(Electromagnetism)

Test 1

Time allowed – 2 Hours

15 Pages in this Question Booklet

TOTAL MARKS AVAILABLE

Aids	to	be	supp	lied	by	College:
------	----	----	------	------	----	----------

None

Aids to be supplied by Students:

Pen, pencil, eraser, rule, calculator

SECTION	Possible Marks	Actual Marks
Α	25	
В	20	
С	20	
D	20	
TOTAL	85	

Instructions to Students:

- Electronic devices are to be turned off and removed from your person. You cannot access an electronic device during this examination.
- All questions are to be answered in the space provided in this Question Booklet. Answers to Section A – Multi-choice Questions, are to be recorded on the Answer Sheet attached to this Question Booklet.
- You are not to use any reference book in this examination.
- The whole of this Question Booklet is to be handed to the Supervisor upon completion.

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

Section A - (20 Marks)

Select the best answer for the following statements and place an "X" in the appropriate box on the Answer Sheet attached to this examination paper.

1.		The opposition of a material to becoming magnetised is known as:	
		inductance	
		1	
	u)	(1 M	lark)
2.		Magnetic Flux is measured in:	
	a)	teslas	
	b)	webers	
	c)	henries	
	d)		
		(1 M	lark)
3.		Flux Density is a measure of:	
	a)	magnetic flux	
		reluctance per unit area	
		magnetic flux per unit area	
	d)	inductance per unit area	(anla)
		(1 M	laik)
4.		The Magneto Motive Force produced by a coil depends on the:	
		reluctance of the core and the length of the magnetic circuit	
		number of turns in the coil and the C.S.A. of the core	
		number of turns in the coil and the length of the magnetic circuit number of turns in the coil and the current in the circuit	
	e)	(1 M	(ark)
-			,
5.		When two single current carrying conductors run in parallel, have a current flow through them in the same direction, there is:	'ing
	a)	a magneto motive force between them	
		1	
	d)		r 1 \
		(1 M	Iark)
6.		A B-H curve shows the relationship between:	
		reluctance and magneto motive force	
	c)		
	d)	flux density and magneto motive force	lark)
			iai KJ

7.	А	suitable application for a permanent magnet would be:	
	a) lou	d speakers	
	/	nsformers	
	c) rel	•	
	d) las	ers	(1 Mark)
0	117		(1 Mark)
8.		nen a material's flux density only has a small gain for large increase in gnetising force, the material is said to be:	
	· -	meable	
	b) satc) ret		
	· ·	uctant	
			(1 Mark)
9.	W	nen using the Right Hand Rule for Solenoids, the thumb points :	
	a) in	the direction of current flow	
	,	the active terminal	
	,	the south pole of the solenoid	
	d) to	the north pole of the solenoid	
			(1 Mark)
10.	To	reduce eddy currents, the core materials should be:	
	a)	solid steel	
	b)	laminated steel	
	c) d)	rolled steel high quality silicon steel	
	u)	ingli quanty sincon seer	(1 Mark)
11.	If	on air can is introduced into a magnetic circuit the magnetemotive force	, ,
11.		In air gap is introduced into a magnetic circuit the magnetomotive force puired to maintain the flux would:	
	a)	need to be decreased	
	b) c)	not need to be changed need to be shut down and re energised	
	d)	have to be increased	
	,		(1 Mark)
12.		e magnetic field surrounding a conductor can be increased by reasing the:	
	a)	current flowing in the conductor	
	a) b)	temperature of the conductor	
	c)	number of turns of the magnet	
	d)	diameter of the conductor of the magnet	
			(1 Mark)
13.		e term given for the current or voltage of an LR circuit to reach 63.2% its final value is:	
	a)	time period	
	b)	time constant	
	c)	lenz's law	
	d)	self inductance	

14.	The polarity of the induced voltage in a contract of the induced voltage in a contrac	conductor can be changed by:
	a) reversing the direction of the magn	etic field
	b) increasing the field strength	
	c) decreasing the size of the conductor	r
	d) reversing the voltmeter connections	\$
		(1 Mark)
15.	The magnetic field surrounding a straigh	t conductor can be decreased by:
	a) decreasing the current in the condu-	
	b) decreasing the number of turns of t	
	c) using a conductor with a larger diam	
	d) decreasing the temperature of the c	
		(1 Mark)
16.	The law that states that the polarity of an	induced voltage will be such that
	it opposes the voltage which initially cau	used the induced voltage is called:
	a) Kirchhoff's Law	
	b) Lenz's Law	
	c) Ohm's Law	
	d) Faraday's Law	
		(1 Mark)
17.	Magnetising force is the:	
	a) force between the north and south p	poles of the magnet
	b) reluctance per unit length	C C
	c) product of the turns and current per	r metre
	d) product of the current and the reluc	
		(1 Mark)
18.	The laws of magnetism state that magnet	tic lines of force:
	a) Cross inside the magnet	
	b) Always travel from south to north	
	c) Travel from north to south inside th	ne magnet
	d) Are continuous and can be distorted	d.
		(1 Mark)
19.	A material of low reluctance has a:	
	a) high permeability	
	b) low permeability	
	c) high retentivity	
	d) low reactance	
		(1 Mark)
20.	Saturation of a magnetic material means	that a further increase in the
	magnetomotive force will:	
	a) cause a small increase in magnetic	
	b) cause the material to start to act as	•
	c) actually reduce the magnetic flux w	
	d) cause the material to overheat incre	-
		(1 Mark)

21.	Th	e magnetic lines of flux associated with a bar magnet:	
	a) b) c) d)	are strongest at the south pole flow from the north pole to the south pole are weakest inside the bar magnet enter at the north pole and leave at the south pole	
22	TL	e main come en ente mithin en LD circuit ente	(1 Mark)
22.		e main components within an LR circuit are:	
	a)	lamp and straight conductor	
	b)	resistor and capacitor	
	c)	inductor and a resistor	
	d)	inductor and a magnet	
			(1 Mark)
23.		e scientist who discovered that a moving magnetic field causes a rent to flow in a conductor was:	
	a)	Henry	
	b)	Faraday	
	c)	Oersted	
	d)	Watt	
			(1 Mark)
24.		he velocity of an magnet moving through a coil is increased, the luced voltage will:	
	a)	remain unchanged	
	b)	decrease to zero	
	c)	increase	
	d)	decrease	
			(1 Mark)
25.		e induced emf in a conductor moving in a magnetic field can be reased by:	
	a)	moving the conductor more slowly	
	b)	reducing the diameter of the conductor	
	c)	increase the length of the conductor	
	d)	using a magnetic field with less flux density	
			(1 Mark)

Section B – (20 Marks)

	(1 Mark
What type of magnet retains practically all of its magnetisn force is removed?	n when the magnetising
	(1 Mark)
Describe what is meant by the following terms:	
Residual Magnetism:	
	(1 Mark)
Retentivity:	

4. Magnetic materials are generally classified as either ferromagnetic, diamagnetic or paramagnetic. Place the correct classification next to each of the materials in the below table.

Aluminium	Copper	Iron

(3 Marks)

5. What do the following fingers indicate when using Fleming's right hand rule?

Thumb:	
	(1 Mark)
First Finger:	
	(1 Mark)
Second Finger:	
	(1 Mark)

(2 Mark
Explain why the back EMF of a coil exceeds the supply voltage when it is suddenl de-energised? (<i>Hint: Consider what happens to the magnetic field</i>)
(2 Mark
How many time constants does it take for an LR circuit to reach its final value?
(1 Mar)
Explain the term 'mutual inductance':
(2 Mark
What action does an inductor oppose in a circuit?
(1 Mar
What is the unit of inductance?
(1 Mar
What would happen to the inductance of a coil if its air core is replaced with a mile steel core?

(1 Mark)

Section C - (20 Marks)

The questions in this section require some simple drawing and calculations. Show all working. Answers to be provided to two (2) decimal places.

1. On the magnetic circuit in Figure 1 indicate the direction of the current flow in the coil, and the Polarity of the Magnetic Field.

⁽² Marks)

2. In Figure 2 below, sketch the relevant magnetic fields showing the direction in which the resulting force will act when two conductors carrying an electric current are placed next to each other.

Figure 2

3. On the axes in Figure 3:

a) Fully label the vertical and horizontal axes. (2 Marks)

(5 Marks)

(3 Marks)

- b) Draw a Hysteresis Curve for hard steel.
- c) Show and label:
 - i. The Saturation Points,
 - ii. The Residual Magnetism areas, and
 - iii. The Coercive Forces.

(All work must be neat and legible or marks will be deducted)

Figure 3

4. In Figure 4 below, draw the symbol to represent the direction of conventional current flow to establish the magnetic fields as shown.

Figure 4

(2 Marks)

- 5. On the diagram below:
 - a. Mark the direction of the current through the conductor, and
 - b. State the rule was used to determine your answer.

Section D - (20 marks) Use correct engineering notation and units

6. A conductor 350mm long moves at a velocity of 25m/s at right angles to a magnetic field with a flux density of 2.3Tesla. Calculate the value of the emf generated in the conductor.

(2 Marks)

7. Determine the flux produced by a coil when the flux density on an area of 300mm² is 50T

(2 Marks)

8. A coil of 25 Turns has a flux linking it of 0.4Wb. If the flux is reduced to 0.1Wb in 200 milliseconds, calculate the induced emf in the coil.

(2 Marks)

9. A coil is required to produce an *Fm* of 2500 At. Determine the coil current if the coil has 3200 turns.

(3 Marks)

10. If a magnetic circuit of a relay has a reluctance of 25,000At/Wb and a relay coil has 1000 turns, determine the relay coils current required to produce a flux of 60mWb.

(2 Marks)

11. The length of an iron core is 200 mm and has a rectangular core C.S.A of 150 mm². If the core has an absolute permeability of $\mu = 10.68 \times 10^{-4}$ at a particular flux density, calculate the reluctance of the core.

(3 Marks)

12. Calculate the absolute permeability of a soft iron magnetic circuit if the permeability of free space is $\mu_o = 12.57 \times 10^{-7}$ and the relative permeability of soft iron is $\mu_r = 55000$.

(2 Marks)

- 13. For the following circuit determine:
 - a. LR time constant, and

(4 Marks)

Note: The symbols used on this sheet follow AS1046 pt 1. There are alternate recognised symbols in use. The list does not contain every equation used in the course. Transposition of equations will be necessary to solve problems

Q = It	$v = \frac{s}{t}$	$a = \frac{\Delta v}{t}$
F = ma	W = Fs	W = mgh
W = Pt	$\eta\% = \frac{output}{input} \times \frac{100}{1}$	$I = \frac{V}{R}$
P = VI	$P = I^2 R$	$P = \frac{V^2}{R}$
$R_2 = \frac{R_1 A_1 l_2}{A_2 l_1}$	$R_h = R_c (1 + \alpha \Delta t)$	$R = \frac{\rho l}{A}$
$R_T = R_1 + R_2 + R_3$	$V_T = V_1 + V_2 + V_3$	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
$I_T = I_1 + I_2 + I_3$	$V_2 = V_T \frac{R_2}{R_1 + R_2}$	$I_{2} = I_{T} \frac{R_{1}}{R_{1} + R_{2}}$
$R_x = \frac{R_A R}{R_B}$	$C = \frac{Q}{V}$	$\tau = RC$
$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$	$C_T = C_1 + C_2 + C_3$	$C = \frac{A\varepsilon_o\varepsilon_r}{d}$
$F_m = IN$	$H=\frac{F_m}{l}$	$B = \frac{\Phi}{A}$
$\Phi = \frac{F_m}{S}$	$S = \frac{l}{\mu_o \mu_r A}$	$V = N \frac{\Delta \Phi}{\Delta t}$
e = Blv	$L = \frac{\mu_o \mu_r A N^2}{l}$	$L = N \frac{\Delta \Phi}{\Delta I}$
$V = L \frac{\Delta I}{\Delta t}$	$ au = rac{L}{R}$	F = Bil
T = Fr	$E_g = \frac{\Phi Z n P}{60a}$	$P = \frac{2\pi nT}{60}$
$t = \frac{1}{f}$	$f = \frac{np}{120}$	$V = 0.707 V_{\text{max}}$
$I = 0.707 I_{\text{max}}$	$V_{ave} = 0.637 V_{\max}$	$I_{ave} = 0.637 I_{\rm max}$
$v = V_{\max} \sin \phi$	$i = I_{\max} \sin \phi$	$I = \frac{V}{Z}$
$Z = \sqrt{R^2 + (X_L - X_C)^2}$	$X_L = 2\pi f L$	$X_{C} = \frac{1}{2\pi fC}$

Student Name:	
Class:	
Date:	

Section A (Multiple Choice Questions)

ANSWER SHEET

Instructions:

Enter your personal details in the top right hand corner of this sheet. Place an \mathbf{X} in box of your choice. If you make a mistake, circle your answer \otimes and choose again.

Question	Α	B	С	D
1				
2				
2 3 4				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
Totals				

Total Marks Section A: