenode.json'
}

Note that the URL of the proxy has been changed to treenode. This mapping, when implemented in CompanyHandler, will load one level at a time. The first request submitted by the proxy to load the top level of the tree will have the following format:
company/treenode.json?node=root

This will return the root node's list of companies:
{
 success: true,
 "children": [{
 "id": "C_2",
 "text": "Gieman It Solutions",
 "leaf": false
 }, {
 "id": "C_1",
 "text": "PACKT Publishing",
 "leaf": false
 }]
}

Note that there is no children array defined for each company, and the leaf property is set to false. The Ext JS tree will display an expander icon next to the node if there are no children defined and the node is not a leaf. Clicking on the expander icon will submit a request that has the node parameter set to the id value for the node being expanded. Expanding the "PACKT Publishing" node would hence submit a request to load the children via company/treenode.json?node=C_1.
The JSON response would consist of a children array that would be appended to the tree as children of the PACKT Publishing node. In our example, the response would include the projects assigned to the company:
{
 success: true,
 "children": [{
 "id": "P_3",
 "text": "Advanced Sencha ExtJS4 ",
 "leaf": false
 }, {
 "id": "P_1",
 "text": "EAD with Spring and ExtJS",
 "leaf": false
 }, {
 "id": "P_2",
 "text": "The Spring Framework for Beginners",
 "leaf": false
 }]
}

Once again each project would not define a children array, even if there are tasks assigned. Each project would be defined with "leaf":false to render an expander icon if there are tasks assigned. Expanding the P_1 node would result in the proxy submitting a request to load the next level: company/treenode.json?node=P_1.
This would result in the following JSON being returned:
{
 success: true,
 "children": [{
 "id": "T_1",
 "text": "Chapter 1",
 "leaf": true
 }, {
 "id": "T_2",
 "text": "Chapter 2",
 "leaf": true
 }, {
 "id": "T_3",
 "text": "Chapter 3",
 "leaf": true
 }]
}

This time we define these nodes with "leaf":true to ensure the expander icon is not displayed and users are unable to attempt loading a fourth level of the tree.
The CompanyHandler method that is responsible for this logic can now be defined and mapped to the company/treenode.json URL:
@RequestMapping(value = "/treenode", method = RequestMethod.GET, produces = {"application/json"})
@ResponseBody
public String getCompanyTreeNode(
 @RequestParam(value = "node", required = true) String node,
 HttpServletRequest request) {

 User sessionUser = getSessionUser(request);

 logger.info(node);

 JsonObjectBuilder builder = Json.createObjectBuilder();
 builder.add("success", true);
 JsonArrayBuilder childrenArrayBuilder =Json.createArrayBuilder();

 if(node.equals("root")){

 Result<List<Company>> ar =companyService.findAll(sessionUser.getUsername());
 if (ar.isSuccess()) {

 for(Company company : ar.getData()){
 childrenArrayBuilder.add(
 Json.createObjectBuilder()
 .add("id", getTreeNodeId(company))
 .add("text", company.getCompanyName())
 .add("leaf", company.getProjects().isEmpty())
);
 }
 } else {

 return getJsonErrorMsg(ar.getMsg());
 }
 } else if (node.startsWith("C")){

 String[] idSplit = node.split("_");
 int idCompany = Integer.parseInt(idSplit[1]);
 Result<Company> ar = companyService.find(idCompany,sessionUser.getUsername());

 for(Project project : ar.getData().getProjects()){

 childrenArrayBuilder.add(
 Json.createObjectBuilder()
 .add("id", getTreeNodeId(project))
 .add("text", project.getProjectName())
 .add("leaf", project.getTasks().isEmpty())
);
 }

 } else if (node.startsWith("P")){

 String[] idSplit = node.split("_");
 int idProject = Integer.parseInt(idSplit[1]);
 Result<Project> ar = projectService.find(idProject,sessionUser.getUsername());
 for(Task task : ar.getData().getTasks()){

 childrenArrayBuilder.add(
 Json.createObjectBuilder()
 .add("id", getTreeNodeId(task))
 .add("text", task.getTaskName())
 .add("leaf", true)
);
 }
 }

 builder.add("children", childrenArrayBuilder);

 return toJsonString(builder.build());
}

The getCompanyTreeNode method determines the type of node being expanded and loads appropriate records from the service layer. The returned JSON is then consumed by the store and displayed in the tree.
We can now run the project in GlassFish and display the 3T Admin interface. The first level of the tree is loaded as expected:
[image: Dynamically loading tree nodes]
When the expander icon is clicked, the next level of the tree will be dynamically loaded:
[image: Dynamically loading tree nodes]
The third level can then be expanded to display the tasks:
[image: Dynamically loading tree nodes]
We will leave it to you to enhance the AdminController for use with dynamic trees. Reloading the tree after each successful save or delete would not be very user friendly; changing the logic to only reload the parent node would be a far better solution.

Displaying multiple tree columns

Ext JS 4 trees can be configured to display multiple columns for visualising advanced data structures. We will make a few minor changes to display the ID of each node in the tree. Simply adding a new column to the tree definition will achieve this purpose:
Ext.define('TTT.view.admin.CompanyTree', {
 extend: 'Ext.tree.Panel',
 xtype: 'companytree',
 title: 'Company -> Projects -> Tasks',
 requires: ['TTT.store.CompanyTree'],
 store: 'CompanyTree',
 lines: true,
 rootVisible: false,
 hideHeaders: false,
 viewConfig: {
 preserveScrollOnRefresh: true
 },
 initComponent: function() {
 var me = this;
 Ext.applyIf(me, {
 tools: [{
 type: 'expand',
 qtip: 'Expand All'
 }, {
 type: 'collapse',
 qtip: 'Collapse All'
 }, {
 type: 'refresh',
 qtip: 'Refresh Tree'
 }],
 columns: [{
 xtype: 'treecolumn',
 text:'Node',
 dataIndex: 'text',
 flex: 1
 },
 {
 dataIndex: 'id',
 text : 'ID',
 width:60
 }]
 });
 me.callParent(arguments);
 }
});

We have also added the text property to each column, which is displayed in the header row, and enabled headers with hideHeaders:false. These minor changes will result in the following tree being displayed when fully expanded:
[image: Displaying multiple tree columns]

Drag-and-drop made easy

Dragging and dropping nodes within trees is easy with Ext JS 4. To allow the drag-and-drop action within a tree, we need to add the TreeViewDragDrop plugin as follows:
Ext.define('TTT.view.admin.CompanyTree', {
 extend: 'Ext.tree.Panel',
 xtype: 'companytree',
 title: 'Company -> Projects -> Tasks',
 requires: ['TTT.store.CompanyTree','Ext.tree.plugin.TreeViewDragDrop'],
 store: 'CompanyTree',
 lines: true,
 rootVisible: false,
 hideHeaders: true,
 viewConfig: {
 preserveScrollOnRefresh: true,
 plugins: {
 ptype: 'treeviewdragdrop'
 }
 }, etc

This simple inclusion will enable the drag-and-drop support for your tree. You will now be able to drag-and-drop any node to a new parent. Unfortunately, this is not exactly what we need. A task node should only be allowed to drop on a project node, while a project node should only be allowed to drop on a company node. How can we restrict the drag-and-drop action to these rules?
There are two events that can be used to configure this functionality. These events are fired from the TreeViewDragDrop plugin and can be configured in the doAfterActivate function of the AdminController in the following way:
doAfterActivate:function(){
 var me = this;
 me.getCompanyStore().load();
 me.getProjectStore().load();
 me.getTaskStore().load();
 me.getCompanyTreeStore().on('append' , me.doSetTreeIcon, me);
 me.getCompanyTree().getView().on('beforedrop', me.isDropAllowed,me);
 me.getCompanyTree().getView().on('drop', me.doChangeParent, me);
 me.getCompanyTreeStore().load();
}

The beforedrop event can be used to test whether the drag and drop actions are valid. Returning false will stop the drop action from occurring and animate the node back to the origin of the action. The drop event can be used to process the drop action, most likely to persist the change to the underlying storage.
The isDropAllowed function returns true or false depending on whether the drop target is valid for the node:
isDropAllowed: function(node, data, overModel, dropPosition) {
 var dragNode = data.records[0];
 if (!Ext.isEmpty(dragNode) && !Ext.isEmpty(overModel)) {
 var dragIdSplit = dragNode.getId().split('_');
 var dropIdSplit = overModel.getId().split('_');
 if (dragIdSplit[0] === 'T' && dropIdSplit[0] === 'P') {
 return true;
 } else if (dragIdSplit[0] === 'P'
 && dropIdSplit[0] === 'C') {
 return true;
 }
 }
 return false;
}

This function will restrict the drag and drop actions to two valid scenarios: dragging a project to a new company and dragging a task to a new project. All the other drag and drop actions are not allowed.
Dragging and dropping alone is not enough; we now need to save the new parent after a successful drop. This action is handled in the doChangeParent function:
doChangeParent: function(node, data, overModel, dropPosition, eOpts) {
 var me = this;
 var dragNode = data.records[0];
 if (!Ext.isEmpty(dragNode) && !Ext.isEmpty(overModel)) {
 var dragIdSplit = dragNode.getId().split('_');
 var dropIdSplit = overModel.getId().split('_');
 if (dragIdSplit[0] === 'T' && dropIdSplit[0] === 'P') {
 var idTask = Ext.Number.from(dragIdSplit[1]);
 var idProject = Ext.Number.from(dropIdSplit[1]);
 var rec = me.getTaskStore().getById(idTask);
 if (!Ext.isEmpty(rec)) {
 rec.set('idProject', idProject);
 rec.save();
 }
 } else if (dragIdSplit[0] === 'P'
 && dropIdSplit[0] === 'C') {
 var idProject = Ext.Number.from(dragIdSplit[1]);
 var idCompany = Ext.Number.from(dropIdSplit[1]);
 var rec = me.getProjectStore().getById(idProject);
 if (!Ext.isEmpty(rec)) {
 rec.set('idCompany', idCompany);
 rec.save();
 }
 }
 }
}

Dragging a valid node to a new parent is now persisted when the record is saved. You will now be able to drag-and-drop between valid tree nodes and automatically save the changes.
The animations provided by Ext JS 4 trees will guide your drag and drop actions. Dragging the Database Development node will animate the action as shown in the following screenshot:
[image: Drag-and-drop made easy]
Should the drop action not be allowed, the node will animate back to the original position, providing instant visual feedback for the user.
Ext JS 4 trees are very flexible components, and there is still much to learn if you want to fully leverage trees in your application. We recommend that you explores the many tree examples on the Sencha Docs website for more complex examples including the drag and drop actions between trees and persisting model-based data nodes.

Summary

The 3T Admin interface introduced the tree component for displaying hierarchical data. The company, project, and task relationship was loaded into the tree via a single JSON request and allowed the user to maintain and add new entities.
Dynamic loading of tree nodes was then explained and implemented. This strategy is best suited for very large trees with potentially complex data structures. Node-by-node dynamic loading is easily achieved with minimum changes required in the Ext JS 4 client and Java backend.
Displaying multiple tree columns and the basic drag-and-drop functionality was also explored and implemented to show the flexibility of the Ext JS 4 tree.
Our final step in the enterprise application development with Ext JS and Spring journey is building our 3T project for production deployment. Thankfully, Maven and Sencha Cmd can help make this an easy task as you will learn in our final chapter, Chapter 13, Moving Your Application to Production.

Chapter 13. Moving Your Application to Production

The development work is over and it is time to deploy our application to the production server. If only it were so simple! Enterprise applications require formal processes to be followed, customer or business owner sign-offs, internal testing, User Acceptance Testing (UAT), and many more such hurdles to be overcome before an application is ready for production deployment. This chapter will explore the following two key areas:
	Using Maven to build and compile Ext JS 4 applications for production use
	GlassFish 4 deployment and configuration concepts

We will start by examining the Sencha Cmd compiler.
Compiling with Sencha Cmd

In Chapter 9, Getting Started with Ext JS 4, we went through the process of using Sencha Cmd to generate the Ext JS 4 application skeleton and to create basic components. This section will focus on using Sencha Cmd to compile our Ext JS 4 application for deployment within a Web Archive (WAR) file. The goal of the compilation process is to create a single JavaScript file that contains all of the code needed for the application, including all the Ext JS 4 dependencies.
The index.html file that was created during the application skeleton generation is structured as follows:
<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="UTF-8">
 <title>TTT</title>
 <!-- <x-compile> -->
 <!-- <x-bootstrap> -->
 <link rel="stylesheet" href="bootstrap.css">
 <script src="ext/ext-dev.js"></script>
 <script src="bootstrap.js"></script>
 <!-- </x-bootstrap> -->
 <script src="app.js"></script>
 <!-- </x-compile> -->
 </head>
<body></body>
</html>

The open and close tags of the x-compile directive enclose the part of the index.html file where the Sencha Cmd compiler will operate. The only declarations that should be contained in this block are the script tags. The compiler will process all of the scripts within the x-compile directive, searching for dependencies based on the Ext.define, requires, or uses directives.
An exception to this is the ext-dev.js file. This file is considered to be a "bootstrap" file for the framework and will not be processed in the same way. The compiler ignores the files in the x-bootstrap block and the declarations are removed from the final compiler-generated page.
The first step in the compilation process is to examine and parse all the JavaScript source code and analyze any dependencies. To do this the compiler needs to identify all the source folders in the application. Our application has two source folders: Ext JS 4 sources in webapp/ext/src and 3T application sources in webapp/app. These folder locations are specified using the -sdk and -classpath arguments in the compile command:

sencha –sdk {path-to-sdk} compile -classpath={app-sources-folder} page -yui -in {index-page-to-compile}-out {output-file-location}

For our 3T application the compile command is as follows:

sencha –sdk ext compile -classpath=app page -yui -in index.html -out build/index.html

This command performs the following actions:
	The Sencha Cmd compiler examines all the folders specified by the -classpath argument. The -sdk directory is automatically included for scanning.
	The page command then includes all of the script tags in index.html that are contained in the x-compile block.
	After identifying the content of the app directory and the index.html page, the compiler analyzes the JavaScript code and determines what is ultimately needed for inclusion in a single JavaScript file representing the application.
	A modified version of the original index.html file is written to build/index.html.
	All of the JavaScript files needed by the new index.html file are concatenated and compressed using the YUI Compressor, and written to the build/all-classes.js file.

The sencha compile command must be executed from within the webapp directory, which is the root of the application and is the directory containing the index.html file. All the arguments supplied to the sencha compile command can then be relative to the webapp directory.
Open a command prompt (or terminal window in Mac) and navigate to the webapp directory of the 3T project. Executing the sencha compile command as shown earlier in this section will result in the following output:
[image: Compiling with Sencha Cmd]
Opening the webapp/build folder in NetBeans should now show the two newly generated files: index.html and all-classes.js. The all-classes.js file will contain all the required Ext JS 4 classes in addition to all the 3T application classes. Attempting to open this file in NetBeans will result in the following warning: "The file seems to be too large to open safely...", but you can open the file in a text editor to see the following concatenated and minified content:
[image: Compiling with Sencha Cmd]
Opening the build/index.html page in NetBeans will display the following screenshot:
[image: Compiling with Sencha Cmd]
You can now open the build/index.html file in the browser after running the application, but the result may surprise you:
[image: Compiling with Sencha Cmd]
The layout that is presented will depend on the browser, but regardless, you will see that the CSS styling is missing. The CSS files required by our application need to be moved outside the <!-- <x-compile> --> directive. But where are the styles coming from? It is now time to briefly delve into Ext JS 4 themes and the bootstrap.css file.

Ext JS 4 theming

Ext JS 4 themes leverage Syntactically Awesome StyleSheets (SASS) and Compass (http://compass-style.org/) to enable the use of variables and mixins in stylesheets. Almost all of the styles for Ext JS 4 components can be customized, including colors, fonts, borders, and backgrounds, by simply changing the SASS variables. SASS is an extension of CSS that allows you to keep large stylesheets well-organized; a very good overview and reference can be found at http://sass-lang.com/documentation/file.SASS_REFERENCE.html.
Theming an Ext JS 4 application using Compass and SASS is beyond the scope of this book. Sencha Cmd allows easy integration with these technologies to build SASS projects; however, the SASS language and syntax is a steep learning curve in its own right. Ext JS 4 theming is very powerful and minor changes to the existing themes can quickly change the appearance of your application. You can find out more about Ext JS 4 theming at http://docs.sencha.com/extjs/4.2.2/#!/guide/theming.
The bootstrap.css file was created with the default theme definition during the generation of the application skeleton. The content of the bootstrap.css file is as follows:

@import 'ext/packages/ext-theme-classic/build/resources/ext-theme-classic-all.css';

This file imports the ext-theme-classic-all.css stylesheet, which is the default "classic" Ext JS theme. All of the available themes can be found in the ext/packages directory of the Ext JS 4 SDK:
[image: Ext JS 4 theming]
Changing to a different theme is as simple as changing the bootstrap.css import. Switching to the neptune theme would require the following bootstrap.css definition:

@import 'ext/packages/ext-theme-neptune/build/resources/ext-theme-neptune-all.css';

This modification will change the appearance of the application to the Ext JS "neptune" theme as shown in the following screenshot:
[image: Ext JS 4 theming]
We will change the bootstrap.css file definition to use the gray theme:

@import 'ext
/packages/ext-theme-gray/build/resources/ext-theme-gray-all.css';

This will result in the following appearance:
[image: Ext JS 4 theming]
You may experiment with different themes but should note that not all of the themes may be as complete as the classic theme; minor changes may be required to fully utilize the styling for some components.
We will keep the gray theme for our index.html page. This will allow us to differentiate the (original) index.html page from the new ones that will be created in the following section using the classic theme.

Compiling for production use

Until now we have only worked with the Sencha Cmd-generated index.html file. We will now create a new index-dev.html file for our development environment. The development file will be a copy of the index.html file without the bootstrap.css file. We will reference the default classic theme in the index-dev.html file as follows:
<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="UTF-8">
 <title>TTT</title>
 <link rel="stylesheet" href="ext/packages/ext-theme-classic/build/resources/ext-theme-classic-all.css">
 <link rel="stylesheet" href="resources/styles.css">
 <!-- <x-compile> -->
 <!-- <x-bootstrap> -->
 <script src="ext/ext-dev.js"></script>
 <script src="bootstrap.js"></script>
 <!-- </x-bootstrap> -->
 <script src="app.js"></script>
 <!-- </x-compile> -->
 </head>
<body></body>
</html>

Note that we have moved the stylesheet definition out of the <!-- <x-compile> --> directive.
Note
If you are using the downloaded source code for the book, you will have the resources/styles.css file and the resources directory structure available. The stylesheet and associated images in the resources directory contain the 3T logos and icons. We recommend you download the full source code now for completeness.

We can now modify the Sencha Cmd compile command to use the index-dev.html file and output the generated compile file to index-prod.html in the webapp directory:

sencha –sdk ext compile -classpath=app page -yui -in index-dev.html -out index-prod.html

This command will generate the index-prod.html file and the all-classes.js files in the webapp directory as shown in the following screenshot:
[image: Compiling for production use]
The index-prod.html file references the stylesheets directly and uses the single compiled and minified all-classes.js file. You can now run the application and browse the index-prod.html file as shown in the following screenshot:
[image: Compiling for production use]
You should notice a significant increase in the speed with which the logon window is displayed as all the JavaScript classes are loaded from the single all-classes.js file.
The index-prod.html file will be used by developers to test the compiled all-classes.js file.
Accessing the individual pages will now allow us to differentiate between environments:
	
The logon window as displayed in the browser

	
Page description

	
[image: Compiling for production use]

	
The index.html page was generated by Sencha Cmd and has been configured to use the gray theme in bootstrap.css. This page is no longer needed for development; use index-dev.html instead.

You can access this page at

http://localhost:8080/index.html

	
[image: Compiling for production use]

	
The index-dev.html page uses the classic theme stylesheet included outside the <!-- <x-compile> --> directive. Use this file for application development. Ext JS 4 will dynamically load source files as required.

You can access this page at

http://localhost:8080/index-dev.html

	
[image: Compiling for production use]

	
The index-prod.html file is dynamically generated by the Sencha Cmd compile command. This page uses the all-classes.js all-in-one compiled JavaScript file with the classic theme stylesheet.

You can access this page at http://localhost:8080/index-prod.html

Integrating Sencha Cmd compiling with Maven

Until now we have executed the Sencha Cmd compile command from the terminal. It would be far better to execute the command during the Maven build process. The index-prod.html and compiled all-classes.js files can then be generated automatically every time a build is performed. The following plugin when added to the Maven pom.xml file will perform the following action:
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
 <executions>
 <execution>
 <id>sencha-compile</id>
 <phase>compile</phase>
 <goals>
 <goal>exec</goal>
 </goals>
 <configuration>
 <executable>C:\Sencha\Cmd\4.0.0.203\sencha.exe</executable>
 <arguments>
 <argument>-sdk</argument>
 <argument>${basedir}/src/main/webapp/ext</argument>
 <argument>compile</argument>
 <argument>-classpath</argument>
 <argument>${basedir}/src/main/webapp/app</argument>
 <argument>page</argument>
 <argument>-yui</argument>
 <argument>-in</argument>
 <argument>${basedir}/src/main/webapp/index-dev.html</argument>
 <argument>-out</argument>
 <argument>${basedir}/src/main/webapp/index-prod.html</argument>
 </arguments>
 </configuration>
 </execution>
 </executions>
</plugin>

The following are a few points to note:
	The plugin is executed during the compile phase of the Maven build process.
	The Sencha Cmd executable is defined with a complete filesystem path. Only then is it possible to build different projects with different versions of Sencha if required.
	The ${basedir} property represents the full path to the root of the Maven project. Full paths are required for each argument as we are not executing the Sencha Cmd compile command from within the webapp directory.

The index-prod.html and all-classes.js files will now be updated every time a build is performed. The output of this plugin can be seen in the following Maven build log:
[image: Integrating Sencha Cmd compiling with Maven]

Adding the build version and timestamp

It is important to be able to identify different builds, not just the build version but also when the build was compiled. The project version is defined in the pom.xml file using the version property:
<groupId>com.gieman</groupId>
<artifactId>task-time-tracker</artifactId>
<version>1.0</version>
<packaging>war</packaging>

Performing a Maven build will result in a WAR file being generated with the filename task-time-tracker-1.0.war; it is a combination of the artifactId and version fields with the .war extension.
In enterprise environments, a new release could be anything from a minor change (for example, Release Version 1.3.2) to a major release (such as Release Version 4.0). The exact naming conventions for the version value in use will depend on the enterprise organization. Regardless of the naming convention, it is important to identify when the build was made. This is obvious when the timestamp on the WAR file is examined, but not so obvious for the testers of the application, who only have access to the frontend. We recommend adding the release version and build timestamp to the Ext JS application to allow users to identify the version they are using. The logon window is an obvious place to display this information and we will add the build version and timestamp as shown in the following screenshot:
[image: Adding the build version and timestamp]
The first change that we will make is add two constants to the Application.js file in the init function:
init : function(application){
 TTT.URL_PREFIX = 'ttt/';
 Ext.Ajax.on('beforerequest', function(conn, options, eOpts){
 options.url = TTT.URL_PREFIX + options.url;
 });
 TTT.BUILD_DATE = '$BUILD_DATE$';
 TTT.BUILD_VERSION = '$BUILD_VERSION$';
}

The TTT.BUILD_DATE and TTT.BUILD_VERSION fields define tokens (or placeholders) that will dynamically be replaced in the all-classes.js file during the Maven build. These tokens will not be populated for the index-dev.html file and the logon window for development will look like the following screenshot:
[image: Adding the build version and timestamp]
The token replacement with the correct build and timestamp is defined in the pom.xml file and requires several additions, the first being the maven.build.timestamp.format property:
<properties>
 <endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.build.timestamp.format>dd-MMM-yyyy HH:mm</maven.build.timestamp.format>
 <spring.version>3.2.4.RELEASE</spring.version>
 <logback.version>1.0.13</logback.version>
</properties>

The maven.build.timestamp.format property defines the format of the timestamp in the LogonWindow.js file. The second change is the addition of the maven-replacer
-plugin:
<plugin>
 <groupId>com.google.code.maven-replacer-plugin</groupId>
 <artifactId>maven-replacer-plugin</artifactId>
 <version>1.3</version>
 <executions>
 <execution>
 <phase>prepare-package</phase>
 <goals>
 <goal>replace</goal>
 </goals>
 <configuration>
 <ignoreMissingFile>false</ignoreMissingFile>
 <file>src/main/webapp/all-classes.js</file>
 <regex>false</regex>
 <replacements>
 <replacement>
 <token>$BUILD_DATE$</token>
 <value>${maven.build.timestamp}</value>
 </replacement>
 <replacement>
 <token>$BUILD_VERSION$</token>
 <value>${project.version}</value>
 </replacement>
 </replacements>
 </configuration>
 </execution>
 </executions>
</plugin>

This plugin examines the src/main/webapp/all-classes.js file and replaces the $BUILD_DATE$ token with the build timestamp defined by the Maven property ${maven.build.timestamp}. The $BUILD_VERSION$ token is also replaced by the project version defined by the Maven property ${project.version}.
The final change required is to display these properties in the logon window. We will simply add a container below the toolbar in the LogonWindow.js file's item
s array:
{
 xtype:'container',
 style:{
 textAlign:'center'
 },
 html:' Version ' + TTT.BUILD_VERSION + ' built on ' + TTT.BUILD_DATE
}

Running the project will now display the build version and timestamp in the application logon window of the index-prod.html page:
[image: Adding the build version and timestamp]

Building a slimmer WAR file

The generated WAR file, task-time-tracker-1.0.war, is very large in size at the moment; in fact, it is approximately 32 MB! The default behavior of the maven-war-plugin is to add all of the directories in the webapp folder to the WAR file. For production deployments we do not need a large number of these files, and it is best practice to trim down the WAR file by excluding the content that is not required. We will exclude the entire Ext JS 4 SDK and all of the Sencha Cmd-generated folders under the webapp directory. We will also exclude all the resources that are not applicable for production use, including the index*.html files used during development. The only file served by GlassFish will be the yet-to-be-created index.jsp:
<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="UTF-8">
 <title>TTT</title>
 <link rel="stylesheet" href="resources/ext-theme-classic-all.css">
 <link rel="stylesheet" href="resources/styles.css">
<script type="text/javascript" src="all-classes.js"></script>
 </head>
<body></body>
</html>

You will note that the location of the ext-theme-classic-all.css file is in the resources directory, not in the deeply nested ext/packages/ext-theme-classic/build/resources location that is used in the HTML pages. The WAR file generation process will copy the appropriate content to the resources directory from the Ext JS 4 SDK location. This removes the need to include the SDK directory structure in the WAR file.
The production index.jsp file will now become our default welcome-file and we will adjust the WEB-INF/web.xml file accordingly:
<welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
</welcome-file-list>

Running the application after this change in the web.xml file will ensure that the index.jsp file is served by GlassFish when a resource is not specified in the URL.
The changes required in the maven-war-plugin for building a slimmer production WAR file are highlighted in the following code snippet:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <warName>${project.build.finalName}</warName>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 <webResources>
 <resource>
 <directory>src/main/webapp/ext/packages/ext-theme-classic/build/resources</directory>
 <targetPath>resources</targetPath>
 <excludes>
 <exclude>ext-theme-classic-all-*</exclude>
 </excludes>
 </resource>
 </webResources>
 <packagingExcludes>.sencha/**,app/**,sass/**,overrides/**,build/**,ext/**,app.json,bootstrap.css,bootstrap.js,build.xml, index.html,index-dev.html,index-prod.html,app.js</packagingExcludes>
 </configuration>
</plugin>

The webResources definition will copy the content of the Ext JS 4 classic CSS theme to the resources directory. The
targetPath property is always relative to the webapp directory; hence, we do not need a full path for the resources directory. The directory property is always relative to the root of the Maven project; hence, it needs a full path.
The packagingExcludes property lists all of the directories and files that should not be included in the WAR file. The ** symbol denotes that all of the subdirectories should be excluded. This will ensure that all of the Sencha Cmd-generated folders that are not required by our production WAR file will be excluded.
Executing the Maven build will now generate a WAR file of approximately 6.6 MB that contains only the files required for a production application.

Deploying the WAR file to GlassFish

Until now we have always deployed the 3T application to GlassFish via NetBeans using the Run Project command. In production environments we deploy applications through the GlassFish admin console or from the command line using asadmin. We will now learn how to deploy the task-time-tracker-1.0.war file to GlassFish using the admin console.
Opening the GlassFish admin console

Start GlassFish either in NetBeans or in a console window using the asadmin command. We recommend using asadmin as this is normally the way GlassFish is managed in an enterprise environment.
[image: Opening the GlassFish admin console]
As we can see in the preceding screenshot, the default GlassFish Admin port value is 4848, as shown in the preceding screenshot, but it will be different if multiple GlassFish domains are configured. Open this location in the browser to display the GlassFish admin console:
[image: Opening the GlassFish admin console]

GlassFish security basics

Working on the localhost will normally not prompt you for a password when using the default GlassFish installation provided by NetBeans. If you are prompted, the default username is admin with a blank password. The previous versions of GlassFish had a default password of adminadmin; at the time of writing, this is no longer the case. You should be aware that this may change again in the future.
Working on remote hosts where GlassFish is running on a server other than the browser will always prompt you for a username and password when you try to access the admin console. This is the situation with enterprise environments where different servers are usually running multiple instances of GlassFish. In this environment, remote access to the admin console will be disabled by default and you will only be able to access the admin console from the localhost. Allowing remote access from different clients can be enabled by executing the following commands on the host running the GlassFish server:

asadmin --host localhost --port 4848 enable-secure-admin
asadmin restart-domain domain1

When enabling secure admin, you might be prompted with a message saying "your admin password is empty" (the default scenario). To solve this problem you will need to first change the admin password from the default (empty) password to another by using the following command:

asadmin --host localhost --port 4848 change-admin-password

You will then be prompted to enter the new password. Enabling secure admin will then be possible.
Note
It is beyond the scope of this book to delve too deeply into the world of the GlassFish server administration. We recommend you browse the excellent documentation and user guides at https://glassfish.java.net/.

Deploying the WAR file using the admin console

Deploying a web application via the GlassFish admin console is a simple process. After logging on to the GlassFish admin console, click on and open the Applications node as shown in the following screenshot:
[image: Deploying the WAR file using the admin console]
There may already be a task-time-tracker application deployed as a result of a previous NetBeans deployment (as shown in the preceding screenshot). If this is the case, select the checkbox next to the application name and then click on Undeploy.
Click on the Deploy… button and enter the following details:
[image: Deploying the WAR file using the admin console]
The Local Packaged File or Directory That Is Accessible from GlassFish Server field will define the location of the task-time-tracker-1.0.war file on the local file system. If deploying to a remote server, you will need to use the Package File to be Uploaded to the Server option.
The Context Root field defines the URL path to the deployed application. We will deploy the 3T application to the context root.
The Application Name field defines the name of the application within the GlassFish server and is displayed in the application listing.
The Virtual Server dropdown defines the virtual server(s) that will be used to host the application. A virtual server, sometimes called a virtual host, is an object that allows the same physical server to host multiple Internet domain names deployed to different listeners. It is possible to select multiple virtual servers (if configured) from this list.
Click on the OK button to deploy the task-time-tracker-1.0.war file. This action will then return you to the deployed applications listing: 
[image: Deploying the WAR file using the admin console]
The task-time-tracker-1.0 application is deployed to the default Virtual Server with the name server and is accessible via the following two listeners:
	http://localhost:8080/
	https://localhost:8181/

This is the default virtual server/HTTP service configuration after installing GlassFish. Note that in a production enterprise environment that allows user logons, only the HTTPS version would be enabled to ensure encrypted SSL connections with the server. You can now access these URLs to test the deployment. Opening the https://localhost:8181/ link will result in a warning due to an invalid certificate as shown in the following screenshot:
[image: Deploying the WAR file using the admin console]
This can be ignored and you may continue to the link by clicking on I Understand the Risks and confirming the exception (the exact message displayed will depend on the browser). Right-clicking on the logon page and selecting View Page Source will confirm that you are working with the production WAR file; this can be seen in the following screenshot:
[image: Deploying the WAR file using the admin console]
Note
Configuring HTTP listeners and virtual servers is once again beyond the scope of this book. We recommend you browse the appropriate documentation at https://glassfish.java.net/documentation.html.

Deploying the WAR file using asadmin

It is also possible to deploy the task-time-tracker-1.0.war file using the asadmin command. This is a common situation in enterprise organizations where the GlassFish admin console is not enabled for security reasons. The syntax of the asadmin deploy command is:

asadmin deploy --user $ADMINUSER --passwordfile $ADMINPWDFILE
--host localhost --port $ADMINPORT --virtualservers $VIRTUAL_SERVER
--contextroot --force --name $WEB_APPLICATION_NAME $ARCHIVE_FILE

This command must be executed on a single line and each uppercase variable name prefixed with $ must be replaced with the correct value. The exact syntax and parameters may depend on the environment and we will not go further into the structure of this command. If you are interested in learning more about this command, you may browse the detailed documentation at http://docs.oracle.com/cd/E18930_01/html/821-2433/deploy-1.html; please note that this document refers to the GlassFish 3.1 reference manual.

Further deployment information and reading

The document at https://glassfish.java.net/docs/4.0/application-deployment-guide.pdf contains extensive and detailed explanations for deploying applications to the GlassFish 4 server. This document is more than 200 pages long and should be consulted for any deployment-related questions that have not been covered in this chapter.

GlassFish performance tuning and optimization

The definitive guide to performance tuning and GlassFish server optimization can be found here at
https://glassfish.java.net/docs/4.0/performance-tuning-guide.pdf.
This guide includes sections on tuning your application as well as tuning the GlassFish server itself. Configuring aspects such as thread pools, web container settings, connection pools, garbage collection, server memory settings, and much more are covered. We recommend you consult this document to learn as much as possible about this important aspect of enterprise development and deployment.

Summary

Our final chapter has covered key production enterprise deployment concepts. We have compiled our Ext JS 4 application into a single all-classes.js file for production use and added the build version and timestamp to the LogonWindow.js file. We then reduced the size of the Maven-generated task-time-tracker.war file by removing all of the resources that were not required for production deployment. This production WAR file only contains the resources required by the application at runtime and excludes all the Ext JS 4 SDK resources and directories that are not required. We then examined the GlassFish deployment process and deployed the task-time-tracker-1.0.war file via the GlassFish admin console. There is still much more for the you to learn about the GlassFish server, but the entrée has been served!
Our Ext JS and Spring development journey now comes to an end. This book has covered an enormous amount of territory and provided a solid foundation for enterprise application development using these key technologies. We sincerely hope that your development journey will be easier and more rewarding as a result of reading this book.

Appendix A. Introducing Spring Data JPA

The Spring Data JPA website, http://projects.spring.io/spring-data-jpa/, has an opening paragraph that succinctly describes the problems of implementing a JPA-based DAO layer:
Implementing a data access layer of an application has been cumbersome for quite a while. Too much boilerplate code has to be written to execute simple queries as well as perform pagination, and auditing. Spring Data JPA aims to significantly improve the implementation of data access layers by reducing the effort to the amount that's actually needed. As a developer you write your repository interfaces, including custom finder methods, and Spring will provide the implementation automatically.

In Chapter 4, Data Access Made Easy, we implemented the DAO design pattern to abstract database persistence into a well-defined layer. We deliberately decided not to introduce Spring Data JPA in this chapter, as the target audience were intermediate developers who may not have had experience with the Java Persistence API. JPA terminology, concepts, and practical examples were introduced to give you an understanding of how JPA works. The use of Java interfaces, Java generics, and named query concepts are fundamental to understanding the elegant way in which Spring Data JPA works.
Spring Data JPA does not require you to write an implementation of the repository interface. The implementations are created "on the fly" when you run the Spring Data JPA application. All that the developer needs to do is write the DAO Java interfaces that extend org.springframework.data.repository.CrudRepository and adhere to the Spring Data JPA naming conventions. The DAO implementation is created for you at runtime.
Internally, Spring Data JPA will implement the code that performs the same functionality that was implemented in Chapter 4, Data Access Made Easy. Using Spring Data we could, for example, rewrite the CompanyDao interface as:
package com.gieman.tttracker.dao;

import com.gieman.tttracker.domain.Company;
import java.util.List;
import org.springframework.data.repository.CrudRepository;

public interface CompanyDao extends CrudRepository<Company, Integer>{

}

The CompanyDao implementation will include the findAll method as it is defined in the CrudRepository interface; we do not need to define it as a separate method.
If you are comfortable with JPA and the content covered in Chapter 4, Data Access Made Easy, you should explore the Spring Data JPA framework. Implementing JPA-based repositories will then become significantly easier!

 Index

 A

 	@Autowired annotation / Autowiring beans, Defining a test case superclass

 	AbstractHandler superclass	about / Defining the AbstractHandler superclass

 	AbstractService.java class / The AbstractService.java class

 	actionUsername method / The CompanyService implementation

 	Add New Company button / Administration workflows and layouts, The ManageTasks.js file

 	Add User button / The ManageUsers.js file, The doAddUser function

 	admin console	used, for deploying WAR file / Deploying the WAR file using the admin console

 	Administration layouts	about / Administration workflows and layouts

 	Administration workflows	about / Administration workflows and layouts

 	Advanced Packaging Tool (APT) / Installing MySQL

 	afterCompletion method / The Spring HandlerInterceptor interface

 	AJAX proxy	and REST proxy, comparing / Comparing AJAX and REST proxies

 	allowBlank$false property / Defining the Logon window

 	Aplication.js function / Defining the Welcome panel

 	app.js file / The app.js and Application.js files

 	app/controller/Main.js file / The app/controller/Main.js file

 	app/view/Main.js file / The app/Viewport.js and app/view/Main.js files

 	app/Viewport.js file / The app/Viewport.js and app/view/Main.js files

 	Application.js file / The app.js and Application.js files

 	application design	importance / The importance of application design

 	asadmin	used, for deploying WAR file / Deploying the WAR file using asadmin

 	asadmin command / Opening the GlassFish admin console

 	asadmin deploy command / Deploying the WAR file using asadmin

 	audit trails	about / Audit trails
	logon activity audits / Logon activity audits
	custom audit tables / Custom audit tables

 	authentication, service layer / Authentication, authorization, and security

 	authorization, service layer / Authentication, authorization, and security

 	Autowiring	about / Autowiring beans

 	auto_increment keyword / The company table

 B

 	${basedir} property / Integrating Sencha Cmd compiling with Maven

 	@Basic annotation / The @Basic annotation

 	beforedrop event / Drag-and-drop made easy

 	bidirectional mapping / Bidirectional mapping and owning entities

 	boolean success property / The Result Data Transfer Object

 	bootstrap.css file / The bootstrap.js and bootstrap.css files

 	bootstrap.js file / The bootstrap.js and bootstrap.css files

 	builder.build() method / Implementing the Company addJson method

 	build version	adding / Adding the build version and timestamp

 	button object / Controlling the TaskLog actions

 C

 	@Column annotation / The @Column annotation

 	@ComponentScan annotation / The Spring MVC configuration

 	@ContextConfiguration annotation / Defining a test case superclass

 	@Controller annotation / The @Controller and @RequestMapping annotations

 	@CookieValue annotation / More on Spring MVC

 	change request	about / Exercise – a simple change request

 	children property / The CompanyHandler.getCompanyTreeJson() method

 	Clean and Build Project button / Executing the Maven build

 	Company.java file	about / The Company.java file
	@Entity annotation / The @Entity annotation
	@Table annotation / The @Table annotation
	@Id annotation / The @Id annotation
	@GeneratedValue annotation / The @GeneratedValue annotation
	@Basic annotation / The @Basic annotation
	@Column annotation / The @Column annotation
	@NotNull annotation / The @NotNull and @Size annotations
	@Size annotation / The @NotNull and @Size annotations
	@OneToMany annotation / The @OneToMany annotation
	@NamedQueries annotation / The @NamedQueries annotation

 	Company addJson method	implementing / Implementing the Company addJson method

 	CompanyDaoImpl class / The CompanyDaoImpl class

 	CompanyDao interface	adding / Adding the CompanyDao interface

 	CompanyDao method / Defining the CompanyDao test case

 	CompanyDaoTest.find() method / Exercises

 	CompanyDaoTest.java file	running / Running the CompanyDaoTest.java file

 	CompanyDao test case	defining / Defining the CompanyDao test case

 	CompanyDaoTests.testFindAll test case	results for / The results for the CompanyDaoTests.testFindAll test case

 	CompanyDaoTests.testFind test case	results for / The results for the CompanyDaoTests.testFind test case

 	CompanyDaoTests.testMerge test case	results for / The results for the CompanyDaoTests.testMerge test case

 	CompanyDaoTests.testPersist test case	results for / Results for the CompanyDaoTests.testPersist test case

 	CompanyDaoTests.testRemove test case	results for / Results for the CompanyDaoTests.testRemove test case

 	Company entity / The CompanyService implementation

 	CompanyForm.js view / The CompanyForm.js file

 	CompanyHandler.getCompanyTreeJson() method / The CompanyHandler.getCompanyTreeJson() method

 	CompanyHandler.getTreeNodeId() method / The CompanyHandler.getTreeNodeId() method

 	CompanyHandler class	about / Defining the CompanyHandler class
	JSON tree, generating / Generating a JSON tree in the CompanyHandler class

 	CompanyHandler method / Dynamically loading tree nodes

 	Company object / Preparing for JSON generation

 	CompanyService implementation / The CompanyService implementation

 	company table / The company table, The projects table

 	CompanyTree view / The CompanyTree.js file

 	Compass	URL / Ext JS 4 theming

 	compile command / Compiling with Sencha Cmd

 	components	creating, Sencha Cmd Tool used / Creating components using Sencha Cmd

 	context-root property / The glassfish-web.xml file

 	control() function / The MainController.js file

 	controllers	naming / Naming controllers
	generating, Sencha Cmd Tool used / Generating views and controllers using Sencha Cmd
	enabling / Let's log on!

 	convert function / The TaskLog Model

 	custom audit tables / Custom audit tables

 D

 	DAO implementation	CompanyDaoImpl class / The CompanyDaoImpl class
	ProjectDaoImpl class / The ProjectDaoImpl class
	TaskDaoImpl class / The TaskDaoImpl class
	UserDaoImpl class / The UserDaoImpl class
	TaskLogDaoImpl class / The TaskLogDaoImpl class

 	DAO interfaces	about / Defining the DAO interfaces
	CompanyDao interface, adding / Adding the CompanyDao interface
	ProjectDao interface, adding / Adding the ProjectDao interface
	GenericDAO interface, defining / Defining a generic DAO interface
	TaskDao interface / The TaskDao interface
	UserDao interface / The UserDao interface
	TaskLogDao interface / The TaskLogDao interface

 	data parameter / Comparing AJAX and REST proxies

 	data property / Defining the AbstractHandler superclass

 	dateFormat property / The TaskLog Model

 	Delete button / The doAddUser function, The doSelectUser function, The TaskForm.js file

 	Dependency Injection (DI) / Introducing the Spring IoC container

 	dependency management / Understanding the POM and dependency management

 	dependency scope / Understanding dependency scope

 	Deploy� button / Deploying the WAR file using the admin console

 	destroy function / The doDeleteUser function

 	destroy method / The doDelete functions

 	doAdd function / The doAdd functions

 	doAddUser function / The doAddUser function

 	doAfterActivate function / Controlling the TaskLog actions, The doAfterActivate function, Drag-and-drop made easy

 	doAfterLogon function / Let's log on!

 	doChangeParent function / Drag-and-drop made easy

 	doDelete function / The doDelete functions

 	doDeleteUser function / The doDeleteUser function

 	doHeaderButtonClick function / The MainController.js file

 	doLogoff function / The MainController.js file

 	doLogon function / The MainController.js file

 	Domain-Driven Design	URL / The Result Data Transfer Object

 	domain layer	about / A better domain layer

 	doSave function / The doSave functions

 	doSaveUser function / The doSaveUser function

 	doSearch function / Controlling the TaskLog actions

 	doSelectProject function / Controlling the TaskLog actions

 	doSelectTaskLog function / Controlling the TaskLog actions

 	doSelectTreeItem function / The doSelectTreeItem function

 	doSelectUser function / Controlling our user views, The doSelectUser function

 	doSetTreeIcon function / The doAfterActivate function

 E

 	@Entity annotation / The @Entity annotation

 	EclipseLink	URL / Understanding JPA implementations

 	eclipselink.target-server	adding, to persistence.xml file / Adding eclipselink.target-server to the persistence.xml file

 	eclipselink.target-server property / Adding eclipselink.target-server to the persistence.xml file

 	em.flush() method / The results for the CompanyDaoTests.testMerge test case, Results for the CompanyDaoTests.testPersist test case

 	em.persist() method / Results for the CompanyDaoTests.testPersist test case

 	encode$true property / Defining the writer

 	enterprise web application	Request handling layer, using for / Request handling for enterprise web applications

 	EntityManagerFactory class	defining / Defining the EntityManagerFactory class

 	EntityManager interface methods	URL / The@PersistenceContext(unitName = "tttPU") line

 	equals() method	refactoring / Refactoring Java equals() and hashCode()

 	equals method / Refactoring Java equals() and hashCode()

 	errors object / Defining validations

 	exclude-unlisted-classes property / Introducing the persistence.xml file

 	expanded property / Introducing the Ext.data.TreeStore class

 	Ext.ComponentQuery.query function	URL / Controlling the TaskLog actions

 	Ext.create() function / Let's log on!

 	Ext.data.TreeStore class / Introducing the Ext.data.TreeStore class

 	Ext.Date.format function / The TaskLog store

 	Ext.log() function / Let's log on!

 	ExtJS 4	flexibility / Ext JS 4 flexibility
	design conventions / Ext JS 4 design conventions and concepts
	theming / Ext JS 4 theming
	theming, URL / Ext JS 4 theming

 	ExtJS 4 controller / Controller

 	ExtJS 4 development	Sencha Cmd Tool / The Ext JS 4 development environment
	ExtJS 4 SDK / The Ext JS 4 development environment

 	ExtJS 4 model / Model

 	ExtJS 4 MVC concepts	about / Ext JS 4 MVC concepts
	ExtJS 4 model / Model
	ExtJS 4 view / View
	ExtJS 4 controller / Controller

 	ExtJS 4 SDK / The Ext JS 4 development environment	URL / Installing Ext JS 4 SDK
	installing / Installing Ext JS 4 SDK

 	ExtJS 4 view / View

 	Extreme Programming	URL / Testing the service layer

 F

 	Fiddler	URL / Let's maintain users

 	find(ID) method / Unit testing overview

 	findAll method / Adding the CompanyDao interface, The TaskDao interface, The results for the CompanyDaoTests.testFindAll test case, The results for the CompanyDaoTests.testFind test case, Defining the CompanyHandler class, Defining the ProjectHandler class, The Project store, The Task store

 	findByUser method / The TaskLogService implementation, The @InitBinder annotation

 	find method / Adding the CompanyDao interface, The results for the CompanyDaoTests.testFind test case, Defining the CompanyHandler class, Defining the ProjectHandler class

 	Finish button / Creating the Maven Web Application project, Reverse engineering with NetBeans, The jdbc.properties file

 	fullName property / Implementing the User addJson method

 	functionality	testing / Let's log on!

 G

 	@GeneratedValue annotation / The @GeneratedValue annotation

 	generate app command / Generating the 3T Ext JS 4 application skeleton

 	GenericDaoImpl.persist method / Results for the CompanyDaoTests.testPersist test case

 	Generic DAO implementation	about / Defining the generic DAO implementation
	Simple Logging Facade, for Java / The Simple Logging Facade for Java
	@PersistenceContext / The@PersistenceContext(unitName = "tttPU") line
	@Transactional annotation / The @Transactional annotation

 	GenericDAO interface	about / Defining a generic DAO interface

 	getCompanyTreeJson method / The CompanyHandler.getCompanyTreeJson() method

 	getCompanyTreeNode method / Dynamically loading tree nodes

 	getIntegerValue method / Defining the AbstractHandler superclass

 	getJsonSuccessData method / Defining the AbstractHandler superclass

 	getResultList() method / The CompanyDaoImpl class, The UserDaoImpl class

 	getServletMappings method / The Spring MVC configuration

 	getSingleResult() method / The UserDaoImpl class, The TaskService implementation

 	getter function / The MainController.js file

 	GlassFish	managing, without NetBeans / Managing GlassFish without NetBeans
	WAR file, deploying to / Deploying the WAR file to GlassFish

 	glassfish-web.xml file / The glassfish-web.xml file

 	GlassFish 4 Server	starting / Starting the GlassFish 4 server

 	GlassFish admin console	opening / Opening the GlassFish admin console

 	GlassFish security / GlassFish security basics

 	GlassFish Server	configuring / Configuring the GlassFish server
	setup directory, renaming / Renaming the setup directory
	starting, in NetBeans / Starting the GlassFish server in NetBeans
	JDBC Connection Pool, configuring / Configuring the JDBC connection pool
	JDBC Resource, configuring / Configuring the JDBC resource

 	GlassFish server administration	URL / GlassFish security basics

 	GlassFish server optimization	URL / GlassFish performance tuning and optimization

 	Google Gson	URL / Building the request handling layer

 H

 	handler function / Controlling our user views

 	hashCode() method	refactoring / Refactoring Java equals() and hashCode()

 	helper beans	defining / Defining helper beans

 I

 	<includes> property / Enabling the Maven environment for testing

 	@Id annotation / The @Id annotation

 	@InitBinder annotation / The @InitBinder annotation

 	iconCls property / Introducing the Ext.data.TreeStore class

 	id attribute / The results for the CompanyDaoTests.testFind test case

 	idCompany property / Defining the AbstractHandler superclass

 	idParam property / Defining the proxy

 	id property / Introducing the Ext.data.TreeStore class

 	index.html file / The index.html file

 	initComponent() function	using / Using the initComponent() function

 	initComponent function / Using the initComponent() function

 	init function / Controlling our user views, Let's log on!, The doAfterActivate function

 	Inversion of Control (IoC) / Introducing the Spring IoC container

 	IoC container	working, URL / Introducing the Spring IoC container

 	isDropAllowed function / Drag-and-drop made easy

 	isValidUser method / Implementing the service layer

 	itemId property / The MainHeader.js view, The UserForm.js file

 J

 	Jackson	URL / Building the request handling layer

 	Java classes, refactoring	Company.java file / The Company.java file
	Projects.java file / The Projects.java file
	bidirectional mapping / Bidirectional mapping and owning entities
	owning entity / Bidirectional mapping and owning entities
	Task.java file / The Task.java file
	User.java file / The User.java file
	TaskLog.java file / The TaskLog.java file

 	Java generics	URL / Defining a generic DAO interface

 	jdbc.properties file / The jdbc.properties file

 	JDBC Connection Pool	configuring / Configuring the JDBC connection pool

 	JDBC DataSource	creating / Creating the JDBC DataSource

 	jdbc property / The property file configuration

 	JDBC Resource	configuring / Configuring the JDBC resource

 	JDK	installing / Installing the Java SE Development Kit (JDK)
	URL / Installing the Java SE Development Kit (JDK)

 	JNDI (Java Naming and Directory Interface) / The Spring applicationContext.xml file

 	JPA	using, reason for / Understanding the reasons for using JPA
	implementing / Understanding JPA implementations

 	JPA traps	for unwary / JPA traps for the unwary

 	JPQL	about / Introducing the Java Persistence Query Language
	and SQL, difference between / Introducing the Java Persistence Query Language
	named queries, defining / Defining named queries

 	JSON / A note on JSON

 	JsonArrayBuilder object / The CompanyHandler.getCompanyTreeJson() method

 	JSON generation	preparing for / Preparing for JSON generation
	Company addJson method, implementing / Implementing the Company addJson method
	Project addJson method, implementing / Implementing the Project addJson method
	Task addJson method, implementing / Implementing the Task addJson method
	User addJson method, implementing / Implementing the User addJson method
	TaskLog addJson method, implementing / Implementing the TaskLog addJson method

 	JsonObject.getInt(key) method / Defining the AbstractHandler superclass

 	JSON tree	generating, in CompanyHandler class / Generating a JSON tree in the CompanyHandler class

 	JTA (Java Transaction API) / Introducing the persistence.xml file

 	JUnit test cases	running, with Maven / Running the JUnit test cases with Maven
	CompanyDaoTest.java file, running / Running the CompanyDaoTest.java file
	CompanyDaoTests.testMerge test case, results for / The results for the CompanyDaoTests.testMerge test case
	CompanyDaoTests.testFindAll test case, results for / The results for the CompanyDaoTests.testFindAll test case
	CompanyDaoTests.testFind test case, results for / The results for the CompanyDaoTests.testFind test case
	CompanyDaoTests.testPersist test case, results for / Results for the CompanyDaoTests.testPersist test case
	CompanyDaoTests.testRemove test case, results for / Results for the CompanyDaoTests.testRemove test case

 K

 	Keep It Simple, Stupid (KISS) / A note on JSON

 L

 	launch function / Let's log on!

 	LDAP	about / LDAP integration

 	LDAP integration / LDAP integration

 	log4J framework	URL / The Simple Logging Facade for Java

 	logback.xml file / The logback.xml file	adding, to resources directory / Adding the logback.xml file to your resources directory

 	logback configuration	URL / The logback.xml file

 	Logoff button / Let's log on!

 	logon action	controlling / Controlling the Logon and Viewport actions

 	logon activity audits / Logon activity audits

 	Logon button / The MainController.js file

 	logon method / The @RequestParam annotation

 	logon window / Defining the Logon window	displaying / Layouts, screens, and workflows
	initComponent() function, using / Using the initComponent() function

 	logonwindow button / The MainController.js file

 	Log Out button / Defining the SecurityHandler class

 	Logout button / The MainController.js file

 M

 	@ManyToOne annotation / The @ManyToOne annotation

 	MainCards.js file / The MainCards.js file

 	MainController.init() function / The MainController.js file

 	MainController.js	about / The MainController.js file

 	MainHeader.js view / The MainHeader.js view

 	mainheader button / The MainController.js file

 	ManageTaskLogs.js file / The ManageTaskLogs.js file

 	ManageTasks.js file / The ManageTasks.js file

 	ManageUsers.js file / The ManageUsers.js file

 	mappedBy property / The Company.java file

 	Maven	about / Introducing Maven
	URL / Introducing Maven
	JUnit test cases, running with / Running the JUnit test cases with Maven
	Sencha Cmd, integrating with / Integrating Sencha Cmd compiling with Maven

 	Maven-build plugins / Understanding Maven-build plugins	URL / Understanding Maven-build plugins

 	maven-war-plugin options	URL / Understanding Maven-build plugins

 	maven.build.timestamp.format property / Adding the build version and timestamp

 	Maven build	executing / Executing the Maven build

 	Maven dependency mechanism and scoping	URL / Understanding dependency scope

 	Maven environment	enabling, for testing / Enabling the Maven environment for testing

 	Maven pom.xml file	configuring / Configuring the Maven pom.xml file

 	Maven properties	defining / Defining Maven properties

 	Maven Web Application project	creating / Creating the Maven Web Application project
	POM / Understanding the POM and dependency management
	dependency management / Understanding the POM and dependency management
	dependency scope / Understanding dependency scope
	Maven properties, defining / Defining Maven properties
	Maven-build plugins / Understanding Maven-build plugins
	Maven build, executing / Executing the Maven build

 	merge method / Adding the CompanyDao interface

 	models	naming / Naming stores and models
	proxy, defining / Defining the proxy
	AJAX proxy and REST proxy, comparing / Comparing AJAX and REST proxies
	reader, defining / Defining the reader
	writer, defining / Defining the writer
	validations, defining / Defining validations
	TaskLog model / The TaskLog Model
	Project model / The Project model
	Task model / The Task Model

 	model skeletons	generating, Sencha Cmd Tool used / Generating model skeletons

 	msg property / Defining the AbstractHandler superclass

 	multiple tree columns	displaying / Displaying multiple tree columns

 	MySQL	installing / Installing MySQL
	URL / Installing MySQL
	NetBeans, connecting with / Connecting NetBeans with MySQL

 N

 	@NamedQueries annotation / The @NamedQueries annotation

 	@NotNull annotation / The @NotNull and @Size annotations

 	name attribute / Introducing the persistence.xml file

 	named queries	defining / Defining named queries

 	naming convention	about / Naming conventions
	stores, naming / Naming stores and models
	models, naming / Naming stores and models
	views, naming / Naming views
	controllers, naming / Naming controllers
	xtypes, naming / Naming xtypes

 	NetBeans	URL / Installing the NetBeans IDE
	connecting, with MySQL / Connecting NetBeans with MySQL
	Reverse engineering, using with / Reverse engineering with NetBeans
	GlassFish Server, starting / Starting the GlassFish server in NetBeans
	GlassFish, managing without / Managing GlassFish without NetBeans

 	NetBeans IDE	installing / Installing the NetBeans IDE

 	New� button / Configuring the JDBC resource

 	Next button / Creating the Maven Web Application project, Connecting NetBeans with MySQL, Reverse engineering with NetBeans, Installing Sencha Cmd

 	nodes	dragging / Drag-and-drop made easy
	dropping / Drag-and-drop made easy

 O

 	@OneToMany annotation / The @OneToMany annotation, Results for the CompanyDaoTests.testRemove test case

 	Object-to-Relation-Mapping (ORM) / Understanding the POM and dependency management

 	OK button / Deploying the WAR file using the admin console

 	owning entity / Bidirectional mapping and owning entities

 P

 	@PathVariable parameter / Comparing AJAX and REST proxies

 	@PersistenceContext / The@PersistenceContext(unitName = "tttPU") line

 	@PersistenceContext annotation / Introducing the Spring IoC container

 	packagingExcludes property / Building a slimmer WAR file

 	page command / Compiling with Sencha Cmd

 	parseJsonObject method / Defining the AbstractHandler superclass

 	password encryption / Password encryption

 	password security strategies	URL / Password encryption

 	persist$false property / The TaskLog Model, The Task Model

 	persistence.xml file	about / Introducing the persistence.xml file
	eclipselink.target-server, adding to / Adding eclipselink.target-server to the persistence.xml file

 	persist method / Adding the CompanyDao interface, Results for the CompanyDaoTests.testPersist test case

 	POM / Understanding the POM and dependency management

 	practical conventions	project structure / Project structure
	naming convention / Naming conventions

 	preHandle method / The Spring HandlerInterceptor interface

 	Project addJson method	implementing / Implementing the Project addJson method

 	ProjectDaoImpl class / The ProjectDaoImpl class

 	ProjectDao interface	adding / Adding the ProjectDao interface

 	ProjectForm view / The ProjectForm.js file

 	ProjectHandler class	about / Defining the ProjectHandler class

 	Project model / The Project model

 	Projects.java file	about / The Projects.java file
	@ManyToOne annotation / The @ManyToOne annotation

 	Project store / The Project store

 	project structure / Project structure

 	Propagation.REQUIRED / The Propagation.REQUIRED property

 	Propagation.SUPPORTS / The Propagation.SUPPORTS property

 	Property file configuration / The property file configuration

 	proxy	about / Defining the proxy

 	public method / Unit testing overview

 R

 	@RequestMapping annotation / The @Controller and @RequestMapping annotations, Running 3T

 	@RequestMapping method / The @Controller and @RequestMapping annotations

 	@RequestParam annotation / The @RequestParam annotation

 	@ResponseBody annotation / The @ResponseBody annotation

 	reader	about / Defining the reader

 	readOnly / The readOnly property

 	Refactor button / The Company.java file

 	remove method / Adding the CompanyDao interface, The CompanyService implementation, The TaskService implementation, Defining the CompanyHandler class, Defining the ProjectHandler class

 	request handlers	creating / Creating the request handlers
	AbstractHandler superclass, defining / Defining the AbstractHandler superclass
	SecurityHandler class, defining / Defining the SecurityHandler class
	CompanyHandler class, defining / Defining the CompanyHandler class
	ProjectHandler class, defining / Defining the ProjectHandler class

 	Request handling layer	for enterprise web application / Request handling for enterprise web applications
	building / Building the request handling layer
	JSON generation, preparing for / Preparing for JSON generation
	JSON / A note on JSON

 	required property / The @RequestParam annotation

 	resources directory	logback.xml file, adding to / Adding the logback.xml file to your resources directory

 	REST proxy	and AJAX proxy, comparing / Comparing AJAX and REST proxies

 	RestProxy method / Defining the proxy

 	Result Data Transfer Object / The Result Data Transfer Object

 	ResultFactory.getFailResult method / The CompanyService implementation

 	Reverse engineering	with NetBeans / Reverse engineering with NetBeans

 	root property / Defining the writer

 	Run Project command / Deploying the WAR file to GlassFish

 S

 	<skipTests> property / Enabling the Maven environment for testing

 	@Secured annotation / The CompanyService implementation

 	@SessionAttrribute annotation / More on Spring MVC

 	@Size annotation / The @NotNull and @Size annotations

 	Sarbanes-Oxley Act (SOX) / Audit trails

 	Save button / The doSelectUser function, Let's maintain users

 	save function / The doSaveUser function

 	scope attribute / Understanding dependency scope

 	Search button / Task log workflows and layouts

 	security, service layer / Authentication, authorization, and security

 	SecurityHandler class	about / Defining the SecurityHandler class
	@Controller annotation / The @Controller and @RequestMapping annotations
	@RequestMapping annotation / The @Controller and @RequestMapping annotations
	@ResponseBody annotation / The @ResponseBody annotation
	@RequestParam annotation / The @RequestParam annotation
	user, authenticating / Authenticating a user
	logging out / Logging out

 	sencha.help command / Installing Sencha Cmd

 	Sencha Cmd	compiling with / Compiling with Sencha Cmd
	integrating, with Maven / Integrating Sencha Cmd compiling with Maven

 	Sencha Cmd Tool	about / The Ext JS 4 development environment
	URL / Installing Sencha Cmd
	installing / Installing Sencha Cmd
	used, for creating components / Creating components using Sencha Cmd
	used, for generating model skeletons / Generating model skeletons
	used, for generating views / Generating views and controllers using Sencha Cmd
	used, for generating controllers / Generating views and controllers using Sencha Cmd

 	Sencha command-line options	URL / Installing Sencha Cmd

 	sencha compile command / Compiling with Sencha Cmd

 	Sencha ExtJS 4 Docs	URL / Ext JS 4 design conventions and concepts

 	service layer	operations / Service layer considerations
	building / Building the service layer
	interfaces / The service layer interfaces
	implementing / Implementing the service layer
	authentication / Authentication, authorization, and security
	authorization / Authentication, authorization, and security
	security / Authentication, authorization, and security
	CompanyService implementation / The CompanyService implementation
	TaskService implementation / The TaskService implementation
	TaskLogService implementation / The TaskLogService implementation
	testing / Testing the service layer
	tests, automating / Automating the service layer tests

 	service layer, building	Result Data Transfer Object / The Result Data Transfer Object
	AbstractService.java class / The AbstractService.java class

 	SESSION_ATTRIB_USER attribute / Defining the SecurityHandler class

 	setup directory	renaming / Renaming the setup directory

 	SLF4J	URL / The Simple Logging Facade for Java

 	sorters property / The Project store

 	Source button / Introducing the persistence.xml file

 	source entity / Bidirectional mapping and owning entities

 	spring-context-support component / Understanding the POM and dependency management

 	spring-context component / Understanding the POM and dependency management

 	spring-instrument component / Understanding the POM and dependency management

 	spring-jdbc component / Understanding the POM and dependency management

 	spring-orm component / Understanding the POM and dependency management

 	spring-test component / Understanding the POM and dependency management

 	spring-tx component / Understanding the POM and dependency management

 	spring-webmvc component / Understanding the POM and dependency management

 	Spring applicationContext.xml file / The Spring applicationContext.xml file

 	Spring Framework	components / Understanding the POM and dependency management

 	Spring HandlerInterceptor interface	about / The Spring HandlerInterceptor interface

 	Spring IoC container	about / Introducing the Spring IoC container
	testingContext.xml file, exploring / Exploring the testingContext.xml file
	Maven environment, enabling for testing / Enabling the Maven environment for testing

 	Spring Model-View-Controller (MVC) / Understanding the POM and dependency management

 	Spring MVC	configuring / The Spring MVC configuration
	about / More on Spring MVC
	URL / More on Spring MVC

 	Spring Security	URL / Authentication, authorization, and security

 	Spring XML namespaces / The Spring XML namespaces

 	SQL	and JPQL, difference between / Introducing the Java Persistence Query Language

 	store method / The service layer interfaces, The CompanyService implementation, Defining the CompanyHandler class, Defining the ProjectHandler class

 	stores	naming / Naming stores and models
	TaskLog store / The TaskLog store
	Project store / The Project store
	Task store / The Task store

 	String msg / The Result Data Transfer Object

 	success property / Defining the AbstractHandler superclass, The CompanyHandler.getCompanyTreeJson() method

 	summaryRenderer function / The TaskLogList.js file

 	Syntactically Awesome StyleSheets (SASS) / Ext JS 4 theming

 T

 	3T administration	controlling / Controlling the 3T administration
	company model, defining / Defining the Company model and store
	company store, defining / Defining the Company model and store
	doAfterActivate function / The doAfterActivate function
	doSelectTreeItem function / The doSelectTreeItem function
	doSave function / The doSave functions
	doDelete function / The doDelete functions
	doAdd function / The doAdd functions

 	3T administration interface	building / Building the 3T administration interface
	ManageTasks.js file / The ManageTasks.js file
	CompanyForm.js view / The CompanyForm.js file
	ProjectForm view / The ProjectForm.js file
	TaskForm view / The TaskForm.js file
	CompanyTree view / The CompanyTree.js file
	Ext.data.TreeStore class / Introducing the Ext.data.TreeStore class
	testing / Testing the 3T administration interface

 	3T application	running / Running 3T

 	3T database	company table / The company table, The projects table
	tasks table / The tasks table
	user table / The user table
	task log table / The task log table
	enterprise options for / Enterprise options for the 3T database

 	3T database, enterprise options	password encryption / Password encryption
	LDAP integration / LDAP integration
	audit trails / Audit trails

 	3T ExtJS 4 application skeleton	generating / Generating the 3T Ext JS 4 application skeleton
	index.html file / The index.html file
	app.js file / The app.js and Application.js files
	Application.js file / The app.js and Application.js files
	bootstrap.js file / The bootstrap.js and bootstrap.css files
	bootstrap.css file / The bootstrap.js and bootstrap.css files
	app/Viewport.js file / The app/Viewport.js and app/view/Main.js files
	app/view/Main.js file / The app/Viewport.js and app/view/Main.js files
	app/controller/Main.js file / The app/controller/Main.js file

 	3T Web Application	configuring / Configuring the 3T web application
	Spring applicationContext.xml file / The Spring applicationContext.xml file
	web.xml file / The web.xml file
	glassfish-web.xml file / The glassfish-web.xml file

 	<T> data / The Result Data Transfer Object

 	@Table annotation / The @Table annotation

 	@Transactional annotation	about / The @Transactional annotation
	Propagation.REQUIRED / The Propagation.REQUIRED property
	Propagation.SUPPORTS / The Propagation.SUPPORTS property
	readOnly / The readOnly property

 	target entity / Bidirectional mapping and owning entities

 	targetPath property / Building a slimmer WAR file

 	Task.java file / The Task.java file

 	Task addJson method	implementing / Implementing the Task addJson method

 	TaskDaoImpl class / The TaskDaoImpl class

 	TaskDao interface / The TaskDao interface

 	TaskForm view / The TaskForm.js file

 	TaskLog.java file / The TaskLog.java file

 	TaskLog actions	controlling / Controlling the TaskLog actions

 	TaskLog addJson method	implementing / Implementing the TaskLog addJson method

 	taskLogDao.findTaskLogCountByTask method / The TaskService implementation

 	TaskLogDaoImpl.findByUser method / The TaskLogDaoImpl class

 	TaskLogDaoImpl class / The TaskLogDaoImpl class

 	TaskLogDao interface / The TaskLogDao interface

 	TaskLogForm.js file / The TaskLogForm.js file

 	TaskLogHandler class	about / Defining the TaskLogHandler class
	@InitBinder annotation / The @InitBinder annotation

 	task log interface	testing / Testing the task log interface

 	task log layouts	about / Task log workflows and layouts

 	TaskLogList.js file / The TaskLogList.js file

 	TaskLog model / The TaskLog Model

 	Task Logs button / Layouts, screens, and workflows

 	TaskLogService implementation / The TaskLogService implementation

 	TaskLog store / The TaskLog store

 	task log table / The task log table

 	task log views	building / Building our task log views
	ManageTaskLogs.js file / The ManageTaskLogs.js file
	TaskLogForm.js file / The TaskLogForm.js file
	TaskLogList.js file / The TaskLogList.js file

 	task log workflows	about / Task log workflows and layouts

 	Task model / The Task Model

 	TaskService implementation / The TaskService implementation

 	tasks table / The tasks table

 	Task store / The Task store

 	Task Time Tracker project	running / Running the Task Time Tracker project

 	test-persistence.xml file / The test-persistence.xml file

 	test case super class	defining / Defining a test case superclass

 	test environment	configuring / Configuring the test environment

 	test environment, configuring	jdbc.properties file / The jdbc.properties file
	logback.xml file / The logback.xml file
	test-persistence.xml file / The test-persistence.xml file

 	testing	Maven environment, enabling for / Enabling the Maven environment for testing

 	testingContext.xml file	exploring / Exploring the testingContext.xml file
	Spring XML namespaces / The Spring XML namespaces
	Property file configuration / The property file configuration
	JDBC DataSource, creating / Creating the JDBC DataSource
	helper beans, defining / Defining helper beans
	EntityManagerFactory class, defining / Defining the EntityManagerFactory class
	transaction manager, configuring / Configuring the transaction manager
	Autowiring beans / Autowiring beans

 	testMerge method / The results for the CompanyDaoTests.testMerge test case, The results for the CompanyDaoTests.testFindAll test case

 	text property / Displaying multiple tree columns

 	timestamp	adding / Adding the build version and timestamp

 	toJsonString method / Defining the AbstractHandler superclass

 	Top-Level Domain (TLD) / Creating the Maven Web Application project

 	tpl property / The TaskLogForm.js file

 	transaction-type attribute / Introducing the persistence.xml file

 	transaction manager	configuring / Configuring the transaction manager

 	tree nodes	loading / Dynamically loading tree nodes

 	TreeStore function / Introducing the Ext.data.TreeStore class

 	TTT.console function / Let's log on!

 	TTT.getApplication().doAfterLogon() function / The MainController.js file

 	TTT.getApplication().getUser() function / Controlling the TaskLog actions

 	TTT.getApplication().isAdmin() function / The MainHeader.js view

 U

 	unitName property / The@PersistenceContext(unitName = "tttPU") line

 	unit testing	about / Unit testing overview
	benefits / The benefits of unit testing

 	useNull$true property / The TaskLog Model

 	useNull property / The TaskLog Model

 	user	authenticating / Authenticating a user

 	User.java file / The User.java file

 	User addJson method	implementing / Implementing the User addJson method

 	UserDaoImpl.findByUsernamePassword method / The UserDaoImpl class

 	UserDaoImpl class / The UserDaoImpl class

 	UserDao interface / The UserDao interface

 	UserForm.js file / The UserForm.js file

 	UserHandler.remove method / Comparing AJAX and REST proxies

 	UserHandler.store method / Defining the writer

 	UserList.js file / The UserList.js file

 	user management components	ManageUsers.js file / The ManageUsers.js file
	UserForm.js file / The UserForm.js file
	UserList.js file / The UserList.js file
	User store / The User store

 	user object / Defining the SecurityHandler class

 	users	maintaining / Let's maintain users

 	Users button / Let's maintain users

 	User store / The User store

 	user table / The user table

 	user views	controlling / Controlling our user views
	doAddUser function / The doAddUser function
	doSelectUser function / The doSelectUser function
	doSaveUser function / The doSaveUser function
	doDeleteUser function / The doDeleteUser function

 V

 	validations	about / Defining validations

 	value property / The @RequestParam annotation

 	view components	defining / Defining view components

 	viewConfig property / Testing the task log interface

 	viewport	about / Defining the viewport
	MainHeader.js view / The MainHeader.js view
	MainCards.js file / The MainCards.js file

 	viewport action	controlling / Controlling the Logon and Viewport actions

 	views	naming / Naming views
	generating, Sencha Cmd Tool used / Generating views and controllers using Sencha Cmd
	building / Building our views
	logon window / Defining the Logon window
	viewport / Defining the viewport
	Welcome panel / Defining the Welcome panel
	user management components / Defining the user management components

 W

 	WAR file	building / Building a slimmer WAR file
	deploying, to GlassFish / Deploying the WAR file to GlassFish
	GlassFish admin console, opening / Opening the GlassFish admin console
	GlassFish security / GlassFish security basics
	deploying, admin console used / Deploying the WAR file using the admin console
	deploying, asadmin used / Deploying the WAR file using asadmin

 	web.xml file / The web.xml file

 	WebDataBinder object / The @InitBinder annotation

 	Web MVC	history / A brief history of Web MVC

 	Welcome panel / Defining the Welcome panel

 	writeAllFields property / Defining the writer

 	writer	about / Defining the writer

 X

 	xtype function / The app/Viewport.js and app/view/Main.js files

 	xtype property / Defining the Logon window

 	xtypes	naming / Naming xtypes

 OEBPS/graphics/5457_09_07.jpg
[C->sencha
Sencha Cnd v4.0.0.203

Sencha Cnd provides several categories of commands and some global switches. In
nost cases, the first step is to generate an application hased on a Sencha SDK
[such as Ext JS or Sencha Touch:

sencha —sdk /pathsto/sdk generate app MyApp /pathsto/myapp
Sencha Gnd supports Ext JS 4.1.1a and higher and Sencha Touch 2.1 and higher.
To get help on commands use the help command:
sencha help generate app
For nove information on using Sencha Gnd. consult the guides found here:

Ihttp://docs .sencha.com/ext—js/4-2/1i1 /guide/connand
Ihttp://docs .sencha.com/ext—js/4-1 11t /guide /connand

http://docs .sencha.com/touch/2-2/111 /quide /conmand
http://docs .sencha.com/touch/2-1 /i1 /guide /conmand

Opt ions
* —background, —b — Runs the web server in a background thread
* —cud, —cw ~ Sets the directory From which conmands should execute
* —debug, -d - Sets log level to higher verbosity
* —nologs, —n - Suppress the initial Sencha Cnd version display
* —-plain, -pl - enables plain logging output <no highlighting>
* ——quiet, —q - Sets log level to warnings and errors only
* —sdk-path, —s - The location of the SDK to use For non-app commands
* ——time, -ti - Display the execution time after executing all commands

OEBPS/graphics/5457_09_14.jpg
[Cix>cd projectsatask-tine-—trackernsronnainwuehapp
[C:\projectstask-tine-trackerssrc\nain\uebappdsencha generate model Company idCompany:int.company
Sencha Cnd v4.0.0.203

Saving certificate as C:\Sencha\Cnd\repo\pkgs\cert.json

Saving private key as C:\Sencha\Cnd\repo\.sencharepoprivate—key.json

init-plugin:

cnd-root-plugin. init-properties:

init-properties:

init-sencha-comnand:

init:

generate-nodel-inpl:

generate-model:

check-schema-plugin:
-after-generate-model:
enable-architect:

-after-generate-model:

c: yo oto\task-tine—tracker\sren: n\wehaii>

OEBPS/graphics/5457OS_08_13.jpg
General | Advanced

Additional Properties

Edit JDBC Connection Pool

Modify an existing JOBC connection pool. A JDBC connection pool is group of reusable connecty

particular database

|Load Defaul] [Fush| [Ping

General Settings.

* Indica

OEBPS/graphics/5457_09_16.jpg
B vew
=43 adnin
CompanyForm.js
CompanyTree.js.
ManageTasks.js
Projctromjs
L@ Taskeoms
-3 taskog
WanageTaskLogs.s
TasklogForm.s
TasktoglistJs
@ Menagelisers
@ serroms
L[usetses
Loganiindan.js
WainCards s
Winbeader.js
viewportjs
welcome.

EEEEE

o
¢ BEE

[

Bz

B3 vew

&6 6 B B B B B E B B B B

CompanyForm.js
CompanyTres.js
Logoriindon.js
MainCards.js
Maireader.js
ManageTaskLogs 5
ManageTasks.js
Managelisers.js.
ProjectForm.js
TaskForm.js
TaskogRarm.js
TaskloglistJs
UserForm.js
Userlist s
Viewportjs
wielcome.js

OEBPS/graphics/5457OS_03_07.jpg
Files X | Services

Projects
53 toskcime racker =
23 s
563 main
23 java
5 wom
=3 gieman
5 ttracker
53 domain
(8 company.java
() Projctjava
{8 Taskiava
L[] Taskonjava
&) wsersava
53 resources
e
T8 persstence i

03 setup.
3 webapp

OEBPS/graphics/5457OS_08_04.jpg
3 target
£ classes
£ endorsed
£ generated-sources.
(1 generated-test-sources
=243 b
5 aopaliance-1.0.ar
5 common.sdo2.L.Ljar
5 commonsloggng-1.1.1.jar
5 eclpseink2.5.0-SNAPSHOT jar
[avase-neb-api-7.0.sr
[avaxpersistence-2.1.0-SNAPSHOT. jar
5 logback-classic-1 0.13.ar

[logback-core-1.0.13.jar

T org.ecipse persitence. antl- “SNAPSHOT jar
5 org.sclpse.persistence.asm-2.5.0-SNAPSHOT jar
5 org.eclipse.persistence.core-2.5.0-SNAPSHOT.jar
5 org.eclpse.persistence.ipa-2.5.0-SNAPSHOT.far
(5 org.eclpse.persistence.jpa.jpal-2.5.0-SHAPSHOT ja
(5 org.eclpse.persistence. jpa modelgen.processor-2.5,
5 sheapi1.7.5ar
5 spring-aop-3.2.4.RELEASE Jar

5 soring b 2.4 RELEASE 5
‘ ,

plo

OEBPS/graphics/5457_12_06.jpg
© AddNew Conpany

Company -> Projects -> Tasks
39 PACKT Publsting

912 EAD with Spring and ExtS
(Achapter 1
(Achapter2
(A chapters
(Achapters
(Achapters

OEBPS/graphics/5457_01_23.jpg
Task Time Tracker Home Page - Windows Internet Explorer

[it tocalhost:a0anjtask-tme-tracker)

| He Edt vew Favortes Toos tep

S ravontes | - | 8 s sever - srver .| €8 Tosk T Tracker Home . x |

‘Welcome to Task Time Tracker!

OEBPS/graphics/5457_12_03.jpg
© AddNew Company
Company -> Projects -> Tasks
9 PACKT Publshing
& EAD with Sring and ExtlS
(A chapter 1
[Chapter 3
3 Chapter 3

Edit Task for EAD with Spring and EXUS

Name:

Chapter 2

Qoeets @ save

OEBPS/graphics/5457_01_18.jpg
Server

i
(O [e

| Fle Edr vew Fovortes Took b

i Favorkes | @ classish sever - server Runing | |

Your server is now running

To replace this page, overwite the file index. htn1 in the document root folder of this server. The document
subdirectory of this server's domain directory.

To manage a servr on the local host with the default administration port, go to the Administration Consol

Install and update ad

ional software components

Use the Update Tool to install and update additional technologies and frameworks such as:

OEBPS/graphics/5457_04_01.jpg
Steps

Choose File Type

1. Choose File Type
2

rojct: [tesctme racer

Qe |

Categories Elle Types

£ enters masoons 2 [£] rete

(1 Contexts snd Dependenc T
(2] Dava Java Annotation Type

a Java Exception

a Java Padkage Irfo

o eoplet

Applet

Javarx
JavaBeans Objects

TBBEEEEE

Ut Tests B
< 3

Description

(Creates anew Java nterface,

<Back. Eiish Cancel

el

OEBPS/graphics/5457_02_18.jpg
SQL Command 1 x| 5QL Command 2_x] [5QL Cammand 3 x|
Source History Connection: [jdbcimysal:/flocalhost: 3306 task_time_tracker?zeroDate]

T FBetcos © from cot_sesms

select * from i _task x |

BEHEER &K< >N Paes= 0 !
+ id tack id project task_pame

T 1 1 Chapter 1

2 2 1 Chapter 2

g E 1 Chapter 3

a 4 2 chapter 1

3 s 2 chapter 2

3 6 2 chapters

i 7 3preface

3 s 3 Appendix

o s 3 Hustrations

0 10 4 Database Development:

u 1 4 Java development:

12 12 4 Sencha Deveelopment

13 13 4Testing

OEBPS/graphics/5457OS_11_04.jpg
Project:

Task:
Date:
Hours

Descrip|

Intemal Office Projects
No Tasks Available x

There are no tasks assigned to this project!

ok

<5

OEBPS/graphics/5457OS_03_19.jpg
83

a5
a6
a7
88
as
0
1

93
94
95
96

Boverride

public boolean equals(Object obi)
if (obj == null) {
return false;

)

if (getClass() != obj.getClass()) (
return false;

)

final Company other = (Company) obi;

if [10b3ects. equals(vhis. idCompany, other.idCompany) |
revurn false;

)

return true;

¢

OEBPS/graphics/5457_02_04.jpg
8006

Locate Driver

o

{ MySQL (Connector/J driver)

Driver File(s): etBeans/ide/modules/ext/mysql-connector-java-

18-binjar|

Help

< Back Finish

Remove

Cancel

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/graphics/5457_10_12.jpg
MainHeader.js

TASK-TIME-TRACKER

S resktons (Eharadnin | (O users o
© radr
blansosiate O Add New User
Usomame | Frsihame | Lasttane | Enai

Usertame
bjones Betty. Jones. bi@tttracker.com

st Name
i o snin S— ;
k k ManageUsersjs

it e

Email

Passwaord:

Administrator: Yes. ® Mo

Sockie. @ sere

OEBPS/graphics/5457OS_08_16.jpg
NetBeans IDE 7.4

Fle Edt Vew Navigate Source Refactor Run Debug Profle Team Tools

BHE%D 117

Projects | Fles | Services X

B Databases sorce | risory |
2 web servies

Qlassfsh-resourdRun Pmyect (askctime-tracker) (F6)

8%y

1 <ol version="1.0" encoding="UT
= 2v:v5 e 2 <IDOCTYPE resources PUBLIC "-//G:
<, B 3 B <resources>
@ g $ e connection-poot. aiios-
ou R R

OEBPS/graphics/5457_10_02.jpg
TASK-TIME-TRACKER (o 1 ot aiin | Ouses o

Welcome Betty Jones!

ou are Iogged on as bjones [bi@tttrackercom]

OEBPS/graphics/5457_10_03.jpg
TASK-TIMETRACKER o oo Oonft

© dduser
User List 0 /Add New User
Usemame | Frthome. | Lasthame | Emad
Usemame:
bjones Betty Jones. bj@tttracker.com
ssmith John Snith js@ttiracker.com L
Last ame:
Email:
Password:
‘Administrator: Yes @ No

Sosete. [@save

OEBPS/graphics/5457OS_08_12.jpg
JDBC Connection Pools

To store, organize, and retrieve data, most applications use relational databases. Java EE applications access
relational databases through the JOBC API. Before an application can access a database, it must get a connection

B G | gu.

Select| Pool Name +, | Resource Type = | Classname + | Descripti
T 3TPool javax sql DataSource com mysgl jdb jdbc2 optional MysqlDataSource
[DerbyPool javax sql DataSource org apache derby jdbc ClientDataSource
™ SamplePool javaxsqlDataSource org apache derby jdbc ClientDataSource
™ _TimePool javax.sql XADataSource org apache derby jdbc EmbeddedXADataSource

OEBPS/graphics/5457OS_13_19.jpg
Deploy Applications or Modules [0k | [Gancai

‘Specity the location of the applcation of mode o deploy. An appication can be i a package fle or specified 55 a drectory.

*insicates required fikd

Location: (~ Packaged File to Be Uploaded to the Server

Chaase Fil | o fle chosen

@ Local Packaged File or Directory That Is Accessible from GlassFish Server

(cerclectstask time-trackertargettask-time-tracker-1.0.| Browse Fles...| [Browse Folders.

Path reftive o server’s hase LRL.

Application Hame: ™ iask.time-tracker-1 0

Virtual Server

OEBPS/graphics/5457_02_13.jpg
[]50¢ Command 1 x

Saurce.

History Connection: [jdbcimysal:lacalhost: 3306 task_time_tracker7zeraDateTimeBehavio

create table tet_company(

1d_company. int unsigned not null auto_increment|

company_neme varchar (200) not null,
prinary key(id_company)

v

insert into ttt_company(company_name) values

insert into ttt_company(company_nanme) values

insert into ttt_company(company_name) values

('PACKT Publishing'):
('Gieman It Solutions'):
('Serious WewDev'):

OEBPS/graphics/5457OS_11_02.jpg
Edit Task Log For Testing

Project: BT Project

T | Gieman It Solutions: 3T Project

PACKT Publishing: Advanced Sencha ExtIs4

PACKT Publishing: EAD with Spring and Extls

PACKT Publishing: The Spring Framenork

Descrigtion: Serious WebDev: External Consuiting Tasks
Serious WebDev: Intemal Offce Projects

Date:

Hours:

Qoeets @ sane

OEBPS/graphics/5457_10_24.jpg
Delete Failure

It s not alowed to delete yourself!

ok

OEBPS/graphics/5457_10_28.jpg
) Firebug - TTT

jones",

firstiame:

atty”

% POST hitp://localhost:8080/security/logon.json 200 Cf 1511
lastlame

% %) < 0||= || console = | Hive_css_serpt_pom_ et _cookies
o | Cear persist Profie | Al Emors Wamings Info Debuglnfo Cookies

]

oo

Jones",

OEBPS/graphics/5457_12_08.jpg
Company -> Projects -> Tasks
33 Comparies
309 Geman It Soutons
& The 37 project
(23 Database Development:
(23 ava development
(23 5encha Devcslopment
[ATesting
@ PACKT Publsting
12 Enterprise Applston Develpment]
(23 Chapter 1
[Chapter 2

OEBPS/graphics/5457OS_11_12.jpg
TASK-TIME-TRACKER

Stsskiogs (<) 3Tadmn O sers ® tosoit

StartDate: |01-0ct-2013 (3 Endpate: [30-Nov-2013 |3 @ Search 3 AddNew

TaskLogs
Date
2702013
2702013
2702013
270ct2013
202013
202013
07ov-2013
07Nov-2013
160o0v-2013

Task
Chapter 1
Chapter 2
Chapter 3
Chapter 3

3ava development
Sencha Develop.
Tustrations

Preface

Desaription
Started Chapter 1

Finished Chapter 2 raft
Initildraft work complet.
Database design started
Confinued with domain .
Fiished stores for proto
Prepared lustrations for
Completed frst two sect!
Rearranged sections 22

25

w|~ | o E~

9 Records, Total Hours: 501

Edit Tack Log For Tlustrations

Project: Advanced Sencha ExtJS4 M
Task: Tlustrations)
Date: 07-00v-2013 =
Hours: s s
Description: Prepared ilustrations for chapter 6

ok | @save

OEBPS/graphics/5457_01_03.jpg
ORACLE"

savase
savake

Javahie

Java SE Support

Java SE Advanced & Sute
Java Embectied

savaFx

savats

Web Ter

sava Card

savaTy

Newto Java

Commurity

Java Magazine

Sign In/Register Help Country ¥ Communities ¥ lam a.. v Iwantto.. v | Search C

Products Solutions Downloads Store Support Training Partners

Oventew | Downloads | Documentation || Gommunity | Technologies || Training
Java SE Downloads
Next Releases (Early Access) Embedded Use Previous Releases

e
=Java <2 NetBeans
Java Platform (JDK) 7u45 JDK 7u45 & NetBeans 7.4

[Java Platform, Standard Edition

Java SE Tuds

OEBPS/graphics/5457_10_25.jpg
Q) Add user
UserList
Username
biones

somith

TASK-TIME-TRACKER

Stsskiogs () 3Tadmn O sers @ Losort
2l it ewtser
First Name Last Name Ema Invalid Fields 8 0
Betty Jones. el fix the invaiid ent A
Jan st et
A
o
A
password: :
‘Administrator: Yes @ No
= @ssee

OEBPS/graphics/5457OS_13_14.jpg
©) Task Time Tracker Logon

Logon
Version 1.0 buit on 14-Nov-2013 06:59.

OEBPS/graphics/5457OS_03_16.jpg
5] Company.java x|

swce ooy R E-6- QRS BE(PER (@0 O]
75 Boverride
@ public int hashCode () {
E int hash - 07
7 hash 4= (idCompany 1= mull 7 idCompany.hashCode(] : O);
7 return hash;
o)
o
2 Navigate »
s Show Javadoc AL
e e Rerrr
I
s e Catrshicr
o et ,
@ T Format AltShift+F
o | = TP
e e

g2

OEBPS/graphics/5457_02_05.jpg
8006

New Connection Wizard

Customize Connection

o

Host:

Database:

User Name:

Password:

JDBC URL:

r Name: (MySQL (Connector/J driver)

localhost

Port: 3306

mysal

root

() Remember password

Test Connection

jdbe:mysql:/ /localhost:3306/mysql?zeroDateTimeBehavior=convert ToNull

Help <Back) ((Next>)

Cancel

OEBPS/graphics/5457OS_03_20.jpg
36

)
final Company other = (Company) obi:
if (1Objects.equals(this.idCompany,

return true;

other. idCompany) |

¢

OEBPS/graphics/5457OS_13_21.jpg
This Connection is Untrusted

You have asked Firefox to connect securely to localhost:8181, but we canit confirm that your
cannectian s secure.

Normally, when yautry to connect secrely, sites il resent trusted identicatian ta prove that you
are going to the right place. However, this ste's deniity can't be verlied

What Should I Do?

I you ususly conect to this st withou problems, this error could mean that someone is trying to
impersanate the sit2, and you shouldn':continue.

Getme out of here!
» Technical Details

» IUnderstand the Risks

OEBPS/graphics/5457_10_11.jpg
MainHeaderjs
TASK-TIME-TRACKER

S resiogs | (Dar adnn| (O users @ ogoit
O raduser ManageUsers js
planscsints O Add New User
usemame | Frsthame | Lasthame | emal
Username:
bjones Betty. Jones. bi@tttracker.com
jsmith John Smith s@tttracker.com First Name:
Last Name: UserFormjs
Email
UserListjs ot
Administrator: Yes. ® Mo
) Oswe

OEBPS/graphics/5457OS_05_17.jpg
Output

Test Resuts X

com.giemanitask-tine-trackeriwari1.0 x |

i
s
o
(4 |

1 test passed, 1 test failed.(2.375 5)
5), comgemn tracer.da JpaTapTest Faied

@ testrindBylsernanePassword passed (2,344 <)
A, testitanyToOne Faied: Original company st has profect in s colction!

OEBPS/graphics/5457_01_08.jpg
steps Choose Project
L. chaose project e
: ez |

Categories: Projects:

Java Java Applcation
JavaFx (& savaFx Application
Javaeb

foidid 18, cnterprse Appcation
L Enterprise Application Client
Maven 056i Bundle

Netgeans Hodues €5 netozans Mode

Sangles) netseans Appicston
s pomproject
@5 proect om sechetype
@5 proect wen Exseng rorn

Descripton

Maven web Application project templte, created with Maven Archetype Plugi.

<Back. Eiish Cancel Help

OEBPS/graphics/activity.jpg

OEBPS/graphics/5457_01_20.jpg
Fle Edt Vew Navigate Source Refactor

Run Debug Profie

B

Team Took Window Help Q- search (cur+1)

£ | ¢

O T B0 G-

Fun Project (taskctime-tracker) (761 |

Projects x| Fies | Serviess =)

[5] pom.xmi [task-time-tracker] |

=) ttmetrader

&-69 wiebPages
8] bl
(8 RESTIul eb Services
&G Source Packages
8 comgeman.ttacker
2@ Dependenties
(0@ Java Dependencies
5G9 Projec Fes
pom.l
i-configuraton sl

P o mesn o BR[O

OEBPS/graphics/5457_01_19.jpg
Projects | Fles | Services X

S Datsbases
B webservies
= servers

Choud | start i Debug e
G vudkor start i rofleade
B TaskRe_ Restart

& 7o BT

Refresh

Remave

View Domain Adrin Console
View Domain Server Lag
View Domain Update Center

Properties

OEBPS/graphics/5457OS_03_12.jpg
Rename Field projectList

o ame: proects
I~ Aoply Rename an Comments
v Eiiaine Getters and Seiters

Fa| ==

Help

OEBPS/graphics/5457_04_03.jpg
Bl Edt Vew Navigate sourc

e Refactor

Bun Debug rofie

Tesm Toos Window telp

jnfy

|9 O [[FRaere 3]

O T W DB

=)

(&) CompanyDsojava x|

Projects | Fies x| Servicss
=a

B s
&-E3 man
23 java
5 wom
B3 gieman
&6
=2=]

=3

acer
o

) companybao.ava
domain

) Company java
) proectjava

) Tasksva

&) Taskogsevs

8] Userjova

Sorce | Hstory |[@ [01 -|QRE & R
1| package com.gieman.tttracker.dao;
2

3 public interface CompanyDao {

Pt

sl

6

OEBPS/graphics/5457OS_08_17.jpg
x

»

Qr e

mro
mro
mro
mro
mro
mro
mro
mro
mro
mro
mro
mro
mro
mro
mro
mro
mro
waRNING:

HMapped "{[/security/logouc] mechods=[], parans=[], headers=[], consumes=1, produces=[appli
HMapped " {[/sscurity/logon) ,uethods= (POST) , parans= (), headers=(], consunes= (], produces=(ap
Mapped *((/task/rencve) mechods= (POST), parans=(] headsrs=(], consumes=(], produses=(appli
HMapped " ([/cask/find), mechods=[GET), parans=(], headers=[], consumes=], produces= [applicas
Mapped *((/task/stors] mechods= (POST), parans=(), headers=(), consumes= (], produses=(applic

Mapped *((/tash/finddll) mechods= (GET), parans=(] headers=(], consumes=(], produses=(appli
HMapped " {[/easkLog/renove) ,uethods= (POST) , parans= (), headsrs=(], consunes= (], produces= (ap
Mapped *((/taskLog/ find) mechods= (GET), parans=() headsrs=(], consumes=(], produses=(appli

Hepped
Hepped

[/askLog/store] methods=[POST] parans=[] headers=[],consunes=[] produses= [app)
[/taskLog/ findBylser] nethods=[CET] parans=[] headers=[], consunes=[] produces

Mapped *((/user/renove) mechods= (POST), paranc=() headers=(], consunes=(], produces=(appli
HMapped "{[/user/find), mechods= [GET), parans=[], headers=[], consumes=], produces= [applicar
Mapped *((/user/store] mechods= (FOST), parans=(), headers=(], consumes= (], produses=(applic

HMapped " ([/user/indall] mechods=[GET), parans=] headers= (], consunes:

FramevorkServier 'dispaccher': initialization completed in 1250 us

Loading applicacion [cask-time-tracker] ac /]

ask-tine-tracker was suscessfully deployed in 3,337 millissconds
Context path from ServietContext: differs from path from bundle: /

1 produces=(appli

OEBPS/graphics/5457_09_03.jpg
License Ageeement ’

Please read the Falowing License Agreement, You must accept the terms of ths agreement befare.
continuing with the installation.

sencha Crd |
(Copyright (c) 2012-2013 Sencha Inc. 4l rights reserved
licensing@sencha.com

Commercial License

Sencha Crrd is licensed commercialy for free, Please visit
It /fwww.senchia,com/legalfsencha-tools-software-license-agresrmert for
more details

 1accept the agreement
" 1do not accept the sgreement

oot | tot> | ol

D0 you accept tiscense?

BitRack Instaler

OEBPS/graphics/5457OS_03_02.jpg
Steps Database Tables
1. Choose File Type
2. Database Tables B H
3. Enity Classes Avaiable TabijavarcompIDeFautDatasource
4. Mapping Options idbc/ et

idbc/ _TimerPool

igbcjsemple

SRemsve.

FAaHIS

< Remeve il

[y ¥ Include Reloted Tables

@ selctthe bl source,

<gack || e Fiish Cancel Help

OEBPS/graphics/5457OS_13_02.jpg
® task-time-tracker - NetBeans IDE 7.4

Fle Edt vew Navigate Souce Refactor

Run Debug Profie Team Toos Window Help

FEEB® T 0 TH) B O

Flls X
-9 webapp
WEB-INF
ap

=43 buid

overrides
packages

o
= [soree oy @ [h-bl-|ADSBE[FE B @00
T
.

OEBPS/graphics/5457_01_16.jpg
Projects | Fies | Services X

® vieh services
= Servers.
<& T
i oo IR
s HudsonBL Startin Profile Mode
i3 TeskRepo Restar:
18 STestor siop

Remave

View Domain Adrin Console
View Domain Server Lag
View Domain Update Center

Propertiss

OEBPS/graphics/5457OS_07_02.jpg
Projects

Fies x| Services

&

ova
5 wom
B3 gieman
5 ttracker
1 dao
3 domain
0 servies

AbstractHander java
CompanyHander java
ProjectHander java
SecurityHander.java
SecurityHelperjava
Tasktandler java
TasklogHander.java
Usertandier java
UserInSessioninterceptor.java
Webipp.java
WebsppConfig.java

165 B9 (65 (B9 [(B9 (B9) (B (B 9

3 resources

plo

OEBPS/graphics/5457_02_14.jpg
Output - SGL Command 1 execuion

Bxecuted successfully in 0 s, 1 rovs afected
Line 6, column 1

Bxecuted successfully in 0.03L s, 1 rovs afected.
Line 7, column 1

Bxecuted successfully in 0.03L s, 1 rovs afected.
Line 8, column 1

Bxecution finished afcer 0.266 5, 0 error(s) occurred

OEBPS/graphics/5457_10_23.jpg
Delete Failure

x

Unable to remove User with usemame=Jsrmith as vaiid task logs are assigned

ok

OEBPS/graphics/5457_02_02.jpg
Projects | Fles | Services X

-8
o NewComecton,
&3 ori
@
g0 EnableDebug
|| DissleDebug

@ MySQL (Connector/3 driver)

OEBPS/graphics/5457OS_05_01.jpg
Profects | Fies X| Services | &

B tasktime-tracker
I
B3 s
B3 main
03 java
1 resources.
1 setwp
1 webapp
B st
03 java
1 resources

OEBPS/graphics/5457OS_05_19.jpg
racker - NetBeans IDE 7.4

Fie Edt vew Navigate source Refactor

1

5

Services X

Projects | Fes

@ 3va0s

(3 My5QL Server t lcahost 307 rook

Run Debug Profie Team Toos Window Help

[> Run Project (taskctime-tracker) F6

i Project (task tine-tracker) Fit
5 Clean and Buid Project (tak-tine-tracker) Shift+F11

HHIE

I

OEBPS/graphics/5457OS_13_13.jpg
Output X || Search Resuts

[]> tasktime-tracer x | Java DB Database Process x | GlassFish Server 40 x

[| romack-classic-1.0.23.3ar alresay exists in dsstinavion

D exac-maven plugin 1 2 Liexar (semchacouile) @ casktiwetracker
Sencha Cad v4.0.0.208
Q|| 1051 conpiting page snaex-dee. meal
(INF) writing heal file ouput o C:\prodacts\task-tine-trackersre\nainusbepp) index-prod. heal
(INF) Loading classpsch entry C:\projects\ask-tine-tracker|src\naimuabapp| ext) sre
23 || (1091 Losding clasmpach sntry C:pro3scts\task-tiue-tracker\ sre\uain\vebarp spp
(INF) Loading classpsch entry C:\projacts\cask-tine-tracker| sancha-coupiLe-teup-dir| 0654 £50-524¢-4416-520
(I0F) Compressing data with TuijavaseriptCouprazsor
(INF) Concatenating output to fils Cr\projects\task-time-tracker\sre\nainivebapplall-classes. 35

- maven-resources-plugin:2.5:testResources (default-testResources) @ task-time-tracker

OEBPS/graphics/5457_09_11.jpg
Tefore-upgrade:

generate-app-inpl. 3 . 3 3
Cannot merge to c:\projectsitask-time-tracker\src\main\uebapphindex.htnl - no hase version
Hanual merge required:

ci\projects\task-tine-tracker\src\nain\uebapp\index.htnl
ciNprojects\task—tine-tracker\erc\nain\uehapphindex. htnl.$old

generate-starter—app:
Inkdir] Created di projectsitask-tine-tracker\src\nain\uehappiresources
[nkdir] Created di projects\task—tine—tracker\src\main\uehapploverrides
[nkdir] Created dis projects\task—tine—tracker\src\nain\uehappNsass\ere
[nkdir] Created di projects\task—tine—tracker\src\main\uehappNsass\var
Inkdir] Created dir: c:\projects\task-time—tracker\src\main\wehapp\sass\ete
Ix-property—file] Updating property file: c:\projects\task-time-trackererc\main\webapp.sel

after-upgrade:

after—generate-ap
[x-property—file] Updating property file: ci\projects\task-time—tracker\src\main\webapp\.sel
Upgrade encountered 1 merge conflicts. Please resolve all merge conflicts them run ’sencha
at org.apache.tools.ant. taskdefs . Exit .execute (Exit.java:164>
at org apache tools ant .UnknounEienent -execute (UnknownElenent . java:291>
at sun.reflect.CeneratedMethodAccessor2d. invake Unknoun Source>
at sun reflect.DelegatingethodAccessorlnpl. invoke (Unknoun Source)
at java.lang weflect.Method. invoke(Unknoun Source>
at org.apache.tools.ant.dispatch.DispatchUtils .execute(DispatchUtils. javas186)
at org apache tools ant . Task.perform(Task. javai34s>
at org apache tools ant . taskiefs Sequential.execute(Sequential.java:68)
at net sf.antcontrib. logic. IfTask.execute(IfTask. jav.

OEBPS/graphics/5457_09_12.jpg
Projects | Services | Fies X El
S man =

O v

Q1 resources

0 setwn

=3 webapp

0 wee e

1

Qe

Q2 overnides

3 packages

0 resources

0 sass

[Resdne.md

REE2Y

[appson

LTy, bootstrap.css

[bootstrap.js

] buidanl

(@) el

[0 index.ht goid
£ test

OEBPS/graphics/5457OS_13_15.jpg
©) Task Time Tracker Logon

User Name: bjones

Password:

Logon
Version $BUILD_VERSIONS buit on $BUILD_DATES

OEBPS/graphics/action.jpg

OEBPS/graphics/5457_09_06.jpg
e th ton Famies Do tob

| adress [casenchaicmdis.0.0.203

Folders Hame_~
& 2 sencha Dant
5D m Sextensions
(=13
Dot Dlegacy
D extensions ©ib
=1 Sphentors
1 legacy (Doplugins
Db Sosthuid
3 phantoms Stempltes
2 plugis Soveait
D sthuid [Hucense
3 templates [SJiogo-sencha-sm.png
) vt Jugi.xri

OEBPS/graphics/5457_10_01.jpg
©) Task Time Tracker Logon

User Name: bjones

Password: o

Logon

OEBPS/graphics/5457OS_08_11.jpg
Additional Properties (6)
(87 (8) | |addProperty| Delete Properti

Select | Name + | value “
™ [porthumber 13306
™ [driverClass ‘com mysgl jdbc Driver
o fud jdbc:mysgl://localhost:3306/task_time_tracker|
T [Password ‘adminadmin
T user oot
[[databaseName task_time_tracker

OEBPS/graphics/5457OS_05_13.jpg
Output - taskctime-racker

Test Results X

com.gemanitask-tie-trackeriwari1.0 x |

>

AU tests passed. (2594)
W8 @ comgraman tracker coo Companypactest passed
[@| O testrnaal passed (eizes)

@ testierge passed (00165)
A | @ testrind psssed 0.0315)
[@| O tostsst passed (00155
2| @ testremove passed (0115)

OEBPS/graphics/5457_10_21.jpg
Edit User bjones

First Name:
Last Name:
Emai:

Password:

Administrator:

Betty

Jones

bi@tttracker.com

Yes

Soeete

Osoe

OEBPS/graphics/5457_10_13.jpg
@TASK-TIME-TRACKER

Header Area

S resiogs | (B a1 acun

Ousers

Qoo

Welcome Betty Jones!

ou are Iogged on as bjones [bi@tttrackercom]

Main Content Area

OEBPS/graphics/5457_02_08.jpg
Create MySQL Database

New Database e sk S ket

T~ Grant Full Access To: [root@:: 1

Cancel

OEBPS/graphics/5457OS_11_07.jpg
Edit Task Log For

Proje

Task: Chapter 2
D3 Confirm Delete

EAD with Spring and ExtJS v

x

Hol ®) e R

Deq

Yes

No

OEBPS/graphics/5457OS_08_01.jpg
Services | Projects | Files X

2 s

=43 main
0 java
3 resources
03 setup.
63 webapp

563 WeB-INE

[E&_spplcationCortet sl

beansom

| [s
|58 websnl

OEBPS/graphics/5457_12_10.jpg
Company -> Projects -> Tasks
549 Gieman It Soutions
540 PACKT Pubishing

%13 Advanced Sencha ExtIs4

31713 EAD with Spring and ExtJS

51713 The Spring Framework for Beginners

OEBPS/graphics/5457OS_03_17.jpg
Generate

Constructor...
Logger...
Getter.
fequal
Delegate Method...
Override Method. .
add Property..

Use Entity Manager...
Call Enterprise Bean...

Strix
giemq

petIa
pany.

enerate equals()

Select fields to be included in equals():

™ &1 companyName : String
™ & projects : List<Project>

o | o

OEBPS/graphics/5457_10_27.jpg
E

= =
seailla ol ‘ ‘(nnsnlzv HIML S5 script DOM Net Cookies

o | Cear persist Profie | Al Emors Wamings Info Debuglnfo Cookies
% POST http://localhost:8080/security/logon.json 200 Ok 1 Connec..7525361 (ine 361)
% GET hitp://localhost:8080/user findAlLjson?_dc=1380407537323&page =1tsta Connee..7523361 (ine
 POST http://localhost:a080/user/store.json?_dc=1380407556411 200/0F | Connes..7523361 (ine 361)
 POST http://localhost:a080/user/remove json?_dc=1380407567579 2000 Connes..7523361 (ine 361)

OEBPS/graphics/note.jpg

OEBPS/graphics/5457_06_01.jpg
APPLICATION SERVER

DATABASE SERVER

Data Access
Layer

OEBPS/graphics/5457_01_06.jpg
JII=IE]

Fle Edt Vew Navigate Souce Refactor Run Debug Profle Team Took Window Help Q- search (curl+1)

Statpage x|

@ NelBeansIDE | Leaneoiscor -]

Learn & Disc:

sakcalou Demos & Tutorials Featured Demo

Trya Sample Project
Java SE Applications
aihate ey, Java and JavaFx GUI Applicati
Gommunty Corner Java EE & Java Web Applicati
CiC++ Applications

PHP and HTHLS Applications

Mobile and Embedted Applica

Code Formatting Features in N
All Online Documentation >>

ACLE

| s

OEBPS/graphics/5457OS_11_14.jpg
Adkd Task Lo

No Tasks Available x
Project
1
. There are no tasks assigned to this project
Date:
o
Hours: -

Description:

OEBPS/graphics/5457OS_05_11.jpg
Output - tasktime tracker X | Test Resus.

REORTSS

Resules

Tests run: 5,

Failures: 0,

Brrors: 0, Skipped: 0

BuLLD succEss

Total vime: 4
Finished st
Final Hemory:

1562

smLem

Sun Oct 20 17:11:46 EST 2013

OEBPS/graphics/5457_02_01.jpg
Projects | Fles | Services X

=8 Databases
(3 Jvave
=a
@9 Java DB (Embedded)
@9 Java DB (Network)
@ 0EC-ODC Bridge
@9 MySQL (Connector/] driver)
@ Oracle OCI
1@ orade Thin
@ postgresaL
53 jobc:derby:fflocalhost:1527]sample [app on APP]
8 vieb services

OEBPS/graphics/5457OS_08_19.jpg
1) lassFih Server Open Sourc X

€ - € [localhost: 8080 ttt/security logon/7username =bjones&password =admin

ET' not supp:

HTTP Status 4 Request method

(T Status report
TTERTTTERequest method 84#3%,GETE#33; not supparted
TN The specified HTTP method is not allowed for the requested resource,

sssFish Server Open Source Edition

OEBPS/graphics/5457_01_22.jpg
B task

Fle Edt Vew Navigste Souce Refactor Run Debug rofie

ne-tracker

‘etBeans IDE 7.

Team Teok Window Help Q- search (ct

] %‘g) \r}“<defau\tmnﬁq> 1@ T % D-B-@-
Proects | Fies X | Servies |1 [[@) indexinl x]
£ tasktime-tracker sarce tistory [[@ Q-0 |QA DS EE[P&
) ﬁéﬁ 1] <!DOCTYPE hemi>
s 2 @ <neni>
b B <head>
= ;’“ a <title>Start Page</titles
B-&3 geman s <weta http-equiv=rContent-Type” cont
2 ttracker
s </heas>
e ﬁ[ﬁ;h” - 7 <pody>
. s <hl>Hello World!e/hi
il } s </body>
R o [T
o o

OEBPS/graphics/5457OS_03_03.jpg
DI Name:

Database Connecton;

Create Data Source.

[idbcraskiimetracker

=

e

OEBPS/graphics/5457_02_06.jpg
Projects | Fies | Services X =

-5 Databases

Create Databese,
Start
Stz

Discorect
Delete

Refresh

Run Administration Tool

Propertis,

[app on APP]

OEBPS/graphics/5457_01_10.jpg
Proects | Fies | Servies Proects | Fies X | Services
) teskctme-acker 53 teskctme-adker
&-63 wiebPages aa
[8) ndexhin 563 man
&G source Packages Qe
8 comgeman.ttacker &6 wm
& Dependences &3 geman
@@ Java Dependences 3 tvacker
-G Projec Fes 53 webapp
[pomnl [&) ndexchin

nb-configuration. il

onfiguration. il
ol

OEBPS/graphics/5457OS_05_10.jpg
[¢] AbstractDaoForTestingjava x| || CompanyDaoTest.java x|
souce oy |[@ [~ 01+ S R @ &%

20 Test
21 public void testFind(] throws Exception (

22

23 Logger .debug ("\nSTARTED testFind()\n");

24 List<Company> allltems = companyDao.findAll():

25
‘
& CompanybacTest O testrnd x

Output - task time-tracker X || Test Results

=)
|

Running com.gieman. cecracker.dao. CompanyDaoTest

THFO: Loading XL bean definitions from class pach resource [testingContext.xmll
Oct 20, 2013 5:03:46 PH org. springtraework. context. annotation. ClassPathScanning
THFO: J5R-250 '3avax.annotation NanagedBean’ found and supported for component s
Oct 20, 2013 5:03:46 P org. springfranevork. context. annotation. ClassPathScanning!
INFO: JSR-330 ‘javax.inject.Named' annotation found and supported for component

Oct 20, 2013 5:03:46 PN org. springfranevork. context. support. Abstracthpplicationt
INFO: Refreshing org.springtranevork. context. support.GenerichpplicationContextel
Oct 20, 2013 5:03:47 PN org. springfranevork.core.io.support. PropertiesLoaderSupp:
INFO: Loading properties file from class path resource (jdbe.properties]

Oct 20, 2013 5:03:47 PN org. springfranevork beans. factory. annovavion. hutouiredim
INFO: JSR-330 ‘javax.inject.Inject' amnotation found and supported for suowirin
Oct 20, 2013 5:03:47 P org. springtranevork. jdbe. datasource. DriverNanagerDataSou
ENT0- Loailad JDBC Hrita:: Hom swasi yanh Drives

Oct 20, 2013 5:03:46 PN org.springfranevork.beans. factory. xul Xm,\EeanDeixnxcxcnRJ

REOR TS

OEBPS/graphics/5457OS_03_13.jpg
[Teskiava x|

souce [

B-0-QHBRIPED

package com.gieman. tttracker.donain;

i
2
3 [wport java.io.Serializable;
@ | import java.util.List:

5 | iwport javax.persistence.Basic;

@ | import javax.persistence.CascadeType:

7 | import javax.persistence.Column:

8 | import javax.persistence.Entity:

9 | iwport javax.persistence.Generateavalue;

10| | iwport javax.persistence.GenerationType;
11 | import javax.persistence.Id:

12| | iwport javax.persistence.JoinColuwmn;

13 | iwport javax.persistence.lManyToone;

14 | iwport javax.persistence.NamedQueries;

15| | import javax.persistence.NamedQuery:

@ | import javax.persistence.OneToMany:

17 | iwport javax.persistence.Table;

18| | iwport javax.validation.comstraints.Nothull;

19| b iwport javax.validation.comstraints.Size;

OEBPS/graphics/5457OS_08_03.jpg
ask-

racker - NetBeans IDE 7.4

PS5 e o @ T w5 G-

Servicss | Profects | Fiks X alssfishresources.xtl x| [Coan and Buld Project casctime-tracker) GRIEFFIL)
563 task-time-tracker wee Hiuy @ Ele Mo bl MBI & & B [&

OEBPS/graphics/5457_12_02.jpg
© AddNew Company
Company -> Projects -> Tasks
9 PACKT Publshing
S5EEAD with Sprng and xS
(A chapter 1
(Achapter2
(A chapters

e

Edit Projectfor PACKT Publishing

Project Name:

EAD with Spring and ExtJS.

Ooeets QadiTasc @ save

3 Chapter 4

OEBPS/graphics/5457OS_05_02.jpg
Projects | Fies x| Services

B tasktime-tracker
G d

i+

e
Copy CHleC
paste Chrlty

&) Javs nterface.
16 Enty Classes from Databsse.
&l

(&) Hiv.

OEBPS/graphics/5457_12_01.jpg
@TASK-TlME-TkAcKER etz (D e Dy

o

© AddNew Conpany

Company -> Projects -> Tasks

{539 PACKT publshing
59°1 EAD with Spring and ExtS

Edit Company.

Name:

PACKT Publishing
Ooeets O ackrosect | @) save

OEBPS/graphics/5457OS_08_10.jpg
Additional Properties

Select | Name + | value + | Descri
T [User
7 [AutoReconnectForPools [false
I [ClobCharacterEncoding
™ [LoggerClassName ‘com mysgl jdbc log StandardLogger
T [SenerName
T [RetriesAllDown 120
I [SessionVariables
™ [LoadBalanceAutoCommitStatementRegex
™ [ignoreNonTxTables false
™ [ClientCertificateKeyStoreUr
™ [ProfilerEventHandler ‘com.mysgl jdbc_profiler LoggingProfilerEventH:

OEBPS/graphics/5457OS_13_09.jpg
[T A
& - € [localhost:8080/index-prod html

0 Task Time Tracker Logon

User Name: bjones

Password,

OEBPS/graphics/5457_02_21.jpg
m

¥ id_project INT(10)
© project_name Y ARCHAR(200)
@ id_company INT(10)

7 id task INT(10)
— — — @id_praject INT(10)
© task_name Y ARCHAR(200)

¥ username Y ARCHAR(10)
 first_name VARCHAR(100)
©last_name VARCHAR(100)
 email VARCHAR(100)

7 id_task_log INT(10)
@id_task INT(10)

@ username VARCHAR(10)

© task_description Y ARCHAR(2000)
© task_log_dake DATE

© task_minutes INT(10)

© password VARCHAR(100)
 adiin_role CHAR(1)

OEBPS/graphics/5457OS_07_01.jpg
CLIENTS APPLICATION SERVER

OEBPS/graphics/5457OS_11_08.jpg
TASK-TIME-TRACKER

S rasktons | (5337 Admn | O users © tosoft
StertDate: (01-0ct2013 | EndDate: | 30-Nov-2013 |9 @) Search (3 AddNew ManageTaskLogs.js
Tasklogs TaskLoglListjs Edit Task Log For Ilustrations
oate Task Descrpton Hours
Project: Advanced Sencha BxtIsd v
27002015 chapter 1 Started Chapter 1 56
27002015 chapter2 Friched Chapter 2draft 2.5 Task: Tustrations M
[27-0ct-2013 Chapter 3. Initialdraft work complet. 7 Date: 07-Nov-2013 [
27002013 chepter 3 Database designstarted 10 i = =
23.0ct2013 Java development Contirued with domainla.. 5
Description: Prepared lustrations for chapter 6
23.0ct2015 SenchaDevelop... Fiished stores forproto.. 5
078iov 2013 Thstratons Prepared stratons for.. 5
074i0v-2013 Appendx Completed st two sect.. 7
1600v-2013 Preface Rearranged sectons 2a.. 3
TaskLogForm.js
gForm.} @oekie| (@ sare
9 Records, Total Hours: _50.1

OEBPS/graphics/5457_09_13.jpg
= Center Tab1 |

OEBPS/graphics/5457OS_08_06.jpg
Projects

Fies | Services X

<

clo
T sk

i Tk
BT

S Datsbases
B webservies
& servers

@ v I

Start in Debug Mok
Start in Profile Mode
Restart

Stop)

Refresh

Remave

OEBPS/graphics/5457OS_08_18.jpg
localhost:8080/tttfcompany, X
€ - € [localhost:8080/ttt/company/findAll

("success”:false, Mmsg":"h valid user is not logged on!"}

OEBPS/graphics/5457_12_09.jpg
Company -> Projects -> Tasks
349 Gieman It Soutions
3489 PACKT Publshing

OEBPS/graphics/5457OS_13_07.jpg
Notepad T=TES]
Fle Edt Fomat Vew teb
frar Sxe-ext] [TR e, starcrinerney Date() getiinel; Cunctionlvar a-tiis, -oblecra

[tionCi, o, n{1F(Ext, 15EmpryCid)return}ifih-=sundefinad){n=1 Hf(ext, isTrerablei) |
D){o<gind; 1f Ctypeot o-="function"J{1F(1. Sclassname){o. displayname~

-$cTassnames

2)(swwtch(n)(CAse stringretury Stringlo) casetnimbar | rerlrn iy ber (5): case hoo
sy Tagnane(body unction”)7function(i){return | 1iash. call(i)==="Tobject Fur
5. Tength; t=[]; whi leCg=-) {t[q] -Ext . clone(s [g])}jelselif(r==="[object object]'ass. cor
2 niGoer o sFunetonCITEhOw new Error (] T, depr ecatesa) 1ENT, by Ype-Ext typeot:

[toLowercase(). replaca(d, *.). replace(a, **3; J=0. charat (033 1.(] S{g=0. substringC
T E e S an e thertnn Tsts. Fet ash) aesaileasbus g Fanct 10nC)r stund nds oo ehao0s

areTo(k) 111 Ext. apply(Ext, {versions:{}, lastregisteradversion:null, setyersion:funct
LcallCk)}i1)sExt. setversion(core” by HO)sExt. string=CFuncrionO{var j=/A0\x09\xda®
return b, endswith:functionCt, g, r)fvar p=eCt, q); 1F(R{IF(r){T=t. toLowarCase(): 950
ubstr (0, 72), g=Math. max(t, lastIndexof (* "), 1astIndexof (" "), . TastIndexof
2,9, {vard; if(h=2=undefined| [heg){revurn gl 10}ifCe){d=hie; 1f(di==0){h-=d; £

hap” in g,p="indexof" in g,y="2very" in §,c="some’ in g,d="filter" in g,n=CFun
1422 1 Cargunants . Tength<) {x(C, B, &) Jel5e{x(C, b, A, 0. call (arglments, 3)) }return_zjFun
19}Feturn B}, pluck :ranctian(o,){var z=[1,4,¢, B For (a=0,C=b. langth; AC; ar+){B=D[A]
") var e=0,BLC. Tength; for G e<;) {17 (&. cal1(z, C[e], &, C)){Feturn true}ireturn tal

[| T

OEBPS/graphics/5457OS_11_13.jpg
statOstes 01682013 (3] Endoste: |0L:5ep2013 [@ seaen
e

Date. Task Description Hours

Erermtetio ot o B>

OEBPS/graphics/5457_06_4.jpg
Output || Test Resuts X

com,giemanitask-tine-trackeriwari1.0 x |

> 002

IS tests passed.(2.735 5)

5@ com.gieman ttracker service.CompanyServiceTest passed
@ testFindAl passed (2,455)
@ testFind passed (0.031 5)

L)
V]
A| @ testaddiew passed (0.0315)
]

@ testRemove passed (0.1575)
@ testUndate passed (0.031 5)

OEBPS/graphics/5457_02_19.jpg
[5) 5QL Command 3 x

Source History Connection: [idbcimysalfflocalhost: 3306 task.fime_tracker?zeroDateTimebs

[T ————

select * from tt_user x |

BHHEE® &K <> raese 0 |

[username | frst_name | last_name. emal___[passwor] _sdnin_role
T bpnes sety Jones bi@ttracker.com admin ¥
2 gmth o Srith @tttracker.com admin N

OEBPS/graphics/5457_10_18.jpg
User List
Username
bjones

mith

First Name.

bty
John

Last Hame
" dones._
Smith

Enai
"bi@tracker.com_
s@ttracker.con

o)

OEBPS/graphics/5457OS_08_08.jpg
i About

User: admin | Domain: domain1 | Server: localhost

GlassFish™ Server Open Source Edition

7 @ Resources JDBC Connection Pools

> [@ Concurrent Resources
> g Connectors
> [JDBC
» [JDBC Resources
v [JDBC Connection Pools Pools (4)
8 DerbyPool I8 |
B SamplePool
[_TimerPool
[B mysql_task_time_tracke
> gt JMS Resources
> (3 JNDI
= JavaMail Sessions

To store, organize, and retrieve data, most applications use relational databa:
applications access relational databases through the JDBC API. Before an ap
access a database, it must get a connection

Select| Pool Name + | Resource Type = | Class

DerbyPool javax sql. DataSource org.apg
SamplePool javax sql. DataSource org.apg
__TimerPool javax sql XADataSource | org.apg
mysql_task_time_tracker_rootPool | javax sql DataSource | com

aaan

OEBPS/graphics/5457OS_13_16.jpg
C:\glassfish-4.0\bin>.\asadnin start-domain domaini
donaini
Cinglassfish-4.0\glassf ish\donains\domaini
£ich-4.0\glassF ich\domains\domainislogssserver. log

n executed successfully.

[C:\glassfish-4.0\bin>

OEBPS/graphics/5457_09_09.jpg
Sencha Cnd v4.0.0.203 B
Scncha Cnd provides several categories of conmands and some glohal switches
nost cases, ' the first step is to gencrate an application based on a Sencha
[cuch s Ext JS or Sencha Touch:

sencha —sdk /pathsto/sdk generate app MyApp /pathsto/myapp
Sencha Gnd supports Ext JS 4.1.1a and higher and Sencha Touch 2.1 and highe
To get help on commands use the help command:

sencha help generate app
For nove information on using Sencha Gnd, consult the guides found here:

Ihttp://docs .sencha.com/ext—js/4-2/1i1 /guide/connand
Ihttp:/docs .sencha.com/ext—js,/4-1 11 /guide /connand

http://docs .sencha.com/touch/2-2/111 /guide /conmand
http:/docs .sencha.com/touch/2-1 /11 /guide /conmand

Opt ions N
* —background, —b — Runs the web server in a background thread
* i pad, Seu — Sate thy dirsttiry Erom whith consandé shoald: axstute

OEBPS/graphics/5457OS_08_05.jpg
x| [Name_~

= 2 glassfish-4.0 o] | Dapplbs
& orgoenscri o Scses
D bin (Ddatabases.

E 2 glassfish
g::mw I mysgl-connector- 1.26.ar

2 config
2 docs
=l (2 domains.

=l (2 domaint
12 applications
2 autodeploy
Db
2 config
12 docroot
122 generated

3 init-info
EIST)

12 applibs

OEBPS/graphics/5457OS_08_21.jpg
& Command Prompt

C:\glassfish-4.0\bindasadnin start-domain domaini

donaini
Location: C:\glassfish-4.8\glasstish\donains\domaini
Log File: C:\glassfish-4.8\glassf ish\donains\domaini\logs\server.log
Adnin Port: 4848
[Connand start-domain executed successfully.

[C:\glassfish-4.0\bin>

OEBPS/graphics/5457_10_19.jpg
Add New User

Username:

First Name:

Last Name:

Emai:
Password:

Administrator:

Yes

Soeete

Osoe

OEBPS/graphics/5457OS_05_03.jpg
Steps

Choose File Type

1

2

Choose File Type

rojct: [tesctme racer

GassFish
weblogic
Other

Qs |
Cotegores e Types:
SaLfle =

00 uni Tests & e
00 persstence 1§ s i
(2] Hibernate. Javascript File
(2] Web Services. I50M File
L0 e e

=]

=]

=]

Descripton

B e

Cascading style Sheet
VAML Fle
Neon Fil

L

(Creates a resource bunde (.properties) il suitable for nternationaliing applcations by
separating out all human-visbl text strings from your code. Resource bundle fis can ako be:
used to calect cther types of srings, such as properties for Ant scrpts. The created resource
bundle contains only one local, but you can add addtionsl locales from the created fie's

(KU

<Back.

F e |

OEBPS/graphics/5457OS_13_22.jpg
') Task Time Tracker Logon

User Name: biones

Password,

Source ~=lolx|

Bl Edt Vew tep

<!DOCTYPE HINEL>

<ntml>
<head>
<meta charset="UTF-57>
<EitLe>TTT</title>

<link rel=rstyleshest” href="resources/ext-theme-classic-all.css">
<link rel="stylesheet” href=rresources/styles.css">

<script type=vtext/javascript” sro="all-classes.)s”></script>

</head>

<hody></body>

</htm>

OEBPS/graphics/5457OS_05_15.jpg
Output -tasktime-tracker | Test Results X

com.giemanitask-tine-trackeriwari1.0 x |

4 tests passed, 1 test faled. (2578 5)
- &) com.gieman ttracker dao.CompanyDaoTest Faied
i) testFindal Faiec: Company.findal st not equal to row caunt o table tt_company
@ testierge passed (0.0155)
@ testFind passed (0.0325)
@ testpersit passed (00155)
@ testRemove passed (0,094)

EEREE

OEBPS/graphics/5457_01_01.jpg
=i

Choosing a Setup Type
Please select the Setup Type that suits your use case.

Setup Type Description
fnstals the My5QL Server and the tocks
required Far MySQL application development,
This s useful f you intend to develop
lapplications for an existng server.

@ Developer Default

Instals ol products needed for
HySQL development purposes.

License Information

Find latest products
© Server only

hisSetup Type incudes:
Insallsorly the MySQL Server ik

roduct, e o
Check Reairements o MySQL

[MySGL Workbench
Installation © Client only (The GLIT application to develop for and manage

Installsorly the MySQL Clent the server.

Configuation prochets, wihout server freserer H
- Complete € Full Installation Path: Ll

Instalsalinchuded MySCL products [Erogram Fiesirysary
and features.

© custom Dats path Lo

Manusly select the products that [E:1Dscuments and Settings Al Usersiappica]
should be nstalld on the system,

OEBPS/graphics/5457_12_11.jpg
Company -> Projects -> Tasks
9 Geman tslions
9 PAGKT Piblsting
(8 °13 Advanced Sencha Extis4
=13 EAD with Spring and Ext)S
B crapter 1
Bcraper2
Bcrapters
8 °13 The Spring Framework for Beginners.

OEBPS/graphics/5457_02_20.jpg
550t Command 3 x

Source History Connection: [idbcimysal:focalhost:3306task_time_tracker7zeroDateTimeBehavio

2

1] select * from ttc_task logs

select * from t_task Jo.. % |

7] T I 1 Pagesize: oo | Total Rows:

|1 task log | id_task | username task_description task log_date | task_minutes
0 1 Ljsmith Completed Chapter 1 proof reading 20131013 120
3 2 2jmith Completed Chapter 2 droft 0131043 240
s 3 3fmth Completed preparation work for il daft 2013-10-13 £l
4 4 3fmth Prepared database for Ch3 task. 20131013 180
s s thiones started Chapter 1 0131013 E
6 6 2bjones Finished Chapter 2 chaft 0131043 140
" 7 Sbjones Intial daft wark completed 131013 450
s 8 Sbjones Database desiqn started 20131013 &0

OEBPS/graphics/5457OS_13_03.jpg
B
€ - € | [localhost:3080/build/index html

Tagk Time Tracker
User Narie. [Enter a Usemame
Password:

Logon

OEBPS/graphics/5457_10_15.jpg
@TASK-TIME-TRACKER E ions

Welcome John Smith!

You are logged on as jsmith [js@ttracker.com]

Ot

OEBPS/graphics/5457OS_13_05.jpg
@

User Name:

Password.

bjones

OEBPS/graphics/5457_04_05.jpg
APPLICATION SERVER

»Request Handing
Layer

DATABASE SERVER

OEBPS/graphics/5457_10_20.jpg
/Add New User

Usemame:

First Name:

Last Name:

Emai:
Password:

Administrator:

Yes

crmu

Osoe

OEBPS/graphics/5457OS_05_18.jpg
Projects | Fies X |_Services

53 toskcimerracker
O
B8 s
1 main
& e
23 java
5 wom
B3 gieman
5 ttracker
563 do
[AbstractDaoForTesting.jova
(8] CompanybaoTestjova
8] serbaotestjava

&3 resouces

(Bl sabe properties

logback sl

B testpersistence.snl
[testingContext il

>

OEBPS/graphics/5457OS_13_08.jpg
Proects | Fies x| Servies T [[6] ndexprodhem x]
-3 nebapp 2| sowe msoy @ [0 L- QRSB PE
Q wese 1 <'bocTiPE HTHL>
Qo 2 @ <neni>
Q b 5 0 <heac>
Qe a <meta charset="UTF-67>
Q0 overides s <title>TIT</ title>
Q0 packages s <Link rel=rstyleshest” href=rext/packages/ext-thene-cl
Q0 resources 7 <link rel=rstylesheet” href=rresources/styles.css’s
Qs 8 | <seripe typesteext/javaseripet sre=tall-classes.3st></serd

(L] poadnomd 9 b </heaa>

@ oldassesss

1 10| | <boay></body>
. 5 hiiid | b </nem>
[appson o

oy bootstrap.css
&) bootstranis
] buidcnl

(6] indexcdev.henl

(5] mdex-prodhtm

& e

OEBPS/graphics/5457_02_17.jpg
50L Comnend 1 x| [5) 501 Commend 2 x|
Source History Connection: |jdbc:mysal: flocalhost: 3306 task_time_tracker?zeroDate]

1] Felect * from ttc_projects

select* from ttt_project x |

FEHEED &K < > M Pueso o i

| dproect project_name d_company
1 Enterprise Application Development wih 5p.
2 The Spring Framework for Beginners
3 Advanced Sencha ExtIS4
4The 3T Project
Streezing
& Gieman Website
7 Internal Office Projects
8 External Consulting Tasks

OEBPS/graphics/5457_09_02.jpg
[Ssee JIT=TE]

Setup - Sencha Cmd

welcome to the Sencha Cd Setup Wizard,
The Sencha Crid uities are used to package and deploy Sencha
applcations.

T

OEBPS/graphics/5457OS_08_07.jpg
Projects | Fles | Services X

@ vieh services

= Servers.

< EEe——

@ MovenRepi| 2t

o Hudson Buil Start in Profie Mode
i ToskReposi st

45 BTesoiv s

Remave

View Domain Server Lag
View Domain Update Center

OEBPS/graphics/5457_02_09.jpg
= Databases
-3 MysQL Server at locahosti3a07 roct]

nformation_schema
mysal
performance_schema

D @ D I @ W @

OEBPS/graphics/5457_12_13.jpg
Company -3 Projects - Tasks

09 Geman It Soutons

15 EAD with pring and Ext15
3 Chapter |
(3 Chat
(3 Chapter 3

23 Chapter ¢
13 The 37 roject

[atabase Developmant
(23 ava development
(23 5encha Devcslopment

[Testing

@ PACKT Publishing

Database Development.

OEBPS/cover/cover.jpg
Enterprise Application
Development with Ext JS
and Spring

Develop and deploy a high-performance Java web application
using Ext JS and Spring

PACKT =

OEBPS/graphics/5457_06_2.jpg
B com
B3 gieman

5 ttracker
1 dao
3 domain
2 service
Bbtractservice Java
CompanyService.java
CompanyServiclnpl.java
ProjectServie.java
ProjectServicelmpljava
TaskogService.java
TasklogServicelmplova
Taskservice.java
Taskservcelnpl java
Userservicejava
Userservicelnpl java

©
BE 5 (6 (6 (6 B (6 (B B [B 89

Resultjava
8] ResutFactory java

OEBPS/graphics/5457OS_13_12.jpg
) Task Time Tracker Logon

User Name: bijones

Password, g

Logan

OEBPS/graphics/5457OS_03_06.jpg
Steps Mapping Options

1 Choose Fie Type ecky the defaulk mapping options.

2. Database Tables e et noering ont

3. Entiy Classes Assadiation Fetch: [default 2

4. Mapping Options =
Collction Type: ~[java.utilList ~
I Fully Qualfied p{2Ya.ut Colection

[~ Attributes for Rejjava.uti.Set

[¥ Use Column Names in Relationships.
T Use Defaults if Possible

T~ Generate Fields for Unresolved Relationships

<gack || e

Cancel Help

OEBPS/graphics/5457_01_24.jpg
Transfetting Maven repostory index: Central Repostory |

13%

OEBPS/graphics/5457OS_05_04.jpg
New Properties File

Steps

Name and Location

L. Chaose Fil Type
2. Name and Location

e tome: e
Project: |task-time-tracker
Folder: |srcitestiresources

==

Created File: [Cilprajectsitask time-trackerlarcitestivesaurcesdbe praperties

<gack | iext > Cancel

el

OEBPS/graphics/5457_12_05.jpg
Company -> Projects -> Tasks

349 Gieman It Soutions
1348 PACKT Publshing
9 Serious WebDev

OEBPS/graphics/5457_02_07.jpg
Projects | Fles | Services X

Databases

nfarmation_schel
mysal
performance_sch
sakla

test

workd
@ wva0s

553 orvers
B Java DB (Embedd

Stop
Corest

Discannect
Delete

Refresh

Run Administration Tool
Propertis,

OEBPS/graphics/5457OS_11_09.jpg
StartDate:

TaskLogs
Date
2702013
2702013
2702013
2702013
202013
202013
07ov-2013
07ov-2013
160o0v-2013

TASK-TIME-TRACKER

Stsskiogs () 3Tadmn O sers

0102013 |3 Endbate: |30-Nov-2013 (3] @ search 3 AddNew

Task
Chapter 1
Chapter 2
Chapter 3
Chapter 3

3ava development
Sencha Develop.
Tustrations

Preface

Desaiption
Started Chapter 1

Finished Chapter 2 raft
Initlcraft work completed

Database design started

‘Continued with domain layer, implemented UserDao
Fiished stores for prototype

Prepared lustratons for chapter 6

Completed frst two sections of appendix 2
Rearranged sections 2and 3

9 Records, Total Hours: 501

Edit Task Log For Iustrations

Project:
Task:
Date:

Hours:

Description:

O ot
Advanced Sencha ExtJS4 e
Tlustrations "
070002013 =
s e

Prepared ilustrations for chapter 6

Qoeets @ save

OEBPS/graphics/5457OS_03_08.jpg
5 persistencexml x| RIS =T

oesn | Soree by | [conr = 5

=3 persistence units add|<]

REfEvE

Persistence Uit Name: [rom gieman_taskctime-tracker_wer_t.0PU
Persistence Pravider: EclpseLink (P4 2. 1)(defaul)
Data Source: dbctasktimetracker

[Use Java Transaction APl

Table Generation Strategy: © Create " Drop and Create & None
Valdation strateaqy: & Auto C Calback None
Shared Cathe Mods! C Al € None € Enable Selective (Disable Selective (* Unspecied

T~ Include AllEntity Classes in "task-time-tracker" Module.

Include Entty Classes:

Add Class... |
Remave

OEBPS/graphics/5457OS_08_15.jpg
New JDBC Resource [ox]
‘Specify a unique JNDI name that identifies the JDBC resource you want to create. The name must contain only
alphanumeric, underscore, dash, or dot characters.

jdbcitasktimetracker

3Pl o]
Use the JDBC Connection Pools page to create new pools

Description: [The 3T JDBC connection]
Staws: [Enabled

Value

No items found.

OEBPS/graphics/5457OS_08_20.jpg
 path from ServletContext

962

[http-listener-1(4)]

differs from path from bundle

1w

5.t UserInSessionInterceptor - calling prefandle with urle/tot/company/ findAll]

OEBPS/graphics/5457OS_11_05.jpg
SartDote 3 endoate: 305692013 3] @

Tasklo9s | start Date Required x
Date |

orsepanis | Please selecta vaid sart date to perform a search

01Sep013 T
03sep013 2

045ep-2013 JavaDevelopme . Completed changes to DAG s

OEBPS/graphics/5457OS_05_12.jpg
| AbsractDacrorTesting ava. x| &) ConpanyDaoTest ava x|

sorce | Hstory [[@R-E-|Q™ESBE(PE R
7 [] import com.gieman.tttracker.domain.Company:
E AHPE T Navigate. »
2 P show Javadoc Al+FL reTrue;
0 P Find Usages Al+F7
L Call Hierarchy
2 b IbstractDacFo
1 Insert Code Aksinsart
14 & Fix Imports. CtrShift+1
15 Refactor »
16 B Format Alt+Shift+F
1
P i st
P Debuge Cubshitas
2
alm Debug TestFle Culishitie Fxception (
2 o Focused Tst Method
23 Debug Focused Test Method tFind(j\n");
24 Run Into Method mpanyDac. findd:
25 Run Maven »
26 Mew Watch, CurshifteF7 [> 002

OEBPS/graphics/5457_10_10.jpg
§ ExtJs4.2.1 SenchaD

A | | m | | 9 | @rae x | g Panel x | 8 Panel x | g Panel x| g Bar x

S - & Ext.tab.Bar _

OEBPS/graphics/5457_01_07.jpg
‘etBeans IDE 7.

Fle Edt Vew Navigate source Refart

alals LICXIn

Projects | Fles | Services X

=)

S Datsbases
B webservies
& servers
& Glssrih server .0
@ Mven Repostores
Cloud
T Hudson uiders
i TeskReposkories
45 5 Test Driver

OEBPS/graphics/5457OS_11_11.jpg
Task Logs

Date

270ct2013
2762013
2702013
202013
202013
07Nov-2013
07Nov-2013
16-0o0v-2013

Task
tnaprer 1

Chapter 2
Chapter 3
Chapter 3

3ava development
Sencha Develop
Tustrations
Appendix

Preface

Desarpton
Startea Lnapter 1

Fiished Chapter 2 draft
ritlcraft work compieted

Database design sterted

Continued with domein layer, impleme
Finished stores fo prototype
Prepered ustrations for chapter 6
Compieted frst two sections of appen
Rearranged sections 2and 3

9 Records, Total Hours:

OEBPS/graphics/5457_02_10.jpg
Projects | Files | Servicss X]

-5 Databases
(@ MySQL Server at ocalhost:3307 [roat] (discomnected)

(3 teva00

23 rivers

(5] socsderby:ocahost:1527sample [pp on 4PF]

Other databases
@ vieb Services

OEBPS/graphics/5457OS_05_08.jpg
class="org.springframework.orm. jpa.vendor."”

eclipse.persistence.platform. database. G pelipseLinkipadialect
[EcLipseLinkipavendor Adapter
"org. springframevork. orm. Jpa. vendor . Ec1|Q) gibernatedpadialect§HibernateConnest ionfandle
[€© HibernatelpabialectiSessionTransactionbata
org.springframevork. orm. pa. |& Hinernatedpabialect

g class:

asourcer [© HivernatespasessionFactorysean
spavendordaptern |© Hivernacespavandoradapter
-rcest-persistence.xnin [© openspaniaiestsopenipaconnect tontandLe
i [© openspeniaiect sopenspaTransactionvaca

I€© opengpapialect

|€© opendpavendor kdapter
yltanager via @PersistenceContext (unithl@) ToplinkipaDislest
work. orm. 3pa. support . Persistenceinnotat | TopLinkipsVendoridapter

OEBPS/graphics/5457OS_05_14.jpg
Source History Connection: [jdbcimysgl:/flocalhost:330¢/tes

1] select * from tt_company:

selct * rom tt_company |

i EERE @K <> M Paes o

| id_company company_name

1PACKT Publishing
2 Gieman It Slutions
3 Serious WebDev

OEBPS/graphics/5457_01_09.jpg
New Web Application

Steps Name and Location

1. Choose Project Project Name: [easkctime-tracker
2. Name and Location

3. Settings Project Location: [Criprojects Browse,

Project Folder: [orajecta ok tne-fracier

[TR ey

Gowld [omgenan

ersin o

Package o geman ttracke] (options)
<sack o | cancel o

OEBPS/graphics/5457_09_04.jpg
Please speciy the drectory where Sencha Cmd wil be nstaled.

Installation Drectary [C1] =]

BitRack Instaler

oot | tot> | ol

OEBPS/graphics/5457_12_12.jpg
Company -> Projects -> Tasks

Node
59 Geman It Soutons
5708 The 3T Project
[3 Database Development.
[3 3ava development.
(23 Sencha Devcslopment
[Bestng
59 PACKT Publshing
33 EAD with Spring and EXIS
[Achapter 1
[Achapter 2
[Achapter 3

c2
P
T
T
T
T
1
P
1
T2
L)

OEBPS/graphics/5457OS_03_15.jpg
] Company.java x|

swee oy |-G QARDST GNP S |le 0|
75 Boverride

CEEl public int hashCode (] ¢

7 int hash = 0;

7 hash += (idCompany != null ? idCompany.hashCode() : D);
79 return hash;

80)

1

82 Boverride

Cl=| public hoolean equals(Object ohiect]

84

85 if (! (object instanceof Companyl) (

86 return false;

7)

o8 Company other = (Company) chject:

Y if {(this.idCompany == null €& other.idCompany != mull] || (this.idCompany !
%0 return false;

o1)

%2 return true;

93

OEBPS/graphics/5457OS_05_06.jpg
Steps

Choose File Type

1. Choose File Type
2

rojct: [tesctme racer i

Qe |

Categories Elle Types

2 ML Document

Ut Tests

XML Scherna (empty)

00 persitence OTD Entiy
; Hbernate | L Stylesheet.

OSIS ML Catalog
i ELy [&] XL Parsed Entity
0 GlassFish 0B Binding

webLogic
other <

=]

=]

=]
(0 web Services
=]

=]

=]

=]

|

Descripton

Creates a new XML document. In the wizard, you can speciy whether to have the fil wel formed,
DTD constrained, or XML Schema constrained.

<Back.

Eiish Cancel el

OEBPS/graphics/5457OS_05_07.jpg
15
16
17
18
15
20
21
22
23
24
25
26
27
28
25
30
£
32
33

clasamrorg. spr ingtraneuork. Jdbe. datasouree .Dr v
partverclassiames"s (Jbe. dr iverc asshiane) ”
e ——
§{jdbc. username} "
§{jdbc. passvord} "

onProperti

<bef$ p:connectionPropertiss-ref Properties (ramework.l
9 prdriverclassiame-ret string

<bE1§ p:logiriter Printiriter ifranevork
4 p:logiriter-ref Printiriter
$ p:loginTimeout ing mnce.platto
4 p:loginTimeout-ref int

<bef$ p:password-ref String PPringfrane]
4 prurl-ret String
4 p:username-ref String "

ersistenceimlLocatio

test-persistence.xml”

/>

OEBPS/graphics/5457OS_08_02.jpg
Services

Gessftresouces i x|

B tasktime-tracker
ER=

23 s
=43 main

BN test

3

lassfshresources.xm

ErEN ttracker

sorcs istoy @ (- - |Q RSB P S| @U| O
T <L version"1.07 encoding=TUTF-o77>

2| <IDOCTIPE resourees PUBLIC »-//GlassF ish.org//bTD Glasst
. dbe_connection-psol allov-non-component-callersers
s <propercy namesrserverhane” values"localhost />
. proporty nometportmber® valuo"3305%/5

; roperty namee"databaseNene" valuesrtask tine &
. propercy name="Usec" valueecoot"/>

s propercy namen"Passvord” values"sdninadnin®/>
10 Py P GO R ey A
n roperty namennd iverClass” valussrcon.myagl.)
2 P ——

1 S G
18 L <resoureens

OEBPS/graphics/5457OS_03_14.jpg
import javax.persistence.Basic;
mport javax.persistence.CascadeType;

@ Remove al unused mports >

TWpoTt Javax.persistence:

o Lun;
neity;
eneratedvValue;

OEBPS/graphics/5457_06_3.jpg
E-Q test
23 java
5 wom
&3 gieman
5 ttracker
23 dao
[AbstractDaoForTesting.jova
(8] CompanybaoTestjova
8] TparopTest jova
53 serviee
(8] AbstradtServceForTestingjava
(8] CompanyServiceTestjava
8] UserservcTestjava

£ 3 resouces

(Bl sbe properties

logback sl

B testpersistence.snl
[testingContext.xml

OEBPS/graphics/5457_09_05.jpg
[Ssee JIT=TE]

Completing the Sencha Cmd Setup Wizard

Setup has inished instaling Sencha Crd on your computer.

= | | e

OEBPS/graphics/5457_01_02.jpg
Root Account Password

Enter the password for the root account. Flesse remember to store.
this password n a secure place,

MySQL Root Password:

Repeat Password:

Password Strength Weak

OEBPS/graphics/5457OS_13_01.jpg
& Command Prompt

[C:\projects\task-tine-tracker\src\nain\webapp>sencha —sdk ext compile —classpath=app page —yui —i
Sencha Cnd v4.0.0.203
Compiling page index.htnl
uriting htnl file output to Civprojects\task-time-tracker\src\main\webapp\build\index.htnl
Loading classpath entry Ci\projects\task—time-tracker\src\main\uehapp\exticre
Loading classpath entry C:\projects\task—time-tracker\src\main\uebapp\app

Loading classpath entry Ci\projects\task—time-tracker\src\main\uehappsencha-conpile-tenp—d|
Conmpressing data with YuilavaseriptCompressor
Concatenating output to file C:\projects\task-time-tracker\sre\main\uehapp\build\all-classe

[C:\projectsitask-tine-tracker\src\main\uebapp>

OEBPS/graphics/5457_01_15.jpg
Flls X 51 [[5] pomn faskctime tracker] x|

£ Sy task-timetracker Al] sowce eraph ective History
g T <ol version="i.0v em
=2=] tavqe‘t 2| [<project xmlns="hrtp:/
dasses 3 <modelversion>4.0.
endorsed a
© hg _— s <groupldscon. giema
g i 6 <artifactId>task-t
H e b L 7 <version>1.0</vers
Javase-neb-api.0.jar
8 <packaging>war</pa
9 sping-anp-3.2.4 RELEASE r 5 AN
@ sprivgbeans-3.2.4 RELEASE jr P <neme>task-t ime—tr
B spring-context3.2.4 RELEASE Jar b
g e 2RSS e cproperciess
Rl 13 <endorsed. dir>
spring-expression- ar 1a <project.build,
@ spriginstrument-3.2.4 RELEASE jor
(3 sprig-idbc-3.2.4 RELEASE Jar = B
ping-i i 16 </properties>
B spriv-omm3.2.4 RELEASE jor -
g spnnq—:es;—ii; :LEEL;:ESE dar <dependencies>
springc o <dependency>
(3 sprivgweb-3.2.4 RELEASE Jar
(5 sprivgwebmyc-3.2.4 RELEASE r eitace:
sl i 2 <artifactI

OEBPS/graphics/5457_02_15.jpg
Projects | Files | Services X

)

55 Databases -
(@ MySQL Server at locahost:3307 [roat] (dsconnecte

53 jobc:derby:fflocalhost: 1527]sample [app on APP]
(2] dbeimysal:jflocalhost:3308/task, time_trackerzzero

Execte Command,

9 web Servies| £ Colmn
Servers Refresh
G Movenhepos_ Deleleodte

OEBPS/graphics/5457OS_13_04.jpg
Projects

Fies X | Services

2 et

3 buids

0 md

3 locsle.

43 packages

03 extocale

3 ext-theme-access
3 ext-theme-base.
3 ext-theme-classic
(3 ext-theme-classic-sandbox
3 exttheme-gray
£ exttheme-neptune
3 ext-theme-neutral

£ src

il

OEBPS/graphics/5457_10_22.jpg
Usemame- S

Invalid Fields x
First Nam)
Lt 1oy Please fxc the invaid entries!
Emai:
ok
Password.
Administrator: Yes ® o

O

OEBPS/graphics/5457OS_05_05.jpg
dbc.properties x|

e tstory |[@ G- 01+ B SR E E %

T 3. ariverclassiame=con uyanl Johs Driver

2| Sbe.url=jsheomyanls// 1osalhost 3306/ task time tracker
5 3. usernamesroot

4 jbe. password=acinaciin

OEBPS/graphics/5457OS_13_11.jpg
) Task Time Tracker Logon

User Name: bijones

Password:

Logan

OEBPS/graphics/5457OS_03_01.jpg
steps Choose Fl Type
1. Choose e Type rofecs [i racter =

Qe |
Cotegres: o Types

LT oot T bererderey] | [iy o

[Bop™ &

0 o 5 5 Controler Classs fom ety Gsses

L0 Sovapeans oets 5 35 pages rom Entty Clses

00 ok vets 5 persstenceun:

S i ——

| Database Schema
-0 Hosmate %
6 Sesson B ForEtey Classes

g B ey
L _"—l | RESTTul Web Services from Datbase

pesctin

Crotes JovaPrsstonc APL ety cosses bosed o o exstng el dtabase. Enty 2
oo r s ratesen:ajcts whose Fesp s e e typlpogra execukin

i campls reaesan enchy e oreach seecedtal, conple wi s ary

annotations, fields representing columns, and relationships representing Foreian keys. I~

= F e |

OEBPS/graphics/5457_01_12.jpg
® Project Propert

Categories

Sources
Configurations
Frameworks
Javaerpt Fies
55 Preprocessors
Buld

© Comple

°
°
°
°
°
°

Run
Actons

License Headers
Formatting

© Checkstyls Formatting
© Hrts

coo0

Group I
Artifact 1d:
Version:

Packaging:

Name:

Description:

Jrom gieman

askctime-tracker

To

[askctime-tracker

ol | e

OEBPS/graphics/5457OS_08_22.jpg
& Command Prompt

C:\glassfish-4.0\hindasadnin stop-domain domaini
iaiting for the domain to stop -
[Connand stop-domain executed successfully.

[C:\glassfish-4.0\bin>

OEBPS/graphics/list.jpg

OEBPS/graphics/5457_01_21.jpg
Start Page - Windows Internet Explorer

)+ [&] hepiinocatostisosofiesk-time-tracker]

| Fle Edr vew Fovortes Took b

i Fovortes 5| - | 8 Gasis Server - server Ru... | @ start page x|

Hello World!

OEBPS/graphics/5457_12_07.jpg
@TASK-TIME-TRACKER

Stsskiogs (%) 3T admn

O s O oot

© AddNew Conpany

ManageTasks js

Company -> Projects -> Tasks

|59 PACKT Pubsfing
3% EAD with Spring ond ExUS
[Achepter 1
(Achepter2 CompanyTree js
[Achepter3
(Achapters
(Achepters
3% The Spring Framenork for Beginners
[Achepter 1
(Achepter2
[Achepter3
38 Advanced Sencha ExtIS4
(Aprefoce
(33 Appendix
(Athstrations

Edit Company.

Name:

CompanyFortm s
PACKT Publishing

Ooeets O ackrosect | @) save

ProjectForm.js
TaskForm.js

(not visible in card layout)

OEBPS/graphics/5457_01_04.jpg
NetBeans IDE Download Bundles

Java SE Java EE CfC++ HTMLS & PHP. Al

. .

.

.

. .

.

. .

. .

. .
bownioad)| (_Downioad) |(_Dowioad) (_Downioad) ((Downicad
Fres, 84 M8 | Free, 185 B | Free,50MB Fres, 60 M8 Free, 204 MB

OEBPS/graphics/5457OS_03_10.jpg
S persistencesal x|

vesn [soree oy | (@000 | QS B0 S AU

«
RIS

1
2
3
a
s
6
7
8

s
10
1
12
13
14

<ol versio

"1.0" encoding:
<persistence version="z.1" xuln
<persistence-unit name:

"UTF-8"2>

"

/xmins. jep.org/xnl/ns/persistencel

CCtPUY transaction-type:
<provider-org.eclipse.persistence. jpa.PersistenceProvider</provider>

aTAT>

<jta-data-source>jdbe/ taskeinetracker</ jta-data-sources

<class>con. gienan.
<class>con. gienan.
<class>com. gienan.
<class>com. gienan.
<class>com. gienan.

<properties/>
</persistence-unit>
BEbes Sintasas

tetracker.
tetracker.
tetracker.
tetracker.
tetracker.

domain
domain
domain
domain
domain

-Company</class>
.Project</class>
-Task</class>

- TaskLog</class>
LUser</class>
<exclude-unlisted-classesstrue</exclude-unlisted-classes>

OEBPS/graphics/5457OS_11_10.jpg
Edit Task Log For Java Development

Project:
Task:
Date:
Hours:

Description:

BT Project

Gieman It Solutions: 3T Project

PACKT Publishing; Advanced Sencha ExtIs4
PACKT Publishing: EAD with Spring and Ext’S
PACKT Publishing: The Spring Framework
Serious WebDev: External Consuting Tasks
Serious WehDev: Intermal Office Projects

OEBPS/graphics/5457_02_03.jpg
i Foperte | AdrinPropertes |

Server Host Narte: focahest

Server Porttumber: [3308

Adinstrator User Name: [root

Adrinistrator Password; [P

v Keiaiber Bassieid

ol | s

OEBPS/graphics/5457_10_14.jpg
@TASK'T'ME'TR"‘(KER Stsskiogs (<) 3Tadmn | O sers

Welcome Betty Jones!
You are logged on 3s bjones [bj@tttracker.com]

Oeort

OEBPS/graphics/5457OS_13_18.jpg
& Applcations A\

> € [localhost:4848/common/index.jsf % =

B,
User: admin | Role: domain! | Server: localhost

GlassFish™ Server Open Source Edition

) Standalone Instances Applications

> g Nodes Applications can be enterprise or web applications, or various kinds of modules. Restart
an application or module by clicking on the relaad link, this action wil apply only to the

v [Applications targets that the application or module is enabled on,

© task-time-tracker-1.0
& Lifecycle Modules Deployed Applications (1)
Monitaring Data Deployes] | Undeploy | | Enable | | Disable | | Filter:

v I Resources Deployment
> [Concurrent Resources Name Order Enabled | Engines | Action
> ¢y Connectors tecktime |10 v web Launch | Redeploy | Reload
> [JBC racker
> gt IMS Resources
> LNl

53 JavaMail Sessions

OEBPS/graphics/5457OS_08_14.jpg
v i@ Resources
> [Concurrent Resources
> @ Connectors
> i JDBC

B > |3 JDBC Connection Pools
> g2 JIS Resources.
> (3 JNDI

5 JavaMail Sessions
oter Confias

& Resource Ad:

JDBC Resources

JDBC resources provide applications with a means to connect to a database.

Resources (3)

EIE |

Deletd Enabld Disable

Select| JNDI Name +, | Logical JNDI Name + | Enabled

Connection Pool 1+,

[jdbe/_TimerPool v
[jdbe/_defauh java:comp/DefautDataSource v
[jdbe/sample v

__TimerPool
DerbyPool
SamplePool

OEBPS/graphics/5457_09_10.jpg
e th ton ramies Do tob

[agtress [csenchac-.22

Foldars e -
EEE=) Cicencha |

© senchn Sbuics
S buids Semd
Send Socs
S s [S——
5 eramples Slecsle
) bcsle oparkages
S packages Coplugins
g Ciresources
5 resources =
Sime ek
() welcome |bootstrap.js

OEBPS/graphics/5457_01_14.jpg
pom.xml [task-time-tracker] x |
Sre Geph fecve Hatory 5-6-QSFRHIPE % a
TG cmeeies:
10/ <aependency>
1 <groupLas Javax</ groupLa>
B <artifact o savaee-ven-apic/ srtifactIa
a <version7.0¢/veraton
= <scope>provided</acope>
= </dependency>
wr <aependency>
z <groupLaorg. spr ingtranevorks,/ groupTd>
2 <ertifactidsprin
o </dependency>
B P — & eprang-apent
B 3 spring-aop
w0g e 3 spring-asm
a <wluine> 3 spring-aspects
e <wluin [——"
® <growpIor| 8 spring-beans
wa <AETIZAZEIN O spring-bsnding
5 <versiond.| a spring-contexs
w6/ <eontigueat| O spring-context-support
3 <oource| 3 Spring-core
w0 <carget| @ apring-aso
| © <eompl{ 3 spring-expression
w <enf @ sprang-rull
a </compi| @ apring-nibernace
= </contigural & spring-ninernaces
© <orugin 3 spring-hnernates |
aa <plugin>

OEBPS/graphics/5457OS_13_17.jpg
& dlassish Consoe - Commer, x __{

& = € [localhost:4848/common/index. jaf w| =

ome ABaut
User: admin | Dom: ainl | Serve

GlassFish™ Server Open Source Edition

Tree

e +| GlassFish Console - Common Tasks
ommon Tasks.

@ Domain
[server (Adrin Server)
8 Clusters GlassFish News Documentation
Standalone Instances i - = -
g Support Open Source Ediion
> @ Nodes - - Documentation Set
> [Applications || Regitration) - -
- < Quick Start Guide
& Lifecycle Modules | GlassFis News] & 3
Moritoring Dat | Auministration Guige |
v i Resources Deployment | Application Development |
> (g Concunent Resources [Lt Depioyed App”:amns) il cuce)
> & Connectors Application Deployment
- | | Depioyan Application | PR 5

OEBPS/graphics/5457_09_15.jpg
ER=)
2 controller
=43 model
[company.s
o[Project.js
ol Taskis
o[Taskogs
[#) users
0 store
£ view

OEBPS/graphics/5457OS_03_05.jpg
New Entity Classes from Database i

Steps Entity Classes
1. Chaose Fil Type Specify the names and the location of the entity classes,
2. Database Tables
3. Entity Classes. Class Names: Database Table. Class Name. Generation Type
4. Mapping Options tt_company. (Company en

tt_project Project ew

it task rask. ew

Taskog en

Broject faskctime-tracker
Location; [Source Packages =
Package: com gieman.ttracker domain ~

[Generate Named Query Annatations for Persistent Fields
T~ Generate JAXB Annotations

[¥ Create Persistence Unit

<Back

Enish Cancel Help

OEBPS/graphics/5457OS_05_09.jpg
® task-time-tracker - NetBeans IDE 7.4

Fle Edt Vew Navigate Source Refactor Run Debug Profle Team Took Window Help

O T(@)D>-i-G@-

AEE% D

=)

|

soce [N

o s i s G e ode) ST,
B8-S

Projects | Fles | Services X

(3 MySQL Server at locahost:3307 [root](dsconnected)

18 /e

(3 Javare

OEBPS/graphics/5457_04_02.jpg
New Java Interface

Steps

Name and Location

1

2

Chaase Fle Type.
Name and Lacation

Class Neme:

Broject
Location;

Package:

Created Fil:

[Companyao

[askctime-tracker

[Source Packages =

comgeman ttrackr.dao] =

Aprojectsitask-time-trackerlsrcimainljavalcom|gemanltitracker|dso|CompanyDa java

<gack | e

Cancel el

OEBPS/graphics/5457_02_16.jpg
[5] 5L Command 1 x
Source History Connection: [jdbcimysal: fflocalhost: 3306/task_time_tr:

1] Felect * from ttc_companys

selct * rom t_company |

i EERE @K <> N Paes o

| id_company company_name
1PACKT Publishing
2 Gieman It Slutions
3 Serious WebDev

OEBPS/graphics/5457OS_03_09.jpg
S persistencexml x| RIS =T

Desin | sowce sty [[E-51-|QARBSTBE|FE B

TR

10

version=r1.0" encoding="UTF-a"
<persistence version="z.1" xulns="http://wnlns.jcp.orq/wnl/ns/persistence” xming
<persistence-unit nawe="cou.gienan_task-tine-tracker_var_1.0PD" transaction-
<providerorg.eclipse.persistence. jpa.PersistenceProvider</providers
<jta-data-source>jdbe/ taskeinetracker</ jta-data-sources
<exclude-unlisted-classesstrue</exclude-unlisted-classes>
<properties/>
</persistence-unit>
</persistence>

OEBPS/graphics/5457_10_26.jpg
TASK-TIME-TRACKER

Stsskiogs (<) 3Tadmn O sers © oot

© acduser
User List 0 Edit User newuserid
Usemame Frsthame | Lasthame Gmai
bjones Betty Jones. bj@tttracker.com
Jsmith John Smith Js@tttracker.com First Name: L=
revuserd | New User revuser pttvader.com Last Name: User

Email: newuser@tttracker.com

Password: =

No

Qoeets @ save

Administrator:

OEBPS/graphics/5457_02_11.jpg
Projects | Fles | Services X o

Databases

task_time_ """

Other datsba

8 webservies

Servers

(@ Mven Repostores
Cloud

T Hudson ulders i

i TeskReposkories

45 5 Test Driver

Discannect

Propertiss

OEBPS/graphics/5457OS_13_06.jpg
TASK-TIME-TRACKER

© Add user

UserList

Usemame | FrstName | LastName Emai

biones Betty Jones bi@ttracker.com
Jamith Jon smith Js@ttiracker.com

Sosktoss

)

(%) 57 admn || O users

EditUser jsmith

First Name:
Last Name:
Emai:

Password:

Administrator:

John
smith

js@tttracker.com

Yes

ot

No

Ooee | (@ saue

OEBPS/graphics/5457OS_03_11.jpg
AEES
=3 task-time-tracker
= sre
= main
23 java
=43 com
=3 gieman
3 ttrack
=& do

Edt View Navigate Source

Services

(83 (B (B9 B (B

23 resources.
E-E3 METAIN
B persistenc.

projectList - Navigator X

embers
U v

<empty>

Refactor Run Debug Profle Team Tools

indow Help

DB O

Mave, el
Copy.
Safely Delte. Alt+Delete

ARSRO|P S B

Inine,
Changs Method Parameters.

Pull .

Push Dawn

Extract Iterface

Extract superclass.

Use Supertype Where Possbe.

Introduce

Mave Inner to Outer Level,
Convert Anonymous to Merber.
Encapsulate Fieds.

Replace Constructor with Factary.
Replace Constructor with Buider.
Invert Boolean.

Inspect and Transform

er‘](name TIpany . TIHNEy [OCoRpny ™, e
ery (name = "Company. £inaByConpanyliane", o
Company inplements Serializable {

static final long serialVersionUId =

1L

eavalue (strategy = GenerationType. TDENTTT
prional = false)

name = "id_company”)

Tnteger idCompany:

prional = false)

n = 1, wax = 200)
"eompany_name")
string companylane;
ny(cascade = CascadeType.ArL,

List<Project> projectlist:

mappedBy =

ompany (] ¢

| @ hashcode() : int

T

OEBPS/graphics/5457_10_17.jpg
© acd user

ManageUsers js

userist Je——

somane Frsihane | Lasttane | Enai
Usertame

- e bi@tvadercon

i P s atracancom Fist Name:
Lot ame UserFormjs
e

UserListjs
1 Password

[— ves oo

Socie. @ sere

OEBPS/graphics/5457_09_08.jpg
[INF1 Determining the latest version of Sencha Cnd
[INF] The latest version of Sencha Cnd is 4.0.0.203
[INF] Sencha Cnd 4.0.0.203 is this version.

>

OEBPS/graphics/5457_10_04.jpg
TASKTIMETRACKER o o o v

© rdduser
User List 0 Edit User bjones-
Usemame | Fastiome | Lasthome | Emad
bjones Betty Jones. bj@tttracker.com
Jamith John Smith Js@ttiracker.com Betty
Jones
bj@tttracker.com

OEBPS/graphics/5457_01_13.jpg
JII=IE]

File Edit View Wavigate Source Refactor Run Debug Profile Team Tools Window Help Q- Search (Ctrl+T)
5 [@ [16T B DS (B
Proects | Fies x| Sewices | |[5) pomi sk time tracker] x| AN
516 tasktme-racker Sorce Goph ffecve Hsoy [[@ [~ L|-|Q &b & &Gy
8 T <ol version="1.07 encoding="UTF-577> SH
EE3 man 2/ [<project smlns="https//waven.apache.ora/FON/4.0.07 slnd
ER= 3 <wode LVersion>4.0.0</mode Version>
5 cm o K
& aé‘mn - 5 <groupld>com. gienan</groupld>
: ttracker 6 <artifactId>task-time-tracker</artifactIds
53 weborp 7 <version>1.0</version>
) i 8 <packaging>var</packaging>
[rb-configuration sl 2
foemznt 10 <name>task-time-tracker</name>
n
S S|z m <eroercics
1 <endorsed. dir>§ (project .build.directory) /endorse
[POM model = 1a <project.build.sourceEncoding>UTF-8</project .bui
Model Version : 4.0.0 2 s </properties>
Groupid s com.gemen
Arefactd s tsketime-racker <dependencies>
Packagng s war <dependzney>
Name ; basktime-tracker <groupTasjavax</groupld>
Wersion : 1.0 20 <artifactld>javaee-web-api</artifactId>
L 21 <version>7.0</version>
Dependencies 2 <scope>provideds/ scope>
5 properies _ =l 2 </aependency>
(o 2 </aependencies> _'_|

| sls [ms

OEBPS/graphics/5457OS_08_09.jpg
New JDBC Connection Pool (Step 1 of 2) [Next]

Identify the general settings for the connection pool
* Indicates required field

General Settings.

Pool Name: 3TPool
Resource Type: [javax sql DataSource -]

Must be specified if the datasource class implements more than 1 of the interface.
Database Driver Vendor: (S ING—_— |

Select or enter database driver vendor

Introspect: I Enabled
If enabled, data source or driver implementation class names will enable

introspection.

OEBPS/graphics/reference.jpg

OEBPS/graphics/5457OS_11_06.jpg
Add Task Log
Project:
Task:

Date

3T Project

09-Sep-2013

Soete

<

gplie]

n here...

Osae

OEBPS/graphics/5457_12_04.jpg
© AddNew Company.

Company > Projects -> Tasks

59 PACKT Publshing

(313 EAD with Spring and Ext3S
[Achapter 1
[Achapter 2

‘Add Company

Name:

Enter company name...

Soeire. (€3 addrect

Osoe

OEBPS/graphics/5457_06_6.jpg
Output | TestResuts X

com.gemanitask-tine-trackeriwari1.0 x |

Dy 00.00

(Al 15 tests passed.(2.937 5)

@ com.geman ttracker.dao.CompanyDsoest passzd

@ com.geman tracker dao JpaTrapTest ecsed

@ com.geman ttracler servie. CompanyServceTest passzd
@ com.geman ttrcler srvis.UserServiceTest passed

L)
o
a

OEBPS/graphics/5457OS_05_16.jpg
Oufput_| Test Resuts X

com.giemanitask-tine-trackeriwari1.0 x |

o test passed, 2 tests failed. (2,375 s}

&8 com geman ackerdso aTrapTest Faled

) teserdBysemamepassword Faied: User found e vl password
& testManyToone Faled: orignal company sl has project i s colecion!

»
)
°
[& |

OEBPS/graphics/5457OS_11_03.jpg
Edit Task Log For Testing

EAD with Spring and ExtJS =
|
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Description:

Ooeers sane

OEBPS/graphics/5457_02_12.jpg
NetBeans IDE 7.

Fle Edt Vew Navigste Souce Refactor Run Debug Profie

Tesm Toos Window Help

P %D @ =

OTEDB G

53 jobc:derby:fflocalhost:1527]sample [app on APP]

8 webservies

Servers

(@ Msven Repostores
Cloud

T Hudson uiders

i TeskReposkories

45 5 Test Driver

Proects | Fies | Servies X 51 ([50 1 [beimysalifocahostiaa] x|
-8 Databases Souce | History Connecton: [fdbcimys:focahost 3a06ftas
[MySQL Servr at ocabost 3307 [rect]
T
(3 Jvave
3 oriers

OEBPS/graphics/5457OS_13_20.jpg
Applications

Applications can be enterprise or web applications, or various kinds of modules. Restart an application or module by clicking on
the reload link, this action will apply only to the targets that the application or module is enabled on.

EE |

[Deployess] | Undeploy | |Enable | | Disable | | Filter: -

Select| Name

Deployment Order

Enabled

Engines

Action

T tasketime-racker-1.0

100

v

web

Launch | Redeploy | Reload

OEBPS/graphics/5457_10_16.jpg
TASK-TIME-TRACKER

e

Confirm Logout x

Welcome John Smith! o
You are logged on as jsmith [setttrd &/

Are you sure you want to log out of 3T?

Yes. No

OEBPS/graphics/5457_01_17.jpg
Output X

| ¥MLcheck x |tasketime-tracker x | Java DB Database Process x | GlassFish Server 4.0 x |
THFO: Grizaly Fremevors 2.3.1 starced in: Ous - bownd to (/0.0.0.0:4,848]
P 1iro: suenorizasion Service has successfully inicialized
[p| TNFO: Grisaly Framevork 2.3.1 starsed in: ius - bownd to 1/0.0.0.0:3,700)
NP0 Registered org.glassfish ha store.adapter. cache ShoalBackingStoreProty for persistence-cype = i
{#l| mro: mvo0o001: ibernate Validater 5.0.0.Fimal
| TNFC: GlassFish Server Open Source Edivion 4.0 (89) starcup cime ¢ Felix (54,10%ms), starcup servic
8 1ro: Imivisving Jersey spplication, version Jersey: 2.0 2013-05-03 14:50:15
NP0 Grizsly Fremevork 2.3.1 sareed in: léus - bownd o (/0.0.0.0:3,080]
NP0 Grizaly Framework 231 sarved in: léus - bownd o [/0.0.0.0:5 1811
IR0 aMstarcupSsrvice has started TMXComnector on JIXService URL service:Juxirmi://10.71L.SS.3:8685
NP0 Grizaly Fremevork 2.3.1 starced in: loas - bownd o [/0.0.0.0:7,676]
NP0 Registersd com. sun.enerpriss. glassfish.boststrap. 0syi. Iabedded0SGiGlassFishIoploletlacs as 0SC

OEBPS/graphics/5457OS_03_04.jpg
New Entity Classes from Database.

Steps Database Tables

L. Chaose Fil Type AL

2. Database Tables b

5. Entity Classes Avalable Tables: Selected Tables:
4. Mapping Options

[y

A

<Bemoye

FAaRIS

<< Remove Al

¥ Include Related Tables

<Back

Eiish

Cancel

Help

OEBPS/graphics/5457_06_5.jpg
Output | Test Resuts X

com.gemanitask-tine-trackeriveri1.0 x |

I3 tests passed.(2.5635)
5@ com.gieman ttracker service UserServicTest passed
@ testiogon passed (2.469)
@ testadduen passed (00475)
@ testRemove passed (0.0475)

0w
L)
o
a

