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Twinkle twinkle little Spin
Are you single or are you twin?
Are you real or are you false?
How I crave your resonant pulse

—JOHN A. WEIL
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PREFACE

This book is intended to be an introduction to and a tutorial on electron paramagnetic
resonance (EPR) spectroscopy. It has been written specifically for students at the
senior undergraduate or graduate level, and can be used as either a textbook in a
course or a self-study guide.

It would seem fair to demand of authors of a technical book that they enumerate
in their first pages some of the benefits from its study. This is especially true if a clear
understanding of the ‘new’ material requires an extensive investment of effort, say,
in learning mathematical and quantum-mechanical techniques. We accept this
challenge and enumerate the following benefits, which the diligent reader may
expect to accrue:

1. Understanding of the fundamentals of EPR should be achieved even by readers
having no previous training in quantum mechanics. In fact, the concepts in mag-
netic resonance provide an excellent tutorial path for reaching a deep understand-
ing of this theory. Readers with some quantum-mechanical background may
anticipate the acquisition of further mathematical and quantum-mechanical
skills, plus powerful experimental and theoretical techniques; these will permit
the interpretation of a wide range of EPR spectra.

2. The reader will be stimulated to consider the application of EPR techniques to the
solution of problems of interest in the areas of organic, inorganic, biological or
analytical chemistry; chemical physics; mineralogy; and geophysics. There is
ample scope for this, since EPR is applicable to paramagnetic species in the
solid, liquid and gaseous states.

3. The reader will have made considerable progress toward an understanding
of exciting new EPR developments now in progress. An example of this is

Xix



XX PREFACE

time-resolved spectroscopy, which involves acquisition of EPR data for short-
lived species. Thus one may hope more and more to extend the EPR technique
to initially diamagnetic species that all can be excited to a paramagnetic state.

4. In listing possible benefits to the reader, one must include the acquisition of an
historical perspective. We thus enumerate below a few of the successes of the
EPR technique:

a. EPR studies established that new absorption bands observed in optical spectra
following excitation by light of certain molecules (e.g., naphthalene) arise
from the temporary unpairing of two electron spins. These ‘triplet’ states
had been proposed, but their existence had not been proved. Much of the infor-
mation now available on triplet states has come from EPR studies.

b. The mechanism of photosynthesis has been under study for decades. The
primary donor in the photosynthetic process has been shown by EPR to be
a chlorophyll free radical, and many other key intermediates in this reaction
have similarly been identified by EPR.

c. By appending a paramagnetic fragment (a ‘spin label’) to a molecule of bio-
logical importance, one in effect has acquired a ‘transmitter’ to supply data on
the interactions of biological molecules. Very many systems of biomedical
interest (e.g., oxygen carriers, various enzymes) have had their structure
and function elucidated by application of the EPR technique.

d. EPR has excelled over any other technique in the identification of paramag-
netic species in insulators and semiconductors, and in describing their
environment. Isotopic enrichment of samples has added many details to
EPR interpretations. Such data have provided stringent tests of theory.

e. EPR has allowed chemists to probe into the details of reaction mechanisms by
using the technique of ‘spin trapping’ to identify reactive radical intermediates.

More than three decades have elapsed since the publication of the first edition of
this book. The EPR spectra that it interpreted reflected the interests of early experi-
menters. Numerous free radicals in solution and transition-group ions in crystalline
electric fields of high symmetry were cited as examples. We strive in this edition to
demonstrate the similarities and the unity of approach (e.g., spin-hamiltonian analy-
sis) possible for all the myriad of paramagnetic systems open to study by EPR. For
pedagogical clarity we have continued to cite some early results. However, space
limitations have forced us to choose between broad coverage of specific topics
(e.g., biological applications) and detailed coverage of limited examples. We have
usually chosen the latter. For example, the reader will not find a systematic exami-
nation of the various transition ions in this edition. Fortunately, many sources are
now available (and cited) where the reader can find such material. Certainly it has
become trivially easy to use the various computer-based search engines available
to obtain even highly technical references and data.

Examination of the extensive EPR literature (e.g., one may scan the nearly 3000
EPR review papers published up to 2004, about 60% of which are in English) shows
a pattern of increasing complexity in the systems studied and in the experimental
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equipment used. The free radicals of old have in part been supplanted by biological
or mineralogical samples or complicated transition-ion complexes. Some of the
spectrometers now in use operate not only in the classical continuous-wave mode
but also in a pulsed mode. Magnetic fields as high as 100 T are now used in
pulsed experiments. Computers direct the spectrometer control as well as data acqui-
sition, analyze the spectra to yield the underlying parameters and produce accurate
simulated spectra.

In this evolving environment, we continue to aspire to provide the reader with a
respectable level of understanding, both of EPR experiments and equipment and of
their theoretical background. We have striven both for clarity and for accuracy.

We emphasize that this book does not attempt a comprehensive coverage of the
subject. Where appropriate, we refer to texts, reviews and key papers for further
reading. Our primary purpose is to develop a sound base to enable the reader to
go on to the specialized field of interest. In this regard we make liberal use of
elementary interpretive theory (e.g., Hiickel theory, molecular-orbital theory and
crystal-field theory) as pedagogical tools, even though these theories have severe
limitations in more advanced applications, and large-scale computer-based calcu-
lations for simulation and interpretation have now become routine.

Our primary focus is on isolated paramagnetic species. Later we deal fleetingly
with interacting systems (e.g., electron exchange and transfer, polarization).

Finally, we have generated sets of problems of varying difficulty for the reader.
The effort involved in their solution will probably be generously repaid by enhanced
understanding of the subject material.

The EPR community is a compatible and congenial one. The International EPR
Society (see IES Website http: //www.ieprs.org/; ca. 1000 members in 2006) spon-
sors various meetings, globally, and produces a fine quarterly newsletter.

The senior author of this third edition takes most of the responsibility for its
contents. Sadly, the senior author of the 1972 edition, John Wertz, was able to par-
ticipate in only the early stages of formulating the 1994 edition, and passed away
soon after that. The junior author (JRB) of the first editions evolved away from
EPR in his research interests many years ago; although he played an important sup-
portive role in preparing and editing the present manuscript, he did not contribute
material for the 2007 edition.

The authors would greatly appreciate receiving from the reader any suggested
improvements and corrections, via the available Website. This mechanism was
most helpful in the writing of the present book.

REMARKS SPECIFIC TO THIS EDITION

EPR spectroscopy is now considered to be a ‘mature’ scientific field and, while still
evolving with much work to be done, the fundamentals are in place. Thus a previous
text on this topic need not be revised dramatically.

Advances in the field have been mostly in obtaining more sophisticated analyses
of the theoretical background and of developing more modern electronics and
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magnetry, much of it on the road that the frequency domain is taking from the micro-
wave region toward the infrared. The time scales open for examination of EPR
phenomena have, of course, shrunk appreciably. The funds required to do modern
work have not. It will be most interesting to learn how EPR imaging evolves in
the next decade.

We thank the numerous readers who took the time to communicate with us about
this book. What was strongly urged by readership and publishers alike was to keep
the size and feeling of the book much the same. We have tried to heed this advice.
Thus the (relatively few) errors in the previous edition have been attended to, clar-
ifications have been added where suggested, and various new references have been
built in. Much remains as it was. Thus tutorial ‘gems’ from the 1960s are deemed to
retain their value, not to be exchanged for 2000s replacements merely for temporal
reasons.
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CHAPTER 1

BASIC PRINCIPLES OF
PARAMAGNETIC RESONANCE

1.1 INTRODUCTION

The science of electron paramagnetic resonance (EPR) spectroscopy is very similar
in concept to the more familiar nuclear magnetic resonance (NMR) technique. Both
deal with the interaction between electromagnetic radiation and magnetic moments;
in the case of EPR, the magnetic moments arise from electrons rather than nuclei.
Whether or not the reader has an immediate interest in the multitude of systems
to which EPR is applicable, the insights that it provides cannot be ignored. Further-
more, there is hardly another technique from which one can gain a clearer insight
into many of the fundamental concepts of quantum mechanics.

Much of our knowledge of the structure of molecules has been obtained from the
analysis of molecular absorption spectra. Such spectra are obtained by measuring the
attenuation versus frequency (or wavelength) of a beam of electromagnetic radiation
as it passes through a sample of matter. Lines or bands in a spectrum represent tran-
sitions between energy levels of the absorbing species. The frequency of each line or
band measures the energy separation of two levels. Given enough data and some
guidance from theory, one may construct an energy-level diagram from a spectrum.
Comparison of an energy-level diagram and an observed spectrum shows clearly
that, of the many transitions that may occur between the various levels, only a rela-
tively few ‘allowed’ transitions are observed. Hence the prediction of transition
intensities requires a knowledge of selection rules.

Electromagnetic radiation may be regarded classically as coupled electric (E;)
and magnetic (B;) fields perpendicular to the direction of propagation (Fig. 1.1).

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.
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FIGURE 1.1 Instantaneous amplitudes of electric field (E;) and magnetic-field (B;)
components in a propagating plane-polarized and monochromatic electromagnetic beam. We
note that E; is confined to plane xz, B is confined to plane yz, with wave propagation along z.

Both oscillate at some frequency v, within the theoretical range 0 (DC) to infinity.
For our purposes, in EPR, the commonly used frequency range is 10°—10'%s™!
(1-1000 GHz).

We must also consider the particulate nature of electromagnetic radiation in that
it can be represented as a stream of particles called photons. These have no mass or
net electrical charge but are to be thought of as wave packets having electromagnetic
fields and a type of spin angular momentum. Furthermore, photons travel in obser-
vable directions, always at the speed of light; that is, they constitute light. The
electric (E;) and magnetic (B;) components of the fields associated with them
(see Appendix D) are generally perpendicular to each other and to the direction of
propagation and oscillate in a narrow range centered at frequency v.

The energy of any given photon is given by the quantity 4v, where % is the famous
Planck constant. When a photon is absorbed or emitted by an electron, atom or
molecule, the energy and angular momentum of the combined (total) system must
be conserved. For this reason, the direction of photon travel relative to the alignment
of the photoactive chemical system is of crucial importance.

In most spectroscopic studies, other than magnetic resonance, it is the electric-
field component of the radiation that interacts with molecules. For absorption to
occur, two conditions must be fulfilled: (1) the energy (2v) of a quantum of radiation
must correspond to the separation between certain energy levels in the molecule,
and (2) the oscillating electric-field component E; must be able to interact with
an oscillating electric-dipole (or higher) moment. An example is gaseous HCI;
molecular rotation of HCI creates the required fluctuation in the direction of the
electric dipole along the bond. Likewise, infrared radiation interacts with the mol-
ecules in vibrational modes, dependent on the change in the electric-dipole
moment magnitude with bond-length fluctuations. Similarly, a molecule containing
a magnetic dipole might be expected to interact with the oscillating magnetic
component B; of electromagnetic radiation. This indeed is so and forms the basis
for magnetic-resonance spectroscopy. Herein we are concerned with permanent
dipole moments, that is, those that exist in the absence of external fields.
However, in most magnetic-resonance experiments, a static magnetic field B is
applied (in addition to B;) to align the moments and shift the energy levels to
achieve conveniently measured splittings.
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Each electron possesses an intrinsic magnetic-dipole moment that arises from its
spin." In most systems electrons occur in pairs such that the net moment is zero.
Hence only species that contain one or more unpaired electrons possess the net
spin moment necessary for suitable interaction with an electromagnetic field.

A magnetic-dipole moment in an atom or molecule (neutral or charged) may arise
from unpaired electrons, as well as from magnetic nuclei. The magnetic-dipole
moments of these particles in turn arise, respectively, from electronic or nuclear
angular momenta. Hence one of the fundamental phenomena to be understood in
EPR spectroscopy is the nature and quantization of angular momenta (see
Section 1.6 and Appendix B).

1.2 HISTORICAL PERSPECTIVE

The technique of electron paramagnetic resonance spectroscopy may be regarded as
a fascinating extension of the famed Stern-Gerlach experiment. In one of the most
fundamental experiments on the structure of matter, Stern and Gerlach [3] in the
1920s showed that an electron magnetic moment in an atom can take on only discrete
orientations in a magnetic field, despite the sphericity of the atom. Subsequently,
Uhlenbeck and Goudsmit [4] (see also Ref. 5) linked the electron magnetic
moment with the concept of electron spin angular momentum. In the hydrogen
atom, one has additional angular momentum arising from the proton nucleus. Breit
and Rabi [6] described the resultant energy levels of a hydrogen atom in a magnetic
field. Rabi et al. [7] studied transitions between levels induced by an oscillating
magnetic field. This experiment was the first observation of magnetic resonance.

The first observation of an electron paramagnetic resonance peak was made in
1945 when Zavoisky [8] detected a radiofrequency absorption line from a
CuCl, - 2H,0 sample. He found a resonance at a magnetic field of 4.76 mT for a
frequency of 133 MHz; in this case the electron Zeeman factor g is approximately
2 (Sections 1.7 and 1.8). Zavoisky’s results were interpreted by Frenkel [9] as
showing paramagnetic resonance absorption. Later experiments at higher (micro-
wave) frequencies in magnetic fields of 100-300 mT showed the advantage of
the use of high frequencies and fields.

Rapid exploitation of paramagnetic resonance after 1946 was catalyzed by the
widespread availability of complete microwave systems following World War II.
For example, equipment for the 9-GHz region had been extensively used for
radar, and components were easily available at low cost. Almost simultaneously,
EPR studies were undertaken in the United States (Cummerow and Halliday [10])
and in England (Bagguley and Griffiths [11]). Major contributions toward the
interpretation of EPR spectra were made by many theorists. Important figures in
this endeavor include Abragam, Bleaney, Pryce and Van Vleck. The early history
of magnetic resonance has been summarized by Ramsey [12] and others.”

The state of the art has advanced on many fronts. In general, pulsed spin-excitation
schemes and ultra-rapid-reaction techniques have now become not only feasible but
almost commonplace. One remarkable accomplishment in recent years has been the
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observation of an EPR signal from a single electron held in space by a configuration
of applied electric and magnetic fields (in a so-called Penning trap) [15].

1.3 A SIMPLE EPR SPECTROMETER

The use of a magnetic field is the unique aspect of magnetic-dipole spectroscopy.
We shall illustrate the effect of the field and the components of a basic EPR spectro-
meter, but first we must consider the energy states of the chemical species being
examined.

The simplest energy-level diagram for a particle of spin % in a magnetic field is
shown in Fig. 1.2. The levels are labeled with the symbols « and 3, or with the
numbers M = i%, to be defined. By varying the static field B, one may change the
energy-level separation, as indicated. Resonant absorption occurs if the frequency
is adjusted so that AU = hv. Here v is the center frequency of the source of incident
radiant energy. The magnitude of the transition shown is the energy that must be
absorbed from the oscillating B, field to move from the lower state to the upper
state. No numerical values appear on the qualitative diagram. We merely note that,
for many simple unpaired-electron systems, resonance occurs at a field of about
0.3 T if v is approximately 9 GHz. The variation of energy with magnetic field
need not be linear, and more complex systems have additional pairs of energy levels.

The energies of the magnetic dipoles in a typical static magnetic field B are such
that frequencies in the microwave region are required. A possible experimental
arrangement for the detection of magnetic-dipole transitions is the microwave
EPR spectrometer shown in Fig. 1.3a. An optical spectrometer is shown in
Fig. 1.3b to suggest by analogy the function of components in the two spectrometers.

Ms

/a Ua =+|Egeﬁe8

AU=hy

resonance
field 5,

FIGURE 1.2 Energy-level scheme for the simplest system (e.g., free electron) as a function
of applied magnetic field B, showing EPR absorption. U, and Ug represent the energies of the
M = i% states. For electron spins, M is written as M. The constants g, and 3, are defined in
Section 1.7.
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FIGURE 1.3 (a) Block diagram of a continuous-wave (cw) electron paramagnetic resonance
(EPR) spectrometer; (b) block diagram of an optical spectrometer, where ® denotes the sample.
Note that there is a pair of irises in the end faces of the transmission cavity.

In either case, approximately monochromatic radiation falls on a sample in an appro-
priate cell, and one looks for changes in the intensity of the transmitted (or reflected)
radiation by means of a suitable detector. Two primary classes of fixed-frequency
spectrometers exist: either continuous or pulsed in the amplitude of B;. We shall
now describe briefly the principal components of a simple EPR spectrometer.
More details can be found in Appendix E.

Source. The frequency of radiant energy used in the majority of EPR spectrometers
is approximately 9.5 GHz, in the medium-frequency microwave region. This fre-
quency corresponds to a wavelength of about 32 mm. The microwave source is
usually a klystron, which is a vacuum tube well known for its low-noise character-
istics (see Appendix E). The field B, is generated by oscillations within its own
tunable cavity. In the range of about 1-100 GHz the mode of energy transmission
is either by special coaxial cables or by waveguides. The latter are usually rectangu-
lar brass pipes, flanged to facilitate assembly of discrete components. In standard
instruments, the microwave power is incident on the sample continuously (i.e.,
continuous wave, commonly abbreviated cw). Alternatively, in certain modern
spectrometers, the power is pulsed.
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In Fig. 1.3a and in Appendix E, in addition to the waveguide-connected klystron,
there are other components; the most important are a resonator, a magnet and a
detector. These components perform the following functions:

Resonator. This is most commonly a resonant cavity, which admits microwaves
through an iris. The frequency of the source is tuned to the appropriate resonant fre-
quency of the cavity. The corresponding resonant wavelengths are related to the
dimensions of the cavity. One wishes to operate in a resonant mode that maximizes
B, at the location of the sample. At resonance, the energy density in the resonator
may be thousands of times that in the waveguide, which maximizes the opportunity
to detect resonant absorption in a sample. A recently developed loop-gap resonator
has been advocated as an alternative to the usual resonant cavities for energy-
dissipative samples (Appendix E).

Figure 1.3a features a transmission cavity, with separate input and output irises. In
practice, a reflection cavity, in which a single iris fulfills both functions, is usually used.

Magnetic Field. In magnetic resonance experiments, the static magnetic field B
usually must be very well controlled and stable. Variations of this field are translated
into corresponding variations in energy separation AU. The magnitude of B may be
measured and controlled by a Hall-effect detector. Since every absorption line has a
non-zero width, one finds it convenient to use a scanning unit to traverse the region
of field B encompassing the line. Unless B is uniform over the sample volume, the
observed spectral line is broadened.

Detector. Numerous types of solid-state diodes are sensitive to microwave energy.
Absorption lines can be observed in the EPR spectrum when the separation of two
energy levels is equal to (or very close to) the quantum energy Av of an incident
microwave photon. The absorption of such photons by the sample in Fig. 1.3a is
indicated by a change in the detector current.

The direct detection of the absorption signal, as in Fig. 1.3q, is possible only for
samples containing an unusually high concentration of unpaired electrons; noise
components over a wide range of frequencies appear with the signal, making its
detection difficult. In the optical spectrometer (Fig. 1.3b), the signal-to-noise ratio
may be improved greatly by chopping the light beam at a preselected frequency.
This permits narrow-band amplification of the detected signal; hence noise com-
ponents are limited to those in a narrow band centered at the chopping frequency.

In a typical fixed-frequency magnetic-resonance spectrometer, the role of the
light chopper is taken by a field modulator to impose an alternating component on
the static magnetic field B (Appendix E). This results in an alternating signal
at the microwave detector that can be amplified in a narrow-band amplifier. Typi-
cally, the resulting signal is rectified and takes on a B dependence that resembles
the first derivative of an absorption line. The shape of the absorption line often is
fitted to a functional formula (e.g., gaussian, lorentzian or elaboration thereof;
Appendix F) approximating its field or frequency dependence.

An alternative to detection of magnetic resonance via energy absorption is measure-
ment of the direct change in the angular momentum of the spin system occurring as a
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result of photon absorption [16]. Other means of detecting EPR lines continue to be
developed but also remain unconventional. These include use of magnetic force
microscopy [17], optical detection (e.g., of EPR absorption from a single molecule)
[18] and use of a superconducting quantum interference device (SQUID) [19,20].

1.4 SCOPE OF THE EPR TECHNIQUE

In almost all cases encountered in EPR spectroscopy, the electron magnetic dipole
arises from spin angular momentum with only a small contribution from orbital
motion. Resonant absorption of electromagnetic radiation by such systems is variously
called ‘paramagnetic resonance’, ‘electron spin resonance’ or ‘electron paramagnetic
resonance’. The term resonance is appropriate, since the well-defined separation of
energy levels is matched to the energy of a quantum of incident monochromatic radi-
ation. Resonant transitions between energy levels of nuclear dipoles are the subject of
study in nuclear magnetic resonance (NMR) spectroscopy. The term electron para-
magnetic resonance (EPR)? was introduced as a designation taking into account con-
tributions from electron orbital as well as spin angular momentum. The term electron
spin resonance”* (ESR) has also been widely used because in most cases the absorption
is linked primarily to the electron-spin angular momentum. Electron magnetic reson-
ance (EMR) is an alternative. We note also that the term paramagnetic resonance was
employed at the Clarendon Laboratory in Oxford, England, where much of the early
inorganic EPR work was carried out. After considering the various options, we have
decided to use the designation electron paramagnetic resonance since this encompasses
all the phenomena observable by the technique.

In any given molecule or atom there exists literally an infinite set of electronic
states that are of importance in optical spectroscopy. However, in EPR spectroscopy
the energy of the photons is very low; hence one can ignore the multitude of elec-
tronic states except the ground state (plus perhaps a few very nearby states) of the
species. The unique feature of EPR spectroscopy is that it is a technique applicable
to systems in a paramagnetic state (or that can be placed in such a state), that is, a
state having net electron angular momentum (usually spin angular momentum).
The species exists either in a paramagnetic ground state or may be temporarily
excited into a paramagnetic state, for instance, by irradiation. Thus, in principle,
all atoms and molecules are amenable to study by EPR (see Section F.1). Typical
systems that have been studied include

1. Free Radicals in the Solid, Liquid or Gaseous Phases. A free radical is herein
defined as an atom, molecule or ion containing one unpaired electron. (Tran-
sition ions and ‘point’ defects in solids fitting this description are not normally
called ‘free radicals’.)

2. Transition Ions Including Actinide Ions. These routinely may have up to five
or seven unpaired electrons (Chapter 8).

3. Various ‘Point’ Defects (Localized Imperfections, with Electron Spin
Distributed over Relatively Few Atoms) in Solids. Best known in this class
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is the F' center (Fig. 4.2a), an electron trapped at a negative-ion vacancy in
crystals and glasses. Deficiency of an electron (a ‘positive hole’) may also
give rise to a paramagnetic entity.

4. Systems with More than One Unpaired Electron. Excluding ions in category
2, these include: (a) Triplet-state systems. Here the interaction between the
two unpaired electrons is strong. Some of these systems are stable in a
triplet ground state but most are unstable, requiring excitation, either
thermal or usually optical, for their creation (Sections 6.3.4-6.3.6). (b) Bira-
dicals. These systems contain two unpaired electrons that are sufficiently
remote from one another so that interactions between them are very weak.
Such a system behaves as two weakly interacting free radicals (Section 6.4).
(c) Multiradicals. Such species (having more than two unpaired electrons)
also exist.

5. Systems with Conducting Electrons. These (e.g., semiconductors and metals)
are not treated extensively in this book.

EPR spectra may convey a remarkable wealth of significant chemical infor-
mation. A brief summary of structural or kinetic information derivable from
Figs. 1.4—1.6 foreshadows the diversity of the applications of the method. Each
of these spectra is considered at a later point.

ﬁ
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FIGURE 1.4 Simulated first-derivative EPR spectrum of a hydrogen atom (‘H) in the gas
phase (B L By, v =10 GHz). The quantum number M;, denoting the EPR transitions, is
defined in Chapter 2 and is consistent with g, > 0. Note that two EPR transitions are
allowed, occurring at B = 329.554545 and 380.495624 mT, and two transitions (dashed
lines) are forbidden.
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FIGURE 1.5 First-derivative EPR spectrum of the CH;CHOH radical produced by
continuous ultraviolet photolysis of a mixture of H,O, and CH3CH,OH. The photolysis
produces the OH radical, which then abstracts a hydrogen atom from the ethanol molecule.
The weak lines, which are marked above the spectrum, arise from the radical CH,CH,OH.

[After R. Livingston, H. Zeldes, J. Chem. Phys., 44, 1245 (1966).]

Figure 1.4 presents a gas-phase EPR spectrum of hydrogen atoms ('H). This sim-
plest atom, since it has only one electron, of necessity has electronic spin § = % Here
the atom can exist in any one of four spin energy levels. One can think of the system
as being composed effectively of two chemical ‘species’ (the proton has a spin I = %

2.9 3.0 3.5 4.0
T I I T

2.5 3.0 3.5 4.0

B (kG) —

FIGURE 1.6 First-derivative EPR spectrum (9070 MHz) of XeF trapped in a single crystal
of XeF, at 77 K. The numbered lines are examined in Problem 3.12. [After J. R. Morton,
W. E. Falconer, J. Chem. Phys., 39, 427 (1963).]
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and hence all atoms having the nuclear spin component M; = —i—% constitute one
species and those with M; = —1 constitute the other) giving rise to the two lines
observed. As is usual, the lines are presented as first derivatives (dY/dB: see
Sections E.1.6 and F.2.1) of the power absorbed by the spins. This system is
treated extensively in Appendix C.

Figure 1.5 shows the liquid-phase EPR spectrum of the CH;CHOH radical pro-
duced as a transient species via H-atom removal in the ultraviolet photolysis of a
solution of H,O, in ethanol. The photolysis produces the -OH radical, which then
abstracts a hydrogen atom from the ethanol molecule. This is an excellent
example of the use of EPR spectra in the identification of radical intermediates in
chemical reactions.

Figure 1.6 shows an EPR spectrum of species formed by vy irradiation of a single
crystal of XeF,; again the number, spacing and intensity of the lines provide identi-
fication of one xenon atom and one fluorine atom, that is, the unstable XeF molecule.
Here the positive identification of xenon comes from the observation of lines arising
from several of its isotopes occurring in natural abundance.

The proper interpretation of EPR spectra requires some understanding of basic
quantum mechanics, especially that associated with angular momentum. A full
understanding is best obtained by reconstruction of the spectrum from the par-
ameters of the quantum-mechanical treatment. To understand an EPR spectrum, it
is desirable to have a working acquaintance with the following topics:

1. Mathematical techniques such as operator’ methods, matrix algebra and
matrix diagonalization (summarized in Appendix A). These are required for
the solution of the Schrodinger equation, for the representation of angular
momentum by quantum numbers, and for relating vectors (e.g., angular
momentum and the magnetic moment) (Appendix B).

2. Familiarity with the operation of microwave magnetic-resonance spec-
trometers, including interfacing with computers (Appendixes E and F).

The elementary aspects of these topics are treated where needed in the text or in
appendixes. Even the reader who has had no previous training in quantum mech-
anics should be able to acquire considerable understanding of the fundamentals
of electron paramagnetic resonance. Indeed, we believe that this is a fine way to
learn quantum mechanics! We shall undertake the development of the necessary
background in a step-by-step fashion. Beyond this fundamental background, there
are certain special areas of EPR that require particular background material:

1. Understanding of EPR requires an analysis of the energy levels of the system
and of the influence of the surrounding environment on these levels. For
example:

a. The interpretation of EPR spectra of organic free radicals, 7r-electron free
radicals, is aided by use of the elementary molecular-orbital approach due
to Hiickel (HMO approach; Chapter 9). In most cases more refined
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theoretical treatments are necessary to obtain a completely satisfactory
interpretation of the data.

b. Understanding of transition-ion spectra requires knowledge of the splitting
of orbital and spin energy levels by local electric fields of various sym-
metries (Chapter 8).

2. The properties of some systems are independent of orientation in a magnetic
field; that is, they are isotropic. Most systems are anisotropic, and thus their
energy-level separations and the magnitude of the observable properties
depend strongly on orientation in the applied magnetic field. The description
of systems showing anisotropic behavior usually requires that each spectro-
scopic property be described by six independent parameters. It is convenient
to order these parameters in a symmetric 3 x 3 array known as a matrix. Each
such matrix can be considered in terms of the intrinsic information provided
by its numerical components that define a set of spatial coordinate axes (its
principal-axis system) and a set of three basic numerical parameters (its prin-
cipal values). Simple examples of matrices are given in Appendix A, and
numerous other examples are encountered in the text.

3. Time-dependent phenomena, such as the formation or decay of paramag-
netic species, molecular motions (e.g., internal rotation or reorientation by
discrete jumps), changes in the population polarization of spin states and
chemical or electron exchange, can affect EPR spectra in many ways. An
analysis of these effects leads to information about specific kinetic processes
(both internal and external). These various phenomena are described in
Chapter 10.

The last two points (2 and 3 above) are related in that most free radicals in fluid sol-
ution of low viscosity exhibit simplified EPR spectra with narrow lines. These are
characterized by parameters arising from an effective averaging of the anisotropic
interactions by the (sufficiently) rapid molecular tumbling. Thus such solutions
effectively act as isotropic media. The key requirement is that the characteristic
time, inverse of the tumbling rate, must be much less than the time scale appropriate
for the EPR experiment (Chapter 10). Fortunately, this condition is easily met in
most fluids at moderate temperatures.

The simple spectra we examine in the next two chapters are of systems that are
either inherently isotropic (e.g., the hydrogen atom) or are effectively isotropic by
virtue of rapid molecular tumbling.

1.5 ENERGY FLOW IN PARAMAGNETIC SYSTEMS

It is important at an early stage to note how the appearance of EPR spectral lines, or
even the ability to detect them, is dependent on energy flows in the chemical sample.
This is depicted in Fig. 1.7, which shows the net flow beginning at the excitation
source (photons, B;) and ending in the thermal motions of the atoms including the
surroundings of the paramagnetic sample.
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FIGURE 1.7 Energy flow in a magnetic-resonance experiment. The spin system is
irradiated by a photon source (usually a microwave oscillator) at the frequency v of B;.
The absorbed radiation is lost by energy diffusion to the lattice at an exponential rate,
which allows continuing absorption of photons to occur. Energy ultimately passes from the
sample to the surroundings.

The reader seeking to understand some aspects of EPR spectra is likely to have
encountered closely analogous phenomena in nuclear magnetic resonance. In
optical spectroscopy one may use intense sources to irradiate in absorption bands
without causing a significant temperature rise of the sample. But in many NMR
samples, even at low power levels, the NMR signal amplitude diminishes as the
radiofrequency power level (i.e., B)) is increased. The same is true in many EPR
samples as the microwave power is increased. For these samples one speaks of
power saturation or alternatively of heating the spin system.

This behavior results from a limited ability of the sample to dissipate energy from
its spin system to its internal thermal motions. The surroundings of the spin are com-
monly referred to as the ‘lattice’, regardless of the sample’s physical state. Samples
differ widely in their ability to relax to the ground spin state after absorbing a
quantum of energy.

The coupling between the spins and the lattice is measured by a characteristic
spin-lattice relaxation time 7, (Chapter 10).° The same symbol is used extensively
in NMR systems, for which it was first defined. Efficient relaxation implies a suffi-
ciently small value of 7.

The magnitude of the observed EPR signal is proportional to the net resultant
(polarization) of the spin orientations of the set of paramagnetic species. The
system is said to be saturated when the rate of upward and of downward tran-
sitions is equalized; then no net energy is transferred between B, and the spin
system.

If the electron spin-lattice relaxation time 7; is very long, one may have to
make observations at very low microwave power to avoid saturation. In the oppo-
site case of very short 7y, lifetime broadening (Chapter 10) may be so great that the
line is broadened beyond detection. This is a difficulty frequently observed with
transition ions (Chapter 8). It is usually dealt with by taking spectra at very low
temperatures, since the value of 7 tends to increase dramatically with decreasing
temperature.
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In addition to 7, there are a number of other ‘relaxation’ times defined to describe
the linewidth. These are dealt with at appropriate places (e.g., Chapters 10 and 11) in
this book.

1.6 QUANTIZATION OF ANGULAR MOMENTA

In quantum mechanics the allowed values of the magnitude of any angular momen-
tum arising from its operatorj (Appendix B) are given by [J(J + 1)] where J is the
primary angular-momentum quantum number (J =0, %, 1, %,...). We adopt the
usual convention that all angular momenta and their components are given in
units of h. The allowed values of the component of vector J along any selected direc-
tion are restricted to the quantum numbers M, which range in unit increments from
—J to +J, giving 2J + 1 possible components along an arbitrary direction.

An example of the conditions described above is the spin angular momentum
operator S fora single electron that has a quantum number S with the value % For
systems of two or more unpaired electrons, S is 1, %, 2,.... The spin angular-
momentum vectors and their projected components for S = %, 1 and % are represented
in Fig. 1.8. States with S = % are referred to as doublet states since the multiplicity
28 + 1 is equal to 2. This situation is certainly of most interest, since it includes free
radicals. States with S =1 are called triplet states (Chapter 6). For paramagnetic
ions, especially those of the transition ions, states with § > % are common. EPR tran-
sitions do not alter the value of S.

The nuclear-spin angular-momentum operator iis quantized in an exactly analo-
gous fashion. The nuclear-spin quantum number is / (a non-negative number, which
may be integral or half-integral).’

(c)

[|(|+|)]IE

FIGURE 1.8 Allowed values (in units of ) of the total spin angular momentum
[S(S+ 1)]1/2 and of its component Mg along a fixed direction (vertical line, e.g., B) for
(a)Sz%, b) S = 1,and(c)S=%.
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Very often we must consider a whole set of spin-bearing nuclei. Parameters such
as the nuclear Zeeman factor, hyperfine coupling, or quadrupole factors, that deter-
mine line positions are required for each. In addition, there are other parameters
(e.g., relaxation times) to define the lineshapes and intensities. Finally, one often
is interested in the quantitative analytical aspects of EPR spectroscopy [21].

For the sake of simplicity, we shall often discuss and give examples of single-
nucleus systems. When dealing with more than one unpaired electron, because of
their mobility and delocalization, it is often useful and correct to work with a
single total electron spin operator Sanda single Zeeman parameter matrix g associ-
ated with it.

In certain cases there may exist non-zero electronic (orbital angular momentum,
designated by the quantum number L, which is a non-negative integer). Usually
electron-spin and orbital angular momenta initially can be considered separately,
later introducing a small correction to account for the ‘spin-orbit’ interaction. For
systems containing light atoms (such as free radicals) that have essentially zero
orbital angular momentum, the spin-orbit interaction is usually very small; hence
for most purposes, attention may be focused wholly on the spin angular momentum.
However, spin-orbit interaction must necessarily be included in discussion of the
EPR behavior of transition ions (Chapters 4 and 8). Further details about angular
momentum are to be found in Appendix B.

The notation we shall use in dealing with angular momenta (i.e., J/ = any of S, I,
L, ...)is that when there are several particles of one type (electron, nuclei, etc.), we
shall append a subindex indicating the individual particle being considered. When
no subindex is present, then it is the tofal angular momentum that is at hand.
Thus for the operators one has

N
J=>J (1.1a)
i=1
and for the component values one has
N
My ="M, (1.1b)
i=1

When N = 1, the index is omitted. At times a pre-superscript ¢ will be attached to J
and M to emphasize ‘total’.

1.7 RELATION BETWEEN MAGNETIC MOMENTS
AND ANGULAR MOMENTA

The magnetic moment and angular momentum are proportional to each other, in
both classical and quantum mechanics. An analog of an orbital magnetic dipole is
a classical particle of mass m and charge ¢, rotating with velocity v (speed v) in a
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circle of radius r, taken to lie in the xy plane. Associated with the circulating electric
current i is a magnetic field equivalent to that produced by a point magnetic dipole.
Such a dipole has a moment i.4 and is normal to the plane, where A = 717 is the area
of the circle. The effective electrical current i (charge flow per unit time) is qv/27r.
The magnetic moment points along the direction z perpendicular to the plane of the
circle and is given by

= +—mor =—1I, (1.2)

The sign choice depends on the direction of rotation of the particle. Here 1, is the
orbital angular momentum of the particle about the axis z. The proportionality con-
stant y (=q/2m) is called the magnetogyric ratio (or sometimes the gyromagnetic
ratio) and has units C kg~! =s~! T~! (Section 1.8). Factor vy converts angular
momentum to magnetic moment. More generally y= gq/2m, where g is the
Zeeman (correction) factor. Thus, quantum mechanically, each integral multiple %
of orbital angular momentum has an associated orbital magnetic moment of magni-
tude B = |qlh /2m = |yh /g|. The latter equality is valid for particles when they are
free, but must be generalized further when electric fields are acting on them [22].

We now return specifically to the free electron. The component u, of electron-
spin magnetic moment along the direction of the magnetic field B applied along
the direction z is

My = YhMs = —g.B.Ms (1.3)

where g, is the free-electron g factor. The negative sign arises because of the
negative charge on the electron and the choices of B, and g, as positive quantities
(Egs. 1.10 and 1.11).

1.8 MAGNETIC FIELD QUANTITIES AND UNITS

In this book, we shall use the Systéme International (SI) [23] for units of all
parameters. This comprises use of the meter, the kilogram, the second and the
coulomb, that is, the rationalized mksC scheme of units. Among other benefits,
this system offers a convenient and self-consistent way of checking equations.
Especially with regard to the units for electromagnetic parameters, there has been
much inconsistency and carelessness in the EPR literature. We shall attempt
herein to encourage appropriate usage.

The two magnetic-field vectorial quantities® B and H are related to each other via

H=B/u, (1.4)

where the permeability

Moy = Km Mo (15)
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is expressed in terms of the permeability w of the vacuum and «,, is a dimensionless
parameter (unity for the vacuum) describing the (isotropic) medium considered.
Subindex m labels the medium. Here

o =47 x 1077JC??m™ (=T J7'm?) (1.6)

is, of course, a universal constant; J denotes the unit joule (=kg mzsfz). The unit
ampere A is just coulombs per second (C s~ '). We see that the magnetic flux
density (alias magnetic induction) B has dimensions and units different from
those of the magnetic ‘field’ H. Nevertheless, the term ‘magnetic field’ (meaning
B) is in almost universal usage in magnetic resonance; hence we shall continue to
use the term magnetic field for the quantity B.” Specifically, the more fundamental
quantity B has the unit of tesla (T =kg s~ ' C™!), where

1tesla (T)=1kg s ' C!
=1JC"m? s
=1 x 10* gauss (G) (1.7)

We shall use for B either the unit of tesla or less frequently the unit of gauss. On the
other hand, H has the derived unit of coulombs per meter per second (C m s,
which is identical to JT~'m™?). One such unit is equal to 47 x 107> oersted
(Oe). The vector H measures the total magnetic field (externally applied from
distant current-carrying conductors), plus contributions from any (almost) fixed and
sufficiently close particles that may be present [24—26]. The vector B deals only
with the former. It follows that B = u,H when there are no neighbors (vacuum).

A very important quantity in this book is the magnetic-dipole moment u, which
has units of J T~'. The classical dipole moment can be regarded as being the
‘handle’ by which each magnetic species can change its energy, that is, its orien-
tation in an external field B, by reacting to external magnetic excitation. The macro-
scopic collection of N such dipoles in a given volume V has the resultant
macroscopic moment

1 N
M= (1.8)
i=1

per unit volume, called the magnetization (Section 10.3), which has units of
JT~ " m™? (the same as for H). M is thus the net magnetic moment per unit volume.'®
Since the magnetic moments of nuclei, atoms and molecules are proportional to
the angular momenta of these species, it is convenient to write each such proportion-
ality factor as a product of a dimensionless g factor and a dimensioned factor (a con-
glomeration of physical constants) called the magneton. Thus typically

n=agBlJ (1.9)
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where 3 has the same units as vector p; g is the magnitude of the electron Zeeman
factor for the species considered, and J is the general angular-momentum vector.
This is taken to be dimensionless (in units of 7k = h/2r), as its units (J s) have
been incorporated into S3; the factor o (=+1) is defined below. The circumflex
(») is placed above symbols such as J and w when it is desirable that these be inter-
preted as quantum-mechanical operators. Such operators can simultaneously be
vectors.

For free electrons (i.e., single electrons in vacuo; see Eq. 1.3), . = —1 and j is
the electron spin operator S, so that B becomes'"

h
_ e _ 9.27400949(80) x 1074 JT~! (1.10)

Be

me

which is called the Bohr magneton; e is the electronic charge, 27h = h is Planck’s
constant, and m, is the mass of the electron (Table H.1). The Zeeman splitting
constant (2006 measurement [28]) for the free-electron Zeeman factor

g. = 2.0023193043617(15) (1.11)

is one of the most accurately known of the physical constants. For those readers with
masochistic tendencies, we furnish some references [29—31] to the quantum electro-
dynamic theory of the electron magnetic moment, which has been spectacularly
successful in matching the observed value of g, (Eq. 1.11), and continues to
evolve with ever-increasing sophistication; the plain symbol g is utilized when elec-
trons interact with other particles, in which case g # g,.

There is an instructive area of EPR spectroscopy, or at least a close relative
thereof, one that features electrons in a vacuum circulating normal to a large mag-
netic field: the electron beam in a synchrotron storage ring. Here, in applying the
theory, the choice of coordinate system [fixed laboratory, or moving with the -
electron(s)] is important, and the macroscopic orbital motion enters appreciably
together with the spin dynamics, in setting up the observed g factor. The
equilibrium magnetic polarization (distribution of spins among the two My states)
is distinctive, and explains the continuous emission of spin-flip synchrotron
radiation [32,33].

For nuclei, J is the nuclear-spin operator I and «a,, = +1. Here the nuclear
magneton is defined (Table H.1) as

h
B, = ';i = 5.05078343(43) x 10727 T~ (1.12)

mp

where m,, is the mass of the proton (‘H). Values of nuclear g factors g, are given in
Table HA4.

We next consider the magnetic moment p in a magnetic field B, where p may
describe either a nuclear or an electron magnetic dipole. Its component w, along
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FIGURE 1.9 Energy of a classical magnetic dipole in a magnetic field as a function of the
angle 6 between the magnetic field and the axis of the dipole: (a¢) 6 = 0 (configuration of
minimum energy); (b) arbitrary value of 6. (c¢) # = 180° (maximum energy).

B (taken along z) is generally defined as

U

=—— 1.13
Ky 9B, (1.13)

Here U(B) is the energy of a magnetic dipole of moment p in a field B, and the use of
the partial derivative symbols indicates that the only parameter to be varied is the
field. In most situations, . may be defined in terms of its scalar product with B

U=—pn'-B (1.14a)
=-Bl.-pn (1.14b)
= —|uB| cos (u, B) (1.14¢)

where (., B) represents the angle between w and B.'* The form given in Eq. 1.14b
proves to be advantageous in our future usage. For a given value of B, there is a
minimum energy —|uB|, which occurs when (u, B) is equal to O, that is, the
dipole is parallel to the direction of B (Fig. 1.9a); the maximum energy +|uB|
occurs when (., B) = 7 (Fig. 1.9¢); at intermediate angles, U lies between these
two extremes (Fig. 1.9b).

1.9 BULK MAGNETIC PROPERTIES

Now consider a large ensemble of non-interacting (with each other) classical mag-
netic moments . in a uniform magnetic field B. If the mean interaction energy
—B"-p is large compared with the thermal energy k,T (e.g., in a field ~1 T and
at 1 K), then practically all dipoles are aligned along the direction of B (correspond-
ing to the case of minimum energy). Here &, is Boltzmann’s constant and T the
absolute temperature. The resultant macroscopic magnetization M would be
approximately equal to Ny p, where Ny is the number of dipoles per unit volume.
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However, |uB/k,T|<1 in almost all cases because the dipoles point in various
directions. Thus the magnitude M is ordinarily several orders of magnitude
smaller than Nyu, even for the relatively strong electronic magnetic dipoles.

Another equivalent approach to understanding these quantities is via the vector
relation

H=u,'B—M (1.15)

with the realization that M = M(H) is dependent on the laboratory medium at hand,
whereas B is based on the atom-free vacuum as the relevant medium.'? Both B and
H may be functions of the location of the observation point and/or of time. Usually,
one can utilize the approximation that M is proportional to H (but not necessarily
collinear with it), as seen in Eq. 1.15.

The magnetization M is related to the applied field H by a dimensionless propor-
tionality factor y,,, the rationalized volume magnetic susceptibility,'* which can be
evaluated by measuring the force on a macroscopic sample in an inhomogeneous
static magnetic field [35,36]. The contribution to y,, of a set of non-interacting mag-
netic dipoles in the simplest (isotropic) case is

M = —alg/lIgl] x,H (1.16)
so that for electrons (o« = —1, g > 0), one has
M
X = i (1.17a)
M
= (1.17b)
B/(KmMO)

With assumption of equilibrium (i.e., Boltzmann distribution) [35, Sections 7.5 and
11.2; 37] and independent behavior of the members of the electron spin ensemble,
this becomes

Nyp?
= 1.17
Xm 3ka Mo ( C)
C
72 ( )

where u? = g?>B,25(S+ 1) and Ny is the number of magnetic species per unit
volume. Here C is called the Curie law ‘constant’. The quantity «, =14 x,,
is called the relative permeability (compared to free space). Typically, for
Eq. 1.17¢, x,, ~ 107°.

The literature abounds in the use of the next-best approximation, the Curie—
Weiss law

(1.17¢)
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where T, is a semi-empirical parameter giving a measure of spin-spin interaction
(e.g., exchange) present.

In addition, there is a smaller additive but negative and (almost) temperature-
independent contribution to ,,, arising from the reaction in the motion and distri-
bution of all electrons (and to a lesser extent of all nuclei) in the bulk sample to
the applied field B. Note that, by definition, paramagnetic samples have x,, > 0
whereas diamagnetic samples have y,, < 0.

An example of the simplest paramagnetic case is a dilute ensemble of free rad-
icals, each with one unpaired electron and having zero orbital angular momentum.
The experimental determination of y,, yields only the product Ny u?; to obtain u one
must determine Ny from other data. EPR measurements allow Ny and u to be deter-
mined independently.

Subindex m will generally be suppressed throughout the rest of this book.

1.10 MAGNETIC ENERGIES AND STATES

Since the individual-particle magnetic energy U is proportional to the magnetic
moment (Egs. 1.14), the quantization of spin angular momentum in a specified
direction leads to the quantization of the energy levels of a magnetic dipole in a mag-
netic field. If the direction z is chosen to be along B, application of the expression
U = —u B to a ‘spin-only’ system and substitution of —g.8,Ms for u. give a set
of energies

U =g.B,BMs (1.18)

For a single unpaired electron, the possible values of Mg are +% and —%. Hence the
two possible values of u, are Fg.3, and the values of U are i%geBeB (Fig. 1.2).
These are sometimes referred to as the electronic Zeeman energies.

Adjacent energy levels are separated by

AU = Uupper — Ulower (1.19a)
= g.B.B (1.19p)
= _’Yehh

corresponding to |[AMg| = 1. Note that, in this simplest case, A, increases linearly
with the magnetic field as shown in Fig. 1.2 (where now M = My).

The states of magnetic systems, as indicated earlier, are generally finite in
number. If all the states in a set have the same energy, they are said to be degenerate.
Each state is labeled with whatever set of quantum numbers is suitable. Thus, for an
unpaired electron system, the quantum number My is required (Eq. 1.18). As we
shall see in Chapter 2 (also Section A.5.4), the Dirac notation [Mg) (or (Ms]) is
often used. For a single electron, since Mg = +% or —%, the notation |a(e)) and
|B(e)) is found to be convenient. When there are several spin-bearing particles in
a magnetic species, then quantum numbers for each particle may be needed to
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specify the spin state of the system. For every transition, both the initial state and the
final state must be specified by sets of quantum numbers.

In atomic and molecular systems, no more than two electrons can occupy a given
spatial orbital. This is expressed by the Pauli exclusion principle, which arises from
the fact that electrons act quantum-statistically as fermions. When two electrons
occupy any given orbital, their spin components (Mg) always have opposite sign,
and their magnetic moments cancel each other. Thus filled orbitals are ineffective
with respect to spin magnetism. An EPR signal will be observed only when at
least one orbital in a chemical species contains a single electron, that is, is a semi-
occupied atomic or molecular orbital (SOMO).

1.11 INTERACTION OF MAGNETIC DIPOLES WITH
ELECTROMAGNETIC RADIATION

Transitions between the two electronic Zeeman levels may be induced by an elec-
tromagnetic field B; of the appropriate frequency v such that the photon energy
hv matches' the energy-level separation AU. Then from Egs. 1.19 one has

AU = hv =g.B,B (1.20)

where B designates the magnetic field that satisfies the resonance condition
(Eq. 1.20). A more formal derivation of Eq. 1.20, valid for S = % is deferred until
Chapter 2. Even for systems with S > %, the conservation of angular momentum
imposes a selection rule of |[AMg| = 1 to such transitions because the photon has
one unit (7h) of angular momentum. Thus there is a second requirement, other
than Eq. 1.20, that must be met for a transition to take place.

Let us briefly think in terms of absorption and emission of individual photons by
our unpaired-electron system. The photon has its spin component (+ 7% k) along or
opposed to its direction of motion [38]. This corresponds to right and left circular
polarization see App. D. The photon has no magnetic moment. For absorption,
depending on its direction of approach relative to the axis of the electron spin, it
can deliver either energy hv and angular momentum (photon type o) or merely
energy (photon type ). To meet the energy requirement of Eq. 1.20, several
photons can cooperate, but only one of type o can be involved, in order to match
the condition of total (photon + electron) angular-momentum conservation. The
situation is shown in Fig. 1.10. Such two-frequency EPR experiments are not
routine but have been carried out, for instance, using the stable organic free
radical DPPH (see Section F.2.2 and Ref. 39). In the vast majority of EPR exper-
iments, only a single photon (of type o) is involved in each transition excited. We
shall now restrict ourselves to considerations of such transitions. However, in
more recent EPR work, multi-quantum phenomena have become ever more
evident and important. These effects (e.g., development of new EPR lines) appear
as the excitation field intensity B is increased.

It is of organizational value to distinguish between experimental techniques that
provide EPR signal intensities that are linear in By, the usual case, and those that are
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B —>

FIGURE 1.10 Energy levels fora S = % system, as a function of applied magnetic field B,
showing the (unusual) transitions induced when two excitation fields with two distinct
frequencies are present. Photon types o and 7 are discussed in the text.

not. The latter types include resonance line saturation, harmonic generation, multi-
quantum transitions, spin decoupling, intermodulation and longitudinal detection
(some of which will be discussed later in this book).

The transitions between the Zeeman levels require a change in the orientation of
the electron magnetic moment. Hence transitions can occur only if the electromag-
netic radiation can cause such a reorientation. To make transitions possible, the elec-
tromagnetic radiation must be polarized such that the oscillating magnetic field has a
component perpendicular to the static magnetic field (justification for this statement
is given in Section C.1.4). The requirement of a suitable oscillating perpendicular
magnetic field (i.e., o photons) is easily met at microwave frequencies. If we
apply the electromagnetic radiation polarized such that its oscillating magnetic
field B, is oriented parallel to the static magnetic field B, then the effect of the radi-
ation would merely cause an oscillation at frequency v in the energies of the Zeeman
levels. Generally no reorientation of the electron magnetic moment would occur. In
this case no transitions are possible, unless certain other conditions (to be discussed;
e.g., in Appendix C) are met.

From Eq. 1.20 one may infer that there are two approaches to the detection of
resonant energy absorption (or emission) by a paramagnetic sample. In the first
case, the separation of the Zeeman levels is fixed by holding the magnetic field
constant; the microwave frequency is then varied until a resonant absorption is
found. In the second case the microwave frequency is fixed; the magnetic field is
then varied. Until recently, the second method has been the one of choice,
because experimentally it was relatively easy to vary the field B (i.e., the current
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in an electromagnet) but difficult and expensive to obtain microwave sources with
wide frequency variability. The latter situation still holds; however, with the
advent of pulsed microwave sources, it is now routine to work at fixed B and to
utilize Fourier-transformation techniques to attain EPR spectra over modest
frequency ranges. This subject is discussed in Section 11.4.

Everything that has been said about the electron-spin energy levels and tran-
sitions is also applicable to nuclear-spin systems. The nuclear Zeeman levels are
given by an expression analogous to Eq. 1.18, namely, U = —g,8,BM;; g, is the
nuclear g factor,'© B, is the nuclear magneton, and M; is the component of
the nuclear-spin angular-momentum vector in the z direction. In analogy to the
electron-spin case, only dipolar transitions for which |AM;| = 1 (and / is unchanged)
are allowed; hence

AU = hv = |g,|B,B (1.21)

The corresponding spectroscopic phenomenon for nuclei is commonly referred to as
nuclear magnetic resonance (NMR).

Nuclear spins and magnetic moments are very important in EPR studies; the
interactions of the unpaired electron(s) with magnetic nuclei give rise to the rich
hyperfine structure that characterizes many EPR spectra.

1.12 CHARACTERISTICS OF THE SPIN SYSTEMS

1.121 The g Factor

It should be noted that the actual field at each spin species is not necessarily only the
magnetic field B.,, applied externally to the sample. In addition to this, there may
exist local fields By, that add vectorially to the external field to produce the
total field B¢ effective at the electron being considered. Thus [35, Eq. 3.104]

Beff =B+ Blocal (122)

where the subindex ext has been suppressed (as is the usual practice). There are two
types of local field: (1) those that are induced by B, and hence have a magnitude
dependent on B; and (2) those that are permanent and independent of B except in
their orientation.

For the moment consider only the first type, that is, the induced contribution to
B oca- Field B in Eq. 1.20 in principle should be replaced by B.g; in practice it is
much more convenient to retain the external magnetic field B. Then g, must be
replaced by a variable g factor (Section 4.8) that can and does deviate from g,
(according to the strength of B,.,). Thus we can write Eq. 1.22 as

Ber = (1 — 0)B (1.23a)
=(8/8.)B (1.23b)
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where o is the EPR analog of the ‘chemical shift’ parameter o,, used in NMR spec-
troscopy (0 < 0 < 1) and where g is the effective Zeeman factor used by EPR
spectroscopists.'’ For now, we shall speak as if each magnetic species has a
single unique g factor; however, we shall soon see that in fact each material exhibits
arange of g factors. Many free radicals and some transition ions do have g = g, but
there are many systems (e.g., many transition ions) that show marked deviations
from this value (in some rare cases, g can be negative).

We note that incorporation of the generalized g factor into the magnetic moment
(Egs. 1.16—1.20) allows for a variable g to take account of field-induced local mag-
netic fields. For example, these local fields often arise from the orbital motion of the
unpaired electron.

If it were not for the variation in g and the additional line structure contributed to
B, by various neighbor dipoles, EPR spectra would be very dull and uninteresting,
consisting of a single line with g = g,. In practice, these factors cause a multiplicity
of fascinating and useful phenomena observable in EPR spectroscopy.

In most paramagnetic systems, there are so-called ‘zero-field’ terms in the energy
that cause the resonance energy to be

hv = gfB,B + terms (1.24)

At times, it is convenient to use an effective g parameter g.;(B) defined as

gett = hv/(B,B) (1.25q)
= g +terms/(gpB,) (1.25b)

We note that this type of g value (often found in the literature) is dependent on the
magnetic field used (i.e., on the microwave frequency) and thus is far from being a
constant (e.g., see Chapter 6).

There are many examples of systems for which the g factor is sufficiently distinc-
tive to provide a reasonable identification of the paramagnetic species. Consider the
spectrum of x-irradiated MgO (a cubic crystalline material) shown in Fig. 1.11 for a
resonant frequency v = 9.41756 GHz. We seek to establish the origin of the very
intense line to the right of the center of the spectrum. The weaker lines arise from
Co*" with effective spin §' = %, for which g = 4.2785 in this (isotropic) medium;
the octet multiplicity of lines in this spectrum is due to magnetic (hyperfine) inter-
action with the >Co nucleus (100% natural abundance), which has spin I = % This
causes a type-2 contribution to B oca. Substitution of the value 162.906 mT for the
magnetic field B at the center of the intense line gives (using Table H.1) its electronic
g factor as

_ hv (6.626069 x 1073* J 5)(9.41756 x 10° s71)
BB (9.27401 x 1024 T T~1)(0.162906 T)

=4.1304 (1.26)

where type-2 interactions are assumed (correctly) to be absent. A g factor of this size
is unusual, and it gives an important clue as to the ion responsible for the intense



1.12 CHARACTERISTICS OF THE SPIN SYSTEMS 25

V =9.41756 GHz

139.97 mT
173.88 mT

|

g=4.2785//

g4=4.1304

h

FIGURE 1.11 First-derivative EPR spectrum of Fe™ and Co?" in MgO at 42 K, with
microwave frequency 9.41756 GHz. The Fe™ spectrum consists of a single intense line at
g = 4.1304 (B = 162.906 mT), while the Co*™ spectrum is an octet at g = 4.2785 arising
from hyperfine splitting from the *°Co nucleus, which has I = % (Adapted from a spectrum

supplied by Mr. F. Dravnieks.)

line. It is generally observed that isoelectronic ions (i.e., ions that have the same
electronic configuration) in environments of similar symmetry have similar g
factors. An ion that is isoelectronic with the 3d” Co?* ion is Fe*. Considering the
large deviation of both the g factors 4.2785 and 4.1304 from the free-electron g
factor g, = 2.0023, the two g factors may be considered similar enough to arise
from isoelectronic ions. Hence the intense line is assigned to Fe™. The disappearance
of the Fe™ line (but not the Co*" spectrum) on heating the crystal to 400 K is con-
sistent with expectation for an unstable oxidation state. It should be mentioned that
EPR lines for both the Fe™ and the Fe*™ ions may be observed in these crystals. It is
typical of isoelectronic ions in an environment of similar symmetry that their EPR
spectra are observable under comparable conditions. Neither Co?* nor Fe™ exhibit a
resonance line at 77 K, yet one does find strong absorption for both at 20 K and
lower. This similarity is confirmatory evidence for the identification of Fe™. Inability
to see lines at room temperatures or even at 77 K is shown in Chapter 10 to be due to
excessive broadening of lines as a result of their very short relaxation times (7). One
of the joys of EPR spectroscopy is that advanced quantum theory can predict
(usually after the fact) what is observed. This is so for the g values of the 3d’
ions just described [40].

Media yielding EPR spectra that are truly isotropic'® are relatively rare. They do
include all cubic crystalline materials not distorted by impurities or external forces.
As stated above, dilute liquid solutions of low viscosity effectively act as magneti-
cally isotropic systems. Their isotropic behavior is the result of rapid, random
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reorientation of the solute molecules. When such solutions are cooled sufficiently or
even frozen, the EPR spectrum may consist of only a broad band. Such rigid
solutions are ‘isotropic’, in that changing the sample orientation relative to the
magnetic field B does not alter the EPR spectrum. However, the individual species
responsible for it may well have anisotropic magnetic properties. It is with single-
crystal systems that EPR reveals anisotropy, that is, dependence of the line positions
and splittings on the crystal orientation relative to the magnetic field B.

It is not necessary to have an indefinitely large number of parameters to des-
cribe an anisotropic property quantitatively, in all directions. As stated earlier
(Section 1.4), six parameters suffice. For our purposes, any physical system is
deemed to have three mutually perpendicular inherent directions (principal axes)
such that these, together with the results (principal values) measured along these
directions, completely describe the anisotropic property. This is true for EPR line
positions and splittings. Analogous statements may be made about other magnetic
and optical properties (e.g., magnetic susceptibility, optical absorption behavior,
or refractive index) of an anisotropic crystal.'® The basic reason for this proliferation
of parameters is that, for a general crystal orientation, the response is in a direction
different from that of the applied stimulus.

Specifically, the simple resonance expression B = hv/gf3, (Egs. 1.20 and 1.24)
with a single numerical value of parameter g is applicable only to systems that
behave isotropically (and require no other types of energy terms). With anisotropic
systems, variability of g with orientation relative to B is required. Thus (Eq. 1.23)
the magnetic field B.g effective on S generally differs in direction from that of B.
Furthermore, the resonant field value is a function of the field orientation relative to
the crystal (or molecular) axes. For some purposes, it is convenient to append sub-
scripts on g to specify the field orientation defining it. If the principal axes of the para-
magnetic entity are labeled X, ¥ and Z,%° gy is to be interpreted for our simple case as
hv/B,Bx, that is, the g factor for B along the X axis of the magnetic entity. A detailed
treatment of anisotropy in EPR spectra is developed in Chapters 4—6.

A truly isotropic system is one for which

gx =8v =&z (1.27)

On the other hand, for paramagnetic species in a liquid system of low viscosity, the
measured (apparently isotropic) g factor is to be regarded as an effective value aver-
aged over all orientations.

It is important to distinguish between a space-averaged and a time-averaged
quantity. In the case of the paramagnetic species in solution, each entity exhibits
a time-averaged response, and hence the resultant spectral line is narrow.
However, if the averaging is spatial, as would be the case if a crystal were ground
into a powder, each center exhibits its own resonance position, depending on its
orientation, and the resultant spectrum is broad since the resonance is an envelope
representing a weighted distribution of all possible resonance fields.

We now comment on the functional dependences of parameters, such as g factors
and hyperfine splitting factors a, which describe the paramagnetic species and that
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are needed to characterize EPR spectra. These parameters (often called ‘constants’)
are functions of many factors (temperature, pressure, solvent or crystal surround-
ings; impurity content of the host; nature of the molecular or lattice vibrations in
solid media, presence of any externally applied electric fields; etc.). These do not
show any dependence on B for the usual magnetic fields applied. In principle, all
these variables should be specified when values of parameters are reported.
Further parameters, namely, those that describe the inherent lineshapes (lineshape
function, linewidth and other ‘moments’) and the intensity of (area below) each
line (which is proportional to the concentration of the paramagnetic species in the
sample) must also be given. These, of course, depend in part on the instrumental
settings.

The primary variables in EPR spectroscopy are either the magnetic field B or the
frequency v of the continuously applied exciting radiation.>' When B is scanned at
various fixed values of v, the Zeeman terms (g factors) yield line positions
proportional to B, whereas splittings of hyperfine multiplets tend to be independent of B.

Clearly, to obtain an EPR spectrum having appreciable intensity requires the
presence of a large number of unpaired-electron species in the sample (Sections
4.6 and F.2.2). On the other hand, if the spin concentration in the sample is too
high, the spins interact appreciably with each other, and this alters the nature of
the EPR spectrum observed. The realm between these limits, which we term the
‘magnetically dilute sample’, is the one dealt with throughout most of this book.
In other words, we consider each paramagnetic species to act independently of all
others (but see Chapters 6 and 9).

1.12.2 Characteristics of Dipolar Interactions

As discussed earlier, if the interaction of unpaired electrons with externally applied
homogeneous magnetic fields were the only effect operative, then all EPR spectra
would consist of one line. The primary information to be garnered from these
spectra would be the line positions, that is, the g factors. The EPR technique
would thus provide rather limited information. Fortunately, other interactions can
produce spectra rich in line components, offering a wealth of detailed information
about the species studied.

Specifically, the magnetic-resonance spectrum of a dipole is very sensitive to the
orientation of all other nearby magnetic dipoles (electronic or nuclear). These
dipoles generate local magnetic fields that add vectorially and contribute to the
local field By, in Eq. 1.22. This local field is of the second type, that is, either inde-
pendent of the applied field (but not its direction) or only weakly dependent on it. An
important characteristic of these neighboring dipoles is that the magnitude and direc-
tion of the local-field contribution depend on the spin state of the center containing
the dipole. Consequently, the EPR spectrum is split into a number of lines, each
corresponding to a specific set of spin states.

In EPR the unpaired electron may interact with neighboring nuclear-dipole
moments with a resulting splitting of the resonance. This interaction, and the result-
ing splitting, is called nuclear hyperfine interaction and hyperfine splitting. The term
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‘hyperfine splitting’ was first used in atomic spectroscopy to designate the splitting
of certain lines as a result of such an interaction with magnetic nuclei. The hyperfine
interaction may be either isotropic (orientation-independent) or anisotropic (depen-
dent on the orientation of B with respect to a molecular axis). As we shall see, an
anisotropic hyperfine interaction can be accompanied by a significant isotropic com-
ponent, and both are measurable. Hyperfine interactions with one or more magnetic
nuclei are dealt with in Chapters 2, 3 and 5.

If there are two or more unpaired electrons in sufficiently close proximity, similar
splittings (often called fine structure) may occur. This case is discussed in Chapter
6. A high concentration of species with one or more unpaired electrons results in
intermolecular interactions of the dipoles that usually leads to line broadening.

Since the electron magnetic moment is much larger than that of nuclei,
electron-electron dipolar interactions (when present) are usually very strong and
dominate the spectral features. This leads to complications in the EPR spectra,
discussion of which we defer until later (Chapter 6). For this reason, and also
because the preponderance of EPR work has been carried out on species containing
only one unpaired electron, we shall first treat those species in which the dominant
feature is hyperfine interaction.

It should be noted that it is possible to observe EPR transitions at zero magnetic
field because often energy-level splittings caused by local magnetic fields of type 2
are present. All the fine-structure and hyperfine parameters, but not the g factors, can
be measured by zero-field EPR [41], but of course one has no control over the level
splittings. Thus the frequency of the excitation field B; must be scanned to find the
transitions, and this can be technically problematic.*?

At this point, we can discern and summarize the major use of EPR spectroscopy.
By measuring the spectral parameters of any paramagnetic species encountered, we
can expect (in due time) not only to identify it, but also to deduce details of its struc-
ture, to characterize its location, orientation and surroundings, as well as to measure
its concentration. It is a primary goal of this book to train the reader in the art and
science of this capability.

1.13 PARALLEL-FIELD EPR

We have seen that, usually, the condition B; L B must be met to excite EPR tran-
sitions. However, the situation B; || B in certain circumstances also leads to appreci-
able EPR lines.”> A prime example, certain transitions of the hydrogen atom,
is discussed in Appendix C. Here the transition (labeled F and MF) is |1, 0) <>
| 0,0) and can be thought of as involving simultaneous and opposite flips of the elec-
tronic and nuclear spins, so that no angular-momentum transfer with the radiation
field (B;) occurs. Another example, involving triplet-state molecules and ‘half-field’
transitions of type |AMg| = 2 (quantum number appropriate in the high-field limit) is
to be found in Section 6.3.2; no nuclear spins are involved here. Both examples
involve single-photon transitions.
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Since the mid-1990s, parallel-field EPR has become better known and exploited.
Thus, high-spin electron species with large zero-field parameters (D and E: see
Chapter 6) can exhibit ordinary EPR transitions only at quite high fields, whereas
parallel-field transitions are readily accessible and their analysis yields all the
needed spin-hamiltonian parameters. This is so for transition-ion clusters (Crys,
S = 6 [43]), exchange-coupled high-spin Fe>" and nearby Cu®" in beef heart cyto-
chrome ¢ oxidase [44], high-spin biological FeS clusters (S < % [45]), and Mn*" in
oxidized manganese superoxide dismutase (S = 2 [46]). Obviously, parallel-mode
EPR is having substantial impact in the study of biomedical systems.

1.14 TIME-RESOLVED EPR

Time-resolved EPR refers to the research area dedicated to the detection of spectra
from magnetic species as soon as possible after their creation, say, by flash photoly-
sis or pulse radiolysis (e.g., electron beams) [47—49]. Their immediate subsequent
behavior also has been a prime topic of interest. The time scale achieved has been
down to 10~ 7s. Here one cannot scan or modulate the B field, but must sample a suf-
ficiently large set of such fixed fields. ESE techniques also have been widely used.
Clearly, highly efficient computer-based digital data storage and processing is a
crucial aspect of such endeavors, and special instrumentation is required.

1.15 COMPUTEROLOGY

The electronic computer has, of course, had a huge impact on magnetic resonance
spectroscopy, as it has everywhere else.

Solid-state devices and printed circuits form the backbone of all modern spec-
trometers. In EPR, they control and stabilize and scan and measure all magnetic
fields and the excitation electromagnetic sources—continuous wave and pulsed.
They control and set the sample temperatures, and the sequence of experiments
can be computer-controlled; for example, automatic variation of single-crystal
orientation can be done in the absence of the scientist. All spectra are stored digi-
tally, and are displayed and adjusted at the operator’s will.

Furthermore, virtually all the mathematics relevant to analysis of magnetic reson-
ance is programmed and enabled on computers, allowing best-fit attainment of the
parameters by comparison of the actual and simulated spectra (see Appendix F).
Review articles covering spectral simulation are at hand [50,51].

One very important feature of EPR spectroscopy is that all parameters obtained
experimentally can be made available and published, allowing generation of the
spectra (line positions and relative intensities) at will. The actual modeling of
these spin-hamiltonian data, using the increasingly advanced techniques of mole-
cular quantum mechanics, can be done separately and later.

One negative aspect of all this computerology is that the EPR user is tempted to
use the programs and to bypass the understanding in depth of the mathematical back-
ground. Hopefully the present text will help to assuage this situation.
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1.16 EPR IMAGING

We cannot devote much space herein to the topic of EPR imaging, which is a devel-
oping sister to EPR spectroscopy. Certainly in the case of NMR, there has been a
revolution where MRI has become a dominant applied aspect of that technique.
With EPR imaging, there has been slow steady development. Some relevant refer-
ences can be found herein in Section 13.6. It is as yet nebulous as to what the
future holds for the importance of this technique, but the EPR community is hopeful.
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NOTES

10.

11.

12.

13.

. In truth, no one knows what an electron or a photon, and its spin, really is, but scientists

and engineers can work wonderfully with these concepts. In relativistic quantum theory, it
is postulated that the electron spin is a kind of orbital angular momentum associated with
a very-high-frequency jitter motion (zitterbewegung) superimposed on its more classical
‘time-averaged’ trajectory [1,2]. The electron was discovered about 100 years ago, and
has had a colorful history so far; for a good read, we recommend the book edited by
Springford (see FURTHER READING).

. An anectdotal colorful history of EPR has been included in an autobiography written by

one of the prime sorcerers of its development [13] (see also Ref. 14).

. The acronym EPR has more than 15 meanings. The predominant other use is the famed

‘EPR paradox’ of Einstein—Podolsky—Rosen (1935), which continues to be a source of
fervent research regarding the root meaning of quantum mechanics. Often, the models
used involve spatially separating two spin-paired electrons.

. An example of a species showing transitions not appropriately described by the term

electron spin resonance is O®  in its 'D state, which has two units of angular
momentum about the internuclear axis but has zero spin angular momentum. Such
entities may exhibit electron resonance in the gas phase (Chapter 7).

. Mathematical operators are designated with a circumflex (e.g., 7:{). A summary of the

notation used herein for the symbols used can be found in Table I.1.

. Many authors use the symbol 7 for the spin-lattice relaxation time; we prefer the symbol

71 to avoid confusion with the symbol for temperature.

. Note that / = 0 for all nuclei for which both the atomic mass number and the atomic

number are even. If the atomic mass number is even and the atomic number odd, I is

an integer (0, 1, 2, ...); if the atomic mass number is odd, I is a half-integer (%, %, %, o).

. When the directional aspects of quantities are of importance, we use vectors and

designate these with boldface type. When only magnitudes or vector components are
involved, we shall employ italic type. See Table 1.1 herein.

. Details about these quantities, as well as about the various systems of units used in the

literature, may be found in the excellent treatise by Jackson [24]. The choice of which
field quantity, B or H, is the more fundamental is a problematic and vexing one; see
the classic book by Van Vleck [25].

In the quantum-mechanical treatment, M is the ensemble summation of the expectation
value of the magnetic moment for each particle. Strictly speaking, Eq. 1.8 is not
applicable as written, in that the right-hand sum should be replaced by the appropriate
quantum-mechanical and statistical average of the operators u; [27].

The unfortunate [UPAC (International Union Pure and Applied Chemistry) recommendation
of using the symbol wz for this quantity is not followed herein, since this latter symbol
erroneously suggests the component of p along B. In cgs units, 8, = |e|h/2m,c.

The superscript “T” denotes taking the transpose of the vector; this operation is applicable
when the vector specified is a row or column of components. The reader who is unfamiliar
with these concepts or with scalar products is referred to Section A.4 and Table A.2.

For electric fields, the analogous equation D = gyE + P is valid. Here D is the electrical
displacement, E is the electric-field intensity (units of force/coulomb: JC™ m =
ms 'T), and P=P(E) is the electrical polarization. Electric susceptibilities are
defined in exact analogy with the magnetic ones [25].
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The volume magnetic susceptibility y is an intensive (i.e., independent of sample amount)
property and generally is anisotropic as well as dependent on the frequencies of any
oscillating magnetic fields present (see Chapter 10). Here we have dropped the
subscript m, which up to now has been used to indicate the medium. Scientists at times
also use two related susceptibilities: x, = x/p (where p is the mass density of the
substance considered), and x;; = XM (where my, denotes the molar mass of the
substance considered). To convert from the older unrationalized cgs units to
rationalized mksC (SI) units, multiply y by 4. Appropriate conversions between cgcC
and mksC need, of course, also be done for all quantities. Susceptibility data in the
literature should specify the type of y at hand, whether it is rationalized or not, as well
as (if relevant) the units used for p and my,. Technically speaking, one should (in
analogy with Eq. 1.13) utilize

8§ M

_ 1.28
“ el 9H lr=o (1.28)

X =

and also take into account anisotropy, perhaps via a series expansion of vector M in terms
of H, where the first term (i.e., linear in H) is x+ H, with tensor x independent of field
magnitude H. We recall that, for electrons, we have « = —1 and g > 0. Clearly also,
by substituting Ny for M, one can define and work with a molecular rather than a
bulk magnetic susceptibility (e.g., see Ref. 34).

The term resonance condition refers to the maximum in a spectral line. Strictly speaking,
however, every system absorbs (and emits) electromagnetic radiation over the entire
frequency range. Thus gB.B/h represents the peak of a line that (usually) drops off
rapidly toward zero, as described by a lineshape function. For the same reason, no
truly monochromatic source of radiation exists at a given frequency v; that is, all
sources emit over an infinite band.

In this book, we shall ignore the nuclear chemical shift o, as being negligible and take the
effective nuclear Zeeman factor g,(1 — o0y,) to be simply g, i.e., that of the bare nucleus,
as tabulated in Table H.4.

This effect can be viewed classically; magnetic moment —g,8,S induces a (usually) small
magnetic moment in its surroundings.

By isotropic, we mean that reorienting the sample relative to B and B, has no effect on the
EPR spectrum.

Anisotropy causes recasting of Eq. 1.16 to become M = —a(g/|gl)Xx . H. Here the
magnetic susceptibility x,, is a 3 x 3 matrix, as is the relative permeability
K, = 13 + X,,, where 13 is the 3 x 3 unit matrix.

Henceforth, x, y and z are used for laboratory-fixed axes and X, Y and Z for inherent axes
fixed with respect to the paramagnetic species.

With pulsed sources of the stimulating electromagnetic radiation, it is time (length and
spacing of pulses) that is important (Chapter 11). The time and frequency domains are
interconvertible via Fourier transformation.

The time dependence of B, usually is sinusoidal, at constant frequency, but in principle
the frequency can be modulated or scanned linearly with time. In this book, we will not
always state explicitly whether a given B (or its magnitude B;) should be deemed to be
time-dependent or just the constant amplitude. This aspect depends also on the coordinate
system chosen; see discussion on ‘rotating frame’ in Section 10.3.3.
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23. Parallel-field paramagnetic absorption has been investigated from the beginnings of
EPR [42].

FURTHER READING

Appendix G contains a fairly complete list of books and monographs dealing with
EPR and related topics. The texts in this field that appear below are especially
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pp- 1351-1388.
18. W. Weltner Jr., Magnetic Atoms and Molecules, Van Nostrand Reinhold, New York, NY,
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PROBLEMS

1.1

1.2

1.3

14

1.5

1.6

1.7

1.8

(a) Draw a continuous-wave (cw) NMR spectrometer analogous to the cw
EPR and optical spectrometers shown in Figs. 1.3a and 1.3b.

(b) Describe the functioning of those NMR components that are significantly
different from their EPR analogs.

(c) Contrast the frequency and field regions that are routinely accessible to the
two techniques. To be sure, cw NMR is close to obsolete, but nevertheless
is conceptually useful. It has been replaced by pulsed NMR, which tech-
niques also exist for EPR (Chapter 11), but that have not been as widely
accepted and used in the latter.

What is the numerical value £, of the angular momentum of a classical electron
rotating in a fixed circular orbit of 1 Bohr radius (» = 0.0529 nm) with a
frequency v of 10'® Hz? Note that the magnitude v of the linear velocity of
a rotating particle is given by v = rw, where w = 27 v is called the angular
frequency. Compare £, with hh, the natural quantum-mechanical unit of
angular momentum. Discuss the difference.

The separation of two lines (splitting) in a free-radical EPR spectrum is given

as 75.0 MHz, and g = 2.0050. Express the splitting in mT and in cm ™.

Is it possible to obtain EPR spectra with NMR equipment? Assuming
g = 2.0050, what magnetic field would be required to observe EPR at
v = 400 MHz?

A classical magnetic dipole placed in a static magnetic field precesses about
the magnetic-field direction with an angular frequency w = 2mv given by
o = yB. Consider the electron to be such a particle.

(@) What is the magnetogyric ratio for a free electron?
(b) At what frequency v does this dipole ‘precess’ in a field B = 350.0 mT?

(¢) What would be the value of g for an electron trapped in a negative-ion
vacancy in KBr (g = 1.985)?

Calculate the ratio of the resonant frequencies of a free electron and a free
deuteron (*H) in the same magnetic field.

Using the data in Table H.4, compute the NMR frequency for a proton at the
magnetic field used in X-band EPR (9.5 GHz) (this is the basis of a popular
gaussmeter for measuring magnetic-field strengths).

Explain why one might wish to perform an EPR experiment on an unpaired-
electron system as well as to determine separately its static magnetic suscep-
tibility by force measurements; that is, what is the difference in information
provided by the two measurements?



CHAPTER 2

MAGNETIC INTERACTION BETWEEN
PARTICLES

2.1 INTRODUCTION

The first dipolar interaction to be considered is that of the electron-spin magnetic
dipole with that of nuclei in its vicinity. It was noted in Chapter 1 that some
nuclei possess an intrinsic spin angular momentum. The spin quantum number /
of these nuclei is found to have one of the values %, 1, %, 2, ..., with a corresponding
multiplicity of nuclear-spin states given by 2/ + 1. Analogous to the electron case,
there is a magnetic moment associated with the nuclear-spin angular momentum.
The spins and magnetic moments of various nuclei are listed in Table H.4. For
the present the discussion is restricted to species containing one unpaired electron
S = %), although much of this chapter applies equally well to species containing
more than one unpaired electron (S > %).

The simplest system exhibiting nuclear hyperfine interaction is the hydrogen
atom, which we first consider in a qualitative fashion. The details of the origin of
the hyperfine interaction and the calculation of energy levels are discussed later in
this chapter. The EPR spectrum of a hydrogen atom is shown in Fig. 1.4. As
already mentioned in Section 1.12, instead of a single line characterized by
B = hv/gB, with g = 2.0022, one observes a pair of lines," which implies the pre-
sence of more than two spin energy levels. Since the proton has a spin / = %, M; has
two allowed values: M; = + % Hence at each position of the electron, there is one of

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
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two possible local fields (Section 1.12.1) at which resonance occurs, that is

B=B —aM;+---=B F—+--- 2.1)

N

where aMj is Bjocq at the electron, and where B’ = hv/gf3, is the would-be resonant
field if the hyperfine parameter a were zero.” In addition, there is a series of terms
(indicated by ... in Eq. 2.1) of the form aq/B/W1 with ¢ = 2, 3, ... . These become
less and less important as B’ increases relative to a. These extra terms are considered
later (Eq. 3.2; also Chapters 5 and 6, as well as Appendix C). For the free hydrogen
atom, a = 50.684 mT, whereas at 9.5 GHz the spacing of the hyperfine doublet is
50.970 mT. We see here that, with such a large splitting, the above-mentioned
correction is substantial. For most species (say, organic free radicals) the hyperfine
parameters encountered are less than 1 mT (and g =~ g.); hence the additional
terms are sufficiently small that the spacing between hyperfine lines is well
approximated by the parameter a.

The astute observer may notice that there are four possible EPR transitions in
Fig. 2.1 for the one-nucleus (I = %) system. Two of the transitions involve simul-
taneous nuclear-spin flips (shown as dashed lines in Fig. 1.4). For the free hydrogen
atom these have negligibly small EPR transition probabilities as compared to the
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FIGURE 2.1 Energy levels of a system with one unpaired electron and one magnetic
nucleus with /=5 (e.g., the free hydrogen atom) as a function of magnetic field. The
dashed-line transition would be observed if ay were zero. The observed fixed-frequency
spectrum (Section C.1.6 and Fig. 1.4) may be accounted for if the allowed transitions
shown as solid lines are both drawn with the same length, since Av is constant.
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pure transitions (solid lines in Fig. 2.1). Here, then, only two EPR transitions are
observed. In general, however, with other hydrogen-containing radicals, for which
only relatively small hyperfine interactions are involved, all four EPR lines can be
present. This subject is considered in Chapter 5 and Appendix C.

2.2 THEORETICAL CONSIDERATIONS OF
THE HYPERFINE INTERACTION

If the electron and nuclear magnetic dipoles were to behave classically and a sub-
stantial externally applied static magnetic field B (]|z) were present so as to align
them, then the energy of dipole-dipole interaction (Section 5.2) between them
would be given by the following approximate expression:’

@300520—1

Udipolar = - 3 Mz Moz = _Blocall‘l’ez 2.2

4 r
Here the components of the electron and nuclear dipole moments along the applied
magnetic field B are ., and u,.. The dipoles are separated by the distance r, and 6 is
the angle between B and the line joining the two dipoles. This classical system is
shown in Fig. 2.2. Depending on the value of 6, the local field By, caused by
the nucleus at the electron can either aid or oppose the external magnetic field.
From Eq. 2.2 and Fig. 2.2 it is apparent that By, arising from the nucleus,
depends markedly on the instantaneous value of 0 (and of r).

It is clear from Eq. 2.2 that as the inter-particle distance r approaches zero, the
interaction energy approaches infinity. This does not pose a problem, largely
because the probability of this type of superposition of particles is suitably small.
Further mathematical details of this pathological situation have been discussed by

FIGURE 2.2 Interaction of the aligned magnetic dipoles . and pw, arising from an
electronic spin and a nuclear spin. Vector ., is indicated for the state Mg = —% and vector
v, is indicated for the state M; = +%. Angle 0 is between the inter-dipole vector r and the
applied field B.
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Skinner and Weil [1]. This type of ‘contact’ interaction, to be explored in this section
and the next, is important (but not huge) in most cases.

Since the electron is not localized at one position in space, the interaction energy
Udgipolar must be averaged over the electron probability distribution function. If all
regions of 6 are equally probable (as for an electron in an s orbital centered on
nucleus n), then the average local field at each r is obtained by inserting the value
of cos?6 averaged over a sphere*

2 o 2 .
Osin 6 d6 d 1
(cos? 0) = =2 “E’ﬂcis o ¢_1 (2.3)
" oy sin® do de 3

into Eq. 2.2. In spherical polar coordinates, sin 6 d0 d¢ is the element of surface area
on a sphere. Since (cos’6) = % Biocar in Eq. 2.2 vanishes. Consequently, the classical
action-at-a-distance dipolar interaction cannot be the origin of the hyperfine splitting
in the hydrogen atom since the electron distribution in a ls orbital is spherically
symmetric.

An understanding of the actual origin of the hyperfine interaction in the hydrogen
atom may be obtained by examining the radial dependence of the hydrogen 1s orbital
shown in Fig. 2.3. One notes that the 1s electron density at the nucleus (here taken to
be a mathematical point) is non-zero;” it is precisely this non-zero density that gives
rise to the hyperfine interaction. It is clear from Fig. 2.3 that only electrons in s orbi-
tals have a non-zero probability density at the nucleus; p, d, f, . .. orbitals all have
nodes at the nucleus. On the other hand, electrons in 2s, 3s, ... orbitals also have
a non-zero electron density at the nucleus and give rise to such hyperfine inter-
actions. From Table H.4, column 7, the hyperfine interactions for valence s electrons
of some atoms are seen to attain very large values. By virtue of the spherical sym-
metry of s orbitals, the hyperfine interaction in these cases is, of course, isotropic.

Fermi [3] has shown that for systems with one electron the magnetic energy for
the isotropic interaction is given approximately by

2
g“’ 1 (0)1 b 2.4)

Uso = —

when the applied field B (]|z) is sufficiently large. Here ,(0) represents the electron
wavefunction evaluated at the point nucleus.® For example, the hydrogen atom
ground-state wavefunction is given by

1 12 r
P,(r) = (3) exp(— ) (2.5)
Ty rp

where r,, is the radius of the first Bohr orbit (52.9 pm). Using the probability density
[, (0))* = 1 / ar,>, one can then calculate a value of Ui, with the aid of Eq. 2.4.
This calculation, which provides an excellent approximation to the actual
value, is the subject of Problem 2.3. In Section 2.4, we relate U, to the hyperfine
parameter a. Detailed consideration of hyperfine anisotropy is deferred to Chapter 5.
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FIGURE 2.3 Radial dependence of the hydrogenic 1s, 2p and 3d wavefunctions, showing
the non-vanishing behavior at the point nucleus (» = 0) of s orbitals, as well as the change in
sign of odd orbitals (£ =1, 3, 5, ...) in going through the origin. Here r, is the Bohr radius,
and the functions (r/ r,,)eexp(—r/nrb) plotted are not normalized. Here n is the principal
quantum number (1, 2, 3, ...).

It is worthwhile noting that the above considerations hold for the hydrogen
atom in its electronic ground state. EPR studies of the atom in any of its (infinite
number of) excited states are, in principle, feasible and would yield different but
analogous results. The same wealth of states is at hand for any of the molecular
species treated in this book. Unless otherwise stated, only the electronic (and
vibrational) ground state is dealt with. For examples of excited-state EPR, see
Sections 6.3.4 and 6.3.5.

2.3 ANGULAR-MOMENTUM AND ENERGY OPERATORS

Before considering further details of the hyperfine interaction, it is instructive to
introduce operator methods for determining the energies of a system of interest.
In this chapter, we examine some relatively simple problems so that the reader
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may become familiar with these techniques, which are also applicable to
more complicated systems. The algebraic manipulation of operators is briefly
described in Section A.2. General properties of spin operators are given in
Appendix B. Their application to the hydrogen atom and to radicals of type
RH,, which exhibits hyperfine interaction with two equivalent protons, is given
in Appendix C.

2.3.1 Spin Operators and Hamiltonians

For a system having discrete energy levels described by well-defined quantum
numbers, it is always possible to write an eigenvalue equation; that is, if A is the oper-
ator appropriate to the property under study, the eigenvalue equation (Eq. A.9) is

Ay = Mty (2.6)

Here A, represents an eigenvalue of a state (labeled k) for which the eigenfunction is .

The topic of primary interest in EPR is the quantization of spin angular momen-
tum. Hence one seeks a spin operator that operates on a function describing a spin
state, causing it to be multiplied by a constant characteristic of that state. For a
system with electron spin S = %, the two states (k= 1,2) are characterized by
the quantum numbers Mg = i%. These measure the components Mg of angular
momentum along the direction z of the magnetic field, corresponding to the operator
S’Z. Thus, if S is the angular-momentum operator, then its z component obeys Eq. 2.6,
written as

S.b, = Ms¢, 2.7)

For simplicity here and below we omit the index k. The factor My is called the eigen-
value of the operator S, and ¢,(My) is the corresponding eigenfunction. We adopt the
notation a(e) = ¢.(Ms = +1) and B(e) = ¢(Ms = — 1), so that

S.ale) = +1a(e) (2.84)
S.Be) = —1B(e) (2.8D)

Note that the angular momentum is taken in units of 7.
Similar expressions pertain to the nuclear-spin operator /, for a nucleus with
nuclear spin / = 5 and z component M.

Lo(n) =+ a(n) (2.9a)
1B = — 5 B) (2.9)

The symbolism for the representation of an eigenfunction can readily be simpli-
fied. Since the functions are distinguished by their quantum numbers, one may
enclose these numbers in a distinctive way to represent the function. Dirac suggested
the notation |k) for an eigenfunction . (A function represented in such a way is
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called a ‘ket’; see Sections A.5.4 and B.4.) Then Eqgs. 2.8 and 2.9 may be rewritten as

Sla(e)) = + |a(e)) (2.10a)

S.IBe) = —11B(e)) (2.10b)
and

Lla(m) = +L |a(m)) @.11a)

LIBm) = —L |Bm)) 2.11b)

The energies Uy of systems, for which Mg and M, are precise measures of com-
ponents of electronic and nuclear-spin angular momentum, are obtained from the
time-independent Schrodinger equation

Hedber = Uekber (2.12)
Tt = Unik b (2.13)

Here the hamiltonian operator H (which we consider commutes with S’Z as well as
with I,) is the operator for the total energy. The index k is any one of the labels of the
eigenstates of the system. The importance of Eqgs. 2.12 and 2.13, taken together with
Eqgs. 2.8 and 2.9, is that the same ¢y is an eigenfunction of the 7 component of the
spin angular momentum and of the energy’ (Section A.2.2).

Hence
Hela(e)) = U |ale)) (2.14a)
H,1B(e)) = Upo|Ble)) (2.14b)
and
Hyla(n)) = Upgyla(n)) (2.15a)
Ha B(0)) = Upgiy| B)) (2.15b)

It is often useful to express Hina special reduced form. In general, the hamil-
tonian operator of a system is a function of the positions and momenta of all particles
present (the spatial part), and of their intrinsic angular momenta (the spin part). Of
necessity, since the hamiltonian contains spin operators, it is represented by a matrix
(in quantum-mechanical state space) that is generated from angular-momentum
matrices (Section B.5). Since the rules for setting these up are straightforward, it
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is possible to construct the matrix H for any system, as long as one knows which
spins (electrons and nuclei) are present.

The energy eigenvalues are obtained by integrating over all spatial variables
to yield numerical parameters, leaving the spin part of the hamiltonian operator
intact. The resulting entity, consisting of parameters and spin operators, is
called a spin hamiltonian. This approach has proved to be very valuable, in
that it enables measurement by magnetic-resonance techniques of the parameters
g, D, A, ... to be introduced later. These can be tabulated in the scientific litera-
ture and can be used to reproduce the original EPR spectra in detail. Theoretical
analysis, to interpret the parameters in terms of the spatial behavior of the elec-
trons and nuclei, can be carried out separately, possibly at a later date as appro-
priate mathematical tools evolve. Thus spin-hamiltonian parameter sets can be
regarded as storehouses of quantitative information about atoms and molecules.
We use the same symbol H for the hamiltonian and the spin hamiltonian, but
we take care with the explicit nomenclature to distinguish which of these is
being considered.

As we shall see (Chapters 4—6), the spin-hamiltonian concept is especially suit-
able for description of EPR line positions and relative intensities of paramagnetic
species in solids, but is also of major use in liquids. While originally developed
for use with transition ions located in a symmetric environment (in certain salts),
the spin hamiltonian is now utilized with all EPR-detectable species, inorganic
and organic.

To obtain the energy values U(B), in terms of the various parameters, one must
solve the secular determinant of dimension (2S5 + 1)P;(2I;+ 1). For sufficiently
simple small determinants, this can be done analytically to yield algebraic equations
for the eigenvalues. (e.g., see the solution of the hamiltonian matrix H for the hydro-
gen atom in Appendix C.) Failing that, when the numerical parameters in H are
available, one can always diagonalize it numerically by computer to obtain the poss-
ible values of U(B).

2.3.2 Electronic and Nuclear Zeeman Interactions

The first problem we treat with spin-operator methods is the interaction of an elec-
tron or a nucleus with a static magnetic field taken along some direction z, that is, we
re-derive the resonance equation (Eq. 1.19) for a system with § = 5 and also for a
system with [ = % In operator form, Eq. 1.14b becomes

H=-B"j (2.16a)
= —Bj, (2.16b)
where we have chosen axis z along B. We now use operator relations between the

magnetic moment and the spin angular momentum. The electron magnetic-moment
operator fi,, is proportional to the electron-spin operator S, (Eq. 1.9). Similarly f,, is
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proportional to the nuclear-spin operator 1,. Thus
frez = VeS:h = —B.S: 2.17)
/:an = anzh = +ganiz (2.18)

The extension of Eqgs. 2.17 and 2.18 leads to the definition of the electron and nuclear
spin-hamiltonian operators

H, = +gB,BS. (2.19)
Hy = —uB,BI. (2.20)

Note that the only operators in spin hamiltonians are those of spin. We shall find this
type of formulation very useful in more complex situations.® Now application of the
spin hamiltonians of Eqgs. 2.19 and 2.20 to the spin state functions (also called
eigenfunctions) has the following results

Hela(e)) = +gB,BS.|ale))

= +1gB.Bla(e)) (2.21a)
and
H.|B(e)) = +gBB.S.|B(e))
= — 1 ¢B,BIB) (2.21b)
Similarly
Hoala(n)) = —g.B,BL|a(n))
= —1 g.B,Bla(n) (2.22a)
and

H,lB()) = —g.8,BL| B(n))
= +1 ¢,8,BIBM) (2.22b)

One may infer from Eqs. 2.21 and 2.22 that

Une) = +75 8B.B (2.23a)

Upe) = —5 8B.B (2.23h)
and

Ua(n) - - % ganB (224&)

Upwy = +5 8nB,B (2.24b)
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Thus

AU, = Uyey — Ugey = 8B.B = hv, (2.25)
AU, = UB(n) - Ua(n) = ganB = hy, (2.26)

The resonance equation (Eq. 2.25) corresponds to transitions between the states
|B(e)) and |a(e)) (an EPR transition) and the next resonance equation (Eq. 2.26)
(considering g, > 0) corresponds to transitions between the states |a(n)) and
|B(n)) (an NMR transition). Here hv, and hv, are the photon energies that stimulate
the electronic and nuclear transitions.

A general procedure for determining the energy U from a given hamiltonian
involves multiplication of both sides of Eq. 2.12 (and similarly Eq. 2.13) from the
left by ¢*°

& Hey = & Usdy,
= Uy, ¢, since Uy is a constant (2.27)

Multiplication of both sides by d7 (where 7 represents one or more spatial variables
of integration) and integration over the full range of the variable(s) T give

J & Hepy dr = Ukj b by dr (2.28)
Hence
“He, d
U = 1B T d (2.29)
L d’k d’k dr
If the spatial functions ¢, are normalized, that is, if they satisfy the condition
J & P dr=1 (2.30)
then
Uy = J b Hey dr 2.31)

One can say that the expectation value (7:0 is Uy for the energy of the system in its
kth state.

It is appropriate to rewrite Eqs. 2.27—-2.31 in the Dirac notation used in Egs. 2.14
and 2.15. The symbol appropriate to multiplication from the left by ¢.* is (¢l
(Dirac called this function a ‘bra’). When (¢| is combined with the ket |d¢;),
integration over the full range of all variables is implied. Thus the combination
(Pi| dr), that is, bra[c]ket, suggests the origin of the notation. Then Eq. 2.28 becomes

(Dl = Uyl (2.32)
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For normalized functions, Eq. 2.30 is

(el =1 (2.33)
and hence Eq. 2.31 is

U = (¢TI (2.34)

We see that the energy U, is the kth diagonal element of matrix H.In dealing with
spin hamiltonians, the bra-ket notation is the appropriate one, since there are no
spatial variables to be integrated for spin states.

For the electronic and nuclear-spin states of our simple problem (Section 2.3.1),
one writes

Uny = (a(@)[H.|a(e)) = +1gB,B (2.35a)

Ugey = (B@IM.|Be)) = —1g¢B.B (2.35b)
and

Uany = ()| Hy () = — L g,B8,B (2.36a)

Uiy = (B B)) = +1 g.8,B (2.36b)

At this point, the reader who is interested in eigenfunctions and their manipu-
lation may wish to turn to Section A.2.2, where the problem of a particle in a ring
is considered in terms of both the angular-momentum operator and the energy
operator.

2.3.3 Spin Hamiltonian Including Isotropic
Hyperfine Interaction

Let us now consider the effects of the isotropic hyperfine interaction, deferring the
anisotropic interaction until Chapter 5. The appropriate spin-hamiltonian operator
may be obtained from Eq. 2.4 by replacing the classical magnetic moments by
their corresponding operators (Egs. 2.17 and 2.18). Following the same procedure
as in the preceding section, one obtains the result

~ 2 A A
Hiso = L2 5B B, 10 OS], (2.37)

The factor multiplying S‘Zfz often is called the isotropic hyperfine coupling ‘constant’

2
Ao = %gﬁeﬁnwmnz (2.38)
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which measures the magnetic interaction energy (in joules) between the electron and
the nucleus. Hence Eq. 2.37 becomes

Hiso = AoS.1, (2.39a)

When B is along an arbitrary direction (or absent), 7:[150 should be expressed in its
most general form

Fio = AST- 1 (2.39b)

Often the hyperfine coupling constant is given'® as Ao/h in frequency units
(MHz). It may also be expressed in magnetic-field units (Table H.4) and is then
called the hyperfine splitting constant o —Ao/geBe Strlctly speaking, Eq. 2.37
should be written with the factor ST+ T in place of S Iz, however, it is shown in
Section C.1.7 that when the hyperfine interaction A is small compared to the elec-
tron Zeeman interaction g3,B, Eq. 2.37 is adequate.

The spin-hamiltonian operator for the hydrogen atom (and other isotropic
systems with one electron and one nucleus with / = 3) is obtained by adding Egs.
2.19, 2.20 and 2.39a:

A

H = gB,BS. — g,B,Bl. + AoL.S. (2.40)

This is valid when B is sufficiently large. We note that the hyperfine term destroys
the independence of the electron and nuclear spins. If more than one magnetic
nucleus interacts with the electron, the terms in fz are additive. Thus, summing
over all nuclei yields

H =gB,BS:— Y _ guiB,Bli: + Y AnS:li. (2.41)

The nuclear Zeeman energy (the second term) has been included in Egs. 2.40 and
2.41 but has little effect on the transition energies, since the contributions from this
term tend to cancel when the hyperfine terms (third terms on the right) are relatively
large (e.g., in the hydrogen atom). This is not the case when the second and third terms
give contributions of similar magnitude in anisotropic systems (Section 5.3.2.1).

2.4 ENERGY LEVELS OF A SYSTEM WITH ONE UNPAIRED
ELECTRON AND ONE NUCLEUS WITH /=3

This is the simplest case exhibiting hyperfine interaction, for which the hydrogen
atom is the prototype.'' Since the eigenvalues Mg of S, are +% and those of I, are
= +%, there are four possible composite spin states; the kets are

la(e), a(m)) |ale), B(m)) |B(e), a(m)) 1B(e), B(n))
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Application of the spin operators S‘Z and I, gives the following results

S:la(e), am) = +1 |a(e), a(n) (2.424)
Llate), a(n) = +1 |ae), a(n) (2.42b)

and so on for the other six combinations.
The energies of these states are obtained by evaluating expressions analogous to
Egs. 2.35 and 2.36; for example

Ut am = {la(e), am)| H |ale), a(n))
(|lade), a(n)| gB,BS. — uB,BL. + AoLS; + - - - |a(e), a(n)

= +1¢BB—1g.BB+140+--- (2.43a)
Similarly
Uate). piny = +%8B.B + 1 8.B,B — A0 + - - (2.43b)
Upte).atn) = —%8B.B — 3 8uB,B — A0 + - - (2.43¢)
Upe).pon = —38BcB +58:B,B + A0 + - -- (2.43d)

where the ellipses (- --) indicate terms that have been left implicit (Section 3.6).
Neglecting these gives the so-called first-order energies. For the present case of
S=1= %, the mathematical energy problem has been solved exactly, as a function
of the field B, by Breit and Rabi [4]. The solution (Appendix C) can be expanded as
an infinite series, the first terms of which are given explicitly in Egs. 2.43. The
energy levels are shown in Fig. 2.4a for a moderately high magnetic field, including
the EPR transitions observable by scanning the frequency v.

From these quantitative expressions for the energy levels, valid for sufficiently
large B, we note the (near) equality of splitting of each nuclear doublet. Second,
we note that the ordering (M;) of the levels is reversed in the lower set of
levels as compared with the upper set. Since the one unit () of angular momen-
tum in the absorbed photon is used to change the angular momentum of the elec-
tron, no change in the angular momentum of the nucleus is possible. However, in
some cases it may be possible for more than one photon to be absorbed. We also
note that, in the limit of B = 0, energy-level splittings arising from the hyperfine
term remain, so that zero-field transitions at specific frequencies are observable
when a suitable excitation magnetic field B; is applied. A notable example of
this is the 1420 MHz emission from atomic hydrogen in outer space (see Sections
7.8 and C.1 and Problem 2.3).

The energies of these two allowed EPR transitions are

AU, = Ua(g)’ aln) — UB(e), an) = g,BeB + %AO —+ .- (2.44a)
AU, = Uae), iy — Upie).poy = 8BB —3A0 + - (2.44D)
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FIGURE 2.4 Energy levels of a system with one unpaired electron and one nucleus with

=3 (e.g., the hydrogen atom). (a) At a sufficiently high fixed magnetic field B. The
dashed line would be the transition corresponding to hv = gB.B in the absence of
hyperfine interaction (Ag). The solid lines marked k and m correspond to the allowed EPR
transitions with hyperfine coupling operative. To first order, hv = g(3.B i%Ao, where A is
the isotropic hyperfine coupling constant. (b) As a function of an applied magnetic field.
The dashed line corresponds to the transition in the hypothetical case of Ao = 0. The solid
lines k and m refer to transitions induced by a constant microwave quantum /v of the same
energy as for the transition /. Here the resonant-field values corresponding to these two
transitions are, to first order, given by B = hv/gf, + %(g(, /8)ay, so that (g./g)ap (measured
in mT) is the hyperfine splitting constant given approximately by B,, — B;. Note that these
diagrams are specific to a nucleus with positive g, and A, values, such as 'H.

Note that the nuclear Zeeman terms cancel out. We examine these two EPR tran-
sitions under two conditions: constant magnetic field and constant frequency.

1. Constant Magnetic Field B. When the frequency is swept and Ay = 0, a single
transition occurs at a frequency v =h~'gB, B (see the dashed transition mark in
Fig. 2.4a). For non-zero hyperfine interaction, transitions occur at the two frequencies

Vi :h—l(gBeB_'_%AO_i_) (Ml :—{—%) (245@)
v, =h71(gBeB—%A0+"') (Ml = —%) (2.45b)
(see transitions marked k and m in Fig. 2.4a). Note that each of the two transitions

occurs between levels of identical M, value. This corresponds to the selection rules
AM¢= +1, AM; = 0 for EPR absorption.]2
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2. Constant Microwave Frequency v. Here the magnetic field is swept slowly.
When Ap=0, a single transition occurs at the resonant magnetic field
B = hv/gp, (see the dashed transition in Fig. 2.4b). With Aq # 0, EPR transitions
occur at the two magnetic fields

By =hv/gB, — Ao/28B, -+ (M;=+1}) (2.464)
B, = hv/gB, +Ao/28B, - (My=—1) (2.46b)

(see transitions marked k and m in Fig. 2.4b).
The resonance equation becomes

hv =gBB +AM; +--- = gB,[B + (8./9)aoM] + - -- (2.47)

Here

ay =Ao/gB, (2.48)

is the hyperfine splirting constant (in magnetic-field units), and the factor g./g
represents the chemical shift correction (Eq. 1.22b). To first order, the hyperfine
splitting is (g./g)ao. For many free radicals, g is sufficiently close to g, to allow
neglect of the deviation from unity of the ratio g/g. in Eq. 2.47.

Finally, we note that with this chemical system, the other type of magnetic-
resonance transition (i.e., NMR) also occurs.'® There are two pure NMR
transitions, in which the electron-spin direction remains unaltered, but the
nuclear-spin flips. Of more interest for our purposes are the electron-nuclear
double-resonance (ENDOR) experiments, in which the two appropriate excitation
magnetic fields are applied simultaneously (Chapter 12). A major advantage of
this technique is the simplification of spectra, which facilitates analysis and
measurement of spectral parameters for all unpaired-electron systems in which
nuclear spins are present.

2.5 ENERGY LEVELS OF A SYSTEM WITH S=] AND /=1

The *H (deuterium) atom is a simple example of a system with § = yand I=1.
As in Section 2.4, the energy levels are computed using the spin-hamiltonian
operator H (Eq. 2.40)."* There are now six spin states, which are represented by
|MS’ M1>
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These energies, given to first order by expressions analogous to Egs. 2.43 (using the
appropriate matrix elements—Section B.10), are

Usip.+1 = 58B.B — guB,B +3A0 U_ijp—1 = —%8B.B+ g:B,B +1A0

Uiipo = 58B.B U_i00 = —38B.B

Utijp.—1 = 38B.B+ g.B,B — A0 U_ip.+1 = —%8B.B — g:B,B —1A0
(2.49)

By virtue of the selection rules AMg = +1 and AM; = 0, there are three allowed
EPR transitions. These are depicted in Fig. 2.5a; a typical first-derivative spectrum
in an increasing magnetic field is shown in Fig. 2.5b. A spectrum of the deuterium
atom trapped in crystalline quartz is shown as the middle three lines in Fig. 2.6 [5].
Under conditions of constant microwave frequency, transitions to first order occur at
the resonant fields

hv g hv hv g
Bkzi_iao, Blzi’ Bmzi—i—fao (250)
gB. & gB. gB. &
(a) Ms M

nl—

FIGURE 2.5 (a) Energy levels and allowed EPR transitions at constant field for an § = %,
I =1 atom (e.g., deuterium), for which Ay > 0; (b) simulated constant-frequency spectrum.
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for M; = +1, 0 and —1. These lines are of equal intensity since there is no coinci-
dence of states, that is, all states are non-degenerate.

The extension to systems with § = % and I > 1 is straightforward. For I = %, four
transitions of equal intensity are observed. In general, for a single nucleus interacting
with one unpaired electron, there are 2/ + 1 lines of equal intensity; adjacent lines
are separated by the hyperfine splitting a.

In this chapter expressions have been obtained for the energy levels of systems in
which a single electron interacts with one magnetic nucleus. In most free radicals the
unpaired electron interacts with a number of magnetic nuclei.

For instance, when a hydrogen atom is trapped in a crystal structure in which its
surrounding atoms have nuclear spins, then superhyperfine structure is resolved. In
the case of CaF,, there are eight nearest-neighbor F~ (I = %) ions arranged at the
corners of a cube, giving rise to such splittings (Fig. 2.7).

Examples of practical procedures for determining qualitative hyperfine splitting
patterns, when more than one magnetic nucleus interacts with the unpaired electron,
are given in the next chapter.

2.0mT 20mT

FIGURE 2.6 X-band EPR spectrum of isotopically enriched atomic hydrogen trapped in
x-irradiated a-quartz at 95 K, presented in (almost pure) dispersion mode (Section F.3.5).
The outer lines arise from 'H (Fig. 1.4) and the three inner lines, from ’H (Fig. 2.5). There
are some unidentified lines present to the right of the central line. [After J. Isoya, J. A.
Weil, P. H. Davis, J. Phys. Chem. Solids, 44, 335 (1983).]
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1 1 1 1 1 1 ] 1

29 30 31 32 33 34 35 36 37 38 kG

B —»

FIGURE 2.7 Room-temperature x-band EPR spectrum of interstitial hydrogen atoms in
x-irradiated CaF,. The weak lines barely visible are ‘forbidden’, analogous to transitions b
and c of Fig. 5.4. [The small central line arises from DPPH used as a g marker (Section
F.4).] [After J. L. Hall, R. T. Schumacher, Phys. Rev., 127, 1892 (1962).]

2.6 SIGNS OF ISOTROPIC HYPERFINE COUPLING CONSTANTS

The sign of the hyperfine coupling constant determines the energy order of the zero-
field levels. Thus for Ay > 0 (e.g., atomic hydrogen — Fig. C.1a), the triplet [F = 1
(Eq. C.9)] lies above the singlet (F = 0). For Ay < 0, the opposite would be true.
Here the EPR spectrum is unaffected by the sign of Ay. However, in principle, at
a sufficiently low field (B > 0) and temperature, the NMR spectrum would reveal
the sign of Ay, since one of the two NMR lines would be of lower intensity.

For one-electron atoms, the hyperfine coupling is given by Eq. 2.38. Thus, in
this simple case, the sign of g, determines that of A,. Physically, the sign of A,
indicates whether the magnetic moments of the electron and nucleus tend to
align parallel or antiparallel. Note that Ay is a property of the spin system con-
sidered and does not depend on the direction or magnitude of any external mag-
netic fields present.

More generally, for multielectron systems, there is another factor, which takes
into account a mutual unpairing interaction between the electrons; that is, an
outer unpaired electron may cause inner electron pairs to exhibit spin polarization,
either parallel or antiparallel to it. In molecules, there may be regions with either
polarization. The net electron-spin polarization around any nucleus determines the
sign of its Ay.

We can quantify these ideas by using a generalized expression

2
Ao =22 5B.uB{p) @.51)

for the isotropic hyperfine interaction parameter at nucleus n, appropriate for elec-
tronic state ¢ of some atomic or molecular species. This allows us to take into
account how each individual electron spin contributes at nucleus »n, with its direction



54 MAGNETIC INTERACTION BETWEEN PARTICLES

compared to the total electron-spin direction. In other words, expectation value
{psy = (| ps| 1) can contain both positive and negative contributions |¢|* of individ-
ual electronic orbitals in ¢ (Chapter 9); that is, it represents a competition at nucleus
n between up-spin |a); and down-spin |8); electrons. In the case of a single electron
and nucleus, Eq. 2.51 reduces to Eq. 2.38. Finally, we note that {p) represents a true
density, having dimensions of volume ™ '. Thus {p,) is called the spin density, and is
itself a probability density (see Note 9.1). Further details concerning this concept,
and the spin-density operator p,, are to be found in Chapters 5 and 9, as will the
idea of unpaired-electron population.'*

Ordinary first-order EPR spectra yield only |Ay|, since peak-position terms AyM;
occur symmetrically with regard to + |M,| (Figs. 2.4 and 3.1). Higher-order hyper-
fine correction terms (Section 3.6) can yield relative signs (i.e., of Ap;/A¢;) when
more than one nucleus (i.e., i and j) is present and both give sufficiently large split-
tings. Various other circumstances and special techniques yielding sign information
are discussed later in this book (see Sections 3.6, 5.2, 5.3.2, 6.7, 9.2.4-9.2.7 and
10.5.5.1 and Problems 5.10 and 5.11).

2.7 DIPOLAR INTERACTIONS BETWEEN ELECTRONS

When two interacting spin moments arise from electrons, the ideas and theoretical
aspects presented here remain valid. Of course, electrons are more mobile than
nuclei and hence interact more readily so that exchange energy terms become
important (Chapter 6). The magnitudes of the magnetic moments are about 2000
times (i.e., B./B,) greater for electrons due to the smaller electron mass, so that
the dipolar interaction energy at any given inter-particle distance r (Eq. 2.2)
is greater by this factor. The detailed discussion of systems with more than
one unpaired electron is deferred to Chapter 6, in view of the complications cited
above.
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NOTES

55

1. The average position of these lines (Fig. 1.4) corresponds to g =~ 2. This averaging
procedure for obtaining the g factor leads to an appreciable error when the separation

of hyperfine lines is large, that is, >1 mT at v = 10 GHz (Section C.1.6).

2. Here we temporarily ignore (until Section 2.4) the small difference between g and

8e-

Subindex O indicates that we are dealing with an isotropic parameter; that is, the free
hydrogen atom basically is spherically symmetric (and we neglect small deviations

from this induced by B).

3. This equation is valid only if the applied field is much greater than the magnetic fields

present at the two particles as a result of the hyperfine interaction (Section 5.3.2).

4. The average (expectation) value of a quantity g(q) weighted by a probability function

P(qg) is given by

[P dq

(@)= [Pdg

Each integration is taken over the allowed range of g.

(2.52)

5. In addition to this assumption, throughout this book, we utilize the concepts of electron
distributions (orbitals) as derived from non-relativistic quantum mechanics. The changes
in viewpoint and (in general) small corrections obtained from relativistic (Dirac) theory

are beyond the scope of this book (see Ref. 2).

6. Bare protons and neutrons are not point particles, but rather have non-zero size (radius
~0.7 x 1072 nm). Each contains a complex mixture of quarks, which yields a total

1

spin of I =3, and a very appreciable nuclear magnetic moment (see Appendix H).

Electrons can travel through these (and all) nuclides.

7. This is a general property of linear operators A and B for which the commutator

[A, B]_ = AB — BA is zero; that is, the operators commute (Section A.2).

8. Itis often desirable to restructure the hamiltonian into a form that contains ‘pseudo-spin’
operators, formally describing sets of states and their energy levels, even in the absence of

actual spins. These are also called ‘effective’ or ‘fictitious’ spins.

9. ¢,* is the complex conjugate of ¢ (Section A.1).

10. In this book we use the convention that all parameters (e.g., Ap) in a spin hamiltonian are
assumed to be in energy units. Division by £ is required to convert to frequency units and

by g. . to convert to magnetic-field units (e.g., mT or G).

11. Hydrogen atoms and other free radicals (e.g., methyl) can be obtained by (say)
y-irradiation of certain solids, and in some circumstances are quite stable even at room

temperature (e.g., see Ref. 9).

12. The selection rules AMg = 0, AM; = =+ 1 apply in the case of NMR spectroscopy, that is,

when the system is irradiated only at the nuclear resonance frequency.
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13.

14.

15.

MAGNETIC INTERACTION BETWEEN PARTICLES

For I > %, another energy term should be added in Eq. 2.40, and represents the nuclear
electric quadrupole interaction (see Section 5.6). However, this does not affect the
EPR lines of isotropic systems.

Spin densities and population distributions can be measured quantitatively by polarized
neutron diffraction. Such work for nitroxide free radicals'® has been published by
Schweizer and his group [6—8], and includes use of maximum-entropy reconstruction
to generate projection maps.

Nitroxide is the name for species RR'N—O <— RR'NT—O7, also known as the
aminoxyl free radical. These and related numerous species (including nitric oxide
N—O itself) are of major importance now in biomedical areas.
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D. J. Griffiths, Hyperfine Splitting in the Ground State of Hydrogen, Am. J. Phys., 50, 698
(1982).

G. T. Rado, Simple Derivation of the Electron-Nucleus Contact Hyperfine Interaction,
Am. J. Phys., 30, 716 (1962).

PROBLEMS

2.1

2.2

2.3

24

(a) Carry out the integrations indicated in Eq. 2.3 and verify the result.
(b) Compute {cos® 6) assuming that p, and ., are confined to a plane contain-
ing the magnetic field, for example, by setting ¢ = 0. Assume that all values of
0 are equally probable.

Taking the value of u, for the hydrogen nucleus ("H) from Table H.1, compute
the local magnetic field at an electron 0.2 nm from a proton when 6 = 0° and
again when 6 = 90°. What assumption is made in applying Eq. 2.2?

The experimental hyperfine coupling constant A/ A for the free hydrogen atom
in its electronic ground state is 1420.40575 MHz, and g = 2.0022838. [The
data were taken from MASER (microwave amplification by stimulated emis-
sion of radiation) experiments [10,11].] Compare the value of Ay/h with that
calculated using elementary quantum theory, that is, Eqs. 2.4 and 2.5. Can
you give some reasons for the deviation (which can be represented by using
a multiplicative correction factor 1 4 6 appended to Eq. 2.4)?

The sodium nucleus (**Na) has I = %

(a) Specify the possible spin eigenfunctions for the sodium atom in its elec-
tronic ground state S).

(b) Use the spin hamiltonian of Eq. 2.40 (neglecting the nuclear Zeeman term
H, therein) to derive expressions for the first-order energies of this spin
system. What was assumed in using Eq. 2.40 and by neglecting H,,?
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2.6

PROBLEMS 57

(c) Derive expressions for the possible EPR transitions and draw energy-level
diagrams similar to Figs. 2.4 and 2.5. Use A taken from Table H.4 for this
purpose.

Calculate the energy levels of a two-proton radical RH; (Section C.2) at suffi-
ciently high magnetic fields, using the spin hamiltonian of Eq. 2.41. R is any
suitable molecular group. Write the spin eigenfunctions as |Ms,'M}), where
"M, = M;, + Mj, (where M; and M, are the quantum numbers for the z com-
ponents of the nuclear-spin angular momenta of protons 1 and 2). Plot the
energy levels as a function of magnetic field (as in Problem 2.4) and indicate
the allowed transitions and their relative intensities.

The EPR spectrum in Fig. 2.6 of hydrogen atoms trapped in a quartz crystal
was taken at 9.94186 GHz. The 'H doublet lines occur at 326.857 and
378.913 mT. Estimate the line positions of the “H triplet. Assume that
g = 2.002117 for both species, and that high-field conditions pertain.



CHAPTER 3

ISOTROPIC HYPERFINE EFFECTS
IN EPR SPECTRA

3.1 INTRODUCTION

In this chapter we continue to explore chemical species with a single unpaired
electron (S = %). It was shown in Chapter 2 that the usual effect of the hyperfine
interaction with a single proton (I = %) is to split each electron energy level into
two, one pair for the Mg = ~|—% and one pair for the My = —% states (Figs. 2.1 and
2.4). Interaction with a deuteron (°H = D, I = 1) leads to splitting of each electron
level into three (Fig. 2.5). The actual splitting observed is field-dependent at low
fields but reaches a high-field limiting value of Ap/2, where Ay is the isotropic hyper-
fine coupling constant. In general, if the nuclear spin is /, there are 2/ + 1 energy
levels for each value of M.

Most free radicals contain several magnetic nuclei; in some molecules these may
be grouped into magnetically equivalent sets. Usually the nuclei in a set are equiv-
alent by virtue of the symmetry of the molecule; occasionally, the observed equiv-
alence is accidental. The hyperfine spectra from radicals having numerous magnetic
nuclei may give spectra rich in line components. The analysis of these spectra may
be straightforward; more often a successful analysis requires some experience. This
chapter presents a number of experimental spectra for radicals containing a single
unpaired electron, ranging from the simple to the complex. The reader is urged to
consider each spectrum carefully and to understand its analysis before proceeding
to the next. Section 3.5 presents a number of rules that should aid in the analysis
of complex spectra.

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.
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Equivalent nuclei, each with spin /;, can be treated by considering that they inter-
act as one nucleus with a total composite nuclear spin '/ equal to the sum 2; I; of the
nuclear spins in the set and a corresponding total spin component ‘M; = X, My;; the
number of levels is 27+ 1 for each M value. This procedure gives the correct
number of energy levels but does not account adequately for the degeneracy of
some of the levels; this factor leads to variations in the relative intensities of the
peaks. The degeneracies can be obtained from the simple rules given in Sections
3.2 and 3.6.

3.2 HYPERFINE SPLITTING FROM PROTONS

We first consider, for the sake of dealing with definite examples, the energy split-
tings and resultant spectral effects caused by the presence of protons, the most
common nuclear-spin species in EPR. Thereafter we deal with other nuclides.

3.2.1 Single Set of Equivalent Protons

For a system of one unpaired electron interacting with two equivalent protons, it is
possible to obtain the appropriate hyperfine energy levels by replacing the two nuclei
with one nucleus having I = 1. The energy-level sequence is then the same as that in
Fig. 2.5 for the deuterium atom; there the levels are labeled according to the value of
M, (+1, 0 or —1). Alternatively, the energy-level scheme may be obtained by suc-
cessive splitting of levels as shown in Fig. 3.1a. Interaction with the first nucleus
causes the Mg = +% and Mg = —% levels to be split by Ag/2; interaction with the
second nucleus causes each level to be split again by Ag/2, since equivalence
implies identity of hyperfine splitting constants. Figure 3.1a demonstrates that for
the composite nuclear spin there is a coincidence of the intermediate levels
(M; = 0), in both the Mg = + and Ms = — 1 groups. Note that the twofold degen-
eracy is associated with the two possible permutations of nuclear spins that give a net
spin of zero (Fig. 3.1a). The factor of 2 in population of the M; = 0 states as com-
pared with the M; = +1 or M; = —1 states is reflected in the 1:2:1 relative inten-
sities of the allowed transitions. These intensities describe the system as long as
gB.B > |Ao| and k,T > |Ao|. Experimentally, these conditions almost always
apply. The resulting simplest spectra are designated as ‘first-order’ spectra. These
transitions are shown frequency-swept at constant field in Fig. 3.1a and field-swept
at constant frequency in Fig. 3.1b. The selection rules are AMg = +1, ACM;) = 0,
just as for the single-nucleus case.

For three equivalent nuclei, each with I = % the repetitive splitting procedure leads
to four levels for the Mg = +% state and also for the Mg = — % state.! The two inner
levels each are three-fold degenerate, corresponding to the number of nuclear-spin
states having ‘M; = —i—% or — % (Alternatively, the degeneracy of these levels may
be viewed as a result of the fact that the 'M; = + % levels arise from the coincidence
of a single level and a doubly degenerate level.) The normally applicable selection
rules require that the allowed transitions occur between levels having the same
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FIGURE 3.1 Energy levels and transitions for a system with one unpaired electron (S = %)
and two equivalent nuclei with / = % Here k, £, and m denote the allowed transitions.
Transition £ is twice as intense as k or m, since it occurs between doubly degenerate levels.
(a) Constant-field conditions; the various possible configurations of the nuclear spins are
shown at the right. (b) Constant-frequency conditions; this diagram assumes Ao > 0. If
Ao < 0, the spectrum is unchanged; only the notation ‘M, is altered (+— F ), where ‘M, is
given by Eq. 3.3.

value of ‘M and therefore having the same degeneracy. Hence the relative intensity
of the observed lines is given by the ratio of the degeneracies of the levels between
which transitions occur. Inspection of the intensity ratios 1:1, 1:2:1, 1:3:3:1,
and so on reveals that they are precisely the coefficients resulting from the binomial
expansion” of (1 + x)", where n is the number of equivalent spin—% nuclei in the set.
The coefficient of the term x™ in the expansion represents the relative probability of
occurrence of the state with spin component ‘M; = € — I, where ‘I = n/2 is the
total composite nuclear spin. The successive sets of coefficients for increasing n are
readily found from Pascal’s triangle (Fig. 3.2a, right-most column). Note that the
sum of the values across any row is 2", which is the total number of energy levels
(most of which are degenerate) for each value of M.

It is important for the reader to acquire and retain mental images of EPR spectra
of radicals containing several equivalent protons. Figures 3.3a—h represent a collec-
tion of first-order spectra for radicals with up to eight equivalent protons. These have
been drawn with the help of a computer so as to be both accurate and comparable.
The spectrum of the benzene anion radical showing a septet of lines (Fig. 3.4) with
the correct binomial intensities is a particularly important practical and historical
example of this series.

It is true that the ideas described above, while aesthetically very pleasing, are
only approximations, and that a closer look at reality reveals deviations from the
simplest scheme (see Section 3.7).
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FIGURE 3.2 Triangles displaying the relative EPR line positions and intensities arising
from the interaction of an electron-spin moment with the spin moments from n equivalent
nuclei, each with spin 7. The composite spin 7 is a sum over all the individual spins I..
(a) I; = %; (b) I; = 1. The right-hand triangles represent the coefficients in the expansion of
[1+x+ x> +--- + ", The triangle for I; = % is usually attributed to Blaise Pascal. Note
that the sum across any row is (2/; 4 1)" and that every non-peripheral integer is the sum
of the 2/; + 1 integers closest above it.

As one encounters observed hyperfine splittings for a variety of radicals, includ-
ing the hydrogen atom, one is struck by the marked smallness of the typical hyper-
fine splitting, as compared with the splitting of the hydrogen-atom doublet.
Rationalization of this reduction is one of the important tasks of this book and is
treated in Chapter 9.
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FIGURE 3.3 Computer simulations of EPR spectra for an unpaired electron interacting
with (a) one, (b) two, (c) three, (d) four, (e) five, (f) six, (g) seven and (h) eight
equivalent nuclei each with I = % In all cases, v = 9.50 GHz, B, = 339 mT, ay = 0.50 mT,
and the lorentzian peak-to-peak linewidths AB,,;, are 0.05 mT.

3.2.2 Multiple Sets of Equivalent Protons

As we have seen, the energy levels for hyperfine interaction with a single set of equiv-
alent protons may be obtained by considering repetitive equal splitting of hyperfine
levels of the Mg = +% and Mg = —% states. Chemically inequivalent protons, in
general, have different splitting constants. Consider a radical containing two inequiva-
lent protons, having hyperfine coupling constants A and A,, respectively, with |A;| >
|A,|. The energy-level diagram may be constructed by representing the splitting |A;|/2
arising from the first proton, and next taking each of the four resulting levels to be split
into two levels separated by |A,|/2. These energy levels are shown in Fig. 3.5. The
typical allowed transitions are again those for which AMg= +1 and A('M,) = 0.
The spectrum shown in Fig. 3.5 is that of the HOCHCOOH radical. Here
g =2.0038, |ay(CH)| = 1.725mT and |ay(HOC)| = 0.255mT, at pH 1.3 [1].
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FIGURE 3.4 X-band EPR spectrum of the benzene anion radical in a solution of 2:1
tetrahydrofuran and dimethoxyethane at 173 K. Here the '*C satellite lines are just barely
visible. [After J. R. Bolton, Mol. Phys., 6, 219 (1963).]

No splitting from the acidic proton was observed. It was not possible to derive this
assignment of the hyperfine splitting constants solely from an analysis of this spectrum;
the assignment was made with the help of comparisons of these hyperfine splittings
with those obtained from other similar radicals.
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FIGURE 3.5 (a) Energy-level splitting by two inequivalent nuclei with I = % in a given
magnetic field. We have taken A; > A, > 0. (b) X-band EPR spectrum of the glycolic acid
radical (HOCHCOOH) in aqueous solution at 298 K as an example of two inequivalent
protons. The larger splitting arises from the CH proton and the smaller splitting from the
nearest OH proton. (Spectrum taken by J. E. Wertz.)



64 ISOTROPIC HYPERFINE EFFECTS IN EPR SPECTRA

The next case is that of a radical containing three protons, two of which are equiv-
alent. Let A; be the hyperfine coupling constant for each proton of the equivalent
pair and A, the coupling constant for the unique proton. Consider the case for
|A1| >>|A;|. One constructs the energy-level diagram by continuing the splitting
process started in Fig. 3.1. Crossing of many levels during this construction may
be avoided if the larger coupling constant is taken first. The final set of energy
levels is independent of the order in which the splittings are considered. The
CH,OH radical (produced by photolysis of a methanol-H,O, solution) is an
example of this case. The spectrum is shown in Fig. 3.6. The smaller splitting is
that of the OH proton: |a(CH,)| = 1.738 mT and |a(OH)| = 0.115 mT at 26°C [2].
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FIGURE 3.6 (a) Energy-level splitting by two equivalent nuclei plus another, all with
1= %, in a given magnetic field (A; > A, > 0). (b) X-band EPR spectrum of the CH,OH
radical in methanol at 299 K. [After R. Livingston, H. Zeldes, J. Chem. Phys., 44, 1245
(1966).]
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In the CH,OH spectrum the six lines arise from a doubling by the unique proton
of the three transitions expected for the two equivalent protons. In general, if there
are sets of m and n equivalent protons in a molecule, then the maximum possible
number of distinct lines in the spectrum is given by (m + 1)(n + 1). Thus for an arbi-
trary number N of sets of such equivalent protons, the number of lines is given by
IT;(n; + 1), where II; indicates a product over all values of j (= 1, 2, ..., N).

The 1,3-butadiene anion radical, (H,C=HC—CH=CH,) , is an example of a
molecule with six protons, equivalent in sets of four and of two [3]. Whether the
spectrum is seen to consist of three quintets or five triplets depends on the relative
magnitude of the hyperfine splitting constants. These can be predicted with guidance
from molecular-orbital theory, as discussed in Chapter 9. As is seen, the spectrum
in Fig. 3.7a is readily interpreted in terms of five fully resolved groups of 1:2:1
triplets. Here |a;| = |a4] = 0.762 mT; |a,| = |as] = 0.279 mT. It is necessary to
construct the set of energy levels for only one of the two Mg spin states, since the
two sets of energy levels are mirror images.

When the energy levels are plotted to scale, the relative separation of levels
corresponds to the separations of lines in the EPR spectrum. A set of lines is
drawn with heights proportional to the degeneracy of the corresponding level.
The relative amplitudes then correspond to the predicted relative intensities of the
EPR lines. This ‘stick-diagram’ reconstruction of the spectrum is illustrated in
Fig. 3.7b. The positions of the lines to first order in such a spectrum are a function
of the proton hyperfine splitting constants a;. The kth line in the spectrum is found at
the field B, given by

N
Bk = B, - Zath](j) (31)
Jj=1

where B’ (=hv/gf,) is the magnetic field at the center of the spectrum, N is the
number of different hyperfine splitting constants, and ‘M ;, = —'I(j), —'I(j) +
L,...,+"1(j) — 1, +'I(j); here 'I(j) = n;/2 is the total effective spin for the protons
(i=1,2,...,n) of the jth set. In this example, N =2, 'I(1) =2 and I(2) = 1. As
was discussed in Chapter 2, hyperfine splitting constants may have either positive or
negative signs. In most cases the signs of the a; parameters are unknown. In this
situation, if we arbitrarily assign a positive sign to all a; constants, then the negative
My ;) values label the high-field side of the spectrum (and vice versa).

We next consider the general case of a set of m protons and a set of n protons.
The analysis of the spectrum is best carried out by beginning with the hyperfine
pattern from the largest hyperfine splitting, taken to be a,. The further splitting
caused by the m protons (labeled |a,|) is also shown. Consider the case
m = n = 4 appropriate for the naphthalene anion radical (Fig. 3.8). The lines are
labeled with the appropriate relative intensities. The reader may verify that (1)
the central line of the final spectrum has an intensity 36 times that of the outermost
components and (2) the sum of the relative intensities of all the lines is 28 = 236.
This is the number of energy levels for one value of My if eight protons are inter-
acting with the unpaired electron.
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FIGURE 3.7 (a) X-band EPR spectrum of the 1,3-butadiene anion radical generated by
electrolysis in liquid NHj at 195 K. [After D. H. Levy, R. J. Myers, J. Chem. Phys., 41,
1062 (1964).] (b) Reconstruction of this EPR spectrum, indicating relative intensities.

When |a,| > |a,,| but |a,,| is sufficiently large, there is an intermingling of line

groups. This is true for the naphthalene anion radical (Fig. 3.8), for which the
splittings are given by |a;| = 0.495 mT and |a,| = 0.187 mT [4]. Here the analysis
may not be immediately apparent. The separation of the outermost line from
the next line is always the smallest hyperfine splitting. As an aid in the analysis,
the degeneracy of the nuclear-spin states for each transition is given above the
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FIGURE 3.8 X-band EPR spectrum of the naphthalene anion radical in dimethoxyethane
(K* is the counterion) at 298 K. The numbers above each line are the degeneracies of the
corresponding nuclear-spin states. These numbers correspond approximately to the relative
first-derivative amplitudes. (Spectrum taken by J. R. Bolton.)

corresponding line. The naphthalene anion is of special historical interest since
it was the first radical for which proton hyperfine splitting was observed in
solution [5].

If the difference between a,, and a,, is small, one may fail to see all the lines
because of overlapping. Whenever large numbers of protons are involved, one
must expect at least partial overlapping. If a,, = ka,,, where k is an integer, or the
reciprocal of an integer, the spectrum has fewer than the expected number of
lines, and the intensities do not follow a binomial distribution. There are numerous
instances in the literature in which erroneous assignments have been made because
of such accidental relations. When the difference between two splitting constants is
exactly or nearly a multiple of another splitting constant, there is a further hazard of
misassignment.

In some spectra one finds deviations from the binomial distribution of amplitudes.
Such deviations are to be expected if the linewidths are different (see Appendix F for
relations between amplitude and width). However, the integrated line intensities
should follow the binomial distribution.

A simple example of a radical with three sets of symmetry-equivalent
protons is that of the anthracene anion radical (Fig. 3.9). Here |a;| = 0.274 mT,
lap] = 0.151 mT and |ag| = 0.534 mT [6]. The analysis of this spectrum is given
as Problem 3.5.
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FIGURE 3.9 Low-field portion of the X-band EPR spectrum of the anthracene anion
radical in dimethoxyethane at 295 K. Proton hyperfine lines are numbered; unnumbered
lines arise from '*C splittings. The three proton splitting constants are indicated. [After
J. R. Bolton, G. K. Fraenkel, J. Chem. Phys., 40, 3307 (1964).]

3.3 HYPERFINE SPLITTINGS FROM OTHER
NUCLEI WITH /=]

In organic radicals the most common nuclei with / 2% are 'H, 13C, 19F and 3'P.
Proton hyperfine splittings have already been discussed at length. Hyperfine split-
ting from '°F or *'P is usually indistinguishable from proton hyperfine splittings. It
is an important characteristic of solution EPR spectra that an analysis usually
yields only the spin of the interacting nucleus and the hyperfine splitting. Other
evidence is required to identify the interacting nucleus. For this reason, everything
that has been said about the analysis and reconstruction of the spectra involving
proton splittings also applies to '°F and *'P. For '°F, variations in linewidths
across the hyperfine set can, in some instances (Chapter 10), be used to make
an assignment [7].

Nuclides 'F and *'P occur with 100% natural abundance (Table H.4). For
elements in which more than one isotope is present in significant amount, an assign-
ment can usually be made by comparing intensities of hyperfine multiplets with
known nuclear spins and isotopic abundances (Table H.4). As an example, '*C split-
tings are considered shortly.
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'9F hyperfine splittings have been observed in many organic radicals such as
perfluoro-p-benzosemiquinone (I) [8].

H
O

(0]

(1) perfluoro-p-benzosemiquinone

An interesting example is the CF; radical [9], since its geometric configuration,
planar or pyramidal, has been controversial. The '*C splittings observed in this
species, at low temperatures due to its instability, have been helpful in resolving
this question in favor of the pyramidal structure (Section 9.3). The EPR spectrum
is shown in Fig. 3.16, where the '°F splitting is 14.45 mT.

PO, is an example of a radical showing *'P hyperfine splitting. This radical
[10] has a very large isotropic splitting (~60 mT); this indicates that PO5>~ has a
pyramidal structure with approximately sp> hybridization at the phosphorus atom.
If PO;>~ were planar, the radical would have sp? hybridization and should show a
much smaller isotropic splitting (Section 9.3).

The natural abundance of the isotope 3¢ = %) is 1.11% (Table H.4). The more
abundant isotope '>C has I = 0. In some cases an increased instrumental gain when
taking an EPR spectrum of an organic radical reveals satellite lines arising from '*C
hyperfine splittings.

Consider the simple case of a molecule containing one carbon atom, for example,
CO; . On the average, 1.11% of these molecules are 13CO[. For these molecules
two “satellite” lines arise from the '*C splitting. The '*CO,~ spectrum consists of
only one line, since '*C and 'O have zero nuclear spin. The intensity of the
3C0,~ spectrum is divided between two lines; hence each line has an intensity
of (%)(1.11/98.89) x 100 = 0.561% of that of the IZCO[ spectrum. For molecules
that contain n equivalent carbon atoms, the intensity of each satellite relative to that
of the central component is 0.00561#. In the spectrum of the benzene anion radical
(Fig. 3.4), each satellite has an intensity of 3.37% of its central '*C component.

3.4 HYPERFINE SPLITTINGS FROM NUCLEI WITH />

The most commonly encountered examples of nuclei with / = 1 are *H and "*N. To
say that a nucleus has a spin / = 1 means that in a magnetic field three orientations
are allowed; these are labeled by the values of M; = 0, +1. These states are non-
degenerate in a magnetic field, in contrast to the first-order case for two equivalent
protons. Hence the spectrum should consist of three equally intense lines (Fig. 2.5).
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Fremy’s salt, K5(SO3),NO, containing the peroxylamine disulfonate (PADS)
anion, offers an interesting example of an S = %, I =1 inorganic species. In the
solid phase, it occurs as a spin-paired dimer giving no ground-state EPR (but see
Section 6.3.5). When dissolved in water, it gives a narrow-line EPR spectrum
(Fig. 3.10) exhibiting the three-peak '*N hyperfine splitting, as well as weaker
lines arising from the low-abundance '°N, **S and '’O isotopes (Table H.4). The
radical can serve as a very convenient intensity standard (for spin concentration
and spectrometer sensitivity) and as a magnetic-field calibrant (Section F.1.2). It
has been used to explore spin-relaxation mechanisms, using the electron-electron
(ELDOR) technique (Chapter 12) [11].

For two equivalent / = 1 nuclei, one expects five EPR lines with an intensity
distribution 1:2:3:2:1 (Fig. 3.11). An example of a splitting from two equivalent
"N nuclei is given in Fig. 3.12 for the nitronylnitroxide radical. Another species of
this type, widely used as a field (g) standard (Sections F.1.2 and F.3), is
the stable free radical 2,2'-diphenyl-1-picrylhydrazyl (II = DPPH), which, in
liquid solvents, gives a five-line pattern arising from the two almost equivalent

B
156

FIGURE 3.10 X-band EPR spectrum (at high gain) of the anion, (S03),NO?*~, of Fremy’s
salt in a 0.005 M aqueous solution at room temperature. The smaller peaks arise from '°N
and *3S hyperfine interaction. [After J. J. Windle, A. K. Wiersema, J. Chem. Phys., 39, 1139
(1963).]
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nitrogens.

NO,

NO,

NO»
() 2,2’-diphenyl-1-picrylhydrazyl

In very dilute deoxygenated solution, the rich proton hyperfine structure also
becomes evident.

For systems in which n equivalent nuclei of spin 1 interact with an unpaired elec-
tron, the relative intensities of the lines in a hyperfine multiplet are given by the

(n 4+ Dth row of an extended Pascal triangle (Fig. 3.2b).
As mentioned before, analysis of the solution EPR spectrum does not generally

identify the interacting nuclei. One method of assigning hyperfine splittings is
the use of isotopic substitution. The most widely used isotope has been deuterium.
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FIGURE 3.11 Energy-level diagram showing the hyperfine levels for two equivalent nuclei
with 7 = 1. Each number in parentheses indicates the degeneracy of the adjacent level.
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FIGURE 3.12 X-band EPR spectrum of a substituted nitronylnitroxide radical at 295 K in
benzene showing splitting arising from two equivalent nitrogen atoms (g = 2.00651). No
proton hyperfine splittings are sufficiently large to be discernible. [After J. H. Osiecki,
E. F. Ullman, J. Am. Chem. Soc., 90, 1078 (1968).]

Substitution of one hydrogen atom with deuterium may permit assignment of the
splittings of the remaining protons (e.g., Fig. 2.6). The two hyperfine splittings in
the naphthalene anion (Fig. 3.8) were assigned by this procedure [12].

The most common nuclei with spin / = % are 'Li, ''B, 2Na, ¥Cl, *’Cl, *°K, >*Cr,
%Cu and *>Cu. There are four nuclear-spin states, and consequently with a single
such nucleus one should observe four hyperfine lines of equal intensity. Sometimes
EPR spectra of radical anions exhibit small hyperfine splittings from alkali-metal
cations. Such splittings indicate the presence of ion pairs in solution. Figure 3.13
shows a spectrum of the pyrazine anion radical (III) prepared by alkali-metal
reduction of pyrazine in dimethoxyethane [13].

N

@

N

() pyrazine anion radical

In this solvent the species exists as a 1 : 1 ion pair with the alkali-metal counterion. In
Fig. 3.13b the *°K hyperfine splitting is not resolved, but the expected 25 lines
from interaction with the two equivalent nitrogens and four equivalent hydrogens
are all visible. In Fig. 3.13a each such line is split into a quartet from the »*Na (I =
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FIGURE 3.13 (a) X-band EPR spectrum of the pyrazine anion radical at 297 K in
dimethoxyethane when Na™ is the counterion; here >*Na quartet hyperfine structure is
observed. [After J. dos Santos-Veiga, A. F. Neiva-Correia, Mol. Phys., 9, 395 (1965).]
(b) When K™ is used as the counterion, no quartet splitting from *°K is observed. [After
A. Carrington, J. dos Santos-Veiga, Mol. Phys., 5, 21 (1962).]

%) hyperfine interaction. A reason that no *°K hyperfine splitting is observed in

Fig. 3.13b is the very small magnetic moment of the *°K nucleus (Table H.4).
Because lineshape derivatives have positive and negative regions, superpositions

of adjacent EPR lines exhibit regions of constructive and destructive interference. A

B

506G

FIGURE 3.14 The X-band first-derivative spectrum of (p-NHCOCH;3),TPPCo
(N-Melm) O, in toluene solution at 228 K. Here TPP designates tetraphenylporphyrin and
Melm is methylimidazole [After F. A. Walker, J. Bowen, J. Am. Chem. Soc., 107, 7632 (1985).]



74 ISOTROPIC HYPERFINE EFFECTS IN EPR SPECTRA

good example is the spectra of complexes LCoO,, in which the single unpaired elec-
tron is located mostly on the superoxide (O, ) ion bonded to a cobalt ion (Co>"). The
latter (*’Co, I = %, 100% abundance) provides the hyperfine structure: eight adjacent
equally intense lines (Fig. 3.14 and Problem F.4). Here L represents the set of other
ligands bonded to the cobalt ion. These species are synthetic analogs of dioxygen-
carrying proteins (e.g., myoglobin and hemoglobin).

3.5 USEFUL RULES FOR THE INTERPRETATION OF
EPR SPECTRA

The following are a few important rules that aid in the interpretation of isotropic
EPR spectra:

1. If the applied field B is sufficiently large compared to the hyperfine split-
tings, the positions of lines are expected to be symmetric about a central
point and are given by Eq. 3.1. If hyperfine splittings are sufficiently
large, second-order interactions can cause asymmetry of the spectrum
(Section 3.6). Variations in spectral linewidths may arise from a slow tum-
bling rate of the radical (Section 10.5.5). This may give an appearance of
asymmetry. Asymmetry may also be caused by superposition of lines
from radicals having different g factors.

2. A spectrum having no intense central line indicates the presence of an odd
number of equivalent nuclei of half-integral spin. The observation of a
central line does not exclude the presence of an odd number of nuclei.

3. For first-order spectra with hyperfine splittings from nuclei each with I = %,
the sum 3;n;la;|, where j = 1...N for all nuclei, must equal the spectral
extent. Here N is the number of sets of equivalent nuclei and n; is the
number of nuclei with the hyperfine splitting a; (absolute values). The spectral
extent is the separation (in mT) between the outermost lines, which in multi-
line spectra are often very weak and may therefore be missed.

4. The stick-plot reconstruction, if it is correct, should match the experimental
line positions, especially in the wings of the spectrum. If the widths of all
lines are equal and there is little overlap, then the relative amplitudes
should correspond to the degeneracies.

5. The separation of the pairs of adjacent outermost lines is always the smallest
hyperfine splitting.

6. The total number of energy levels in the system for one value of My is given by
IL;(21j + 1)" (where j = 1, ..., N); n;is the number of nuclei with spin / ; in
set j.

7. The maximum possible number of lines (when second-order splittings are
not resolved) is given by II; (2 I y+1) (where j=1, ,N). Here the
composite spin is Iy = Y 1 11( H= njl( 5. If the w1dths are unequal or the
resolution poor so that overlap is serious, it may be desirable to undertake
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a computer simulation of the spectrum, based on assumed hyperfine splittings
and linewidths (Section F.1.1). When several hyperfine splittings are present,
or more than one radical is present, it is imperative to carry out such a simu-
lation as a test of the analysis. These assumptions can be tested using the case
of the 1,3-butadiene anion radical discussed previously.

The reader is advised to work out Problem 3.5 as an example of the application of
these rules.

3.6 HIGHER-ORDER CONTRIBUTIONS TO
HYPERFINE SPLITTINGS

The analysis of hyperfine splittings presented here is valid only in cases where the
hyperfine coupling energy is very much smaller than the electron Zeeman energy
gB.B (e.g., see Fig. 3.8). Where hyperfine couplings are large (or equivalently the
applied magnetic fields are small), additional shifts and splittings of some lines
can occur. This extra splitting is usually called ‘higher-order splitting’ since, to
derive this effect, the energies of the levels must be calculated at least to second
order [9,14,15]. This is just one example of various higher-order effects that are
encountered in magnetic-resonance analysis. The reader is urged to consult Sections
C.1.6, C.1.7 and C.2.2 for examples.

The higher-order splittings briefly considered here normally are observed only for
relatively large hyperfine splittings and commensurately narrow linewidths. They
are noted here to alert the reader to their occurrence. Note that with single nuclei,
only shifts (and no such splittings) occur, and these provide no information that is
not already available from the first-order spectrum.

The following is only a brief outline of second-order splittings for the case of two
equivalent nuclei of spin I = % The central line of the 1:2:1 triplet arises from
transitions between degenerate energy levels. When A, becomes a significant frac-
tion of gfB3.B, this degeneracy is lifted and one observes four equally intense lines
(Fig. 3.15a). In fact, all lines except one of the central pair have been shifted down-
ward from the ‘first-order’ positions. The position of the unshifted line requires no
correction to provide the true g factor, since there is no nuclear magnetism
contribution.

In general, for a single type of nucleus when the nuclear spins I; of a set of n
equivalent nuclei (i=1,2,...,n) are added vectorially to form a total spin
vector ‘T with component eigenvalues ‘M, the second-order correction to the pos-
ition of each line is given (since ‘M, is conserved in these transitions) to a good
approximation by

2

__A40t t e
AB = ZgBehv[I(I+1) M] 3.2)
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FIGURE 3.15 First-order and second-order splitting of (a) a 1:2:1 triplet arising from two
equivalent nuclei each with I = %, and (b) a 1:3:3:1 quartet arising from three equivalent

nuclei each with / = % The second-order splittings are significant when Ay/gB.B ~ 0.01.

valid since S = % Here the projection has 2'I;+ 1 values:

My=—"T, =T+ 1,...,+1T (3.3)

The shift is seen to be always downfield.
As a further example consider the case of three equivalent nuclei of spin I = %

The first- and second-order spectra are sketched in Fig. 3.15b. The spectrum of
the CFj3 radical, shown in Fig. 3.16, displays the second-order splittings given by

Eq. 3.2.
B
F—14.45mT—]

-

FIGURE 3.16 X-band second-derivative EPR spectrum of the CF; radical at 110K in
liquid C,Fg4, showing resolved second-order hyperfine splitting. The inner doublet arises
from FO,. [After R. W. Fessenden, R. H. Schuler, J. Chem. Phys., 43, 2704 (1965).]
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When the energies contributed by the spin-hamiltonian term AOS’ZfZ are suffi-
ciently large compared to the Zeeman terms in Eq. 2.40, then correction terms up
to order 3, 4, 5, ... may be significant (Sections 2.4 and 5.3). This is the case
when Ag/g.B. > 10 mT, for measurements at ~10 GHz. Here Breit—Rabi correc-
tions, as discussed in Appendix C, must be made.

When several inequivalent nuclei contribute hyperfine splittings sufficiently large
in magnitude that at least third-order terms are required, the relative signs of hyper-
fine splitting constants can be extracted [16].

3.7 DEVIATIONS FROM THE SIMPLE MULTINOMIAL SCHEME

On considering S = % chemical systems XL,, featuring n equivalent / = % nuclides,
it turns out that

1. For n > 2, the degeneracy for the spin energy levels cannot be completely
removed by any applied magnetic field.

2. For n > 4, certain spin states cannot occur at all in nature, consistent with the
(generalized) Pauli exclusion principle.

The exact theory [17] predicts deviations from the simplest approach described
above, which effects can in fact be observed when the ligand hyperfine splittings
are sufficiently large (see Fig. 3.16).

3.8 OTHER PROBLEMS ENCOUNTERED IN EPR SPECTRA
OF FREE RADICALS

Most of the EPR spectra encountered in this chapter refer to liquid samples in which
the radicals are free to reorient rapidly. The radicals themselves generally are asym-
metric species. However, the reorientation averages out any anisotropy in the g
factor and in the hyperfine splittings. One should be aware that the splittings
(g./g)a may depend on both temperature and the solvent.

Free radicals are often encountered in a rigid matrix. If the host is a single crystal,
one may obtain a maximum amount of information from the EPR spectra taken as a
function of orientation of the crystal in the magnetic field. If the radicals are ran-
domly oriented, one may still be able to extract a significant amount of structural
information from their spectra. Analysis of such spectra requires a detailed under-
standing of the nature of anisotropic interactions. This subject is treated in Chapters
4 and 5, where various examples are discussed. For the spectra given in this chapter,
all the lines have amplitudes that are proportional to the intensities of the lines. For
other systems, this is frequently not the case. Thus radicals in media of high viscosity
still undergo some reorientation or some degree of internal reorganization. Then the
linewidths vary markedly throughout the spectrum. Analysis of such spectra
can yield kinetic information. This subject is treated in Chapter 10. Obviously,
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free radicals in the gas phase are prime examples of isotropic behavior; these are
discussed in Chapter 7.

3.9 SOME INTERESTING =TYPE FREE RADICALS

Often it is convenient to label free radicals as being of the 7 (Section 9.2) and o type
(Section 9.3), which gives an idea as to where the unpaired electron tends to be
located: in an s-type orbital or a p-type orbital. This topic will be discussed
further in Chapters 5 and 9.

The hydroxyl free radical is of the 7 type, carrying its unpaired electron in a pri-
marily p-type orbital on oxygen, and thus showing substantial anisotropy of the spin-
hamiltonian parameters [18]. For this reason, and also because of its high mobility
and its great chemical reactivity, it is very difficult to detect OH by EPR, especially
in liquid solution. However, spin-trapping techniques do reveal it as having been
present [19].

Another good example of a 7rradical (S = %) is (CF3),C5,S,N (IV), which is stable
and known in the solid state (dimer), liquid and even the gas phase (blue in color)
[20]. It is easy to detect by EPR. When trapped dilute in solid argon at ~12 K, it
offers a rewarding EPR spectrum [21]. The molecule (IV) is seen to feature a five-
membered heteronuclear ring, and has symmetry C,, down from C,, because the two
CF; groups are found via EPR to be magnetically inequivalent.

(V) 4,5-bis (trifluoromethyl)-1,3,2-diathiazoly!

The unpaired electron, while delocalized somewhat, occurs primarily on the unique
ring-nitrogen atom. Good agreement between the experimental and simulated EPR
spectra, as well as the spin-hamiltonian parameters [g, A(14N), the A(19F) set; no
A(*’S) data] compared to these parameters obtained from quantum-mechanical
modeling, was achieved.

There has been much discussion about the nature of the species present when an
electron is dissolved in liquid water (epyqr ), and in many other solvents (€4, ). The
first EPR paper about the former appeared in 1968 [22], dealing with a single line
from an ephemeral radical obtained via pulsed electron beam irradiation. But
despite myriad subsequent papers on this general topic, the actual paramagnet
observed is still in doubt [23]; the species may well be hydronium, obtained via
the radiation-stimulated reaction 2H,0 = H30- 4 -‘OH. It too would be a m-type
free radical.
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NOTES

. At this point the reader is urged to work out Problem 3.1. This should help ensure

familiarity with successive splitting of hyperfine levels, as well as designation of
allowed transitions and of line intensities.

. The binomial expansion is

n |
(P+a'=)_ Lﬁ pxq”‘x]

x=0

where n is a non-negative integer. Here n! =1 x 2 x 3 x ..., except 0! = 1.
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PROBLEMS

31

3.2

3.3

34

3.5

3.6

(a) Using Fig. 3.1 as a guide, draw to scale three successive '°F splittings of the
spin-energy levels of the freely rotating CF; radical. Draw the allowed tran-
sitions, indicating intensities. Show by arrows the spin orientations for each
of the M; values. (b) Construct a similar plot for a radical with three
protons, only two of which are equivalent. Take the splittings at constant
field to be A; /2 and A,/2. Draw the allowed transitions, indicating intensities,
and label them with the initial and final quantum numbers.

Consider Fig. 3.2. Work out the corresponding triangles for I = % upton =6.

Consider the EPR spectrum of the CH,OH radical shown in Fig. 3.6. The two
proton coupling constants are cited in Section 3.2.2. How would the spectrum
have appeared if the opposite assignment, |a(CH,)| = 0.115mT and
|a(OH)| = 1.738 mT, had been made?

Use Eq. 3.1 and the liquid-solution hyperfine splittings of the 1,3-butadiene
anion radical (Section 3.2.2) to specify the relative positions of all lines
in the spectrum in Fig. 3.7a. Use the scale in that figure to measure the field
value of each line relative to the center; compare with the computed values.

Complete the assignment of lines in the anthracene anion radical spectrum
shown in Fig. 3.9, using the splittings given in the text and the rules given
in Section 3.5 (rules 3 and 5 are particularly useful). Start with the outermost
lines and move toward the center.

(@) When deuterium (ZH) is substituted for hydrogen (1H) in a free radical, can
one predict the value of a® if @™ is known for the undeuterated radical?
Assume that no other changes occur. (b) Figure 3.17 displays the spectrum

B
2.32mT

FIGURE 3.17 X-band second-derivative EPR spectrum of a mixture of CHD, and CH,D in
a Kr matrix at 85 K. [After R. W. Fessenden, J. Phys. Chem., 71, 74 (1967).]
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of a mixture of radicals CH,D and CHD,. Identify the lines belonging to each
spectrum and give values for each of the hyperfine splittings. Compute the
ratio @' /a®. Compare this with the expected value.

Various dicobalt complexes LCoO,CoL, closely related to the species LCoO,
discussed in Section 3.4, are known [e.g., with L = 5 NH;3, 5 CN ™, 2 ethylene-
diamine groups plus one (shared) NH, bridge, . ..]. The single unpaired elec-
tron is located primarily on the bridging superoxo moiety. Draw an
energy-level diagram analogous to that presented in Fig. 3.11, featuring the
cobalt hyperfine splitting. Predict the EPR spectrum expected in liquid
solution, that is, the number of lines and their relative intensities.

Figure 3.18 represents the spectrum obtained when a single crystal of KCI,

doped with **S, is y-irradiated. The crystal has been prepared from a sulfur-

doped sample enriched in **S to an extent of 60%. The summed natural abun-

dance of the spin-less nuclides (*2S and **S) is 99.3%. The spectrum has been

ascribed to S, .

(@) What are the various possible S, species, and what are their relative
abundances?

() How many lines are to be expected for each of these S, species, and
what are their relative intensities?

U

FIGURE 3.18 EPR spectrum at 9.550 GHz and 4 K of S, in a vy-irradiated single crystal
of KCl doped with 33 (60% of S). [After J. R. Morton, J. Phys. Chem., 71, 89 (1967).]

3.9

(¢) Compute the **S hyperfine splitting constant to first order.
(d) What is g at the crystal orientation used?

Consider the spectrum attributed to FPO, (S = %) shown in Fig. 3.19 [24-26].
The strongest lines of the spectrum are those from this ion. Construct a stick-
plot representation of this spectrum and extract the hyperfine splittings for '°F
and *'P. Indicate reasons for the assignment made. The splittings are relatively
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B (T)—
0.20 0.25 O.I3O O.'35 O.I4O 0.45

|| | ] FPOS

‘||| Illlhl‘JPFs_

2 21 2,10 2, +2 + 0 -1 -2 tm
+Y, MP -V

FIGURE 3.19 X-band EPR (9.510 GHz) spectrum at 295 K of a y-irradiated single crystal
of NH,4 PFg. The three radicals produced have been attributed to PFs , FPO, and PO;>". The
splittings of the PFs~ lines arise from second-order interactions [16,24,25]. Here 'I* refers to
the total fluorine nuclear-spin quantum number in the coupled representation (Section B.6).
The central multiplet is attributed to N,H, . [After J. R. Morton, Can. J. Phys., 41,706 (1963).]

large so that, for accurate work, corrections for higher-order energy terms
should be made. Carry these out, using the theory given in Eq. C.25ff (see
also Eqs. 3.2 and 5.10), to assess their magnitude.

3.10 The spectrum shown in Fig. 3.19 contains some lines that have now been
assigned to the radical PF5 . The isotropic hyperfine coupling constants
and g factor are as follows:

a® = 135.66 mT
" =19.78 mT

a™® ~ 4 mT (not resolved in Fig. 3.19)
g = 2.00174

The phosphorus and major fluorine splitting patterns clearly show resolved
second-order splittings.

(a) The unshifted line of the high-field group occurs at 384.84 mT. The sep-
aration of this line and the unshifted line of the low-field group arises from
the *'P hyperfine splitting. Why is this not quite the same as A"/ g.Be
(Section 2.4)?
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(b) The unshifted line in the low-field fluorine splitting pattern occurs at
250.11 mT. Predict the positions of the other eight lines in the low-field

group.

3.11 Consider the spectrum (Fig. 3.20—taken at high gain) arising from the
2,5-dioxy-p-benzosemiquinone trianion radical in basic aqueous solution.
The main spectrum, consisting of a 1:2:1 triplet from the two ring protons,

FIGURE 3.20 X-band EPR spectrum at 295K in aqueous solution of the
2,5-dioxy-p-benzosemiquinone trianion radical. The off-scale triplet in the center arises
from molecules having no '*C nuclei. The satellite lines on the wings arise from molecules
each containing one 13C nucleus. [After D. C. Reitz, F. Dravnieks, J. E. Wertz, J. Chem.
Phys., 33, 1880 (1960).]

is off scale in the center of the spectrum. Consider the satellite lines shown
in the wings. Account for the number and relative intensities of these.

3.12 The EPR spectrum of XeF, observed in a y-irradiated single crystal of XeF,
[26], is given in Fig. 1.6. It is a simple example of a system in which dis-
tinct spectra are observed for different isotopic species. The relative abun-
dances of '*Xe and '*'Xe are 26.4% and 21.2%. The remaining 52.4% is
distributed among the isotopes of mass numbers 124, 126, 128, 130, 132,
134 and 136. The XeF radicals containing these isotopes are referred to col-
lectively as °V*"XeF. There are 14 major lines (ignore the small doublet
splitting on each line, which arises from a neighboring fluorine nucleus in
the XeF, host). Analysis of the spectrum begins with a tabulation of
expected line patterns and relative line intensities for different XeF
species (Table 3.1). Use Fig. 1.6 and the following information to fill in
the blanks in Table 3.1:
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A /h |A"|/h
Radical 1 (MHz) (MHz) g
everXeF 0 — 2649 1.9740
'*XeF ! 2368 2637 1.9740
1XeF 2 701 2653 1.9740

All data quoted are for B parallel to the XeF axis. Mean error in A/h is +10 MHz.

TABLE 3.1 EPR Lines of Various XeF Isotopic Species

Mean Mean
Expected Xenon Fluorine
Relative Xenon  Hyperfine Hyperfine
Pattern of Line  Intensity of Nuclear g Splitting “ Splitting *

Species Lines Numbers Lines Factors (MHz) (MHz)
evenxeF One doublet 4,11 1.000 — — —
129X eF — —  —1.55595 — — —
B31XeF — — 0.461243 — — —

Ratio 129/131 — — — — — —

“ Mean values of the measured separation (in mT) of corresponding line components of XeF (Fig. 1.6).

3.13 Draw at least 3 of the (infinite number of) resonant forms for structure IV,
those expected to have the most importance, showing where the unpaired
electron might occur.



CHAPTER 4

ZEEMAN ENERGY (g) ANISOTROPY

4.1 INTRODUCTION

The solid state offers a broad variety of systems and phenomena observable with
EPR spectroscopy. The technique is applicable to all types of solids, ranging from
insulators via semiconductors to metallic conductors and superconductors. The sim-
plest situation occurs when there is no interaction between the paramagnetic species.
Much greater complexity occurs when the electron spins exist in highly correlated,
magnetically concentrated systems; these may form aligned domains (examples are
ferromagnetic and ferrimagnetic materials, as well as their antiferromagnetic and
antiferrimagnetic counterparts, as well as superparamagnetic systems). For the
most part we restrict ourselves to isolated paramagnetic centers in magnetically
dilute systems.

The EPR spectra of oriented species in solids may be more complicated than for
liquids; however, their analysis provides much additional useful information. One
may hope to extract details of intra- and intermolecular interactions, molecular con-
figuration, site symmetry, as well as the nature and location of neighboring atoms.
Furthermore, one observes in rigid solids many paramagnetic species that are too
reactive or too unstable to be detected in liquid solution. A discussion of the gener-
ation of such unpaired-electron entities is included in Appendix F.

Here we focus primarily on solids containing independent unpaired-electron
species, limited to relatively few atoms in each center. When the paramagnetic
center is not a normal component of the host material (and its electron is close to
being localized), it is often called a ‘point’ defect. Even with the restriction to

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.
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magnetically dilute species, one encounters substantial differences in EPR proper-
ties, dependent on the form of the sample. One may deal with single crystals, poly-
crystalline systems (called powders when a sufficient number of randomly oriented
small crystals are present), amorphous, or glassy systems. In single crystals the spin
centers are limited to relatively few possible orientations relative to the body of the
crystal itself; this results from highly organized long-range correlation of the con-
stituent atoms. In glasses only local geometric correlation of atom positions
exists. Here we refer to static disorder, there is no time dependence of any parameter.

In crystalline systems even the qualitative aspects of an EPR spectrum may be
markedly dependent on the orientation of the sample, defined relative to the exter-
nally applied magnetic fields (B and B, Section 1.1). Such systems are said to be
anisotropic in their behavior. Some important classes of paramagnetic systems
that show such anisotropy include

1. Free radicals
2. Transition ions surrounded by ligands
3. ‘Point’ defects

We now undertake to discuss the important EPR aspects of such unpaired-electron
centers occurring within single crystals, deferring the consideration of EPR in powders
and glasses until the required background material has been presented.

In crystals the concept of symmetry is of crucial importance. The arrangements of
atoms (including molecules where relevant) is classified according to a limited set of
symmetry types. The latter are describable by utilizing group-theoretic consider-
ations of symmetry operations about any given point, as well as by their long-range
translational order. The latter are not essential for our purposes; in fact we need only
the eleven so-called proper point groups to discuss all types of crystals encountered
[1] (Table 4.1). Note that here only the rotational aspects of the repeat units of atoms

TABLE 4.1 The 11 Proper Rotation Groups of Crystals in
Schoenflies Notation (International Symbol in Parentheses)

Group N? Group N?
Cubic Cyclic
0 (=432) 24 Cs (=6) 6
T (=23) 12 Cy (=4) 4
Dihedral C3 (=3) 3
D¢ (=622) 12 C, (=2) 2
D, (=422) 8 C (=1) 1
D; (=32) 6
D, (=222) 4

“ Number of symmetry-related sites in each group. N gives the maximum
number of magnetic-resonance symmetry-related spectra for each group
(for details, see Ref. 1).



41 INTRODUCTION 87

are relevant, and no attention need be paid to the presence or absence of crystal
faces. Various tools (optical, diffraction by x rays, neutrons, and other particles,
as well as magnetic resonance) are available to establish the proper point group of
any given chemical system.

In addition to the crystal symmetry, the local symmetry at any unpaired-electron
center is of prime importance. Such a center could be an impurity embedded in the
crystal structure, and perhaps distorting it. We can classify this situation into one of
three categories in order of decreasing local symmetry:

1. Cubic. Here there are three sub-systems, termed cubal, octahedral and tetra-
hedral (Fig. 4.1). In these, anisotropy of EPR properties is absent. In different
terminology, we see that all three principal values are equal for each parameter
matrix encountered.

2. Uniaxial. Here there is linear rotational symmetry (at least three-fold) about a
unique axis contained in each paramagnetic species embedded in the crystal.
Anisotropy is observable except with the field B in the plane perpendicular to
the unique axis. Two principal values coincide but these differ from the third
in each parameter matrix. This case is sometimes simply called ‘axial’.

3. Rhombic. This is the general case, implying anisotropy for all rotations and
the presence of three unequal principal values in each parameter matrix. In
the literature this case is often called ‘orthorhombic’.

These concepts are applicable to all magnetic properties of unpaired-electron
species. For instance, S can take on any value %, 1, % ... . In this chapter we concen-
trate on the anisotropy of the line positions, that is, the g factors. As noted in Section
1.12 the g factor shift g — g, arises from the electromagnetic-field effects provided
by the other electrons and nuclei in the magnetic species. In general these fields
provide an anisotropic environment, and one should thus expect the g factor to
also be anisotropic.

Specifically, the anisotropy of the g factor arises from admixture to the
electron-spin angular momentum of a (generally small) amount of orbital angular

(a) (b) (0

FIGURE 4.1 The subclasses of the cubic symmetry class: (a) cubal (eight nearest neighbors
to a central point); (b) octahedral (six nearest neighbors); (c) tetrahedral (four nearest
neighbors).
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momentum. However, the latter need not be considered explicitly since its effect can
be replaced by imputing anisotropy to g.

For the moment, we treat the g matrix as incorporating a set of parameters,
without asking questions as to why their values are what they are. Quantum-
mechanical models for evaluating principal g factors exist but are not simple, and
we defer discussion of these ideas to Section 4.8.

4.2 SYSTEMS WITH HIGH LOCAL SYMMETRY

Before undertaking a general discussion of the line-position anisotropy, that is, of g,
it is instructive to examine an unpaired-electron species located in an isotropic
medium, namely, a cubic host crystal. Here, if one considers the time average
over the rapid vibrational excursions, there is cubic symmetry about any normal
lattice site. For an unpaired electron at such a site, g is strictly a scalar constant,
and the spin hamiltonian has the form

H = gB,(B.S; + B,S, + B.S.) @.1

For cubic local surroundings, the EPR line position is isotropic. The g factor in
the simple resonance equation (Eq. 1.19) is independent of the magnetic-field direc-
tion only in isotropic systems. For example, an electron in a negative-ion vacancy
(F center) in an alkali halide (Fig. 4.2a) is found to be delocalized symmetrically
about the center of an octahedron of cations. Here the g factor is isotropic, as are

(@) cl” Na* cl”
Na™ e Na*
cl” Na© cl™

(b)

Mgz+ 02~ Mgz+
0 0%"
Mg2+ 02— Mgz+

FIGURE 4.2 (a) Model of the F center in NaCl (cubic symmetry) and (b) model of the V™
center in MgO (tetragonal symmetry).



4.2 SYSTEMS WITH HIGH LOCAL SYMMETRY 89

other properties of a system with local octahedral symmetry (i.e., proper point group
O; Table 4.1).

On the other hand, the symmetry may be reduced from octahedral to tetragonal by
applying an external stress along any one of the three [100]-type directions.' Alter-
natively, one may encounter (or introduce) an imperfection along one of these axes.
The positive-ion vacancies (V centers) offer an example. The V™ center (earlier
called V) in MgO or CaO (rock-salt structure; proper point group O) has one
unpaired electron [3—6]. In an ideal crystal the Mg®>™ and O*~ ions are all at sites
of octahedral symmetry. On low-temperature x-ray irradiation, V~ is formed
when an electron is removed from any one of six oxygen ions adjacent to a (pre-
existing) magnesium-ion vacancy; as a result there is a small displacement of the
resulting O~ ion away from the vacancy. The geometric configuration of this
defect center is shown in Fig. 4.2b. This ion carries an unpaired electron in a
p-type orbital. The distortion leaves a fourfold axis of symmetry (i.e., uniaxial
symmetry = tetragonal symmetry). It is customary to label this unique axis as the
Z direction. It is taken to be horizontal in Fig. 4.2b.

If B is parallel to Z and v = 9.0650 GHz, an EPR line is observed at 323.31 mT.
When the MgO crystal is rotated so that B remains in the YZ plane, the line of the V™
center shifts from 323.31 to 317.71 mT as the field direction changes from Z to Y.
The variation in line position with orientation is shown in Fig. 4.3. Then we can
define the parameters

hv  6.62607 x 10734J's x 9.0650 x 10° s~

= = =2.0386 (4.2
&L B.B. 9.27401 x 10~ T~! x 0.31771 T (42a)
hv
g = —— = 2.0033 (4.2b)
'~ BBy

Here g, and g are the g factors appropriate to the magnitudes B and B, of the field
when it is perpendicular and parallel to the symmetry axis (i.e., Z).

32331 2.0033
B g
(mT) l
31711 T 2.0386
0° 90° 180°

ANGLE 8 —
(deg )

FIGURE 4.3 Angular dependence of the EPR spectrum of the V™ center in MgO, for B || X
(=[100]). Angle 0° indicates B || Z (=[001]). Resonant-field values at g extrema are given at
the left of the figure, for microwave frequency 9.0650 GHz. The corresponding g factors are
shown at the right.
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Such a uniaxial case is also encountered when transition ions (Section 8.2), with
electron configuration nd' (S = %), are studied in tetragonal orthophosphates (group
C; Table 4.1). The EPR parameters of Ti* " (n = 3), Zr’" (n = 4) and Hf** (n = 5)
have all been measured at 77 K in single crystals of ScPO, (for Ti*"), LuPO, (for
Zr>") and YPO, (for Hf**) and display very similar g factors [7]. For instance,
Ti*" substituted for Sc** yields g, = 1.961 and g, = 1.913.

The shape of the curve in Fig. 4.3 is found to be well represented by an effectual
g factor given by the positive square root of

g> =g, 2sin® 04 g, cos” 6 (4.3)

where 6 is the angle between B and the symmetry axis of the defect. We see that the
two parameters g, and g, allow us to find the line position at any arbitrary orien-
tation. It is shown later that Eq. 4.3 is a special case of a more general expression
(Egs. 4.6). Equation 4.3 is applicable to all systems possessing a local symmetry
axis of order 3 or higher. For such a system (i.e., one having uniaxial symmetry),
the spin hamiltonian (in the absence of hyperfine interaction) is

H = B,[g.(BxSx + BySy) + g,B:S7] (4.4q)

This can be as the product of a row vector, a square matrix and a column vector:

81 0 0 Sx
H=PB[Bx By Bz]-| 0 g O [-|35y (4.4b)
0 0 g S,

=pB ¢S (4.4¢)

The superscript T is useful in indicating transposition of a spatial column vector
to the same vector expressed as a row vector (Section A.4). Thus use of the g-matrix
concept allows a convenient representation of anisotropy in the energy as a function
of the B-field direction. In other words, complete knowledge of the (infinite) set of g
factors for any given chemical system can be encapsulated in a 3 x 3 ‘parameter’
matrix.” The g parameters in Egs. 4.4 are elaborated in the next section and are con-
sidered in some detail in Section 4.8.

4.3 SYSTEMS WITH RHOMBIC LOCAL SYMMETRY

The systems to be considered now are the most complex ones, those with rhombic
local symmetry, which are the ones most commonly encountered (e.g., in organic
media). As an example, consider the defect center shown in Fig. 4.4, which is
found in those alkali halides (e.g., KBr) having the rock-salt structure. Here the
defect is the superoxide ion O, , a paramagnetic diatomic molecule that has a



4.3 SYSTEMS WITH RHOMBIC LOCAL SYMMETRY 91

[loo] x

FIGURE 4.4 Projection onto plane xy of a unit cell for an alkali-halide crystal having the
rock-salt structure, showing a substitutional O, ~ ion site. The molecular axis Z is on a crystal
two-fold rotational symmetry axis, [1 1 0]. The oxygenic p lobes holding the unpaired electron
are explicit, and are held ‘in place’ along [—1 1 0] as a result of polarization local distortion by
one nearest-neighbor anion. The neighbors above and below the superoxide anion are cations.

single unpaired electron, which replaces a diamagnetic Cl™ ion [10]. It is convenient
to choose the O—O interatomic direction as the axis Z of the local coordinate
system. The axis X of the right-handed coordinate system is taken to lie in the
plane defined by the two parallel 2p orbitals shown in Fig. 4.4, whereas Y is directed
out of this plane.” Note that the axes X and Y are not equivalent. The symmetry of
the defect is rhombic rather than uniaxial because of interaction with neighboring
atoms. The spin hamiltonian (ignoring any hyperfine interactions) is

H= Be(gXBXSX + gvBySy + 82B7S7) 4.5)

Here we encounter the rhombic case with gy = 19268, gy= 19314 and
gz =12.5203 [10]. If it were possible to have all such diatomic defects present
along a single crystal direction (say, indices [110] as indicated in Fig. 4.4), the spec-
trum according to Eq. 4.5 would consist of only a single orientation-dependent line.
Consider the EPR line arising from such a set of O, ions (in reality, there are five
other sets; see Section 4.5). The g factors gy, gy and g are obtainable from the line
positions measured with the field along the X, Y and Z directions. The effectual value
of g for an arbitrary orientation is then given by the positive square root of

g2 = gX2 cos? Opx + gY2 cos’ Opy + gz2 cos’ 0p.7 (4.6a)
= gx’cx” + gviey’ + g77¢r’ (4.6D)
Here 603 x, 05y and 6p  are the angles between the field B and the X, Y and Z axes. It

is convenient to represent the cosines of these angles by the symbols cy, cy and ¢z
(Eq. 4.6b). These are referred to as the direction cosines.* Note that Eq. 4.6b is
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equivalent to the product

@=lex cv czl-| 0 g* 0 ||y 4.7

The simple form of Eqs. 4.6 and of the parameter matrix in Eq. 4.7 result from the
use of the known principal-axis system (Section A.5) of the defect center. More gen-
erally, when one measures the g factors in ignorance of the principal axes, the off-
diagonal elements of the g matrix are non-zero. Indeed, it would have been logical to
have measured line positions as a function of rotation about the (100)-type axes in
the case of the cubic crystal. A more careful notation, as well as the technique of
arriving at the values in the matrix in Eq. 4.7 from such measurements, is discussed
in the next section.

4.4 CONSTRUCTION OF THE g MATRIX

In recognition of the fact that in general g is a matrix, the spin hamiltonian of Eq. 4.5
may be written as Eq. 4.4c. We note from Eq. 2.16a that Eq. 4.4c is equivalent to
considering a generalized electron magnetic moment

f=pgS 4.8)

which is taken to interact with the field B (see Egs. 1.14).
Alternatively, the product BT - g in Eq. 4.4¢ may be regarded as a vector resulting
from a transformation of the actual field B to an effective field

By =g'-B/g. (4.9a)
or equivalently
By =B'-g/g. (4.9D)
The magnitude of the effective field is given by
B =[(g"B)'- (g B)]'"?/s. (4.10a)
=[B"-g-g" B/ (4.100)
= {n"- g~ g")-m]"*/s.|B (4.10¢)
where
n=B/B 4.11a)
Cx
=| ¢ (4.11b)
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is the unit vector along B. In concert with Eq. 1.22b, we define

g=[n": (g-gH-m]""? (4.12)

where of course 7 is a function of crystal orientation relative to B. The sign of g is
positive for most systems.’ Then the parameter g is seen to be a scalar not dependent
on the magnitude B, but orientation-dependent since it is a function of n defining the
direction of the vector B. .

The spin angular momentum taken to be quantized along By Thus BegT+ S
yields B.g Mg, where Mg ranges by unit values from —S to +S (Section B.4). The
eigenvalues of the spin hamiltonian (Eq. 4.4c) for S =% are such that the two
electron-spin energy levels are

U = —%gBeB (4.13a)
and

U, = +4¢B.B (4.13b)
The energy-level separation thus is

AU =U, - U, (4.14a)
=gB.B (4.14b)

The g factor for an arbitrary field orientation is unknown until the matrix g - g* has
been established, by EPR spectroscopic measurement of AU(n). We see from
Eq. 4.12 that it is the matrix product g - g” that is the measurable matrix, rather
than g itself. Because g is not necessarily symmetric (across its diagonal), it is not
trivial to set g* equal to g. Thus the notation g* in Eqs. 4.3 and 4.6 is seen to be
not entirely satisfactory.

We adopt the definition gg = g - g”, and now explore some of the properties of
this parameter matrix.” Even if g is asymmetric, gg is always symmetric. Thus we
need write explicitly only the diagonal and upper off-diagonal elements. In any
arbitrary cartesian coordinate system x, y, z fixed in the crystal, gg is not diagonal,
so that

(88 (gg)x) (gg)xz Cx
g =lex ¢ - (88)yy (88 |*]| & (4.15)
(88 Cz

with a form as in Eq. 4.12 for g itself. One may interpret the double subscripts as
follows. For example, component (gg),, may be considered as the contribution to
gg along the axis y when the magnetic field is applied along x. That such contri-
butions are to be expected for the case of the O, paramagnetic center may be
seen from Fig. 4.4. Since the axis X is not orthogonal to the axes X or Z of the
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O, ion, any field B, has components along both the X and Z directions. There are
thus components of magnetization along the X and Z axes.® Hence even at this
special orientation the off-diagonal component (gg),, is non-zero. However, since
z (=Y) is a principal axis, the components (gg),. = (gg).. and (gg),. = (gg).,
vanish.

Following the procedure outlined in Section A.5.2, we now turn to the general
case of the calculation of matrix gg from sets of measurements, for which

g* = (g8),, sin’ fcos’ ¢ + 2(g )y sin? fcos ¢singp
+(g8)yy sin® @sin® ¢ + 2(g g)., cos fsin fcos ¢
+ 2(gg),, cos Osin Osin ¢ + (gg).. cos’f (4.16a)

The (gg),; elements can be determined from experiment by successive rotations of
the crystal with n fixed (or alternatively rotations of the field, i.e., of n, with the
crystal fixed) in the xz, yz, and xy planes. For the xz plane (¢ = 0), if 0 is the
angle between B and the z axis, ¢, = sin 6, ¢, = 0, and ¢, = cos 6. Then

) (82 (82, (88 sin 6
g =|[sinf® 0 cosf]: (g8)yy (88, |* 0 (4.16b)
(88): cos 0
and

g* = (g88),, 5in” 0+ 2(gg),. sin Hcos O + (gg),. cos” O (4.16¢)

Similarly, for rotation in the yz plane (¢ = 90°), ¢, = 0, ¢, = sin 6, and ¢, = cos 0
so that

g> = (gg),, sin’ 0 + 2(gg),, sin Ocos O + (gg).. cos” O (4.17)

Likewise, for rotation in the xy plane (6 = 90°), ¢, = cos ¢, ¢, = sin ¢, and ¢, = 0
and hence

g = (g8),, cos’ b + 2(gg),, sin pcos ¢ + (gg),, sin’ ¢ (4.18)

It is evident that in each plane only three measurements are necessary in principle to
obtain the three parameters available therefrom, although many are made in practice
to attain precision. For the xz plane, measurements with § = 0 and 90° give the
values (gg),, and (gg).,. The value of (gg),. = (gg).. can be determined with the
best precision at 45° and at 135°. In fact, one only requires three ‘independent’
planes to determine gg, and these need not be orthogonal.

Following the evaluation of the six independent components of the gg matrix, it
is possible to transform it to a diagonal form. This is accomplished by finding a
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matrix C such that

Cxo Cxy Cx: (88 (88)y (88)x Cxr Cnx Cxn
Cyx Cy Cy |- (88)yy @®w | | Cxy Cry Cgz
Czc Cz Cz (88)-- Cx; Cr, Cz
C gg CT
(88)x 0 0
= g9y 0O (4.19)
(88)z
dgg

We note that once the matrix has been cast into the diagonal form ‘gg, to display the
principal values, we can dispense with the double labeling of the latter. As indicated
in Eq. 4.19, the components of C are in fact the direction cosines connecting the mol-
ecular axes X, Y, Z of the paramagnetic defect with the laboratory axes x, y, z. Matrix
C" is the transpose of C; both are real orthogonal so that C* = C ~'. The procedure
for finding the matrix C that diagonalizes a given matrix gg is given in Section A.5.5.

Generally, by definition, X, Y and Z are the principal axes of the matrix gg. If the
magnetic species has any proper axes of symmetry, then these axes (if there is more
than one, when these are orthogonal) coincide with X, Y or Z; if there are planes of
symmetry, these must be perpendicular to X, Y or Z. For molecules of low sym-
metry, the principal axes may be in any direction (dictated by the local fields) but
are necessarily orthogonal to each other. The principal directions and hence the
matrix C are the same for gg and for the symmetric matrix g. One of the principal
directions corresponds to a minimum value of g and another to a maximum. In prin-
ciple, each principal-axis vector can be taken arbitrarily to point in either sense along
its direction, that is, its sign has no physical meaning. However, we do convention-
ally choose matrix C to represent a proper rotation.

At first sight, it appears that in Eq. 4.19 we started with six parameters and ended
up with only three. However, three of the original set have been utilized in arriving at
the new coordinate system, that is, the principal-axis system inherent to the spin
species studied. Thus, in general, gg contains three pieces of geometric information
and three of physical (quantum-mechanical) import.

Once the principal values of gg are found, one wishes to obtain the matrix g itself.
Here there are two types of problem: of matrix asymmetry and of signs. If g is an
asymmetric matrix, then its principal-axis system is not an orthogonal one, thus dif-
fering from the set obtained for gg. There seems to be no way of arriving experimen-
tally at the ‘true’ matrix g obtainable from theory, whereas it is trivial to obtain gg
from g. However, one can arrive at a ‘conventional’ matrix g, as is done everywhere
in the literature. The method is to take the positive square root of each diagonal
element of “gg” and then to change the resulting diagonal matrix g back to the lab-
oratory coordinate system by using the reverse (g = C" - g - C) of the similarity
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transformation, Eq. 4.19. The resulting symmetric matrix g reproduces the exper-
imental data (line positions and intensities) but may differ from the theoretically
derived g matrix. Problem 4.4 gives an opportunity to establish the principal
values of a g matrix.

4.5 SYMMETRY-RELATED SITES

We have seen in Section 4.3, in the example dealing with the O ions, that chemi-
cally identical species can occur at various orientations, dictated by the proper point
group symmetry of the crystal. These different symmetry-related sites for any given
spin species become different and thus distinguishable in magnetic-resonance spec-
troscopy when the field B is applied.

For instance, consider the gg matrices for O; in KBr referred to previously in this
chapter. There are six different possible orientations ((110))" of these ions within the
crystal, whose EPR line positions are described by six distinct matrices “gg with
a=1,..., 6. These matrices have identical sets of principal values but differ in
the orientation of their principal-axis sets. The mathematical relations between
them, called similarity transformations (Section A.5.5), are dictated by the crystal
symmetry and can be written as

“gg="R-'gg: “R" (4.20)

where the 3 x 3 matrices “R are properties of the whole crystal, that is, of its proper
rotation group and not of the local symmetry of the spin species. There are only 11
distinct cases, covering all possible crystal systems. A listing of the eleven groups
and number N, of symmetry-related sites for each is given in Table 4.1. A listing
of the matrices “R (¢ =1,2,...,N,) is to be found in Ref. 1. Note that one
matrix ('R) in the set of N, matrices °R is always the 3 x 3 identity matrix 15. In
all but one case [i.e., the triclinic crystal (symmetry C;)], EPR spectra from more
than one site are in general visible. For the octahedral group O, appropriate to
KBr, Ny = 24. However, because of the special orientations of the O, ions along
two-fold symmetry axes of KBr (Fig. 4.4), the Ny = 24 matrices “gg superpose
in identical sets of four [1], yielding only six different matrices “gg
(e’ =1,2,...,6). At general orientations of B there are thus six distinct EPR
lines, with equal intensities, unless an external stress is applied to spoil the crystal
symmetry. In special experimental situations, such as B scanning the (001) plane,
some of these lines superimpose (Fig. 4.5).

Similar considerations hold for the other spin-hamiltonian parameters to be dis-
cussed (e.g., symmetry-related hyperfine coupling matrices). The reader should under-
stand that in general, for single-crystal EPR, there are N; spectra, some of which may
exactly superimpose. This site effect obviously leads to greater complexity of the
observed spectrum. At times this causes trouble for analysis. Often, however, use
can be made of the occurrence of the symmetry-related spectra to measure an
unknown matrix (say, 1gg), from far fewer field orientations than would be required
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FIGURE 4.5 The EPR line positions at fixed frequency (v = 9.5 GHz) for the distinct sites
of O, in KBr, as a function of crystal rotation about axis [001], with the magnetic field
scanning the plane (001). The number of superimposed lines is indicated within
parentheses. [After H. R. Zeller, W. Kénzig, Helv. Phys. Acta, 40, 845 (1967).]

in the absence of distinct sites. For example, as delineated in Ref. 1, rotation of the
field in a single suitably chosen crystal plane may suffice to obtain all the parameters.
Note that once one matrix (e.g., 'gg) is known, all N, matrices “gg are at hand via Eq.
4.20. Furthermore, if one studies a crystal for which the proper point group is
unknown, information about this group can be adduced from the observed spectra [1].

Clearly all the preceding mathematical manipulations, as well as the analogous
additional ones to follow in Chapters 5 and 6, are amenable to computer techniques.
Thus, very large line-position data sets for known field orientations (and sites) can be
utilized to produce the spin-hamiltonian parameters such as g. Automatic statistical
error analysis can be incorporated [12]. An example can be found in Ref. 4 of
Chapter 2.

4.6 EPR LINE INTENSITIES

The intensity (area under the absorption curve; see Section F.2) of each EPR line is
dependent on various factors [8, Chapter 2; 13,14]. These include

1. The square of the transition moment (Section C.1.4), that is, of the matrix
element of the amplitude (time-independent part) of the excitation spin
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hamiltonian (note Eq. 2.16a)

A

Hi=-B,"+ i = —B i, (4.21a)

=gBBT-S+--- (4.21b)

between the initial and final states (eigenfunctions of the spin hamiltonian).
This term embodies the operative magnetic-dipole selection rule, including
the required orientation of B; relative to B (Sections 1.11, C.1.4 and E.1.1).

2. The number and frequency of the photons applied to the spin system, that is,
the magnitude B, and frequency v of B,.®

3. The population difference AN of the two states involved in the transition
(Section 10.2.2). This is given by the Boltzmann distribution when the ampli-
tude of B is not sufficiently high to alter AN, which in turn depends inversely
on the absolute temperature of the ensemble and generally depends on the field
B. It is proportional to the number N of spins in the sample. In some exper-
imental circumstances AN can be negative, which implies energy emission
by the spin system.

4. Spectrometer characteristics (Appendixes E and F).

In the absence of power saturation (i.e., when condition 3 holds), the transition
probability is proportional to (g8,B;)>. Since g is anisotropic in some systems, it
follows that the line intensity can also vary under rotation of the paramagnetic
species relative to fields B and B; [13,14]. More specifically, the intensity
depends on the orientations relative to the anisotropic sample of both the source
(B;) and the direction of detection. These two directions can differ, for example,
by use of crossed coils or of a bimodal microwave cavity. Generally, however,
these coincide since most often a single resonator is utilized.

One can describe the situation empirically by using transition-probability factors,
Einstein coefficients A and B [15], of two types: spontaneous downward jumps
(with accompanying photon emission by the spin system) and radiation-induced
upward and downward jumps (with accompanying photon absorption and emission).
Between any two spin states, labeled ¢ and u (of energy U, < U, and populations
N, > N,), the transition (spin flip) rates (Section 10.2.3) for isolated spins are given by

dN, dN,
—=——=AuN,+ B, vNM—B“ "N 4.22
dt dt eNu + Buep Py Ve (422)
Here
641t v 2
Auw = =3 5 Kl g )] (.23
87hv,e>
_ STt g (4.23b)

c3
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and

B, = By, (4.24)

Thus there is only one independent Einstein coefficient. Here hv,, = U, — U, = g3,B
in the simplest case, and the lineshape is taken to be infinitely sharp (Dirac J; see
Section A.7), at v = v,,. The relevant magnetic-dipole excitation operator is fiz =
@'+ By /B). The electromagnetic radiation density p, is proportional to B 2. In practice,
the spontaneous jumps are very unlikely for EPR (A4,; ~ 107'?s~! at B = 1 T) unless
special coherence effects arising from correlated spin motions are present.

When the spectrum is taken at constant frequency by sweeping B, rather than by
sweeping v, an additional factor (~g 1) arises [16,17] as a result of the conversion
from frequency to field variables. It often is important to take this effect into account
to obtain faithful single-crystal and powder simulations.

4.7 STATISTICALLY RANDOMLY ORIENTED SOLIDS

In this section one reaches a middle ground between the effectively isotropic
systems of the first three chapters and the highly oriented solids dealt with in the
earlier part of this chapter. In crystalline powders, each spin center has virtually
the same properties as it would have in a large crystal. However, the principal
axes of the crystallite components of the overall paramagnetic system may
assume all possible orientations relative to the direction of the magnetic field.
Even in the absence of hyperfine splitting and other zero-field splittings, one
expects to have the EPR spectrum spread over the entire field range 6B determined
by the principal g components of the system. Fortunately, however, the lines are not
uniformly distributed throughout 8B, so that extrema and other features may be mea-
surable within 6B and can yield valuable information.

The first powder model considered is that of a system with § = % and no interact-
ing magnetic nuclei, and possessing uniaxial local symmetry. Subsequently, in the
second model, the rhombic case will be examined.

For a single crystal one would then obtain EPR lines at positions such as those
given in Figs. 4.3 and 4.5. On grinding such a crystal to a sufficiently fine
powder, one expects that all orientations of the unique g axis are equally probable.
Hence there are some crystallites in resonance at all fields B between B (the field
corresponding to g ) and By (the field corresponding to g)). The field variable B
(noting Eq. 4.3) is given by

hv

B =
gB.

(4.25q)

-iphv
B.

_1phv
=[g1? —(g1> — g)*)cos’ 6] 1/2.3_ (4.25¢)

e

=[g.?sin® 6+ gH2 cos” 6] (4.25b)
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where 6 is the angle between the magnetic field and the symmetry axis direction of
any particular spin species in the ensemble. We need to sum over all values of 6.

Note that, in practice, the line positions and intensities are the same for a crystal-
lite with a given orientation and those for the inverted orientation. Thus only at most
half the unit sphere (Fig. 4.6) needs to be considered. Furthermore, one need not pay
attention to symmetry-related species; each gives the same powder spectrum.

Since all orientations are taken to be equally probable, it is desirable to have a
measure of orientation that reflects this. It is convenient to use the concept of a
solid angle subtended by a bounded area .A on the surface of a sphere of radius r.
The given solid angle () is defined to be

O =

réz (4.26)

that is, 47 times the ratio of the surface area A to the total surface area of the
sphere. Consider a small powder sample at the center of a hypothetical sufficiently
large sphere (Fig. 4.6). One may translate the statement that all orientations of
the unique axis are equally probable into the statement that the number of crystallite
axes contained in unit solid angle is equal for all regions of the sphere. Taking the
coordinate axes embedded in the sphere as fixed relative to the magnetic-field direc-
tion, the orientation of each crystallite axis is measured by its angle 6 relative to the
direction of the applied field B, taken to be along the polar direction (labeled z).

FIGURE 4.6 Element of area on the surface of a sphere. [After G. M. Barrow, Physical
Chemistry, 2nd ed., McGraw-Hill, New York, NY, U.S.A., 1966, p. 803.]
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Consider a circumpolar infinitesimal element of area (Fig. 4.6). The area of this
element is 27(r sin O)r d6. Hence the solid angle d(} it subtends is given by

_ 27r?sin 0 dO

dQ .

=2msin 0 do (4.27)
-

Then P(0)d6 = dQ) /4 is the fraction of the symmetry axes (of any sufficiently
large set of crystallites) occurring between angles 6 and 6 + d6. This is proportional
to the probability P(B)dB of a spin system experiencing a resonant field between B
and B + dB, that is

1
P(0)d6 = 3 sin 0 df oc P(B)dB (4.28)
or
1 sin6
P(B)=C-= 4.2
(B) CZdB/dO (4.29)

where C is the normalization constant required to make the total probability unity. In
the example above, one might as well consider simply a unit sphere, since r does not
enter relation (4.29).

It is worthwhile to understand the significance of the numerator and the denomi-
nator in Eq. 4.29. The proportionality of P(B) (and therefore of line intensity) to sin 0
reflects the very large number of systems with symmetry axes nearly perpendicular
to the field direction, that is, systems with axes approximately in the equatorial plane
about the field direction. By contrast, there are very few systems with the symmetry
axis aligned close to the single field direction z. The value of P(B) is large if dB/d0 s
small. This implies that one has the greatest hope of seeing an EPR absorption at
field values B near extrema in line positions B(6); B, and B represent field
extrema and therefore are such ‘turning points’ (see Note 6.11). On taking the
derivative dB/d6 in Eq.4.25¢ and simplifying, one obtains

C (hv\? 1
PB.6)=> (B_) Fle s eond (4.30)

From this one can easily obtain P(B), since B and cos 0 are linked via Eq. 4.25¢. Of
course, P(B) = 0 outside the field range given by that equation. The constant C
equals 2 (Problem 4.7) For 6 = 0, P(B) is finite when (g 12— gHZ)B # 0. Here,
since hv/B, = gB), one finds P(B) o< B~ L Owing to the cos 0 term in the denomi-
nator of Eq. 4.30, P(B) rises monotonically to infinity as B approaches B, that is, as
0 — /2. This behavior is shown in Fig. 4.7a, where each individual line making up
the EPR powder pattern has been assigned a negligible width (Dirac é ‘function’
lineshape). When various (equal for each component line) amounts of broadening
of the individual lines are added, the absorption line has the form shown in
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FIGURE 4.7 (a) Idealized absorption lineshape for a polycrystalline system containing
spin centers, each having an axis of symmetry (with g; < g,) and no hyperfine interaction.
(b) Computed lineshapes for randomly oriented systems having uniaxial symmetry. The
component (lorentzian) lines are given widths of 0.1, 1.0, 5.0 and 10.0 mT. For clarity, the
displays have been normalized to equal maximum amplitudes. (c¢) First-derivative EPR
powder spectrum for a system of uniaxial symmetry, with g, < g, [e.g., the V' center in
MgO (Section 4.2)]. [After J. A. Ibers, J. D. Swalen, Phys. Rev., 127, 1914 (1962).]

Fig. 4.7b (e.g., curve 1). Thus P(B) must be convoluted with a suitable lineshape
function to simulate an actual EPR spectrum. Figure 4.7¢ shows the first-derivative
spectrum corresponding to Fig. 4.7b (curve 1).

Once again, we remind the reader of the need for the 1/g correction [16,17]
referred to previously in this chapter. In the above derivation, we have ignored
any anisotropy in the transition probability.

In the case of a rhombic (local-symmetry) system in powder form, the absorption
pattern exhibits three primary features. Typical shapes of the absorption and of its
derivative are given in Fig. 4.8. For systems of rhombic symmetry, we define the
axis Z to be the direction that yields the g factor (g) most widely separated
from the other two; gy is the intermediate g component. In the first-derivative
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FIGURE 4.8 (a) Absorption lineshape for a randomly oriented spin system with rhombic
symmetry. (b) First derivative of the curve in (a). Here gx > gy > gz (¢) X-band
(9.1-GHz) EPR spectrum of the CO,  ion on the surface of MgO powder. The extraneous
peak at the left has been interpreted as belonging to a different center. [After J. H.
Lunsford, J. P. Jayne, J. Phys. Chem., 69, 2182 (1965).]

presentation, the shape at each outermost field region approximates the shape of an
individual component absorption line of the composite powder pattern [18], that is,
summing first-derivative individual lineshapes effectively performs an integration.
This is also true for the uniaxial case.

Happily, one can also obtain high-quality powder lineshape predictions, when
rhombic g matrices are at hand (no zero-field effects included). Thus, following
Kliava [19], for § = ] field-swept EPR, one has

vo2B,2B,?

e

[x gv*(1 — nz?) + gx” g2°(1 — ny?) + gv* gz°(1 — ny?)]
(4.31)
where n; is the direction cosine between the jth principal axis (i.e., of G = gg,

Section 4.4; j = X, Y, Z) and n(6, ¢») = B/B fixed in the laboratory space.
Function L is ‘several steps’ ahead of function P (Eq. 4.30) in that

1. It covers rthombic functions g(6, ¢), reducing properly to the uniaxial and
isotropic cases.
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2. It takes into account the anisotropy of the transition probability. The latter is
proportional to vc2g12362312 [see 8, Eq. 3.10], where

g’=n"-G-n—m'-G, n’/g (4.32a)
and n; = B;/B;. Maryasov [20] has provided another version
g’ =lg-m Ag-nf/g’ (4.32b)

of this relation. Because of the cross product, it shows explicitly that, for the
isotropic situation, the two fields B and B, yield zero intensity when they are
parallel (at least for |AM| = 1 transitions; see Section 1.13).

3. It includes the g~ ' factor due to consideration of field sweep rather than fre-
quency sweep conditions, as already alluded to above.

4. It can include k = k(T'), such that two spin-orientation states properly follow
T~ behavior (for sufficiently high temperatures).

Functions L and P both are inadequate in that they assume zero linewidths (Dirac
0) for the individual line components. Also, both assume absence of power satur-
ation (see Section 1.5).

One approach to linewidth incorporation is to treat the distribution of resonance
magnetic fields separately from the width factor [21]. One can employ a generalized
function, written Q(B, (),), taken as a convolution

400
0= J LFdv (4.33)
0

of intensity function L(B,, {);) with a weighted lineshape function F(B — B, Ap),
where the integration variable V(B ., {};) covers all resonant fields B, of the spins
in the system. Here () symbolizes the set ®, @, W of the Euler angles describing the
orientation of the macroscopic axes of the sample with respect to the static and exci-
tation magnetic-field axes. Parameter Ag(Bcs, (1) is the individual linewidth for the
paramagnetic species considered. One can consider the intensity function L = L(R,
),) as dependent on a random vector R summarizing the set of spin-hamiltonian par-
ameters, with ), representing the set 6, ¢, ¢ of Euler angles describing the orien-
tation of the local magnetic axes with respect to the macroscopic ones.

There is an abundant literature dealing with the simulation and information
content of EPR powder spectra [22—-26]. With the advent of efficient computers,
numerical generation of the patterns, as a function of the inherent parameters (g,
gy and g7 as well as line intensity, shape and width of individual components of
the packet), has become routine for the absorption or any of its derivatives
[27,28]. These are plotted either as a function of field B scan (fixed-frequency exper-
iment) or as a function of frequency v (fixed field). However, there is a subtle differ-
ence in the g dependence, according to whether field-swept or frequency-swept
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spectra are being considered [14]. As already mentioned above, this effect results
from the dependence of the transition probability on the frequency v of the B,
field applied to the system. For a successful simulation, an essential aspect is to
utilize a sufficiently large number of points adequately distributed on (half of) the
unit sphere (Fig. 4.6).

In powders, each paramagnetic species is likely to have the same surroundings as
in the single crystal. Thus the spectral parameters are expected to be the same.
However, while grinding a crystal to obtain a fine powder, one tends to generate
high local temperatures. In applying the theory described above, it is assumed
that this causes no changes in the immediate surroundings of the spin species con-
sidered, and that no new EPR species are created (also on the surface, which is now
significantly enhanced). Furthermore, in certain situations (e.g., copper complexes
adsorbed on cellulose fibers [29]), there may be partial orientation of the magnetic
species rather than complete randomness. In some instances, the static magnetic
field B can cause partial ordering of crystallites [30].

With certain materials (e.g., often in glasses), one can encounter another aspect of
g-factor measurement, namely, occurrence of a range of values for each of the prin-
cipal values, and axis orientations, arising from differences in local surroundings
[31,32]. This effect, sometimes called ‘g strain’, leads, in first approximation, to
line broadening dependent on the magnitude of the field B used for the EPR
measurement.

For EPR purposes, glassy media can be thought of as containing fixed randomly
oriented spin centers. The paramagnetic species in the glass can be introduced by
inclusion of suitable solutes in the original melt, or by irradiation of the glass,
including ion-implantation (beam) techniques. Unlike the situation with crystalline
powders, in which there is spatial correlation of the centers within each crystallite,
there is virtually no spatial correlation in glasses. Nevertheless, in the absence of g
strain, the g lineshape patterns tend to be the same for the two cases. On heating
glasses, their viscosity decreases and the spin centers (assuming that they survive)
move increasingly rapidly, thus averaging out the anisotropic parts of the g
matrix. If there are no chemical changes, the ultimate g factor is the ‘isotropic’
one’ given by (|gx| + Igyl + 1gz])/3, which equals one-third of the trace #r(g) in
most circumstances [33].

4.8 SPIN-ORBIT COUPLING AND QUANTUM-MECHANICAL
MODELING OF g

The intrinsic spin angular momentum of a free electron is associated with a g factor
g. of 2.00232. Since the ground state of most molecules (including radicals) has zero
orbital angular momentum (note Section B.8), one might expect that in these cases
the g factor would have precisely the free-electron value. However, as shown below,
the spin-orbit interaction admixes the hypothetical ‘pure-spin’ ground state with
certain excited states and causes a small amount of orbital angular momentum to
appear in the actual ground state. The resultant circulation produces a magnetic
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field B, that adds vectorially to the external field B (Section 1.12.1). This inter-
action is inversely proportional to the energy separation of the basis states. One of
the results is a change in the effective g factor.

When we deal with electrons, their total magnetic-moment operator is the vector
sum of contributions from the spin and orbital angular momenta:

) = =B, (L + g.S) (4.34)

Here L is the total electronic orbital angular-momentum operator for the
ground-state configuration of the atom or ion considered. It is, of course, a spatial
operator (Eqs. B.8). Note that the g factor for pure orbital angular momentum
is unity. Then, using Eq. 2.16a, we can easily obtain the Zeeman hamiltonian
operator Hy.

In any atom, the spin and orbital (denoted by subscript ‘so’) angular momenta are
coupled through the spin-orbit interaction term, which for the present purposes may
be given as'®!!

Heo(r) = ALT+ S = A[LxSy + LySy + 1,5,] (4.35)
This hamiltonian must be added to the electronic Zeeman terms, so that
H(r) = Hz + Heo = BB+ (L + g.8) + ALT- § (4.36)

This is the energy arising from coupling of the spin magnetic moment(s) and the
magnetic fields created by the orbital angular momenta.

Now consider a ground state, to be represented by |G, My), that is orbitally non-
degenerate. Here G represents the spatial wavefunction and My, the spin state. As we
shall see, the |G, Ms) energy levels are split by H (Eq. 4.36). The energy to first
order, for any S is given by the diagonal matrix element (Eq. A.90)

Uc'V = (G, Ms|g.B.B.S:|G, M) + (G, Ms|(B,B. + AS.)L.IG,Ms)  (4.37)

since the matrix elements involving S, and S'y vanish. The first term gives the
‘spin-only’ electron Zeeman energy.12 The second term may be written as

(Ms|B.B. + ASIMsXGIL.|G)

We have shown in Section B.8 that the expectation value of L for an orbitally
non-degenerate state is zero in the absence of spin-orbit coupling. Hence for this
case {(G|L,|G) = 0. The second-order correction to each element in the hamiltonian
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matrix (Eq. A.93) is given by

A ~ A 2
(G MsI(BB + XS L.+ g.5,BT+ S|n, M)
U, — yg®

(H)MS,M& =
n#G

(4.38)

The sum runs over all orbital states. The matrix elements of g,8,B" - S vanish since
(G|n) is zero. Superscripts (0) indicate the zeroth-order energies. The right-hand side
of Eq. 4.38 can then be expanded to yield

(Fwmg,my =

(Ms|(B,B + AS)|My')+ <G|£|n>][<n|ﬁ|G>}

[ -+ (Ms'|(BB + AS)|Ms)
N Z U, 0 — Ug®

(4.39)
n#G

It is convenient to group together factors in of Eq. 4.39 to yield the matrix

Axx AX}’ AXZ

~ Z (GILInYn|LIG) A, A, AL l=A (4.40)
0.0 — UeO y Ay Ay
G sz A)'Z AZZ

Thus the product of the two vector matrix elements, called an ‘outer product’
(Section A.4), yields a 3 x 3 matrix, A, symmetric in this instance. The ijth
element of this matrix is given by

_ ZW 4.41)

U,0 — Ug®

Here L; and ij are orbital angular-momentum operators appropriate to the x, y or z
directions. Substitution of Eq. 4.40 into Eq. 4.39 yields

(Fusnty = (Ms'|B,2 BT+ A~ B +2AB8,B"- A+ S + A> ST- A-S|My)y  (4.42)

The first term on the right in Eq. 4.42 yields a constant contribution to the energy of
all spin states, and represents the temperature-independent paramagnetism [35]. It
causes no shifts between energy levels and hence is of no spectroscopic interest;
it need not be considered further. The second and third terms in the matrix
element of Eq. 4.42 constitute a hamiltonian that operates only on spin variables.
When combined with the operator g.8.B" - S from Eq. 4.36, it is thus called the
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‘spin hamiltonian’ H. It may be written as

H=B2B" (g15+2AA)- S+ A2ST- A- S (4.43a)
=B,B"-g-$+8"-D-§ (4.43b)

where 15 is the 3 x 3 unit matrix. Here
g=g.13+2AA (4.43¢)
and

D = A’A (4.43d)

In practice, D is made traceless by subtracting the isotropic part, rr(D)/3, since
the latter has no spectroscopic context (Problem 6.3). Operator S in Eq. 4.43a
corresponds to the effective spin of the ground state. This need not be the actual
spin, as is illustrated in Section 6.3. The electronic quadrupole matrix D (and spin-
spin contributions to it) is discussed further in Chapter 6 and is of considerable EPR
interest, but only if the actual or effective electronic spin is greater than %

If the angular momentum of a system is due solely to spin angular momentum, g
should be isotropic, with the value g.. Any anisotropy or deviation from this value
results from matrix A, and involves only contributions of the orbital angular
momentum from excited states (Egs. 4.39 and 4.40). Of course, in some cases, con-
tributions to g from perturbation terms beyond the second-order ones treated herein
may be appreciable, as may certain other terms needed to render the matrix invariant
to the choice of coordinate system used to express the spatial wavefunctions [36].

Equation 4.43¢ indicates that one may immediately obtain the matrix g when the
matrix A is known. As an example, we consider a P-state ion in a tetragonal electric
field such that the orbital state |L, M;) = |1, 0) (Table B.1) lies lowest (Fig. 4.9).

71/2

(11> — [1.+1>)
px’ y —2—

/—3—< 3
u / J_
/ p, \—1 [1.0>

i2 (11> + [1,41>)

OCTAHEDRAL TETRAGONAL

FREE FIELD FIELD

FIGURE 4.9 Displacement of the orbital energy levels of a P-state ion in an octahedral
crystal field with a subsequent splitting (d) in a tetragonal electric field along Z. The real
wavefunctions py, py and pz corresponding to these states are indicated.



4.8 SPIN-ORBIT COUPLING AND QUANTUM-MECHANICAL MODELING OF g 109

(For the degenerate upper states |n) = |1,41) and |1,—1), one could exercise the
prerogative of using the real combination forms p, and p,.) It is sufficient below
to represent the three states as |0), |+1) and |—1).

Since the symmetry is tetragonal, matrix A is already diagonal. One principal
axis is the four-fold axis Z. The other two axes, X and Y, are equivalent and are per-
pendicular to Z. In this principal-axis system, the only non-zero elements of matrix
A are the diagonal elements. The matrix elements (O|L,| + 1) and (& |L,|0) vanish
since f,z couples only states of the same M; value (Eq. B.42¢). Hence

AZ = 0 and 87z = g” = e (444)

The value of g, is obtained from either Ay or Ay (Eq. 4.41) as follows:

_ (OLx|+1) + T1Lx[0) + (OILx | = 1X~1]Lx[0)

Ax 5 (4.45q)
1 7 z el A
-T2 (<0|L*|+1><+1|L+|0> +(OIL4|—1X1 |L7|O>) (4.45b)
1
—7s (4.45¢)
= Ay by symmetry (4.45d)

Here 6 is the (positive) energy splitting depicted in Fig. 4.9. Noting the relations
between the matrix elements of Ly, L, and L_, Eqs B.42 f and B.42g have been
used to evaluate the matrix elements. From Eq. 4.43¢ one obtains

8L =8c—2A/8 (4.46)

The V™ (O ) defect center (Section 4.2, Fig. 4.2b) serves as an excellent example
of a P-state ion (S = %), in a tetragonal local electric field. We are now in a position to
interpret its g factors. According to Eq. 4.44, g should be very close to the free-
electron value. In fact, g, (observed) = 2.0033. Since A for a positive hole on
oxygen is negative (Table H.3), Eq. 4.46 predicts that g, )g.. This is again in agree-
ment with experiment, since g, (observed) = 2.0386 [37-39].

This procedure for calculating g for species with orbitally non-degenerate ground
states is relatively simple; nevertheless, it demonstrates in a clear way the source of
the deviations of g from the value g.. Further examples will be found in Chapter 8.

The second term on the right side of Eq. 4.43b is effective only in systems with
S > 1. One notes that this term in the spin hamiltonian is analogous to that derived
for the spin-spin hamiltonian of Eq. 6.15. Experimentally, it is not possible to
separate the anisotropic part of the spin-orbit coupling contribution to D from the
spin-spin contribution.

The spin hamiltonian of Eq. 4.43b is incomplete for atoms and ions with nuclei of
non-zero nuclear spin. The hyperfine and nuclear Zeeman interactions can be treated
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by addition of the extra terms ST.A-T- 2.8,BT 1. The hyperfine interaction is
treated in Section 5.2. The spin hamiltonian then becomes

H=pB"g-§+8"-D-8+8TA-T-gpB" T @47

Clearly also, quadrupole terms for the central nucleus (if / > %) and hyperfine (plus
quadrupole) effects from ligand nuclei can be present.

The spin hamiltonian of Eq. 4.47 is adequate for systems with § = 1. For § > 2,
still other terms must be added (Section 6.6). For instance, if S = % occurs (e.g., for
3d” ions), then terms linear in B and cubic in electron-spin operator components
occur and hence further g-like parameters are required. For § > %, terms linear in
B and fifth power in spin components are allowed. Terms non-linear in B also can
occur. The various high-spin Zeeman terms make only a small contribution in the
line-position analysis.

When one must begin the analysis with a lowest state that is orbitally degenerate,
the application of perturbation theory, as outlined in this section, is not appropriate.
Here the expectation value of the orbital angular momentum is no longer zero
(Section B.8), and the spin-orbit interaction is likely to be sufficiently large that it
cannot be taken on an equal footing with the Zeeman and hyperfine terms.

When H, is added as a perturbation and dealt with separately, it generally leaves
either a non-degenerate (singlet) state lowest, with no higher states populated (for
even-electron systems) (hence no EPR is possible), or else it leaves a ground-state
doublet (effective spin §' = %) that can be split by an applied magnetic field. The
latter system (Kramers doublet; see Section 8.2) gives normal EPR spectra, describ-
able by an appropriate spin hamiltonian, but often possesses very anisotropic g
factors that may reach experimentally inaccessible values (e.g., g & 0). The orbitally
degenerate ground state perturbed by a spin-orbit and Zeeman interaction of equal
magnitude must be handled by considering both simultaneously. Examples of
such odd-electron systems include the benzene anion radical (Section 9.2.1) and
the Co** ion (3d7) in an octahedral field as, say, in MgO (T;, ground state; Section
8.3). The reader can find further details about orbitally degenerate systems, and
how to deal with them in the literature [40—42].

In this chapter we have developed an understanding of g-factor anisotropy and
have discussed the theoretical techniques for dealing with this phenomenon. As
we shall see in the next chapter, hyperfine anisotropy can be handled in much the
same way and is the source of especially valuable information about the nature of
paramagnetic species. For systems with § > %, other important anisotropic contri-
butions arise; these are treated in Chapter 6.

4.9 COMPARATIVE OVERVIEW

Single-crystal EPR spectra potentially give considerably more quantitative infor-
mation than powder EPR spectra do, since the orientations, relative to the crystal
axes, of the magnetic species in the crystal are obtainable. Also, spectral resolution
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is far better, since there is no overlap from myriad spectra. On the other hand, single-
crystal EPR requires determination that the crystal is indeed single, and not twinned,
and is adequately homogeneous. It requires determination (say, by x-ray diffraction)
of the crystal-axis locations relative to the external faces or surface features, and
requires careful orientation of the crystal within the EPR equipment with accurate
goniometry as the crystal (or field B) is rotated,—maintained throughout the exper-
iments, which are often very time-consuming. Thus long-term stability of the instru-
ment and sample temperature is needed.

Powder EPR requires no sample orientation, and thus is experimentally quick and
simple. The powder has to be adequately fine to yield superimposed spectra from
sufficient crystallites (adequate number of orientations in the field B). There must
be no reorientation effects on the individual small powder particles caused by B.
Finally, powder EPR does require homogeneity of temperature throughout the
sample, that is, adequate heat transfer between the particles.
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NOTES

1. Miller indices enclosed in parentheses refer to individual planes, for example, (001); in
square brackets to individual directions, for example, [011]; in braces to sets of
equivalent planes, for example, {100}; and in angular brackets to sets of equivalent
axes, for example, (111) and (111) [2]. Here I=—1.
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. In the literature, g has often been referred to as a ‘tensor’. However, from the

mathematical standpoint, g is a 3 x 3 matrix and not a tensor, whereas gg is a true
tensor (more specifically, a tensor of rank 2). For discussion of this problem, the
reader should consult Ref. 8, pp. 651 {f; also Ref. 9.

. The O, ion can be assumed to have two sets of 7 orbitals, pointing respectively along X

and Y, each formed by overlapping of collinear p orbitals pointing perpendicular to the
molecular axis Z. The two 7 orbitals contain three electrons. We can consider that, in
Fig. 4.4, that one 7 orbital, namely Y, contains two of the electrons, whereas the other
(X) contains the unpaired electron. Then it seems natural (lower energy) that Y should
point toward two neighboring cations.

. The three direction cosines are related by the trigonometric identity cx” + ¢y> + ¢> = 1.

However, the relative signs of these direction cosines must be adequately specified, for
example, by giving the sign of cycycz Thus three pieces of information are indeed
required to specify the direction of B.

. If the matrix g arises from a spin system exhibiting only small departures from the

free-spin g factor of 2.0023, then, on physical grounds, all three square roots may
reasonably be taken as positive. One uses the sign convention that g for a free electron
is treated as a positive quantity; the actual negative magnetogyric ratio of the free
electron is allowed for by writing the spin hamlltoman in the form H = +gB,BT- S.
By contrast, for nuclei one must write H= —g,B,8"+ L, where g, contains the actual
sign of the magnetogyric ratio of the nucleus. For transmon ions, especially heavier
ones, for which g may depart greatly from the free-spin value, the correct square-root
sign must usually be attained from theory by consideration of the wavefunction. If the
resonance experiment can be done with circularly polarized microwaves, sign
information is available since the product der(g) = gxgygz can be determined
experimentally [11].

. Consider the following crude analogy. Assume that a small cube with highly polished

surfaces is at the origin of a cartesian coordinate system, with axes perpendicular to
the cube faces. If a small pencil of light is directed at the cube, exactly along one of
the axes, it is reflected only along that axis. For an arbitrary orientation of the cube
there are components of reflected light along each of the three axes.

. Taking this square root involves an uncertainty of sign, since a 3 x 3 matrix has eight

possible square-root combinations of its principal values. However, see Note 4.

. We note here that magnetic-resonance (spin-reorientation) transitions can also be induced

by the bulk solid or liquid surroundings (lattice) via phonon absorption (Chapter 10).

. We do not herein append a subindex ‘o’ on the isotropic part of g, as we do with the

hyperfine constant (Eq. 2.38).

For a spherically symmetric system, this coupling is given by ALT- S (= AST- L), where
A is the spin-orbit coupling parameter (Table H.3). Since the nuclear charge increases
with the atomic number (and therefore usually with the nuclear mass), the nuclear
magnetic field seen by the electron(s) also increases with the atomic number. Hence A
also increases. (This parameter is not to be confused with the expansion parameter A in
Section A.6.)

This generally assumed expression for spin-orbit interaction is to be regarded only as
a first approximation; it applies strictly only for spherical symmetry. Furthermore,
the use of the terms B,BT- (L+geS) and ALT-S. to proceed from the isotropic
factor g, to the symmetric matrix g implicitly requires the unpaired electrons to be in
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an electric field of central symmetry. When this condition is not fulfilled, the matrix g
may be asymmetric [34].

12. The first-order corrected wavefunction |G, Mg)" is available from Eq. A.92 but is not

needed here.
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PROBLEMS

4.1

4.2

4.3

4.4

Given that any two principal values coincide, say, gx = gy, show that Eq. 4.6b
reduces to Eq. 4.3. What is the situation when all three principal values are
identical? [Hint: cx* + ¢y* + ¢ = 1.]

Calculate the spacing between lines at g = 1.999 and 2.000, measured at X
band and W band (Table E.1). Which gives better resolution, and thus poten-
tially higher accuracy?

Show that Eq. 4.18 can be written in the equivalent form

g> = a+ Bcos2¢ + ysin2gp (4.48q)
where
a=[(88)x + (88),]/2 (4.48b)
B=1[(g8) — (88)]/2 (4.48¢)
and
Y= (88 (4.48d)

Figure 4.10 illustrates the variation of a single-line EPR spectrum of a rhombic

paramagnetic defect as the magnetic field B scans planes ab, ac and bc of an

orthorhombic crystal. Here v = 9.5200 GHz.

(a) By estimating values from the plots, construct the tensor gg.

(b) Diagonalize this tensor, and hence obtain the principal values of g (taken
to be all positive) and the direction-cosine matrix C. This can be done

using a suitable computer program. How are the principal directions of
g obtainable from C (Section A.5.5)?
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FIGURE 4.10 Variation of the resonance field B as a function of rotation in the ab
(—-—+-—4),ac(---),and bc ( ) planes of a crystal. Angles are measured with respect
to the a axis for (ab) and (ac) planes, and with respect to the b axis for the (bc) plane.

(¢) In view of the uncertainties in the input parameters, what are the error
ranges on the principal g factors obtained (e.g., see Ref. 12).

4.5 Explain the degeneracies in the line positions (parenthetical numbers in
Fig. 4.5), in terms of the orientations of field B (angles in Fig. 4.5) relative
to the various positions [e.g., of the principal-axis sets (g, = 1.9268,
gy = 1.9314, g, = 2.5203)] of the O, ions in KBr. [Hint: Draw the six equiv-
alent positions of the ions relative to the crystal-axis (x, y, z) system. Then con-
sider the principal axes X, Y, Z fixed on each of these molecules and how B
rotating in the xy plane scans these.]

4.6 Consider the hypothetical asymmetric matrix

g1 —&2 0
g=|& & 0 (4.49)
0 0 (g2+gH"

Calculate the matrix g + g’ and interpret the observable meaning of this result.
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Derive the expression for the probability function P(B) of the uniaxial g
powder pattern, using Eqs. 4.25 and 4.30. Integrate the expression over the
complete field range to obtain the total probability, setting this integral
(Problem 4.8) equal to unity, to evaluate the normalization constant C in
Eq. 4.30.

In a computer simulation of a field-swept EPR powder spectrum, the B-field
range is often divided up into a number (500—5000) of segments (bins) into
which are placed the intensities of all spectral lines having field positions
lying within the field range of the particular bin. All bins have the same
width. The overall spectrum is then plotted using the total intensities
(heights and widths) of each bin. A graph of P(B) versus B, derived from
Egs. 4.25¢ and 4.30, is given in Fig. 4.11. Integrating yields

2 2 2 2\ 1/2
JP(B)dB: 881 (gL o/ B;B)) +C @50
}gj, 8l } 81°— 8|

2000
v.-v,
2
- ﬁ
e
[a
0 : :
3530 3560

B (Gauss)

FIGURE 4.11 Plots of P(B) versus B for a system with g, =2.00 and g; = 1.99 and
v =9.80 GHz. (a) A 20-segment histogram; (b) the intensity profile with a very large
(>1000) number of segments.
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where C'is a constant. Use Eq. 4.50 to calculate the area for each of a series of
segments (limits: B; to B; ) in the range B, to B} and plot each of these areas
in histogram form to approximate the powder spectrum. Use g, = 2.00 and
g = 1.99. Calculate two histograms, one with 5 segments and one with 10
segments. Compare with the 20-segment example shown. What can you say
about the number of segments (bins) necessary to generate a high-quality
simulation of a powder spectrum?

Using Eqs. 2.16 and 4.8, show that the elements of the matrix g can generally
be represented by the expression

U

T 451
8<9B,01,© @.51)

8ij = —

,u,(”),BzO

where i, j = x, y, z. Here U is the expectation value (H) of the spin hamiltonian
for a dilute spin system, and w{’ is —g.B.(S;). The evaluation at the zero-spin
and zero-field limits becomes important when there are high-spin and high-
field terms in H (see Section 6.6). Note the similarity between Eq. 4.51 and

the relation (Eq. 1.13)

ou

8Bj B=0

= (4.52)



CHAPTER 5

HYPERFINE (A) ANISOTROPY

5.1 INTRODUCTION

In many oriented systems there may be an anisotropy in the hyperfine splittings A as
well as in g. Thus, not only does each hyperfine multiplet move as a unit when the
orientation is changed, but simultaneously the spacing between its component lines
changes. When the hyperfine anisotropy is sufficiently great, then the qualitative
appearance of the spectrum is drastically changed by rotation of a single crystal
through even a relatively small angle. We temporarily ignore simultaneous
changes in A and in g until we reach Section 5.4. We also restrict ourselves to elec-
tron spin S = % and, for the most part, to consideration of hyperfine effects arising
from a single nucleus.

A very simple example of a strongly anisotropic hyperfine interaction is that of
the Voy center [1,2] shown in Fig. 5.1, for which g is almost isotropic. This
center in MgO consists of a linear defect "OLJHO ™ in which a cation vacancy [J
separates a paramagnetic O ion and the proton of a hydroxide impurity ion (by
~0.32 nm). If the crystal is rotated in a (100) plane, taking 6 as the angle
between the defect axis and the field B, the hydrogen hyperfine coupling A(6) is
given by an expression of the form

A =Ag+ Bcos’6—1)84 (5.1)

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.
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FIGURE 5.1 X-band EPR spectra of the Voy center in MgO. These spectra show almost
purely anisotropic hyperfine splitting. Lines arising from other (related) defects have been
masked. (a) Structure of the defect. The symmetry axis of the defect (tetragonal crystal

axis) is labeled Z. (b) Line components for B perpendicular to Z. (c) Line components for
B parallel to Z.

Specifically, consistent with Eq. 2.2, it was found experimentally that

A/g.B, = 0.0016 + 0.08475(3 cos® 6 — 1) mT (5.2)

which ranges from 0.1711 mT for 6=0°, becoming zero when cos”
6= (1—0.0016/0.08475)/3, to —0.08315 mT for # = 90°. The doublet splitting
(Fig. 5.1) is sufficiently small that it equals the magnitude of A /g.f3,, with no higher-
order terms needed (at 9—10 GHz). We see from Eq. 5.2 that, for this center, the
proton hyperfine splitting happens to be almost purely anisotropic. In most
systems, the isotropic contribution A is in fact of the same order of magnitude as
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0A. Then Eq. 5.1 is not applicable, and more complicated expressions are required
(Section 5.3.2).

To analyze anisotropic hyperfine effects properly, one must embark on detailed
consideration of the 3 x 3 hyperfine coupling matrix A, which describes the phys-
ical aspects phenomenologically. We shall see that this is not a trivial matter.
However, eventual attainment of parameter matrix A from a set of EPR measure-
ments yields a rich harvest, revealing much detail about the local geometric con-
figuration of a paramagnetic center and about the distribution of the nuclei and
unpaired electron(s) in it. In fact, it is primarily these hyperfine effects that cause
EPR spectroscopy to be such a rewarding structural tool.

5.2 ORIGIN OF THE ANISOTROPIC PART OF
THE HYPERFINE INTERACTION

The origin of the isotropic hyperfine interaction was discussed in Chapter 2. Inter-
action between an electron and a nuclear dipole some distance away was rejected
there as a source of the splittings observed in a liquid of low viscosity, since this
interaction is time-averaged to zero. However, in more rigid systems, it is precisely
this dipolar interaction that gives rise to the observed anisotropic component of
hyperfine coupling. The classical expression for the dipolar interaction energy
between an electron and nucleus separated by a distance r can be shown [3-5]
to be

(5.3)

S, 3T 0@
Udipolarm:&[” P 2 *TRHy }

4qr r3 rs

Here r represents the vector joining the unpaired electron and a nucleus (Fig. 2.2).
Vectors p, and p,, are the classical electron- and nuclear-magnetic moments. For
both, p" - r = r™ - . Superscript “T” indicates the transpose (Section A.4). We see
that the energy of magnetic interaction between the spins varies as r~~, and is inde-
pendent of the sign of r. Note that the dipolar interaction exists whether or not
there is an externally applied field.

For a quantum-mechanical system, the magnetic moments in Eq. 5.3 must be
replaced by their corresponding operators. For the sake of simplicity, we shall
here ignore the g anisotropy in the magnetic moment (Eq. 4.8). Thus both g and
gn are taken to be isotropic. The hamiltonian (using Eq. 1.9 for p in operator
form) thus is

(5.4)

. ST-1 3ST-nd’-r)
Haipolar(r) = — %(;gﬁegnﬁn[ -

73 I

That ﬂdipolar(r) describes an anisotropic interaction can be seen by expanding the
vectors in Eq. 5.4, yielding
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2 —3x% . 4 r2—3'y2

ﬂdipolar(r) = - %(;gﬁegnﬁn[ }”5 lex + )"5 Syiy +

2 _ 3 2. 3 R R
L2280 - 228, + 8,00 -
T T
3XZ A n oan 3VZ an Aa
r_S(Ssz + Sz[x) - rls(sylz + Sz]y):| (55)

Coordinates x, y, z of the electron are taken with respect to axes fixed in the sample
(e.g., a crystal). The point nucleus is placed at the origin. Note that, as is discussed in
Section 5.3.2.3, the nucleus may be at the center of the electron distribution, or
removed from it.

On averaging the hamiltonian (Eq. 5.5) over the electron distribution (i.e., inte-
grating over the spatial variables), this becomes a spin hamiltonian, having the form

7:{dipolar(r) = - f_qigﬁegn[gn X

(=) (22 (29

3¢ 8 8. (’2;?2) ( 33;) i Gea
<r2;53z2> ;

=81 (5.6b)

The angular brackets imply that the average over the electron spatial distribution has
been performed. Note that the dependence on electron-nuclear distance is 7> in all
elements, and that the average depends on which orbital the unpaired electron is in.
Note also that matrix T is symmetric about its main diagonal and is traceless.

The full spin hamiltonian requires the addition of the isotropic hyperfine term

AoST -1, that is, the contact interaction (Eq. 2.390) as well as the electron
Zeeman and nuclear Zeeman terms. Thus'

H=gBB -S+8T-A-T—g,8B -1 (5.7)
where the hyperfine parameter 3 x 3 matrix is
A=A+ T (5.8)

Here A is the isotropic hyperfine coupling, and 15 is the 3 x 3 unit matrix. It is
useful to note that Ag is just tr(A)/3.
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When the crystal is rotated, that is, the unit vector n along B is changed, the value
of n™ - A - n changes. In fact, from a set of such numbers [using the same procedure
as for the determination of matrix gg given in Section 4.4 (see also Eq. A.52b)], one
can arrive at the 3 x 3 symmetric hyperfine matrix A ¢y, = (A + A" /2, to within a
factor of + 1.2 This matrix (together with the matrix g and g,,) contains all the infor-
mation needed to reproduce the EPR spectral positions and relative peak intensities
at all frequencies and crystal orientations.

Because magnetic-field units are often convenient, we have already defined (in
Eq. 2.48) the symbol ag = Ap/g.B. for the isotropic part of A. We now define
two analogous parameters useful when hyperfine anisotropy occurs, and which
are derivable from matrix T. Thus we have

ap = (A1 + A + A3)/38.8, (5.9a)
by =[A1 — (A2 + A3)/2]/38.B, (5.9p)
co = (| A2| — 1 A3])/2g.8, (5.9¢)

Here A; (i = 1, 2, 3) denotes the principal values of A, ordered such that |A;| — |A;]
and |A;| — |Az| are larger than or equal to |A,| — |As|, thus selecting which pa-
rameter is A, and (arbitrarily) taking |A,| — |A3| to be non-negative. These new
hyperfine parameters, called the uniaxiality parameter b, and the asymmetry (rhom-
bicity) parameter cq, are independent of ay and vanish if there is no anisotropy. Note
that, because of the invariance of #7(A) to change of coordinate system, a, (but not by
and c) is available from A without diagonalizing it. In many instances, as we shall
see, these parameters exhibit an intimate relationship to the fundamental quantum-
mechanical properties of individual atoms.

It is useful to realize that measurement of matrix A can yield the relative signs of
parameters ay and by. Often, when the relatively simple dipole-dipole model yields a
value of (bp)ineor that is close in magnitude to that of (bg)exp, the actual sign of a can
be derived by assuming that the sign of (bg)exp is given by theory (Problem 5.11). The
sign of ag may not be the one predicted by Eq. 2.38, that is, by the sign of g, (using
Table H.4), due to the core-polarization effect [9]. This features unpairing of inner-shell
electrons, often with inner s-type electron spins with a net polarization in the direction
opposite to that of the total spin population on the atom (Sections 9.2.4 and 9.2.5).

5.3 DETERMINATION AND INTERPRETATION OF
THE HYPERFINE MATRIX

5.3.1 The Anisotropic Breit-Rabi Case

In some instances, the hyperfine energy is not small compared to the electron
Zeeman energy, so that neither term in the spin hamiltonian (Eq. 5.7) can be
treated approximately. The result is the appearance of higher-order energy terms
(Section 3.6), leading to unequal spacings between the hyperfine components
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observed in the field-swept EPR spectra (e.g., see Fig. 5.2). Here, then, the general
Breit-Rabi type of approach (Appendix C) must be applied.

In practice, analytic mathematical solutions for the anisotropic Breit-Rabi
problem are not available. However, accurate numerical solutions (by computer)
are not difficult and yield all magnetic-resonance line positions as well as the relative
intensities. Let us now briefly consider another approach, in which anisotropy is
brought in as a perturbation on the isotropic hyperfine situation.

It can be shown that Relation C.26 for an isotropic S = % situation can be modified
[10,11] to become

n'cAgmen
B_im;| — By 2B,
ol § . (5.10)
|M;| | n'c Ay n
B 2hv

where, as usual, g = (T g- gT . n)l/2 (Eq. 4.12). The set of these relations yields

the elements of A, = (A+ A" /2 directly [when g is known, say, from an
even-even isotope (I = 0) central spectrum]. We note that at each field orientation,
I (if I is an integer) or (21 + 1)/2 (if I is half of an odd integer) such quantities are
measurable, all (nominally) giving the same value. Equation 5.10 is valid when the
isotropic component |Ag| is large compared to the hyperfine anisotropy.

WW

B
e

50.0mT

FIGURE 5.2 Computer simulation of the 10.0000 GHz field-swept EPR spectrum of a
Ge*t S = %) center (denoted by [GeOg4/ Na]g) in crystalline a-quartz, obtained for
spin-hamiltonian parameters determined at 77 K. The spectrum extends from 205.0 to
505.0 mT. The central line arises from even-isotope species (I = 0) of germanium, whereas
the 10-line hyperfine multiplet arises from "*Ge (I = %). The spectrum was calculated with
B||z (=optic axis ¢) and B, ||x (=electrical axis a) (simulated by M. J. Mombourquette and
J. A. Weil). The four-line *Na superhyperfine structure is too small to be seen at the field
scale used.
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For example, consider the analysis of the anisotropic splittings caused by the low-
abundance isotope BGe (I=9 /2) in a Ge>" center (S = 1 /2) found in crystalline
Si0,. The 10 hyperfine lines (Fig. 5.2) can be grouped in pairs (M;, —M,), yielding
5 values for n" - Agym - n. These can be averaged. Equation 5.10 thus gives this
single number for a given n, despite the unequal hyperfine spacings.

Similarly, for hydrogen atoms trapped at low temperatures within cavities in
quartz crystals, the local electric fields cause anisotropy in A (i.e., admixture of
p, d, ... orbitals into the nominal ground state) and in g [12]. The large isotropic
part of the hyperfine splitting constant makes it important (say, for 10 GHz EPR)
to use the Breit-Rabi formalism described above.

As implied, use of Eq. 5.10, together with fields and g factors measured at various
orientations of the crystal with respect to B, cannot yield A or A'. Rather, the
relation is valid in the approximation

2A11 — Ay Ap+Ay Ap+Ajz

A-AT ~ A, 240 — Ay Axp+Axn (5.11a)
2A33 — A

= AO(ZAsym —Ap13) (5.11b)

=AoA+AT—Ap13) (5.11¢)

to the ‘square’ of A. Here A is tr(A +AT)/6; that is, it is the isotropic com-
ponent of A (and of AT). The magnitude of A, must be large compared to
the anisotropic part for Eqgs. 5.11 to hold. This analysis on its own does not
yield the sign of A,.

When the magnetic field B used is high enough that the higher-order effects
referred to above are negligible (this is usually the case), then we can turn to the
less general theory described in the following section.

5.3.2 The Case of Dominant Electron Zeeman Energy

Often, as pertains at sufficiently high magnetic fields, the electron Zeeman term
in Eq. 5.7 can be assumed to be the dominant energy term; that is, the electron
magnetic-moment alignment is much less affected by the nuclear magnetic
moment than by B. This allows one conveniently to quantize S along B; that
is, Mg describes the eigenvalues of S projected along B. Furthermore, higher-
order hyperfine contributions (Sections 2.1, 3.6 and 5.3.1) can be taken to be
negligible. By inserting the electron-spin eigenvalue vector Mgn for S in
Eq. 5.7, we obtain

H = gB,BMs1; + (Msn™+ A — g,B8,Bn") - 1 (5.12q)

= ¢B,BMs1; — g,B,BY;- 1 (5.12b)
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As before, n is the unit (column) vector in the direction of B. Here we have
defined an effective magnetic field

Bes = B 4 By (5.13)

acting on the nuclear magnetic moment, where

M
Byy=——>AT-n (5.14q)
gﬂBn
and thus
M
By’ = ———n'-A (5.14b)
gl‘IBn

Vector By represents the contribution to the magnetic field at the nucleus
arising from the electron-spin magnetic moment. We note that By is not
necessarily parallel to B (Fig. 5.3), and depends on Mj. Thus the axis of quan-
tization changes during an EPR transition so that M; changes its meaning [13].
This is a generalization and correction to the erroneous view, generally held,
that M; is unchanged during a ‘pure’ electron spin flip. The magnitude of the
effective field is given by

Bey = [Beg| = [(B + Byp)™+ (B + Byy)]'/? (5.15a)

= [32 —2ﬂ(nT-A-n)B+

1/2
— n"T-A-AT. 5.15b
2.5, QB ! ©-150)

We note from Eqs. 5.14 that the projection of the hyperfine field along
B is proportional to n' - A -n and the magnitude of the hyperfine field, to

(o) o
Bhf

(@) . (b) "
Bt Bht
Ba B a
eff B a 8 B B £
Bht Bert By A | °
B s 8
Bett Bett
B
Bt
BB

eff

FIGURE 5.3 Vector addition of the external field B and of the hyperfine field B for
S =1 =1 The superscripts « and 3 refer to Mg = 41 and Mg = — 1, respectively. We note
that B, = —B,°. The 3 cases depicted above are: (@) B < Byg; (b) B = Byg; (¢) B > Byy.
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mT-A-AT.n)"/? (Egs. 5.15). The field magnitude By¢ can be very large; for
example, if the proton hyperfine coupling is ~3 mT (a typical value), then
By = 1 T. Remember that By is the hyperfine field at the nucleus and not at
the electron. The latter would be only ~2 mT in this case.

As is evident from Eq. 5.12b, it is most natural to quantize I along B.¢. However,
this often is inconvenient, and hence various types of approximations are made,
depending on the physical circumstances. Several cases (Fig. 5.3) are considered
herein.

5.3.2.1 General Case In the general case [13,14], one finds the occurrence of
satellite lines. As an example, we deal with the § = 1 5 system but leave / unspecified.
Referring to Fig. 5.3b, we consider the total resultant field B¢ at the nucleus. Vector
Iis quantized along B for MS = + and along By for Mg = 1 . The energies
resulting from Eq. 5.12b, for I = are given by

Useyae) = +38 BB — 5 8nB,Beit® (5.16a)
Uape) = +58 BB + 5818, Bei® (5.16b)
Uperabn) = — 58 BeB — 38uByBer” (5.16¢)
Upeyppny = —38 BB + 18uB,Bet” (5.16d)
The nuclear-spin eigenfunctions are not the same for My = + and — 3, since the

axis of quantization for I is different in the two cases; here, as W1th Beff, the super-
scripts indicate the electron-spin state. By expressing |a®(n)) and |B%(n)) as linear
combinations of |a?(n)) and |BP(n)), we can show that the relation between the
nuclear-spin states is

la®(n)) —cos—|aB(n) —sm @\ 8B m)) (5.17a)
|B%(n)) = sinE laP(n)) + cosz |BP(n)) (5.17b)

where w is the angle between B " and B oii” (Sections A.5.2, A.5.5 and C.1.4).
The energy levels are given in Fig. 5.4 (also see Fig. C.2). The four possible EPR
transition energies are

AU, = Uniopony = Upterasn) = 8BeB + 3 8nBy{Ber® + Ber®}  (5.18a)
AUy = Uaopetn = Upioyppan = 8BeB + 58nBy{Ben® — Ber®}  (5.18b)
AU = Uaerastny — Uperabn) = 8BeB — 1 8uBu{Bet® — Beg®}  (5.18¢)
AU = Uaerae(m) — UB(E)BB(n) =gB.B — %gan{Beﬁ‘a + Beﬁ‘B} (5.184)
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FIGURE 5.4 (a) Energy levels at constant field for a system with S =1 = % (g » > 0) when
B is close to By (Fig. 5.3b), but with Beg® < B.i?. Here a and d are the normally allowed
transitions; b and c are usually of much lower intensity. (b) Observed EPR lines at constant
(X-band) frequency, with relative intensities derived from Egs. 5.19.

Since the intensities of the lines are proportional (Section C.1.4) to
(M, M/ |B{" « (gB.S — g,B.D)|Ms, M;)|?, the relative intensities of the lines are
given by

I, =y 0c sinZ%) (5.19a)
Iy =S, cos2§ (5.19b)

Thus all four transitions can be of comparable intensity (Fig. 5.4; here w &~ 70°). Failure
to recognize this has led to incorrect assignments of hyperfine splittings. The treatment
shown above is still rather general, although neglecting higher-order terms (Section
5.3.1). It is instructive now to examine the preceding results for two limiting cases:

The Case of B < Bys: Here w ~ 180°, and hence transitions a and d are the
strong ones. We see that g8, times the separation of these two lines is very
nearly the hyperfine energy, that is, |[AU, — AU,| =~ 2|g,|B,Bns where field
By=["-A-AT-n/4g,’ B2

The Case of B > Bys: Here w =~ 0 and hence transitions b and ¢ of Fig. 5.4b
are strong. Now, g.[, times the separation of these two lines is given by
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|AU. — AU,| ~ 2|g,|B8,Buns ', where By’ = |n" - A -n/(2g,8,)|. Note that this
resultis consistent with Eq. 5.10 (see also Eq. 2.1), since hv &~ g[8, B for sufficiently
large B.

We now turn to analysis of the anisotropy effects in these two limiting cases.

5.3.2.2 The Case of B~ By; This case is the one most commonly encoun-
tered and thus is analyzed in detail.®> As before, in general B (taken along z) and
B.r (®B.g) are not in the same direction (Fig. 5. 3a) Thus S and 1 agaln are best
quantized along different directions (along B for S and along By for I) The contri-
bution to By can be resolved into two components that are parallel and perpendi-
cular to B. The latter defines axis x. Using Eq. 5.12b, the spin hamiltonian becomes

H ~ gB,BMsls — g,8,Bu"+ 1 (5.20a)
= gB.BM;s13 — g.B,[BL1; + ByL.] (5.20)
Note that By = [B, >+ B” ] 172 For purposes of illustration, we consider the case of

but allow S to be arbitrary.
If the spin functions for I quantlzed along z are denoted by |a(n)) and |B(n)),

corresponding to M; = + and —3, then the nuclear-spin hamiltonian matrix in
terms of these is* (SCCUOHS A5, B. 5 and C.1.2)
le(n)) |B(n))
_ 8B 8,8
— (am)| | gB.BMs -0 R (5.21)
B
(B gB.BMs + gnﬁzn I

On diagonalizing this matrix, the energies for this system are found to be

Unmgm, = 8B.BMs + 1818, BntlM; (5.22a)
= gB.BMs+ (" A- AT+ n)'/?|Ms|M; (5.22b)

and the energy eigenfunctions are admixtures of |a(n)) and |B(n)). Here, as dis-
cussed in Section 5.3.2.1, Mg and M, represent spin components taken along two
different directions, and M; changes sign during the electron spin flip. However, it
is convenient and conventional (although incorrect) to write Eq. 5.22a as

Unms,m, = §B.BMs + AMsM; (5.22¢)

where now M; is taken as constant when Mg changes sign, and
A=m"-A-AT.-n)'/2

We now discuss the determination of matrix A from a set of EPR spectra taken at
a suitable set of crystal orientations.
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First, we present an illuminating example. Consider a single electron in a hybrid
orbital

Isp) = csls) + ¢, p) (5.23)

centered on the interacting nucleus located at the origin. Here g + |cp|2 = 1. We
take state |sp) to be an s orbital admixed with a p orbital (Table B.1), whose axis (z")
is taken to lie in the xz plane at angle 6, from z (Fig. 5.5), the latter chosen to be
along B. Thus A is symmetric and uniaxial about this axis. Note that the direction
X is defined by the relative directions of axis z' and B (and is arbitrary if 6, is 0
or 180°). We take g to be isotropic and neglect the nuclear Zeeman term in
Eq. 5.12a. Since S is quantized along z, terms in S, and S'y in Eq. 5.5 may be
neglected. In the present case, the analogous situation does not hold for I, so that
the term in .1, contributes. Using polar angle 6 and azimuthal angle ¢ for r, one
can substitute r cos 6 for z, r sin 6 cos ¢ for x, and r sin 0 sin ¢ for y in Eq. 5.5.
The relevant effective hyperfine magnetic field components (along x and z; see
Fig. 5.5) are then given by

M

B, = +—>38Asin 6, cos 6, (5.24a)
M

B =— [; [Ao + 8A(3 cos? 6, — 1)] (5.24b)
8nPpy

X

FIGURE 5.5 The hybrid orbital |sp) in a magnetic field B showing the vector r from the
nucleus to the unpaired electron, as well as relevant angles.
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so that

By = {9(8A)* sin” 0, cos” 6, + [Ag + 8A(3cos® 0, — )]*}/? /2,8,  (5.25a)
= {(Ag — 8A)* + 3(2A¢ + 8A)8A cos® 0, )% /2g,8, (5.25b)

In the preceding equations

(5.26)

3cos’a, — 1
2r3

7
0A = 40g:Began<
o

Here « is the angle between r and the axis z’ of the p orbital. The angular brackets in
Eq. 5.26 (Eq. A.57) as before indicate an average over the electronic wavefunction,
that is, over r. The part of the hyperfine field (Eq. 5.14) arising from the isotropic
hyperfine interaction (s orbital) is in fact oriented along z, since it is a scalar inter-
action (Eq. 5.8). This contribution to Ay in Eq. 5.24b is proportional to lel?
(Eq. 2.38). For an s orbital, the bracketed quantity vanishes, while for a p, orbital
it is simply (2/ 5)(;’73)1,.5 Note that the bracket contains the factor |c1,|2. The
expression for 6A represents a first approximation, since, if excited states (say, py
and py) are sufficiently close to the ground state, other terms must be added to
the right side of Eq. 5.26.
From Egs. 5.22 and 5.25, we have

Unmgm, = 8B.BMs + [(Ag — 8A)* + 3(2Ag + 8A)8A cos® 6,]'*MsM;  (5.27a)

= gB,BMs + AMsM, (5.27b)

The general form for A (Egs. 5.27) was made available in 1960 [16]. Clearly, unless
B, vanishes, the correct nuclear-spin eigenfunctions for the spin hamiltonian
(Eq. 5.21) are admixtures of |a(n)) and |B(n)). Note that it is the sign of 84/Aq

that is important in Eq. 5.27a.
At constant microwave frequency, EPR transitions occur at the resonant fields

h g

=B [(ap — bo)* + 3(2ag + bo)b cos? 6,]'/*M; (5.28a)
hv ge
== (;)aM, (5.28b)

where a(6,) = A(6,)/g.B. (as in Eq. 2.48), ap = Ao/g.B. and by = 8A4/g.B. (Egs.
5.9a,b). The sign of a can be taken as positive, since we are dealing only with first-
order hyperfine effects here.
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It is of interest to consider two limiting cases:

1. |Ag| < |0A|. Here a is given [15] by
a = |bo(1 + 3 cos” 6,)"/?| (5.29)

2. |Ap| > |6A]. The square root in Egs. 5.28a may then be expanded to give

a = |ag + by(3 cos? 6, — 1)| (5.30)

For intermediate cases, the general relation (Egs. 5.28) must be used.

It would appear at first glance that A (6, dependence in Eq. 5.27) does not average
to Ay for a molecule tumbling in a liquid. However, one must realize that it is the
hyperfine magnetic field at the nucleus, and not the energy, that is averaged over
all orientations. It is clear from Eq. 5.24a that B, averages to zero, whereas B,
averages to —MgAo/g,.B., as required. The energy for the tumbling system is not
obtained by averaging Uy, m, (Eqs. 5.27).

We now return to the general problem of obtaining A in the case B < By As in
Egs. 5.12-5.14, the hyperfine interaction is considered in terms of the hyperfine field
B¢ at the nucleus. From Eq. 5.22, it is clear that the hyperfine part of the transition
energy AU is proportional to By The difference of transition energies AU is given
by ,8,Bns = A, and is proportional to the magnitude [n"+ A - AT+ n]'/? of vector
AT-n (Eq. 5.14a). With reference to the allowed (fixed-field) transitions k and m
of Fig. 2.4a, which occur at frequencies v, and v,, one has h(v, —v,) = A.
For fixed-frequency spectra (Fig. 2.4b), the spacing between lines is B,, — By =
A/gB. at sufficiently high fields.

The procedure for evaluating the elements of the hyperfine matrix is analogous to
that for evaluating the g matrix in Section 4.4, since A« n is a vector akin to g+ n.
In the present case,

A2=AT-m)"-AT-n)=n"-(A-AT)n=n"-AA-n (5.31a)
where AA by definition is A+ A™. Thus (Eq. 4.11b) one has

(AA),, (AA),, (AA), Cy
A’=[c; ¢ c]- (AA),, (AA),, || ¢ (5.31b)
(AA)zz CZ

The task at hand (compare with Eq. 4.15) is thus the evaluation of the elements of the
matrix AA, which is symmetric and hence contains only six independent com-
ponents.® From Eq. 5.31b one obtains (Eqs. A.52)
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A? = (AA),, sin” Ocos” ¢ + 2(AA),, sin® Ocos Psin ¢+
(AA),, sin’ sin® ¢ + 2(AA),, cos Osin Ocos ¢+
2(AA),, cos Bsin fsin ¢+ (AA), cos® 6 (5.32)

We note that

A* = (g.B,a) (5.33)

where (g./g)a is the experimental (first-order) splitting, which must be measured at
suitable orientations.

Once matrix AA has been obtained from the EPR spectra, the next task is to
diagonalize it. Note that all three of its principal values are non-negative. If we
take their square roots, we can obtain the magnitudes that are usually reported
in the literature. These are not necessarily those of the principal values of the
symmetrized hyperfine matrix (A +A")/2. As already mentioned,' the true
matrix A in general is asymmetric; that is, A # AT. In most of the literature,
it is at this point in the analysis that the hyperfine matrix is assumed to be sym-
metric, and it is that matrix (A) that is reported. This equals the true matrix A
reported only if in fact A = A" for the latter. Luckily, knowledge of the
reported matrix usually suffices to fully characterize the EPR spectra of the
spin species studied, but this does not necessarily suffice when exact quantum-
mechanical modeling of the molecule is the objective.

As stated above, the magnitudes of the elements of the diagonal form are obtained
from the square roots of the principal values of AA. The relative signs of the prin-
cipal values become available when the fields B used are sufficiently large that the
nuclear Zeeman term in Eq. 5.7 affects the spectra. In some instances, signs and
likely asymmetry become available from quantum-mechanical modeling of the mol-
ecular species of interest.

Consider the especially simple system when we encounter uniaxial symmetry. In
this case, Eq. 5.32 becomes

A*=A,%sin’ 0+ A cos” 6 (5.34)

where 0 is the angle between the unique axis and B.

Returning to the more general anisotropic case, we now apply the expressions
presented above to actual experimental hyperfine coupling data to obtain a matrix
A for the a-fluorine atom of the " OOC—CF—CF,—COO  radical di-anion. This
species is obtained by irradiation of hydrated sodium perfluorosuccinate [17].
This m-type radical has its unpaired electron primarily in a non-bonding 2p
orbital on the trigonal carbon atom but, as we shall see, with appreciable spin popu-
lation also on the a-fluorine atom. Thus the s + p example just presented (Eq. 5.23)
is relevant but is not quite general enough. The crystal structure is monoclinic, with
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(a)

(b)
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FIGURE 5.6 (a) Second-derivative X-band spectrum of the perfluorosuccinate radical
dianion at 300 K for B || b at 9.000 GHz; (b) similar spectrum at 35.000 GHz showing the
greatly increased intensity of the forbidden transitions. [After M. T. Rogers, D. H. Whiffen,
J. Chem. Phys., 40, 2662 (1964).]

unit-cell parameters a = 1.14, b = 1.10, ¢ = 1.03 nm and b = 106°. Here 3 is the
angle between the a and the ¢ axes. An orthogonal a’'bc axis system is chosen,
taking a’ to be perpendicular to the bc plane. Figure 5.6a exhibits a typical
X-band EPR spectrum taken at 300 K, displaying the substantial a-fluorine splitting
as well as the smaller ones from the B-fluorine atoms. The g factors range from
2.0036 to 2.0060 but are herein treated as isotropic. In Fig. 5.7 the hyperfine split-
tings from the « atom are plotted as the magnetic field explores the a’b, bc and a'c
planes of the single crystal for both the allowed and the ‘forbidden’ lines.

With the crystal point group symmetry C, at hand here, the radicals occur in
two different orientations (Section 4.5) related by two-fold axis b, as well as
translation (and possibly inversion). Thus, generally, spectra from both are
present and care must be taken in the analysis not to mix these up. How-
ever, these do superimpose exactly for B in the a'c plane or for B parallel to
b [18].

The elements of the a-'F AA matrices for the two sites can be obtained by
interpolation from these plots, using values at a set of special angles. Such data
are listed in Table 5.1 (one can average the duplicate measurements). However,
for better precision, least-squares fits should be made (using plots of A® versus
rotation angle) to all the experimental data, including the forbidden lines.
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TABLE 5.1 Selected Hyperfine Splittings “ and the Components of AA
for the a-Fluorine Atom of the " OOC—CF—CF,—COO™~ Radical Ion

Plane Angle (deg) A/ h)? (MHZ?) Tensor Element
a'b 0 1.61 x 10* = (AA)y o /h?
90 16.24 x 10* = (AA),/ 1
45 13.84 x 10* Difference =
135 4.29 x 104} 2(AA), /1
be 0 16.48 x 10* = (AA),/h*
90 2.72 x 10* = (AA)../I*
45 9.67 x 10* Difference =
135 9.99 x 104} 2(AA),./h?
cd 0 2.69 x 10* = (AA)./h?
90 1.59 x 10* = (AA) o /1
45 2.69 x 10* Difference =
135 1.42 x 104} 2(AA),./h*

“Measured at 300 K with v = 9.000 GHz. Only the data for one radical site are displayed.
Source: Data from M. T. Rogers, D. H. Whiffen, J. Chem. Phys., 40, 2662 (1964).

The matrix obtained from the limited data in Table 5.1 is

1.60 +4.78  0.64
AA/K? = 1636 F0.16 | x 10* (MHz)? (5.35)
2.71

The choices in sign for two of the matrix elements are associated with the presence
of the two symmetry-related types of radical sites (Problem 5.6). Both matrices have
the same set of principal values.’

Note that the qualitative appearance (Fig. 5.7) of the plots of hyperfine splittings
versus orientation indicates the relative importance of off-diagonal elements of AA.
For example, if the relevant off-diagonal element is comparable in magnitude with
the diagonal elements it spans, then the plot of the splitting in the given plane is very
asymmetric about its center. However, if the off-diagonal element is relatively small,
then the plot is close to symmetric. Figure 5.7a is a good example of the former case
[i.e., (AA),, is relatively large], whereas Fig. 5.7b represents the latter case [i.e.,
(AA),, is small].

Either of the two matrices 5.35 may now be diagonalized by subtracting a
parameter 1 from each diagonal element and setting the resulting determinant
equal to zero (Section A.5.5). Expansion of the determinant yields the following
cubic equation:

A —20.67A% +51.56A — 1.30 =0 (5.36)
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FIGURE 5.7 Angular dependence of the hyperfine line splitting (MHz) in the
“O0OC—CF—CF,—COOQ " radical at 300 K, yielding the data in Table 5.1. The uncertainty
of data represented by large circles is greater than that for the small circles. Curves are
drawn for only one of the two symmetry-related sites (the upper signs of the
direction-cosine matrix of Table 5.1). Dotted lines correspond to spectral lines with relative
intensity less than 20% of the total absorption intensity. (a)—(c) The microwave frequency
is 9.000 GHz. B is in the a'b, bc and d'c planes in (a)—(c); (d )—(f) spectra analogous to
(a)—(c) but for a frequency of 35.000 GHz. [After M. T. Rogers, D. H. Whiffen, J. Chem.
Phys., 40, 2662 (1964).]

The roots of this equation are 17.77, 2.87 and 0.025 (all x 10* MHZZ); hence

1777 0 0
dAA/K? = 287 0 x 10* (MHz)? (5.37)
0.025

The smallest principal value is not accurately determined from the present data.
Other orientations are required to obtain a more accurate value. By taking square
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roots, we obtain (A + AT) /2; this equals A if as usual the latter is assumed to be
symmetric. Thus we have

215 0 0
dA/h = 169.4 0 | MHz (5.38)
16

where there is an ambiguity as to the sign of each principal element of “A. It is poss-
ible to obtain the correct signs for the diagonal elements of “A., if the nuclear Zeeman
term (the final term in Eq. 5.124) is significant. This term accounts for the difference
between the 9-GHz separations in Figs. 5.7a—c, for which the nuclear Zeeman term
is negligible, and the 35-GHz separations of Figs. 5.7d—f, for which the full theory
must be used. All three signs turn out to be positive (see below). The matrix A in the
crystal coordinate system, obtained from the complete data set (Fig. 5.7), is pre-
sented in Table 5.2, as are its principal values and directions. Here small corrections
(Egs. 5.15 and 5.16) were made to account for the effect of the nuclear Zeeman term.
In other words, the approximation B < By is not quite adequate. All three principal
values were chosen to be positive.

As is now evident, the analysis of a complex spectrum, which may contain ‘for-
bidden’ transitions (e.g., lines for which AMg = +1, AM; = +1), is often aided by
using two different microwave frequencies. Figures 5.6a and 5.6b illustrate the spec-
trum of the  OOC—CF—CF,—COO radical at 9 and at 35 GHz, that is, cases
B < Byrand B = Byy. The latter spectrum clearly shows the ‘forbidden’ transitions.

We now demonstrate the use of a high microwave frequency in determining the
relative signs of hyperfine matrix elements. The measurements to be considered are
the ones made at 35.000 GHz. Thus here we revisit the case B ~ By The a-'°F
hyperfine splittings are computed in the following manner.

The main-line splitting in the [100] direction is used as an example. We obtain
B.." (Eq. 5.14b) from

—Msn"+ A/h = 2Mg [-23.5, F 51.7, —16.2] MHz (5.39)

TABLE 5.2 The o-'°F Hyperfine Matrix Ay, of the Perfluorosuccinate
Radical Dianion and Its Principal Values and Direction *

Matrix A/h Principal Values Direction Cosines
(MHz) (MHz) relative to Axes a’'bc
46.9 +103.3 3255 421 0.267 +9.964 0.011
— 392.7 ¥59 165 0.208 +0.068 0.976
— — 157.7 11 0.941 F+0258 —0.219

“ The upper and lower signs refer consistently to the two sets of radical sites. These data were obtained at
300 K with v = 9.000 GHz.

Sources: Data from M. T. Rogers, D. H. Whiffen, J. Chem. Phys., 40,2662 (1964); also see L. D. Kispert,
M. T. Rogers, J. Chem. Phys., 54, 3326 (1971).
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by use of matrix A/h in Table 5.2. With B = 1.2475 T, we obtain (using Table H.4)
the value g,8,B/h = 50.0 MHz, so that we have

&nB,Beg“T/h = [50.0 — 23.5, F 51.7, —16.2] MHz (5.40)
Hence, for both sites, we have

8nB,Beir® T/h = 60.3 MHz (5.41a)
8nB,Bei® T/h = 91.3 MHz (5.41b)

Thus the two hyperfine splittings (Egs. 5.18) are

|AU, — AU,|/h = 151.6 MHz (5.42a)
|AU. — AUp|/h = 31.0 MHz (5.42b)

and are entered in Table 5.3, choice 1. They agree, as they should, with the observed
points for BJla’ in Figs. 5.7d and 5.7f. Since w = 101°, the relative intensities
(Egs. 5.19) are 0.60 and 0.40, for the a,d and b,c transitions.

The other choice 1 entries in Table 5.3 were calculated in a similar manner. The
calculations were repeated with the other sign choices. It is clear, from an appropri-
ate statistical analysis, that the sign choice that gives the best agreement with exper-
iment is the one for which all principal values have the same sign. A positive sign is
chosen, since the maximum hyperfine coupling is expected on theoretical grounds to
be positive (g, > 0) for an unpaired electron in a 2p, orbital on the a-fluorine atom
(note Eq. 5.43, below).

We turn now to interpretation of the hyperfine anisotropies of the perfluoro-
succinate ion. Studies at various temperatures (77—300 K) of the EPR character-
istics of the ~OOC—CF—CF,—COO  radical disclose that the spectra, and
hence the parameter matrices, change markedly as the crystal is cooled from
room temperature [19,20]. This indicates that in fact the molecules are oscillat-
ing rapidly at 300 K, so that the matrix A given in Table 5.2 represents dipolar
interactions time-averaged over these distortions and vibrations. Thus A must
not be interpreted in terms of bond directions and angles of a static molecule.®
There are, in fact, two crystallographically non-equivalent positions
bearing radicals 1 and II, as shown in Fig. 5.8. The mean lifetime 7
(Chapter 10) describing the interconversion between these states is given by
7' =99 x 10" exp(—AU*/RT) in units of s~ ', with activation energy
AU* = 1526 kI mol "' [19].

Table 5.4 presents the fluorine hyperfine principal values and directions for
radicals I and II measured at 77 K [20]. In both species, the a-fluorine matrix
yields the maximum splitting when B is along the Z axis (i.e., perpendicular to
the plane of the trigonal carbon atom).’ This type of matrix is characteristic of a
nucleus interacting primarily with electron-spin density in a p orbital on the same
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TABLE 5.3 Observed and Calculated Splittings (MHz), Obtained with Various
Sign Choices for the Principal Values of A/h, of the a-Fluorine Nucleus in the
Perfluorosuccinate Radical Dianion

Calculated Splittings (and Relative Intensities)

Direction
Cosines of Observed Sign Choices
Field B Splittings (D 2) 3) @)
[1,0,0] 153 152 (0.59) 154 (0.58) 153 (0.58) 154 (0.58)
29 31 (0.41) 18 (0.42) 21 (0.42) 85 (0.42)
[0,1,0] 407 407 (0.41) 407 (1.00) 407 (1.00) 407 (0.99)
— 96 (0.00) 96 (0.00) 96 (0.00) 96 (0.01)
[0,0,1] 162 163 (0.96) 164 (0.95) 164 (0.95) 163 (0.96)
— 97 (0.04) 96 (0.05) 96 (0.05) 97 (0.04)
[cos 30°,0, 170 169 (0.75) 171 (0.73) 177 (0.70) 176 (0.70)
cos 60°]
65 61 (0.25) 54 (0.27) 25 (0.30) 32 (0.30)
[cos 50°,0, 148 149 (0.63) 152 (0.62) 156 (0.61) 154 (0.61)
—cos 40°]
48 54 (0.37) 44 (0.38) 28 (0.39) 37 (0.39)
[—cos 20°, — 110 (0.18) 112 (0.20) 112 (0.20) 111 (0.19)
cos 70°,0]
17 19 (0.82) 1 (0.80) 46 (0.80) 14 (0.81)
[0,cos 60°, 252 252 (0.95) 253 (0.94) 266 (0.86) 266 (0.86)
cos 30°]
— 84 (0.05) 83 (0.06) 22 (0.14) 30 (0.14)
Sign choices: (1) +421 +165 +11 (MHz)
(2) +421 +165 -—11
3) +421 —165 +11
4) +421 —-165 -—11

Sources: Taken from M. T. Rogers, D. H. Whiffen, J. Chem. Phys., 40, 2662 (1964); see also L. D.
Kispert, M. T. Rogers, J. Chem. Phys., 54, 3326 (1971).

atom (7-type radical; see Chapter 9). For unit p-orbital spin population (i.e.,
|c,,|2 = 1; see Section 9.2), the anisotropic part of the hyperfine matrix would be
expected to be (using Table H.4)

—-628 0 0
T .8, = —62.8 0 mT (5.43)
+125.6

The maximum value (2bg) is linked to the direction of the p orbital. From the
numerical magnitude (14.2 mT for radical I) of the Z principal component of
T*F (Table 5.4), and use of Table H.4, one may deduce that the actual spin popu-
lation is p** &~ T./T." = 14.2/125.6 = 0.113. This result may be interpreted as
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FIGURE 5.8 Newman projections along the C,—Cg bond showing the two configurations
of the I and II perfluorosuccinate radicals, which exist below 130 K. Rapid exchange between
T and IT lead to the room-temperature configuration reported in Ref. 17. For reference, the ¢, b
and c axes are drawn relative to the a-fluorine p, orbital. [After C. M. Bogan, L. D. Kispert,
J. Phys. Chem., 77, 1491 (1973).]

evidence for a partial donation of unpaired-electron population to the 2p, orbital of
the a-fluorine from the 2p, orbital of the a-carbon atom. In this analysis, we have
taken the at-a-distance dipolar interaction between this fluorine nucleus and the
unpaired-electron population on the carbon atom to be negligible.

The B-fluorine interaction, too, is very anisotropic, in contrast to 3-proton hyper-
fine interactions, which are almost isotropic. The observed large anisotropy can arise
only if there is a net spin population in a p orbital on the fluorine atom. Spin popu-
lation in an s orbital would produce only an isotropic hyperfine interaction. The
orientation of the principal axes of the B-fluorine hyperfine matrices strongly
suggests that the interaction that leads to spin population in the 8-fluorine p orbitals
arises from a direct overlap of these orbitals with the a-carbon 2p, orbital. There is
some evidence from NMR and EPR work in solution that such p-7r interactions are
important [21,22].

In closing this section, we note that in some systems one may observe additional
weak lines not accounted for by considering ‘forbidden’ transitions of the primary
paramagnetic species (e.g., see Fig. 5.6). An example is the case of hydrogen atoms
trapped in irradiated frozen acids such as H,SO,. In the EPR spectrum, weak sets of
lines are separated from the corresponding allowed lines by g,3,B/g.B.. That is,
they are proportional to the nuclear resonance frequency of the proton at the field
B used for the EPR experiment [23,24]. The weak lines arise from ‘matrix’
protons that undergo a ‘spin flip’ when the electron spins of nearby trapped hydrogen
atoms are reoriented. The coupling is dipolar and the intensity of the weak lines
varies approximately as B~ 2. In principle, such spin-flip lines from protons of the
hydration water molecule should be observable in the perfluorosuccinate radical
system.
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5.3.2.3 The Case of B> By When the external magnetic field B is suffi-
ciently large, I may be taken effectively to be quantized along B (Fig. 5.3¢); Eq.
5.7 may then be written

H =g.8,BSs + "+ A - m)Spls — g.8,Blp (5.44)

where 5'3 =S8"-nand Iy = I" - n. In other words, we ignore B, in Eq. 5.21. We see
that H is diagonal as is; that is, replacing S by Mg and Iz by M, yields the energy
eigenvalues.

If we wish, we can call n” - A - n a diagonal element of A (in an appropriate
coordinate system), that is, Agg. With this notation, the energy eigenvalues of H
in Eq. 5.44 are

Umg,m, = 8B.BMs + AgsM;M; — g, 3,BM,; (5.45)
for any fixed n = B/B. The allowed transition energies are
Umtg+1.m, = Ung.m, = 8B.B + ApsM; (5.46)

For given Mg, transitions occur for both M; and —M;. We cannot obtain the sign of
App since we cannot know which observed transition is which. Thus only |Apgp| is
measurable. Equivalently, as the analysis in Section 5.3.1 reveals, we can say that
only A - A" is obtainable from a set of measurements at various orientations of B.
_ Asaspecific example, again consider B pointed along z, that is, n = z. Since both
S and I are now quantized along B, one may neglect all terms involving x and y com-
ponents of S and I in Eq. 5.5. Consider the special case of the unpaired electron
located in a pure p orbital (whose axis is in the xz plane as shown in Fig. 5.5) cen-
tered on the interacting nucleus, that is, a uniaxial situation. With the substitution
z=rcos 0, Eq. 5.6 effectively reduces (using Eq. 5.26) to

A 3cos? 6, — 1\ ~

Hdipolar = :_L_;:_gﬁegnﬁn ( Tp> Szlz (5.47a)
= 8A(3 cos’ 6, — 1)S.1. (5.47b)
=AS.1, (5.47¢)

Here again 6, is the angle between z and the axis p of the p orbital (Fig. 5.5).
Equations 5.1 and 5.2 are consistent with this result (taking 6 = 6¢,,). The reader
may wish to consider Problem 5.4 when considering derivation of Eq. 5.47b from
Eq. 5.47a. If the electron is interacting with a nucleus not at the center of the p
orbital, Eq. 5.47b still holds; however, an appropriate average must be taken over
the electronic wavefunction. We now explore this case.

When a nucleus giving rise to hyperfine effects is situated away from, rather than
at, the center of the unpaired-electron distribution, then the observed hyperfine
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splitting tends to be small. The distribution quantity |{s(at external nucleus)|* gives
rise only to a small isotropic hyperfine term of the contact type given by Eq. 2.38.
The at-a-distance magnetic dipole interaction drops off rapidly as R increases;
here R is the distance between the nucleus considered and the center of the unpaired-
electron distribution (say, some other nucleus, with charge number Z). As a simplest
example, let us consider the latter to be a 1s orbital of a one-electron atom and take
the external nucleus to have no electrons of its own (Fig. 5.9). The dipolar part (Eq.
5.6) of the hyperfine matrix A for this one-electron uniaxial system is given [5,25] by

2 0 0
T="20¢80.8R3f -1 0 (5.48)
4 —1
where
fR) =1—ePR[1 +pR+ L p’R* + L p*R] (5.49)

with p = 2Z/r,; here r,, is the Bohr radius. The product R >f can be shown to go to
zero with an ~R > dependence as R — 0, and also to go to zero as R — oo,
Table 5.5 presents some values of both the isotropic and anisotropic hyperfine par-
ameters as a function of distance R between a proton and a hydrogenic electron (1s)
cloud. Relations similar to those of Egs. 5.48 and 5.49 have been derived [26] for p
electrons and applied to free-radical systems.

The Voy center measured at X band, considered in Section 5.1, is a good example
of the case of an external nucleus (the proton), with B > By For instance, B & 320
mT as compared to By = 53.8 mT for 6§ = 0.

In closing this discussion, we note that in most EPR situations involving an exter-
nal nucleus, one deals with the case B > B;;. Here the nuclear Zeeman term cannot
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FIGURE 5.9 Model of the hyperfine anisotropic interaction between an unpaired electron,
distributed according to a spherically symmetric function ¢(r,), and an ‘external’ and
‘uncharged’ nucleus 7.
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TABLE 5.5 The Isotropic and Anisotropic Hyperfine Parameters for a Bare
Proton at Distance R from the Center of a 1s Unpaired Electron Distribution”

R (m) f ag (mT) Tmax/&eBe (mT)
0 0 50.77 0

1.0 x 1071 0.0006296 34.79 3.552

r 0.1428765 6.871 5.440

1.0 x 10710 0.5223026 1.160 2.947
2.0x 10710 0.9431053 0.026 0.6652

5.0 x 10710 0.9999918 0.000 0.0451

00 1 0 0

“Here ayp = [249/3]g. 8,1 W(R)|* = [210/377,’18n B, €Xp (—2R/75) (Eq. 2.5), where 1y, is the
Bohr radius (Table H.1).

generally be ignored. We also wish to emphasize that the satellite peaks discussed in
this chapter depend on anisotropy, and hence are not observable in liquids (because
of tumbling averaging) or in gases.

5.4 COMBINED g AND HYPERFINE ANISOTROPY

Generally, simultaneous anisotropy of g and A occurs, and the principal-axis systems
of g and A do not coincide except in instances of high local symmetry for the
species dealt with; for an example of this latter situation, see Ref. 27. This leads
to additional complexity. Thus, for instance, in Egs. 5.6 for the dipole-dipole inter-
action, one must replace g in T by the matrix multiplicant g [15]. In general, one
obtains energy expressions (e.g., Eq. 6.55¢) involving combination matrices
g-A-AT.g" which must be deconvoluted using explicit knowledge of g.

The most favorable case occurs when there exist several isotopes of the nucleus
of interest (e.g., C, O, Mg, Si), at least one having a nuclear spin of zero. For those
molecules with zero-spin nuclei, g can be obtained by the method discussed in
Chapter 4; these results can then be utilized when analyzing the hyperfine effects
arising from the spin-bearing nuclei. When this is not possible, then special tech-
niques can yield relevant energy expressions [9, Section 3.8; 10,28], such as Eq.
6.54, or generalized numerical (computer) techniques can be applied. Often in the
literature g is taken to be isotropic or is taken (in a first approximation) to have prin-
cipal axes coinciding with those of A. In particular, the latter assumption is a danger-
ous practice when dealing with a low-symmetry species.

Clearly it is not possible for a powder to yield information about the orientation of
the principal axes of, say, a g matrix relative to the laboratory frame, as one can for a
single crystal. However, the relative orientations of such axes, when more than one
parameter matrix (say, g and A) is involved, can be derived from EPR powder-
pattern analysis [29].
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5.5 MULTIPLE HYPERFINE MATRICES

When more than one nucleus with non-zero spin is part of the paramagnetic center
being considered, some new features can be encountered:

1. When neither nuclear hyperfine interaction in such a pair is large compared
to the electron Zeeman interaction, then first-order theory, as developed in
Chapters 2 and 3, remains valid; contributions of the two nuclei to the EPR
line positions are then additive, a feature that was implicitly assumed up to
this point.

2. When second-order contributions (Egs. 3.2 and C.29) need to be considered,
then cross-terms involving parameters of both members of all pairs of nuclei
enter the energy (and hence line-position) equations (Section 6.7). This is true
even though no interaction terms between nuclear magnetic moments are
included in the spin hamiltonian [11]. A cross-term occurs only when both
nuclei of a pair exhibit hyperfine anisotropy. Energy terms containing simul-
taneous contributions from more than two nuclei are absent in this approxi-
mation, so that sets of nuclei can be considered pair-wise. In addition, the
direct nuclear magnetic dipolar interactions should, in principle, be included
in the spin hamiltonians; in practice these are found to be negligible.

5.6 SYSTEMS WITH />]

The nuclear-spin angular-momentum direction is linked to the actual shape of
the nucleus, that is, to the axis of symmetry of its (time-averaged) electrical
charge distribution. When a nucleus has a spin [ greater than % any electric-field
gradient acting on that nucleus can orient its charge ellipsoid and hence its
spin direction. Such a gradient is caused primarily, of course, by the electron distri-
bution in the immediate neighborhood. Thus this tendency to align the nucleus
affords a means of examining the relative shapes and potency of the atomic orbitals
centered at the nucleus in question. As the reader may guess, electrons populating s
orbitals, due to their sphericity, cannot act in this fashion. Of the non-s orbitals,
p orbitals are more effective than, say, d orbitals with the same principal quantum
number.

The energy of alignment, called the nuclear quadrupole energy, is derivable from
a suitable spin-hamiltonian term [30,31]

Ho=1"-P-1i (5.50)

valid for I > %, where

P=P —n—1 0 (5.51a)
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is the nuclear quadrupole coupling matrix in its principal-axis system, with

eZQeng

= T (5.51b)

and P is symmetric and traceless. Here —|e|gef,, given in units of J C "m™? is just
the electric-field gradient of largest magnitude seen by the nucleus (by definition,
along the primary principal axis Z of P). Parameter |e|Q describes the electrical
shape of the nucleus and is a fixed number (+ or —) for each isotopic species; it
is obtainable from tables (Q is in units of m?; see Table H.4 footnote regarding tabu-
lations of Q). The asymmetry parameter 1 describes the deviation of the field gra-
dient from uniaxial symmetry about Z; it is dimensionless and is zero when there
is local uniaxial symmetry.

Analysis of energy expressions [30,31] derivable from Eq. 5.50 reveals that the
local electric-field gradient splits the nuclear-spin state energies already at zero mag-
netic field B.'"® Thus spectroscopy between such levels is possible and is called
nuclear quadrupole resonance (NQR). When there is one or more unpaired elec-
trons, that is, in EPR work, such energy contributions are present, in addition to
the now familiar hyperfine effects. One can say that there is a competition to
align the nuclear spin by several agents, namely, the local electric-field gradient,
the local magnetic field originating from the unpaired electron(s), and the externally
applied field. These complications must be dealt with when analyzing EPR spectra
of solids containing nuclei with / > § (Problem C.5).

It should be emphasized that adding the term Hy (Eq. 5.50) to the spin hamil-
tonian of an unpaired-electron system does not affect the EPR transitions to first
order, that is, all energy levels are shifted equally to this approximation. It is the
second-order energy contribution (as sketched in Section 6.7), as well as higher
ones, which affects the spectrum. ENDOR effects (Chapter 12) are more sensitive
to ﬂQ.

We content ourselves herein by stating that the nuclear quadrupole matrix P is
obtainable via EPR, and the parameters g.¢, and m therein can give very detailed
and valuable information about the electron distributions near such nuclei.

5.7 HYPERFINE POWDER LINESHAPES

The calculation of the expected lineshape for hyperfine splitting in a powder is con-
sidered for the case of an isotropic g factor, and S =1 = % Here the dipolar inter-
action of the unpaired electron with the single nucleus is to be considered for all
possible orientations of the electron-nucleus vector r of Fig. 2.2. The angle 6
between this vector and the applied field can vary from O to 7. We adopt the hyper-
fine parameter A(0) = g.B.a(6) as our variable. As before, we assume that B > |a,
so that there is linearity between B and a (Eq. 5.28).

Let us now, for tutorial purposes, adopt the simple example of the single electron
in a hybrid sp orbital previously treated (Section 5.3.2.2). Careful consideration
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should convince the reader that ranging over the angle 6, between the p-orbital
direction and the field B is exactly equivalent to ranging over 6, the angle
between the nucleus-electron vector and B (Fig. 5.5). Differentiating with respect
to the latter angle, while taking g to be isotropic and assuming frequency v to be
fixed, one obtains

sin  [(ap — bo)* + 3(2ag + by)by cos? 0]/

da/do 3(2aq + bo )by cos 0 (5-52)
and hence, via Eq. 5.28a, we obtain
sing g1 — ) +32 + &)écos? '/ (5.5
da/db 3g.M;(2 4+ &)écos 6
where
&= bo/ap = 6A /A (5.54)

The magnitude of the lineshape given by Eq. 5.53 is just Py, (B), giving the
field-swept spectrum for either M; = + %.” For M; = +%, the relevant field range
is B < B, = hv/gp,, while for M; = —%, one has B > B,. Note that, unlike the ana-
logous g-matrix powder pattern (Eq. 4.30 and Fig. 4.7), the envelope extent does not
depend on B. The absorption of course consists of two separate envelopes for P(B),
since M; = i% (Eq. 5.28). This pair of envelopes is the powder extension of the
ordinary isotropic I = % hyperfine doublet and is centered at B, under the present
assumptions. The overall ‘mean’ envelope separation is |Ag|/gp..

Figure 5.10 illustrates the total lineshape P(B) plotted versus B for a number of
values of & The individual lineshape here is taken to have negligible width. Note
that the outer edges of each envelope correspond to the angles 8 = 0° (180°) and
90°. In all cases, P, (B) has a finite value at 6 = 0° and increases monotonically
toward infinity at # = 90°. The value & = 0 represents the pure isotropic case. The
value & = —2 produces a pseudo-isotropic case.'> At £ = +1, P(B) is non-zero and
independent of B over a finite range, except at B = B,, at which a singularity exists.

The curves in Fig. 5.10 have been drawn assuming a non-zero width inherent in
the basic lineshape, yielding a broadening similar to that given in Fig. 4.7b is found.
The first-derivative lineshape is very similar to that shown in Fig. 4.7¢ except that
there is a duplication, with opposite phases, since there are two hyperfine com-
ponents. As was the case for g anisotropy in Section 4.7, the outer lines appear as
absorption lines in the first-derivative presentation.

Figure 5.11 illustrates the EPR spectrum of the FCO radical, which is randomly
oriented in a CO matrix at 4.2 K. For this radical, g is essentially isotropic and is
close to g.. Although the symmetry is not quite uniaxial, it is considered to be so
for purposes of illustration. The separation of the outermost lines is given by
|Ap+ 26A|/g.B. = 51.4 mT, whereas the separation of the inner lines is given by
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FIGURE 5.10 Hyperfine absorption lineshapes (Eq.5.53) for a randomly oriented
paramagnetic species with S =1 = % and having an isotropic g factor (g,), for nine selected
values of &= dA/A,. These are plots of the envelopes P(6) versus B. The individual lines
are simulated using lorentzian lineshapes with linewidth AB;,, of 0.05 G. The total areas

under the curves are equal; the P and B scales vary.

|Ap — 6A|/g.B. =2 24.6 mT. From this one may deduce that either Ay/h =
+940 MHz, 6A/h = +250 MHz, or Ag/h= +20MHz, 6A/h = +710 MHz.
The former assignment is the correct one, but one requires additional information
to resolve the ambiguity [32].

As a second example, we cite briefly the use of powder/glass patterns to extract
liquid-solution parameters. Thus, for the naphthalene cation radical, which is very
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B
—
100G

FIGURE 5.11 EPR spectrum of FCO in a CO matrix at 4.2 K. The microwave frequency is
9123.97 MHz. The hyperfine interaction is not quite uniaxial, as is seen by the incipient
splitting of the second peak from the left. [After F. J. Adrian, E. L. Cochran, V. A.
Bowers, J. Chem. Phys., 43, 462 (1965).]

unstable in liquid solvents, simulation of the EPR pattern for the radical studied in
boric acid glass at 300 K yields the principal values of the proton hyperfine matrices,
from which the traces yield the two |Ao"| values (Table 9.3) [33].

Naturally, deviations from the powder-pattern model described above arise in
general, including cases when

Approximate Eq. 5.28 is not adequate.

There is anisotropy in g, transition probability, and/or linewidth.
The nucleus has spin greater than %

There are several spin-bearing nuclei.

ok w =

The total electron spin is greater than %

It is then necessary to use other relations,'® and possibly to employ computer simu-
lation [36]. It may be possible in simple cases to determine some or all of the com-
ponents of g and A. However, the reader is warned that there are strong possibilities
for misassignments. Figure 5.12 illustrates the idealized first-derivative lineshapes
for some simple cases. Note the difference in phase occurring for A anisotropy as
compared to g anisotropy. The problems associated with small hyperfine splittings
and satellite lines (such as those discussed in Section 5.3.2.2) can be very consider-
able [37].
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FIGURE 5.12 Examples of first-derivative powder spectra of radicals exhibiting hyperfine
splitting from one nucleus with 7 = %: (a) isotropic g factors and az > ay > ay > 0; (b)
uniaxial symmetry, g, < g.; a;>a, > 0; (c) isotropic hyperfine splitting a, > 0 and
gx < gy < gz [After P. W. Atkins, M. C. R. Symons, The Structure of Inorganic Radicals,
Elsevier, Amsterdam, Netherlands, 1967, p. 270.]

We cannot go into details of EPR spectra derived from partially aligned mol-
ecules here. An example is the anisotropic X-band spectrum of the ion C,F, , gen-
erated by vy irradiation of tetrafluoroethylene in a crystalline methylcyclohexane-d4
matrix [38]. An excellent summary of preferential orienting of paramagnetic species
is available in the book by Weltner [39].

Finally, we turn to an example in which a species acts crystalline in one dimen-
sion and powder-like in the other two. This is the situation for NO, molecules
(8 = 3) adsorbed at 20 K as monolayers on a Kr/Ag substrate [40]. Computer simu-
lation reproduces the experimental EPR spectrum nicely and indicates that the
planes of the NO, molecules are coplanar with the surface.
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NOTES

~N O L AW

10.
11.

. Strictly speaking, the nuclear Zeeman spin-hamiltonian operator should be written in
terms of a parameter matrix, that is, as —8,BT - g, - I in complete analogy with the
electronic Zeeman operator discussed in detail in this chapter. Taking g, as a matrix
allows inclusion of the well-known chemical shift and other phenomena. In practice, in
EPR, these anisotropy effects generally are negligibly small. Thus we take g, as a
scalar in this book. Note also that the alternate choice of the hyperfine term I"-A-S
would imply that A here is the transpose of A occurring in Eq. 5.7. Matrix A need not
be symmetric when g is anisotropic; indeed, there are various known examples for
which A is asymmetric [6—8].

. That sign becomes measurable under conditions when the nuclear Zeeman term
appreciably affects the observed spectrum. Note also that nT+ A +n = %nT (A+AT)-n
(Problem 5.2). From such values, one can extract A;; + Aj;, but not A; or Aj;, when i # j.

. This problem was first considered by Zeldes et al. [15] (see also Blinder [16]).

. The spin-hamiltonian matrix is not, in fact, diagonal since Iis not quantized along z.

. (3 cos’a — 1y = 4/7 for a d,» orbital and 8/15 for an f,; orbital.

. As is the case for gg, AA is a true tensor; however, A is not.

. As we see, site splitting here leads to a pair of ‘equal and opposite’ off-diagonal elements,
since the cartesian crystal-axis system was appropriately chosen with respect to the crystal
symmetry. Each site has only one appropriate sign for each off-diagonal element, but care
is required to assign the correct pairing. Thus in Eq. 5.35 the value +4.78 is to be
associated with —0.16 and —4.78 with +0.16. This correlation cannot be determined
experimentally from the original three rotations, but it can be obtained from other
crystal positions, especially that with the field in the directions (371/2, 371/2, + 371/2),

. This is a general caveat. Interpretation of spin-hamiltonian parameters should be done
with awareness of their temperature dependence, that is, in light of possible dynamic
effects in the paramagnetic entity being investigated.

. This is in contrast to the typical a-proton anisotropic hyperfine matrix in other

radicals.

This, then, is a contribution to the zero-field splitting in addition to the hyperfine splitting.

A relation similar to Eq. 5.53 was developed by Blinder [16].
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12. Such a case could easily be mistaken for a purely isotropic hyperfine interaction. The only
way to tell would be to examine (if possible) the system in a liquid of low viscosity where
the true isotropic hyperfine splitting would be obtained.

13. The case of rhombic symmetry and an isotropic g factor is considered by Blinder [16]; see
also Cochran et al. [34]. The case of uniaxial symmetry and comparable hyperfine and g
anisotropy is considered by Neiman and Kivelson [35].
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2. C. P. Poole Jr., H. A. Farach, The Theory of Magnetic Resonance, Wiley-Interscience,
New York, NY, U.S.A,, 1972.

PROBLEMS

5.1 From the table below obtained from the 10.0000 GHz EPR spectrum of
[GeO,/Na]y in irradiated a-quartz (Fig. 5.2):
(a) Label the dectet peaks with M; values.

(b) Obtain g,, from the even-isotope peak (here by definition z is parallel to
the direction of B).

(¢) Evaluate the matrix element | Agypm/g.Be|.. using Eq. 5.10.
(d) Calculate the natural abundance of Ge.

3Ge Isotopic Species Even-Ge Isotopic Species ("*"*7+75Ge)
B (mT) Relative Intensity B (mT) Relative Intensity
231.114 0.245 358.507 27.85
249.184 0.239 — —
269.376 0.234 — —
291.823 0.230 — —
316.621 0.229 — —
343.821 0.229 — —
373.421 0.231 — —
405.371 0.234 — —
439.573 0.239 — —
475.892 0.246 — —

52 Provethat n”-A-n=n"-A".n even when A is an asymmetric matrix.
Here n can be taken to be the unit vector along B (Section A.5.2).
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5.3 Show that the mean value of 3 cos’a — 1 for a 2p, orbital (Table B.1) is ‘5—‘
(Eq. 5.26 and Fig. 5.5).

5.4 Consider a pure p orbital ¢, = (3/ 4m'? cos a pointed along a unit vector p
lying in the xz plane (Fig. 5.5). Prove the relation

(3cos’0— 1) = L3 cos’a — 1)(3cos’ 6, — 1) (5.55)

between the polar angles
a: between p and r
0: between r and z
6,: between p and z

Vector r gives the position of the electron relative to the nucleus at the origin.
Note that s, is independent of the azimuthal angle 8 measured relative to
axis p. You may wish to use the integrals

(sinfasin®B)q = % (5.56a)
(sin® asin Bcos B) = 0 (5.56b)
(cos* a)q =2 (5.56¢)

where subscript () indicates integration over the whole range of « and .

5.5 The hyperfine matrix for an unpaired electron in a pure p orbital at angle 6,
from z with its axis in the xz plane (Section 5.3.2.3 and Fig. 5.5) is

3sin*6,—1 0 3sin@,cos 6,
A=05A -1 0 (5.57)

3cos? 6, — 1

The nucleus is at the origin.

(a) Diagonalize A.

(b) Find and discuss its principal values and directions.
(¢) Find expressions for ag, by and ¢, (Eqgs. 5.9).

5.6 Consider a 3 x 3 real symmetric matrix Y; taken in a cartesian coordinate
system with axes x, y, z labeling both the rows and the columns. Show that
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a similarity transformation R- Y - R ' =Y, with a rotation matrix

cos) 0 —sinQ)
0 1 0 (5.58)
sin{}). 0 cos{)

R

describing a rotation about axis y yields a matrix Y, differing only from Y in
the signs of the elements Y, and Y, if 1 = 180°. Prove that Y, and Y, have
the same principal values, for any ().

The hyperfine matrices for the C—H proton of the two sites of the
HC(OH)CO, radical in irradiated anhydrous H,C(OH)CO,Li have
been measured in relation to the axes of the crystal with the following
results [41]:

—51 F13 +14 043 074 051
A/h = —77 46 | C=| 4088 F048 F0.03
(MHz) -35 —023 —046 086

where C+A-C ™! is diagonal. The accuracy is limited by the linewidth, which

is ~15 MHz.

(a) Verify that the direction-cosine matrix C diagonalizes A.

(b) In matrix C, which are the principal vectors, the rows or columns?

(¢) Specify the direction of each principal axis in terms of the angles it
makes with the axes x, y and z.

The di-#-butyl nitroxide radical may be introduced as a substitutional impur-
ity into 2,2,4,4-tetramethylcyclobutane-1,3-dione. In terms of the Cartesian
axis system abc’ of the monoclinic crystal, the elements of the matrices
AA (in mT?) and gg are as follows:

(AA),, = 0.5486 (82),, = 4.03081
(AA),, = 0.2666 (g2),, = —0.00057
(AA),, =0.1110 (g8),, = +0.00501
(AA),, = 10.189 (gg),, = 4.00955
(AA),, = —0.7042  (gg),, = +0.00092
(AA)., = 0.4386 (gg),, = 4.02834

(a) Show that the principal values of the parameters are

(AA)y = 0.6162 (gg)y = 4.03314
(AA), = 0.3136 (gg), = 4.02688
(AA), = 10.246 (gg), = 4.00868
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(b) Find the direction cosines (principal axes) of the A and the g matrices
(which are taken to be symmetric), using the technique described in
Section A.5.5. Are the two matrices coaxial?

(¢) The crystal structure indicates that the plane of

is in the ac’ plane of the crystal. The N—O bond forms an angle of about
34° with the a axis. One usually assumes that the largest principal value
of the A matrix corresponds to the direction of the 2p, orbital. Use the
direction cosines derived in part (b) to verify the validity of this assump-
tion. [Data taken from W. R. Knolle, ‘An Electron Spin Resonance Study
of Fluorinated Radicals’, Ph.D. dissertation, University of Minnesota,
1970. This system was first studied by O. H. Griffith, D. W. Cornell,
H. M. McConnell, J. Chem. Phys., 43, 2909 (1965).]

Find the principal axes of matrices 5.37 and 5.38 (note Section A.5.5). The
elements of the required direction-cosine matrix C are obtained from
Eq. 5.35 by substituting in turn the three values of 1 into the equations

(1.60 — \)Ciy + 4.78Cp + 0.64Ci3 = 0
+4.78C; + (1636 — A)Ci F 0.16C5 = 0

0.64C;; ¥ 0.16Cp + (271 — A)C3 =0

where i = 1, 2, 3 labels the principal value dealt with. The second subindex
refers to the spatial coordinate (x, y, z).

Derive the expression for the limit, as ay, becomes negligible compared to by,
of the hyperfine splitting expression (Eq. 5.28b)

a = [(ap — bo)* + 3bo(2ag + bo) cos® 6,]'/* (5.59)

(which is valid for the usual case in which the hyperfine field is much larger
than the externally applied field). Show also (by binomial expansion of the
square root) that, if b,> can be neglected in comparison with ag’, the
general expression reduces to the familiar form

a = |ag + bo(3cos® 6, — 1)| (5.30)

where a is taken to be positive and g = g, is assumed.
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5.11

5.12

HYPERFINE (A) ANISOTROPY

Consider a single unpaired-electron system in which one atom X has an
unpaired-electron population |cp|2 = 0.25 in a pure p orbital. Ignore the
rest of the unpaired-electron density as being remote from the hyperfine
nucleus, "Li, of interest. Take g = g.. The measured "Li hyperfine matrix is

A 0.1470 0 0
= 0.0981 0.0002 | mT
8ePe 0.0889

but its absolute sign is unknown.

(a) Determine |ag|, |bg| and c.

(b) Show that the distance R between X and the Li nucleus is ~0.26 nm,
adopting Eq. 5.48 with f= 1. What, then, is the sign of by?

(¢) What is the sign of ay?

Often the parameter (+ ) in dipolar formulas (e.g., Egs. 5.6a, 5.26, 6.15a,
6.41 and 9.18a, b, as well as Problem 6.9) is used to estimate an average inter-
spin distance (r). Consider a set (1,2,3) of values of r, say, in nanometer (nm)
units. Calculate (r), (r~ 7, (X*)'/3 and (#—3)"'/3, and compare these values.
What do you conclude?
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FIGURE 5.13 A graph of rotation angle versus EPR line position, created foran § =1 = %
case. The g factor was taken to be isotropic at g., and the frequency was 9.8087 GHz. There
are four EPR transitions possible. The two plotted are for jumps 1 <> 4 (occurring at the lower
magnetic field B) and 2 <> 3, among the four energy levels (note Fig. 5.4). We are dealing
with only a single type of crystal site here. The hyperfine matrix A was taken to be
uniaxial with values of 0.20 and 40.00 G for A;/g.B, and A, /g.B.. The nuclear Zeeman
term (isotropic for 'H) was included in the curves with boxed points and absent in the
curves with triangles. (Prepared by M. J. Mombourquette and J. A. Weil; artificial data.)
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5.13 Using the information in Fig. 5.13 and its caption, sketch the powder spectra
(with and without inclusion of the nuclear Zeeman energy) that you would
expect to observe in a field-swept EPR experiment, assuming B; L B.
Assume zero linewidth for this purpose. You could generate this spectrum
using an appropriate computer program, using (close to) zero linewidths.
(a) Explain the details of your derived spectra.

(b) In this special hyperfine situation, how many of the four EPR transitions
are required to adequately represent the primary spectrum?
(¢) Calculate ¢ = 8A/A,. Compare the derived powder spectra with appro-

priate one depicted in Fig. 5.10. Under what conditions does the latter
give incorrect results?



CHAPTER 6

SYSTEMS WITH MORE THAN ONE
UNPAIRED ELECTRON

6.1 INTRODUCTION

Nearly all the species considered in previous chapters had only one unpaired
electron (viz., § = %). In principle, an EPR spectrum is obtainable for any system
with an odd number of electrons (S = %, %, %, ...). For systems with an even
number of electrons (S =1, 2, 3, ...), there is no such guarantee; however, as we
shall see, many systems of the latter type are accessible to EPR spectroscopy.

We begin by considering the theory of systems with two unpaired electrons,
initially ignoring all nuclear spins.' Such systems include (1) atoms or ions in the
gas phase (e.g., oxygen atoms), (2) small molecules in the gas phase (e.g., O,),
(3) organic molecules containing two or more unpaired electrons (e.g., naphthalene
excited to its metastable triplet state) in solid-state solutions and crystals, (4) inor-
ganic molecules (e.g., CCO in rare-gas matrices), (5) ‘point’ defects in crystals con-
taining more than one unpaired electron (e.g., the F; center in MgO), (6) biradicals in
fluid solution and the solid state and (7) certain transition-group (e.g., V3T and N i2+)
and rare-earth ions. Systems 1 and 2 are dealt with in Chapter 7.

In all chemical species, if the highest occupied electronic level is orbitally non-
degenerate and is doubly occupied by electrons, the ground state must be a spin
singlet (Fig. 6.1a). If one of these electrons is excited to an unoccupied orbital by
absorption of a quantum of the appropriate energy (Fig. 6.1b), the system is still
in a singlet state, since allowed transitions occur without change of multiplicity.
However, the molecule may then undergo intersystem crossing to a metastable
triplet state, with a change of spin (Fig. 6.1c). This process is attributed to the

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.
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(a) (b) () (d)

e
t
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+

S$=0 S=0 S=l S=1

FIGURE 6.1 Energy levels and spin configuration of a six-electron system in: (a) its
singlet ground state; (b) after electronic excitation (the spins remain paired and hence
the state is a singlet); (c) after the molecule goes to a metastable triplet state via a
radiationless process (the triplet state is usually lower in energy than the singlet state
[in (b)] because of decreased interelectronic repulsion); and (d) configuration of a
four-electron system with a triplet ground state. The lowest level is symbolic of filled
orbitals below the degenerate pair; it is irrelevant whether the filled orbitals are
degenerate or non-degenerate.

presence of spin-orbit coupling, molecular rotation and/or hyperfine interaction in
the presence of an external field B. It is highly selective in populating the three sub-
levels; that is, the process leads to spin polarization.

A triplet ground state (Fig. 6.1d) requires, in view of the Pauli exclusion principle
[1], that this state have at least a two-fold orbital degeneracy (or near degeneracy).
Low-lying orbitals filled with electrons have been shown in Fig. 6.1 to emphasize
that it is the set of highest occupied orbitals that is important in determining the
multiplicity of the state.

6.2 SPIN HAMILTONIAN FOR TWO INTERACTING ELECTRONS

For the case of two electrons there are four spin states. One way of representing these
states is to construct simple product spin states (the uncoupled representation;
Section B.6)

a(Da2) «(DBR) B(DHa2) BHAR) Set (6.1)

In a paramagnetic center of moderate size, such that the two electrons interact
appreciably, it is more advantageous to combine these configurations into combi-
nation states (the coupled representation) because the system separates in energy
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into a triplet state and a singlet state.> These coupled functions are either symmetric
or antisymmetric with respect to exchange of the electrons. The combination func-
tions are (Section B.6)

Symmetric Antisymmetric
a(l)a(2)
7 [a(DB2) + B(Da(2)] %[a(l)B(Z) — B(DHa(2)] Set (6.2)
B(B(2)
Triplet state, S = 1 Singlet state, S = 0

The multiplicity of the state with total spin S = 1 is 25 4+ 1 = 3; hence it is called a
triplet state. The state with S = 0 analogously is called a singlet state. If the two
electrons occupy the same spatial orbital, then only the antisymmetric or singlet
state is possible because of the restrictions imposed by the Pauli exclusion principle
[1]. However, if each electron occupies a different orbital, then both the singlet and
triplet states exist.

6.2.1 Electron-Exchange Interaction

The singlet and triplet states are split apart in energy by the electron-exchange inter-
action, represented by the spin hamiltonian

Heen = Y JiS1:8y (,j=12,3) (6.3a)

ij
=187 T8 +8T - 8) (6.3b)

where él and éz are the electron-spin operators for electrons 1 and 2 (Section B.10
and Problem B.11). Indices i and j label spatial coordinates.

Here J is a 3 x 3 matrix that takes into account the electric (coulombic) inter-
action between the two unpaired electrons, but not the important magnetic inter-
action that is introduced in Section 6.2.2. Details concerning the theory of
exchange-coupled systems are available in the literature [2—-4].

For our purposes, we consider only the most important part of the exchange-
energy operator (Eq. 6.3), that is, the isotropic part*

(ﬂexch)lso— JOS]T' SZ (64)

where Jy = t(J)/3 is the isotropic electron-exchange coupling constant, which to a
first approximation is given [5] by the exchange integral

2

<¢mm®| |m®%m> (6.5)

Here ¢, and ¢, are different normalized spatial molecular-orbital wavefunctions,
evaluated while considering the electrons to be non-interacting, & is the permittivity
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of the vacuum, and r is the inter-electron distance.” Whether the singlet or the triplet
state lies lower depends on the sign of J,. The interaction between two hydrogen
atoms is a textbook example; here J, > 0 and the singlet (bonding) state lies
lowest. In the molecular-orbital description of H,, Jy is a major contribution to
the total binding energy. If Jy < 0, as is the case in some species, the triplet state
has the lower energy (Fig. 6.2).

In analogy with the isotropic electron-nuclear hyperfine interaction (Eq. C.2b),
Eq. 6.3 can be written as

(Flexen) i, = Jo 1282 +1(S1:82- + $1-854)] (6.6)

Application of this operator to the spin wavefunctions shows that the singlet and
triplet states are separated by the energy |Jy| (Fig. 6.2), with eigenfunctions as
listed in set 6.2. Experimentally, one can observe which state (the singlet or
triplet) is lower in energy by studying the EPR signal intensity (i.e., the spin-level
populations) as the temperature approaches 0 K.

Note that J, is the analog of the isotropic hyperfine coupling parameter intro-
duced in Eq. 2.39h. As pointed out, the four energy levels of the hydrogen atom
are similarly split at zero field into a triplet and a singlet (Appendix C). There is
also considerable analogy to the NMR isotropic spin-spin coupling constant J.
The magnitude of J, decreases with increasing r (Eq. 6.5), so that |Jy| is very
small if the two electrons are on the average sufficiently far apart. In this case, if
the exchange energy is not large compared to the magnetic dipolar interaction
energy, then the two-electron system is called a biradical.
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FIGURE 6.2 The state energies of a system of two electrons exhibiting an exchange
interaction, for Jo < 0. When J; is positive, the singlet state lies lower in energy.
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6.2.2 Electron-Electron Dipole Interaction

In addition to electron exchange, which splits the states into a singlet and a triplet,
there exists another important interaction, also quadratic in the electron spin,
namely, the anisotropic magnetic dipole-dipole interaction.® This interaction
causes the three-fold degeneracy of the triplet state to be removed even in zero mag-
netic field; the latter effect often is called zero-field splitting.”

The dipole-dipole interaction for the coupling of two unpaired electrons is
analogous to the corresponding interaction (Eq. 5.3) between electronic and
nuclear magnetic dipoles, which gives rise to the anisotropic hyperfine interaction
(Fig. 2.2); that is, the electron-spin electron-spin dipolar interaction is given by
the hamiltonian

Hy(r) = 6.7)

Ml llz 3(ﬁ1T'1‘)(l12T'1')
3 - S

Here the inter-electron vector r is defined as in Fig. 2.2 with m,, replaced by .. The
magnetic-moment operators may be replaced by the corresponding spin operators, to
yield

(6.8)

Ss(r) = _gl ngE 7’5

[sl $ 38T nE: r)}

where g; and g, are the g factors for electrons 1 and 2, taken here to be isotropic.
Henceforth, for simplicity, we assume that g; = g, = g. Expansion of the scalar
products in Eq. 6.8 yields

Hi(r) = 42 (gf 20?3808+ 02 = 378,8 +
(7 = 328182, — 3098182y + §1,820 —
3028185 + 816820 — 3y26 8 + $1:82) | (6.9)

Because the two electrons are coupled, it is more convenient to express Hs in terms
of the total spin operator S, defined by

S=8+8S, (6.10)

This is accomplished by expanding the appropriate operators, for example
82 = Sie + 85207 = 812 + 857 + S1380s + 5281 (6.11)
Note that §1 and §2 commute since they are operators for different particles. Hence
Sugzx = 13}2 - li3 (6.12)

since the eigenvalues of S .2 and SZx are both 1 3 (Section B 6). Similar expressions
are obtained for the y and z terms. An expresswn for §," 1 S2 then follows (note



6.2 SPIN HAMILTONIAN FOR TWO INTERACTING ELECTRONS 163
Eq. B.49). The circumflex about the unit matrix symbol signals that we are dealing
with a three-dimensional quantum-mechanical space (i.e., the spin triplet state),
rather than with ordinary 3-space.

Using the angular-momentum commutation relations (Eqs. B.12), the following
transformation can be derived

S1xSay + 8281y = 5 (S:Sy + 8,8, (6.13)

with similar expressions for the xz and yz components.

Substitution of these expressions into Eq. 6.9, together with the identity
r* = x?+y? + 22, yields

2
o) =0 (gf;) 5 [(r2 382 + (2 = 3)85,2 + (2 — 3982
3xy(3‘x3‘, + 8,80 — 3x2(8:8. + 8.80) — 3v28,8. + S‘ZS"),)] (6.14)

The factor of ; arises from the conversion from the S, S, basis to the S basis.
Because all matrix elements connecting the triplet and singlet manifolds are zero
in 'ng(r) as well as in S one can switch from consideration of the full manifold
to working separately with the triplet and singlet parts. The corresponding dipolar
energy for the latter (S = 0) is, of course, zero.

Equation 6.14 can be converted into a spin-hamiltonian form by suitable
integration; it can then be written more conveniently in matrix form as

[ [r? —3x2 —3xy —3xz\ | §

i P S *

_Msvls 5 5] =3\ [3yz S,
= 20gp.7[3: 8, & < = = (6.15a)

222 o

<—73Z> S.
=S".D-S forS=0,1 (6.15b)
=8$7D-$+$7-D:S; (=25,"-D-$)) (6.15¢)

Note that Sl T.p-§ 1= SzT ‘D §2 = 0. The last form results from the interchange-
ability of the individual spins Sy, S,. Operator H is sometimes called the ‘electronic
quadrupole spin hamiltonian’. As before, the angular brackets indicate that the
elements of the parameter matrix D are averages over the electronic spatial wavefunc-
tion. As with the matrices encountered in Chapters 4 and 5, D can be diagonalized, to
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D. The diagonal elements of D are Dy, Dy and D, By convention, Dy is taken to be
the principal value with the largest absolute magnitude and Dy has the smallest absol-
ute magnitude when Dy # Dy, producing a set ordered in energy.

We see from the sum of the diagonal elements of Eq. 6.15a that D is a matrix with
a trace of zero:

tr(D) = Dy + Dy + D7 = 0 (6.16)

In the principal-axis system of D, Eq. 6.15b becomes

He = DxSx” 4 DySy* + DS, (6.17)

As always, the principal-axis system is defined by the details of the interaction
giving rise to the 3 x 3 matrix. The axes lie on symmetry elements, for example,
along molecular symmetry axes when such are present.

The dipole-dipole coupling between the two unpaired electrons is not the only
interaction that can lead to a spin-hamiltonian term of the form of Eq. 6.15b. Coupling
between the electron spin and the electronic orbital angular momentum (Section 4.8)
gives rise to a term of the same form (Eq. 6.15b), as does the generalized anisotropic
exchange interaction [8].

The effective spin hamiltonian for two interacting electrons, obtained by adding
Egs. 6.4 and 6.15b to the electron Zeeman term, is

F=gBBT-§+8-D-§+ 15[ ~31,] (©.18)

where the form of the last term arises from the vector cosine sum rule (Eq. B.49).
If Jo <0 and |Jy| => k,T, only the lower (S = 1) state is populated. Conversely,
if Jo => k, T, only the diamagnetic (S = 0) state is thermally populated. Furthermore,
since the exchange term of Eq. 6.18 contributes only a common constant to the energy
of each of the three triplet states, it is neglected in the next section.

6.3 SYSTEMS WITH S =1 (TRIPLET STATES)

From our previous discussion we see that the spin hamiltonian for an S = 1 state is
H=gBB"-S+S"-D-S (6.19a)
If D is expressed in its principal-axis system, Eq. 6.19a may be written as

H = gB,B"+ S + DySx> + DySy* + D,8, (6.19b)
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Note that, although there are actually two unpaired electrons (each S = %) in the
triplet molecule, we use an effective spin " = 1 to describe its magnetic properties,
with the singlet ignored. Thus, while there really are four spin states, only three are
active. The use of an effective spin, one that generates the multiplicity needed for the
states considered, is common and convenient in magnetic resonance. For one, it
allows a simple formulation of the spin hamiltonian describing the system.

6.3.1 Spin Energies and Eigenfunctions

It is often convenient to use the eigenfunctions |Ms) = |+1), |0) and |-1) of S, as
a basis set (Fig. 6.2); these are the eigenfunctions of 7:( (Eq. 6.19b) in the limit as
B — 0. However, they are not eigenfunctions of Hy (Eqs. 6.15b and 6.17).
Hence it is necessary to set up the spin-hamiltonian matrix for 7 and find its
energy eigenvalues and eigenstates. For present purposes, it is not necessary to
know how the principal-axis system is oriented but only that it exists. Equation
6.19b can be written as

H = gB.(BxSx + BySy + BzS7) + DxSx* + DySy* + D287 (6.19¢)

If we take the quantization axis for S along principal axis Z, then the required spin
matrices are those given in Eq. B.77. Substitution of these into Eq. 6.19¢ with sub-
sequent matrix addition and multiplication yields spin-hamiltonian matrix

1) |0) [—1)
1 1 . 1
(+1] 8B.Bz + gD ﬁgﬂe(Bx —1By) E(DX — Dy)
1 1
H = (0] %gﬁe(BX +iBy) Dx + Dy %gﬁe(BX —iBy)
1 1 1
(=1 E(Dx — Dy) EgBE(Bx +iBy)  —gB.Bz + gD

(6.20)

where D/3 = (Dx + Dy)/2 + D. The secular determinant (Eq. A.69a) is obtained
from H by subtracting energy U from all diagonal elements. Setting the correspond-
ing determinant equal to zero, one obtains

1 1 . 1
gB.Bz + EDZ -U Egﬁe(Bx —iBy) E(DX — Dy)
1 1
—gB,(Bx +1iB —D;,—-U —gB,(Bx —iB =0 6.21
ﬁgﬁ( X Y) Z ﬁgﬁ (Bx Y) (6.21)
1 1 . 1
E(DX — Dy) Tz'gﬁe(BX +iBy) —gB.Bz + EDZ -U
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Here Eq. 6.16 has been used to simplify terms. The situation is especially simple
when B || Z. Then By = By = 0, and Eq. 6.21 becomes

1 1
gB.Bz + EDZ -U 0 E(DX — Dy)
0 D, U 0 —0 (6.22)
1 1
E(DX — Dy) 0 —8B.Bz + §Dz -U

The solution U = —Dy is obtained by inspection. Expansion of the remaining 2 x 2
determinant gives the other two energies as

Uxy = 3{Dz *+ [4g°B,*Bz* + (Dx — Dy)*]'/?} (6.23)

In zero magnetic field, the energies are

UX = %[DZ — (DX - Dy)] == —DX (624(1)
Uy =1[D; + (Dx — Dy)] = —Dy (6.24b)
Uy = —Dy, (6.24c¢)

Thus |Uz| > |Ux| > |Uy| at B =0, in accordance with our convention (Section
6.2.2). We note that the zero in energy lies between the smallest and the largest
principal D values, and that all the degeneracy is removed except in the uniaxial
case. In the literature, the notation y = —Dy, ) = —Dyand Z = — D has some-
times been used.

Since the trace of D is zero, only two independent energy parameters are required.
It is common to designate these as

D=3D, (6.25a)
E =1(Dx — Dy) (6.25b)

Useful expressions for D and E are obtainable from the matrix D in Eq. 6.15a
taken in its principal-axis system and will be given later, by Eqgs. 6.41 and
9.18a, b. Note that D and E are analogous to the hyperfine parameters by and cq
of Egs. 5.9b, c. Equations 6.24 can now be written as

(6.26a)
(6.26b)
U, =—2D (6.26¢)
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Thus, by our convention, if D > 0, then E < 0. In terms of D and E, the spin-
hamiltonian operator (Eq. 6.19b) becomes

Ty = gBB"- S+ D(S;* — 182 + ESx® — %) (6.27)

It is important to note that the values of D and E are not unique. They depend
on which axis is chosen as Z. The convention [9] already stated (see text after
Eq. 6.15) ensures that |D|/3| > |E|. One often is ignorant of the absolute signs
of D and E since the EPR line positions depend only on their relative signs.
Thus the values quoted for D and E often are absolute magnitudes. The sign of
D can be determined from relative intensity measurements of EPR lines at low
temperatures [10], by optically detected EPR [11], from static magnetic suscep-
tibility data [12], or possibly by comparison with other spin-hamiltonian
parameters (e.g., hyperfine and quadrupolar). The sign of E depends on the
specific assignment of the axes X and Y and thus has no physical meaning
except in terms of the convention that we have chosen. It is sometimes convenient
to express D and E in magnetic-field units, that is, D' = D/g.B, and E' = E/g.p..
It is not uncommon to express these parameters in cm™ ', that is, by defining
D= D/hc and E = E/hc.

The energies of the three states as a function of magnetic field are plotted
in Fig. 6.3 for B parallel to Z. Here it is assumed that D > 0. When D < 0, the
states at zero field are reversed in their energy order. For systems with uniaxial

10>

A A [-1>

B —»

0

FIGURE 6.3 The state energies and corresponding eigenfunctions (high-field labels) as a
function of applied magnetic field B for a system of spin S=1 and B || Z, shown for
D >0 and E=0. The two primary transitions, of type AMg= +1, are indicated for a
constant-frequency spectrum. When E # 0, then the degeneracy at B = 0 is lifted, and the
corresponding energies vary non-linearly with B (Egs. 6.30).
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symmetry one has Dy = Dy and hence E = 0 (Fig. 6.3). When E # 0, for systems
with rhombic symmetry, all three states are non-degenerate at zero field. For
naphthalene in its lowest triplet state (Section 6.3.4), the energies and transitions
are shown in Figs. 6.4a—c for B parallel to X, Y and Z. The lowest-field transition
in each figure is of the ‘AMg = +2’ type, as explained in Section 6.3.2. Note that
this nomenclature is tainted, since Mg is not a strictly valid quantum number at
low magnetic fields.

The eigenfunctions (kets) of H (Eq. 6.19b) are linear combinations of the kets
IMs) = | +1), |0) and |-1). The coefficients are obtained by substitution of the
eigenvalues of Eq. 6.24 into the determinant 6.21 and solving the corresponding
secular equations (e.g., as in Section A.5.5). The coefficients depend on the
magnitude of B. It is convenient to define an auxiliary ‘mixing’ angle
y = Ltan~'(E/gB.B).

Consider the situation B parallel to the principal axis Z with D > 0. The
upper state [—siny|-1) — cos y|+1)] becomes Tx (e.g., Eq. 6.28a) at

(@) (b)
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FIGURE 6.4 Spin system energies (U + 2D/3)/hc as a function of applied magnetic field
B for naphthalene in its lowest triplet state (which lies ~ 21,000 cm™ ' above the singlet
ground state), measured at 7= 77 K. Clearly, D > 0. The transition at lowest field in each
case is allowed only for the microwave magnetic field B parallel to B. We note that it
is relatively isotropic as compared to the usual EPR transitions. The latter yielded
D = 0.1003(6) and E = —0.0137(2) cm™'. (@) B || X; (b) B|| Y; (¢) B || Z. The resonance
magnetic fields at v = 9.272 GHz are indicated vertically, in gauss. The proton hyperfine
energies are ignored. [After C. A. Hutchison Jr., B. W. Mangum, J. Chem. Phys., 34, 908
(1961).]



6.3 SYSTEMS WITH S=1 169

B =0 (y= —m/4, if E <0), whereas the other mixed state i[cos ¥ |-1) — sin ¥
| +1)] is Ty (e.g., Eq. 6.28b) at B = 0. Note that the upper two levels merge at
B = 0 for uniaxial symmetry (E = 0), and that the high-field states (y = 0) are
usually renormalized to be | +1) and |-1) (highest and lowest energies).

In the limit as B — 0 with B parallel to the principal axis Z, the zero-field triplet
eigenfunctions [13] are®

1
ITx) = ﬁ(l—l) — [+1) (6.284)
ITy) = \;E('_]) + [+1) (6.28b)
ITz) = 10) (6.28¢)

Note that the zero-field functions |Tx), |Ty) and |T7) are the same linear combi-
nations of angular-momentum eigenfunctions as for the orbital functions for
£ =1 (Fig. 4.9); that is, they transform like p orbitals. Here each of the three eigen-
states corresponds to a situation in which the spin angular momentum vector lies in
one of the three principal planes (e.g., XY) of D.

It is sometimes convenient to choose the functions in Eqs. 6.28 as the basis set,
since they are the eigenfunctions of H, at zero field. In the presence of a magnetic
field, the spin-hamiltonian matrix then becomes (note Problem 6.2)

|Tx) ITy) |Tz)

(Tx| —Dx —igB.Bz +igB.By (6.29)
H = (Ty| | +igB,Bz —Dy  —igB,Bx
(Tz| | —1gB.By +igB.Bx  —Dz

From this it is clear that when B is parallel to X, or Y, or Z, the energy of the corres-
ponding state has its zero-field value, and is independent of B.

For B along Z, one has U, = —2D/3 and, using Egs. 6.16 and 6.25, one again
finds Eq. 6.23, now written in the form

Uxy =1D + [E* + (gB.B)*]'? (6.30)

Clearly, when B || Z, the eigenfunctions of the spin hamiltonian are of the form
b(|Tx) +ib,|Ty), ibs|Tx)+ bi|Ty) and |T,). The coefficients b; and b, are real,
depend on B [10] and are not difficult to obtain (e.g., Problem 6.4). Alternatively,
the eigenfunctions can, of course, be written in terms of the | M) set.

When B is sufficiently large in magnitude compared to D’ and is parallel to Z, the
off-diagonal elements in the spin-hamiltonian matrix 6.20 can be neglected. Then
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the eigenstates |M) of S, are eigenstates of the spin hamiltonian of Eq. 6.19b. Hence
the spin energies can be labeled by the value of M.

As stated above, in the special case in which B lies along any one of the three
principal axes, there exists an exact analytic solution, valid for all field positions
of the primary (AMg= +1) EPR lines. For example, if B || Z, Eqs. 6.26¢ and
6.30 give the energy separations corresponding to the two allowed AMg= +1
lines as

Uy — Uy = hv = +D + [E? + (gB,B.2)*]"/* (6.31a)
Uy — Uy = hv = —D + [E* + (gB,Byz)*]"* (6.31b)

where B, corresponds to the transition at lower field and B, to that at higher field
when D > 0 (and vice versa for D < 0). These are valid above the level-crossing
region visible in Fig. 6.3; that is, the square-root term dominates over |D|. One
can then derive from Eqs. 6.31 the exact and general expression

(gB.)
4hv

ID| = (Biz* — Bez%) (6.32q)

valid for either sign of D. Here the subindices 4 and ¢ denote the higher and lower
resonant fields. Similarly, for B || X

(gBe)

D —3E| = (Bux® — Bix?) (6.32b)

and for B | Y

(gﬁe

|D+3E| = (Bry* — Bey®) (6.32¢)

Equations 6.32 are very useful for obtaining the zero-field parameters |D| and |E]|,
especially for statistically randomly oriented samples (Section 6.3.3). Note the sim-
plification when E = 0.

One possible problem with the previous considerations is that the D
principal-axis directions in the single crystal may not yet be known. Another is
that the assumption that g is isotropic, made above, is not appropriate.

From the secular equation for the S = 1 spin-hamiltonian matrix (Eq. 6.29) gen-
eralized for anisotropic g, one can obtain in general a cubic equation in energy eigen-
values U, valid for any direction of B. It is possible to derive an exact equation from
this giving the magnetic fields of the magnetic-resonance transitions, all observed at
each crystal orientation always at the same constant frequency [14,15] to yield the
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useful anisotropic parameter g°d, (see Eq. 6.55b) as

T ..o n — 21D
mE D by
1 [(w)* — tr(D?) — (gB,B)*
im[ (B.B)? }X
[(2gB,B)* — (hv)* 4 2tr(D*)]'/? (6.33)

where n is the unit vector along B, and g = m"g-g". n)l/2 (Eq. 4.12). Here field
B is the resonant field for both |AMg| = 1 transitions as well as the |AMg| = 2 tran-
sition. Only the left-hand side of Eq. (6.33) depends on the field orientation. Having
measured frequency v and the sets of magnetic fields B (i.e., at each of various orien-
tations), it is then possible to arrive at the unknown matrices D and g, using numeri-
cal fitting techniques.

An easier to visualize but approximate technique for arriving at D from exper-
imental data is available from perturbation theory, valid when the electron
Zeeman energy gf3.B is sufficiently large compared to |D|. We can utilize such an
expression (Eq. 6.54) for the spin-hamiltonian energies, to obtain the transition ener-
gies in the approximate forms

U0) - U(=1) = gB.By — 3d1 +

4g; B, [d> —3di? +%[“’(D2) —2d_jdetD)]] + -+ (6.34a)
U(+1) — U(0) = gB.B; +3d1 +
4gBl B, [d - %dlz + %[l"’(Dz) - 2d_1det(D)]] +.oo (6.34b)

where d,=n"- g+ D"- g7+ n/g” and B, and B, are the magnetic fields of the
higher- and lower-field transitions.” By simple manipulation, one may obtain the
expression

AB =B, — B, (6.35q)
3d, 1 ( 1 1 )
=28 2.282\m "R )X
gBe 4g Be Bh BZ
[d> —3di* + 3[rr(D?) — 2d_ det(D)]] + - - - (6.35b)

for the field separation between the AMg= +1 transitions, valid at any field
orientation.'” We see that in the first approximation, for isotropic g, one has
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B, — B,~3n" + D - n/gp,; that is, one obtains the magnitude of D projected along
n. It is thus possible, by measuring the field separations at various directions n, to
arrive directly at a first approximation to D. This matrix may then be refined by
using Eq. 6.33 or Eq. 6.35. In practice, matrix D (and simultaneously all other
spin-hamiltonian parameters: g, sets of A; and P, etc.) is obtained numerically by
computer fitting of the observed line positions.

Note that, while Eqs. 6.33—6.35 in this section assume that B > 0, it is quite feas-
ible to do EPR studies at B = 0. This is possible whenever zero-field spin energy-
level splittings exist and can be connected by matching photon energies Av of an
applied excitation field B (Appendix E).

In certain systems, the literature routinely contains citations of effective g values,
as defined in Chapter 1. A prominent example is the high-spin Fe>™ 3d° EPR peak
found in many circumstances in various glasses, which occurs at ‘g = 4.3’ (e.g., see
Refs. 16—20), when measured at X band. Its presence is a useful indicator of the
presence of this ion, and indicates some aspects of its surroundings. However,
the reality here is that this ‘g’ takes on this value because of the presence of
sizable zero-field electronic quadrupole energy (parameters D and E: see
Egs. 6.25) in addition to the electron-spin Zeeman term, and is frequency-dependent.
The actual g value is very close to being isotropic, nearly at g,. This situation is in
sharp contrast with the occurrence of a true g value of 4.13 (~30/7 in theory) for
low-spin (effective §' = 1) Fe'* 3d” in octahedral sites (see Fig. 1.11).

6.3.2 ‘AMs = 42’ Transitions

At high fields, where the quantum numbers Mg = +1, 0 and —1 are meaningful in
that they correspond to the eigenfunctions of the spin hamiltonian, a ‘AM¢ = +2’
transition is not allowed. However, at low fields, the eigenfunctions become
linear combinations of the high-field states (Egs. 6.28) and quantum numbers Mg
are no longer strictly applicable. Thus the usual AM¢= +1 selection rule does
not apply. The ‘AMg = +2’ transition is permitted for the microwave field B,
parallel to the static field B. This can be shown by taking the S, matrix element
for the states

ol-1)+al+l)  and  —ife/"|—1) — " |+1)]

between which the ‘AMg = 42’ transition occurs (Fig. 6.4 and Problem 6.4). As we
saw, the coefficients are functions of angle . One also finds that, when B is at an
arbitrary orientation relative to the principal axes of D, the |+1), |0) and
|—1) states are all mixed by the spin-spin interaction. Hence ‘AMg = +2’ transitions
can be seen in a normal EPR cavity [21] (i.e., with the microwave field perpendicular
to the static field). These are single-photon transitions. Since the non-zero parts of
the intensity arise from the same states (e.g., (+1| and |+1)) on both sides of the
transition matrix element, it follows that no net angular momentum change in the
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spin system is involved (7 transition: see Appendix D). Note that the state |0) does
not enter into the mechanism.

The position of the low-field side of the ‘AMg= 42’ transition in randomly
oriented solids does not correspond to that of the low-field X, Y or Z components
from Fig. 6.4 but rather occurs at a turning point By, [21,22].

As we have seen, the angular dependence of all the (single-photon) lines in the
triplet spectrum for any fixed frequency v is given [14, 23] by all the non-negative
real solutions for B of Eq. 6.33. This holds for the AMg = +2 transition. Then, for
isotropic g, the minimum possible value

1

Buin = 528 [(hv)? — 2(Dx? + Dy? + D;*]'/? (6.36a)
1 [(w)? D437
=5 [( 4) _f} (6.36b)

of the resonant field occurs when the square-root factor in Eq. 6.33 becomes zero.
The orientation of the direction B at which B,;, is achieved is not generally a prin-
cipal axis of D. Note that the low-field edge of the derivative line for a randomly
oriented triplet system can be used to estimate D* = (D* + 3E%)'/2, which is a
measure of the root-mean-square zero-field splitting. In some cases, D and E can
be approximately determined if the shape of the ‘AMg= +2’ line is analyzed
[24]. However, if the zero-field splitting parameters are sufficiently large compared
with the microwave photon energy hv, no ‘AMg = 2’ transition can occur. In any
case, the preceding equations make no prediction about the intensity of such a
transition.

Finally, it should be mentioned that for significantly high power levels (large Bj),
double-quantum (two-photon) transitions are observable [25,26]. These are between
states |+ 1), and occur near g = 2.

6.3.3 Randomly Oriented Triplet Systems

Triplet molecules in liquid solution are difficult to detect. While the rotational
motions do tend to remove the zero-field splittings (D), very rapid tumbling is
required to do so, and the associated spin-lattice relaxation (7; much shorter than
for S = % radicals) broadens the lines [27].

Few triplet systems have been investigated in the oriented solid state. This arises
largely from the difficulties of preparing single crystals of adequate size with well-
defined orientation of guest molecules at an appropriate concentration. The obser-
vation of a ‘AMg = +2’ line in the region of g ~ 4 was the stimulus for the detection
of triplet states in numerous non-oriented systems [24]. The relatively large amplitude
of the ‘AMg = +2’ lines is associated with their small anisotropy. Subsequently, it
was recognized [23] that even for non-oriented systems one can detect the ordinary
AMg = +1 transitions at ‘turning points’.'" General conditions for the occurrence
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of off-axis extra lines in the EPR powder (and glass phase) patterns have been derived,
using third-order perturbation theory applied to S > % systems [30].

It is instructive to mention that high-quality triplet-state EPR lines can be obtained
from aromatic molecules (e.g., anthracene-d;() dissolved in low-density stretched
polyethylene films [31]. These molecules then occur oriented within the film. The
photo-excited spectra are strongly anisotropic, as becomes evident by placing B
along various different directions relative to the stretch axis. The parameters obtained
are consistent with those derived from single-crystal measurements.

For simplicity, we now consider an ensemble of triplet-state molecules randomly
oriented in a solid matrix. From an evaluation of d; in Egs. 6.35, the field separation
AB of the two allowed AMg= +1 transitions to a first approximation (with
isotropic g) is seen to be given by

3
AB =B, — B, = B [DX sin® 6 cos’ ¢+ Dy sin® §sin’ b+ Dy cos? 0]1/2 (6.37a)

e

[DG3 cos® 0 — 1) 4+ 3E sin” O cos 2¢]"/? (6.37b)

e

where 6 is the polar angle (between B and axis Z of a given molecule) and ¢ is the
azimuthal angle. If B is the average field (B, + B)/2, then the orientation depen-
dence of each line is given by

B,—B=B—B; = [D(3 cos? @ — 1) 4 3E sin” O cos® ¢]'/? (6.38)

1
2gB,

as can be derived from Egs. 6.34.

For the uniaxial case, as the field changes its orientation from 6 = 0° to 6 = 90°,
the line positions relative to B change from |D|/gB, to —|D|/2gB.. By applying an
analysis similar to that given in Sections 4.7 and 5.7, we can express the probability
distribution for a given upper-field transition as follows:

8B.
P(By) oc —SPe__ 6.3
B1) * S D cos 0] (6.39)

The calculated shapes for the AMg= +1 lines are given in Fig. 6.5. The
separation between the outer vertical lines in Fig. 6.5a (which represents the
theoretical lineshape) is approximately 2|D|/gB., while that between the two
inner lines is |D|/gB.. The high-field portion of the triphenylbenzene di-anion
(I) spectrum in Fig. 6.6 shows a satisfying correspondence with the derivative
spectrum in Fig. 6.5b. Note that the triplet powder pattern (for AMg= +1)
tends to consist of equal, but oppositely signed, contributions, just as was the
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case for the hyperfine-dominated spectra (see Figs. 5.10 and 5.11), for analo-
gous reasons.

(1) triphenylbenzene dianion

The analysis can readily be extended to a randomly oriented triplet system with
E # 0. The theoretical lineshape is given in Fig. 6.7a, and the derivative spectrum is
given in Fig. 6.7b.'* The separation of outermost lines is again 2|D|/gB,, whereas
that of the intermediate and inner pairs is (|D + 3E|)/gB. and (|D — 3E|)/gp..
There is a close correspondence between Figs 6.7 and 6.8, which gives the
spectrum of the first excited triplet state of naphthalene in a rigid, non-oriented
(‘glassy’) matrix at 77 K. The compound used was actually C;oDg instead of
CioHg so as to minimize linewidth contributions from unresolved hyperfine split-
tings. The pairs of lines correspond with those given in Fig. 6.4 for a single
crystal. In the g = 2 region an additional line is seen at high microwave power.
This line has been identified as a double-quantum transition [25]. For observations
of the AMg = +1 lines in the random non-oriented sample, one requires a far greater
EPR spectrometer sensitivity than for an equivalent concentration in a single crystal.
In the former case, only a small fraction of all molecules in the triplet state contribute
to any of the observable derivative lines. The AM¢ = =l lines are seen to be weak
compared with the ‘AMg =12’ line.

For rigid media in which the geometric configurations of host and guest molecules
are markedly dissimilar, the linewidths in the triplet spectrum may be many times
broader than in cases where host and guest are very similar {specifically, diphenyl-
methylene (C¢Hs—C—CgHs) in diphenyldiazomethane [CcHs—C(N,)—CgHs]
shows a linewidth of 1.7 mT; in n-pentane [CH,(CH,);CH;] the linewidth is 9.4
mT [32]}. Thus in a dissimilar host-matrix system, it appears likely that a range of
solute-solvent configurations is tolerated; the various configurations display a distri-
bution of D and E values.

In nonrigid media, EPR absorption for triplet-state systems is not observed
unless |D| and E are sufficiently small. If intramolecular spin-spin interactions
are modulated at a rapid rate because of molecular reorientations, one expects
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(a)

(b) X

B —>» X

FIGURE 6.5 (a) Theoretical EPR absorption spectrum for a randomly oriented triplet
system (with £ = 0) for a given value of D and v (taking g = g.). A zero linewidth is
assumed. The solid curve B corresponds to the curve of Fig. 4.7a; the solid curve A
represents a reflection of B about the central field By. The central (small dash) trough is the
sum of A and B. Compare with Fig. 5.10 (£ = 10). (b) First-derivative curve computed
from (a) after assuming a non-zero linewidth. Only the field region corresponding to
AMg= +1 is shown. The points marked x correspond to the resonant field values when
the magnetic field is oriented along Z (cusp-shaped lines) or perpendicular to Z. [After
E. Wasserman, L. C. Snyder, W. A. Yager, J. Chem. Phys., 41, 1763 (1964).]. Note and
tentatively explain the difference between the idealized first-derivative spectrum shown
here, and the one depicted in Fig. 5.11.

a spread in the components of D. Since the trace of D is zero, the contribution of the
term ST+ D« S may become negligible. Two limiting cases may be considered:

1. When |D| and |E| are large, the modulations of the spin-spin interaction lead to so
short a spin lifetime that the averaged spectrum has undetectably broad lines.

2. When |D| and |E| are very small, the line-broadening effects in non-rigid
media are also small. In the absence of hyperfine splitting, one sees a single
line, as if the spectrum were due to a system with § = %
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FIGURE 6.6 Triplet-state EPR spectrum of a rigid solution of the di-anion of
1,3,5-triphenylbenzene in methyltetrahydrofuran at 77 K; v = 9.150 GHz. The line R™
arises from the mono-negative ion (see discussion in Section 6.3.6.2). [After R. E. Jesse,
P. Biloen, R. Prins, J. D. W. van Voorst, G. J. Hoijtink, Mol. Phys., 6, 633 (1963).]

A system that may be an example of case 2 is the set of four ions shown below [struc-
ture II; R could be C(CHs)3]. Here two ketyl radical anions (formed by reaction of
carbonyl compounds and an alkali metal) are bound by two alkali ions to form a
quartet cluster [33].

R Na* R
\
C—O0O “0—C
R/ R
Na*

(n

Such systems have very small D values (0.007-0.015 cm™ "), in solid CH;DMF at
77 K. At room temperature, in liquid DMF, they show a seven-component compo-
site spectrum (intensity ratios: 1:2:3:4:3:2:1) arising from two equivalent
alkali (**Na, I = 5) nuclei, with each proton-split component looking just as if the
second ketyl unit were not present [34].

6.3.4 Photo-excited Triplet-State Entities

We have now developed the theory necessary to interpret the EPR spectra of triplet
(S = 1) systems and are thus in a position to examine specific examples of the appli-
cation of EPR to these systems.
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FIGURE 6.7 (a) Theoretical EPR absorption spectrum (centered at a field By) of a
randomly oriented triplet system for given values of D', E' and v (and g = g,). A zero
linewidth is assumed. (b) First-derivative curve computed from (a) after assuming a non-
zero linewidth. Only the transitions corresponding to AMg = +1 are shown. The points
marked x correspond to resonant-field values at which the magnetic field is oriented along
one of the principal axes of D of the system. [After E. Wasserman, L. C. Snyder, W. A.
Yager, J. Chem. Phys., 41, 1763 (1964).]

There is a very wide range of possibilities for triplet systems. We begin in this
section with the most important category, namely, the large number of systems
that are diamagnetic (S = 0) in the ground state but have relatively long-lived



6.3 SYSTEMS WITH S=1 179

3474 396l
3 e

}'/429|

l\

2169 2423

|Aa Mg|=2

g=2

B (G) —

FIGURE 6.8 EPR spectrum at 9.08 GHz of photo-excited triplet perdeuteronaphthalene
(C10Dg) in a glassy mixture (‘EPA’) of hydrocarbon solvents at 77 K. Lines in the region
of g =2 arise from free radicals (S :%) and from double-quantum transitions. [After
W. A. Yager, E. Wasserman, R. M. R. Cramer, J. Chem. Phys., 37, 1148 (1962).]

excited triplet states generated by steady-state or flash irradiation. Thereafter we
consider thermally excited triplet entities and, finally, ground-state triplet species.

After irradiation with visible or ultraviolet light, many aromatic hydrocarbons in
rigid solutions at low temperature exhibit excited states of unusually long lifetime—
some of the order of minutes, as manifested by the long-lived glow (phosphor-
escence) remaining after turning off the incident light. This behavior is the result
of the existence of a metastable state, which is populated via other excited states.
G. N. Lewis et al. [35] postulated in 1941 that this long-lived state is a spin
triplet state and that direct excitation to, or emission from, this state is spin-forbidden
(to first approximation). Following Lewis’ prediction, magnetic-susceptibility
experiments on excited aromatic molecules in rigid media yielded results in quali-
tative accord with the triplet nature of the state. That is, on irradiation there is an
increase in paramagnetism; this decays on cessation of irradiation, with the same
decay rate constant as that of phosphorescence.

Aromatic hydrocarbons have been the focus of much of the early EPR triplet
work, partly because of their availability and stability, their well-defined m-electron
systems, and their long triplet lifetimes (no heavy atoms). It is relatively easy to
prepare magnetically dilute systems containing small amounts of the molecules of
interest in a diamagnetic optically inert medium. Thus specific photo-excitation of
the molecules from their diamagnetic (singlet) ground states to populate their
(lowest) triplets should allow study by EPR. However, a number of early exper-
iments failed to detect such triplets. One reason for the initial failures is the
marked anisotropy of the EPR line positions, arising from the dipolar interaction
between the two electrons coupled to give S = 1. A second reason is the low sensi-
tivity of the spectrometers at the time (1950—1955) when these first attempts were
made.
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Once the cause of the earlier failures was recognized, a successful observation of
the lowest excited triplet state of naphthalene was achieved by irradiating single
crystals of durene (1,2,4,5-tetramethylbenzene) containing a small fraction of
naphthalene.'® Since the two molecules are similar in shape, the naphthalene
directly replaces durene in the lattice.

Optical studies indicate that the singlet-triplet splitting in naphthalene is
~20,000 cm™', and hence that J, is large enough to ensure that the singlet
excited state does not affect the magnetic properties of the system. Note that the
EPR spectrum of a triplet system yields no explicit information about the exchange
parameter(s). An electronic energy diagram, patterned after the one originated by
A. Jablonski in 1933, is shown in Fig. 6.9.

The EPR spectra observed for naphthalene are precisely in accord with the
expectations for a system with S = 1. The positions of EPR lines for the three
principal-axis orientations of the field are given in Figs. 6.4a—c. It was found
[10,37] that D=0.1003cm ', E=—0.0137cm ' (D'=107.3 mT and
E' = —14.7 mT), and g (isotropic) = 2.0030. The principal-axis system for D, as
related to the molecular frame, is shown in Figs. 6.4 and 6.9. The lines in the vicinity
of hv/2gB, were considered in Section 6.3.2. The zero-field splitting parameters
shown above are relatively small. This is consistent with the Pauli exclusion
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FIGURE 6.9 The lowest electronic singlet and triplet energy levels of naphthalene,
showing photon absorption, fluorescence and phosphorescence transitions and their mean
lifetimes, as well as radiation-less transitions (wavy lines). The zero-field splittings of the
lowest triplet are indicated at the right.
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principle and the coulombic repulsion between the two mobile unpaired electrons,
which causes them to stay apart, decreasing the dipolar interaction energy and
hence |D|.

The line positions as a function of orientation for triplet naphthalene in a
single crystal of durene, for the magnetic field oriented in the xy, xz and yz
planes of the crystal, are shown in Fig. 6.10. The spectra include contributions
from the two types of sites in the unit cell, one of which (site 1) is scanned in
its D principal planes. The reader is urged to interpret the angular-dependence
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FIGURE 6.10 Angular dependence of the resonant field (at 9.7 GHz) for triplet
naphthalene in durene, as a function of rotation with B in several planes for the two
symmetry-related molecules (the planes are defined in Fig. 6.4). Hyperfine effects are
ignored. [After C. A. Hutchison Jr., B. W. Mangum, J. Chem. Phys., 34, 908 (1961).]
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curves and to extract the zero-field splitting parameters D and E (Problems 6.5
and 6.6).

For the naphthalene triplet state in a durene single crystal, with B along the X or Y
principal axes, a 1:4:6:4: 1 quintet can be resolved at 77 K [38]. By employing
variously deuterated samples, it was determined that the hyperfine splitting
a = 0.561 mT arises from the 1,4,5,8 protons and @ = 0.229 mT from the 2,3,6,7
protons (these values refer to B || Z). These hyperfine splittings are very similar
to those of the naphthalene anion considered in Chapter 3 (Fig. 3.8) (see Section
9.2.2 for further discussion).

Benzene itself has been studied by EPR [39, 40]. The data indicate that the mol-
ecule in its lowest triplet state no longer has D¢, symmetry; that is, it is distorted.
There is interconversion among the (three) energy-equivalent configurations, as is
evident from the linewidth behavior. Such transfer of the triplet excitation, here
intramolecular, is a general phenomenon. Thus diffusion of such triplet excitons
[41] can populate triplet states in molecules that were not originally excited by
the ultraviolet irradiation. For example, the EPR signal of phenanthrene can
decrease while that of naphthalene increases after irradiation in biphenyl crystals
doped with both [42].

There exist inorganic systems that display photo-excited metastable triplet states
with optical and magnetic properties closely analogous to those of the aromatic 7
systems. We consider the d° transition ions (e.g., V°*, Cr®", Mn’", Mo®") in
oxides [43]; for example, the V0,3 jon in YVO, or in Ba3(VO,),, which, while
diamagnetic in its singlet ground state, exhibits an EPR spectrum when illuminated.
Presumably the optical excitation shifts electrons into the previously empty d shell
with accompanying distortion of the already elongated oxygen tetrahedron
(Fig. 6.11). Studies of EPR at various frequencies (4—23 GHz) and magnetic
fields (including B = 0) have yielded electronic quadrupole (D) splittings (and
mean lifetimes) of the lowest triplet levels (Fig. 6.12) for the vanadate ion dilute
(4%) in YPO, at 1.2 K [44]. Note the magnitude of the zero-field splittings as
compared to those found for the delocalized p electrons in aromatic systems.
These sensitive measurements, yielding the spin-hamiltonian parameters g, D and
an estimate of ACC'V) (Fig. 6.11), were carried out by means of optical detection
of the EPR signals. Here square-wave modulation at 300 Hz of excitation field B
results in modulation of the phosphorescence detected synchronously at the same
frequency (Chapter 12).

6.3.5 Thermally Accessible Triplet Entities

Sections 6.3.4 and 6.3.6 of this chapter deal with systems in which the triplet state of
interest is a photo-excited state or the ground state. In either case we tacitly assume
that the separation of the triplet state from a nearby singlet state is large enough so
that one need not consider mixing of the two states. An additional interesting case
is that in which the singlet-triplet separation is small enough to make the triplet
state thermally accessible but still not so small as to cause serious mixing of
states. The singlet-triplet separation is approximately |Jy|, where the exchange
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FIGURE 6.11 The structure of the YPO, unit cell, showing a V>" having replaced a P°*
ion at the center. For the ground-state singlet, the local symmetry is D,q4 (as in pure YPO,),
featuring two reflection planes (ac and bc) intersecting at two-fold axis c. It is believed
that distortion removes one such plane in the lowest triplet state. Axes X, Y, Z indicate the
principal axes of D, with axis Z normal to the remaining reflection plane and axis Y
along a V-O direction. Axes X,, Y, Z, denote the principal axes of g. [After
W. Barendswaard, R. T. Weber, J. H. van der Waals, J. Chem. Phys., 87, 3731 (1987).]
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FIGURE 6.12 The zero-field splitting of the lowest S = 1 state of V°* in YPO, at 1.2 K,
also giving the mean lifetime of each level. The sign of D here was taken to be positive; if
it were negative, then the order of the levels would be reversed. The X, Y, Z labeling

follows this book’s convention [W. Barenwaard, R. T. Weber, J. H. van der Waals, J.
Chem. Phys., 87, 3731 (1987)].
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interaction between two electrons is given by J, S T Sz (Egs. 6.3-6.5). When the
triplet lies higher than the singlet (Jo > 0), the relative population of the triplet
state is governed by the Boltzmann factor 3 exp[—Jo/k,T]. In general, for a given
population of a paramagnetic state, the intensity .# of EPR absorption is given by
a Curie-law (Eq. 1.16 and Section 10.3.4) dependence, that is, .# oc 1/T. The inte-
grated intensity .# of EPR absorption arising from a thermally excited triplet state
should depend on temperature as

o< T3 + exp (Jo/kpT)] ™ (6.40)

Thus a study of the temperature dependence of the EPR intensity (i.e., area .4; see
Section E.1) permits a determination of the value of Jj,.

A clear-cut example of a thermally accessible triplet state is provided by the F,
‘point’ defect in MgO [45]. This center is thought to be a neutral trivacancy, that
is, a missing linear (O—Mg—0)>~ fragment replaced by two electrons. It gives
no EPR spectrum at very low temperatures, unless ultraviolet (uv)-irradiated. Alter-
natively, a spectrum is generated by warming above 4 K. This indicates that the
triplet state for the two electrons lies above the singlet so that J; > 0. An analysis
of the temperature dependence yields Jo = 56(7) cm ™~ '.'* At arbitrary orientations
of the magnetic field, the EPR spectrum consists of six lines (pairs of AMg= +1
transitions, one for each of the three distinct orientations of the
0?"—Mg®>™—0?" axes in the cubic crystal). The 300 K line positions as a function
of rotation in the (001) and (110) planes are shown in Fig. 6.13. An analysis of these
data reveals that D’ = 30.7 mT and E = 0, with ¢ = 2.0030(5). From Eqgs. 6.41 or
9.18a, the average interelectronic distance is found to be 4.5 A; this compares
well with the relevant oxygen-oxygen distance of 4.2 A in MgO [45].

<100> <l1o> <> <00I>
00I) plane T
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B(mT) 336}
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316 |

306L
0 20 40 10 30 50 70 90
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FIGURE 6.13 Orientation dependence of the X-band EPR lines arising from the F, center
in MgO at 300 K. [After B. Henderson, Br. J. Appl. Phys., 17, 851 (1966).]
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Another interesting example is the observation of a triplet EPR spectrum in
powdered samples of Fremy’s salt, represented here by Ky[(SO3),NO], to
emphasize its spin-paired dimeric structure [46]. Here D = +0.076 cm™ ' and
E = 4+0.0044 cm ™ '. The area of the half-field peak was found to increase expo-
nentially (Eq. 6.40) with temperature (250-350 K), yielding the singlet-triplet
gap energy Jo = 2180cm™'. Since no hyperfine (**N) splitting is observed,
this spectrum has been assigned to a triplet exciton, which is an excited state
that migrates rapidly through the crystal lattice.

6.3.6 Ground-State Triplet Entities

A triplet species need be no larger than an atom if it has an appropriate set of degen-
erate orbitals. The list of ground-state triplet atoms includes C, O, Si, S, Ti and Ni.
The two most prominent ground-state triplet diatomic molecules are O, and S,
(Chapter 7).

6.3.6.1 Carbenes and Nitrenes The H—C—H fragment (methylene or
‘carbene’) is one of the simplest molecular systems, and the triplet nature of its
ground state has been established spectroscopically. The EPR spectrum of
methylene has been reported (Table 6.1) for both CH, and CD,. For the former,
D=0.69cm ' and E=0.003cm '; for the latter, D=0.75cm ' and
E=0.011 cm™'. The difference presumably arises from the effect of zero-point
vibration. Many substituted methylenes have also been studied (Table 6.1). The
non-zero value of E for some of these molecules indicates that for them there is

TABLE 6.1 Zero-Field Splitting Parameters for Triplet Ground-State Molecules

Molecule ID| (cm™ Y |E| (cm™ Y Reference
H—C—H 0.69 0.003 a
D—C—D 0.75 0.011 a
H—C—C=N 0.8629 0 b
H—C—CF; 0.712 0.021 c
H—C—C¢Hs 0.5150 0.0251 d
H—C—C=C—H 0.6256 0 b
H—C—C=C—CH; 0.6263 0 b
H—C—C=C—C¢Hj 0.5413 0.0035 b
CgHs—C—CgHs 0.4055 0.0194 d
N=C—C—C=N 1.002 <0.002 e
N—C=N 1.52 <0.002 e

“R. A. Bernheim, H. W. Bernard, P. S. Wang, L. S. Wood, P. S. Skell, J. Chem. Phys., 53, 1280 (1970);
54, 3223 (1971); R. A. Bernheim, R. J. Kempf, E. F. Reichenbecher, J. Magn. Reson., 3, 5 (1970);
E. Wasserman, V. J. Kuck, R. S. Hutton, E. D. Anderson, W. A. Yager, J. Chem. Phys., 54, 4120 (1971).
"R. A. Bernheim, R. J. Kempf, J. V. Gramas, P. S. Skell, J. Chem.Phys., 43, 196 (1965).

¢ E. Wasserman, L. Barash, W. A. Yager, J. Am. Chem. Soc., 87, 4974 (1965).

4E. Wasserman, A. M. Trozzolo, W. A. Yager, R. W. Murray, J. Chem. Phys., 40, 2408 (1964).

¢ E. Wasserman, L. Barash, W. A. Yager, J. Am. Chem. Soc., 87, 2075 (1965).
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FIGURE 6.14 Energy levels of the fluorenylidene molecule (III) in its triplet ground state
as a function of applied magnetic field (measured in proton NMR fluxmeter frequency units).
The EPR transitions indicated are at ~9.7 GHz. (a) B || X; (b) B || Y; (¢) B | Z. Here
|D| = 0.4078 and |E| = 0.0283 cm ™ '. [After C. A. Hutchison Jr., G. A. Pearson, J. Chem.
Phys., 47, 520 (1967).]

no axis of symmetry of order 3 or greater; this indicates that the molecules are non-
linear. For such systems, the maximum number of peaks (six AMg = +1 transitions)
is expected in the glass-phase EPR spectrum, just as for naphthalene in the excited
triplet state (Figs. 6.7 and 6.8). When the system is nearly uniaxial, the parameter £
may be so small that one may only be able to set an upper limit for its value. An
increase in the extent of the conjugated system attached to the methylene carbon
atom may lead to a decrease in the parameter D as is evident from Table 6.1.

Figure 6.14 shows the energy-level diagrams for the fluorenylidene molecule
(III) [47]. The molecule is generated in its ground triplet state by irradiation of
diazofluorene at 77 K. It is thus to be regarded as a derivative of methylene. If
the zero-field splitting D is large compared with An for a microwave quantum,
only certain of the lines allowed by the selection rules are observed. When B is par-
allel to axis X or Y, only one transition is observed for v & 9.7 GHz. Since the ordi-
nate in Fig. 6.14 is expressed in gigahertz, the frequency required to cause a
transition between adjacent levels is immediately apparent from it. For B || Z,
three transitions are expected and are observed. Two of these are between the
levels designated by |0) and |—1). Note (Fig. 6.14c¢) that the ‘AMg = 42’ transition
occurs at an intermediate value of the magnetic field. The parameters measured,
|D| = 0.4078 and |E| = 0.0283 cm ™', are appreciably larger than those of naphtha-
lene, as expected (Section 6.3.4). The reader should compare the resulting tran-
sitions allowed at X band (Figs. 6.4 and 6.14).

Cc

(1) fluorenylidene
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Another organic triplet species of considerable experimental and theoretical
interest is trimethylenemethane (IV), which can be represented as

PN
H H

(IV) trimethylenemethane

This free radical, TMM,'® can be prepared by 1y irradiation of methylenecyclopropane.
EPR studies [49] reveal that it is a triplet ground-state species, rather than a biradical,
that is, |Jo| is relatively large compared to |D|, and parameter J, is negative (see
Fig. 6.2). The radical has four 7 electrons, and is close to uniaxial (planar with sym-
metry Ds,) as inferred from the parameters D = 0.0248 cm™ ' and E < 0.003 cm ™', at
77 K. The temperature dependence of these parameters, and of the proton hyperfine
matrix (six equivalent protons, principal values A;/h of —14, —38 and —26 MHz)
suggests that anisotropic rotational effects occur. Because the proton nuclear
Zeeman term is not small compared to the hyperfine values in this anisotropic
system, all four hyperfine transitions per proton are observed (Section 5.3.2.1). The
relative sign of D and A, obtainable from the EPR data, discloses that D is positive.
From Eq. 6.15a (D diagonal) and Eq. 6.254, it is easily shown that

3
D =" 82731 —3cos” 0) (6.41)
167

Here angle 0 is the angle between the inter-electron (spin) vector r and the principal
axis Z of D. It is evident that the sign of D is determined solely by (1 — 3 cos® 6). If
the dipoles were fixed at two points (in which case r/r = Z and % D, = —Dy= -Dy),
Eq. 6.41 would yield D = — (3 uo/8m)g*B,*(r ), that is, D would be negative. For a
triplet-state atom not in an electric field, the spherical symmetry dictates that D = 0. In
non-spherical systems, D can be negative or positive. The latter sign occurs in binuc-
lear triplet species when the internuclear axis is perpendicular to Z, as dictated by the
unpaired-electron distribution. In trimethylenemethane (IV), the two unpaired elec-
trons can be considered as being equally distributed at three points (carbons) in a
plane normal to the symmetry axis, so that D > 0.

6.3.6.2 Dianions of Symmetric Aromatic Hydrocarbons A molecule
may have a ground triplet state in its neutral, cationic or anionic form. Here there
is one unpaired electron in each of a pair of degenerate orbitals. Thus, as is
shown in Fig. 6.1d, the lowest-energy state (ground state) is that corresponding to
single occupation with parallel spins of the highest two occupied levels.
Degenerate orbital energy levels are found in molecules with an n-fold (n > 3)
axis of symmetry. Molecules of this type do not necessarily have a triplet ground
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state. The situation depends on the sign of the electron-exchange integral (Eq. 6.5).
If Jy is positive, then the singlet state lies lower. This is the case, for instance, in the
coronene di-anion with alkali counterions (V) [49,50].

(V) coronene di-anion

Occurrence of one electron in each of two degenerate orbitals of symmetrically
substituted benzenes may be achieved if the di-anion can be formed. Triplet
ground states have been demonstrated for symmetric molecules such as the
1,3,5-triphenylbenzene (I) and triphenylene di-anions (VI).

(V) triphenylene di-anion

These ions possess degenerate antibonding orbitals, analogous to those shown in
Fig. 6.15 for the hypothetical benzene di-anion (note Table 9A.2). For the triphenyl-
benzene di-anion (ground triplet state, Fig. 6.6) D is less (D = 0.042 cm ) than that
of the neutral excited triplet-state molecule (D = 0.111 cmfl) [51]. The orbital
occupation is very different for these two cases; calculations show that in the
excited triplet molecule, there is a greater interaction (leading to a larger D value)
between two electrons in the ‘paired’ bonding and antibonding orbitals than
between two electrons in the antibonding orbitals of the ground-state di-anion.

6.3.6.3 Inorganic Triplet Species Other than O, and S, (considered in
Chapter 7) and some transition-ion complexes, there are not many stable inorganic
molecules that exist in a triplet ground state. Some unstable species can be trapped in
low-temperature matrices. Excellent examples are the isoelectronic molecules CCO
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FIGURE 6.15 Triplet m-electron configuration of the hypothetical benzene di-anion.

and CNN, prepared by reaction of C atoms with CO or N, with subsequent trapping
in a frozen rare-gas matrix at 4 K [52]. Both of these molecules have large values of
D (D =0.7392cm ™! for CCO and D = 1.1590 cm ™' for CNN in solid neon) such
that D > hv at X band. Thus only one transition is seen in each case. The '*C and
"N hyperfine parameters are also reported. The fact that E = 0 indicates that these
molecules are linear.

Another quite different example of a ground-state triplet is the quasi-tetrahedral
[AlO4]" ‘point’ defect in a quartz single crystal [53]. This center is believed to
contain two electron holes forming a triplet spin system in which the two unpaired
electrons are ~0.265 nm apart on adjacent (and symmetry-related) oxygens in the
AlQy entity. For this center at ~35 K, D' = —69.8 mT and E' = 6.3 mT. These
values are in very good agreement with those calculated on the basis of a model
placing an unpaired-electron population of 0.76 in two oxygen 2p orbitals perpen-
dicular to the Al—O—Si plane. As expected [3], the hyperfine matrix from the
central 2’Al ion is accurately approximated by A = (A + A,)/2, where matrices
A; (i=1,2) stem from the corresponding radicals (S = %) centered on the two
oxygens. Similarly, g = (g + g,)/2. The hyperfine splittings arising from the low-
abundance isotope 29Si, that is, from outer silicon atoms bonded to the oxygens, are
half as large as the corresponding ones from the S = % species.

Various transition ions provide examples of § = 1 systems, for example, V>" and
Ni>T in the 3d series (Chapter 8). The latter ion, dilute in K,MgF, where it is in a
Mg>" site surrounded by a slightly distorted octahedron of F~ ions, yielded
D= —0425cm ' and E = —0.065 cm ™' (with isotropic g = 2.275) at 1.6 K [54].

6.4 INTERACTING RADICAL PAIRS

The earliest EPR work in this specialty area is that done by Bleaney and Bowers [55]
and also by Kumagai et al. [56], on cupric acetate monohydrate, in which Cu?* 34"
ions, each influenced by the local electric field, also interact pairwise and reveal an
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effective electron spin of S =1 (g, = 2.08 and g, = 2.42) at 90 K. The electronic
quadrupolar parameters are D/hc = 0.34 em ! and E /he = 0.01 cm” ', There are
5 x 5 orbital states, with a singlet lowest, each such state with spin degeneracy of
2 x 2 (neglecting nuclear Cu spins; these do, however, give rise to observed hyper-
fine structure). The resulting ground state is a singlet (diamagnetic), while the lowest
excited state is a triplet. The latter becomes appreciably populated even at quite low
temperatures (>50 K) and gives rise to the observed EPR spectrum. The splitting
Jo/hc (about 4300 cm™'; see Eq. 6.4) between the singlet and triplet states, as deter-
mined from the temperature dependence of the EPR intensity, is caused primarily by
the electronic exchange interaction. Thus, here, |Jo| > gB.B. The anisotropy of the g
value indicates presence of appreciable spin-orbit interaction.

In the case of strongly coupled spin = % identical pairs with nuclear spins, such as
described above, the hyperfine coupling parameters have magnitudes half as large as
the corresponding values for the single entities.

The case of weakly coupled radical pairs (|Jy] < gB.B) has been successfully
treated by Itoh et al. [57]. Here the singlet and triplet are mixed by the Zeeman
and hyperfine interactions, and J, can be evaluated from the EPR line positions.
This has been done for pairs of RR'*C=NO free radicals created by irradiation of
single crystals of glyoximes [57]; for R = R’ = CH3, Jo/hc = 4+0.200 cm ™.

Obviously, far more detail on the spin-pair systems will be sought. Thus, the
exact distances between the pair units, in both the singlet and triplet states, will
be welcomed, as will the orientations of these axes within the crystals. Advanced
techniques, such as ELDOR in ESE studies (see Chapters 11 and 12), are expected
to be helpful in such efforts [58].

6.5 BIRADICALS

As indicated above, a biradical is a molecule containing two unpaired electrons
that, on the average, are so far apart that interactions between them are sufficiently
weak and energy classification into a singlet and a triplet manifold is not useful.>
More generally, this category includes radical pairs, in which the spins are
located on close but separate species.

The border region between triplet-state species and biradicals is, of course,
nebulous, as it is set by the magnitudes of D and E compared to that of the
singlet-triplet energy separation. We note that as D and E — 0, the half-field
transition remains pretty well in place (see Eq. 6.36b), but declines rapidly in
intensity. For triplet states, |D/hc| typically is in the range 0.1-2.5cm™'
(Section 6.3), but it is this magnitude compared to that of exchange energy par-
ameter Jy which is the crucial factor. Thus TMM previously discussed has a
triplet ground state with D/hc ~ 40.025 cm™', while Jo/hc is estimated to
be —5000 cm™' [59].

Consider a biradical composed of two identical molecular fragments, each
containing one unpaired electron as well as one magnetic nucleus giving rise to
hyperfine splitting. We consider the isotropic case. The spin hamiltonian appropriate
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to this system is [60,61]16
H = gBBG1 + $2) + 40 T+ 1, + 8,7 1) + 48, - S, (6.42)

Here we consider the biradical to exist in liquid solution so that the anisotropies
arising from g, D and T are averaged to zero. We neglect the effect of the nuclear
Zeeman terms, the cross-hyperfine interactions, and the nucleus-nucleus spin coup-
lings. If |A¢| < gB,.B, then the hyperfine terms may be taken to first order only, and
Eq. 6.42 can be approximated as

H = gB.BS1. + 822) + A 111z + 82:102) + 1081 T+ S, (6.43)

where B || z.
First, consider the limiting case where |Jy| > |Ag|. The zero-order spin
hamiltonian is then

Ho = gB.BS1. + $2) + JoSi ™ $; (6.44a)

which can be expanded (Section C.1) to yield
Ho = gB.BG1. + 520+ Jo[ 8182 + 18180 + 81520 | (6.44b)

The appropriate eigenfunctions are

IL+1) = |+3,+1) (6.45a)
I

L0} =5 (43, =+ 13 +3) (6.45)

IL,-1) = -3, -3 (6.45¢)
I

10,0) 575(|+%, ) = I=3. +3) (6.45d)

The quantum numbers in the right-hand set of kets (uncoupled representation)
refer to the eigenvalues of Sy, and S,,, whereas those on the left (coupled represen-

. .. 22 s
tation) refer to the quantum numbers S and My arising from S and S, where
Sz = Slz + SZZ~



192 SYSTEMS WITH MORE THAN ONE UNPAIRED ELECTRON

The energies to first order (in Ay and Jy; note and compare Figs. 6.2 and 6.15, in
which Ay is neglected) are

U 1V =4gB,B+Jo/4+ Ay'M;)2 (6.46a)
UoV = +Jo/4 (6.46b)
Ui 1V =—gB,B+Jo/4—A'M;/2 (6.46¢)
UpoW = =3Jy/4 (6.46d)

Here 'M; = M;, + M;,. The only allowed EPR transitions are |1, + 1) <> |1,0),
which are degenerate at a transition energy of gB8.B + AoM;/2 and are independent
of Jy. In the case of I} = I, = 1, the first-order spectrum would consist of five lines
separated by |ag|/2 (where ag = Ao/g.B.) with intensity ratios 1-2-3-2-1, since
'M; = -2, —1,0, +1, +2. An example of this case is the EPR spectrum of the bir-
adical tetramethyl-2,2,5,5-pyrrolidoneazine-3 dioxyl1,1” (VII), shown in Fig. 6.16a,
where the line separation is only 0.740 mT so that ao(**N) = 1.480 mT [62)].

106G

FIGURE 6.16 (a) X-band EPR spectrum of biradical VII showing interaction of both
unpaired electrons with nitroxide N nuclei. The spacing is |ag|/2, where |ag| = 1.480 mT
is the spacing for the corresponding monoradical (one NO group replaced by NH). [After
R. M. Dupeyre, H. Lemaire, A. Rassat, J. Am. Chem. Soc., 87, 3771 (1965).] (b) X-band
EPR spectrum of the biradical VIII, in which the nitroxide groups are isolated from each
other. The hyperfine splitting (1.56 mT) is just the same as that of the corresponding
monoradical. This is an illustration of the case |Jy| < |Ag|. [After R. Briere, R. M. Dupeyre,
H. Lemaire, C. Morat, A. Rassat, P. Rey, Bull. Soc. Chim. France, No. 11, 3290 (1965).]
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(VIl) tetramethyl-2,2,5,5-pyrrolidoneazine-3 dioxyl-1,1’

Now consider the second limiting case, of |Jy| < |Ap|. The zero-order spin
hamiltonian is

Ho = 8B B(S1: + $22) + AolSu:1 1z + Sa:) (6.47)
This operator is separable into two parts

Ho(1) = gB,BS1: + AoSi:1: (6.48a)
Ho(2) = gB,BS:: + AoS:Io: (6.48b)

The eigenfunctions of ’):(0( 1) are

|4+3, Mi(1)) and  |—3, My(1))
with eigenvalues

Up12” = +8B,B/2 + AoM;(1)/2 (6.49a)
U_1p® = —gB,B/2 — AoM;(1)/2 (6.49D)

One obtains analogous results for ﬂo(Z). Thus this case may be considered as
two non-interacting systems with § = % When I = 1, the first-order EPR spectrum
consists of three lines separated by |ag|. An example of this case is shown
in Fig. 6.16b, where the biradical is di(tetramethyl-2,2,6,6-piperidinyl-4
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oxyl-1)terephthalate (VIII).

CH CH
HC_ | © " CH,
0
I I
0—N o—cC c—o N—O
HaC CH
€ oh, 3

CHs
(Vi) di(tetramethyl-2,2,6,6-piperidinyl-4 oxyl-1)terphthalate

The intermediate case of |Jy| ~ |Ag| gives rise to a complex group of lines.
The intensity and position of these lines are a strong function of |Jo/Ag| [63-65].
Thus J can be extracted from the solution EPR spectrum.

The general case, when one encounters anisotropic parameters and where field B
is of arbitrary magnitude, can be dealt with using the spin hamiltonian

H=pBB"g S +BB g5+ %(SlT' J-$ 4+ 8,737 8)) 6.50)
+ nuclear terms as needed ’

The EPR line positions and relative intensities are obtainable from Eq. 6.50 by

numerical (computer) solution. An example of the energy levels for such a case is
depicted in Fig. 6.17.
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FIGURE 6.17 The energy levels U(Ms,, Ms,) as a function of applied magnetic field B for
a biradical system not containing any nuclear spin. The primary EPR transitions
(AMg, = +1), involving the two Mg, = 0 levels, are shown. No nuclear spins occur here.
The spin-hamiltonian parameters (Eq. 6.50) used to generate the figure are taken from
J. Isoya, W. C. Tennant, Y. Uchida, J. A. Weil, J. Magn. Reson., 49, 489 (1982).
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Note that the three matrices in Eq. 6.50 are attainable by computer analysis of
single-crystal EPR rotational data, where J includes the isotropic exchange par-
ameter J, as well as the spin-spin dipolar interaction and anisotropic exchange.

6.6 SYSTEMS WITH S >1

A few organic high-spin radicals are known. For instance, the assembly of the three
diphenylhydrazyl groups (Section E.1.2) mounted meta to each other on a central
1,3,5-tricyanobenzene yields a stable triradical (S = %), exhibiting AMg= +1, +2
and + 3 transitions [66]. Perhaps the highest spin multiplicity known for organic mol-
ecules at this time is an undecet ground state, arising from the five sets of unpaired
electrons formally located at five methylene carbons held between phenyl groups,
in the meta-linked molecule C¢gHs—C—(C¢H;—C—C¢Hy—C—),C¢Hs (having
S =15) prepared and studied by EPR [67]. More accurately, five of the unpaired
electrons are delocalized in a 7r orbital; the other five occur in o non-bonding orbitals.

Monatomic high-spin species can be created (e.g., by irradiation procedures), and
have been studied since the mid-1950s or 50. A good example is the nitrogen atom,
whose electronic ground state (S = %) is *S; /2 (see Section B.7). Such atoms can be
trapped and stabilized in solid matrices (e.g., in molecular nitrogen at low tempera-
tures [68], in azides [69], and in fullerene cages [70]), in liquids (e.g., superfluid
helium [71]), and in gas phase (see Section 7.2). For N°, typical parameters are
g=2002, D =0.010cm ', E=—0.002cm " (the latter two measured, of
course, in solids) and ao(**N) = 0.5 mT. Because of the high mobility of the
atom, D and E are quite temperature-sensitive.

Numerous other inorganic systems offer high-spin (S > 1) species. These include
clusters of adjacent unpaired electrons (i.e., of F centers) in alkali halides. For
instance, three F' centers forming an equilateral triangle in the (1,1,1) plane of a
KCl crystal constitute an S =% center, which has been studied by both EPR and
ENDOR [72].

Clusters of transition atoms also lead to high-spin systems. Thus Mn, and Mns,
in rare-gas matrices, are amenable to study by EPR [73]. For Mn,, since the
exchange parameter J, is negative (Jo' = —11.0 T, i.e., antiferromagnetic coup-
ling), this molecule features a diamagnetic ground state. However, higher spin
states (S = 1,2,3) can be thermally populated and yield EPR spectra with charac-
teristic *Mn (I = %) hyperfine structure. The pentamer cluster Mns has a total spin
§=2.

M%)re recently, single-molecule magnets (SMMs) have been studied at very high
frequencies (40—200 GHz). EPR spectroscopy has yielded information about the
energy levels and power saturation behavior of molecular nanomagnet crystals,
including ferric complexes (abbreviated ‘Feg’) and manganese complexes (abbre-
viated ‘Mn;,’ [74,75]). Both have effective spin: S’ = 10.

Clearly, the primary domain of high-spin species is that of transition ions
(Chapter 8), which have been a fruitful source of EPR progress since the beginnings
of this field.
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6.7 HIGH-SPIN AND HIGH-FIELD ENERGY TERMS

For magnetic species with S > 1, additional terms (e.g., Eqgs. 8.17) should be
added to the spin hamiltonian (Eq. 6.18), at least in principle. These usually
make only relatively small contributions to the total energy of the system but
show up as corrections to the EPR line positions and intensities. They are not as
simple as the terms in Eq. 6.18, since tensorial entities greater than rank 2 (not
expressible as matrices) enter, and each term brings in a multitude of parameters
to be obtained from the EPR data. Table 6.2 indicates what types of terms are in
principle allowed. This table is a listing of what terms can be present for each
value of S, ignoring nuclear-spin terms. The symbol S 1mphes the possible
presence of all three operators S 8 ,, and S Operator §? indicates the term
ST. D § discussed in this chapter. Slmllarly, the symbol B here implies the
possible presence of B,, B, and B,. Integers n, n’ and n” are positive odd
integers; thus n = 1 indicates the usual electron Zeeman term, and all other inte-
gers n (and all n/, n”) are usually safely ignored (except in highly accurate
measurements).

Column 2 in Table 6.2 includes the high-field situation (for any §) in which one
considers that all spin-hamiltonian parameters are field-dependent. For instance, the
Zeeman splitting factor can be written as the series

g=80 +g?B 4+ gWB* +... (6.51)

Here g is the usual g factor, and the giz) term describes an energy term having the
form of components of B’S (e.g., BX3S),), which may become appreciable in the
analysis of ultrahigh-field EPR spectra.

TABLE 6.2 Possible Electron-Spin Magnetic-Field Terms
in the Spin Hamiltonian”

S 7:[ Terms

L

1 SB" 82

2 SB" §? $*B"

2 SB" $? $B" S

3 SB" 82 $*B" §* 4

“ The meaning of the symbols $ and B in this table are defined in the text
(Sections 6.6 and 8.3). Exponents n, n’ and n” generally are positive
integers.
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In accordance with Table 6.2, a term of the form BS® can occur for S > 1
[76—78]. With smaller S, for example, S = 1 , §% can always be written as a linear
combination of terms at most linear 1n S. Terms of this type can arise
from the product 1n perturbation theory of the normal Zeeman term g,8.B" - S

and the square ()\L S)2 of the spin-orbit term [79]. For octahedral or tetrahedral
symmetries, the additional terms have the form

/ o3 o3 o3 T.&nmdl. & 3
g B.[BxSx” + BySy’ +BzSz” —B -S(3S -S—-1)/5]

Here the operator form of the last term is a notational formality: ST-S=56+1)
and 1 = 1. With lower symmetry, the number of BS>-type terms increases, and
there is proliferation of the parameters describing the effect [78]. Conversely, if
description of an experimental spectrum requires such a term, this confirms the
identification of an § > 3 5 state. If there is a nucleus contributing splitting, an
additional term of the form S° 1 may also be required.

The derivation and treatment of the terms in Table 6.2 are outside the scope of
this book. The reader is referred to a variety of sources for this type of treatment
[78, 80—86]. Note the special diagrammatic methods in Ref. 83.

6.8 THE SPIN HAMILTONIAN: A SUMMING UP

In the previous chapters, we focused on quantitative description of the Zeeman split-
tings (g), nuclear hyperfine and quadrupolar effects (A, P), and the electronic quad-
rupolar and high-spin interactions (D, .. .). In general, these parameters can all occur
simultaneously for any given paramagnetic species. Thus, to describe the EPR
spectra (as well as other spectra, e.g., ENDOR), it is necessary to add together all
possible terms'” into a single spin hamiltonian

N
H=gBB"-S+S8"-D-S+> " AT - B g, L+LT-Pi- T +-)
i=1
(6.52)

encountered for any electron spin (composite or not) and N nuclear spins, all
contributing to the spectrum. Which terms must be included to analyze any
given spectrum is a matter of judgment and experience, added to an understand-
ing of the chemical system being investigated. The correct spin hamiltonian
yields the observed positions and relative intensities of the lines, in the
absence of dynamic effects (Chapter 10). However, exact energies and transition
probabilities obtained by parameter fitting (i.e., repeated diagonalization of H
by computer) are always possible, generally with some loss of intuitive under-
standing. One important mental exercise regarding Eq. 6.52 is to note which
terms depend on B and which do not (zero-field terms), since the choice of
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spectral region (B region) selected to work in is significantly affected by this
aspect.

Let us now discuss the signs associated with any parameter matrix Y. The relative
signs of the matrix elements Y;; are all obtainable from the positions of the EPR lines.
However, determination of the absolute sign (i.e., which of +Y is correct) may not
always be possible. If several matrices (e.g., g, D, A, P) are important in the spin
hamiltonian, the relative signs of some pairs may be available from the data, even
though the absolute sign of the set is not. In some cases the relative signs of A
and P for a particular nucleus may be fixed by the data, but not necessarily with
respect to A and P of some other nucleus also exhibiting line splittings. Special
auxiliary measurements may be needed (see Note 4 in Chapter 4 regarding matrix
g and Section 6.3.1 for matrix D) to arrive at the most complete sign information.
In summary, determination of the signs of spin-hamiltonian parameters is a non-
trivial task.

An approach to visualization of the energy terms arising from a given H is to
resort to a perturbation treatment. We now undertake a brief discussion of the
results of this approximation technique.

Consider a simplified version of Eq. 6.52, namely

H=gBB"-S+8"-D-S+8T-A-1 (6.53)

of Eq. 6.52, incorporating the now familiar terms from Chapters 4 and 5. For suffi-
ciently large field B, the first term dominates (if Mg # 0) and the other two can be
treated as perturbations [87, 88]. The resulting single-nucleus second-order energy
expressions, valid for any S and /, and for any coordinate system are

U(Ms, M) = gB,BMs + 1 di[3Ms* — S(S+ )]+

1 2 2
yeps e )[BMs® + 1 — 4S(S + 1)]Ms +
S 2B [tr(D)* — 2d, + di* — 2d_ det(D)][2S(S + 1) — 2M* — 1]Ms +

2B,
1
KMsM; + 5 { Ler(A- AT — k2 IMS[Id + 1) — M2] — .
e

A

de;é ) [S(S+ 1) — MM, + (ki* — KM M> +

2(e — d)K[3Ms> — S(S + 1)]M,} (6.54)
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Here
g=n'-g-gi-n (6.55a)
d,=n"-g-D"-gT-n/g? (6.55b)
K*=n"-g-A-AT.g".n/g’ (6.55¢)
ki =nT-g-A-AT-A-AT. gT.n/g’K? (6.55d)
e=n'"-g-ID-A-AT+A"-A-D)-g" n/g’K? (6.55¢)

and, as before, n = B/B. Equation 6.55a is the same as Eq. 4.12. We note the pre-
sence in Eq. 6.54 of terms in B~ '; higher-order perturbation treatment would give
further terms, in B2, and so on. The terms in d_i, dy, d», K, k| and e demonstrate
the intermingling of the three spin-hamiltonian terms in Eq. 6.53 in arriving at the
energy expression.

Obviously, from the energy expression 6.54, it is now possible to derive anisotro-
pic spectroscopic frequencies [UMs,M;) — U(Ms,M;)]/h to be compared with
experiment (e.g., see Eqs. 6.34). Similar perturbation techniques are available to
derive transition moments, that is, relative intensities [89].

When more than one spin-bearing nucleus is present, there are naturally hyperfine
terms in Eq. 6.53, for each nucleus, with resulting energy terms in Eq. 6.54 [90].
Even though no terms coupling the nuclear spins directly have been added to the
spin hamiltonian (since such interaction energies are negligibly small), pair-wise
cross-terms that depend on M;, and M; will nevertheless occur in Eq. 6.54; these
arise from electron-mediated dipolar interactions. As usual, for each nucleus with
1> % quadrupole terms (Eq. 5.50) should be added to Eq. 6.53.

As more and more terms are included (e.g., nuclear-quadrupole energies [90]),
the perturbation energy expressions become increasingly complicated and unwieldy.
Clearly, also, the limited applicability of perturbation theory must be kept in mind.
Nevertheless, Eq. 6.54 (or its variants) have proved very useful and yield important
insights.

Finally, it should be pointed out that the general spin hamiltonian (Eq. 6.52),
including all high-spin terms, can be formulated in a far more compact and math-
ematically elegant form, involving spherical-tensor operators [76,80—85,90]. Thus
all the matrices (g, D, A ;, P;) can readily be expressed in terms of the relevant expan-
sion coefficients. The higher-order terms (not formulatable in terms of 3 x 3
matrices) are also easily presented. However, all too many different versions and
notations regarding this operator structure appear in the literature.

6.9 MODELING THE SPIN-HAMILTONIAN PARAMETERS

Since the mid-1990s with advent of ever more capable rapid computing systems, the
accurate modeling of all the magnetic resonance parameters (e.g., g, A, P, D, ...) has
become feasible, and thus there is now quite a burgeoning literature on this topic.
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We can cite the text Calculation of NMR and EPR Parameters [91], which presents a
nice overview. As specific examples, we can indicate the density functional theor-
etical (DFT) calculation of g matrices, from first principles, say, for paramagnetic
diatomic molecules and defect centers in crystalline quartz [92]. For the latter
medium, the detailed structural configuration and the 70, *’Al and 2°Si hyperfine
parameter matrices for the famed center [A10,4]° have been very successfully calcu-
lated [93,94]. Years of such work by Ziegler and his group [95-97], and others, has
borne much fruit; for instance, their inclusion of spin orbit coupling has indicated the
general occurrence not only of spin singlet-triplet mixing but also the resulting
appearance of non-zero spin density on the atoms even of diamagnetic molecules.
Simultaneous inclusion of higher-order spin-orbit and spin-polarization effects in
a relativistic calculation of electronic g matrics were reported in 2005 [98].
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NOTES

1. Most species containing two unpaired electrons have many other electrons. It is assumed
that the spin states of the two electrons are not affected by the other electrons that occupy
molecular orbitals, two paired electrons in each.

2. Note the analogous behavior of the S =1 = % system (Section C.1).

3. The very words ‘singlet’ and ‘triplet’ imply approximate (but most useful) labels, since
all two-electron states in reality are mixtures of both.

4. Some authors [5] use the notation —2JS1 T. Sz, and others [6] use fJSI T. Sz. Thus care
must be taken to maintain self-consistency, correct numerical values.

5. We note that exchange is just one manifestation of the coulomb interaction between the
electrons and is related to their capability to form a chemical bond.

6. There also exists an electron-spin electron-spin contact interaction, analogous to the
Fermi contact interaction that is the mechanism of isotropic hyperfine interaction
(Section 2.3.3). However, the magnitude of this term is very small [7]. To the extent
that it is present, it contributes to Jj.

7. Of course, there is a zero-field splitting arising from the exchange interaction, which splits
the singlet and triplet states. Also in the presence of hyperfine interaction there is a
zero-field splitting (Section C.1.3), but this is far smaller than that of the dipolar
zero-field splittings found in most systems with § > 1.
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13.

14.
15.
16.

17.

. For arbitrary orientations of B, these equations do not apply, since then none of the

principal axes of D correspond to the axis of quantization.

. We consider d; > 0. When it is negative, B;, and B, must be interchanged in Eqs. 6.34a.,b.
10.
11.

Here we have assumed that D > 0; for D < 0, the field expression must be reversed.

We saw earlier that, in simple cases (Figs. 4.7, 4.8, 5.11, and 5.12), the first-derivative
peaks in powder patterns occur at field locations for which the line positions are at
extrema, which occur with the field B along principal directions of matrix g or A. In
more complex cases, the peaks in powder spectra show up at field orientations where
the line positions B(0, ¢) are nearly constant with respect to field orientation [29-31].
These zero-slope positions of B, called ‘turning points’, are not necessarily linked to
principal-axis locations of individual spin hamiltonian parameter matrices.

. When matrices g and D are not coaxial, for example, for low-symmetry triplet species, the

powder spectra can be considerably more complicated with not easily recognized patterns.
Use of dilute single crystals instead of pure naphthalene greatly lengthens the lifetime of
the excited triplet state in a particular molecule. In the pure crystal, rapid migration of the
triplet excitation usually leads to effective quenching. This technique has been used in
some fundamental studies of the excitation of oriented molecules by polarized light [36].
The number in parentheses indicates the error in the last place(s).

The closely related cation free radical TMM™ also has been studied in detail by EPR [48].
Note that, in analogy with the hyperfine interaction term (Eq. C.1), the dot product must
be retained for the exchange term.

What types and forms of terms are actually allowed to occur in a general H is dictated by
various physical principles. For a discussion of this, see Refs. 2, 78, and 80-86.
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PROBLEMS

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

By substitution of the appropriate spin matrices, derive the spin hamiltonian
matrix of Eq. 6.20. Express this in terms of D and E.

(@) Obtain the spin matrices S, S, S, S S yz and S.” using the triplet-state
eigenfunctions given in Eqgs. 6.28 as a basis set. (b) Use these 3 x 3 spin
matrices to obtain the spin-hamiltonian matrix 6.29.

Show that the isotropic part of an electronic quadrupole matrix D affects all
spin levels (states |Ms)) equally, so that it generally can be ignored, since it
cannot be measured spectroscopically.

Show that the S‘Z operator causes a transition between the spin states
¢r|—=1) = ¢y + 1) and —i[c;*|—1) + ¢>*|+1)]. Compare the intensity (at
any field B) of this transition with that obtained using the S, operator in the
basis in which the spin hamiltonian matrix is diagonal (Hint: See Section
C.1.4.). Thus justify the statements made in Section 6.3.2 concerning the rela-
tive orientation of the static and excitation magnetic fields required for obser-
vation of the ‘AM¢ = 42’ transition.

Use the procedure outlined in Section 6.3.1 to extract the matrix D for
the naphthalene triplet in a single crystal of durene from the angular-
dependence curves given in Fig. 6.10. Diagonalize D and obtain the values
of D and E.

(a) Derive Egs. 6.32 from Egs. 6.31, and their analogs for B || X and for B || Y.

(b) Use the magnetic-field positions and microwave frequency from Fig. 6.4
to obtain D and E for the lowest triplet state of naphthalene, using
Egs. 6.32.

Show that on crystal rotation, in the case of uniaxial symmetry and at
sufficiently high frequency v, the maximum field spacing between
the AMg= +1 transitions (for S=1, g=g,) 1is given by
AB =2|D|/g.B. = (3 po/4m)g.Be (r~% =5570.85 () with B in mT and
rin A.

Derive the matrix D for the F, center in MgO, using the information given in
the text and in Fig. 6.13.

The V° center produced by x irradiation of MgO is an example of an § = 1
system in a local electric field of tetragonal symmetry. This defect consists
of two positive holes (missing electrons) on opposite sides of a positive-ion
vacancy, that is, the array O [J O™ instead of 0" O*". The spin
hamiltonian for this system is Eq. 6.19b. For the case of B || Z, where Z is
the tetragonal axis (001) of the defect, the energy-level scheme and the
allowed transitions for a system of this type are depicted in Fig. 6.3. The
NMR proton resonance frequencies at the magnetic fields corresponding to
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6.10

6.11

6.12
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the two transitions shown occur at 13.3345 and 15.2680 MHz;
v =9.4174 GHz.

(a) Calculate the energies of the states in zero field and from these obtain the
zero-field splitting.

(b) Write expressions for the energies of the two transitions.

(¢) From these, find the value of D.

(d) Obtain the value of g (here g).

(e) What feature of the spectrum could prove that in zero field the Mg = +1
states lie below the Mg = O state, rather than above it?

(f) The separation of the pair of lines is given approximately by
AB = (po/4m(3u*/28.B,)(r )3 cos® 6 — 1]

as one expects for interacting dipoles aligned by field B. From this, cal-
culate {r > and hence estimate the separation of the two dipoles of spin %
[99]. (The magnetic moment of a hole has the same absolute magnitude
as that of the electron.)

The zero-field splitting parameters for the triplet exciton in anthracene are
given as D = —0.0058 and E = 0.0327cm™!. The low value of D is decep-
tive, since (for this crystal-axis system) E > |D|. After ascertaining the direc-
tion cosines of the axes of the anthracene molecules relative to the crystal
axes [100], show that the parameters ascribable to the individual molecules
are D = 0.0688 and E = —0.0081cm™! [101].

Consider equations 6.36. In that context, can you justify the statement ‘There
will be exactly four B-field orientations at which the lowest possible half-field
line position B,;, of a given triplet-state species occurs, if it occurs at all’? If
so, do so and provide a critique citing at least five conditions that must be met
for the statement to be valid.

Consider the proton hyperfine structure in the X-band EPR spectrum of triplet
trimethylenemethane.

(@) Justify that 4096 hyperfine lines are to be expected for each of the two
primary (AMg = =+ 1) transitions.
(b) The isotropic proton splitting (in mT) is given (Chapter 9) by

ag ~ —2.46p,." —0.19p,° (6.56)

at least approximately. Here the superindices a and ¢ denote the adjacent
and central carbon atoms. Using the relation

3, +p, A~ 1 (6.57)

estimate the unpaired-electron populations p,; in the molecule [102].
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Nitrogen atoms trapped at 77 K in irradiated potassium azide exhibit an EPR
spectrum reproduced by the spin hamiltonian

H=PBB"g-S+D5+ES’ -5 +8-A-1 (6.58)

with  g=12001, D=+00143cm !, E=-000199cm ' and
A =0.00051 cm™' [103]. Parameters g and A are isotropic. What is the
spin S, and why? Draw semi-quantitatively the EPR spectrum expected at
9.2 GHz for the field orientation yielding the largest fine-structure splitting,
including a field scale (mT).

The application of a scannable radiofrequency field B | to a sample containing
molecules in a photo-excited triplet state can yield zero-field transitions
detected directly in the transmitted light intensity. Such absorption-detected
magnetic resonance in a photosynthetic reaction center at 12 K has yielded
relatively strong absorptions in the 890 nm light, at frequencies v = 466
and 658 MHz, and a weaker one at 191 MHz [104]. Using Fig. 6.3, estimate
values of |D|/h and |E|/h from these data.



CHAPTER 7

PARAMAGNETIC SPECIES IN
THE GAS PHASE

7.1 INTRODUCTION

By definition, atoms and molecules observed in the gas phase differ from those in
condensed phases in that they are almost perfectly free to perform translational
motion. Since there is no observable energy splitting caused by such motion (i.e.,
of the center of mass of the species), there are no direct spectroscopic consequences.
On the other hand, literally free molecular rotation does allow observation of the
quantized rotational energy levels; their splittings are often of the same magnitude
as those of the Zeeman spin states. The ensuing rotation-magnetic interactions have
major effects on the EPR spectra of diatomic and polyatomic molecules.

Angular momenta remain in the forefront for gas-phase systems when understanding
of the EPR transitions is to be attained. There are four sources for these: electronic
(total) orbital and spin, rotation of the nuclear framework and nuclear spin(s). Here
the set of total angular-momentum vectors F of the atoms or molecules can be
assumed to be randomly oriented, but each is fixed in its direction until disturbed by
a collision (a relatively rare event on the EPR time scale in most studies). More accu-
rately, the quantum number M remains constant but, in fact, cannot be measured until
an external magnetic field is applied, that is, until a quantization direction is specified.

Collisions with the walls of the container or between atoms or molecules may cause
appreciable effects on relaxation times and linewidths. Literally no electrically charged
species have been observed in the gas phase by EPR,' mostly because large concen-
trations of ions, sufficient to allow standard EPR experiments, have not been attainable.

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.
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From the multiplicity and locations of the lines observed for a paramagnetic gas-
phase sample in the EPR spectrometer, one can obtain detailed information about
many interesting molecular parameters. Furthermore, both qualitative and quantitat-
ive chemical analyses are relatively easy and can be carried out as a function of time
to enable studies of reaction kinetics.

For molecules with electric dipoles, the spectrum generally contains lines of the
electric-dipole transition type, rather than only the relatively weak magnetic-dipole
absorptions. Indeed, in most of the literature studies, the observed spectrum consists
of electric-dipole lines. However, specially designed magnetic-resonance cavities can
be used so as to confine the molecules to regions where essentially there are only exci-
tation fields of the magnetic type (B;) and none of the electric type (E;). We note that the
term ‘EPR’ does not necessarily imply the presence of magnetic-dipole transitions, but
rather applies to the resonance spectroscopy of paramagnetic species.

We consider primarily species with one or more unpaired electrons, for example,
doublet and triplet states; however, species without net electron spin, but that exhibit
electronic orbital magnetism, also give EPR spectra. We discuss monatomic species
first, followed by diatomics and then by simple polyatomics. Virtually no work has
been done on more complicated gas-phase molecules, due in part to the complexity
of the rotational-magnetic patterns.

7.2 MONATOMIC GAS-PHASE SPECIES

Open-shell atoms, since they are generally unstable toward dimerization, are usually
created in steady-state concentrations from suitable molecules by means of an electric
discharge, thermal dissociation, electron bombardment, or photolysis; these atoms
usually are created externally and subsequently diffused into the EPR cavity.
Obviously, the prime example of this type of species is the hydrogen atom, in any of
its three isotopic varieties. Details of the relevant spin hamiltonian and the consequent
spectroscopic implications have been discussed in Sections 2.4 and 2.5, as well as in
Appendix C. The atomic parameters (g, A, ...) are now well known, at least in the
ground and lower excited electronic states. Much of the more recent EPR work
involves chemical reactions of atomic hydrogen. Many other hydrogenic atoms (e.g.,
the alkali-atom species) are also well known. However, most studies of these species
have been made by means of atomic beams, detecting the arrival of the atoms at
some location, rather than by standard EPR techniques. Two-electron species, such as
helium atoms excited into triplet states, have also been studied by such techniques [1].

Of special chemical interest are the various EPR investigations of atomic species,
including O, S, Se, Te, N, P, As, Sb, F, CI, Br, I and Ar. For some of these entities,
several electronic states (e.g., 45, /25 2Dy /25 D, /2 of the ground-state configuration of
nitrogen [2], including direct measurement of the ’Ds /2—2D3 /2 fine-structure interval
by use of far-infrared laser electronic paramagnetic resonance (LEPR) spectroscopy
[3]) have been measured.

For the halogen atoms, the single hole in the p electronic shell leads to spin—%
species; the ground state is labeled ’p, /2.2 Since J = % the allowed high-field (B)

3 1 _ 1

transitions occur between M; values —5 < =5 —5 < +% and +% PES +%. Each
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such absorption exhibits 27+ 1 hyperfine peaks. Experiments dealing with
transition-group species appear to be lacking.

Note that we are dealing with spherically symmetric systems here; that is, the
unpaired electron responds to the central coulomb field of the nucleus and the
other electrons. Thus the electronic orbital angular momentum about the nucleus is
important. The orbital operator L is added to the spin operator Sto give the total elec-
tronic angular-momentum operator j ; hence the associated quantum numbers L, S, J
and M, are defined and serve to label the energy states (Section B.7), when nuclear
hyperfine and quadrupole splittings are ignored.

Atomic fluorine can be produced by means of an electric discharge [4], and con-
sists of a single isotope (*°F) having a nuclear spin of / = 1 . Thus here (and above)
the true total angular momentum F=J+1 (Section B. 7) must be invoked. Its
quantum number F is integral and, for given J, takes on 27+ 1 values, ranging
from |J — I| to J 4 I. The corresponding Zeeman levels for the ground-state term
are shown in Fig. 7.1, as are the ‘allowed’ transitions observed with B; L B in a

=1

FIGURE 7.1 Zeeman pattern of the ground-state *Ps /2 levels of atomic fluorine, showing
possible EPR transitions at fixed frequency. Here the field variable is x = (g; — g,)B8.B/A,
where A is the zero-field (hyperfine) splitting energy. [After H. E. Radford, V. W. Hughes,
V. Beltran-Lopez, Phys. Rev., 123, 153 (1961).]
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fixed-frequency EPR experiment. The electronic g factor is, to first approximation,
given by the Landé formula

g=1+[JUJ+1)—LL+1)+SS+ D/[2JJ + 1)] (7.1)

generally applicable to non-relativistic atoms [5, p. 245]. For instance, g (J = %) was
found to be 0.66561(3). Two-photon EPR lines, from transitions involving three
spin-energy levels, have been observed in this system [6]. Transitions of type
AM;= +1, AM;= +1, as well as the primary EPR jumps of type AM; = +1,
AM; = 0, have been observed for all the usual halogen atoms in their ground
states, *P3 5 [7].

Atomic iodine has been studied in its first excited state, 2P; /2 [8]. The iodine
atoms were produced from dissociation of I, by the reaction

L('S, M) 4+ 0,('A) — 21(%P3 ) + 0,(°3) (7.2)
The excited state is reached via the rapid equilibrium
ICP3) + 02('A) = ICP; o) + 0,(Y) (7.3)

The singlet dioxygen was generated chemically. All except the diamagnetic species
(ground-state I,) are observable by EPR; their relative concentrations are obtainable
by double integration of the first-derivative lines. Thus the equilibrium constant
K = 2.9 for the latter reaction at 295 K can be derived from EPR measurements.
The measured g = 0.6664 for the excited iodine atom is within 0.2% of that
given by the Landé formula (Eq. 7.1).

It is of some interest to discuss EPR intensities and relaxation times of the gas-
phase species. Clearly, to attain adequate signal sizes in such rarefied samples,
one must maximize the effective sample volume. This implies a need for particularly
good magnetic-field homogeneity. For atomic hydrogen, various mechanisms
affecting the line breadth (i.e., lifetime broadening, Doppler plus collision broaden-
ing and narrowing, and electron exchange between atoms) have been discussed in
considerable detail [9]. The relatively long relaxation times 7, for S-state atoms
tend to lead to narrow EPR lines; the non-zero orbital angular momentum in all
other atoms allows much more efficient relaxation via collisions and hence to
serious line broadening.

7.3 DIATOMIC GAS-PHASE SPECIES

Perhaps the most important paramagnetic diatomic molecule is dioxygen, due in part
to the crucial part it plays in the biosphere. Its microwave absorption spectrum was
of early and special interest during the development of radar usage in the 1940s.
The electronic ground state of O, is conventionally symbolized by *=.,,73. For our
purposes, it is important that there is (nominally) no electronic orbital angular momen-
tum (similar to the ground state of H). The two unpaired electrons form a triplet state
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(consistent with Hund’s rules [5, p. 240]). We also note that no permanent electric-
dipole moment is present, since there is a center of symmetry. The EPR transitions
are all of the magnetic-dipole type and thus are of much lower intensity than those
in molecules where electric-dipole transitions are possible. There are three isotopes
of interest: '°0 (99.759%, I = 0), 70 (0.037%, I = 3) and '*0 (0.204%, I = 0).

The gas-phase O, molecules undergo end-over-end tumbling, with quantized
rotational angular momentum described by a suitable spatial operator N. Thus
the total angular-momentum operator is J=R+S (excluding nuclear spin that
enters only when '’O is present). Quantum-statistical considerations [5, p. 295]
dictate that for the most abundant entity, 160160, the rotational quantum number
N can have only odd values. Hence N is never zero, and, since the energy is
proportional to N(N + 1), some rotation is always present.

If the spin behavior were independent of the rotational status, the triplet-state EPR
features discussed in Chapter 6 would be present.* However, in practice, the rotation
of the component charges of the molecule gives rise to magnetic fields that interact
with the spin magnetic moment. Thus the spin-energy triplets and the infinite ladder
of rotational levels are inextricably interwoven. As a result, the EPR spectrum con-
sists of a virtually infinite (but countable) set of lines [11,12]. A portion of an X-band
EPR spectrum of O, is shown in Fig. 7.2. The corresponding line positions are
indicated in Table 7.1. The relative intensities depend, among other factors, on the
population of the states, that is, on the temperature of the gas [13].

T . | | | 7
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FIGURE 7.2 Portion (0.3—1.6) of a simulated field-swept EPR spectrum (9.14456 GHz) of
gaseous dioxygen °0'°0 at 100 K (~0.1 torr), with limit N < 15. Selected line positions and
relevant quantum numbers are given in Table 7.1. [Spectrum produced by Dr. S. Stoll, ETH,
Ziirich; unpublished data. The parameters were taken from Ref. 15.]
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TABLE 7.1 Selected EPR Lines of 1°0'°0 at
v = 9.14456 GHz, T = 100 K (see Fig. 7.2)

Line B (T) N I M), <~—> I, M,
a 0.401812 5 6, —3 4, =2
b 0.540939 1 1, -1 1,0

c 0.790107 5 4,0 6, +1
d 0.862578 7 6,0 6, +1
e 1.148942 3 4, +2 4,43
f 1.407802 7 7, -7 7, -6
g 1.512384 5 6, +4 6, +5

Since the spin and rotational energies are not independent, spin relaxation can
take place via changes in the tumbling; this in turn is sensitive to the collisions
experienced by the molecule. Such behavior should be compared with the situation
for atomic species described in Section 7.2. As a result, the linewidths depend on
pressure, but the lines are sharp (Fig. 7.2) under attainable conditions (e.g.,
0.01 mT for pressures of ~0.2 torr).

Thanks to its stability, dioxygen is very useful as a comparison standard for
measurement of concentrations of other gas-phase free radicals [14].

The symmetry of the O, molecule, of course, gives rise to uniaxiality in the parameter
matrices needed to describe its EPR spectrum. It is important to realize that these par-
ameters are not averaged by the molecular tumbling, unlike the situation in liquids.
Thus, for example, both g, and g, are measurable. When intermolecular and wall col-
lisions are negligible, gas-phase molecules do not tumble incoherently; the orientation
of each molecule’s fotal angular-momentum vector is random but does not vary with
time. When a constant external magnetic field B is introduced, each Jis quantized
along a specific direction. This is along an effective field differing slightly from that of
B because of the g anisotropy, which arises from spin-orbit and spin-rotation coupling.

The Zeeman part of the relevant hamiltonian may be written

~ AT ~ AT
Hz = B[S B+ (g: — g1)S:B; + &N * B] (7.4)

where g, iS a g-type parameter associated with the rotational magnetic moment,
while g, and g, = g, are associated with the electron spin. The z direction is
along the internuclear axis. The electronic g factors are given (Egs. 4.38 and
4.41) approximately by g, = g, and

(G| L In)(n|Ly| G)
gL =8 —2A ; 00— U (7.5)

Here A is the molecular spin-orbit coupling parameter, n labels the electronic states
and G denotes the orbitally non-degenerate (spatial) ground state.
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Experimentally, it is observed that g, is slightly less than g, (i.e., g, — g. ~ 10™%),
due to relativistic effects. The spin-orbit term in g, brings in the dependence on the
internuclear distance caused by mixing in of excited states (e.g., I1 states) other than
of the 3 type. The effect is small: g, — g.~3 x 10, presumably due to the small
magnitude of A. The rotational g factor is very small (g,o; & 10™%); that is, the mag-
netic moment associated with N is almost negligible for low rotational states.

The primary zero-field hamiltonian describing the rotational energies has the
form

AT A A A A A
Ho = BN *N+D(S7> — 18 + no N+ S (7.6)

The first term on the right describes the rigid-rotor model, the second term has the form
of the familiar electron spin-spin interaction (but also includes spin-orbit effects), and
the third covers the rotational-spin magnetic coupling. For greater accuracy, other
(small) terms involving K" N should be included in Eq. 7.6. Since Nisa spatial oper-
ator (containing first derivatives with respect to angular coordinates describing the
molecular orientation), operator H should not be regarded as a spin hamiltonian. Sol-
utions of the matrices Hy + Hy, attainable via computer diagonalization, lead to the
energy levels as a function of applied field B, as typified by Fig. 7.3. These energies
can be analyzed in terms of rotational spin triplets labeled / =N — 1, N, N + 1.
The EPR transitions are primarily of type |AM;| = 1. When required, terms describing
nuclear-hyperfine and quadrupole energies must be added to Eq. 7.6.

Studies of O, enriched with 170 = %) have led to detailed understanding of the
interaction between the magnetic moments of the molecule and the nuclear-spin

g M

FIGURE 7.3 Zeeman splitting of the energy levels of '°0'°0 in its lowest rotational state
(N =1). One of the EPR transitions within this manifold is indicated (labeled b) in Fig. 7.2
and Table 7.1 for v =9.14456 GHz. (Spectrum taken by S. M. Manley, J. A. Weil;
unpublished data.)
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moment; also, the local electric-field gradient is obtained via measurement by EPR
of the nuclear-quadrupole parameter [15]. Small differences in hamiltonian para-
meters arise from the mass differences among the isotopes '°0, 7O and '®0.

To this point, we have ignored the possibility of vibrational excitation, consider-
ing all molecules to be in their zero-point vibrational states labeled by quantum
number v = 0. By utilization of the microwave discharge technique, O, in its
v=1 state has in fact been prepared and measured by EPR [16]. It should be
noted that the parameters in Ho and HZ are in fact functions of v, and can be
assumed to be series expansions in the quantity (v + 2)” withv=0,1,2,....

As was already indicated, molecular oxygen can also be observed by EPR when it
is in its electronic excited state lAg.3 This species is metastable relative to the ground
state since the conversion between a singlet and a triplet spin state is slow because it
is spin-forbidden. Here the paramagnetism arises entirely from the electron orbital
motions, with no spin component. Thus the total angular-momentum operator is
the sum of the projection of L onto figure axis Z and of the rotation vector
(which is normal to Z). EPR spectra have been measured and analyzed for states
J =2 and 3, including 70 hyperfine effects [17,18]. Note that here, and in
various other non-2, free radicals, the orbital angular momentum exerts its
maximal magnetic effects. This is unlike the situation with such species in con-
densed phase where the local electric fields tend to quench the angular momenta
more or less completely.

EPR studies of S,, OS, OSe and FN, molecules that are valence-isoelectronic with
O,, have been reported. In S,, since the atoms are heavier than those in O,, the
spin-orbit coupling effects are appreciably more significant. Parameter D in Eq.
7.6 1s larger, as is the difference g, — g, in Eq. 7.4. For the heteronuclear molecules,
the electric-dipole transitions, spanning different rotational levels (e.g., AN # 0,
|AM;| = 1), predominate.

As another example, consider the NO molecule (which is isoelectronic with O, ).
The unpaired electron resides in a 7 molecular orbital;’ hence A = +1 and
S = 417 Thus Q = A +3 = 1 and 3. These two states (2‘2|+'HQ) non- degenerate
because of spin-orbit coupling (N/\IAEI) are characterized as °II, 2 and 11, s2- In
NO, they are separated by AU/hc = 124 cm™ ", with *II, /2 as the ground state.
The rotational spacing is ~5 cm ™.

The application of a magnetic field causes M, splitting g3, B of the levels obtain-
able from the appropriate hamiltonian (Zeeman plus electron orbital and spin,
rotational, and interaction terms between these) [19]. The molecular g factor is
given [20] to good approximation by the relation

A+23)(A
_(A+25)A+Y) o
JU+1)
analogous to that for the Landé g factor, Eq. 7.1. For the 11, /2 state (A = +1,

2= —%), we see that the spin and orbital magnetic moments virtually cancel
each other, so that g &~ 0, resulting in a ‘non-magnetic’ ground state [5, p. 393],
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even though there is an unpaired electron. Note that this is in contradistinction to
2P1/2 states in atoms (see Eq. 7.1). The 2H3/2 state (A =+1, 3 = +%) has a
strong magnetic moment and gives rise to intense EPR signals at temperatures
T < AU/k, = 177 K. Here several of the lowest rotational levels are appreciably
populated, but only vibrational ground-state molecules are present. Molecular
rotation admixes the two electronic states.

The total angular momentum (excluding nuclear spin) is defined to be
J=A+R+S, where A points along the molecular axis. Here R is the operator
of molecular rotation (if present) perpendicular to A. Quantum number N (=1, 2,

..) corresponds to the allowed values of A + R. The total angular-momentum
quantum number J runs from | — N| to 3 + N for given N. For example, consider
the J =3 3 manifold of *Il; /2, Which consists of a quartet of states labeled by M,
(the component of J along B, a space-fixed axis) = —}—2, +2, ——, —2 From Eq. 7.7,
we see that g ~ 4 Similarly, there are six states for J = 2, and gx

The energy sphttlngs of two rotational states of NO (*II5 ) asa functlon of mag-
netic field are illustrated in Fig. 7.4. The three (five) allowed transitions for J = 2( )
correspond to AM; = +1. In fixed-frequency EPR they occur at somewhat different
magnetic fields as a result of a second-order Zeeman interaction term connecting the
J = % and % states. As J increases, g becomes progressively smaller (Eq. 7.7), and
hence transitions within these states are observed at increasingly high magnetic
fields (or lower microwave frequencies).

J=5/2 é

J=3/2

0 First - order
terms only

terms |nc|uded
B

|
g0 | O,

|
FIGURE 7.4 Splitting of the J = and J=3 states of the *II; /2 manifold of NO as a
function of the applied magnetic ﬁeld The dlsplacements of the first-order Zeeman levels

by a second-order interaction are shown by the dashed lines. The A-type doubling and
hyperfine splittings are not included.
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Since A # 0 in NO, there is a latent residual orbital degeneracy that has not been
shown in Fig. 7.4. In fact, the magnetic interaction associated with the orbital and the
rotational angular momenta leads to a removal of the A degeneracy [16]. The splitting
(“A-type doubling’) of the states labeled ‘+’ and ‘ —’, increases with increasing J.
The lifting of the degeneracy makes possible four transitions for each line. Of these,
two (+ < F) are induced by the electric component of the microwaves and two
(£ < F, degenerate) by the magnetic component. Since electric-dipole transitions
are approximately 100—1000 times more intense than magnetic-dipole transitions, the
former are the more easily observed. Thus the experimental arrangement must be such
that the gas molecule can be exposed to regions of the cavity where the excitation field
E, is large. For this purpose a cylindrical TEq;; cavity (Appendix E) can be used [21].

The EPR spectra of NO also exhibit hyperfine splittings. Figure 7.5 exhibits sep-
arate EPR spectra of '“N'°0 and "’N'°O for both the J = 3 and the J = 3 states of
11,4 /2. Since [ =1 for “Nand I = % for "°N, and the hyperfine splittings are large
compared to the A splitting, one observes two and three sets of the three transitions
shown for the J = % states. Each is doubled by the removal of the A degeneracy. The
isotropic and anisotropic parts of the hyperfine-splitting matrix are both obtainable
from the gas-phase EPR measurements. Interpretation of the J = % spectrum is left
as Problem 7.6.

Many other heteronuclear diatomic molecules have been studied by EPR
methods. The list includes the haloxides CIO, BrO and 10, as well as CF,
FN (lD), FS, FSe, GeH, HO, HS, HSe, HTe, NS, OS and OSe. Many of these
species are of special interest to radioastronomers, since their spectra show them
to exist extra-terrestially. In our atmosphere, the reaction

H+ 03 — HO + 0, (7.8)

has been observed in the night-air glow. Hydroxyl radicals produced in the labora-
tory have been detected by gas-phase EPR in various rotational levels of both spin
components (%11, 2 and 11, s> when rotating) of the electronic ground state [22],
including some vibrationally excited states.

Most of the free radicals listed above have been studied in their ground states
(*TI) and thus contain one unpaired electron per molecule. The spin orientation
here is strongly linked to the molecular orientation (i.e., internuclear axis) through
spin-orbit coupling; hence the observed microwave transitions, while tunable by
the applied magnetic field B, are of the electric-dipole type.

7.4 TRIATOMIC AND POLYATOMIC GAS-PHASE MOLECULES

The list of triatomic molecules so far studied by EPR is not extensive; it includes the
linear species NCO and NCS (15 /2 ground state) and non-linear species HCO, NF,
and NO..

Very interesting vibronic effects have been explored in NCO and NCS by means
of EPR [23]. In the ground state (15 /2), the spectrum resembles that of analogous
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FIGURE 7.5 EPR spectra of gas-phase 'N'°O and "“N'0 in the *II; s2 state, at
v =2.8799 GHz (S band). The transitions shown are of the electric-dipole type and
correspond to AJ=0, AM;= +1, AM;=0 and + < F. Spectra are shown for
molecules: (a) refers to the J =% state, while (b) refers to the J :% state. [After R. L.

Brown, H. E. Radford, Phys. Rev., 147, 6 (1966).]

diatomic species. However, in thermally accessible states, bending vibrational
motion becomes active and destroys the linearity; they then exhibit changed molecu-
lar parameters explainable by intermixing of vibrational and electronic states
(Renner effect).



7.6 OTHER TECHNIQUES 219

With non-linear molecules, except those of very high symmetry, there is no first-
order spin-orbit coupling; hence the spin is only weakly coupled to the molecular
framework. It follows that any electron-resonance electric-dipole transition can be
found by varying B only if the spectrometer frequency is close to that of the corres-
ponding zero-field line in the first place. Magnetic-dipole transitions tend to be
weaker than these by factors of 10°~10*. Thus high concentrations and utmost sen-
sitivity are called for to detect any of the thousands of EPR lines.

Difluoroamine radicals (NF,) dimerize appreciably to form tetrafluorohydrazine;
from the EPR intensity measured over the temperature range 340-435 K, the
enthalpy change of dissociation of N,F, was found to be 81(4) kJ mol ' [24].

Almost no gas-phase free radicals containing more than three atoms have been
observed by EPR. One exception is (CF3),NO, which has been investigated carefully
as a function of both radical concentration and total pressure P,, using various dia-
magnetic inert diluent gases [25]. The increasing collisional relaxation effects on the
spin-rotational coupling as P, is raised remove these splittings, narrow the line and
permit resolution of the '*N and '°F hyperfine splittings.

With sufficiently small species, such as NH, and CHj trapped in inert-gas
matrices, EPR shows that virtually free rotation can occur and that nuclear-spin stat-
istics must be applied to understand the relative hyperfine peak intensities at the
lowest temperatures [26].

7.5 LASER ELECTRON PARAMAGNETIC RESONANCE

Since 1968, when laser electron paramagnetic resonance (LEPR) [3,27,28] first
made its appearance, this type of spectroscopy has yielded much information
about gas-phase free radicals. The idea is to observe resonant absorption by
optical detection via magnetic-field (B) scanning of far-infrared lines of such rad-
icals excited by suitable lasers. Here the frequency v of the laser must be sufficiently
close to the zero-field (rotational) frequencies of the free radical investigated. The
limited frequency range 100—3000 GHz in which lasers have been operative has
allowed only molecules of low mass to be investigated. Since the sensitivity of mag-
netic resonance goes up sharply with increasing frequency, LEPR offers an advan-
tage of an increase in sensitivity by as much as 10° over ordinary EPR. The
first LEPR absorption detected was at v = 891 GHz (HCN laser) for the transition
between the levels N=3,J=4, M, = —4and N=5,J =5, M; = —4 of ground-
state O,, occurring at B = 1.6418 T. Since then, many free radicals (e.g., HC, HN,
HS and ?HS, HF', HCI™, HBr™, HSi, CH,, HO,, HSO) have been investigated by
LEPR; accordingly, a large number of molecular parameters including hyperfine
couplings have become available.

7.6 OTHER TECHNIQUES

A very useful procedure, deserving an acronym of its own, is magnetic resonance
induced by electrons (MRIE). Electron-impact excitation of a gas in or near the
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resonance cavity is used to create interesting free radicals in excited states of pre-
existing species.

For instance, ground-state N, (lEg) can be excited to a paramagnetic metastable
state (°3,,) and then studied. Similarly, ionization to create first N, * (>3, and even-
tually the ground state (2Eg) of this cation can be accomplished.

In a 1977 review [29], the techniques used for MRIE are organized into four
categories:

MOMRIE = microwave optical magnetic resonance induced by electrons
ACS = anticrossing spectroscopy
LCS = level-crossing spectroscopy

R

MBMR = molecular beam magnetic resonance

All these methods yield information of the same type as do ordinary EPR methods.
They are obtained with much improved spectral sensitivity, since it is not the low-
energy photon associated with a transition between magnetic sublevels that is
detected directly. Thus, in techniques 1-3, it is an emitted optical photon that is
observed.

As indicated above, far-infrared laser magnetic resonance (LMR) also has played
a role in determining energy parameters.

7.7 REACTION KINETICS

EPR spectroscopy certainly also has played an important role in establishing atom
concentrations and characterizing reaction kinetics for paramagnetic species in the
gas phase [30,31]. For instance, the recombination of nitrogen atoms (via three-body
collisions) as a function of total pressure has been studied by this means [32].

7.8 ASTRO-EPR

One can easily define a burgeoning category that can be called ‘astro-EPR’ spec-
troscopy. It is well known that many of the species found in space are free radicals
[33], and thus can and do give EPR signals. The most prominent is the famous
1420.4 MHz (21.105 cm) line (see Section C.1.6) arising from spin transitions of
"H° in its ground electronic state, which can be used to measure local magnetic
fields present at various locations in the Universe [34], and to measure the
H-atom concentrations there [35], including motions relative to the Earth. Spin
exchange processes occurring during collisions between such atoms enter impor-
tantly for the realization of 21 cm tomography of the Dark-Age Universe [36]. As
another example, space-probe EPR measurements of O, in the outer atmosphere
(‘limb’) of the Earth have yielded special information about the solar radiance
there [37]. Various ‘coronium’ ions, found in the solar corona, for instance Fe'3+
(Fe XIV), which has a 3s*3p' ground state pP, /2), are expected to show EPR.
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NOTES

A W N

. Thus we need not concern ourselves with the circular motions of such species about the

applied magnetic field B. The cyclotron resonance occurs at a frequency that is
proportional to the net charge.

. For an explanation of atomic-state notation, see Section B.7.
. The electronic-state notation for diatomic molecules is explained in Section B.7.

. It is possible to trap individual diatomic molecules within sufficiently roomy cavities

in condensed media. For instance, EPR studies of molecular oxygen confined in a
single-crystal clathrate reveal [10] that some hindered rotational motion is present
but that here the spectrum is dominated by the triplet-state electronic quadrupole effect
(ST .D-S term in 'H,s as discussed in Chapter 6).

. In linear molecules, individual orbitals, for which the electron distribution is cylindrically

symmetric about the internuclear axis, are referred to as s orbitals. Orbitals for which the
electron distribution has a single nodal plane containing this axis are called 7 orbitals.
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PROBLEMS

7.1 Predict the ground-state EPR spectrum of gaseous atomic nitrogen *N, and
also of °N.

7.2 Discuss and contrast the electronic ground states of the three gas-phase dia-
tomic molecules: N,, NO and O,. Include suitable labeling (Section B.7) for
these states.

-5/2
-3/2
-1/2
+1/2
+3/2
+5/72

-5/2

+5/2

+5/2
-5/2

+5/2

—5/2
+5/2

—-5/2

FIGURE 7.6 The magnetic splittings for '°0'’0 ('A,) with J =2 at B > B,o/g.B. (X-
band). The splittings are shown accurate to second-order perturbations. For a A term,
A =2. The double arrow indicates one of the four EPR transitions (which are
superimposed, to first order). Here g, ~ 2/3. Energy parameter R equals (ABCB)z/éBmt.
[After C. A. Arrington Jr., A. M. Falick, R. J. Myers, J. Chem. Phys., 55, 909 (1971).]
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7.3 The hamiltonian H, +7:lz describing '°0'°0 and '°0'®0 in the electronic
ground state ° 2, is given by Egs. 7.4 and 7.6. What restrictions are there
on the rotational quantum numbers N, and why? What factors determine the
EPR lines to be expected at room temperature for each species?

7.4 Consider the molecule '°0'70 in its excited state IAg. For a D term, |A| = 2.
While it has no unpaired electron, it nevertheless gives an EPR spectrum. For
the angular-momentum state J = 2 (J = L +N), the Zeeman energy levels are
shown in Fig. 7.6, including also the hyperfine splittings from the '’O nucleus
= %). Formulate the selection rules for AM; and AM;, and predict the number
of lines allowed by these selection rules [13].

7.5 Derive the Landé formula (Eq. 7.1) for g.
7.6 Interpret the EPR spectra of the J = % state of NO (*TI5 /2) shown in Fig. 7.5.



CHAPTER 8

TRANSITION-GROUP IONS

8.1 INTRODUCTION

The transition-group, rare-earth and actinide ions, that is, the members of the 3d, 4d,
5d, 4f and 5f groups, have been the subject of a host of EPR investigations. Of the
approximately 116 ‘known’ elements, 55 belong to these series.

Transition-ion complexes and salts have played a seminal role in many aspects of
EPR, including the development of the spin-hamiltonian concept. Their importance
was based on

1. Availability of various numbers of unpaired electrons per species (total spin
S=0—2

2. Availability of species with simple local symmetries (e.g., cubic) and well-
characterized neighbors to the central ion

3. Ease of preparation and stability, and yet with a variety of possible oxidation
states

4. Availability of reasonably applicable and adequate electronic theory, for
example, the crystal-field model

As time progressed, a trend to investigate lower-symmetry transition-ion species
developed, especially since these have considerable importance in chemical cataly-
sis and biomedical applications. Numerous excellent treatises give summaries and

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.
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furnish details of these accomplishments—most based on EPR investigations [1; 2,
pp- 89-201; 3; 4, Chapter 7; 5, Chapter 3; 6,7].

The skill in interpreting transition-ion properties lies partly in proper ordering of
the relevant energy terms: interelectron repulsion, spin-orbit interaction and Zeeman
energies. The order in which various perturbation treatments are carried out and their
success depend on this. Generally, the Zeeman term is small in comparison to the
others (but it is crucial, of course, for EPR). The spin-orbit energy tends to be
small compared to the repulsion term for ions in the upper half of the periodic
table; however, it is of major importance in f-electron systems, largely neglected
in this book. The last two energy types can be of equal magnitude, and thus handling
them depends on the system considered and can be problematic.

Transition-group positive ions are usually complexed with simple negative ions,
neutral molecules, or with bulky polyatomic entities; any of these may be referred to
as a ligand. Observation of the EPR spectra of transition-group complexes at low
concentrations in the solid state is generally no more difficult than EPR of free rad-
icals. However, the widths of transition-group EPR lines tend to be larger because of
the short relaxation times; low temperatures may then be required to lengthen the
relaxation time sufficiently for an EPR spectrum to be observable. We treat only
the case in which the paramagnetic atoms or ions are sufficiently far apart
that they act independently. In that case no linewidth effects from interaction
between them are observed.

One aspect that makes transition elements interesting subjects for study by EPR
or other techniques is their variable valence (Table 8.1). This feature is a character-
istic of their unfilled electron shells. As an example, the readiness of iron to change
between the 42 and 43 states provides sites for electron transfer in biological
oxidation-reduction systems. The observation of hyperfine splitting may serve to
identify the central nucleus in such a species. The nucleus need not be that of the

TABLE 8.1 Ground-State Properties of Free d" Ions

Number n of S L J Orbital Term

d Electrons (of the Ground State) Degeneracy Symbol“ Examples (3d™)

1 ! 2 3 5 Dy ST, TP, VAP ot
2 1 3 2 7 3F, Ti?t, v3F, ot

3 3 3 3 7 *Fip  TiT, VI COY, Mot
4 2 2 0 5 Dy VT, Cr*t, Mo, Fett
5 3 0 3 1 %Ss,  Crt, Mn**, Fe’t, Co*t
6 2 2 4 5 D,  Mn™, Fe**, Co*t

7 3 3 2 7 *Fo,  Fe', Co™ Ni**

8 1 3 4 7 3Fy Fe®, Co™, Ni**, Cu®™"
9 ! 2 3 5 *Ds;,  Nif, Cu®*

“ See Section B.8.
® Includes the ubiquitous vanadyl ion, VO**, See: P. Chand, V. K. Jain, G. C. Upreti, Magn. Reson. Rev.,
14, 49 (1988).
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host ion; it may instead be a foreign nucleus that is present naturally or is
introduced by doping.

8.2 THE ELECTRONIC GROUND STATES OF
d-ELECTRON SPECIES

We begin by concentrating on d-electron systems and note that only S-, D- and
F-type ions are expected (Table 8.1). The possible values of J for each case range
from |L — S| to L+ S in integral steps. For example, the 3d" ion Ti*™, which has
a ground state configuration of D, has two possible values of J: 2 — 5 5 3 and
2+2 5 The J value is indicated on the term symbol by a right subscrlpt
(Sectlon B 7). In the present example, the two states are designated by D, /2 and
’Ds 2. They are separated in energy because of the ‘spin-orbit coupling’ (Section
4.8). In Ti**, the *D; /2 state lies lower in energy. In general, if the d shell is less
than half full, the state with the minimum value of J lies lowest. The reverse is
true if the d shell is more than half full.

The energy of a free ion changes from the value Uj in the absence of an external
magnetic field to U in the presence of the field. Here

U=U,+gB,BM,; (8.1)

where M, is the quantum number for the component of J along field B. The factor g
here is called the Landé factor and is given by Eq. 7.1. Note that this factor is differ-
ent for each value of J. The primary free-ion EPR transitions are those for which
AM; = +1.

In treating the d” configurations, use of the Russell-Saunders term symbols
(Table 8.1) to classify the free ions implies that the Coulomb interactions between
their d electrons have been taken into account at the start. For n > 1, the effect of
the ligands is usually assumed to be relatively small compared to this effect, but
not compared to the spin-orbit energy.

As is evident from Table 8.1, the values of L and S are the same for electronic
configurations d" and d'°~". This is consistent with the fact that, in quantum mech-
anics, treatments of electrons and holes (electrons missing from a shell) are math-
ematically equivalent. Physically, certain parameters (e.g., spin-orbit parameter)
describing these do differ in sign (Table H.3).

The key to understanding the EPR characteristics of a given transition-ion species
is the nature of its electronic ground state,' since generally all other states are too
high in energy to be populated. It is useful to imagine the energy-level modification
in which a free transition ion is taken into the local bonded situation of interest. Gen-
erally, the free-ion energy is (close to) orbitally degenerate (2L + 1, see Table 8.1),
and this energy degeneracy is removed by the electric fields arising from ligands.
The spin degeneracies (25 + 1 for the free ion) are lifted by spin-orbit coupling
(Section 4.8), to yield degeneracies as listed. The final degeneracy is determined
by the local symmetry at the ion (Table 8.2). In this book we cannot discuss
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TABLE 8.2 Degeneracy of Energy Levels for d” Transition Ions in Various Local
Electric Fields”

Configuration  d' d? d? at  a  d° d’ d® d°

Orbital Degeneracy in Electric Fields of Various Symmetries®

Free ion 5 7 7 5 1 5 7 7 5
Octahedral © 234 123 1923 243 1 239 1237 1923 243
Tetrahedral 293 1923 123 237 1 293 1923 123 239
Trigonal 1,222 3122 3122 312 1 312 3122 3122 312
Tetragonal 31,2 3122 3122 312 1 312 3122 3122 312
Rhombic 51 71 7-1 51 1 51 7-1 7-1 51

Spin Degeneracy in Electric Fields of Various Symmetries for a Single Orbital Level®

Free ion 2 3 4 5 6 5 4 3 2
Octahedral 2 3 4 23 2,4 2,3 4 3 2
Trigonal 2 1,2 22 122 32 1,22 22 1,2 2
Tetragonal 2 1,2 22 312 32 31,2 22 1,2 2
Rhombic 2 3.1 22 51 32 51 22 3.1 2

“ An important limiting case, square planar, is not covered herein.

?m.-n means that there are m sets of states of n-fold degeneracy.

“Fields of tetrahedral symmetry invert the order of these states.

“Lower or lowest state.

Source: After W. Gordy, W. V. Smith R. F. Trambarulo, Microwave Spectroscopy, Wiley, New York,
NY, U.S.A,, 1953, p. 225.

details of the theory leading to these ground states. In addition to the works already
cited [1; 2, pp. 89-201; 3; 4, Chapter 7; 5, Chapter 3; 6,7], excellent texts on the
topic of transition ions in various local surroundings exist [§—11].

We can, however, arrive at a qualitative understanding of the basic aspects. Con-
sider the imposition of negatively charged ligands around the free ion, placed
(initially) in a cubic array (Fig. 4.1). In reality, the ligands are favorably received,
and via a combination of coulombic attraction and bonding interactions, the total
energy is lowered. However, for the non-bonding open-shell electrons, a repulsive
situation prevails (e.g., see Fig. 4.9, valid for a P-state ion). For the octahedral
case (Fig. 4.1b), the negative charges are placed at distances +R on the coordinate
axes (x, y, z), as shown in Fig. 8.1, whereas for the tetrahedral case (Fig. 4.1¢), the
four charges are placed at points [a(R/\/g), b(R/\/g), c(R/ﬁ)], with sign sets
(a,b,¢c) = (+,+, +), (+.—, =), (= +, =) and (=, —, +).

Consider now the five d functions (Fig. 8.2), which are eigenfunctions of the
cubic crystal-field hamiltonian [12, Sections 8.10—8.11].2 The square of these func-
tions (or a linear combination thereof) gives the angular distribution of the open-
shell electrons. It is clear that in the octahedral situation, orbitals d,,, d,, and d,,
are further removed from the negative charges than are d» and d,>_>. By symmetry,
the first three are an energetically equivalent set; the same is true of the latter two.
The splitting is denoted by an energy parameter A.
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FIGURE 8.1 Octahedral arrangement of six negative ions at a distance d from a central
positive ion (solid circles). A tetragonal distortion resulting from an increased separation
(R + ¢) along the z axis is shown by open circles.

de dyz dZX

a,z do2_, 2

FIGURE 8.2 Representation of d orbitals showing the relation of the orbital lobes to the x, y
and z axes. Each of the subscripts should be multiplied by r~2; for example, the orbital usually
referred to as d2 is given more fully as (32> — r®r 2. The orbitals indicated in the figure are
representations of real wavefunctions, obtained by taking linear combinations of the
imaginary wavefunctions that are eigenfunctions of i,z. The symbols #,, and e, denote
spatial triplet and doublet states for a d electron in an octahedral electric field (also
see Note 4).
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Let us now consider D-state ions. The same quantum-mechanical calculation for
energy-level splittings in a crystal field is valid for all such ions. The splitting par-
ameter D depends on the type of cubic electric field and the electron configuration d”
treated.® The usual group-theoretic notation, T for the energy-degenerate triplet of
states and E for the doublet set, is appropriate for these cubic cases.* Note the sub-
index g (gerade = even) applicable in the octahedral and cubal cases (for which the
inversion through the origin is a symmetry operation). Figure 8.3a depicts the ener-
getics for the D-state ions d' and d° in the octahedral case. The opposite energy-
level order is correct in the tetrahedral (and cubal)’® case (Fig. 8.3b). For d* and
d’ ions, the figures given above are correct if the octahedral and tetrahedral labels
are interchanged. Thus the assumption of equivalence of electron and hole states
continues to have validity.

Next suppose that the symmetry is lowered (Fig. 8.1) to tetragonal by either
elongating or compressing the cube (charge positions) along one cartesian axis,
say, z (i.e., by setting the sign of the distortional splitting parameter & to
be +or —). This is indicated in Fig. 8.3 for both the octahedral and tetrahedral
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FIGURE 8.3 Splittings and degeneracies of orbital levels of d' or d° ions in two types of
electric field caused by negative charges: (a) octahedral field (A > 0) plus tetragonal
distortion; () tetrahedral field (A < 0) plus tetragonal distortion. For d* and d° ions, (a)
applies to tetrahedral fields and () to octahedral fields. Shifting of the center of gravity of
the set of levels is ignored.
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cases. The energy eigenvalues and corresponding eigenfunctions are

3 2
Ul = gA + § é dXZ_yZ (820)
3 2
2 2
U3 = —§A+§ dxy (826‘)
2 1
U4’5 - — gA - § 8 dxz,dyz (82d)

The sign choices for the D-state ions are indicated in Table 8.3.

We have neglected the spin-orbit effects above. These can now be brought in by
perturbation theory, leading to formulation of matrices g and D (Section 4.8).
Examples follow.

A considerable body of data relating orbital and spin degeneracies in electric
fields of various symmetries has been collected in Table 8.2, which illustrates the
progressive reduction in orbital degeneracy of the lowest state as one goes from
the free ion through the uniaxial symmetries (trigonal or tetragonal) to rhombic
symmetry.

We recall (Chapter 4) that, when there is orbital degeneracy, a modified technique
must be used to derive the spin hamiltonian since the standard one fails. Note also
that for odd numbers of unpaired electrons no crystal field can remove all degener-
acy. A theorem by Kramers, based on consideration of time-reversal symmetry,
guarantees that no electric field can accomplish this [13]. However, externally
applied magnetic fields can do so [4, Section 15.4; 5, Section 3.8].

The conclusions about ultimate degeneracy presented above are misleading in
that it can be shown, by the Jahn-Teller theorem, that orbital degeneracy in non-
linear molecular systems never persists [4, Chapter 2; 5, Section 3.9; 12, Section
10.11; 5, Sections 3.9 and 10.4; 6, Section 3.9]. The lowest total energy is achieved
by a spontaneous distortion to a nuclear configuration of reduced symmetry, leaving
a state with only Kramers degeneracy (effective S = %). When there are several con-
figurations with equal (or almost equal) energies, there may be jumps between these,
depending on the size of k,7T. Such a ‘dynamic’ Jahn-Teller effect is manifested
(Section 10.5.3.4) in the EPR spectra [14]. The understanding of this effect requires

TABLE 8.3 Crystal-Field Parameter Sign Choices for
D-State Ions

d', d® d*, d°

A>0,6>0 oct, elong A>0,6>0
A>0,6<0 oct, comp A>0,6<0
A<0,6>0 tth, comp A<0,6>0

A<0,6<0 otth, elong A<0,6<0
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FREE-ION CRYSTAL FIELD VIBRONIC STRAIN ZEEMAN
GROUND TERM SPLITTING COUPLING SPLITTING SPLITTING
FIGURE 8.4 Schematic energy-level diagram implied by the interpretation of the EPR
parameters. The D free-ion term is split by the cubic crystal field into *E and *T, states
with the 2E state lowest. A weak-to-moderate vibronic interaction results in a series of
admixed electronic/vibrational states; the resulting ground vibronic state is also a 2 state.
The first excited vibronic state is sufficiently far removed that the ground state can be
treated as isolated. This state is split by random internal strains into two Kramers doublets,
the degeneracy of which is removed by an applied magnetic field. EPR transitions
(represented by straight arrows) can be induced by the microwave field. The wavy arrows
represent vibronic relaxation processes, which can produce an averaging of a portion of the
anisotropic EPR pattern. This type of relaxation should not be confused with spin-lattice
relaxation. [After J. R. Herrington, L. A. Boatner, T. J. Aton, T. L. Estle, Phys. Rev., B10,

833 (1974).]

a detailed examination of the interaction between the crystal vibrations and the elec-
tronic distribution (vibronic effect), as sketched in Fig. 8.4. As shown there, electric-
field inhomogeneities (i.e., strain) within the crystal also are important, splitting
each resulting vibronic state into two Kramers doublets.

The preceding theoretical approach is oversimplified; luckily it works quite well.
More and more, just as with organic radicals, the energy-level manifold, electron
distribution and vibronic factors are being analyzed using large-scale computer-
based ab initio molecular-orbital theory.

8.3 THE EPR PARAMETERS OF d-ELECTRON SPECIES

At this point it is appropriate to consider specific ions in a variety of crystal fields
where the ground state is orbitally non-degenerate. In such cases, the theory
described in Section 4.8 is applicable. From Table 8.4 we note that there are rela-
tively few D-state ion types that have a non-degenerate ground state. The d'(tth)
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TABLE 8.4 Of d" Ions with Orbitally Non-Degenerate
Ground States in Cubic Local Crystal Fields®

Octahedral Tetrahedral
State Low-Field High-Field Low-Field High-Field
14 o d° o a*
34 48 48 d2 e
44 43 43 d’ d’
64 d° . d° o

“Presence of lower-symmetry crystal fields of proper sign and direc-
tion in most cases produces orbitally non-degenerate ground states.

and d'(cubal) ions have the E state lowest, but a further tetragonal distortion
removes the orbital degeneracy, as shown in Fig. 8.3b. For a compression along z,
the |0) = d. state lies lowest; conversely, for any elongation along z, the hybrid
state [| +2)+ |—2)]/v/2 = dy_y lies lowest (Egs. 8.2). The former case is con-
sidered first, since it is relatively simple to treat. We note the resemblance to the p '
case discussed in Section 4.8.

The g components obtained by using Eqs. 4.38 and 4.41 are

8z = 8| =ge+2)‘Az = &e (8.3)

Here A, = 0 since ix couples only states with the same M; components. Further-
more, we obtain

(GIL,IMy) (M, |L,|G)

Un,© — Ug® 84)

8x =81 :ge+2/\Ax:ge_2/\ Z
M #G

The only states coupled to |0) by f,x are |[+1) and |-1) (Egs. B.42f, g), and hence

g = g~ o (OB E-1+1) (11, 10) +
(8.5a)

OI3L4| =1 ~111L-10))
The matrix elements in Eq. 8.5a are analogous to those in Eq. 4.44, but now L = 2.
Application of Eqs. B.42f and B.42g to evaluate these elements gives
gL =g —6A/A (8.5b)

The central-ion hyperfine parameters for this case are approximated (e.g., see Ref. 4,
p. 456) by

2 17A
Al :A() - < +7A)P (8661)
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4 341
A=A ——|P, 8.6b
[ 0+( +t A) d (8.6b)
where (Eq. 5.26)
P :_gegnBeBn<r > (87)
Thus the uniaxiality parameter (Eq. 5.9b) is
1 /2 17\
by = —+——|P 8.8
’ geBg<7+7A>d ©9

A good example of a 3d! (tth 4 ttg) ion is Cr' in CrO43’ doped in Ca,PO4Cl
single crystals [15,16], where g = 1.994 and g, = 1.950. Here one deals (to a
first approximation) with a compressed tetrahedron, with the unpaired electron resid-
ing primarily in the Cr 3d, orbital.

In the case of an elongated tetrahedron, the g factors are (Problem 8.2)

8A

8~ 8e — K (8.9a)
2\

8LN 8~y (8.9b)

For d" ions with S > %, the zero-field terms ST- D - § enter and may dominate
the EPR characteristics. The theory presented in Chapter 4 (e.g., Eq. 4.42) and
Chapter 6 is applicable. Matrix D arises predominantly because of spin-orbit coup-
ling, rather than spin-spin interaction, and often leads to large anisotropy of line
positions.

The case of F-state (/£ = 3) ions yields similar results. For ions d> or d® in an
octahedral electric field, the non-degenerate A,, state lies lowest, whereas for d?
or d’ ions the T, states lie lowest (Figs. 8.5a and 8.5b). As in a D-state ion, the
order of levels is inverted in a tetrahedral field.

We now turn to a specific example of an F-state transition ion, namely, the
3F ground state of the free d® ion. In an octahedral field, the sevenfold orbitally
degenerate states split into two triply degenerate states (3T1g and 3ng) and one
non-degenerate state (3A2g). This is depicted in Fig. 8.5. From the 7 x 7 hamil-
tonian matrix for the octahedral crystal-field energy [9, p. 69], one finds the
eigenvalues

U(Tyy) = +3A triply degenerate (8.10a)
U(Ty) = —éA triply degenerate (8.10b)
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@  —3—7, O ——

FIGURE 8.5 Energy splitting of the states of an F-state ion in a local electric field: (a) d° or
d® ions in an octahedral field; (b) d2 or d” ions in an octahedral field. In a tetrahedral field, the
splittings for d> or d® ions are obtained by level inversion of (a) (with removal of subindex g,
since now there is no center of symmetry). For d? or d’ ions they are obtained by level

inversion of (b).

U(Ay) = — gA non-degenerate (8.10¢)

where we take A > 0 for d®. The corresponding eigenstates (for L = 3) are

0= -0+ )14

Dy 1) = @10+ ()1-3) ®.11a)
|t5) = 10)
= "1 (%)”2|+3>
oy |r"1>—(g>”2|+1> 013 (8.115)
|®E@V%w+®”vﬂ
(8.11¢)

Agla) = ()12~ (1) 712

(The subscript on the # designates the expectation value of the fictitious angular-

momentum operator L, taking L' = 1 for each triplet manifold.)
One can begin the analysis of g, to zero order, by ignoring the effects of spin-orbit

coupling on the ground-state wavefunction. The energies in a magnetic field B ||z
are obtained from the Zeeman hamiltonian (note Eq. 4.33)

Hz = BBAL, + g.5.) (8.12)
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Since the ground state is orbitally non-degenerate, the contribution of i,z is zero
(Section B.8). The ground-state wavefunction (Eq. 8.11¢) including spin may be
written

1
_2(| +2, Ms) — | -2, Ms)) (8.13)

6=

where Mg = —1, 0, +1. Thus the energies in a magnetic field are (Fig. 8.6)

Usy = +2B.B. (8.14a)

Uy =0 (8.14b)

Hence in this approximation g = g,.. Furthermore, gx = gy = g., as is required by
the octahedral symmetry. R

The spin-orbit coupling hamiltonian operator Hy, (Eq. 4.32) causes an admix-
ture of excited states into the ground state. (In crystal fields of lower than octa-
hedral symmetry, since S = 1, there will also be a zero-field splitting of the spin
degeneracy.) The calculation of these effects is most conveniently approached

3
he
3
7ég r—
A
MS
+]
Upyg—1 0

58—

FIGURE 8.6 Energy splitting of the states of a d® ion in an octahedral field and, for the
ground state, in an added magnetic field. Here, zero-field splittings are ignored. The same
diagram applies to a d” ion in a tetrahedral field (with removal of subindex g, since now
there is no center of symmetry).
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through the matrix A of Egs. 4.37 and 4.38. Since the field is octahedral, we
expect this matrix to be not only diagonal but also scalar (Al3), and only one
component of A needs to be calculated, for example, A,. The only excited
state that contributes to A, is the |f”) function of the T, state (Eq. 8.11b).
Recall that A is the energy separation between the 7, states and the A,, state
(Fig. 8.6). Thus

A 2

5 ((F21 = (=21) L) J5 (1+2) + 1-2))
AZ:—‘f2 2 ‘ 8.15a)

4
=-3 (8.15h)
Substitution of Eq. 8.15b into Eq. 4.41 gives
8A

gz:gx:gy:ge_K (8.16)

Thus, as expected here, g is isotropic and matrix D is zero. Since there are no
excited states close to the ground state to cause relaxation broadening, EPR
spectra of 3d® ions can often be seen at room temperature or at 77 K.

The Ni*" ion is a most important example of a 3d%(oct) ion. Here S = 1. The g
factor may be estimated from Eq. 8.16 if optical absorption data are available. For
example, in the Ni(NH3)s>* ion an optical band (assigned to the 3T, « 3A, tran-
sition) is observed at 10700 cm™'. If one takes the free-ion value of A
(—325cm™ "), g is calculated to be 2.245. The experimental value is 2.162 [17].
The discrepancy is probably due to the presence of some covalent bonding. Alterna-
tively, one can use g and A to compute an effective value of A, that is, —211 cm L
In a wide range of octahedral environments, g varies from about 2.10 to 2.33; similar
behavior is found for the Cu®" jon.

It is observed that Ni*" often gives rise to quite broad EPR lines, even in pre-
sumably octahedral environments. For example, in MgO, where other substitu-
tional ions may give lines ~0.05 mT wide, the Ni*" linewidth may be as much
as 4 mT (Fig. 8.7). Since Ni®>" has an even number of electrons, Kramers
theorem does not apply. Hence residual lattice strains (local electric fields) may
cause the |0) state to be shifted by varying amounts relative to the |+1) and
|—1) states (Fig. 8.6). In other words, deviations from octahedral symmetry can
cause a zero-field splitting D (Section 6.3.1), which may be positive or negative.

Consider the case of ®*Cu®" ion in Al,O; [18]. The spin hamiltonian for this
3d® ion in the uniaxial local electric field present may be written (compare with
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2mT

FIGURE 8.7 EPR spectrum of Ni*t (§ = 1) in MgO at 115 K with v = 9.155 GHz. The
broad line is the superposition of the transitions |—1) <> |0) and |0)<>|+1). The narrow
central line is the transition |-1) <> |+1) effected by the absorption of two quanta,
observable at sufficiently high microwave power (Section 6.3.2). [After S. R. P.
Smith, F. Dravnieks, J. E. Wertz, Phys. Rev., 178,471 (1969).]

Eq. 6.27) in the form

H, = g B.BS.cos 0+1g, B,B(S, +5_)sin 6 +

D[Sf — 1SS+ 1)13] FASL 1A S 450 817

where 6 is the angle between B and the symmetry axis z. Here S =1, and
the matrices g, D, and A are taken to be co-uniaxial; nuclear quadrupole
effects are neglected (see Problem 8.6). These parameters have been accurately
measured [18] by both EPR spectroscopy and (more accurately) ENDOR (see
Chapter 12)

For an S-state ion there is no orbital degeneracy to be removed. However, the
local electric field, together with spin-orbit and electron spin-spin interactions, can
cause some removal of spin-state degeneracy; the details are not simple [19]. The
jons Mn?* and Fe®" are both most prominent in EPR spectroscopy. We choose
the latter as an example of an S-state ion, partly because (unlike Mn>") it does
not feature the extra complication of copious hyperfine structure.®

In the pure cubic (e.g., octahedral) situation, one might expect isotropic behavior
for an S-state ion. Nevertheless, although D and E are zero and g is isotropic,
there now exists (because of the high spin, S = %) a new zero-field energy term,
as outlined above (Section 6.6). This term produces EPR anisotropy. For this
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case, one can write [20]

074 ] (8.18q)

N 1 N N n
@ _ L@ 4,34
H _SU |:SA +85,7+S; 16 16

1 ~ N N N ~
=2 U<4>[1 1254~ 76082+ 56716 + 8(5,*+ 5_4)] (8.18b)

where X, y and z are the fourfold axes of the octahedron and i6 is the 6 x 6 unit
matrix. The resulting zero-field splitting and EPR spectrum for B || z are shown in
Fig. 8.8. For Fe’ in SrTiOs, the energy parameter U® /g, B, is 0.45 mT [21].
The high-spin (electronic hexadecapole ~S?) terms, such as those in Eq. 8.18, are
more sensitive to the details of this ion’s local surroundings than are the lower (elec-
tronic quadrupole ~S Z)A terms. With decrease in symmetry away from octahedral,
the latter terms (i.e., ST- D+ 8S) enter and in fact dominate. The energy-level

(a) l+3>

(b)

FIGURE 8.8 (a) Energy-level diagram for a d° ion in an octahedral crystal field. (b) The
allowed EPR spectrum is shown for /v >> 144U, The diagram applies only for B parallel
to a principal axis of the octahedron.
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B —>

FIGURE 8.9 Energy levels and allowed transitions for a d” ion in a weak tetragonal field
with B parallel to the tetragonal axis.

scheme for tetragonal symmetry (|D| > E = 0) is shown in Fig. 8.9, for B parallel to
the tetragonal axis. We note that at B = 0, there are three Kramers doublets. The
five-line EPR spectrum is highly anisotropic, despite the S-state nature of the ion.
Such anisotropy, arising primarily from D, is shown in Fig. 8.10 for a high-spin
Fe’™ species in crystalline quartz. Here the local symmetry at each site is
only C,. Note the separate spectra arising from the three symmetry-related sites
(Section 4.5).

Transition-group ions, of course, often occur in glasses, and can be advanta-
geously studied therein by means of EPR. As an example, we can cite the multiple
oxidation states of Cr ions in various borate-aluminate glasses, studied in detail by
EPR and optical means [22]. For other relevant literature, see the 1990 review by
Griscom [23].

8.4 TANABE-SUGANO DIAGRAMS AND ENERGY-LEVEL
CROSSINGS

It is important for various reasons to know how the relative energies of the lowest
levels of a given transition ion vary as a function of the local electric field. In
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FIGURE 8.10 Anisotropy in the EPR spectrum of a high-spin Fe*™ ion in crystalline silicon
dioxide, produced mostly by the spin-hamiltonian term ST.D.S [with D/h = 9.5225(1) and
|E|/h = 1.7744(1) GHz]. The line positions at 9.915 GHz and 7 =20 K are shown as a
function of crystal rotation about the crystal threefold screw symmetry axis c¢. All
symmetry-related sites are included; solid curves, site 1; dashed curves, site 2; dotted
curves, site 3. Angle 0° is at B || a;, which is a crystal two-fold axis. Note the trigonal
symmetry evident in the figure. [After L. E. Halliburton, M. R. Hantehzadeh, J. Minge,
M. J. Mombourquette, J. A. Weil, Phys. Rev., B40, 2076 (1989).]

general, it is possible to calculate these energies, but the change of energy with local-
field strength is different for each state, and the dependence is usually non-linear. A
diagram of the excited-state energies, relative to that of the ground state, as a func-
tion of the local-field strength is called a Tanabe-Sugano diagram [24]. Figure 8.11
(appropriate to d* ions, i.e., to V', Cr**, Mn** and Fe*") has been taken from a set
of such diagrams of relative ion energy versus relative octahedral field strength. Each
parameter is divided by a reference energy U, appropriate to the particular ion-host
system. (The reference energies referred to here are the Racah parameters.)

The diagram for a particular d" case is applicable to isoelectronic ions, for
example, Fe’, Co™, Ni** and Cu®*" (Table 8.1). The Tanabe-Sugano diagrams are
valuable guides to the interpretation of optical absorption or emission spectra.
They are of interest for our purposes because they clarify the occurrence (for
some ions) of two different spin states in different hosts. We see that in a relatively
strong local field, some excited states of a given d" ion may approach the ground



242 TRANSITION-GROUP IONS

(@

|
o 3
} J2a
1 i Eg
I
30 | |
A
U-Us ¢
Uo 3 :
I~ I
| 1
| Iz’:_|g
I 57ég
ot 57 I £q
2g 37 |
Ig :
SE | 37-
50 ] 9, 1 L e
I 2 3 4

Dq/Uy —»

FIGURE 8.11 Splitting of the energy levels of a d* ion as a function of octahedral field
strength Dg (note that Dg = A/10). The vertical dashed line indicates the cross-over
between the two different ground states. The ground-state energy symbol is Ugs. A number
of levels, which increase monotonically in energy with increasing Dg, have not been
included. [Representation () is due to Tanabe and Sugano [24]; it is applicable to all 3d*
ions, since both U — Ug and Dg are scaled by an energy characteristic (Uy) of the
particular ion.]

state closely enough to make significant contributions both to g factors and to the
zero-field splitting parameters D and E. Furthermore, for some d" cases (d4, d’ s
d®, d”) the decrease in energy with increasing octahedral crystal field of at least
one of the excited states is much greater than that of the initial ground state
(Fig. 8.11). Hence, for magnitudes of the crystal field beyond some critical value,
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there is a switch to a new ground state. This is represented symbolically in Fig. 8.11
for some of the states of a d* ion.

The regions at the left- and right-hand sides of Fig. 8.11 correspond to high-spin
and low-spin behavior, referring to ground-state electron distributions that lead to
maximum and minimum total spin.” High- and low-spin cases are in principle
found for most d" ions. Thus the ground states indicated in Table 8.1 are observed
for most, but by no means all, ligands.

Various methods exist for investigating high-spin/low-spin transitions. As an
example, consider the investigation [25] of the d°® ion Fe®" in crystalline
Fe(1-propyltetrazole)s(BF,),, where it is thought to be in a trigonally distorted octa-
hedron. The ions Mn”>* and Cu®*" were used as spin probes to check on their ferrous
neighbors, and their EPR spectra were taken over a wide temperature range, includ-
ing the high-spin (S = 2)/low-spin (S = 0) transition (to ~128 K). It was concluded
that their spin change is associated with a crystallographic phase change. The T
value observed may depend on the B field applied [26].

8.5 COVALENCY EFFECTS

In previous sections of this chapter, we have dealt primarily with ligand-field theory,
examining the ground-state unpaired-electron configurations and predicted g factors.
It is incumbent on us at this point to convey that the latter are only first approxi-
mations to reality in that the very important covalency effects have not been dealt
with [4, Chapter 20]. These shift the g factors, sometimes even overturning the
sign of g — g, predicted from the electron/hole concept. Thus the literature is full
of more sophisticated (and quite successful) calculations of g matrices for specific
systems [27-30].

Covalence, of course, affects the size of the transition-ion hyperfine splittings,
and even more dramatically the observed hyperfine structure from ligand nuclei
[31,32]. We note the approximate proportionality between hyperfine splittings and
spin density on adjacent and more remote atoms (Section 9.2). It should be clear
that reliable estimation of covalence effects require large-scale quantum-mechanical
calculations, say, of the self-consistent-field molecular-orbital type. The effects
manifest themselves as additional important terms in the equations for g, D and A
(i.e., in Eqs. 4.41, 4.42 and 5.8). For instance, the effects of spin-orbit coupling at
ligand atoms become important. The theory of the anisotropic hyperfine interaction
with ligand nuclei is available [33,34].

Many EPR studies have been carried out on complexes deviating from the stable
18-valence-electron (18-v.e.) closed-shell configuration, due to one-electron oxi-
dation or reduction. While such species often are said to have the unpaired electron
in an orbital on the central metal ion, this idea is not exact. Thus the '>C hyperfine
structure in the EPR spectrum of the 17-v.e. complex V(CO)¢ suggests that it is a 7
radical with considerable unpaired-electron population on the ligands. Similarly, the
19-v.e. sandwich complex cobaltocene (Cp,Co, where Cp is cyclopentadiene),
yields EPR parameters [e.g., A(*?Co)] whose interpretation requires considerable
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FIGURE 8.12 Stylized energy-level diagram for B >> 0, not to scale. The most important
EPR spin flips are displayed (with appropriate energy-level labels), albeit not with identical
transition energies such as would be operative for field-swept (fixed-frequency) spectra.

(42%) ligand unpaired-electron populations. Reviews of 17-v.e. species [35] and
19-v.e. species [36] are available.

The spectrum of Mn>" is quite complicated, but can be analyzed quantitatively,
featuring g anisotropy, electronic quadrupole high-spin (S = %) effects (D and E), as
well as hyperfine splittings from the 100% isotope *Mn (I = %). In the random
powder (actually putty) phase, Mn>" in plasticine (modeling clay) is stable, cheap
and convenient to use, say, as a standard [37]. A stylized energy-level diagram
and a breakdown of an actual field-swept X-band spectrum (48 transitions shown)
are depicted in Figs. 8.12 and 8.13.

8.6 A FERROELECTRIC SYSTEM

Certain materials can be thought of as containing electric dipoles, which behave
much like their ferromagnetic and paramagnetic analogs. One such substance is pot-
assium ferrocyanide trihydrate, which is diamagnetic, with a ferroelectric transition
(‘Curie’) temperature of 7. = —26°C. Crystals doped with V(s = % 99.8% °'v
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FIGURE 8.13 Simulations of seven types of EPR powder transitions at 9.40000 MHz:
(A) Ms:i—Lo +L [AM|=0; (B) Ms—i<ol IAMI=1 (© Ms—1<+5
|AM;| =2; (D) Ms: —3 < =1, AM; =0; (B) Ms:+1 < 3, AM; = 0; (F) Ms: —3 < —3,
AM; =0; (G) Ms:+3 <3, AM;=0. The first-derivative linewidths AB,, for the

individual lorentzian lines were 2.8 G for (A)—(C) and 14.0 G for (D)—(G).

with I = %) in small concentrations yield very nice EPR spectra with well-resolved
hyperfine octets [38]. Thermal studies (—180 <> 20°C) with single crystals yield
values of parameters D and E depending linearly on the local spontaneous electric
polarization. Above T, the spin hamiltonian becomes close to temperature-
independent. Quite dramatic linewidth changes (for transitions AM; i% <~ i%)
occur in the region near T,. We thus have here a good example of how transition
ions can be used as probes to explore phase transitions and other solid-state
characteristics.

8.7 SOME FfELECTRON SYSTEMS

So far in this book, we have almost completely neglected the topic of f-electron
system EPR. We cannot cover this subject in any depth but have to content ourselves
with discussing a few such systems.

Our primary choice is the U™ ion, which has the configuration 5f" in its ground
state. Its properties, and those of other uranium cations, are discussed in a 1984
review [39]. Whereas 4f electrons occur relatively concentrated near the
nucleus, 5f electrons are closer to the periphery and hence are more affected by
the electric field of the surroundings. The relativistic effects, including the spin-orbit
interaction, are also more prominent for the latter.
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FIGURE 8.14 The second-derivative EPR spectrum (9.309 GHz) of a Ut oxide center (at
77 K) embedded in crystalline LiF, taken with B || (100). The primary spectrum arises from
By = %) in the enriched sample and shows a doublet splitting attributed to a '’F~
nearest-neighbor ion. The center of the spectrum shows remnant >*%U lines. [After
V. Lupei, A. Lupei, S. Georgescu 1. Ursu, J. Phys. C: Solid State Phys., 9, 2619 (1976).]

When uranium oxide is doped into LiF, the U%* ion (which is diamagnetic, 5f2)
enters along with oxide ions (i.e., as UOs*~) and fits into the structure, replacing Li™
plus five F~ ions. Irradiation produces the U ion, with five oxide ions and one flu-
oride ion as neighbors, which yields quite sharp EPR lines and reveals a hyperfine
doublet arising from the nearest-neighbor fluoride ion. Consistent with theory devel-
oped for the isoelectronic ion Np®* [40], the g factor is negative and of small mag-
nitude [g) = —0.3935(5) and g, = —0.5912(5)] [41]. Figure 8.14 shows an EPR
spectrum for the species obtained with uranium highly enriched in **U (I = %).
In this instance, one has the unusual case where the nuclear quadrupole effects
are at least as large as the hyperfine coupling, as was discerned from the line-position
anisotropy.

A quite different view of actinides is to use them as radiation sources, embedded
in materials and monitored by EPR. Thus poly(vinyl alcohol) (PVA) films have been
doped with 2B8U(VI) and also with ZPu(IV) to provide in situ « irradiaction, with
and without accompanying external 7y irradiation, which revealed formation of
various free radicals and some view of their reactions [42].
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NOTES

. The same is, of course, true for any EPR species.

. These continue to be eigenfunctions when tetragonal distortions along the quantization

axes are included.

. The literature contains various notations for the splitting parameter: A = 10Dgq and

A = 120B, [4, Fig. 7.3].

. Other representations (e.g., A, for a non-degenerate state) also are employed later.

Lower-case letters (a,, e, t,, . ..) refer to one-electron orbitals.

. Consistent with the relations Ay, = —(4/9) Ao and Acypar = —(8/9)A (holding for equal

R values).

. Since there is a low-abundance magnetic isotope (*'Fe, I = %), there is access to hyperfine

parameters here, too. Despite the predominance of d orbitals, which vanish at the nucleus,
the S-state ions have sizable isotropic hyperfine components a, arising from core
polarization (Section 5.2) caused by the d° electrons.

. In an octahedral field, the d levels split so as to leave the triply degenerate t,, orbitals lower

in energy than the e, orbitals. For example, in d” ions two situations arise, depending on
the magnitude of the local electric field. In the high-spin case, Hund’s rule applies; that is,
the state t2g3eg2 with maximum spin multiplicity has the lowest energy. In the low-spin
case the local-field splitting is so large that electrons occupy only the lower group of
levels, that is, tzgs .
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PROBLEMS

8.1 Complete the table given below, giving the d-electron configurations for octa-
hedral and tetrahedral symmetry. Here one neglects the d-electron repulsion
but takes into account both the Pauli exclusion principle and Hund’s rules.
(P. W. Atkins, R. S. Friedman, Molecular Quantum Mechanics, 4th ed.,
Oxford University Press, Oxford, U.K., 2005, pp. 274 ff.)

dn
n 1 2 3 4 5 6 7 8 9 10
oct tzgl t2g6 €g
S 1 :
tth e! et 1,2
N i 1

8.2 Consider the 3d" cation surrounded by four anions such that it is exposed to a
tetrahedral electric field with a tetragonal distortion along z, causing the
(1/4/2)[1+2) — |-2)] state to be lowest. Use the A-matrix formalism to
show that

g ~2—8A/A (8.19a)
gL~2-2)/A (8.19b)

in this case. What approximations have been made?
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FIGURE 8.15 Splitting of state energies of a d'(oct + trg) ion. The trigonal axis (z) is a
body diagonal of the circumscribing cube.

8.3

8.4

8.5

8.6

The wavefunctions (kets) and energies for a 3d! ion in an octahedral field
with trigonal distortion (along axis z) are given in Fig. 8.15. Derive the
expressions for g, and g, in this case and thus show that these expressions
are the same as for the tetragonal distortion case, that is

81~ &g (8.20a)
g1~ g —2A/8 (8.20b)

where terms involving A~ ' have been neglected.

Derive the following equations from the dependence of g and D on A:

D =1A[g. —5(ex +gv)] 8.21a)
E =} Mgx — gv) (8.21b)

For Ni** in AL,Os, g = 2.1957 and g, = 2.1859. Compute D = D/hc using
the equations of Problem 8.4 and compare with the experimental value of
—1.375cm™ ! [43]. For Cr’t in MgWO,, g, =1.966, g, =1.960 and
D = +40.795 cm ™' [44]. Again calculate D. Comment on any differences
between the calculated and experimental D values.

As we have seen, the spin hamiltonian for a 3d 8 jon in a uniaxial local electric
field may be written in the form Eq. (8.17).

(a) Use second-order perturbation theory (Sections 6.7, A.6 and C.1.7) for the
electronic quadrupole plus hyperfine energy added to the electron Zeeman
energy to show that primary EPR transitions when 6 = 0, occur at (near)
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magnetic fields given by

D AM, AL
8B, giB. 28°B.B
g D _AM A2

giB.  &1B.  28°BS B

B_io=B + I +1)—M?—M;] (8.224q)

Bosy1 = I+ 1) —M?+ M) (8.22b)

where B’ = hv/g B, is sufficiently large that perturbation theory may be
applied, and Mg and M; are ‘good’ quantum numbers. The second-order
contributions from matrix D (see Egs. 6.34) cancel out in the present
case. Note that the nuclear Zeeman energy is taken to be negligible.

(b) Giventhat D <0, S=1and I = % (for B || z), use the resonance field

positions, obtained from Eq. 8.22 and listed below for the hyperfine
quartets, to confirm the sign and magnitude of the hyperfine parameters

given below for the Cu* jon in Al,O5 [18]; the frequency used was
9.0420 GHz:
Transition Fields B (mT) Transition Fields B (mT)
|-1) — |0) 115.7 |0) — |+1) 504.1
|-1) — |0) 113.4 |0) — |+1) 501.6
|-1) — |0) 120.0 |0) — |+1) 508.2
|-1) — |0) 126.9 |0) — |+1) 505.9

Parameters: A(3T2)/hc = 21000 cm™! (see Fig. 8.6);
g =2.0788; g, =2.0772; D/hc = —0.1884 cm ™l
E=0; ®A,/hc = -0.00644 cm™'; ®*A, /hc = —0.00601 cm ™"

These line positions are off from field values obtained via exact numerical
solutions by an average value of 12 mT. This improves somewhat at higher
frequencies. The relevant energy-level diagram is depicted in Fig. 8.16.

The 3d> ion Cr’" has been observed in association with a cation vacancy in a
nearest-cation site along a (100) direction in CaO [45]. The local symmetry is
tetragonal, with gy = 1.9697, g; = 1.9751, and |D|/hc = 0.13606 cm~!; the
value of D, given in Ref. 45, presumably should be negative.

(@) Predict the value of S, and present the reasoning behind your result.

(b) Use A =91 cm™" for the Cr’" free ion to estimate Aj and A .

(¢) Is the measured value of D/hc compatible with the observed g factors?
(d) Sketch the expected EPR spectra for B parallel to the axes of the cubic crystal.

For a 3d” (high-spin) ion in an octahedral crystal field, show that the relative
intensities of the five fine-structure EPR lines are 5:8:9:8:5. (Hint:
Compute the matrix elements of S_..)
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FIGURE 8.16 Energy-level diagram for >Cu®>" in Al,O; at ~1.5 K. The EPR parameters
used [18] in the computer calculation are g, =2.0788, g, =2.0772, Dy = 64.71 mT;
D, =-12942mT; A;j=—-6.19mT; A, = —6.64 mT. Note the two-fold (Kramers)
degeneracy of all levels at zero magnetic field. The avoided crossing of two levels at
B =~ 3 mT is indicated, as are the multiple level crossings at B near to 200 mT.
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8.9 The expression
A A
[8 | cos? 64 8L gin? 6] MsM,;
g 8

for the energy of a state |Ms, M;) may be used for a system with uniaxial sym-
metry if |A;| > |A|. Show that it may be transformed into the more usual
expression

[ao + bo(3 cos® 6 — D] MsM,

for angular variation of hyperfine splitting, if the anisotropy of the g factor is
neglected.

8.10 Consider the loops depicted in the Fig. 8.10 plot of line positions versus angle
between the crystal and B. Interpret this behavior. (Hint: Consider the change
with angle of the energy-level spacings, which need not be linear, and

remember that we are dealing with a fixed-frequency experiment.)

8.11 Estimate the splittings of the two doublets indicated in Fig. 8.8, using Eq.

8.18b. Compare your answer with the results published by Miiller [21].



CHAPTER 9

THE INTERPRETATION OF
EPR PARAMETERS

9.1 INTRODUCTION

An adequate interpretation of the parameters of the spin hamiltonian usually requires
the application of molecular quantum mechanics. We already noted the explicit
expressions for matrices g and D (Egs. 4.41 and 4.42), as well as the relation of
the isotropic and anisotropic parts of the hyperfine matrix to |(0)|* (Eq. 2.38)
and {(r ) (Eq. 5.6a). In general, for quantitative interpretation, a large-scale analysis
by computer is required. Happily, however, relatively simple and successful analyti-
cal quantum-mechanical models exist that serve well for tutorial purposes. This
chapter introduces some of these techniques. One key aspect for EPR analysis is
to understand which, among the infinite number of electronic states, is the ground
state, and to realize its properties. Part of the power of EPR spectroscopy is that
(unlike optical spectroscopy) it deals only with spin transitions within a single
electronic state.

Before going further, we need to tighten up our knowledge of spin densities and
unpaired-electron populations.' Like other densities, spin densities p, can be evalu-
ated in selected local regions and thus depend on location within a paramagnetic
atom or molecule. Thus they can be integrated over part or the total volume, yielding
dimensionless physically useful parameters p called the ‘unpaired-electron popu-
lations’ on the species considered.

There can be a simple proportionality between spin density {p,), at a
nucleus n and unpaired-electron population p (see Section 5.6). For example,

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.

253



254 THE INTERPRETATION OF EPR PARAMETERS

(ps)p = pl df|§ for atomic hydrogen; both functions are evaluated at the proton p [1,2].
In general, however, both are multi-electron functions.

Consider, as an example, a Gd(3+) ion (S = %) embedded in some complex. The
spin density is very high at the cation, with only small magnitudes occurring on the
nearest-neighbor ligands. The unpaired-electron population here is 7. In most free
radicals, p = 1. More examples follow.

In situations where the anisotropic hyperfine splitting on some nucleus n can be
considered to be purely dipolar and is uniaxial (see Eqs. 5.48 and 5.49 near the limit
f=1), the distance r between the electron-spin species, requiring unpaired-electron
population correction factors k(e), and external nucleus n carrying a point magnetic
population [no corrections; k(n) = 1 for all our purposes] can be approximated by
. (@) 8Be8nBuk(e)k(n) ©.1)

4t T 1

and thus this distance can be estimated [3]. Matrix T is defined in Eq. 5.8, and is
expressed in energy units. We note that T, varies as approximately r~ > and may
contain geometry factors. The distance r is, of course, set by the electromagnetic
quantum-mechanical interactions between all atoms present, and is hardly affected
by the magnetic dipole-dipole effect. The above Equation 9.1 may be compared to
its isotropic equivalent, Eq. 2.51.

Since we have considered the transition ions in Chapter 8, we focus in this chapter
on the interpretation of EPR parameters from free radicals and triplet states. Free
radicals are classified into organic radicals, inorganic radicals and point defects in
crystalline solids. A short discussion of EPR in metals and semiconductors is also
included.

It is useful to distinguish between o-type and m-type free radicals. The former
type features one unpaired electron in an orbital having no nodal plane, whereas
the latter has one unpaired electron in a molecular orbital that has such a symmetry
element. Often the nodal plane in 7-type radicals extends over several atoms; this
arises from overlap between the p orbitals on each atom and implies that the
unpaired electron is delocalized over the system. By contrast, o-type radicals tend
to have unpaired electrons primarily localized on one atom.

9.2 =-TYPE ORGANIC RADICALS

Among the various molecular-orbital theoretical approaches [4], Hiickel molecular-
orbital (HMO) theory is the simplest. We shall apply this theory to some relatively
simple paramagnetic species, with a view to understanding the isotropic hyperfine
splittings exhibited by these m-type radicals. Some details of HMO theory are to
be found in Appendix 9A at the end of this chapter.

Most of the radicals examined in Chapter 3 are conjugated molecules, containing
paired electrons in low-lying o orbitals and the remainder in 7 orbitals. The
distinguishing characteristic in modeling such compounds, diamagnetic or
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paramagnetic, is the overlap of p orbitals on adjacent atoms. Such overlapping
permits the electrons in these orbitals to be delocalized as a 7 system over the mol-
ecular skeleton. One may, to a good approximation, describe the energy states of
these electrons separately from those of the others, in terms of molecular orbitals
generated from linear combinations of the atomic 2p, orbitals. For example, each
of the six 2p, orbitals in benzene has a node in the molecular plane, defined to be
the xy plane. Hence the molecular orbitals arising from combinations of 2p, orbitals
(Tables 9A.1 and 9A.2) are referred to as 7 orbitals. The ground state of benzene
consists of three 7 orbitals containing six electrons, with the other three 7 orbitals
unoccupied.

Each unpaired electron of a #-type radical is expected to be distributed over the
molecular framework. For example, in the benzene monoanion the average relative
probability of finding its unpaired electron in the vicinity of any one carbon atom is
é, as required by symmetry. For other monocyclic radicals a similar uniform distri-
bution should be found. The equivalence of each position in a given monocyclic
radical leads to the 'H hyperfine splitting patterns shown in Figs. 3.3a—h.

For radicals with lower symmetry, there is no such obvious guide to the unpaired-
electron distribution. The HMO approach provides valuable guidance toward deter-
mining this distribution. The information of interest is contained in the expression
for the particular spatial molecular orbital

Bi=Y cid, 9.2)
=

occupied by the unpaired electron. Here 7 is the number of atomic orbitals ¢;, which
are orthonormal. Since j; is normalized, one has

el =1 (9.3)
j=1

The magnitude squared of the coefficient c;; is the relative probability that the elec-
tron in molecular orbital ¢; is in atomic orbital ¢;. Thus |c,-j|2 measures the unitless
unpaired 7-electron population p; ‘on’ atom j when this atom bears only a single
orbital occurring in ;:

p; = leyl’ (9.4)

It follows that

Z p=1 9.5)
j=1

As an example, consider the radical anion of 1,3-butadiene [5]. The EPR
spectrum displayed in Fig. 3.7a was analyzed on the basis of a quintet of lines of
relative intensities 1:4:6:4:1 with a proton hyperfine splitting of 0.762 mT;
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each line of the quintet is split further into a 1:2: 1 triplet with a proton hyperfine
splitting of 0.279 mT. The considerable difference between the two splitting ‘con-
stants’ suggests a highly non-uniform unpaired-electron distribution.

The butadiene anion has five 7 electrons. Reference to the molecular orbitals of
Table 9A.1 shows that, consistent with the Pauli exclusion principle, the unpaired
electron must reside in 3. From Eq. 9.4 the unpaired-electron populations are
found to be p; = p, = 0.36 and p, = p3 = 0.14. Thus HMO theory predicts that
the end carbon atoms should have the higher unpaired-electron densities. We note
that these are indeed the positions at which the larger proton hyperfine splittings
are observed and that the ratio of the hyperfine splittings, a,/a, = 2.7 agrees
satisfactorily with the ratio of the unpaired-electron populations, p;/p, = 2.6.

This correspondence seems to point to some sort of linear relation between the
(isotropic) proton hyperfine splitting parameters a;, and the unpaired 7-electron
populations of the carbon atoms in 7-type organic radicals. Indeed, such a relation
has been proposed [6—9]; it may be written for proton & as

ar = Qpk 9.6)

where p is the unpaired 7r-electron population at the adjacent carbon atom k and Q is
a proportionality constant expressed in magnetic-field units. The origin of Eq. 9.6 is
considered in Section 9.2.4. An examination of Fig. 9.1 shows that for most 7-type

o
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FIGURE 9.1 Experimental proton hyperfine splitting parameters |ao| versus HMO
unpaired-electron populations p for a group of aromatic hydrocarbon radical ions. Open
circles refer to positive ions and filled circles to negative ions. [After I. C. Lewis,
L. S. Singer, J. Chem. Phys., 43, 2712 (1965).]
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organic radicals the correlation (Eq. 9.6) is good. A similar and even more extensive
data set, featuring a good linear plot of the hydrogen 1s-orbital unpaired-electron
population against the adjacent carbon 2p.-orbital unpaired-electron population,
has been presented by Pople et al. [2]. Here, rather than the crude HMO method,
the much more advanced INDO molecular-orbital technique was utilized.’

Theoretical estimates of Q place it in the range from —2 to —3 mT. The significance
of the negative sign is explained in Section 9.2.4. The first confirmation of the negative
sign of Q in Eq. 9.6 was obtained by an analysis of the splittings in the malonic acid
radical (HOOC— CH—COOH)), created by irradiation of the acid [10]. The simplest
 radical is, of course, methyl (CH3). It has § = 5 and exhibits a proton hyperfine
splitting constant of —2.304 mT [11]. This agrees nicely with Eq. 9.6 with p =1,
providing strong evidence that CHj indeed is planar (cf. CF;, Section 9.3).

In certain other molecules, it is possible to establish a value of Q semi-empirically
from the experimental hyperfine splittings. For instance, in the cyclic polyene rad-
icals CsHs (cyclopentadienyl) (I), C¢Hy", C;H; (cycloheptatrienyl) (II) and CgHg ,
which are planar, the unpaired-electron population is known from the molecular sym-
metry. Thus an experimental determination of the hyperfine splitting constant a in
these molecules provides an estimate of Q. Table 9.1 gives the experimental
values of a and the corresponding values of Q for these monocyclic radicals.

(I) cyclopentadienyl radical () cycloheptatrienyl radical

There is an appreciable variation in Q for these monocyclic radicals. If one com-
pares the values for the two neutral radicals or for the two negatively charged

TABLE 9.1 Proton Hyperfine Splitting Parameters for Monocyclic Radicals

Radical Temperature (K) a™ (mT) Q (mT) Reference
CsHs ~200 0.600 3.00 b
CeHe" 208 0.428 2.57 c
CeHe 173 0.375 2.5 d
C,H, 298 0.395 2.77 e f
CgHg™ ~298 0.321 2.57 g

“Some of the hyperfine splittings have been found to be temperature-dependent.” ©/

’R.W. Fessenden, S. Ogawa, J. Am. Chem. Soc., 86, 3591 (1964). See also: M. Iwasaki, K. Toriyama,
K. Nunome, J. Chem. Soc., Chem. Commun., 320 (1983).

°M. K. Carter, G. Vincow, J. Chem. Phys., 47, 292 (1967).

4], R. Bolton, Mol. Phys., 6, 219 (1963).

¢A. Carrington, I. C. P. Smith, Mol. Phys., 7,99 (1963).

1G. Vincow, M. L. Morrell, W. V. Volland, H. J. Dauben Jr., F. R. Hunter, J. Am. Chem. Soc., 87, 3527
(1965).

¢T.J. Katz, H. L. Strauss, J. Chem. Phys., 32, 1873 (1960).
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radicals, the variation is much smaller, correctly suggesting that the charge on the
radical has some effect on Q.

An understanding of the hyperfine properties of protons in conjugated hydro-
carbon radicals is aided by classifying these as alternant or non-alternant. A mol-
ecule (and its ions) is defined as alternant if one may label alternate positions of
the carbon skeleton with an asterisk and have no two adjacent positions both
‘starred’ or both ‘unstarred’. All linear systems are alternant, as are also those
cyclic systems that have no rings made up of an odd number of atoms, for
example, anthracene (Fig. 3.9). In contrast, the CsHs and C;H; radicals are non-
alternant, as is the azulene anion (IIT). When there is more than one way of starring
atoms, by convention one adopts that designation that gives the largest number of
starred atoms. If the numbers of starred and of unstarred positions are equal, the
hydrocarbon is called even-alternant; if not, it is called odd-alternant.

(I azulene anion

Odd-alternant hydrocarbon radicals have a very useful property that permits rapid
calculation of the unpaired-electron populations without actually determining
molecular-orbital coefficients. As an example, consider the non-bonding semi-
occupied orbital i, of the benzyl radical (C¢HsCH,) (IV)

o7

1

4

(IV) benzyl radical
Yy = 0¢; — 0.378¢h, + 0¢p5 + 0.378¢p, + 0¢ps — 0.378¢¢ + 0.756 ¢, 9.7)

Having starred this odd-alternant radical appropriately, one assigns equal and oppo-
site coefficients about unstarred positions having two neighbors. One begins by
assigning the coefficient —c to atom 2, +c to 4, —c to 6, and finally 4+2¢ to 7 to
cancel the contributions from atoms 2 and 6. The squares of the coefficients must
sum to unity; hence ¢ = 1/+4/7 = 0.378. The unpaired-electron population is then
% at atoms 2, 4 and 6, and% at atom 7. The simple procedure employed here for deter-
mining p values saves much effort, as compared with the direct HMO calculation
(Problem 9A.4). This procedure may also be applied to even-alternant hydrocarbons
if non-bonding orbitals are present (e.g., cyclooctatetraene).
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TABLE 9.2 Benzyl Radical* Hyperfine Parameters a; (in mT)

'H Splitting Parameters a;

Protons on

Carbon Atoms Experimental > HMO Calculated
2,6 —0.49 —0.40

4 —0.61 —0.40

7 (CH») —1.59 (—1.59)

3,5 +0.15 0

“See structure IV.
W, T. Dixon, R. O. C. Norman, J. Chem. Soc., 4857 (1964).
¢A. Carrington, 1. C. P. Smith, Mol. Phys., 9, 137 (1965).

The experimental hyperfine splittings for the benzyl radical (IV) are given in
Table 9.2. Using the splitting for position 7 to fix Q, the hyperfine splittings for pos-
itions 2, 4 and 6 are calculated to be —0.40 mT. No hyperfine splitting would be
expected for protons at positions 3 and 5 because the atomic orbital coefficients
are zero. The significance of the small positive hyperfine splitting observed for
protons at these positions is discussed later in this chapter. Although there are sig-
nificant deviations from predictions, one can regard the calculated values as being
in remarkable agreement with experiment, considering the crudity of the approach.

9.2.1 Anions and Cations of Benzene
and Some of Its Derivatives

Benzene represents a classic hydrocarbon for study of the effects of substituents in
removing the degeneracies of energy levels and for modifying the unpaired-electron
distribution in its +1 ions. In common with numerous other monocyclic systems, the
7 HMO molecular orbital of lowest energy in benzene is non-degenerate; the next
four higher orbitals form degenerate pairs (Table 9A.2). It is customary to use the
group-theoretic labeling (group D). Here it is sufficient to note that e always
refers to degenerate pairs of orbitals, whereas a and b refer to non-degenerate orbi-
tals. The set of six molecular orbitals for benzene is given in Table 9A.2 in order of
increasing energy (bottom to top). The bracketed orbitals are degenerate. Note that
in the a orbital there is no change of sign and hence no vertical nodal plane. This is
the orbital of lowest energy. In increasing order of energy, the e; orbitals have two
oppositely signed (4/—) regions and a nodal plane, the e, orbitals two nodal planes,
whereas the b orbital, that of highest energy, has three nodal planes.

In the benzene anion, the extra (7th) 7 electron is in the e, set of orbitals, whereas
in the cation an electron is missing from the e; set. Hyperfine splitting data for the
anion allow us to show how occupancy of the e, orbitals changes with substitution of
the benzene ring.

The liquid-solution EPR spectrum of the benzene anion at —100°C is shown in
Fig. 3.4. The spectrum consists of seven lines with intensities characteristic of hyper-
fine interaction from six equivalent protons. This result is expected from the sym-
metry of the molecule, but it is instructive to see how it arises from the Hiickel
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molecular orbitals given in Table 9A.2. The six 7 electrons of the neutral benzene go
into the three bonding molecular orbitals, but the addition of an extra electron to
make the benzene anion creates a new problem. The lowest unoccupied molecular
orbital in benzene is doubly degenerate. Hence the unpaired electron is expected
to occupy equally the two e, antibonding molecular orbitals.* The coefficients at
each of the atoms for these orbitals are given at the right of Fig. 9.2. It is evident
that the wavefunction of one e, state, A, is antisymmetric with respect to reflection
in a vertical plane passing through carbon atoms labeled 1 and 4; S, the other, is sym-
metric with respect to reflection in the same plane. A is termed the ‘antisymmetric’
orbital and S the ‘symmetric’ orbital.

The total unpaired-electron population at a given position is obtained by taking
one-half the sum of the electron populations (squares of coefficients) at that
position for each of the two orbitals. For example, at positions 1 and 2,
p =3(0+1) =1 and p, =1(1+%) =1 Thus all positions are equivalent.

Although in the benzene anion the orbitals A and S are, in the first approximation,
equally occupied, the population balance is extremely delicate. The introduction of
substituents serves to remove the degeneracy, that is, makes one orbital more ener-
getic than the other. Thus the effect of substituents on the EPR spectrum of the
benzene anion is best understood by considering the limiting spectra anticipated
when the unpaired-electron distribution approximates that of the A or of the S
orbitals.

The EPR spectrum in Fig. 9.2 is that of the p-xylene anion [12]. It is significant
that the splitting from the CH; protons is too small to be resolved. This phenomenon
is to be expected when the unpaired electron resides predominantly in the A orbital.

0 14/3
-1/2 172 -1//12 -1//12
r‘) ("J 1/2 -1/2  -1//12 -1//12
0 17/3
A S
B
Fee

FIGURE 9.2 EPR spectrum of the p-xylene anion, with the atomic orbital coefficients of
the antisymmetric (A) and symmetric (S) molecular orbitals of benzene at the right. The
symmetry is defined with respect to the perpendicular plane (dashed) passing through the
center of the molecule. Solvent is dimethoxyethane, and temperature is —70°C. [After J. R.
Bolton, A. Carrington, Mol. Phys., 4, 497 (1961).]
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CH30.79 CH3O.IO

CH 6.85 226 6.93
3 2.00

5.12 534 CHy |8l CHs

5.45 .46
CHy

059 7.72
CHy
4 4 s s

FIGURE 9.3 Proton hyperfine splittings a (in gauss) for various methyl-substituted
benzene anions. Symbols A and § indicate whether the antisymmetric or the symmetric 7
orbitals lie lowest for these molecules. [After J. R. Bolton, A. Carrington, Mol. Phys., 4,
497 (1961); J. R. Bolton, J. Chem. Phys., 41, 2455 (1964).]

The hyperfine splittings that have been observed for various methyl-substituted ben-
zenes are given in Fig. 9.3. The data show that the introduction into benzene of even
one CHj; group removes the degeneracy of A and S. The methyl groups are rapidly
rotating, that is, effectively linear. The electronic properties of the substituent deter-
mine whether the A or the S orbital has the lower energy. The methyl group is con-
sidered to be electron-releasing in conjugated systems. For the toluene anion, the A
orbital has a vertical nodal plane through the 1 and 4 positions, whereas the S orbital
has a large unpaired-electron population (%) at these positions. Repulsion between
the electrons on the methyl group and the large negative charge at positions 1, 2, 5
and 6 in the S orbital causes the latter to be destabilized relative to A.

The Q value of —2.25 mT for the benzene anion may be used to estimate the
toluene anion hyperfine splittings. Because of the node through the 1 and 4 positions,
one should expect little or no hyperfine splitting from the methyl protons or the proton
para to the methyl group. An unpaired-electron population of % should give rise to a
hyperfine splitting of ~0.56 mT. The measured hyperfine splittings (Fig. 9.3) show
that the unpaired-electron distribution does approximate that of the A orbital.

Even the substitution of a deuterium nucleus for a proton in the benzene anion is
sufficient to bring about a measurable split of the energies of the S and A orbitals as
indicated by small departures of the proton hyperfine splittings from those in the
benzene anion [13].

H

(V) benzene-d, anion
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9.2.2 Anions and Cations of Polyacenes

For some of the EPR spectra analyzed in Chapter 3, it was not possible to assign the
observed hyperfine splittings on the basis of the spectrum alone. Thus, for the mono-
anion of naphthalene (VI) (Fig. 3.8), it is not obvious which set of four equivalent
protons should be assigned as yielding the larger hyperfine splitting. The same
uncertainty is found for the two quintet splittings in the spectrum (Fig. 3.9) of the
anion of anthracene (VII). It thus is very desirable to have a simple and rational
basis for the assignment of these hyperfine splittings, as presented here. In addition,
it is helpful that the relative magnitudes of hyperfine splittings can be predicted
without making detailed calculations.

In the HMO approximation, alternant hydrocarbons have orbital energies symme-
trically disposed about the central energy a. Odd-alternant hydrocarbons have a non-
bonding orbital at this energy (e.g., Fig. 9A.1). Orbitals with energies symmetrically
disposed about « involve the same atomic orbitals, with coefficients that have the
same absolute magnitudes. Therefore the squares of the coefficients of the highest
bonding orbital and of the lowest antibonding orbital of an even-alternant hydro-
carbon are identical. Hence the unpaired-electron distribution is predicted to be
identical in the cation and anion radicals corresponding to a given diamagnetic
parent. This statement is often referred to as the pairing theorem and is found to
apply to a high degree of approximation [14,15].

The EPR spectra of the anions and cations of some of the polyacenes
[naphthalene (VI), anthracene (VII), tetracene (VIII) and pentacene (IX)] have
been studied. The proton hyperfine splittings for these molecules are listed in
Table 9.3. It is evident that the hyperfine splittings are similar for protons in corre-
sponding positions in the anion and the cation of a given molecule. These results
are in reasonable accord with the pairing theorem. The agreement in reality is
even better than is apparent, since Q depends somewhat on the excess charge
density [16,17].

9.2.3 g Factors of = Radicals

The g factors of mradicals have been the focus of considerable theoretical attention,
basically using the theory outlined in Section 4.8. Typically, g — g. = (1 to 4) x
10~*. For aromatic radicals in the liquid phase, Stone [18,19] showed that

g — 8 =80 + A + 8N’ 9.8

where the g, are (semi-empirical) parameters and A is the coefficient of the reson-
ance integral B in the HMO of the unpaired electron. One can classify the excited
states required (Eqs. 4.38 and 4.41) to calculate g into different types; for
example, excitation of the odd 7 electron into an antibonding o orbital, and exci-
tation of any o-bonding electron into the semi-occupied 7 orbital. The theory fits
well except when there is a degenerate (or almost so) ground state, for example,
for the benzene radical anion, in which case complex corrections (for vibronic coup-
ling and ion pairing) must be made [20-22].
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TABLE 9.3 Proton Hyperfine Splitting Parameters in Polyacene Anions
and Cations

la 'l la M
Molecule Position (mT) (mT)
Naphthalene“ (VI) 1 0.540 0.495
8 1 2 0.160 0.187
7 2
6 3
5 4
Anthracene? (VII) 9 0.6533 0.5337
8 9 1 1 0.3061 0.2740

7 2 2 0.1379 0.1509
6 3

Tetracene  (VIII) 5 0.5061 0.4226
10 1" 12 1 0.1694 0.1541

2 0.1030  0.1162
9 2
8 3

0.5083  0.4263
0.3554  0.3032

10 , 0.0975  0.0915
0.0757  0.0870
9 3

“(+) Estimated from simulating the X-band EPR spectrum taken in boric acid glass at ~300 K;
G. Vincow, P. M. Johnson, J. Chem. Phys., 39, 1143 (1963) and G. S. Owen, G. Vincow, J. Chem.
Phys., 54, 368 (1971); (—) N. M. Atherton, S. I. Weissman, J. Am. Chem. Soc., 83, 1330 (1961).

b(4) and (—) J. R. Bolton, G. K. Fraenkel, J. Chem. Phys., 40, 3307 (1964).

°(4+)J. S. Hyde, H. W. Brown, J. Chem. Phys., 37, 368 (1962); (+) and (—) J. R. Bolton, unpublished
work [see J. R. Bolton, J. Chem. Phys., 71, 3702 (1967)].

4(4) and (—) J. R. Bolton, J. Chem. Phys., 46, 408 (1967).
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9.2.4 Origin of Proton Hyperfine Splittings

As discussed, it has been found for planar conjugated organic radicals that proton
hyperfine splittings are proportional to the unpaired m-electron population on the
carbon adjacent to the proton (Eq. 9.6). Isotropic proton hyperfine splittings were
shown in Chapter 2 to arise when a net unpaired-electron density exists at the
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proton. In 7 radicals, the unpaired electron can be considered to reside in a
m-molecular orbital constructed from a linear combination of 2p, carbon atomic
orbitals. However, each such 2p, orbital has a node in the plane of the molecule
and, since this plane also contains the adjacent proton, there should be no
unpaired-electron density at the proton and hence no hyperfine splitting. In spite
of this node, the numerous spectra in Chapter 3 demonstrate that isotropic proton
hyperfine splittings do occur in 7 radicals. Out-of-plane proton vibrations are
found to give a negligible effect. Rather, the concept of unpaired-electron
density must be reexamined in order to resolve this paradox. It was assumed that
an electron in a conjugated molecule does not influence the other electrons in
the radical. However, in reality the other electrons are affected. Thus, in some
regions of the molecule, ‘paired’ electrons become slightly unpaired. (This is
one of the several effects that go under the name of ‘electron correlation’). Thus
the actual spin density at the proton (Eq. 2.51) is not simply related to the
nominal unpaired-electron population on the adjacent carbon atom. Factor Q in
Eq. 9.6 brings in this effect, which we now discuss.

Consider a C—H fragment of a conjugated system. If spin « is assigned to the one
electron in the 2p, orbital on the carbon atom, there are two possibilities for assign-
ing the spins in the C—H o bond; these are shown in Fig. 9.4. Here it is assumed that
the carbon atom has its 2p, orbital perpendicular to the C—H bond; the 2p, and 2p,
orbitals plus the 25 orbital of the carbon atom form trigonal sp? hybrids. The hydro-
gen atom bonds to one of these three coplanar hybrids.

If there were no electron in the 2p, orbital, the electron configurations (a) and (b)
of Fig. 9.4 would be equally probable; hence the spin density at the proton would be
zero. However, when a 2p, electron is present, say, with spin «, configurations (a)
and (b) are no longer equally probable. This effect is often called spin polarization.
It has been demonstrated from atomic spectroscopy that when two different, but
equivalent, orbitals on the same atom are singly occupied by electrons, the more
stable arrangement is the one with the electron spin components Mg equal (one of
Hund’s rules). Thus configuration (a), in which the two electrons shown on the

(a) (b)
2p; 2p;

Qa Qa

t 1) 8

EHWe | e

B

FIGURE 9.4 Possible electron-spin configurations in the ¢-orbital bonding the carbon
atom to the hydrogen atom in a C—H fragment, for a spin in the 2p, orbital of that carbon:
(a) spins parallel in the o bonding orbital and the 2p, orbital of carbon; (b) Corresponding
spins antiparallel.
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carbon atom have parallel spins, is more stable and hence more probable than (b), for
which the spins are antiparallel; that is, as a consequence of the positive spin density
at the carbon nucleus, there is a net negative electron-spin density (i.e., excess of 3
spin over « spin) at the proton. Conversely, if the spin state of the electron in the
carbon p, orbital is 3, then a spin predominates at the proton. Detailed treatment
of the effect demonstrates that Eq. 9.6 is close to quantitative [2,6—9], with O nega-
tive. Of course, in a conjugated radical the unpaired-electron population p; at a given
carbon atom is less than unity. Note that for the ensemble of molecules, spin states 3
(MS = %) are the more populated (Fig. 1.2).

The concepts discussed above can be expressed elegantly and quantitatively in
terms of a suitable mathematical formalism. We saw (Eq. 2.51) that the sign and
magnitude of a, can be obtained quantum-mechanically by introduction of the
spin-density operator p,. Here, for each nucleus,

Py = (571D S 8(ri — ) 9.9)
k

is the spin-density operator, where the sum is over all electrons; S = > §k is the
total electron-spin operator and (S.) is the expectation value Mg =Y, Ms, of
> Sk for the state y(r) considered (we assume Mg # 0). Clearly, ¢ contains
both spatial and electron-spin variables. The factor é(r; — r,,) is the famous Dirac
delta ‘function’ (Section A.7) [4,23,24], here three-dimensional, with dimension
of volume '. It has meaning only within a definite integral fVF 0dV of some
spatial function F(ry) (e.g., ¥* ), which it sets to zero except at the single point
r; = r,. Thus the integral becomes F |rk:r” when the volume V includes nucleus 7.

9.2.5 Sign of the Proton Hyperfine Splitting Constant

The negative sign (Eq. 9.6) of Q implies that the hyperfine parameter a, for the
proton of a C—H fragment is negative, and that the spin density there is opposite
in sign to that in the adjacent carbon 2p, orbital.

Although this sign information can be obtained from comparison of the isotropic
and anisotropic hyperfine couplings (Section 5.2 and Problem 5.11), another
method, involving a verification of the signs by a proton magnetic resonance, is
now examined.

This procedure involves the measurement of proton magnetic resonance line-
shifts for paramagnetic molecules [25]. The NMR lines must be narrow enough rela-
tive to the magnitudes of the lineshifts to permit the measurement of the latter. Thus
these lines must not be broadened too much by the relaxation of the proton spins in
the presence of the nearby electron spin. This implies that the latter must relax rela-
tively much more rapidly. The proton NMR spectrum of the biphenyl anion at room
temperature is shown in Fig. 9.5. The chemical shifts in this spectrum are huge, com-
pared to those found for protons in diamagnetic molecules, and arise from the local
magnetic fields generated by each hyperfine interaction. Referring to Fig. 9.5, one
notes that there are two lines shifted to the high-field side of the resonance position
for diamagnetic molecules. These correspond to a negative value of a; for two sets of
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FIGURE 9.5 Proton NMR spectrum at 60 MHz of a 1 M solution of the biphenyl anion,
structure (X) in diglyme CH;—O—(CH,—CH,—O0O—),CH; at room temperature. The
concentration of neutral biphenyl is negligible. The line S arises from the solvent. Various
peaks have been measured with different radiofrequency power, gain and modulation.
[After G. W. Canters, E. de Boer, Mol. Phys., 13, 495 (1967).]

protons in the radical. This result is expected from Eq. 9.6 with a negative value of O
and positive unpaired-electron population at the carbon atom. However, one line is
shifted downfield; it must therefore correspond to a positive a; for one set of protons.
This result is understandable in terms of the new concept, negative spin density,
introduced in the previous section. If proton hyperfine splittings are less than
~0.6 mT, it may be possible to observe paramagnetic chemical shifts AB for free
radicals in liquid solution [26,27].
The chemical shift AB is given by

_ 88.B.*Bo

AB =B; — By = ;
0T T ag, BT

(9.10)

for the ith proton, where B; is the resonance field for the shifted line and By is the
field corresponding to the unshifted proton resonance line [28,29]. The derivation
of Eq. 9.10 is left to the reader, as Problem 9.2. It follows from Eq. 9.10 that
there is a negative (downfield) chemical shift if a; is positive, and vice versa.

The proton NMR spectrum of the biphenyl anion at room temperature is shown in
Fig. 9.5. The chemical shifts in this spectrum are huge, compared to those found for
protons in diamagnetic molecules, and arise from the local magnetic fields generated
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by each hyperfine interaction. Referring to Fig. 9.5, one notes that there are two lines
shifted to the high-field side of the resonance position for diamagnetic molecules.
These correspond to a negative value of a; for two sets of protons in the radical.
This result is expected from Eq. 9.6 with a negative value of Q and positive
unpaired-electron population at the carbon atom. However, one line is shifted down-
field; it must therefore correspond to a positive a; for one set of protons. This result is
understandable in terms of the new concept, negative spin density, introduced in the
previous section.

If only one proton is attached to each carbon atom of a conjugated radical and if
all 7 spin densities are positive, the extent (Section 3.5) of the EPR spectrum
cannot exceed the value of |Q|. For most radicals, the spectral extent does not
exceed ~2.7mT (i.e., |Q]). However, for some radicals [e.g., the biphenyl anion
(X) and the perinaphthenyl radical (XI)] the spectral extent is considerably in
excess of this value. An extra-large spectral extent can be understood if negative
7 unpaired-electron populations occur. The normalization condition for unpaired-
electron population requires that the algebraic sum of all such populations be
unity for free radicals. If some populations are negative, then others must be cor-
respondingly more positive. Consequently, the sum of the absolute values of the
unpaired-electron populations can be greater than unity. Since the spectral extent
depends only on the absolute magnitude of the hyperfine splittings, negative spin
densities result in a (seemingly) unusually large spectral extent.

(XI) perinaphthenyl radical

In the biphenyl anion spectrum in Fig. 9.5, the line that is shifted downfield must
be assigned to positions at which the 7 spin density is negative. One would not
have inferred this fact from the spectral extent. However, there are appreciable
spin densities at positions that have no attached protons. The magnitude of the
shift for the low-field line indicates that this line arises from protons having
the smallest magnitude of hyperfine splitting. From the solution EPR spectrum,
the smallest splitting arises from a set of four equivalent protons. These can
be either the protons at positions 2,6,2',6" or 3,5,3',5 (Fig. 9.5). Molecular-orbital
studies indicate that the latter assignment should be made [30].

The HMO theory is too crude to yield negative m-electron spin densities at carbon
atoms. With a generalized definition [2] of spin density, distinguishing between
spin-a and -3 states, more advanced MO schemes do yield these with both signs,
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and place non-zero spin density on the protons. Thus, for the latter nuclei, one
obtains the relation

2
2”0 eBugpy P ©.11)

(S2)

to be compared with Eqgs. 2.38 and 2.51. Here the wavefunction evaluated at the site
of the proton is, of course, s-like.

One of the more advanced MO theories, which allows for negative 7 unpaired-
electron populations, is due to McLachlan [30,31]. This theory uses Hiickel orbitals
as unperturbed functions, and brings in electron interaction and correlation. When
there are N carbon atoms in the conjugated system, the expression obtained for
the unpaired-electron population at carbon atom ¢ is

N
p = leml> + XY malew ] (9.12)

r=1

Here c,,, is the coefficient of atom ¢ in the mth molecular orbital that contains the
unpaired electron. A is a dimensionless parameter that may be varied to provide a
best fit to the spectral extent. It is usually given a value between 1.0 and 1.2.
Symbol r,, is the dimensionless mutual atom-atom polarizability defined by

bonding antibonding

e = —4B Z Z M 9.13)

The Hiickel coefficients ¢ are for atoms r and ¢ in molecular orbitals j and k. U, and
U; are the Hiickel energies of the k and j levels. The summations need not include
non-bonding levels, since their effects cancel out in the summations.

9.2.6 Methyl Proton Hyperfine Splittings
and Hyperconjugation

Examination of Fig. 9.3 reveals that splittings from some methyl protons exceed
those caused by some ring protons. Hence there must be some mechanism that
couples the methyl protons to the 7 system.

An effective model for the coupling mechanism is that of hyperconjugation
(defined below), which provides a direct link of the methyl hydrogen atoms with
electrons in the 7 system. It is well known that two fragments of a molecule may
interact if there is a compatibility in the symmetry properties (and energies) of
their wavefunctions. A single 2p, orbital or a 7 orbital is antisymmetric with
respect to the plane of the molecule; that is, it changes sign on reflection in the
plane. The atomic orbitals of the three hydrogen atoms may be combined to give
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FIGURE 9.6 Schematic representation of a three-hydrogen (3H)-atom molecular orbital of
the same symmetry as the p atomic orbital in a conjugated radical. [After C. A. Coulson,
Valence, Oxford University Press, London, U.K., 1961, p. 362.]

a molecular orbital with the same symmetry as a 7 orbital. Such a combination is

y=ci¢; — (P + b3) (9.14)

This symmetry is shown schematically in Fig. 9.6. ¢ can be considered as a
pseudo-r orbital. Hence it may be regarded as part of the 7r system. Because the
methyl protons form a part of the 7 system, the spin density at the protons has
the same sign as that on the carbon bonded to the methyl group. It is to be recalled
that the hyperfine splitting a; of a proton i is proportional (Eq. 9.11) to the square
[ ,,2 of the wavefunction at the proton. On CH; the protons have identical spin den-
sities, and hence the hyperfine splitting constants from H,, H, and H,. of Fig. 9.6 all
have the same sign and magnitude.
That the spin density on 8 protons

N\

C—C—H

AN

H

is opposite in sign to that on « protons

was established by observing an opposite shift of the lines from the two types of
protons in a nuclear magnetic resonance experiment [32,33].
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FIGURE 9.7 Spin polarization contributions to the '>C and to the proton hyperfine
splittings in a (C'),CH fragment. The numbered interactions are (1) QEH; 2) QSC; 3) QSH;
(4.5) 050 (6.7) QG

9.2.7 Hyperfine Splitting from Nuclei Other than Protons

When isotropic proton hyperfine splittings were considered in Section 9.2.4, it was
necessary to consider only the interaction of the 7 unpaired electron with the o
electrons in one bond (i.e., the C—H bond). However, in the case of nuclei that
form part of the framework of a conjugated molecule, the interactions with
several bonds must be considered. The hyperfine splittings by '*C are considered
first, but the model should generally be applicable to other nuclei, such as "N,
70, '°F and 7S [34]. This model is essentially a generalization of the treatment
given for the C—H fragment. It has been observed that experimental '>C hyperfine
splittings are not simply proportional to the 7 unpaired-electron population on the
same carbon atom. Rather, it is also necessary to include contributions from the
populations on neighboring carbon atoms. Figure 9.7 illustrates the several inter-
actions that are present, characterized by appropriate Q parameters. The notation
used is as follows. In each Q parameter, the superscript designates the atom
giving rise to the hyperfine splitting. In symbol QF, the subscript indicates the
polarization of the carbon 1s electrons by the local 7 unpaired-electron population.
In analogous symbols, the first subscript designates the atom on which the popu-
lation is contributing to the spin polarization; the two subscripts together indicate
the bond that is being polarized.

Consider the (C'),CH fragment shown in Fig. 9.7. By analogy with the C—H
fragment, QG and QS are expected to be positive, whereas O, and Q¢ should
be negative. A consideration [34] of the combined contributions leads to the
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following relation

3 3
j=1 j=1

where atoms X; are those bonded to carbon atom i(= C). Quantitative calculations
[34] of the spin-polarization constants in Eq. 9.15 yield the following
results (in mT):

0f =—127, Qfy=+195 QS =+1.44 Q5.=-1.39
Inserting these values into Eq. 9.15, for (C"),CH, one obtains (in mT)

af =3.56p,— 139 p, (9.16a)
J

where the hydrogen unpaired-electron population has been deemed negligible. Simi-
larly, for a (C');C fragment, one obtains

a€ =3.05p, — 1.39 Z p; (9.16b)
J

These relations are equally applicable to neutral radicals and +1 and —1 radical
ions. The results of such estimates are displayed in Table 9.4 for the anthracene
cation and anion [35]; the sets of experimental and calculated hyperfine splitting con-
stants agree nicely. In this case it was possible to obtain an independent estimate of
the 7 unpaired-electron populations from proton hyperfine splittings, with the aid of
Eq. 9.6 and the normalization condition ), p; = 1: these are included in Table 9.4.
The agreement is very satisfactory, considering that the parameters were calculated

TABLE 9.4 Calculated and Experimental '*C Hyperfine Splitting Parameters and
Unpaired-Electron Populations in the Anthracene Cation and Anion “”

13C Hyperfine Splitting Parameters |a{| (mT)

Position i Cation Anion Calculated p Experimental ¢
9 +0.848 +0.876 +0.842 0.220
11 —0.450 —0.459 —0.490 —0.021
1 — +0.357 +0.337 0.107
2 +0.037 —0.025 —0.033 0.054

“See structure VII in Table 9.3.

®From J. R. Bolton, G. K. Fraenkel, J. Chem. Phys., 40, 3307 (1964).

“Calculated from averaged hyperfine splitting constants (Table 9.3) using Qcy™ = —2.70mT and the
normalization condition for unpaired-electron populations (Eq. 9.5).
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from such an approximate theory. Similar comparison for other radicals show that
Eq. 9.15 is widely applicable for '*C splittings in aromatic hydrocarbons.

In nitrogen heterocyclic aromatic molecules, 14N substitutes for carbon atoms;
hence one might expect that Eq. 9.15 would also apply to '*N. This is probably
correct; however, experience has shown that here the effect of 7r unpaired-electron
populations on neighboring atoms is small. This implies that the factor QEI,N must be
small; certain estimates place it in the range from —0.4 to +0.4 mT [36—40]. In
view of the small contribution from neighbors, many workers have used a simpler
equation similar to Eq. 9.6 for "*N hyperfine splittings.

Hyperfine splittings from '’O [41] and **S [42] have also been interpreted in
terms of an equation similar to Eq. 9.15.

It might be expected that since fluorine substitutes for hydrogen in aromatic mol-
ecules, an equation such as Eq. 9.6 would also hold for fluorine hyperfine splittings;
that is, if pc is positive, one expects that a¥ would be negative. However, it has been
shown conclusively that fluorine hyperfine splittings are positive in such molecules
[43]. The non-bonding p electrons on the fluorine apparently participate in partial
double bonding with the conjugated system to which the fluorine atom is attached;
that is, some of the electron density in fluorine p orbitals is delocalized into the 7
system of the molecule. This electron transfer results in a net 7 spin density on
the fluorine atom, having the same sign as that on the adjacent carbon atom. One
expects that the local contribution to a" (i.e., 7 unpaired-electron population on
F) predominates; this would result in a positive fluorine hyperfine splitting constant
(see Section 5.3.2.2 for some discussion of this topic).

9.2.8 One-Dimensional Chain Paramagnets

Almost all the systems considered so far have been ones where unpaired electrons are
located on isolated relatively small molecules or defects. One-dimensional chain
paramagnetic systems represent a class in which unpaired electrons are delocalized
over a system of macroscopic dimension. One example is the 7 system polyacetylene
(CH),, (XTII), consisting of very long conjugated chains of two types: cis and trans.

C=—C C—C

N 7 N\ 7/
c=c c=c c—cC c—cC
C1 c2
c c c
— — _
T T T %C/CQC/C%C/C%
R
T2

(XIl) Polyacetylene

In principle, these species should be diamagnetic with double bonds in fixed pos-
itions and 7 electrons delocalized over the chains. In practice, even in highly purified
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materials, there are defects that give rise to paramagnetism, and EPR signals are
observed [44,45]. These signals tend to be single lines near g = g,; they are thus rela-
tively uninformative.

There is considerable interest, for both cis and trans materials, in the formation of
regions (‘domain walls’) at which type-1 switches to type-2 bond distribution, with
unpaired spins present. Much effort [°H and '*C doping, advanced ENDOR and
ESEEM techniques (Chapter 12)] is being brought to bear on this complex system
[45,46], especially to discern whether the domain walls are fixed or mobile (soli-
tons). Chemical doping experiments show that polyacetylenes are semiconductors
capable of being transformed into excellent electrical conductors that yield EPR
signals with dysonian lineshapes (Section 9.6) [44].

A second example of macroscopic 7 systems involves certain organic molecules
that are strong electron donors or acceptors, and can exhibit strong EPR signals
under appropriate conditions.

The p-phenylenediamines are strong donors. For example, the species forms
readily and is called ‘“Wurster’s blue cation’ (XIII). It exhibits a complex multi-line
'"H and "N hyperfine pattern [47] in aqueous solution, and is known to dimerize to
some extent in non-aqueous solutions [48]. In the solid state (e.g., the perchlorate
salt), it crystallizes in long parallel one-dimensional chains® and undergoes antifer-
romagnetic spin pairing at low temperatures.

H3C CH3

N N

/
HSC CH3

(XI) Wurster’s blue cation

Among the strong acceptors, tetracyanoethylene (XIV) and tetracyanoquino-
dimethane (XV) have been of considerable interest, since they readily form
mono-anion radicals. For instance, pairwise clustering of such species in the crystal
form leads to thermally accessible singlet and triplet species, in which the triplet
excitation (exciton) is mobile [49]. Many of these materials are semiconductors.

NEC\ /CEN
c=C
N=C 4 \CEN

(XIV) tetracyanoethylene

NEC\C — ) _C=N
=C NeaN

(XV) tetracyanoquinodimethane
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As an inorganic example, we can cite chains of platinum atoms, bonded directly
to each other, but each liganded with various oxygen anions. Thus we deal with
one-dimensional (1D) chains of nascent metallic character; these materials are
called ‘platinum blues’. In one example, a paramagnetic one, there is a mixed
chain Pt(IT);Pt(IIT) having spin S = % EPR studies have yielded principal values
g1 =2.509 and gy = 1.978, and nicely resolved 193pt (33.8% natural abundance)
hyperfine structure showing that the unpaired electron is highly delocalized along
the chain, with all four Pt atoms close to equivalent, with the parallel direction
along the mean chain direction z [50]. The Pt—Pt bonding can be described in
terms of d orbital overlap, in first approximation.

In summary, EPR has played a prominent role in the study of electron spin-spin
interactions in these systems. A review [51], up to 1966, is available.

9.3 o-TYPE ORGANIC RADICALS

For the radicals considered thus far, the unpaired electron is located primarily in a
carbon 2p, (or ) orbital. Small isotropic hyperfine couplings (|ag] < 100 MHz) are
observed, but these arise primarily from the indirect mechanism described in Section
9.2.3. The nuclei are usually located at or near the nodal plane of the 2p, orbital.

There are a number of known radicals that exhibit proton hyperfine couplings with
isotropic components of the order of 150—400 MHz. These couplings are far too large
to be explained by the indirect mechanism, and one is forced to conclude that the wave-
function of the unpaired electron has considerable density at the nucleus considered.
Thus, the unpaired electron is located primarily in the o orbital that would normally
form a o bond between that nucleus and some atom (such as hydrogen) absent in
the radical. Most o orbitals have a considerable s-orbital component.

In the ethynyl radical C=C—H, the unpaired electron occupies primarily an
orbital pointing outward, that is, one that would be directed toward a second
proton in the acetylene molecule. Likewise in the vinyl radical HC=CH,, the
unpaired electron is primarily in an orbital that would attach a hydrogen atom to
form the ethylene molecule. Yet another example is the formyl radical HCO,
derived from formaldehyde H,CO, in which the bond angle is thought to be 120°
[52]. A closely related radical is FCO.

In each of these cases, the sign of the 'H (or '°F) hyperfine coupling constant is
believed to be positive, arising from a considerable s component at the hydrogen (or
fluorine) atom. For instance, in the HCO radical, the unpaired-electron population in
the s orbital of hydrogen is approximately 0.27, since the proton hyperfine coupling
constant is 0.27 x 1420 = 384 MHz [53]. This is an unusually large proton coup-
ling. In terms of resonance structures, it can be assumed to imply considerable pre-
sence of H 4 CO in the ground state.

The magnitude of isotropic '*C hyperfine splittings provides a direct indication of
whether there is a significant s-orbital contribution on carbon. A pure s orbital would
yield a '3C hyperfine splitting of ~135 mT (Table H.4). An sp® hybrid for a tetra-
hedral configuration would give 25% of this value. For example, in the 7 radical
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CHj, the a© hyperfine splitting constant is only 3.85 mT [54], showing this radical to
be close to planar. In the CF; radical, a© = 27.1 mT [54]. This large increase in the
13C hyperfine splitting can be explained in terms of a large pyramidal distortion in
CF5. Thus the latter is a o radical.

It is interesting to compare the isotropic parts of the proton couplings in the
formyl (HC=O0) and the vinyl radicals. For the latter in a rigid medium, the
couplings (in mT) are 1.57 for H), 3.43 for H,, (cis), and 6.85 for Hg, (trans)
[55]. (Problem 10.7 explores the apparent changes in couplings when this radical
is observed in liquid solution.) Even the largest value is considerably less than
that (13.7 mT) for HCO, which likely has a bond angle of ~125°. The difference
arises from the large variation of coupling constant with bond angle. From the
value for H,, in the vinyl radical, the HCC bond angle is estimated to be 140—150°.

Hyperfine couplings in o-type radicals may also exhibit large anisotropy. For
example, in FCO, the principal hyperfine matrix components A('°F) /h are 1437.5,
708.2 and 662.0 MHz [55]. Presumably a large spin polarization of the CF bond
occurs, arising from configuration interaction between the ground state and a low-
lying excited state describable in terms of atomic F and CO.

It is possible to estimate the spin distribution in s radicals by using a molecular-
orbital theory, such as the INDO method [2] (which includes all valence-shell
atomic orbitals).

9.4 TRIPLET STATES AND BIRADICALS

The triplet state of naphthalene, too, can be discussed in terms of the HMO model.
Thus one unpaired electron is in the highest bonding orbital, whereas the other was
transferred (Section 6.3.4) from there to the lowest antibonding orbital. In accord-
ance with the pairing theorem, the orbital coefficients of these are equal in magni-
tude. The unpaired-electron populations obtained experimentally and from various
theoretical approaches are listed in Table 9.5. The mr-electron populations
(Problem 9A.3) sum to 1 (and not 2), consistent with the operation of the Pauli
exclusion principle [1, Section 8.5]. These parameters yield a good approximation
to the set of proton hyperfine couplings (Section 9.3.4),° which are seen to be
much the same as those of the naphthalene anion (Section 3.2.2) and cation
(Table 9.3), despite the presence here of two unpaired electrons.

It is of interest to calculate the value of D when the two coupled electrons are on
the same carbon atom, namely, for CH,. This hydrocarbon is one of the smallest
molecular species with a low-lying triplet state, that is, its B, ground state. It is
thus a favorite molecule for theoretical calculations (see Ref. 56 for a summary
and also Section 6.3.6.1). Experiment and ab initio calculations agree that CH, is
non-linear. For a bond angle of 135° the latter yield D= 0.81 cm” L,
E = 0.05 cm™ ' [57]. EPR spectroscopy yields D = 0.76(2) cm ™', when a correction
for motional effects is made [58]. In these small molecules, one must be concerned
about a possible contribution to D from spin-orbit coupling. In O,, this contribution
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TABLE 9.5 Unpaired-Electron Populations for Naphthalene in Its
Lowest Triplet State®”

Spin Population

Source of Data P1 P2 Po p1/p2

From the anisotropic part of the proton hyperfine splitting 0.219 0.062 -0.063 3.5
From the isotropic part of the proton hyperfine splitting? ~ 0.220 — — —

From HMO calculations (Problem 9A.3) 0.181 0.069 0 2.6
From advanced MO calculations:
Amos® 0.235 0.048 -0.066 4.89
Pariser’ 0.168 0.074  0.015 227
Goodman and Hoyland® 0.198 0.052 0 3.81
Atherton and Weissman” 0.220 0.083 -0.106 2.65

“See structure VI in Table 9.3.

bN. Hirota, C. A. Hutchison Jr., P. Palmer, J. Chem. Phys., 40, 3717 (1964).
“For position labeling, see structure VI.

4Using Qep/h = —66.50 x 10%s~ ",

¢A. T. Amos, Mol. Phys., 5, 91 (1962).

/R, Pariser, J. Chem. Phys., 24, 250 (1962).

$L. Goodman, J. R. Hoyland, J. Chem. Phys., 39, 1068 (1963).

"N. M. Atherton, S. I. Weissman, J. Am. Chem. Soc., 83, 1330 (1961).

is appreciable. However, calculations for CH, disclose that the spin-orbit contri-
bution to D and E is small as compared to the spin-spin interaction [57].

The large value of D in H—C—C==N, notwithstanding the possibility of deloca-
lization in the C==N group, is probably due to the existence of a negative unpaired-
electron population on the central atom of the C—C==N group. This 7 system is akin
to that of the allyl radical HC(CH)CH, (Problem 9.4 and Appendix 9A). The
expected negative populations on the central atom would thus lead to an increased
positive population on each outer carbon atom and hence to an increased value of
D. Such an effect cannot occur with the H—C—CF; molecule listed in Table 6.1.
The effect is probably operative in the molecule H—C—C=C—H also, and assu-
redly also in N=C—C—C==N, where there are five m-electron centers.

Table 6.1 includes the parameters for one nitrene. These species, N—R, are isoelec-
tronic with the carbenes. The parent compound for the nitrenes is N—H. It has been esti-
mated that D = 1.86 cm™ ! for this fragment [59]. For N— C==N, the reduction in the D
value by delocalization is probably somewhat offset by the enhancement of the positive
population on the nitrogen atoms, due to a negative spin density on the carbon.

9.5 INORGANIC RADICALS

The assignment and interpretation of the EPR spectra of inorganic radicals have been
a very active field of investigation. It is not possible to give a complete coverage;
however, we shall attempt to outline the major features with some examples.
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FIGURE 9.8 EPR spectrum of the V, center (Cl, ) in x-irradiated KCl at 77 K with the

magnetic field parallel to the [100] direction in the (100) plane, with v = 9.263 GHz.
[After T. G. Castner, Jr. W. Kinzig, J. Phys. Chem. Solids, 3, 178 (1957).]

Identification of Radical Species. As in the case of organic radicals, the values of
principal components of hyperfine matrices can provide the major clues in the identi-
fication of species resulting from the irradiation of inorganic materials. For example,
x irradiation of LiF at 77 K produces (among others) a species that exhibitsa 1 2 1
triplet EPR spectrum for B || [100]. Such a pattern implies hyperfine interaction
with two nuclei of spin % The principal values of the g matrix are gy = 2.0234,
gy=12.0227 and g,=2.0031, indicative of nearly uniaxial symmetry.
The hyperfine splitting shows uniaxial behavior, with a) =88.7mT and
a; = 5.9 mT [60]. The species responsible is undoubtedly the F, ion (Vg center). If
the experiment is done with KClI, the spectra (Fig. 9.8) from the molecular ions
Fc—=**cn, *Pc1—*"C)” and 'C1—"Cl) provide redundant and incontroverti-
ble (and redundant) identification that the center here is Cl, . Interpretation of Fig. 9.8 is
left as a problem for the reader.

In other cases the appearance of hyperfine structures is not sufficient to provide a
positive identification. For example, y-irradiated KNOj; exhibits the EPR spectrum
shown in Fig. 9.9. There are at least three radical species, each of which contains a
nitrogen atom, as evidenced by the triplet hyperfine splittings. However, the assign-
ment to specific radicals requires further information. The reasonable possibilities
can be listed as NO,, NO~, NO;, and NO7 . The experimental results for the
hyperfine and g matrix principal values are listed in Table 9.6.

The identification requires a knowledge of the theoretical predictions of the struc-
ture and orbital sequence in each radical; in addition, one requires information from
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FIGURE 9.9 Spectra of radicals obtained on v irradiation of KNOs;. Species 1 (lines «, 8

and 1) has been assigned as the NO, radical. Species 2 (lines a, b and c) has been assigned as
the NO327 radical. [After R. Livingston, H. Zeldes, J. Chem. Phys., 41, 4011 (1964).]

studies of these radicals in other host matrices. In various hosts, NO, exhibits a 4N
hyperfine coupling with little anisotropy and an isotropic hyperfine coupling of
about 150 MHz [61]. The small anisotropy arises from the fact that NO, is
usually rotating about its two-fold axis, even in a solid. Fixed NO, exhibits

TABLE 9.6 Hyperfine and g Matrices for Radical Species Found
in y-Irradiated KNO;

N Hyperfine

Species g Components Components (MHz)
1 gH :2006” A”/l’l: 176”
2 g = 2.0031" A, /h=12.08"
g1 =2.0232 A /h=9.80
g1 = 2.0057 A, /h=189.0

“H. Zeldes, “Paramagnetic Species in Irradiated KNO5”, in Paramagnetic Resonance,
Vol. 2, W. Low, Ed., Academic Press, New York, NY, U.S.A., 1963, p. 764.
’R. Livingston, H. Zeldes, J. Chem. Phys., 41, 4011 (1964).
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considerable anisotropy. The large hyperfine coupling arises from the fact that the
unpaired electron is located primarily in a non-bonding orbital on nitrogen. The g
matrix is virtually isotropic, with g5, =~ 2.000. Comparison with Table 9.6 indicates
that species 1 is probably the NO, radical.

In NO; (the symmetric isomer; D3;) the unpaired electron is located in an orbital
composed largely of non-bonding oxygen p orbitals lying in the plane of the
molecule. Thus the nitrogen hyperfine coupling is expected to be very small. Exam-
ination of the results in Table 9.6 suggests that species 2 may be this NO; radical.

Species 3 exhibits considerable isotropic and anisotropic hyperfine interaction.
NO#~ is a reasonable possibility, since this ion is expected to be not quite planar
[62], that is, a slightly distorted 7-type radical. The distortion would introduce
some s character into the orbital of the unpaired electron and thus account for the
large isotropic hyperfine coupling (~120 MHz).

Structural Information. When a radical species has been identified, the g and
hyperfine matrices can provide considerable information about the detailed geo-
metric and electronic structure of the radical. The NO, radical (observed in
NaNO, [63]) is an excellent example. From Table H.4 one notes that a single elec-
tron in a 2s orbital on a free nitrogen atom would give rise to an isotropic hyperfine
coupling of 1540 MHz. From the observed value of Ag/h = 151 MHz, the
unpaired-electron population in the nitrogen 2s orbital is computed to be
ps = % = 0.10. Similarly, from the maximum value in the anisotropic hyperfine
matrix, the population in the nitrogen 2p, orbital is computed to be
Py = % = 0.25. Hence the 2p/2s ratio is 2.5. A simple consideration of orbital
hybridization suggests that the bond angle is between 130° and 140°. This is in
good agreement with gas-phase vibrational analysis [64] and microwave results
(134°) [65]. Presumably, the unpaired-electron populations for the nitrogen 2p
and 2s orbitals do not add up to unity because there is some population in 2p orbi-
tals on the oxygen atoms.

When isotropic hyperfine couplings are small, as for species B in Table 9.6, one
must beware of interpreting these in terms of a percentage of s character in the
orbital of the unpaired electron. The indirect mechanism leading to isotropic hyper-
fine coupling (Section 9.2.3) may give the major contribution. Generally, if
|ps] < 0.05 as computed above, then an interpretation in terms of a bond angle is
dubious.

It is interesting to compare the EPR results for isoelectronic series of radicals.
Table 9.7 contains the data for the ClO5, SO5 , and PO327 radicals, as well as for
the NO, and CO, radicals. It is clear that as the atomic number of the central
atom decreases, the tetratomic radicals become more pyramidal (as evidenced by
the decreased ratio p,/p,); the triatomic radicals become more bent.

As a final example of inorganic radicals, we cite the EPR of adsorbed oxygenic
species [66]. The S = %ions O ,0, and O3 on the surfaces of various materials all
show characteristic spectra, corroborated with the help of 0 enrichment, and
undergo chemical interconversions of catalytic interest.
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9.6 ELECTRICALLY CONDUCTING SYSTEMS

Electrically conducting systems represent another example (see Section 9.2.8) of inter-
acting electrons; in this case the cooperativity extends over the entire macroscopic
sample. We consider metals, metal ammonia and amine solutions, semiconductor, and
graphitic materials. The analysis of EPR lineshapes and linewidths can in principle yield
information about the electrical conductivity, conduction-electron g factor and spin
relaxation time, the electron state density on the Fermi energy surface and carrier diffu-
sion parameters. Frequently, especially in solids, mobile electrons are called ‘itinerant’.

9.6.1 Metals

Metals may be visualized as a matrix of fixed cations in a sea of highly delocalized
(conduction) electrons; as they are highly mobile, they are able to interact with each
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FIGURE 9.10 (a) First derivative of the ideal dysonian absorption line in the X-band region;
(b) typical first-derivative EPR spectrum observed in colloidal samples of Na(s), with mean
particle diameter small compared to the skin depth. Horizontal scale is not the same as in (a).
[After F. Vescial, N. S. VanderVen, R. T. Schumacher, Phys. Rev., 134, A1286 (1964).]
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other. EPR signals are observed [67]; however, only the layers near the surface con-
tribute, since the excitation field B, penetrates only a short distance (~1 wm) into
the metal (skin effect).

The magnetic susceptibility in metals has a diamagnetic component due to the
circulation of electrons in the field B. This is opposed by the normal paramagnetic
component due to the unpaired electrons. The g factors of the observed EPR spectra
are close to g,. For example, in sodium metal, g — g, = 9.7(3) x 10~* in both
the liquid and solid phases [68]. The EPR lineshape typically is asymmetric
(Fig. 9.10), arising from a mixture of absorption and dispersion effects. This admix-
ture arises because the electron diffusion relative to the surface occurs in times that
typically are long compared to the spin-relaxation times, as explained by Dyson and
others [69,70].

It has been possible to study S-state ions in metals [71], and thus to learn details of
the interaction between the conduction electrons and the inserted spin probes (gado-
linium ions). The observed g shifts (2.01 — 1.88) correlate nicely with certain prop-
erties of the pure alloys used as solvents.

9.6.2 Metals Dissolved in Ammonia and Amine Solutions

When alkali or alkaline-earth metals (M) are dissolved in liquid ammonia or amines,
ionization takes place to produce metal cations and solvated electrons. The latter
(blue color when dilute in liquid NHj) exhibit very sharp EPR lines (width
0.002 mT!) with g =2.0012(2), independent of concentration (<1 M) and of
cation M [72-74].

In concentrated solutions (bronze in color), the electronic conductivity becomes
metallic, rather than electrolytic, and the EPR line broadens, becoming dysonian in
shape [74]. Furthermore, solid cubic complexes M(NH3), can be isolated [e.g.,
Li(NH3)4 [75]] that exhibit EPR lines with dysonian shapes characteristic of
normal metallic behavior [76].

Dilute solutions of metals in amines exhibit EPR spectra with resolved '*N hyper-
fine splittings, which give some insight into the structure and dynamics of the inter-
action of the electron with the surrounding solvent molecules [77].

With crown ethers, such as 18C6 (XVI) (inert ligands capable of encapsulating
alkali cations), it is possible to isolate stable electrides [e.g., Cs*(18C6),e ] containing

[
o

(XVI) 18C6 crown ether
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close to a unity stoichiometric ratio of electron anions to metal cations. The crystals
exhibit a single dysonian line at g &~ g, (linewidth 0.05 mT) down to 3 K [77,78]. The
temperature dependence of the electrical conductivity suggests that the material is a
semiconductor with a band-gap energy of 0.9(1) eV.

9.6.3 Semiconductors

Semiconductors, like insulators, have virtually continuous electronic energy bands,
derived from orbitals based on all atoms in the crystal. The highest occupied band
(valence band) is virtually filled with electrons and is separated from the next vir-
tually unoccupied band (conduction band) by an energy gap (band-gap) that has
few or no energy levels. In insulators the band gap is very large (>4 eV), so that
thermal excitation of electrons from the valence band to the conduction band is
rare. In semiconductors the band gap is smaller (1-3 eV), so that electron (and
hole) conductivity, arising from promotion of electrons between these two bands,
is possible at moderate temperatures. This conductivity may be enhanced greatly
by doping with appropriate donors (n-type) or acceptors (p-type), which leads to for-
mation of paramagnetic species.

EPR has proved to be an important tool in the study of semiconductors, particu-
larly in identifying and elucidating the structure of point defects and impurity ions.
For example, the tetrahedral structure of solid Si can be damaged by electron
irradiation, generating defects (V*, V® and V™) at which electrons are trapped
next to Si atoms with ‘dangling’ bonds [81-83]. The neutral vacancy (V°) has
four interacting dangling bonds that interact to produce spin pairing and thus is dia-
magnetic. The V™ and V™ species have S = 1 and exhibit EPR spectra, often with
resolvable *°Si hyperfine splittings.

Center V' exhibits an EPR spectrum featuring three equally intense prominent
peaks, each flanked by weaker 2°Si hyperfine doublets [74,84]. On applying uniaxial
stress to the crystal, one can alter the relative intensities of the three peaks
(Fig. 9.11). The explanation for the triplet is that any one of three energy-equivalent
distortions occurs at each vacancy site, differing in the location of the one-electron
bond and the two-electron bond formed between the four tetrahedral silicon neigh-
bors. External stress redistributes these bond configurations among each other.

The mixed semiconductors (III-V or II-VI) have also been widely studied by
EPR/ENDOR. The anion anti-site center in p-type GaP [85] is an example of a
center in which a group-V atom occupies a group-III atom site, forming a “double
donor”. For example, the center P4*(P37), exhibits an EPR spectrum (Fig. 9.12)
with g = 2.007(3), consisting of an isotropic hyperfine doublet (ay = 103 mT)
arising from the central P ion; each of these lines is split into an (anisotropic)
1:4:6:4:1 quintet (~9 mT) from interaction with the four tetrahedrally disposed
P neighbors [85]. A superior technique for investigating such defects, and others in
semiconductors, features optical detection of EPR and ENDOR (Chapter 12).

For example, a 1992 study [86] reports detection of the microwave-modulated
luminescence (at 0.8 eV) from the first-neighbor *'P shell of the phosphorus antisite
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FIGURE 9.11 Changes in the 20-GHz EPR spectrum of the silicon vacancy center V7 (at
4 K) under compressional stress. The insets sketch the defect bonding pattern corresponding
to each line. Here B || [100]. The stress was applied along [100]. [After G. D. Watkins, J. Phys.
Soc. Jpn., 18, Suppl. 2, 22 (1963).]

in zinc-doped InP, yielding |A;|/h = 368.0(5) and |A | |/h = 247.8(5) MHz for each
of the four nuclei.

Numerous other magnetic defects—for example, clusters of vacancies, interstitials,
and transition ions—also occur in semiconductors, but these cannot be discussed here.
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FIGURE 9.12 EPR spectrum of the 3P4+ jon in the Ps." anti-site center [P (P37),] in the
II-V semiconductor GaP (34.8 GHz, B || [100], 20 K). [After U. Kaufmann, J. Schneider,
Festkorperprobleme, 20, 87 (1980).]
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Clusters of molecules also show semiconductor properties. An interesting
example is lithium phthalocyanine (LiPc) (XVII), in which the m-radical rings

/ \
AN \%

(XVI) lithium phthalocyanine

stack linearly with the Li atoms superimposed. The EPR spectrum of the solid con-
sists of an exchange-narrowed sharp line (AB,,, = 0.005 mT) at g = 2.0015 [87,88].
This broadens dramatically as a result of exchange interactions when O, (Section
10.5.3.1), diffusing rapidly through the channels in the crystal, is admitted (and
does so reversibly). The substance is chemically stable and offers a sensitive and
rapid means of measuring O, concentrations in solutions by means of EPR.

9.6.4 Graphitic Compounds

Graphitic intercalation compounds are distinct in that they are highly anisotropic. A
comprehensive review of the status of the conduction EPR field of these conducting
‘metallic’ materials became available in 1997 [89].

9.7 TECHNIQUES FOR STRUCTURAL ESTIMATES
FROM EPR DATA

Despite the ultimate need for complex large-scale numerical modeling, various more
or less empirical but relatively simple techniques have been developed to attain
structural information from the electron-spin electron-spin interaction parameters
(D, J, set of B,” discussed in Section 9.7.2).

9.7.1 The Newman Superposition Model

This empirical technique [90—92], applied mostly to transition ions embedded in a
symmetric crystal structure (e.g., in a mineral), can describe the electronic quadru-
pole matrix D in terms of additive uniaxial crystal-field contributions from the
nearest-neighbor ions. It can give information about the coordination number,
ligands and local symmetry, and has most often been applied to S-state ions
(Mn**, Fe** and Gd>") in oxides and halides.
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The Newman model postulates that

_1p Z(s'cos2 6 — 1) Rp\” 9.17)
—2 0 i i Ri .

for metal ion M and ligand type X. The sum is over the nearest-neighbor ligands (all
of the same type), polar angle 6; gives the direction between ligand X; and axis z of a
cartesian set fixed at M, and the distance between M and X; is R;. Parameters
Do(M, X, Ry), Rp and 1, are evaluated empirically; typically, the reference distance
is .19 <Rp <021 nm and tp =8 + 1.° For parameter E, an equation differing
from Eq. 9.17 only in the form of the angular factor is appropriate.

For systems MnX(,‘P with X = CI, Br and I, studies reveal that parameter D,
increases monotonically with increasing covalence of the Mn—X bonds [94]. Its
complex behavior depends, for instance, on local distortions.

As a second example, we cite the good success of the Newman model in the
interpretation of the $? and S* parameters for Fe*™ in a cation site of Li,O, where
two neighbor sites appear to be Li* vacancies [95]. However, the model is none
too successful in some same cases [96].

9.7.2 The Pseudo-cube Method

The fourth-order terms, that is, measured coefficients of spin-hamiltonian terms
quartic in the components of (Section 6.6 and Eqgs. 8.17), are even more sensitive
than those (i.e., D) quadratic in S. They are found to be useful, despite the fact
that they are seldom available with the same accuracy as D, in learning about the
location of S-state ions and their local environment.

The method of analysis, developed by Michoulier and Gaite [97,98], depends on
transforming the fourth-order measured parameters to various rotated coordinate
frames (other than the lab crystal frame) until one is found exhibiting the highest
local symmetry around the paramagnetic ion being investigated. Various criteria
for this have been developed. For example, the sites of Fe’" ions in KTiOPO,
can be identified uniquely as being type Ti(1) rather than Ti(2), by means of the
pseudo-cube method [99].

9.7.3 Distances from Parameter D

In triplet-state systems, some rough estimates of interelectron distances are available
from the principal values of D, that is, from D and E that depend on the mean dis-
tance (i.e., on ) between the two electrons with parallel spins. In particular, from
Egs. 6.15 and 6.25, one has (see also Eq. 6.41)

3“0( B, )2<ﬂ> (9.184)

3o (VX
= 162 (8B < ) (9.18b)
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where X, Y, Z are the components of the interelectron vector expressed in the
principal-axis system. Thus experimental values (e.g., obtained from Egs. 6.32)
can provide information about the spatial disposition of the two electrons, if the
averages over the electron positions in Eqs. 9.18 can be modeled. This analysis is
valid only if the interaction is predominantly dipolar in nature, that is, if there is
no significant contribution from spin-orbit coupling to D.

9.7.4 Eatons’ Interspin-Distance Formula

It has proved possible to extract mean distances r between spin-% centers via the
simple formula

A(MMg = +2)

AaMs = T2 -6
AMMs = +1) kyr (9.19)

where the left side contains the ratio of the integrated areas (under the absorption
curve) for the two types of transitions possible (Section 6.3), corrected for any
hyperfine effects present. The proportionality factor &, is obtainable by a suitable
procedure [100,101]. The recommended value is k.= 1.95 x 1073 nm®. This
method is valid when the dipole-dipole interaction dominates over anisotropic
exchange, typically for r > 0.4 nm =4 A. The method has been applied, for
example, to obtain r for an interacting Cu®" (3d°)—nitroxyl spin-labeled
species [100].

9.7.5 Summary

EPR is rapidly becoming an excellent tool for discerning atom positions, as well as
bond lengths and directions, in paramagnetic species. Because of its sensitivity, this
technique can furnish such information where non-spectroscopic methods (e.g.,
x-ray diffraction) fail. A recent journal issue is devoted to this topic [102].
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NOTES

. There is confusion in the literature as to the usage of terms such as ‘spin density’ and ‘spin

population’. We prefer to use ‘density’ in the sense that dimensions of volume ' are
implied. Thus electron probability density has the units m >, and charge density has
units Cm >, and spin density has units m~>. The term “spin population” is not
recommended, since it can also suggest the Boltzmann distribution among the spin
states. Rather, ‘unpaired-electron population’ is used herein to denote the unit-less
quantity equaling the square of (unitless) wavefunction coefficients, or algebraic sums
thereof (which can be negative).

. We deal in this chapter with isotropic hyperfine splitting constants. For convenience, we

drop the subscript O that indicates this.

. Reference 2 applies and discusses the unrestricted self-consistent-field molecular-orbital

scheme, based on the Hartree-Fock-Roothaan equations, which resorts to intermediate
neglect of differential overlap (INDO).

. However, various other effects enter. The Jahn-Teller distortion (Section 8.2), including

vibronic coupling, and the nearby cation (e.g., K¥) affect the degeneracy.

. See the series of papers by J. Kommandeur and co-workers, J. Chem. Phys., 47,391-413

(1967).

6. Using relations such as Eq. 9.6 for adjacent as well as more distant carbon atoms.

. In Chapter 4 we deal with the opposite extreme: the case in which the zero-field splittings

arise entirely from spin-orbit coupling.

. The silicon metal-oxide-semiconductor field-effect transistor (MOSFET) is a dominant

device in the electronics industry. The whole unit can be mounted in a magnet, and the
recombination of electrons and holes can be observed by monitoring its electrical
characteristics: electrically detected magnetic resonance (EDMR) [79,80].

. A higher value, t, = 16, has more recently been recommended [93].
10.

It is unusual to have two different hyperfine splittings for two hydrogen atoms bonded to
the same carbon atom. This implies that Q is not the same for the two hydrogen atoms. An
explanation for this effect has been proposed [104].
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PROBLEMS

9.1 The proton hyperfine splittings for the naphthalene anion are 0.495 and
0.187 mT (Section 3.2.2). Based on the molecular orbitals of naphthalene
(Problem 9A.3), how should these hyperfine splittings be assigned? How
does the ratio of hyperfine splittings compare with the ratio of the squares of
the atomic-orbital coefficients for the molecular orbital containing the odd
electron?

9.2 Given that the proton NMR transition energies in a free radical containing a
proton with hyperfine splitting a; are

hv = 1g,B,B; — g.B.aiMs]| (9.20)

where B; is the NMR resonance field, derive Eq. 9.10 assuming that the energy-
level populations are given by the Boltzmann distribution.

9.3 Proton NMR spectra of ethylbenzene at 56.4 MHz are shown in Fig. 9.13a
without and in Fig. 9.13b with the corresponding monoanion as solute. From
the shifts seen in the latter, confirm that the hyperfine splittings for the CH,
and the para protons of the group are +0.080 and —0.087 mT, respectively.
In this system, electron transfer is so rapid that all ethylbenzene molecules par-
ticipate; the shifts are proportional to the mole fraction of the reduced form.

9.4 Calculate the unpaired-electron populations in the allyl radical, H,CCHCH,,
from the Hiickel molecular orbitals and energies given in Fig. 9A.1, taking
A = 1.1. Compare the results with the populations derived from the exper-
imental hyperfine splittings [103] given below, taking Q = —2.70 mT.
Assume that the smaller hyperfine splitting is positive, corresponding to a
negative unpaired-electron population on the middle carbon atom. The
two primary resonance structures of the allyl radical, with hyperfine
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Hring

50Hz CH

CH,

50 Hz
e

p proton  CH,

proton chemical shift

FIGURE 9.13 Proton magnetic resonance spectra at 56.4 MHz of (a) 1.93 M ethylbenzene,
and (b) 1.93 M ethylbenzene plus 4.5 x 10> M ethylbenzene anion. The solvent is liquid
d®-tetrahydrofuran at —75°C. Peaks marked S are due to an impurity. [After E. de Boer,
J. P. Colpa, J. Phys. Chem., 71, 21 (1967).]

9.5

splittings, are'”

0.406 mT
1 i
1.393 mT} H,C=C—CH, <—> H,C—C=CH,
1.483 mT
The proton hyperfine splittings for the 1,3-butadiene anion are —0.762 and
—0.279 mT.
(a) What is the average value of Q?

(b) Explain why |Q] is so low. (Usually Q ranges from —2.5 to —3.0 mT.)
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9.6 The 'H and ">C hyperfine splittings (including the signs) have been measured
[105] for the radical

(XI) perinaphthenyl

a' =-0.6270 mT @™ =0.1833 mT ;€ =0.979 mT
@ = —0.792 mT a;o° = —0.792 mT a;3¢ = 0.332 mT

The wavefunction for the non-bonded orbital is as follows:

1
‘!’NB:%(¢]_¢3+¢4_¢6+¢7_¢9)

(@) Assume Qcy't = —2.7 mT, and calculate p; and p,.

(b) p1o and p;3 have been computed from theory and are given as
pio = —0.054 and p;3 = +0.044. Use this spin distribution to calculate
the '°C splitting constants. (Remember that positions 10 and 13 have
three carbon atoms bonded to the central carbon, whereas positions 1
and 2 have two carbons and a proton.) How do these compare with the
experimental '°C splittings?

9.7 The statement has been made that the value of Q determines the total extent
(Section 9.2.5) of the 7-radical EPR spectrum. For the benzene anion the spec-
tral extent is ~2.25 mT, for CH; ~6.9 mT, and for perinaphthenyl, ~4.3 mT.
Comment on the magnitudes of these values.

9.8 Interpret the spectrum shown in Fig. 9.8, which arises from the Cl, ion
in KCI.

APPENDIX 9A HUCKEL MOLECULAR-ORBITAL
CALCULATIONS

A brief summary of the HMO approach to the calculation of orbital energies and
unpaired-electron distributions in 7r-electron systems is given here. Because of the
crude assumption of non-interaction among the electrons, we can treat all anions,
neutral molecules, and cations using the same theory. Thus the o system of H,",
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H, and H, can serve as one basic example; these calculations yield equations
equally applicable to the -electron states of the molecules C,H,", C,H, and
C,H, . This approach has been widely described in textbooks and in intermediate-
level chemistry courses. Hence here we shall only map out successive steps and
summarize intermediate and working-level expressions. Detailed molecular-orbital
calculation procedures and tabulations of the results for many molecules are given in
the references at the end of this appendix.

1. Define the molecular orbitals to be linear combinations

[ = cinld) + caldy) + -+ + cinl by) (OA.1)

of n normalized atomic orbitals. The total energy expectation value for the ith
molecular orbital (i =1, ..., n) is given by (¢;|H|i);). We shall not need to
establish the form of the hamiltonian H explicitly. For the present we set
n = 2; that is, we consider systems such as H, or the C;H, 7 system for
which one has two molecular orbitals

1) = cuild) + craldy) (9A.2qa)
1Y) = catldy) + caldy) (9A.2b)

of interest. It is useful to define two parameters

Hy; = ($|H¢)) = H; (9A.3a)
Sij=Adild;) =S;i (9A.3b)
in terms of the atomic orbitals (i,j = 1,2, ..., n).

2. Determine the ratio of the coefficients c; in each state (we suppress the first
index here) by setting the derivatives dU/dc; and oU/dc, equal to zero.
Then rewrite the two resulting equations in terms of the parameters H;; and
S (i, j=1,2)

ci(Hyy — US11) + c2(Hip — US1p) =0 (9A.4a)
c1(Hia — US12) + ca(Hyp — USy) =0 (9A.4D)

3. Set Hll = H22, Sll = 822 =1, and SIZ =0
4. Write determinantal equations

Hy, -U Hi,

(9A.S)
Hi, Hy —-U
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noting that c¢; and ¢, are the variables. Solution of the resulting determinant
yields the energies
Ul :H11+H12 (9A6a)
U, =H —Hp;, (9A.6b)
of the two levels. The ratio ¢, /c, is found to be + 1 for the orbital with energy

U, and — 1 for the orbital with energy U, The coefficient ¢, is determined by
the normalization condition ({/|/) = 1. The final result is that the wavefunc-

tions are
1
[Y) = ﬁ(lcﬁﬁ +|¢,)) (energy Uy) (9A.7a)
1
[Yn) = ﬁ(ldh) —|¢,)) (energy U,) (9A.7D)

for the lower and the upper states, since H; and H;, are both negative.

In the HMO description of ground-state H,* and C,H,™, the single electron
occupies the lower level. For ethylene in its ground state, the two 7 electrons
occupy the lower level of this diamagnetic molecule.

It is important to be able to establish the energy levels for linear conjugated
systems of n atoms. Each of the n molecular orbitals is taken to be a linear combi-
nation of n atomic orbitals (Eq. 9A.1). The secular determinant is set equal to zero.
The integrals H;; and S;; are the numerical parameters already encountered. Thus,
generalizing Eq. 9A.5, one has

Hyy — USyy  cveeeeeee i H,, — US,»
Hi3—US;3 Hyp—US;s  Hyp—USz  --ee-- H3, — US3,| =0
Hip—US12 Hxp—US» Hp—USyz - Hy, — US»,
Hy—USyw  Hip—US, Hiz—US;z -oeee Hy, — USy,

(9A.8)

where the rows are arranged in increasing order of the energy H;;. The following
simplifying assumptions are made:
L. S;=1,8;=0ifi #j.
2. All H; (i # j)= B if atoms are bonded and zero otherwise. The numerical
parameter 3 is called the resonance integral (a negative quantity).
3. All H;; = a. The numerical parameter « is called the Coulomb integral (a
negative quantity).

These symbols, used as matrix elements, should not be confused with the spin
functions « and 8 used elsewhere in this book.
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Application of Eq. 9A.7 to the allyl molecule leads to the determinantal equation

AN

C==CH==C
/ \
H H
a—U B 0
B a—U B |=0 (9A.9q)
0 B a—U

On dividing all terms by B and making the substitution x = (e — U)/ 3, one obtains
the determinantal equation

=0 (9A.9b)

O = =
— o
= = O

The three eigenvalues, obtained by expansion of the determinant, and the corre-
sponding wavefunctions are

1 1 1

Us=a—+2B %Zid)‘_\—fz(ﬁﬁi% (9A.10a)
1 1

U=« 1z :ﬁ@ +0¢, —ﬁ% (9A.10b)
1 1 1

U =a++2B ¢1=5¢1+\—5¢2+5¢3 (9A.10¢)

The orbital energy levels for and spin configurations of the allyl radical, cation
and anion are shown in Fig. 9A.1.

The coefficients for the set of corresponding molecular orbitals can be obtained
from the secular determinant (Eq. 9A.9b) by writing each line as an equation and
substituting each eigenvalue (x = —+/2, 0 or +/2) in turn, and by applying the nor-
malization condition (Eq. 9.3)

Calculation of the four Hiickle molecular orbitals and energies of 1,3-butadiene is
given as a problem at the end of this appendix; the results are quoted in Table 9A.1.

a-v28 Vs

e T

a+vep 4 H H ¥
CATION RADICAL ANION

FIGURE 9A.1 The orbital energy levels of the allyl cation, radical and anion. Here
(i=1,2,3) is the 2p, atomic orbital on carbon atom i.
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TABLE 9A.1 Molecular Orbitals and Energies of 1,3-Butadiene

Molecular Orbitals Orbital Energies

Yy = 0.371¢p; — 0.600¢, 4 0.600¢p5 — 0.371 ¢4 Uy=a— %(«/5 + DB
W = 0.600¢; — 0.371¢h> — 0.371¢h3 + 0.600¢h4 Us=a-1(/5-1DpB
Y = 0.600¢; + 0.371¢, — 0.371¢p3 — 0.600¢,4 Up=a+ %(«/5 - DB
Y = 0.371¢; + 0.600¢, + 0.600¢5 4 0.371¢p4 U =a+ %(«/g + DB

TABLE 9A.2 Molecular Orbitals and Energies of Benzene

Molecular Orbitals Orbital Energies
lﬁ(b):ﬁ(d’l—%"‘%—@‘f’d’s—(l’e) Ub)=a -2
|:l/’(€2)=%(¢2—¢3+¢5_¢6) Uly)=a—-B

l/’(ez):\/%—z(z"r’s]_¢2_¢3+2¢4_d)5_¢6) Ul =a—-B
|:¢'(€1)=£(¢2+¢3—¢5—¢6) Ule))=a+p

l/’(el)z\/%—z(zd’]+¢2_¢’3_2¢4_¢’5+¢6) Ue)=a+p
¢(a)=ﬁ(¢1+¢2+¢3+¢4+¢5+¢6) Ub)=a+2p

The neutral molecule has four 7 electrons. Following the rules, these must be
assigned to the molecular orbitals of lowest energy (i.e., two to ¢, and two to s,
since 3 is negative) to describe the ground state.

For other conjugated systems one may proceed in an analogous fashion.
The secular determinant for linear conjugated systems contains the values a—U
on the diagonal, with 8 one position off the diagonal, and zero elsewhere. For
cyclic systems there are other non-zero off-diagonal terms. The resulting n x n
determinant may easily be solved by computers; however, the task is simplified if
the determinant is factorable; this can often be accomplished if of the symmetry
properties of the molecule are employed using straightforward methods of group
theory [A1,A2]. The 7 molecular orbitals of benzene (Table 9A.2) are entirely
determined by symmetry. For further information regarding HMO theory, see
Refs. A3-A8.

HMO References

Al. A. Streitwieser Jr., Molecular Orbital Theory, Wiley, New York, NY, U.S.A., 1961.
[Chapters 2 and 3 describe in detail the procedures for calculations of orbital energies
and wavefunctions of hydrocarbons. Chapter 4 describes refinements of the method and
Chapter 5 deals with applications to molecules having hetero (N, O, S or halogen]
atoms.
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. F. A. Cotton, Chemical Application of Group Theory, 3rd ed., Wiley-Interscience,
New York, NY, U.S.A., 1990. (The treatment of monocyclic systems in Chapter 7 is
of special interest, as is Chapter 8, dealing with inorganic complexes).

J. N. Murrell, S. F. A. Kettle, J. M. Tedder, Valence Theory, Wiley, New York, NY,
U.S.A., 1965. (Chapter 15 deals with the 7r-electron theory of organic molecules.
Section 15.8, “A Critique of Hiickel Theory,” gives some insight into the successes of
the HMO approach.)

L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York,
NY, U.S.A., 1966, Chapter 1.

M. I. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill,
New York, NY, U.S.A., 1969, Chapter 5.

C. A. Coulson, A. Streitwieser, Dictionary of m-Electron Calculations, Freeman, San
Francisco, CA, U.S.A., 1965.

E. Heilbronner, Jr. P. A. Straub, Hiickel Molecular Orbitals, Springer, New York, NY,
U.S.A., 1966.

P. W. Atkins, Molecular Quantum Mechanics, 2nd ed., Oxford University Press, Oxford,
U.K., 1983, Section 10.9.

HMO Problems

9A.1 Set up the secular equation for the cyclopropenyl (C;H;) radical and solve

for the orbital energies. Draw an orbital energy diagram and show the distri-
bution of electrons among the 7 orbitals.

9A.2 Set up the secular equation for the 1,3-butadiene and solve for the energies.

Substitute the energies into the secular equations and determine the coeffi-
cients in the four 77 molecular orbitals (Table 9A.1).

9A.3 The seven lowest-lying Hiickel molecular orbitals

lvbn = Cnl¢1 + C112¢2 + Cn3¢3 +---+ C1110¢10

are shown below for naphthalene, in order of increasing energy; a structure
showing the atom numbering is given in Table 9.3.

l/ln Cni Cn2 Cn3 Cn4 Cns Cne Cn7 Cng Cn9 Cn10
Uy 0 —0.408 0.408 0 0 0.408 —0.408 0 0.408 —0.408
Yo 0425 —-0.263 —0.263 0425 —0.425 0.263 0263 —0.425 0 0

¥s  0.425 0263 —0.263 —0.425 0.425 0.263 —0.263 —0.425 0 0

Uy 0 0.408 0.408 0 0 0.408 0.408 0 —0.408 —0.408
Y 0.400 0.174 —0.174 —-0.400 —0.400 -—0.174 0.174 0.400 0.347 —0.347
Y, 0.263 0.425 0.425 0263 —0.263 —0425 —-0425 -0.263 0 0

Y 0.301 0.231 0.231 0.301 0.301 0.231 0.231 0.301 0.461 0.461

(a) Without doing any calculations, sketch approximately the set of HMO
energies for naphthalene, and show the orbital occupation by electrons
for the —1, 0 and +1 charged species.
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(b) Compare 5 with s, and iy with ;. What identities may be written for
corresponding c,,; values of the related pairs of molecular orbitals?

(¢) What is the significance of a zero value of c,;?
(d) Sketch the locations of nodal planes for all these orbitals.

9A.4 Calculate the unpaired-electron populations at each of the carbon atoms in
the benzyl radical (C¢HsCH,), taking into account the following attributes
of odd-alternant hydrocarbons.

1. There are two possible numbers of starred atoms, depending on the start-
ing point. Choose the configuration with the larger number of starred
atoms.

2. The unpaired electron resides in a non-bonding orbital, for which one
notes that (a) the molecular-orbital coefficients of unstarred atoms are
zero, and (b) the sum of the molecular-orbital coefficients of atoms
about a starred position is zero.

Starting at one of the starred atoms in the benzene ring, assign the relative values of
coefficients at each atom. From the requirement that the sum of the squares of the
coefficients is equal to 1, ascertain the unpaired-electron population at each position.



CHAPTER 10

RELAXATION TIMES, LINEWIDTHS
AND SPIN KINETIC PHENOMENA

10.1 INTRODUCTION

In previous chapters, time dependences have only been implicit (e.g., Larmor
frequencies and sinusoidal excitation fields B;). In this chapter we examine situ-
ations where B, remains continuous with a constant amplitude, but the properties
of the EPR signal reflect time-dependent processes occurring in the sample.
Chapter 11 examines details of the situation where the amplitude of the excitation
field itself is time-dependent, namely, pulsed EPR.

This chapter is especially concerned with the various relaxation times that
characterize the interaction of electron spins with the surroundings and with each
other. Thus, in some cases, the lifetime of the individual spin-orientation state in
the radical, or that of the radical itself, may be so short that the linewidth is affected.
In this case kinetic information may be obtained from the lineshape. These effects
can arise from electron exchange and transfer between molecular species, intra-
molecular motions, limited molecular tumbling in liquid or solid solution, chemical
reactions, and so on. The linewidth effects can be striking and, unless understood,
can make interpretation of the EPR spectrum difficult. In other cases the relaxation
is dependent on the concentration of the paramagnetic species; then kinetic infor-
mation can be obtained from the intensity changes.

The phenomenon of dispersion always accompanies the resonant absorption of
energy from the microwave field—indeed, dispersion always accompanies absorp-
tion in any region of the spectrum. Herein,' the term dispersion denotes the real
part of the microwave magnetic susceptibility (Eq. 10.29a), whereas absorption is

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.
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a measure of the imaginary part (Eq. 10.290). Dispersion manifests itself in a shift in
the resonant frequency v, of the cavity or other resonator. As the magnetic field
approaches the region of an absorption line, the frequency shift of the resonator
first is negative, then increases rapidly through zero at the center of an absorption
line to a maximum and finally decreases asymptotically to zero. Most spectrometers
have the source frequency-locked to v, so that the dispersion is absent (Section
E.1.5). Any device that detects the correction voltage for the would-be frequency
shift may be used to display the dispersion signal.

In this chapter we begin utilizing the bulk properties of a large ensemble of spins
(i.e., the total magnetization M per unit volume), which removes quantum-
mechanical uncertainties but does hide details of single-spin behavior.

10.2 SPIN RELAXATION: GENERAL ASPECTS

We begin our discussion by examining the properties of a two-level spin system,
which we define as an ensemble of spins with J :% (e.g., electrons or protons).
The spins are isolated in the sense that direct spin-spin interactions are virtually neg-
ligible and usually not explicit (Section 10.4.1). A constant uniform magnetic field B
is assumed to be present, so that the two energy levels, which can be occupied by
spins, are separated by the energy AU = U, — U,. Only the corresponding
Zeeman term in the spin hamiltonian is considered, so that AU = g3, B for electrons.

10.2.1 Spin Temperature and Boltzmann Distribution

We start by defining a thermodynamic parameter, called the spin temperature T, by

means of the relation
N, AU
— = — 10.1

N, exp( ky, Ts) (10.1

where N, and N, are the occupancy numbers of the upper and lower levels.” Here AU
denotes the energy difference per spin.

Now suppose that the spin system is subjected to a pulse of electromagnetic
radiation (B) tuned so that the photon energy matches AU (Fig. 1.2). This resulting
EPR energy absorption by the spins causes a change in populations; that is, the ratio
N, /N, is altered (Fig. 10.1). Since the spin system has gained energy, it can be
considered to be ‘hot’ compared to its surroundings (Fig. 1.7). We include here
the case when the occupancy ratio of the spin levels has become inverted (this
could also be achieved by a sudden reversal of the magnetic field), that is,
N,/N, > 1. Here T; must be taken to be negative.3 This implies that an even
greater energy uptake by the spin system has occurred.

The spin system in practice undergoes interactions with the surroundings, such
that it ‘cools’ and its temperature T eventually is restored to that (') of the surround-
ings through contact with it. As with any sufficiently simple thermodynamic system
that receives an extra energy 6U, at t=t,, it loses this excess energy to its
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FIGURE 10.1 Two-level spin system connected to the surroundings, which are at a
temperature 7: (a) spin system at thermal equilibrium (7 = 7); (b) spin system at a high
spin temperature (7y > T); (c) spin system at a negative spin temperature; (d) temporal
decay of the excess energy in (b) or (c¢). The total energy U is the sum N,U, +N,U,,
where N;, N, are the occupancy numbers and U,,U, are the energies of the lower and
upper states; 7 is the appropriate relaxation time.

surroundings with an exponential decay
oU = 86U, CXp[—(l — l‘o)/Tl] (10.2)

where 68U, is the excess energy at time 7 = f,, and 7 is the characteristic time for the
energy flow from the spin system into the surroundings (Fig. 10.1). Relaxation time
7 reflects the degree to which the spin system is connected to its surroundings. The
final state (r — o0) then is one for which 7y = T, and we note from Eq. 10.1 that the
spins only then attain the Maxwell—-Boltzmann distribution valid at temperature 7.

10.2.2 Spin Dynamics

We now examine the spin dynamics by focusing on the population difference

AN =N, — N, (10.3)
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FIGURE 10.2 Two-level spin system: N, and N, are the occupancy numbers in the upper
and lower levels, Z, and Z are the transition probabilities per unit time for upward and
downward transitions, AU is the energy separation of the two levels, and p, is the radiation
density, at frequency v (=AU/h), to which the system is exposed.

as the single variable AN(B, T,). Then

N, =%(N — AN) (10.4a)
Ny =1(N +AN) (10.4b)

where N = N, + N, is the total population of spin species. Note (Problem 10.1) that
AN/N ~ AU/2k,T; for |AU/k,T,| < 1.

Let the probabilities per spin in unit time for upward and downward transitions be
Z, and Z (Fig. 10.2). These are taken to be parameters time-averaged over an appro-
priate time period, for example, over the relatively high-frequency behavior of B,
when that excitation magnetic field is present.

Since it has been assumed that the spins are isolated from each other, the differ-
ential rate law for this kinetic system is

%: —2NZy +2N,Z, (10.5)
The first term on the right is the rate of upward transitions and the second the rate of
downward transitions. The factor 2 appears because an upward or downward tran-
sition changes AN by 2. Equation 10.5 can be rewritten as

d AN
Z, -7
=N —AN|(Z, +Z 10.6b
<Z¢+ZT )(wp (10.6b)

The spin system approaches a steady state, that is, d AN/dt = 0. Thus, from
Eq. 10.6b, we obtain

AN®* = N,* — N,* (10.7a)
Z, -7
N2 i

—NDL T2 10.7b
Z,+2, (10.75)
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where the superscript ‘ss’ refers to the steady-state condition. Equation 10.6b then
becomes

% = (AN® — ANX(Z, + Z») (10.8)

The quantity (Z, + ZT)_I has dimensions of time and is by definition the relaxation
time 7. Thus Eq. 10.8 becomes

dAN AN — AN
dt o T

(10.9)

Most often one can use the approximation Z; = Z, = Z (i.e., AN*/N is small), so
that 7, ~ (2Z)"'. We note that 7, is a statistical parameter, not to be associated
with individual spins. Equation 10.9 is a first-order kinetic equation with the solution

AN = (AN)y + [AN* — (AN) {1 — exp[—(t — 10)/T1]} (10.10)

Thus AN(7) evolves exponentially from (AN), toward AN® with a rate constant
ky = 7', where 7, is now seen to be the time required for AN to change by
[AN® — (AN)o][1 — ¢~ "]. Since the component M, along B of the magnetization M
is proportional to AN [i.e., proportional to (gB,/2V)AN for non-interacting unpaired
electrons in a volume V], M. also evolves exponentially to its equilibrium value M.°.

From the definition of 7 as the inverse of the sum of the transition probabilities
per unit time (Eq. 10.9), it is clear that 7, is related to the mean lifetime of a given
spin-orientation state. This lifetime limitation has an effect on the linewidth as
explained by the following argument.

All quantum-mechanical transitions have a limiting non-zero spectral width,
called lifetime broadening, which arises from the finite lifetime of any excited
state. Many books and papers attribute such non-zero frequency spreads to the
Heisenberg uncertainty principle, but at best give only a tenuous discussion of
the topic. Briefly, the underlying principle is 76U > h (Eq. B.74), where 8U is
the uncertainty in the energy of the system due to the non-zero probability Z per
second of its decay and 7= Z ! is its mean lifetime. The quantity |8U| ~ h/7is
called the width of the energy level considered. For example, if 7, = 10" s, then
|6U| ~10"%J or Av~ 10®s™!, corresponding to an EPR linewidth of about
6.0 mT. Lifetime broadening is one of the contributions to the homogeneous
linewidth (Section 10.4.1) and defines the minimum linewidth for a given system.

10.2.3 Mechanisms for 7;

So far we have not specified the nature of the transition probabilities Z; and Z,
other than that they exist. Several mechanisms can contribute to these terms, as
expressed by
Zy = Bup, + Wy (10.11a)
Zl :Aug +Bu€p\; +W¢ (1011b)
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where p, is the time-averaged radiation density” to which the spin system is exposed,
W, and W, are the upward and downward probabilities per unit time for transitions
induced by the surroundings (i.e., the lattice), A, is the Einstein coefficient for spon-
taneous photon emission, and B,,, and By, are the Einstein coefficients for stimulated
emission and absorption, here applied to magnetic dipole transitions. These coeffi-
cients A and B were defined in Section 4.6. Note that B,, = By,.

Above, for the sake of simplicity and following common practice (but, e.g., see
Ref. 2), we have omitted explicit inclusion of the inherent lineshape function [e.g.,
Y(v); see Tables F.1, and note Eq. 10.31, where w = 27rv] with non-zero linewidth
that describes that part of the spin system’s response associated with the radiative
processes (Einstein coefficients). Thus the overlap of p, and Y(v) determines the
intensity of the transition.

By substituting Egs. 10.11 into Egs. 10.8 and 10.9, we obtain

Au+W, —W
ANS =N et Wy = Wy (10.12)
Aué + 2Bulpv + W¢ + WT
and
71 = (Aue + 2Bup, + Wy + Wy)™! (10.13)

We note that 7, ! can be regarded as the sum 2,,(1; ,»)7l over distinct relaxation mech-
anisms. We consider three cases:

Case a. The spin system is removed from its surroundings, including impinging
radiation.” Then the B and W terms in Eqs. 10.12 and 10.13 are zero. Thus AN
decays with a rate constant 7, = A, '. In this case 7 is very long (~ 10 years
for EPR when field B = 1T, for a set of uncorrelated spins), but eventually
(t — o0) the system decays to AN &~ N, that is, with no spins in the upper
level. In other words, the temperature of the surroundings is effectively 0 K.

Case b. The isolated spin system is exposed to radiation from a source at temp-
erature 7. Now the B terms in Egs. 10.12 and 10.13 are non-zero. When the
source is a blackbody, then p, is given by the Planck blackbody law
[1, Chapter 25]. One can show (Problem 10.3) that now the spin system
comes to equilibrium with the radiation source at temperature 7, even
though there are no other surroundings. Thus the final ratio N,/N, of the
spin populations is given by Eq. 10.1 with T, = 7. However, at 3 K,* 7, is
still very long (now about 10° years). When the source furnishes an excitation
field B, oscillating at a well-defined frequency, the spins attain a value of T,
which can be said to define the effective temperature of that source.

Case c. The normal surroundings (electrons and nuclei) are now restored, so that
the probability terms W are present and dominate in Eqgs. 10.12 and 10.13. The
relaxation of the spin system, with the spin-lattice relaxation time ,° occurs pri-
marily through electron-spin flips induced by dynamic interactions with the sur-
rounding matter (‘lattice’). This can be anything from the molecule itself to the
surrounding solvent or lattice (if in a crystalline solid—hence the origin of the
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name). The lattice generally can be assumed to have infinite heat capacity, so that
its temperature can be taken as constant throughout the EPR experiment.
Approach of 7| to zero now implies approach to thermal equilibrium between
the spins and the lattice, that is, ‘instant’ energy transport from p, to the latter.

If the radiation density (p,) term dominates in Z and Z;, then these become equal
and AN — AN* — 0 (Egs. 10.7 and 10.10-10.13). Hence there will be no net
absorption of radiation by the spins; that is, the EPR signal disappears. This import-
ant tendency is called ‘power saturation’, and points to the importance of having an
adequate spin-lattice relaxation mechanism and of applying only a moderate B,
field.

Experimentally, 7 values are typically about 1 ms so that the W terms must be of
the order of 10°s™'. Since A, ~3 x 1072571, A,, can be neglected com-
pared to the W terms. The 2B,,p, term can be made as large or small as desired
according to the intensity of the exciting radiation. When this term increases and
becomes greater than the W terms, the system is said to approach saturation. For
the moment we assume that the system is not saturated sothat Z, = WyandZ, = W,.

Typically, the transitions between the spin levels are stimulated by fluctuations in
local magnetic fields arising from motions of the spin-bearing molecules or of the
surrounding structure. These fluctuations have a spectrum of frequencies that
range over many orders of magnitude with varying intensities (a spectral density).
However, only those fluctuations with a frequency that matches the EPR frequency
are capable of inducing transitions.

There are several mechanisms by which the spin-lattice interaction can take place
in condensed phases. They all involve interaction of the spin system with vibrations
(phonons) of the lattice. The phonon density in the lattice obeys a Boltzmann distri-
bution law. Thus there is a slightly higher phonon density at the energy of the lower
energy level than at the energy of the upper level. This is the origin of the inequality
in the W probabilities. Since W, # W, this interaction is not the same as that from
the absorption and emission of photons (the Einstein B coefficients). The inequality
of the W probabilities is essential to maintain a non-zero AN®** (Eq. 10.7).

The detailed description of the specific interactions leading to 7, is beyond the
scope of this book, but the following are some of the most important mechanisms:’

1. Direct Process. This involves direct phonon-assisted non-radiative tran-
sitions between the spin levels. In the high-temperature approximation (hv/
kpT < 1), which is valid for almost all experimental conditions, 7, is predicted
tovary as B~ T~ ' for S = L systems and as B> 7" ' for § > 1 systems [13].
This mechanism is found to be dominant only at very low temperatures.

2. Raman Process. As with Raman processes in electronic spectroscopy, this
process involves ‘virtual’ excitation followed by deexcitation to phonon
states much higher in energy than the spin levels. Depending on the details
of the interaction, the temperature dependence of 7, can vary from 7>
to T~ °, and thus this process becomes increasingly more important as the
temperature increases.
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3. Orbach Process. If a low-lying spin level exists at an energy A above the
ground manifold, a Raman process involving that state can dominate the spin-
lattice relaxation. In this case 7 is predicted to vary as exp(A/k,T), from
which A can be obtained. This process was first described by Orbach and
co-workers [14,15].

4. Other Mechanisms. Several other mechanisms have been proposed and
verified experimentally; most of them are even more complex than the one
presented above [9, Chapter 8]. In gases, collisions are an important relaxation
mechanism.

10.3 SPIN RELAXATION: BLOCH MODEL

We now turn to another view of spin relaxation, using the famous Bloch equations
[16] that describe the time dependence of the total spin magnetization vector M
(Eq. 1.8) in the presence of static and oscillating magnetic fields externally
applied. Here we present only a brief summary of the treatment. Full derivations
are available in many standard texts [9, Chapter 2; 17, Sections 3-5; 18, Chapter
11; 19,20]; most of these are developed in the context of NMR; however, the
basic theoretical framework is also applicable to EPR.
The Bloch equations are useful because they

1. Furnish a visual and intuitive model, in terms of vectors and torques, of the
magnetic-resonance phenomenon. This is especially helpful when an under-
standing of the effects of microwave pulses in EPR is required (Chapter 11).
An introduction to the rotating frame also ensues.

2. Simplify the very complex subject of the spin interaction with the atomic sur-
roundings by gathering together these aspects into just two empirical par-
ameters, the relaxation times 7; and 7.

3. Serve well to introduce the important concepts of absorption and dispersion.

4. Lead gracefully into the topic of interconversion between two ensembles of
different spin-state populations, for example, chemical exchange.

5. Give the reader a feeling for and confidence in the use of ensembles of spins.
This can be a helpful preparation for the adoption of the more powerful and
complex density-matrix techniques.

The Bloch equations apply to any pair of energy levels, more or less adequately.
They do, of course, have limitations in their usefulness. For instance, one cannot
employ them to visualize the quantum-mechanical behavior of individual spins.
Thus consideration of spin-spin coupling, for example, hyperfine effects, are
excluded, as are anisotropies of the medium. Also the effect on the magnetization
of the emitted photons, radiation damping [21], is neglected in our formulation. Fur-
thermore, the simplification that only two relaxation parameters are required is not
rigorously valid and fails to be exact especially for solids.
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10.3.1 Magnetization in a Static Magnetic Field

In the absence of an external magnetic field, the bulk magnetization M, if present
(Section 1.8), is fixed in space, with components M,, M, and M, in an arbitrary
cartesian coordinate system. When the ensemble of magnetic moments is exposed
to a static and homogeneous magnetic field B, in the absence of relaxation, it is in
a dynamic equilibrium.® However, here M is not fixed in space, moving according
to the equation of motion (Eq. B.75)

dM
— = YMAB (10.14)

where v, is the electronic magnetogyric ratio (Section 1.7), equal to gf3,/%.Taking
B along z, one obtains

dM,
= VBM, (10.15a)

am.
sz = —v,BM, (10.15b)

am,

= 10.15
o ( c)
The solutions

M, =M ,° cos wgt (10.164a)
M, = M, ° sin wpt (10.16b)
M. =M (10.16¢)

to these equations reveal that M precesses about B with an angular frequency
wp = — v, B (the classical Larmor frequency) if M, ° is non-zero.’ The longitudinal
magnetization M, is constant. Here the field was taken to be static; the effects of
modulating it sinusoidally (as is done in practice) lead to more complex solutions.

Letus now include relaxation effects. If the system is subjected to a sudden change in
the magnitude and/or direction of B, then M,, M, and M., (referenced to the new field
direction) in general relax to their new equilibrium values at different rates. For
instance, if the magnetic field is suddenly turned on (B = 0 at = 1y), then AN initially
is 0 and it as well as the component M, follow an exponential rise with time (Fig. 10.3).

We assume (as is usual) that the transverse components M, and M, relax with the
same rate constant, which is the inverse of a new characteristic time 7, called the
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FIGURE 10.3 Behavior of the magnetization M, when a magnetic field B (||z) is suddenly
increased from zero to a magnitude B’ at time 7= tq. 7, is the appropriate longitudinal
relaxation time.

transverse relaxation time. Thus

dM, M,
= v,BM, — — 10.17

dl ’Ye y Tz ( (1)
M, M,

Y = —yBM, — (10.17b)
dt kp)

M, M)C°—-M
am_ =—="Z (10.17¢)
dt T

The solutions of these empirical equations feature the decay of the components M,
and M, to zero. Note that both 7; and 7, in the Bloch formulation are empirical bulk
(ensemble) properties. The scheme reveals nothing about the physical mechanisms
giving rise to these parameters. Note that in the absence of relaxation effects (i.e., 7
and 7, = 00), we retrieve Egs. 10.15.

10.3.2 Addition of an Oscillating Magnetic Field

As noted in Chapter 1, transitions can be induced between the magnetic-energy
levels when an oscillating magnetic field B, is imposed in a direction perpendicular
to B. We now assume that, in addition to the static field B considered in Section
10.3.1, a sinusoidally varying monochromatic field B; is introduced with
components

Bix = B cos wt (10.18a)
By = By sin ot (10.18b)
B;=0 (10.18¢)



10.3 SPIN RELAXATION: BLOCH MODEL 311

We take w to be positive. With the addition of terms for these components, the
complete equations of motion (the Bloch equations) are'”

M, . M,
= v,(BM, — By sinwt M;) — — (10.19a)
dt kp)
am, M,
— = ¥,(B) cos wt M, — BM,)) — = (10.19b)
dt kp)
M, , M, — M.
7 Y,(By sin wt My — B; cos wt M) — ———— (10.19¢)
) T

Here v, is taken to be the same for the two field directions, B and B,. In principle, one
can integrate these equations to obtain the functional form of the components of M.

10.3.3 Rotating Frame

Because M is continuously precessing about B, it is easier to visualize the time
dependence of M if we transform to a coordinate frame that is rotating about z (azi-
muthal angle ¢) at the angular frequency w with the same sense as that of B,
(Fig. 10.4), taking the new x axis X, to be along B,. The components of M in this
new coordinate frame are called M4, M, and M, (the latter is unaffected by the
transformation). The Bloch equations in the rotating frame then are

dMX(f’ de’
- —(wp — WM,y — - (10.20a)
aM M
20— (wp — )Moy + Y, BIM, — 2 (10.205)

dt ™

M. M. — M.

*=—y,BiMyy ———— 10.20
dt YeD1 yé P ( C)
z
B

FIGURE 10.4 Diagram showing the rotating frame (dashed lines) in relation to an axis
system fixed in space. This frame rotates at the angular frequency w with the same sense
as the rotation of B;.
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where wp = —1vy,B. Here, the B; time dependences present in Eqs. 10.16 are
absent.

Note that, much as kinetic energy %mV2 depends on what translational coordinate
system is being used, the energy of the spin moment in a magnetic field depends on
the rotational frame selected; that is, the fields seen by the particle differ. It turns out
that the spin temperature 7 and also the spin-lattice relaxation time 7| are somewhat
dependent on the rotational speed [24]. We shall not dwell here on these sophisti-
cated concepts.

It is useful (Section 10.5.1) to define a complex transverse magnetization

Mg =My +iMyg (10.21)

Thus Egs. 10.20a,b can be combined to yield

am.
7*"’ + aM. g = iy,BIM. (10.22)

where
a=7""—i(wg — w) (10.23)

The equation for M_ 4, obtained simply by writing the complex conjugate, contains
no different information.

10.3.4 Steady-State Solutions of the Bloch Equations

Equations 10.20 are a set of coupled linear differential equations with constant coef-
ficients and can be solved in a straightforward manner. The steady-state solutions are

Y. Bi(wp — w)7?

M,y = —M.° 10.24a
¢ 14 (wp — 0?02+ ¥,2B2Tm ) %
Y.B1m2
M,y = +M.° 10.24b
v “ 14 (w0 — 01 + v,2B 21 m ¢ )
1 _ 2.2
M, = +M,° s — o) (10.24¢)

1+ (wp — 0’12 + 7,2Bi21m

Note that the response M., is in phase with B, whereas M,,4 is 90° out of phase. The
magnitudes of M, 4 and M, tend to be small compared to that of M_°. For sufficiently
small values of By, the last term in each denominator may be neglected. This power-
saturation term predicts that M vanishes as B; (i.e., p,) increases indeﬁnitely.” The
steady-state solutions are not appropriate in rapid time-resolved experiments to be dis-
cussed later.

The solutions in Eqs. 10.24 apply only for a field B, rotating in the same sense as
M. The usual experimental setup has B; oscillating linearly in the (say) x direction,
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with components

B, = 2B cos wt (10.25a)
B, =0 (10.25b)
By,=0 (10.25¢)

and with w taken to be positive. This can be decomposed into two equal-magnitude
and oppositely rotating fields (Fig. 10.5)

B, =Bi(+)+Bi(—-) (10.26a)
= Bi(cos wti+ sin wt j) + Bi(cos wti — sin wt j) (10.26b)

B, (+) rotates in the same direction as the Larmor precession, so that wg— w is small
and the resonance effects predicted by Eqs. 10.24 are significant. However, B (—)
rotates in the opposite direction, and its effects being small are neglected herein.
Note that now only half of the radiation-energy density is effective in inducing
transitions.

The effects of the imposition of the oscillating field B, are often described in
terms of dynamic (volume) susceptibilities ¥’ and x” (often called the ‘Bloch suscep-
tibilities’). For electrons, in view of Eq. 1.15, we have

M = yH = xB/ku, (10.27a)
that is
M.° = X°B/ku, (10.27b)
=1gB,AN®/V (10.27¢)
y
N\
AN
N By (1)
—»> X
7/
7/
7/
B, (#) 4

FIGURE 10.5 Resolution of the magnetic excitation field B, oscillating with frequency v
along direction x, into two circularly polarized components in plane xy, one rotating clockwise
and the other counterclockwise. Static magnetic field B is located normal to By, along z. See
Fig. E.4c for a laboratory example, where oppositely rotating magnetic fields of equal
frequencies and magnitudes add vectorially to yield a linearly polarized field B,.
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where )(0 is the static magnetic susceptibility ko Ny ngez /4k, T (Eq. 1.17¢); here T
is the temperature of the lattice and Ny is the sample’s (spin) volume density. We
>consider a medium in which y and the relative permeability k are isotropic. Then, con-
sistent with Eqs.10.24 and 10.27a, we can define dynamic magnetic susceptibilities via

X = +kmoMg/B (10.28a)

X' = —KpoM,y/B) (10.28b)

where Bj is half the amplitude of the linearly polarized excitation field. Thus

, 0 wp(wp — w)1°
X=X 1+ (wp — 002+ y2Bi27m ( )
Y =x° VBT (10.29b)

X 14+ (wp — w)27'22 + 762312 T T

These are dimensionless quantities (see Section 1.9). Note that x” = x'/[(wp — @)7]
and that both depend on B, as well as on B, via the power-saturation term.'?
Figure 10.6 illustrates the frequency profile of x” and y” under non-saturating conditions.

1.0
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-0 -8 -6 -4 -2 0 2 4

FIGURE 10.6 The in-phase (x') and out-of-phase (x”) components of the dynamic
magnetic susceptibility (Eqs. 10.29) versus the angular frequency deviation.
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Equations 10.19 are not correct at small fields B (i.e., at B < Bj) since the susceptibilities
in reality do not vanish at wg = 0, but rather must be modified in light of the condition
expressed in Note 10.

The dynamic susceptibilities ¥ and )y’ have definite and important meanings,
representing the dispersion and power absorption of the magnetic-resonance tran-
sition (see Section F.3.5). The latter is especially important and is the radiative
part of d(—M™ Biowa1)/dt (Egs. 1.8 and 1.14a). Tt follows [9, Chapter 2; 20] that
the power P,(w) absorbed by the magnetic system from the linearly polarized exci-
tation field (Eq. 10.25) is

'B 2
Pu(w) = 12XB0 (10.30)
KoV
per unit sample volume.'® Hence, with use of Eq. 10.295
B 2
Puw) = — ! wsx’y (10.31)

— w
to (1 + 2B 21 1) /2

Note that Y(w — wp) is a normalized lorentzian function (Table F.1a) and depends on
the experimental conditions [i.e., on B viathe linewidthI" = (1 4 762312 T 72)1/ 2 /Tl
The increase in linewidth as saturation sets in can be discussed in terms of ‘lifetime
broadening’. Increasing the microwave power produces spin transitions at a faster
rate and hence decreases the mean spin-orientation lifetime. As B; becomes very
large, 7 becomes proportional to B, > (Eq. 10.13) and hence I' becomes insensitive
to B, (when 7, is non-zero).

As long as yng 277, < 1, this saturation term can be neglected, and both P and
dP/dB are proportional to B2 When the absorption line is strongly saturated
(y.’B2 17 > 1), according to the Bloch theory, both ) and y’ decrease with
increasing power P, (e.g., Fig. F.8a), and P, becomes constant. However, note
that the theory fails when B; > B and 7 # 7, as in solids (see Note 11.6 and
Chapter 8 of Ref. 11).

The various equations in this section have been written in terms of w and
wp = — 7v,.B. It has been implied that w is the continuous variable and wp is a con-
stant for the spin species at hand, with resonance centered at a particular value
o, = wg. In EPR, of course, usually w is held constant and B is scanned. It is rela-
tively easy to switch to B as the Variable,14 with @ = wp held fixed; now wp is the
angular frequency at a particular value B, of B as given by the resonance condition.

When we switch to field-sweep conditions, the lineshape function, now
Y(B — B,), is a lorentzian with half width at half-height given by

r

N |72(1 +v,2B > 1) /2 (10.32)

In more recent work, the effect of field modulation on the magnetic field B
appearing in the Bloch equations has been treated successfully, via perturbation
theory [27]. Expression for both the absorption and dispersion phenomena are given.
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10.4 LINEWIDTHS

We classify spectral lines into those that are homogeneously broadened and those
that are inhomogeneously broadened.

10.4.1 Homogeneous Broadening

Homogeneous line broadening for a set of spins occurs when all these see the same net
magnetic field and have the same spin-hamiltonian parameters. (More correctly, the
local fields need not be identical at any one instant, but need only give the same time-
averaged field over sufficiently short intervals.) This means that the lineshape (i.e., the
transition probability as a function of magnetic field) is the same for each dipole. The
resulting line usually has a lorentzian shape (Fig. F.1). This is in accord with the pre-
dicted Bloch absorption lineshape (Eq. 10.31), which is lorentzian with a linewidth
(half-width at half-height) in frequency (w) units of 7, ' under non-saturating con-
ditions. In general, one often can define an effective 7, by equating it to [ky,I'| ",
where I' (mT) now is half the linewidth at half-height in the absence of microwave
power saturation (Eq. 10.32 and Section F.3.4) and « is a factor that depends on
the lineshape. For lorentzian lines k = 1, whereas for gaussian lines k = (7 In 2)1/ 2,

We turn now to models for the transverse relaxation time 7,, a topic that lies
outside the realm of the Bloch equations. To visualize one possible contribution
to 7, one can return to consideration of the individual spins. It has been established
that 7, often is a measure of the interaction between spins. In this case, if 7, = oo, the
spins are completely isolated from each other, whereas 7, = 0 implies very strong
coupling, such that there are no local variations in the spin temperature. However,
the latter limit is of no relevance here since we do not deal with strongly coupled
(ferromagnetic or antiferromagnetic) systems. The spins can interact via magnetic
dipolar coupling. Note that mutual spin flips of paired spins cause no change in
energy of the spin system but do affect the lifetime (7;) of each spin. The propa-
gation of magnetization through the lattice via such flips, called spin diffusion,
causes equilibration to the same spin temperature throughout the system of equival-
ent spins; 7, is a measure of this rate.

Another model invoking random sudden fast events considers collisions (e.g., in
gas-phase radicals) that reorient the spin magnetic moments. This leads to Bloch-
type equations where now 7; = 7, is the mean time period between collisions [28].

The actual linewidth is determined by (27'1)_1 +(1+ ynglz Tl 1'2)1/ 272_1 rather
than by the second term alone (Eq. 10.32). The lifetime broadening produced by
the first term is missing in the Bloch formulation (which predicts a Dirac é-function
absorption in the limit 7, — ©0). The factor 2 in the first term arises since Z =~ 27y, as
discussed earlier. Some techniques for measuring 7, and 7, are described in Section F.6.

10.4.2 Inhomogeneous Broadening

We briefly consider the inhomogeneous case. Here the line-broadening mechanism
distributes the resonance frequencies over an unresolved band, without broadening
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the lines arising from individual equivalent spins. Generally the unpaired electrons
in a sample are not all subjected to exactly the same B values. Thus, at any given
time, only a small fraction of the spins is in resonance as the external magnetic
field is swept through the ‘line’. The observed line is then a superposition of a
large number of individual components (referred to as ‘spin packets’), each slightly
shifted from the others. The resultant envelope often has approximately a gaussian
shape (Fig. F.2)."" It thus is possible to choose B; so as to power saturate some
selected portion of the EPR line, decreasing its intensity there (this is known as
‘hole burning’). The following are some causes of inhomogeneous broadening for
a given spin (chemical) species:

1. An inhomogeneous external magnetic field.

2. Unresolved hyperfine structure (e.g., for F centers in KCl), occurring when the
number of hyperfine components from nearby nuclei is so great that no struc-
ture is observed. Hence one detects the envelope of a multitude of lines.
[These may be resolved by the technique of electron-nuclear double resonance
(ENDOR; Chapter 12).]

3. Anisotropic interactions in randomly oriented systems in the solid state. Here
the distribution of local magnetic fields resulting from the anisotropic g and
hyperfine interactions gives rise to the inhomogeneity. In this case the line-
shape may be highly unsymmetric (Chapters 4 and 5).

4. Dipolar interactions with other fixed paramagnetic centers. These may impose
a random local field at a given unpaired electron, arising from dipolar fields
from other electron spins (Chapter 6).

The values of 7| and of 7, may be the same for all packets, or they may differ. Experi-
mental techniques (e.g., double-field modulation) exist to detect homogeneous spin-
packet lines within an inhomogeneously broadened EPR line [29].

The lines making up an inhomogeneous packet may have different widths, and
this can cause some strange effects. For instance, when the central lines are broad
compared to the outer ones, the absorption may show a minimum there, leading
(say) to a set of inverse-phase ‘lines’ to the sides of the central region of the first-
derivative spectrum [30].

In some of the above cases, the local magnetic fields giving rise to inhomo-
geneous broadening can be averaged out via sufficiently rapid dynamic effects
(e.g., tumbling, collisions, exchange), yielding homogeneously broadened lines, as
discussed in the next sections.

10.5 DYNAMIC LINESHAPE EFFECTS

We now open a range of topics centering on dynamic processes that lead to homo-
geneous line broadening, ignoring the static mechanisms considered in Section
10.4.2 that lead to inhomogeneous broadening.
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Any dynamic process in and around the paramagnetic center can cause lineshape
effects. Some such processes are: hindered rotation, tumbling of the molecule in a
viscous liquid, interactions with other paramagnetic species and chemical reactions
(e.g., acid-base equilibria and electron-transfer reactions). This broadening arises
from dynamic fluctuations in the local field at the unpaired electron(s). If the
changes occur sufficiently slowly, one observes lines assignable to distinct species
(e.g., conformers). However, as the rate of fluctuations increases, the EPR lines
broaden and finally coalesce into a single line (or set of lines), the position of
which is the weighted average of the original line positions.

10.5.1 Generalized Bloch Equations

There are many theoretical models that can be used to simulate the effects of
dynamic magnetic-field fluctuations on EPR lines. Some of these are summarized
in Section 10.5.2. However, we have chosen to start with the generalized Bloch
equation model, since it is easy to understand conceptually and since computer
calculations can be carried out readily for it.'®

Consider a radical that can exist in either of two distinct forms or environments, a
and b (i.e., each has a distinctive EPR spectrum). For the sake of simplicity, assume
that the probabilities for these forms are f, and f;, (where f, + f, = 1) and that each
form gives rise to a single EPR line of lorentzian shape, one at resonance field B, and
the other at a higher field B, (Fig. 10.7a). The line separation is ABy = B, — B, and
often depends on B. In other words, the two species generally have different g
factors. When we use the word slow or fast, we mean interconversion rates (e.g.,
local magnetic-field fluctuations) that are slow or fast compared to the characteristic
parameter |7y,|ABy. The actual time taken for a molecule to react to such an event is
assumed to be very short compared to the inverse of this.

We start with the complex Bloch equation (Eq. 10.22) in the rotating frame. Here
the magnetization M. has been replaced by M.°, since we assume that the microwave
power has been set low enough so as to avoid saturation. It also follows that the
inherent linewidth is fr{l (Eq. 10.32), not necessarily the same for chemical forms
a and b. We now use the abbreviated notation G = M 4. Equation 10.23 yields

&, = TZa_l - i(wBa - w) (1033(1)
ap =T — i(wpp — 0) (10.33b)

Relaxation times 7,, and 7, represent the inverse linewidths for forms a and b in the
absence of dynamic processes (and of power saturation). These are taken to be inde-
pendent of temperature. We note that vy, # v, implies g, # g-

The functions G, and G, can be considered in the same sense as concentrations in
chemical kinetics. Thus for the reaction

kq
a=b (10.34)
kp
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FIGURE 10.7 Synthetic first-derivative spectra showing the effect of increasing rate of
interconversion between species a and b of an unpaired-electron species: (a) slow-rate
limit (7 — o0); (b) moderately slow rate (7> |YABy|); (c) faster rate showing spectral
lineshifts; (d) coalescence point; (e¢) fast-rate limit (7 — 0), where it was assumed that
I'oa=Tos (=T) and that £, = f;. Note from Eq. 10.47 that AB = [(AB,)> — 2(y D~2]"/? for
the two-line spectra. The values ABy = 1.8 mT and I'y = 0.03 mT were used. Quantity ¥ is
defined in Eq. 10.37.

we can introduce chemical or physical dynamics into the Bloch equations by adding
first-order kinetic terms to Eq. 10.22, yielding

dG, .

T @G = 17,81 Mz + kG — koG (10.35a)
dG,, .

7 @Gy = iy, BiMyy + kGa — kG (10.35b)

These linearly coupled equations can be solved at steady state (dG,/dt=
dG,/dt = 0) for G, and G, It is assumed that relaxation times 7, and 7y, are suffi-
ciently short that the thermal equilibrium between the spins is maintained. Thus for
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dM_,/dt = dM_,/dt = 0 (Egs. 10.20c and 10.24c), we can utilize

My = fay, M /N (10.364)
and

My = fiy,M.° /¥ (10.36b)
where

Y =JfaYa IV (10.37)

The total complex transverse magnetization G is then given by

G=G,+G, (10.38a)

—iBM.0 faYalay + ka + k) + fovp (g + ko + k)
(aq + ko)(ay + kp) — kakp

(10.38b)

where a,;, are complex numbers. Consistent with the chemical balance condition
faka = fvkp, the population fractions obey the relations f, = 7,/(1,+ 7,) and
f» = /(7. + 7). By using 7, "=k, as well as 7, ' =k, and by defining an

inverse lifetime 7 ' =17, '+ 1, |, Eq. 10.38a can be written in the alternate form

MO N+ T faVa + [oVpQa)

G =1iB
! T O +faaa +fbab

(10.38¢)

The intensity of absorption is proportional to the imaginary part of G (Section 10.3.4).
The lineshapes as a function of 7are shown in Fig. 10.7 (first-derivative presentation).
Before considering the general lineshape function, we consider two limits:

1. Slow Dynamics. Here lifetimes 7, and 7, are long compared to |y,ABy|~'. We
expect two separate lines. For instance, when B is near B, = — w/y, then, assuming
G, = 0, Eq. 10.354 for steady-state conditions yields

1
G, = if,y,BiM." 10.39
1fa¥VaB1M; a, +k, ( )
and on taking the imaginary part (Section A.1), one obtains
r k
Myso = —fuBAM b+ Ko/ (10.40)

* (Cou + ka/ 17, + (B, — B)?

which represents x”(B), that is, the power absorbed per unit volume (Eq. 10.30).
This is a lorentzian line with an absorption half-width at half-height of

Ty =Tou + Y7l ™ (10.41)
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where 7, (= k, ') is the average lifetime of the form a. There is an exactly analo-
gous lineshape expression for form b.

Thus we see that each line is broadened (but not shifted) by the onset of the
dynamic process (Fig. 10.7b). By measuring the increase in linewidth, one can deter-
mine the rate constants for the dynamic process.

2. Fast Dynamics. When the two forms are interchanging very rapidly, such that
7, and 7, are very short, then the terms in 7can be neglected in Eq. 10.38b, and hence

L 1
GQI’YB]MZOm (1042)

On taking the imaginary part, one obtains

r
e T £ BB (10.43)
where the weighted averages
I'=f.Los+folos (10.44)
B =f.B. +/fsBs (10.45)

have been used. Equation 10.43 clearly represents a lorentzian line of width I (half-
width at half-height; Table F.1a) centered at the field B (Fig. 10.7¢). A more detailed
analysis shows that, as the system approaches the fast limit, the lineshape is centered
at B with a lorentzian lineshape but that the linewidth is given by (Fig. 10.7d)

I =T+ £/ 7] (ABy)? (10.46)

Thus again kinetic rate constants can be obtained from the changes in the linewidth
of the single line.

3. Intermediate Dynamics. It is possible to derive [33,34] a general expression
for the lineshape by taking the imaginary part of Eq. 10.38. As the system progresses
from the slow-rate region into the intermediate region, the two lines are seen not
only to broaden but also to shift inward (Fig. 10.7¢). By determining the fields at
which the denominator of the imaginary part of Eq. 10.38 has minima, one can
derive that the separation of the two lines is given [33] by

AB = [(ABy)* — 2(yn~4]"/? (10.47)

valid when the first right-hand term dominates. Eventually, the two lines coalesce
into a single broad line centered at B (Fig. 10.7d). The coalescence point (defined
as the point at which the second derivative of the absorption changes sign at
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B = B) is found to occur at a 7 value

232
T=—=
|YIABy

(10.48)

Note that this value (which is in s rad ', since yB is an angular frequency) generally
depends on the measurement frequency used, since AB, does. The coalescence
phenomenon is a manifestation of the lifetime-broadening relation expressed in
Eq. B.74. If one writes this as At Aw ~ 1, where Aw is the separation of the two
lines in angular frequency units, then Ar represents the smallest average time
period during which the states a and b may be distinguished. If the lifetime 7 is
less than Az, then only one central line is observed, since the two states cannot be
distinguished.

We see, then, that EPR spectroscopy can yield rate data even for a chemical
system in a steady-state condition. Thus via lineshape simulations (usually produced
by computer) of spectra taken over an appropriate range of temperatures 7, and using
the exact formula for im[G(7)], one can assemble an Arrhenius plot of In@ 1) versus
T, the slope of which yields the activation energy for the chemical process at hand
(Eq. 10.34). Linewidths Ty, and I'p, must be known and must not be too
temperature-sensitive; the same is true for the equilibrium constant K = f,/f},
obtainable from the relative areas of the absorption curves available until they
merge. Examples are presented below.

If there are more than two sites (or other than a 1:1 stoichiometry in reaction
10.34), then the lineshapes can be more complicated. Various modifications of the
Bloch formalism have been discussed [17, pp. 224—-225; 35].

10.5.2 Other Theoretical Models

When there is observable zero-field splitting (e.g., hyperfine effects at either site),
the Bloch formalism for the EPR lineshape of chemically or physically dynamic
species is not adequate. Happily the more advanced density-matrix approach (see
Note 11.3), first developed for the analogous NMR situations, does yield formulas
useful in these cases. Summaries of the theory and applications of the whole
dynamic field are available [35-37].

We now turn to some specific mechanisms that can cause lineshape effects. They
all share a common feature, namely, that the spin hamiltonian of the species under-
goes sudden and random changes, either in its parameters (g, A, D, ...) or possibly
even in its form.

10.5.3 Examples of Line-Broadening Mechanisms

We now turn to various examples of thermal effects on the EPR spectral lineshapes.
We remind ourselves (Section F.2) that the peak-to-peak amplitude of each
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derivative line is proportional to the relative intensity of the corresponding tran-
sition. However, under certain conditions, linewidths can vary with temperature,
and from one line to another in a given spectrum. The result is a departure of the
proportionality between the first-derivative amplitude and the line intensity, since
the derivative amplitude is inversely proportional to the square of the linewidth
(Tables F.1). Thus small changes in linewidths can cause large changes in the rela-
tive amplitudes of various lines in the spectrum. We shall see examples of this effect
in the following sections.

10.5.3.1 Electron-Spin Exchange The term electron-spin exchange is here
reserved for a bimolecular reaction in which the unpaired electrons of two free rad-
icals exchange their spin orientations."”

Electron-spin exchange was first observed in the EPR spectra of the (S0O3),NO*~
radical [38]. Here we consider such exchange for the analogous case of di-#-butyl
nitroxide radicals in liquid solution [39,40]. Figure 10.8a displays the hyperfine
(**N) triplet spectrum observed at a very low radical concentration. At a hi gher con-
centration (Fig. 10.8b), the lines clearly are broadened. The exchange of
electron-spin states between two radicals with the same nuclear-spin state does

(a)

—]

(©) 156G

FIGURE 10.8 First-derivative spectra of the di-z-butyl nitroxide radical in ethanol at room
temperature at various radical concentrations: (a) 1074 M; () 1072 M; (¢) 107! M; (d) pure
liquid nitroxide. (Spectra taken by J. R. Bolton.)
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not change the resonant field, that is, the width. From the additional linewidth one
can calculate 7, using

I=Ty+ 2y, (10.49)

(compare with Eq. 10.41) valid when all encounters are effective. However, in the
present case, the second right-hand term must be multiplied by the statistical
factor of % since one-third of the encounters between radicals result in no lineshape
effect. It is important to note that it is % 7, which is the electron-spin exchange rate
per molecule and thus 7should be proportional to the inverse concentration [R] ™" of
radicals. The second-order rate constant is given by

ko) = %[R] (10.50)
and is independent of [R]. For (¢-butyl),NO in dimethylformamide, ko, = 7.5 x 10°
M~ ' s~ ! [39]. This large value of k( indicates that spin exchange must occur with a
high probability, virtually on each encounter, since this rate constant approximates
that of a diffusion-controlled reaction.

As the concentration of (z-butyl),NO continues to increase, the lines coalesce to a
single line (Fig. 10.8c) that becomes narrower at even higher concentrations
(Fig. 10.8d). The latter type of spectrum is often said to be exchange-narrowed
since the electron spins are exchanging so rapidly that the time-averaged hyperfine
field is close to zero.'® Generally, electron-spin exchange is to be avoided if resolved
hyperfine structure with narrow lines is desired.

For instance, dissolved molecular oxygen causes line broadening, linear with
temperature but which appears to be independent of solvent viscosity [41]. Since
1989 or so, this phenomenon has proved useful in the quantitative determination
of O, concentrations, that is, oximetry in liquids, which is of special use in biome-
dical applications [42].

The electron-spin exchange effect on linewidths is not the same as the intermolecular
magnetic dipole-dipole effect. Both are effective only during collisions in liquids.
Electron-spin exchange is a quantum-mechanical effect (Section 6.2.1), which in
liquids produces a much greater broadening than does the dipole-dipole effect. This
can be shown by the following example. Suppose that the radical concentration is
107 M and the electron-spin exchange rate constant kg, is 10'© M~ s™'. From
Egs. 10.47 and 10.48 one calculates I' — I'y = 0.06 mT. However, at the same concen-
tration, the dipolar broadening would contribute only ~0.001 mT to the linewidth.

10.5.3.2 Electron Transfer Electron transfer between a radical and a diamag-
netic species is very similar to electron-spin exchange in its effect on the spectrum.
The first such reaction studied was that between naphthalene anions and neutral
naphthalene molecules [43]

naph(1)~ 4 naph(2) = naph(1) + naph(2)~ (10.51)

However, the role of the cation (e.g., Na™ or K™) is not entirely negligible.
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It should be noted that naphthalene molecules are distinguishable by virtue of the
many (2%) different arrangements of the proton spins. In fact, the solution EPR spec-
trum of the naphthalene anion shows 25 distinct resonant field positions, most of
which are degenerate. Thus when an electron-transfer reaction occurs, the resonance
field for the electron is usually shifted. If the transfer rate is small compared to the
separation between resonance lines (slow-transfer-rate region), the effect is to cause
a broadening of each resonance line in the spectrum. The broadening is, in general,
not the same for each hyperfine component. For example, there are 36 times as many
molecules with a resonance field corresponding to the central line as for those mol-
ecules with a resonance field corresponding to one of the outermost lines. Since the
probability of a jump between molecules with the same resonant field is much
greater for molecules contributing to the central line, one might expect that this
line would be narrower than lines toward the outside of the spectrum. This phenom-
enon has been observed [44] and indicates that the spin-orientation (« or B) lifetime
of an electron (characterized by 7;) is much longer than the average residence life-
time 27 of the electron on a given naphthalene molecule; hence this mechanism
causes line broadening of the 7, type.

The broadening is given by Eqgs. 10.41 and 10.50 (note that the concentration
[naph] of neutral naphthalene must be used in Eq. 10.50). Measurement of the line-
width as a function of this concentration enables one to obtain the second-order
electron-transfer rate constant. For the naphthalene anion in tetrahydrofuran [40],
ko) =15.7 x 10’ M~ " s~ . This value is almost 100 times smaller than the diffusion-
controlled rate constant. Thus one concludes that electron transfer occurs in only a
small fraction of the collisions of a radical ion with neutral naphthalene molecules.
This low efficiency may be due to a transfer mechanism involving the alkali cation
positioned near the anion.

In a similar system, namely, the electron transfer between benzophenone and its
anion, the spectrum coalesces to a quartet of equally intense lines at high concen-
trations of benzophenone [45,46]. This observation indicates that in this case the
transfer process involves a sodium atom, instead of a single electron. Similarly,
EPR study of the transfer of H atoms between 2,4,6-tri-t-butylphenol (I) and the corre-
sponding phenoxy radical yields the second-order rate constant ki, = 500 M ts!
at 30°C [47].

H
(0]

(I) 2,4,6-tri-t-butylphenol
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10.5.3.3 Proton Transfer The previous two examples illustrate changes in the
magnetic environment that arise from exchange of electron-spin states or from trans-
fer of an unpaired electron from one molecule to another. However, environmental
changes can also occur if a chemical reaction exchanges one or more nuclei in the
molecule with nuclei in the solvent. Usually such reactions are too slow to have an
effect on an EPR spectrum, although effects on NMR spectra can be very pro-
nounced. In the case of proton exchange, reaction rates are sometimes large
enough to produce detectable effects.

A good example of proton transfer is that of the CH,OH radical considered in
Chapter 3. Figure 10.9 displays its spectrum in aqueous methanol solution at two
pH values. The OH doublet is resolved at the higher pH, but as the pH is
lowered, the doublet spacing decreases; the lines broaden somewhat and finally
collapse into a single line. In this case the OH proton is rapidly exchanging with
H" ions. The proton-exchange rate may be estimated from the line separation
given by Eq. 10.47. The second-order rate constant is 1.76 x 105 M~ ' s~ ' [48].

10.5.3.4 Fluxional Motion The internal motions of unpaired-electron species
can give rise to striking EPR effects. We cite a relevant example involving an
organic radical cation in Section 10.5.4.2, and one dealing with an inorganic
complex at the end of Section 10.5.5.2.

Here we limit ourselves to a ‘simple’ inorganic solid-state example:
Cu(H20)62+ S = %), dilute in zinc fluosilicate crystals. These ions occur in any of
three configurations corresponding to equivalent tetragonal distortions of the
ligand ‘octahedron’, caused by the Jahn-Teller effect (Section 8.2). Reorientational
jumps between these configurations cause major lineshape distortions away from the
expected regular (superimposed) ®*®>Cu hyperfine quartets. The lineshapes are
depicted in Fig. 10.10 and exhibit major dynamic broadening, strongly dependent

(a) (b)

B
206G
FIGURE 10.9 X-band first-derivative spectra of the CH,OH radical in aqueous solution at

room temperature: (a) pH = 1.40 (here aog = 0.96 G and I'y = 0.30 G). (b) pH = 1.03.
[After H. Fischer, Mol. Phys., 9, 149 (1965).]
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FIGURE 10.10 Angular dependence of the EPR spectrum of the Cu(H,0)¢* " complex in
zinc fluosilicate at 45 K: (a) experimental and (b) theoretical. The magnetic field lies in the
(110) plane and makes an angle 6 with the [001] axis. The spectra in (a) were measured at
9.5 GHz. The lineshapes in (b) were computed by convoluting each of the four lorentzians
having half-widths T' defined by |y.7| ' with gaussians having half-widths T’ = (2 In 2)"/? x
0.6 mT attributed to unresolved proton hyperfine splittings. Here 7, is a function of M; (see
Note 20). The jump frequency used was 5 x 10° s~ . [After Z. Zimpel, J. Magn. Reson., 85,
314 (1989).]

on M; and highly anisotropic. These effects have been successfully modeled [49]
using a discrete-jump density-matrix approach (see Note 11.3).

10.5.4 Linewidth Variation: Dynamic Hyperfine Contributions

Variation in linewidths with M; can be caused by sufficiently rapid changes in EPR
hyperfine splittings arising from chemical processes or from internal rearrangements
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within a molecule. Such variations become evident on cooling, which produces a
decrease in the tumbling rate of radicals in solution. This section and the next quali-
tatively survey the types of effects that can be encountered and present several
examples. For a survey of the detailed theory, the reader is referred to a comprehen-
sive review [50].

10.5.4.1 Single Nucleus Consider a radical that gives rise to hyperfine split-
ting from a single nucleus with spin /. Suppose that the radical can exist in two
forms, a and b, which can interconvert. Let @, and a, be the hyperfine splittings
for these. At slow interconversion rates, two spectra (usually superimposed)
should be observed. Each spectrum consists of 2/41 lines corresponding to the pos-
sible values of M;. In the limit of fast interconversion, a single spectrum is observed;
it consists of 2/+1 lines, with a mean hyperfine splitting given by

a :faaa +fbab (1052)

where £, and f;, are the mole fractions of a and b.

Consider a specific example in which [ =%, a, = 1.00 mT, a, = 0.10 mT,
f.=0.75, and f;, = 0.25. Figure 10.11a displays a stick diagram of the spectrum
that would be observed in the region of slow interconversion between a and b.
Two distinct four-line spectra are apparent. Figure 10.11b displays the average
spectrum in the region of rapid interconversion. It is important to note that in
going from species a to species b, the value of M, does not change. Thus there is
a one-to-one correspondence between lines in Fig. 10.11a and lines in Fig. 10.115b.

In Section 10.5.1 it was pointed out that in the region of rapid interconversion, the
linewidth is given by Eq. 10.46. Referring again to Fig. 10.11, it is clear that the
M, = i% lines exhibit small shifts on conversion from species a to species b,
whereas the M; = i% lines exhibit much larger shifts. Thus the latter can be
expected to be broader than the former (Fig. 10.11c¢). In general, for a nuclear
spin 7 [50], the width is given by

T =T +£fom V(a0 — ap)* M (10.53)

A good example of this effect is shown by the sodium naphthalenide spectrum [51]
(Fig. 10.12) in a tetrahydrofuran/diethyl ether (1:3) solvent mixture. Ion pairing
may be inferred, since a marked hyperfine splitting from **Na (I = %) is observed.
At —60°C, all four lines of a given *’Na multiplet have roughly the same amplitude
and hence nearly the same width (Fig. 10.12a). However, as the temperature is
lowered, the M; = i% lines broaden relative to the M; = i% lines (Figs. 10.12b,¢).
These spectra have been interpreted in terms of a rapidly established equilibrium
between two ion pairs, one having a large and the other a small *’Na hyperfine splitting.
The differential broadening of the M; = i% and the M; = i% lines may be used to
obtain a value for the rate constant for interconversion, using Eq. 10.53 and neglecting
any anisotropy conditions (Section 10.8). As the temperature is lowered, the **Na
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FIGURE 10.11 Stick-diagram representation of a spectrum in the limits of (@) slow and (b)
fast exchange for two forms of a radical exhibiting a four-line spectrum from a nucleus of spin
% and g, > 0; (¢) simulated EPR spectrum.

hyperfine splitting decreases. The relative amounts of the two ion pairs and hence the
equilibrium constant at each temperature can be obtained by using Eq. 10.53. Thus ther-
modynamic as well as kinetic information can be obtained from a study of these effects
(see Problem 10.7 for a quantitative analysis of this system).

10.5.4.2 Multiple Nuclei Let us consider dynamic effects in a radical with two
equivalent nuclei, each having a non-zero nuclear spin. As an example, consider the
hypothetical ~cis-1,2-dichloroethylene anions forming ion pairs with Na®
(Fig. 10.13). Two cases are distinguished:
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FIGURE 10.12 X-band first-derivative spectra of the low-field portion of the sodium
naphthalenide spectrum at temperatures —60, —75 and —85°C. The solvent is a mixture of
tetrahydrofuran (25%) and diethyl ether (75%). The lines marked A; and B; (i = 1 — 4) are
the >*Na quartets for the two outermost 'H hyperfine line components. The stick spectra
indicate the relative peak-to-peak heights in the absence of broadening effects. Compare
with the spectrum in Fig. 3.8. [After N. Hirota, J. Phys. Chem., 71, 127 (1967).]

1. The dynamic modulation is in-phase, that is, the hyperfine splittings increase
or decrease in unison during the jump. This case is illustrated in Fig. 10.13a. In
both structures the two protons are equivalent at any instant. Such nuclei are
said to be completely equivalent.

2. The modulation of the two hyperfine splittings is exactly out-of-phase, that is,
when one increases, the other decreases. This case is illustrated in Fig. 10.135.
The proton closer to the Na™ yields a hyperfine splitting that is different from
that of the other proton. When the Na™ ion jumps to the other end of the mol-
ecule, these hyperfine splittings are interchanged. On the average the hyper-
fine splittings for the two protons have the same value. Such nuclei are then
dynamically equivalent (as contrasted with instantaneously equivalent).

First consider the general case of in-phase modulation of hyperfine splittings (case 1
above). Since the nuclei are completely equivalent, the positions of the spectral
lines may at all times be described by the total nuclear-spin quantum number
'M;=3,My;). This means that the widths of the lines can be treated as if
there were one interacting nucleus with a total nuclear spin of I = X;I,. Conse-
quently, this represents a case analogous to that given in Section 10.5.4.1. That
is, the linewidths vary as "M? (Eq. 10.53).

Next consider the case of out-of-phase modulation of hyperfine splittings
(case 2 above). The fact that the two nuclei are not instantaneously equivalent
leads to an interesting phenomenon in the EPR spectrum. This is commonly
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FIGURE 10.13 Ion-pair structural equilibria for the hypothetical cis-1,2-dichloroethylene
anion, with the sodium cation located (a) below or above the horizontal plane and (b) at
either end of the anion.

referred to as the alternating linewidth effect, which was first observed in the
spectrum of the monocation of 1,4-dihydroxytetramethylbenzene (dihydroxydur-
ene) [52] (Fig. 10.14) and also the related dinitrodurene monoanion [53]
(Fig. 10.15).

The interpretation of this striking effect is aided by the consideration of two
nuclei with / = 1. The model assumed is one in which alternately one hyperfine
splitting is relatively large and the other relatively small. It is further assumed
that the radical can exist in two thermodynamically equivalent states, a and b,
that is, states of the same energy.

In this model for the dinitrodurene anion, the variation occurs in the '*N hyperfine
splitting from the two nitro groups, each having either of two rotated positions rela-
tive to the plane of the molecule (Fig. 10.16). If one group has a given orientation,
then the other has the other orientation. Thus f, = f;, :% and 7, = 7, = 27. The
hyperfine splittings are assumed values, but they are probably not far from the
actual values. In the thermal region of infrequent interconversion between a and
b, one would observe the spectrum shown in Fig. 10.17a. As the rate of interconver-
sion increases, the lines coalesce as shown in Fig. 10.17b. The widths are given by
Eq. 10.46. Three line components do not shift in going from a to b, and hence these
lines remain sharp. These are the two outside lines and one component of the central
line. The ‘M; = =+ 1 lines appear broad because of the sizable field shifts involved.
Two components of the ‘M;=0 line undergo a large magnetic-field shift
(Fig. 10.17b), and hence these two components are usually not detected; instead,
the single sharp and unshifted central component is seen. The appearance of the
spectrum in Fig. 10.15 can now be understood [46]. Knowledge of the two nitrogen
hyperfine splittings (in the limit of slow exchange) and the use of Eq. 10.46 permit
the interconversion rate %T to be obtained from the width of the ‘M; =+1 com-
ponents. In Fig. 10.17¢ the hyperfine splittings are completely averaged, and the
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FIGURE 10.14 EPR spectra of the cation radical of p-dideuteroxydurene in D,SO,/
CH;NO; at (a) +60°C and (b) —10°C. The hyperfine splittings are acy,™ = 0.205mT and
aop® = 0.042mT. Only 9 of the 13 methyl-proton multiplets are shown. [After P. D.
Sullivan, J. R. Bolton, Adv. Magn. Reson., 4, 39 (1970).]

five-line spectrum characteristic of two equivalent nuclei of spin 1 is obtained
(Fig. 3.12).

The whole field, describing the relevant EPR techniques and results shedding
light on the dynamics of degenerate tautomerism in free radicals, has been amply
reviewed [54].
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FIGURE 10.15 First-derivative spectrum of the dinitrodurene anion in dimethyl
formamide at room temperature. The major groups are due to hyperfine splitting from the
two nitrogen nuclei, and the minor splittings arise from the protons. [After J. H. Freed,
G. K. Fraenkel, J. Chem. Phys., 37, 1156 (1962).]

10.5.5 Molecular Tumbling Effects

Let us now return to the case of a single unpaired-electron species and consider first
the effects arising from its anisotropic spin-hamiltonian parameters. These can
appear in addition to the phenomena described above.

Tumbling rates depend on the shape and size of molecules, on their interactions
with their surroundings (e.g., solvent), and on the available thermal energy
(temperature). The EPR effects of tumbling depend on the magnitudes of the aniso-
tropies of the spin-hamiltonian parameters.'® It is useful to consider two categories:

1. Isotropic Tumbling. Here the probabilities P of rotations about different
axes by the same angle are all equal.

2. Anisotropic Tumbling. Here Pq depends on which molecular axis of rotation
is active.

In theoretical models, rotations are treated either as a Brownian-type process or as
a discontinuous-jump process.

(a) (ON0) (b)
A\ W] 0\ /O
I |
H3C\‘/CH3 H3C\ /CH3
e : ~N e : ~N
H,C | CH; H,C | CHy
N N
PR <
0”7 ~o 04 o

FIGURE 10.16 Two structures for the dinitrodurene anion radical. The nitro-group '*N
hyperfine splittings (in mT) are (a) 1.4 (coplanar) and (b) 0.05 (perpendicular).
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FIGURE 10.17 Representation of the spectra of a radical containing two inequivalent "N
nuclei subjected to an out-of-phase modulation, ‘M; = M, + My, (a) slow-interconversion
limit; (b) intermediate rate of interconversion: blocks represent linewidths and amplitudes;
(c) fast-interconversion limit.

In the Brownian (rotational diffusion) model, each molecule in the ensemble is
assumed to rotate continuously and freely about some axis, with an arbitrary
angular speed. At arbitrary intervals, the rotation axis and speed change instan-
taneously and randomly (say) because of a collision with another molecule.

In the jump model, each molecule is taken to be stationary at some arbitrary
orientation for some random period of time. It then jumps instantaneously to
some other fixed orientation.
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In both cases, the average interval between perturbations is called the mean
residence time or the ‘lifetime’ of the orientation.

10.5.5.1 Dipolar Effects In Chapters 4 and 5 it was shown that in solids the g
factors and the hyperfine couplings can be very orientation-dependent. It has also
been indicated that for free radicals in solutions of low viscosity, anisotropic inter-
actions are averaged to zero. Such averaging does not necessarily occur if the solvent
has a moderate viscosity. One can think of the tumbling as a series of events, in
which each initial situation changes to the subsequent one differing by a resonant
field shift AB,.

To illustrate what may happen to a solution spectrum when the molecular tum-
bling rate is decreased, consider the spectra of the p-dinitrobenzene anion in
dimethylformamide, as shown in Fig. 10.18. At 12°C one observes a ‘normal’ spec-
trum in which the relative first-derivative amplitudes are proportional to the degen-
eracies of the corresponding transition energies. However, at —55°C the appearance
of the spectrum has changed drastically, although the line positions are unaltered.
The change in the spectrum results from variation in the widths of the several
lines. Note that this variation is not symmetric about the central line.

To understand the origin of these effects, consider once again the di-#-butyl
nitroxide radical. This is a fairly simple case, since the g matrix and the nitrogen
hyperfine matrix ("*N, 7= 1) have the same principal axes, and each matrix is
approximately uniaxial [55] (see also Problem 5.8). Figure 10.19q illustrates the
spectrum obtained for the randomly oriented radicals in the solid phase. The parallel
and perpendicular features of such spectra were considered in Chapter 5. The line-
width of each hyperfine component has [56] the form

I'=a+BM; + yM? +--- (10.54q)

The coefficients depend on the anisotropies of g and of the hyperfine splittings and
on the mean tumbling rate (set by the solvent viscosity).?’ Parameters 8 and y go to
zero as this rate increases. The sign of the unpaired-electron population at the atom
giving rise to the hyperfine splitting enters, as discussed below.

Figure 10.195 illustrates the nitroxide spectrum obtained from a dilute solution of
moderate viscosity. The tumbling rate here is sufficiently rapid that the line positions
(but not the linewidths) correspond to those of the completely averaged spectrum in
Fig. 10.19¢. Noting from Eq. 10.54a that the linewidth depends on the sign and
magnitude of My, it is clear why the three lines have different widths. Since the highest-
field line (M; = —1) is broader than the lowest-field line (M; = +1), it follows that
B < 0.Ininterpreting this result, the following measured parameters [55] for di-z-butyl
nitroxide were used: a; = +3.18 mT, a; = +0.68 mT, so that ap = +1.51 mT (for
“N), g, =2.007 and gy = 2.003. The theory [59], using these parameters, yields
B < 0. Had gy and q/a, each been negative, then the high-field line would have
been narrower than the low-field line (Problem 10.10). These conclusions are reversed
when g, > g,. This linewidth phenomenon is the basis for one method [60] of
measuring the signs of isotropic hyperfine splittings (Section 2.6).
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FIGURE 10.18 Electron spin resonance spectra of the negative ion of p-dinitrobenzene in
dimethylformamide. The stick plot is based on the hyperfine splittings: |a"| = 0.151 mT and
la™| = 0.112 mT. [After J. H. Freed, G. K. Fraenkel, J. Chem. Phys., 40, 1815 (1964).]

In general, the linewidths in spectra exhibiting the effects of finite tumbling rates
can be approximated [61] by the following relation

T=a+) B'M+ Y %M+ v, Mgy My (10.54b)

i<j
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FIGURE 10.19 First-derivative X-band EPR spectra of the di-z-butyl nitroxide radical:
(a) at 77 K (solid); (b) at 142 K (viscous ethanol solution); (c¢) at 292 K (low-viscosity
ethanol). Single-crystal data are from Ref. 56. Note that the linewidths in spectrum b
correspond to the spacings between the coalescing lines (see stick diagram). (Spectra taken
by J. R. Bolton.)

valid near the fast limit. Here ‘M;, and ‘M, refer to the total z component of the
nuclear-spin quantum number for sets i and j of completely equivalent nuclei. If
we assume that all isotropic hyperfine splittings are negative, then the high-field
lines have 'M;, > 0. This is an arbitrary assignment, since the signs of the hyperfine
splittings are seldom known.

The parameters in Egs. 10.54 are now considered in more detail. Coefficient o is a
constant term including all line-broadening effects that are the same for all hyperfine
components. The coefficients 3; depend on anisotropy and arise from cross-product
terms of the g and hyperfine matrices [specifically, of (g — gols) T, where
8o = tr(g)/3]. They cause the spectrum to appear asymmetric. In certain cases the
parameters f3; can be calculated [50]. A special-interest case occurs when the
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nucleus in question has a p orbital that is part of a 7-electron system containing an
unpaired electron. For such nuclei the high-field components are broader (i.e., lower
first-derivative amplitude) if the '*C isotropic hyperfine splitting constant is positive.
This is the case if the m-electron unpaired-electron population p; is positive. The
opposite is true if p; is negative. It also assumes that g|| < g,, which is true for
most m-electron radicals.

As an example, consider the highly resolved EPR spectrum of the
2,5-dioxy-p-benzosemiquinone trianion [62] shown in Fig. 10.20 (cf. Fig. 3.20).
The two °C splittings of |a;¢| = 0.263 mT and |a3;¢| = 0.666 mT are indicated
on the figure. Note that for each of the '*C lines, the amplitudes are such that the
high-field line is somewhat broader than the corresponding low-field line. This
implies that the product a©p® > 0. At position 1, it is reasonably certain that
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FIGURE 10.20 First derivative of the X-band EPR spectrum of 2,5-dioxy-1,4-
benzosemiquinone in KOH solution at room temperature. The lines arising from proton
splittings are off scale in the spectrum. The quantum numbers (41, 0, —1) and the relative
intensities (100, 200, 100) of the proton lines are indicated to approximate scale relative
to the smallest '>C lines. [After M. R. Das, G. K. Fraenkel, J. Chem. Phys., 42, 1350
(1965).]

N




10.5 DYNAMIC LINESHAPE EFFECTS 339

p;€ > 0; hence a;© > 0. At position 3 the very small proton hyperfine splitting
(0.079 mT) implies that p;© is very small. The large magnitude of the 13C splitting
must then arise from unpaired-electron population on neighboring carbon atoms.
From Eq. 9.15 this contribution to a3° is seen to be negative. Since this represents
the largest contribution, a;¢ < 0 and hence p;© < 0. It should be emphasized that
this type of argument does not apply to proton hyperfine splittings.

The coefficients vy; in Eqs. 10.54 are a function only of the hyperfine anisotropy.
Where they can be calculated, they provide information on the rotational corre-
lation time for tumbling of the radical in the liquid. This correlation time 7. can
be regarded as roughly the average time required for rotation through ~1 radian
about a principal axis. The assumption is made that 7. is isotropic. In the
special cases where the nucleus in question is part of the skeleton of a 7r-electron
system, the coefficients can be used to make assignments of hyperfine splittings. In
these cases it has been shown that the coefficients vy; are proportional to the square
of the m-electron unpaired-electron population on the interacting atom [63]; thus
relative broadening of hyperfine components can indicate which of a pair of split-
tings is to be assigned to the position having the higher 7 unpaired-electron
population.

The vy;; are coefficients that arise from the products of the hyperfine matrices of
nuclei from different equivalent sets. It has been shown [64] that these coefficients
can yield information about the relative signs of different hyperfine splittings.

Modeling of the coefficients in Eqs. 10.54 is mathematically complicated but can
be quite successful. As an example, we cite the study by Campbell and Freed [65] of
the slow-motional EPR spectra of vanadyl (VO**, S = 1) complexes.

Slow tumbling dynamics of species (e.g., nitroxides) in solids also gives rise to
EPR lineshape effects. They have been carefully investigated both experimentally
and theoretically [66].

10.5.5.2 Spin-Rotation Interaction 1In the gas phase, molecules are free to
rotate. This rotational motion is quantized, and transitions between the rotational
energy levels may be detected in a microwave spectrum if the molecule has a per-
manent electric dipole moment. In such molecules this rotational motion also
generates a magnetic moment because the electrons do not rigidly follow the move-
ment of the nuclear framework. If the molecule has a net electron spin magnetic
moment, this is coupled to the rotational magnetic moment by a dipole-dipole
interaction. The effect of this coupling is analogous to magnetic electron-dipole/
electron-dipole couplings. However, the interaction is not averaged to zero in the
gas phase since the rotational angular momentum and magnetic moment vectors
are collinear and fixed in space. Gas-phase EPR spectra are very complex as a
result of this ‘spin-rotation’ interaction (Section 7.3).

For liquids of low viscosity (i.e., at sufficiently high temperatures), molecules in
the liquid state may have an opportunity to undergo a few cycles of rotation before a
collision occurs. Hence the rotational magnetic moment generated can couple with
the electron-spin magnetic moment [67,68]. It has been shown that this effect broad-
ens all lines equally [68]. The linewidths generally vary as T/m, where 7 is the
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FIGURE 10.21 Peak-to-peak widths of the M; = —I line (o) and the M; = —1 line (A) of
5 x 107* M VO*" in deoxygenated toluene, as a function of solution viscosity [1 centipoise
(cP) =102 kg m~! s™1). [After R. Wilson, D. Kivelson, J. Chem. Phys., 44, 154 (1966).]

coefficient of viscosity and T is the absolute temperature. As discussed above, broad-
ening due to anisotropic hyperfine effects generally varies as n/T (and depends on
Mj). Hence one can expect to find an optimum temperature for best resolution of
an EPR spectrum. Figure 10.21 shows the linewidth variation with temperature for
the M; = —% and —L lines in the EPR spectrum of the VO** ion (vanady! acetylace-
tonate) in toluene. The former line shows a much greater linewidth variation with
/T than does the latter. The temperature corresponding to the minimum linewidth
is also different for the two lines.

10.5.6 General Example

We close this section by presenting an example of an EPR system in which there are
three simultaneous effects: (1) linewidth alternation, (2) anisotropy lineshape distor-
tion and (3) chemical concentration variation. These have been observed [69] in the
4d° (S = %) neutral complex bis(1,2-bis(diphenylphosphino)ethane)rhodium(0),
denoted by [Rh(dppe),]°. Here, the rhodium atom is at the center of a set of four
phosphorus (*'P, 100%, I = %) atoms that form a distortable ligand system. The
EPR spectra (Fig. 10.22) reveal a symmetric five-line pattern at 270 K, arising
from four equivalent *'P hyperfine interactions. As the temperature T is lowered,
line splitting and the alternating linewidth effect become prominent. Analysis, in
terms of two sets of two completely equivalent nuclei, yields rate constants as
depicted in Fig. 10.234, yielding an enthalpy of activation AH* of 14.7 kJ mol '
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FIGURE 10.22 Calculated (upper set) and experimental X-band (lower set) EPR spectra of
[Rh(dppe)z]o in toluene at six temperatures: (a) 259 K, (b) 249K, (¢) 237K, (d) 219 K, (e) 209
K, (f) 199 K. [After K. T. Mueller, A. J. Kunin, S. Greiner, T. Henderson, R. W. Kreilick,
R. Eisenberg, J. Am. Chem. Soc., 109, 6313 (1987).]

and an entropy of activation AS* of —19 Jmol~" K™! for the interchange of two
ligand configurations. Furthermore, analysis of simultaneous ‘anisotropic’ broaden-
ing as T'is lowered yields the coefficients of Eq. 10.54, while line-area measurements
disclose a decrease in concentration of the radicals describable in terms of the equi-
librium constant K = [(1 — a)a?] /2¢; (Fig. 10.23D), where « is the fraction of
Rh(dppe), species existing in the solution as the paramagnetic monomer, and c; is
the total concentration of such species. A charge-transfer reaction

2[Rh(dppe)2]O = [Rh(dppe),]*[Rh(dppe),]~ (10.55)
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FIGURE 10.23 (a) Eyring plot for the fluxional process (k has units s™L Tin K) and (b)
Van’t Hoff plot for the bimolecular equilibrium, both involving [Rh(dppe),]°. [After K. T.
Mueller, A. J. Kunin, S. Greiner, T. Henderson, R. W. Kreilick, R. Eisenberg, J. Am.
Chem. Soc., 109, 6313 (1987).]

is believed to occur, with AH = —55.6kJ mol~! and AS = —207 Jmol ! K~!
derived from the K(T') data.

10.6 LONGITUDINAL DETECTION

It is instructive to distinguish between longitudinal (i.e., M) and transverse (M, ,)
magnetization, that is, EPR intensity detection in different directions relative to
the Zeeman field B (]|z). The latter is the usual case. Longitudinal detection of
EPR (LODEPR), denoting longitudinal detection of the macroscopic magnetization
M, has been presented in the literature [70,71], featuring an S = % system (DPPH)
irradiated by two nearly resonant waves (both L B) having two somewhat different
frequencies. Applications include direct evaluation of B; mean values and of
relaxation-time variations.
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10.7 SATURATION-TRANSFER EPR

With inhomogeneously broadened lines, power saturation in one narrow region
of the EPR spectrum can be observed, as can its recovery and spreading of
saturation via spin diffusion to the rest of the line. Monitoring the recovery of
the spin populations after giving the system extra energy (i.e., saturation recovery
measurements) offers a potent method of measuring relaxation times.

The term saturation transfer refers to the diffusion of the z component of the
magnetization. Its efficiency depends sensitively on the motional dynamics of the
unpaired-electron species present. With application of sufficiently great ampli-
tudes of B, and use of special techniques [e.g., observation of dispersion first
derivatives, special field-modulation conditions or use of two B; sources at
off-set frequencies (ELDOR; see Chapter 12)], it is possible to obtain valuable
information about relatively slow molecular motions (correlation times 7, in the
range of 10 to 10~ '" s). This is especially useful in biomedical systems, as reviewed
by Hyde [72].

Theoretical and experimental aspects of saturation-transfer EPR are discussed
in various literature references [73—75]. For example, spin diffusion between
DPPH molecules dissolved in polystyrene was found [73] to have the character-
istic time constant 7, = 20 ms, probably set by proton spin flips on neighbor
solvent molecules. Various instruments have been designed especially to
perform saturation-recovery work (see Appendix E), and comparison of the
effectiveness of cw EPR relative to pulse EPR is found in the more recent litera-
ture [76].

10.8 TIME DEPENDENCE OF THE EPR SIGNAL AMPLITUDE

The EPR spectrometer (like any spectrometer) can be used to follow the rates of
chemical reactions. In addition there are situations where an ensemble of radicals
is generated (e.g., photochemically) in a non-equilibrium set of spin-state
populations. This is called chemically induced dynamic electron polarization
(CIDEP). The subsequent ‘thermalization’ of the spin populations leads to a
time dependence that in some cases is superimposed on the decay of radical con-
centrations. We now briefly discuss these topics, deferring pulsed EPR aspects to
the next chapter.

10.8.1 Concentration Changes

EPR line intensities are often very useful for the study of chemical reactions. We
consider three cases:

1. The reaction is so fast that one can only detect (paramagnetic) products by
EPR. One common technique for dealing with this is spin trapping (see Chapter
13 for references). Here a reactive free radical is identified indirectly, by allowing
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it to add to an appropriate chemical species to produce a more stable radical detect-
able by EPR and identifiable by its hyperfine pattern. A good example is the
hydroxyl free radical trapped in liquid solution by use of the diamagnetic spin
trap N-t-butyl-a-phenylnitrone (PBN), via the reaction

i i
(CH3)3C—III=C—C6H5 + OH — (CH,),C—I}I—?—-QH, (10.56)
(o O OH

For the nitroxide radical formed, the primary triplet with a(**N) = 1.53 mT, occur-
ring at g = 2.0057, is split into doublets with a(lHa) = 0.275 mT; there is no
resolved splitting from the OH group [77]. Numerous spin traps have been syn-
thesized, and the EPR solution characteristics for the nitroxides formed by reactions
with various free radicals (e.g., OH, O, , CH;3) have been tabulated [78] so as to
allow ready identification of R.

2. The reaction can be followed by ordinary cw EPR, using intensities of lines.
There is a large literature describing such work, ranging from reactions that take
weeks to go to completion (e.g., diffusion-controlled reactions in solids) to reactions
ended in seconds. An example is cited in Section 10.5.6. Most of the work has dealt
with organic species. We must content ourselves by merely citing references [79—
81] to a few appropriate review articles. We can discuss some general aspects. For
the moment let us assume that the populations of the electron-spin energy levels are
at thermal equilibrium. Each EPR signal amplitude should be proportional to the
concentration of some paramagnetic species in the sample, provided that the line-
width is independent of concentration, an assumption that is not always valid.
The time course of the signal amplitude may be followed by fixing the magnetic
field at one of the extrema of a first-derivative line (usually the most intense) in
the spectrum.?' If more than one paramagnetic species contributes to the EPR spec-
trum, the time course of each can be followed independently if the magnetic field is
alternately positioned on specific lines arising from given species, assuming that
they are sufficiently resolved in the spectrum.

3. The reaction is too fast to be followed by ordinary techniques and
spectrometers, where limits are set by the inductance of the magnetic-field sweep
coils, as well as the time constants and bandwidth of the amplifiers. With some
systems, one can create unpaired-electron species very rapidly by use of flash
lamps or pulsed electron beams. The chemical situation can then be sampled by
EPR for time periods immediately after each pulse, at selected fixed B fields.
Such time-resolved techniques have been reviewed fairly recently [82—84]. They
extend the available kinetic information into the nanosecond region. As an
example, we cite the flash photo-excitation of certain cycloalkanones into their
lowest triplet states, from which they rapidly progress via ring opening to a series
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of biradicals [85]. The relative occupancies of the singlet and triplet sublevels of the
biradicals can be followed in detail, as a function of time (js).

We now turn to one informative phenomenon, chemically induced dynamic
electron polarization, which is readily observed and can be studied in this
fashion.

10.8.2 Chemically Induced Dynamic Electron Polarization

In some situations the paramagnetic entities are created such that the populations
of the electron-spin energy levels are not at thermal equilibrium. There may be an
excess population in the upper state (causing net photon emission) or in the lower
state (enhanced photon absorption). The excess population then decays toward
thermal equilibrium at a characteristic rate (Section 10.2.2). Since the EPR
signal amplitude is directly proportional to the population difference of spin
levels (Sections 4.6 and F.2), this decay results in a time dependence of this
amplitude.

The CIDEP effect was first observed with H atoms, freshly generated via
2.8 MeV electron pulse radiolysis in liquid methane at ~100 K [86]. The phenom-
enon manifests itself by the unusual appearance of the two hyperfine lines: in first-
derivative presentation they occur with opposite phase; that is, one is emissive (E)
and the other absorptive (A), in contrast to Fig. 1.4. Here the population differences
of the two M, states (Fig. 2.4) have opposite signs, as the result of complex polariz-
ation effects ensuing from the initial creation of the radical pair H and CHj3, and sub-
sequent recombinations.

Much more recent CIDEP studies of atomic 'H and “H in ice have furnished infor-
mation about geminate recombination of hydrogen atoms and hydroxyl radicals [87].

Steady-state photolysis of liquid benzene solutions of the fullerene Cg yielded
the radical HC¢(, where the 3.3 mT hydrogen doublet shows striking E—A polariz-
ation in the cw EPR spectrum [88].

The CIDEP phenomenon has been found with numerous other radicals, and has
been studied as a function of time elapsed after the creation pulse. As an example,
we cite the (CH;3),COH radical [82], for which time-integration spectroscopy gives
the EPR spectra depicted in Figs. 10.24 and 10.25.

The details of the mechanisms describing the kinetics of the CIDEP effect
have been rewardingly investigated and reviewed [89-92]. Suffice it here to
mention only that there is a complex contribution from two chemical mechan-
isms: creation of free-radical anion/cation pairs and of triplet systems, with inter-
conversion between these, often accompanied by electron- and proton-transfer
effects and creation of secondary radicals [93—95]. These are of special import-
ance in the energetics of the photochemistry occurring in natural and synthetic
photosynthesis.
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FIGURE 10.24 Time-integration EPR spectra of the (CH;),COH radical created by digital
summation of the signals between 1.00 and 2.00 ms of the 20 ns photolysis flash from a
308-nm excimer laser (repetition rate ~20 Hz). The sample contained 1-4 (V:V)
propanone in propan-2-ol. [After K. A. McLauchlan, D. G. Stevens, Mol. Phys., 57, 223
(1986).1
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FIGURE 10.25 A two-dimensional spectrum showing the field and time variation of the
central three of the seven EPR lines (Fig. 10.24) of the radical-pair mechanism
spin-polarized radical (CH3),COH. [After K. A. McLauchlan, D. G. Stevens, Mol. Phys.,
57, 223 (1986).]
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10.9 DYNAMIC NUCLEAR POLARIZATION

A technique closely associated with EPR spectroscopy is dynamic nuclear
polarization (DNP), which leads to enhancement of NMR signals by power-
saturating EPR lines in the same sample, thereby changing the spin populations in
the nuclear manifold. The mechanisms involved are not simple. A good summary
of DNP can be found in the literature [96—98]. For our present purposes, it suffices
to note that EPR here is an essential tool for other purposes.

10.10 BIO-OXYGEN

The ground state of dioxygen is of course, a spin triplet (see Section 7.3). Because of
the considerable importance of dissolved O, in animals and plants, major efforts
have been expanded using EPR to measure its concentrations and kinetics in such
systems, and thus there exists a considerable literature. For example, one can cite
‘The measurement of oxygen in vivo using EPR techniques’ [99,100], referring
mostly to work carried out at low frequencies (100—4000 MHz) to counteract the
dielectric-loss effects of liquid water. Such oximetry allowed non-invasive measure-
ment of the local equilibrium pressure of oxygen down to 0.5 torr, for example, in
mammalian tissue (including tumors).

By contrast, EPR imaging studies of dioxygen deep in tissues are rapidly being
developed [101]. Here a contrast agent (triarylmethyl probes), which interacts
with O, to broaden its own EPR line, providing O,-concentration images of
normal and tumor tissues in living mice.

It seems appropriate to point out that the relaxation effects of MRI contrast
agents: paramagnetic species [Gd(II) and Mn(II) complexes, Fe(Ill) oxides and
porphyrins, free radicals] acting on nearby nuclei (usually protons) have become
of prime importance, in that magnetic resonance imaging now uses this phenom-
enon extensively to contrast various sites in mammalian tissues. Clearly the
average distance r between, say, the Gd®>" ion with its seven unpaired electrons
and the nearest proton of a solvent water molecule is a key aspect, since the
dipolar relaxation mechanism has a r ¢ dependence. This distance has been
measured (0.31 + 0.01 nm) using from the anisotropic 'H hyperfine splitting, via
pulsed ENDOR spectroscopy [102]. The correction factor k(e) for the Gd** ion
was taken to be 1: see Eq. 9.2.

10.11 SUMMARY

It should now be apparent to the reader that a large number of different mechanisms
can contribute to lineshape effects. In this chapter it has been possible to survey
the origins of some of these only briefly. Although these effects contribute to the
complexity of EPR spectra, analysis can yield valuable structural and kinetic infor-
mation. For example, use of nitroxide radicals (R;R,NO) incorporated as ‘spin
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labels’ into substances of biomedical importance has yielded much valuable infor-
mation regarding the structure, dynamics and chemical behavior of such species
(for references, see Chapter 13). In some cases, ignorance of the lineshape effects
makes it most difficult to interpret an EPR spectrum (e.g., the vinyl radical in
liquid solution; see Problem 10.7). For a quantitative interpretation of these line-
shape phenomena, an understanding of the theory of relaxation processes is required.
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NOTES

. There are at least as many definitions of the word ‘dispersion’ as there are letters in the

name. The reader is invited to make a list! As a general definition, we may try
‘transformation of a more orderly and more homogeneous system to a less orderly and
less homogeneous system, without loss of energy by it. This evolution may be a
temporary and non-random process’.

. Electrons and protons obey Fermi-Dirac statistics, but it can be shown that Maxwell -

Boltzmann statistics apply, to an adequate approximation, when the interactions
between the spins are sufficiently weak; that is, the spin moments act independently
[1]. There is then no limit for the number of spins having the same energy. However,
spin-spin interaction must be adequate to maintain thermal equilibrium within the spin
system in order for 7§ to be meaningful.

. Spin systems with negative spin temperatures cool by passing through —oo to 400 and

then to finite positive T values.

. The quantity p, dv is the total energy of the set of photons with energy between hv

and h(v + dv) per unit volume per unit frequency interval. Density p, has SI units of
J m™? Hz '. For a resonator, producing a linearly polarized magnetic field (Eq.
10.23a), fooo p, dv = 2B,%/ . Here B; may be a function of position.

. Everywhere in space there is a background blackbody radiation at 3 K [3].
. The concept of a spin-lattice relaxation time goes back to the work of Waller in 1932 [4]

and of Van Vleck in 1939 [5]. However, the modern developments of the concept largely
derive from the work of Bloembergen et al. [6] in 1948, and work by Redfield [7] in 1957.

. A compilation of papers on spin-lattice relaxation and its mechanisms has been published

[8]. Also the books by Pake and Estle [9], Poole and Farach [10] and Sorin and Vlasova
[11], and a review by Orbach [12] contain good discussions of this topic.
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8. Vector M is in motion at system equilibrium, which can be defined as the situation when
the time-average values of the components of M over n > 1 cycles are independent of n.

9. Note that v, has a negative sign (Section 1.7), leading to a clockwise sense (while looking
along vector B) of rotation of M relative to the direction of B; that is, wp is positive.

10. Equation 10.19¢ is valid only when B > B, since M relaxes with respect to the
instantaneous magnetic field B + By, not the static field B [22] (Problem 11.5).

11. Note that M, — M,° as 7 — 0. Spin polarization is seen to be predicted by the Bloch
equations (see Eq. 10.24c) for B; > 0 even when B = 0. This effect has been observed
(i.e.,, M, # 0,z L B,) for electrons and recently [23] even for nuclei.

12. Often the concept of a complex magnetic susceptibility y = ¥ — iy is convenient. The
connection between x(w) and Y’(w) is an example of the Kramers-Kronig relation
[24,25]. Strictly speaking, in solids these susceptibilities are second-rank tensors rather
than scalars (see Note 1.16).

13. Often EPR spectrometers measure signals proportional to P'/? rather than to P
(Section E.1.8). For a discussion, see the detailed article by Feher [26].

14. However, wp is rarely a simple function of B (e.g., Eq. 6.54), so the formalism described
above does not in fact apply. In the simplest case, wp = —(g/g.) Y. B-

15. It must be noted carefully that 7, has been related to the inverse width of a homogeneously
broadened line. The inverse width of an inhomogeneously broadened line has not been
linked to any actual relaxation time; however, the inverse width of each component
spin packet is a measure of 7, for that packet.

16. The modified Bloch equation model was introduced in 1953 by Gutowsky et al. [31] to
explain dynamic processes in NMR; however, this approach is easily adapted for EPR
[32]. Since EPR deals with larger energy splittings, it can probe kinetic phenomena
involving a shorter time scale, that is, more frequent events.

17. Electron exchange is detectable only if the colliding radicals have different electron-spin
states (Ms). There is no way of detecting exchanges if their initial spin states are identical.

18. A similar exchange-narrowed spectrum is observed for most pure solid free radicals. Here
the strong exchange arises from the permanent overlap of molecular wavefunctions.

19. If the spin-hamiltonian parameters are all isotropic, rotation cannot be detected by
magnetic measurements.

20. In single crystals, the individual linewidths may depend on M, (in fact, as the square root
of the function in Eq. 10.54a) and may be anisotropic. This is a static effect, arising from
either a distribution of hyperfine parameters (A strain) and/or from the presence of
exchange coupling (|J] ~ |A/(g.B.)|) [57,58]. Rotational effects due to dipolar motions
may, of course, also occur.

21. In some cases it is preferable to turn off the modulation amplitude and detect in the
absorption mode. In this case the field should be placed at the center of the strongest line.
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PROBLEMS

10.1 (a) Derive the expression AN/N = (1 — e *)/(1 + e ), where x = AU/k,T,
and (b) show by series expansion that AN/N ~ x/2 when |x| < 1.

10.2 When a spin system is placed into a homogeneous constant magnetic field (of
magnitude B), it gives up energy to the field, and reaches a steady-state popu-
lation. Denote its total energy W(B) by W, which is negative
(a) Show that the ultimate population difference (Eq. 10.3) for a spin %

system at a sufficiently high temperature is given by

AN = —NW/(2k,T;) (10.57)

where N is the total (large) number of spins, and 7 is the spin-system
temperature defined via the Boltzmann distribution. Give a simple
expression for W(B).

(b) Consider a sudden feeding in of energy |2W)| to the spin system, causing
an exact population inversion. Predict what will happen as the spin
system then returns to steady state (see Ref. 103).
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10.3

104

10.5

10.6

10.7

RELAXATION TIMES, LINEWIDTHS AND SPIN KINETIC PHENOMENA

Linewidths in EPR spectra have been reported to range from 1.5
to >100 mT.

(a) Compute the minimum possible value of 1, for lines of width 1.5, 0.1 and
100 mT.

(b) Discuss possible methods that might be used to measure the spin-lattice
relaxation time 7; (Section F.6).

(¢) What are the distinguishing characteristics of the relaxation times 7, and
’Tz?

Given that

Auw 8h?
Buﬁ N CS

(10.58)

where c is the speed of light, and the radiation density p, is given by the
Planck blackbody law

(a) Show that a two-level spin system comes to equilibrium such that the
spin temperature equals the temperature of the blackbody radiation.

(b) GiventhatA,, ' = 10* years for uncorrelated spins, calculate 7, for this
case (assume that B=1T).

Derive the limiting expressions for the magnetization components
(Egs. 10.24) as 7, goes to infinity. (Hint: See Section A.7.) Plot the corre-
sponding susceptibilities (Eqgs. 10.27-10.29) and compare with Fig. 10.6.
What is the meaning attributable to parameter 7,7

From the linewidths in Fig. 10.8, at concentrations of 107" and 1072 M,
determine the second-order rate constant for electron-spin exchange.

Consider the spectrum of sodium naphthalenide shown in Fig. 10.12. The iso-

tropic sodium hyperfine splittings, in the limit of slow conversion between

two distinct ion pairs (a and b), are a, = 0.22 mT and a;, = 0.08 mT.

(a) From the magnitude of the hyperfine splitting (computed using the scale
in the figure) and using Eq. 10.52, compute the equilibrium constant for
the ion-pair interconversion reactions (Eq. 10.34).

(b) Plot In K versus 1/T to obtain the enthalpy change AH° for this
interconversion.

(c) Using the scale in the figure and the relative amplitudes, compute
approximate linewidths for lines B;, B,, B3 and B, in Figs. 10.12a—c.

(d) Using Eq. 10.53 and noting that I' = (\/§/2)ABpp for lorentzian lines,
where AB,,, is the peak-to-peak width shown in Fig. F.1, compute the
mean lifetime 7 at each of the three temperatures. Note that 7, = kL
for i = a,b.

(e) From the relation 7= 7,7,/(7,+ 7,) and the equilibrium constant,
compute 7, and 7, at the three temperatures.
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FIGURE 10.26 First-derivative spectrum of the VO>' jon in deoxygenated toluene
solution at 236 K. [After R. Wilson, D. Kivelson, J. Chem. Phys., 44, 154 (1966).]

10.8

10.9

10.10

(f) Plotln 1/7, and In 1/7, versus 1/T to obtain the activation energies for
the forward and reverse reactions.

Consider the vinyl radical HC=CHj,. Draw the expected eight-line (first-order)
stick spectrum, labeled with M; values, taking a; = 1.57 mT, ay(trans) =
3.43 mT, and az(cis) = 6.85 mT, as is observed in rigid media [104]. In liquid
solution, due to rapid interconversion between the two tautomers, only two
hyperfine splittings (1.57 and 10.28 mT) are found [86]. Explain this obser-
vation, drawing a suitable correlation diagram between the stick spectra.

The spectrum of the VO** ion is given in Fig. 10.26. The >'V nucleus, in

99.75% natural abundance, has I = 7.

(a) Determine relative linewidths for each component, using the fourth line
as a reference.

(b) Assuming that g|| < g, determine the sign of the hyperfine splitting.

(¢) Determine the coefficients «, 3 and y by application of Eq. 10.54a to this
spectrum.

(a) From the spectrum of the p-dinitrobenzene anion at —55°C in
Fig. 10.18, determine the relative linewidths of each component assum-
ing that the central line has a unit linewidth.

(b) Assign a value of "My and ‘My to each line component.

(¢) Determine the sign of By and By (Eq. 10.54b). (Hint: By should be
determined from the line components for which ‘My; is zero.)

(d) Determine the sign of yng (Eq. 10.54b). (Hint: Compare the relative
widths of the proton hyperfine components for which ‘My = —1 and
"My = +1.)
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10.11

10.12

10.13

RELAXATION TIMES, LINEWIDTHS AND SPIN KINETIC PHENOMENA

Referring to Fig. 10.19b, construct a first-order stick diagram for the
di-t-butyl nitroxide radical under the incorrect assumption (see text) that
ap has the opposite sign, using ay = +0.21 mT, a;, = —2.37 mT, and the
correct g factors. From this diagram, predict the relative widths of the
three hyperfine lines in a solution of moderate viscosity. What is actually
observed?

Rotation of molecules containing pairs of coupled identical magnetic
dipoles gfBJ, aligned in an external magnetic field B, causes spin-lattice
relaxation and line broadening, modeled statistically [18, p. 192] by the
expression

1 2u (g'BYI+1) T 47, 6

— = 10.59
T 5 ( h? 1 + wp?7.2 B + 4wp? 7> LA %)
1 2uy% (¢*BYU +1 57, 2

12w (¢ UtDVfa, 5% 2% L

T 10 h 14+ wg?72 14+ 4wgt.2

(10.59b)

for the relaxation times. Here r is the average distance between the dipoles
and 7. is the rotational correlation time. The latter is a measure of the fre-
quency of random rotations of the molecules. Plot 7, and 7, versus 7. for
electrons, using reasonable values of g, wp and r. Discuss in physical
terms the functional behavior obtained.

The term ‘adiabatic’ occurs throughout the magnetic resonance literature. In
classical thermodynamics, wherein time dependence never appears for any
process, diabatic and adiabatic signify heat transfer or none across the
boundary between the system considered and its surroundings. Elsewhere,
time is of the essence in this nomenclature, and the denotations ‘slow’
and ‘fast’ enter. Write a succinct discussion of the term ‘adiabatic’, describ-
ing its meaning and usage within EPR spectroscopy.



CHAPTER 11

NON-CONTINUOUS EXCITATION
OF SPINS

11.1 INTRODUCTION

Until now we have considered continuous-wave (cw) situations in which By is
sinusoidal but has a maximum amplitude constant with time. We now turn to the
important ideas relevant when the excitation amplitude is time-dependent, say,
when B; is pulsed. The use of such excitations in EPR has been developing
slowly but steadily since the early 1960s. Much of the pioneering work in pulsed
EPR was carried out by W. B. Mims, beginning in 1961.

We continue in this chapter to make use of the concept of frequencies, namely,
those associated with applied magnetic excitation fields (B;) and with transition energies.
The Larmor frequency corresponding to ‘precession’ of each particle’s spin mag-
netic moment can be defined as vz = gBB/h (Problem 1.5). We remember that
Vg = Vo= (Uy — Up) /h for the S = % spin system. In quantum mechanics, the concept
of precession is linked to the Heisenberg principle, as applied to angular momentum;
that is, the spin components perpendicular to B are depicted by a ‘cone of uncertainty’
(Fig. 11.1) and only the cone axis direction if selected is exactly measurable.

In practice, the form of B;(#) can be chosen to fit the requirements of the experi-
mentalist, at least in principle. The direction of B, (or several such fields, applied con-
secutively) must be specified relative to that of B, and to the orientation of the sample
if the latter is an anisotropic single crystal. The frequency (or several such) must be
selected, as well as the phase relation(s) between the relevant sinusoids. The ampli-
tudes B;(f) are crucial in determining the observed effects. Of course, for every
change in By, the excitation spin-hamiltonian term —f.T+ B; changes concurrently.

Electron Paramagnetic Resonance, Second Edition, by John A. Weil and James R. Bolton
Copyright © 2007 John Wiley & Sons, Inc.
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p'-B/B=-gB M,

Y |

X

FIGURE 11.1 The precession model for the behavior of a spin magnetic moment () in a
static magnetic field B. The situation is depicted for a negative value of agBM; (Eq. 1.9).

For our present purposes, we take B () as a monochromatic sinusoid, constant in
amplitude’ over desired periods of time, instantaneously turned on from zero or
turned off after desired intervals. Such square-wave behavior approximates very
well the achievable actual pulses of excitation magnetic fields. It is important to
note that such a rapid step change in B, is equivalent, in the region of the step, to
the presence of field components having a range of frequencies superimposed on
that of the basic frequency v of field By; that is, it is a generalized Fourier series
of various sinusoids [1,2].

The field B, is taken as linearly polarized, in the region of the sample, and gen-
erally oriented at 90° to field B. As we saw (Eq. 10.23), such a field can profitably be
regarded as the superposition of two equal-amplitude rotating components (fre-
quency v), one moving clockwise and the other counterclockwise (Fig. 10.5, and
Egs. 10.23 and 10.24), both vectors circulating about B. Only one component is
effective (see Appendix D) in causing magnetic resonance (o-type) transitions;
that is, the effective excitation field has magnitude B;.

Initially, we once again consider single spins, and thereafter we shall graduate to
ensembles of these. We temporarily ignore hyperfine effects and other inter-spin
interactions.

11.2 THE IDEALIZED By SWITCH-ON

Consider now the familiar (cw) situation of a spin magnetic moment L = agPY
(Eqg. 1.9) in a sinusoidal (frequency v) excitation field B, that is linearly polarized,
oriented at 90° to static Zeeman field Bl z. Both fields are assumed to be
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homogeneous. As indicated, we can adopt a vector model to visualize the situation
(Fig. 11.1). In the absence of B, the spin J acts much as if it were precessing about B
at its natural frequency vp, with the same rotational sense for both the M; = —I—% and
—% states. For non-zero By, there are two simultaneous precessions, one about B and
the other about B generally at a frequency lower than v (usually B > B;). When B,
has basic frequency v = v, that is, at magnetic resonance, the frequency and sense
of rotation of one component of B; just match those of the spin moment. One may
think of that B; component as applying a torque on the expectation value () of the
magnetic moment, which torque is maximal since B; and B are at right angles. Then
the spin-moment vector (i.e., the axis of the cone of uncertainty) is driven by B, back
and forth between its J, eigenstates, oscillating at frequency v, = gB;/h with suit-
able energy exchange between spin and effective B, field.”

This situation is seen more clearly from the solutions of the so-called Rabi
problem, that is, of the quantum-mechanical dynamic equations that furnish the
probability amplitudes for the above-mentioned phenomena [3,4]. Thus, for
example, if an isolated electron spin % is in its ground state M; = —% at time ¢,
the probability [5—7] for it to occur in upper state M; = +% is

2
P (‘”) sin® {7v,(t — 10)) (11.1)

p
where the frequency v, = [v; 24— vB)z]l/ 2 is named after the magnetic resonance
pioneer, I. I. Rabi. The probability P is maximal at times ¢ — fq = £/2v,, for odd values
of integer £. At resonance, v = vp, the probability for the system to be found in its
ground state is unity for ¢ even. At timepoints between these, the probability for
each state M; = i% to occur is non-zero. The cone axis is to be visualized
(Fig. 11.2) as moving in a screw-like motion back and forth between the bottom
pole (—z) and the top pole (4-z) of a sphere, where B || z. The rate of spin ‘flipping’
is slow compared to the rotation frequency vz when B > Bj. This view of magnetic
resonance is of course, consistent with the previous descriptions found in earlier chapters,
that is, the above-mentioned flips correspond to transfer of photons /v between the spin
and excitation-field systems. Spin-lattice and spin-spin effects have been ignored here.

Another viewpoint is that the motion of the magnetic dipole (‘precession’ of the
magnetic-moment vector) causes a detectable instantaneous power transfer (plus a
frequency shift) in a resonator holding the spin system; for example, the precession
induces a voltage in a pick-up coil linked to the energy source or sink (Appendixes E
and F).

When v # v, then the Rabi oscillations (Eq. 11.1) in the probability amplitudes
occur at frequencies v, higher than v, and the probability for attaining the upper
state never reaches unity. The transition probability goes down (quite sharply, drop-
ping roughly as v;/|v — vp|) as v departs from resonance, and B, rapidly becomes
ineffective as far as the spin is concerned. However, as we shall see, the situation
v ~ Vg is an important one. Remember also that the jump probability decreases as
B, shifts away from being normal to B (but see Section 1.13).
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FIGURE 11.2 The locus of the tip of () when the magnetic resonance condition is obeyed.
Initially (p) pointed along —B, that is, the state for which agBM; < 0.

Clearly, if no irreversible energy transfer from or to the total system (spin +
radiation) occurs, then there is no net change of any type when averaged over any
definite number of oscillation periods. Some effective electromagnetic field other
than B and B, that is, spin-lattice relaxation—a coupling to the energy reservoir
of the rest of the world—must be present for net EPR power absorption to be
observable.

Next, we consider a set of many independent spins in uniform fields B L By,
which are taken as having magnetic moments identical in magnitude. Such an
ensemble can be treated statistically, say, by using the Bloch theory (Chapter 10)
or the density-matrix approach.” We can benefit by utilizing the net magnetization
M per unit volume, as defined in Eq. 1.8 (see also Note 1.8 and Chapter 10). We
take this as being the expectation value describing a spatially averaged macroscopic
quantity, a time-dependent vector not subject to quantum-mechanical uncertainties.
Initially the phases (positions along the circular ‘orbits’ about B) of the various indi-
vidual spin vectors are random, and they remain so after B, is switched on. There-
fore, in an isotropic material, the time average of any component of M, which is
perpendicular to B, is zero in the laboratory frame.

If there were exactly equal numbers of independent spins in states M; = — % and
+ %, then the net effect of the upward and downward flips would be to maintain the
magnetization as is (i.e., M would be zero and stay that way). However, for the usual
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thermal equilibrium situation in a relaxing spin system, there is an excess number
AN of spins in the lower energy state. These excess spins set the value of M and
hence, as B, drives the spins back and forth (in unison) between states —|—%, M, (1)
oscillates between extremes for M parallel and antiparallel to B [14]. An oscillating
magnetic dipole is associated with an oscillating radiation field; that is, an
alternating-current (ac) voltage is induced. If B; is not turned off during the
experiment, then this is a view of cw magnetic resonance spectroscopy (EPR, if
J=09), as presented in the previous chapters. As discussed, if some of the spin-
system energy goes to (say) atomic motions, rather than being returned to B,
then AN is maintained and a net absorption signal is observable. Note that unless
the spin-lattice relaxation is adequate, AN will go to zero so that eventually no
net energy absorption will occur and the spin system will be deemed to have
become power-saturated (Section 10.2.3). Note the vanishing of M in the limit as
71 — oo (Egs. 10.22).

To understand the physical interactions of the spin moments with the externally
applied magnetic fields and with each other, it is important to visualize the time-
dependent behavior of the magnetization M. This task can be simplified by choosing
the most convenient coordinate system (CS). Very often, use of a ‘rotating frame’
(Section 10.3.3), which here has its axis z ,(=z) along B and its axis x4 along the
effective rotating (in the lab CS) component of By, is called for, since the B, rotation
and the Larmor precession (when v = vp) then seemingly are absent [15] (Fig. 10.4).
This also greatly simplifies the mathematical detail, as may be seen in Problem 11.1.

One can analyze the situation more completely by means of transient solutions
[16] of the Bloch equations (Egs. 10.17). As seen in the laboratory frame, M
rotates about B (]|z) at frequency v, on which motion is superimposed a much
slower B-dependent nutation (change in angle between M and B) occurring with
the Rabi frequency v,. This transient nutation has an initial amplitude dependent
on the magnetization present at switch-on of field B, (L z) and on the proximity
of frequency v to the resonance value. It is damped by the spin-lattice and spin-spin
interactions. In the frame rotating about z at frequency v, there is slow precession of
M about the direction By + (B — hv/gf,)z with frequency v,. In the spectrometer, a
resulting modulation of the absorption (or dispersion) is observable, measured by a
detector sensitive to the magnetization in the xy plane [1,16]. This transient on the
signal, which is dependent on the presence of a magnetization component M | in that
plane, decays with a nutational relaxation time given (in the absence of field inho-
mogeneities) by 2(r "+ 7 Y. The final magnetization is the steady-state one
given in the previous chapter (Section 10.3.4).

11.3 THE SINGLE B; PULSE

Next, consider the effects of turning off the excitation field B;, while the transient
nutation is still appreciable. Thus a square-wave excitation pulse of temporal length
7 is formed. The behavior of M beginning at pulse-end time is of prime interest in
EPR spectroscopy. The observed phenomenon is referred to by the curious name
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‘free-induction decay’ (FID). Here ‘free’ refers to the absence of B, (while the field B
remains on!), in contrast to the situation described above, of the spins being ‘driven’
by B;. The FID causes the signal usually dealt with in pulsed EPR.

If B, is instantaneously turned off at (any one of the) times 7= £/(4v,) after
turn-on, then, at that instant M is either parallel or antiparallel to B, depending on
whether £ is an even or odd integer. Here v, = g3.B;/h. The pulse turning (flip)
angle Q(7) for M is given (in radians) by the product 27r7v,. Thus the 7 pulse
(¢ =2) turns M by 180° from its initial direction. We note that the 7 pulse
inverts the electron spin population, the higher-energy state becoming more popu-
lated than the lower one. Equivalently, this can be said to generate a negative
spin temperature to describe the population of the spin system. As time progresses,
the spin system recovers and moves toward the normal (positive spin temperature)
Boltzmann population (Chapter 10), by radiationless relaxation and the emission of
photons Av. Note that with B, turned off, the photon energy density p, is essentially
zero, so that no induced transitions take place. However, the spontaneous photon
emission is enhanced when the spin magnetic moments are in phase (superradiant
system), that is, while the FID is appreciable. [In cw EPR, the spins are not corre-
lated. Hence most of the energy lost from the spins goes to the ‘lattice’ of atoms
and only some (usually a negligible amount) goes back to B, (via incoherent spon-
taneous emission).] The locus of vector M is to be visualized as remaining longitudi-
nal (along B) throughout the inversion recovery, that is, shrinking in magnitude
along —z, going through zero, and then regaining its initial magnitude along +z.
The decay rate is exponential, with a characteristic relaxation time 7; (Section 1.5
and Chapter 10). The spin behavior can in many actual cases be described in
terms of the Bloch equations for the time dependence of M (Section 10.3).

We now discuss, in a similar manner, the very important case of the /2 pulse:
namely, 7= 1/(4v;). Inmediately after cessation of B;, M has been rotated, with its
magnitude unaltered, to an orientation perpendicular both to B and (if v = vp) to the
direction 90° from where B; was terminated.* Note the essential difference between
this occurrence of M, = 0, in which the spins are coherently dispersed (see Section
11.8) transverse to the field B (i.e., in the xy plane), and the random-phase cases
when the polarization field B is first turned on or when there is complete saturation.
As with the 7 pulse, M, begins to grow back toward its equilibrium value (exponen-
tially, with spin-lattice relaxation time 7;) while the set of individual spins starts
losing phase coherence so that the transverse magnetization M, — 0 (with relax-
ation time 7,,).° This temporal behavior is shown in Fig. 11.3. It is useful to
realize that dephasing is of two types: reversible and irreversible (stochastic). The
former is given by (real) parameter 7»* (includes magnetic-field inhomogeneity)
and the latter by 7,,,.

The transverse magnetization direction y,, that is, that of M, continues to
precess around B at frequency v = vg. With suitable apparatus (i.e., detection in
the plane normal to B), the temporal behavior of M, can be followed.® The phase
coherence of the detected signal(s) relative to B; can be measured, since the sinusoi-
dal (frequency v) supply voltages for field B; are maintained even when B is not on.
The detected signal is an ‘interferogram’. That is, the superposition at each instant of
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(a) END OF
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FIGURE 11.3 The magnetization behavior after the end of a 90° B, pulse shown in (a).
Drawings (b) and (c) depict M, (t) and M, (). The situation 7 = 7, is depicted.

positive-going and negative-going contributions (induced voltages) from the various
spins in the ensemble defines the total signal, which varies rapidly and dramatically
with time. In practice, the FID signal must last sufficiently long to be recorded
reliably.’

Finally, we can now consider more realistic spin systems, where various inter-
actions are at play, so that interpretation of the observed FID signals yields precious
chemical and structural information. In other words, all the spin-hamiltonian
parameters discussed so far affect the FID and in principle are extractable by
measuring it, as are the operative relaxation times. Use of single B, pulses and, as
we shall see later, of cleverly designed sequences of B; pulses, make these goals
attainable. These considerations are equally vahd for nuclei and electrons; for our
purposes, we deal with electron spin, that is, j=83

11.4 FOURIER-TRANSFORM EPR AND FID ANALYSIS

Detection after a pulse gives two separate and complicated functions of time,
namely, coherent signals in-phase and out-of-phase with the reference signal at
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frequency v (B is now turned off, but the memory of it lingers on in the spin
system). These can be repetitively and separately measured, maintaining the above-
cited phase coherence, and can be computer-stored.’ The subsequent analysis of the
time evolution of these signals (which begin at the end of the pulse) usually is carried
out by the mathematical technique called ‘discrete Fourier transformation’ [19], a
procedure that is immensely assisted by use of modern computer technology,
using the fast Fourier-transform algorithm. In essence, the result is conversion of
digital time-domain data to digital frequency-domain data containing the line
positions (v; or B;) and relative peak intensities identical to those of the cw EPR
spectrum (Fig. 11.4). It is possible to obtain analytical expressions for the frequency-
domain spectra for suitably simple spin systems, for example, for a disordered
system with a single 1 = % nucleus [20]. For best frequency-domain resolution, it
is important to follow the time development of the FID as long and completely as
possible.

In any actual chemical system with unpaired electrons, numerous electron
spin ‘precession’ frequencies vy occur, arising from the many types of local
magnetic fields present (e.g., hyperfine effects, electron-electron interactions,
inhomogeneities in field B). Therefore, a given frequency v of excitation field
B, rarely coincides with an actual vz. Thus the off-resonance case referred to
earlier is the rule and not the exception. It turns out that to measure maximal
portions of the total extent of the EPR spectrum, 7 should be as short as prac-
ticable. At the same time, the product of BT is set by the condition that a /2
pulse is desired. Thus B; must be as large as possible. In practice, a spectral
region of ~2 mT can be excited by pulse EPR, and 7 generally is very short
compared to 7; and T,

N
N
N

—_—

t—— Y—
FIGURE 114 (a) Evolution of the magnetization during a 7r/2 pulse EPR experiment on a

system with S =1 :%; (b) FID spectrum and corresponding FT-EPR spectrum. [After
A. Schweiger, Angew. Chem. Int. Ed. Engl., 30, 265 (1991).]
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Let us now list some important advantages of doing pulse EPR rather than
cw EPR:

1. Efficient Data Collection. This means that all lines are simultaneously
detected and the scan time required to do so is independent of the extent
covered rather than wasting time, as in cw work, on slowly scanning the
various base-line regions between peaks. It also means that one can repeti-
tively apply the pulse and computer-store very many, say, n, such scans.
Since the noise is random, the + and — contributions cancel so that the
signal-to-noise ratio increases with n (roughly as n'/?). Here n easily can be
as large as 10°.

2. Time Resolution. A single pulse spectrum can be recorded in ~1 ms. A spin
system evolving in time can easily be sampled. Thus a given B; pulse can be
locked to a source of chemical energy, say, a laser pulse, so that reaction
products can be sampled, for instance, every microsecond after this primary

(a)

EPR-FID

‘“—

EPR-FID

0 10 2
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FIGURE 11.5 (a) Accumulated FIDs of the fluorenone ketyl radical anion at 220 K. The
radical anion was produced by reduction with potassium in tetrahydrofuran. The output of
the two phase-orthogonal detection channels is shown. (b) Quadrature Fourier spectrum of
the data of (a). The spectral center at 25 MHz corresponds to the spectrometer frequency
9.271 GHz. (c¢) The stick-spectrum reconstruction based on hyperfine couplings (A/h in
MHz) (1) —5.77, (2) +0.27, (3) —8.80, (4) +1.84. [After O. Dobbert, T. Prisner, K. P.
Dinse, J. Magn. Reson., 70, 173 (1986).]
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(b)

1y

20 30
microwave frequency (MHz)

ANy

40 50

Ay /h==517 Miz
(A,/h=+0.27 MHz)
A,/ h=-8.80 MHz
A/h=+1.84 MHz

1]

event. Many other types of dynamic situations (e.g., chemical and optical cre-
ation and decay, diffusion, phase changes, energy transfer between molecules)
are also open to study [21, Chapter 1]. Thus time-resolved EPR is seen to be a

FIGURE 11.5 Continued.

powerful tool in investigating kinetics.

3. Efficient Relaxation Measurement. T, and 7, can be measured directly from
the responses to the pulse(s), rather than extracting them via deconvolution

of lineshapes or analysis of cw saturation behavior [22, Chapter §].

Potential disadvantages include the inability of pulse EPR to scan spectra extend-
ing over wide (>>2 mT) field ranges and the limitations posed by (too rapid) relax-

ation times.
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In Fig. 11.5a, we display the two quadrature-detected (see Appendix E) FID signals
arising from the fluorenone ketyl anion radical (I) [23].

4

I ?

o
K+

(I) fluorenone ketyl anion radical

Fourier transformation of the spectrum from the time domain to the frequency
domain yields the ‘ordinary’ EPR spectrum consistent with a stick diagram, as
shown in Fig. 11.5c¢.

As a second example of the application of pulse EPR, we consider a short-lived
organic free radical created in a reversible photoinduced electron-transfer reaction.
Using a pulsed dye laser, electron transfer occurs between excited zinc tetraphenyl-
po