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PAGE

CORRECTION

Fig 1- replace “Absorbed and re-radiate Wi
cc ' admted h = [
Absorbed and re-radiated” e,

2.3 - last sentence should read; “The Australian Government

under the Kyoto Accord, has N
s » has agreed to limit the increase in
emissions for the period 1996 — 2004 to 8%”. e

2.6 - last sentence under General should read; “The overheating is

not as great as in hot-arid areas, but conditions can be
uncomfortable -

..........

(S ] | )

~J

Table 1- the caption should read; “Heating degree days per year”.

c0

2.8 - last sentence should read; “Heating degree days can be
derived for a particular month using the formula:

HDD =N x (T, — T,) [if T.<Ty] or,

HDD =0 [if T>Th)
And cooling degree days from:

CDD=Nx (T.-Ty) [if T.>Ty] or,

CDD =0 [lf Taqb]

23

3.7 — para 1 last sentence should read; “The chart shown in Figure
22, for example is for a person engaged in sedentary activity,

| wearing a normal lightweight suit and acclimatised to Brisbane

conditions”.

26

3.8 (continued) — para 4 should read; “Thermal Neutrality is the
DBT at 50% RH which, averaged over a large sample of people,
is found by them to be neither too hot nor too cold. This takes into
account climate and habits and depends on the outdoor mean
temperature as follows:

T,=17.6+0.31 x Tay

(provided that T,y is between 3°C and 35°C)

Figure 2 - the latitude angle on these diagrams is given as L, on
p4, and in the List of Symbols, latitude angle is given the symbol

¢.

2 2 (continued) - under declination (8) the last section should

read; |
«At solar noon the angle between the zenith and the sun 1s:

Z=(-¢)
Note; this formula is valid for both Northern and Southern

hemispheres.

2 4 sub-heading 1, last sentence should read; “The sun takes 4

i utes to traverse 1° of longitude (approximately 111km)".

[ 2.4 (continued) sub-heading 3 should read; “Daylight saving

correction is required if clocks have been advanced.

“To convert from local to solar time use the following rule:
solar time = local time + 4(longjec — longa) — E
where :

longloc - longitude of the location
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Preface

Solar efficient buildings use sun and shade to bestheating and cooling advantage through
the-use of passive solar design and active solar Systems. Important passive design
vanables' include orientation, window positioning, ventilation, insulation shading
construction materials and layout of the buildi ng. Design characteristics most;ppl icablé
to a particular location depend on site considerations such as topography, solar access
and landscaping. More fundamentally, appropriate design characteristics depend on
prevailing climate type. Active solar systems, which include solar water and space

heating devices, use collector panels and heat storage in combination with pipework or
ducts for energy delivery.

This preface briefly examines the development of solar architecture, its importance, and

the extent of its application in Australia today. The format of this education manual and
its rationale is also discussed.

HISTORICAL BACKGROUND

Solar energy is not an exotic new energy source needing decades of further research and
development before it can be practically proven. On the contrary, solar efficient building
design has evolved over thousands of years.

Passive Solar Design

Excavations of ancient Greek cities show that solar architecture flourished. Entire cities
were planned to allow their citizens equal access to the winter sun. Individual homes

were orientated to face south. Because the Greeks worshipped the sun, there were few
cultural barriers to solar architecture.

New scientific knowledge and better materials contribute to improved pgssive solar
design today. However, the steady evolution of solar architecture has been interrupted
by the discovery of seemingly plentiful and cheap fossil fuels.

The 1970’s was the decade of several energy “crises” where concems Over high energy
prices and depletion of non-renewable energy SOUICES (based on fossil fliels ) re-emergec!:
One of the solar design success stories during this period was that Qf the Yﬂlage Hrz;;jneﬂs1
project in Davis, California. Here sympathetic local government cou._nm}lors 0[:;11; MCE
way for an energy efficient housing estate ba§ed on an innovative building code w
resulted in significant energy savings in buildings.

Such innovative building regulations have been absen} in Australia. Howeve;%c}l;lg;il l!l'l:
e 1970 sy degod ilingt ot B Lo

MI (Glass, Mass and Insulaton) Council of oy
g:loem(jte elfergy efficient house design and construction though a pr;locgszvc:;n eiiiiu;nd
Funding was provided by various private organisations, the Feder peome e
State Governments in New South Wales, South 5115’111'3113, Ti‘sm;ngﬁleaﬁ!]i B it
GMI Council developed the “Five Star Design Rating award for

' ‘ certificaion
excellence in design and construction. This award was the result of 2

s to market energy efficient home designs which

ich aimed to assist builder . . me de Wi
p;z;::ju;c c::[:;:: asltl.:t]ndard The rating scheme was des! gned in conjuncuon with the
p .

CSIRO Division of Building Research.
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Less Pollution and Fossil Fuel Use

greenhouse effect of carbon dioxide and other gases.

Fossil fuel combustion releases over half of the greenhouse gases that threaten the earth’s

climate. Several years ago a United Nations Intergovernmental Panel suggested that if

we did nothing, increases in global temperature of 0.2 to 0.5 degrees centigrade per

decade would result. Such tlemperature increases could lead to a global rise in sea level

0of 0.24 to 1. 1'7 metres by 2050 and 0.56 to 3.45 metres by 2100. This sea level rise would
have dramatic and adverse impacts on Australia’s coastal cities.

The Australian Government has endorsed in principle, the goals of the Toronto Accords

of 1988'for reducing greenhouse gas emissions by 20% from their 1988 level by 2005.
In practice however, the government has indicated that it may not pursue these goals if
they impose unfavourable economic impacts on Australia relative to other nations.

Social Advantages

The social disadvantages of ‘hard’ energy technologies based on fossil fuel use are
considerable. Adverse social impacts of coal mining for example, include five Australian
underground coal mining disasters since 1970, resulting in 50 deaths.

‘Soft’ energy technologies are simple, flexible, applied decentrally and are based on
renewable energy flows. A solar efficient building is a good example of a soft energy
technology. The social impacts of soft technologies are more gentle, pleasant and
manageable than hard technologies. Specific social advantages may include increased
consumer self-sufficiency, increased employment and increased satisfaction of basic
human needs.

ACCEPTANCE OF SOLAR EFFICIENT BUILDINGS

There are a number of buildings in Australia that have been designed along solar elfﬁcient
lines. Australian Solar Houses by Parnell and Cole (1983) included 68 case stl}dles and
was the first major work to describe solar housing in this country. The magazine Solar
Progress has featured descriptions of 90 solar buildings over the years. f’assxve Solar
Design in Australia by Greenland and Szokolay (1985) presqnted a series of 42 t.:a:s
studies of passive solar buildings. Several hundred new Australian houses have receiv

a 5-star design rating certificate.

The extent to which solar efficient principles are used in new buildings dggend:
fundamentally on several non-technical factors. In the broades‘t sense thes.e may : s“?m
to be associated with public policies of government anq electricity ats‘umonugséani -
the private sector policies of building companies, _equlpment suppliers anc eseizrg):
Public policies of relevance may relate to building codes energyl pnfm g;icing Yy
education and institutional structure;i( Pr.ivatefsectog 53:112: ;l::iy erse taitlis lr? eg i
rials, 1 ion provision, marketing of new : ]
E::;l;is blglf:un;:t:znw:reness or choice of innovative buildings is often constrained by
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General Texts

The followin trali - : .
Patohiasd g general Australian texts should be readily available for reference or

D oo .
ArGyg;a.le, J.W., (1975). Designing Houses for Australian Climates, Canberra:

Szokolay, S.V., and Sale, R., (1979). The Australia and New Zealand Solar Home
Book, Sydney: Australia and New Zealand Book Co.

Kay, M., Ballinger, J.A., Hora, U., and Harris. S (1982). Ener ' '
. ’ : % 5y : gy Efficient Site
Planning Handbook, Sydney: Housing Commission of N.S.W.

Pamnell, M and Cole, G., (1983). Australian Solar Houses, Sydney: Second
Backrow Press.

Australian Construction Services, (1983). Energy Efficient Australian Housing,
Canberra: AGPS.

Greenland, J., and Szokolay, S.V., (1985). Passive Solar Design in Australia,
Red Hill, ACT: Royal Australian Institute of Architects.

The following items examine general aspects of solar efficient housing in N.S.W.,
Victoria and Queensland respectively:

Ballinger, J.A., Prasad, D.K., and Cassell, D.J., (1992). Energy Efficient Housing
in New South Wales, Sydney: N.S.W. Office of Energy.

Gregory, J., and Darby, E., (Eds.) (1990). Solar Efficient Design for Housing: A
Manual for Architects and Designers, Melbourne: Victorian Solar Energy

Council.

Szokolay, S.V.,, (1991). Climate, Comfort and Energy: Desigy of Housqs for
Queensland Climates, Brisbane: University of Queensland Architectural Science

Unit. (Booklet)

Plan of this Manual

Unlike most of the above texts, this manual draws together discus§ion of bot-h active a_xéd
paSsive solar systems for use in buildings. The basic purpose of this manu:_al is to Plré)iw e
the technical information necessary to understand and design solar efficient builldings,

with special reference to housing.

The contents of the manual are divided into largely self-con
ordered in sequence, as follows:

tained Units (modules)
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For the purposes of design, there are three macro-climatic zones in Australia. In the
hot-humid zone extendin g across far northern Australia and down the Queensland coast,
lmperatures remain high all year and their daily range is small. In the hot-arid zone
covering the majority of Sparsely populated Australia. both daily and seasonal ran ges of
lemperature are wide. In the temperate zone covering south-eastern Australia (including
Victoria and Tasmania) and south-wes iem Australia, average tem peratures are lower than
for the hot-arid zone, but again wide temperature ranges occur.

3 PASSIVE SOLAR DESIGN PRINCIPLES

Among other things, houses should modify the climate to provide comfortable living
conditions. A number of different design issues need to be considered in order to best
achieve this goal. These “passive design” issues relate to orientation, zoning, thermal
mass, glass, insulation, sun control, ventilation and landscaping. Each of these is
discussed in turn below. Houses which include appropriate features relating to these
issues are termed “‘passive solar” or “solar efficient”.

3.1 Orientation

Solar house design begins with careful consideration of house orientation with respect
to the site. A “true north” orientation allows maximum sun entry in winter and easiest

sun exclusion in summer: If a true north orientation is not possible due to site restrictions,
it is acceptable to orientate northern windows between approximately 30 degrees east of
north and 15 degrees west of north. Different block orientations and acceptable house

plan layouts are shown in Figure 1.

3.2 Zoning

The temperature range in each room of the house is determined by its exposure to the
elements. The north side will be the warmest all year since (in the southemn h;?mlsphere)
the sun is in the northern sky. The west side will be colder in winter and hotter in summer.

The south side will be the coolest throughout the year.
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3.3 Thermal Mass

In a hot-humid climate however, outdoor tem
mass 1s generally not desirable. In this si
lightweight materials such as timber and bri
mass and heat up and cool down quickly.

peratures are normally high and thermal
tuation buildings are generally built using
ck veneer. These materials have low thermal

?Iou.ses in the hot-_arid climatic zone may be built using composite construction, as shown
in Flg}lre 3. In this case, heavyweight construction would be desirable for living areas
occupied by day and lightweight frame construction desirable for bedrooms and service

areas.
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ot-arid climate combining heavy and light construction.
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Figure 3 - House design for (Source: Drysdale, 1975).
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Figure 5 - Shading of north-facing windows using eaves or slatted pergolas.
(Source: Energy Victoria).

Glazing on east and west-facing walls should be eliminated or reduced. It is not possible
to et_'fectwely control the penetration of low-angled sunlight with eaves. Vertical shading
devices are important for east and west-facing glazing.

3.7 Ventilation

Ventilation is particularly important in hot-humid climates during summer at night when
the outside temperature is cooler than the inside. Functional design must allow full use
to be made of cooling breezes. Windows extending down to ground level on the air inlet
side provide the most effective ventilation. Where ventilation is a priority, windows with
100% openable area should be used. Figure 6 illustrates a house plan for hot-humid
climates which allows for flow-through ventilation.
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Figure 6 - House design for hot-humid climates which allows for flow-through ventilation.

(Source: Drysdale, 1975).
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- ;;S-ft:lf'elza:;l;mg, t;onstmcteq of masonry, has a transparent equator-facing (south)
Ml e solar heat gain ih winter. The roof and floor consist of 16 to 25 ¢cm

- Ihe north wall and interior partitions are made of 20 cm brick. The

e : DTN .
onry 1s exposed to tt}e interior and insulated from the exterior by 12 em of

4.2 Indirect Gain Systems

Indirect gain systems absorb sunlight converting it to heat which is then transferred to

the space where it is required. Thermal storage wall ]

a{ld darkenefi outer face of the wall and thengtran sfegmznt; ;h: Sorzrs;l g:hgihntlowi: glccaied
via conduction through the wall. If top and bottom vents have been provide& in the walrf,
heat transfer takes place primarily via natural convection from the heated wall to the
space behind. The Trombe wall has the convection air flow taking place between the
glazing and the solid wall and then through the vents to the room behind. The expelled
he_ated air 1s replaced with cooler air from the room. The Lawrance wall uses a cavity
brick construction with the convection taking place within the cavity which is vented to
the room behind. The air space between the glazing and the black outer surface remains
sealed. The operation of a Trombe wall is shown in Figures 8 and 9 for winter and summer

respectively. One problem with this system is that the massive wall impedes the view
through the window.

e
3
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25

Figure 8 - Winter operation of a Trombe wall.
(Source: Australian Construction Services, 1983).
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Figure 9 - Summer operation of a Trombe wall.
(Source: Australian Construction Services, 1983).
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f pond or vater roof, where the thermal mass is are supported by i roof which serves as the ceiling of the room below. The system is
lly, wateris enclosed in thin plastic bags which suited to both heating in winter and cooling in summer. In winter, the ponds are exposed
4 ) to sunlight during the day and then covered with insulating panels at night, as shown in

- | Figure 10. In summer the panel positions are reversed to protect them from the sun during
: the day and removing them at night to allow the ponds to cool, as shown in Figure 11.

Harold Hay’s experimental building in Atascadero, California provides the earliest
example of the roof pond system. PVC bags containing water cover the roof. They are
supported by steel decking which is also the ceiling. Structural walls needed to support
the water mass also serve as secondary thermal mass. Operation of this water roof is as
described in Figures 10 and 11. Bags act as solar collectors and storage mass for heating
and heat dissipators for cooling. The insulation panels are moved with an electric motor.
A 1979 report stated that the Hays’ house has been 100% solar heated and naturally

cooled since it was occupied in 1973.
4.3 Classification of Passive-Solar Systems

A generally accepted classification of passive solar systems, reflecting previous
discussion, has been presented by Szokolay, as shown 1n l_‘lgure 12. :I‘he direct gain
system and three basic types of indirect gain systems are ﬂlqsu:ated in tht? left-l_mand
column of Figure 12. The middle column illustrates some varatons o basic designs.

| | The right-hand column illustrates hybrid systems which involve both passive and active

elements.
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Figure 13 - Seasonal changes in solar Collector tilt. (Source: Pamell and Cole, 1983).

different tilts appropriate for different applicat;
_ pplications. Solar collec ed ace
heating systems are usually tilted at an an I EOE

plus 10 degrees gle equal to the appropriate angle of latitude

The abiliity of an active system to store energy for use during cloudy days is determined
by the size, type and extent of insulation of the heat store.

In an active solar heating system, heat s reticulated from the solar collectors to the storage
medium and back to the collectors. Pipes or ducts for transferring energy must be kept

short and well-insulated. The distribution System transfers the heat from the heat store
to various points of end-use in the building.

9.2 Air-based Systems

There are many different approaches to air-based active solar systems. Most commonly
they use specially designed, flat-plate solar air collectors to heat air which is then forced
by a fan via ducting to the heat store or directly into the space to be heated. The heat
store usually contains graded rock pebbles. Another fan forces air from the interior of
the house through the heat store, as required. The heated air returns to the interior of the
house via a series of ducts. The process is shown schematically in Figure 14.

Rock bin storage

ed solar system.
ure 14 - Schematic diagram‘of an air-based sc
Fi(gSource: Department of Housing and Construction, 1985).
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2.2 Solar Radiation

The radiatim:l emitted by our sun is equivalent to thatemitted by a body at about 5.600°C.
After travelling 150 million kilometres to just outside the earth’s atmosphere, the energy

density is 1367 W/m®, varying +/-3.4% over the year with the change in the sun-earth
distance.

The total annual solar radiation received by the earth is about 5.6 x 104, This is ahout
13000 times the 1990 annual energy consumption of 4.3 x 10%°J. Of this energy 30% is
reflected by clouds, vapour, and particles in the atmosphere as well as from the earth’s
surface. 50% of this light is absorbed, changed to heat and re-radiated back 1nto space.
20% 1s used to drive the water cycle, the wind and photosynthesis (Figure 1).

re-radioted as haat
Figure 1 - Annual solar radiation received by the earth.

: 2
The maximum radiation received at the earth’s surface 1s abput 1000 W/m u{hen the
sun is directly overhead on a clear day. This is referred to as air mass ll(AMl) since the
sunlight has to travel directly through one atmosphere. If the radlatm;lt;as to t;we][
. 5 -
obliquely through the atmosphere the intensity is further reducegl. Through the equivale

of two atmospheres (AM2) the clear sky intensity is 740 W/m~ (Figure 2).

. A P R A A Wﬁlfﬂ\ﬁlf{

o g0t T A A N ST i

5 A AR PR B A b, e g':u"’ v oo -':::'?_:ﬁq::'; gvéf g ’53 s "llr ,‘w #ﬂ#ﬁ"
s e r o R S R AR RH R BRI ER

S R N S TR R R TR N

RN




o 80%

il I'
el
1

-i‘tlie radiation may be

n the earth’s surface is
rbit around the sur
resent the axis 15

% e A T A e At e M e et e e s e Bt e s e W S e e . Pl o e n ;
T e e e s e S AR

Unit 2 i-

R

Figure 5 - Earth's orbit around the sun.

As t:he earth_ moves in its yearly orbit around the sun, locations at different latitudes
receive varying arnoun!is of solar radiation. When the earth’s axis is tilted towards the
sun for a particular hemisphere, the hours of sunlight exceed the hours of darkness. Also

the path of t.he.sup in the sky 1s higher. Together this has the effect of increasing the total
amount of deatfon received compared with the situation when the axis is tilted away
from the sun. This produces the seasons experienced in higher latitudes.

Radiation is absorbed in the atmosphere by ozone, water vapour, dust particles etc. The

lower the sun in the sky, the longer will be the path through the atmosphere and the
greater this absorption will be.

On average, the tropical regions receive more radiation than the mid-latitudes, which in
turn receive more radiation than the polar regions.

2.3 Global Thermal Balance

The total amount of heat absorbed by the earth is balanced by a corresponding heat loss.
Heat is lost by, long wave radiation to outer space, evaporation and convection to the
atmosphere. Without these balancing losses, the earth’s temperature would nse
dramatically. The increase in greenhouse gases in the atmosphere is stopping some of
the long wave radiation from escaping and upsetting the balance, producing the

Greenhouse Effect

It has been predicted that the average temperature could rise by 2 to 4 degrees in the next
50 years. The Australian Government has set a target to reduce Australia’s greenhouse

emissions by 20% for the period 1991 - 2005.

2.4 Winds

Winds are convection-currents which equalize differences in pressure, temperature or
humidity. Heated air rises and is drawn in towards cooler regions, while air from cooler
regions is drawn in to replace the heated air. Taken on its own this effect would produce

] ! ! inds in the southem
northerly winds in the northem hemisphere and southerl.y win .
hemisphere. However, the spin of the earth produces the Coriolis Effect_whlch deflects
this air movement to the right in the northemn hemisphere and to the leftin the southem

hemisphere (Figure 6).

Surface roughness, proximity to water masses, |
local variations to wind direction and speed. Wi

affects solar radiation.
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ﬁ:::::o :gldl:ut:;n 1S measured with a pyranometer (solarimeter) on an unobstructed
P ace. Can_be l)flea}sured contzinuom'ly as irradiance (Wlmz) or through an
MC integrator as irradiation (Wh/m* or Mllmz) over the hour or day.

2.6 Classification of Climates

Many different systems of climate classifications are in use for different purposes. As

far as building design for Australia is concerned three major climas :
climat
necessary (Drysdale ’81). These are: d C zones are considered

Hot-humid zone

Summer: High day-time dry-bulb temperatures (30° to 35°C).
High dry-bulb temperatures at night (25° to 30°C).
High relative humidities day and night (70 to 80%).
Winter:  Warm to hot days (25° to 30°C).
Mild nights (15° to 20°C).
General: Heavy summer rainfall; dry winter.
Small diumal temperature range, particularly during summer (5° to 20°C)
The overheating is not as great as in hot-arid areas, but conditions can
be comfortable due to high humidities decreasing the evaporative cooling

effect on the body, (sweating).

Hot-arid zone

Summer: Very high day-time temperatures (35° to 40°C).
Hot nights (20° to 25°C).
Low relative humidity day and night (20 to 35%).
Prolonged heat waves; hot, dry winds.

Winter:  Warm to hot days (18° to 25°C).
Cool to cold nights (5° to 13°C).

General: Irregular rainfall, occurring principally in summer.
Large diurnal and seasonal variations in temperature (10° to 20°C).

Here the main problem is overheating, but low humidity enables evaporative

cooling to be effective.
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roidale %55 %) 7 Bendigo 4681,002 (1,701 -
T HIAM 7 Colac §§5'1'23? Z.égg Tasmania
iy Dandenong 9| 871(1, Jurnie §
Euroa 462| 971|1,637|Cradle Valley
Geelong 978| 935|1,725|Hobart Airport
Hamil ton | =454 1,052 l.ggﬂ Launcﬁ;;on Airport
Keran 314| 751 (1,361 Mt Wellington
He‘lbmglrne 234| 693 1.3:2 Wynyard Airport
Mildura 222| 5% 1,1 Northern Territor
Seymour 5041,040 1';33 Iﬁmg_ﬂ'
| Wodonga 4z2| B9111,51215, in R0,

Table 1 - Heating degree days. (Source: AIRAH Handbook, 1988).
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Figure B - Average annual temperature. (Source: Bureau of Meteorology, 1978).

“Data Handbook For Australian Energy Designers” - Roy and Miller

This handbook gives general climatic data for sixteen Australian sites and incl_ud_es:
temperature (wet and dry bulb), wind speed, cloud cover and various irradiation
information. The results were derived from climatic data tapes as prepared by the
C.S.1.R.O. which in turn were derived from Bureau of Meteorology data. The data is

presented as hourly averages for each month of the year.
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‘olar Energy Statistics for Australian Cap; ta

ond for a 200km | r‘egion surr Ollnding each
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1 Global Radiation

iy T )
..I 1 ':\II.I“ .

i
= s

- . @ mal
i BB

e s B v Tlhlo:I A rmmnﬂ?“ﬁpm"d'whﬂulrdtmhdu
i am i N N L Average global bourly irradiance (W.m") and dlly irvadistion (Mi.m~5
it 5 i R Table 5.2 r & horizontal plans for each month :
. B ke o verage diffuse hourly irradiance (W.m=2 {7 iittes X
Table 3 “‘hﬂﬁ"“‘lphﬂiﬁnm:mithm 4 Ay Vi)

3  Average direct beam bourly irradiance (W.m~?) and 4 <1 e

u'l -
(MJ.m~*) on & horison '-llPll-nltormhnLnth ; T |

Table 3.4 Perceatage of days whea daily global frradiation on a horizontal place s at / |
e least as large as the given valus for each month .
iy . Tabls 3.5  Parcentage of daily global irradiation on a horizontal plane at least as large
e Wiets as the given valus for each month

Table 3.8 Pm“l‘ of days when daily direct beam irradiation on & horizontal plans
15 a$ least as large as the given value for esch month

Table 3.7 Percentage of daily direct beam irradiation on a horizontal plane at least
as large as the given value for sach month

Table 4.1 Average total hourly irradi ‘ iance (W.m™?) and daily irradistion (MJ.m~?)

(.u‘.‘) on a north (...“t)ha.n,‘vmiu.l plane for each month

Table 4.5 Average total _hou:iy irradiancs (W.m™?) and daily irradistion (MJ.m~?%)
on & north facing plane inclined at latituds angle for each month

Table 4.6  Average total hourly irradiance (W.m™?) and daily irradiation (MJ.m™?)

7 on a north-south axis tracking plane by hour for sach moath

Table 4.7 Average direct beam hourly irradidnce (W.m™?) and daily irradiation
(MJ.m™?) on a north-south axis tracking plane by hour for each month

Table 4.8  Average total hourly irrediance (W.m™?) and daily irradiation (MJ.m™?)
on & sun tracking plane for each month

Table 49 Average direct beam hourly irradiance (W.m™?) and daily irradiation
(MJ.m~?) on & sun tracking plana for each month

Table 4.10 Average total hourly irradiance (W.m™?) and daily irradiation (MI.m™?)
on an east-west axis tracking plane for each month

Table4.11 Averags direct beam hourly irradiance (W.m™?) and daily irradiation
(MJ.m™?) on an sast-west axis tracking plane for esch month

Table 5.1 Average daily total irradiation (MJ.m™?) on ag inclined plane during Jan-

(...5.12) uary (...Decamber) Ly e

Table 5.18 © Average annual daily total irradiation (MJ .m~?) on an inclined plane

Table 6.1 Average hourly (w.m"') and daily (lbﬂ.m") golar heat gain factor through

west) facing window for sach month

(...6.4) @ morth (...west) facing ]

Table 7.1 Proportional occurrence (%) of sequences of days for which the daily global

(...7.8) irradistion is less than 2.5 (:..20.0) MJ.m™?

ables from “Australian Solar Radiation Data Handbook’.

- of t
s 11~ L (Source: Frick et al, 1987).
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3 THERMAL COMFORT

Comfort within buildings is primaril
radiant heat, humidi

dlr lem perature,
: fect. Other factors
which affect : o5 > - Od

This saturation point is represented by the outer, curved boundary ot" the psychrometric
chartin Figure 12. If air is cooled to below its dew point, condensation takes place.

Absolute humidity (AH): g/kg

0 10 20 30 40 ) 50
Dry bulb temperature (DBT): "C

ic chart 1s
' is of the psychrometric €
air temperatu by the honzonml.axls o. . i
Thh ewn'ras th ryr:u]r:pmresepem:immy (°C). The vertical axis lst ( i g) by a numbe
; es Ofi:t:n used is absolute humidity or moisture conten g/kg).
names, one




_ he chart and are shown in Figure 13
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1 on the chart. This enables a poin

tted ifthedry bulb and wet bulb tem peratures

Szokolay, 1987).
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L0 pe

 air, is expressed by the
ontent of the air (sensible
Ihe sum of the sensible
lown in Figure 15. For

Bonent can be rcad

0 10 20 30 40
Enthalpy (H) lines: kJ/kg

Figure 15 - Enthalpy lines. (Source: Szokolay, 1987).

The e.{lthe?lpy lines almost coincide with the WBT lines. To avoid confusion the enthal py
scale 1s given at the sides of the chart and can be read by using a straight edge.

A complete psychrometric chart is shown in Figure 16.

3.2 Moist Air Characteristics: Example

The state of a given atmosphere is represented by a point on the psychrometric chart.
The example below illustrates the use of the chart to determine moist air characteristics:

Example - Moist air exists at 40°C DBT and 20°C WBT. Determine the absolute
humidity, enthalpy, dew point temperature and relative humidity.

Solution - Locate the status point on the chart at the intersection of the 40°C DBT and
20°C WBT lines. Read off the following values:

@ absolute humidity - 6.4 g/kg
O enthalpy - 57 ki/kg

@ dew point tem perature - 7.5°C
Q relative humidity - 14%

3.3 Psychrometric Frequency Data

ondition charts have been prepared by the CSIRO Division Fid Mecha;lical
ineert m original material supplied by the Australian Bureau ol MeteOrology.
%Ell:::rtl;g 2;? ten iustralian cities pcan be found in the Australian ‘Insntut_e. of
Refrigeration, Air Conditioning and Heating (AIRAH) Handbook. The air coqdmcn
chart for Brisbane is shown in Figure 17. The chart sh0w§ hou_lrs per year spent in (:nj
of a matrix of air condition states. Thus it can be seen that in Brisbane, for exam ple, 11
hours per year are spent in the region defined by the dry bulb te:npera;:;(}:ghveen
23 and 24°C with simultaneous wet bulb temperatures between 20 an .

These air ¢
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- water vapour condenses out of . ..
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tragsported to the skin surface,
37°C) heat must be dissipated
(Cnv), radiation (Rad) or evapo

If the body emperature is to be kept constant (at about
to_ the environment by conduction (Cnd), convection
ration (Evp) as shown in Figure 21.

Figure 21 - Co
(Source: Dept.
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nduction, convection and radiation.
of Housing and Construction, 1985).
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surroundings the bc:dy will gain heat. Both of these effects will be increased with lighter
(e.g. summer) clothing. The quantity “mean radiant temperature” is used to describe the
average temperature of the surroundings to which the body is exposed.

One method used to find mean radiant temperature is to measure globe tem perature with
a globe thermometer. A globe thermometer is a hollow sphere made of copper and coated
with matt black paint, with a bulb thermometer placed at the centre of the sphere. The
measured globe temperature takes into account the radiation effect of surrounding
surfaces. The mean radiant temperature can be found from the globe temperature, dry
bulb temperature and air velocity.

Radiation exchange with the surroundings can have a significant effect on human
comfort. For lightly clothed people the mean radiant temperature is twice as important
as dry bulb temperature and in cooler climates the two temperatures are equally
important. The bioclimatic chart discussed below uses an increase in mean gadiam
temperature of 0.8°C to compensate for a decrease in dry bulb temperature of 1"C. For
human comfort it is desirable to have mean radiant temperature approximately 2°C
higher than dry bulb temperatures. As a general rule if the two temperatures are not kept

within 5°C of each other then discomfort will be experienced.

Other factors which can determine how thermally comfortable a person feels in a given
situation are: clothing, acclimatisation, age, sex, shape of body, fat content, health,

activity and food and drink.

3.7 The Bioclimatic Chart

Olgyay’s bioclimatic chart shows the interaction of the four basic environmental

! . determining human comfort. Each chart is _shown for certain c?nd1_t10ns
::Innﬁ;?saclzv?ty level, mﬁount of clothing and _acclimatisauon. The chart shf)wn ;nlfzﬁz
22, for example is for a person engaged in s;t;lentary activity, wearing
lightweight suit and acclimatised 10 Sydney conditions. |
dry bulb temperature and relative humidity,

‘ ined according to
The comfort zone is def loss. The comfort zone can be used to show

assuming still air and no radiation gain or
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Solar Geometry and Rad; %
adiation .
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! 1 INTRODUCTION %
'.;_'2 /
To design a house ac 'ﬁ
: cording to solar effic;

: ot icient principl 7
pl‘fidlct the pPosition of the sun, and the radiaﬂon 01:16;111[]513 ot 57 S EAE %
orientatons, for different times of the day and year ng surfaces of different %
%
This unit defines the reley .
| ant geome ,,4
methods that can be goed togcajcu;;y[:nu(]ieradlzuon quantiues and demonstrates various %
lengthier mathematical relationships manuaTl‘ [;u el “© not meant to calculate the %
method required to obtain certai o T are Included simply to outline the %
these quantities is discussed o vantities. The use of tables and chars for obtaining .
cussed. Computer programs may also be used. g
/
~ 2 SOLAR GEOMETRY .
7 . .
~ 2.1 Apparent Motion of the Sun .
The earth’s axis of rotation is inclined atan angle of 23.5° to the plane of the earth’s orbit g
. about Ige‘sun.. When one hsmlsphere of the earth is tilted towards the sun a2 maximum %
,« of 23.5", it will experience the summer solstice while the other hemisphere experiences %
7 : > 1 %
. the winter 5015110? (Figure 1). Half way between the solstices both hemispheres will .
. experience an equinox. %

.
-r ,f
%
Z .
: |
% F
?ﬁ
7
- .
Figure 1 - Equinox and solstice position for the earth i
during its orbit around the sun.

During the equinox, the minimum angle [he' sun will make with the zenil‘h‘ (verti;:z]ly
up), will be equal to the angle of latitude. This occurs at solar noon. The rpmo%s E[da}é
time and night time will be equal, (12 hours each). The sun ‘-\«:’l“ rise due east a,n 5:; {Ee
west (see Figures 2 and 3). On the day of the summer sglsuce Lh% minimum dnjie "
sun will make with the zenith will be the latitude angle minus 23.5". In summer, the Su

will rise south of east and set south of west, (in the southern hemisphere).
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rween the sun and the zenith wi 1,
11 rise no! -;i‘%‘.-l of east and set north

Figure 3 - The sun rises and sets at different orientations
depending on the time of the year.

2.2 Solar Geometry Terms

The rotation of the earth about its own axis and around the sun continually changes the
apparent position of the sun in the sky. Two angles which are used to determine the

position of the sun are:
altitude (o) - angle of sun measured upwards from the horizon (Figure 4)

azimuth () - angle of sun measured in an anticlockwise direction from
north on a horizontal plane (Figure 4)

Nz
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Figure 4 - Altitude and azimuth angles.
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- e un "J;j'jj Ie lﬂ]s in the ea.n.h- Sun

+ energy of radiation received from

. ~dicular to the radiation, at the meyy,

Ualue used in these notes for the o]y,
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acured on a plane normal to the irradiance
" g longioc
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- longitude of the location
i | longs; - longitude of local time zone (Table 1)
g E - €quation of time correction (Figure 7)
DS - daylightsaving = 0 normally

| during daylight saving

i =,
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tealing with solar radiation data, and will Relation to Greenwich Longitude
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Table 1: Standard Time Zones for Australia.
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Example: Whatis the solar time corresponding to 11:30am EST on August 12th for
Brisbane (longitude 153°)?

Calculation: solar time = standard time + 4 (longloc - longsy) - E
= 11:30 + 4 (153 - 150) -5
= 11:37am

2.5 Declination (3)

Declination must.be determined in_order to calculate the position of the sun in the sky
ata particular time, date and latitude. The declination is the same forall latitudes on earth

and depends only on the date:
§ =23.45sin(0.973 x (n - 80))

_is the number of days from January 1,
and can be determined from Table 2.
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27  Azimuth, Altitude and Incldence Angles

Azimuth and altitude only refer 1o (he

| I | .
hour angle (tme of day), declination un'cjlﬁl,:t:llt(::l:f e sun in the sky. They depend on

wltitude w o0 = arsin (cos ¢ cos § cos O + 8in ¢ sin 8)

nzimuth « W= nrsin (@E_é_ﬂlg_@
COS

A plane surface is deseribed by its 1t and ordentation.

The angle between th
the normal to the surfuce (angle of incidence) i: ple between the sun and

O = arcos (sin & sin ¢ cos (5 + sin & cos ¢ sin b cos Y
4 c08 6 008 ¢ cos 5 cos @ - cos § sin § sin b cos yeos ©
- c08 O 8in 3 8in ¥ sin m)

For a vertical surface, such as o wall or window of a building, [ = 90" and the expression
simplifies to:

0 = arcos (sin & cos ¢ cos 'y - cos 6 sin § cos 'y cos M <cos & sin ¥y sin M)

It is necessary to know this angle in order to caleulate how much direct sunlightis incident
on a surface of arbitrary tlt and orientation,

2.8 Methods of Obtaining Solar Geometry Quantities

It is necessary to obtain various solar quantities to design eaves and mhcr.shnding devlf:cs,
and to determine the effects of external features such as trees and buildings, Various
methods are available to calculate these quantities. These include hand caleulations,

solar charts, tables and computer programs.
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Figure 10 - Spectral irradiance for various air masses.

Absorption is caused by ozone, water vapour, carbon dioxide and oxygen and is also
wavelength dependent. In the upper atmosphere ozone removes virtually all the short
wavelength ultra-violet radiation reaching the earth’s surface thus protecting us from the
harmful affects of skin burn and eye damage. A small amount of near ultraviolet is
transmitted however, and this is the cause of skin bumn. Water vapour and carbon dioxide

e - in the lower atmosphere absorb some radiation, mainly in the infrared band. The
m SOLPOS for Sydney. 7 absorptance of particular gases in the atmosphere is shown in Figure 11.
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Figure 11 - Monochroﬂ(lﬂsfoﬁm Twidell and Werr, 1986).
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flerent wir m ses 18 shown in Figure

gured in units of W/m” and iy i1,
stantaneous value obtained fror,
meter. Data from a pyranomei
e | r‘_ ﬂly and for a cloudy

w4 the radiz , ?
being scattered by the atmosphere and radiation which has reached a surface af ter
denouxd by the subscript .,

Reflected irradiance or irradiation desoribes

the radiation which
b'y ref lection from the ﬂﬂﬂ.lﬂd or 4 ﬂﬁafby %1 has reached 4 surface

rface, and is denoted by the subscriptr,

The term isotropic means evenly distributed in all directions. When applied 1o diffuse

radiation it means that the radiation has the same intensity from all directions of the
skydome,

Measured total radiation data on a horizontal surface, is referred (o as global, This is the

sum of the beam and diffuse radiation, there being no reflected component for 4
horizontal surface,

Gigloba = Ob + Og

The diagrams shown in Figure 13 show the measured global irradiation on a horizontal
plane as solar contours for Janvary and July,

For inclined or vertical surfaces such as walls, the total radiation is the sum of the beam,
diffuse and reflected components,

(j"]‘ 4 (}b 4 (j;l + Uiy

When specifying irradiance received on different surfaces the following subseripts will
be used:

R T — e (———

—— . E———— -

Irradiance Beam Dilfu_s"e_ " Heﬂemw

——

horizonta Gbo e G
plane (1ift ) G 54 Gry
vertical G .

The same subscripts can be applied W irradiation (H or 1),

44 Solar Radiation on Planes of Arbitrary Tilt and Orlontntloltll 7
: T —_p The data is usually me
Solar radiation data is available in a number of formats is used then horizontal

ool olane, If only one pyranometer
with & pyranometer on a horizontal plane, 1t on rymc b{:am a4 diffuse components, When

| ) wauured. This s the sum oF UK o the diffuse
a-‘-obﬂ i ance Iﬂa’;ntzb:uml:{l one is usually fited with a ”hm”:w b:;ndh(uﬁddmm::lgmpfmcnl I8
nmpyrm:r?: l::nr:axurcd By subtracting diffuse from global, the
componen -

caleulated,



In order to calculate the amg L
: unt of radiation on g . ,
the beam, diffuse and refleceq COmponents must ﬂaﬁgﬁ;ar::t:;rymu:ﬁd orientation,

' GTB = Gop + Gap + Gyg
| For a horizontal surface:

Ggloba] = G,

= Giho + Ggo

3.4.1 Beam Irradiance

irrads il hav -
irradiance of the beam on a planc is: € a cross section of d/cos 8. So the

Gbp =GpcosH
If the plane is horizontal, then the altitude is:
| a =90-6
So, Gbo =Gpsin o

The beam irradiance incident at an angle to a plane is less than the incoming

I R 14 - beam irradiance.

| horizontal pyranometer. In order to

It is this irradi hich will be incident on &
m the baena(r::IS:g::nce Gpp on a plane of tilt B, Gp must first be calculated from

Gbo.
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10 be isotropic. In reality,
On than for the rest of the

g

ee ,m / a plane of tilt

So the diffuse component of the irradiance o 5

Plane of tilt B is:
GaB = Gao (1 + cos B)/2
For the special case of a vertica] surface where f§ = 90°
Gdg =Gy, /2

3.4.3 Reflected Irradiance

It is shown in the appendix that the fract;
a plane inclined at J is:

(1-cosf)/2
So the reflected component of irradiance on the plane is:

l-
Gp =p ;Osﬁ)(GbO"'Gdo)

The reflectance of the bare or grass covered ground is usually taken to be 0.2, while that
of snow covered ground is 0.7.

3.4.4 Total Irradiance

Combining the expressions for beam, diffuse and reflected irradiance gives the total

irradiance on the plane as:

(1 +cos B)
2

(1-cosB)
2

(Gbo + Gdo)

GT1p =Rb Gbo + Gdo +p

The graphs given in Figure 16 show the calculated average daily irradiation for north

facing slopes for Melbourne and Brisbane.
The graphs given in Figure 17 show the calculated average daily irradiation for vertical

walls for various orientations for Melbourne and Brisbane.
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Table 5 - Total monthly radiation received on a surface for Perth in January.
(Source: Roy and Miller, 1980).
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glumm_ing over the whole hemisphere of the sky the diffuse irradiance on a horizontal
plane is:

90
Gdo = Z_% D cos 6 80 = I£ Dcos8d6=2D

A plane inclined at an angle f will see a portion of the sky hemisphere and a portion of
the ground hemisphere as shown in Figure 19:

portion of sky

sky
hemisphere seen
=T

portion of ground
_hemisphere seen
by the surface

ground

Figure 19 - Portions of sky and ground hemisphere seen by a lilted surface.
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| ; % 44.2 Conversion of Beam Components of Irradiance
I: For instantaneous or hourly irradiance G or I-
- | i Ry = cos 6
ne of il R cane pe el bl : 1 V ii Sin o
=ne QLU P Sees radiation from the sky from i ] e
nangle parallel o the plane. i = (sin 8sin ¢ cos B+ sin & cos ¢ sin B cos y

+cos$cos¢cosBcosm-cosﬁsinq:sinﬁ
COS Y €os M - cos & sin B sin 7y sin ©)
€0s ¢ cos d cos @ + sin ¢ sin

For daily irradiance, H:
| ' Rp =  (sin dsin ¢ cos P+ sin & cos ¢ sin B cos ¥) (w1 - w2)n/180
N +  (cos dcos ¢ cos P - cos d sin ¢ sin B cos 'y (sin w2 -sin 1)
d +  cos 0 sin P sin y (cos w2 - cos 1)

e e e e T e R —

2 ( ss /180 sin d sin ¢ + cos d cos ¢ sin Gdss)

s 7 b

where @1 and @7 are the sunrise and sunset angles for the arbitrary surface

et e a il s i .
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4.3 Conversion of Daily Irradiance to Hourly Irradiance
To convert from daily.irradiance (H) to hourly irradiance () use:

r ( COS @ - COS s )
I =Hi-8—0- (a+b cos ®) \ =2-""77180) wss COS Wss

a = 0.409 + 0.5016 sin (s - 60)
b = 0.6609 - 0.4767 sin (s - 60)
W

- hour angle
@ss - sunset hour angle

where:
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Thermodynamic Principles and Heat Flow
INTRODUCTION

This unit is principally concerned with the investioat Al ¢ the building.
ati -
rate of heat flow to and from the building, gauon of the factors which affect the

2 BASIC PRINCIPLES

2.1 Laws of Thermodynamics

The mechanisms of heat flow are governed by the laws of thermodynamics. An

understanding of these laws underpins the understanding of the thermal behaviou

buildings. S0l

Every body' has a property called temperature. When two bodies are found to be in
thermal equilibrium their temperatures are equal. So in order for heat to flow from one

body to another a temperature difference must exist. This is the zeroth law of
thermodynamics.

The first law of thermodynamics is often called the law of conservation of energy, i.e
energy can not be created or destroyed. When work is done on a body then that body has
its energy increased. The increase in internal energy of a body:

AU =Q-W

where Q - heatadded to the body
W - work done by the body on its surroundings

The second law of thermodynamics is concerned with the amount of h_eat that. can.be
changed to work. The transfer of thermal energy or heat always occurs 1n the dlI‘GCUf)Il
of decreasing temperature, i.e., heat must flow from a hoF body.to ! cold bo@y. As a
consequence it is not possible to change heat com pletely into work in an environment

with a temperature above absolute zero.

2.2 Heat and Temperature | 1+ of a difference
Heat (Q) is the form of energy transferred between tWo hﬁql-ﬂs > ta LLL v [[ fnsa n*:ol;cules
in their temperatures. It is a form of energy appearing as mouon PR

and ions of which a substance is composed.

. R onioul
Heat has the same unit as energy, i.e., the Joule (J). However kilojoule (kJ), megajoule

(MJ) and kilowatt-hour (kWh) are often used.

. B g = W s L bt e, C "--'-‘.":""1'.' B A
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. However if the change in temperamre (AT)
her Kelvin or degrees Celsius may be g,
or everyday measurement of tem Peratupeg
H :_1;.'?}@1'?'-?# molecules and ions;

BRI RS ScaiC Lses the froeyip,
er, the following formula is used:

tenergy required to raise the temperagy e
0abo g | ':u_'_‘ Wil I;E; i)r UCing a chan g€ 1n

1o0unt o hf 1ata body can release

erred per r;;p"ﬁ lﬁlpe Heat flow
/8) which is a Watt (W).The
empera ure d fference AT is:

|
a[ " | adobe (mud brick)
L aluminium 1.250 20
| | | brick | 210.000 26§°'°° 1000.00
| carpet + underlay 1.150 | 3000 o0 880.00
| | cement rendering 0.050 100' g 800.00
B | concrete 1:2,4 0.600 | 1400 00 | 1200.00
| concrete aerat 1.440 - 1000.00
H“ . _ ﬂd 2‘00-00 &'o 00
| Soncrete block hollow 1530 | 500,00 | 100000
' fil-hrohoa::l ( 0.079 465,05 e
| N canelte) ‘ 465.00 | 1800.00
| :bro cement gheot 1 gg;g 290.00 | 1507 00
| glass - 1490. 00 840.00
1 hardboard 2500 | 3eis:90 | H4olno
i | | Insulation cellulose S 220 1025.00 1675,
: | insulat]i 0.039 i
| | ulation flibreglags 0.043 2200 1000.00
ﬁi . b - Insulation polystyrene 0-03 H 12.00 880.00
| %i | insulation polyurethane g'ozg 16.00 340.00
g B ;:::l}:}:lo: rngkwool 0.035 33'33 ;gg.ou
| " ~particle boar ' | : +00
| R i coniee s | ey | R
| | [FES 0.170 | gg0.00 '
[F e b | e | s
! sandstone 1.300 | 2000, 921.00
T | slate ' .00 920.00
| _ 1.
i' q soll compacted 1223 igiggg 26000
| | 1260.00
[ ] | stee | 47.500 | 7850.00 500.00
| strawboard (stramit) 0.081 320.00 1050.00
| | timber hardwood 0.200 | 860.00 | 2090.00
| 1 ~ timber pine 0.100 506.00 2090.00
: | vinyl floor tiles 0.790 | 2050.00 | 840.00
| water 0.600 | 1000.00 | 4190.00
1 |  weatherboard | 0.1 478.00 | 2090.00
| T | SIS .
| s
i B

1|'|

&2 Conduction

“' € rate of heat flow through a solid
by the following relationship:

Structure. Gases conduct via elastic collisions of molecules.
block with a uniform cross sectional area is given

Table 1 - The conductivity, density and specific heat capacity of some common building
materials.

' hfﬁ be able to understand how to control heat flow through building structures it is
necessary to have a knowledge of the heat transfer processes. There are three types of
‘heat transfer; conduction, convection and radiation. These are discussed below.

hermal conduction is the mechanism whereby energy transfer takes place due to the
transfer of kinetic energy between particles al
conduction takes place through the motions of frece
‘eonducting solids conduct heat primarily via lon

the atomic level. In metals thermal
lectrons. Liquids and non electrically
gitudinal oscillations of the lattice
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5" o s g gt R
e
o

- (b) K o =

| § Involves b tomixing of layers at different

€rence to convection heat flow raes often isl gth convection and conduetion

1 ficludes the conductio

. n component as

. Natural convection occurs when fluid ip ¢

- du;tp its ex pansion and resultant lg *
18 2 measure of the ins 1 1 % L RS : wer den . 1S 1 :
a measure ﬁ,ﬂlﬂ' insulating ability | lower density which is then heated or. sity. This is then replaced by cooler fluid of

I - ] The heat flow rate for combined convection and conduction is:

I I : ;f'fl PCOHV,CUI‘ld == hC A AT ,:,

and 1s a measure of the conduction | fe combn}ed cnnduguon and convection heat transfer ':'
7' . coefficient (W/m“K)

al ik AEAL tr ' gap depends on average
) Epera_ture, gap distance (approximately constant after 100mm), fluid type and direction

R
fE" o

heat flow.
Naturalconvecnon assumes an airspeed of less than 0.1m/s. The following values of he
apply:

he = 3.0 for horizontal heat flow
=43 for heat flow upwards
= 1.5 for heat flow downwards

sions; height 2.4m, length 5.0m ||
s, > B Ewely fidgulatc: " Forced convection heat transfer occurs when fluid currents are produced 'by some
‘external source such as the wind, blowers or pumps. The heat transfer coefficient for

forced convection is:
he = 5.8 +4.1v

|

where v is airspeed (m/s)

3.4 Radiation

Thermal radiation or radiant energy is €nergy ¢ . ;
., m!ﬁw alone. Radiant energy 1S energy 1n the form of elect}rorgjslltzﬂnia‘:’;:’ﬂfn‘}a
pr t:';ii‘""fqﬁ_‘ i]n'like conduction or convection there 15 nO heal Lrtfu;is ;131!') irespective :af it
n: th 'i'-s-' energy travels at a constant speed, (the speed QI-HERSS

frequency.

emitted by a body as a consequence of its
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g mﬂﬁiﬂﬁ?ﬂ power of 3
| by the Stefan - Boltzmann Jay,

| Pr= cAT?

e

g o Stefan-Boltzmanp, constant
A - surface area (ml)
T - temperature (K)
« Lo unll . ,. | tical properties of surfa
hich have a range of energies, | i °ES, such as emittance, ap
fistributic F’g' ich is referred to a:nd ' : v&lengt;l _dgpendem, Often the wavelength range is nst:}trgtt:n s and' e
are The ;T temperatu = { > Jm tn ong wavelength properties of a material, j .ted. E:n?lmcc EFHErBly
 ANEHBHEL HIC Iemperature of the Absorbtance generally refers to » 1.€., 1ts ability to emit heat.

short wavelen gth prope

ioh ¢ nerey photons: 1.e.. phc :
Nergy p ;_,HI”, » Photons of high

which a body radiates most stron gly,

rues, i.e., the ability to absorb

s B I Dt LR

light.

il

y) at the same temperature. The t

. body
materials are shown in Table 2.

direction of longer wavelengths

ultraviolet radiation, while the earth
phs of Figure 1 show the emission

1 copper (bright)

e A e e
e e

aluminium (foil)

galv. iron (oxidized)

T R, e, g

| granite
7 white paint

black paint

lamp black

Table 2 - Emittances of some commorn building materials.

| i flect radiation. Itis the ratio
e & : ability of a surface Lo € _
Reflectance (p), 1s a measure s yrface to that which falls onit. The reflectance

of the thermal radiaton o hortwave light 0 longwave heat is shown

‘of surfaces over a range of wavelen gths, from $

in Figure 2.

e R e e e
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b radiation. It is the
lbed by a black body
sorptances of some

el P = m—— T e -——

= p—
H-‘_'.u' ———

_w TN el A

‘The optical properties of matenals, em;j

“Bﬁﬂ _l'.,lem:mfar to the total value when slttance, absorp"""ﬁe and re

-me rate of heat radiation transfer
large surrounding black body encl

le engths over which th
all the radiation wavelengths of e sun’s gmm':f:;ssacﬂle ability of a surface to absor:
Note that many texts dealing with the thermal - 3

between a smal] ob;
osure (2) at tempe ject (1) at temperature Ty to a

Stefan-Boltzmann relation: rature T2 is derived from the

Prad = ceA(T1%-Ty%
where O - Stefan-Boltzmann constant
(5.7 x 10 W/m2k4)
€ -emittance of surface
A - surface area of object 1 (m?)
The rate at which an object absorbs solar radiation is given by:
PA = o AG
where o - absorptance

A - surface area (m?)
G -irradiance (W/m?)

The equations for radiation gain from the sun and radiation loss to the environment use
total integrated values of o and €. The reflectance of an opaque material at a specific
wavelength A is given by:

paA= l1-0A
and OA= EA
‘@ﬁﬁe relationships are true at each wavelength, so the equations:
Ny Psolar = 1 - Oisolar

- and Oithermal = Ethermal

ﬂnly true for total integrated values for the spectral distribution for which the
irements were made.

1y materials behave differently as thermal emitters of long wavelengths than as solar
| m of shorter wavelengths. Hence for these materials:

| Olsolar # Olthermal



Aluminium foil and black paint are 1,
yay over a relatively large Wavelenp,

ot

(Source: Florida Solar Energy Centre).

| 1.0 .9 B 7 6 .
| | Wh“. " -3 2 1
I ’I p..lllf White 0
| 9 . | paint Aed  Rooling 1gy Black
| T Tl laht greens—2>1S%  and graye)e 230halt
& _ Palnll 0 Earih} 1
| -a L'D'“ B'lﬁk! .
R s 130 L i - sand
M Thisis ecause the short wavelengy, | 2 PO i T PR
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and ?I-:"—.'-"fl,-f-i-[['{.'i;ﬁ'i‘f” 2 mﬂe heat is required I . O .5 ———— Bronze Pine wood @
bsort H,L_TT emit heat |'. : 2 F":" slum, ey | 5 :
uired properties are to reflect sunligh, i g 4 L Tranished Q
ised. Figure 5 compares the solar ang | (= B i 6 ©
N e . —_— 3 Slllnlﬂi ey
' . | e steel 301, 315 —1t __|Oxidizen =
I . | [y } ‘ T!llr- sheel |7 ==
[Elan-bo :’._I-:.L‘:f-:j_‘_ in relation for a Smal] 'g 1 W .2 - 1 New galv. -
d | P 1 |-Polished _|  Polishea| Auwm. |
| alum. foll copper | °sheel Tabor 9
1 1 a s . seleclive f
' - _‘J_I‘._ surface i
i‘l F - 0 A 2 3 4 5 5 7 B8 9 1.0
! 1 | Figure 3 - Solar and far infrared characteristics of some building materials.
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4 HEAT LOSS OR GAIN THROUGH BUILDING SECTIONS
The heat loss or gain through a building element is determined by:

O the area of the element

0 the air speed on either side of the element

O the resistance to heat flow of the element as determined by the materials and
air spaces making up the element.

If either side of the element is absorbing heatfrom a radignt source, or 18 rad::tmg hfaat
10 a temperature other than air temperature then a correction factor is used to determine

an effective air temperature.

. does 50 to the air and thus
vhen a building loses

s lose heat to the sky and
re. The '* temperature

41 R -values | . le]
‘The resistance to heat flow between (WO surfaces at'dlffarent le:lmgjzmzi; amp:g"‘;l ¢
combination of radiation, conducﬁonbgnd ;f;;ﬁ::ﬁ Trl‘;;i:mcgs b cambinEd
tem perature ich buildings are subject i ical
" ﬁnt;]lr:s;g;f:eb oftengkmwn 25 the R-value. Figure 4 shows the electric

equivalent of these thermal resistances.
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088 but simplifies
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Table 4 gives the thermal resistances of i spaces.
occur for air spaces with and without low em;
downward heat flow through horizontal air

Itcan be seen that major differences

ttance surfaces, and for upward and
paces.

' for 100 mm should
' termzonmwimhoﬁzmtalhea!ﬂow.ﬂmaluedmsm
vertical airspaces grea

oo

(Source: AIRAH handbook, 1989).

: ' es.
Table 4 - Thermal resistance of air Spac
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jinter condi rm% Fesistance (g hg,, | entilated spaces in winter,
s difference is accentuated when the raj

ir spaces such as walls, doors anq ¢

;'lf:..:'I |

.
:.-ldlj':,f.j

nce value ,-’:lla.rié spaces with similar
tion. So the same R- value is used for g, mey

..:‘ 1
_ i !I b

Oub]e
mC;_ln

ative  material are at least three (im

»w emittance surfaces such as aluminiym, foil | gpaces where it is not ingtalleq.

I'.J-. i
(LIl 4

§pace :3". i:sh emittance Surfaceg |
as the temperature decreases, an the | . the attic space or between the sarki

‘Tiles, shingles or similar typeg of

ing, if ing

Gonditions with an average air space temperayy, || 8 present, the air gap between it and the gy ;,

il

ni

I'w-'.:.;:' i;'JE

ceilings, will show a greater error fo; |
. Similarly, for vertical air Spaces | | |
than for summer. However, reasonable | | !

' 5-*';"5!1'3
ing paper with one or both sideg

pace will have one low emittance

ith a low emittance surface on one side
ding on its s or and the direction of
vificant i_ﬁ,-'}_-':;:';y_,iq heat transfer, In

uve foil will eventually be covered

0 a high emittance surface. For this

> Sur ace is regarded as having a
le sided foil is used in a vertical plane
cein the longer term.

ventilated.

4.1.3 R-values of Bulk Materials

le

-

ir space effectively creates

Hﬂm 7 = The resistance 1o heat flow of three bricks is three times the resistance of one brick.

> treated as an ordinary | | oy |
esistances for these spaces. | 5 R Tﬂlm of materials of a particular thickness can be found in table form in a variety
| | - of handbooks. If an unlisted thickness is required, the R-value can be calculated from
the conductivity:

R = d/k
as is outlined in section 3.2.

4.1.4 R-values of Surfaces (Internal and External)

de and outside of a building. If the outsidti air
heat will flow down the temperature gradient

Consider a wall which partitions the insi
temperature is lower than the inside then
from the inside to outside (Figure 8).

| Br

i ||I 4
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yom will i?i;: I‘("g;«f thﬂl’l the room air
Il will be ﬂ“# er than the outside
wr I'vf'lllljﬂ I-'r” pﬂmmre occur
818 the flow of heat to the bulk
ture gradient next to the wall and
110 as an air film resistance.

Of the surface, the direction of heat
fmovement next to the surface.
Outside, fans inside) the heat losses
fic), which is independent of heat
clermine I"::l Pl'fm resistance

i
8 0f buildings) and for

n 8till air conditions.
Phem: f;:'r'i}:_'_! C( OfabOUt
aint which have
in the weather for

€ason, an external air speed of 3.5 m/s
ce of 0.04 m2K/W.

R aiae .

i
b

B et P N S,

A building element is made up of a number of materials, usually including air spaces.
The wall shown in Figure 9 can be represented by a number of thermal resistances,
including inside and outside air film resistances. This is equivalent to having a single
resistance, R, equal in value to the sum of the individual resistances.

r

Brick RFL Lining
g

Inside

Ra Ra RI R

' il insulation.
Flgure 9 - Various thermal resistances for a brick veneer wal with reflective foil
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from this resistance |
100 x 109 1
| 100 x 60 g
e = 100 x 20 0'
lue (W/m?’K) . 60 x 60 o
>S (mszW) ' g 60 x 40 0.178
¥ | 60 x 20 0.259
o Ao uilding element of | mt | 60x10 0.397
er throug | et | 40 x 40 0.206
waf IK ! ] 40 x 20 0.282
o : 40x10 0.418
round — . __ - 40x 6 0.579
ated differently to other building elemen B 20 x 20 0.350
' » uii | | ] 20 x 10 0.472
. | B 20x 6 0.632
R Lt ; 10x10 0.576
it 10'Soul IEmperature. The earth und'er 4 10x6 0.731
ure in sum :'_,"l_"::_.;_l-_r-:'l d iswarmer than the air In | 10x4 0.884
; slah On 1o Irﬂf less than heat | 10x2 g{ggg
re ‘_r 1 th mjﬂlily of heat losses | E | g:g 0:996
ce U-values are measures of heat transfer 6 x2 1.355
ture difference must be calculated firg 4%x4 1.126
0 do this t+ e dimensions of the slab 1 4 xg }.;ﬁ
ition which calculates all of this IS 1 £ |
. Table 7 - Theoretical calculations of the steady state heat
losses through a slab-on-ground floor.

Studies of the effects of edge insulation on heat transfer from slabbs T:Jgei‘:]si ;h;ltdzgén‘;:
f vertical insulation to 2 depth of 150mm reduces the total flow by be e

%' in SUmm of insulation along the edge of the slab and then honzo;ta] y un

| B fb?:gdistance of 600mm reduces the total heat transfer by 32 to 37%.

4. . Calculations
4.4 Examples of U-value | :
To calculate the U-value of a building element use the following steps

H - -

1
=

- Straight forward computer

R =1k (k from Table 1)

ing (i) and the resistance
: ite d the resistance of individual elements using (i) an
(ii))  Write down
tables.

4 . :.I | um ﬂ‘e llld-l

ed and are included in

/early aver: ges and may
3

(iv)  Find the U-value using:
[y '=1/RT
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| — Metaldeck roof
| — ng
| . Eg‘tg?l‘hm foll insulation
B |
- f
B |
N |
| Figure 11 - Metaldeck roof with reflective foil ineqat -
:: | __ R1.5 lnsi.llz-lticml.mUlamn fnd taked celling with
B Procedure:
; (1)  Find the resistance of the bulk materials:
| Rsteel =d/k
0 = 0.001/47.5 = 0.00002 m?K/W
| : (As a result the resistance of a metal roof can always be taken as zero)
k Rplaster =d/k
! =0.013/0.17 = 0.08 m*K/W
f (ii) ~ Write down resistance of individual elements for both summer and winter
| conditions from outside to inside:
| ELEMENT RESISTANCE SOURCE
I[_ IR SUMMER WINTER
| outside air film 0.04 0.04 Table 6
% el, Imm 0.00 0.00 part (1)
| ai agﬁp,_ 20mm no rfl 0.15 0.17 Table 4
5, [y : 0.57 0.49 Table 4
air gap, 20mm 1 side rfl :
insulation, R1.5 120, - L3 -
N a4 0.08 0.08 part (i)
plasterboard, 13mm ' 011 Table 6
inside air film Gle B4
| gt 2KIW
M) Find total resistance; R = 2.50 3_3_?_ .

——————

1V) Find the U-value:

U-valt = 1/R
€ 250 =040 WimPK summer

| _1p39 =042W/m’k winter




R,

r both summer and winer
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" SOURCE

Table 6
part (i) | |
Table 5
part (i) B |

Table 6
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hllanx,mq ld} B 100
etakieck roof with R1.5 foi| b | o=11
o . dCkeg ‘“Su!armn HI 3
ﬂ - a4 Motaldeck rool with reflecive 1o)f ingy|
. 5 e ooing R 11 and Raxea caiog win excosea raery
g v g i
_ ;““ « — Ranters =~ ' hsuiy,
= J_-_,. -.' ““u H‘.s inﬂumhﬂn
- *ﬂ' A P'ﬂiluﬂ.‘onru

y —— Tile rogl|
U < 0.3
Up = 0.4

0.92
=1.26

insulation under tiles ana Rakeq

Tiled roo with reflective oil
NS '
ceiling with R1.5 insulation

Tiled roof with reflectiva loi
'~ <~ Insulation under liles and Rakeg
e 'ﬁ‘f’g"":““ roof] ] ‘?ﬂ 12 ceiling with no insulation
_ Raila:'gll Backed WNSUlation ‘

— Plasterboarg

—— Hellective loil ingulal
~— Plastersoard =4

U, =039
UO = 044

Uo = 133

LT St

detaldack roof with R1.5 foil backed insufation
0 Rake ":.]-IJ‘ ﬂh no insulation

=

' F‘::’m wilh rellective foil
| i ‘. mnsulatvon under tiles and Raked
| - R 13 caiing winexposea rarers
-~ — Metaldeck rooling .

=" — Rellective foil insulaten
" _ —— Ralters
r :I'_- l .

Ul = 066 |
UO = 105

Uo = 2.68
- —— Caelling joists
~— Plasterpoard
_ 1 .- n ; _ T Cailing joists
X roo! with rellective foll insulation — — Plasterboard

814 Tiisa ot with ro insutation
"‘ ~—— Tile roofing |
=~ — Reflective foil iInsuiaio’

e T Ralters

= b U’ = 071
U, = 1.21

g
g
2

— Melaideck rooling
— Hafters

U, =1.36
UO - 2.97

- —— Cailing joists

= Plasterboard —— Cailing jorsts

— Plasterbcard

G1 ﬂcublem

YUis

GLAZING DETAILS

]

3.17

Uo = 4.66

G 2 Single glazed pius Ihermal cunain & peimel

G2 Single glazed

U|.0 -~ 617
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Unit 5

| WindOWS and Shadi

‘i | INTRODUCTION
wWindows serve four main purposes in buildjngs The

they allow natural daylight to illum: : y allow
hey al YAENL to illuminate the Inside, they allo[]\:re

i ¢
|I DLl | [ilaﬁon [0 [ake plaCe

ng

Con ol o T e e e e ) G N K S e =
R o e e

i
I
| and other appliances will make the avera
l .
| . In winter, it can lead
| | Qvern me uncomf : ' ad to £ross 5
1' times in winter. ortably high lemperatures at certain
| %
| | IL..*':;, ‘compromise must theref . . e ;
l Acc mprc : refore be made so that the heat £ain in Summer ic minim: /
: This can be achieved both directly and indirectly. Dir r 1S minimised.
| |  gains include orientating the windows to reduce sﬁnmi?s?: £ one, R
| | R _ _ : penetrations, decreasin
j a1l sizeof the mndo?vs, shading both windows and walls, and using light coloured llg
and light coloured zinc or aluminium coated roofing material 1ndi:%ct means ( ? If
| w1 he - : ; . : . whic
. _l_lbe Qovcred elsewhere) include night-time ventilation, direct venting of heat from
I 2 - mnces (eg. 'stc-tve hoods) to the outside, summer ventin g of the ceiling cavity, good
d ﬁ __I,__T_ﬁagqn_ of bmlfllng elements, and the use of a concrete slab floor (which will lose heat
ﬁifﬂ i:heground which is at a lower tem perature than the air in summer). Better insulation
o ntemally installed hot water services and the use of more efficient appliances such
;{mgcrators, lights, TVs, microwave cookers, etc., will also reduce the internal heat
I;!: -~ L

- ””h raphs in Figure 1 show the daily solar radiation on walls of different orientations
10r Sydney radiation data. The north face of a building receives about twice as much
Sunlight in winter as the east and west sides and about five times as much as the south
Si8eiIn summer, the north and south sides receive about the same as each other. The east
andWwest sides receive about 50% more than the north and south sides (Figure 2). To
Bptimise window placement in a building then, all the glass should be placed in the north
wall. This 1S obviously not practical from a daylighting perspectve so all non-north

L] [

glazing should be kept to a minimum.
ndow. then the choice should be south.

s ehoice exists between a south or east/west Wi ] b
A southern wi . : : ut also less summ
OUthern window will receive less winter sun b

 WESt facing window. S
L = ut equal amounts of irradiation, 1t

Althoueh eq : : ceive abo ;
o '?"-’"E €ast and west facing Minaaws e t The sun enters the east windows

tb;.f windows faCing east rather lhaf]dwe-s the nIEh[ whereas it enters the
nt & ™ L e ~ i I , = : . -
SMOming when the house has cooled OfLCUTIE 0 4 %0, ying its maximun

SEWindows in the afternoon when the building
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! 3 TYPESOFGLAZNG SVSTERe g

There are many different iy

& m“ﬁii]e glazing provides Similar therm

¥ space. Fittinga pelmetand cyrgg o2 P
§  include a decrease in sup); =
~ costofabout20-30% for A
in hermetic :

P

15 S1LCa gCL) the glass panels to
glazing include treble glazin )
e Ng and double gazin
j?ia ess canducung than air. Prototype dofble g
llars which stop

ecaived per square meireof || |
3 ‘ws”j_' gec wa"S. .

-----

glass support pillars

low emittance film

........

Figure 3 - Double glazing with a vacuum gap supported by pillars.

| ? Nas an emittance of about 0.9 which leads to a significant amount of heat being
tac il the gap in double glazed systems. Thin low emittance films have been
se€esstully deposited on the intemal surfaces of double glazing producing low
1C 1"+_'{.'_s';?_'£1,: gor “low E” windows (Figure 4). Commercially available dry gas filled double
#2€d windows with one low emittance transparent metallic coating have a claimed
onductar °€ of one quarter that of single glazing with a light transmittance of 79%.

indows with low emittance coatings are expected to allow only one tenth

1€at flow acmss a single pane of glass.

e
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B 8 the owteide. However, ga e : |
M arT prAGhle Wi cam lead & o ..-'..-' F_.-': ’zﬁf; .

heat absoting windows hzve eyes THAEL v ,A?‘;‘ﬁ&ﬂ fregm
overheating. The solar optical propperse, 1., ;-f. o e ex3andon cersering dus
B

i
v A
7
=

RN

“Ckitow” ruw
beawron o | & 2 x

- 1“ 1 - Solar opfical progeries 4 tez vzt 1 Aartrn 20 R TAOrG Jess.
r (Sorce Hassdl, 1977)

| sc gass s cozsed with 2 transparent (s Which (IRs Opagee white when
T s s Aerresses trmsminance from 9% 21 24°C 1o bdow 2%
A ne 'mm& dlﬁl .ﬁri ..-ﬂrf.r'i = A e

nenu i ble in photochromic cmpounds wh-:ch
=i fases kave oo cornmersadly

‘,: F_j .I. ‘JI | mg‘ilﬁ;ﬁ;tﬁf . .
L a8 the il ination increases. PRosochy s §

ble for some time.
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- ransmittance can be achieved. |
b |

Omic
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zes suitable for wi

‘.-|
|

i e & o
# all ¥
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cd S

s selective filters which i, || f

‘which are angular selective, T},
determinec | oy uic ﬁﬁﬁeness of l'_he Spu{tetqeg | {

ections. These films cap, be ugeq

m is like looking through normal glass, by, light :

-

T P T -
 1dl '--"r:-_'1,.' ‘L‘_'I-”"_UL’_ﬂFE l ?‘)-

A~

Ne intensity of sunlight coming from the sky.

1 BTe 212 N ,-"'Fl'f: ., N .
!1n 2 num 0ET of ;}_ﬁ_ﬁ;jf{;_;g ys. Sk ﬁght_g have been
1al problems It ic vietiialle : :
roblems. It is virtually impossible to
1er overheatino can ha a we L .
i ' Ng can ue Emblan In winter,

OWnward. This can however F]Lﬁllr

@ 9 - Sunlight reflected onto the ceiling reduces glare and increases the depth of

i .. penetration of daylight.

2 !

- | |

SOme interesting developments have taken place recently with light pipes which reflect

Ught, in a similar way to an optic fibre, between 10 and 30m into a building. A collector

outside of the buildin g absorbs sunlight using a fluorescent dye which re-emits light over

wavele ngth range corresponding much more closely to the range over wh}ch we are

Bl to see. In fact, more useable light is emitted at the end of the light pipe than 1s
Sorbed in the collector. This “cold” light is then totally internally reflected along the

ipe. 1 4-!?'.._'*:7'}?-’7%.! nitted at the end where the surface is roughened to overcome internal

€CLsunlight coming through 2

D ar ,I,"rﬂ'h 'glare, whilc
. The reflection can be
pace between double
astic film sandwiched
tally internally reflect
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igure 12 - Solar heat gain factor (SHGF) Source: Hassall, 1977)
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3 Jure 15 - Energy balance diagram for 6mm clear

& 2 - Shading coefficients for various

Pilkington's Solarshield 15/32.

Clear Glass (Reference Standard)

Clear Glass with Reflecto-Shield RSL40
Clear Glass with Reflecto-Shield RSL20
Clear Glass

Clear Glass with Reflecto-Shield RSL4D
Clear Glass with Reflecto-Shield RSL20
Clear Glass with Typical Green Flow Coat
Typical Green Heat Absorbing Glass

Heat Absorbing Crey Glass

Heat Reflecting Glass (Solarshield 15/23-Gold)
Double Glazing (Clear + Clear)

Double Glazing (Clear + H.A.)

Venetian Blinds - Light Colour
Venetian Blinds - Medium Colour

Roller Shade - White

Roller Shade - Medium

Net Curtains with folds (fFairly dark)
white Curtain lining with folds

| Heavy Curtains with white lining an
dark 17/inch

d folds

Miniature Louvres -

window treatments. (Source

. o= S -'-xm‘x%“ﬁ%x
o +.-:-'._-:_~‘.-:r;.~_.*«;ﬁ,-:,n'_ﬁ:hg.‘ ) %

- Hassall, 1977).

] e ER o S LS
e e e



RV T e o s
R
Ay,
-
e

L.

¥

?#—HW—_Tm-_?::A'Wsm' s 3
™ . 3
[ | [ | ;r.
m = 4
1 1
_.,. . |
- - | -
i' . A Ir_ _-" - R 73
F I; W ) ; 4
& L L
L3 L4 il
F h ", = d ’
. -
=3 :
- I y M £
- W . 1
] ' ] A
] E 3
m 3 - \! 'J
i L ..
& wl b q
. 1
!
L 1
.
L

L=

ent can be expre Eﬂ as a ratio of the

. HCem
. .1;: pare 1o l_"l 1[; u"‘-? Gf the Sta.l'ldard

SOla;
3mmy

R

5  WINDOW GAINS AND Loggg

ss treatments are listed in Table 2.

vith Reflecto-shield or Solarshielq Nmﬁ
it flux has been included for each graph

e R .
yeh an unshaded window it is necessary
atitude, date and time on the plane
al instantaneous heat gain per 2
pa PEr m~ of

= - W

- ———
1
[ —
el

conduction
) loss

—r————

U SUMMER
| T, » 10+ T,<T,

- Figure 17 - Energy transfer through windows for summer and winter.
i -
Xamp .""E_Q}TF:*'C:EICulate the net gain or loss of heat through a north facing single glazed
window for January and July in Sydney. The window is 0.9m high and 0.2m from the
| |“L1i;ﬂ of the eaves which are 0.6m wide. Assume for the window that 90% of it is glass,
§ thetransmittance is 0.76 and the U-value is 6.14.

§ Calcu ation for July: From computer program RAD, in July Ho = 8.80 MJ/d.m% Ona
~ vertical wall facing North Hy = 12.87 MJ/d.m" and if the wall is shaded Hys = 12.67
MJ/d.m".

The daily gain for a window is:

i iy

|
|
It
|

B
——n

I—
—.

Hys x % glass x transmittance
| 12.67 x 0.9 x 0.76
h 8.67 MJ/d.m*

-—

> e 1 1‘r_ :
%) |25 N | o | 1 I

'he average : temperature for July 1S:

Tmax + Tmin

L e
- Tﬂv 2

o 16.8 + 6.5
T ] 2



/d.m" for north facing glazing. Using the same

ns around a proposed building site will have

_ Subdivisions must make allowg
§  interconnectivity of streets, eyc,
§  However, for new subdivisions the
its solar access as determined by )

1
4 't._.___.J—I LU B S 5
§  Evenwith

Minim
Ock shape

= = .."‘1
6.2
. }'_r_ -

. 1 Shading will only remove the |
~ §  reflected parts which can still be s;
¥ that will be shade
?{ | 4 j1at _,_ﬂ bﬂ shaded for part of the day, hour]

urs when the plane is unshaded all
R g8 v @200
during tn ;--uh’@“ﬁ' of Shﬂdll’lg, Ol'lly the reﬂe:;n

T .

led and the curtain is drawn for half of g,

anuary, the net heat gain is 5.3 MJ/d 2
|III '

urtains and ;_5-?{."__':";15'_&}_;- areﬁtted. the net heat
eeds the heat gain in summer, whep
can be increased if curtaing are
of da _ “‘E f "gand VieWS.

— =i 1

o

mer can be

—
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solar efficient building design. It s

E effects of eaves and shading devices

(] ‘.

iR 7 :

: ! R

4y lrl.

3 B

81 1 2
i-| e
e
I R
- . e
| g3
g
r3
R

g site or by trees or ~ Figure 18 - Diagram used for the calculation of the length of a shadow.

| sult to address on 7 )

| The azimuth and the altitude can therefore be used to calculate the times and dates when
i site will be shaded. Shadows will be larger in winter than in summer so obstructions
on the north side will cut down the winter sun without necessarily casting a shadow in
L 'iui,_'.;'_{_.i&;;i_:' useful-Sun shadow angles can be found using a shadow

angle protractor such as the one in the book by Phillips (1983)

- eyl S

3 on the buildin,
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is most diffi
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CNEaper servic L:'J!l-“_ mdrbettef cnergy

L

Onisconcerned. However, unless
d in this situation.
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azing i ggientaled to
1zes of 600m “ restrict this

%els are orientated near
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Sunlight Penetration into a Room
rough a window 1nto a room.

RN o L - ! Lh
iseful to know the depth of sunlight penetralion all containing the window of

al to the w

ouse on a north-south his distance d, is measured along the norm
cient space to provide Ath (Figure 19):
hading t e building e d

h cos (Y+ V)
_heos(YT¥)
tan o

Lt e P M A NS e e
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it Af 1R hin
he depth of sunligh

penetration through 5

o of the window, this distance will be

depth of sunlight penetration where the

1an this since most windows do not start
T vale nt eavi 38 :-;_ﬁiu_. _i.'* (W ) must be

he wall (Figure 21).

il T i [ | : »
Y r':J I- I_ﬁ_} 1— 'J ! !f_ _id. 'I. l - [~

S | . -.I
} ‘}Iﬂ '. | ‘{! l‘-', '___l-{"}.’

<unlit floor is dark
in 1& ! 1_,,; L"Iﬁ]_ 1f

R Y %4 . .ad
a desirable situation,

nave good thermal mass if they are i

I ‘LA T RA
.Illi‘.'l' s = Ea= XL

_'g__um 22 - Vertical and horizontal sun angles. (Source: Phillips, 1983).

| '1' - .
onsider a point of distance one unit from a wall length, tan (VSA) is the vertical distance

HSA) the horizontal distance of the shadows from the normal projection of the

s
=
_—

100 L '1!.'.-1.“5

pointon the wall. It can be seen from the diagram (Figure 23(a)) that the end of a shadow
1 rod a_.-fii_jﬁ'?l:_fi?;-,a 1 will be displaced a horizontal distance u and a vertical distance v,

u = ltan (HSA)

1 tan (VSA)
e horizontal sunbreaks such as eaves, itis VSA wh'ich determines m:sli:g;l; I:Jgf
hadow down the wall (Figure 23(c)). The length of horizontal shadows cast by
QRading devices is determined by the HSA (Figure 23(@))
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u =L tan (HSA)=0.3x0.1318 =0.04m
v =L tan (VSA)=0.3x1.059=0.32m

hadow will appear as in Figure 25.

ple above.

* Figure 25 - Shadow produced for the exam
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TYPES OF SHADING DEV|cs

are many different kinds of shag;,
i;;.*i.ﬁ}".. 1!

, |:.T f"'-. - ] "

] "
v 5 N . ¥
=

af he bmldmg They may also shade
/hich can reduce the amount of ground reflecteg ryg:

Horizor j,:'ql_[adlng devin;s refer to devices thag are
28). These :grel-most effective for the shading of ng < 'AI plane (Figure
r: . ..elﬂ?ela:e, -although the ipdividual shading fins mz;y ::ttl“:::ddem =
orizontal devic ' nauon vertical and

facing windows (Figure 30).

| | ¥
2 2ty
- at 1nLL |
NGas A=

ie. VSA =90 - lat (equinox)

sl

Usi "“:f? QULHe B 7S example, inol anuary VSA varies from 72° to 83° while in July
it varies frorm 9%1031°. A slat of 28° would ensure good sunlight penetration in July for

- T .
A 3

most of the day whﬂe e'xcluding the summer sun. It is important to have the louvres thin
compared ‘mﬂ'lﬂle:r width so that they produce a minimum of shading when fully open.
Glare from the tops of louvres into the room can be a problem if they are painted a

Adiustable devices offer definite advantages over fixed systems if they are adjusted
correctly. Adjustable slats allow the sun to be included or excluded at will. As well as

mo '."--.--;;_'ff;'1"5'},*94'3 se control as the earth’s declination changes they also allow heating during 2
cold day in summer, or exclusion of direct sunlight during a hot day in winter.

rforated and expanded steel sheet which allows only light of a certain VSA to
penetrate is commercially available. This is illustrated in Figure 28(f). Care must be
taken to ensure that angles produced by the perforations are suitable for the location.

diustable louyres are more expensive than fixed | ' |
erforated and expanded sheet or fixed eaves. A cheap and very effective sunshading
egetation can be grown on trellises made from fencing wire stretched be\::re:n
worizontal poles (Figure 30(c)). Deciduous vines such as omamental grapes ‘gr:; ry
lickly and will lose their leaves in winter when full sun penetration 15 TEQUITEA.
hade. Adjustable louvres as shqwn
d obscure the view. Fixed vemcraln
(Figure 29(c)). “Egg crate

ouvres, which in turn are dearer than

on-north facing windows are the most diff icglt (R
gures 28 and 29 work well but are expensive anc 937
n the north side of the window arc 4 c;leapfil' ﬂlatflfs“;:;: exclude winter sun on north
. est W

g devices seem to work on east ané W . can be used on
Figure 30(a)). The mini louvre Syst Shoﬂblsnc::legsutrheeziﬁ to some extent.
ows of any orientation but it is expensive a1 - ide a rectanguiar
. “nipd _oﬁ_:ﬂtﬂ the north side of 8 window and above it p::owd(eF L Og(l:)).

gul ..,..Mt-.h,-@ -_ngthms qnd : . ch of the view, (FI1E
pattern on the window Wl




s or adjustable louvres, (b)
Igt?::z&(c) vert : cal mini louvre shading

gure 29 - External vertical shading
rizontal fixed slats or adjustable
gystem,
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Figure 31 - Intemal shading devices. (a) roller blind, (b) venetian blinds, (c) curtains, (d) vertical slat
i blinds.

Perhaps the best and cheapest alternative for western walls is to provide wide eaves of

at least 1.0m and run fencing wire from the edge of the eaves down to the ground and

This will provide good westerly

train deciduous vines up the wires (Figure 29(e)). )
ould be avoided except

shading of the entire wall. Placing any windows in this wall, sh
perhaps high up under the eaves.
Internal shading is not as effective as external shading. However, internal devices atrz
more likely to be used than adjustable external shadin g devices l?ecause they ;rlf; S:SOYHM
adjust. | Mji blinds,-venetian blinds, or -veruca} Siat bl{nds Eﬁglllmin th: room
s reflective as possible on the window side otherwise the hgh;f e‘;eo; the sunlight
Il be reduced without making a great difference to the hieajing et dded benefit in
\etrating the window. Well fitting blinds or curtains provide an

L

ucing unwanted heat loss in winter.
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Unit 6

INTRODUCTION

nsulation products may act as Sound-proofin

» reduce heat flow. Insulation reduces hegy
i&- ummer. It therefore reduces heating ang .

- ':I comfort

~ This unit discusses different types of insulat;
in the building fabric. It begins with a pep
J hbullds on material presented in Unit 4.

HEAT TRANSFER IN BUILDINGS

i*:f?‘-" lgure 1(b). As shown,
 for significant heat gain. Other main D

walls, windows and ventilation. The actual amount of heat lost through solid elements

(walls, roof, floors and windows) depends on the U-value of the particular element, its
area and the difference between inside and outside temperatures. Basic strategies for
controlling heat gains and losses include creating still air cavities, coupling the floor and
providing insulation.

. N R
o H\“\“‘\\t:&'.' A R - T o

i

Roof/ceiling Roof/ceiling
~d

i

)

S

Floor Floor
(a) (b)

Figure 1 - (a) Indicative relative heat loss in winter from a brick veneer d:qeeulil?r?gwnh timber
~ floor. (b) Indicative relative heal gain in summer for the same _
e (Source: Energy Victona, 1991).
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jati ion and
. T : : form of radiation, convecton
A practical understanding of heat transfer (in the 1on plasterboard ceiling.

tonduction) may be gained by exarninilﬁdlhzd‘fzst;o]:; [C[ti;mme ~ooler tiles (see Figure

Radiation occurs when warm plasterboard racx hoard) rises and comes
a). Convection occurs when air (heated by Llhe dwiTE: Fé??:;rsome of its heat to the
) ' : ' 0

Nto contact with the cold tiles, where it CO0%

tiles ;7: : Eigure 2b)
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(b) Gonvection in a plasterboard celling
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or RFL) consists of thin
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uminium foil, which primanly
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& mirror and emis litle
ce should have a still air

U quring installation,
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saintain thermal performance and stop moisture from saguragi

atts are lig htweight, flexible and resilient. They consist of lon
sally bonded with a thermosetting resin, The fibres are

o1k insulation reduces conducted and convected hea flow. Tra
el ”;I*. to heat being convected. -

sy 1“,53 tness or bulk, Bulk insulation comes in five different

PP
S |

tal (a8 sarking). The blue surface faces

e
PN roofs or Outwards in walls and reduces

patts combine two, three or four layers of mflective o
sate air gaps between layers. Fu hlptuve foil laminate, separated by

I8¢ the insulatin ofT
: ec
ulk insulation. : Lol

s

ﬁ@f;'e:' faces and the air-trapping qualities of b
Bulk Insulation

pped air, in many layers

'ﬂ}t greater the number of air goé‘ky::.
Of this type of insulation depends on
forms - batts, blankets,
0 needs to be kept dry to
ng the batt, and adjacent

reater the insulation value. So, the resistance

by

4s. loose-fill, and foamed in-sitw insulation. Bulk insulatio

T
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g, fine fibres and are
Spun from glass or rock and

o are called mineral wool or specifically fibreglass batts and rockwool batts. The

e i ;_';:.-'-:f_‘_;_jj_t- ller sizes while blankets come in long, wide rolls. So a fibreglass blanket will
e the same R-value as fibreglass batts of the same thickness and characteristics. This

s also true of rock wool blankets and batts. However if blankets are compressed against
suctural imber (for example) then thermal resistance is reduced. Batts, which fit snugly

{ I

setive foil or brickwork.

'
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.
han

nass -ﬂ"’m typically mnges from S0mm to 100mm,

akets. like batts, are spun mineral wool. The main difference is the product size. Batts

ween structural timber do not have this disadvanmge.

rds a ;.~ made from expanded or extruded polystyrene and urethane foam. All
tyrene batts and sheets contain flame retardants. As they are combustible, they are

L uSed .ﬁfm v between non-combustible surfaces such as plasterboards, fire retardant

s fill insulation is blown or pumped 1nto position, Loose !'ﬂl insulation should be
S evenly and sealed to ensure good performance, Even thickness ensures that the
lue selected is maintained throughout the insulated area. Examples t}l lo:ml fill
lati w. include cellulose fibre, eelgrass, and tl‘immﬂ polystyrene hud:«‘d Ct.iltﬁ Ebz

% is made from waste paper which is pulverised nto a fine flufY, and treated wi

flant to reduce flammability. Eelgrass loose bulk insulation is made fmr:\ i‘ﬁd
rass tha s treated with fire retardant. Foamed polystyrene beads and are normally

m or pumped into areas, as is cellulose insulanon,
R ' : Jvde (UF Foam) and
LN s redes Urea Formaldehyde (4 b

ed ir m bulk insulation ¢ lltldt-a-:i “«::1 ‘l: the job Sit8 by the combinaton
s Fi { insulation 18 produced s B e o
) M WF foam . aldehyde resin, and aqueous solution tnam‘ms age
R ution of ures oY ul:" #lli.ll that the ingredients of the insulation
S . ’ S CSSCILL B 3
cludes st. and air. 1tis esse k . and to avoid the
e uumd catalyd securately for optimum pertormance :;:dri yration and
IR Imw}‘ly an lacement. Apart from problems ol iw .;mrmt:nt n
jon disintegrating after placemetit. «i Je gas during and AL PETEER -
e o t o afF toxic formaldehyde gas GETHS T is no longer
o m“t.l:}nl‘ll;’;:nd Canada as building insulation and:s
ore been banned in the UL :
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121 Roofs and Ceilings
;. .; aflectiv M”" commonly installed direc
the folding of foil into the gutter and turnin
the gap of 100mm at the ridge board (rafter
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installation Details

, 3 shows the suitability of differe
ent sections discuss
lin I!wa]ls and floors,

nt insulation
ner %
L’?’F and illustrate the

.l“}iﬂ:#ﬂT

minimumf{
overlap
150 mm

sarking anti-ponding
board

Figure 5 - Use of reflective foil as sarking.
(Source: Glass, Mass and Insulation Council, 1985).

3ulk insulation, often used in conjunction with reflective foil sarking is installed directly
nto the ceiling lining between the ceiling joists (see Figure 6).

tween ceiling joists
tation Council, 1985).

Fiqure 6 - Batis installed be
a:.(Sougca: Glass, Mass and Insu

- INOte
Ote the 150mm overlap and
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problems of condensation, due to low ventilation

dd a vapour barrier, as shown in Figures 8 and 9.

ulk insulation when the rafters are concealed is

Figure 9 - Foil-backed bulk insulation in a cathedral ceiling where rafters are exposed
: (Source: Glass, Mass and Insulation Council, 1985). VPtis

In cases where space to fit bulk insulation in a cathedral ceiling is limited, polystyrene
may > an adequate R-value 1n a relatively thin product. It also acts as its own
yapour barrier, so foil undemeath i1s unnecessary. However reflective foil above the
polystyrene may provide additional insulation if it does not become ineffective through
dust deposition. Figure 10 shows a typical installation.
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oo e doion and reflective foil used under a tiled roof.

=flective foil installed under a tiled roof, where
S NN F

tes the case 2rs are exposed. In both
jould prevent the penetration of moisture into the

S e R
case where the raf|
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of where rafters are exposed.
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e and reflective foil. In
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Figure 13 - Insulating with polystyrene and refiective foil where rafters are exposed.
(Source: Energy Victoria, 1991). b
4.2.2 Walls

Figures 14, 15, 16 and 17 illustrate the installation of insulation in brick veneer walls.

o, e a

2eflective foil installation using a fixing disc is shown in Figure 14.

PO reflective
o foil :
laminate

| | ;
5 shows the installation of batis using a polyPr

to the bottom plate, f moisture.
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Figure 17 - Use of polystyrene boards across studs.
(Source: Energy Victona, 1991).

. 1985).

o dges th: t help to hold them For full masonr walls, insulation may be installed with or without cavity. In both cases,
- : are S ?f-,;i'@ﬂj be taken 1o clear all mortar debris, clean joints of protruding mortar, and
sect the installed board or batt from mortar debris. This creates a cavity which
légher R-value and stops moisture saturating the batt. The inner leaf should

d the outer leaf in lifts that suits the type of board or batt to be installed. Current
ragtice is to build the outer wall first. Figure 18 shows placement of batt or board in
| masonry with provision for air space. The air space should be allowed according to
isions in relevant building regulations. The batis or board are clipped to the inner

it convenient intervals. The cavity flashing ensures that water resulting from

isture penetration of the outer leaf runs off to the outside.
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Figure 20 - Use of down-facing reflective foil across fioor ioi
(Source: Glass, Mass and Insulation Council, 1985)1? i
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Jse of batt or blanket and reflective foil is shown in Figure 21. The foil is laid first, then
the close-fitting bulk insulation is pushed into place.
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ing a frame on the inside of the brick to
er on the inside surface of the brick is
-

imber ‘batt or reflective
floor blanket foil
'\ laminate

1 15 an option which improves the
timber floors, suspended concreic
lated. Insulation of suspended

old climates and during summer

ion of a good underlay and
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council, 1985).
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AS 1366.3 - 1982
Rigid Cellular Plastic Sheets for Therma s

Polystyrene.

AS 1903 - 1976
Reflective Foil Laminate.
AS 1904 -1976

Code of Practice for Installation of Reflective Foil Laminate in Buildings.
AS 2352 - 1980
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Glossary of terms for Thermal Insulation of Buildings.
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Organic Fibre Insulating Board.

AS 2461 - 1981
Mineral Wool Thermal Insulation - Loose Fill.

AS 2462 - 1981
Cellulosic Fibre Thermal Insulation.

AS 2463 - 1981
Sea Grass Bulk Thermal Insulation.

...:::_1;3;:,"_47-&._ - 1983 ‘
Thermal Insulation of Dwellings - Desng“.COde fart o
of Roof/Ceiling in Dwellings which require Heating.

AS 3000 - 1981
he Electrical Installations 0
AA Wiring Rules). e
" o i ormance,
nsulation manufacturers produce literature outlining the pr;pem:ihp:ubﬁcaﬁons
i8ions and installation guides for their products. Refer fo fics2
search organisations (eg. CSIRO) where possible.

083 Thermal Insulation

f Buildings, structures and Premises (known as the
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gt Lt : g of heat storage : :

!-'f;_ii_i.f._ﬁl_i__m mmal mass in housing. It completes discussiog: L?Tl?ry anq P
buildings. of the detailed thermal behaviour of

2 HEAT STORAGE THEORY

iu:t},_;aj energy may be _stﬂred during the heating, melting or vaporising of a material
i*h{ﬂ- ?n?rgy bec_:om‘mg available when the process is reversed. Energy storagé
accompanied by a rise in temperature is called sensible-heat storage. Energy storage

tn:n change (the transition between solid, liquid and vapour states) is known
as latent-heat storage.

2.1 Sensible-Heat Storage

_heatis described by its specific heat capacity
ed to raise a kilogram of the material by one
acity (c) obtained by multiplying the
unit volume of

:-":EL.ILHE‘-.-.&- ty of a material to store sensible
(§) which is the amount of energy requir
Kelvin; its unit is J/kgK. The volumetric heat cap
fﬂl by the density, is the amount of encrey required to raise 2
material by one Kelvin; its unit is J/m"K.

e each subjected to the s
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one with the greater value of
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- Characteristics of materials commonly used for latent- heat storage.
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Thermal Properties and Terminology

""i"nl IS 2 sahd massive wall, each layer of particles ahipths h.cosu aranc(:;nnig
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» Response Factor
4.2 ReSE

The respc se factor (Fr)is a measure of the abili

+otal heat transmittance of the buildin
+he structure to absorb or release hea
i domin ant in influencing the Tesponse factor:

Z(AxY) + 033NV
_—--_'_—___'_‘-——_.

2(AxU) + 0.33NV

where  Z(AxU) is the total hegt :
| tr
: T(AXY) is the total hegs p i 216,

' €at admittanc
0.33NV is the ventilation heat ﬂo:’r:l::

Lightweight and heavyweight classificatiop
appropriate in particular climatic regions. In te
Fr =

B r F‘[ .

The theoi etical minimum value of Fris 1, while the
is around 10. In climatic regions where there is 3

) -

S are assigned to buildin |
gs as bein

rms of the response factor: :

2.5 indicates lightweight

6 indicates heavyweight

Practical achievable maximum limit
diurnal temperature swing of at least

| de the human comfort
10use would have a low (AxU) value and a high (AxY) valze. T

EAT STORAGE IN PRACTICE

efficient
H
Thermal mass should be placed on the inside surfaces of rooms in direct contact with the |

air. It is ly incorporated in walls and floors although it is possible to construct

heavyweight ceilings. Some form of insulation should exist between the thermal mass

and th 1"*{ the building, even if this is only an air cavity (walls) or earth (floor).

Comr ;__.:-'v_jg;g';i_';j__n I "fs_‘i_:of heavyweight construction include the cavity brick wall and concrete
slab-on-ground floor.
-

Effect of Thermal Mass on Indoor Temperature

The effect of thermal mass may be illustrated by comparing the performance of two
boxes, each constructed of different multi-layer components, subject to §1nu501dal
emperature fluctuations at their outer surfaces (walls). One box has lightweight walls
onsisting of 12mm weatherboards, timber frame and 10mm Plasterboard, The 0§her has
heavyweight walls consisting of 110mm brick, a S0mm airspace, 110mm b“;l“ :“d

vumm ¢ j_.l:'_f'l'-f,-_.:_-.l’ box-.has![he salne'thel'l'nﬂ.l resistance. Temperature outside the box

\a period of 24 hours, an amplitude of 10K and a mean of 24°C. There are no solar

ns (on ﬂﬁ the wall) or internal gains. ¥
de each of the boxes with the temperature inside,

The massive box reduces the amplitude of the

greater extent than the lighWeight box.
' thi VYW . within the comfort Zone, while outdoor
e ome uncomfortable.

re 5 compares the temperature outsi
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 brick construction consistently produces lower coolin

e ui

its lightweight counterpart except in Darwin but may, in sfnl;eeq d:?mﬁggnt:z
mncrease heating requirements. The effects are least beneficial in those locations
with high annual heating or cooling requirements, i.., with mean daily
temperatures that depart significantly from comfort levels. Thus the use of cavity
brick construction in Darwin marginally increases or decreases annual cooling
requirements, whilst in Melbourne and Wagga it generally increases annual
heating requirements. The latter increase is minimised if walls are insulated and
concrete slab floor construction is used. Significantly beneficial effects are
achieved in those locations with mean temperatures more closely approximating
comfort levels, e.g., Alice Springs in winter; Melbourne and Wagga in.summer;
Brisbane, Perth_-and .Williamtownthroughout. the year. In such instances
uninsulated cavity brick construction may often give lower annual requirements
than insulated brick veneer construction. It should be no@ thatnowhere are total
annual requirements increased through use of cavity brick construction.

mgg-u slab-on-ground construction consistently produce:s lit}-;z; th;&f
requirements than its lightweight counterpart generally 10 8 8% C B o
This is 1z ”he{ly due to the very favourable orientation of the dwelling Use
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caleulations. This construction also Fonmstenﬂy e climate and in other
though the effect is very marginal in the sertreb . .k construction. Again, the
slimates its significance is not as great s caviy =
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4.2.5 Water Wwalls

The water wall concept was Unit 1. The water is typically conty;
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briefly discussed in
ehind north-facing windows. Water 1,
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or the use of large picture windows. Similarly designs that
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have sometimes overheated in summer or have become very cold in wimf s. These

Suburbs have been established where most
”,ﬁ walls and dark tiled roofs and cosequently are extremely hot in summer
1'_?;‘;'!1"{_1- are air-conditioned. Some councils even have covenants which force the
adoption of inappropriate design of this kind and will not grant permits to builders
wanting to use light coloured insulated iron roofs or well insulated light coloured brick

walls, or walls of any material other than brick

of the buildings have dark coloured
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gother hand some unique styles have evolved which do address some of the features
of the prevailing climate. An example of this is the use of verandahs to shade walls and
windows, vented roof spaces and elevated floors to take advantage of cooling breezes in
l’f;ﬂJ_ Australia which have hot summers. Many of these inovations appeared early
in the short history of European occupation. These designs can be improved upon with
the'use of modern materials and building techniques. The resultant modern hyl::rid
appropriate to the climate of the region would certainly outperform the brickveneer tiled
00f clones of our modem suburbs.

21 Australian Climates
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[he Australian landmass covers a large range of latitude from S Sgljt[;suno;
irprising therefore to find a significant range of climates withiVip Cﬁonnneq;e* in0 tﬁe
i€arly half of the-landmass is in the-tropics, most of Lh? POP“lauon reSlresi:nted in
€mperate climatic zone. The only broad climatic classification notf ;z?ldings o
/ m” is the “cold climate” characterised by the need for heating O
Ol the time.
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Thermal Comfort Inside Buildings

Thermal 'ﬁalmfm't is determined by the heat exchange processes between the skin or
clothes as athe immediate environment. A person exposed to the sky will absorb radiant
heat from the sun (day-time) and radiate heat to the sky and ground (day and night-time).
Heat is also gained or lost via conduction to the surrounding air. Evaporation due to

weating provides cooling during hot periods if the humidity of the air is not too hi gh.

The rate of conduction and evaporation is greater if air movement is increased.

-

Dnce insic 3 a building a person will be shielded from radiant heat exchange with the

utside and comfort is primarily determined by air temperature, air movement,

aumidity and the temperatures of the inside surfaces of the room. An exception to this
‘would be exposure to direct sunlight near a window.

enerally there is little discomfort caused by radiation exchange with the interal
rfaces of the room if the air temperature is comfortable. This is because there s usually
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Figure 2. - Comfort zone and climate lines for Brisbane.

The th wf_* ‘comfort zone can be plotted on a psychrometric chart using the following
procedure. This should be read in conjunction with Figure 3.
Q Ca jft}glate the thermal neutrality (Tn) from the mean annual outdoor
temperature (Tav):
Tan= 17.6 +0.31 x Tav.
Q 'Iﬁ_Tn;Qn the 50% relative humidity line.

Q Plot the upper limit as Tn + 2 and the lower limit as Tn-
- mperature lines through the

d effective t€ :
r standa;H line. These lines have a slope (m) given

7 on the 50% RH line.
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kolay, (1987) has described a method for superimposing onto a psychrometric chart
utdoor conditions under which indoor comfort can be achieved using the various
egies mentioned above. The method will not be discussed in detail here, but the
of th ;"bjiltulntions are presented for a number of Australian locations. Areas
110 as Control Potential Zones (CPZ) are plotted on the psychrometric chart. If a
ateline for a particular month lies within a CPZ for a particular control strategy, then
rategy should enable the temperature and humidity inside the building to fall within
mfort zone for that month. This enables a building designer to determine which
ies are worthwhile pursuing in order to achieve comfortable conditions in specific
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The cooling effect of air movement for
“medium” activity can be determined from

T = 6v-v?
where T - effective temperature depression (°C)
v - airspeed (m/s)

Borthese conditions an air speed of between 1 and 1.5 m/s is considered acceptable. This
epresents an t&&gﬂ]% temperature depression of between 5 and 6.75 °C. These values
fe added to the upper limit of the comfort zone. At very low humidity the additional
vaporative effect provided by air movement is reduced. Humidity above 90% inhibits

poling through sweating even at high air speed. Figure 7 shows the air movement CPZ
orboth 1 and 1.5 m/s. It can be seen from this graph that air movement, provided via
| 88 ventilation in the evening and at night and ceiling fans would be an effective
| trategy in Brisbane for controlling overheating in summer.

people wearing light clothing engaged in

eating can be easily achieved with north facing windows

re mustbe taken to avoid overheating in summer. The window

bably be less than the 20% used for the calculations, but
 thermal mass and night time ventilation.
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1ermal mass CPZ is shown in Figure 6.
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vaporative Cooling

poration reduces the dry bulb temperature by conver
I OWever, this is accompanied by an increase in humidity.
| 10t conditions. It is also an economically attractive way of
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Designing for Australian Climates

Building design wil vary considerably
e are some strategies common to |

Ji” A&

@ Insulate the ceiling and insulate the Walls if the y
€ U-valye

L 1S 100 hi
1 Weather seal : 0 high.
a Wea external doors ang windows

@ Minimi

| I s u -
@ Provide appropriate shading for 4] north
, L » €ast and west facing glazin
g.

e - ..
J_Fg?l o 1 . (|

s€ west, and to a lesser extent €ast facing glazin
g

Q Provide shelter from hot summer winds.

These strategies will not be listed again in a general way in the
climatic r Jnrements given below. An example of a location within each climati

1l be used tc illustrate the design possibilities. The CP7’s examined will be direc: stglpa:
gain at an efficiency of 0.7 with the area of the north facing windows being 20% of the
total floor area, thermal mass effect with ni ght-time ventilation of effectiveness 0.8, air

discussion of specific

movement at 1.5 m/s and direct evaporative cooling,

Temperate Climates

Temperate c lmates are characterised as having cool to cold days in winter with cold

gh day-time temperatures in summer with moderate nights. Humidity is

-
T

modera T[H_[ oth winter heating and summer cooling strategies are necessary. This climate
lassification can be subdivided further, but some control strategies are common to all

O Direct solar gain is necessary, preferably from mid Autumn to mid Spring.

) Provide complete summer shading of all windows.

I
i
'

@ Ac equate thermal mass should be provi
northem facing glazing.

@ Orient the building so that the long axis lies alon

aximise glazing on the north side.
ded in accordance to the amount of

g the east-west axis.

3 Provide access to cool summer breezes.
3 Locate the living areas on the north side of the building.
| Use 'vegetation to shade the wes! facing walls.

pots of rooms which can be opened on hot

0 Provide sealed vents at the high S
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mer overheating could be a problem. Again,

Ade ,3 1:enhor Sydney due to possible summer
iclude a qi nimum level of insulation of R1.0. Mini
rom R1.5 to R2.0 in Sydney to R2.5 in Melbourne.

f thermal mass in the room available 1
o |
ating a timber floor to R1.0. It is not 3} Dry Warm Temperate Climate

ated or that imber floors be insulated
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overhegxfing. External walls should
mum ceiling insulation levels range

18 climatic zone differs from the coastal temperate zone in several ways. The diumnal
Aperature range is larger because these locations are further away from the moderating
luence :"Effl" the ocean. Winter days are often sunny. However clear winter skies allow
I radiation loss causing rapid temperature drops as the sun loses its strength in the
fternoon. These conditions are often followed by frost

ira is an example of this classification. Its psychrometric chart is shown in Figure
irect solar gain in conjunction with high thermal mass can deal with the temperature
mes if the envelope of the building is well insulated. Ceiling insulation of between
Oand R3.5 is usually recommended in this climate. Mildura requires insulation at the
r end of this range. |
cooling attractive if air flow using fans is

oW summer humidity makes evaporative .
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equate. Night-time ventilation is also useful
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Figure 16 - Psychrometric chart for Alice Springs.

Subtropical Humid Climate
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Flgure 18 - Psychrometric chart for Darwin
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rma 'f_g._l_;_-. 5. m 5 t design 50 the amount of shc *r'J__E!i porated into the d?sign. Bulk insulation should be installed in the ceiling
vide good shading for walls and windows, bu; vell ventilated roof cavity, Reflective insulation should be used in the walls,
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1aded skylight: - may provide a solution to dim apour barriers will be necessary if air-conditioning is used. High set houses designed

0 ¢ tch ”l 'b@bzel should be of lightweight construction. Low set houses should be

uilitona concrete slab on the ground. Ground cover and shaded areas should surround
building to reduce reflected sunlight

DESIGN FOR SITE

ing established the broad climatic zone classification of the building location and its

re _‘_-,_-J""'F ﬂpving- identified the possible strategies for attaining thermal comt'or_t, the

step in th p}-d'eaign of the building is to analyse the site. This will enable the designer

ecide the best location and orientation of the building and what earth-works,
caping ¢ id planting needs to take place to make the best of what the site offers. The

ang aspects should be noted:
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s slightly more wind coming from the south ar

= e

n summer,

~ Figure 20 - Wind roses for B
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t would provide a cooling effect
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ind comes mainly from the north-east and the east. The percentages of calm periods
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Figure 22 - Sunpath diagram and shadow angle protractor.
| (Source: Phillips, 1975).
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3.6 Internal Spatial Zoning

The internal division of a house depends on the number of occupants and their lifestyles,
Most houses can be subdivided into living, sleeping, service and connecting zones
Formal internal arrangements may separate the kitchen from the living area making it
part of the service zone along with bathrooms, laundry and storage spaces. Informga
lifestyles tend to have occupants using the kitchen as part of the living area which often
incorporates the lounge, dining and family rooms of the formal house in an open plan
arrangement. The “formal” house 1s well represented 1n the older housing stock while
many modern houses favour the “open plan”.

The living zone, which could include a study or studio is used mainly during the day and
should be oriented to provide the best advantage for solar access or breezes, depending
on the climate and the strategies to be used to attain comfort for the occupants. In

tempergte. regions this orientation would be towards the north, while in hotter parts of
Australia it would be in the direction of prevailing breezes.

Bedro(J{ns can afford to _be cooler than the rest of the house and can be placed on the
south side of the building. An exception might be bedrooms used by children as

1B __ 1
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doors from this area should be weathe, 'sealed't“ipmm. L —
he house. e

Buildings in hot humid climates may use a different " - i
The overriding desi gn factor for this climate relates tolpprom t::; wggmedabm | \ |
building incorporating a row of single banked rooms w'ithl verandal 'mm"]lﬁmm_ ._ d:lmg |

oriented towards cool breezes may provide the best solufion sides and

3.7 Daylighting and Glare '. e

Good access to daylight contributes to the non-thermal comfort of the occupants of a | |
building. Glare, caused by a sharp contrast in light intensity is a source of discomfort. -
Effective daylighting is a balance of adequate light without glare and withouttoomuch B
solar heat gain when it is not wanted. ]

Sunlight entering a building comes via three paths:

Q directly from the sun,

O diffused by the atmosphere and amiving almost isotropically from the sky
dome,

Q reflected by the ground or some other object.

Glare can be produced when strong sunlight is incident on & highly reficctr m
such as glassﬁvater, light coloured paving, walls mﬂwmﬁnﬂ:mﬂ'””
of louvres designed to keep direct sunlight out of thehmldm& i
ground cover will reduce glare from the gl'ﬁ’-lﬂd Sm“s mw e

trees or vines can also be effective in reducing these reflections. .

Daylight penetration into a building thm“sh n be achieved Wit
about four metres. Good natural lighting further w y skylights O

the use of high-set windows like the Ones shownﬂl A sin in summer and hes
ghtubes can be used provided st Bre O SESE ULl mancl
in winter will not be a problem. In climates ¥H=2 e ventilation, dayligh

and the windows are only large gnough g

a problem unless the rooms are single banke
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6.4 Program TEMPER

Like CHEETAH, TEMPER has been derived from a mainframe program. The user

interface is clumsy and not user friendly. It uses a finite difference technique for its
calculations.

QO TEMPER takes longer to run than CHEETAH or HARMON.

QA multizoned building canbe modelled. Only 10 heat paths are allowed from
each zone. This means that a house modelled as a single zone can have only
four walls with either one window or door in each wall.

Q Dataenhy is tedious and cumbersome, Recalculations with new building
sections is ime consuming. The lack of error trapping is frustrating.

O Areas of building sections must be calculated before run-time.
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Table 1 - Air changes per hour.
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w ,'.4 air changes per hour for the kitchen, 10 for the laundry and bathroom while
ey are 1n use and 3 for the toilet. To calculate the monthly heat loss in MJ the following

Qv =ACx Vx(Ti-Ta)x Nx0.0286

' where AC - number of air changes per hour

V - volume of the vented space in m>

e . : :
The bottom part of Figure 2 outlines the steps required to calculate the infiltration heat

transfer.
1| i) |
Ventilation is used to expel polluted air or to expel hot air which is then replaced with
air from outside giving a cooling effect Quite mgmﬁc.ani venu}anon rates can be
achieved with open windows if cross ventilation is used, ie., the air comes in through
one ﬁndow and leaves through another. With wind speeds as lmf.r as 0_.4 m/s, 20 air
eh | hour are possible with cross ventilation. This can be achieved if the effectve
ey : t least 8% of the floor area. Where only one window 15
: ' | ilation. Cross
- ilati s only one twentieth as great as for cross ventilation. ;
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ven

direction of wind into the opening, eLc.
_ o sided and cross ventilation air flow rates are respectively:

The formulae for on
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F
%
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_ air flow rate in m?/s
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The sur lIght penetration through windows will vary from month to month. This is due
ot lLl:' combined effect of the variable radiation on a vertical plane and on the variable

sh: hifu 'due to changing height of the sun’s path in the sky. Unit 5 deals with this subject
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fhen averaged over a whole day the valyes in Table 2 for Tsky can be used,

Building Element

flat roof
22 5° roof
45° roof
wall

Table 2 - Sky temperatures to be used when calculating
the solar excess temperature.

Surface AUSCIpianed

Brick, red, unglazed
red, glazed
cream
white, glazed

Concrete
old

Galvanised iron,
new

Granite old
ibro-cement,
Fibro-ce NEW

Paint, aluminium
black
cream
green

red

golar absorptances for common building materials.

Table 3 -




STEADY STATE HEAT TRANSFE

| - RCAL
[he instantanec us rate of heat loss of a byjjg; CULATIONS

ng is:
Yo ,--[i- P +P

where | heﬂt transfer due 0 tem
due to conduction and
solar gain through glazing
solar gain through walls
solar gain through roof
body heat from people

. heat generated by appliance
B, | heat or coolth generated by heating or cooling plant

A positive value of Pindicates a heat loss while a negative valye indicates heat gain,
Ptemp c ff can be positive (eg. Winter) or negative (eg. Summer),

Fglaze, Fwalls, Ppeaple and Papp1 will always represent gains, so they will always be

Proof v : 11 generally be a gain (negative). However, a low solar gain due to low radiation
intensity and low surface absorptance, and a high surface emittance and a low sky
emperature may cause the radiation to the sky to exceed the solar gain. This would
make Proof positive.

Paux will be positive for a heater and negative for air conditioning (cooling).

If the internal room surfaces are all at the same tem perature as the air temperature inside
the building, a positive value of Prot will decrease the a%r temperature, while a m?galive
value will increase its temperature. The temperature of intemnal room surfaces will also
decrease and increase respectively. In practice the th.ermal mass of the hu_nldmg wx_]]
absorb and re-emit heat when the air temperatures are higher or lower respectively. This
process is shown diagrammatically in Figure 8.

o

1
'S HEAT FLOW DUE TO
TEMPERATURE DIFFERENCE

QAN OR LOSS
SOLAR QAN BY ROOF

O
TOTAL NEAY

Mwmﬁﬂ WINDOWS
AND
OR COOUNG
Figure 8 - Energy and temperature change processes in buildings.
9
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EGREE DAY CALCULATIONS i
- Day" method is the simplest steady state modelling tec},
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Column C is found from the algorithm:

Teomf = 17.6 + (0.31 x Tay)
Column D is the temperature difference:

i AT ' = Teome - Tay

i

Colum nE 1s the average daily horizontal irradiation, with units Ml/m 2/day.

8.3 Conductance Heat Transfer

-

Table B2 of Appendix B is used to calculate the conductance heat transfer.

115¢ ate thace Al el o -.__'!';.-—-_-. S— L R e
1alC u 1 1 . r:'v‘.‘!_lcj Qﬂiﬂ"’_ﬁﬂﬁ 18.

s
-

; > ‘Column B is the height or length of the element.
teady state mo
il undergo changes Column C is the width of the element.
rechanges. '

\Column D is the area of the element including any doors, windows etc.

Of these methods is in deciding which base
=S Tull advan f":'%":%f;c-;*-:njﬁjj"iiii" winter sun will be
vhich does not.

Column E is the area included in the gross area which is of a different construction e.g.
area of windows.

Column F is the nett-area of the building element.

' from first principles or
Cc : .t olement. This can be calculated
Column G is the U-value if the e
f all the UxA values of column H.

- 0
., , nverted from an instantaneous power per C temperature
Calculation J is Box I CGEI‘ oc temperature difference lost by conductance.
difference to daily encrgy P

ATIONS

-

epends on the internal comfort
eason. What is a comforable
pecity this comfort zone when

' DIC ns. _Eﬁ_:ﬁ * ly, COOIiﬂg is

Box I is the sum 0




the building at the sa me time. For example, for 5 family
, of all four while they ﬂatlllght for ten hours

i

|
room $paces in the buildi
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7 contributed by people.

late the heating contribution of appliances.
¢ b =) =
Box H is the total solar heat gain through the roofs.

et energy con ;_—;e";%;--;g;; .. : § 89 Monthly Heating or Cooling Load

slazing - §  Thecalculations to find the monthly heating or cooling load are given in Table BS. The
T e Source of the data for each column is given below the table. Positive loads are heating

- e

tocaleulate solar heat gains through windows. Cojyr §  ™auirements, while negative loads require cooling,

T e e

€S Width), E (eaves to window distance) ang
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an be used to calculate column J (Hp).
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-4 that is glass, i.e. minus the window frame
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culate t 1€ solar heat gain through each
‘idence of 60°.

=
I

at gains through walls. Column .
Har Way 10 the daily irradiation on
*aVes 1o window distance is taken







