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Preface

The increasingly competitive field of system design is driving designers
to produce ever more efficient systems, minimizing investment, and
ownership costs. The analysis, synthesis, and management methods
presented in the book Systemic Design Methodologies for Electrical Energy
Systems by the same editor and published by ISTE, and John Wiley and
Sons, clearly contribute to the optimization of energy systems. However, the
techniques, algorithms, and optimization tools explained in this book enable
us to elucidate performance, as the number of inter-element and inter-
domain couplings and interactions between the system and its mission and
environment complicate the designer’s task. The process of design by
optimization, which consists of coupling a model to an optimization
algorithm using software, is thus most useful. Multiple criteria, traditionally
optimized for energy systems, involve geometry (mass or volume), energy
efficiency (loss, consumption, pollution), and dynamic performance. These
criteria are optimized under different constraints related to quality (harmonic
content, electromagnetic compatibility (EMC)), stability, and technological
consistency (thermal, magnetic, etc.). The inherent costs obviously need to
be considered and enable coupling of various highly heterogeneous points of
view: optimization thus becomes technico-economic.

Even while intensive research and development in this area continues, we
see now how systems analysis through system simulation has matured, with
the development of some particularly effective tools and solvers, such as
Matlab/Simulink©, Saber©, Simplorer©, Modelica/Dymola© and VHDL-
AMS. The use of virtual prototyping has thus become commonplace in
industry to accelerate design cycles and minimize costs. The aeronautics
industry is a particularly typical example of this, with the European MOET
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project dedicated to more electrical networks in aircraft. In this project,
Airbus, as leader and systems provider, imposed the delivery of multiple
levels of analysis modeling (“functional, behavioral”) on its 61 academic and
industrial partners, in parallel with the equipment developed, in order to
enable systems characteristic “electrical network” studies. Thus, while the
last decade was notable for an “increase in power” of systems analysis by
simulation, we can be sure that the current decade should see the advent of
design by optimization; hence providing justification for this book to which
it is entirely dedicated.

Chapter 1 deals with the coupling between the system, its environment,
and the mission to be accomplished. It firstly proposes innovative
approaches, enabling the representation of mission profiles or environmental
variables (habitat, boundary conditions). The authors then propose
classification and synthesis methods for profile processing. These
approaches are of interest further along the design process and make use of
optimization algorithms. Profile, notably mission classification, helps
designers to segment the range of products designed. It may be based on
“clustering” techniques. For the synthesis process, the idea is to present
pertinent profiles with regards to the design criteria and constraints.
Similarly, environmental and system mission profile information needs to be
compacted where possible to facilitate processing within the context of
optimization, which imposes a high number of iterations on the device
models and environmental variables. These different approaches are
illustrated using some typical examples, such as the design of an electric-
diesel hybrid locomotive, including an electrochemical storage.

Chapter 2 deals with the sizing model, which is an essential aspect of
design and optimization. According to Edgar Morin, one of the pioneers of
the systemic approach introduced in Systemic Design Methodologies for
Electrical Energy Systems, “the intelligibility of the complex occurs through
modeling.” However, while the word “model” can be used in many different
ways, a design model, and more specifically referring to design by
optimization, presents a number of specificities that the authors provide by
more specifically insisting on analytical models that are well suited to the
systemic context. Some examples of design models dedicated to electrical
engineering, i.e. machines, electronic power converters, and related areas
(such as mechanical transmission) are detailed. The different physical
concepts that need to be jointly represented in order to be compatible with
the design objectives are presented. The example of the optimization of a
thermo-electric hybrid heavy vehicle is proposed by way of illustration.
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The three main “pillars” of system design, namely, architecture, sizing
and management are intimately linked. Thus, the sizing of an energy system
cannot be carried out without thorough knowledge of the way in which the
power flows between sources, storage and loads combined within an
architecture. Chapter 3, therefore, presents the “simultaneous design
approach”, which is an eminently complex process, as different stages of the
design process are coupled (integrated), stages that are often sequential for
purposes of simplification. The use of optimization techniques is an effective
way to enable such integration. This chapter explains how an optimization
problem is raised; these problems are often multi-criteria and are nearly
always under constraints. Amongst the various optimization methods,
evolutionary algorithms are very well suited to solving highly heterogeneous
problems with mixed variables (continuous and discrete). The hybrid
locomotive example from Chapter 1 is used again in order to illustrate how
the design problem is posed and resolved.

How do we handle the complexity of the system design process,
particularly through optimization, given its multi-physical and multi-tasking
context? Chapter 4 provides part of the answer to this question, with the aim
of defining an effective approach to design by optimization. Two points are
dealt with more precisely: complexity linked to multiple levels of model
granularity (description detail), with techniques such as “space mapping”
enabling us to pass from an accurate level of modeling to one that, although
more “basic”, is more “efficient” in terms of computation time. Secondly,
complexity arising from different viewpoints and optimization levels: it
would be unwise to optimize everything within one and the same loop, in
order to enable simultaneous understanding of basic physical component
behaviors, up to more “complicated” (in terms of size) and “complex” (in
terms of interactions) systems. The design by optimization approach is
therefore “multi-loop” and methods such as “target cascading” bring about
tangible elements in order to move between levels.

Chapter 5 provides a vision of future tools for design by analysis and
optimization, by illustrating the concrete case of the CADES framework.
These tools, which use an architecture based on software components and
cooperative modules, are armed to respond to model capitalization,
reutilization, and interoperability problems in a vision system. Some
automatic generation methods, which transform high-level or “professional
formalisms” (such as electric circuits and three-dimensional representation)
into executable programming code are associated with this. In this context,
the authors have defined a software component standard called ICAr, which
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is used for sizing by optimization. Having the Jacobian of the model
available is a considerable asset in sensitivity analysis and in the
implementation of gradient optimization algorithms. We thus show how it is
possible to formally produce this Jacobian precisely and systematically.
These components are also destined to be put together to form a more
general system. Some sample applications of the CADES framework are
provided, such as the optimization of an electromagnetic structure
(transformer).

Chapter 6, “Technico-economic optimization of electrical energy
networks”, completes this book and concerns the optimum management of
electrical networks. This optimization is found within the opening of energy
markets, leading to a strong level of competition, which is forcing producers
to optimize the management of production plants. The emergence of new
technologies, combined with the growth in computation power has enabled
the management of production installations to be improved. This chapter
presents the modeling approach for this type of system, which must integrate
the uncertainties linked to the unfamiliarity or simplification of the model
with a view to its optimization, or the uncertainties stemming from the
provisional nature and planning of the system operation (such as real
consumer demand and economic fluctuations). Optimization of network
management can be carried out using a deterministic linear programming
model, or by using genetic algorithms. It can also be conducted on models
that take uncertainties into account in order to propose more robust
solutions. Problems corresponding to the approach are those relating to the
assignment of units: several simple examples enable us to understand the
various approaches and to judge their relevance.

Recap of the key points discussed in Systemic Design Methodologies of
Electrical Energy Systems: Analysis, Synthesis, and Management also
published by ISTE

Chapter 1 “Introduction to the systemic approach to design”: this
introductory chapter presents the history and basis of the systemic approach.
A lexicon defines the main terms and concepts inherent in this vision.

Chapter 2 “Bond graph formalism, for an energetic and dynamic
approach to the analysis and synthesis of multi-physical systems”: the
essential concepts of the bond graph are summarized, with attention paid to
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its capacity for modeling of multi-physical systems and their energy
exchanges. The inter-domain transformations between electricity and related
domains (magnetic, mechanical, chemical, hydraulic, photonic, etc.) are
represented. From the concepts of bond graph causality and bi-causality, an
introduction to systems analysis (such as structural analysis and model
reduction), synthesis and sizing is finally proposed.

Chapter 3 “Graphical formalisms for multi-physical energy systems: from
COG to EMR”: two other graphical formalisms, which complement the
formalism above, are presented; they are specifically oriented towards the
synthesis of control structures for energy systems. Causal ordering graphs
(COG) consist of a functional description of elementary systems, taking into
account the physical causality of sub-systems, which enable the control
structure to be deduced through inversion of the model. Energetic
macroscopic representation (EMR) is used for the functional description of
more complex systems, graphically emphasizing the energy properties of
sub-systems and their interactions.

Chapter 4 “Robustness: a new approach for integrating energy systems”:
robustness is inherent in the capacity of devices that need to function under
rated conditions, including within an uncertain environment. An original
approach, based on robustness using µ-analysis, is proposed in order to
analyze and design integrated energy systems with a particular focus on
control performance and system stability. The analysis strategy is illustrated
by a case study linked to the sizing of an “HVDC” power channel for an
electrical network for aircraft; this analysis is carried out with reference to
dynamic criteria.

Chapter 5 “Quality and stability of direct current networks”: a review of
quality and stability methods is proposed in this chapter. After a summary of
the standard principles in place for DC networks, a quality analysis method
based on the causal analysis of interactions is described, before we develop a
number of analysis techniques for asymptotic and general stability: analysis
criteria such as impedance specification (Middlebrook) and the Routh
Hurwitz criterion are presented. The development of analytical models in
order to characterize impedance of the main power structures (power
converters and motor drives) is also proposed. These approaches, which are
specifically dedicated to DC networks, are applicable across many domains,
such as aeronautics and space, shipping networks, and ground transport
systems.
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Chapter 6 “Energy management strategies for multisource systems,
including storage”: this chapter begins with innovative energy management
strategies for multisource systems hybridized by storage devices. Then, the
authors focus on frequency based management strategies, which ensure
power sharing between sources and storage devices. This power sharing is,
itself, based on the attribution of a specific frequency range to each
constituent, this frequency range being based on the energy and power
density (Ragone diagram) of each constituent. These strategies are illustrated
using typical case studies, particularly for autonomous systems for the
decentralized electricity generation, ground transportation and embedded
aeronautical networks.

Chapter 7 “Stochastic approach applied to the sizing of energy systems
and networks”: whereas systems must be increasingly optimized in terms of
performance, traditional electrical network sizing techniques are usually not
suited to variations in the power of loads during operation. The authors
therefore propose a method for forecasting power flow, based on
probabilistic load models. A Monte Carlo algorithm thus allows designers to
estimate density and probability functions on the power networks and their
duration of occurrence. Some illustrations for an electrical network for
aircraft enable the applicability of this approach to be analyzed.

Chapter 8 “Stochastic approach applied to safety in energy systems and
networks”: the proposed methodology aims to estimate security indices for
energy systems, particularly for distributed electrical grids. This method is
based on a stochastic simulation using the Monte Carlo algorithm. It
contains a methodology that is effective for simulating certain phases of the
lifecycle of a network containing constituent defects.



Chapter 1

Mission and Environmental
Data Processing

1.1. Introduction

Energy systems design, particularly electrical, is nowadays increasingly
influenced by social issues linked to energy economy policies and reducing
the impact on the environment. To this end, numerous technical demands are
added, such as volume and mass, lifetime, reliability (see Chapter 8,
[ROB 12]), quality (susceptibility, harmonic pollution), stability (see
Chapter 5 [ROB 12]), and recyclability. Being strongly linked to cost
criteria, these demands require design to be tackled according to a “technico-
economic” approach. Thus, the end of the 20th Century was marked by a
notable evolution towards a more complete evaluation of costs over the
whole of the lifecycle of the system (production, maintenance, and usage
costs, even dismantling/recycling costs). Faced with these new
considerations, designers are called upon to consider the environment in
which their systems will evolve in more detail. Fundamentally, it is
imperative to evolve toward a “systems design” approach from the outset;
thus enabling an understanding of the coupling between system constituents
and facilitation and the integration of the utility of the device and
environmental variables.

Chapter written by Amine JAAFAR, Bruno SARENI and Xavier ROBOAM.

Integrated Design by Optimization of Electrical Energy Systems            Edited by Xavier Roboam
© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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This heterogeneous and complex set of requirements is pushing designers
towards a “simultaneous design” approach, which truly integrates systems
design, as indicated in this introductory chapter (see also Chapter 1 of [ROB
12]). Simultaneous design is an approach that considers the system as a
whole, where the fundamental questions of system architecture, sizing and
management are integrated (see Figure 1.2). As we will see in Chapter 3 of
this book, simultaneous design can be handled using optimization
techniques, which is where multiple levels of difficulty are jointly associated
with the design problem.

Energy
management

Architecture Sizing

Figure 1.1. Simultaneous systems design approach

The integration of the “mission” (or finality) and environmental variables
into the design process is particularly difficult, as the mission profile
duration, and environmental variables (such as temperature, wind, and
sunshine) are generally longer than the dominant time constants of the
system, leading to significant processing times (simulation, optimization),
which limit research into optimum solutions. This difficulty becomes all the
more critical from the moment the system under design needs to satisfy not
only a unique profile (mission and/or environmental variable), but a family
or class of profiles with occasionally different characteristics. Indeed, in a
profile database, there is generally no single “dominant” profile with regards
to the set of design criteria and constraints (indicators); frequently, only a
single part of a profile is “relevant” with regards to a first indicator, whereas
another profile part is particularly constraining with regards to a second
indicator, etc. The selection of a representative “sizing” profile is not
therefore straightforward and constitutes an essential stage; it is an “integral
part” of the systems design process.
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Therefore, this current chapter presents a methodological approach aimed
at mission and, more generally, environmental variable (mission, storage,
boundary conditions) “profile processing”. This approach constitutes the
essential upstream phase of a systems design process. The first
incontrovertible phase of the design process, the “classification” and
“synthesis” of profiles relative to the environmental variables of the system,
guarantees the quality of the device under design, and this is conditional on
pertinent design criteria and constraints.

We place particular emphasis in this chapter on the contribution of our
approach in the context of design by optimization, dealt with in Chapter 3,
which, as it requires a large number of iterations (design solution
evaluation), forces the use of “compact profiles” at a data level (such as
time, frequency and statistical).

In this chapter, we provide a brief overview of how the mission and
environmental variables are taken into account in the design process. We
highlight the basic concepts of our new approach to processing these
variables. We describe two applications, which will serve to illustrate our
proposal; these examples concern the processing of railway missions for the
design of a hybrid locomotive and the processing of wind energy resources.
For each example, we formulate the set of pertinent indicators with regards
to design criteria and constraints. These two deliberately very distinct
examples enable the generic nature of the proposed methodological approach
to be illustrated. Then, we discuss the classification of missions and
environmental variables according to the design indicators, and describe the
representative reduced duration mission synthesis process for which the
characterization indicators correspond to the real data reference
characteristics. Finally, we apply this approach to the “simultaneous design”
by optimization of an economic hybrid locomotive in terms of energy and
environmental respect.

1.2. Considerations of the mission and environmental variables

In this section, we propose innovations regarding integration and
consideration of missions and environmental variables in systems design,
particularly in electrical engineering and, more generally, for multiphysical
energy devices.
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1.2.1.Mission representation through a nominal operating point

The design of certain artifacts, such as electric motors, is often tackled by
considering sizing at a nominal operating point [MES 98]. This point is
easily identifiable for industrial applications, where the charge is considered
to be constant and where the “traction” speed is set. This relatively simple
approach is immediately challenged for electrical traction applications under
variable conditions, where the operating points follow torque-speed
trajectories. In principle, it is not easy to reduce the unit from a trajectory to
a single nominal operating point, nor is it very pertinent. For the nominal
sizing point, a possible simplification consists of considering a point relative
to the maximum torque and speed of the trajectories, i.e. a point that
energetically controls the trajectory points. This approach enables a response
to the problem of energetic sizing, but mostly results in an undersizing of the
system relative to the total requirement. In addition, the energy efficiency of
the system is optimized in an operating zone close to the nominal point,
which does not necessarily correspond to points of the highest occurrence
points. It is therefore possible, within a second approach, to consider as a
sizing point some particular operating points (such as the point of highest
occurrence), but this solution may conversely result in “oversizing”, which
does not enable the whole of the trajectory to be satisfied. Finally, the recent
experience of the LAPLACE/GENESYS research group [DEA 12] has
shown that certain points that were not energetically relevant could turn out
to be critical, with regards to certain design criteria or constraints; one
example is the case of normative quality constraints of wave forms at the
input of an actuation system, which are violated during low speed, yet
“power hungry” operation.

1.2.2. Extraction of a “sizing” temporal chronogram

Here, this type of approach is illustrated using the design of an electrical
aeronautical emergency network as an example [LAN 06]. This involved the
sizing of a basic hybrid emergency network for a ram air turbine (RAT)
acting as a source of energy, ensuring a power level close to the average
power associated with a storage element acting as a power source in order to
feed the fluctuating part of the mission. In this scenario, the power required
is defined through the use of “essential” network charges in the case of total
motor loss. An emergency mission sample is then established indicating the
different flight phases in the case of complete motor loss. As this sample is
specified over a long time interval (around 30 minutes), it may be useless,
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and tiresome, to apply this to the whole mission, as that would lead to rather
prohibitive simulation times. Therefore, the aim is to analyze the dynamic
behavior of the system with adequate modeling levels. For this emergency
mission, only the most critical energy need has been extracted by expertly
localizing a phase considered to be “relevant” and of reasonable duration
with regards to the objectives of systems analysis; this phase, which
corresponds to a low altitude and low speed turbulent environment
configuration, constitutes a critical part for the emergency source. Indeed,
this refers to a phase during which the principal charges fed in emergency
mode and the flight controls are the subject of high-powered maneuvers,
whereas the relative wind at the RAT is of low intensity.

This simple and pragmatic approach has been well used in systems
design. However, its main disadvantage is with regards to the
representativeness of the extracted profile, which is not formally assured as
far as all of the design indicators (criteria/constraints) are concerned.

1.2.3. Representation of an environmental variable or mission resulting
from statistical analysis

1.2.3.1. Use of statistical distributions of environmental variables

The taking into account of relative statistical occurrences at operating
points of a system is fundamental if we want this to be best optimized across
the whole operational cycle. As a first approximation, we can consider the
mission to be a succession of static conditions balanced by their occurrences.
The disadvantage of this method is the absence of consideration of dynamic
aspects linked to the transitions between the different operating points.
However, if these behaviors are not preponderant in general reporting, it may
turn out to be pertinent and offer a particular interest with regards to the
minimizing of computation times. Additionally, we note that it is quite
possible to synthesize temporal samples from statistical occurrences if we
want to retrospectively include dynamic aspects. This approach was notably
used for wind signal generation for the wind energy industry. It consists of
generating a reduced duration temporal signal by using a random number
generator with a probability density of the real wind statistical distribution
[ABD 07].
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1.2.3.2. Use of classification methods

Within an increasingly significant ecological context, Europe has recently
become involved in the standardization of requirements, notably in the area
of transportation. For example, in the automobile sector, although standard
cycles enable a comparison to be established between the consumption and
pollution of vehicles within the same European sphere, the latter hardly
describe the actual usage conditions of the vehicle. In order to remedy this
insufficiency, IFSTTAR (Institut Français des Sciences et Technologies des
Transports, de l’Aménagement et des Réseaux – French Institute of
Transport Science and Technology, Organization and Networks), along with
other partners, is committed to determining representative cycles of vehicle
usage and operating conditions. The idea is to extract representative speed
profiles from significant database analysis, or, more precisely, to classify
actual recorded traffic sequences, on the one hand according to the traffic
conditions (such as speed, acceleration, temperature, and traffic location),
which give rise to typical classifications, and on the other to usage
conditions (such as routes, distance, and starting conditions), which enable
route classification (urban, road, and motorway) to be defined [JOU 99;
AND 04]. The cycles selected are typically determined according to a chain
or sequencing of representative profiles of the classes obtained.

A second example concerns wind energy resource analysis, where
temporal wind speed sequences, characterized by similar static distributions,
are grouped into classifications. This similarity can be described using the
first statistical moments (mean, standard deviation) [CAL 04], or more
precisely using all of the characteristics of the statistical distribution, by
considering all of the statistical moments [CAL 11]. The distribution
obtained suggests, for a given number of classes, the standard distribution
defining each class, as well as the associated probability that a sequence
belongs to a class. The representative temporal chronogram for each class is
then obtained from the statistical characteristics of its standard distribution.

1.3. New approach for the characterization of a “representative
mission”

The innovation presented in the last section has drawn attention to the
significance of the notion of “mission sizing” within the context of systems
design. However, the methods set out, even if they appear to satisfy under
certain circumstances, still present some limitations. For example, for the
case of the extraction of a relevant temporal chronogram with reduced
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duration, the designer ignores the information content of the initial mission,
which contributes, however greatly, to the system performance specification.
Furthermore, it is not always easy to recognize the most constraining (in
terms of scalability) “part” of the mission, with regards to a heterogeneous
set of criteria and constraints, particularly when a family or full set of
missions is available. Frequently, this portion of the mission is scalable (a
power ridge, for instance) according to certain criteria, whereas another
might be in relation to some other constraint (energy or thermicity, for
example), and so on.

In order to remedy some of these limitations, one solution consists of
simulating all missions or environmental variables from the list of
specifications, in order to evaluate system design performance, criteria and
constraints. However, this solution is rarely acceptable, as it greatly
increases computation times, which often turn out to be prohibitive,
particularly in designing optimization features for which the mission profile
is “replayed” many times during convergence of the process. The analysis
and simplification (compacting) of missions and/or environmental variables
therefore appears to be an essential stage in the improvement of design
effectiveness. They enable the best possible and most effective (regarding
heterogeneous criteria, such as energy efficiency, lifetime and cost) sizing
solutions to be established. In the design process it is, in fact, more judicious
to consider a single pertinent mission, which is of low duration and
representative of all missions (reference database)1. This final essential point
is the subject of this chapter.

1.3.1. Characterization indicators of the mission and environmental
variables

The representative profile synthesis approach that we are proposing in
this chapter is particularly based on the definition of pertinent
characterization indicators with regards to systems design. More specifically,
this concerns determining the essential characteristics of the system being
designed: temporal (such as maximum and mean power, harmonic distortion,
and energy), frequency (such as cyclability and quality) and statistical (such

1 In the interests of clarity, we use the term “profile” to describe the mission (finality) of a
system, or more generally one of its environmental variables. By “real profile” (Preal) we refer
to the mission or environmental variable actually measured and available in “database” form,
and by “fictive profile” (Pfictive), the mission or environmental variable processed (synthesized
profile of shorter duration).
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as occurrences and probability density) characteristics. This system expertise
thus enables us to obtain a definition or mathematical formulation of the
indicators used. The reference indicator values are derived directly from one
or more of the real profiles (see Figure 1.2). The information content of the
compact fictive profile generates values for these same design indicators: the
synthesis process converges from the moment that the profile indicators
generated correspond to the reference indicators.

Generally, two families of indicators are identified: sizing and
performance indicators. The first of these is relative to the design constraints,
which impact directly on the architecture, sizing (such as the size of the
system’s various energy blocks and the mass/volume constraint), and energy
management of the system. The second family is relative to the performance
criteria (notably energy efficiency, cycling, and lifetime).

Architecture Sizing

Energy
management

Systems design Realprofiles

…

frequency

Domain analysis

temporal

statistical

Design indicators

Mathematical
formulation

Reference
values

Figure 1.2. Extraction of characterization indicators for the mission
and environmental variables

We now proceed to the extraction of design indicators, based on two
illustrated examples.

1.3.1.1. System design of a hybrid locomotive

This first example exists within the context of the PLATHEE (PLAte-
forme pour Trains Hybrides Économes en Énergie et Respectueux de
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l’Environnement – Platform for energy and environmentally efficient hybrid
trains) project, undertaken by ADEME and directed by the French railway
operator SNCF [THI 08]. Within the context of this project, SNCF and
GENESYS (Groupe de recherche en Énergie Électrique et Systémique –
Electrical and systemic energy research group) from the LAPLACE
laboratory (Laboratoire Plasma et Conversion d’Énergie – Plasma and
energy conversion laboratory) were focused on the design, sizing, and
energy management of an autonomous hybrid locomotive, which was
ecologically clean and which needed to fulfill the same missions as a diesel-
only locomotive. Diesel-electric hybridization consists of replacing the
initial diesel engine by another, much smaller engine, and complementing
the lack of power using a storage device; in practice, within this project, a
double hybridization using Ni-Cd (nickel-cadmium) accumulator batteries
and ultracapacitors was considered, but here we are simplifying the structure
by only considering a single storage device (simple hybridization using
batteries), conforming to the following synoptic chart. The energy
management strategy ensures that the diesel engine provides the average
power for the mission and that the batteries ensure the fluctuating power (see
Figure 1.3).

Time

0

Storage mission

Time
0

=+

MissionP(t)

Time
0

Average power

Principal energy
source

(Diesel engine)

Secondary energy
source

(Batteries)

Charge power
(Mission)

DC

ACor DC

DC

DC

Figure 1.3. Architecture and energy management of the hybrid locomotive
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Two families of indicators are defined in this example: three sizing
indicators enabling the specification of the energy/power characteristics if
the energy sources and two performance and lifetime indicators.

The sizing indicators are:

– The maximum power to be provided: Pmax
In order to satisfy the mission(s) from the specification list, the system

being designed must be capable of providing the increased peak power for
all of the reference data.

max
[0, ]
max ( )

misst t
P P t

Δ∈
= [1.1]

where P(t) is the instantaneous power of the reference mission of duration
Δtmiss.

– The average power to be provided: Pavg
According to the energy management strategy previously set out, the

average power of the mission is a fundamental indicator with regards to
sizing the principal energy source. In other words, the nominal power of the
diesel engine (PNDE) must correspond approximately to the average value of
the mission signal.

– The useful energy of the storage system: Eu
The useful storage energy represents the amount of energy necessary in

order to satisfy the storage mission by taking into account the charge and
discharge phases. Es(t) is used to represent the instantaneous evolution of
energy in the storage device2:

0

( ) ( ( ) ) where [0, ]
t

s avg missE t P P d t tτ τ Δ= − − ∈ [1.2]

The useful energy is thus defined by:

))((min))((max tEtEE ststu −= [1.3]

2 The minus sign in equation [1.2] respects the following sign convention: with regards to the
storage element, charge powers are positive, whereas discharge powers are negative.
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The performance and lifetime indicators are:

– The statistical distribution of the mission: Istat
The statistical indicator represents the average energy efficiency of the

system through occurrences of power levels during the mission. It is
expressed by the statistical distribution (frequency histogram) of the mission,
or equally by its distribution function (cumulative frequency statistics).

– The number of cycles imposed at the storage system: Nbcyc
We consider the number of cycles used per battery pack as a typical

indicator of lifetime. The count of the number of cycles is based on the
“Rainflow” method [DRO 97; BAE 08]. The number of equivalent cycles
(Nbcyc) is then obtained by the weighted sum of cycles based on their depth
of discharge. The weighting coefficients result from the construction curve,
which gives the number of complete cycles that the storage element is
capable of providing, based on its depth of discharge (a characteristic known
as “cycle to failure”).

This example is resumed in Chapter 3, which covers simultaneous design
by optimization.

1.3.1.2. Processing wind speed for the design of a wind turbine

This second example aims to illustrate the processing of environmental
variables. This belongs to the context of the optimum design of a wind
turbine system. It therefore deals with processing wind speed (the primary
energy vector) with a view to integrating it into a simultaneous design by
optimization process, in order to reduce the processing cost. Note that, in this
application, we are limiting ourselves to the processing of wind speed in
order to synthesize a shorter representative profile that respects a set of
design indicators pertinent for wind turbine systems.

The temporal and statistical wind speed analysis phase has enabled the
exposure of two families of indicators, established with regards to typical
wind energy design criteria.

The sizing indicators are:

– The maximum speed: Vmax
This indicator reflects the effect of gusts of wind during sizing of the

wind turbine.
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max
[0, ]
max ( )

profilet t
V V t

Δ∈
= [1.4]

where V(t) represents the instantaneous wind speed on a temporal horizon
Δtprofile.

– The average cubic speed: <V3>

This refers to an energetically highly pertinent indicator, since is reflects
the useful average power captured by the wind. Indeed the useful
instantaneous power of the wind turbine is directly proportional to the cubic
speed of the wind.

The performance indicators are:

– The statistical distribution of the wind speed: pdf

It is important to consider the statistical distribution of the wind speed
(probability density function (pdf)) in wind turbine design. The fictive
profile that we are proposing to generate must therefore follow the same real
wind speed statistical distribution, measured over a very wide horizon.
Amongst the probability distributions, which may characterize the wind
speed statistical distribution, we note the log-normal, bivariate Gaussian and
Weibull distributions. The Weibull distribution is traditionally considered as
being the most adequate, with statistical properties of real wind [KEL 92].

– Wind turbulence: Iturb
Wind turbulence is a crucial phenomenon in estimating the lifetime of

wind turbines, notably in evaluating its mechanical fatigue. It is therefore
important to integrate a turbulence characterization indicator into the
representative temporal signal. Often the rapid dynamic of wind speed is
modeled, over each sampling period Te (typically 10 minutes), using a
Gaussian distribution with a null mean and standard deviation σ [STR 90].
We thus characterize wind turbulence, over each interval i of time Te, by the
standard deviation σi of the corresponding Gaussian distribution. We
thereafter define the turbulence indicator Iturb over the whole wind profile by
the mean value of the standard deviations σi.

where [1,int ( / )]turb i profile eI i eger part t Tσ Δ= < > = [1.5]
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1.3.2. Mission and environmental variables at the heart of the system: an
eminently systemic bidirectional coupling

Most of the time, the effect of environmental variables (such as
temperature and ambient pressure, sunshine and wind speed) on the system,
as well as the success of the mission, are represented unidirectionally,
marking the boundary conditions of the device. In other words, the
environmental variables have an influence on the system and affect its
evolution, but we consider that the evolution of the system caused by
variations in environmental variables has no impact on the environment
itself.

It should be noted, on a global level, that this unidirectional vision of the
environment is nowadays increasingly being challenged, notably by the
environmental footprint concept. In such a case, the environment (here, the
Earth’s atmosphere) becomes an integral part of the Earth system and
interacts bidirectionally. In general, if we go a little further into this
reflection, we can show that a bidirectional coupling between system and
environment may also exist at an artifact level. The designed system,
according to a set of criteria and constraints, may, in some way, influence its
mission and environmental variables, or rather the “representation that we
ourselves make of these environmental variables” (see Figure 1.4); more
specifically, the way in which the system is designed, where its operational
characteristics (indicators) may influence the representation of the mission
itself or of certain environmental variables.

This is, for example, typical of electrical vehicle design, for which the
driving method is clearly different from that of a traditional thermally driven
vehicle; we can thus refer to “eco-driving” from the moment that the driver
of the electrical vehicle takes note of its energy gage (the state of battery
charge), or changes his braking habits in order to favor electrical recovery; in
this typical case, the “eco-driving mission” is modified by the characteristics
of the designed system. The example of the PLATHEE hybrid locomotive is
also typical insofar as SNCF established speed profiles by taking account of
the hybrid characteristic of propulsion and its sizing; we could even consider
going as far as optimizing the mission profile in order to fully profit from
storage, in order to consume/pollute everything by ensuring a minimum of
comfort and performance (hourly).
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Figure 1.4. Bidirectional coupling between the system and its environment

Here we are faced with a system coupling between the environment
(mission) and the system under design, which is certainly exciting, but rather
complex, as “everything depends on everything and its opposite…” This
fundamental question is described more generally and virtually
metaphysically in the introductory Chapter 1 of [ROB 12], which evokes the
concepts of finality and “teleology”, which have been introduced as essential
elements by the pioneers of systems design. The designer must, therefore,
face up to this new coupling, the method of classification and synthesis
proposed here, which aids design at this level.

More specifically, according to our representative fictive profile synthesis
approach (Pfictive), the way in which we propose to process the reference real
profile (Preal) intimately depends on the design of the system through
definition of the design indicators. The result is therefore that the system
design characteristics have a strong influence on the fictive profile being
generated, which will be considered to be a “relevant profile”. At this level,
we therefore also introduce a bidirectional coupling between system and
environment (see Figure 1.5). For example, for a wind chain, the peak value
of the representative fictive profile (Pfictive), must imperatively correspond to
the maximum real wind speed value, which constitutes a typical sizing
indicator of the wind system.

However, this raises an additional and complex coupling problem.
Indeed, in certain system classes, it is occasionally necessary to define some
a priori assumptions in order to specify the full set of reference design
indicators. These assumptions concern system design characteristics, relative
to architecture and/or sizing and/or energy management. The example of the
hybrid system in Figure 1.6, comprising a principal energy source (diesel
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engine) and a storage device, is a good illustration. Indeed, these two energy
sources are connected through an energy node in order to satisfy one or more
charge profiles. Yet, in order to correctly size the storage element, taking
account of criteria and constraints that are pertinent to the system (such as
consumption and lifetime), we are obliged to make an a priori assumption
on the principal energy source sizing approach, and this occurs even before
initiating the fictive profile synthesis process. We thus assume, in principle,
that the principal source will ensure the mean value of power consumed.
This assumption, which here touches on energy management and sizing, is
necessary in order to specify the reference indicators, which are energy
characteristic indicators. However, we are therefore faced with a
supplementary coupling between “fictive profile” and “systems design”,
such as that illustrated in Figure 1.5.
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Figure 1.5. Bidirectional coupling between the system and its sizing fictive profile

The previous analysis, linked to the processing of the mission and
environmental variables within the context of a systemic approach, has
enabled us to raise a set of couplings between the profile synthesis approach,
choice of characterization indicators, and characteristics of systems design
(Figure 1.7). These couplings perfectly illustrate the foundation of the
systems approach, whereas its pioneers, such as Bertalanffy [BER 73], evoke
notions of “integrating the finality (mission) to the design” or of “purpose-
built models”. In short, “the mission, or rather the representation that we
make of it, is situated right at the heart of systems design”.
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Figure 1.7. The fictive profile synthesis approach at the heart of systems design

1.4. Classification of missions and environmental variables

From the systems point of view, the classification of mission profiles, or,
more generally, of environmental variables according to pertinent indicators
with regards to design criteria and constraints, is part of a set of decision-
making tools and constitutes a ridge phase, which is essential to the design
process. Indeed, it must enable the designer to evaluate the interest in a
device, which is specifically optimized for a given class, relative to the
mission and/or environmental variable profiles, and this is compared with a
device capable of simultaneously satisfying a set of classes. In other words,
taking the well known example of the car, “what do we gain by classifying
and segmenting a vehicle range (urban, road, off-road, etc.) from the point of
view of the cost/performance ratio, and this with regards to usage and its
occurrences?”
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Classifying or segmenting may thus enable a notable improvement in
certain criteria, such as the energy efficiency of the system. This is the case,
for example, when, regarding a classification according to energy indicators,
the segments or classes obtained are different from the commercial
segmentation or usage of the system.

1.4.1. Classification without a priori assumption on the number of classes

The most widespread unsupervised classification techniques (where no
information on the class of the element is provided) are: the aggregation
method around cluster centers, also called the K–means method [FOR 65;
MAC 67], the hierarchical classification and the mixed classification
[LEB 00]. Nevertheless, the disadvantage of these methods is the
requirement to know the number of classes. In principle, this parameter is
fixed for the aggregation method around cluster centers and mixed
classification, and in the case of hierarchical classification, is determined by
expertise in partitioning trees.

The problem of choosing the number of classes has been solved
following the appearance of partitioning criteria, indicating a compromise
between maximization of inter-class and minimization of intra-class
distances. Numerous partitioning criteria can be used [SHE 05]. The most
widely used are the Davies-Bouldin (DB) [DAV 79], Calinski and Harabasz
(CH) [CAL 74], and silhouette (SIL) [KAU 90] indices. The method of
classification without a priori assumption on the number of classes consists
of optimizing one or more of the partitioning criteria by integrating the
number of classes into an optimization parameter [JAA 10a]. This allows the
optimum number of classes of dataset to be determined, and, at the same
time, individuals to be assigned to appropriate classes. In general, even if the
number of classes has already been fixed, classification problems are highly
multimodal. This multimodality is all the more acute when the number of
classes becomes variable. Faced with this type of typically multimodal
problem, the niching genetic algorithms (GA) generally offer interesting
performances by reducing the risk of premature convergence towards a local
optimum, as we will see in Chapter 3 of this book [SAR 98].

In [JAA 10a], we developed a genetic algorithm for the classification of
data with a number of variable classes. We chose the silhouette index as the
partitioning criterion. This algorithm is based on the use of restricted
tournament selection (RTS) [HAR 95], as well as a self-adaptive
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recombination technique [NGU 08], with the objective of maximizing the
silhouette index. In the following section, we present an application of this
algorithm to benchmark railway mission classifications.

1.4.2.Mission classification for hybrid railway systems

In this section, we study a mission classification example, which is useful
in the sizing of integrated hybrid energy sources in multi-segment railway
traction chains; the requirement (mission) specified in the study is the
provision of power P(t). The architecture of these hybrid energy sources is
based on a coupling between a principal energy sources (for example, a
diesel engine or overhead line) and a secondary source, which is often
represented by a storage organ (such as batteries and ultracapacitors), as
explained in the last section (see Figure 1.3).

This example constitutes a “benchmark” of 105 railway missions and
enables the interest in classification to be illustrated in a multi-segment
hybrid power systems design context. It comprises three subsets of missions
from three different railway systems: the BB63000 and BB460000
locomotives and the TGV POS (Paris – Eastern France – Southern
Germany) auxiliaries. As far as the first two systems are concerned, this
refers to two diesel locomotives with nominal power of 610 kW and 1 MW,
respectively. The third railway system is different from the first two. Here
the power source of the TGV auxiliaries is hybridized relative to passenger
comfort (such as heat, climate, lighting, and catering). The hybridization of
these auxiliaries thus consists of embedding storage bricks that are exploited
in the absence or presence of the catenary.

All of the missions are characterized according to the triplet of sizing
indicators {Pmax, Pavg, Eu} introduced in section 1.3.1.1. The numbers of
missions per initial class assigned, as well as the positions of the
corresponding barycenters, are summarized in Table 1.1.

Number of missions Barycenter coordinates
(Pmax (kW), Pavg (kW), Eu (kWh))

TGV auxiliaries 63 (189, 80, 13)
BB 63000 15 (455, 91, 24)
BB 460000 27 (711, 35, 50)

Table 1.1. Characteristics of 105 initial missions from the three railway systems
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The representation of the subsets of initial missions according to the
triplet {Pmax, Pavg, Eu} is given in Figure 1.8a. Their barycenters are also
represented by the plain motifs. The classification result is given by Figure
1.8b. The class characteristics found are also given in Table 1.2.

(a) Initial distribution of missions

(b) Classification result

Figure 1.8. Mission classification examples of three railway systems
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We observe that we can practically obtain the initial classification by
identifying three different classes. The difference between the initial
classification and that resulting from the genetic algorithm is only 12%
(13 missions are not assigned to their original classes). This difference is not
due to bad convergence of the algorithm. Indeed, although three different
power systems are available, nothing prevents their missions from presenting
similar energy/power indicators {Pmax, Pavg, Eu}. Figure 1.8b shows that all
missions are generally correctly classified, apart from those belonging to the
recovery zone of the initial subsets. Within this low power and low energy
area, missions can be achieved by the three power systems.

Number of missions Barycenter coordinates
(Pmax (kW), Pavg (kW), Eu (kWh))

Class 1 76 (225, 75, 13)
Class 2 6 (553, 141, 53)
Class 3 23 (762, 37, 56)

Table 1.2. Characteristics of classes obtained after classification

From this example, we have not only validated the effectiveness of the
classification method, but also shown the usefulness of such an approach in
an environmental variables analysis process (here, mission profiles) in
advance of system design. Classification may thus form part of a decision-
making tool in the absence of a priori assumptions on the environmental
variable profiles brought into play. For example, let us assume that we have
no information on the initial classes assigned (BB63000, BB460000 and
TGV auxiliary) from the 105 railway missions thus processed; it is as a
result of the classification that we will obtain three different segments. In
such a configuration, the designer will raise the question of the cost-
effectiveness of designing a “catch all” hybrid power system, which satisfies
all missions, or, conversely, a system per mission class. In section 1.6, we
will discuss an example of system design that makes use of classification
and segmentation.

The fact that three families of missions are obtained owing to
classification, corresponding strongly to the initial classes, proves the
pertinence of the mission characterization indicator triplet {Pmax, Pavg, Eu}. In
section 1.6, we will see how these indicators will serve as the basis for the
synthesis of a representative mission of a class or family of missions.
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1.5. Synthesis of mission and environmental variable profiles

Following on from the classification methodology of the mission and
environmental variable profiles presented in the last section, the question
that comes to mind is knowing how to best integrate the set of profiles from
one class into a system design approach. In other words, we are looking to
represent the information of the set of profiles using a single shorter
representative fictive profile, in order to minimize simulation costs within a
system design process, particularly in the context of simultaneous design by
optimization. We are developing a temporal profile synthesis method to
enable a signal to be constructed, whereby the design indicators correspond
to the reference indicators determined from a set of real profiles.

1.5.1.Mission or environmental variable synthesis process

The shorter representative profile synthesis process is based on the
reconstruction of a mission or environmental variable profile by
concatenation or aggregation of elementary patterns. Through an appropriate
parametering of these patterns, the problem will be solved using
optimization [JAA 10b]. Indeed, it is a matter of finding a good range of
pattern parameters, such that the system obtained satisfies a given set of
design indicators for the environmental variable in question. Three types of
simple patterns are implemented: the sine, cardinal sine, and the segment. In
the following section, we will return to the details of these patterns.

The fact that a complex signal with strong variability is generated
requires an increase in the number of patterns, which notably increases the
complexity of the optimization problem. Furthermore, as a consequence of
the particularly oscillatory form of the patterns processed above (specifically
for the sine and cardinal sine), the opposite resultant problem is often
multimodal. Genetic algorithms are particularly well suited to solving this
type of problem. In this sense we propose the use of a genetic algorithm,
with the “Clearing” method being used as the niching operator [PET 96]
associated with a self-adaptive recombination procedure [NGU 08].

The profile synthesis by optimization process is shown in Figure 1.9. The
first stage consists of building the environmental variable signal or profile
S(t) from the x chromosome generated using the genetic algorithm, using the
concatenation or sum of Nm elementary patterns, characterized by p
parameters. The duration Δtprofile of the obtained signal is considered to be a
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problem input. Although we are taking care to ensure that the synthesized
profile is as compact as possible, the choice of its duration must check
certain constraints relative to the design indicators. In the following stage,
we proceed to the computation of the profile indicators thus generated.
These are then compared with the reference indicators Ijref and hence enable
the error function ε (the function to be minimized using the genetic
algorithm), expressed by equation [1.6], to be evaluated. This function is
defined as the sum of standardized quadratic errors from the following set of
indicators:
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Figure 1.9. Mission or environmental variable profile synthesis process

Beyond the quadratic distance between indicators and reference values, it
may be necessary to impose certain constraints on the signal generated.
These constraints (denoted gk) are formulated in terms of inequalities
(gk (x) ≤ 0) and integrated in the error function as a form of penalty:
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where λk is the penalty factor associated with the corresponding constraint.
The value for this coefficient must be wisely chosen in order to guarantee a
balanced “weight” between the different constraints when they are being
violated and a sufficiently significant penalty, compared with the errors for
different indicators.

1.5.2. Elementary patterns for profile generation

We are looking to model the real temporal profile of the mission or
environmental variable using elementary patterns with low numbers of
parameters. Indeed, for more significant numbers of parameters for a pattern,
the complexity of the signal synthesis by optimization problem is higher.
Three types of elementary pattern are proposed in order to represent the
signal corresponding to the environmental variable.

t

Sn

An

tn

Tn = 1
fn

Sn

tΔtn

ΔSn
An

Φn

Sn

t

fn = 1
Δtprofile

(a) Sine (b) Cardinal sine (c) Segment

Figure 1.10. Elementary patterns

The first model considers profile S(t) as being the sum of the average
value and a certain number of harmonics characterized by their amplitudes,
phases and frequencies. An elementary pattern is none other than a harmonic
with rank n, characterized by three parameters: an amplitude An, phase Φn
and frequency fn, which is a multiple of the inverse of the desired profile
duration Δtprofile, as shown in Figure 1.10a.

The second model is based on the use of the cardinal sine. The principle
of generating a profile or signal is identical to that of the sine method, i.e. the
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adding together of Nm cardinal sines, each characterized by three parameters:
an amplitude An (0 ≤ An ≤ Smax), frequency coefficient fn (fmin ≤ fn ≤ fmax), and
a temporal localization coefficient tn (0 ≤ tn ≤ ∆tprofile), as illustrated in
Figure 1.10b. Finally, the segment model consists of representing an
environmental variable profile by a concatenation or aggregation of Nm
segments. For the synthesis process in Figure 1.9, an elementary pattern is a
segment characterized by its amplitude ΔSn and duration Δtn, as shown in
Figure 1.10c.

1.5.3. Application to the compacting of a wind speed profile

This example, which was introduced earlier, concerns the system design
of a wind chain for which the environmental variable is wind speed. In order
to optimize the processing cost during phases of design by optimization, it is
thus wise to consider a wind speed profile of minimum duration, but which
remains pertinent with regards to design criteria and constraints. We apply
the representative profile synthesis process previously described for the
compacting of 2 months of wind speed measurements at the “Petit-Canal”
site in Guadeloupe [CAL 11], with a sampling step of 1 second.

Let us recall that the design indicators relative to wind characterization
are: the maximum speed Vmax, average cubic speed <V3>, statistical
distribution pdf, and the turbulence indicator Iturb. In addition to these design
indicators, we impose a constraint relative to the dynamics of wind speed:
the maximum wind speed gradient (acceleration of air mass). For the data
from the wind speed site at “Petit-Canal” in Guadeloupe, the maximum
gradient is 12 m/s2. In the representative profile synthesis by optimization
process, this constraint is expressed as follows:

012 ≤−=
dt
dv

g [1.8]

Many tests have been carried out using the three elementary patterns
(sine, cardinal sine, and segment). The best results are obtained using the
segment pattern. Figure 1.11 gives a result for a 3 hour representative profile
synthesis obtained by the concatenation of 217 patterns.
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Figure 1.11. Result of a 3 hour representative profile synthesis process

Reference indicators Indicators from generated
profile Error (%)

Vmax (m/s) 23.1 23.1 0.0
<V3> (m3/s3) 1076 1076 0.0

Iturb 0.72 0.74 2.7

Table 1.3. Representative profile design indicators

Let us note that here we obtain “almost ideal” results, in the sense of
design indicators, whereas the database of 2 months of measurements
(1500 hours) is compacted in a ratio of 500:1 (~1500/3).

1.6. From classification to simultaneous design by optimization of a
hybrid traction chain

In this section, we illustrate the general system approach via a set of
railway missions, starting with the classification of environmental variable
profiles and ending with simultaneous design by optimization, by using the
representative and compact profile synthesis processes. The idea is to design
a hybrid locomotive that is optimized for each mission class, and to compare
the cost of annual ownership of the systems obtained, compared with the
design of a single locomotive capable of satisfying all mission classes at
once.
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Figure 1.12. General system approach, from classification to optimum design

This general approach to system design is founded on a reference
database corresponding to an example using 10 railway missions with iso-
times (4 hours per mission) relative to diesel locomotives. We make the
hypothesis that the storage state of charge, Ni-Cd batteries, is set to 100%
after each 4 hour mission sequence. In Figure 1.12 we show the various
stages of the proposed comparative study. Let us note that the classification
of the set of missions leads to two different classes. In the sections that
follow we return to the details of this approach.
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1.6.1.Modeling of the hybrid locomotive

1.6.1.1. Power flow model

The power flow model for the diesel engine is shown in Figure 1.13. It
enables us to determine the power provided by PDE, the quantity of fuel
consumed Qfuel, and quantity of CO2 emitted (QCO2(kg) = 2.66 × Qfuel(L)),
from the reference power of the diesel engine PDEref and its stop/start
instruction (MADE = 0 or 1) [GRA 06]. The quantity of fuel burnt is obtained
from the cartography of consumption for the diesel engine Cs(PDE-r). The set
of these models is detailed in [AKL 08].

PDEref 1/ηDE

QCO2 (kg)

×2.66

∫ Qfuel (L)

PDE-r Cs (L/s)

[0, PDEmax] Cs=f (PDE-r)

PDE

MADE

Figure 1.13. Power flow model for the diesel engine

if PBT < 0

PBT

Pdschmax

SOCBT

EBT0

ηBT

1/ηBT

+
+ 1

EBTmax
PBTref

EBT

SOCmin

SOCmaxPchmax
PBTchmax

∫–
PBTr

PBT dchmax

if PBT > 0

Figure 1.14. Battery power flow model
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The battery power flow model (see Figure 1.14) has the following
parameters: the reference mission of the batteries (PBTref = Pmission – PNDE,
where PNDE defines the nominal power of the Diesel engine); the maximum
discharge PBTdchmax and charge PBTchmax power of the battery pack; and the
efficiency ηBT and the quantity of initial energy EBT0. By setting the
thresholds of minimum battery SOCmin, and maximum SOCmax state of
charge, we determine the maximum discharge Pdchmax, and charge Pchmax,
which is allowed per pack of batteries, by instantaneously taking account of
its state of charge. For example, when the battery state of charge reaches the
threshold SOCmin, the maximum discharge power possible Pdchmax changes
from PBTdchmax to 0. To close, this power flow model enables us to determine
the battery power PBT, energy EBT, and state of charge SOCBT.

1.6.1.2. Static electrical model

The static electrical model enables the dimensions resulting from the
power flow model (power, energy) to be translated into electrical dimensions
(current, voltage). In order not to complicate the design problem, the diesel
engine electrical model is not taken into account. Figure 1.15 gives the static
electrical model of accumulator batteries, which is a simplified R and E
model. The current iBT and voltage vBT are obtained from the power drawn
from a single cell pBT (pBT = PBT/(NPBT×NSBT)) where NPBT and NSBT are the
number of parallel and series battery cells. The battery cell state of charge is
obtained from the ratio of the charge quantity qBT of the cell to its nominal
capacity C (C = 135 Ah). The charge quantity qBT is defined as the sum of
the integral of the current iBT and the initial charge quantity of the cell (q0).
We report that according to the sign convention, the battery discharge
current is considered to be positive.

iBT ∫ 1/CPBT

q0

+
+

qBT socBT

rBT socBT

−
+ eBT (socBT)

eBT socBT

rBT . iBT

1/v*BT

vBT

v*BT

−1

rBT (socBT)

Figure 1.15. Battery static electrical model
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1.6.1.3. Geometric model

From data provided by manufacturers, the volume in cubic meters of the
diesel engine may be expressed in terms of its nominal power PNDE in watts
using the following relation:

09.0103 5 +×=Ω −
NDEDE P [1.1]

The volume of the batteries, taking account of cooling systems and
associated electronic modules (such as charge state balancing and thermal
control), is given by the following:

0BTBTBTBTBT NSNP Ω×××=Ω λ [1.2]

where ΩBT0 = 4.33×10–3 m3 and λBT = 1.8 represents the assembly coefficient,
which takes into consideration intercellular spaces, electronic modules and
cooling systems.

The volume of battery converters (ΩCBT) is approached using the volume
of filter inductors. For further details on how this volume is determined, we
refer the reader to [AKL 09].

1.6.1.4. Battery lifetime model

The lifetime of the battery DVBT is directly related to the number of
battery cycles consumed during the mission. It is expressed by the product of
the number of cycles consumed by the cell Nbcyc and the number of batteries
in series “S” and in parallel “P” (NPBT × NSBT).

1.6.1.5. Cost model

The estimate of the cost of the diesel engine, based on its nominal power,
is given by the following:

5.1428.0€]k[ +×= NDEDE PC [1.3]

According to the SNCF, by considering the maintenance and upkeep, a
diesel engine costs three times its purchase price at the end of 10 years. The
relationship thus enables the annual cost to be expressed by:

35.4084.0)5.1428.0(
10
3

]/€k[ +=+×= NDENDEDE PPyrC [1.4]



30 Integrated Design

For batteries, taking into account converter installation and maintenance
costs, the cost of a Ni-Cd battery cycle is estimated to be €0.122 [AKL 09].
By using the lifetime indicator (DVBT) evaluated for a typical mission of
length Δtmiss and which is repeated Δtyr/Δtmiss times (where Δtyr represents a
year of use, typically at 8 hours per day), the annual cost of the batteries is
expressed by the following:

miss

yr
BTBT t

t
DVyrC

Δ

Δ
×××= −310122.0]/€k[ [1.5]

Let Cfuel0 be the unit price of a liter of fuel in k€. The annual cost of fuel
is thus written:

miss

yr
fuelfuelfuel t

t
QCyrC

Δ

Δ
××= 0]/€k[ [1.6]

1.6.2. Optimization model

1.6.2.1. Optimization parameters

In this case study, the nominal power of the diesel engine is not
considered to be an optimization parameter. It is set prior to the mission
characteristics. The necessary optimization parameters for sizing of the
hybrid locomotive are therefore:

– NSBT: the number of battery cells in series. Taking into account the
maximum voltage bus, this number is limited to 456 cells;

– NPBT: the number of battery blocks in parallel. Taking into account the
volume constraint, this number is limited to 32 blocks;

– Vbus: the continuous bus voltage varies between 50 and 650 V; and

– Fbd: the breakdown frequency varies between 1 and 10 kHz.

1.6.2.2. Optimization constraints

In order to reduce the computation time of the simultaneous design by
optimization process, the constraints are split into two categories:

– pre-simulation constraint. Without the need to simulate the system,
these constraints are directly evaluated from the parameters of a given
configuration;
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- g1: constraints linked to the energy source volume.

This constraint takes no account of converter volume. In the knowledge
that the volume available for energy sources is limited to ΩSEmax, g1 is thus
written:

01 ≤Ω−Ω+Ω= maxSEDEBTg [1.7]

- g2: constraints linked to the minimum number of batteries.

For a given nominal power of diesel engine, this constraint reflects the
fact that the number of batteries must be sufficient in order to fulfill the
mission. Its expression is as follows:

02 ≤×−= BTBTminBT NSNPNg [1.8]

The minimum number of battery cells (NBT min) is determined from a
battery sizing procedure based on a power flow model [AKL 08],

- g3: constraints linked to battery voltage.

Taking into account the elevated structure of choppers (the batteries
towards the bus) and of the maximum cyclic ratio αmax, the maximum
voltage of a battery block VBTmax must then be less than αmax×Vbus. If the
maximum voltage of a battery element is known, the constraint g3 is written:

03 ≤×−= busmaxmaxBTBT VVNSg α [1.9]

– post-simulation constraints:

- g4: constraints linked to energy system volume

This constraint takes account of energy source and associated battery
block converter volumes, the whole constraint becoming contained within
32 m3.

0324 ≤−Ω+Ω+Ω= CBTDEBTg [1.10]

1.6.2.3. Optimization criteria

The objective of the hybridization approach consists of minimizing the
investment and usage costs, as well as the environmental cost (in CO2
tonnes), relative to a diesel-only locomotive of the same power. Since we
know that the quantity of CO2 released is proportional to the quantity of fuel
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consumed (1 liter of fuel produces to 2.66 kg of CO2), the environmental
cost optimization can, therefore, be reflected in the optimization of the
quantity of fuel consumed, which enables us to reduce the optimization
problem to a single criteria defined by the annual cost of ownership (Cf). It is
thus a question of minimizing the annual cost of ownership, while, at the
same time, integrating the costs of investment and usage (maintenance,
lifetime, and fuel consumption).

fuelBTDEf CCCC ++= [1.11]

1.6.3.Mission classification

In this first general systems approach phase, we move to the classification
of all 10 railway missions according to the sizing indicators {Pmax, Pavg, Eu}.
The result obtained by applying the genetic classification algorithm is given
in Figure 1.16. The characteristics of the classes found are also given in
Table 1.4.
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Figure 1.16. Classification of missions according to sizing indicators

Number of
missions Missions Barycenter coordinates (Pmax

(kW), Pavg (kW), Eu (kWh))

Class 1 (C1) 5 {m1, m4, m5, m7, m10} (881.1, 400, 125.7)
Class 2 (C2) 5 {m2, m3, m6, m8, m9} (479.3, 200.1, 156.4)

Table 1.4. Characteristics of classes obtained following classification



Mission and Environmental Data Processing 33

1.6.4. Synthesis of representative missions

In this second study phase, we apply the representative and compact
mission synthesis process for each mission class: C1, C2 (each comprising 5
missions) and C12, which is formed from the total mission population. The
reference indicators enabling the characterization of the representative
mission are chosen in the following way:

– the sizing indicators, apart from the average power Pavg ref, are set at the
more constraining values for all missions within a class. This enables us to
guarantee that the system under design will satisfy all missions of the studied
class. A specific study of railway missions has proven the benefit of setting
the average reference power Pavg ref at the average concatenation value for all
missions. We recall that this power value corresponds to the sizing of the
diesel engine, a device for which consumption and “pollution” are optimum
when the latter operates at its nominal power;

– the performance and lifetime indicators are considered to be average.
The choice of useful reference energy Eu ref enables the storage size to be
determined and, as a consequence, we are able to estimate the number of
cycles consumed for each mission. The number of reference cycles Ncyc ref is
thus determined by the average value of the numbers of cycles per hour
across all missions. For the statistical reference indicator Istat ref, we consider
the distribution function of the total mission at the end of the concatenation
of all missions from the class in question.

Contrary to the wind speed compaction example discussed in the last
section, the nature of the design indicators in the case of railway missions
imposes substantial minimum times. This refers most particularly to the
useful energy indicator or the number of cycles, which are closely coupled
with the mission duration.

1.6.4.1. Class C1 representative mission: M1rep

We set the duration of the representative mission for class C1 at 4 hours,
which corresponds to a saving of 5 over the total duration of concatenated
missions (20 hours).

The result of the synthesis is given in Figure 1.17. This is a representative
mission M1rep, which is obtained through the concatenation of 125 segments
and which perfectly respects the reference indicators (see Table 1.5 and
Figure 1.18).
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Figure 1.17. Representative mission M1rep
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Figure 1.18. Distribution functions

Reference indicators Representative mission
indicators Error (%)

Pmax (kW) 980 980 0.0
Pavg (kW) 400 400 0.0
Eu (kWh) 169.5 169.5 0.0
Nbcyc (/h) 0.155 0.155 0.0
Istat – – 0.4

Table 1.5. Characterization indicators of the representative mission M1rep
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1.6.4.2. Class C2 representative mission: M2rep

The duration of the representative mission for class C2 is set at 6 hours,
which corresponds to a saving of 3.3 over the total duration of concatenated
missions (20 hours). The result of synthesis is given in Figure 1.19. This is a
representative mission M2rep, which is obtained through the concatenation of
126 segments and which perfectly respects the reference indicators (see
Table 1.6 and Figure 1.20).
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Figure 1.19. Representative mission M2rep
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Figure 1.20. Distribution functions
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Reference indicators Representative mission
indicators Error (%)

Pmax (kW) 601 601 0.0
Pavg (kW) 200 201 0.5
Eu (kWh) 194.5 194.5 0.0
Nbcyc (/h) 0.11 0.11 0.0
Istat – – 0.8

Table 1.6. Characterization indicators of the representative mission M2rep

1.6.4.3. Class C12 representative mission: M12rep
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Figure 1.21. Representation mission M12rep
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Figure 1.22. Distribution functions

The class C12 representative mission M12rep, which simultaneously
integrates classes C1 and C2 is given by Figure 1.21.
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This is a fictive mission of 14.5 hours’ duration, which thus enables a
saving of 2.8 compared with the total mission duration (40 hours). The latter
is obtained by the concatenation of 148 segments and perfectly respects the
reference indicators (see Table 1.7 and Figure 1.22).

Reference indicators Representative mission
indicators Error (%)

Pmax (kW) 980.5 980.5 0.0
Pavg (kW) 300 300 0.0
Eu (kWh) 569.3 569.3 0.0
Nbcyc (/h) 0.04 0.04 0.0
Istat – – 0.8

Table 1.7. Characterization indicators of the representative mission M12rep

1.6.5. Simultaneous design by optimization

Having determined the representative missions, we proceed in this
section to the simultaneous design of three hybrid locomotives, optimized
per mission class. Let L1, L2 and L12 denote the hybrid locomotives, sized for
classes C1, C2 and C12, respectively, from representative missions M1rep, M2rep
and M12rep. In order to validate the consistency of the design results and to
emphasize the efficiency, in terms of computation time, of the representative
mission synthesis process, we also size three hybrid locomotives, optimized
per real mission class. In other words, it is a matter of designing a hybrid
locomotive for each mission class, by considering the concatenation of all
missions of the studied class to be a “sizing” mission, under the hypothesis
that the battery state of charge will be reduced to its initial value after each
4 hour mission. Thus, we denote the hybrid locomotives sized for each class
C1, C2, and C12 from real “sizing” missions M1tot, M2tot, and M12tot, by L1tot,
L2tot, and L12tot. Under the hypothesis that all initial missions are realized with
same occurrence over a year as over the base of 8 hours of use per day for
each locomotive, the design results are given in Table 1.8. The optimization
algorithm used at the heart of the simultaneous design process is based on a
genetic algorithm (see Chapter 3) and is coupled to the different hybrid
locomotive models presented at the start of this section.

The design results obtained for each mission class prove the effectiveness
of the representative mission synthesis process in the system design
approach. Indeed, we obtain practically the same sizing from the hybrid
locomotive by considering the fictive representative mission together with
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concatenation of real missions in the envisaged class3. For the three mission
classes studied in this way, we note a significant saving in terms of
calculation time (Tc) between the two approaches. Indeed, the previous
optimization results were obtained after 1,000 generations with a population
of 100 individuals. Under these conditions, design with representative
missions being synthesized enables a saving over the optimization time,
which is increased to 4.5 days for class C1, 4 days for class C2, and 6.6 for
class C12.

Class C1 Class C2 Class C12

Variables L1tot L1 L2tot L2 L12tot L12
PDE (kW) 400 400 200 200 300 300
NPBT 10 10 12 12 11 11
NSBT 437 421 444 440 429 421
NBT 4,370 4210 5,328 5,280 4,719 4,631

Vbus (V) 640 624 636 630 614 602
Fdec (kHz) 7.3 8.1 5.4 5.1 4.9 5.7
Cf (k€/yr) 397.2 421.8 202.8 191 318.5 350.4
Tc (s) 4.9 1 4.9 1.4 9 3.3

Table 1.8. Results of design by optimization in hybrid locomotives

1.6.6. Design results comparison

Based on 8 hours per day use for each locomotive, the 10 initial class C12
missions, with a total length of 40 hours are repeated 73 times over the
course of one year, whereas the five missions in class C1 of the same length
are each repeated 146 times each year. In order to evaluate the interest in the
classification (or segmentation) we compare the average annual costs of the
two locomotives L1 and L2 with that of locomotive L12:

– average annual cost of L1 and L2 = 0.5 × (Cost (C1)/L1 + Cost (C2)/L2) =
306 k€/year;

– annual cost of L12 = 350 k€/year.

3 The difference in annual ownership costs obtained between design with fictive
representative samples and with real missions is principally due to errors in estimating the
annual costs of fuel. Indeed, the stop/start nature of the diesel engine is dependent on the
battery state of charge, which itself is dependent on the form of the mission, even if all of the
characterization indicators are perfectly respected.
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We observe that, for this 10 mission example, the design of two
locomotives optimized per mission class enables a saving of €44,000/year
(~13%/year) compares with a single locomotive capable of satisfying all
missions on the list of specifications. Conversely, although it is less
profitable financially, the solution for the single equivalent locomotive is
slightly better ecologically. Indeed, the annual use of this locomotive
generates around 502 tonnes of CO2, against 518 tonnes of CO2 (approx.
+3%) emitted during an average annual exploitation of locomotives L1 and
L2. The choice of whether to design a single L12 locomotive, or two different
locomotives L1 and L2, is governed by a compromise between financial and
ecology aspects; beyond the result of this particular application, the interest
in the complete approach (classification – mission synthesis – simultaneous
design) that we have proposed is to facilitate the choice of the design user,
here SNCF, in terms of segmentation of the product range and then sizing.
These choices can be put into perspective with regards to the essential design
criteria (here ownership and climate costs).

1.7. Conclusion

The optimum design of energy systems is increasingly complex,
requiring a shift towards an increasingly integrated approach, including
many design perspectives (architecture, sizing, management), which address
a large number of heterogeneous criteria and constraints and which are
associated with various disciplines. These systems must satisfy a design
finality (mission) and become immersed in the environment with which they
are interacting. These diverse, often close, pairings are at the source of the
complexity of the systems approach, requiring a methodological approach to
facilitate the design process. This chapter contributes scientifically by
positioning itself upstream of this process by specifically highlighting the
integration of the mission and environmental variables into a system design
approach.

In the first phase of the study, and having highlighted the innovation of
considering the mission and environmental variables in the design of energy
systems, we have addressed the basic concepts of our new approach to
processing mission and environmental variables. This approach is initially
based on an analysis phase, which requires a high level of expertise in the
system within its environment, in order to define the pertinent
characterization indicators with regards to design criteria and constraints.
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The “classification” of mission or environmental variable profiles
according to the pertinent indicators, with regards to design criteria and
constraints, makes use of a set of decision-making tools. With this in mind,
we have developed a classification algorithm based on the optimization of a
partitioning criterion (the silhouette index) and associated with a genetic
algorithm with niching. This algorithm has then been validated on a sample
of railway mission profile dedicated to three distinct power systems. The
results obtained show the capacity of the approach to uncover quite distinct
classes, but also reveals the possibility of challenging certain “accepted
ideas” on the segmentation of products and markets.

“Representative and compact profile synthesis” consists of generating a
fictive profile that is “relevant” and of minimum duration from a family of
real profiles of differing characteristics, which conform to a certain set of
reference design indicators. Profile synthesis is based on the aggregation or
concatenation of elementary patterns (triangle, sine, or cardinal sine) for
which the number of parameters is determined by optimization using a
genetic algorithm. By referring to the two examples of real railway missions
and wind resource profiles, we have shown the capacity for the synthesis
process to generate a representative profile of reduced duration and which
responds perfectly to the reference design indicators. For these two
examples, the best results are obtained with an elementary segment pattern.
As far as the reduction or compaction rate of the initial horizon of real
profiles is concerned, this is clearly higher for wind speed compaction than
for railway missions. This shows that the compaction rate is strongly linked
to the nature of design indicators, which may require substantial minimum
times.

Finally, we have presented an application of the complete approach
proposed in this chapter, from classification to mission synthesis; this
example concerned the optimum design of an energy-efficient and
environmentally friendly hybrid locomotive. Through this hybridization
example we have shown the significance of the railway mission
classification approach in order to help designers evaluate the relevance of a
specific locomotive, which has been dedicated and optimized by mission
class, compared with a single locomotive capable of satisfying all classes.
Our approach, therefore, forms an “aid to market segmentation associated
with an aid to systems design”, for designer-users such as, in this case,
SNCF. We have highlighted the effectiveness of the compact duration
representative synthesis profile within the design by optimization process.
This approach has led to notable savings in computation times, which can
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last several days compared with design by optimization, which considers the
concatenation of the set of missions from the specification list as a typical
mission.
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Chapter 2

Analytical Sizing Models for Electrical
Energy Systems Optimization

2.1. Introduction

This chapter proposes a methodology and component models for the
development of a general electrical energy system model with a view to its
optimal sizing.

In the first section, the authors set out the problem of modeling within a
design process, by specifically showing the value of analytical modeling in
this context.

In the next section, the authors present some general details of the
methodology, enabling the modeling of an electrical energy system to be
structured. They illustrate their words by applying the methodology to the
example of a hybrid electrical heavy vehicle.

In the next sections, the authors review analytical models of the main
components of an electrical energy system, such as: electrical machines,
static converters, mechanical transmissions, and energy storage systems. To
clarify and illustrate the modeling approach, the authors present analytical
models of components of the hybrid electrical heavy vehicle discussed in
this chapter.
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Finally, in an attempt to show the use of the analytical models proposed
within the context of system sizing by optimization, the authors conclude the
chapter by comparing two results of optimization: the first concerns the
individual optimal design of each component of the hybrid electrical heavy
vehicle and the second concerns the simultaneous sizing of all components
of the system.

2.2. The problem of modeling for synthesis

In this first section, we describe the importance of modeling in a design
process. In particular, we justify the value of analytical simulation models in
a sizing by optimization method.

2.2.1.Modeling for synthesis

We begin this section with some general details about modeling. We first
set out what we understand by the term “model”; then we distinguish
simulation from sizing models.

2.2.1.1. Model concept

In this chapter, the model concept should be understood in mathematical
terms. In very general terms, a model is an abstract or existent construction
that enables the physical behavior of a device to be predicted. Within various
technical domains, reduced scale prototypes have long been used to enable
the behavior of a much larger model to be predicted either by analogy or by
homothety. With the progress in computers, models (and even prototypes)
have become increasingly “virtual”. Thus we understand a model to be a
mathematical construction linking parameters to each other. In this context, a
model can thus be used to either analyze a device or to design it.

2.2.1.2. Simulation and sizing models

In order to better understand the distinction between simulation and
sizing models, we can illustrate the problem using Figure 2.1. The traditional
problem for physicists is to represent the physical behavior of a device using
mathematical equations. In this case we refer to either analysis or simulation.
However, the problem for designers is to determine the construction and
control parameters of a system within its environment, understand the level
of performance that can be attained, and the constraints to be taken into
consideration, which are detailed in the specifications. In this case, we refer
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to either synthesis or sizing. The models used thus correspond to inverse
analysis models. In this sense, we can refer to simulation models as being
“direct models” and sizing models to be “inverse models”. Furthermore, as
explained in Chapter 3 of this book, optimization is a useful tool for
producing the inverse of an analysis model, with a view to transforming it
into a synthesis model; therefore, we seek input parameters of the analysis
model, which satisfy equations for the constraints model from the
specifications and which, furthermore, optimize one or more criteria
[KON 93; WUR 96]. In this context, simulation models remain the required
basis for development of a model, or, more generally, a design tool, insofar
as these models enable the criteria to be optimized and the pertinent
constraints to be evaluated.

OptimizationOptimization

Formalization of the design process

System
architecture
parameters

List of specifications
specifications
performances

Modeling

sizing

Synthesis

Inverse
model

simulation

Analysis

Direct
model

simulation

Analysis
simulation

Analysis

Direct
model

Figure 2.1. Analysis and synthesis within a design process

2.2.1.3. Knowledge and behavior models

Within a design process, analysis models should, wherever possible,
precede the creation of any real prototype, as they form the basis of the
process that enables the manufacture of the real device. In this context, these
models are preferably knowledge rather than behavior models, which are,
indeed, interpolated (black box) models and mathematically reflect the
experimental behavior of a real system. The testing required in order to
determine the parameters of the behavior model thus require the pre-
existence of the device. The validity of the parameters will not always be
ensured during variations in the descriptive parameters of the device, which
is not, for example, compatible with the use of optimization. In any event, a
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little qualification is needed. Indeed, device complexity, the lack of
knowledge of certain physical phenomena, and the difficulty in solving
mathematical equations lead, in some cases, to the use of empirical or
interpolated and/or extrapolated models, which do not rely directly on the
laws of physics, but rather on the experience of designers. We can quote, for
example, the B H− laws of magnetic materials, or even the empirical
correlations enabling the calculation of convection heat transfer coefficients.
However, behavior models are more delicate as, in essence, their validity
limits are harder to define precisely, and during optimal sizing, it will be
preferable to avoid them where possible.

2.2.2. Analytical and numerical modeling

2.2.2.1. Development of a mathematical model

The development of a mathematical knowledge model relies on the
resolution of some general laws that govern device behavior in a given
physical environment. Figure 2.2 presents the two development stages of
such a model, by taking the example of the development of an
electromagnetic model. The first stage consists of expressing a device in
equation form, by drawing on general physical equations, constitutive
material laws, and boundary conditions. In electromagnetism, these
equations generally lead to a spatiotemporal differential problem. The
second stage consists of solving these equations. Here, two main approaches
can be considered. The first consists of finding, when possible, analytical
solutions to the equations, whereas the second consists of discretizing the
variables and numerically solving the equations.

General physical laws
Maxwell equations

Material equations
e.g. B-H, D-E, J-E… relations

Device geometry
Boundary conditions

Equation resolution

Definition of the equations

Mathematical model

Figure 2.2. Development of a mathematical physical device model
(example of an electromagnetic model)
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2.2.2.2. Distinction between analytical and numerical models

There are numerous points of view within the electrical engineering
design community regarding the distinction made between numerical and
analytical models. Although this is rather a theoretical debate, here we are
proposing some strict definitions that enable the limitation between the two
types of modeling to be addressed, and most importantly, to then deduce the
advantages and relative disadvantages of each type of model and,
consequently, their relative roles with a design process.

The limitation between a numerical and analytical model rests on the use
of a numerical algorithm. Thus a model will be said to be analytical if its
resolution does not require the use of numerical method for approximate
resolution of a differential equation or a large algebraic system, or even
simply a nonlinear equation.

In order to illustrate this let us take the example of the response of an
inductive circuit to a level of voltage (see Figure 2.3); the circuit initially
being at rest.

Firstly, let us consider that the inductance is constant. In this case, the
temporal response from the circuit is as follows:
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Figure 2.3. Response of an inductive circuit to a period of voltage

Conversely, if the inductance is not constant, but is dependent on the
current flowing through it, the differential equation:

( )( ) ( )
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which governs the temporal evolution of the current cannot generally be
resolved analytically, and it is necessary to use a numerical integration
method, which consists of temporarily discretizing the current. The first case
is therefore known as an analytical model, whereas the second case is known
as a numerical model.

Limitation is sometimes discussed in certain cases. For example, the use
of reluctance networks in order to calculate the magnetic field in a device is
a well-used method in the design of electrical actuators [JUF 95]. In this
case, the Kirchoff network equations may be explicitly analytical.
Conversely, if the system is very large and nonlinear (which is the most
common case in practice), solving the network implies the use of a
numerical resolution algorithm for a nonlinear system of n equations with n
unknowns. Nodal networks in thermal modeling are a similar example. In
this case, insofar as the equations to be solved are analytically explained, we
refer nowadays to semi-analytical models, but in the sense of the definitions
above, this is clearly a numerical model.

Rs

ent

Rsc

entc

Carter coefficient

equivalent air-gap

real air-gap

real stator

equivalent stator

Real machine

Equivalent machine with a smooth stator

Figure 2.4. Simplified geometry of a surface-mounted, synchronous, permanent magnet
device with an external rotor: simplification of geometry with a view to solving Maxwell

equations using the variable separation method

Another example of magnetic models currently in use corresponds to
those that rely on the solution to Maxwell equations using the variable
separation method, which thus leads to solutions expressed in Fourier series
form. We occasionally refer to meshless methods. For simple geometries,
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solutions may be analytically expressed. Indeed, if the number of areas
considered is limited, the number of integration coefficients to be determined
in order to solve Maxwell equations is similarly limited, and we can thus
analytically solve the Cramer system, which is verified by the integration
coefficients. For example, for a surface-mounted magnet device with an
external rotor, for which slotting effects (stator homogenization and
correction of the gap through application of the Carter coefficient; see Figure
2.4) are neglected, the flux density B into the air gap, for no load operation,
is expressed within a cylindrical base as follows [ZHU 93]:

( ) ( ) ( )n n
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n
B r, r r cos n pθ α β θ−
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where p is the number of pole pairs, nα and nβ are constants dependent on
the geometry of the machine and the magnetic properties of the magnets and
n is the harmonic rank.

Even if this equation appears to define an analytical model,
implementation is clearly numerical. Indeed, even if the series is convergent,
its limits cannot be explicitly determined. Thus, the choice of the number of
harmonics in the Fourier series always defines modeling as numerical, in the
sense of the definitions given at the start of this section.

Furthermore, when we are looking to solve the Maxwell equations in
slots [DUB 09], we thus obtain a large number of areas and the number of
integration coefficients to be determined is higher, which requires block
matrix inversion. The model is thus doubly numerical; the large Cramer
system must be solved and the number of harmonics in the Fourier series
must be very carefully chosen.

2.2.2.3. Role of analytical models in a design process

Analytical, semi-analytical and numerical models all have their
advantages and each has a role to play in the design process. We will discuss
the advantages of each type of model and show how analytical and semi-
analytical models can be used at each stage of sizing by optimization.

2.2.2.3.1. Advantages of analytical and semi-analytical models

The properties described in this section apply to analytical, but also semi-
analytical models for which the formulation of equations to be solved is
analytical:
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– The first clear advantage is the calculation time for the model. This
point is certainly modulated by the constant increase in computer processing
power and by the ability for parallel calculations to take place across
multiple processors; however, the fact that systems containing a significant
number of components can be modeled (from a few units to several dozen),
using increasingly multi-physical models, taking into account transitory
responses and evaluations on a significant number of operating points, or on
long and complex missions, has probably forced the focus onto model
calculation times. Additionally, in an industrial context, calculation time is a
significant factor in the competitiveness of the design activity. Finally, the
use of a model in an optimal design context implies a significant number of
evaluations of the simulation model, in order to satisfy constraints and
optimize criteria. This is all the more so if a stochastic optimization
algorithm is used, for which convergence requires many hundreds to many
thousands of iterations.

– In any event, calculation time is not the only advantage of analytical
models in a system design context. The other major advantage is the explicit
characteristic1 of the information contained in the analytical model, which
enables a better physical interpretation of equations than a numerical model,
which requires numerous evaluations in order to extract the physical
information contained in the model. Let us consider a very simple case in
order to illustrate this. Knowing an analytical relationship between two
variables x and y, for example y=sin(x), enables an instant understanding of
the influence of x on y. If a set of numerical simulations were required in
order to extract the same information, clearly a large number of calculations
would be required. At the very least, the Shannon theorem indicates two
evaluations per period, but this assumes that the frequency is already known.
In summary, the explicit characteristic of equations of an analytical or semi-
analytical model enables rapid understanding of the relationships existing
between the various parameters of the model and favors design choices,
notably during the pre-sizing phases.

– The third factor is the greater ease offered by analytical or semi-
analytical approaches in the production of multi-physical component models,
on one hand, and component model couplings on the other. For example, in
an electrical drive model, the electrical, magnetic, mechanical, and thermal
modeling of an actuator, its power source, and the mechanical transmission

1 We refer here to an explicit characteristic, but this should not be confused with
mathematical implicit or explicit modeling concepts, which rely on the existence or otherwise
of algebraic loops in the model.
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is a highly complex objective to accomplish numerically (for numerical and
also eventually data processing reasons, if various tools are used that do not
necessarily communicate together) and this will probably lead to excessive
calculation times.

– Finally, the fourth factor applies to the flexibility of analytical models.
Recent developments in formal calculation and in the automated processing
of mathematical equations (such as substitution, derivation, and model
parameter analysis automation) enable the development of extremely high-
speed tools for the automated processing of models, even for the
development of models. For example, in Chapter 5, the authors show how it
is possible to automatically obtain equations for a reluctance network from a
graphical model (itself expressed automatically in equation form) or also
how it is possible to process analytical or semi-analytical models using
formal or even code derivation, in order to obtain the model gradient and
thus to program a sensitive calculation and optimization tool. Additionally,
analytical models may, in certain cases, enable optima to be analytically
calculated and thus to create local optimizations. For example, optimization
of a complete permanent magnet electrical drive may contain local
optimization of currents from the d and q axes within a more complex
optimization loop [AUB 11], for which the optimization is entirely
analytically expressed.

2.2.2.3.2. Limitations of analytical and semi-analytical models and
advantages of numerical models

We are now developing the advantages of numerical modeling in a
design process. These advantages most often correspond to the limitations of
analytical or semi-analytical models, which show the complementary nature
of the two approaches well:

– The first limitation of analytical models corresponds to their
development time, which is generally long and which often requires complex
calculations, and to the difference in generic numerical tools, which enables
the model to be solved to be rapidly defined. Thus, during the development
of an analytical model, automatic equation tools may be useful for
facilitating this stage by avoiding calculation errors and automatically
generating equations that are sometimes very long and difficult to describe.

– Secondly, solving physical equations often requires strong hypotheses
regarding the physical properties of modeled components (linearity of the
B H− characteristic of laminations, or the absence of loss in an electronic
power component, for example), or the considered geometry
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(homogenization of a slotted area in an electrical machine, or further
simplification of complex forms). Of course, these hypotheses limit the
validity of the model and it is essential that this is well defined in order to
impose constraints during the research of an optimum, if the need arises.
Sensitivity analyses may also become necessary in order to study the
influence of certain hypotheses on the result of an optimization and its
robustness.

– Finally, based on hypotheses enabling physical equations to be solved
explicitly, analytical models enable a low degree of genericity compared
with numerical tools. Each new model thus requires a large number of
equations to be redone, particularly if we change the development
hypotheses of the model.

In order to produce a synthesis on what has just been explained, we
propose two figures. First, Figure 2.5 compares the different model types
and shows the compromise that exists between the execution time for the
model and the level of modeling precision. Then, based on the respective
advantages of numerical and analytical models, we can propose the five-
stage decomposition described in Figure 2.6 for the unraveling of a typical
design process. The figure describes the type of model preferentially used at
each stage. It is advisable, however, to qualify the proposed vision. Indeed,
as the authors explain in Chapter 4 of this book, it is possible to combine
different levels of modeling in device design. Thus, the space-mapping or
target cascading approaches enable the optimization of a device or system
by changing the level of modeling during optimization in order to accelerate
the convergence time, at the same time as the precision of the solution.

Finally, even if there appears to be great complementarity between
analytical and numerical approaches during a design process, the
optimization stage is preferentially achieved by use of an analytical model.
In Chapters 3 and 5, the authors focus on the formulation and resolution of
the problem of optimization. In a complementary way, in this chapter we
consider the problem of developing the model by limiting ourselves, as we
have just explained, to analytical or semi-analytical modeling. Chapter 5
presents tools enabling the automation of the construction of this type of
model. In this chapter, by concentrating on an existent example, we
emphasize a method of structuring an analytical model, and we detail some
simple methods to enable the establishment of different parts of the model.
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Figure 2.5. Role of different model types in a
precision versus resolution time context

2.3. System decomposition and model structure

In this section, we explain how breaking the system down into
components enables better structuring of the system model. By way of
illustration, the proposed method is then applied to an example of a hybrid
electrical heavy vehicle.

Choice of structure11 Choice of structure11

Summary pre-design22 Summary pre-design22

• Knowledge manipulation, evaluation of
experience , know how, etc.

• Little or no use of mathematical models

• Objective: discrimination of various
structures, initialization of optimization
phases

• Use of simple and very high speed models
→ preferably analytical

Optimal sizing33 Optimal sizing33

• Objective: precise and complete sizing of all
components of the system

• Multiple iterations, multiphysical and high speed
models→ preferably analytical or semi-analytical

Numerical prototype44 Numerical prototype44

• Objective: validation of sizing by optimization,
minimizing of the number of real prototypes

• Use of precise models, which may be low speed
since a single iteration is required → preferably
numerical

Real prototyping55 Real prototyping55
• Objective: validation of all models and sizing
• No use of mathematical models

Figure 2.6. Proposal for an organigram for the execution
of a typical design process and the type of model used at each stage
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2.3.1. Advantage of decomposition

In general, a system is a fairly complex assembly of components that are
elementary in terms of their interactions. Certainly, it is difficult to clearly
define the boundary between a component and a system; for example, an
actuator may be seen as being an elementary component of energy
conversion, but also as a system comprised of components, such as the
magnetic circuit, coil winding(s), or rolling bearings. In the context of this
chapter on electrical energy, in order to attempt to adopt a more precise
definition, we will assume that a component is a system element with an
elementary function and which produces a conversion, a storage, or an
energy transformation function. Thus, a combined machine and converter
comprises of two components for which the function and type of energy
conversion produced can be defined; in terms of the motor operation, the
function of the static converter is to provide processed electrical energy to
the electrical machine, whose function is to produce a movement in order to
drive a mechanical load. Regarding energy, the role of the converter is to
ensure electrical energy transformation and the role of the electrical machine
is to ensure an electromechanical energy conversion.

The first stage in the development of a system model is thus its
decomposition into eventual sub-systems, then ultimately, into elementary
components. The role of this decomposition is to set out the operational and
energy links of the system and to list the components to be modeled. This
enables the modeling work to be structured. In the area of electrical energy,
the following different components are generally, but not exclusively, found:
electromechanical (reversible) converters, static electrical converters, energy
storage devices, mechanical converters from electrochemical generators, and
photovoltaic generators. Assembling these components enables the main
energy chains currently encountered in electrical engineering, and more
specifically in the domain of energy, to be obtained: such as production,
transmission, and energy storage grids, onboard or embedded grids, and
electromechanical conversion chains. Beyond clarifying the operation of the
system, decomposition into components then enables us to fall back on fairly
generic component modeling and on the use of the high abundance of
literature on component modeling, particularly analytical modeling.

Of course, system modeling also requires us to take into account, not only
the structural aspect of components, but also the functional aspects. This
means that structural models (i.e. those expressing component performance
in terms of its geometric and physical parameters (so as to be able to size the
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device)) and functional models (which enable us to describe how
components are controlled in order to ensure a given operation of the
system) are required. For example, in the simple case of a machine converter
assembly, we need models that link, for instance, the coupling, efficiency,
and heating of the electrical machine to the geometric and physical
parameters defining the laminations and coil windings, but also models
expressing, based on the control function of the machine and converter, the
maximum voltage, maximum current, heating, and so on, of the electronic
power components. This double modeling (in varying degrees according to
the practical cases considered) is thus absolutely necessary in the context of
system design. Previous design approaches only took account of either the
structural or functional aspects or then both sequentially, i.e. machine design
was initially undertaken in order to obtain a particular torque and a particular
speed, then converter sizing was undertaken in order to be able to correctly
power the motor when looking to obtain the operating points from the list of
specifications, and finally the choice of converter control (such as pulse-
width or plain wave modulation) and machine control (such as vector control
of an asynchronous machine, or scalar or open loop power control). Design
over operating cycles and/or taking into account component lifetimes, and/or
general variables such as the energy cost over the lifecycle, all require the
general modeling associated with structure and control models.

The final stage in the decomposition of the system is to identify the
variables of models that are positioned at interfaces and which enable the
coupling of models to each other. This stage enables the double
compatibility between models, mathematical and physical, to be verified;
thus the coupling of an inverter model with an alternating three-phase
machine model, assuming common variables between the two in order for
them to be used in a modeling and/or system sizing process. If the machine
is modeled using a Park model, then the converter model will need to
express the three voltages as input for the machine model. Conversely, if the
machine is represented by a single-phase electrical schematic, the converter
will preferably be represented by voltage drops or additional internal
resistances in the model. Finally, a representation of the machine using an
electromechanical response surface and receiving electrical power at the
input will require another response surface to deliver this electrical power.
Therefore, with this simple example, the importance of having compatible
physical and mathematical modeling approaches is evident; these should be
ensured upstream of the moment of decomposition of the system and from
the definition of modeling approaches for each component.
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2.3.2. Application to the example of the hybrid series-parallel traction
chain for the hybrid electrical heavy vehicle

In this chapter we consider a specific example to illustrate the
explanation. This concerns the design of a hybrid series-parallel traction
chain (see Figure 2.7), using an epicyclic gear set in order to ensure the
coupling of the mechanical power provided by the various electrical and
internal combustion engine (ICE). This hybrid traction chain is designed
around the epicyclic gear set, which enables two reversible electrical
machines to be mechanically coupled (operating sequentially as engine or
alternator), a ICE and the addition of a differential attached to the wheels.
This enables a power node to be produced. Electrically, the two machines
are linked, using reversible voltage inverters, to a DC bus upon which is
placed an energy pack, which may be comprised of batteries and ultra-
capacitors interfaced via reversible current choppers. This structure has been
implemented for the Toyota Prius car (apart from the use of ultra-capacitors)
and we are voluntarily moving into a different context, consisting of
applying this structure to a heavy vehicle, which may, for example, be a
private waste collection or a light-armored military vehicle. The objective is
to design the complete system on the basis of the specifications that describe
the functionality and performance of the vehicle, i.e. from the complete
traction chain, which is thus a representative system design example.

Electrical motor

Electrical
generator

Thermal engine

Satellite carrier
(thermal engine)

crown gear
(electrical motor,
power shaft)

Solar gear
(generator)

Satellite
gear

Electrical motor

Electrical
generator

Thermal engine

Satellite carrier
(thermal engine)

crown gear
(electrical motor,
power shaft)

Solar gear
(generator)

Satellite
gear

Figure 2.7. Hybrid series/parallel architecture with epicyclic gear set (source: INRETS)
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Figure 2.8. Illustration of the hybrid traction structure

If we apply the principle of decomposition to the system to be designed
for this hybrid driving system, we arrive at the following elementary
components:

– the ICE: this will be excluded from the scope of our investigation and
will be assumed to pre-exist in the study described shortly, as the sizing of a
thermal engine is a complex operation that deviates from the electrical
engineering context of this chapter;

– the two reversible electrical machines;

– the two reversible voltage inverters;

– the mechanical transmission and specifically the epicyclic gear set:
given the coupling and power constraints encountered here, the gear set will
be double and of the Ravigneaux type;

– the energy pack, including storage devices, and reversible choppers: the
sizing of these components, although pertinent in the context of this book, is
not handled here, essentially so as not to make this chapter excessively long;
this being the case, the system considered here remains sufficiently complex
and wide ranging for the proposal to remain pertinent and of general interest.

Finally, Figure 2.8 presents a decomposition of the complete system into
components. A supplementary stage not presented here would be to specify
component interface (or coupling) parameters, i.e. the parameters that should
be determined simultaneously during general sizing. This work will be
partially achieved in the following sections.
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2.4. General information about the modeling of the various possible
components in an electrical energy system

In this section, we describe the features common to all sizing component
models included in an electrical energy system. In the following sections, we
address the peculiarities linked to the considered components: electrical
actuators, static converters, storage devices, electrical energy storage
devices, and finally, mechanical transmissions.

Insofar as this book falls within the context of systems sizing by
optimization, there are effectively groups of equations common to the
modeling of different components.

The first group of equations models the geometrical aspects of
components. During sizing, mass and volume (overall dimensions) are key
parameters. Thus, each component model should include volume and mass
calculations. Two approaches are then possible:

– the first conforms to a complete design vision for the component, which
is generally the case for actuators. It is then necessary to use simple
geometric relations that enable the volume of each component part to be
expressed;

– the second approach conforms to a choice of catalog components,
which is often the case, for example, with storage components (such as
capacitors and coil windings) or electronic switches. In this case, for each
element, data for volume and mass need to be collected from a list of
possible choices.

A second set of equations common to all components refers to cost. Once
more, this is a common and essential aspect of approaches to sizing,
whatever the component considered, especially within an industrial context.
Note that the cost should not be reduced to a simple raw material cost, but it
should be, as far as possible, representative of the complete lifecycle of the
device. For energy devices, it should therefore equally integrate, for
instance, the energy cost over the lifetime defined in the list of specifications
and the cost of maintenance, including that of eventual replacements (for
batteries, for example). This part is often indefinable and requires strong
hypotheses on the predictions for the changes in certain costs (the cost of
materials, for example), or even on manufacturing costs.
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A third aspect focuses on the environmental impacts. In every case,
system sizing should take into account all interactions with the external
environment, in the largest possible sense. This refers to interactions that
may be thermal, vibratory, acoustic or electromagnetic (ECM), but also
linked to the deterioration of the environment (depletion of energy resources,
raw materials and water, for example). The analytical modeling of physical
dimensions in relation to these interactions is also indefinable here, either
due to a lack of understanding of useful information (such as environmental
impacts), or due to modeling difficulties (due to acoustic noise or ECM
waves emitted, for example).

Finally, another significant aspect, which notably has an impact on
component sizing, concerns ageing. Indeed, in system sizing approaches it is
not unknown for components to be replaced over the operating duration of
the device. That may, for instance, be the case with batteries or ultra-
capacitors [AUB 11], which as a consequence require the integration of
ageing models in order to evaluate the lifespan of the component. The key
factor in this case is temperature, and Arrhenius’ law, with its basis in
chemical kinetics, is often used [GUI 10]. The lifetime of a component τ v at
temperature T is linked to the life of a component τvref at a reference

temperature Tref by an exponential law of the following type:

τ v = τ vref ⋅e
T−Tref
k [2.4]

where k is a characteristic parameter of the component. This formula is, for
example, used for the thermal ageing of electronic components, but also
electrical insulators or occasionally again, by extension, energy storage
devices.

2.5. Development of an electrical machine analytical model

Whether in an electrical drive or in energy generation, electrical machines
are very widely used to produce mechanical energy (a movement) or,
reversibly, to produce electrical energy. There is an extremely rich source of
literature on the subject of analytical modeling, and it is not possible here to
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be exhaustive with regards to the description of all possible modeling
approaches; also we only focus here on the most traditional.

2.5.1. The various physical fields of the model and the associated methods
for solving them

2.5.1.1. Magnetic modeling

The first, most regularly studied physical property is electromagnetism
and, particularly, the calculation of magnetic fields in machines. The base
equations are Maxwell equations and equations for magnetic materials. They
can be dealt with on two levels. The first, local, consists of calculating the
magnetic field and flux density at any point by solving Maxwell equations.

In an analytical approach it is only possible to solve them under certain
geometric symmetry and linearity conditions. The method traditionally used
is the separation of variables when mathematically possible, and the
solutions obtained are then expressed as a Fourier series. The advantage of
this approach is that it is local and, therefore, enables geometric effects, such
as slotting, to be considered, but is limited in terms of the nonlinearity of the
B− H characteristics of magnetic materials. A second approach consists of
considering less local dimensions, such as the magnetic flux in the various
areas of the device and magnetomotive forces, which require decomposition
of the device into flux tubes, which result in a magnetic network, where the
flux sources are magnetomotive forces created using permanent magnets or
coil windings. The limitation of the approach is the requirement to have
preliminary knowledge of the magnetic fluxes paths, but its advantage is the
possibility for nonlinear reluctances to be taken into account. A final
approach consists of returning directly to the integral forms of the Maxwell
equations: the magnetic flux conservation law and Ampere’s theorem, which
can be applied on a specific flux line in order to enable the flux density in
the air gap to be determined. This in fact comes down to the use of a
reluctance grid, but on a very limited mesh number (one, in the limit case).
In this case, it is necessary to assume a form of flux density in the air gap,
the solution enabling its amplitude to be determined, for example.

2.5.1.2. Electromechanical modeling

The second physical property concerns the electromechanical behavior of
machines. This is generally handled using electrical schemes including
voltage sources (corresponding to voltages induced through flux variation),
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resistances describing losses (through a Joule effect or in the magnetic
circuit), and inductances and mutuals describing the storage of magnetic
energy. This is possible as a result of the magnetic model for expressing
induced voltages and inductances based on geometric parameters.
Resistances used to model copper losses are a direct result of Ohm’s law,
which enables them to be expressed based on geometric parameters.
Resistances used to model magnetic losses firstly require magnetic models
for the calculation of losses in iron. Mostly, this calculation relies on a
decomposition of the losses into a first component linked to the circulation
of Foucault currents, created through magnetic field variations, a second
component link to the phenomenon of hysteresis and the displacement of
Weiss domains in materials, and finally, a third supplementary losses
component. Then, with the magnetic losses known, resistances are
introduced in order to model the dissipative phenomenon.

2.5.1.3. Thermal modeling

The third physical property is heat. Again, multiple approaches are
possible. The first consists of establishing a thermal network, which models
heat exchanges in the machine in network form. This approach is
complicated, as the network can be relatively important if all exchanges are
to be considered, and as there is much uncertainty regarding certain
thermophysical parameters, such as convection coefficients.

Clearly a much simpler approach consists of restricting the current
density in the copper and the lineic current density at the outer periphery of
the stator, which, as it were, enables the sizing of the machine to be adjusted
based on the type of coolant considered. The underlying idea is that the
sizing of the coolant is uncoupled from the sizing of the machine; we size
the machine for an effective current density (eventually calculated on
operating cycle) and then size the cooling circuit, so as to be able to release
the heat generated by the losses and to maintain copper and permanent
magnets temperatures over an acceptable interval.

2.5.1.4. Mechanical modeling

Finally, the last physical property is mechanics. Beyond the equations for
the mechanics of the solid, which enable the equation for the rotation of the
turning parts to be determined hourly, it is also a question of determining
local movements, resulting from vibrations or internal constraints based on
fatigue, for example. This part is relatively specialized and will not be
addressed in this chapter.
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2.5.2. Application to the example of a hybrid electrical heavy vehicle:
modeling of a magnet surface-mounted synchronous machine

We present here in summary form the example of a magnet surface-
mounted synchronous machine with an internal rotor [SLE 92]. This type of
machine is used for the motor and generator of the series-parallel hybrid
driving system, described in section 2.2.3. As explained before, the model of
the machine is organized according to the nature of the equations.

2.5.2.1. Geometric and physical equations
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Figure 2.9. Geometry of a magnetic surface-mounted
magnet synchronous machine
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Figure 2.9. (Continued) Geometry of a magnetic
surface-mounted magnet synchronous machine

Deduced from geometric structures, it is possible to express the various
relations existing between the geometric parameters, but also between the
volumes and masses of machines. To illustrate this, we provide the following
examples:

rotor int rr R d= + [2.5]

( )2 2
rotor rot rotor int rm mv r R lπ= ⋅ −

[2.6]

where rd , rotorm , rotmv and rl are the height and mass of the rotor cylinder
head and density of steel used in its manufacture and the length of the
machine active parts, which is assumed to be equal at the stator and the
rotor, respectively; the other parameters are described in Figure 2.9.

The winding is overlapped with a diametric coil span; it has eppN slot(s)
per pole, phase and it is also three-phase. We are assuming that there is only
one coil winding channel per phase.

The physical equations, themselves, consist of describing the physical
properties of the materials used in the manufacture of electrical machines.



66 Integrated Design

For example, we quote the example of the B H− relationship, which
describes hard or soft (saturable) ferromagnetic materials. In this case, the
B H− equation is useful in order to establish the state of material saturation
and thus a realistic value for the flux density in the air gap. Here we give, for
example, the B H− relationship for a rigid magnet in its useful zone (such as
rare earth based magnets):

aim ra 0 ra aimB B Hμ μ= − [2.7]

where raB and raμ are the remnant flux density and the relative magnetic
permeability of the permanent magnet.

The particularity of the geometric and physical equations is that they are
not dependent on function. They are therefore defined once for all, whatever
the machine operation.

2.5.2.2. Magnetic model of the machine

The aim of the magnetic machine model is to establish the magnetic flux
density over all points of the electrical machine. For this we use a one-
dimensional model here (flux conservation and Ampere’s theorem). Within
the context of this example, we will not develop the consideration of
magnetic saturation [ESP 99] and we will assume linear operation. During
the optimization stage, this will imply that flux density needs to be
constrained in the different part of the magnetic circuit.

Firstly, the slotted stator is transformed into a smooth stator by applying a
Carter coefficient. This transformation enables us to take into account, on
average, the fact that the field lines, which are developed in the face of a
slot, have a longer path in the air gap. In surface-mounted permanent magnet
machines, based on the fact that the permeability of the magnets is close to
that of air, the Carter coefficient does not apply to the real air gap g, but to
the effective air gap effg , including the thickness of the magnets, ah , and
modulated using the relative permeability of the magnets:

eff a rag g h μ= + [2.8]
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The Carter coefficient cK is expressed by:

e
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[2.9]

where ew is the tooth space and 2b the slot pitch. The corrected air gap cg
is therefore expressed by:

c c eff a rag K g h μ= − [2.10]

By assuming a rectangular form of no load flux density in the air gap
(constant flux density under a magnet, positive or negative according to the
polarity of the magnets, and null otherwise) and assuming that the
permeability of iron is very high compared to that of air, the application of
Ampere’s theorem on a line of average field enables the maximum
amplitude of flux density to be calculated:

( )ev ra ra c a1B B g hμ= + [2.11]

By decomposing flux density using a Fourier series, it is finally possible
to obtain the first harmonic of the flux density in the air gap:

( )ev1 e a4B B sinπ α= [2.12]

where aα is the ratio of the semi-permanent magnet pitch to the pole pitch.
The flux in the air gap under a pole evΦ can then be computed by integration
of the flux density under the pole, and we obtain:

ev s p r evr l Bτ πΦ =
[2.13]

Some flux conservation laws later enable flux and flux density to be
calculated in all zones of the magnetic circuit: rotor yoke, stator yoke and
teeth. For example, the no load flux amplitudes dvΦ and flux density dvB in
the teeth are:
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dv ev 2φΦ = [2.14]

( )dv dv cs yB h dφ=
[2.15]

We will return to this later when we discuss the load operation.

2.5.2.3. Electrical model

The electrical model consists of a traditional equivalent single-phase
scheme established under permanent and balanced sinusoidal three-phase
conditions (see Figure 2.10).

V

I sR cL

E

Figure 2.10. Equivalent single phase electrical schematic
of a smooth pole synchronous machine

We assume that magnetic losses do not appreciably affect the electrical
behavior of the machine (EMF and stator current). Consequently, the effect
of iron losses is not shown in this equivalent scheme.

In this electrical scheme, Rs is the resistance of a phase, Lc is the cyclical
inductance, and E is the complex representation of the EMF, induced in
open circuit within a phase and assumed to be sinusoidal. Additionally, V
and I are the complex representations of simple voltage and phase current,
which are also assumed to be sinusoidal.

The cyclic inductance of a phase Lc is expressed based on the
magnetizing inductance Lm, the leakage inductance Lf, and the mutual
inductance Ms:

c m s fL L M L= − + [2.16]

These three inductances can then be expressed based on the geometric
parameters of the machine, defined in Figure 2.9, and on the number of
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conductors per slot ceN , by assuming that all of the turns of the machine are
in series and that the distribution of the stator flux in the air gap is
sinusoidal. The stator coil coefficient is denoted by bK .

2 20 r s
m ce b epp

m
c

r

4 l r
L N K N

eK g

μ

π
μ

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

[2.17]

( )
2 31 2

f 0 r epp ce
1 3 2 3 2

2 2
2

3
hh hL l p N N

b b b b b
μ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟+ +⎝ ⎠

[2.18]

m
s 2

LM = [2.19]

In the same way, the stator resistance of a phase Rs is deduced from the
copper conductivity σcu and the geometric parameters of the stator coil
winding.

2 r tb
s ce

cu enc r
2

l lR p N
S Kσ
+

= [2.20]

where Senc, Kr and ltb are the cross-section of a slot, the copper fill factor in
the slot and the length of end winding, respectively.

The RMS induced voltage E in a phase is, itself, expressed from the RMS
value for the open-circuit flux of a phase for one turn per slot:

s b epp ce ev1 s r2K N N B r lΦ = [2.21]

sE ωφ= [2.22]

where ω is the electric pulsation of stator quantities (such as voltage and
current) which is expressed as a function of the angular rotation speed Ω by:

pω = Ω [2.23]
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If we break down the complex representations for the current and the
voltage into two components according to the EMF axis (the q axis) and a
delay axis of 2π (the d axis), the following relationships can then be
written:

d qV V jV= +
[2.24]

d qI I j I= +
[2.25]

sE jω= Φ [2.26]

d s d c qV R I L Iω= −
[2.27]

q s q c dV R I L I Eω= − + [2.28]

Note that the parameters above do not coincide with d and q ones,
provided by the Park transformation.

Insofar as the motor is powered by a three-phase voltage inverter, the
RMS value for the maximum voltage that can be applied to a phase, using
MLI operation without over-modulation, is expressed based on the
continuous bus voltage Vbus:

( )2 2
d q bus 2 2V V V V= + =

[2.29]

2.5.2.4. Power balance

Insofar as energy criteria are central to the optimal design of systems, it is
necessary to express the various powers and losses involved in electrical
machines.

By considering engine operation, the input power is the electrical power
P, which is expressed based on complex representations for voltage and
current:

{ } ( )d d q q3Re * * 3P V I V I V I= = +
[2.30]
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Electromagnetic power Pem enables the electromagnetic torque Cem to be
expressed from the effort produced by the motor:

em em 3 qP C E I= Ω =
[2.31]

em s3 qC p I= Φ
[2.32]

There are three different types of losses existing in electric machines:

– copper (Joule) losses in the copper from stator coil windings;

– magnetic (or iron) losses in the magnetic circuit;

– mechanical losses due to friction between the rotating parts and either
the fixed parts or air.

Stator copper losses are simply expressed (by ignoring skin and
proximity effects in the conductors):

( )2 2 2
J s s d q3 3P R I R I I= = +

[2.33]

Iron losses in the rotor are ignored, even if permanent magnets or rotor
solid yokes may be the location for intensive Foucault currents as a result of
harmonic rotating fields, which are asynchronous of rotation speed. Also, as
far as magnetic losses are concerned, to calculate the magnetic losses in the
stator, we assume that the iron losses have only two components: the losses
due to Foucault currents and those linked to the hysteresis phenomenon. For
a sinusoidal variation in flux density, of amplitude B and pulse ω, the
Foucault losses are expressed by:

2
2 2 2 2stat stat

Fouc Fouc
stat24
eP B k B
mv

σ ω ω= = [2.34]

where σstat, estat and mvstat are the conductivity, thickness and density of the
laminations, respectively.

The hysteresis losses are of the form:

2
h hP k Bω= [2.35]

where kh is a characteristic coefficient of the plates.
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The pulse ω is directly linked to the rotation speed and the flux density in
each part of the machine is linked to the field created by the magnets, but
also to the armature reaction field. In order to calculate the load flux density,
it is necessary to consider the resulting flux in a phase:

c d c qres s L I j L IΦ = Φ + +
[2.36]

The flux density variations in the different parts of the machine follow
the magnetic flux variations in a phase. For example, we can express the
load flux density charging in a tooth Bdc based on the no load flux density
Bdv:

res
dc dv

s
B B Φ

=
Φ [2.37]

Then, the load iron losses in a tooth Pferdc are expressed by:

2 2 2
ferdc h dc Fouc dcP k B k Bω ω= + [2.38]

This approach enables the flux variation in the machine which is linked to
the armature reaction field to be taken into consideration, particularly during
flux weakening operations, where the reduction of flux along the rotor pole
axes enables the phase voltage of the machine to be reduced, but also the
losses in iron.

In the example considered here, the mechanical losses in the electric
machines are also ignored.

2.5.2.5. Thermal stress

In this example, with regards to the thermal aspects, we are simply
limiting ourselves to limit the current density in the slots, without evaluating
temperatures in the various parts of the machine. The value of the RMS
current density in the stator conductors is then:

ce
s

r enc

N IJ
K S

= [2.39]
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2.6. Development of an analytical static converter model

Power electronics or “static” converters are used in order to process
electrical energy with a view to its subsequent use (for example, in order to
power electrical machines with variable speed and torque) or to be stored. In
a sizing context, mainly two physical properties are modeled. The first
concerns electrical aspects: the examination of commutation sequences
enables relationships between the electrical variables and their
characteristics to be obtained (mostly by use of ideal components) as well as
the effective or average values on each side of the converter. This enables
current and voltage rating of switching components to be sized, but also
those of the passive components, which are eventually used in filters
(capacitors or inductors). The second physical property concerns the thermal
level. Firstly, the study of switching properties or the use of charts enables
the losses in the component to be determined. Then cooling conditions
enable the calculation of temperatures of the components, which enables the
sizing of thermal cooling and, as explained above, the determination of
lifespan.

2.6.1. The various physical fields of the model and associated resolution
methods

Some electrical variables internal to switching static converters present
strong dicontinuities. However, a model to precisely determine internal
converter phenomena would require calculation of electrical variables with a
temporal accuracy, which is often incompatible with the calculation speed
required. The need to preserve the simplicity of calculations incorporated
into an optimization algorithm requires expression of the model equations of
static converters based on average values of electrical variables. Thus, the
model is based on the formulation of variables to be optimized from average
values of electrical variables, i.e. without solving the differential equations
enabling the precise temporal determination of these variables, and this
while taking into account transitory parameters, such as the switching
frequency, for example.

The general principle of static converter modeling can be split into
various stages:

– determination of electrical operational equations: the expressions of
average electrical value equations will be used to define the electrical
parameters required for sizing;
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– determination of equations characterizing semi-conductors and eventual
passive elements: electrical, inductive, capacitive, magnetic dielectrical and
thermal behaviors;

– determination of measurements enabling quantification of the criteria to
be minimized: mass, volume, and losses in passive elements;

– definition of constraints across all of the calculated parameters,
whatever their nature: size limitations, levels of admissible loss, and
temperatures, which are limited on internal electrical measurements, input
and outlook.

The characteristics of static converters are always closely linked to the
nature of the loads with which they are associated. For example, it is
practically impossible to disassociate the sizing of electrical machines from
that of the converters powering them, not even to enable electric actuators to
reach predicted operating conditions (speed and torque), or even to make the
electrical power source compatible with the actuators. In this case, the
separate optimization of the converter, assuming the electrical variables are
known, is not truly relevant. Conversely, the problem of optimally designing
the electrical actuator could not be resolved without the prior acceptance of a
sizing of the static converter that powers it, in particular, in order to define
the stresses on electrical measurements. This is so, for example, with
inverters powering alternative machines, which have no passive components
for which sizing is critical, but for which the level of losses is closely linked
to the electrical variables imposed by the continuous source and the
alternative load. Thus, modeling of static converters should highlight the
potential impact of electrical variables (imposed by actuators and sources)
on the influence that converters have on the criteria.

When architecture, technology and the integration characteristics of a
static converter are imposed, modeling may occasionally be limited to the
calculation of losses. Conversely, when the static converter contains
elements for which sizing is critical, the model must include calculation of
the relevant dimensions (this is the case, for example, for the boost
converter, which contains a smoothing inductance, for which the mass,
volume, and cost may be preponderant factors).

The following section presents the example of voltage source inverter
modeling, which may enable the powering of hybrid propulsion electrical
machines, which have already been considered in the sections above.
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2.6.2. Application to the example of a hybrid electrical heavy vehicle:
modeling of inverters feeding synchronous machines

The modeling example presented in this section applies to inverters
powering permanent magnet synchronous electrical machines. This type of
static converter (DC/AC converters) is integrated with the hybrid traction of
a heavy vehicle for which the outline schematic is shown in Figure 2.8. The
model must enable the sizing of two distinct inverters, since the electrical
machines are not necessarily identical.

The electrical engines are powered by a DC voltage onboard grid. The
converters associated with electrical machines must ensure a
continuous/alternative conversion and allow for control into the four
quadrants of electrical machines. The structure selected is therefore the
voltage inverter represented in Figure 2.11, which therefore enables these
requirements to be satisfied.

The approach for the sizing of converters consists of traditional two-level
voltage source inverter structures, controlled by pulse width modulation, so
as to power electrical machines without any appreciable harmonic defects.
Thus the modulation strategy selected is an asynchronous sinusoidal
modulation and the carrier frequency chosen is sufficiently high (of the order
of 10 kHz), which enables the control of the electrical machines considered
to be close to sinusoidal conditions. The dead times Ts, which enable risk-
free short-circuit commutation of the bridge, will be ignored during
modeling, given their low impact on losses and sizing.

The optimization of the inverter topology and the reduction of losses in
semi-conductors through commutation frequency reduction are not dealt
with here, but could be envisaged. It should then include some corrective
measures for the degradation of current wave forms in electrical machines
and therefore of torque ripple and supplementary losses that they produce.
The consideration of harmonic phenomena linked to pulse width modulation
should become necessary in this case and should be integrated into electrical
machine modeling.

In this example, the cooling system is influenced by the structure of the
vehicle. It comprises a water-glycol mix, which is retrospectively measured
in order to ensure the thermal performance of the components. The heat
transfer structure does not form part of the sizing of the converter.
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The aim is to model the losses in the converters, having previously selected
simple structures to be configured and to be controlled. The choices are
applied to the design of independent converters. The study of the
mechatronic integration of power electronics in electrical machines is not
discussed for reasons of simplicity, but could be relevant in order to enable
volume minimization. It would then be necessary to pay particular attention
to the resolution of thermal and electromagnetic problems linked to any
phenomenon characterizing the physical interaction between the inverter and
the electrical machine. It would then no longer be possible for the modeling
of inverters and electrical machines to be separately tackled.

Continuous
on-board grid

Electrical
machine
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+E/2

U1

D0

I1
Ts
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1 0

1

Figure 2.11. Power converter associated with electrical machines

Here, the model is reduced to the calculation of losses in power
converters, which are distributed as follows:

– conduction losses in insulated gate bipolar transistors (IGBT);

– conduction losses in diodes;

– commutation losses in IGBTs;

– commutations losses in diodes.

The losses in the inverter are analytically expressed based on the
electrical variables, by assuming the operating condition to be as for a
sinusoidal current. This hypothesis may be justified by the inductive
behavior of electrical machines and by the choice of a sufficiently high
commutation frequency to limit the current harmonics. Thus, the dissipative
behavior of the converter becomes entirely predictable for the dynamic
internal converter parameters. When the amplitudes and phase currents
emitted from the inverter are unknown, analytical modeling of
electromechanical behavior of the electrical machine enables them to be
determined from the control laws chosen (torque, power, speed, DC



Analytical Sizing Models 77

voltage). Determining semi-conductors is rather linked to technological or
integration choices that are dependent on market rates and on location
environment. Thus, the types of component are imposed within consistent
ranges. IGBT and manufacturer’s inverter diode parameters, DC voltage and
machine currents constitute the input data for loss modeling. As an example,
Table 2.1 lists these characteristics for Semikron IGBT SKM600GB066D
modules.

Parameter Symbol Value
Manufacturer voltage for measurement of Eon,
Eoff

VEon_off 300 V

Manufacturer current for measurement of Eon,
Eoff

IEon_off 600 A

Energy dissipated by IGBT turn-on Eon 7.5×10–3 J
Energy dissipated by IGBT turn-off Eoff 29.5×10–3 J
Drop-in direct IGBT voltage VCEsat 1.9 V
Commutation frequency Fcom 10,000 Hz
Drop-in direct diode voltage VF0 1 V
Energy dissipated by diode turn-off Err 25×10–3 J
Continuous input voltage Vbus 540 V

Table 2.1. Semi-conductor characteristics given by the manufacturer

carriermodulating wave

U1

I1

ID0IT0
ψ

Figure 2.12. Current construction in semi-conductors
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Figure 2.12 illustrates the method for determining currents in the upper
IGBT, T0, and its inverse diode D0 in the case of bipolar sinusoidal
modulation control of the inverter. The currents in the semi-conductors are
only equal to the currents circulating in the machine during the conduction
delay imposed by modulation. The sign of the current defines which
component, the IGBT or the diode, is in conduction. Since all controls can
be reproduced through symmetry and as the machine is balanced, the
conduction, dissipation, other IGBT, and other diode conditions are
identical.

2.6.2.1. Conduction losses in IGBTs and diodes

Conduction losses in semi-conductors are obtained by firstly determining
their dissipation characteristic under static conditions, which is generally
given by the manufacturer. Figure 2.13 illustrates the curves giving the drop-
in voltage at the IGBT and diode terminals, based on the current and the
junction temperature conditions. Various levels of modeling precision are
then possible according to whether or not a high level of precision in loss
evaluation is required, and whether temperature conditions are determinant
in the understanding of losses. We can then consider models with varying
degrees of complexity:

– a fixed voltage drop approximating the general state of the component
for simpler models;

– a null current voltage drop and a dynamic resistance based on
temperature. The dotted curves illustrate models defined from a constant
dynamic resistance for a junction temperature of 150°C for IGBTs and
diodes;

– a voltage drop identical to that given by the manufacturer, stored in
table form or reconstructed by polynomial approximation [DEP 95].

The conduction losses in each IGBT are expressed by integration over an
electrical period T of the instantaneous power at the component terminals,
which are obtained from the product of the current circulating in the
component and the corresponding voltage drop. The calculation is applied
here to the case of a simplified model that combines the voltage drop to that
obtained under nominal component conditions, increasing losses in the semi-
conductors, which safeguards against the likelihood of under-sizing when
the actual operating mode of the converter is not known precisely. The
simplicity of the model also enables the corresponding calculation load to be
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limited. The equation expressing the power dissipated by IGBT conduction
is given by:

condT CEsat T
0

1 ( )
T

P V I t dt
T

= ⋅ ⋅ ⋅∫ [2.40]

IGBT Diode

Figure 2.13. Static voltage drop characteristics in IGBTs and diodes

The assumption of a bipolar sinusoidal modulation sets the duty cycle
based on the initial phase, the modulation rate, and the phase shift between
voltage and current of the electrical machine:

1( ) sin( )
2

t m tα ω ψ= + ⋅ + [2.41]

where m represents the modulation rate and ψ the phase shift between the
modulator (reflecting the machine voltage V) and the current I from the same
machine phase, which is taken as a reference value. From this we can then
deduce the current in the IGBTs based on the phase current (combined with
a sinusoidal current) and ultimately the conduction losses per IGBT. They
are given by the expression below, where Imax and Vmax represent the phase
current and voltage amplitudes respectively:

CEsat max max
condT

bus

1 cos( )
2 2

V I V
P

V
ψ

π
⎡ ⎤⋅

= ⋅ + ⋅⎢ ⎥⋅⎣ ⎦
[2.42]
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The conduction losses in the diodes are obtained by applying the same
calculation methods and by taking into consideration conduction that is
complementary to that of IGBTs over each carrier period interval.

FO max 1max
condD

bus

1 cos( )
2 2

V I V
P

V
ψ

π
⎡ ⎤⋅

= ⋅ − ⋅⎢ ⎥⋅⎣ ⎦
[2.43]

2.6.2.2. Commutation losses in IGBTs and diodes

The commutation losses in IGBTs are obtained by extrapolating the
dissipated energy values given by the manufacturer based on the voltages
and currents observed during commutation, using linear approximation. The
curve in Figure 2.14, which has been provided by the manufacturer, shows
the virtually linear dependence of commutation losses in IGBTs (Eon and
Eoff), based on cut-off or initiation currents and reverse recovery losses in
diodes (Err) based on the diode current.

Thus the power dissipated per transistor for each initiation is defined as
the sum of dissipated energies for 1 second at initiation, by adjusting the
value of losses Eon given by the manufacturer for a current IEon_off and a
voltage VEon_off, to values for current I and voltage Vbus, which are applied to
the component, as expressed by the following equation:

(1 )
bus

onT on
Eon_off Eon_off1

( )N s

i

VI iP E
I V=

= ⋅∑ [2.44]

By approximating the distribution of commutations as being uniform
over the positive alternance (which is all the more justified when the
commutation frequency is high), the average value of the current over the
considered alternance may replace the current during commutation. The
IGBT losses at initiation are then expressed by the following equation:

on max bus
onT com

Eon_off Eon_off

E I V
P F

I Vπ
⋅ ⋅

= ⋅
⋅ ⋅

[2.45]

Proceeding in the same way for losses at IGBT extinction, the following
equation is obtained:
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off max bus
offT com

Eon_off Eon_off

E I V
P F

I Vπ
⋅ ⋅

= ⋅
⋅ ⋅

[2.46]

Figure 2.14. Evolution of IGBT and
diode losses, based on current

Commutation losses in diodes are the result of reverse recovery and are
not dependent, at a given current, on voltage. Each diode extinction is
accompanied by an energy dissipation Err, matched to the value of the
current in the diode at the moment of its extinction.

rr max
comD com

Eon_off

E I
P F

Iπ
⋅

= ⋅
⋅ [2.47]

2.6.2.3. Total converter losses

The total IGBT losses are then simply expressed using the equation
below:

T condT onT offTP P P P= + + [2.48]

Similarly, the total diode losses are expressed using the following
equation:

D condD comDP P P= + [2.49]
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Finally, from this the total inverter semi-conductor losses are deduced:

ond D T6 ( )P P P= ⋅ + [2.50]

2.7. Development of a mechanical transmission analytical model

The mechanical transmissions used in electrical systems are devices that
enable certain characteristics of one or more movements to be changed. The
first step is to choose the type of gearing device from the functional
constraints, such as: reduction or multiplication, transformation from
rotational to transfer movement (endless screw), change of direction of the
axis of rotation (spherical gear set) and power addition (epicyclic gear set).
Then, the gearings are essentially comprised of mechanical sections using
gears. The shape and material used to produce geared sections are then
defined from considerations linked to factors such as the resistance of the
materials, the noise emitted, transmission efficiency, and performance
tolerance. The sizing of these devices may consist of using existing devices
whose performances are closest to the objectives, but it may also be
necessary to custom-size the gearings, which requires geometric parameters
to be determined, such as radii, lengths, and gearing geometries. It is
precisely these parameters that can be modeled and optimized based on the
mechanical constraints of the transmission: the torque to be transmitted and
the rotation speed of each gearing section. The equations implemented are
from solid mechanics, but it is also necessary to take account of other
constraints linked to normalized pinion sizes and to good gearing conditions,
which aim to limit noise and wear and tear and fatigue on the teeth. These
constraints are defined in other reference works and can easily be translated
in the form of constraints in a problem of optimum sizing.

2.7.1. The various physical fields of the model and associated resolution
methods

Mechanical transmissions are comprised of multiple gearings, which
should be sized in order to enable the mass, bulk and efficiency to be
optimized, while still conforming to size constraints and material resistance.
Modeling these should take the following studies into consideration:

– geometric: definition and relationships between the size parameters of
the gear wheels and other mechanical sections;
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– kinematic: relationships between the geared wheels, the torques to
which they are subjected and their radii. This study also enables the power
transmitted by each geared wheel to be determined;

– material resistance: this corresponds to equations emanating from
standards expressing the contact pressure and resistance to bending of the
gears. These measurements are then required in order to restrict the
diameters, widths, and modules that define gear wheel geometry;

– power losses: equations defining gearing losses and enabling the
efficiency of the complete system to be determined. The mixing/ventilation
and gearing losses are most commonly encountered.

2.7.2. Application to the example of a hybrid electric heavy vehicle:
modeling of the Ravigneaux gear set

The Ravigneaux gear set, which was designed in two stages, enables the
distribution of mechanical power between the vehicle wheels, the thermal
engine, and both electrical machines. It comprises a crown, a satellite holder,
two satellites, and two solar gearings, numerically referenced in order to ease
the equating of variables associated with each of these elements. The thermal
motor is linked to solar gearing #4, the electric machine #1 to crown #5, the
electric machine #2 to solar gearing #1 and the output (connected to the
wheels via the mechanical transmission) to satellite carrier #6, as illustrated
in Figure 2.15. This is a simplified theoretical representation as the real
structure contains three satellites #2 and three satellites #3, symmetrically
distributed over the circumference of the set in order to spread the effort.
However, its mechanical structure is technically more complex.
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Figure 2.15. Theoretical schematic of the epicyclic gear set
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2.7.2.1. Geometric dimensions of the Ravigneaux gear set

The epicyclic gear set uniquely comprises parallel, straight toothed gears,
which can be dimensionally characterized, as shown in Figure 2.16. The
module m is defined as being the ratio, common to the pinions and the
crown, between the primitive diameter d and the number of teeth Z. In this
case, it is therefore the same for all gears in our epicyclic gear set. It is a
normalized constant for which the possible values come from the ISO 54
standard. The relative equations for the dimensions of the gearing are
summarized in Table 2.2. When the radii are used in the expressions, they
will carry the notation r and the same index as the diameter to which it
corresponds.

Figure 2.16. Principal characteristic dimensions
of straight toothed gearings (source: [FAN 01])
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Title Symbol Formula
Module m Normal values

Number of teeth Z
Primitive step p p=πm
Primitive diameter d d=mZ
Tip diameter da da=d+2m
Root diameter df df=d-2.5m
Base diameter db db=dcosα
Projection ha ha=m
Cavity hf hf=1.25m
Tooth height h h=2.25m
Tooth thickness s s1=e1=s2=e2=πm/2
Interval e s1+e1=s2+e2=p
Gearing width b b=km (5 ≤ k ≤ 16)
Center distance a a=(d1+d2)/2
Pressure angle α α=20°

Table 2.2. Characteristic dimensions of a straight toothed gearing

2.7.2.2. Kinematic relationships from the Ravigneaux gear set

Kinematics enables relationships between torques and rotational speeds
of the components of the Ravigneaux gear set to be expressed. The equations
can be obtained either from analytical kinematics or using the Willis method.

Relationships between rotational speeds and gearing radii:

( )6 1 4 4 4
1

1

n r r n r
n

r
+ −

= [2.51]

( )6 1 2 1 1
2

2

n r r n r
n

r
+ −

= [2.52]

( )6 3 4 4 4
3

3

n r r n r
n

r
+ −

= [2.53]
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( )6 1 2 1 1
5

1 2

2
2

n r r n r
n

r r
+ −

=
+

[2.54]

Relationships giving output torques:

( )
1 1 4 2

1 4 6
1 2 4

2
2
r r r rC C C
r r r

⎛ ⎞⎛ ⎞− +
= −⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

[2.55]

( ) ( )
1 4

5 5 4 6
1 2 4 1 2

1
2 2
r rC r C C
r r r r r

⎛ ⎞− −
= −⎜ ⎟⎜ ⎟+ +⎝ ⎠

[2.56]

2.7.2. 3. Material resistance

The study of material resistance is based on the ISO 6336 standard
“Calculation of load capacity of spur and helical gears”, which defines the
influencing factors characterizing the reciprocal reaction efforts between
gearings [AFN 06]. This standard enables the contact pressure and tooth root
bend to be determined, which will, in turn, enable us to define a stress based
on the choice of primitive diameters, widths and gearing module, in order to
avoid any risk of gear set rupture. The corresponding calculations are
determined from the expression of several dozen available factors for the
standard. This part of the model is certainly one of the most resource-hungry
in terms of calculation time.

2.7.2.4. Power losses

There are many reasons for power losses in gear transmissions, such as
surface state or the type of lubricant, for example, and can be determined
through calculation or by testing. Many reasons for energy dissipation can be
distinguished, friction between teeth and the lubrication process being the
main causes. They have a direct bearing on efficiency since they generate
power losses. Currently there are numerous studies being undertaken in this
area and various patterns are emerging. Here we are using the theory
developed by G. Henriot [HEN 99], who defines power loss PV as the sum of
the power losses, which are independent PN and dependent PL on the load:

V N LP P P= + [2.57]
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The efficiency of the gear set is therefore defined from the input power
PA as follows:

A L N

A

( )P P P
P

η − +
= [2.58]

The lost power PL is combined with the gearing losses and PN to the
mixing and ventilation losses in the gearings. This model is described as
follows.

Gearing losses

The gearing losses between two pinions are expressed from the two
combined profiles corresponding to the approach and recess periods. The
corresponding approach and recess lengths are expressed from the geometric
properties of the two pinions (ra: tip radius, rb: base radius, r: primitive
radius, and α: pressure angle):

– approach length gf:

( )2 2
f a2 b2 2 sing r r r α= − − [2.59]

– recess length ga:

( )2 2
a a1 b1 1 sing r r r α= − − [2.60]

The tangential component Q of the contact force is dependent on the
friction coefficient f and the normal effort due to the contact reaction Fn:

nQ F f= ⋅ [2.61]

The friction coefficient f is not uniform and is dependent on many
factors. It increases when the load increases, reduces when the slip speed
increases and reduces when the oil viscosity increases (increase of the
thickness of the oil film). Its value is between 0.02 and 0.07. In our case, we
are using an average value m 0.04f = .
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The work lost through friction from the start to the end of gearing is
expressed as a function of Q and of the total slip from the combined profiles
Ga:

2 2
f a

μ a n m
1 2

1 1
2cos
g gt Q G F f

r r α
⎛ ⎞ +

= ⋅ = ⋅ ⋅ +⎜ ⎟
⎝ ⎠

[2.62]

The work lost through friction for a complete wheel turn is therefore
given by:

( )
2 2
f a

μ n m
1 2 f a 2

1 1 2
2cos / cos
g gF f

r r g g r
πζ

α α
⎛ ⎞ +

= ⋅ + ⋅⎜ ⎟ +⎝ ⎠
[2.63]

Let:

2 2
f a

μ 2 n m
1 2 f a

1 1 g g
r F f

r r g g
ξ π

⎛ ⎞ +
= ⋅ ⋅ ⋅ ⋅ +⎜ ⎟ +⎝ ⎠

[2.64]

However, the work provided by the motive pinion to the wheel is:

m t 2 n 22 cos 2F r F rζ π α π= ⋅ ⋅ = ⋅ ⋅ ⋅ [2.65]

Efficiency is therefore given by the following equation:

2 2
m μ f a

m
m 1 2 f a

1 11
2( )cos

g g
f

r r g g
ζ ζ

η
ζ α

− ⎛ ⎞ +
= = − +⎜ ⎟ +⎝ ⎠

[2.66]

The power losses can therefore be expressed based on the efficiency η of
the input torque T1 and the input rotation speed n1:

( )M 1 1 1P T n η= ⋅ ⋅ − [2.67]

These formulae are applied to the pinion interfaces quoted above in order
to give the total power losses PL in the gearing:

– solar gearing #1 and satellite #2;

– solar gearing #3 and satellite #4;
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– satellite #2 and crown #5;

– satellite #2 and satellite #3.

Mixing and ventilation losses

Gears rotate virtually submerged in a reservoir of oil for the purposes of
lubrication. When the oil is mixed it creates warming resulting in mechanical
losses. Power losses from ventilation represent the power lost as a result of
the aerodynamic drag of the teeth in the air-oil mixture in a gearbox. These
mixing and ventilation losses PWG are estimated separately for each wheel or
pinion according to the following formula [HEN 99]:

2 2 3 11
W W W n

WG
cos 1,42 10d n b m

P
A

β −×
= [2.68]

where:

dW: primitive operating diameter of the wheel;

n: rotation speed in rpm of the wheel;

bW: width of the tooting;

βW: primitive incline (in our case, W 0β = );

mn: real module;

A: absolute viscosity function ξ of the lubricant at 95°C, where:

622440 1.9 10 /A s m kg
ξ

≅ = × ⋅ [2.69]

where ξ is dependent on the kinematic viscosity and the density of the fluid,
as described in [DAL 99].

The sum of the mixing and ventilation losses gives the total mixing and
ventilation loss PN.

2.7.2.5. Mass of the Ravigneaux gear set

The masses of each of the pinions, the gear set crown, and the
transmission shafts are calculated from their geometric parameters and from
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the density of the steel. The calculation is uniquely presented for solar
gearing #1, for example, with other calculations being carried out according
to the same principle. The solar gearing #1 linked to electric machine #2
comprises a spurred wheel with a hole in the center for the shaft. The volume
occupied by the pinion is determined first of all, without considering the
teeth:

( )2 2
cylinder1 f1 shaft1 12V r r bπ= ⋅ − ⋅ [2.70]

The volume occupied by the teeth separately is calculated as follows:

( )( ) ( )a1 b1 a1 b1
teeth1 12 b1 b1 f1 12 12

s s r r
V b s r r b z

⎡ ⎤⎛ ⎞+ −
= ⋅ + ⋅ − ⋅ ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ [2.71]

where:
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[2.72]

The mass of solar gearing #1 is then determined from the two volume
expressions:

solar gearing1 cylinder_1 steel teeth_1 steelm V Vρ ρ= ⋅ + ⋅ [2.73]

The calculation of the total mass of the gear set is obtained from the sum
of the masses of each component of the gearing set. We then obtain:

gearset solar gearing1 satellite2 satellite3 solar gearing4

crown5 satellite carrier6 shafts

3 3m m m m m

m m m

= + ⋅ + ⋅ +

+ + + [2.74]
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2.7.2.6. Bulk of the Ravigneaux gear set

The total bulk of the gearing set is defined from that of crown #5, since
this surrounds the whole system. It is therefore given by the expression:

2
total tot 5V r bπ= ⋅ ⋅ [2.75]

where:

rtot: Outer radius of crown #5;

b5: Total width of crown #5.

2.8. Development of an analytical energy storage device model

Energy storage devices are widely used in all embedded applications, but
also increasingly to compensate for electrical power fluctuations produced
by generators using renewable energy sources. The sizing of these storage
elements essentially occurs through research into the adequacy of the
device’s energy capacities (energy and power) for the researched objective.
It is clear that in virtually all cases, sizing consists of choosing one or more
components that are best suited and determining the number required from
this. Under these conditions, the factors determining the sizing, which need
to be defined for an operating cycle are: the maximum energy to be stored,
the maximum operating voltage, the maximum load and/or unload power,
and the maximum load and/or unload current. The models to be
implemented are therefore electrical models, which enable these electrical
factors to be determined over an operating cycle.

2.9. Use of models for the optimum sizing of a system

2.9.1. Introduction

General optimization strategy is based on the simultaneous design of all
of the components of the vehicle traction chain. Figure 2.17 illustrates the
different variables of these components, i.e.:

– imposed components: these are fixed components, which are not
included in sizing, such as the thermal engine, which is chosen from
commercially available engines, and vehicle wheels associated with the
transmission, which cannot be modified. The torques and rotational speeds
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of the shafts of these components, (C4, n4) and (C6, n6), respectively, are the
link variables imposed by the elements themselves;

– components to be optimized: these are components that are not pre-
defined, such as batteries, ultra-capacitors, both electrical machines, their
associated converters, and the Ravigneaux gear set. The link variables
between these components need to be defined at the same time as the sizing
of components and can therefore also be optimized. This is the case for
torques and rotational speeds of the shafts of both electrical machines (C5,
n5, C1, and n1), their feeding voltages and currents (Vm1, Im1, Vm2, and Im2),
the continuous grid voltage Vbus, voltages at battery terminals Vbat, and ultra-
capacitors Vc.

Ultra-
capacitors

DC/DC

wheel

Batteries

Connection to
external grid

DC/DC

AC/DC

Thermal
engine

DC/AC

DC/AC

Electrical
motor #2

Epicyclic
gear set

Electrical
motor #1

Transmission differential

wheel

VbusVbat

Vc

Vm1, Im1

Vm2, Im2

C5, n5

C6, n6

C4, n4

C1, n1

Figure 2.17. Link variables between components

The optimum sizing of components that are not pre-defined occurs by
expressing the modeling equations for each, which express an objective
function Ji defined from the variables to be optimized. This objective
function may concern bulk, mass, losses or efficiency, according to the
choice of the designer. Finally, the design constraints are expressed.

When optimization occurs individually, knowledge of the link variable
values defining the inputs and outputs of the components being optimized is
essential. This enables us to ensure compatibility between the system
components. The order in which the components are sized may be
significant if sizing of the first components enables the input or output
variables to be used for subsequent components. When optimization is
general, only constraints on the link variables are necessary. Components are
simultaneously optimized by minimizing a cost function Jtotal, defined as
being the sum of the cost functions for each component:
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total iJ J=∑ [2.76]

The application example discussed here corresponds to the optimization
of more than 50 parameters comprised of input measurements of component
models and described non-exhaustively in the equations in this chapter. The
constraints are applied at the same time to the input parameters and certain
output parameters, depending on the situation. The cost functions, described
in the following sections, must integrate the provisional usage profile of the
component being considered. Indeed, the evaluation of losses in a cost
function, for example, requires the choice of one or more operating points
(mission profile) at which they will be calculated. It is thus necessary to
determine the most representative operating points for the usage of the
component. When the usage profiles are quite complex, multiple operating
points affected by factors weighting their occurrence rate are defined from a
statistical pre-study of theoretical usage profiles for the component. The
operating points and their weighting then correspond to their weighted
barycentric values [DAG 11]. This approach, which is described in the next
section, is applied to the consideration of a simplified theoretical hybrid
vehicle mission profile. Other approaches have been specifically presented
on this subject in the preceding chapter.

Once the component models have been described, the optimization of a
component consists of formulating the criterion to be optimized, then
defining the constraints that set the valid ranges of the variable parameters,
and finally, initializing all of the input parameters to sufficiently consistent
values to enable easy convergence of the algorithm. When the criteria used
present local minima, it may be interesting, or even indispensable in certain
situations, to multiply the optimization processes by modifying the
initialization of the parameters so as to sample their range of validity. This
method increases the chances of convergence towards the general minimum,
obtained by comparing solutions, but is more costly to optimize and costly in
calculation time when the number of parameters and the sample results are
high.

Some algorithms, such as those presented in Chapter 3, explore the whole
of the parametric space in order to define the general and/or local minima. A
sensitivity study of criteria minimized with variations in certain parameters
may occasionally become necessary. This occurs when the parameters are
subject to variation or imprecision around their theoretical value, during
manufacture of the component [DEP 96]. This study may lead to a general
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minimum being discriminated against in favor of a more stable local
minimum for which performance is further ensured.

Criteria optimization is achieved using the CADES software described in
Chapter 5, which uses an algorithm applying the Jacobean partial derivative
matrix. It is necessary to define a final satisfactory value for the criteria, as
well as the solution for which convergence can be considered to be achieved.
The state of variables at the end of convergence then defines one or more of
the optimum components. When only discrete values for the variables are
accepted as solutions, an initial optimization is first achieved by allowing
them to be entirely free and constantly variable. Optimization is then
resumed having fixed the discrete variables at the closest authorized value.
This is the case, for example, for the number of pairs of magnetic poles from
permanent magnet electrical engines or even the pinion module from the
epicyclic gear set.

In the rest of this section, we present an example of separate sizing of
components for the Ravigneaux gear set, both electrical machines and both
power inverters. The gear set is first sized in order to define the torque and
speed values to which the electrical machines will be subjected in turn, in
order to enable their sizing. The inverters will be simultaneously sized with
the machines, their respective operations being inseparable.

Finally, we present the simultaneous sizing of these same components by
maintaining the same input data imposed by the wheels and the control
mechanism, and the same stress level. The results will enable the
quantitative advantages obtained to be evaluated, the link variables between
sized components having been optimized.

2.9.2. Consideration of operating cycles

In order to optimize the system components, vehicle mission profiles
should be introduced. These enable the variables dependent on the general
cycle of the system to be minimized, such as, for example, the energy
consumed. Therefore an optimum traction level for the anticipated usage can
be set. This may be implemented during optimization by favoring the
effective utilization zones of the components compared to those that only
appear occasionally. In this case, we introduce theoretical mission profiles
for a military vehicle, provided by the company Nexter Systems. Figure 2.18
describes the change over time of the speed of the vehicle and the power
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transmitted to the wheels. The operating characteristics for each traction
component can be deduced from these mission profiles by taking into
account the control strategy, which specifies which power paths are active at
any instant. Thus, it is possible to define the control profiles of the main
traction components: both electrical machine/inverter sets, the
battery/chopper set, the ultra-capacitor/chopper set, the thermal engine, the
Ravigneaux gear set, and the various mechanical reduction controls. These
mission profiles will enable the characteristic operating points for each
component to be determined, as well as the occurrence ratios for these
points, converted into weighting factors.

The form of the theoretical mission profile enables the four main
operating modes for vehicle operation to be identified. These modes are
reduced to operating points denoted P1, P2, P3, and P4. The transitory
conditions, which appear very briefly, involve a quantity of energy that may
be ignored in the general energy assessment of the mission. Conversely, they
are taken into account during optimization, in the form of sizing constraints
(maximum speed and torque of electrical machines, for example). This phase
of reducing the mission profile to several characteristic points can be
performed using multiple levels of precision. However, reducing the number
of operating points used enables the calculation time of the minimization
algorithm to be lessened.

At this stage, the occurrence ratios for each operating point are
calculated. Each time proportion attributed to the same operating point
defines the weighting coefficient of criteria linked to the operating point
considered. These weighting coefficients k1, k2, k3 and k4 are constants and
are applied to all cost functions dependent on the considered mission profile.
They describe the relationship between the duration of each operating point
and the general cycle time, being the occurrence percentage for each mode,
defined by the control distribution. The sum of these four coefficients is,
therefore, equal to 1. Their values, obtained for the considered profile, are:

1
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0.3757
0.2652
0.0939
0.2652
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[2.77]
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Figure 2.18. Mission profile of a Nexter Systems vehicle.
Wheel speed and power based on time

The characteristics of the mechanical transmission, which includes
reducers and a hydraulic coupler, enable the torque and the speed of the shaft
of satellite carrier #6 of the Ravigneaux gear set to be inferred from the
mission profile. Table 2.3 summarizes these variables, which will be used as
input data for the cost function calculations linked to the mission profile,
ignoring transmission losses.

The vehicle steering modes for the four simplified profile operating
points enable the energy flows to be determined and, therefore, the operating
points corresponding to each of the traction components. These are listed in
Table 2.4 for the four operating points used in the simplified mission profile.
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When use of the thermal engine is required, its power is kept constant in
order to ensure optimum operation based on its efficiency map. The
distribution of electrical power between the two electrical machines is not
defined and remains free during optimization of the Ravigneaux gear set.
The power distribution between the vehicle’s wheel, its thermal engine, and
the two electrical machines will enable the torques and speeds of these four
elements to be expressed using the kinematic model for the Ravigneaux gear
set.

Operating point Average
vehicle speed

(km/h)

Wheel power
(W)

Satellite carrier
#6 speed

(wheels; rad/s)

Satellite
carrier #6
torque

(wheels; N.m)
P1 60 106,608 –71.12 1,499

P2 47.5 78,737 –56.30 1,398

P3 20 63,122 –52.68 1,198

P4 13.2 26,605 –75.10 354

Table 2.3. Component operating points

Operating point
(mode)

Satellite carrier
#6 power

(wheels; W)

Thermal engine
power
(W)

Power of electrical
machines

(W)
P1 (hybrid) 106,608 90,000 16,608

P2 (thermal + load) 78,737 90,000 –11,264

P3 (thermal + load) 63,122 90,000 –26,878

P4 (all electrical) 26,605 0 26,605

Table 2.4. Steering modes and power distribution

2.9.3. Independent component optimization

Optimization is limited in this study to the Ravigneaux gear set, the two
electrical machines, and the two power inverters.

2.9.3.1. Criteria synthesis

To minimize component mass and losses, the latter being linked to the
mission profile, the criteria dependent on the component operating point
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considered are calculated at various simplified mission profile operating
points by applying the corresponding weighting coefficients. Other criteria,
which are independent of the mission profiles, are not affected by these
coefficients. Then, the cost functions for each component are constructed by
adding together the various criteria being minimized, influenced by the
normalization coefficients of the various unit measurements.

The criteria defining losses in the Ravigneaux gear set and both of the
electric machine-inverter sets are therefore expressed based on their
respective expressions for power losses defined during modeling, taken at
operating points Pi and weighted by coefficients ki, which characterize the
mission profile:

4

gear set i V i
i=1
4

mot-inv1 i inv1 i mot1 i
i=1
4

mot-inv2 i inv2 i mot2 i
i=1
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⎪
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⎪
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⎪⎩

∑

∑

∑

[2.78]

We can thus express the associated cost functions for each of the
considered elements, taking into account their mass and power losses:

gear set 1 gear set 2 gear set

mot-inv1 1 mot1 2 mot-inv1

mot-inv2 1 mot2 2 mot-inv2

J F M F P

J F M F P
J F M F P

= ⋅ + ⋅⎧
⎪

= ⋅ + ⋅⎨
⎪ = ⋅ + ⋅⎩

[2.79]

The use of weighting coefficients F1 and F2 enables these functions with
different unit values to be normalized, so that their contribution is balanced
for the overall cost function. This a priori normalization of criteria is
discussed in the next chapter, where other multi-criteria methods not
requiring normalization (which define Pareto boundaries) are presented.
These coefficients are, therefore, determined from an a priori evaluation of
the different cost functions in order to determine their size order. These
values can be refined during an iterative process in order to compensate for
eventual evaluation errors, compared with the optimization results, or in
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order to favor the minimization of one cost function over another. In
particular, it will be possible here for the mass or losses during the matching
of the weighting coefficients F1 and F2 to be favored. Note that if the
optimization is repeated multiple times with different weighting ratios
between criteria, then it is possible to find a set of solutions close to the
Pareto boundary, corresponding to the best fit against the objective
functions.

2.9.3.2. Formulation of constraints

Structural constraints should be formulated for each component. These
consist of defining the valid limits for the geometric parameters. They are
defined from manufacturing, technological or integration constraints, and
may prove tedious when the number of parameters is very high.

Constraints linked to material resistance must be added, always including
significant tolerances to ensure system security. They are often linked to
component lifetimes. In particular, they are achieved by limiting peripheral
electrical machine magnet speeds, torques and speeds for all mechanical
shafts, and the contact and flex pressure of pinion teeth. Accepted limits for
speed and torque for the input pinions (solar gearing #4; thermal engine and
satellite carrier #6; wheels) are as follows:
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[2.80]

These values enable the speed and torque limits characterizing the other
gear set pinions to be deduced. Electrical machine speeds are limited to
4,500 rpm, in accordance with the list of specifications.

Finally, functional constraints correspond to limits linked to restrictions
on component usage. For example, the rotational speed and torque provided
by the thermal engine may vary in an area limited to optimum operation. The
result is, therefore, a constraint on variables associated with solar gearing #4
of the gear set for operating points using the thermal engine:
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Between them, these constraints also enable the formulation of power
distribution rules between certain components. The power transmitted by
pinions #1 and #5 are limited to 70 kW, which is the power limit for
electrical machines defined in the list of specifications. The power and
torque points raised for the mission profile enable the most severe conditions
of use for the components to be defined. They must be expressed during the
optimization process to certify compliance with the constraints for all the use
profile of the component.

2.9.3.3. Results of optimization

The Ravigneaux gear set is sized first. The optimum gear set obtained
enables the relationships between the torques and speeds of the various
pinions to be known. The speed and torque values of the two electrical
machines at the four operating points characterizing the mission profile can
thus be determined. These values must be determined so that the criteria
calculations during optimization of the two electrical machine/inverter sets
can take place. The constraints on the maximum speed limits for electrical
machines will enable the algorithm to be used to define the ratio of reducers
for which they will be coupled to pinions #1 and #5. Table 2.5 summarizes
the main characteristics of the independently optimized components.

Gear
set

Electrical
machine/inverter #1

Electrical
machine/inverter #2

Total

Mass (kg) 18.9 158.2 60.9 238.0

Volume (l) 4.7 37.6 14.9 57.2

Losses (W) 397 1,633.6 573.4 2,604.0

Criterion 1,551 9,594.8 3,584.3 14,730.1

Table 2.5. Results of independent component optimization

2.9.4. Simultaneous component optimization

In this section, the Ravigneaux gear set and electrical machine/inverter
models are associated with a unique optimization process. Thus, contrary to
various local optimizations, the electric machine input variables are no
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longer imposed, but become linked to the output variables of other
components. During the optimization process, the torque and speed of the
electrical motor shafts at the four operating points representing the mission
profile are not predefined as during the previous independent optimization,
but evolve as and when the algorithm converges, since they are dependent on
the geometry of the Ravigneaux gear set, which is itself in the process of
being optimized. This applies to all components that share variables.

The general optimization function Jtotal is obtained by simply combining
the cost functions of the various elements. It is, therefore, expressed as
follows:

total gear set mot-inv1 mot-inv2J J J J= + +
[2.82]

The constraints on the component parameters remain unchanged. Input
parameters are initialized by using the results obtained at the end of
independent component optimization. Thus, the algorithm deviates from the
reference solution formed from the independent component optimization and
adjusts the link variables in order to act favorably on the criteria being
optimized.

Table 2.6 groups the results following general optimization. The various
results associated with the components taken either individually or
collectively are given in order to comparatively analyze the variations
inherent in the use of the general optimization strategy.

During independent component optimization, the power distribution
between the thermal engine and the two electrical motors, which enables the
requirements for the wheels to be satisfied (mission profile), is already
defined according to the Ravigneaux gear set design. Therefore, the
calculation of the parameters for the Ravigneaux gear set cannot take into
account the impact of the choices of power distribution on mass or losses
relative to the other components.

Conversely, simultaneous optimization of components enables the
parameters of each component and their influence on the generally
minimized criteria to be integrated into the calculation. In the example
shown here, it enables a decrease in the general criterion integrating the mass
and overall component losses. The reduction in mass and power losses are
around 2.5% and 4.5% respectively.
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Gear set Electrical
machine/
inverter #1

Electrical
machine/
inverter #2

Total

Mass (kg) 19.8 184.6 27.5 231.9

Volume (l) 5.1 43.2 7.5 55.8

Losses (kW) 389.5 1,589.2 509.4 2,488.1

Criterion 1,571.6 10,561.5 2,120.2 14,253.3

Table 2.6. Results of simultaneous component optimization

During independent component optimization, the input data for the
electrical machine-inverter sets were perfectly known and calculated from
the Ravigneaux gear set model, which enabled consistent, if not generally
optimum, sizing. The benefits obtained through simultaneous component
optimization are not, therefore, considerable. However, greater improvement
in desired performance would be achieved if the different designers, who
may not have all the input data at their disposal, were involved in the design.
Furthermore, the benefit of a simultaneous design approach, compared with
a multi-loop optimization approach, is highly dependent on the level of
coupling between sub-systems, whether processed together or separately.
Therefore, the choice of either a decoupled or simultaneous approach is a
compromise by the designer. His choices will be based on considerations
linked to the sensitivity of criteria to the coupling variables between sub-
systems and the repercussions on processing time, depending on the
complexity of the design problem being tackled. The issue of multi-loop
optimization processing, described as “a multi-level approach for the
optimum design of electromechanical systems” is the subject of Chapter 4 of
this book.

2.10. Conclusions

The synthesis of complex systems requires both simulation models and
strategies to be developed, enabling the simulation model to be converted
into a sizing model. It is now accepted that, for electrical energy systems,
optimization is an effective way of enabling this conversion, since it enables
solutions to be found that satisfy increasingly restrictive lists of
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specifications, and also the best solutions with respect to varied criteria,
which might be technical, economic, or even environmental.

In this chapter, we have concentrated on simulation models by focusing
on analytical models, which have the advantage of limited calculation times
and efficient modeling of the various interactions and couplings that exist
between system components. Thus, by drawing on the example of a hybrid
heavy vehicle powertrain, we have reviewed the different possible models
for electrical machines, static converters and mechanical transmissions; we
have specifically concentrated on energy aspects (such as losses and
efficiency) by presenting approaches that are simple to implement, such as in
an industrial context.

The operational characteristics of models in the context of a sizing by
optimization process has then been demonstrated by dealing with the
example of the sizing of the hybrid powertrain, including two permanent
magnet electrical machines, two inverters to power the machines, and a
Ravigneaux planetary gear set. Simultaneous component optimization of the
whole device has been compared with the separate optimization of the two
electrical sets and the Ravigneaux gear set, at the same time demonstrating
the value of some general design approaches.

The logical perspectives of these studies concern the integration of
electrical storage systems into the optimization of the hybrid powertrain,
which would enable us to move a little closer to the general sizing of whole
powertrain, but also to put in place analytical modeling formalisms for such
devices. Finally, this would create an opportunity to undertake sizing by
optimization for many other electrical energy systems, such as renewable
electrical energy production turbines and the cogeneration of multiple energy
sources (thermal and electrical, for instance).
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Chapter 3

Simultaneous Design by Means of
Evolutionary Computation

3.1. Simultaneous design of energy systems

3.1.1. Introduction to simultaneous design

Today, the design of electrical energy systems is challenging owing to
ever-increasing demands regarding the requirements of the electrical energy
matrix. Unlike current devices, which are often oversized in order to fulfill
their missions, it is now imperative to design systems as accurately as
possible in order to avoid wasted energy. Besides this fundamental objective
of energy efficiency, design must nowadays be capable of including other
heterogeneous criteria, such as:

– criteria linked to dimensions: bulk, integration, and mass;

– criteria associated with lifetime, reliability, availability and operating
safety;

– criteria relating to respecting the environment, for the purpose of
reducing all forms of pollution: atmospheric, electromagnetic, sound, or
vibratory;
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– economic criteria, such as base cost, depreciation, or ownership cost.

Improvements in performance criteria require a systemic approach to be
adopted, where all of the system characteristics are considered in pairs.
Generally, the system can be represented by a functional architecture, in the
form of an arrangement of bodies (or sub-systems) that fulfills one or more
of the given functions and which transforms energy and informational flows.
There is then a corresponding physical, structural architecture, comprising a
set of elements that enable each function to be fulfilled. The elements are
characterized by physical dimensions (which are typically geometric or
energy-related) and by structural parameters linked to constitutive materials.
Furthermore, the behavior of energy systems is dependent on the energy
management strategy, which controls the transfer of energy flows. The
optimization of an energy system with regards to the set of criteria
previously set out requires its optimum architectural, sizing and energy
management characteristics to be determined.

Traditionally, design approaches are sequential, consisting of
determination of the system architecture, followed by component sizing, and
finally, the establishment of an energy management strategy. However, for
multisource systems, the fact that energy management is considered to be a
consequence of sizing may result in an oversizing of resources [AKL 08];
sizing then results from a given management method or strategy. In many
studies, this reflection has led to sequential design being adopted by
reversing the sizing and energy management phases, as shown in Figure 3.1.

Figure 3.1. Sequential design approaches

Even if, with the sequential design approach, each stage is subjected to a
reflection in terms of local optimization, nothing guarantees optimality of the
overall system. Indeed, processing the design phases in sequence does not
enable various couplings between parameters relevant to the architecture,
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sizing, or management of the system to be taken into account. So as not to
break these couplings, it is advisable to adopt a “simultaneous design”
approach, which aims to manage the architecture, sizing, and energy
management of all of the elements to be determined, as shown in Figure 3.2.
This approach has already been introduced in Chapter 1 of this book, by
further raising questions relating to system environment and the mission
profile.

Architecture Sizing

Energy
Mangement

Figure 3.2. Illustration of concurrent design

3.1.2. Simultaneous design by means of optimization

One way to understand the complexity inherent in simultaneous design is
to reword the design problem as an optimization problem, to be solved using
appropriate methods. Complexity is thus reported in terms of the
optimization problem, which is generally characterized by:

– a significant number of design variables (decision variables of the
optimization problem), which are often combined, discrete, and continuous.
Discrete variables relate to the parameters associated with the choice of
architecture, structure, and the type of elements or materials, whereas
continuous variables are linked to sizing and energy measurement
parameters;

– multiple constraints, which are intrinsic to the system as a whole;
system elements, which are constitutive or linked to the compatibilities of
association between these elements (such as energy, thermal and frequency
compatibility). Other constraints generally relate to the finality of the system
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(regard for operating and mission cycles) or to aspects relating to quality
standards;

– heterogeneous objectives to be optimized, such as the various
performance criteria outlined in the introduction to this chapter.

Therefore, simultaneous design of energy systems using optimization
usually leads to multi-objective problems with mixed variables, under
constraints that can be generally translated into the following mathematical
form:
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where:

x = {x1, x2,…, xn} is the design variables vector requiring optimization;

})(,),(),({)( 21 xxxx
cnffff …= : objectives to be optimized;

gi (x): inequality constraints to be respected;

hj (x): equality constraints to be respected;

x min, x max: domain constraints (boundaries of the design variables);

n: number of design variables;

nc: number of criteria to be optimized;

nci: number of inequality constraints;

nce: number of equality constraints.

3.1.3. Problems relating to simultaneous design using optimization

Solving a simultaneous design problem using optimization is not without
its difficulties. We will list these in this section.
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3.1.3.1. Difficulties linked to the modeling of energy systems

The difficulties encountered by “system” designers with regards to the
modeling of energy devices, in the context of concurrent design by means of
optimization, are linked to several aspects:

– these systems are strongly heterogeneous and multi-physical.
Therefore, it is preferable to represent them using unifying formalisms to
more easily overcome physical domain barriers. Additionally, the
association of different models at the heart of an optimization processes must
be guaranteed, regarding both “physical” validity (consistency and energy
transfers) and software interfacing when models are inserted onto various
software platforms1;

– these systems are generally characterized by multiple dynamics
scattered in time and space. In the case of temporal simulations, they should
nevertheless be represented over horizons that are sufficient to be able to
judge their effectiveness in terms of energy criteria (autonomy or
consumption, for example) and their capacity for fulfilling the mission for
which they were designed; “the movement of a locomotive during its
circulation mission is difficult to represent concurrently with the
commutation of a power switch at the heart of its static converter”. This
often leads designers to raise questions regarding the level of representation
for each of the system elements and the choice of type of model (analytical,
semi-analytical, or numerical using ordinary or partial differential equations,
such as for finite element models) based on a compromise regarding
precision (granularity) of models versus calculation time. Indeed, modeling
must guarantee good representation of the physical and energy phenomena
over wide temporal ranges using reasonable calculation times with regards to
the optimization process;

– different models must be associated with the validity limits with regards
to parameters that vary during optimization. This forces a constant dialog
between designers and specialists regarding the various elements of a system
in order to best characterize their functional limits, as well as the validity of
the associated models. It should be borne in mind that the optimization phase
will have a tendency to push the system to its limits in order to guarantee
lean sizing!

1 Readers are invited to refer to Chapter 5 for aspects linked to modeling techniques and
software interfacing.
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We note, finally, that the “price to pay” in modeling a system with a view
to its optimization is broadly higher than for an equivalent device being
analyzed by simulation. The development cost of modeling is also much
higher than the cost of solving the optimization problem in the simultaneous
design phase!

3.1.3.2. Difficulties linked to integration

The optimization of all performance criteria and constraints in a
simultaneous design process implies an appropriate integration of system
purpose, notably of its operating cycles. This point was widely discussed in
Chapter 1 and we refer readers to this for more detail.

3.1.3.3. Difficulties linked to optimization problem formulation

The definition of an optimization specification list is rarely easy. It is not
always straightforward to identify appropriate parameters for the level of
architecture, sizing, or energy management, which will inform the set of
objectives being optimized. Additionally, the total number of design
variables should result in a compromise to enable:

− a guaranteed number of degrees of freedom sufficient to apply to all
performance criteria;

− a limited number of degrees of freedom so that redundancy between
parameters can be avoided and the complexity of the optimization problem
can be reduced, so as to facilitate its resolution.

Having set the design variables to be modified during optimization, it is
essential to identify all of the constraints that ensure the feasibility of the
system and to define the criteria to be optimized. The separation of criteria
and constraints is sometimes an intricate process, with one criterion being
able to be expressed in terms of a constraint, and vice versa. It should be
noted that a constraint is generally associated with a limit value (threshold or
tolerance) and, unquestionably, must be satisfied. Conversely, a criterion (or
objective) is a measurement that we seek to improve without necessarily
having any idea of its “target” value; that is what the optimization process is
for! Finally, it is better to limit the number of criteria that require
optimization (a maximum of three!). Indeed, multiplying the number of
criteria would make research into optimum compromises, as well as the
analysis phase of solutions resulting from optimization, difficult.
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3.1.3.4. Difficulties linked to resolution of the optimization problem

As we have already commented, the complexity of the design problem is
shifted towards the optimization problem, which is challenging regarding its
characteristics: multi-criteria, mixed variables, objective functions, and
highly nonlinear constraints; this dataset cannot necessarily be expressed
analytically. In this context, stochastic optimization methods [RAO 09] and,
more specifically, evolutionary algorithms are, without doubt, the most
suitable for solving such problems.

3.2. Evolutionary algorithms and artificial evolution

In this section we pay particular attention to evolutionary algorithms. Our
objective is not to develop these methods, which are already the subject of
numerous publications, in detail, but we will highlight certain key points.

3.2.1.1. The theory of natural evolution, a universal theory

The theory of the natural evolution of species, established by Darwin in
1859 [DAR 59], expresses some general principles that can be transferred
beyond natural evolution. Among the fundamental properties relating to the
theory of evolution, we focus notably on the notions of selection,
adaptation, crossovers, mutation, emergence and species, which are
reflected across all evolutionary trees. By way of illustration, Figure 3.3
provides two distinct examples of evolutionary trees showing that the
principles of Darwinian theory apply not only to natural species, but also to
technical objects [KRA 06].
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Figure 3.3. Two evolutionary trees illustrating
the universality of Darwinian theory
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3.2.2. Evolutionary algorithms principle

Evolutionary methods rely on an analogy with the theory of natural
evolution. In nature, species are capable of adapting to their environments
under the pressure of natural selection, and of evolving from their genetic
heritage, so as to enhance their adaptation over the generations. This is a
metaphor for the Darwinian paradigm, which is used in evolutionary
algorithms to solve optimization problems. Table 3.1 shows the
mathematical transposition of the Darwinian paradigm.

The evolutionary algorithm consists of a succession of generations that
reproduce the principles of natural evolution (see Figure 3.4) applied to a
population of individuals using two types of operators:

– Darwinian operators, which transpose mechanisms of natural selection
by orienting research towards the most appropriate solutions;

– evolutionary, or variation operators, whose role is to favor the
emergence of new solutions. These operators are applied to a representation
of solutions (coding or chromosome) by imitating genetic mechanisms
(crossovers and mutations).

Nature Mathematical optimization

Human beings Solutions requiring optimization

Environment Search space

Adaptation Objective function requiring optimization

Species Set of similar configurations

Biological differences Mathematical distance

Table 3.1. The Darwinian paradigm: from natural to artificial evolution

The initial population is obtained by uniform random search (or using a
priori knowledge) of the search space. The genitor parents are then selected
from the population using stochastic or deterministic procedures. Next
follows a stage of evolution, where variation operators are applied to the
genitors in order to create and explore new solutions (children). Finally, a
process of replacement is used in order to determine the “survivors” of a
generation. The algorithm may be generational (with children automatically
replacing parents) or elitist (one or more parents being deterministically or
stochastically preserved). The latter is described as a steady state
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evolutionary algorithm, insofar as only one part of the population is renewed
each generation. It should be noted that parent, genitor and child population
sizes can be identical or distinct, according to the different algorithms.

Evaluation of objectives and constraints (Main CPU cost)

Darwinian operators: stochastic or deterministic, independent of the
representation of individuals in the population

Variation operators: stochastic, dependent on the representation of individuals in
the population

Evaluation

Population
initialization

parents

Replacement
parents

Selection
no

genitors
end

yes

generation

t = t + 1

children

Evolution:
Crossover
and/or
Mutation

Stopping
criterion ?

parents
+

children

Evaluation

Figure 3.4. General structure of an evolutionary algorithm [KEI 02]

Among the most popular evolutionary methods, we refer readers to
genetic algorithms [HOL 75; GOL 89; MIC 96], evolution strategies
[SCH 95; BÄC 96], evolutionary programming [FOG 66; FOG 91], and
differential evolution [STO 96].

3.2.3. Key points of evolutionary algorithms

3.2.3.1. Genericity as regards classes of optimization problems

Evolutionary algorithms are relatively robust and efficient methods for
processing difficult (multimodal, nonlinear, high number of variables)
optimization problems. They may be used in a combinatorial or continuous
optimization context and are, therefore, very well suited to solving mixed-
variable problems. Only the variation operators (see Figure 3.4) are
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dependent on the nature of solutions to be optimized. Other mechanisms
used in evolutionary algorithms are generic and can be independently
applied to the type of representation of individuals.

In general, solutions to a problem can be represented by a binary string.
Binary coding is naturally well suited to the description of discrete variables,
but it can also be used for continuous parameters [GOL 89; BÄC 96]. Some
techniques can even overcome problems linked to excessive increases in
chromosome size (length of the binary string associated with individuals)
when precision regarding variable optimization is desired [WHI 91;
SCH 92].

However, while this type of coding has largely been used in genetic
algorithms, today, it is much less used compared with real coding, which
simplifies the implementation of algorithms and can be easily used to
represent discrete variables by decoding real variables using an “integer
part”. For more complex problems, where a different number of parameters
exists for each architecture, the coding for each graph used in genetic
programming [KOZ 92] may turn out to be necessary. It then becomes
imperative that recombination and mutation operators, dedicated to the
problem and to specific data structures, are developed (see Figure 3.5),
which then complicates implementation via computers for non-specialists.
Problems specific to genetic programming, such as congestion, or bloating,
are then added, which then requires control of crossovers. In order to
overcome these difficulties and to avoid using genetic programming, one
possible solution is to use a universal chromosome [RAN 03], which codes
all of the architectures to be optimized.

This chromosome comprises the concatenation of parameters of all
architectures and the addition to this of a gene (described as a structural
gene) that defines the type of architecture. Consequently, only the
parameters associated with the architecture defined by this gene are used to
characterize this individual. Genes relating to other architectures in the
chromosome can be said to be “recessive”; the crossover and mutation
operators are applied to them, but they are not involved in the decoding. This
solution does not require development of specific architectural data
structures, or the implementation of particular operators enabling them to
cross and mutate. It does have the advantage of greatly facilitating
implantation, since standard recombination procedures can be applied to this
universal chromosome of recombination (discrete and/or continuous)
standards. In addition, the use of recessive genes can be expressed when the
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structural gene is mutated, favors the diversity of solutions in the population,
and reduces the risk from premature convergence. This approach has been
used in Chapter 1 of this book, particularly to solve the problem of
environmental data classification by clustering.
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Figure 3.5. Illustration of genetic programming for the optimization of a logical function
(crossover mechanism based on sub-branch exchange)
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3.2.3.2. The value of niching

However, traditional evolutionary algorithms (genetic algorithms or
standard evolution strategies) have limited efficiency because of the genetic
drift phenomenon. Indeed, the selection intensity ends by concentrating the
population over generations in a unique solution. This concentration then
impairs the evolution capacities, as the new recombination mechanisms are,
in this case, incapable of producing any new solutions.

In case of premature convergence, the extraction of a local attractor
towards a better solution will remain dependent on the mutation operator. To
remedy this problem, niching methods were developed in the 1990s
[MAF 95]. These enable the preservation of diversity and capacities of
evolution by constantly maintaining distinct solutions in the population.
They thus enable the investigation of multiple optima in parallel (see Figure
3.7) and offer a higher level of robustness than traditional evolutionary
algorithms for multimodal problems. There are two classes of niching
methods [SAR 98]:

– crowding methods such as RTS (restricted tournament selection),
which restricts selection between similar individuals;

– fitness readjustment methods, such as sharing or clearing techniques,
which penalize the objective function of localized individuals in high-
density regions in space and, conversely, preserve the representative zones
for less-densely populated solutions.

-5

0

5

5

0

-5
0.5

0.6

0.7

0.8

0.9

1

-5

0

5

5

0

-5
0.5

0.6

0.7

0.8

0.9

1

(a) Without niching (b) With niching

Figure 3.7. Convergence of an evolutionary algorithm over
a multimodal function with four equivalent peaks
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3.2.3.3. Self-adaptation

Self-adaptation [EIB 99] in evolutionary algorithms aims to adapt the
variation operators to be applied (typically the crossover and mutation
procedures) and/or the associated probabilities automatically during
research. Therefore, it enables both high desensitization of algorithms, with
regards to their control and adjustment parameters, and also an increase in
their robustness in the face of problems. The introduction of self-adaptive
mechanisms into evolutionary algorithms can be achieved:

– by introducing specific variation operators that present properties of
natural self-adaptation. This is the case, for example, for self-adaptive
mutations used in evolution strategy or SBX (simulated binary crossover),
which is used in real coding generic algorithms [MEY 07];

– by adding one or more supplementary genes to the individual
chromosome, which encode the type of variation operator to be applied
and/or their associated probabilities. This approach benefits from the
selection favoring the operators (and/or their associated probability values)
producing the best individuals. In order to avoid any premature convergence
towards a given operator, the supplementary genes are themselves subjected
to recombination and mutation. Their diversity may also be reinforced by the
implementation of a specific niching method.

3.3. Consideration of multiple objectives

3.3.1. Pareto optimality

The consideration of multiple performance criteria in the simultaneous
design process occurs through the implementation of multi-objective
optimization techniques. This then refers to the simultaneous minimization
or maximization of a set of nc objectives of type f, related to the design
variables x. For this kind of problem, objectives typically conflict with each
other. Thus, in most cases, it is impossible to obtain the global minimum at
the same point for all objectives. Therefore, the problem has no single
optimal solution but a set of efficient solutions representing the best
objective trade-offs. These solutions consist of all design variable vectors for
which the corresponding objective vectors cannot be improved in any
dimension without disimprovement in another. They are known as Pareto-
optimal solutions in reference to the famous Italian economist [PAR 96].
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Mathematically, Pareto optimality can be expressed in terms of
dominance. For the simultaneous minimization of objectives, let us consider,
for example, two design variable space vectors x and y; we say that x
dominates y if and only if:

)()(...1and)()(...1 yxyx kkcmmc ffnkffnm ≤=∀<⇒∈∃ [3.2]

which signifies that the solution x improves at least one of the criteria of y
without deteriorating the others. A vector that is not dominated by any
element from the set of other vectors is said to be non-dominated with
respect to this set. Vectors that are not dominated over the whole of search
space represent Pareto-optimal solutions and constitute the Pareto-optimal
front. Figure 3.8 illustrates this concept for the minimization of two
objectives by showing the dominance in terms of objective of any solution x
with regards to a given solution y and by giving a Pareto front example.
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x dominates y

x and y are
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f2

Pareto front

(a) Dominance rule (b) Pareto front example

Figure 3.8. Illustration of Pareto optimality –
minimization of two objectives

3.3.2.Multi-objective optimization methods

Multi-objective optimization methods aim to provide one or more Pareto-
optimal solutions. These are divided into three main classes, based on the
link between the optimization phase and the decision process, which is
necessary in order to reach an optimum compromise [VAN 99; COL 02]:

– a priori approaches (decide → research and optimize) group together
the set of techniques for which the choice of compromise to be found by the
optimization phase is made a priori by the designer. These methods notably
include the ε-constraint method (also known as the bounded objective
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method) and the set of scalar aggregation techniques, such as the criteria
weighting, fuzzy or goal-attainment methods. Although they have been
widely used in the past, these approaches present a major disadvantage.
Indeed, in the traditional situation where criteria do not have the same
physical dimensions, they provide a single optimum compromise2 to
designers, for whom sensitivity is generally significant as regards parameters
used for the scaling and aggregation of objectives (such as weighting
coefficients, normalization factors and target values). It is not always easy to
set all of these parameters to ensure good decoupling between the scaling of
objectives and the choice of weightings associated with the investigated
compromise;

– progressive or sequential approaches (decide ↔ research and
optimize), proceeding through successive optimizations in order to provide a
solution to the problem. Designers refine their choice of compromise based
on each optimization;

– a posteriori approaches (research and optimize → decide) provide a set
of optimal compromises to designers from which they can extract the
solution to their problems. They essentially group together population-based
meta-heuristics capable of investigating multiple optimal compromises in
parallel, by exploiting the concept of Pareto dominance. The advantage of
these techniques is that they require no objective scaling.

3.3.3.Multi-objective evolutionary algorithms

Multi-objective evolutionary algorithms are part of the class of a
posteriori methods described above. They have enjoyed popularity without
precedent in the area of multi-objective optimization during the 21st Century;
the Coello Coello website [COE 11] contains more than 6,000 references
covering various engineering sectors. The best performing multi-objective
evolutionary methods use the concept of elitism, which aims to preserve
non-dominated individuals over generations (see Figure 3.9).

2 It is, however, possible to investigate multiple optimal compromises using a priori
methods, but this then requires multiple numbers of optimizations (each investigated
compromise requires an optimization phase)
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1 2
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Genitors

Archive copy

Updating non-dominated individuals + clustering (if necessary)

Evolution

Crossover +
Mutation

Children

Selection

1. Selection from the archive
2. Selection from the general population

Figure 3.9. Typical structure of a multi-
objective evolutionary algorithm

The non-dominated individuals are stored in an archive associated with
the population. This archive is updated for each generation based on new
solutions investigated, and is eventually reduced using a clustering technique
when the number of non-dominated individuals it contains becomes greater
than its limit size. Clustering preserves the most representative Pareto-
optimal solutions and guarantees an almost uniform distribution of these
solutions over the Pareto front. Various algorithms from other publications
differ notably in terms of management of the archive, the methods of
clustering used, the fitness assignment, and the way in which the genitor
parents are selected. These may be uniquely chosen in the archive
(commutator 1 from Figure 3.9) or in the general population comprising the
archive and the children from the previous generation (commutator 2 from
Figure 3.9). The most popular algorithms are the SPEA2 [ZIT 01], the PAES
[KNO 00], the PESA [COR 00], and the NSGA-II [DEB 00], which is
considered to be the incontrovertible reference in multi-objective
evolutionary optimization.



Simultaneous Design 123

3.4. Consideration of design constraints

The integration of constraints in the simultaneous design process requires
the use of constrained optimization methods. We will distinguish two cases,
according to whether the design problem is single objective or multi-
objective.

3.4.1. Single objective problem

There are numerous constrained optimization methods, but the majority
are specified as being either continuous or combinatory problem methods
[RAO 09]. Some generic approaches are, however, applicable to mixed-
variable problems, including penalty methods, which are the most frequently
used. These methods consist of transforming a constrained optimization
problem into a non-constrained one, by integrating all of the constraints into
an objective function to be optimized. As an example, let us consider the
minimization problem given in equation [3.3]:
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The objective function f(x) can be modified according to [3.4] in order to
include inequality constraints:
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where ri is a constant penalty factor and/or each penalty term Pi is dependent
on the associated constraint gi. The penalty term relating to a constraint can
be defined by [3.5] for exterior penalty methods:
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This term is thus 0 when gi(x) ≤ 0 (constraint verified) and is equal to
gi(x)2 when gi(x) > 0 (constraint violated). Thus, the function F(x) is all the
more increased (i.e. penalized) when the constraints are violated. Equality
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constraints can be similarly integrated by observing that they can be
expressed as two inequality constraints:
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where δ is a low-value positive constant. The total number of inequality
constraints is thus equal to m = nci + 2nce and the index nci in equation [3.4]
can be replaced by m in order to take account of the set of constraints in the
function F(x). The penalty factors ri associated with the penalization terms
aim to scale the constraint violation relative to the objective function f(x) so
that F(x) is sufficiently increased when the constraint is violated.

To simplify the problem, it is possible to reduce the number of penalty
factors to a unique parameter r, if all constraints are normalized and
“equally” scaled. The solution to the constraint problem can thus be
investigated sequentially by minimizing the function F(x) and by assigning
the penalty factor value r to each iteration [RAO 09].

This mathematical approach does, however, have a disadvantage with
regards to the characteristics of the simultaneous design problem. Indeed, it
is rarely possible to ensure the continuity of function F(x) between feasible
solutions observing the constraints and solutions that are not feasible, since it
is not generally possible to evaluate the objective function when certain
constraints are violated. As an example, it is difficult to determine the
performance of a vehicle if one of the constituent elements is not itself
feasible! In this case, it becomes necessary to modify equation [3.4]
according to [3.7]:
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where the variable fmax should be estimated so that its value is around the
maximum size for function f(x) over the search space. More generally, the
constraints cannot necessarily be evaluated in parallel; some can only be
calculated once others have been verified. Thus for each concurrent design
problem, a graph can be established, split into levels, which characterizes the
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sequencing between constraints [RAN 03] (see Figure 3.10). Only
constraints that are at the same level can be evaluated in parallel. A
constraint from a given level can only be calculated if constraints from lower
levels are verified. We can also indicate the calculation of the objective
function subjected to the same rules on the constraint graph. The higher the
number of levels in the graph, the harder the optimization problem becomes.
The violated constraints constitute “barriers” to optimization techniques that
are blind to constraints at higher levels. This specificity makes the definition
of function F(x), and the penalty factors associated with the constraints,
particularly difficult.
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g6

f
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Figure 3.10. Illustration of a constraint graph

Finally, constraints can be separated into two groups, according to
whether they are determined before or after the system simulation (principal
cost in central processing unit (CPU) time); we refer to pre-simulation
constraints as those calculated in advance of simulation, and post-simulation
as those evaluated after simulation. Pre-simulation constraints are mainly
“local” constraints, relating to the system elements and to their association.
Post-simulation constraints are mainly “global”, relating to the whole system
and its operation in the context of its mission and its environment.

3.4.2. Multi-objective problem

For a multi-objective problem formulated as a scalar problem by
aggregating or combining criteria using a priori approaches, the use of
penalty methods remains possible. For a posteriori approaches, the
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dominance rule can be extended as follows in order to enable constraints to
be taken into account [REG 03]:

– if two solutions x and y are not feasible, the dominance of x over y (or
that of y over x) is established in the constraint space;

– if two solutions x and y are feasible, then dominance of x over y (or
that of y over x) is established in the objective space;

– if one solution is feasible and the other not, the feasible solution
dominates the solution that is not feasible.

These rules enable the concurrent minimization of constraints and the
optimization of objectives to be combined, using a Pareto approach in the
two spaces.

3.5. Integration of robustness into the simultaneous design process

3.5.1. Robust design

The concepts of robustness and robust design can be easily understood
from the illustration in Figure 3.11. This refers to the minimization of a
function f in relation to parameter x. The function has two minima, at points
A and B. Point B (the global minimum) is “more efficient” than point A (the
local minimum). Conversely, point A is more robust than point B since the
degradation of criterion Δf over a given vicinity V(x) is more significant in B
than in A.

x

A
B

xA xB

V(xB)V(xA)

Δf (xB)

Δf (xA)

f (x)

Figure 3.11. Illustration of robustness for a
one-dimensional and single objective example
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This single dimension and single objective example is generalized for a
vector case with multiple objectives.

In Figure 3.12 we show a similar example to that shown in Figure 3.11
for a bi-objective optimization (minimization of functions f1 and f2) with two
parameters x = {x1, x2}. For a similar vicinity V(x), solution A appears to be
more robust than solution B although situated on the Pareto front.
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f2x2
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f1

Objective
space

B

A

Figure 3.12. Generalization of robustness
for a multi-dimensional and multi-objective case

3.5.2. Vicinity and uncertainty

Across the preceding examples, we observe that the concept of robustness
is linked to the definition of a vicinity V(x) associated with a given solution.
This vicinity should normally correspond to an uncertainty domain relating
to the design variables. However, this domain can be generalized to all or
some of the parameters of the design problem, including the uncertainty over
design variables, but also over other intermediary parameters, manufacturing
constraints, and design criteria. A classification of the various sources of
uncertainty is given in [BEY 07]. There are four main groups:

– uncertainty linked to environment, mission, and operating conditions;

– uncertainty associated with tolerances over the parameters and
manufacturing imprecision;
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– uncertainty relating to performance criteria resulting, among other
things, from differences between the design models and reality (modeling
error);

– uncertainty linked to design constraints also linked to modeling errors,
establishing the link between parameters and constraints.

3.5.3. Characterization of robustness

3.5.3.1. Robustness indicators

The characterization of robustness can notably be carried out from
specific indicators. For example, we can use Taguchi’s signal-to-noise ratio
SNT (nominal-is-best) [TAG 05], based on a vicinity defined by n points
around the reference solution xi:
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The higher the ratio, the lower the variability of the objective function in
the considered vicinity and the better the robustness. Even more simply, the
maximum degradation rate of criterion Δf (%) [TRA 11; DIB 10] can be
used as a robustness indicator. This is defined by:
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3.5.3.2. Use of robust effective functions

Robustness can be directly integrated with optimization by using a robust
effective function f in place of criterion f to be optimized. Two distinct
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formulations for this robust effective function are principally used, according
to whether we are considering the most severe degradation of f (the worst
case) in the vicinity V(x) of solution x, or the average value of f in this
vicinity (the mean case). For example, if we are looking to minimize the
objective, we could define f in accordance with equations [3.11] and
[3.12]:
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Figure 3.13. Illustration of robust effective functions for the minimization
of a function f relating to variable x

3.5.3.3. Definition of the vicinity

The vicinity of a solution is generally investigated using screening
techniques, as for experiment designs [TAG 05]. Sampling can be
deterministic or stochastic. The more significant the number of points in the
vicinity, the better the characterization of robustness, but the higher the
calculation cost for the optimization phase. There may then be a benefit in
approaching the vicinity of a solution using response areas in order to locally
characterize time-consuming CPU measurements.
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3.6. Example applications

3.6.1. Design of a passive wind turbine system

3.6.1.1. Context

In this first example, we deal with the design of a fully passive wind
turbine system [SAR 09; TRA 10], where the static converter, which
traditionally ensures the MPPT (maximum power point tracking) control, is
suppressed, so as to reduce the cost of the system and increase its reliability
(see Figure 3.14a). Such a structure a priori presents low energy efficiency,
since it is no longer possible to control the wind turbine rotational speed in
order to extract maximum power from it (see Figure 3.14b). In order to
compensate for the absence of active impedance adaptation, the objective is
to optimize the diode rectifier and synchronous generator association in
regards to the turbine’s characteristics and to the wind farm potential. This
then enables a passive MPPT function to be obtained by natural impedance
adaptation and thus guarantees performance comparable to that of “active”
structures. This example is typical of optimization systems, as there is very
little chance that a generator and wind turbine system chosen independently,
but compatible regarding association (nominal torque/speed), will enable an
acceptable level of efficiency to be guaranteed for the whole passive turbine
system.
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Figure 3.14. Characteristics of a passive wind turbine
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3.6.1.2. Modeling of passive wind turbine systems

3.6.1.2.1. Wind modeling

Wind speed is described deterministically by a sum of representative
harmonics from a real profile [MIR 05]:

)665.3sin(2.0)293.1sin()267.0sin(2)105.0sin(2.010)( tttttVW ++++=
[3.13]

NOTE.− This same approach can be adopted analogously with other types of
wind modeling. Readers should also refer to Chapter 1, which deals with the
compact synthesis of a wind speed profile.

3.6.1.2.2. Wind turbine model

The wind turbine considered here is a three-blade BERGEY XL.1
[WWB 11], with radius RW = 1.25 m. It provides a wind power Pwind defined
by:

32)(
2
1

WWpwind VRCP πλρ= [3.14]

where ρ denotes the air density, VW the wind speed and Cp(λ) the power
factor, which is expressed based on the reduced speed λ = RWΩW/VW relating
to the rotation speed ΩW of the turbine. For the wind turbine considered, the
power factor can be approached using a polynomial interpolation of 7:
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where the interpolation coefficient values are: a7 = −3.9×10–8, a6 = −4.2×10–6,
a5 = 2.1×10–4, a4 = −3.1×10–3, a3 = 1.6×10–2, a2 = −1.8×10–2, a1 = 1.7×10–2,
and a0 = −1.9×10–3.

Finally, the dynamic wind turbine model is represented by a standard
mechanical mode in accordance with [3.16]:

WW
W

WemW f
dt
dJ Ω+Ω=Γ−Γ [3.16]
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where ΓW and Γem represent the wind and electromagnetic torques of the
generator, respectively. The values of the wind inertia and associated viscous
friction coefficient are JW = 1.5 kg.m2 and fW = 0.06 N.m.s.

3.6.1.2.3. Synchronous generator sizing model

An analytical sizing model for synchronous generators has been
developed in [SAR 09; TRA 10]. This has enabled a reduction in calculation
times by factors of 10 to 100 for semi-analytical and finite element models,
respectively, while guaranteeing acceptable results regarding the precision of
the criteria requiring optimization.

There are far too many analytical modeling equations to detail here. We
refer readers to previous references, as well as the analytical actuator model
described in section 2.3. This model enables all of the geometric
characteristics of the generator (bore radius rs, generator length lr, slot, and
tooth sizes) to be extracted, as well as the associated circuit model
parameters (stator resistance Rs, stator flux Φs, stator inductance Ls) from the
design variables that we will shortly detail. It also enables the
electromagnetic measurements in the various parts of the generator (yoke,
teeth, air gap) to be established.

3.6.1.2.4. Electromagnetic model of the generator/diode-rectifier association

An equivalent DC model for the generator/diode-rectifier association has
been developed in [SAR 09] in order to reduce the simulation cost in CPU
time, while preserving the pertinence of energy results (see Figure 3.15).
This model is based on the correspondence relationships given in Table 3.2.
It takes into consideration the armature reaction in the generator, as well as
the commutation overlap in the diode rectifier represented by a “non-
dissipative” resistance Rov = 3Lsωs /p.

Ls RsEs

VDC

IDC LDC RDC
Armature
reaction

Commutation
overlap

EsDC
EDC

IsDC
VDC

Rov

V(I)
V(I)

IsDC IDC

(a) Synchronous generator (b) Equivalent DC model

Figure 3.15. Equivalent DC model of the
generator/diode-rectifier association
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Variable Synchronous generator Equivalent DC model

Voltage sV sDC VV
π
63=

Current sI sDC II
π
6=

Flux sΦ sDC Φ=Φ
π
63

Inductance sL sDC LL
2

63 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

π

Resistance sR sDC RR
2

63 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

π

Electromotive force sE ssDC EE
π
63=

Table 3.2. Correspondence relationships for the equivalent
DC model of the generator/diode-rectifier association

3.6.1.2.5. Thermal generator/diode-rectifier association model

Thermal circuit models are used in order to determine temperatures in the
various parts of the generator and the diode rectifier during system operation
(see Figure 3.16). The thermal resistances and capacities of the various
elements are calculated from the geometric structure characteristics and
thermal material conductivities [REG 03]. The electrothermal coupling is
expressed for the various losses, which constitute the inputs of thermal
models. These losses are detailed in the following section.
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Figure 3.16. Thermal models associated with
the generator/diode-rectifier set
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3.6.1.2.6. Modeling of losses in the wind turbine system

The transfer of power into the wind turbine system is illustrated in Figure
3.17. In this diagram we particularly distinguish the wind power Pwind, the
maximum power recoverable by the wind turbine, from the effectively
captured power PWT.
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Figure 3.17. Power balance in the wind turbine system

Among the various losses in the energy conversion turbine, we have:

– Mechanical losses Pmec in the wind turbine system, expressed by:
2
WWmec fP Ω= [3.17]

Joule losses in the generator, defined by:

23 sj RP = [3.18]

– Magnetic losses Piron in the generator, comprised of hysteresis PHyst and
eddy current Pec losses. These losses are determined in the stator yoke and in
the teeth. Hysteresis losses per unit of volume are defined by:

s
H

Hyst BKP ω
π

22= [3.19]

where B denotes the maximum value for flux density in the considered
region (yoke or gear) and ωs represents the stator pulse. KH is a coefficient
dependent on the material (typically, KH = 52 W.s/m3/T2 for FeSi 3% strips).

Eddy current losses per unit of volume are expressed in the form:

22
spec BP ωα∝ [3.20]
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where the proportionality factor varies according to the region (yoke or
teeth) [MI 03] and where αp is a coefficient dependent on the material
(typically αp = 0.06 W.s2/m3/T2 for FeSi 3% strips).

– Conduction losses Pcond in the diode rectifier, expressed by:

( )2
02 DCdDCDCcond IrIVP += [3.21]

where VDC0 denotes the drop in direct voltage in the diodes and rd the
dynamic diode resistance. Conduction losses are notably used to size the
rectifier radiator using the thermal model previously discussed [SAR 09].

3.6.1.3. Optimization of the passive wind turbine system

3.6.1.3.1. Design objectives

The first objective aims to optimize the energy efficiency of the passive
wind turbine system. For this, we look to maximize the useful power for the
DC bus during the reference wind cycle defined by equation [3.13], over a
two minute duration:

condironjmecWTu PPPPPP −−−−=
xx

maxmax [3.22]

We note that maximization of this useful power enables the maximization
of power extracted by the wind turbine (passive MPPT function
optimization), which is to be combined with the minimization of losses for
the whole conversion chain.

The second objective requiring optimization is the overall mass of the
system, which, by the same token as the energy efficiency, is significant for
this type of system, all the more so when the considered elements are
suspended in the nacelle of the wind turbine system. Furthermore,
minimizing the constituent masses leads to a minimization of the “material
cost”, even if the weighting coefficients for the cost/kilogram ratio were to
modify the result, compared with a “truly technico-economic optimization”.
We look to minimize the mass of the electrical elements MΣ (synchronous
generator/diode-rectifier set), the mass of the wind turbine being fixed at an
estimated value of 34 kg.

RADSG MMM +=Σ xx
minmin [3.23]



136 Integrated Design

where MSG represents the mass of the synchronous generator and MRAD the
mass of the associated radiator at the rectifier bridge. The mass of the
generator is determined from the geometry of the machine and the densities
of the various constituents (copper, iron, magnets) [SAR 09].

3.6.1.3.2. Design variables

Eight design variables are chosen in order to optimize the two criteria.
These variables are listed in Table 3.3, where we additionally define their
range of variation:

Design variable Type Variation

Bore radius/active machine length Continuous Rrl ∈ [0.1, 5]

Slot depth/bore radius Continuous Rdr ∈ [0.03, 0.3]

Yoke flux density (T) Continuous By ∈ [1.2, 1.8]

Number of pole pairs Discrete p ∈ {1,.., 30}

Current density (A/mm2) Continuous Jc ∈ [0.5, 4]

Base power (W) Continuous Pb ∈ [300, 3,000]

Number of slots per pole per phase Discrete Nspp ∈ {1,..,5}

Base rotational speed (rad/s) Continuous Ωb ∈ [25, 95]

Table 3.3. Design variables used in the optimization process

3.6.1.3.3. Design constraints

In order to guarantee the feasibility of the wind turbine system when the
design variables vary over their domain of definition, six constraints need to
be introduced. These constraints, which are defined in Table 3.4, comprise
three pre-simulation constraints (g1, g2 and g3), which apply to the feasibility
of the generator and three post-simulation constraints (g4, g5 and g6), which
enable deterioration of the system during operation to be avoided. Under
constraint g1, the number of conductors per slots Ncsmust be greater than 1.
Conversely, constraint g2 limits this in such a way that the cross-section of
the conductor (Sslot/Ncs) remains greater than the minimum authorized cross-
section (typically Sslot_min = 0.5 mm2). Constraint g3 guarantees a limit to the
slot width ws to a minimum value ws min = 4 mm. Constraint g4 enables an
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eventual demagnetization of the magnets to be avoided by imposing that the
maximum flux density from the stator Bs does not generate a flux density
greater than Ba − Bd, where Ba is the flux density generated by the magnets
and Bd is the demagnetization flux density of the magnets. Constraint g5
ensures that the coil winding temperature Tcu in the generator does not
exceed the limit value tolerated by the insulator (typically Tinsmax = 155°C).
Finally, constraint g6 similarly imposes a limit temperature Tjmax at the diode
junctions (typically Tjmax = 150°C).

Design constraints Type

01)(1 ≤−= csNg x Pre-simulation

0/)( min_2 ≤−= csslotslot NSSg x Pre-simulation

0)( min3 ≤−= ss wwg x Pre-simulation

0)ˆ(ˆ)(4 ≤−−= day BBBg x Post-simulation

0)( max5 ≤−= inscu TTg x Post-simulation

0)( max6 ≤−= jj TTg x Post-simulation

Table 3.4. Design constraints used in the optimization process

Post-simulation constraints are calculated over all points of the wind
cycle and combined over the whole cycle. The constraint graph is split into
two levels, system simulation only being achieved if the three pre-simulation
constraints are verified. When one first-level constraint is not verified,
second-level (non-calculable) constraints are subjected to a death penalty,
namely gi(x) = +∞, ∀i = 4, 5 and 6. When a constraint is verified (gi(x) ≤ 0),
it is automatically saturated at zero value so that design objectives are
prioritized and not the scope of the constraints.

3.6.1.3.4. Optimization process

The optimization process used in order to improve the wind turbine
system performance is illustrated in Figure 3.18. The design variables are
investigated using evolutionary algorithm NSGA-II so as to concurrently
optimize the two objectives, while fulfilling the design constraints. The
population size is set at 100 and the number of generations at 600. Multiple
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runs of the algorithm are performed with an initial population randomly
chosen so as to take account of the stochastic nature of the algorithm and to
ensure that the results obtained can be reproduced.
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Figure 3.18. Simultaneous design process with
multi-objective evolutionary algorithm

3.6.1.3.5. Results from the optimization of the passive turbine

Figure 3.19 illustrates the results obtained by the evolutionary algorithm
following the optimization process previously discussed. Figure 3.19a shows
the Pareto front obtained for the generator in the objective space (i.e.
Mass/useful power). Note that only the generator mass is shown in this
figure, the radiator mass being almost constant for the whole optimal front.
We can compare the effectiveness of solutions optimized using any
generator, which is efficient when used as part of an “active structure” with
MPPT, but of “poor” efficiency when associated with a diode rectifier. As
we have already mentioned, this is principally explained by the low wind
power extraction capacity when the active electronics are suppressed (see
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Figure 3.19b). A solution situated at the elbow of the Pareto front has been
isolated in order to produce an experimental generator prototype. We can see
that this solution presents a significantly improved wind extraction
characteristic compared with an ordinary solution. This clearly approaches
the cubic curve corresponding to ideal wind extraction joining all of the
power optima for distinct wind speeds.
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Figure 3.19. Comparison of Pareto front with a non-optimized solution

The generator prototype designed after optimization has been
experimentally validated in [TRA 10]. For the wind profile considered
within the optimization process, it enables an extraction efficiency PWT/Pwind
of close to 90% and a general passive turbine efficiency Pu/Pwind in the
region of 70% to be obtained. Figure 3.20 illustrates this validation by
showing the test bench used to evaluate performance for the passive turbine
against the optimal generator prototype (Figure 3.20a). We also present a
comparison of the wind powers extracted during the wind cycle, obtained
experimentally and by simulation (Figure 3.20b). Quantitatively, the average
wind power extracted by the prototype over the wind cycle considered is
1,310 W. The corresponding power value from simulation is 1,365 W. These
values are close to the 1,411 W corresponding to optimal wind extraction
(for an ideal MPPT with no losses). These results prove the efficiency of the
optimized passive wind turbine, but also the good fit of the models
developed and the pertinence of the design by means of optimization
approach.
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Figure 3.20. Experimental validation of the prototype
resulting from the optimization process

3.6.1.4. Robust design of the passive wind turbine

The objective of this final section on the passive turbines is to illustrate
the interest in robust design approaches, which were briefly described in
section 3.5.3. Indeed, a sensitivity study of passive turbine parameters
[TRA 11] has enabled us to show that the efficiency of wind extraction has
been strongly influenced by the optimal stator flux value Φs and DC bus
voltage VDC. However, these values evidently vary during operation of the
wind turbine (magnet ageing), based on external conditions (such as the state
of battery charge, or changes in temperature). These parameter variations
may result in a notable degradation in the energy efficiency of the system. A
robust design approach has been investigated in order to reduce the
sensitivity of the passive turbine with regards to variations in Φs and VDC.
For this, we have considered the robust effective functions min~

uP and mean~
uP ,

defined by [3.11] and [3.12], respectively, in the optimization process,
instead of the useful power Pu. The vicinity used for the calculation of robust
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effective functions is a two-dimensional vicinity comprising nine points (see
Figure 3.21). The variation amplitudes around the reference point (point #1)
are set at ±10%.
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Figure 3.21. Two-dimensional vicinity defining
the uncertainty of variables Φs and VDC

The Pareto-optimal solutions obtained following optimizations of
functions Pu, min~

uP , and mean~
uP , by concurrently minimizing the mass of the

system, are denoted by x*, x*min and x*mean, respectively. In Figure 3.22a we
compare in the objective space, the robust optimal solutions (x*min and
x*mean) located in the elbow of the Pareto front, with the x* solutions
traditionally optimized without robust formulation. We are able to remark
that robust solutions are very close to the original solutions, suggesting that
introducing robustness does not, in this instance, lead to any degradation in
performance.

Additionally, by comparing the robust effective functions of these various
solutions against each other, we see that the sensitivity of robust optimal
solutions (x*min and x*mean) to variations in Φs and VDC is relatively reduced
compared with the x* solutions optimized without robust formulation (see
Figure 3.22b). In this diagram we more specifically indicate three solutions
x*, x*min and x*mean of mass 9.8 kg (the solution x* for this mass value
corresponding to the prototype extracted from the initial front).
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Figure 3.22. Comparison of robust solutions x*min and x*mean
with the original optimal solutions x* (obtained

without taking robustness into account)

In Table 3.5 we list the values for the useful power, robust effective
functions, and robustness indicators (see section 3.5.3.1) associated with
these three particular solutions. From this table, we can see that the
robustness indicators are improved for robust solutions, compared with the
original prototype.

Optimum solution
x*(9.8 kg) − prototype

Robust solution
x*moy(9.8 kg)

Robust solution
x*min(9.8 kg)

uP (W) 1,115 1,107 1,105

mean
uP (W) 1,044 1,074 1,064

min~
uP (W) 910 970 982

(%)uPΔ 16.2 12.4 10.9

SNT (dB) 24.41 26.34 26.47

Table 3.5. Characteristics of robust solutions of mass 9.8 kg (the optimal values for the
objectives and robustness indicators are shown in bold text)
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3.6.2. Simultaneous design of an autonomous hybrid locomotive

3.6.2.1. Context

The second application example has already been discussed in Chapter 1
of this book, on the processing of traffic missions, but here we return to it
more specifically to illustrate the concurrent design by means of the
optimization approach. It concerns the design of a power turbine for a
BB 63 000 locomotive built to fulfill service and sorting missions on non-
electrical lines. The replacement of the initial 600 kW diesel engine with a
power turbine comprised of a reduced power diesel generator and hybridized
using batteries and ultra-capacitors, was studied in the ANR PLATHEE
project [THI 08]. The main characteristics of the conversion chain
(architecture – sizing – energy management) were first established using a
traditional sequential analysis approach (without optimization) [AKL 07]
before moving on to a simultaneous design approach by means of
optimization [AKL 09].
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Figure 3.23. Illustration of the PLATHEE project [THI 08]
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3.6.2.2. Energy management strategy

Figure 3.24 presents the reference mission used in order to evaluate the
efficiency of the locomotive. This 8 hour mission was judged at the time to
be the most constraining from an energy and power perspective, from among
a mission set [AKL 08].
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Figure 3.24. Typical difficult mission
profile for the BB 63 000 locomotive

In order to satisfy this type of mission with the hybrid architecture
previously presented, a frequency management strategy was implemented
[AKL 07] (see Figure 3.25).
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Figure 3.25. Energy management
based on a frequency approach
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This strategy takes into account the physical characteristics and natural
dynamics relating to different sources of energy. Beyond a certain cut-off
frequency (Fc), it distributes the high-frequency part of the mission power
(PM) to the ultra-capacitors. The rest of the power is assigned to the batteries
and the diesel engine by assuming that the latter provides a null (a “stop and
go” strategy) or constant power, which is close to its nominal sizing power
(PDEN) so as to maximize its energy efficiency and reduce diesel
consumption.

3.6.2.3. Hybrid locomotive modeling

Various types of models associated with locomotives have been
developed in [AKL 07; AKL 08; AKL 09] and briefly recapped in
Chapter 1:

– energy models characterize the energy transfers in the locomotive. They
are arranged into different levels according to the degree of precision
accorded to the description of energy transfers:

- power flow models enable energy managers to deduce values for
power and energy during a mission for the various sources on board
locomotives (diesel, batteries and ultra-capacitors). They also provide the
state of charge for storage elements, as well as the diesel consumption and
the quantity of CO2 emitted,

- electrical models enable the effort and flow variables (current and
voltage) to be calculated from the energy variables (power and energy).
These models are themselves divided into various sublevels according to
whether or not control loops are considered and whether average value (over
a breakdown period) or instantaneous value converters are modeled. The
calculation cost in CPU time of the various models is illustrated in Figure
3.26. It varies significantly between models, according to the level of energy
transfer representation for the whole system. Thus, power flow models and
“static” electrical models (without taking control loops into account and with
average value converters being modeled) will be well suited to simultaneous
design. More precise models will, for their part, be used at the end of
validation and in order to refine the system characteristics following sizing
(such as controller synthesis and sizing of smoothing inductors);

– geometric models provide, for a given sizing, volumes for the diesel
engine, battery packs, or ultra-capacitors and associated converters;

– cost models enable empirical estimation of the ownership costs of
various energy sources. These costs include the raw purchase costs of these
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elements as well as maintenance surcharges, evaluated from lifetime
indicators.
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Figure 3.26. Different levels of energy transfer
representation and associated calculation costs

3.6.2.4. Hybrid locomotive optimization

3.6.2.4.1. Design objective

The first objective to be fulfilled is economic: to reduce the overall
financial cost of ownership of system CΣ, defined by the sum of the costs of
the different energy sources:

fuelSCBTDE CCCCC +++=∑ xx
minmax [3.24]

where CDE, CBT and CSC represent the ownership costs of the diesel engine,
batteries, and ultra-capacitors, respectively (see section 1.6.1). We note that
the fuel cost Cfuel, relating to the quantity of fuel, which is necessary for the
operation of the locomotive during use, is also included in the overall
financial cost.
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The second objective is environmental, to minimize the climate cost CCO2,
defined by the quantity of CO2 emitted during use of the locomotive:

m

anQC
τ
τ

Δ
Δ

= 2COCO2 minmin
xx

[3.25]

where QCO2 denotes the quantity of CO2 emitted during the reference mission
used in the optimization process, Δτm the duration of this mission and Δτ an
the total annual duration of use for the locomotive.

3.6.2.4.2. Design variables

Seven design variables are chosen to optimize the two criteria. These are
listed in Table 3.6, where we also specify their range of variation.

Design variable Type Variation

Number of battery cells in series Discrete NSBT ∈ {0,.., 542}

Number of battery packs in parallel Discrete NPBT ∈ {0,.., 32}

Number of ultra-capacitors in series Discrete NSSC ∈ {0,.., 262}

Number of ultra-capacitor packs in parallel Discrete NPSC ∈ {0,.., 60}

Converter switching frequency (kHz) Continuous Fsw ∈ [1, 10]

DC bus voltage (V) Continuous Vbus ∈ [50, 650]

Diesel engine nominal power (kW) Continuous PDEN ∈ [50, 600]

Table 3.6. Design variables used in the optimization process

3.6.2.4.3. Design constraints

In order to guarantee the feasibility of the solutions, six constraints are
integrated into the optimization process. The available volume for the energy
sources on board the locomotive is limited to 32 m3. Consequently,
constraint g1 ensures that the sum of the respective volumes of the diesel
engine, batteries, and the ultra-capacitors (ΩDE, ΩBT and ΩSC) does not
exceed this limit (see section 1.6.1). Constraints g2 and g3 guarantee the
limiting of the duty cycles of the associated battery pack and ultra-capacitor
choppers to a value αmax = 0.93. Maintaining these three initial constraints
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enables simulation of the system during its reference mission and refinement
of converter sizing and smoothing inductors. Constraint g1 can then be
extended to constraint g4, which considers the chopper volumes associated
with the battery and ultra-capacitor packs (ΩCBT and ΩCSC), as well as the
volumes above. Constraint g5 ensures that the charge time Δτcharge for storage
elements at the end of the mission does not exceed 40% of the mission time.
Finally, constraint g6 allows a low degradation of the mission, but then limits
the missing energy Ed to 1% of the total energy Em necessary to accomplish
the mission.

Design constraint Type

032)(1 ≤−Ω+Ω+Ω= SCBTDEg x Pre-simulation

0)( maxmax2 ≤−= busBTBT VVNSg αx Pre-simulation

0)( maxmax3 ≤−= busSCSC VVNSg αx Pre-simulation

032)(4 ≤−Ω+Ω+Ω+Ω+Ω= CSCCBTSCBTDEg x Post-simulation

04.0/)( charge5 ≤−ΔΔ= mg ττx Post-simulation

001.0/)(6 ≤−= md EEg x Post-simulation

Table 3.7. Design constraints used in the optimization process

3.6.2.5. Optimization process and results

The optimization process implemented is similar to that previously
presented for the passive wind turbine system. The NSGA-II is used to
optimize the two objectives relating to the design variables. The Pareto-
optimal solutions obtained after multiple independent runs of the algorithm
are presented in Figure 3.27. We particularly compare three specific
solutions (S1, S2, and S3) extracted from the Pareto front with an initial
configuration (S0) sized using a traditional sequential analysis approach
(without optimization) [AKL 07]. The design variables and objectives
relating to these solutions are detailed in Table 3.8. We can observe, from
these results, that the majority of Pareto-optimal solutions dominate the
initial reference solution. The “very flat” shape of the Pareto front observed
in Figure 3.27 is explained by the fact that there is no real compromise
between the two objectives considered. Indeed, we can see in Table 3.8 that
the overall usage cost of the various solutions is principally due to fuel costs
(the cost of “heading for the gas station”).
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Figure 3.27. Pareto-optimal solutions for the hybrid locomotive

Design variable/criterion S0 S1* S2* S3*

Number of cells in series 300 249 230 143

Number of battery blocks in parallel 4 8 9 10

Number of ultra-capacitors in series 200 175 20 20

Number of ultra-capacitor packs in parallel 8 1 1 1

Diesel engine nominal power (kW) 215 174 162 151

DC bus voltage (V) 540 645 631 625

Converter switching frequency (kHz) 2 7 8 10

Climate cost (tonnes of CO2 p.a.) 301 288 287 286

Overall usage cost (k€ p.a.) 183 172 178 189

Fuel cost (k€ p.a.) 153 146 145 145

Diesel engine cost (k€ p.a.) 22.4 19 18 17

Battery and ultra-capacitor cost (k€ p.a.) 7.6 7 18 27

Table 3.8. Design variables and objectives relating to the three optimal solutions
extracted from the Pareto front, compared with the initial sizing resulting

from a classical analysis approach

The second criterion is also directly correlated with this cost, since the
quantity of carbon dioxide emitted into the atmosphere is directly
proportional to the quantity of fuel consumed. It is interesting to note that
optimizing the environmental cost addresses some economic concerns,
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further justifying the interest in hybridization. The climate cost is minimal in
S3, a configuration keenly sized with the smallest diesel engine and the
lowest number of storage components. This solution is not, however, optimal
from a usage cost perspective, notably because of the increase in storage
costs during use. Indeed, for this solution, batteries and ultra-capacitors are
much more sought after and, therefore, present average lifetime indicators,
impacting on the ownership cost of the storage.

3.7. Conclusions

This chapter has presented simultaneous design by means of the
optimization approach, which enables the general integration of questions of
system architecture, sizing, and energy management. Optimization
approaches enable the complexity of this often combined process to be
understood. We have thus shown the problems posed by such a process
before tackling the question of so-called optimization algorithms. In the
highly heterogeneous context of the systemic design process, we have
highlighted the adequacy of multi-objective evolutionary algorithms, which
notably enable the efficient resolution of mixed variable and constrained
optimization problems. One section shows that the question of robustness,
which is essential for design, may also be addressed during the optimization
process. This view has been illustrated in the first application, dealing with a
fully passive wind turbine system. Comparing the results of optimization
with the behavior of a wind turbine generator prototype “extracted from the
Pareto front” has demonstrated the pertinence of the approach, which relies
strongly on the constancy of design models. Finally, the second illustration
repeating the example of the hybrid locomotive discussed in Chapter 1 of
this book, has enabled us to draw attention to the advantage of simultaneous
design with regard to a traditional approach using sequential analysis. This
chapter finally completes the previous one, which is specifically dedicated to
the modeling approach. It is then finally completed by the next chapter,
which deals with multi-level optimization methods. Indeed, to a certain
extent of system complexity, it becomes illusory to want to “concurrently
design everything” within one and the same optimization loop. It is then a
case of being able to extract a system solution close to the overall optimum
relating to the association of multiple separately optimized sub-systems.
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Chapter 4

Multi-Level Design Approaches for
Electro-Mechanical Systems Optimization

4.1. Introduction

While the design of products and services is a fundamental part of
business activity, its main purpose is to satisfy market needs and
expectations. The expression of a product’s list of specifications is therefore
a crucial step influencing the success of the business and mobilizes
numerous resources, such as market research. However, many technical
difficulties remain in product definition. Two main difficulties are typical of
equipment industries: the preponderance of the functionality achieved for the
product itself and the correct integration of the product into where it will be
used. The product thus becomes a component that needs to be integrated into
a bigger system or sub-system and the component-to-system interaction then
appears to be the critical design task for the component.

A systemic or holistic design approach, therefore, needs to be employed;
sizing of the system and its constituent components are interdependent tasks.
Thus, it has often been remarked that an assembly of components that would
have been thought to be optimal, is, in fact, suboptimal and badly suited to
its mission. This means that the traditional method of design using
successive trials has been rendered inappropriate and so new tools and new
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optimal design methods are required, which need to be tested and compared
with current practice.

Designers currently have a large number of modeling tools at their
disposal. These tools enable representation of the behavior of a device, but
are often restricted to one area of physics or one discipline. Therefore, it is
necessary to aggregate these models in order to obtain the desired
representation of a component. It is also necessary, in defining the model, to
introduce context and the interaction between elements around the
component. In most cases, only the need is known and defined for the
system, which indirectly influences the objectives and constraints applicable
to the components to be deduced.

In order to design the best product, i.e. the product best suited to the
function, it is no longer sufficient to rely on previously acquired experience.
Tools and methods are needed that assist the designer in finding a feasible
solution, but which also result in the most effective solution. To that end,
numerical optimization tools appear to be well suited. However, numerical
models and optimization tools do not enable this problem to be resolved; a
method or design approach must be defined which ensures consistency of the
optimizations performed, whether for the system or the components.

Therefore, we need to manage the complexity of a design approach,
which is multi-physical and multi-disciplinary. This takes the requirement
definition to an upper level, but also drives multiple optimization processes.
Designers faced with this complexity are very often in search of a fair
compromise between the system, i.e. an exhaustive description of the whole
device, and the model; in other words the most detailed description possible
for an element. The limit is generally linked to calculation capacity, but also
to the sensitivity and knowledge of the designer. Thus, the aim of this
chapter is to present two multi-level optimization approaches enabling
traditional limits to be expanded, which are specific to the use of a unique
model with a unique optimization process, and which deal with the
complexity of a systemic design approach.

4.2. Multi-level approaches

Multi-level approaches are distinguished from traditional optimal design
approaches by the use of multiple modeling levels with complementary
characteristics. Indeed, traditional approaches are characterized by the
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resolution of a unique optimization problem by means of an algorithm and of
a unique model in order to determine objective functions and constraints.
Traditionally, the optimal solution presented as a target is expressed by:

find * argmin ( )
nx

lb x ub

x f x y
∈ℜ
≤ ≤

= − where *( ) 0g x ≤ [4.1]

where argmin provides the minimum argument, the symbol . indicates the

Euclidean norm ( ) 22
1 1,..., ...n nx x x x= + + , values for x are

optimization variables in real space and are limited by lb and ub , f
represents the objectives and y the target values for these objectives, which
may be set at zero in the case of minimization. g represents the constraints
and *x represents the optimal values of x .

Conversely, for multi-level approaches, which are used in systemic
optimal design, the approach enables management of multiple models,
whose characteristics differ: calculation time, precision, and complexity.
These result in multiple optimizations being linked together, whose
formulations differ and which can be resolved using ultimately different
algorithms. The multi-level approach enables various models of one
component to be managed in order to accelerate the optimization process, or
enables multiple optimizations of a decomposed and hierarchical model to
be managed as part of a design process.

In Figure 4.1, the models used in the design are positioned along two
axes: the scope of the model, ranging from system to component, or even to
the material chosen, and the granularity of the model.

In the ideal case of a systemic design, it would be better to have a more
detailed level of granularity and the widest scope, i.e. covering the whole
system (point I). This defines an ideal solution but one that is generally
unattainable due to the limited calculation capacities available to designers
and the significant number of evaluations necessary for optimization. Thus,
for a fixed calculation capacity (curve ), a curve can be traced representing
the whole compromise between the scope and granularity of the model. This
representation is common in multi-objective optimization and is called the
Pareto front. This frontier expresses the necessity for compromise between
criteria. If calculation capacities increase, the Pareto frontier moves and
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becomes curve . Thus, the models obtained dominate those of curve ,
since their granularity and scope are significantly better. Usually, designers
focusing on the system use models whose characteristics are those of point
S2 in Figure 4.1, whereas designers of the components use models whose
characteristics are those of point C2.

Component

Scope of model

Granularity

Sub-system

System

Fine Coarse

I (Ideal)

Calc.Cap

S2

C2

Figure 4.1. Possible compromises between
scope and granularity of the model

So-called multi-level design approaches enable the granularity or scope
of models used for systemic optimal design to be improved, without the need
for increased calculation capacities. Approaches are distinguished according
to the axis along which they are applied.

Space mapping (SM) approaches work along the horizontal axis and use
two like-for-like models of the same device, but with different granularities.
SM enables a coarse granularity model with low precision but a reduced
calculation time to be managed alongside a model with fine granularity and
high precision, but which requires a significant calculation time.

These models are described as being “simple” and “fine”, respectively.
Optimizations are performed with the simple model; the fine model is only
occasionally evaluated, typically less than 10 times. The calculation time is
thus significantly reduced, which enables designers to work with models
with a finer level of granularity for the same calculation capacity. As a result
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of this approach, the Pareto frontier is displaced from curve towards curve
in Figure 4.2. The SM approach enables the frontier to be displaced to the

left and to thus use fine models in optimal design.

Hierarchical decomposition approaches, such as target cascading (TC),
work along the vertical axis and use a “system” level model, along with
models of its constituent “components”. All of the models have strong
granularity, since they are directly used during optimization. The advantage
of this approach is that it avoids the need for a large size model to be
constructed in favor of multiple smaller models involving fewer design
parameters.

Some optimizations are performed on each submodel and system
consistency is addressed using the TC method. Optimizations are faster, as
they are performed on smaller models, involving fewer design parameters,
which enables more components to be modeled; therefore, the scope of the
system is widened. As a result of this approach, the Pareto frontier becomes
curve in Figure 4.2. The target cascading approach enables the frontier to
be displaced downwards and thus, integrates the needs and constraints of the
optimally designed system.

Component

Scope of model

Granularity

Sub-system

System

Fine Coarse

I (Ideal)

C S.M.

T.C.

S

Figure 4.2. The multi-level approach enables the limits to be pushed back
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Both of these approaches are detailed and applied to components and
systems that are representative of electrical engineering design in the
following sections.

4.3. Optimization using models with different granularities

The finite elements (FE) method is used to model electro-technical
devices with a high level of precision. Two (2D) or three-dimensional (3D)
FE models are often considered to be “virtual prototypes”. However, multi-
physical couplings and the high number of unknowns in 3D FE models
demand a significant calculation time.

In electro-technical device design, some discrete design variables appear
naturally in optimization problem formulation. For example, the numbers of
notches and magnets are integers and the types of material and structure (for
example, external rotor, internal rotor, or axial flow) are discrete. However,
discrete optimization relies on different concepts to continuous optimization.
The derivatives cannot be directly used for combinatory optimization
problems, which prevent the use of high-speed algorithms. Thus, the number
of model evaluations during discrete optimizations is much higher than that
from optimizations of continuous variables.

The direct use of optimization models with 3D FE models results in
excessive calculation times, ranging from several days to a few months.
Other problems appear, such as numerical noise and a difficulty in obtaining
derivatives precisely, i.e. there is no pertinent research direction available.
Substituting the 3D FE model with a simplified model with a much shorter
execution time and an easily calculated derivative is therefore an interesting
way of reducing optimization time. However, the challenge is that the
quality of the final solution should not be inferior to that found using the FE
model alone.

Recent developments mean that global optimization with an FE model
and its substitution model can be performed in two stages:

– the first stage consists of progressively constructing a response surface
for the FE model. New points are added in areas where the substitution
model is not precise enough;
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– the global optimum is found in the second stage using any algorithm
requiring a high number of evaluations, such as, for example, genetic
algorithms.

Various methods are used to construct the substitution model: the diffuse
element [COS 02], kriging [LEB 04], [KRE 08; BER 10], artificial neuron
network [RAS 01; FAN 03; VIE 05], and radial basis functions [KOB 06]
methods. The substitution model offers the benefit of high-speed execution,
ease of derivation, continuity of operation and of its derivatives.

Other approaches use a low-precision substitution model, which is
progressively improved in areas where temporary optima are found
[PAH 00]. In the Efficient Global Optimization (EGO) method [JON 98], the
substitution model is also refined by the addition of points pertaining to
areas of low precision. Unfortunately, all of these methods require a high
number of FE model evaluations in order to construct the substitution model.
This strongly reduces the benefits of optimization using the substitution
model, since the total identification and optimization time is similar to that
of direct optimization using the FE model.

In order to significantly reduce the number of FE model loadings, the
substitution model needs to initially contain some knowledge. This may take
the form of analytical equations describing physical phenomena within a
device or equivalent electrical circuit. The substitution model is then said to
be the simple model and is locally improved by the FE model, which is
called the fine model. The combined use of these two models is called multi-
level optimization and SM techniques are highly effective for resolving them
[CHO 09; BAN 04; ECH 06].

In many electro-technical devices, such as engines, transformers,
electromagnets, etc., it is possible to make use of an FE model and an
equivalent electrical circuit. Consequently, these components are well suited
to multi-level optimization using these two types of models.

The component studied in this section is a safety transformer, for which
the authors have constructed a 3D FE model, with meshing that is fine
enough to obtain precise results for leakage inductance, in particular. The
calculation times for fine and simple models are 2 hours and 50 ms,
respectively. This problem of optimization and its associated models serves
to quantify optimization algorithm performance and, more specifically, the
calculation time, which can be expressed in terms of the number of 3D FE
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model evaluations, for which the calculation time is not in line with that of
the simple model.

In the following sections, the optimization problem and the fine and
simple models are described. The results obtained using a traditional
approach and three SM variants are presented in order to emphasize the
interest in multi-level approaches for component optimization.

4.3.1. Principle of SM

The space projection method, proposed by [BAN 94] under the title of the
technique for SM, is used in optimization with models that are very costly in
terms of calculation time, typically FEs. It has been successfully applied to
the area of hyper-frequency [BAN 04]. The method is based on the joint use
of two models with differing levels of precision, where the evaluation
rapidity of the “simple” model is combined with the precision of the “fine”
model by aligning these models at each iteration so as to preserve this
precision for the solution. [CHO 01], [ECH 05], and [ENC 07] applied a
variant of this approach, known as aggressive SM (ASM), for the sizing of
electromagnetic devices modeled using the FEs method (FEM) [BAN 95]. In
[ECH 07], the manifold mapping (MM) approach is proposed, which enables
certain disadvantages of the SM approach to be avoided and to facilitate the
programming of the algorithm (which will be described later).

An optimization problem is formulated using a design variable vector
n

fx ∈ℜ and targeted objectives my∈ℜ . Modeling precision for
electromagnetic devices is generally obtained at the cost of a very long
calculation time. The response vector for the fine model is denoted by
( ) m

ff x ∈ℜ , for objective functions, and ( ) k
f fg x ∈ℜ for inequality

constraints. The optimization problem is expressed by:

find * argmin ( )f f
x f

x f x y= − where *( ) 0f fg x ≤ [4.2]

A second model, which is less precise, but faster in terms of calculation
time, described as a simple model, analytical or even empirical, for example,
has the same inputs and outputs. The response vector of the simple model is
denoted by ( ) m

cc x ∈ ℜ for objective functions, and ( ) k
c cg x ∈ ℜ for
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inequality constraints. Thus, an auxiliary optimization problem may be
formulated as:

find * argmin ( )c c
xc

x c x y= − where *( ) 0c cg x ≤ [4.3]

The projection function, which is obtained using parameter extraction
(PE), : n np ℜ ℜ projects fx onto ( )f cp x x= . It minimizes the gap
between responses from the fine and simple models:

c

c f
f f c

c c f fx

c(x ) f (x )
Project x p(x ) x argmin

g (x ) g (x )
−

→ = =
−

[4.4]

The choice of this projection function is the cornerstone of the SM
method. Some authors [LEA 01] recommend the use of projection for each
of the m k+ objective functions and constraints. This function enables an
approximation ( ( ))fc p x of ( )ff x for all fx to be obtained. The SM
method consists of replacing problem [4.2] by problem [4.5], which is less
expensive in terms of calculation time. Thus, the solution to the optimization
problem is determined through the use of this approximation, as follows:

find * argmin ( ( ))f f
x f

x c p x y= − where *( ( )) 0c fg p x ≤ [4.5]

The extraction of parameters [4.4] is often obtained by using the least
squares formulation. If, furthermore, p is bijective then reverse
transformation provides a fine solution *

fx from *
cx :

* 1 *( )f cx p x−= [4.6]

Figure 4.3 illustrates the concept of SM. Parameter extraction is the weak
point of this conventional approach. In practice it is not advisable to use
many points to construct p because of the significant calculation time
generated by this approach. The function p is generally smaller and
constitutes a local approximation, which is iteratively refined.
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Simple model

(Analytical model)
Fine Model
(EF model)
Fine model
(FE model)

Figure 4.3. General concept of the SM technique

4.3.2.Mathematical example

In order to further clarify the SM technique, we illustrate the example of
a third-order analytical function, for which the simple model is a parabolic
function:

3 2( ) 2f f f ff x x x x= − − + [4.7]

2( ) 4 2c c cc x x x= − + [4.8]

To minimize the objective function, the targeted objective is equal to zero
for a positive function, i.e. 0=y . The optimal solution within the range
[ ]4;0 is:

* 1fx = and *( ) 1ff x = [4.9]

The algorithm begins by solving problem [4.3], to find * 2cx =

and *( ) 2cc x = − (left hand side of Figure 4.4). Around this
temporary solution, some points are selected, for example
[ *

1f cx x xΔ= − , *
2f cx x= , *

3f cx x xΔ= + ], where 1.0=Δx , and the fine model
is evaluated in order to provide [ 1( )ff x , 2( )ff x , 3( )ff x ].
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Parameter extraction is performed at these points in order to provide
[ 1 1( )c fx p x= , 2 2( )c fx p x= , 3 3( )c fx p x= ] through the resolution of
optimization problems [4.4]. There are as many problems to be solved as
there are points, but they are quick to solve using the simple model. For
these problems, the variable to find is cx and ( )ff x is a constant.

It is then possible to obtain the projection function using interpolation
(right-hand side of Figure 4.4, 1( ( ))fc p x ) and then to find the solution to
[4.5], i.e. min ( ( ))fc p x , which is the new temporary solution. Its
convergence towards the optimal solution can be seen in on the right-hand
side of Figure 4.5.

Figure 4.4. Initialization and first iteration of the SM technique

Figure 4.5. Second and third iterations of the SM technique
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The number of points required for construction of function p increases
rapidly with the number of optimization variables; for example, 12 +n points
are required at each iteration in order to obtain a second-order function.
Furthermore, parameter extraction is time-consuming and has no unique
solution, which may create convergence problems. Thus, improvements to
the basic technique are proposed in other works, such as ASM [BAN 95],
output SM [TRA 09], and MM [ECH 07].

4.3.3. SM variants

There are several variants of the SM technique. In this section, we
classify them, according to the way in which the optimization problem [4.2]
is transformed.

ASM

Typically, optimization problem [4.2] is replaced by [4.5], where function
p is a projection of inputs from the fine model input space onto the input
space of the simple model. Within this class, we then rank the techniques
according to the projection function p and the method used to construct it.

Thus, ASM uses a first-order projection function constructed with the
first derivative approximation obtained by using a rank-1 Broyden formula
[BRO 65].

The desired projection function must project the optimal solution in the
input space of the fine model *

fx onto the optimal solution in the input space

of the simple model *
cx , which involves determining a residual root, defined

by:
*( ) ( )f f cr x p x x= − [4.10]

The residual first-order Taylor development is:

( ) ( ) ( ) ( )i i i
f f p f f fr x r x J x x x≈ + ⋅ − [4.11]

where p fJ p x= ∂ ∂ is the Jacobian matrix of the projection function and the

residue, since their difference is constant and i
fx is the approximate solution
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at the i th iteration. We are looking for a solution 1i
fx
+ such that the residue is

null, i.e.:

1( ) 0i
fr x + = [4.12]

1( ) ( ) ( ) 0i i i i
f p f f fr x J x x x++ ⋅ − ≈ [4.13]

The new approximate solution is:

1 1( ) ( )i i i i
f f p f fx x J x r x+ −= − ⋅ [4.14]

where 1.− denotes the inverse matrix. Since it is difficult to know the precise

value for matrix pJ , it is constructed progressively using the solutions above
and by using the rank-1 Broyden formula [BRO 65]:

1 1
1 1

1 1

( ) ( ) ( )
( )

( ) ( )

i i i i i
f f f fi i i i t

f fi i t i i
f f f f

r x r x B x x
B B x x

x x x x

+ +
+ +

+ +

− − ⋅ −
= + ⋅ −

− ⋅ −
[4.15]

where t. denotes the transpose. If iB is an approximation for )( i
fp xJ , then

equation [4.14] enables [4.15] to be simplified by:

1
1 1

1 1

( )
( )

( ) ( )

i
fi i i i t

f fi i t i i
f f f f

r x
B B x x

x x x x

+
+ +

+ += + ⋅ −
− ⋅ −

[4.16]

where 0B I= .

The weakness of this class of SM techniques is in the extraction of
parameters. Indeed, the solution obtained from [4.4] is not necessarily
unique and a condition is added to the derivative in order to increase the
uniqueness probability of the solution.

In the SM technique, the projection function is such that
( ) ( ( )) ( )( )f f ff x c p x c p x= = and ( ) ( ( )) ( )( )f f c f c fg x g p x g p x= = ,

which enables the derivatives of the fine model to be expressed:
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( )f f f c f

f c p c p
x p x x x x
∂ ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ ∂

[4.17]

( )
f c c

f f f c f

g g gp p
x p x x x x

∂ ∂ ∂∂ ∂= =
∂ ∂ ∂ ∂ ∂

[4.18]

which in matrix form is written:

f c p cJ J J J B= ⋅ ≈ ⋅ [4.19]

g g p gf c c
J J J J B= ⋅ ≈ ⋅ [4.20]

where fJ , cJ , g f
J and gc

J are Jacobian matrices of the objective functions

and constraints of the fine and simple models. This enables an equality
constraint to be added to the first-order derivatives and so parameter
extraction [4.4] becomes:

[ ]
( ) ( )( ) ( )

( ) argmin ( ) ( )( ) ( )
f f c cc f

f
x g f g cc c f fc f c

J x J x Bc x f x
p x J x J x Bg x g x

λ β
− ⋅⎡ ⎤−

= + ⋅ ⎢ ⎥− ⋅− ⎢ ⎥⎣ ⎦
[4.21]

where λ and β are weighting factors.

Each iteration of the algorithm then requires the gradient of the fine and
simple models to be calculated, which then becomes more costly in terms of
calculation time, but this appreciably improves convergence. In practice, this
ASM variant is rarely used due to its cost.

Output SM

For this second class of SM techniques, the principle is to correct the
simple model using instant evaluations of the fine model [TRA 09]. The aim
of projection functions is then to match the outputs from the simple model
with those from the fine model. The inputs from the fine and simple models
are identical, i.e. xxx cf == .
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Problem [4.2] is replaced by the equivalent problem:

find * argmin ( ( ))c
x

x p c x y= − where ( ( )) 0g cp g x ≤ [4.22]

where cp and gp are projection functions for the objectives and constraints
and are defined by:

: ( ) ( ( )) ( )
: ( ) ( ( )) ( )

c c

g c g c f

p c x p c x f x
p g x p g x g x

→ =
→ =

[4.23]

In practice, such functions are difficult to find and are replaced by
simpler functions, which are valid locally. Thus, a proportional correction is
proposed in [TRA 09] with functions:

: ( ) ( ( )) ( ) ( )
: ( ) ( ( )) ( ) ( )

c c

g c g c g c

p c x p c x diag c x
p g x p g x diag g x

θ
θ

→ = ⋅
→ = ⋅

[4.24]

where (.)diag denotes diagonal matrix vector transformation and:

1

, 1 , ,

( ) ( )
( ) ( )

i m i i

g i k f i c i

f x c x
g x g x

θ
θ

=

=

=
=

[4.25]

The algorithm is iterative and is completed when:

( ( )) ( )
( ( )) ( )
c

g c f

p c x f x
p g x g x

ε
−

<
−

[4.26]

where ε denotes the desired precision level.

It is important to clarify that this method provides satisfactory results
when the optimization problem is highly constrained. Corrections are not
performed on the constrained functions, but on the outputs of the model,
which avoids the issue of corrections having no effect if the constraint is
active, i.e. 0)( =xgc . Another solution would be to replace multiplication
with addition in order to carry out the correction, or even to use a linear
correction function.
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MM

A third, more recent, class of SM techniques does not involve projection
onto the input or output spaces of simple models, but uses defect correction
functions that modify the target values, i.e. y [ECH 07]. These correction
functions S and gS are applied to objectives and constraints, respectively,
so that the outputs from simple corrected and fine models are equal at the
optimal point:

* *( ( )) ( )S c x f x= and * *( ( )) ( )g c fS g x g x= [4.27]

as for their first derivatives:

* * *

* * *

( ( )) ( ) ( )

( ) ( ) ( )
S c f

S g gg c f

J c x J x J x

J x J x J x

⋅ =

⋅ =
[4.28]

where SJ and
gSJ denote the Jacobian matrices of projection functions S

and gS , respectively.

Figure 4.6 illustrates the correction made using the MM technique.

Coarse model

Fine Model

Fine model

Reverse and transformed
coarse model

Figure 4.6. Alignment of simple and
fine models using MM [ECH 07]
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Problem [4.2] is replaced by the following problem:

find * argmin ( ( ))
x

x S c x y= − where ( ( )) 0g cS g x ≤ [4.29]

This problem is equivalent to:

find * 1argmin ( ) ( )
x

x c x S y−= − where 1( ) (0)c gg x S −≤ [4.30]

The correction functions are chosen affine. Thus, for values mv ℜ∈ ,
k

gv ℜ∈ , mz ℜ∈ and k
gz ℜ∈ , we have the following:

))(())(()(

))(())(()(
**

**

xgzJxgSzSv

xczJxcSzSv

cgScgggg

S

g
−+==

−+== [4.31]

Relationships [4.27] enable [4.30] to be simplified:

* *

* *

( ) ( ) ( ( ))

( ) ( ) ( ( ))
S

g g g f S g cg

v S z f x J z c x

v S z g x J z g x

= = + −

= = + −
[4.32]

By multiplying the relationships above by the Jacobian pseudo inverse,
denoted +. , we obtain:

* * 1

* * 1

( ) ( ( )) ( )

( ) ( ( )) ( )
S

g c S g f g gg

z c x J v f x S v

z g x J v g x S v

+ −

+ −

= + ⋅ − =

= + ⋅ − =
[4.33]

For specific values yv = and 0=gv , from [4.30], then:

1 * *

1 * *

( ) ( ) ( ( ))

(0) ( ) ( )
S

g c S fg

S y c x J y f x

S g x J g x

− +

− +

= + ⋅ −

= − ⋅
[4.34]

In practice, *x is unknown and is replaced by a series ix , which
converges asymptotically towards *x , where *

0 cx x= . Similarly, SJ and
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Sg
J are initialized with ,0

m
SJ I= and ,0

k
Sg
J I= , then replaced by iSJ , and

,S ig
J , which are calculated by:

1 min( , )

1 0 min( , )

,

, 1 min( , )

, 1 0 min( , )

( ) ( ), , ( ) ( )

( ) ( ), , ( ) ( )

( ) ( ), , ( ) ( )

( ) ( ), , ( ) ( )

i i i i i n i

i i i i n i

S i i i

c i c i c i c i i n c i

f i f i f f i i n f i

C c x c x c x c x

F f x f x f x f x

J F C

G g x g x g x g x

G g x g x g x g x

Δ

Δ

Δ Δ

Δ

Δ

− −

− −

+

− −

− −

⎡ ⎤= − −⎣ ⎦
⎡ ⎤= − −⎣ ⎦

= ⋅

⎡ ⎤= − −⎣ ⎦
⎡ ⎤= − −⎣

…

…

…

…

, , ,S i f i c ig
J G GΔ Δ +

⎦
= ⋅

[4.35]

We note that the MM technique is comparable to the output SM
technique if it is left in the form of [4.29]. In these cases, the following
expressions are used to represent projection functions:

* *

* *

( ( )) ( ( )) ( ( ) ( ))

( ( )) ( ( )) ( ( ) ( ))
S

g c g c S c cg

S c x S c x J c x c x

S g x S g x J g x g x

= + −

= + −
[4.36]

Relationships [4.27] enable [4.36] to be simplified:

* *

* *

( ( )) ( ) ( ( ) ( ))

( ( )) ( ) ( ( ) ( ))
S

g c f S c cg

S c x f x J c x c x

S g x g x J g x g x

= + −

= + −
[4.37]

Formulation [4.29] is less popular, since it requires a simple model
correction, while formulation [4.30] is concerned with target correction,
which is easier to program.

4.3.4. Safety transformer application

Control and safety transformers are widely used in industry and the
tertiary sector. Their function is to enable the galvanic isolation
transformation of an alternating voltage of 230 V, linked to the primary
circuit, into alternating voltage of 24 V at the secondary circuit.
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The safety transformer is comprised of grain oriented E-I laminations.
Primary and secondary coils are wound around the material surrounding the
central core (see Figure 4.7).

Figure 4.7. Geometry of a safety transformer

Optimization problem

The optimization problem comprises seven design variables, which can
be seen in Figure 4.7. Three of these define the geometry of the lamination
( a , b and c ), the other variables are the thickness of the laminated pack
( d ), the cross-sections of the primary ( 1S ) and secondary ( 2S ) conductors
and the number of primary turns ( 1n ). Even if some of the variables are
integers by nature, such as the number of turns, they are treated as
continuous variables.

There are seven nonlinear constraints. The copper cuT and iron feT
temperatures should be below 120°C and 100°C, respectively. The
efficiency η should be greater than 80%. The magnetic current 1IIµ and
the voltage drop 2 2V VΔ should be less than 10%. Finally, the filling factor
for the two coils 1f and 2f are no more than 0.5 for the round wire.
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The aim is to minimize the mass of the iron and copper. Thus the
problem is expressed by:

1

2

1

1 1

2 2 2

min

3mm 30mm 0.15mm² 19mm²
14mm 95mm 0.15mm² 19mm²

with
6mm 40mm 200 1200
10mm 80mm

120
100 0.8

subject to
0.5 / 0.1
0.5 / 0.1

tot

cu

fe

M

a S
b S
c n
d

T C
T C
f I I
f V V

μ

η

Δ

≤ ≤ ≤ ≤
≤ ≤ ≤ ≤
≤ ≤ ≤ ≤
≤ ≤

≤ °
≤ ° ≥
≤ ≤
≤ ≤

[4.38]

Models

Thermal, electrical, and magnetic phenomena are modeled using a 3D FE
model with saturation of ⅛ of the transformer, due to symmetries. No-load
and loaded simulations are used to calculate all of the characteristics.

For electromagnetic modeling, the hypotheses are:

– all quantities are sinusoidal;

– iron losses are estimated using Steinmetz’s formula [TRA 09];

– inductances are calculated using magnetic co-energy.

For thermal modeling, it is assumed that:

– transfers between the central core and the coils are uniquely conductive;

– there is no transfer between the secondary (external) coil and the
magnetic circuit;

– apart from the central core, there is no heat transfer between the
primary coil and the magnetic circuit;

– contact between the two coils is perfect;

– all surfaces have the same convection coefficient.
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The magneto-thermal weak-coupling shown in Figure 4.8 requires around
2 hours to be achieved. Iron and Joule losses are calculated using the electro-
magnetic model at full-load, then uniformly distributed to the nodes of the
thermal model, which then provides an averaged temperature distribution
and which is used to update the resistances from the electromagnetic model.
This loop is interrupted as soon as the variation in the copper temperature is
low, typically 0.1°C. The electromagnetic model is used to calculate the
voltage drop and the magnetizing current.

Upgrade of resistance
Thermal
Opera 3D

Magnetic
Opera 3D

Input
variables

Joule and iron losses

Copper temperature

Pcu - Joule and iron losses

Tcu - Copper temperature

r1, r2 - Resistances of the primary and
secondary coils

ρcu - Copper resistivity

n - Number of loops

Lspire - Average length of loops

Sspire - Section of loops

acu - Variation coefficient of copper sensitivity

Figure 4.8. Low 3D FE magneto-thermal coupling

For simple models, the electromagnetic modeling hypotheses are:

– uniform magnetic flex density distribution in the iron;

– use of Boucherot’s formula in order to calculate the maximum magnetic
flux density;

– Kapp hypothesis, which results in the voltage drop created by the
magnetizing current being ignored.
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Figure 4.9. Kapp transformer model

The thermal hypotheses are the same as in 3D FE, with the exception of
temperature, which is assumed to be uniform in the coils of the magnetic
circuit.

Figure 4.10. Thermal transformer nodal model

The electromagnetic and thermal models are aggregated and the system
of equations, which thus creates a strong coupling, is thus solved in around
50 ms.

Results

The SM variants (ASM, output SM, and MM) are applied to the
optimization of this transformer [TRA 09; TRA 07]. The results of
optimization problem [4.38] are shown in Table 4.1.
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Parameters Unit
SQP

Analyti. FE 3D

Opt. direct

SQP

Opti. multi-level

ASM MM OSM

Mtot

# evaluations
of FE 3D

(kg)

(-)

2.311

108 1

2.294

44

2.410

2

2.306

3

2.301

6

Maximum
constraint

% 100.00 101.62 100.90 99.54 100.09 100.00

Single Level Opt. Multi-level Optimization

3D FEAnalyti. SQP

3D FE
evaluations

Table 4.1. Comparison of results from multi-level optimization

In order to highlight the interest in SM, a first single-level optimization,
which uses the simple model and the sequential quadratic programming
(SQP) method, is performed and results in a solution after 108 evaluations of
the simple model. The 3D FE model is then evaluated at the optimal point
found. It appears that some constraints are not satisfied and this point should,
strictly speaking, be eliminated.

A second single-level optimization is then performed using the FE model
and the SQP method, with the same initial conditions. A solution is obtained
after 44 evaluations, or 6 days of calculation time. This solution is better
than the one above, but the convergence is not perfect and some constraints
are slightly violated.
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Three SM algorithms are then tested. ASM, MM and OSM reduce the
maximum constraint to 99.54%, 100.09%, and 100.00%, respectively, after
two, three, and six calls of the FE model. However, the total mass attained
using ASM is not of interest, whereas OSM and MM perform well. The
projection function used here for ASM does not impose derivative equality
[4.21].

4.4. Hierarchical decomposition of an optimization problem

When a device is particularly complex, decomposition is traditionally
used to address its design. Thus, by decomposing the problem and spreading
the work, the global problem becomes approachable. For example, in the
motor industry, businesses use this approach to design cars: specialists work
on motorization, others on the chassis, others on the onboard network, and so
on. Each sub-problem is easier to solve, but requires the demands of each
component relative to the overall system to be defined. Thus, a custom list of
specifications for each component must be written.

Multiple strategies can be used to decompose a device, whether based on
product functionality, the constituent components, or even disciplines or
tasks required for its design (such as electrical or mechanical). This
decomposition impacts on the design method for the product.

Often, the very organization of the business is linked to the
decomposition of the product to be designed. For businesses, this
decomposition is performed specifically on factories, services, and teams,
and drives the internal organizational personnel structure. Furthermore, in
order to enable synchronization and transfers to take place, cross-department
roles exist, for example that of project manager.

Decomposition forces interaction management between the elements that
form the complex system. This is the main disadvantage of decomposition,
knowing that each element is rarely completely independent of the others.
The proposed approach consists of managing these interactions within an
optimization strategy.

4.4.1. Target cascading for optimal design

Traditionally, the problem of complex system design has been
decomposed into multiple sub-problems in order to elucidate and solve it.
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These sub-problems are assigned to design teams who look to provide
optimal solutions independent of others. Systems engineers need to
coordinate these teams so that their combined efforts will enable a
functional, and if possible, optimal solution to be reached for the system.
This approach is currently used within industry. From this organization, and
in the context of optimal systemic design, two approaches are possible.

The first approach consists of re-using models from each sub-problem
and assembling them in order to solve the overall formulated problem using
a single optimization method. However, this approach requires information
and models to be concentrated and forces a single optimization process. A
system engineer may be in charge of this task, but the multiplicity of sub-
systems and their decomposition makes this work very complex, generating
a combinatorial explosion of the test space.

The second approach consists of maintaining the hierarchical
decomposition and constructing an optimization strategy to manage the
decomposition. The general optimization problem is, itself, decomposed into
multiple sub-problems which need to be synchronized. Each sub-system will
be able to be effectively optimized using a suitable algorithm. Thus, the
optimization problem leads to improvements in business structure and
knowledge.

The first approach in which the optimization problem is unique requires
reformulation of the design problem. Figure 4.11a presents a traditional
optimization process with a single model and a single optimization
algorithm. This approach requires long model construction and design
formulation times.

The second approach in which the optimization problem is decomposed
appears to be well suited to complex systems, since it enables reliance on
experts for each sub-problem. Figure 4.11b presents a hierarchically
decomposed optimization process. A model exists at each level, with an
optimization process being linked to each model. The processes are shared in
order to be synchronized by being assigned to the objectives and constraints,
in order to guarantee overall consistency.

Multiple methods can be used to solve a decomposed optimization
problem, but only the target cascading (TC) method will be presented in this
chapter [ALL 04]. The TC approach is a multi-level formulation for
optimization processes’ coordination [KIM 03a]. This approach is used in
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applications such as aeronautical [ALL 06] and automobile [KIM 03b]
design. In order for the approach to be effective, the problem must be
decomposed beforehand.
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Optimisation
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système
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Optimisation

Système

Optimisation

Système

Optimisation

System

Optimization
System

Sub-
system 1

Sub-
system 2

Optimization Optimization

Optimization

a) Initial overall system b) System decomposed using TC

Figure 4.11. Hierarchical decomposition

4.4.2. Formulation of the TC method

The overall problem is decomposed into a hierarchical sequence of
optimization problems. The TC method solves the general optimization
problem by setting objectives for the optimization sub-process and thus
propagates the responses from the new system towards the sub-systems. The
method integrates a downward phase for which the system sets the
sub-system objectives and an ascending phase where the sub-systems impose
constraints on the system. The optimization process seeks to fill the gap
between the propagated objectives and their attained values. The
optimization sub-problem tests the optimal values of local design variables
and restricts the exchange variables to their target values, given by the lower
level. When the general problem has converged, the sub-level targets have
become identical.

Figure 4.12 presents an optimization problem decomposed into three
levels: system, sub-system, and component. Each optimization sub-problem
has its own local design variables and local constraints. An optimization
sub-problem is linked to others through the objectives and constraints
transmitted: U

ssR , L
ssR , U

ssY , and L
ssY . Any communication between

sub-problems occurs through this intermediary. There is no direct link
between two sub-problems from the same level. Sub-problems from the
same level can communicate from link variables ssY by passing through one
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or more upper levels. Each sub-problem is independent but linked to the
others by these exchanges. This formulation enables optimization sub-
problems to be managed to attain general optimization of the studied system.
Decomposition offers the possibility for parallel execution of optimization
processes, which enables complex system optimization to be more
achievable.

The TC process begins with the system, where a vector of target values is
set. The problem of system optimization consists of finding local constrained
variables. Once this optimization problem has been completed, the sub-level
target values, calculated at the upper level, are then transferred ( U

ssR , U
ssY ).

The objective of sub-level optimization problems is to reduce the gap
between the target values and those attained. The TC process transfers the
objectives from level to level, down to the lowest level. Then, the
optimization process for the lowest level transfers constraints ( L

ssR , L
ssY ) to

the next level up. The optimization processes restart and new constraints are
set at the next upper level, and so on, up to the highest level, that of the
system. An iteration of the TC process is thus achieved: one down and one
up. This process continues for as long as a gap exists between ascent and
descent variables ( U

ssR , L
ssR and U

ssY , L
ssY ).
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Figure 4.12. Hierarchical decomposition linked to the TC method
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The decomposition of the optimization problem using the TC method can
be written in mathematical form for the system [4.39], sub-system [4.40],
and component [4.41]. The system and component levels are specific, as
they are situated at opposite ends of the decomposition.

4.4.2.1. System level

At the system level, the optimization problem minimizes the error
between a system-level response and a target value. Furthermore, another
objective of the system is to minimize the gap between the desired system-
level responses and those attained by sub-systems from the level just below.

Osys:
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[4.39]

We see that Rsys is based on system variables Xsys and the expected sub-
system responses Rss from the level just below. L

ssR and L
ssY are the optimal

values found by the lower level, passed to the next upper level. Some
constraints are added in order to match the new system to the sub-system

level responses
2L

ss ss RR R ε− ≤ so that the general problem can be

consistent.

Adding internal variables complicates the optimization problem and thus
the bounds of Rss and Yss have to be defined.

4.4.2.2. Sub-system level

Equation [4.40] represents the jth sub-system. All variables and responses
are associated with this sub-system.
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Oss,j:
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The objective is to minimize the gap between the value given by the
upper level U

ssR , U
ssY and the optimal value for the sub-system. The value for

U
ssR comes from the system-level value for ssR . Constraints are linked to the

lower level and are dependent on the sub-system considered.

4.4.2.3. Component level

Equation [4.41] represents the optimization problem assigned to the kth
component. As above, the upper level imposes its requirements by setting
the value for U

comR . No supplementary constraint is added, since the
component level is considered here to be the lowest level.

Ocom,k:
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2 2
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4.4.3.Mathematical example

To illustrate this we present a simple mathematical example. The non-
decomposed general problem corresponds to a sum of independent, strictly
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positive functions, which are cancelled out for
3k
kx = . A constraint is added

so that the product of 3x and 4x is less than 1. The bounds for all of the
variables are set between 0 and 2. The SQP method is used to resolve this
problem and an initial value of 1 is chosen for each variable [VEN 02].
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The optimal values for x1, x2, x5, x6, are trivial (1/3, 2/3, 5/3, 6/3). Due to
the constraint, a compromise must be found for the values for x3 and x4
(0.816, 1.22).

General equation [4.42] is decomposed into a hierarchical series of
optimization problems. The problem is split into three sub-problems. Two
levels are created: one for the system and one for the component.
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The system objective is set at 0. The values for 1,ssR and 2,ssR are
cascaded to the lower levels and fixed as target values ( 1,ssR = U

ssR 1, ).
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The method converges in four iterations. At each TC iteration, the
optimization method is able to re-use variable values already found in order
to accelerate the convergence. The variable values for the three optimization
problems are:

[ Rssss RRxx ε,,,, 2,1,21 ] = [0.33333, 0.66667, 0.038127, 0.00063445, 4.5533e-007]

[ 43 , xx ] = [0.8168, 1.2243]

[ 65 , xx ] = [1.6328, 2]
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The algorithm is stopped when the error between the cascaded variables
( ,1

U
ssR ,1

L
ssR and ,2

U
ssR ,2

L
ssR ) is less than 0.5%. A cumulative weighting is

added to the error variable Rε in order to facilitate convergence.

4.4.4. Railway traction engine example

This method has been used for the sizing of two components of a
tramway traction engine. A simplified system is used, with the engine
component and the converter radiator being chosen for their significant size
within the traction system. A new system is added that takes the whole
tramway into account. A two-level problem is thus addressed.

Rs, LS ,φs, Mmot Rth, Cth,MHS

TMt, TE

Figure 4.13. Multi-level optimization for a railway traction system

The component level enables the sizing of the two components from their
own constraints and from system objectives. The system level manages the
exchange variables that feed the system model. The radiator model
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comprises six local dimensional variables, three local constraints, and
exchanges three responses with the system level (Rth, Cth, MHS). The motor
model comprises eight local variables for sizing, 10 local constraints, and
exchanges four responses with the system level (Rs, LS, φs, Mmot). The system
model results from response surfaces constructed using business software.
The tramway model comprises two dedicated variables resulting from the
MLI motor and converter control, three local constraints, and two system
responses (Mt, E). Thus, the total number of system-level variables is 10
(3+4+2+ Rε ). Two objectives are set for the new system: total mass and
energy (Mt, E). Figure 4.13 presents the problem in its entirety, an iterative
loop enables convergence of this process from the moment that the values
passed from the system to the component level become equal to those passed
from the component to the system level.

This problem corresponds to the more complex case currently being
addressed in our laboratory. More details are available in [KRE 09]. The
strategy has also been improved to enable convergence when the objectives
are unattainable [MOU 09]. However, a difficulty peculiar to this approach
is access to, or availability of, system models and components. A significant
part of the work is knowing how to re-use models and to develop missing
parts relating to the specific requirements of the application.

The method offers many options for its use in electrical engineering, but
especially modifies the vision and articulation between optimization
algorithms and models.

4.5. Conclusion

The design of electro-mechanical systems is a complex task, which must
be accomplished in order to handle new economic and social challenges.

Modeling tools have multiplied in order to help designers better
understand device behavior. It is now essential to provide design tools to
support designers in these tasks, with the objective of assisting in optimal
systems design. Optimal design encompasses the management of the
diversity of models and optimization tools, and also of the approach to
problem resolution. The objective of optimal design is to aid the design of
more effective products, in response to a multitude of imposed constraints
that a single designer cannot simultaneously manage in overall terms.
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Two multi-level approaches have been presented in this chapter. The
first, SM, enables a component to be designed by iteration between fine and
simple models of the same device, and aims to obtain an optimal solution
with a reduced number of evaluations of the fine model. A large proportion
of the evaluations is performed on the simple model. This approach enables
optimal design using models that are precise, but costly in terms of
calculation time (an example being the 3D FEM). The second approach, TC,
enables components of a system to be designed from a hierarchical model
decomposition and the creation of multiple optimization processes that
exchange objectives and constraints between each other in order to obtain
general problem consistency. This approach enables optimal design to be
performed for complex systems and constraints.

Both multi-level approaches presented progress optimal design along two
complementary directions, the first following the precision of models used
and the second following the exhaustiveness of the system description. One
point of view would be to combine the two approaches in order to
simultaneously benefit from a system description using fine models. Curve

in Figure 4.2 thus shows a potential progression towards the ideal
(point I).

These two approaches are, however, typical of a field of research that is
suited to the problem of designing equipment or electrical sub-systems
before being included in a wider context. Without doubt, we are only in the
early stages and there are many ways forward, whether in terms of numbers
of components, levels, or systemic optimization in a Pareto sense.
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Chapter 5

Multi-criteria Design and
Optimization Tools

The objective of this chapter is to show that the system approach and
optimization revolution must go hand in hand with a new approach using
tools such as component-based software frameworks, which are
interoperable and can be capitalized.

The underlying concepts and principles of the production of these
frameworks are recalled by focusing on multi-criteria optimization for which
we will show the contribution of a framework, such as CADES (Component
Architecture for the Design of Engineering Systems) [DEL 07], in order to
address constraint optimization problems and to produce dedicated
optimization applications and environments.

We will see how various modeling formalisms can be taken into account
in a general modeling system, based on automatic calculation code
generation. We will also show how to automatically calculate the Jacobian
of a model, which is then used to provide complementary information to
enable sensitivity analysis and constraint optimization.

Chapter written by Benoit DELINCHANT, Laurence ESTRABAUD, Laurent GERBAUD and
Frédéric WURTZ.
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We will discuss how multi-criteria system optimization problems can be
effectively addressed using tools that make up the frameworks to solve
problems, such as the overall optimization of a structure, evaluation of the
potential of a structure, comparison between two structures, and briefly, the
sizing and optimization using a system vision.

Aside from tools and methods, we will also present the need to take into
account capitalization dimensions and competency and knowledge
management; this will lead us to consider possible collaborative web
platforms for these tools.

5.1. The CADES framework: example of a new tools approach

Mechatronic systems, such as cars, aircraft, or even buildings, are
systems created by assembling physical components. Thus, a car will be
produced by assembling systems for navigation, injection, braking, and so
on, with these systems themselves comprising a set of more basic
components (such as power electronics, electro-mechanical actuators, and
controls).
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Figure 5.1. Duality between physical and model components for
a mechatronic system of a car
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A design framework should allow each physical component to have a
model that is specified in terms of standard software components, which
offer services necessary for simulation and optimal sizing.

The various participants of the process must be able to exchange or give
access to the software component, which models the component or the
physical system that they are designing or manufacturing. Thus, a car
manufacturer will allow an electrical drive manufacturer access to a car
model, who will, in turn, allow the car manufacturer access to its electrical
drive model (Figure 5.1).

The software framework principles presented, as well as the resulting
CADES implementation, should facilitate this new simulation approach to
sizing and analysis of mechatronic systems.

5.2. The system approach: a break from standard tools

The systemic approach is founded on a breakdown principle within the
context of a major epistemological revolution [WUR 08a], as we explained
in the introduction to [ROB 12]. The principle of systemic modeling, “the
whole is greater than the sum of its parts”, responds to this breakdown
principle:

by substituting the reductionist approach:

– in which the system “is only a simple assembly” of the parts:

- “therefore, if we understand the parts, we can deduce the operation of
the system from them”;

– this occurs in the context to which we are oriented:

- a single vision and objective for the device,

- an independent vision for the project and designers;

to move towards the constructivist approach:

– where the system is greater than the sum of its parts:

- therefore if we understand the parts, this does not imply understanding
of the system,

- since there are emerging phenomena at a system level;



196 Integrated Design

– this occurs in a context in which there is no single vision for the device,
but points of view in constructing the system based on:

- the project,

- the context,

- the objectives (i.e. system models will not be the same for the control,
pre-sizing and detailed analysis of phenomena),

- designers and their competencies.

This revolution should be accompanied by a revolution in software tools
design to support:

– passing from the environment concept: i.e. a fixed and closed, non-
interoperable tools structure, to the

– framework concept: i.e. an environment that is not fixed, but comprises
a set of building blocks based on standards and enabling the building of
custom-built interoperable software applications.

The framework will enable competencies to be created, expressed and
coordinated, which will become completely operational in the context of
collaborative web platforms, which will be developed around software
frameworks.

5.2.1. Some component definitions

Before going any further, we are going to define various types of
components:

– physical component: physical entity to be simulated, modeled and
sized, such as an electrical motor, semi-conductor, etc.;

– model component: model of a physical component, such as a reluctance
model of an electrical motor;

– software component: IT entity, which can be used in various contexts,
which supports, for example, the program code for a model component;

– component: generic term, which is valid for the three types above if
used without any qualification.
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5.2.2. From integrated environments to collaborative tool frameworks

In this context, frameworks constitute a new paradigm for the computer-
assisted design (CAD) calculation approach, notably compared with the
environmental paradigm, which has, up to now, prevailed in this area. Tools
that have now become the norm (such as Flux2D/3D1 and Matlab/Simulink2)
are indeed environmental, i.e. consistent software solutions.

A framework is not an environment. It should rather be seen like “Lego”,
enabling its own application to be formed. It is, therefore, open to receiving
and accommodating applications and to make pre-existing environments
interoperable. Its openness occurs through the use of standards and the
occurrence of software component standards, as we will see later, offering
standardized and recognized services.

The focus of frameworks is to make environments interoperable; thus
other environments may generate or accommodate software components,
provided that associated connection interfaces (ad hoc “plug in” and “plug
out”, see section 5.1.4) are developed. A framework may thus be distributed,
or spread, whereas the focus of an environment is to be executed on a single
computer.

Environments will remain incontrovertible, as in numerical simulation,
enabling knowledge from approaches such as that of finite elements to be
capitalized upon. However, use of single environments would slow down the
resolution of multi-physical and multi-level modeling problems. With the
“environment” paradigm, the single underlying perspective for the resolution
of multi-physical problems was to move towards a single environment, a
perspective that was both utopian and perhaps risky. It is a perspective that
we now no longer believe, as a result of our work, because of the transverse
view that we are using. We are faced with using environments such as
CADENCE3 for micro-electronics, AMESIM4 in the area of mechatronic
systems simulation, Matlab/Simulink in the area of real-time
control, Flux2D/3D for electro-technical actuators and motors and
Portunus/PSim/Saber/Simplorer for the simulation of power electronics
applications, etc.

1 CEDRAT, Flux2D/3D: www.cedrat.com/en/software-solutions/flux.html.
2 MATHWORKS: Matlab/Simulink, www.mathworks.com.
3 CADENCE: www.cadence.com.
4 LMS IMAGINE: Amesim: www.lmsintl.com/imagine-amesim-suite.
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CADES5 [DEL 07], which is the framework that we have developed, is
the acronym for “Component Architecture for the Design of Engineering
Systems”, since it effectively refers to a software component-based
architecture for carrying out engineering systems design. CADES is not a
software environment, but more a framework in which models may have to
be created and then used with various heterogeneous tools or environments.
In fact, the framework defines standardized processes and connections that
enable consistent use of models and associated services, such as
optimization.

5.2.3. A centered model canvas: from generation to utilization

Figure 5.2 gives the structure of this framework, centered around
software components, which will be used to analyze or design physical
components or systems.
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Figure 5.2. CADES: an open framework for system design and analysis

The aim of this framework is make consistent use of:

– software component generators: these enable the designer to describe
the physical system models that he needs to design. These models are then
automatically analyzed, in particular to calculate their parameter sensitivity

5 CADES: www.cades-solutions.com.
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(∂Sj/∂Ei, where Sj denotes the outputs and Ei the inputs of the model)
[DUP 06a; PTD 06; RAK 07b; ENC 09a; PHA 11b];

– software components, which contain calculable device models as well
as complementary data (such as sensitivity) which is dependent on the
generator used [DEL 03; FIS 04];

– users, who are going to utilize the component models in order to offer
useful services in the pre-sizing and feasibility study phases, such as
simulation, optimization and tolerance services [MAG 04; FIS 04].

A whole set of existing tools may be relevant to this framework, which is
centered on the component (see Figure 5.3) via plug-in and plug-out
concepts. A plug-in within the CADES framework is a programmed
extension to the simulation of the concept:

– plug-in: program code that enables modeling/simulation functionality to
be imported into an existing IT tool (such as a simulator), which specifies
the way in which the plug-in works, via its communication interfaces;

– plug-out: by analogy, program code that enables modeling/simulation
functionality to be exported to other tools (such as a simulator).

VHDL-AMS
(SMASH, …)

CADES
framework

Modelica
(Dymola, …)

Matlab/Simulink
(Java)

Excel
(VBA)

OSGi CORBA

Portunus
(C)

iSight
(C)

Labview
(C)

Java
Beans

FMI

Web
Service

…

Comfie
(fichier)

Flux
(fichier)

Saber
(Java)

Languages Tools Components

Key Plug-in Plug-out Plug-in/out

Figure 5.3. ICAr software component bus, ensuring interoperability
between model generators and model users



200 Integrated Design

Therefore, beyond internal CADES framework tools, the advantage of
the framework approach is that it enables interoperability with pre-existing
modeling and calculation environments.

Figure 5.3 illustrates some existing plug-ins and plug-outs, which enable
importing and exporting between models and tools via software components.

5.2.3.1. Plug-out examples

Two types of plug-outs may be produced depending on the possibilities
offered by modeling software. The first enables the whole calculation
capacity of the model to be exported to the component, making it completely
autonomous as regards the generation tool. This encapsulation solution is
preferred as it actually corresponds to the philosophy of the component
approach, but it is not always possible, in which case an alternative is to
drive the modeling/simulation tool via the component. A dependency
between the component mode and the modeling tool is then preserved in this
drive solution.

The following two tables provide a list of applications based on these two
approaches.

Software Application
P-Spice Circuit model [DUR 10]
Modelica System simulation [GAA 11]
Comfie Thermal building envelope [GAA 11]

Table 5.1. Examples of plug-outs using the encapsulation approach

Software Application
Flux 2D System simulation [REZ 11]
Flux 2D Electromagnetic device optimization [DEL 02]
Saber Power electronics simulation and optimization [NGU 10]
Matlab Weak coupling [MOK 11]

Table 5.2. Examples of plug-outs using the drive approach
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5.2.3.2. Plug-in examples

The import of a model into an analysis tool is generally possible and
largely facilitated using the component approach. Indeed, from the moment
the software offers the possibility to import a model or “user function”, the
call to the component will certainly be achievable. The following table
provides a list of plug-in applications.

Software Application
Smash Circuit simulation [REZ 11]
Portunus System simulation [REZ 11]
Matlab/Simulink System simulation [DEL 04c; GAA 11]
Amesim System simulation [DOT 10]
iSight Optimization [DOT 10]
Excel Calculation [DOT 10]

Table 5.3. Plug-in examples

5.2.4. Some “business” application frameworks

Certain modeling approaches, which are easily done by hand for small
problems, quickly become unattainable when these problems increase in
size. Thus, it is easy to solve electrical circuit equations using a pencil and a
sheet of paper if we are dealing with a simple resistor, inductor, capacitor
(RLC) circuit. If we increase the number of components, then we must very
quickly move to numerical methods, with automatic equations, such as in
circuit simulation. In order to facilitate this implementation a schematic
formalism, which we will call the “business” of the electronic or electrical
technician, will be used in these tools.

Similarly, circuit formalism can be used to describe problems in other
physical domains, such as in thermal physics or mechanics. However, in
contrast with some unified formalisms, which are founded in energy
analogies, such as the Bond Graphs [DAU 99; ROB 06] addressed in
[ROB 12] Chapter 2, we refer, for example, to electrical and thermal
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resistance, reluctance6, friction, etc.; therefore, we use the term “business” to
refer to the domain designer.

Rather than wanting to find a general formalism that groups all
businesses together, a framework should propose various “business views”
while relying on a general architecture.

In the case of design, it is important to propose business formalisms to
the designer to enable their physicality to be described as easily and
naturally as possible. Thus, in the CADES framework, we propose business
formalisms so that users can focus better on the problem, without having to
dive into programming code or numerical methods.

Therefore, designers formalize their problem using representations that
are familiar to them and “striking” from the physical point of view, without
being pre-occupied with the corresponding equations. Among these business
approaches, we note:

– magnetic circuit formalism using reluctance schemes, such as that
proposed in Reluctool [DUP 06a; DUP 06b], which enables the resulting
magnetism to be formalized;

– magnetic system geometric formalization, which will be modeled using
integral formulations, still masked from the user, as in MacMMems
[RAK 07b]; in this case, radiated magnetism is modeled;

– frequency modeling of telecoms filters (ADSL) through the description
of various passive circuits, taking account of different signal emission and
reception configurations, in order to obtain the desired spectrums to be
constrained, such as that proposed in electrical circuit modeling (ECM)
[DUR 07];

– automatic equations for frequency models in power electronics (EMC).
The main difficulty arising from the necessity to effect frequency
simulations on temporally discontinuous applications (component control
and commutation), while preserving acceptable calculation times for
optimization [LAN 12; GER 12].

6 Note that there is no conformance with energy analogies here, a reluctance assimilated by
circuit formalism to a resistance being a Bond Graph C-type storage element (equivalent to an
electrical condenser).
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5.3. Components ensuring interoperability around a framework

5.3.1.Model types: white box, black box

Models can be either oriented or non-oriented; they are also referred to as
causal or non-causal, respectively [GER 00; ALL 03]. In this chapter, we
propose to call an oriented model a “box” and a non-oriented model a “ball”.
This distinction is important, as it impacts strongly on the way in which
models are assembled and the way their resolution is addressed once they
have been put together (Figure 5.4).

The ball: a non-oriented, acausal model The box: an oriented, causal model

declarative language

physical dimensions of the model,
variable or non-variable

numerical parameters

inputs

numerical parameters

physical parameters

outputsprocedural language

Figure 5.4. A non-oriented (ball) or oriented (box) model

Models may be formulated in different ways, explicitly and openly,
through closed binary code or by a compromise between two approaches
(Figure 5.5).

Models can be described within an explicit formalism in which equations,
functions and algorithms are precisely defined; in this case we refer to
“white box” or “white ball” models, such as those programmed in computing
languages (e.g. Java, C, etc.), in numerical languages (e.g. Matlab or Scilab),
or even normalized modeling languages (e.g. VHDL-AMS or Modelica).

Conversely, models may be accessible in binary form. In general,
components modeled in this way appear in simulation model libraries
(Matlab/Simulink, Portunus, Psim, Simplorer, Saber, Amesim, etc.). The
user determines a graphical element that he inserts into the diagram and
which he is going to connect to other elements over the course of the
model’s development. Help enables assumptions and the parameters for the
model to be understood, but its equations are inaccessible. These
components are “black boxes” or “black balls”, since the content is not
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accessible (from equations, functions, and algorithms, which represent the
model). Recent developments in information technology (IT) and studies by
the scientific community enable us to consider models formulated in this
way to be portable between simulation environments. One example is the
FMI project7 for dynamic Matlab/Simulink system simulation.

Finally, in between these two levels of accessibility, we define models in
which aspects of open (“white box”) and closed (“black box”) occur
simultaneously. We refer to these as “gray box” models.

s0= e0+e1 ;
s1= e2*sin(s0);
…
s2= e0/arctg(s1);
…
sn= tg(em)/s2;

• Analytical white box:
– Basic equations and functions
– readable by an engineer
– explicit I/O relationships

• Gray box:
– compromise between readability and genericity
– analytical part: basic equations and functions
– numerical part: more sophisticated functions (such

as Solver)

E
S11100001

10101000
10100100
10100010
0111

dE
dS

• Black box:
– compiled programs
– use of more sophisticated (numerical) functions
– masked I/O relationships

Figure 5.5. White, black and gray boxes

This model coloration (white, gray or black) is performed similarly for
both boxes (oriented models) and balls (non-oriented models). For open
(“white ball”) models, equations will be automatically orientated in order to
move them to the box (oriented) model. This is done for languages such as
Modelica and VHDL-AMS. For closed (“black box”) models a re-
orientation of the model (moving through “black ball”) is possible using an
implicit resolution algorithm. Algorithms such as the Newton-Raphson use
the Jacobian of the model. This is what is typically done when developing a
component model in C, in software such as Simplorer or Portunus. These

7 Functional Mock-up Interface: http://www.functional-mockup-interface.org.
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models then become “black balls”, enabling acausality to be preserved
thanks to the Jacobian, which is used in implicit resolution (Figure 5.6).

Nowadays, there are software packages that enable models to be passed
from explicit, often normalized formalism to an explicit formalism, which is
specific to given software. We illustrate this later in the context of the
System Modeling Language (SML) design language, but this also exists in
various simulation software packages written in Modelica and VHDL-AMS.

Non-oriented model
(white ball)

Oriented model
(white box)

Programmed model
(gray box)

Compiled model
(black box)

Series of equations and functions

Modelica, VHDL-AMS languages

Computer language (white)
Call for libraries (black)

Model
library

Non-oriented model
(black ball)

Implicit Algo.

Implicit
algorithms

Executable binary code

Executable binary code

Requirement for the
black box to be re-oriented

Function
library

Figure 5.6. Example of an orientation sequence from white ball to executable black box using
different colored states. Possibility for re-orientation into a black box: the black ball

5.3.2. Black boxes: positive collaboration and re-use

The black box concept enables the exchange and portability of models,
without having to clarify their content. The aim is therefore to condition
them to enable maximum portability between software contexts. The black
box can therefore be used to:

– make models collaborate and make their calculations available, while
guaranteeing their confidentiality;
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– re-use models without fear of error from reprogramming and
transcription.

This is a fundamental element in the move towards the creation of global
models and global optimization by forcing collaboration between players
who have, for example, confidentiality constraints (such as in the motor and
aeronautical industries).

5.3.3. Object, component, and service paradigms

Various computing paradigms enable the implementation of code that
defines models. As we see in Figure 5.7 [MAR 08], a hierarchical structure
with three levels of granularity can be defined in terms of re-utilization
[END 04]. The concept of services, which aggregates that of components,
which itself aggregates that of objects. There are advantages and
disadvantages to each layer, in terms of the coupling dynamic and strength.

Dynamic coupling is necessary to ensure rapid re-use of models. Models
may be available “off the shelf” (DIMOCODE8) as components (models or
software), or even available “online” as services.

Strong coupling is often antinomic with dynamic coupling. If calculation
performance is required, strong coupling would be preferred and an object
model could be implemented. However, according to component
specifications, some superior performances may be obtained using
“intelligent” weak coupling [MOK 10].

The object concept is very current in programming and is de facto
imposed by object languages such as C++ or Java. The software component,
on the other hand, has been in use since the 1990s within computer
technology [SZY 98]. Re-utilization is the key word associated with the
object, component, and service concepts. In computer programming,
component-based re-utilization proposes a different vision to that associated
with object programming [SZY 98]. The main difference comes from a
greater clarity and certainty of definition of what the component requires to
function. In other words, a component specifies couplings with which it can

8 DIMOCODE: Diffusion Internet des Modèles pour la Conception Optimale des Dispositifs
Energétiques (Internet model diffusion for the optimal design of energy devices),
www.dimocode.fr.
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interact with other components. In contrast with a component, an object (in
the object programming sense) can use external code without having to
specify it, which may result in unsecured re-utilization (see Figure 5.8).
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Figure 5.7. Hierarchical architecture of objects, components and services
and the dynamics/coupling compromise
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Figure 5.8. In contrast with the “objects” approach, the “components”
approach defines the services required

A component will therefore be seen as follows (Figure 5.9), describing
the services that it requires, the services it provides, and its parameters.

Various software component implementations are industrial (COM+9,
EJB10, CCM11) and there are many other models (such as Fractal, SOFA,
OpenCOM, ArchJava, FuseJ, and K-Component), each with various non-
functional attributes (such as distribution, inter-operability, safety and

9 COM+: .NET framework Component Object Model (Microsoft).
10 EJB: Enterprise JavaBean (Sun Microsystems, Oracle Corporation since 2009).
11 CCM: Corba Component Model (OMG: Object Management Group).
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persistence) as well as various lifecycle management modes for these
components (static and dynamic).

Component Provided
services

Required
services

Configuration
parameters

Figure 5.9. Graphical representation of a component with its
inputs/outputs and its configuration parameters

The working vision of an IT component for simulation models may be
revealed, in our field, from differential equation integration algorithms,
sizing models, and optimization algorithms, for example.

In the context of an environment aimed at dynamic coupling, we have
shown that using the CADES framework software components offer a
formal context enabling automated methods to be developed, which
guarantees composition dynamics and automatic code-generation techniques.

Therefore, the advantages of components comprise:

– capitalization/re-utilization:

- development of compact models as a result of re-utilization,

- robustness of calculation (already tested, guaranteeing results),

- portability and distribution;

– composition:

- systems construction through component assembly,

- improvement of modularity, functional approach, component
replacement, etc.
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5.3.4. ICAr software components: model normalization for sizing

A technical standard for software components has been specified: ICAr
(Interface for Component Architecture). It has been engineered specifically
for optimal design.

An ICAr may propose multiple views or “facets” for the device in
question. It may refer to a calculation model (analytical or numerical, for
instance), a sensitivity calculation, a document, a graphic visualization, etc.
An ICAr will also be able to propose various physical models (such as
thermal or electrical) or multiple versions of the model for different
requirements (dynamic simulation, optimization or real-time drive, for
example) as illustrated in Figure 5.10.

Figure 5.10. Multi-faceted component approach

Tools that use ICAr components are automatically matched using a
dynamic discovery mechanism of services offered by the component. In
Figure 5.11, we see that tabs proposing the “CADES-Calculator” tool are
dependent on the component loaded.

Figure 5.11. Three views of the same component
(plot, sensitivity and visualization)
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In the context of optimal design, the ICAr component proposes a facet
corresponding to calculation of the model and an optional facet
corresponding to the sensitivity calculation of the model from its Jacobian. It
may thus be connected to optimization algorithms, which may or may not
require gradient data.

Figure 5.12. Multi-facet ICAr component standard for optimal design

5.4. Some calculation modeling formalisms for optimization

5.4.1. Analytical formalisms: algebraic and algorithmic

Within optimal design, we have defined SML as numerous specificities
(external functions concept, specific key words) mean that there is no
equivalent language and we wish to propose a very simple and natural
analytical model description formalism to designers relying on analytical
equations [ENC 10a]. For more complex models, calling on numerical
methods or algorithms, we propose a more advanced formalism, which is
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complementary to this basic language. Indeed, this language is meant to be
very simple and very accessible to non-specialists in IT. Currently, it mainly
enables us to describe an analytical model through:

– scalar or vectorial mathematical functions and equations (see Figure
5.13);

– use of external code, which may be complex, but which we propose for
formulation assistance in certain business contexts;

– algorithms written in Java or C (see Figure 5.14).

Figure 5.13. Model generator described through
the use of equations (SML language)

In association with this language, which enables analytical and semi-
analytical models to be described, we propose a generator that enables this
description to be transformed into binary executable program code,
encapsulated in a software component to enable its portability.
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Figure 5.14. Model generator described through
the use of algorithms (Java or C)

Therefore, we describe models using a declarative language, by giving
access to analytical operators (+, –, * and /), traditional functions (sin, cos,
pow, exp, log, etc.) and some semi-analytical operators (such as, for
example, integrals and system inversions). In this regard, this generator
offers:

– functionalities that enable us to analyze the model and reformulate it in
a structured manner using a computer [DUR 06];

– sequencing functionalities, in order to explain calculation sequences
being constructed in order to lead to calculation code corresponding to the
model declared [ALL 03];

– projection functionalities for the model conditioned for calculation,
using a programming language;

– model derivation functionalities in order to obtain the Jacobians
required by certain optimization algorithms [ENC 09b] or to perform the
sensitivity study [PHA 11b];

– creation functionalities for well-formed software components (in
accordance with standards and norms), which enable the use of models in
various software environments [DEL 07].
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5.4.2. Physical models within various formalisms

In order to respond to the problem of availability of models using their
formulations, we propose tools that would allow designers to create semi-
numerical and semi-analytical models, which are suitable for providing
useful data for the pre-sizing and feasibility study phases. Indeed, the
definition of equations for certain models may become a complicated task if
this is performed manually, all the more so if the problems being modeled
are significant in size. However, such a task can be automated, from a
“business” description, in the form of computer programs, which are referred
to as model generators.
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Figure 5.15. One framework managing various modeling formalisms

The unique nature of each of the approaches developed to create such
models is not only the automation of semi-analytical model generation, but
also in providing the calculation of their formally exact gradients. In fact,
these are models providing maximum data for sizing using optimization
techniques; we thus refer to sizing models.

This generative approach enables a designer to directly establish a high-
level “business” formalism, such as an equivalent circuit or a geometric
structure. Thus, electrical and magnetic circuits or three-dimensional (3D)
geometries are possible. Of course, any branch of physics presenting an
analogy with electricity could be modeled using such mechanisms; for
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example, by making use of the thermics-electricity analogy, as we have done
for the magnetism-electricity analogy.

In this context, Table 5.4 summarizes some of the approaches that we
have implemented.

Objective: Sizing of passive circuits
in the frequency domain

Sizing of
electromagnetic
devices

Sizing of
electromagnetic
devices

“Business”
formalism:

Electrical circuit: Reluctance network: 3D geometry:

Calculated
measure-
ments:

Impedances, gain Magnetic flows,
magnetic forces

Fields,
forces/magnetic
torques, deformations

Calculation
method:

Equations from the Node
potential method

Reluctance networks
methods, calculation of
mesh flows

Integral methods
(Coulombian
approach, magnetic
moment method:
MMM)

Gradient
calculation
methods:

Derivation of linear
implicit functions

Derivation of nonlinear
implicit functions

Symbolic derivation
of numerical
integration, adjoint
method in MMM,
Code derivation

Applications: Passive filters in ADSL,
EMC filters in PE.

Linear actuators,
alternators, etc.

Micro-actuators and
magnetic micro-
sensors

References: [DUR 07] [DUP 06a; DUP 06b;
DOT 10]

[RAK 07a; RAK 08;
DEL 08; PHA 11c]

Table 5.4. Examples of model generation from business formalisms

Thus, from these approaches, a designer can describe component and
system models from electrical engineering using a formalism that is close to
his culture. The generator then takes charge of the complicated, yet
automated aspects, such as:

– programming these models;
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– programming the sensitivity calculation of these models;
– processing of all this into a software component.

These generators therefore directly complement the generator based on
CADES@Generator, presented initially and present within the CADES
framework. In order to illustrate these generators we will briefly review
three studies that have been developed in this area.

5.4.2.1. Passive filter models

The object of these studies is to develop a generator able to describe
schemas consisting of passive electrical components, described as resistance
components, condensers, and inductors (coupled or non-coupled) with
voltage sources. This should enable software components to be generated,
which then enable electrical circuits to be designed. Applications initially
related to filtering in the telecoms industry (see Figure 5.16) [DUR 07;
DUR 10], but may be used in order to study certain EMC filtering of power
circuits [GER 12; LAN 12; NGU 10].
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Figure 5.16. Software component generator for the design
of passive electrical circuits – application to the design

of filters for telecoms use [DUR 07;DUR 10]
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5.4.2.2. Reluctance models

The objective of these studies is to develop a generator enabling models
to be described using reluctance networks [ROT 41]. This formalism enables
the operation of magnetic circuits to be described by performing an
equivalence with the electrical circuits. For this approach, an automatic
equation generation methodology is used, as notably described in [DEL
04a]. The Reluctool [ALB 04A; DUP 06b] software package associated with
this methodology and this formalism has been developed in collaboration
with Schneider Electric, with the aim of simulating and sizing the actuators
and sensors used in circuit breakers.

Currently, Reluctool enables the processing of static sizing models, i.e.
by describing reluctance circuits for given electro-mechanical component
positions, whether for linear actuators [DUP 06a] or rotating machines
[SES 11; LI 11]. Dynamic simulation of linear actuators and sensors is also
available [DOT 10]. Our research studies into the dynamic study of electrical
machines, as well as for the optimal sizing with dynamic models are
ongoing.

5.4.2.3. Non-channeled magnetic models

The object of these studies is to develop a device generator that does not
allow flux tubes to be defined. In this case, basic reluctance network
approaches cannot be applied. This is, for example, the case with micro-
systems, where the production of magnetic circuits is a technological
challenge. To that end, we have developed the MacMMems generator,
implementing an interactive approach between magnetic elements, based on
an integral formulation [RAK 07b]. In short, components can be defined that
are able to:

– react to an external magnetic field;
– create mechanical forces and torques;
– create a magnetic field.

HHex
Γ

F

Figure 5.17. Description of a magnetic
component using MacMMems
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Three element classes have been defined, as shown in Table 5.5.

Element class Description
Magnetic field sources (magnets, conductors)

HHH

Soft ferro-magnetic materials
HHex
HHHexHex

Diamagnetic and paramagnetic materials (induced
field ignored) HexHexHex

HH

Table 5.5. Element classes defined using MacMMems

An elements library has been assembled from analytical field calculation
models [RAK 07b; DEL 10]. The field calculation created by the conductors
relies on the Biot-Savart law, which results in volume integral calculations.
For the field created by the magnets, a Coulombian approach (equivalent
load) is used and generally involves a surface, occasionally volume integral
calculation.

This modeling principle has been successfully employed by researchers
in various magnetic micro-system applications, such as [CHE 07], [PIG 09],
[KAU 10] and [PHA 11a].

1mm

-

Magnetic µ-switch
G2ELab µSystems team

Semi-analytical
model

Figure 5.18. Use of MacMMems to model a magnetic MEMS
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5.4.3. The generation chain

Business generators that make use of business modeling formalisms
belong to the upper level of the standard CADES framework (see Figure
5.19). The principle behind the generation chain is the derivation of the
expert formalism within the more generic formalism corresponding to SML.
As white box formalism is not able to address all of the requirements of
modeling, SML integrates the black box concept in order to obtain an overall
semi-analytical or semi-numerical “gray box” model.
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Figure 5.19. The generation chain, from
modeling formalisms to components

Let us take the example of MacMMems, which generates a semi-
analytical model from the geometric and physical description of the studied
magnetic system. The resulting model, which may be modified or
completed, if necessary, is then passed through the CADES generator in
order to produce the ICAr component. This automatic generation phase may
be totally hidden from the user for business applications. Ultimately, the user
has an available component that can be used within the CADES framework,
or otherwise by using plug-ins.

5.5. The principles of automatic Jacobian generation

5.5.1. The Jacobian: complementary data for the model

It is extremely difficult to symbolically derive models for optimization, to
the extent that a common strategy is to ignore this in order to focus only on
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algorithms that do not use information on the gradient (such as genetic
algorithms, for instance). However, in our research work we have sought to
explore another way aimed at facilitating the acquisition of symbolically
exact gradients.

Obtaining the exact calculation of gradients is motivated by the fact that
this calculation, when possible, results in a more effective optimization;
since by finding the gradient, we have more information regarding the
behavior of the model. Therefore, optimizations using gradients have a
strong likelihood of being faster, which is important for feasibility study
phases for which iterations need to be performed quickly and as reliably as
possible.

Thus, for a strategy where the aim is to extend the exact calculation
capacities of the gradients, we have performed the studies synthesized
below. The points of view explored thus go beyond symbolic calculation to
symbolic explicit analytical algebraic expressions (which was the approach
initially conducted in our laboratory on PASCOSMA [WUR 96]).

5.5.2. Derivation of mathematical expressions

To begin, the simplest option is to derive mathematical expressions using
traditional functions, such as cosine, exponential, etc., for which the
derivatives are well-known. By applying derivative composition theorems,
the derivatives of each function and equation, and thus, the Jacobian of a
purely analytical model, are easily obtained.

For more complex formulations, it is advisable to use mathematical
properties, which is what we propose, for example, for formulations
requiring integral calculations [5.1] or the solving of implicit functions [5.3].

Let us, for example, consider the following integral expression:

∫=
)(

)(

).,,(),(
db

da

dxxcdfcdI
[5.1]

Its partial derivative relative to parameter d, which occurs in the
integrand but also in the bounds, expands into two main terms which make
use of other essential partial derivatives [GER 01].
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For a volume sizing for which one measurement is integrated (calculation
of magnetic force, for example), only the partial derivative relative to the
integration bounds will be necessary, which then results in a compact
integration calculation for one dimension. We then occasionally obtain
Jacobian calculations that are more rapid than the evaluation of the model
itself.

Let us now consider the case of implicit functions defined as follows:

s,k,)X,,X,Pe,,Pe,Pe(F snk 10121 == [5.3]

Functions Gk, which enable the measurements Xk to be defined, are such
that:

s,k),Pe,,Pe,Pe(GX nkk 121 == [5.4]

Although the Gk functions are calculated through a numerical resolution
algorithm, we can symbolically calculate the exactly Jacobian of the implicit
functions in order to obtain the following result by using the implicit
functions derivation theorem [CIA 90]:

MQJ ⋅−= −1 , where [5.5]
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Finally, more specifically, additional methods [GIT 89] may be
developed on the basis of scientific calculation algorithms, such as those
based on discretized partial differential equation resolution [RAK 08].
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5.5.3. Algorithm derivation

We do not, however, always have access to mathematical properties that
enable the derivatives of complex formulations. In this case we propose the
formulation of models in program code form, using C or Java. By using code
derivation, in many cases we are able to obtain the Jacobian of the model.

Automatic differentiation (AD) uses the same process as program code
compilation. The derivatives of each elementary operation are combined
according to the differential calculation chain rule, in order to obtain the
derivative of a more complex instruction. This technique provides an
effective way of calculating gradients, by significantly reducing the
implementation effort. Our first automatic differentiation implementation
(JavaDiff) was in 2004 [FIS 04; FIS 05] and was used in [DEZ 04] in order
to optimize a linear actuator based on a reluctance network model. Currently,
we use Adol-C [WAL 08] in order to derive algorithms written in C
[ENC 09a; ENC 09b] and JAP in order to derive from Java code [PHA 11c].

Figure 5.20 illustrates the principle of direct propagation of automatic
differentiation for a model with two inputs and two outputs.
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function f(double x[]):
return double y[]

begin function f:
double a, y[2];

int i;

if(x[1]>2)

a = x[1] + x[2];

else

a = x[1]*x[2];

for(i = 1; i<=2; i++)

a = a * x[i];

y[1] = a/x[2];

y[2] = sin(x[2]);

end function f;

Figure 5.20. Principle of AD for an example
of direct propagation of derivatives
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However, AD does not resolve mathematical derivation limits, which are
well known at certain non-derivable points of mathematical functions; for
example, the discontinuity and non-derivability created by conditional
statements, such as the following instruction where the derivative at point x0
is not defined:

if (x<x0) then y=y0 else y=y1

This type of difficulty is found in certain specific formulations, such as
the search for an extreme measurement calculated using dynamic simulation
that we seek to either constrain or optimize.

5.5.4. Derivation of specific formulations

In certain cases, the non-derivability of functions at certain points may
disturb the optimization algorithm; therefore, it is necessary to manage these
specific cases. This may sometimes refer to non-derivability introduced into
the model and not presenting a physical characteristic, as for a function
interpolated by affine parts (see the left-hand side of Figure 5.21)
[SAU 00a]. This is also the case for the derivation of a minimum function
research algorithm, which may “jump” from one local minimum to another
depending on how the function evolves (see the right-hand side of Figure
5.21) [DEL 03] (optimization of a micro-actuator that is to impose a minimal
force throughout its displacement).
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Figure 5.21. Non-derivable functions example: to the left, a piecewise linear function;
to the right, a minimization function
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5.6. Services using models and their Jacobian

5.6.1. Sensitivity study

The sensitivity study is a design phase that happens very quickly once the
model is achieved. It enables the variation in calculated measurements,
based on variations on the inputs and the parameters of the model, to be
studied. Assuming low variations, a local sensitivity study may be carried
out using the data provided by the Jacobian of the model. Thus, if these data
are available in the software component of the model, then CADES-
Calculator (Figure 5.22) enables a high speed sensitivity study around an
operating point to be carried out.

Sorting of the
most influential
parameters

Figure 5.22. Screen grab from CADES-Calculator enabling the sensitivity
of the model to be analyzed

With this analysis, we see that the most sensitive variables should be the
focus of particular attention throughout the manufacture of the device, in
order to guarantee a certain level of precision, and thus, to better fit with the
simulation results. We also see how to change the parameters of the system
in order to improve its performances, but these data will be better used by an
optimization algorithm, as we will see in the next section.
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5.6.2. Composition of models

A component can be defined as a unit of composition. Figure 5.23
presents the concept of recursive composition, which aims to define the
hierarchical composition levels for our models. The resulting component is
called a composite component. Thus, a system can be modeled through the
assembly of components and can itself become a component of a larger
system [DEL 04b].

Component 3 Output
portsInput

ports

Configuration parameters

Component 1

Component 2

Figure 5.23. Graphical representation of a recursive
component which defines a composite component

Definition of composite components ports

List of components used

ICAr component library

Tools palette

Figure 5.24. Graphical recursive composition example of components
comprising a distribution transformer model (electromagnetic, geometric,

loss and economic models) [DEL 07]

Various compositions are possible, depending on the nature of the
component. Within the context of optimal design, it is particularly important
to guarantee the composition of the sensitivity calculation. Two approaches
can be considered in this regard: the first by studying the data from partial
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derivatives and the second from data on directional or differential
derivatives. With regards to composition, the differential approach makes
composition much easier [DEL 04d].
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Figure 5.25. Local sensitivity propagation mode: partial or differential derivative
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Figure 5.26. Recursive composition example of calculation models offering two ways to
propagate local sensitivity

The CADES component generator offers two propagation modes, with
the possibility of hybridizing them based on the models to be composed, as
illustrated in Figure 5.26. A composition involving various derivative
calculation methods is, therefore, possible, which is what was produced in
[PHA 11c], where the following were coupled, for the optimization of a
magnetic nano-switch:

– a magnetic model, the partial derivatives of which were symbolically
generated;

– a mechanical deformation model, the differentials of which were
obtained using code derivation (JAP, [PHA 11b]);
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– an iterative coupling model, with symbolic partial derivatives obtained
by the implicit function theorem;

– a supplementary equation model, with partial derivatives obtained using
code derivation [ADOL-C].

5.6.3. Optimal design

The CADES optimizer (or ComponentOptimizer) is able to automatically
connect the model, with its associated sensitivity calculation, to an
optimization algorithm [MAG 04]. These optimization algorithms are
themselves programmed within software components that specifically enable
their composition [NGU 07]. The optimizer thus makes various optimization
algorithms available:

– algorithms, which use the SQP (Sequential Quadratic Programming)
gradient [WUR 96];

– genetic algorithms [NGU 08b];

– Pareto approach algorithms [NGU 08a];

– branch and bound approach algorithms;

– hybrid strategies from composition of these algorithms, in order to
manage, for instance, the continuous and discrete variables and local and
global minima.

Once the components containing the model and the optimization
algorithm are loaded into the optimizer, it offers the following
functionalities:

– the potential to define constraints on the input and output parameters
for the model;

– the definition of one or more objective functions to be minimized or
maximized;

– the potential to track the changes in the parameters over the course of
the process.

Figure 5.27 gives an insight into the operation of this optimizer.
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Figure 5.27. The optimization service proposed using the
CADES framework for the technico-economic
optimization of a distribution transformer

5.7. Applications of CADES in system optimization

5.7.1. Overall optimization of a structure

The first problem that can be addressed using our platforms is
constrained design and automatic optimization, as illustrated in Figure 5.27
for a transformer. By combining the use of a generator (such as CADES-
Generator) and then a composer, we are able to produce the software
component that will be used in an optimizer (such as CADES-Optimizer).
Thus, it is possible to use CADES-PostProcessor to study the changes in the
geometry, as well as the change in cost over the course of the iterations
intended to minimize it, as well as all the constraints to be satisfied (in
Figure 5.27.: bt<1.9, A<4, and so on).

This approach enables sizings, pre-sizings, and feasibility studies using a
vision system: a large number of parameters and constraints may indeed be
considered, notably as a result of the symbolically exact gradient calculation
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performed by the CADES generators. In addition, the model used is the one
created by the recursive composition of electromagnetic, geometric, and
economic sub-models (Figure 5.24), which enables a system approach to be
used from the construction phase for the system model.
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Figure 5.28. Pre-sizing studies example – comparing two
design alternatives for a transformer, one optimizing
the purchase price and the other the lifetime price

This enables studies, such as those in Figure 5.28, to be carried out very
quickly; the upper section shows an optimization of purchase price of the
structure, whereas the lower section shows an optimization of the capitalized
cost of the system over its lifetime, i.e. 30 years, by integrating the cost of
produced losses. The first structure is not as large, and is, therefore, less
costly in terms of raw materials, than the second (46 k€ to 94 k€).
Conversely, in terms of capitalized cost, the second is cheaper than the first
(259 k€ to 359 k€). This method enables a vision system to be quantified and
used for these questions, and shows that, in this case, the most significant
initial investment is largely depreciated over the life of the product. Note that
the typical execution time for such optimizations is around 1 second, which
makes our approaches useful decision-making tools, enabling the designer to
be extremely reactive and offering the possibility for yet more complex



Multi-criteria Design and Optimization Tools 229

strategies to be applied, such as an optimization that integrates robustness or
reliability criteria.

References describing or making use of this example are [FAN 99],
[SAU 00b] and [DEL 02]. In [WUR 08b], these approaches are applied to
eco-design.

5.7.2. Evaluation of the potential of a structure

Our platform, and the methodologies contained therein, enable studies to
be carried out that are more restricted in terms of design compromises. Let
us take, for example, an alternator technology currently available in cars, and
perform a study of the mass-efficiency compromise.

Evaluation of the potential of a technology
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Figure 5.29. Pre-sizing study example – evaluation of the potential of a car alternator in
terms of its mass-efficiency compromises [ALB 05]

Figure 5.29 [ALB 04a; ALB 05], shows how the series-manufactured
alternator (point 1) is positioned relative to all of the best compromises to be
obtained with the following procedure: reluctance network modeling using
ReluctTool [DUP 06b], then optimization using CADES-Optimizer with the
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“Pareto” algorithm [MAG 04]. We see that if we want the mass to remain
constant, the efficiency can be improved by 4.2% (from 61% in (1) to 65.2%
in (5)). We see that if we want the efficiency to remain constant, the mass of
the active parts can be improved by 1.1 kg (4.3 kg in (1) to 3.2 kg in (4)).
These results are significant [ALB 05], although they should finally be
validated by fine numerical simulation or by the alternator manufacturer,
particularly with regard to the modeling assumptions. However, what is
interesting and cannot be contested is the fact that this curve has been
obtained by running nearly 54 degrees of freedom and 130 constraints over
just a few minutes.

Therefore, we have a vision system at our disposal and a high reactivity
level to aid decision-making and feasibility studies, which presents an
extremely interesting potential for industries such as the motor and aviation
industries.

5.7.3. Comparison between structures
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Figure 5.30. Pre-sizing studies example – comparison of drone motor structures using a
compromise between mass and efficiency [ACH 04]
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One of the main problems facing designers in the pre-sizing and
feasibility study phases is the choice of structures. Multiple structures are
often possible and, thanks to platforms such as CADES and their associated
methodologies, a rigorous procedure to aim the decision-making process can
be established. This consists of tracing Pareto curves of the different
structures, having first generated models using our generators, and placing
them on the same graph. We illustrate this in Figure 5.30 for a comparison of
various possible micro-motor structures for an electrified drone [ACH 04].
Since this is an embedded system, we must determine the best compromise
between mass and efficiency. On this graph, we see clearly that structure #3
is the least efficient: across the whole range of efficiency values, it
systematically has a higher weight. Structures #1 and #2 are more
comparable, with structure #2 having a higher weight at below 60%
efficiency and structure #1 having the advantage at above 60% efficiency
[DEL 04].

5.8. Perspectives

5.8.1. Towards optimization using dynamic modeling

5.8.1.1. Dynamic simulation components and services

ICAr models can be defined using ordinary differential equations (ODE).
N-order ODE models are derived from a system of N first-order equations.
These models are explicit, linear or nonlinear and associated with an
algebraic vectorial equation, which defines the outputs from the model based
on the state vector:
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[5.6]

where:

– X: state vector;

– U: source vector (or input vector);

– p: parameters;

– t: time variable;

– Y: output vector.
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This differential system definition is traditionally adopted in simulation
environments such as Simulink or by environments dealing with Modelica
(such as Dymola, AMESim, and OpenModelica).

Associated with this type of model, we have defined some “solver”
components, which include Euler, Trapezoidal and Runge-Kutta integration
algorithms. The composition of a “dynamic” ICAr and a “solver” component
recursively becomes a “static” component, which can be used within the
CADES software framework.
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Figure 5.31. Component for dynamic optimization

Studies are being carried out which take into account differential
algebraic equations (DAE). This formulation is particularly suited to
“circuit” models, which lead to implicit modeling. DAE resolution
algorithms therefore require the Jacobian of the model in order to solve this
formulation. All of our developments that enable the Jacobian to be
calculated are then automatically used to produce the composition of a
dedicated DAE solver model.

5.8.1.2. Model optimization using dynamic simulation

Here we define optimization as the capacity to formulate sizing models
over criteria resulting from the symbolic or numerical resolution of
differential time equations. This may be the calculation of a response time,
average or root mean square (rms) values, extreme values, or path tracking
for controls. In this type of approach, the simplest solution consists of
driving dynamic simulation codes or tools and calculating sizing criteria,
either in parallel, or in post-processing of the results from simulation. This
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type of approach poses no problems, with optimization algorithms requiring
no model gradients, the main limitation being the often long calculation
times associated with such an approach.

If the need is for more efficiency in terms of optimization time, while
considering numerous sizing criteria, the criteria resulting from dynamic
simulation need to be derived relative to the sizing parameters. This
derivation is an area of research where certain solutions are beginning to
emerge [ENC 10b], but it remains a significant task with regards to this
problem.

5.8.2. Towards robust design

5.8.2.1. Sensitivity analysis components and services

Sensitivity analysis relies on the uncertainty propagation methods that we
traditionally find [SAL 00] and have implemented in various studies
enabling sensitivity analysis to take place, which are listed below:

– the Min-Max approach, which enables a model output range to be
calculated; two methods can be used:

- using an optimization algorithm [MAG 03], which is a costly, but
robust technique,

- using interval arithmetic [DEL 06], which is a rapid technique, but
overestimates the range; furthermore, it is intrusive and requires the
availability of the “white box” model for the interval propagation;

– the statistical approach, which enables the average value and the
dispersion to be calculated:

- using sampling on the actual model or on an approximate model (the
traditional Monte Carlo (MC) method and the response surface method
(RSM)): these methods are currently used but are expensive,

- using Taylor approximation (variance decomposition/perturbations
method) [PHA 11b]. This technique is fast and reliable for low uncertainties.
Nevertheless, it is intrusive and requires the use of the “white box” model to
generate gradients.

It is possible to represent these couplings, whether using the Min-Max
(optimization, intervals) or statistical (MC, Taylor approximation) methods.
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Figure 5.32. Various couplings for uncertainty propagation

5.8.3. Robust optimization under reliability constraints

By integrating this uncertainty propagation mechanism with the model, it
becomes possible to create robustness and/or reliability (Figure 5.33).
Robustness characterizes the capacity of a solution to be insensitive to
variations in measurements subjected to uncertainty. Reliability guarantees
that a system will not depart from its validity domain whatever the variations
in measurements subject to uncertainty.

Model

Optimization

Parametering Robustness
ReliabilitySensitivity

analysis

Probability density

Robustness

Limit state

Reliability

Performance

σ

μ

Figure 5.33. Robustness and reliability concepts [TSO 07] and coupling of the optimization
to the sensitivity analysis of the model

A robust and reliable optimization must therefore continually take these
concepts into account. In order to achieve this, the sensitivity analysis is
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associated with the model to be used by the optimization (Figure 5.33). This
oriented robustness approach is detailed in Chapter 4 of [ROM 12].

The MC sensitivity analysis technique (see Chapters 7 and 8 of
[ROM 12]) is not used since it is too costly to be integrated into an
optimization loop. Conversely, a Taylor development enables sensitivity
data that can be used in optimization to be provided at low cost. If a first-
order Taylor development (Jacobian) and a base gradient optimization are
used, the model should then be able to provide its second-order
development. However, in order to avoid heavy Hessien calculations,
approximation using the perturbations method enables satisfactory results to
be obtained [PHA 11b].

5.8.4. Towards the Internet

5.8.4.1. DIMOCODE: a collaborative capitalization platform

The aim of the DIMOCODE (http://www.dimocode.fr) platform is the
diffusion of explicit parts from models, not only in report and documentation
form, but also in software component form (typically ICAr components):
source code and data files that can be directly used within simulation (such
as Modelica, VHDL-AMS and Matlab) and optimization (such as CADES)
environments. This should enable a considerable amount of time to be saved
in the move towards component and energy system optimization, by
benefiting from access to models that are directly usable, as well as
documentation enabling the assumptions and limitations of the model to be
made.

However, this type of platform must also facilitate the direct link between
model designers and users, for a more pertinent use of modeling, but also for
a virtuous improvement in these models. Indeed, for each model made
available, there are associated functionalities, such as wikis, forums, chats,
even video-conferencing tools, which should:

– ensure linking from users of the model to the designer in order to
benefit from his knowledge (by chat or video-conference);

– provide the designer of the model with virtual assistance in the
formalization of equations, limits, and assumptions for the model, through
direct feedback on model usage by users (through tools such as forums or
wikis).
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Figure 5.34. DIMOCODE: proposal for a web platform for a new approach for the
capitalization and diffusion of models

5.8.4.2. Web-services: decentralized calculation

Beyond the component approach, the service approach [PAP 03] relies on
the provider/consumer model, in which a set of service providers (e.g. a
calculation service) is placed at the disposal of eventual consumers. The
mechanism enabling this dynamic functionality to be attained is that of the
“publication, discovery, invocation” trinity, as shown in Figure 5.35.
Services are published when they are available; then, when a consumer
needs a particular service, he finds it in a service registry via a service
contract and then invokes it in order to use it. According to [PAP 03],
services are entities that can be processed and auto-scripted using a computer
and which are independent of the execution platform.

Service orchestration, or workflow, corresponds to the sequential,
parallel, looped, conditional, synchronous, or synchronous linking of
services. This occurs in the conceptual context of Service Oriented
Architectures (SOA [BEL-10]), such as web services or numerous other
implementations (such as JINI, OpenWings, Corba and UPnP).
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Figure 5.35. The “publication, discovery and invocation” trinity

A declination of the service-oriented approach has been introduced in
order to effect the contribution of the component approach and to combine
the dynamic aspect of service discovery with the recursive component
composition approach. For example, we have the SCA (Service Component
Architecture) model for web service composition and the iPOJO12 model for
the structural composition of OSGi13 services.

The ICAr software component standard presented in this chapter is
compatible with the OSGi and WebServices technologies. These
components therefore offer a favorable landscape for the CAD platform of
tomorrow, which will be web based. To illustrate this, the following example
aims to optimize a temperature regulator associated with a dynamic thermal
building model and a heating system (the ANR SIMINTHEC14 project),
without making local use of the model. To achieve this, the (local) optimizer
interrogates (transparently) a distant web server at each iteration. The
optimization of the distant model has been compared with a local
optimization. The solutions found and the paths followed, are similar, and so
show the robust behavior of the model.

12 iPOJO: injected POJO, http://cwiki.apache.org/confluence/display/FELIX/iPOJO.
13 OSGI: www.osgi.org.
14 SIMulation and INter-operability for THermal and EleCtric building energy management.



238 Integrated Design

Figure 5.36. Provision of a calculation component onto a web server (left). Request for a web
service (right) (developed by P.Y. Gibello of Petals Link15)

This potential for easily publishing (web interface) and distantly
interrogating a calculation model offers some interesting perspectives with
regard, for example, to relationships between customers and providers
during system design and optimization.

5.9. Conclusions

In this chapter, we have presented a vision of future tools for design and
multi-criteria optimization by illustrating the solid example of the CADES
framework. By relying on a component and cooperative module based
architecture, these tools will be equipped to respond to model capitalization,
reutilization, and interoperability problems in a vision system. They will be
“model centered”, thanks in particular to the transformation of high-level or
“business” formalisms (such as electrical circuits and 3D representations)
using automatic generation methods written in executable program code.

Model components will be able to be defined according to their degree of
explicitness (black or white) and their orientation (ball or box). In this
context, we have defined a “black box” software component standard called
ICAr, which is dedicated to optimal sizing. The path from business
formalism to component for optimization requires a generation chain being
able to pass through various intermediary formalisms, which may or may not
be standardized. For example, this is the case for our SML language, for
semi-analytical modeling dedicated to optimization.

15 Petals Link, open source SOA solutions editor (www.petalslink.com).
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In the context of sizing, the availability of the Jacobian of the model is a
serious advantage. We have shown that it was possible to symbolically
exactly and systematically produce this Jacobian, by symbolic derivation in
the case of analytical formulae, by using mathematical theorems in the case
of specific algorithms and by more generally using automatic code
derivation for other algorithms.

Thanks to these software components, which offer a calculation service
as well as complementary data via the Jacobian of the model, it is possible to
undertake sensitivity and optimization studies. These components also aim
to be composed to create a more global system. Thus, some example
applications of the CADES framework have been given, such as the overall
optimization of a structure, the evaluation of a structure’s potential, or even
comparisons between structures.

In terms of perspective, the optimization of systems increasingly
integrating criteria and the taking into account of supplementary
optimization measurements is becoming a necessity. We have, for instance,
criteria resulting from a dynamic simulation, such as a response time or even
from the notions of robustness, and reliability associated with an optimal
solution. Finally, the perspectives relating to design and multi-criteria
offered by the Internet must be considered for tools. For example, this is the
case for the provision of modeling competencies and canvas optimization, as
well as for the diffusion of models, which can be directly used in distributed
ways in system optimization.
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Chapter 6

Technico-economic Optimization of
Energy Networks

6.1. Introduction

The first five chapters of this book have addressed problems linked to the
sizing and optimization of energy systems. In this chapter, we tackle the
problem of the optimal driving of an existing system. Short-term optimal
management (from several hours to several days) of energy systems is
indeed a major industrial and social issue [SAN 05a]. Indeed, from a purely
technical perspective, the emergence of new technologies (high-efficiency
installations such as, for example, co-generations and consumer-demand
prediction methods), combined with advances in calculation power, has
enabled the management of production installations to be improved. From an
economical perspective, the expansion of energy markets [RIO 07] has led to
a highly competitive field that is forcing producers to optimize the
management of their production facilities. Finally, from an environmental
perspective, the issue is the reduction of pollutants, which can be facilitated
using optimal and reasoned production management.

Thus, the management of a production, distribution, or energy storage
network has become as much an environmental issue as a technical one,
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before even considering environmental and legislative constraints. It
appears, therefore, that management needs to be optimized so that the
operational benefits of the network can be maximized, while observing the
constraints imposed. This task is made more complex by virtue of the
diversification of energy sources, which may coexist within the same
network (such as electricity, gas, oil and steam). In addition, modeling this
type of system should integrate uncertainties linked to parameter
identification, or simplification of the model (with a view to its
optimization), or uncertainties stemming from the provisional nature of the
planning relating to system function (such as actual consumer demand and
economic fluctuations). This being the case, it is imperative that this optimal
management is robust, so that system performance can be guaranteed, in
spite of the different sources of uncertainty. This robustness problem is
similar to the problem of operational safety, which was addressed in Chapter
8 of [ROB 12].

Section 6.2 presents the modeling used for energy networks. This
modeling is very similar to that used in “Unit commitment”. We pay
particular attention to the sources of uncertainty presented for the system
being considered. Solving this problem in a deterministic case, i.e. with no
uncertainty, is addressed in section 6.3. After recent development regarding
possible methods that can be used to study this problem, we focus more
specifically on solutions using dynamic programming and Lagrangian
relaxation. This method can be extended to solving problems involving
uncertainties.

We then address the optimization of an energy network subjected to
uncertainties. Following a brief introduction into the consideration of
uncertainties in section 6.4, section 6.5 presents the solution to the problem
for the traditional case of uncertainties over consumer demand. Section 6.6
then shows the results obtained in the case of uncertainties over production
costs. This type of uncertainty is specifically encountered for a co-generation
installation for which the resale price of electricity would be uncertain as it is
indexed over the electricity market. Finally, in section 6.7, we address a
second approach enabling the system to be made more robust regarding
errors in consumer-demand prediction. This approach uses the closed-loop
philosophy and is based on the principles of predictive control.
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6.2. Energy network modeling

6.2.1. Context

The objective is to optimize the operation of a network that transports
energy from a set of producers to a set of consumers. The energy transported
may be in the form of heat or electricity. The issue is thus to maximize the
efficiency of the installation. Indeed, in general, network administrators,
whether electrical or thermal, are in a virtual monopoly position.
Consequently, optimization of cost-effectiveness involves minimizing
operating costs. This criterion, therefore, provides a good indicator of the
performance of an energy network.

These networks present physical impossibilities and constraints, the
common one being the balance between production and consumption, at
least for the electrical networks. Other notable constraints relate to
production dynamics, stop-start cycles, and minimum shutdown or operation
times. In addition, these same stop-start cycles lead to overspend due to wear
and tear or due to the energy used to start production. Consequently, the
decision to start a production center, or even keep it operating, has
significant consequences.

As a result of these constraints and characteristics, the efficient direction
of these networks must be made in advance by anticipating consumption for
a particular temporal horizon and by readjusting production plans based on
demand. Note that the different dynamics coming into play (such as
propagation times in thermal networks and stop-start cycles) impose a
significant anticipation horizon of around a day. This will have significant
consequences on optimization by considerably increasing the number of
variables to be taken into account, as well as introducing uncertainties linked
to anticipation into the model, as we will see in the following sections.

6.2.2. Notations

We consider here a set of K producers working together to satisfy
consumer energy demand. The temporal horizon is split into N temporal
periods (typically a day split into 24 hour segments). A very traditional
model is used. The following notations will be used throughout this chapter:
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– k
nQ : power produced by installation k during period n ; this is a real

variable;

– k
nu : operating state (on = 1, off = 0) of installation k during period n ;

this is a binary variable;

– dem
nQ : consumer demand during period n .

6.2.3. Objective function

The objective function is written as follows, referring to the total costs
linked to the operation of a production unit (fuel, usage, etc.). These costs
are represented using the following function:

/ 1
1 1

( , ) ( , )
N K

k k k k k k
prod n n on off n n

n k
c Q u c u u−

= =
+∑∑ [6.1]

The costs of production are expressed by:

1 0( , )k k k k k k k
prod n n n nc Q u Q uα α= + [6.2]

Here we have chosen a linear expression for the costs of production in
order to simplify the illustration. It is quite clearly possible to use more
complicated expressions, such as quadratics, in the production variable or
even in table form from actual measurement points.

In equation [6.2], 1
kα represents the total costs based on production

(typically fuels and fossil-based raw materials, for instance) and 0
kα

represents the total fixed costs (linked to wear and tear, for example). Some
of these costs may be affected by uncertainties. This is notably so for a
cogeneration installation selling electricity at a variable price based on
market conditions. This is also the case when there is a waste incinerator
involved.
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The calorific power from incinerated waste is indeed variable over time
and the efficiency of the thermal energy production is therefore uncertain. In
general, coefficients 0

kα and 1
kα are usually identified from measuring

points and are therefore subject to estimation errors. How this uncertainty is
handled will be studied in section 6.6.

The stop-start costs are expressed by:

/ 1 1 1( , ) (1 ) (1 )k k k k k k k k k
on off n n start n n down n nc u u c u u c u u− − −= − + − [6.3]

k
startc represents the total costs linked to the startup of unit k and k

downc
the total costs linked to its shutdown. It is partly due to wear and tear, or to
the energy used to start them up, that production units are affected by these
operations. These costs are difficult to calculate and so the values used here
are therefore estimates. These are again unknown parameters, which also
make the cost function uncertain.

6.2.4. Constraints

6.2.4.1. Demand satisfaction constraint

This is the main constraint of the problem. It is also called an equilibrium
constraint, as the balance between production and consumption is a central
problem for energy networks and, in particular, electrical networks. In the
thematic for the unit commitment problem, it is also called a coupling
constraint, as it links the production of various units between each other:

{ }
1

, 1, ,
K

k dem
n n

k
Q Q n N

=
≥ ∀ ∈∑ … [6.4]

In the case of electrical networks, this constraint is replaced by an
equality. However, even in that case, an inequality can be used. Indeed, the
optimal policy is to produce as little as possible. Consequently, the
optimization algorithm will naturally find a solution that is very close to the
equality. As a consequence of the various time constants implied in the
operation of the network, production is planned in advance. The exact value
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of dem
nQ is thus unknown and an estimate of consumption is used. This

estimate is naturally affected by uncertainties, which will require an
adjustment during production in order to retain the balance required for
optimization.

6.2.4.2. Capacity constraint

This constraint restricts the production of units. This restriction may have
a physical origin, or result from the network management policy. It is
expressed as follows:

{ } { }, 1, , , 1, ,k k k k
n n nQ u Q Qu n N k K≤ ≤ ∀ ∈ ∀ ∈… … [6.5]

kQ (and kQ ) represents the minimum (and maximum, respectively)
production capacity for installation k . We note that the restrictions may be
affected by uncertainties, for example for wind production or photovoltaic
units.

6.2.4.3. Minimum up- and downtime constraints

These constraints reflect installation dynamics and the impossibility for a
unit to alternate quickly between on and off states. They are expressed by the
following logical implications:
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…

…

… …

[6.6]

where k
upT and k

downT are the minimum on and off time intervals,
respectively, specified for each unit.
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6.2.5. Expression of the problem and eventual linear reformulation

The applied problem can finally be written as follows:
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As such, the problem presents a quadratic cost function (from the start
and stop costs, which involve products of optimization variables 1

k k
n nu u − )

and nonlinear constraints. If required (based on the resolution method used),
it is possible to reformulate this problem linearly by introducing on and off
variables k

nδ and k
nε , respectively:
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Equivalently and linearly, these variables can be expressed by the
following set of linear constraints:
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Hence, problem [6.7] can be re-written as:
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Therefore, the reformulated problem is totally linear. This may be some
help for a completely mixed programming algorithm solution, such as
“branch and bound” [LAN 60]. Indeed, this type of algorithm requires
solutions to problems that ignore integer constraints. Since the
corresponding problems are linear, they can be effectively solved using the
simplex algorithm. In using this algorithm, it should be noted that an adapted
“branch” (the “branch” phase of the algorithm) strategy means that, by
introducing the on and off variables k

nδ and k
nε , no supplementary

combinatory complexity is added.

6.2.6. Position of the problem processed relative to the problem of energy
network management

Attentive readers will have noticed that the modeling presented here
corresponds more to production than to energy networks. However, in the
vast majority of cases, the distribution aspect is virtually disconnected from
the production aspect. A macro-model is available for the network itself so
that production graphs can be established before being produced for each
production site. To obtain complete satisfaction, this production graph must
therefore be spread across these sites.
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The model here is therefore applied to these production sites. Thus
consumer demand can be interpreted on a case-by-case basis, as if for an
actual consumer, or even as for the overall production curve applicable to the
production site (the demand from the distribution network). Consideration of
the distribution network may occur by introducing propagation delays by
modifying, for instance, the equilibrium constraint [6.4] using the following
constraint:

{ }
1

, 1, ,
k

K
k dem

nn n
k
Q Q n N−

=
≥ ∀ ∈∑ … [6.11]

where kn is the propagation delay between the producer and the
consumer. This delay exists and cannot be ignored for district heating
networks, where it corresponds to the fluid propagation delay. If there are
multiple consumers, a constraint of this type must be introduced for each
consumer and coupling constraints for the production of each site (the sum
of energy delivered by a producer to all consumers must be equal to the
energy generated by the producer). Of course there are more refined
distribution network models (electrical or thermal), which take into account
variable propagation times and line losses. In the case of heat networks,
examples are [ARV 01], [SAN 05a] and [LAR 02].

The corresponding modeling can be achieved using partial differential
equations. The handling of this type of problem goes beyond the context of
this chapter. We are now going to address the resolution of the problem
described in this section by starting with the deterministic case, i.e. with no
uncertainty.

6.3. Resolution of the energy network optimization problem for a
deterministic case

6.3.1. State of the art

A number of resolution methods have been used to solve this
optimization problem. A very good bibliography on this subject can be
found, for example, in [SEN 98]. Amongst the methods to be found in
literature, the following can be distinguished:
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– exact methods: amongst these methods, we essentially have the branch
and bound [CHE 93] and dynamic programming [HOB 88; OUY 91]
algorithms. As these algorithms solve the exact problem, their algorithmic
complexity is exponential. This type of optimization method is therefore
necessarily restricted to small-scale systems, i.e. those with a reduced
number of producers;

– deterministic approximation methods: another class of method is made
up of methods that are approximations but deterministic. Amongst these
methods, we find, for example, priority list [SAN 05b; SEN 04], or expert
system [LI 08] methods and relaxation-based methods such as Lagrangian
relaxation [BAK 00; DOT 99; FER 93; ROO 94; TAK 00; ZHA 02];

– stochastic approximation methods: amongst these methods, we find
simulated annealing [YIN 98; ZHU 98], genetic [KAS 96; MA 95; POO 08;
SAN 08], and ant colony [SAN 04] based algorithms. This type of algorithm
does not enable the exact solution to the optimization problem to be found,
but allows solutions that are over-optimal but of good quality in a reasonable
time. Except for the ant colony algorithm, which explicitly manages the
problem constraints, quite specific attention must be paid to satisfying
constraints due to the random characteristic of displacements within the
search space;

– hybrid methods. The objective is the association of multiple resolution
methods in order to combine the advantages from them. Thus, here we find
methods that make use of genetic algorithms to optimize Lagrangian
relaxation parameters [CHE 00; DUO 99; OHT 96; ORE 97; SHE 96],
methods associating multiple stochastic methods (simulated annealing and
genetic algorithms in [CHE 02; YIN 01], genetic and ant colony algorithms
in [SAN 08b], and methods associating genetic algorithms with a tabu search
in [MAN 99; RAJ 04]).

In the following section, we have chosen (section 6.3.2) to focus on
resolution using dynamic programming algorithms, from the possibility of
extension to robust optimization problems. We will finally resolve the
problem using the genetic algorithm (section 6.3.3). Note that in the context
of this section, we place ourselves within the deterministic context.
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6.3.2. Resolution by dynamic programming and Lagrangian relaxation

6.3.2.1. Resolution by dynamic programming

6.3.2.1.1. Dynamic programming principle

Dynamic programming is an optimization technique that uses Bellman’s
optimality principle. Let us consider a system characterized at instant n by
state variables nx and driven by a decision quantity nu . Under the impact of
this decision, the system evolves into state 1nx + according to its transition
law:

1 ( , )n n nx x uφ+ = [6.12]

In parallel, we seek to optimize system operation by searching for the
optimal control policy in the form:
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where:

– 1( , )trans n nc x x− is the transition cost from 1nx − to nx ;

– ( )state nc x is the cost of passing through state nx .

In this case, the problem can be solved using the recurrence optimality
equation, which is generally solved using countdown time:

1 1 1

1

( ) min ( , ) ( )

min ( , ( , )) ( ( , ))
n

n

n n trans n n n n
u

trans n n n n n n
u

F x c x x F x

c x x u F x uφ φ

+ + +

+

= +

= +
[6.14]

6.3.2.1.2. Elimination of real variables

In the context of unit commitment problem [6.10], it is possible to eliminate
the real variables k

nQ and to calculate them from binary variables k
nu . Let us

thus assume that variables k
nu are given and correspond to production planning
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that does not violate the constraints. The production variables k
nQ are then

solutions to the following problem:
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Various simplifications introduced into the equation above result from
the optimization of variables k

nQ at given values for k
nu . Hence, any term

that is not dependent on k
nQ can be suppressed from the cost function to be

optimized. Planning is assumed to be feasible. Therefore there are no longer
any constraints coupling multiple temporal periods and the problem can be
divided into N independent problems:
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Without loss of generality, let us consider that 1 2
1 1 1

Kα α α≤ ≤ ≤… , then
the solution is to produce as much as possible with the most cost-effective
installations. This comment results in the following recursively calculated
values being chosen as production variables:
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The optimization problem can therefore be reformulated into a
completely binary variable problem, where the optimization variables are a
sequence of on and off decisions from the production installations.

6.3.2.1.3. Resolution without consideration of minimum start and stop time
constraints

In the case where minimum start and stop time constraints are not
considered, the state of the production system is characterized by the states
of each installation. Thus, in relation to the development of equation [6.14],
we have:
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Hence, in this case, the recurrence optimality equation [6.14] becomes:
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6.3.2.1.4. Consideration of minimum start and stop times

In this case, the start state of each installation is no longer an indicator of
the system’s past. It is necessary to know length of the start or stop states in
consecutive hours in order to understand future development. Thus, in this
case, we introduce a quantity k

nx , which characterizes the number of

consecutive start ( k
nx is thus positive) or stop ( k

nx is thus negative) hours:
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This equation thus characterizes the transition relation ϕ . In this case, the
following are therefore used:
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6.3.2.1.5. Limitations on the use of dynamic programming

The use of dynamic programming enables the problem to be solved
exactly. However, this type of algorithm is impacted by combinatorial
explosion when the number of units increases. Indeed, when the minimum
start and stop time constraints are not considered, the number of possible
states for the system at a given instant n is 2K . Complexity is aggravated
when temporal constraints are taken into account. In order to reduce this
combinatorial explosion, Lagrangian relaxation is often used to decompose
the problem into multiple reasonably sized sub-problems.

6.3.2.2. Use of Lagrangian relaxation

6.3.2.2.1. Problem formulation

In order to reduce the combinatorial complexity of the problem, we relax the
constraints coupling multiple units, i.e. the demand satisfaction constraints.
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Thus we introduce N Lagrange multipliers { }, 1, ,n n Nλ ∈ … and the
corresponding Lagrangian:
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By changing the order of the terms and inverting the sums, the Lagrangian
can be re-written:
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Using Lagrangian duality, we now need to resolve the following dual
problem:
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6.3.2.2.2 Problem resolution method

For given Lagrange multipliers, problem [6.24] is a unit commitment
problem with K units, but which can be decomposed into K problems with
a single unit each. Each of these sub-problems can, therefore, be easily
resolved using dynamic programming without being affected by
combinatorial complexity.

The Lagrange multipliers { }, 1, ,n n Nλ ∈ … should then be optimized.
One of the advantages arising from use of Lagrangian relaxation is the fact
that the problem obtained is one of maximization of a concave function, for
which any local optimum is, therefore, a global one.

Once dual equation [6.24] has been resolved, there is no guarantee that
the solution found will be one that satisfies all of the constraints of the
problem. Indeed, the initial resolved problem is a non-convex optimization
problem and a duality “gap” may exist. Therefore, it is necessary to set up a
post-processing stage, which enables the solution obtained to be “fixed”.
One possible method is to slightly increase the solution multipliers of the
dual problem until a solution is obtained that satisfies all of the constraints.

6.3.3. Resolution by genetic algorithm

Here we present resolution of the problem using a method of
approximation, the genetic algorithm. The advantage of this type of
algorithm is in the ability to handle large-scale cases, and to be easily
extended to multi-objective problems. These algorithms were introduced in
Chapter 2 of this book, more specifically for optimal simultaneous design
problems.

6.3.3.1. Consideration of constraints

As we have seen, the unit commitment problem is a highly constrained
one. The genetic algorithm is a non-constrained optimization algorithm
requiring some care so that constraints can be taken into account. In our
case, we choose to have recourse to a penalty function. The objective of
equation [6.7] is therefore transformed into:
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which is an equation in which:

– ε is a small positive real number;

– fc is the cost of a known feasible solution;

– { }( ),k k
n nh u Q is a penalty function (for example, the number of violated

constraints, or the quadratic deviation of the constraint violations);

– { }( ),k k
n nB u Q is a Boolean equal to 1 if the solution violates the

constraints and equal to 0 if it satisfies them.

The proposed objective enables assurance that there is a higher cost
associated with any solution violating the constraints than with the known
feasible solution. We note that it is not very difficult to find such a solution,
a solution where all units are active over the temporal periods being
generally feasible.

6.3.3.2. Introduction of suitable genetic operators for the problem

Traditional genetic algorithm operators only have a low probability of
creating feasible individual solutions. Indeed, if we take the mutation
operator example, complementing a variable will most likely lead to
violation of the minimum start/stop time constraints. In order to improve the
quality of results, it is useful to introduce supplementary genetic operators,
which increases the probability of obtaining feasible individuals, by using a
priori system knowledge.

Therefore, we have introduced the following operators: the exchange
operator, the selective mutation operator, and operators that are “all on” and
“all off”.
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6.3.3.2.1. Planning exchange operator

The planning exchange operator is represented in Figure 6.1 and refers to
internal crossing for an individual by exchanging the planning of two
production units. Creation of this operator is motivated by the fact that some
production installations are more cost-effective than others.

0 1 1 1 0

1 0 0 1 1

N temporal periods

K units

Figure 6.1. Planning exchange operator

6.3.3.2.2. Selective mutation operator

The genes that are more likely to mutate and thus to result in a feasible
solution are those that we can switch on or off. Therefore, we need to detect
these genes for the individual concerned and then carry out a random
sampling for these genes. This operator is represented in Figure 6.2.

1 1 1 1 1 10 0 0 0

Areas where mutation
may preserve feasibility

Selective
mutation

Figure 6.2. Selective mutation operator
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6.3.3.2.3. “All on” and “all off” operator

Let us consider the situation in Figure 6.3: a constraint, in this case a
minimum stop time constraint, may prevent a solution being reached where
the production unit in question is on over the whole temporal horizon, which
would result in interesting start/stop costs. With the operators above, one of
the only possibilities would be two successive mutations (traditional or
selective); the probability is low. We have therefore add an “all on” operator
(and a complementary “all off” operator), which fires up (or puts out) a
boiler between two randomly chosen instants.

Figure 6.3. “All on” operator

6.3.3.2.4. Conclusion regarding these new operators

The operators presented here remain stochastic. Based on the a priori
knowledge of the problem, they increase the probability of staying in
feasibility space. We touch on a capital element here: a method is never
frozen and we must make use of the a priori knowledge of the system to
direct the solution.

6.3.3.3. Numerical results

Table 6.1 presents the results obtained for large-scale examples, over a
temporal horizon of 24 hours. These tests have been carried out for given
techniques and a given consumption, which enables advance knowledge of
the optimal solution. Therefore, it is possible to work out the percentage cost
deviation compared with the optimal solution. Generally, this is not possible.
The results obtained are highly satisfactory, even for cases with 100 units or
2,400 binary variables.
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Since the genetic algorithm is stochastic by nature, it is necessary to
statistically validate it. Thus, each test is carried out 100 times and the best
result obtained is shown, as well as the mean results and their standard
deviation σ . Furthermore, we indicate the number of iterations for the
algorithm used, as well as the corresponding computation times. In each
case, the population size is fixed at 50 individuals.

No. of
units

No. of
iterations Best Mean σ Time

10 500
29,815 €
(+0.07%)

30,016 €
(+0.74%)

185 € 188 s

20 500
1.50×105 €
(+ 0.1%)

1.51×105 €
(+ 0.9%)

710 € 466 s

40 1,000
5.56×105 €
(+ 0.07%)

5.59×105 €
(+ 0.7%)

1.76×103 € 3,100 s

60 1,500
1.21×106 €
(+ 0.21%)

1.22×106 €
(+ 0.37%)

3.45×103 € 12,000 s

80 2,000
2.14×106 €
(+ 0.32%)

2.15×106 €
(+ 0.61%)

6.83×103 € 21,000 s

100 2,000
3.34×106 €
(+ 0.85%)

3.36×106 €
(+ 1.51%)

1.50×104 € 34,000 s

Table 6.1. Optimization results using the genetic algorithm

6.4. Introduction to uncertainty consideration

6.4.1. Consideration of uncertainties

In section 6.3 we saw the problem of technico-economic optimization of
an energy network being solved in a deterministic context. This deterministic
approach to optimization problems for uncertain systems gives imperfect
results. The optima obtained are affected by two defects:

– results presenting risks. Optimization algorithms generally force the
system to its operating limits. Since the system parameters cause the
operating point of the system and/or its constraints to vary, it is possible that
the solution, initially thought to be feasible, could be found to be
unworkable. This defect can generally be corrected by imposing an arbitrary



Technico-economic Optimization of Energy Networks 267

margin on the system, which comes at the cost of the performance of the
solution;

– suboptimal results. When parameters vary, the location of the optimum
also generally varies. Consequently, the optimum location obtained by the a
priori resolution of the deterministic problem is not that of the real optimum,
which can only be obtained a posteriori following observation of the
parameters.

The optimization of uncertain systems is commonly called stochastic or
robust optimization. The first developments in the field of stochastic
optimization date back to the 1960s. The algorithms and theory have seen a
boom over the past 20 years, particularly for chemical and economic
problems [ACE 98; BEN 02; SAH 04]. The main challenge is to define a
stochastic optimum in planning problems. In general, a stochastic optimum
is one that minimizes the criterion expectancy or its standard deviation.
Particularly in planning problems for energy networks, the general interest is
in production cost expectancy. However, it is not easy to calculate this
expectancy. The systems are not linear and the calculation time for
evaluation of the criterion function is a barrier to the expectancy calculation
over the uncertainty domain.

In addition, since the objective is to optimize a series of staggered
decisions over time, these decisions may need to be modified in line with
prediction readjustments. These readjustments use the new data acquired
over time, such as new weather forecasting data, or variances in
consumption compared with predictions. The integration of the readjustment
into robust optimization problems draws on the notion of recourse, which is
a central theme in stochastic optimization. Studies in this field draw on
stochastic dynamic programming and multi-stage stochastic programming
methods [PHI 00; NOW 00; DEN 98; GRO 05; CAR 98].

6.4.2. Recourse notion

The objective of robust optimization is to obtain an optimum that
minimizes the expectancy of a criterion based on optimization variables.
However, the system is not necessarily passive as far as uncertainty is
concerned. It may include some adjustment mechanisms in order to adapt to
risk. This adjustment is optional when it is a question of improving costs; on
the other hand, it is indispensable in being able to satisfy constraints
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impacted by an uncertain parameter. This is particularly so for energy and
specifically electrical networks where the equilibrium constraint is
fundamental to the stability of the network.

Regarding optimization, the stochastic system model may involve two
types of optimization variable:

– traditional optimization variables (also known as “main stage” or “first
stage” variables), for which all uncertain parameters are unknown;

– recourse variables (also known as “second stage” variables), for which
some or all of the uncertain parameters are revealed.

More precisely, let us consider the simple two-stage recourse problem:

min min ( , , )
x y
E f x yα α⎛ ⎞

⎜ ⎟
⎝ ⎠

[6.26]

where α is a random variable, Eα is the expectancy in relation to this
variable, x is the optimization variable and y is the recourse variable. There
is no limit to the number of stages that may make up an optimization
problem with recourse. Indeed, if the recourse variables are decisions to
come, they may also be disturbed by uncertainties and be the subject of
adjustments. This is called multistage optimization.

Physically, the decision variables x are variables that may be considered
slow. They are important decisions, for which the consequences are spread
over a relatively long period of time. They do not enable rapid reaction
compared with a production risk or consumption prediction error, for
example. In energy networks, most decisions to start up production units fall
into this category. Very generally, they are actions that cannot be delayed.

Recourse variables, denoted here by y , are variables associated with
higher-speed production methods, to “wait and see” decisions. This may be a
heat production adjustment in furnaces for thermal networks, or even the
start up of thermal units within electrical networks. More generally, these are
decisions taken “later” relative to the first decision category, at an instant
where the value of uncertain parameters will be known.
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6.5. Consideration of uncertainties on consumer demand

In this section we focus on the consideration of uncertainty on the
consumer demand curve. For electrical networks, the production-
consumption balance is a strong constraint. In this study we do not need to
know the prediction method for the load curve. Some methodology examples
may be found in [DOT 02; NIE 00]. Consumer demand will simply be
random data possessing a certain probability density.

6.5.1. Safety margin

A very simple way of taking the uncertainties on a load curve into
account is to provide a safety margin. Thus, the following constraints are
added to the optimization problem:

{ }
1

, 1, ,
K

k k dem
n n n

k
Q u Q R n N

=
≥ + ∀ ∈∑ … [6.27]

where nR is the desired reserve or safety margin. Thus, the maximum
producible power is greater than the predicted demand plus the reserve,
which compensates for prediction errors. The implied hypothesis is that
production variables can be adjusted in real time, whereas the on and off
decisions are taken in advance. This is a recourse optimization hypothesis
(see section 6.4.2).

6.5.2. Scenario tree uncertainty modeling

Consumer demand is considered to be a random series of N values. This
series is modeled using a scripted decomposition method known as a
scenario tree. An example tree is given in Figure 6.4.

A scenario consists of a temporal series, where a value is taken for each
period of the temporal horizon considered. In the tree, a scenario is
represented by a set of N nodes linked to each other from the root up to a
leaf. There are as many scenarios as there are leaves. Therefore, the
scenarios have common parts (the root and possibly other nodes), which are
then differentiated, thus modeling successive risks. The number of scenarios
corresponds directly to the level of detail to which the risk has been
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modeled. On the other hand, the complexity of optimization problems is also
directly linked to the number of nodes in the tree; therefore, it is necessary to
establish a compromise between modeling finesse and problem complexity.
Furthermore, a scenario tree enables the following elements to be taken into
account:

– estimation error persistence: an error committed at a given instant has
repercussions on later instances;

– the growth of uncertainty while the prediction is temporarily far away.

Consumption
predictions (MW)

Periods

50

60

55

55

55

49

48

45

43

51

47

46

61
57
54
57
53
56
51

57
53
49
48
44
49
44

1 2 3 4 5

Figure 6.4. Scenario tree example

6.5.3. Resolution by dynamic programming and Lagrangian relaxation

We now use scenario tree uncertainty modeling in order to resolve the
optimization problem. In order to do this, we extend the results developed in
section 6.3, obtained using dynamic programming and Lagrangian
relaxation. We refer to this as stochastic dynamic programming, an accepted
solution for this type of problem solving [GRO 02; GRO 05].

At period n , the number of possible scenarios (i.e. the node number) is
denoted by nΞ . Predicted demand is associated with each scenario and is

denoted by { }, , 1, ,
n

dem
n nnQ ξ ξ Ξ= … . A conditional probability is associated

with each transition on the scenario tree. In order to simplify the notations,
let us pose the following:
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This quantity is the probability that scenario 1nξ + is realized over a
period 1n + if scenario nξ is realized at period n .

The optimal controls must then be determined for each installation, for
each period and scenario denoted by , n

k
nu ξ . The quantities of corresponding

energy produced, , n

k
nQ ξ may be deduced from these binary variables by re-using

the recursive algorithm [6.17]. The demand satisfaction constraint is thus
written:
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By analogy with [6.17], if minimum start and stop times are not
considered, then we can define that state control variables for scenario nξ :
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Henceforth, recurrent optimality equation [6.19] becomes:

( )

1 1
1

1 1
1

1

1

1 1 1

1

1 01, 1,

1, ,
1 1

, , , 1,

1, 1,
1

(1 )

( ) min (1 )

( )

n n
n

n n n n
n

n n
n nn

n

n n n n

n

k k k k
n n

K
k k k
start n n

k k k kn n down n nu

n n

Q u

p c u u

F x c u u

p F x

ξ ξ
Ξ

ξ ξ ξ ξ
ξ

ξ ξ ξ ξ

Ξ

ξ ξ ξ ξ
ξ

α α
+ +

+

+ +
+

+

+

+ + +

+

+ +

→ +
= =

+

→ + +
=

⎛ ⎛ ⎞⎛ ⎞+⎜ ⎜ ⎟⎜ ⎟
⎜ ⎜ ⎟⎜ ⎟

⋅ + −⎜ ⎜ ⎟⎜ ⎟
⎜ ⎜ ⎟⎜ ⎟

= ⎜ ⎟⎜ ⎟+ −
⎝ ⎠⎝ ⎠

+ ⋅
⎝

∑ ∑

∑

⎞
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠
[6.31]



272 Integrated Design

In order to solve this equation practically, it is advisable to use
Lagrangian relaxation. By relaxing consumer satisfaction and [6.28],
Lagrange multipliers, denoted , nn ξλ , must be introduced. Similarly, it is

advisable to improve the state in the same way as in [6.20] and [6.21] in
order to take into account the minimum start and stop times. Finally,
reparation mechanisms for the solution must be added, in the case of
resolution, using Lagrangian relaxation, with the initial problem not being
convex.

6.5.4. Conclusion

In this section we have seen a stochastic optimization resolution method
that enables uncertainties around consumer demand for an energy network to
be taken into account. This optimization method is based on stochastic
dynamic programming and Lagrangian relaxation. Indeed, uncertainty is
initially part of the constraints of the problem (the consumption/production
balance). The use of Lagrangian relaxation enables constraint uncertainty to
“pass towards cost”. The dual problem is then resolved by stochastic
dynamic programming using a scenario tree.

The complexity of this resolution method is intrinsically linked to the
scenario tree. The problem’s complexity in terms of the number of
optimization, size and state space variables for dynamic programming is
indeed dependent on the number of nodes making up the scenario tree. This
is where we find the compromise between calculation time and model detail.
In fact, the higher the number of scenarios, the greater the likelihood will be
of a detailed uncertainty model. From this, the major advantage of this
method is the fact that the resolution scheme is identical to the one used in
the deterministic case. Nevertheless, the major disadvantage of this type of
method is the increase in complexity of the problem. Indeed, where initially
for the deterministic case we had an on/off optimization variable by producer
and by period, we now have a variable by producer, period, and scenario.

Finally, we note the fact that the “recourse” variables notion is, by
implication, very influential in this method. Indeed, complete variables that
are characteristic of the on /off states of installations correspond to important
decisions. Decisions are, therefore, taken at the start of production planning
for all periods, all units, and all scenarios. Conversely, the use of algorithm
[6.16] in order to calculate the production variables from these states
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demonstrates that we believe that they can be chosen at the last minute when
the real demand is known.

6.6. Consideration of uncertainties over production costs

6.6.1. Introduction

In this section we focus on the consideration of uncertainties over
production costs. This type of uncertainty is common in energy networks.
This is the situation, for example, when a production factory is a waste
incinerator for a thermal energy network, or when there are co-generation
plants (where the sale price is uncertain if it is indexed over the electricity
market) in an electrical network.

We recall the mathematical description of the unit commitment problem:
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In this section we consider that uncertainties apply to one or more
coefficients 1

kα . In order to shorten this expression, we now ignore the
capacity and minimum start and stop time constraints, even though they are
always taken into account. One way of considering this uncertainty is to
consider the expectancy of criterion [6.32] as a criterion to be optimized:
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We will now use the recourse optimization notion in order to formulate
most closely the problem of the physics of the system.

6.6.2.Mathematical formulation

We once more consider that binary variables correspond to important
decisions, which must be anticipated, whereas the production variables can
be adjusted in almost real time. This leads to problem [6.32] being
reformulated as follows:
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Let us now introduce Lagrange multipliers in order to relax the demand
satisfaction constraints. The dual optimization problem is written:
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By reordering the summation operators and by removing the terms that
are not dependent on k

1α from the expectancy, we obtain:

{ }
{ } ( )

1

0 1

1
11, ,

111, ,

1

(1 )

min (1 )

max
min

k
n

kn k
n

k k k k k
n start n nN

k k k
down n nK u nn N k k

n nk Qn N

N
dem

n n
n

u c u u

c u u

E Q

Q

λ α

α

α λ

λ

−

−
==

==

=

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎜ ⎟
⎜ ⎜ ⎟

+⎜ ⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

∑
∑

∑

…

…

⎟
⎟
⎟
⎟
⎟
⎟
⎟

[6.36]

6.6.3. Resolution

Let us now see the solution to the problem by reiterating the various
embedded sub-problems.

6.6.3.1. Minimization resolution over the production variables

The first sub-problem to resolve is:

( )1min
k
n

k k
n n

Q
Qα λ− [6.37]

which is easily resolved:
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6.6.3.2. Expectancy calculation

We will now resolve:

( )
1

1mink
k
n

k k
n n

Q
E Qα α λ
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⎝ ⎠
[6.39]



276 Integrated Design

We assume that the probability density of 1
kα is denoted

1
kpα and bound

at interval 11,α α⎡ ⎤⎣ ⎦ . We additionally assume that nλ pertains to this

interval. Hence, [6.38] can be calculated as follows:
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This expression is based on nλ . If the expression for
1
kpα is simple, then

the calculation can be performed analytically. Otherwise, it is possible to
calculate the value for this expression for a number of values for nλ and to
use an interpolation. In all cases, this calculation can be performed offline. In
the interests of brevity, we use ( )nE λ to denote the value for the expression
given by equation [6.38].

6.6.3.3. Unit commitment calculation

Using the developments above, problem [6.35] can finally be rewritten as
follows:
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[6.41]

We have a problem structure that is fairly comparable to that used during
the resolution of the deterministic problem. We thus have, for given
multipliers nλ , K sub-problems to one unit, which can easily be resolved
using dynamic programming. The optimization of the multipliers can then be
effected in the same way as in the deterministic case.

6.6.3.4. Resolution of the stochastic problem: report

Finally, we see that taking uncertainties over the production costs does
not add to the problem’s complexity. Indeed the same decomposition and the
same methods can be used for the deterministic example. The only



Technico-economic Optimization of Energy Networks 277

supplementary element is in the preprocessing stage, which enables
expectancies [6.39] to be calculated.

6.6.4. Example

Here we consider a relatively simple example of four production units
over a 24 hour horizon. Table 6.2 presents the characteristics of installations
(measurements without units). The production costs 1

kα are considered to be

Gaussians with mean 1( )kE α and standard deviation kσ .

Unit k
0α )( 1

kE α kσ k
startc k

downc kQ kQ
k

upT k
downT

1 10 3 0.2 10 2 10 40 2 4
2 10 4.3 0.2 10 2 10 40 2 4
3 10 4.6 0.2 10 2 10 40 3 3
4 10 5 0.2 10 2 10 40 3 3

Table 6.2. Characteristics of production units

These four units must satisfy the demand given in Figure 6.5. Table 6.3
presents the optimization results obtained in the deterministic case
( 1 1( ))k kEα α= , and [6.34] presents those obtained for the stochastic problem
resolution [6.33].

Figure 6.5. Consumer demand
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k
nu Temporal period

Unit 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 0 0 0 0 1 1 1 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
k
nu Temporal period

Unit 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.3. Results for the deterministic case

k
nu Temporal period

Unit 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
k
nu Temporal period

Unit 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.4. Results for the stochastic case

Considering the stochastic element led to the “on” state of the third unit
from the start of the temporal horizon, which was not necessary to satisfy
demand. The cost obtained for the stochastic example is 2.5% less than the
cost obtained for the deterministic problem. This is the average gain. Of
course, if the creation of the risk corresponds to the nominal case, the cost
obtained will be more significant since more installations would be “on”.
However, the solution found is more robust.
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6.7. From optimization to control

6.7.1. The predictive approach principle

In the previous sections we have tried to take into account the
uncertainties influencing the system by making use of the concepts and
methods relating to robust optimization. The results obtained enable this
approach to be validated. Another way to produce robust behavior in a
system subjected to uncertainties is the closed loop drive. Indeed the
optimization results obtained may be considered as an open loop control for
the system.

An accepted method to extend optimization results within a closed loop
drive context is to use the principle of the horizon receding from the
predictive control. Here we make use of this principle to strengthen the
system against errors relating to consumer demand. This principle is as
follows:

– the solution to the optimization problem is firstly calculated over
interval [ , 1]m m N+ − from consumer demand prediction ˆ dem

nQ ; the
deterministic algorithm is used at this stage;

– the first installation controls k
mu at instant m are applied to the

production system;

– the system model is updated based on the production of dem
mQ (actual

consumer demand);

– the process is repeated for the next period over interval [ 1, ]m m N+ + .

6.7.2. Example

The algorithm above is tested for a four-unit problem. We place ourselves
within the most unfavorable situation, i.e. where predictions are always
under-valued, in this case by 5%. Figure 6.6 presents simulation results
obtained over 4 days. Without closed loop control, production would be
equal to the predicted demand. The use of the closed loop enables the gap
between production and consumption to be reduced or even eradicated.
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Figure 6.6. Results of predictive control

6.8. Conclusions

In this chapter we have seen multiple methodologies for technico-
economic optimization of energy networks. The problem is formulated in the
form of a cost minimization problem under a set of technical constraints. The
corresponding problems are unit commitment problems.

Firstly, we have explored several methods enabling the problem to be
resolved in a deterministic context. We thus firstly presented an exact
resolution from dynamic programming. The joint use of dynamic
programming and a Lagrange formulation has enabled the effect of
combinatory complexity in decomposing the problem unit by unit to be
restricted. We then presented a stochastic method based on the use of genetic
algorithm utilization. In this case, it is apparent that available a priori
knowledge of the system could enable new genetic operators, leading to a
sensible reduction in the number of iterations necessary to obtain good
quality solutions, to be defined.

Secondly, we worked towards the solution to the problem by taking into
account uncertainties having a bearing on the system using robust
optimization methods. We thus successively considered uncertainties
regarding consumer demand (which include the constraints of the problem)
and production costs. In both cases, the use of dynamic programming and
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recourse optimization has enabled the results obtained for the deterministic
case to be re-used.

Finally, an approach was presented that enabled the consideration of
uncertainties and increased the robustness of the system’s operation, namely
the use of closed loop utilization. The principle of the horizon receding from
the predictive control has thus enabled optimization results to be extended in
a closed loop context.
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