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Preface 

The idea of this book came about in 2008 following a discussion with Michel 
Bruel about the works on materials of the perovskite family carried out at the CEA-
LETI, the Electronics and Information Technology Laboratory of the French Atomic 
Energy Commission, at the Minatec campus in Grenoble, France. It quickly 
occurred to us that we should gather the studies concerning this field we have been 
involved in since the beginning of the 2000s in one document. Upon reflection, it 
seemed interesting to extend the theme of the book to piezoelectric materials in 
order to include the thematics of acoustic resonators, about which we also had some 
excellent realizations. Several people also came to assist in writing this book, taking 
care of a section or a chapter corresponding to their field of speciality. 

In this book about piezoelectric thin films, I wanted to cover the rather 
exhaustive theoretical bases, associating them with state-of-the-art applications in 
2010. Of course, there are reference books on piezoelectric materials, such as the 
piezoelectricity standards (IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-
1987) or Royer and Dieulessaint’s famous book (Ondes Élastiques dans les Solides 
[Elastic Waves in Solids], Masson, Paris, 1974). There are also very good books on 
the ferroelectric phenomenon, such as Lines and Glass (M.E Lines, A.M. Glass, 
Principles and Applications of Ferroelectrics and Related Materials, Clarendon 
Press, Oxford, 1977) or more recently Dragan Damjanovic’s article (D. Damjanovic, 
“Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and 
ceramics”, Rep. Prog. Phys., Vol. 61, pp. 1267-1324, 1998).  

To me it seemed worth gathering together the two pillars necessary for a deep 
understanding of piezoelectric films, while at the same time adding other essential 
notions:  

− the stress-strain mechanical formalism;  
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− the dielectric formalism; and also  

− an important issue of acoustic wave propagation. 

The notion of thermodynamic equilibrium is also largely detailed in order to 
properly stress the foundations of piezoelectricity that originate from the energy 
exchange between the electrical and mechanical field. The nonlinear phenomenon of 
electrostriction, essential for describing perovskite materials like PZT, is also 
described.  

The typical reader of this book is a student, researcher or engineer wishing to 
approach the field of piezoelectricity from the basics. He or she can clearly start 
reading from any chapter, as they are largely independent. Nevertheless, we took 
special care to see to it that the notations chosen are compatible between chapters, to 
ensure a coherent overall reading. Indeed, the different fields necessary for 
describing piezoelectricity generally present identical notations that can cause 
confusion. I hope that this book will bring some pertinent information to the 
interested reader through piezoelectric microsystems, and that he or she will share 
part of the pleasure we had in writing it.  

To conclude, I would like to thank the people who participated in developing this 
book, either through direct contribution or indirect assistance. I will start with 
Michel Bruel, one of the figureheads of LETI, and Marc Aïd, the person in charge of 
the radiofrequency components laboratory, and Claude Massit then Buno Mourey, 
successively in charge of the microsystems department of LETI, who were a 
constant support throughout these few months of work. Next I would like to thank 
Alexandre Reinhardt (acoustics) and Gwenaël LeRhun (electrical characterization), 
two of my closest colleagues, who were the first to agree to participate in this book. 
Emilien Bouyssou of STMicroelectronics in Tours (electrical measurements, 
accuracy) also quickly agreed, benefiting us with information on the industrial 
approach for integrating PZT in silicon technology. Christophe Billard (RF filters), 
Mathieu Pijolat, Chrystel Deguet and Sylvain Ballandras (HBAR), Matthieu Cueff, 
Fabien Filhol and Patrice Rey (actuators), Brice Ivira, Nizar Ben Hassine and 
Alexandre Volatier (electrostriction) and Christophe Zinck (ferroelectric resonators) 
were of great assistance for contributions in their fields. I must also thank Sylvain 
Ballandras (Franche-Comté Electronics, Mechanics, Thermal transfers, Optics, 
Science and Technology – Femto-ST), Paul Muralt (Swiss Federal Institute of 
Technology Lausanne − EPFL), Brahim Dkhil (Centrale Paris) and Jens Kreisel 
(Grenoble Institute of Technology − INPG) for their constant support and the 
positive energy they were able to and still can communicate to me. I would also like 
to thank José Olivarès for the many discussions we had, especially on the subject of 
statistical thermodynamics.  
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This book is also the result of two excellent projects that we produced with 
Pascal Ancey (STMicroelectronics in Crolles) and Lianjiu Liu (Freescale): thanks go 
to them.  

I would also like to thank all the people who contributed to producing the 
mechanisms displayed. Although it is impossible to name them all, I am thinking of 
François Perruchot, Aurélien Suhm, Guy Parat, Aude Lefèvre, Patrice Gergaud, Denis 
Pellissier, Amy N’Hary, Laurent Figuière, François Chapuis, Xiaohong Zhu, Sylvia 
Sanchez, Julie Abergel, David Pinceau, David Wolozan, Fabien Dumont, Grégory 
Caruyer, Patrick Emery, Julie Guillan, Benoit Guigues, Frédéric Domingue, Patrick 
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General Introduction 

The piezoelectric effect was discovered by the Curie brothers in 1880. Since 
then, many applications have come into being: time base, precision actuators, sonar, 
echographic probe and, more recently, radio-frequency filters for mobile phones. 
This field is set to be further developed because of the growing need for actuators 
and sensors of all sorts, especially for communication and healthcare. 
Piezoelectricity is very well adapted to these fields as it links the electrical or 
electronic world to the mechanical world in a linear manner. This is why mastering 
good piezoelectric materials is fundamental for developing these applications. In the 
microsystems framework, great advances in thin-film piezoelectric materials have 
been achieved since the middle of the 1990s. Lead zirconate titanate (Pb(Zr,Ti)O3 
called PZT) and aluminum nitride (AlN) are, today, the spearheads of these thin-film 
materials, as we will see in detail in this book.  

This book begins with a chapter that endeavors to specify the microscopic 
properties of dielectrics: ferroelectricity, piezoelectricity, pyroelectricity and 
electrostriction. Certain notions of crystallography are taken up, since the crystalline 
nature of matter produces a good part of these properties.  

Chapter 2 is devoted to thermodynamic notions indispensable for the precise 
description of the state of equilibrium and energy exchanges. It is this approach that 
enables us to define electromechanical coupling.  

Next, we take on the description of paraelectric-ferroelectric phase transition, 
which is very useful for describing the piezoelectrics of ferroelectric nature, such as 
those of the perovskite family (PZT, for example).  

Chapter 4 is dedicated to the study of stress-strain relations, indispensable for 
putting the piezoelectric effect in the form of an equation.  
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Chapter 5 describes dielectric materials by adding stresses to the main fields, 
such as electric displacement. The notion of dielectric relaxation is also taken up. 
Once these bases have been expanded on, we go into detail about the piezoelectric 
formalism in a macroscopic but also microscopic way, even if the latter is less useful 
for applications in Chapter 6.  

Chapter 7 is a rather detailed exposition on the acoustic formalism adapted to 
piezoelectric films. Acoustic filters and the main applications of acoustic resonators 
are also approached from an analytical angle.  

Chapter 8 is dedicated to electrostrictive nonlinear effect, less well-known, but 
very important for describing the piezoelectric linear effect of perovskites and 
increasingly used in applications.  

The next chapter endeavors to describe the principle means of electric 
characterizations of these piezoelectric films: macroscopic then local piezoelectric 
measurements, ferroelectric, dielectric measurement and finally, leakage current 
measurement.  

Next we move on to the application chapters. Chapter 10 is reserved for 
resonators and filters that use piezoelectric thin films. This application is currently 
the most beautiful industrial piezoelectric film success. Chapter 11, most of all, is 
devoted to electrostrictive thin films used for variable frequency resonators. 
Although this solution is not yet industrially exploited, it constitutes a real 
alternative for the future. Chapter 12 discusses electrostrictive resonators. The last 
chapter describes some thin-film piezoelectric transducers, after having given a few 
figures of merit essential for choosing materials depending on the function of the 
target applications. 

 



Chapter 1 

Dielectricity, Piezoelectricity, 
Pyroelectricity and Ferroelectricity   

1.1. Crystal structure 

1.1.1. Crystal = lattice + pattern 

The notions of piezoelectricity, pyroelectricity and ferroelectricity are closely 
linked to the crystalline nature of materials. Indeed, the study of the crystal structure 
of materials enables us to see what arrangements of atoms are susceptible to 
showing one or other property. We will discuss some core notions of 
crystallography in order to bring out the main conclusions that can be drawn from 
this approach [ESN 94].  

A crystal is defined as follows: the atoms that make up a crystal form a pattern 
that periodically repeats itself in the three spatial dimensions. A crystal is an object 
whose dimensions are large compared to the atoms that constitute it. The periodicity 
of its structure results in the properties of the crystal being identical, depending on 
the dimensions and planes given, no matter the initial reference point. This is what 
we call translational symmetry. This notion is important as it will enable us to 
implement symmetry operations that will be used to classify the crystals.  

As a simple example of a periodicity-based property, let us cite silicon cleavage, 
which is always split in the same directions, or the hexagonal structure of quartz 
crystals that is visible to the naked eye.  

                                       
Chapter written by Emmanuel DEFAŸ. 
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The notions that constitute the foundations of the study of crystallography are the 
lattice and pattern of a crystal. The lattice is made up of points called nodes that 
periodically repeat themselves in space, but the lattice does not contain any atoms. 
The atoms of the crystal belong to the pattern that is attached to the lattice node.  

Figure 1.1 is a diagram representing a crystal with its lattice and its pattern.  

 

Figure 1.1. Lattice + pattern = crystal 

To help with comprehension, it is useful to start with a classic example: sodium 
chloride (NaCl). Crystal packing is made up of a regular succession Na+ and Cl- ions 
in the three spatial dimensions, as represented in Figure 1.2.  

 

Figure 1.2. Crystal packing of NaCl 
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More specifically, we can say that the NaCl consists of the spatial packing of 
cubes, such as C (Na+

1, Na+
2, Na+

5, Na+
4, Na+

10, Na+
11, Na+

14, Na+
13). On the other 

hand, it is not possible from cube (Na+
1, Cl-

1, Na+
3, Cl-

2, Cl-
5, Na+

6, Cl-
7, Na+

7). 
Packing can be initiated from several equal points of the lattice. In this case, they are 
points on the corners of the cube C (Na+

1, Na+
2, Na+

5…) or those that are in the 
center of the faces of C (Na+

3, Na+
6¸ Na+

7…).  

It is these nodes that constitute the lattice called the translational lattice. A 
pattern is attached to each node. Here, the latter is made up of a pair of ions Na+ and 
Cl-. For example, Na+

1-Cl-
1 or Na+

1-Cl-
2 or even Na+

1-Cl-
5. The structure of NaCl 

can be described as two interpenetrating face-centered cubic lattices with a gap 
between them of a distance a/2 in one of the three spatial dimensions, depending on 
the pattern chosen (x axis if Na+

1-Cl-
1). 

This description is not the most compact possible, although it is the simplest. The 
face-centered cubic lattice constitutes a multiple lattice.  

This means that several patterns are contained in one lattice. There are four of 
them here (each corner node counts for 1/8 and each node on a face counts for 1/2). 
Nevertheless, it is possible to define, for each packing, an elementary lattice that 
contains only one pattern.  

 

Figure 1.3. Trigonal elementary lattice of the face-centered cubic packing of NaCl 
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In the case of NaCl (and face-centered cubic in general), this lattice is illustrated 
in Figure 1.3. 

It is a rhombohedral lattice that stretches out on a large diagonal of face-centered 
cubes, in which the angles between the directions of the polyhedron are 60° and the 
lengths of the base vectors of the elementary lattice are equal.  

1.1.2. Seven primitive lattices – 14 Bravais lattices 

If we now concentrate on the lattice, we can see that there are symmetries from 
which lattice nodes can be deduced from each other. These are the translational 
symmetries of the lattice. Going back to the example in Figure 1.3, there are several 
axes of rotation that leave the lattice unchanged. For example, the “order 3” axis 
along a large diagonal of cube C allows a 120° rotation without the lattice being 
modified. 

It is the same thing for “order 4” and “order 2” axes for the respective rotations 
of 90° and 180°. There are planes of symmetry such as (Na+

1, Na+
5, Na+

14, Na+
10). 

There are also centers of symmetry (here, each lattice point is one). These lattice 
symmetries must be compatible with spatial periodicity, which limits their number. 
Therefore, we can show that they are limited to rotations of order 2, 3, 4 and 6 (i.e. 
angle rotation 2 /n for order n simply expressed n), mirror planes (expressed m) and 
centers of symmetry (expressed 1).  

Seven possible lattice types result from this:  

− cubic (a=b=c, = = =90°); 

− hexagonal (a=b c, = =90°, =120°); 

− tetragonal (a=b c, = = =90°); 

− rhombohedral (a=b=c, = = 90°); 

− orthorhombic (a b c, = = =90°); 

− monoclinic (a b c, = =90°  ); 

− triclinic (a b c,   ). 

Here, a, b, c, ,  and  are the parameters of each lattice (Latin letters = distance 
and Greek letters = angle) with  being the angle between axes y and z, , between x 
and z and  between x and y.  

As we were able to see for NaCl, it is sometimes simpler to define a multiple 
lattice to describe the structure. Therefore, face-centered cubic lattices are simpler to 
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use than the rhombohedral primitive lattice (see Figure 1.3). This causes us to take 
into consideration new lattices called Bravais lattices. This results in a total of 14 
possible lattices, with or without a multiple lattice. The seven multiple lattices that 
are added to the primitive lattices above are the centered cubic, face-centered cubics, 
centered tetragonal, base-centered orthorhombic, centered orthorhombic, face-
centered orthorhombic and base-centered monoclinic lattices. 

1.1.3. Two-hundred and thirty space groups 

Beyond lattice symmetries, it is possible to take microscopic symmetries into 
consideration if we now consider the pattern attached to the lattice. The final crystal 
symmetry will therefore be the combination of lattice and pattern symmetries. 
Crystal symmetry, however, can never exceed that of the lattice, as can be seen in 
Figure 1.1. The pattern must therefore have a symmetry that is less than or equal to 
the lattice, otherwise these symmetry elements would be directly in the lattice. We 
can show that to be compatible with spatial periodicity, the symmetry elements 
belonging to the pattern must have a glide: they are helicoid rotations and glide 
reflections (not presented here). Taking into consideration lattice and pattern 
symmetries enables us to determine all the mathematically possible combinations for 
transforming a crystal in itself (group theory). We end up with 230 crystal structure 
possibilities, which are called “space groups”.  

1.1.4. Thirty-two point groups (or crystal classes) 

Now, to analyze the macroscopic properties of crystals, the hypothesis of crystal 
homogeneity must be considered. This means that the properties observed cannot 
depend on the initial point considered in the crystal. From the structural point of 
view, all symmetry elements describing macroscopic properties should refer to one 
single point. This description no longer depends on the starting point considered. 
This way of classifying crystals therefore results in 32 crystal classes or point 
groups (a name given because of the need to reduce the reference to one single point 
for elements of symmetry). We should remember that here we are considering the 
crystal and not the lattice alone. The crystal has a degree of symmetry at best equal 
to that of its lattice.  

On the other hand, Curie’s principle tells us that the symmetry of the effect 
(piezoelectric, for example) is always greater than or equal to the symmetry of the 
cause (the crystal). Therefore, the point group symmetries of a given crystal 
correspond to the intersection of the symmetries of the macroscopic properties with 
those of that crystal. Macroscopic properties can be morphology, etch figures, optical 
properties (especially rotatory power), piezoelectricity and pyroelectricity.  
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Crystal 
system 

Crystal 
class 

Symmetry 
elements 

Degree of 
symmetry 

Laue classes  
(center of symmetry) 

Piezo - 
pyro 

Triclinic 1  
1 

1  
1 

2 
1 

Yes 
No 

No 
Pyro 

Monoclinic 
2/m 

2 
m 

2/m 
2 
m 

4 
2 
2 

Yes 
No 
No 

No 
Pyro 
Pyro 

Ortho- 
rhombic 

mmm 
222 

mm2 

2/m2/m 2/m 
222 

mm2 

8 
4 
4 

Yes 
No 
No 

No 
Piezo 
Pyro 

Tetragonal 

4/mmm 
422 

4mm 
4 2m 
4/m 

4 
4  

4/m2/m 2/m 
422 

4mm 
4 2m 
4/m 

4 
4  

16 
8 
8 
8 
8 
4 
4 

Yes 
No 
No 
No 
Yes 
No 
No 

No 
Piezo 
Pyro 
Piezo 

No 
Pyro 
Piezo 

Trigonal 

3 m 
32 
3m 
3  
3 

3 2m 
32 
3m 
3  
3 

12 
6 
6 
6 
3 

Yes 
No 
No 
Yes 
No 

No 
Piezo 
Pyro 
No 

Pyro 

Hexagonal 

6/mmm 
622 

6mm 
6 2m 
6/m 

6 
6  

6/m2/m 2/m 
622 

6mm 
6 2m 
6/m 

6 
6  

24 
12 
12 
12 
12 
6 
6 

Yes 
No 
No 
No 
Yes 
No 
No 

No 
Piezo 
Pyro 
Piezo 

No 
Pyro 
Piezo 

Cubic 

m 3 m 
432 

m34  
m3  
23 

4/m 3  2/m 
432 

m34  
2/m 3  

23 

48 
24 
24 
24 
12 

Yes 
No 
No 
Yes 
No 

No 
No 

Piezo 
No 

Piezo 

Table 1.1. Crystal classes with their crystal system, symmetry elements, degree of symmetry, 
those that show a center of symmetry (Laue classes), those that are piezoelectric 

and pyroelectric 

These 32 crystal classes are particularly interesting as they enable us to 
anticipate the piezoelectric, pyroelectric and ferroelectric properties of crystal 
structures. These crystal classes are classified according to their crystal system. The 
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latter is identical to the lattice for all crystals except for rhombohedral crystals, which 
can have a hexagonal lattice (hence of higher symmetry). We therefore talk about the 
trigonal rather than rhombohedral crystal system.  

From the crystal classes listed in Table 1.1 with their symmetry elements, we can 
see those that are interesting due to their piezoelectric and pyroelectric properties 
(which will be more clearly defined in the next section). The symmetry elements are 
the centers of symmetry, the axes and the rotations. The degree of symmetry is the 
number of replica points from any single point by using the symmetry elements of 
the crystal class. 

We will note that crystal classes with the highest degree of symmetry for each 
crystal system are called holohedral classes. They are the only ones that keep the 
same degree of symmetry as their lattice. The other classes are called merohedral. 
This notion was used by the Curie brothers to define the crystal classes susceptible 
to showing a piezoelectric effect (hemihedral classes, which indicate a degree of 
symmetry twice as weak as that of the holohedral class) [CUR 80, CUR 81]. Laue 
classes correspond to all the crystal classes that have a center of symmetry. 

1.1.5. Reticular planes 

In a given three-dimensional lattice, we choose a point, O, that will be the 
origin reference point (O, a1, a2, a3). Every plane whose intersection with these axes 
occurs at points (a1/h,0,0), (0, a2/k,0) and (0,0, a3/l) with integers h, k and l is a 
reticular plane. A reticular plane does not necessarily pass through the lattice nodes. 
h, k and l are the Miller indices of the plane considered, called (h,k,l). For a family 
of planes, we write {h, k, l}. We can also define the direction [u,v,w] with u,v,w 
integers that correspond to the vector u a1+v a2+w a3. If we are interested in a type 
of direction, we write <u,v,w>. Figure 1.4 represents the plane (111) and direction 
[111]. 

 

Figure 1.4. Definition of reticular directions and planes in a lattice 
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A very practical notion can also be defined to observe the symmetries: 
stereographic projection. We must imagine a sphere with a plane (hkl) at its center 
(see Figure 1.5). This plane is reduced to a point on the equatorial plane of the 
sphere by first imagining the intersection, I, of the normal of this plane with the 
sphere. We then link this point with the pole of the opposite half-sphere. The straight 
line between this pole and point I cuts the equatorial plane at a point called hkl. This 
is stereographic projection.  

 
 

 

Figure 1.5. Illustration of the construction of a stereographic projection of a hkl plane  

1.1.6. X-rays “see” crystals 

X-rays play a deciding role in characterizing crystallized material. Indeed, X-
rays diffract through the material, since their wavelength exhibits the same order of 
magnitude of inter-atomic distances. Diffraction conditions depend on reticular 
distances between the characteristic planes of the material, the angle of incidence of 
the X-ray beam and the wavelength of the X-rays. What we can retain, in substance, 
is that diffraction of the X-rays comes from a diffusion induced by interaction 
between the electrons of the material and the incident X-ray beam. The phase 
conditions between all the waves diffused are translated by constructive or 
destructive waves that induce characteristic diffraction patterns not only of the 
lattice, but also of the space group.  

Indeed, each lattice has a diagram of diffraction modulated by microscopic and 
lattice symmetries. These modulations are translated through the extinction of 
certain rays according to the symmetries of the substance analyzed and the 
variations in intensity of the different diffraction peaks. From this single technique, 
it is therefore possible to determine the space group of an unknown substance as a 
function of the position of the diffraction peaks, eventual extinctions and intensity of 
the peaks. 
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1.2. Piezoelectricity, pyroelectricity and ferroelectricity definitions 

We just saw that crystallized material can be classified according to 32 crystal 
classes. Given that a crystal environment is composed of electrically charged 
particles, the appearance of polarization charges through mechanical strain is 
therefore predictable. Thus, the symmetry conditions of crystal structure enable us to 
determine the atom arrangements susceptible to giving a piezoelectric effect. To do 
this, the crystal must not have a center of symmetry, which is the case in 21 out of 
the 32 existing crystal classes: those that have a center of symmetry are the Laue 
classes. Out of these 21 classes, one displays no piezoelectric effect because the 
movement of the charges during mechanical solicitation does not induce the 
appearance of a dipole (class 432). Therefore, 20 classes are piezoelectric: during 
the application of a mechanical constraint, the crystal loses shape and the centers of 
gravity of positive charges separate from those of negative charges at the level of 
each crystal lattice, the effect of which is the production of a dipole moment. Quartz 

 is a piezoelectric material.  

Out of these 20 classes, 10 are pyroelectric, i.e. they have an electric polarization 
in the absence of an applied electric field. The preferred direction of polarization is 
called the polar axis. These classes are called pyroelectric because of the variation in 
amplitude of the dipole moment when the temperature changes. This can be 
measured by charge flow in a closed external circuit. Aluminum nitride (AlN) and 
zinc oxide (ZnO) are pyroelectric.  

Among pyroelectric crystals, we can distinguish ferroelectric ones for which the 
polar axis − the support of a permanent dipole − is mobile in the crystal lattice under 
the influence of an external electrical field. It is possible to reverse the direction of 
remanent polarization if the applied field is sufficiently strong. The perovskite 
family, including BaTiO3 and Pb(Zr,Ti)O3, and the ilmenite family, including 
lithium niobate and tantalate (LiNbO3, LiTaO3), are ferroelectric materials.  

The classification of the 32 crystal classes according to these different 
denominations is summed up in Figure 1.6 [EYR 67]. 

It is understood that for these properties to appear, the materials must be insulant. 
In other words, an electric field must be able to form inside the material. This 
electric field will have an opposing influence depending on the sign of the material 
charges. The effects discussed focus on the fixed charges in the material that cannot 
escape, unlike the conduction electrons of a metal for example. The electric field 
will slightly displace the charges (amplitude less than the Angstrom) in order to 
make dipole moments or moments of greater order appear. 
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In the case of the 11 centrosymmetric classes, certain electromechanical effects 
can also appear. It is the electrostrictive phenomenon that forms in all insulating 
materials, whether they are crystal or not.  

Later we will describe the three structures that are the most used in integrated 
piezoelectric and ferroelectric applications: perovskite structure (PZT, BST), 
ilmenite structure (LNO, LTO) and wurtzite structure (AlN, ZnO). In the next 
section, we will first describe each of the effects stated through simplified examples.  

 
Figure 1.6. Grouping of crystal classes according to their piezoelectric, pyroelectric, 

ferroelectric and electrostrictive properties 

1.3. Simplified examples 

1.3.1. Dielectric effect 

As we stated before, an ideal dielectric material does not allow charges to pass 
through. Electrostatic effects can occur inside the dielectric, which leads to the 
creation or modification of dipole moments. In the case of real dielectrics, it is 
possible for some charges to pass through the dielectric and contribute to the leakage 
current. This effect is modeled either through adding a resistance in parallel with the 
ideal capacitor or through the use of a complex dielectric permittivity whose 
imaginary part translates these resistive losses.  
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Generally speaking, the behavior of a dielectric is shown in the form of a 
diagram in Figure 1.7 in the configuration of a planar capacitor. When applying an 
electric field between the electrodes, dipole moments are created in the dielectric. It 
is from their properties that the behavior of capacitors can be explained, as we will 
see in the chapter dedicated to dielectrics.  

                   

Figure 1.7. Sketch of a dielectric during the application of an external electric field:  
dipoles are created in the dielectric material 

Conversely, if a force is applied to the terminals of a planar capacitor involving a 
dielectric with a symmetry center, no charge appears at the extremes of the dielectric 
as the symmetry of the material is always conserved. There is therefore no 
appearance of the dipole moment. This effect is presented in the form of a two-
dimensional diagram in Figure 1.8 where a cubic lattice is represented. The 
dielectric can be qualified as paraelectric, as opposed to ferroelectric: there is no 
center of symmetry therefore there is no dipole moment. We do, however, observe a 
change of the dielectric constant. This change can lead to important changes in the 
case of very high permittivity dielectrics, such as perovskite materials. 

 

Figure 1.8. Diagrammatic representation of a cubic lattice during application of a force 
to the extremities of the lattice. The center of symmetry is conserved 

therefore there is no dipole moment in the dielectric  
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1.3.2. Piezoelectric effect 

The piezoelectric effect linearly links a mechanical variable to an electric 
variable. The direct effect was discovered by the Curie brothers in 1880: the effect 
translates the creation of electrical charges during the application of a mechanical 
constraint on the piezoelectric material [CUR 80]. Lippmann suggested the 
existence of the reverse effect one year later thanks to energy considerations (like 
the formalism of which we will go into detail later) [LIP 81]. The same Curie 
brothers experimentally proved its existence a few months later by deflecting a 
clever collection of two very thin quartz beams when a voltage was applied. This 
induced the appearance of a mechanical strain in the material during the application 
of an electrical field. 

Figure 1.9 is a diagrammatical representation of these two piezoelectric effects.  

 

 

Figure 1.9. Diagram of direct and indirect piezoelectric effects 

Using Figure 1.10a, we can illustrate this property using a simplified crystal 
structure that looks like low-temperature quartz (quartz , from point group 32). The 
axis of order 3 is perpendicular to the page. 

In Figure 1.10b, the arrangement of positive and negative ions does not result in 
any permanent equivalent dipole moment in the material in the absence of external 
force. The equivalent dipole moments were represented projected on a plane 
perpendicular to axis 3. When a force is applied (Figure 1.10c), the amplitude of the 
dipole moments varies in a different way: there is the appearance of a non-null 
equivalent dipole moment in this plane of the material. This is the direct 
piezoelectric effect.  
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The effect is linear: reversing the force leads to a reversal of the sign of the 
dipole created and this dipole is proportional to the amplitude of the force. It is said 
that quartz is a non pyroelectric piezoelectric because of the absence of a 
microscopic permanent polarization (no dipole moment in the absence of external 
solicitation). As we have seen, this is the case in 10 crystal classes. 

  
a)     b) 

 
c)  

Figure 1.10. a) Diagram of quartz (point group 32) in a plane perpendicular to axis 3 
represented by the black triangle (groups SiO2 are not in the same helicoidal axis-plane); 

b) projection of dipole moments in a plane perpendicular to axis 3. There is no spontaneous 
dipole moment (sum of null dipole moments); and c) state of dipole moments when an 

external force, F, is applied in the vertical direction. There is the appearance 
of a dipole moment in the horizontal direction (  = dipole moment) 

1.3.3. Pyroelectric effect 

The pyroelectric effect was discovered before the piezoelectric effect in 
tourmaline crystals. This effect translates the appearance or disappearance of 
charges on the extremities of the pyroelectric crystal when temperature changes. The 
explanation is due to the change in volume induced by dilation of the crystal with 
temperature. Just as a pyroelectric crystal has spontaneous polarization in a given 
crystallographic direction, the change in volume results in a change in dipole length 
and therefore dipole moment. 
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Figure 1.11 translates the representation of a two-dimensional crystal lattice 
showing a permanent dipole. The lattice does not have a center of symmetry as the 
positive charge does not coincide with the barycenter of the negative charges (the 
barycenter is represented in Figure 1.11 by a dotted circle carrying the minus sign). 

Applying a force, an electric field or a temperature change leads to a change in 
the thickness of the lattice and therefore the dipole moment, hence the appearance of 
charges on the extremities of the dielectric. The dielectric is, in this case, called 
pyroelectric piezoelectric and often simply pyroelectric.  

 

Figure 1.11. Diagrammatic representation of a pyroelectric crystal lattice. There is a 
permanent spontaneous polarization because of the permanent dipole moment, , in each 

lattice. The dipole changes according to an applied force, an applied temperature or electric 
field change. The dotted circle represents the barycenter of negative charges 

1.3.4. Ferroelectric effect 

Among crystals that are pyroelectric, therefore having a permanent dipole 
moment in each lattice, there are some whose spontaneous polarization can be 
modulated by an electric field. It is even possible to reverse the sign of spontaneous 
polarization when a sufficiently strong electric field (called a coercive field) is 
applied. The archetype of these ferroelectric materials is the perovskite phase, which 
we will speak about again later.  

Figure 1.12 represents an example of a ferroelectric perovskite phase in which 
the reversible permanent dipole movement according to the electric field is 
represented by movements of the Ti4+ ion in the center of the oxygen octahedron. 

This view is quite far from the real movement of each ion of the lattice but it 
enables the existence of the two stable states of polarization, called remanent in this 
phase. These two stable states of polarization (up and down) are represented in 
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Figure 1.12. The dielectric is called ferroelectric. It is in fact pyroelectric and 
piezoelectric.  
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Figure 1.12. Diagrammatic representation of a ferroelectric perovskite lattice according to 
the sign of the tension applied to its terminals 

1.3.5. Electrostrictive effect 

We could ask ourselves the question about the mechanical behaviors of a 
paraelectric dielectric during the application of a voltage. A mechanical but 
nonlinear strain appears. This quadratic change, which does not depend on the sign 
of the voltage applied, translates the property of electrostriction. One way of simply 
understanding this effect is represented in a diagram in Figure 1.13. We return to the 
symmetrical lattice of the paraelectric dielectric. The effect can be split in two (in 
theory), which enables us to see what happens in reality. First, there is the 
appearance of a dipole moment because the charges are attracted by their opposites. 
The structure therefore loses its center of symmetry.  

In this configuration, nothing prevents an induced piezoelectric effect because 
the two necessary conditions are gathered − no center of symmetry and applied 
voltage. The material therefore becomes thicker and at the same time shorter in the 
direction perpendicular to the applied electric field. Thus we find the quadratic 
effect through the combination of two linear effects (when excitation is weak): the 
linear effect of the dipole creation and induced piezoelectric linear effect.  

It is possible to re-make the argument by reversing the sign of applied voltage. 
The direction of the dipole moment created is therefore reversed, which leads to a 
strain identical to the case above. In reality, the electrostrictive effect undoubtedly is 
not broken down across these two takes, but this enables us to make a correct 
argument: an electrostrictive material always becomes thicker and the effect is 
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quadratic. This effect is in competition with the electrostatic attraction of electrodes, 
which is also quadratic. Experimentally, we can observe that some polymers can 
exhibit a stronger electrostatic effect than electrostrictive effect. In the case of an 
alternative excitation, V, to the frequency, f(V=V0cos2 ft), an electrostrictive 
material gives an answer in the form of a mechanical vibration to the frequency 2f. 

          

Figure 1.13. Diagrammatic representation of the electrostrictive effect 

1.4. Three typical structures: wurtzite, ilmenite and perovskite 

1.4.1. Wurtzite structure 

Wurtzite structure corresponds to that of AlN and ZnO. These two materials were 
studied in thin films in the 1980s then put to one side during the advent of 
perovskites. Interest in wurtzites was renewed at the beginning of the 2000s, 
however. This was first because of the volume acoustic wave acoustic filters that 
almost exclusively use AIN as a piezoelectric material, mainly for its very high 
acoustic quality factor (low acoustic losses), as well as electro-luminescent diodes. 
Second, interest increased because of the propensity of ZnO to grow in the form of 
nanowires under certain conditions.  

This structure has a hexagonal lattice and is part of the 6mm point group. It can 
be seen as a juxtaposition of two compact hexagonal structures for the two sorts of 
ions composing the structure (see Figure 1.14a for AIN). The two structures are 
shifted following the c axis by a distance of 3/8c. This is what explains the 
spontaneous polarization for this structure, even in the absence of the electric field. 
It is therefore a pyroelectric structure. Lattice parameters, by choosing a hexagonal 
lattice, are the following for AIN: a = 3.112 Å and c = 4.982 Å. The stereographic 
projection of the 6mm point group is given in Figure 1.14b. We recognize the c axis 
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represented by the hexagon in the center of the circle that carries the axis of order 6 
(perpendicular to the page) and six mirrors at 60° that contain the c axis. There is no 
mirror cutting axis 6, hence the absence of a center of symmetry. The “x”s represent 
the equivalent points obtained through symmetry of the point group (here 12, which 
represent a hemihedry of the hexagonal crystal system, see Table 1.1). 

a) b)  

x x

x
x

x
x

x x

x
x

x
x

 

Figure 1.14. a) AIN wurtzite structure: representation of the hexagonal lattice; and 
b) stereographic projection of the 6mm point group with the degree of symmetry 

1.4.2. Ilmenite structure 

Ilmenite structure corresponds to that of lithium niobate and tantalate, which are 
very useful for surface acoustic wave (SAW) resonators and filters. Below Curie 
temperature, the point group of this structure is 3m (trigonal crystal system, 
rhombohedral lattice). The ternary axis corresponds to that of polarization. A LiNbO3 
perspective view is given in Figure 1.15a. The lattice parameters of LNO in the 
rhombohedral lattice for which the pattern is constituted of two LiNbO3 groups are 
a = 5,492Å and  = 55°53'. This structure can be seen as a compact A-B packing of 
oxygen planes, i.e. like the regular packing of balls of the same diameter by 
repeating two successive planes A and B (in a structure called compact hexagonal). 
This packing induces oxygen octahedrons (inclined in relation to the ternary axis) in 
which Li or Nb or no cations can be found. LiNbO3 has a well-defined succession of 
ions filling these octahedral cavities (Nb, Li, empty, Nb, Li…) as can be seen in 
Figure 1.15a. Cations are not centered in the middle of the octahedra because of the 
difference between the dimensions of the cations. The Curie temperature of LiNbO3 
is around 1,200°C. Beyond this temperature, it is paraelectric in the 3 m point group. 
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Figure 1.15b represents the stereographic projection of the 3m point group. The 
ternary axis, represented by a triangle, is perpendicular to the page. Three 120° 
mirrors contain the ternary axis. The “x”s represent the equivalent points obtained 
by symmetry. The sum of these points gives the degree of symmetry of the point 
group (here six, which represents a hemihedry of the trigonal crystal system, see 
Table 1.1). 

 
  

Figure 1.15. a) Ferroelectric structure of LiNbO3 of point group 3m; and  
b) stereographic projection of symmetry elements of point group 3m 

Due to their intense use in acoustic filters, LNO and LTO exist in monocrystal 
substrates of significant size (up to 150 mm). This gives us the unique opportunity to 
produce large-surface single-crystal thin piezoelectric films transferred to silicon 
substrate through the Smart CutTM technique or molecular sticking/thinning (we will 
discuss these techniques in detail in Chapter 11). 

It is also possible to choose many different orientations enabling us to vary the 
properties according to the desired functions (volume, compression, shear wave, 
etc.). 

1.4.3. Perovskite structure 

1.4.3.1. Introduction 

Perovskite structure (from the name of natural perovskite, CaTiO3) is the most 
well-known and studied ferroelectric structure. It is described from its simple cubic 
phase (point group m3m), which appears above its Curie temperature. This phase, 
which presents a center of symmetry, is therefore not ferroelectric but it allows for a 
simpler description. Perovskite structure has the form ABO3. In what follows, we 
will take Pb(Zr,Ti)O3 (PZT) as an example. Figure 1.16 is a representation of a cubic 
perovskite lattice originating from site A (Pb). A is a cation with a large ionic radius 
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(Pb for PZT), which is bivalent and has a coordinance of 12. B is a cation with a 
smaller radius (Zr or Ti, depending on the PZT sites), which is tetravalent and has a 
coordinance of 6. In a cubic arrangement, A occupies the vertices, B the center and 
oxygen occupies the center of the six faces. The B ion is found in the center of the 
oxygen octahedron. 

 

Figure 1.16. Cubic perovskite lattice of PZT 

The chemical formula of PZT is Pb(ZrxTi1-x)O3. The number x is equal to 
[Zr]/[Zr]+[Ti]. 

Basically, the perovskite lattice of PZT can be of three different forms depending 
on the temperature and the Zr/Ti relation: 

− cubic (point group m3m) when the temperature is above the Curie temperature 
(Tc), which corresponds to the paraelectric phase that does not show a dipole 
moment; 

− tetragonal (point group 4mm), when the temperature is below Tc and x <0.45 
(titanium dominance). This phase shows a permanent dipole moment throughout the 
cubic lattice strain;  

− rhombohedral (point group 3m) when the temperature is below Tc and x >0.5 
(zirconium dominance). This phase also shows a permanent dipole moment. 

It is noteworthy that when x is included between approximately 0.45 and 0.5, the 
phase obtained is termed morphotropic. It has long been believed that this phase is 
simply a mixture of the tetragonal and rhombohedral  phases. In 2000, however, 
Noheda et al. showed the presence of a monoclinic phase in this area of the phase 
diagram [NOH 99]. It is the presence of this monoclinic phase that best explains the 
ferroelectric and piezoelectric properties of PZT in this morphotropic zone because 
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of a greater polarization facility [MIT 69]. Figure 1.17 represents a PZT phase 
diagram according to [JAF 71]. 

Zone A in Figure 1.17 is an antiferroelectric phase characteristic of lead 
zirconate (PbZrO3). This property means that locally perovskite lattices each present 
a dipole moment but their directions are systematically opposed between neighbors. 
This induces a null macroscopic polarization. 

The two ferroelectric phases are obtained by paraelectric cubic lattice strain and 
therefore present a permanent dipole moment. For the tetragonal phase, one side of 
the cube is stretched out to give the c [001] axis, whereas the two other sides are 
compressed to give the tetragonal axes [100] and [010]. The point group is therefore 
4mm. For the rhombohedral phase, the cube is stretched out along a diagonal that 
crosses the lattice entirely, for example in direction [111]. The point group is 
therefore 3m. A diagrammatic representation of how these phases are obtained is 
given in Figure 1.18.  

Depending on the different phases of the perovskite lattice, the direction of 
polarization is not the same. Therefore, when symmetry is tretragonal, the pole axis 
follows direction [100] of the original cubic lattice, i.e. following the c axis of the 
tetragonal phase.  

When symmetry is rhombohedral, the pole axis follows direction [111] of the 
original cubic lattice. An example of spontaneous polarization directions for the two 
ferroelectric phases is represented in Figure 1.18 [JON 62]. 

PC

FT

AT 

FR(HT)

FR(LT)

 

Figure 1.17. PZT phase diagram [JAF 71] 
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Figure 1.18. PZT cubic perovskite lattice strain giving  
the tetragonal and rhombohedral phases based on the Zr/Zr+Ti relation.  

The dotted lines delimit the core cubic phase 

1.4.3.2. Ferroelectricity in the perovskite phase  

As we have seen, the notion of ferroelectricity is based on the fact that 
spontaneous polarization of the material can vary according to the application of an 
external electric field. The direction of the pole axis can even be reversed if this field 
is sufficiently intense. The state of macroscopic polarization of a ferroelectric 
material based on the electric field of excitation therefore represents a hysteresis loop 
(see Figure 1.19) in a way similar to ferromagnetic materials, to which the 
ferroelectrics owe their name by analogy. 

Ferroelectric material is subdivided into domains. All the elementary dipoles are 
oriented in the same direction in each domain. The size of these domains varies 
depending on the electric field. In the case of PZT, the form, number and size of the 
domains depend on the growth conditions and external mechanical and electrical 
constraints. When an electric field is applied, the elementary dipoles have the 
tendency to be oriented according to the direction of the field. The stronger the field, 
the larger the number of elementary dipoles that switch; increasing their contribution 
to the macroscopic polarization by the same extent. This is diagrammatically 
explained in Figure 1.19, across the hysteresis loop presented by the macroscopic 
polarization according to an applied electric field. 

The aspect of a perovskite lattice is represented in Figure 1.19 for the two 
possible stable states when the electric field is null. For these two states, the 
barycenter of the positive charges (Ti4+ or Zr4+) in the cubic lattice is shifted in 
relation to the barycenter of the negative charges (O2-). We will resume these 
notions through a thermodynamic development, enabling us to properly understand 
what happens from an energy point of view. 
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Figure 1.19. Polarization of a ferroelectric material according to the electric field applied. 
The two diagrams represent the perovskite lattice in the two possible states 

of remnant polarization (Pr and –Pr) 

1.4.3.3. Piezoelectricity of the perovskite phase 

The piezoelectric phenomenon appears through the mechanical strain of the 
elementary dipole of the lattice. In the case of ferroelectric materials, remanent 
polarization is more important and piezoelectric coefficients are higher. This 
happens if the elementary dipoles are oriented in the same direction in order to give 
a non-null macroscopic dipole. A so-called preliminary stage of polarization, called 
poling, is thus mandatory for aligning all the ferroelectric domains in the same 
direction or at least in a way sufficient to cause a non-null macroscopic polarization 
to appear. This is true whether the materials are single crystals or poly crystals. 
Figure 1.20 is a diagrammatic illustration of this mandatory stage of polarization in 
the case of a polycrystalline material. For a single crystal, the main difference is that 
only certain directions are authorized by the structure. The aim of the poling stage is 
always the same, however: to make non-null macroscopic polarization appear. 

Finally, we will note that a polarized polycrystalline PZT thin film has an infinite 
axis following the axis of polarization. This structure is equivalent to point group 
6mm.  
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Figure 1.20. Stage of polarization of electric dipoles through the application of an electric 
field  in the case of polycrystalline ferroelectric ceramics like PZT 
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Chapter 2 

Thermodynamic Study:  
a Structural Approach   

2.1. History 

Despite several dozen years of microscopic modeling, no theory is yet reliable 
enough to completely explain and anticipate the behavior of thin film perovskites, 
although the ab initio or first principles approach is beginning to give very good 
results [JUN 03]. The thermodynamics-based phenomenological approach, which is 
a statistical view of the problem, enables us to explain a very large number of the 
many perovskite behaviors. Although the case of thin films is more delicate because 
of extrinsic effects such as residual stresses, interfaces, composition 
inhomogeneities, effects of crystalline orientation or domain walls, it is often 
possible to understand, at least qualitatively, how a mechanism that integrates a 
perovskite material will behave using the thermodynamic formalism.  

For this reason, we will develop the equations that allow us to use this 
formalism. This energy method is very structured for understanding the many 
possible couplings originating in perovskites. The general idea is to have the greatest 
possible breadth in describing the system and to thus quantify the conversions of 
thermal, mechanical, electrostatic and even magnetic energy. 

This theory is often called LGD for Landau-Ginzburg-Devonshire, all three 
having sequentially contributed to developing it in the first part of the 20th Century. 
Landau’s work focused on phase transitions of the second order, i.e. not involving 
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the latent heat of transition. This can be a ferromagnetic or ferroelectric close to the 
Curie temperature, a superconductor close to its transition, or a fluid close to its 
critical point. All these transitions can have behaviors with many similarities (the notion 
of “universality”) and are called “critical phenomena” in the literature, which has been 
studied in detail since Landau’s precursory works [LIN 77].  

In 1950, Landau and Ginzburg adapted Landau’s initial theory to the study of the 
transition of a superconductor. In 1949, Devonshire took inspiration from this 
formalism to apply it to a ferroelectrics study [DEV 49]. This global energy 
approach achieved huge success and is still used today for bulk and thin films. It is 
therefore possible to take domain walls and stresses due to the substrate and many 
couplings into consideration.  

In this approach, the notion of symmetry is important as, almost all the time, 
there is loss of symmetry during a phase transition (liquid-solid, ferromagnetic-
paramagnetic, ferroelectric-paraelectric). It is fundamental to be able to quantify the 
symmetry change induced during transition using a characteristic parameter of the 
system, which is called the order parameter. Therefore, in the case in which we are 
interested, it is polarization that represents the order parameter for describing the 
transition between the paraelectric and ferroelectric states. Landau assumes that free 
energy of the system undergoing the transition can be described using an analytical 
function of the order parameter and, more specifically, through an even power 
development of the latter. 

For ferroelectrics, this hypothesis means that the energy of the phase with the 
highest symmetry is the same regardless of the sign of the applied field strength 
associated with the order parameter. This is the case because polarization is always 
aligned with the electric field strength applied in the paraelectric phase. The 
dielectric contribution to energy is therefore the same regardless of the sign of field 
strength. A phase transition is also characterized by a transition temperature. This 
temperature is introduced by Landau in his formalism so that the order parameter is 
null in the high temperature phase of high symmetry and non-null in the low 
temperature phase of low symmetry. This is specified upon entering thermodynamic 
formalism in the next section.  

2.2. Revisiting statistical thermodynamics 

2.2.1. Introduction 

The link between the macroscopic thermodynamic approach and statistical 
physics enables us to specifically define and quantify the notion of the 
thermodynamic equilibrium of a thermodynamic system. It also enables us to define 
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the difficult notion of entropy, which is closely linked to that of equilibrium. In this 
section, we suggest revisiting the foundations of statistical physics in order to better 
understand what thermodynamic equilibrium and its implications on the 
macroscopic values accessible through experiments mean. Entropy and absolute 
thermodynamic temperature are defined, which enables us to arrive at the term 
thermal energy (in other words heat), used in the thermodynamic formalism we wish 
to use. An excellent introduction to statistical physics is the 5th volume of 
Berkeley’s physics course written by Frederick Reif [REI 65].  

2.2.2. Notion of equilibrium, statistical postulate 

Each macroscopic system (for example a thin film with its electrodes) is made up 
of atoms linked to each other. Today, from discoveries of the beginning of the 20th 
Century, we know that it is quantum mechanics that governs the energy state of each 
of these atoms. The fundamental concept of quantum theory is that energy levels of 
each atom are quantified and very well defined. The generalization of these 
microscopic quantum laws to macroscopic systems is not within our scope, given 
the enormous number of parameters to take into consideration that are in the order of 
magnitude of the number of particles that make up the macroscopic system. An 
order of magnitude of this quantity is the Avogadro number equal to 6.02.1023 
particles. This is the number of particles contained in one mole of a substance (it 
corresponds exactly to the number of particles contained in 12g of carbon).  

At each moment a macroscopic system is in a given microscopic state. This 
means that each atom in this system is in a given energy state, which can change 
with time. As the number of parameters to determine is colossal, we make our 
argument in statistical terms. It is easier to look for the probability of occurrence of 
this or that microscopic state of the system as a function of external macroscopic 
parameters. To do this, for an isolated macroscopic system it is necessary to 
determine the degrees of freedom at the microscopic level. These degrees of 
freedom numbering, l, define the amount of independent data necessary for 
microscopic description of the system. Therefore, a full set of these given l degrees 
of freedom determine a possible microscopic state of the system. 

If we consider an isolated system (i.e. without the possibility of energy exchange 
with the external environment), and we know the external macroscopic parameters 
(temperature, electric field strength and mechanical stresses, for example) and the 
initial quantity of energy contained in the system, we can define all the possible 
microscopic states in which the system can be found. It therefore becomes 
conceivable to carry out a statistical analysis through calculations of the probability 
of occurrence of this or that state compared to the set of possible states. 
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2.2.2.1. Statistical postulate 

This statistical postulate enables us to define the state of equilibrium of a 
macroscopic system from microscopic statistical considerations. Let us take the 
isolated macroscopic system above and assume that it is in equilibrium. At the 
microscopic level, movement of particles always exists (we are not placed at 
absolute zero) and it is a dynamic situation that prevails (for example Brownian 
movement). Particles continuously go from one state of energy to another.  

If we assume that macroscopic equilibrium exists, it is legitimate to consider that 
all the microscopic states that follow are equiprobable at equilibrium. Conversely, it 
is said that if all the microscopic states of a system are equiprobable, then the system 
is in equilibrium. This postulate is the basis of notions of thermodynamic 
equilibrium and irreversibility. Indeed, according to this postulate, a non-equilibrium 
system will naturally go towards a situation where all microscopic states are 
equiprobable.  

2.2.2.2. Remarks on relaxation time 

It is important to note that the establishment of coupling equations presented in 
section 3.4 assumes that thermodynamic equilibrium has been achieved. The 
duration of the experiment is therefore implicitly assumed to be very long in relation 
to the thermodynamic relaxation time of the system. The dielectric relaxation 
evoked above is an example illustrating the fact that certain physical contributions 
(e.g. ferroelectric domain walls) have a relaxation time that can be of the order of 
magnitude of the experiment time. Here, we are still assuming that equilibrium is 
established, but the physical constants of the system, like the dielectric constant or 
the piezoelectric coefficients, become variable with the frequency of excitation. It is 
therefore necessary to consider the losses that are often introduced by transforming 
the physical constants of the problem into a complex number. 

2.2.3. Numbers of accessible states of a system 

If we place ourselves at equilibrium, according to the statistical postulate, we can 
independently argue about the time. As all states are equiprobable, the probability of 
occurrence, pi, of a given microscopic state, i, is simply the opposite of the total 
number of accessible states, N, of the system in this equilibrium: Pi = 1/N.  

Let us now turn our interest to the macroscopic parameters of this system, for 
example the electric field. This field takes a given value for each microscopic state 
of the system. Therefore, at equilibrium the probability, P(Ei), of the occurrence of 
an electric field of given intensity, Ei, corresponds to the number of microscopic 
states, N(Ei), that have this electric field value over the total number of accessible 
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states of the system. Therefore: P(Ei) = N(Ei)/N. The value taken by the electric field 
at equilibrium, Eeq, is therefore: 

( )
( )i i

i
eq i i

i

N E E

E P E E
N

= =  [2.1] 

This probability calculation is simple when the system is also simple, but it can 
quickly become very complex in the case of real systems that have an extremely 
high number of accessible states. In this situation it is interesting to estimate the 
number of accessible states, as this will enable us to define the entropy of the 
system. 

For a given isolated macroscopic system and for a given energy, E, let N(E) be 
the number of accessible microscopic states included between E and E+ E. E 
represents a small quantity of energy at the macroscopic level that enables us to say 
that N(E) is proportional to E (as if we were making a first-order expansion). On 
the other hand, E is assumed to be very large at the microscopic level so that it has 
a very large number of microscopic states. This property enables us to consider N(E) 
as a continuous function of energy (N does not see the quantum leaps). 
Mathematically, N(E) can be defined as the difference between the number of 
microscopic states of energy less than E + E ( (E + E)) and the number of 
microscopic states of energy less than E ( (E)). This is translated by the following 
equation, always of the first order: 

( ) ( ) ( )N E E E E E
E
ΣΣ δ Σ δ∂= + − =

∂
 [2.2]  

This formalism will enable us to estimate the change in the number of states as a 
function of energy. We saw before that an energy value must be given to each of the 
f degrees of freedom of the system to determine a microscopic state. In other words, 
each degree of freedom of each particle in the system has a quantified energy, e, 
which is well-defined for each microscopic state of the system. Therefore, for each 
degree of freedom, i, let us define the number of possible states, s(e), whose energy 
is less than e. We can note that s(emin) = 1. If we place ourselves at a higher energy 
than the minimum energy, we can make a first-order assumption that s(e) is 
proportional to e − emin. The total energy of the system must be the sum of all these 
small energies corresponding to each of the degrees of freedom of the system, which 
gives:  

( )min minE l e e E= − +  [2.3] 
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where Emin corresponds to the minimum energy state of the system.  

To go further, we can determine the number of possible states of the complete 
system whose energy is less than E as a function of the number of possible states of 
each degree of freedom whose energy is less than e. In statistical terms, this is 
translated simply by: 

( ) ( )( )l
E s eΣ =  [2.4] 

As s(e) is proportional to e − emin, we have: 

( ) ( )min
lE e eΣ ∝ −  [2.5]   

This estimation enables us to reconsider equation [2.2], which then gives: 

( )
1

min
lE E

N E E E
E l
Σ δ δ

−−∂= ∝
∂

 [2.6] 

As l is of the order of the Avogadro number, this equation tells us that the 
number of accessible states, N(E), increases very strongly as soon as the energy of 
the system increases a little. This is because of the dependence of the term E − Emin 
in powers of l, which produces a huge number. 

To refine the estimation, let us take the logarithm N(E), noting that e/ E=1/l: 

( )( ) ( )1 1 1ln ln ln 1 ln lnl ls s s
N E ls E ls E l s E

E e l e
δ δ δ− −∂ ∂ ∂= = = − +

∂ ∂ ∂
 [2.7] 

s is the number of possible states of energy less than e. If we consider e to be 
higher than emin, then s is strictly greater than 1. We just assumed that s was 
proportional to e − emin. Even if the constant of proportionality is very large, ln(s) is 
in the order of the unit. (l-1)ln(s) is therefore in the order of l. For the rightmost term 
of equation [2.7], even if s/ e E is extremely high, its logarithm will never reach l 
because this term is linked to the change in the number of states of a single degree of 
freedom of the system. The term that prevails in equation [2.7] is of the order of 
magnitude of the degree of freedom of the system. In this way, we therefore obtain 
the following result: 

( )( )ln N E l≈  [2.8] 

The logarithm of the number of accessible states of a system is of the same order 
of magnitude as the number of the degree of freedom of this system.  
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NOTE ON IRREVERSIBILITY.− This type of argument enables us to grasp the notion 
of irreversibility. Let us take an enclosure, isolated from the external environment 
and separated into two equal parts by a sealed wall. At the initial state, a gas is 
contained in one of the enclosure parts. This gas, which contains a number of 
molecules in the order of the Avogadro number, , is in equilibrium. At a given 
moment, the wall is removed. Each molecule therefore has access to more possible 
states throughout the increase in volume. It could be shown that the number of 
accessible states is doubled for each molecule. The number of accessible states for 
the complete system at equilibrium after withdrawing the wall is therefore 
multiplied by 2 . Thus, the probability of finding the initial state of the system in 
which all the gas molecules are one side of the enclosure is equal to 1/2 , which is 
extremely low. This transformation is therefore irreversible.  

2.2.4. Energy variation – work and heat 

We saw before that a system at equilibrium enabled us to calculate the average 
value of macroscopic parameters with the help of probability calculations. This 
calculation can be applied to the internal energy, U, of a system at equilibrium. We 
refer to internal energy to the exclusion of the possible macroscopic kinetic and 
potential energies of the system. For example, if the system is a gas enclosure, we 
assume that the enclosure is not displaced and does not have potential energy in the 
mechanical sense (it will not recover energy from a potential drop). Thus, we can 
say that the macroscopic internal energy, , of a system at equilibrium is, according 
to equation [2.1]: 

( )i i i i
i i

U P U U PU= =  [2.9] 

where P(Ui) = Pi is the probability of finding a microscopic state, i, with 
macroscopic internal energy, Ui. 

We want to calculate the energy change in the system during an interaction with 
the external environment. In order to conserve the possibility of carrying out 
probability calculations, we must assume that this change does not result in the 
system being out of equilibrium. Therefore, we consider an infinitesimal quasistatic 
change. The total differential of the average internal energy takes the following 
form: 

( )i i i i
i

dU dPU P dU= +  [2.10] 
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This equation reveals that there are two possibilities for changing the internal 
energy of a system, whatever it may be: either the probability of occupying an 
energy state changes or the level of energy itself changes while at the same time 
conserving the same probability of occurrence. These two possibilities are none 
other than the infinitesimal heat, Q, and work, W, respectively, quantities 
transferred by the system:  

i i
i

Q U dPδ =  [2.11] 

i i
i

W PdUδ =  [2.12] 

and we therefore get: 

dU Q Wδ δ= +  [2.13] 

This relation, synonymous with the first principle of thermodynamics, is of 
utmost importance as it states, first and foremost, that heat and work are both 
energies. It is possible to transfer them in a system. In other words, it must be 
possible to find a system that enables us to transform heat into work. Furthermore, it 
says that the microscopic nature of heat and work is different. An increase in heat in 
a system implies that the microscopic energy levels are not modified. On the other 
hand, the probability of elevated energy levels being occupied increases. 
Furthermore, if work is received by a system, it is the energy level of the states that 
increases, while at the same time conserving the same probability of occurrence of 
each one of these states.  

On the other hand, the first principle assumes that there is always a function 
called internal energy that depends on experimental variables describing the system 
whose change is indicative of all the energy transfers carried out by the system 
considered during a transformation. In other words, this principle translates energy 
conservation. A function capable of translating this conservation is a function of state. Its 
value only depends on the initial and final states of the system during transformation 
because all transfers are considered in this function. It must be noted that generally, 
transferred work and heat are not functions of state since part of work can be 
transformed into heat and vice versa. Experimental conditions make it such that this 
transfer can be different depending on the path followed [BER 84].  

We will see, in section 2.3, that there are several possible functions of state 
depending on the experimental variables (or variables of state) considered. The 
choice of the correct function of state to describe system equilibrium is fundamental 
for a successful thermodynamic study. 
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2.2.5. Heat transfer: entropy and absolute temperature 

2.2.5.1. Heat transfer 

The aim of this section is to formalize the heat transfer of a system, S, of energy, 
E, with the external environment. To do this, we consider the system in contact with 
another system Se of energy Ee that represents the external environment. These two 
systems are assumed to be isolated in order to consider the sum of their energy as 
being constant (E + Ee = E0 = constant). The two systems are in equilibrium. The 
probability, PS(E), that system S will have energy E is equal to the ratio between the 
number of states accessible by S that have an energy E(NS(E)) over the total number 
of states accessible by S. However, this last number is difficult to find as S is not 
isolated. It is wiser to place ourselves in the system S + S' that is itself isolated. 
Thus, if S has an energy E, then S' has an energy E' = E0 − E. P(E) is therefore the 
product of states accessible to S of energy E (NS(E)) and states accessible to S' of 
energy E0 − E((NS'(E0 − E)) divided by the total number of states accessible by the 
two systems (NS+S'(E0)). As S + S' is of constant energy and is isolated, NS+S'(E0) is a 
constant: 

( ) ( ) ( )
( )
' 0

' 0

S S
S

S S

N E N E E
P E

N E+

−
=  [2.14] 

We previously saw that the number of accessible states of a system is a function 
that increases extremely rapidly with energy (see equation [2.6]). According to 
equation [2.14], the probability PS(E) is the product of a function Ns(E) that 
increases very quickly with E, with another function NS'(E0 − E) that reduces very 
quickly with E. We can therefore expect a very marked maximum of P(E) as a 
function of E. In other words, when the two systems are in equilibrium, E takes an 
extremely probable particular value Em, to the detriment of all other possible values. 
We can calculate this value by noting that the derivative of P(E) in relation to E 
must be null when E = Em: 

( ) 0=
∂

∂
E
EP , which gives '

' '
1 1N N
N E N E

∂ ∂=
∂ ∂

 [2.15] 

with N' = NS'(E').  

This equation can also be written: 

( ) ( )' '

'

lnln N EN E

E E

∂∂
=

∂ ∂
 [2.16] 
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This relation, verified when E = Em, translates the conditions for thermal 
equilibrium between the two systems.  

2.2.5.2. Entropy 

It is possible to define the macroscopic thermodynamic parameter called entropy, 
, from this last relation by writing: 

( )lnk N Eσ =  [2.17] 

where k is the Boltzmann constant, whose presence will be explained a bit later. It is 
noteworthy that entropy is often expressed as S in the literature. Here we choose , 
as S corresponds to mechanical strain. 

According to the thermodynamic postulate, the number of accessible states is at a 
maximum at equilibrium, which is translated by the fact that entropy is at its 
maximum at equilibrium. This notion of entropy is therefore particularly important, 
as knowing it enables us to determine the state of equilibrium of a thermodynamic 
system. Usually, entropy is associated with disorder. In other words, it is often 
evoked that the state of equilibrium is reached when maximum disorder is reached. 
This notion of disorder is not necessarily very intuitive and it is certainly preferable 
to associate entropy with its core definition, which makes it proportional to the 
number of microscopic states that the system involved can reach.  

2.2.5.3. Absolute temperature 

Let us note that equation [2.16] can be written using entropy: 

'

'E E

σ σ∂ ∂=
∂ ∂

  [2.18] 

This equation enables us to define another thermodynamic parameter. This 
parameter is such that at thermal equilibrium between two systems it takes the same 
value in both. It is the absolute temperature, T, defined by the relation: 

1
T E

σ∂=
∂

 [2.19] 

With this definition, it is possible to translate the thermal equilibrium condition 
between S and S' using the well-known relation: 

'T T=  [2.20] 
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Thus, at equilibrium the absolute temperature of the two systems is identical. 
This is obvious from a practical point of view, but here we have shown it using 
properties of entropy. 

2.2.5.4. Average energy per degree of freedom 

It is possible to estimate the average energy per degree of freedom at equilibrium 
by returning to the definition of absolute temperature as well as the estimation of the 
number of accessible states (see equation [2.7]): 

min

1 ln N l
k k

T E E E E
σ∂ ∂= = ≈

∂ ∂ −
 [2.21] 

Thus, at the equilibrium for which energy is equal to Em we get: 

minmE E
kT

l
−

≈  [2.22] 

The average energy per degree of freedom is of kT order of magnitude. This 
enables us to understand why the Boltzmann constant was introduced in the 
definition of entropy. This constant is a macroscopic parameter defined using 
microscopic entities.  

2.2.6. Thermal energy: heat transfer 

To get a particularly useful form to thermal energy, it is wise to consider a 
quasistatic heat transfer between the system we are interested in and the external 
environment. This term quasistatic means that the equilibrium of the system is never 
broken and that the change in macroscopic parameters happens slowly enough to 
continuously conserve a state of equilibrium. This equilibrium evolves but is always 
present. Thus, an important change in a macroscopic parameter can be broken down 
into a series of infinitesimal changes that can be placed end-to-end without breaking 
equilibrium.  

Here we are placing ourselves in the case of the infinitesimal heat transfer, Q, 
of a system S' into a system S, without work transfer. We assume that the quantity of 
heat transferred is negligible compared to the average energy, E0, of the system S. In 
other words, the transfer of this heat leads to a negligible change in the temperature, 
T, of S. Let us calculate the change in the logarithm of the number of accessible 
system states S before and after heat transfer (lnNS(E0+ Q)-lnNS(E0)). As Q is very 
low with respect to E0, it is legitimate to carry out a first-order expansion, which gives: 
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( ) ( ) ( )0
0 0

ln 1ln ln e
e e

N E
N E Q N E Q Q

E kT
δ δ δ

∂
+ − = =

∂
 [2.23] 

If we multiply the left term of this equation by k, we get the entropy change  
of S, as defined previously. As we are considering an infinitesimal quantity of heat, 
the entropy change is  also infinitesimal.  can therefore be expressed as d . 
Finally we get the following expression, which is valid in the case of infinitesimal 
heat transfer: 

Q
d

T
δσ =  [2.24] 

By extension, this relation remains valid in the case of quasistatic heat transfer. 

We must differentiate the affected differential, d, from the entropy of the 
affected infinitesimal quantity, , of heat. Indeed, heat is a quantity of transferred 
energy and not a function variation. Entropy is itself well defined before and after 
the transfer. d  is a true differential.  

In the case of a system that transfers solely heat, work transfer is null. 

According to equation [2.13] (the first principle of thermodynamics), we get: 

thermaldU Qδ=  [2.25] 

Inserting the quasistatic relation (see equation [2.24]), the relation above 
becomes: 

thermaldU Tdσ=  [2.26] 

This energy contribution corresponds to the thermal energy to be taken into 
consideration in the thermodynamic approach. It is therefore important to have a 
physical understanding of what entropy and absolute temperature are.  

2.2.6.1. Heat capacity  

We experimentally have access to heat. It is therefore very useful to define the 
heat capacity, C, of a system. This is the quantity of heat absorbed by the system 
during an increase in temperature: 

Q
C

dT
δ=  [2.27] 
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In the case of a pure heat transfer (no work transferred), this relation can be 
combined with equation [2.26]: 

thermaldU Td Q CdTσ δ= = =  [2.28] 

It is therefore possible, from heat transfer measurement, to calculate entropy 
using the relation: 

dT
d C

T
σ =  [2.29] 

2.2.7. Quasistatic transformation with work and heat transfer 

Now let us assume that the system above can exchange energy and work with the 
external environment. To simplify the calculation, we imagine that there is only one 
single external parameter, x, that influences the system. The energy, E, of the system 
therefore depends on the value of x. The number of microscopic states, N, accessible 
by the system depends both on E and x at the same time: N=N(E,x).  

If x varies from an infinitesimal quantity dx, a microscopic state i of energy Ei 
will vary from the value dEi, such that: 

i
i i i

E
dE dx X dx W

x
δ∂

= = =
∂

 [2.30] 

Here we have assumed that the change in heat was null. Xi corresponds to the 
conjugate variable of x. For example, if we consider electric displacement, D, as a 
controlled external parameter (i.e. x), then X is the electric field strength (we will see 
the different forms of work in more detail in the following chapters). In other words, 
the change in energy corresponds to the external work exchanged by the system with 
the external environment. 

2.2.7.1. Change in the number of accessible states as a function of x 

Although x often modifies each of the microscopic states in a different way when 
it changes from dx, to simplify the calculation we assume that all the accessible 
states are modified from the same energy when x becomes x + dx. The consideration 
of these different changes finally returns to the average, X , of Xi over all the 
accessible states. All states are equiprobable as we are at equilibrium.  

N(E,x) is the number of accessible states of the system when its energy is 
between E and E + E and the external parameter takes the value x. In other words, 
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the number of states per unit of energy (which could be called the energy state 
density) is equal to N(E,x)/ E.  

The next step is to calculate the number of states (E) that move from an energy 
below E to an energy greater than E when the external parameter moves from x to 
x+dx (we assume that the change in x induces a positive change in energy). (E) is 
therefore the energy state density multiplied by the change in energy due to the 
change in the external parameter. We therefore get: 

( ) ( ),N E x
E Xdx

E
Σ

δ
=  [2.31] 

We can now calculate the change in the number of states when x varies in an 
infinitesimal way. As this variation induces a change in the energy of states, we 
must include the difference between the states that enter the E + E interval and 
those that leave it (from the top, as we are considering an increase in energy). 

Thus we get: 

( ) ( ) ( ) ( ),N E x E
dx E E E E

x E
δ δ

∂ ∂
= − + = −

∂ ∂
 [2.32] 

Using the expression (E) in the equation above, we get: 

( ) ( )( ),, N E x XN E x N X
X N

x E E E

∂∂ ∂ ∂= − = − −
∂ ∂ ∂ ∂

 [2.33] 

Dividing by N, the previous equation becomes: 

( ) ( )ln lnN N X
X

x E E

∂ ∂ ∂= − −
∂ ∂ ∂

 [2.34] 

We saw before that the change in the number of states as a function of energy is 
extremely high (see equation [2.6]). The first term of the right member of the 
equation above therefore generally dominates compared to the second term. 

The change in the logarithm of N compared to E is known as (1/kT), which 
enables us to write: 

( )ln 1N
X

x kT

∂
= −

∂
 [2.35] 
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We will now be able to calculate the relationships between the different entities 
constituting the energy during a general quasistatic change with heat and energy 
transfer. 

2.2.7.2. Work and heat transfer through quasistatic transformation 

In our example with a single external parameter, x, we can write: 

ln lnln N N
d N dE dx

E x
∂ ∂= +

∂ ∂
 [2.36] 

According to what we have just seen, we get: 

1ln X
d N dE dx

kT kT
= −  [2.37] 

Modifying the place of kT, we cause the entropy change and the quantity of heat 
transferred to appear, which gives: 

Td dE Xdx Qσ δ= − =  [2.38] 

Finally, we can re-write the previous equation: 

dE Td Xdx Q Wσ δ δ= + = +  [2.39] 

The generalization to several external parameters is immediate because we just 
have to add a term to the quantity of work transferred, W. 

Equation [2.39] enables us to generalize the first principle in the case of a 
quasistatic transfer. It is possible to calculate the heat and work terms as well as 
entropy. This relation is very important as we saw that entropy enabled us to find the 
state of equilibrium of the system. Taking this general quasistatic change into 
consideration enables us to express the microscopic relations of the statistical 
postulate in equations that are useful for applications by causing measurable 
macroscopic parameters to appear.  

2.2.8. Example of a constant pressure and temperature experiment 

We will end these recollections on statistic thermodynamics with the classic 
situation of an experiment taking place at constant pressure and temperature. This 
example enables us to make the conditions of equilibrium stemming from entropy 
stand out for the function of state adapted to this situation. It is this very argument 
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that we will then use to systematically choose the correct function of state that will 
decide the condition of equilibrium through an extremum as a function of the 
external parameters chosen. 

We therefore assume we have an isolated system, ST, which can be for example 
an isolated room. This system is made up of two sub-systems: a source, S0, which 
can be the surrounding air at a temperature T0 and pressure P0 that can interact with 
the system S in which we are interested. We assume that the work and heat transfers 
are so low for the source that P0 and T0 remain constant. This induces a quasistatic 
transformation for the system S0.  

The number of states accessible to ST is equal to the product of the states 
accessible to S0 and S. Therefore, the total entropy of the system is the sum of the 
entropies of the two sub-systems (as  = klnN):  

0Tσ σ σ= +  [2.40] 

As the source undergoes an infinitesimal transformation, we can use the entropy 
expression given by equation [2.38], considering a transferred heat Q0 that gives: 

0
0

0

Q
T

Δσ =  [2.41] 

It must be noted that the changes given can be important for the system S (hence 
the use of  instead of d and the omission of ), but the source remains in the 
conditions of a quasistatic transformation. On the other hand, we assume that S0 
exchanges mechanical work with S through the application of pressure P0. Thus, the 
work W0 transferred is: 

0 0W P VΔ=  [2.42] 

where V is the change in the volume of system S (indeed, the product PV is 
homogeneous to the work).  

The total energy of the system is constant, which leads to E0 + E = 0. We 
therefore have: 

0 0 0 0Q E P V E P VΔ Δ Δ Δ= − = − −  [2.43] 

We can express the complete entropy change of the system as a function of the 
only variables of system S: 
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0 0
0

0 0
T

E P V T G
T T

Δ Δ Δσ ΔΔσ Δσ Δσ − − +
= + = = −  [2.44] 

Here we have defined a new function G = E + PV − T . This function is 
homogeneous with an energy that gives the following formula because of the 
stability of P and T: 

0 0G E P V TΔ Δ Δ Δσ= + −  [2.45] 

We have seen that the state of equilibrium corresponds to the maximum entropy. 
When the energy transfer occurs between S and the source S0, entropy evolves until 
it reaches its maximum value. S is thus maximum at equilibrium. Equation [2.44] 
indicates that the equilibrium condition is translated by G minimum at equilibrium 
in the experimental conditions defined here: constant pressure and temperature.  

In section 2.3 we will see the different possible functions describing the internal 
energy of the system, considered as a function of the experimental variables that are 
accessible. 

2.3. State functions 

This formalism has largely been described in the literature.  Here we gather 
together the different approaches proposed in order to ensure coherence in the 
notations that can be found. This part is largely inspired by the articles by 
Devonshire [DEV 49] and Damjanovic [DAM 98], as well as the work by Lines and 
Glass [LIN 77]. 

The fact that several energy couplings are possible in many cases leads to several 
physical domains being mixed a priori without a link in the elaboration of their 
respective models. In thermodynamics, as we were able to see, the microscopic state 
of a system is described by breaking down its internal energy into several distinct 
contributions: mechanical, electrical, thermal, magnetic and chemical. All these 
contributions correspond to global, statistical values independently of any microscopic 
description of the state of the material of the system considered. If we are capable of 
writing the expression for this internal energy, then we can determine the state of the 
system as a function of independent macroscopic variables (for example, pressure or the 
electric field) and it becomes possible to determine its equilibrium as a function of 
these variables, as we saw in the previous section.  

In the internal energy expression, the infinitesimal work quantity, W, depends 
on the nature of the system’s interactions with the external environment. Here, we 
will consider two types of interactions that can be applied to the solids considered: 
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mechanical and electric. Generalizing to other forms of energy (especially magnetic) 
can be done in the same way. So-called conjugate variable couples to be considered 
are: strains S and stresses T for the mechanical part, the electric field E and 
displacement D for the electric part, as we will see in the next chapters. In this book, 
we deliberately choose to describe the mechanical and electric works and their 
associated variables after the exposition of thermodynamic formalism. For what 
follows, we choose  to describe the temperature in order to avoid all ambiguity with 
mechanical stress T.  

Thus, for these two types of work, by virtue of the first principle and its validity 
in the case of a quasistatic transformation, the infinitesimal change in internal 
energy is: 

dU d TdS EdDθ σ= + +  [2.46] 

We recall that internal energy constitutes a state function, i.e. that it completely 
describes the energy transfers undergone by the system. Its changes therefore only 
depend on the initial and final states of the system during a transformation. dU is a 
total differential.  

It is fundamental to note that the external parameters, defined as variables in this 
internal energy expression (S and D), correspond to a choice. Thus, to estimate the 
infinitesimal change in mechanical energy (TdS), the stress is fixed and we look at 
the change in strain. For electrical energy, E is considered to be fixed and we look at 
the change in electrical displacement (therefore charges). The contribution to dU is 
therefore EdD. To calculate dU, intensive variables are chosen as constants during 
the change (temperature, stress and electric field strength) whereas the extensive 
variables vary (entropy, strain and electric displacement). An extensive variable has 
a value that changes depending on the size of the system. According to what we saw 
when revisiting statistical physics, the main interest in the use of internal energy is 
in characterizing the equilibrium of the system at fixed electric entropy, strain and 
displacement. Indeed, we then have dU = 0, according to the equation above, which 
corresponds to an extremum of U. We can show that this extremum is a minimum 
[REI 65]. We then say that U represents the thermodynamic potential of this system 
for the transformation considered. 

Experimentally, the parameters over which it is possible to intervene are not 
always the same. It is therefore interesting to be able to change the thermodynamic 
potential. This is can be done by carrying out a Legendre transform of internal 
energy, which refers to adding terms homogeneous to energy that are the product of 
conjugated variables. This operation transforms the internal energy into another state 
function. It is therefore possible to define a thermodynamic potential adapted to each 
experiment.  
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We commonly work at constant temperature rather than at constant entropy. On 
the other hand, to describe the ferroelectric-paraelectric phase transition, it is 
interesting to make polarization (and by extension, electric displacement) appear 
rather than the electric field, as it involves the order parameter of the transition. For 
the mechanical part, boundary conditions depend on the geometry of the sample. For 
the case of thin films, it is common to set different boundary conditions for stresses 
and strains. The most common thermodynamic potentials for the study of thin films 
are the following: 

− Helmholtz free energy (F or A, depending on authors): 

F A U σθ= = −  [2.47] 

− Gibbs energy:  

G U TS EDσθ= − − −  [2.48] 

− Gibbs elastic energy:  

1G U TSσθ= − −  [2.49] 

− Gibbs electric energy:  

2G U EDσθ= − −  [2.50] 

NOTE.− By definition, mechanical stresses are positive when they are tensile and 
negative when they are compressive.  

The total differentials obtained are: 

1

2

dF dA d TdS EdD
dG d SdT DdE

dG d SdT EdD

dG d TdS DdE

σ θ
σ θ
σ θ
σ θ

= = − + +
= − − −
= − − +
= − + −

 [2.51] 

The three variables appearing in differential form in the second term of each 
equation correspond to the natural variables of each thermodynamic potential. Also, 
the minimum Gibbs elastic energy, G1, is achieved at the equilibrium of a system for 
which temperature, stresses and electric displacement are constant. These three 
parameters represent the natural variables of G1.  

As we have seen, all these thermodynamic potentials are functions of state. Their 
differential is total because all possible contributions to energy change are 
considered. From a mathematical point of view, they are analytical functions 
depending on several variables. They have the property of being able to be broken 
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down into a Taylor series of different variables, provided that successive derivatives 
exist up to the order in which we are interested. If the second derivatives are 
continuous (which is true most of the time in physics), we get an important property: 
there is equality of cross derivatives. This enables us to obtain the Maxwell relations 
of thermodynamics that play a key role in thermodynamic potentials. For example, 
the equality of crossed derivatives for G1 gives the following relations: 

, ,D D T

S
T θ

σ
θ

∂ ∂=
∂ ∂

    
, ,T T D

E
D θ

σ
θ

∂ ∂= −
∂ ∂

    
, ,T D

S E
D Tθ θ

∂ ∂= −
∂ ∂

 [2.52] 

Another translation of this property is that the order of derivation for the multiple 
derivatives is of no importance. Taking the example of G1 again, we have: 

1

,D

G
S

T θ

∂
= −

∂
 1

,T

G
E

D θ

∂
=

∂
 [2.53] 

which, by derivation with the crossed variable for each relation, gives: 

,

1

,

,

D

T

T

G
T S
D D

θ

θ

θ

∂∂
∂ ∂= −
∂ ∂

 ,

1

,

,

T

D

D

G
D E
T T

θ

θ

θ

∂∂
∂ ∂=
∂ ∂

 [2.54] 

This property can be represented in a diagram by the expression 2 2
1 1G G

D T T D
∂ ∂

=
∂ ∂ ∂ ∂

. 

We will see that this property enables us to simplify the characteristic tensors of 
materials studied.  

One final important note is that work and heat are not generally functions of 
state. Indeed, the first principle tells us that it is their sum that represents internal 
energy. Their differential is therefore not total. For energy balances, it is 
fundamental to work with state functions.  

2.4. Linear equations − piezoelectricity 

From these definitions, it is now possible to define state equations from different 
thermodynamic potentials. The simplest equations correspond to a hypothesis of 
linearity of all effects.  
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Let us continue our Gibbs elastic energy example. To go into detail, we must 
describe each conjugate variable according to the three axes, knowing that stresses 
and strains are described by rank 2 tensors, whereas electric field strength and 
displacement are described by vectors (rank 1 tensors). dG1 becomes: 

iiijij dDEdTSddG +−−= θσ1  [2.55] 

Therefore, Gibbs elastic energy function of state can be mathematically written 
in the form of a Taylor series. 

Stopping at second order, we get: 

( ) ( )

( ) ( )

2
21 1 1 1

1 1 1 0 0 02
, ,, ,

2 2 2 2 2
2 21 1 1 1 1

0 02 2
,,

1( , , ) ( ,0,0)
2

1 1 1 2 2 2
2 2 2

ij i
ij iT D TD T D

ij i ij i
ij i i jkij i D TTD

G G G G
G G T D G T D

T D

G G G G G
T D T D

T D D TT D

θθ

θθ

Δ θ θ θ θ θ θ
θ θ

θ θ θ θ
θ θ

∂ ∂ ∂ ∂
= − = − + + + −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
+ + + − + − +

∂ ∂ ∂ ∂ ∂ ∂∂ ∂
jk iT D

terms of greater order

θ

+

 

 [2.56] 

It is also possible to describe each non-natural variable by breaking them down 
following a Taylor series of natural variables. 

Stopping at the first order, we get the following linear equations: 

, ,,

, , ,

, , ,

ij i
ij iT D TD

ij ij ij
ij kl k

kl kT D D T

i i i
i jk j

jk jT D D T

d d dT dD
T D

S S S
dS d dT dD

T D

E E E
dE d dT dD

T D

θθ

θ θ

θ θ

σ σ σσ θ
θ

θ
θ

θ
θ

∂ ∂ ∂= + +
∂ ∂ ∂

∂ ∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂
= + +

∂ ∂ ∂

 [2.57] 

Each of the partial derivatives appearing in these equations represents a given 
distinct physical effect for particular conditions. Therefore 

,

ij

k T

S

D θ

∂
∂

and 

,

i

jk D

E
T

θ

∂
∂

correspond, respectively, to the indirect piezoelectric effect at fixed 

temperature and stress on one hand, and the direct piezoelectric effect at fixed 
temperature and electric displacement on the other. Moreover, according to the 
Maxwell relations of thermodynamics applied to Gibbs free energy (see 
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equation [2.52]), these two coefficients are equal to a type of sign. They are 
therefore energy considerations that prove that the direct and indirect piezoelectric 
effects are identical.  

In the end, it is possible to write linear equation [2.57] using the denominations 
of standards of piezoelectricity [IEE 87]. To do this, the changes in X variables are 
supposedly low, which allows the approximation dX = X − X0 [LIN 77]. We get: 

, *T D
D T

ij i iij
c

T p DΔσ Δθ α
θ

= + −  [2.58] 

,DD
ij kl kij kij ijklS s T g Dθ θα Δθ= + +  [2.59] 

* ,T T
i i kl kikl ikE p g T Dθ θΔθ β= − +  [2.60] 

where: 

,T Dc : heat capacity of the system with fixed T and D – scalar; 

D
ijα : coefficients of thermal dilation with fixed D – rank 2 tensor;  

*T
ip : pyroelectric coefficients of field strength with fixed T – rank 1 tensor; 

,D
ijklsθ : coefficients of elastic compliance with fixed  and D – rank 4 tensor;  

kijgθ : piezoelectric coefficients with fixed  – rank 3 tensor; 

,T
ij
θβ : dielectric impermittivity coefficients with fixed  and T – rank 2 tensor. 

The coefficients that appear are tensors of various ranks between 0 and 4. It is 
noteworthy that piezoelectricity appears in the form of a tensor of third order. The 
indices chosen allow optimum accounting with the four possible forms of 
piezoelectric formalism (see Chapter 6). To end, it is noteworthy that the coupling 
coefficients, i.e. those that link variables of different natures ( D

ijα , *T
ip  and kijgθ ), 

are identical in their direct and indirect effects by virtue of the thermodynamic 
Maxwell relations, as we explained for piezoelectricity. They are therefore given for 
a single fixed variable: the one that is not part of the coupling (for example,  for 
piezoelectricity).  
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2.5. Non linear equations − electrostriction 

The Taylor series development of free energies can occur at greater orders to 
take into consideration the nonlinear effects common in perovskites, such as the 
hysteretic relation between polarization and electric field or electrostrictive 
phenomena. A very good example of this development was given by Mason in 1950 
to explain the electrotrictive effect of barium titanate ceramics [MAS 50]. It must be 
noted that this approach is independent of the description of the paraelectric-
ferroelectric phase transition and that all the insulating materials can in theory be 
described in this way.  

If we continue with our example based on Gibbs elastic energy, disregarding 
heat terms, the third-order expansion for energy and second-order expansion for 
non-natural variables gives the following equations: 

² ² ²1 2
2!

ij ij ij
ij ijkl kl nij n kl qr kl n n o

kl qr kl n n o

S S S
S s T g D T T T D D D

T T T D D D

∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂ ∂
 [2.61] 

² ² ²1 2
2!

m m m
m mkl kl mn n kl qr kl n n o

kl qr kl n n o

E E E
E g T D T T T D D D

T T T D D D
β ∂ ∂ ∂

= − + + + +
∂ ∂ ∂ ∂ ∂ ∂

 [2.62] 

We get 
3 3

1 1² ²
2ij o

noij
n o n o ij ij n o ij n

S EG G
Q

D D D D T T D D T D

∂ ∂∂ ∂
= − = − = − =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 with noijQ , the 

electrostrictive coefficients. Electrostriction is therefore represented by a tensor of 
fourth order. Term ² ij

kl qr

S

T T

∂
∂ ∂

 corresponds to the change in flexibility as a function of 

stress, ² ij

kl n

S

T D

∂
∂ ∂

 to the change in flexibility as a function of the electric displacement, 

² m

kl qr

E
T T
∂

∂ ∂
 to the change in piezoelectric coefficients as a function of stress, and 

² m

n o

E
D D
∂

∂ ∂
 to the change in the reverse of dielectric permeability as a function of 

electric displacement.  

As can be seen in this example, complexity increases very quickly and the 
number of experiments required to determine all these coefficients can become 
impossible. It is necessary to make assumptions on the preponderance of certain 
effects in relation to others. For the case of perovskites, the higher-order terms 
involving electric variables are often preponderant compared to those related to 
mechanical variables. This comes from the fact that the dielectric constant is very 
sensitive to all the experimental variables. For other materials, such as AlN (another 
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notable piezoelectric), the changes in coefficients as a function of variables are 
much more homogeneous and it is harder to disregard the mechanical terms.  
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Chapter 3 

Ferroelectric-paraelectric Phase Transition 
Thermodynamic Modeling   

3.1. Hypothesis on Gibbs’ elastic energy  

Ferroelectric-paraelectric transition appears at a given temperature called the 
Curie temperature, TC, which is analogous to ferromagnetics. Thus, above TC the 
lattice is centrosymmetric (simple cubic for perovskites) and therefore no 
polarization can appear if the electric field strength is null. Below TC, a polarization 
can appear even at null field strength because the crystal lattice loses its center of 
symmetry. For barium titanate (BaTiO3 called BTO), one of the most frequently 
studied perovskites, it is the tetragonal phase that appears below TC. Polarization in 
this phase follows direction <001>, often called the c-axis.  

As specified before, the thermodynamic description does not require knowledge 
of microscopic phenomena. It is an energy description that relies on the 
identification of “good” macroscopic “variables”, chosen as a function of 
experimental conditions undergone by the system described. The choice of an 
adapted free energy that takes a minimum value when equilibrium is reached by 
virtue of thermodynamic principles results from this. The usual hypothesis is 
therefore to describe this energy using a polynomial that involves the order 
parameter. This is an experimental parameter whose value is null in one of the 
phases and non-null in the other. It is therefore representative of this transition. In 
the case of ferroelectric-paraelectric transition, the order parameter is polarization. 
Indeed, in the cubic phase, no polarization can appear in the absence of an electric 
field, or cubic symmetry would no longer be respected [NYE 61]. On the other 
                                       
Chapter written by Emmanuel DEFAŸ. 
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hand, in the ferroelectric phase just below TC (tetragonal phase for BTO), the loss of 
symmetry enables the appearance of a non-null polarization in the absence of an 
electric field. 

The order of the polynomial depends on the degree of nonlinearity necessary for 
the phenomenological description of transition. An additional clever hypothesis is 
suggested by Landau: the same polynomial can describe the high- and low-
temperature phase. For ferroelectrics, this is justified by the fact that, though non-
centrosymmetric, the low-temperature lattice is very similar to the high-temperature 
one. For example, the strain of the lattice parameter undergone by BTO during 
phase transition is of the order of one percent. Thus, centrosymmetric high-
temperature phase modeling, called the prototype phase, must enable us to describe 
the system above but also below TC. The main limitation of this hypothesis is that it 
does not allow a perfect description of critical phenomena that appear in second-
order transitions (without phase transition of latent heat) [LIN 77]. This approach 
gives very satisfying results for describing the greater part of perovskite behaviors, 
however, whether in bulk form or in thin films.  

Cubic phase symmetry enables us to simplify the polynomial. Indeed, the odd 
terms of the order parameter are excluded from the polynomial. If there were such 
terms, the energy would not be the same in the cubic lattice following different 
direction of polarization, which is impossible. Regarding the order parameter, the 
accessible experimental variable is not polarization, P, but electric displacement, D, 
whose derivative in time gives electric current. However, polarization is the order 
parameter, as this variable enables us to better understand what happens on the 
crystal lattice scale during the transition. As PED += 0ε  and transition intervenes 
when P becomes non-null for a null electric field E, it is equivalent to the 
thermodynamic sense of considering P or D as a conjugated variable of E when 
describing transition.  

Lines and Glass, in their description of ferroelectric materials in 1977 [LIN 77], 
point out that it is not correct to use the (P,E) couple to describe the electric 
contribution in the different free energies. Actually, it is not possible to 
experimentally control polarization, which results in an uncertainty in the definition 
of constants defined at constant P. On the other hand, using P in the energy balance 
results in electric displacement being neglected in the vacuum, 0Eε . Nevertheless, 
most of the time this ambiguity does not play a very important role. This is because 
perovskite permittivity is very high compared to that of vacuum, which means D and 
P exhibit extremely similar values. We will, however, adopt the thermodynamic 
orthodox approach by using the (D,E) couple of conjugated  variables to describe the 
electric contribution of free energies.  
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Thus, the classic way to describe ferroelectric-paraelectric transition is to use 
temperature, mechanical stresses and electric displacement as variables. The natural 
variables are therefore ( ,T,P), which corresponds to Gibbs’ elastic energy G1. G1 is 
therefore the thermodynamic potential whose minimum will define equilibrium. To 
simplify things, we place ourselves in the one-dimensional case where polarization 
can only take a single direction in the non-centrosymmetric phase, a direction that 
corresponds to that of the electric field. In these conditions, G1 can take the form of 
the following polynomial [UCH 97]: 

2 4 6 2 2
1 1 0

1 1 1 1( , , ) ( ,0,0) ' "
2 4 6 2

G T D G D D D sT QD Tθ θ α α α− = + + − −  [3.1] 

Order 6 is generally sufficient to reveal first- and second-order transitions for 
most materials. More recently, Vanderbilt et al. suggested keeping the terms up until 
order 12 to correctly predict Pb(Zr0.52Ti0.48)O3 (PZT) behavior in the morphotropic 
region of its phase diagram where several monoclinic phases appear [VAN 01]. The 
fourth term from the right corresponds to elastic energy (with S = sT) and the last 
term is the electrostriction term that can appear in the centrosymmetric phase. The 
thermal term does not appear explicitly but the temperature dependence is found in 
the  coefficients.  

At first sight, this equation does not seem well-adapted for describing the low-
temperature phase as piezoelectricity does not explicitly appear. We will, however, 
see that this linear property can be described by the presence of a remanent 
polarization associated with the electrostrictive effect. In addition, this approach 
turns out to be a lot closer to experience as it highlights the significant influence of 
the dielectric constant in piezoelectric coefficients. 

On the other hand, the choice of signs in equation [3.1] is not, a priori, of 
importance as it is enough to correct these signs in the different coefficients ( , s, Q). 
Despite this, it is wiser to choose signs that enable us to define positive elastic 
compliances, sii, and positive electrostrictive coefficients, Qiijj, by respecting the 
“natural” signs of the total differential of Gibbs’ elastic energy. Actually, sii is the 
reverse of Young’s modulus in an isotropic material, and electrostriction is often 
defined simply by the relation between the strain S induced by the electrostrictive 
effect and electric displacement D by S = QD². Experimentally, in the one-
dimensional case (for example, depending on thickness) and for ceramic materials, Q 
is always positive, which means that the material experiences an increase in thickness 
when D is non-null.  

To characterize the transition, we must follow electric displacement as a function 
of temperature at null electric field strength. This means that thermodynamic 
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potential is not G1 but G Gibbs’ energy such that G = G1 − ED. This change in 
thermodynamic potential can seem strange, but it enables us to have an expression 
that depends on order parameter D and set the electric field to a null value at the 
same time, which is necessary for observing this transition. Therefore, it is G( , T, 
E) that is minimum at equilibrium. The expression of E is given by the derivative of 
G1 in relation to D: 

3 51

,
' " 2

T

G
E D D D QDT

D θ
α α α∂

= = + + −
∂

 [3.2] 

3.2. Second-order transition 

To describe the transition in the simplest way possible, let us place ourselves at 
null stress and take ' to be positive and '' to be null. This scenario corresponds to 
transitions called second-order transitions for which there is no latent heat associated 
with phase change. Here the order parameter continuously changes until it reaches 
zero as temperature increases until it reaches TC. The transition appears when there 
is a null-field electric displacement, which gives: 

20 ( ' )D Dα α= +  [3.3] 

Non-null D is possible if solution 2
'

D
α
α

= −  exists. Following Landau’s 

example, Devonshire introduced temperature in the  term in the simplest possible 
way by suggesting a linear dependence of the form C

C
θ θα −

= , with C and C being 

the Curie temperature and Curie constant, respectively. This dependence is 
physically explained by the thermal expansion that appears when temperature 

changes. Therefore, above C, D is null and below C, 
'

CD
C

θ θ
α
−

= . Let us note that 

the form of  is not completely the same if '' is non-null as we will see later. In this 
simple model, the energy’s temperature dependence only appears in the  coefficient. 

' and '' are considered constants.  

The expression of , the reverse dielectric susceptibility , is obtained by 
deriving equation [3.2] according to D, which gives: 

, 2 4

, ,

1 3 ' 5 " 2T

T T

E
D D QT

D
θ

θ θ
β α α α

χ
∂ = = = + + −
∂

 [3.4] 
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Taking the same hypotheses as before (null T (stress), null '' and positive '), 
the values of  on both sides of the transition become: 

( )

, ,

, , 2

11

11
23 '

C T T
C

C T T
C

C

C

D

θ θ

θ θ

θ θ χ ε
α θ θ

θ θ χ ε
θ θα α

> ⎯⎯→ = − = =
−

< ⎯⎯→ = − = =
−+

 [3.5] 

These expressions, widely described in the literature, highlight the fact that the 
dielectric constant  diverges when  = C, that  follows Curie-Weiss law in the 
paraelectric phase, and that the gradient of  as a function of 1/  is twice as low and 
in the opposite direction in the ferroelectric phase as in the paraelectric phase. 

To illustrate these properties, we take the example of a ferroelectric that could be 
compared to PZT. The description that follows is, however, more qualitative than 
quantitative because of many extrinsic effects that can appear during the synthesis of 
a real material and which, in addition, is in a thin film (interfaces, crystal defects, 
space charges, grains). To do this, we take C = 400 °C, C = 105. 0 F/(m.K), 

' = 8.109 m5/(F3V²), s = 1/(100GPa) = 10-11m²/N and Q = 0.1m4/C².  

Figure 3.1a represents Gibbs’ elastic energy calculated according to equation 
[3.1] as a function of electric displacement at different temperatures on both sides of 
transition (400°C). The minimums of each of the curves correspond to the state of 
equilibrium. We observe that below C, there are two possible symmetrical states of 
equilibrium in relation to null D, and that we continuously get closer to the state of 
equilibrium for null D when  tends towards C. This equilibrium is reached when 
 = C and remains the same when the temperature increases again. The absolute 

value of electric displacement D at equilibrium is illustrated in Figure 3.1b, in 
accordance with equation [3.3]. D continuously decreases as temperature increases 
until it is cancelled at 400°C, which is characteristic of a second-order transition.  

The change in the dielectric constant  as a function of temperature is easily 
obtained with equation [3.5] and is not represented here.  tends towards infinity as 
temperature gets closer to 400°C. This phenomenon is sometimes called 
polarization catastrophe as in this case a very low electric excitation induces an 
infinite polarization, only limited by nonlinearities. Physically, it is a very low 
frequency transverse optical phonon (the soft mode) that originates in the 
ferroelectric material and explains the extremely high polarizability [KIT 04].  
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Figure 3.1. a) Gibbs’ elastic energy calculated as a function of electric displacement 
for a second-order transition; and b) electric displacement at equilibrium 

as a function of temperature 
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Figure 3.2. Gibbs’ energy, G, as a function of electric field strength applied to different 
temperatures for a second-order transition 

In accordance with the above remarks, it is often wiser to represent the functions 
describing transition as a function of electric field E, hence the use of G in place of 
G1. Thus, Figure 3.2 represents the change in G as a function of E at different 
temperatures around transition, calculated with equation [3.1], as well as G = G1 − 
ED. The change in field strength begins at the most negative values, reaches its 
maximum value, and then re-descends to its minimum value. 

The curve reveals a hysteresis when the temperature is located below C. To 
describe these hystereses, it is good to rely on D’s curve obtained as a function of E 
based on equation [3.2]. D is therefore copied to Figure 3.3 and also reveals a 
hysteresis characteristic of ferroelectric materials. The description of the cycle is 
identical to that of G and is marked off based on numbers 1 to 7, included in Figures 
3.2 and 3.3. 

To get a rough understanding of these hystereses, we can propose a macroscopic 
description of a single crystal ferroelectric material in which several ferroelectric 
domains can be formed. A ferroelectric domain is a part of the material in which the 
polarization value is identical and no two adjacent domains have the same 
polarization value. In this explanation, we will lump together electric displacement 
and polarization, which is legitimate for ferroelectrics given their dielectric constant. 
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Figure 3.3. Electric displacement as a function of electric field strength applied to  
different temperatures for a second-order transition 

Therefore, for a strong and negative field strength, polarization follows the field 
strength and is therefore also negative because we are located beyond the coercive 
field (point 1 of Figure 3.3). When field strength tends towards positive values, G 
increases because the absolute value of ED decreases and polarization decreases 
because several ferroelectric domains successively tip over in the positive direction. 
This progressive overbalancing is illustrated by the nonlinear term '. At point 2, the 
coercive field is almost reached and is therefore the maximum of G since | ED | is 
minimum at that time. At point 3, the coercive field is reached and all the domains 
that have not yet tipped over do so to give a positive polarization. 
 | ED | becomes important again and therefore decreases G (leading to a more stable 
state). 

Energy further decreases as field strength increases because | ED | increases. 
Polarization increases slightly still by pure dielectric effect (point 4). When the 
electric field strength decreases, the situation is exactly symmetrical, with a gradual 
decrease in polarization correlated with the increase in free energy until negative 
coercivity (point 5). There is a sudden overbalancing of polarization and energy to 
negative coercivity (point 6) and a gradual decrease in energy with a gradual 
increase in polarization as the field strength decreases (point 7). 
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When temperature increases, this hysteresis effect decreases to completely 
disappear at the Curie temperature, beyond which the nonlinear effect subsists. The 
microscopic origin of this nonlinear effect is located in the decrease in polarizability 
as electric field strength increases. 

It is also possible to plot the evolution of the relative dielectric constant r as a 
function of field strength at different temperatures (see Figure 3.4). Hysteresis is 
visible in the evolution of r when temperature is below 400°C. The maximum of r 
appears at coercive fields (points 2 and 5) corresponding to the polarization 
overbalancing, which brings a very important contribution to material polarizability 
(infinite in the case of our model). 

The coercivity value decreases during the increase in temperature to be cancelled 
at C, at which r reaches an infinite value at null field strength. It is interesting to 
note that at null field strength, the change in r as a function of temperature is in 
accordance with equation [3.5] because the values of r are identical at 350°C and 
500°C (factor on both sides of the transition). At high field strength, all the r 
decrease as the polarizability of the material decreases. In physical terms, this 
corresponds to soft mode hardening, i.e. to an increase in its resonance frequency. 
Another way of seeing things is to consider one of the equalities of cross derivatives 
of G, which gives: 

, ,T T E

D
E θ

σ
θ

∂ ∂=
∂ ∂

 [3.6] 

We saw that D decreases with temperature at null stress and field strength. 
According to equation [3.6], this means that entropy decreases as a function of the 
field strength applied at given stress and temperature.  In other words, the number of 
accessible microscopic states of the system decreases with field strength. The ease 
of movement of charged spaces contributing to material polarization therefore 
decreases with field strength as does the dielectric constant. 

On the other hand, Figure 3.4 shows that r has a tendency to be higher at a 
strong field strength when the temperature is greater – although at higher 
temperatures the effect is cancelled (unrepresented). This comes from competition 
between terms  and 3 'D². Actually,  increases with temperature, whereas 3 'D² 
decreases because for a given E. D is lower when the temperature is high. This last 
remark can seem paradoxical as if D, which is often defined as D = E, is lower this 
means that  is also lower, whereas the reverse is observed. The reason for this 
comes from the fact that the phenomenological definition of  is /D E∂ ∂ , which 
implies that it is the change in D as a function of E that matters. 
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Figure 3.4. Relative dielectric constant as a function of electric field strength 
applied at different temperatures for a second-order transition 

3.3. Effects of stresses 

Comparing this model to experience gives very good results for bulk materials. 
For thin films, non-negligible differences can appear, especially due to extrinsic 
parameters such as stresses.  

Therefore, if we place ourselves at fixed but non-null stress, equation [3.2] (still 
with positive ' and null '', therefore for a second-order transition) becomes: 

( )2' 2E D D QTα α= + −  [3.7] 

This gives a transition when the following expression is cancelled: 

2
22

' '

CQTQT CD

θ θ
α

α α

−
−−= =  [3.8] 

The temperature CT at which a non-null electric displacement appears for a null 
electric field when a stress is applied is therefore:  

QCTCCT 2+= θθ  [3.9] 
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Therefore, for the PZT example above, the term 2QCT is equal to 35.4°C for a 
typical stress for thin films of 200 MPa. Figure 3.5 illustrates the impact of different 
stresses on Gibbs’ elastic energy, G1, plotted as a function of D at 420°C, i.e. above 
the C of the unstressed material. For null or negative stresses (compression), there is 
only one minimum located at null D, therefore the material is paraelectric. A tensile 
stress of 100 MPa induces a G1 curve that is very close to transition and a stress of 
200 MPa clearly causes two minima to appear, a tendency that is further supported 
for 300 MPa. Thus, in accordance with equation [3.9], tensile stresses (applied along 
sample thickness) stabilize the ferroelectric phase by shifting the transition towards 
high temperatures. 

 

Figure 3.5. Gibbs’ elastic energy at 420°C as a function of electric displacement 
at different applied stress values 

Qualitatively, for the configuration of a plane capacitance vertically polarized by 
two electrodes, this means that an out-of-plane lattice traction helps to maintain 
polarization at null field strength. In the case of BTO, which is tetragonal just below 
transition, it is easy to imagine that this traction helps with the establishment of the 
out-of-plane c-axis, as this axis carries the polarization. It must be noted that most 
discussions focusing on stresses in thin films concern stresses in the plane and not 
the out-of-plane.  



60     Integration of Ferroelectric and Piezoelectric Thin Films 
 

3.4. First-order transition 

To end this description of transition, we must consider the case where ' is 
negative and '' non-null in equation [3.1]. This corresponds to a first-order 
transition for which electric displacement presents a discontinuity for transition. The 
presence of phase transition latent heat, unlike second-order transitions, must be 
noted. At null stress, G1 is expressed as follows: 

2 4 6
1 1 0

1 1 1( ,0, ) ( ,0,0) ' "
2 4 6

G D G D D Dθ θ α α α− = + +  [3.10] 

where  is defined a bit differently than for a second-order transition by  = (  -
0)/C, with 0 being the Curie-Weiss temperature. This is not entirely the same as C 

for a first-order transition, as we will see. ' and '' are considered constants.  

At equilibrium, when E is defined as null, G = G1 − ED is the minimum. At null 
stress, we get the relation: 

( )2 40 ' "D D Dα α α= + +  [3.11] 

There is a solution to equation [3.11] for non-null D corresponding to a 
minimum: 

''2

''4'' 02

2

α

θθααα
CD

−++−
=  [3.12] 

The other solution, with a minus in front of the square root, exists between 0 
and 1. The latter is the temperature that cancels the square root. However, this 
solution corresponds to a maximum and is therefore not a position of equilibrium. 1 
also corresponds to the maximum temperature for which D can be non-null, even 
beyond C. Thus, between C and 1, metastable states of non-null D can exist, as we 
will see in Figure 3.6. 1 is represented by the following formula: 

2

1 0
'

4 ''
Cαθ θ

α
= +  [3.13] 
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In the paraelectric phase, if E is null, D is null and according to equation [3.10] 
G1 is also null. Therefore, solutions to non-null D correspond to the absolute 
minimum of G1 if G1 is less than zero for these values of D.  

Thus, transition intervenes at C when we have null G1 and ∂ G1/ ∂ D 
simultaneously for non-null D. We must therefore cancel equation [3.10] and 
equation [3.11] for non-null D. The solution to the system gives: 

( ) ( )
''4
'3

'
4 02

α
α

α
θθθ −=−=

C
D C

C
          ''16

'3 2

0 α
αθθ C

C +=
 [3.14] 

The reverse dielectric susceptibility 1/  is obtained by deriving equation [3.10] 
twice in relation to D: 

2 4 2 401 3 ' 5 '' 3 ' 5 ''D D D D
C

θ θα α α α α
χ

−
= + + = + +  [3.15] 

Beyond transition (  > C), null D is the most stable solution and  
 = -1 = C/( - 0) follows Curie-Weiss law. 

Getting closer to C from high temperatures, we get: 

( )
2

01 3 '
16 ''

C
C C C

θ θ θ θ αθ
χ α

+ − −
= = +  [3.16] 

Getting closer to C from low temperatures, we can estimate the value and 
gradient of 1/  by doing a first-order expansion, which gives: 

( ) ( ) 21 81 3 '
4 ''

st order C
C C

θ θ αθ
χ α

− −
≈ +  [3.17] 

The gradient of 1/  as a function of  is thus eight times greater before transition 
than after it (ignoring the sign change). 1/  remains finite around transition and the 
relationship between the values before and after transition is equal to 4. 

To illustrate these formulae, we return to the numerical example above, using the 
following parameters: 0 = 400°C, C = 105. 0 F/(m.K), ' = -8.109 m5/(F3V²), and 

'' = 6.1011 m9/(F5V4). The characteristic magnitudes stemming from the model 
above are therefore C = 417.7°C, D( C) = 0.10 C/m² and 1 = 423.6°C. 
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Figure 3.6 represents Gibbs’ elastic energy, G1, as a function of D for different 
temperatures for a null mechanical stress. Up to 417.7 °C ( C), there are two absolute 
minima for G1 that correspond to the two possible states for polarization in the 
ferroelectric phase (same modulus but different meaning). At 417.7°C, there are 
three absolute minima for which G1 and its derivative in relation to D are cancelled. 
This is transition. 

Between 417.7°C and 423.6°C ( 1), the minima of non-null D still exist but are 
no longer absolute minima: they correspond to metastable equilibriums. We also 
observe that between 400°C ( 0) and 417.7°C, the solution D = 0 is a minimum, but 
not absolute. They are the metastable states of the paraelectric phase below 
transition. For  >417.7°C, only one absolute equilibrium still exists − that of null D. 
Thus, at transition D suddenly moves from a non-null value to a null value.  

 

Figure 3.6. Gibbs’ elastic energy G1 as a function of electric displacement  
at different temperatures around a first- order transition 

To make this last remark more specific, Figure 3.7 presents both metastable D 
and G1 at equilibrium at the same time in the transition region. Metastable D 
corresponds to non-null values of D for which G1(D) is a local minimum, as seen in 
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Figure 3.6. Therefore, a reduction in D correlates with an increase in G1 when 
transition is approaching. When G1 is cancelled, absolute equilibrium is at null D, 
hence transition that takes place here at 417.7°C. The curve also informs us of the 
values of D for the metastable states of equilibrium at non-null D between C and 1 
(423.6°C). 

These metastable states induce an experimental difficulty in pinpointing 
transition since there is a range of about 20°C ( 1 – 0) in the example presented in 
which the two cases of polarization (null and non-null) can coexist.  
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Figure 3.7. Representation of electric displacement, D, and Gibbs’ elastic energy, G1, at 
equilibrium around transition. Case of a first-order transition 

Figure 3.8 finally presents the reverse dielectric susceptibility 1/  as well as the 
relative dielectric constant r as a function of temperature. The most noticeable 
element in relation to a second-order transition is the fact that r is finite on both 
sides of the transition, although there is a discontinuity.  

The representation of 1/  lets us compare the gradients and boundary points of 
transition. The gradient ratio is -7.53 and the ratio of values of 1/  just before and 
after transition gives 3.92, in accordance with the simplifications suggested in 
equations [3.16] and [3.17]. r moves from 1,420 just before transition to 5,620 just 
after, and therefore conserves the finite values. 
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Figure 3.8. Reverse dielectric susceptibility, , and relative dielectric constant, r, as a 
function of temperature for a first-order transition 

We will not go into detail about the relationships between D and E for first-order 
transitions, as the latter are rare in the case of thin films. The interested reader 
should refer to Lines and Glass’ book [LIN 77, p. 78]. 

To end this part, we must note that the thermodynamic formalism enables us to 
give the phase transition latent heat value from the value of electric displacement of 
the transition. Entropy, , is given by - 1 /G θ∂ ∂  at fixed T and D. 

Therefore, according to equation [3.10] and the definition of : 

2

2
D

C
σ = −  [3.18] 

Therefore, on both sides of the transition, as D moves from D( C-) to 0,  is 
given by: 

( ) ( ) ( ) ( )2 3 '
2 8 ''

C t
C C C

C

D L
C C

θ αΔσ θ σ θ σ θ
α θ+ −

−= − = = =  [3.19] 

with Lt being the latent heat of transition. The numerical example gives Lt = 2.36.106 
J/m3. 



Phase Transition Thermodynamic Modeling     65 
 

3.5. Conclusion 

In this chapter, we saw how the microscopic thermodynamic approach could be 
implemented in order to explain the behavior of coupled materials, especially 
perovskites. The microscopic approach is itself much harder to implement. Electric, 
mechanical and thermal energies are all taken into consideration in this formalism. It 
must be noted that all the energy contributions can be considered using this 
formalism (especially magnetic) but we did not look at this magnetic energy in 
detail. This thermodynamic approach enables us to describe ferroelectric-
paraelectric transition, but it can also be used to describe other transitions between 
ferroelectric phases. It is also possible to preview the dielectric, ferroelectric, 
piezoelectric and electrostrictive behaviors of materials. 
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Chapter 4 

Mechanical Formalism1 

4.1. Introduction 

One of the features of thin films displayed or reported on a substrate in relation 
to bulk materials and ceramic perovskites is the influence of mechanical energy in 
transitions or in the very values of the characteristic coefficients. Indeed, the 
boundary conditions imposed on perovskite active films by the substrate or by 
certain free structures in the case of microsystems, induce a coupling between 
several effects and/or directions. It is often impossible to obtain intrinsic coefficients 
for thin films, but rather effective values as a result of several mixed effects. It is 
therefore necessary to have a description of the systems studied taking into 
consideration the contribution of “internal” mechanical energy declined in terms of 
stresses and strains.  

These notions originating from the mechanics of deformable media are widely 
described in specialized books. Experience shows that it is necessary to properly 
master these notions in order to understand how a perovskite thin film functions in a 
microsystem. Thus, this chapter includes the indispensable definitions of the 
mechanics of deformable media in the context of interest to us. 

4.2. Hooke’s law 

The origin of the mechanics of deformable media is Hooke’s law, which 
signifies the proportionality between the force applied on a solid body, F, and the 
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extension, x, that results from it. In fact, it is the same law as that of the extension of 
a spring of stiffness k, such that F = kx. This law is valid in the elastic field of the 
solid body studied. It is a field where the effect is reversible in such a way that the 
body returns to its initial position if the force is no longer applied. If the force 
becomes too great, we enter the irreversible plastic field where, if the force increases 
again, the material breaks. The elastic field is the only one that will be discussed 
here as on one hand it enables us to describe a very large majority of situations 
encountered and on the other hand the other fields need the implementation of a 
much heavier formalism that is the intention of this book.  

It is interesting to try and define the characteristic values of the system 
independently of the dimensions of the body studied to be able to give a local 
description. This very simple description is inspired by that made by Feynman in 
Chapter 38 on elasticity from his physics courses [FEY 99].  

Thus, let us take a given body displayed in the form of an elongated cylinder that 
is L long and of section A, for example. According to Hooke’s law, applying a force 
F in the lengthwise direction induces an elongation L and the latter is proportional 
to F according to the relation F = k L, with k being the characteristic stiffness of 
the barrel. If we now use a body of the same nature, the same section, but that is mL 
long (m integer >1) and the same force is applied, the force is constantly felt all 
along the body. If, in our mind, we divide the body into elements that are L long, 
each is subjected to force F and is elongated from L. The body therefore undergoes 
a total elongation equal to m L. Thus it is more interesting to consider the relative 
elongation that is the relationship between the length and the elongation that gives, 
in the two cases, L/L − a value independent of length. It is this relative elongation 
that is called “strain S”. This strain is unitless. In the case of perovskites, the order 
of maximum strain magnitude is less than 1%.  

Now let us assume that the section of the cylindrical barrel L long is multiplied 
by a factor n (n integer >1). If the force applied is the same, the strain on the barrel 
will be weaker. Dividing the barrel into n barrels of section A, we find ourselves in 
the case of n springs in parallel. The stiffness of each spring is added together, 
which makes the final strain equal to L/nL.  

It is therefore wiser to define the force applied in terms of applied “pressure” by 
calculating the force over surface ratio: F/A. This value is independent of the 
section. It is homogeneous with a pressure (N/m²) and is defined as being the  
effort, but more often the stress T, applied to the body. The order of magnitude of 
the stresses undergone by thin film perovskites is typically located in the  
[-1G Pa/+1 GPa] range. We recall that usual convention is to consider the tensile 
stresses as positive and compression stresses as negative. 
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Based on the relations above, we get:  

Lk
T S YS

A
= =  [4.1] 

Value Y is the Young’s modulus of the material making up the body (often 
designated by the letter E in mechanics books). It is independent of the dimensions 
of the body and is expressed in N/m². It is a characteristic that belongs to each 
material. The typical value of Y for perovskites is 100 GPa (1 GPa of stress divided 
by 1% of strain – let us note that these values, T and S, are very high).  

To make a link with the next section, let us note that if the barrel is embedded on 
one edge (x = 0) and free on the other (x = L), the displacement ux in the lengthwise 
direction of a solid particle located in x during the application of the force is equal to 
x L/L, i.e. xS. In other words, strain can be defined by the relation S = /xu x∂ ∂ . 

This presentation enables us to simply introduce the notions of stresses and 
strains through an example where the latter are homogeneous throughout the body. 
Generalizing the concept is a bit more complex and necessitates a more detailed 
approach that will enable us to describe anisotropic materials and above all to have a 
local definition of stresses and strains.  

4.3. Definitions of local strains 

4.3.1. Local strains in small strains hypothesis 

To introduce local strains, we can take an orthonormal reference system 
(O, X1, X2, X3), as in Figure 4.1. In this reference system, a deformable solid 
undergoes the application of stresses. These stresses will induce a deformation of the 
solid. Let us take a point P of the solid before the stresses are applied, which is 
changed to point P' once the stresses have been applied. The definition of the 
displacement vector u is: 

' 'U OP OP X X
→ → → → →

= − = −  [4.2] 

To provide a local definition of strains, we choose an element of the solid 
materialized by vector dX that is infinitely small around P and which is transformed 
into dX' after the application of stress. Having an infinitely small element enables us 
to ensure a local definition of strain. dX points along n and dX' along n', where n and 
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n' length is unit. It must be noted that n is chosen. The lengths of dX and dX' are 
respectively ds and ds', such that we have: 

dX ds n
→ →

=    ' ' 'dX ds n
→ →

=  [4.3] 

O

X1

X2

X3

P
P’

UdX dX’

 

Figure 4.1. Definition of displacement U during the strain of a body 

One way of measuring strains is to look at the difference in the squares of the 
lengths of the infinitesimal element before and after strain, i.e. ds'²-ds². Thus, a 
translation of the solid is not interpreted as a strain. 

With Cartesian coordinates, we have: 

2 2
i

i

ds dX=      2 2' 'i
i

ds dX=  [4.4] 

Furthermore, based on equation [4.2] we know that: 

'i i iX X U= +  [4.5] 

For each direction i, the differentiation of this equation to the first order gives: 

' i i
i i j

jj

U U
dX dX dX dt

X t
∂ ∂

= + +
∂ ∂

 [4.6] 
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In the continuation of this exposition, we take the quasistatic case in which time 
is not involved, i.e. the solid is considered to be at equilibrium all the time. 
Therefore, the last term on the right is considered null. The square of equation [4.6] 
gives: 

2 2' 2 i i i
i i j i j l

j j lj j l

U U U
dX dX dX dX dX dX

X X X
∂ ∂ ∂

= + +
∂ ∂ ∂

 [4.7] 

The last term on the right is a second-order displacement term. It is disregarded 
so that we only keep the first order, which is legitimate in the case of small strains. 
In the previous section, we saw that the maximum strains considered in the case of 
thin film perovskites are of the order of 1%, which justifies the small strains 
hypothesis in most cases. 

Thus, summing up all i directions, the previous equation becomes: 

( )2 2' 2 i
i i j i

ji i j

U
dX dX dX dX

X
∂

− =
∂

 [4.8]  

To properly understand the form chosen to express strains, it is interesting to 
develop the above expression: 

( )2 2

2 2 231 2
1 2 3

1 2 3

3 31 2 1 2
1 2 1 3 2 3

2 1 3 1 3 2

'

2

i i
i

dX dX
UU U

dX dX dX
X X X

U UU U U U
dX dX dX dX dX dX

X X X X X X

−
∂∂ ∂

= + + +
∂ ∂ ∂

∂ ∂∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂ ∂ ∂

 [4.9] 

Thus we see that it is not possible to distinguish the cross effects /i jU X∂ ∂  and 

/j iU X∂ ∂  from the difference of the squares. It is therefore logical to associate 

them to define what will become strains, Sij. We will see later that it is in fact 
important to not distinguish the cross effects if we do not want to take rotations into 
consideration. 
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Therefore, we choose 1
2

ji
ij

j i

uu
S

X X

∂∂
= +

∂ ∂
, which based on equation [4.9] 

gives: 

( )2 2' 2i i ij j i
i i j

dX dX S dX dX− =  [4.10] 

Not distinguishing cross effects to a certain extent refers to separating /i jU X∂ ∂  

into two distinct contributions: strains, Sij, and rotations, 1
2

ji
ij

j i

uu
w

X X

∂∂
= −

∂ ∂
. The 

fact that Sij describe strains is discussed later. To produce the nature of rotations, wij, 
let us take two-dimensional example. Let us imagine a square of side a, initially 
leaning against the reference system (X1, X2), as represented in Figure 4.2. This 
square undergoes a pure rotation of angle  without any strain. There is therefore no 
elastic energy stored in the square. As we are interested in small strains, we also 
assume that the rotation is weak.  

a

a

X1

X2

P

P’

Q’ Q

X1X1

X2X2

 

Figure 4.2. Illustration of the rotation of a square in two dimensions 

Points P and Q that are at the end of the square on the X1 and X2 axes, 
respectively, are displaced by P' and Q'. We therefore have: 
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1 2

1 2

' cos sin

' sin cos

OP a X X

OQ a X X

θ θ

θ θ

→ → →

→ → →

= +

= − +

 [4.11] 

The fact that the rotation is weak enables us to approximate to the first-order 
cos  at 1 and sin  at . As P and Q are coordinates (a, 0) and (0, a), respectively, 
equation [4.11] can be expressed: 

2'OP OP a Xθ
→ → →

− =  and 1'OQ OQ a Xθ
→ → →

− = −  [4.12] 

In addition, the left-hand terms of equations [4.12] are by definition 

displacement vectors 1U
→

and 2U
→

along X1 and X2. Assuming the change in linear 
displacement on the square (small displacements), equations [4.12] can be expressed 
as: 

1
1 2 2

2

U
U a X a X

X
θ

→ → →∂
= =

∂
and 2

2 1 1
1

U
U a X a X

X
θ

→ → →∂
= − =

∂
 [4.13] 

Thus, we see that in a pure rotation, there are non-null /i jU X∂ ∂  terms.  

The link between these terms and the angle of rotation is therefore based on the 
equation above: 

1 2

2 1

U U
X X

θ∂ ∂
= − =

∂ ∂
 [4.14] 

Thus, we see that the definition of wij terms given in equation [4.9] corresponds 
to a pure rotation term. We note that the matrix composed of wij terms is 
antisymmetric. 

The fact that Sij corresponds to a strain, as we defined it in the case of Hooke’s 
law, is not obvious. We will see that in the case of small strains, identification 
becomes natural. The left-hand term of equation [4.8] is none other than (ds'² − ds²). 
For the next calculation, we define the relative change in length Sl = (ds' − ds)/ds, 
sometimes called unitary extension in accordance with the definition of a strain in 
Hooke’s law: 
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( )( )

( )

2 2 2 2
2

2
2 2

' ' ' 2'

2 2
2

l

l
l l l

ds ds ds ds ds ds ds
ds ds ds S ds

dsds

S
S S ds ds S

− + − +− = =

= + = +
 [4.15] 

In the case of small strains, Sl is small so we can cancel the Sl
2 term in order to 

keep just the first order to get: 

2 2

2
'
2

l
ds ds

S
ds

− ≈  [4.16] 

and therefore, combining equation [4.10] and equation [4.16], we get to the first-
order equation: 

2

ij j i
i j

l

S dX dX

S
ds

=  [4.17] 

Furthermore, based on equation [4.3], we have: 

i
i

dX
n

ds
=  [4.18] 

hence: 

l ij i j
i j

S S n n=  [4.19] 

where Sij defines a matrix S  that describes the state of strain of a solid at each point. 
The state of strain does not depend on the reference system from which the solid is 
observed. We say that matrix S  is a rank 2 tensor (see the note below).  

11 12 13

21 22 23

31 32 33

S S S

S S S S
S S S

=  [4.20] 

In accordance with the definition of the Sij terms, tensor S  is symmetric.  
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NOTE ON TENSORS.− This strain matrix of second order defines a local property 
of the material that must be the same regardless of the reference system from which 
we are looking at the solid described. This property can be compared to that of a 
vector (characterizing, for example, a force) that keeps the same direction, way and 
intensity when the reference system is changed. We say that this vector is a rank 1 
tensor. Similarly, the strain matrix is a rank 2 tensor. A tensor is therefore 
fundamentally different to a change in reference system as it defines a property of 
the material: it always represents the same entity no matter what the reference 
system chosen.  

The exact definition of a tensor is given by Nye [NYE 61] and is linked to the 
laws of transformation for moving from one reference system to another. Thus, let aij 
be the coefficients that enable us to move from reference system R = (X1, X2, X3) to 
reference system R' = (X'1, X'2, X'3) such that X'i = aijXj. Any rank 2 matrix S  is a 
tensor if its components are transformed according to the following law for going 
from R to R': S’ij = aikajlSkl. For a rank 1 tensor vector V, the law is the following: 
V'i = aijVj. A rank n Z tensor in R is transformed into Z' in R' by the relation: 

 Z'…ijk… = …ailajmakn…Z…lmn… [4.21] 

A rank zero tensor is a scalar, whatever the reference system. Another way of 
characterizing a rank 2 tensor S  is to show a linear-type relation between two rank 

1 tensor vectors (U and V, for example) through the use of S . Thus, if V = S U, 

then S  is a rank 2 tensor. 

4.3.2. Meaning of matrix S  

Equation [4.22] represents the product of a matrix with two vectors. It is a scalar 
that can be expressed as: 

1 2 2 1, .lS n n n S n
→ → → →

=  [4.22] 

Physically, this value is the relative change in length observed along the 

direction of the unit vector 2n
→

 of an infinitesimal element initially carried by vector 

1n
→

 at point P. In other words, vector 1S n
→

 represents the strain vector of an 
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infinitesimal element initially carried by vector 1n
→

 at point P. This affirmation 

proves the tensor nature of S , in accordance with the note above on rank 2 tensors. 

Vectorially, returning to the notations defined in Figure 4.1, we can write: 

'dX dX dsS n
→ → →

= +  [4.23] 

Let ( )1 1 0 0n
→

=  and ( )2 1 0 0n
→

= . This means that we are observing the 
strain at point P along direction X1 of an element that also points along X1. Equation 
[4.22] gives S11, which is equal to: 

1
11

1

U
S

X
∂

=
∂

 [4.24] 

S11 corresponds to the relative change in length along direction 1 as was obtained 
in Hooke’s law. 

In addition, let ( )1 1 0 0n
→

=  and ( )2 0 1 0n
→

= . The initial element is always 
along X1 but the strain is observed along X2. The result is S21 = S12 and gives: 

1 2
12

2 1

1
2

U U
S

X X
∂ ∂

= +
∂ ∂

 [4.25] 

This coefficient corresponds to shear. Figure 4.3 illustrates the two coefficients 
S11 and S12 graphically. To do this, we choose an element dX at point P that points 
along X1. P is transformed into P' after strain and dX becomes dX'. As only local 
strains matter, we superimpose P and P' on the graph. S11ds represents the 
longitudinal local extension. S12ds represents the displacement of dX along X2. 
Graphically, we define angle  between dX and dX'. As we are dealing with small 
strains, this angle is low and so is S11. We therefore have the following relation: 

( )
12

12
11

tan
1
S ds

S
ds S

θ θ≈ = ≈
+

 [4.26] 

S12 is therefore about equal to the angle between the unstrained vector and the 
strained vector. If we place ourselves in a plane for the case of a pure shear for a 
square, we can show with the same argument that the change in right angle is equal to 2 
times . It is for this reason that S12 is often called the half-distortion of the right 
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angle. Let us also note that the definition of shear strains (i.e. Sij with i j) implies 
that Sij = Sji and therefore S12ds is also the displacement along X1 of a vector dY; an 
infinitesimal vector along X2. In the example given, S12ds is positive and therefore 
there is an angle  in the clockwise direction between X2 and the deformed vector 
dY'. The strain due to shear is therefore not a simple rotation.  

X1

X2

P

→
dXS

→→
= 1XdsdX

→→
= ''' ndsdXdsS12

dsS11

θ

 

Figure 4.3. Representation of shear and local longitudinal strains 
of an infinitesimal element dX carried by X1 

To end this part on strains, we must note that as the small strains tensor is 
symmetric, it is diagonalizable. This means that it is always possible to define the 
main directions that are the directions for which displacement is only longitudinal. 
In other words, if we consider an infinitely small sphere around point P before 
strain, the strain will become ellipsoid after a strain whose major axis corresponds to 
a main direction.  

4.4. Definition of local strains 

4.4.1. The strain tensor 

To define local strains in a deformable solid, the challenge is to locally translate 
the influence of external strains undergone by the solid. These solicitations can be of 
two natures: volumic (weight, inertia force) and surface. Punctual strains pose a 
problem in solving equations. Their influence is replaced by an unpunctual 
distribution with the same effects on the solid far from the point on which this 
solicitation is applied, by virtue of St. Venant’s principle.  

The concept of strains is introduced by taking a deformable solid in equilibrium. 
In our minds, we cut this solid into two parts, P1 and P2, separated by a virtual 
interface. For each one of the interfaces to remain at equilibrium, the influence of 
one on the other must be replaced by a surface force density that is exercised on the 
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cut part. This surface force density is therefore homogeneous to a pressure, as in the 
simple case of Hooke’s law developed above. In this way, it is possible at each point 
of the solid to define an infinitesimal surface on which a force resulting from 
external strains acting on the solid will be applied. Figure 4.4 illustrates the 

suggested definitions. At point M, a surface force density called local stress T
→

 can 

be defined. This is the result of external strains of which the solid is the subject. n
→

 

is the surface element normal dS on which the stress is applied. n
→

 is directed 
towards the exterior of volume P1, since a tensile stress is defined as being positive. 

T
→

 depends on point M and the orientation of the surface element, therefore on n
→

. 
It is possible to construct a rank 2 tensor, called a stress tensor, from these 

definitions. This enables us to find  T
→

 at any point M regardless of what n
→

 may 
be.  

M
→
T

solide

→
n

Interface
virtuelle

P1

P2

dS

solid

Virtual
interface

 

Figure 4.4. Illustration of the definition of local stresses in a deformable solid resulting 
from external strains to which the solid is exposed 

To define this stress tensor, let us write that a small element of volume V 

defined around point M on which T
→

 is applied is at equilibrium. 

The environment of point M is returned in an orthonormal Cartesian reference 
system (X1, X2, X3), with center O, as in Figure 4.5. So we define the small surface 
dS123 equal to the area of triangle M1M2M3 around M (Mi, intersection between the xi 
axis and the surface). The forces that are exerted on this small volume element are 
the surface forces on the four faces of the tetrahedron as well as the volume forces 
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characterized by f
→

 (weight, inertia). As the volume V is very small, we can 

consider the stresses that are applied to it as being characterized by T
→

(M).  

M

O

x1

x3

x2
→
n

M1

M2

M3

→→
nMT ,

 

Figure 4.5. Definition of point M undergoing stress vector ( )MT
→

 surrounded 
by the small volume element V made up of the surfaces of triangles 

OM1M2- OM1M3- OM3M2- M1M2M3 

Thus, the equilibrium of the forces, with dSoij being the surface of triangle OMiMj 
gives: 

→→→→→→→→→→
=+−+−+−+ 0,,,, 012301320231123 VfdSXMTdSXMTdSXMTdSnMT δ

 
 [4.27] 

As n
→

 is the normal to the surface element dS, we have relations dSoij = dS.nk, 
with i, j and k all being different from each other. Thus, equation [4.22] becomes: 

1 1 2 2 3 3, , , , 0T M n T M X n T M X n T M X n
→ → → → → → → → →

+ − + − + − =  [4.28] 

The volume force disappears because, as the lengths are infinitely small, the 
surfaces are of second order magnitudes and third order volumes. As f is a datum 
independent of the size of the volume, since it is homogeneous to a volumic mass 
through acceleration, the term of the volume force is of third order, negligible in 
front of that of surface forces.  
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Thus, according to equation [4.28] and by virtue of the note on tensors given in 
the section on strains, a rank 2 tensor ( )T M  called a local stress tensor can be 
defined as: 

( ),T M n T M n
→ → →

=  [4.29] 

with: 

 ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 12 13

21 22 23

31 32 33

T M T M T M

T M T M T M T M
T M T M T M

=  [4.30] 

Thus, by developing equation [4.29], we get: 

3

1
1

11 12 133

2 21 1 22 2 23 3
1 31 32 33

3

3
1

1 1 2 2 3 3

,

, , ,

j j
j

j j
j

j j
j

T n

T T T

T M n T n T n T n T n

T T T

T n

T M X n T M X n T M X n

=

→ →

=

=

→ → → → → →

= = + + =

+ +

 [4.31] 

and so, the passage from equation [4.31] to equation [4.28] is clear by simply 
applying the sign change of the unit vectors.  

This definition of the local stress tensor ( )T M  therefore enables us to define 
constraints that are applied to M at any point of a deformable solid subjected to 
external solicitations of the volumic or surface type, no matter the direction in which 

we are looking (i.e. regardless of what n
→

 is). 
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4.4.2. Physical meaning of Tij 

Figure 4.6 illustrates the meaning of Tij. In the deformable solid, a cube of 
infinitesimal volume V = dX1dX2dX3 is defined from some point O of the solid. If 
the cube is assumed to be sufficiently small, the knowledge of ( )T O  can be 
considered to be enough to completely define the state of forces being applied to the 
faces of the cube. Thus, in accordance with equation [4.31], three forces are applied 
in the middle of each face of the cube. For the face of the cube parallel to plane 

OX2X3 which cuts the X1 axis into dX1, these three forces are dX2dX3T11(O) 1X
→

. This 
corresponds to a longitudinal force directed in the same direction as the surface 

normal (here along X1), dX2dX3T21(O) 2X
→

and dX2dX3T31(O) 3X
→

, which both 
correspond to shear forces contained in the plane supporting the surface on which 
they are applied (see Figure 4.6). Therefore, in element Tij of the stress tensor, i 
indicates the direction of the force being applied to the surface whose normal is 
given by j. Although this has no great physical sense in the hypothesis of a local 
definition of stresses, Tij is equivalent to the force being applied along direction Xi in 
the middle of the normal unit surface along Xj.  

x3

x2

x1

→

111 XT

→

221 XT

→

331 XT

→

111 XT

→

221 XT

→

331 XT

→

112 XT

→

222 XT

→

332 XT

→

112 XT

→

222 XT

→

332 XT
→

113 XT

→

223 XT

→

333 XT

dX3

dX2

dX1

O

 

Figure 4.6. Description of forces being applied to a volume V = dX1dX2dX3  
of a deformable solid, defined by the components of the stress tensor  

Furthermore, the stress tensor is symmetric, just like the strains tensor. To show 
this, let us consider the cube in Figure 4.6 seen from above (X3 perpendicular to the 
sheet), as in Figure 4.7. The cube is considered to be in equilibrium. Here, only the 



82     Integration of Ferroelectric and Piezoelectric Thin Films 

moment along X3 is observed. If we go around the cube, four forces contribute to 
establishing this moment. In the middle of the cube, each force imposes a moment 
along X3. The sum of these moments gives: 

1 2
2 3 21 1 3 122 2 0

2 2
dX dX

dX dX T dX dX T− =  [4.32] 

This equation therefore implies that T21 = T12. The argument can be made in the 
same way along the X1 and X2 axes and we show finally that Tij = Tji the stress tensor 
is symmetric.  

Thus, this property implies that the tensor is still diagonalizable. It is therefore 
still possible to find the main directions for which the stresses are longitudinal, to 
the exclusion of any shear.  

x3 x2

x1

→

221 XT

→

112 XT
dX2

dX1

O
→

221 XT

→

112 XT

 

Figure 4.7. Infinitesimal cube on which stresses are applied, inducing a moment along X3 
and illustrating symmetry of the stress tensor 

4.4.3. Equations of motion in a deformable solid 

Figure 4.6 enables us to simply produce equations of motion of the solid’s 
particles during dynamic external solicitations. To do this, we must produce a 
difference between the stresses applied to the faces for a non-null global effort to 
exist. Let us consider what happens at the first order along direction X1. The sum of 
the forces F1 along this direction is: 
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( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 2 3 11 1 11 1 3 12 2 12

1 2 13 3 13

0 0

                             0

F dX dX T dX T dX dX T dX T

dX dX T dX T

= − + −

+ −
 

[4.33] 

Development to the first order of each difference gives: 

∂
∂

=
=

3

1

1
3211

j j

j

X

T
dXdXdXF  [4.34] 

In accordance with the fundamental relation of the dynamics, if we only consider 

as volume force the product of acceleration a
→

 of ai components with the mass of 
the cube V  (  being the supposedly constant volumic mass), we get the following 
relation by generalizing the two equations above to the three dimensions:  

ij
i

jj

T
a

X
ρ

∂
=

∂
 [4.35] 

4.5. Stress-strain relation 

4.5.1. Hooke’s generalized law 

The relationship between stresses and strains in the framework of the elastic field 
and small strains considered goes back to a generalization of Hooke’s law. This 
enables us to linearly link the rank 2 tensors, S  and T , with a rank 4 tensor, called 

the stiffness tensor, C . The components of these three tensors are thus linked by the 
following linear relation: 

ij ijkl kl
kl

T c S=  [4.36] 

There is the reverse relationship between S  and T  , involving  the sijkl  
coefficients, which are called the compliance coefficients: 

ij ijkl kl
kl

S s T=  [4.37] 

In practice, it is useful to be able to express elastic tensors in the form of a 6x6 
matrix. To do this, stress and strain tensors are first of all transformed into a 6x1 
vector, thanks to their symmetry, by using the following contracted notations: 
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ii iT T=   9 ( )ij i jT T − +=  for i  j   [4.38] 

In other words, for the non-diagonal terms, we have T12 = T6, T13 = T5 and 
T23 = T4.  

For strains, in order to be coherent with the uncontracted values when the above 
convention on strains is chosen, the piezoelectricity standards recommend the 
following notation: 

ii iS S= , 9 ( )2 ij i jS S − +=  for i  j [4.39] 

These relations induce others on stiffness coefficients: 

9 ( ) 9 ( )

iikk ik

ijkl i j k l

c c

c c − + − +

=
=  [4.40] 

and other more complicated ones for the compliance coefficients:  

and with , 1,2,3

2 and with 1,2,3 and 4,5,6

4 and with , 4,5,6

ijkl mn

ijkl mn

ijkl mn

s s si i j k l m n

s s si i j k l m n

s s si i j k l m n

= = = =

= = ≠ = =

= ≠ ≠ =

 [4.41] 

4.5.2. Dynamic relation 

For applications that bring acoustic phenomena such as piezoelectric or 
electrostrictive resonators into play, there is propagation of elastic energy. It is 
therefore necessary to have a dynamic relation that brings stresses and strains into 
play in order to produce a propagation equation. This equation stems from linear 
relations between stresses and strains, as well as from the dynamic equation linking 
stress gradients to the acceleration of points of the solid, as detailed above.  

4.5.2.1. Elastic material 

To simplify calculations, the material considered here is not piezoelectric. 

Acceleration ai in equation [4.35] is none other than 2 2/i iU t U
••

∂ ∂ = . On the other 
hand, the term containing the stress gradient of equation [4.35] can be modified by 
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introducing stiffness coefficients and strain. Thus, these modifications lead to the 
following equation: 

2

2
,

i kl
ijkl

jj k l

U S
c

Xt
ρ ∂ ∂

=
∂∂

 [4.42] 

According to the relation that links strains to displacements, we get: 

2 2 2

2
,

1
2

i k l
ijkl

l j k jj k l

U U U
c

X X X Xt
ρ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂∂

 [4.43] 

Due to the symmetry of the tensor C  (cijkl = cijlk), the equation above is 
simplified to give: 

2 2

2
, ,

i k
ijkl

j lj k l

U U
c

X Xt
ρ ∂ ∂

=
∂ ∂∂

 [4.44] 

4.5.2.2. Piezoelectric material 

In the case of piezoelectric material, we must add the contribution of the 
coupling that appears in the stress gradients term. To do this, we use the linear 
equations encountered in Chapter 2. Most of the time, the effect of temperature is 
neglected when describing this propagation equation and the coefficients are 
assumed to be the same, as the experiment conditions are isothermal or adiabatic. 
Two equations are therefore most often used to describe piezoelectricity (equivalent 
to equations [2.59] and [2.60]). In the case of propagation, it is necessary to express 
stresses as a function of strains and the electric field. To simplify the equations, we 
choose Einstein’s notation (no summation sign) for which the doubled variables 
indicate a summation. 

This linear equation is the following: 

E
ij ijkl kl kij kT c S e E= −  [4.45] 

The ekij factors are the piezoelectric coefficients in this formalism where strains 
and field strength are the independent (or natural) variables. The exponent E over 
the factors c indicates that the stiffness coefficients are measured at constant electric 
field.  
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As E grad V
→

= − , the combination of equations [4.35] and [4.45] gives: 

2 2 2

2
Ei k
ijkl kij

j l j k

U U V
c e

X X X Xt
ρ ∂ ∂ ∂= +

∂ ∂ ∂ ∂∂
 [4.46] 

The second linear equation is the following: 

j jk k jkl klD E e Sε= +  [4.47]  

where jk constitutes the terms of the dielectric permittivity matrix.  

For a dielectric, it is often considered that the conductivity is very low, which 
implies the absence of charges inside of the dielectric. 

According to the (electromagnetic) Maxwell relations, the divergence of D is 

therefore null (div 0D
→

= ), which finally imposes: 

22
0j l

jk jkl
j j k j kj

D UV
e

X X X X X
ε

∂ ∂∂= − + =
∂ ∂ ∂ ∂ ∂

 [4.48] 

4.6. Elastic energy density 

4.6.1. Expression of elastic energy density 

We can ask ourselves what the quantity of elastic energy stored in an infinitely 
small cube, like the one in Figure 4.6, is? The answer must enable us to give a local 
definition of elastic energy density. As a starting point, we can choose a non-null 
state of stress and strain. 

The idea is then to determine the change in elastic energy when a force f is 
applied to the infinitely small cube. Here f is small enough for the small strains 
hypothesis to be valid. The effect of this force on the cube can be replaced by the 
stress tensor T  that is applied on the faces of the cube in accordance with what was 
detailed above. 

Elastic energy is equal to the work of the force exerted in the solid. 
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Thus, if we only look in direction X1 (see Figure 4.6), this work W1 is by 
definition equal to the force (therefore the stress multiplied by the surface area) that 
is applied on the center of each of the six faces multiplied by the small displacement 
U1 resulting in direction X1.  

The sum of these contributions is therefore: 

3 32 2
1 11 2 3 1 1 1

3 31 1
12 1 3 1 2 1

1 2 1 2
13 1 2 1 3 1

, , 0, ,
2 2 2 2

, , ,0,
2 2 2 2

, , , ,0
2 2 2 2

dX dXdX dX
W T dX dX U dX U

dX dXdX dX
T dX dX U dX U

dX dX dX dX
T dX dX U dX U

δ δ δ

δ δ

δ δ

= −

+ −

+ −

 [4.49] 

We must see that the stress is considered to be constant on the cube but the 
displacement is necessarily different depending on the localization in the cube, or 
the latter would not be deformed but simply displaced. There would therefore not be 
elastic energy stored. 

Considering the first order in the equation above, W1 becomes: 

1 1 1
1 1 2 3 11 12 13

1 2 3

U U U
W dX dX dX T T T

X X X
δ δ δδ ∂ ∂ ∂

= + +
∂ ∂ ∂

 [4.50] 

Summing their three spatial directions, elastic work W of the force f becomes:  

, , ,

1
2

ji i
ij ij ij ij

j j ii j i j i j

UU U
W d T d T d T S

X X X

δδ δδ τ τ τ δ
∂∂ ∂

= = + =
∂ ∂ ∂

 [4.51] 

with d  = dX1dX2dX3. 

Thus, the change in elastic energy density that is involved in the calculation of 
internal energy is equal to the work produced by the force f in the solid. To make a 
direct link with the sections above on energy considerations, we can say that in the 
adiabatic case (without heat exchange), if we neglect electric energy, the internal 
energy change is equal to the elastic work. Thus, considering the energy density per 
unit of volume, we get: 
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.
,

adiab ij ij
i j

dU W T dSδ= =  [4.52] 

It is important to note that stress is the intensive variable, like pressure in the 
case of a gas. Strain, which is considered here as the consequence of stress, is an 
extensive variable (just like volume for a gas). As the internal energy U by 
definition differentiates extensive variables, we have dU = TdS.  

Finally, we note that Nye suggests a calculation that is slightly different by 
looking only at the strain of the cube by blocking it in the middle. The result is 
identical [NYE 61].  

4.6.2. Symmetry of the elasticity tensor 

By deriving internal energy in relation to Tij, we get: 

ij ijkl kl
ij kl

U
S s T

T
∂ = =
∂

 [4.53] 

A second derivation in relation to Tkl gives us: 

2
ij

ijkl
ij kl kl

SU
s

T T T

∂∂ = =
∂ ∂ ∂

 [4.54] 

In addition, we saw in Chapter 2 that cross second derivatives are identical for 
state functions, which is the case of internal energy. This therefore leads to: 

2 2

ijkl klij
ij kl kl ij

U U
s s

T T T T
∂ ∂= = =

∂ ∂ ∂ ∂
 [4.55] 

If we move on to the matrix notation, we therefore have: 

mn nms s=  [4.56] 

The compliance tensor s  is therefore symmetric. We saw that the independent 

terms of s  were up to the number of 36 because of the symmetries of stress and 
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strain tensors. As s  is also symmetric, it no longer has only 21 independent 

coefficients. By virtue of the relationship between sijkl and cijkl, the stiffness tensor c  
is also symmetric. 

4.7. Expression of the elasticity tensor as a function of elements of symmetry 

With tensors S  and T  being symmetric, they each contain six independent 
coefficients, which induce 36 independent coefficients cijkl (or sijkl). According to 
energy considerations, we just saw that c  is also symmetric, which results in a 
maximum of 21 independent coefficients.  

In the case of single crystals or epitaxial films, the anisotropic character is 
present and the number of independent stiffness coefficients depends on the crystal 
studied. Thus, it is the point group of the crystal studied that sets the number of 
independent coefficients. These symmetry elements enable us to highlight relations 
that must be verified by the coefficients. Thus, the higher the level of symmetry, the 
more relations between coefficients there are and the fewer independent coefficients. 
The interested reader can refer to one of the following excellent references: Elastic 
Waves in Solids by Dieulesaint and Royer (Springer-Verlag Berlin) [DIE 74] and 
Physical Properties of Crystals (Oxford University Press) by Nye [NYE 61]. For a 
triclinic lattice, 21 coefficients are necessary, whereas the paraelectric cubic lattice 
has only three independent coefficients. In the case of amorphous or polycrystalline 
materials with random orientation, only two coefficients are necessary to describe 
this elastic isotropic state. 

As an example let us take the monoclinic point group 2. 

If we apply the change in reference system relation for the elasticity tensor that is 
of rank 4, and this change in reference system corresponds to a symmetry element of 
the point group, we get: 

cijkl = aimajnakoalpcmnop [4.57] 

In point group 2, if we choose axis 3 parallel to the axis of order 2, the elasticity 
tensor must be invariant for the following reference system: 

1 0 0
0 1 0
0 0 1

a

−
= −  [4.58] 
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Throughout the diagonal nature of matrix a, equation [4.57] becomes: 

cijkl = aiiajjakkallcijkl [4.59] 

Thus, each time index 3 appears an odd number of times, we have  
cijkl = -cijkl = 0.  

Therefore, the stiffness tensor of point group 2 is expressed: 

11 12 13 16

12 22 23 26

13 23 33 36
2

44 45

45 44

16 26 36 66

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

c c c c
c c c c
c c c c

C
c c

c c
c c c c

=  [4.60] 

This form is valid for all point groups of the monoclinic crystal system.  

Proceeding in the same way, we can construct the stiffness tensors of all point 
groups by including the different symmetry elements.  

For point group 6mm of AlN, the stiffness tensor shows five independent 
coefficients: 

11 12 13

12 11 13

13 13 33
6 44

44

11 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
2

mm

c c c
c c c
c c c

C c

c
c c

=

−

 [4.61] 

Piezoelectric thin films integrated on silicon frequently show a preferential 
orientation in the out-of-plane direction, but random orientation in plane.  
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We say that these materials have an axis of symmetry of infinite order. This is 
the typical case for polycrystalline PZT and AlN.  

In this case, these materials have the same behavior as those of the 6mm hexagonal 
crystal class. All the hexagonal point groups have the same stiffness tensor form. 

Point group 3m (LiNbO3) has the following stiffness tensor (six independent 
coefficients).  

It is also valid for point groups 32 (quartz) and 3m (high temperature LiNbO3): 

11 12 13 14

12 11 13 14

13 13 33
3 32 14 14 44

44 14

11 12
14

0 0
0 0

0 0 0
0 0 0

0 0 0 0

0 0 0 0
2

m

c c c c
c c c c
c c c

C C c c c

c c
c c

c

−

= = −

−

 [4.62] 

For this matrix, contraction of the index for compliance tensor s imposes a 
different value for coefficients s65 = s56 that are equal to 2s14 (and not s14).  

Point group 4mm (tetragonal BaTiO3, PZT) has the following stiffness tensor: 

11 12 13

12 11 13

13 13 33
4

44

44

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

mm

c c c
c c c
c c c

C
c

c
c

=  [4.63] 

For the simple case of cubic lattice of paraelectric phase perovskites (point group 
m3m) for dielectric, electrostrictive or variable capacitor applications the stiffness 
matrix is the following: 
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12 11 12

12 12 11

44

44
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0 0 0
0 0 0
0 0 0
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0 0 0 0 0
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c c c
c c c
c c c

C
c

c
c

=  [4.64] 

In the isotropic case, the stiffness tensor has the same form as in the cubic case 
by adding the relation: 

11 12
44 2

c c
c

−
=  [4.65] 

For isotropic materials it is more common to define the two independent 
coefficients E (or Y to avoid confusion with the electric field in problems involving 
electromechanical coupling) and v, which are respectively Young’s modulus and 
Poisson’s ratio. These two coefficients are often given to the detriment of 
coefficients cijkl, as they are simpler to measure experimentally. Returning to the 
example of the stretched cylinder in the case of an isotropic material (see section 4.2 
on Hooke’s law), we saw that Y links stress to longitudinal strain in the case of a 
longitudinal stretch. 

Poisson’s ratio quantifies the decrease in the transverse lengths for a longitudinal 
stress. Translated into equations, here is what the stress-strain relations give in the 
case of a longitudinal stress along axis 1 applied on a free isotropic material to be 
deformed: 

1 1 11 1
1

S T s T
Y

= =   2 1 12 1S T s T
Y
ν= − =   3 1 12 1S T s T

Y
ν= − =  [4.66] 

Identification between equations enables us to obtain a simple relation between 
compliance coefficients on one hand and Y and  on the other, namely: 

11

1
Y

s
=                     12

11

s
s

ν = −  [4.67] 

Relationships between stiffness and compliance coefficients are obtained 
through the following relation, where I is the unit matrix: 

ijkl ijklc s I=  [4.68] 
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Chapter 5 

Dielectric Formalism   

5.1. Introduction 

In this chapter we introduce well-established notions about the electric variables 
of an insulating material. These variables are clear enough for people who know 
about the physics of solids, but experience shows that the concepts are more difficult 
to understand in the microsystems community. It therefore seems important to us to 
dwell at length, just like we did for mechanical energetics, on the electric part in 
order to introduce the indispensable notions:  

− the average and local electric field; 

− electric displacement and polarization; 

− the relation between field strength and polarization; 

− the polarization catastrophe phenomenon that appears in perovskites; 

− dielectric relaxation and the different contributions to polarization characteristic 
of perovskites; and finally 

− electric energy density which contributes to internal energy. 

5.2. The dielectric effect seen by Faraday 

Electric charges cross a conductor when a potential difference is applied. In the 
case of a perfect insulator, charges cannot cross. The dielectric effect observed for 
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the first time by Faraday corresponds to the mutual influence of opposite charges 
contained in the two electrodes of a plane capacitor. The most telling experiment of 
this dielectric effect is illustrated in Figure 5.1. This shows the decrease in potential 
difference observed between the electrodes of a pre-charged isolated plane capacitor 
(see Figure 5.1a) when a dielectric material is introduced in the space between the 
electrodes (see Figure 5.1b). This effect is perfectly reversible and the potential 
difference recovers its initial value after the dielectric is withdrawn from the inter-
electrode  space (when losses are negligible).  

- - - - - - - - - - -

+ + + + + + + + + + + V2

V1

E

+ + + + + + + + + + +

- - - - - - - - - - -

V’2

V’1

- - - - - -

+    +    +    +     +    +     

V

t

V

t

a. b.

 

Figure 5.1. Illustration of Faraday’s experiment on the revelation of the dielectric 
capacitance of insulator: a) voltage, V, measured at the terminals of a 
pre-charged isolated plane capacitor; and b) decrease in voltage, V, 

when a dielectric is introduced between the electrodes 

Thus, for a given charge, the difference in potential observed between electrodes 
will be lower when a dielectric is present between the electrodes. It is 
experimentally possible to quantify this effect through the definition of dielectric 
capacitance, C. Capacitance is such that it linearly links the charge, Q, of a capacitor 
to the potential difference, V, between its electrodes. We therefore have Q = CV. As 
the potential difference depends on the geometry of the capacitor, it is very often 
with the macroscopic average electric field, E, that we work. The field can be 
determined at each point in the space. It is defined by: 

( )E grad V
→

= −  [5.1] 

This definition of field based on the knowledge of the potential difference at the 
terminals of the capacitor corresponds to an average field. This field is different 
from the field that is exerted at each point of the dielectric, called the local field, 
which will be defined a bit later on. In the case of a plane capacitor of inter-
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electrode distance, d, and with z the coordinate perpendicular to the electrode plane, 
equation [5.1] simply gives: 

→→→
−=

∂
∂−= z

d
V

z
z
V

E
 

[5.2] 

It is useful to go into more detail on what happens inside of the capacitor, 
between the electrodes. In Figure 5.1a, the charges on the electrodes exhibit an 
opposing polarity: the negatives attract the positives and vice versa. It is a purely 
electrostatic effect. The dielectric in Figure 5.1b is also sensitive to this electrostatic 
effect, since it consists of atoms in which the nucleus and electron charges will not 
behave in the same way. In passing, let us note that this effect, called the 
polarization effect, can have various origins but the presence of atoms is enough to 
understand the physical phenomenon. Simply taking into consideration the 
electrostatic effect enables us to see that the surface charges on the dielectric have 
opposite signs to that of the electrode opposite, as seen in Figure 5.1b. These 
charges will therefore create another electric field that is opposite to the first. It is 
called the depolarizing field, Ed. According to equation [5.1], the potential difference 
is the integral along direction z of the electric field. As in the dielectric, two electric 
fields of opposing directions are superimposed, it is easy to understand that the 
potential difference decreases in the presence of the dielectric. 

Another way of seeing things is to introduce the concept of linked charges. If we 
go back to Figure 5.1b, it is possible to associate with each elementary charge on the 
surface of the dielectric, a charge with the opposite sign on the electrode facing it. 
When the potential difference is measured, this charge cannot contribute as it is 
almost invisible to the voltmeter since it cannot move. Everything happens as if the 
charge measured by the voltmeter were smaller than it really is. We say that these 
charges that do not contribute are linked charges. This particular notion sometimes 
blurs comprehension of the polarization phenomenon, but suggests a different 
physical clearing. 

It is possible to go further in the description by using laws of electrostatics on the 
capacitor. Figure 5.2 is a close-up view of a slice of the capacitor. 

Gauss’ theorem tells us that the flux of the electric field on a closed surface is 
equal to the charge inside the volume defined by the closed surface, divided by the 
permittivity of the vacuum. By applying this theorem to the surface, a, in Figure 5.2, 
we get: 

int
0

0 0
. freeQQ

E dS E Sδ
ε ε

→ →
= = =  [5.3] 
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In this equation, S represents the plane surface parallel to the electrodes. As the 
field beyond the electrodes is considered to be null (far from the edges of the 
capacitor), the only field E0 that contributes is the one under the electrode, which is 
identical to the field when the dielectric is absent. Qfree represents the charges on the 
surface, S, of the electrode. These charges were brought during the dielectric 
charge. They can therefore be determined, for example, by measuring the current 
necessary for charging the capacitor. 

+  +  +  +  +  +  + 

- - - -
E0

+       +      +       + 

Ed

-------
E0

a. b.

 

Figure 5.2. Close-up view of a slice of the capacitor. Letters a and b represent the two 
surfaces on which laws of electrostatics (Gauss’ theorem) are applied 

Now, let us apply Gauss’ theorem on surface b of Figure 5.2. We get:  

( )0
0

free pol
d

Q Q
E S E E Sδ δ

ε
−

= − =  [5.4] 

E is the average macroscopic field in the dielectric, therefore the difference 
between the field E0 produced by free charges minus the depolarizing field Ed. Qpol 
corresponds to surface charges (called polarization surface charges) created in the 
dielectric through the influence of free charges on the electrodes. This phenomenon 
is called polarization of the dielectric material. A bit later we will see how these 
polarization surface charges are linked to the polarized state of any dielectric 
volume. As this notion of surface charge dominates, we use the ratio Q/ S, usually 
called . We should take care not to confuse this with entropy, as defined in this 
book. 
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Thus, equation [5.4] becomes: 

0

free polE
σ σ

ε
−

=  [5.5] 

We will note that in this simple case of a plane capacitor, the depolarizing field, 
Ed, is equal to - pol/ 0. 

5.3. Electric polarization and displacement  

It is possible to link these notions of surface charges with fields at each point of 
the dielectric in the same way as the electric field. It is this stage that enables us to 
define an electric energy density at each point of the dielectric, independently of the 
form taken by the capacitance. To do this, we must look at what is happening at the 
microscopic level.  

As we said, there are charges inside the dielectric. If we imagine an atom in the 
dielectric, applying an electric field will induce a displacement of the electrons that 
carry the negative charge in one direction and the displacement of the nucleus that 
carries the positive charge in the opposite direction. This separation of centers of 
inertia of the charges therefore by definition creates an elementary electric dipole 
that is the product of the charge by the distance between these charges.  

Thus, inside the dielectric, a succession of dipoles, p, follow each other in the 
direction of the electric field, as illustrated in Figure 5.3b. We can therefore 
macroscopically define a dipole density called polarization P that corresponds to the 
average of the dipole per unit of volume. 

If n is the number of dipoles per unit of volume, P can be expressed: 

P n p nq δ
→ → →

= =  [5.6] 

Here, q is the charge of each elementary dipole and  is the distance between the 
conjugated charges of each elementary dipole. We are assuming that all the dipoles 
are identical.  
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Figure 5.3. Diagram of the microscopic behavior of a dielectric: a) no electric field applied; 
and b) an applied electric field, separation of charges in each atom and creation 

of dipoles in the direction of the electric field 

In terms of units, the elementary dipole p is in C.m whereas polarization P is in 
C/m². We must also note that P is in the same direction as the ps. In this example, 
the direction and way are the same as those of the applied electric field.  

NOTE.− Here, we must distinguish the spontaneous polarization that is found in 
the pyroelectric materials (and ferroelectrics a fortiori) of polarization, which can be 
qualified as dynamic. This last is directly linked to the polarizability of the 
dielectric, and therefore to its capacitance to store charges for a given electric field. 
Polarizability will be defined more specifically a bit later. Spontaneous polarization 
corresponds to the presence of non-null dipoles without any applied electric field. If 
the sum of all these dipoles leads to a non-null polarization, we say that a 
spontaneous polarization is formed in the dielectric. The spontaneous polarization 
can only appear in certain crystalline lattices (with no center of symmetry and a 
unique polar axis). Furthermore, this is the definition of pyroelectric materials. It is 
this spontaneous polarization that is found in all perovskite materials in the 
ferroelectric phase (therefore for a temperature below the Curie temperature) and 
also in AlN, which also has a spontaneous polarization along the c-axis (although 
AlN is only pyroelectric, not ferroelectric, unlike perovskites). This does not, 
however, prevent these materials from having dielectric properties in the other 
directions. A dynamic polarization can develop in a direction perpendicular to 
spontaneous polarization. For example, bulk BaTiO3 (often considered the standard 
perovskite material) in the tetragonal phase has a dynamic polarization 10 times 
greater in the direction perpendicular to the spontaneous polarization (c-axis) than in 
the direction of the latter. Spontaneous polarization is not necessarily in the same 
direction as the electric field as not all directions of polarization are allowed (the 
polar axis concept). In ferroelectric dielectrics, spontaneous polarization always tries 
to align itself with the field in order to decrease the free energy. This leads to a 
hysteresis phenomenon as we saw in Chapter 2. In the case of non-ferroelectric 
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pyroelectric materials like AlN, spontaneous polarization cannot evolve (to the first 
order) with the electric field, regardless of its intensity and direction.  

To go further, we must find a solution to link the surface charge density to 
polarization, which is not obvious. In the case of a plane capacitor uniformly 
polarized in the vertical direction (z-axis), one of the ways of doing this is to 
virtually separate the dielectric into very fine columns of section, dS. Each element 
of volume d  = dSdz contains a large number of dipoles (to be able to use the value 
of macroscopic polarization P), but remains very small in relation to the capacitor in 
order to integrate. This means that the elementary entities that we are summing up 
can be limited to the first order.  

Thus, each element d  has a dipole moment equal to dp = PdSdz. We can now 
look at the electric field or (simpler!) at the potential created by each column at a 
point M outside the capacitor, as illustrated in Figure 5.4.  

 

Volume of a uniformly
polarized dielectric 

column

 

Figure 5.4. Illustration of the argument used for calculating the potential created at point M 
by a column of section dS of the uniformly polarized dielectric 

Here, we are not seeking to find the sources that polarize the material but only 
that which induce its polarized state on a point external to the dielectric. The 
contribution, dVd (z)(M), to the electric potential at M of the dipole moment, dp, of 
each element, d , according to electrostatic laws is: 

( )( ) 3
0

1 .
4d z

dp r
dV M

r
τ πε

→ →

=  [5.7] 

Here, r is the vector between element d  and point M.  
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If we consider the angle  between the z-axis and r, equation [5.7] becomes: 

( ) 2
0

1 cos
4d z

P dSdz
dV

r
τ

θ
πε

=  [5.8] 

Summing up all the contributions between zinf and zsup, respectively, the z 
coordinates of the lowest and highest points of the dielectric, the potential at M due 
to the column (see Figure 5.4) becomes: 

( ) ( )
sup sup sup

inf inf inf
2 2

0 0 0 sup inf

1 cos 1 1 1
4 4 4

z z r
d zz z r

dz dr PdS
V P dV PdS PdS

r rr r
τ

θ
πε πε πε

−= = = = −  

 [5.9] 

The change in variable between dz and dr is explained in Figure 5.4. For the 
potential created at M, everything happens as if the uniformly polarized column 
were replaced by a dipole of the dipole moment, zPdS. The influence of the column 
on point M external to the dielectric is the same as a dipole with a +PdS charge in 
zsup and -PdS in zinf. P is therefore equivalent to a surface charge density that is none 
other than pol.  

We must not lose sight, however, of the fact that this is only the effect of a 
dielectric column on a point located outside the dielectric. On the inside, the effect 
could be completely different. The condition that will enable us to generalize is the 
fact that the rotational of the electric field is null in electrostatics. This leads to the 
existence of the electric potential. Canceling the rotational results in the circulation 
of the electric field being independent of the path traveled. We place one end of the 
line on which we calculate the circulation of the electric field on each electrode. 
Thus, whether the line of circulation passes on the outside or the inside of the 
dielectric, the circulation of the field is identical. As the circulation of the field is 
equal to the potential difference, we deduce that the average macroscopic interior 
field created by uniform polarization, P, of a dielectric is the same as the one created 
by a surface charge distribution, pol, such that: 

polP σ=  [5.10] 

This equation enables us to link P, a field that can be defined at each point of the 
dielectric, to pol a measurable quantity thanks to equation [5.5]. Returning to this 
equation, we get: 

0free E Pσ ε= +  [5.11] 
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free is, by definition, equal to the electric displacement field D. It is a measurable 
experimental datum as it is the integral at the time of the charge or discharge current 
of the capacitor. The most physical definition of D is, however, given in relation to 
E and P, which we can link to microscopic entities of the material. Although 
historically D was introduced before P, Feynman suggests not using D, which is 
always linked to E and P. As most texts focusing on dielectrics use D, let us write 
the general vector formula linking E, P and D according to equation [5.11]: 

0D E Pε
→ → →

= +  [5.12] 

We can generalize the formula linking pol to P in the case where P is not 
perpendicular to the surface. With the argument made around Figure 5.3, we 
understand that the surface charges surpass the dielectric in the direction of 
polarization. Thus, if we choose a surface parallel to polarization, there are no 
polarization charges. If n is the normal to surface S, the polarization charges created 
on this surface by the polarization dielectric P are: 

.pol P nσ
→ →

=  [5.13] 

It is interesting to see what happens when polarization is not uniform, which 
happens frequently at interfaces or in the case of inhomogeneous materials. In the 
case of a homogeneous polarization, such as in Figure 5.3b, the global charge 
emitted from the dielectric is null as there are as many positive as negative charges. 
Thus, the average charge inside the dielectric remains null. According to equation 
[5.13], charge Qpol that is emitted from a dielectric volume delimited by the surface 
S and having a polarization P at each point is: 

. .pol
S V

Q P n dS P dVΔ
→ → → →

= = ∇  [5.14] 

We used Gauss’ theorem to go from the surface integral to the volume integral. 

Thus, if P is not uniform and therefore presents a gradient in the dielectric, Qpol 
is not null. If a charge comes out of the volume, V, a charge with an opposite sign is 
found inside the volume considered as globally no charge is created or suppressed. 
In this case, there is a polarization volume charge density pol in the dielectric. We 
therefore have: 
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pol pol
V

Q dVΔ ρ= −  [5.15] 

Finally, by combining equations [5.14] and [5.15], we get the relation: 

.pol P div Pρ
→ → →

= − ∇ = −  [5.16] 

5.4. The dielectric constant 

Now that the fields governing electrostatic energy have been described, we can 
introduce a relation between them like Hooke’s law for mechanical energy. The 
initial hypothesis is that the higher the field, the greater the polarization. This is 
understandable, since polarization depends on each elementary dipole and each one 
of them is sensitive to the field (watch out for the local field, see later). As a first 
approximation, we assume that this relation is linear. Thus, the dielectric 
susceptibility  links polarization to the average electric field according to: 

0P Eε χ
→ →

=  [5.17] 

As P and E are vectors,  is a rank 2 tensor. The use of  is less common than 
that of the dielectric constant , however, which links electric displacement to the 
field: 

0 rD E Eε ε ε
→ → →

= =  [5.18] 

According to this definition, ε  is the rank 2 tensor of the dielectric constant 

whereas rε  is the tensor of the relative dielectric constant.  

It is important to note that a spontaneous polarization is often present in the 
materials in which we are interested. This polarization is not directly involved in the 
dielectric effect. The clearest definition of the dielectric constant is therefore the 
derivative of electric displacement in relation to the electric field. 

In the most general case, the unambiguous definition of element ij of tensor ε  
is: 
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i
ij

j

D
E

ε ∂
=

∂
 [5.19] 

In the same way as for the stiffness tensor, the dielectric constant tensor has a 
number of independent coefficients that depend on the point group of the crystal 
studied. The 6mm (polycrystalline AlN and lead zirconate titantate [PZT]) and 3m 
(niobate and lithium tantalate) crystal classes, and all the tetragonal crystal classes 
(for example, bulk single crystal BaTiO3 between 5°C and 120°C) present a 
dielectric constant tensor with solely diagonal elements and with 11 = 22. For a 
perovskite cubic lattice, only diagonal elements exist and they are all equal. The 
dielectric constant tensor is reduced to a scalar. The letter K is therefore often used 
to designate the dielectric constant. 

With all these definitions, the expression of the capacitance, C, of a surface plane 
capacitor, S, and of dielectric thickness, e, is: 

0free rQ SDS ES S
C

V Ee Ee e e
ε εε ε= = = = =  [5.20] 

We must note that to end up with this simple and very useful formula it was 
necessary to assume that the space between the electrodes is entirely occupied by the 
dielectric, in such a way that the electric field is simply V/e. The space between the 
electrodes and the dielectric that we used for the argument is neglected (see Figure 
5.2).  

5.5. The local field in dielectrics: polarization catastrophe 

We now take up a rather complex concept of dielectric media: the local electric 
field, El. It is a particularly important point for perovskite materials as it enables us 
to explain, at least qualitatively, why the dielectric constant takes a very high value 
at ferroelectric-paraelectric transition. The issue is in quantifying the electric field 
that produces the dipoles. 

As happens at the macroscopic level, the microscopic dipole moment at first 
glance presents a linear dependence with the field it is in. We must therefore find 
this field, which is applied to each dipole and that we call the local field. 

This field corresponds to the sum of the macroscopic field with all the fields 
stemming from neighboring dipoles, with the exception of itself. El therefore 
evolves as a function of the crystal structure of the dielectric considered. We must 
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note that in the case of perovskites, the local phenomena are not all completely 
understood yet. 

The ab initio approach is certainly the one that is best to describe what happens 
at this scale and the works developing this approach are currently very numerous. It 
is interesting, however, to give the classic expression of the local field valid for ionic 
gases, liquids and solids of cubic structure. This actually enables us to obtain the 
Clausius-Mossoti law, which suggests the possibility of divergence of dielectric 
constant. 

The approaches for obtaining the local field are not always the same, depending 
on the authors. Kittel’s work [KIT 04] remains the reference and constitutes the 
view that is most generally observed. He suggests decomposing the local field into 
four contributions:  

− the field due to free charges;  

− the depolarization field;  

− the field called the Lorentz field calculated by removing a sphere that is 
fictionally cut up in the dielectric; and  

− the field due to the closest dipoles contained in the sphere (see Figure 5.5).  

The idea in this a priori complicated decomposition is to have the most generic 
calculation possible based on crystal structures. 

Indeed, if the sphere is big enough (typically a few crystalline lattices in 
diameter), the direct influence of each dipole beyond the sphere is negligible and 
therefore the contribution of the dipoles beyond this limit corresponds to the third 
configuration of the right “term” represented in Figure 5.5. It corresponds to the 
Lorentz field and is equal to P/3 0 (see Kittel for the classic electrostatics calculation 
decomposing the surface of the corona sphere [KIT 04]). The field in the sphere, 
produced by the sphere, is therefore calculated in a specific way depending on the 
structures. 

Using the field created by all the neighboring dipoles on the central site in which 
we are interested, we can show that this field is null in the case of a cubic lattice. 

This is also true in liquids or gases and, in general, in all cases for which there is 
no dipole other than the one in the central site in the sphere. 
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Figure 5.5. Illustration of the calculation of the local electric field  
in a uniformly polarized medium 

Thus, the formula for the local field in relation to the Lorentz field is the 
following: 

03l
P

E E
ε

= +  [5.21] 

with E = E0 − Ed.  

Now that the expression of the local field is known (in the case of the Lorentz 
field), it is possible to specify the local dipole moment p by assuming a linear 
relation between p and El: the stronger El, the more important p. Thus, we define 
polarizability, , which is the proportionality coefficient between p and El: this is 
none other than a first-order estimate. Polarizability is homogeneous to a volume 
and is such that: 

0 lp Eε α=  [5.22] 

Using equations [5.6], [5.21] and [5.22], we get the following expression linking 
polarization and the macroscopic field: 

0

1
3

n
P E

n
ε α

α=
−

 [5.23] 
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Thus, in this Lorentz field hypothesis, the expression of the relative dielectric 
constant is: 

1
1

3

r
n

n
αε α= +

−
 [5.24] 

This is the Clausius-Mossotti relation, which can be found in different forms. It 
is a good explanation of the behavior of materials that have polarizability with a 
strong electronic contribution. In the case of perovskites and wurtzites (AlN), there 
are other contributions to polarizability, as we will explain in detail in the next 
section. Let us also note that this relation is only valid for materials without 
spontaneous polarization. Therefore, it is not applied for AlN and perovskites in the 
ferroelectric phase. The Clausius-Mossotti relation, however, enables us to 
understand the particular behavior of perovskites in phase transition, since in the 
paraelectric phase these materials are in cubic phase, a condition using the Lorentz 
field for crystalline materials. 

Equation [5.24] suggests that if n  nears 3, the dielectric constant can diverge. 
This divergence is called the polarization catastrophe. It highlights looping between 
the local field and the dipole moment in the paraelectric phase. Indeed, El produces 
p. If p increases, P also increases and therefore also El by virtue of equation [5.21]. 
This positive loop therefore gives the possibility of a divergence. It is what happens 
during ferroelectric-paraelectric transition.  

When the temperature decreases, the density of the paraelectric increases 
because the coefficient of dilatation is positive (around 10 ppm/°C). Therefore, n 
increases and n  also increases, assuming  is constant in this temperature range. 
We can therefore make the hypothesis that in certain materials, around a temperature 

C, n  can present, to the first order, a linear variation with the temperature such 
that: 

( )3 Cnα λ θ θ= − −  [5.25] 

Replacing this expression in the Clausius-Mossotti relation, keeping only the 
dominant term we get: 

( )
9

r
C

ε
λ θ θ

=
−

 [5.26] 
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Here we find another form of equation [3.5], which was the phenomenological 
expression of Curie-Weiss law. We must take note, however, that although it is 
approximative, equation [5.26] gives a microscopic explanation of the 
phenomenological behavior. When the temperature is less than C, the dielectric 
constant cannot become negative due to nonlinear effects. The crystal then 
undergoes a phase transition that enables stabilization of dipole moments even in the 
absence of a macroscopic field. It is the appearance of spontaneous polarization that 
is seen, for example, in the tetragonal phase of BaTiO3 below 120°C.  

The continuation of this discussion focuses on the polarizability that is particular 
to perovskites, of which the sum of the different contributions (electronic, ionic and 
domain walls) enables the condition of polarization catastrophe to be achieved. 
Through their different natures, these contributions have different frequencies of 
relaxation. 

5.6. Dielectric relaxation 

5.6.1. The various relaxations 

The dielectric property of materials that links electric displacement to the field is 
not independent of frequency. This change in the dielectric constant as a function of 
work frequency is called dielectric relaxation. It is a phenomenon that is found in all 
dielectrics and depends on the various contributions of the charged species present 
in the material: trapped charges, dipoles, ions and electrons. 

Generally speaking, there is a lot of information about this field in the literature. 
For perovskites, dielectric relaxation has certain specificities. The most original 
contribution to the dielectric constant in the case of perovskites comes from domain 
walls. In the case of PZT, it can constitute more than half of the dielectric constant 
[ZHA 94]. This is also the case for piezoelectric properties. 

Figure 5.6 is a typical representation of relaxation in the case of perovskites by 
being limited in frequency to THz (1012 Hz). In this diagram, we are limited to 
phenomena of dielectric relaxation by removing those of atomic resonance (around 
1012 Hz, corresponding to phonons and the soft mode) and those of electronic 
resonance near visible frequencies (around 1015 Hz). We will simply note that at 
optical frequencies, only the contribution of electrons subsists. At these frequencies, 
the typical dielectric constant is in the order of 6 and is equal to the square of the 
optical index n. 
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Figure 5.6. Typical representation of the behavior of the dielectric constant 
 and dielectric losses in frequency of PZT in thin films.  

Only dielectric relaxation phenomena are plotted 

In Figure 5.6, three relaxation phenomena are represented as a function of the 
frequency of excitation. Other contributions can relax in this frequency range 
(between 10-2 and 1012 Hz) but the three represented are present almost all of the 
time, regardless of the perovskite characterized. 

The first contribution corresponds to charges: it can be electrons, vacancies 
(often oxygen vacancies) that are linked to the material and that can, at low 
frequency, move from one trap to the other. This movement contributes to the 
dielectric constant, which subsides as soon as the frequency becomes too high. 
Indeed, typically beyond a few Hz or dozens of Hz, these charges no longer have the 
time to move from one trap to the next. It is this phenomenon that is called dielectric 
relaxation: when it starts and frequency increases, the losses also begin to increase 
because the dielectric effect of this contribution becomes less efficient. The dielectric 
constant decreases little by little until the relaxing contribution completely vanishes. 
The losses then find a lower level.  

This very general description of dielectric relaxation corresponds to the 
functioning of a low-pass filter and is therefore often modeled by an RC cell. This is 
what is called the Debye model. The different contributions are often more subtle 
but the Debye model enables us to properly seize the phenomenon. The 
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characterization of low-frequency relaxation is done through the use of a specific 
analyzer, called a low frequency spectrometer. It is also possible to observe these 
relaxations by measuring the current that crosses a capacitor excited by a voltage 
step. 

The second contribution is distributed over a large frequency range. This is 
called Curie-Von Schweidler relaxation. It is found in most dielectrics in a more or 
less marked way. Its physical origin is still not well-known, although the 
phenomenon was identified more than a century ago. In temporal space, it 
corresponds to a power law as a function of the time of the relaxation current 
density, Jr, such that Jr = Kt-n, with K and n being constants.  

The third contribution corresponds to domain walls. Today we know that these 
walls play a dominant role in the dielectric effect of ferroelectrics. Indeed, when 
work temperature is reduced, the mobility of domain walls decreases, as does their 
influence.  Zhang et al. showed that in this way permittivity loses about 50% of its 
value to ambient temperature [ZHA 94]. Let us note that this relaxation only 
concerns materials in the ferroelectric phase, since it is they that are susceptible to 
presenting domain walls. Paraelectrics, devoid of domains since there is no 
remanent polarization, do not present this particular relaxation. The phenomenon of 
losses associated with domain walls corresponds to the generation of shear acoustic 
waves inside the material [ARL 93]. The losses thus correspond to the conversion of 
the electric energy of excitation into acoustic energy. We will return to this 
phenomenon when we go into the details of the radiofrequency properties of these 
materials. 

Another phenomenon that can be compared to dielectric relaxation can be 
observed in the case of electrode-dielectric-electrode film configurations at 
frequencies in the region of GHz. These are acoustic resonances that come from the 
piezoelectric effect induced by ferroelectricity. When the ferroelectric thin film is 
excited by an alternative signal, there is a frequency that corresponds to the 
mechanical resonance of the resonator made up of the ferroelectric with its 
electrodes. This mechanical movement in the ferroelectric film induces a current 
produced by the piezoelectric effect. At resonance, this current is in phase with the 
excitation signal that is translated by a drop in the real part of impedance. The 
capacitance gets closer to a short circuit at this particular frequency. If we look at 
this system as a capacitance and not an acoustic resonator, this fall in the real part of 
impedance is interpreted as an increase in dielectric losses. In the case of a 
capacitive application (fixed or variable), this resonance can be a problem because 
the effect can be very strong. Resonance is typically located at a few GHz for 
thicknesses of a few hundred nm. We must also note that this resonance can be 
observed in the case of paraelectrics polarized by a continuous voltage. The material 
then behaves like a piezoelectric induced by the electrostrictive effect, which is 
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particularly strong in the case of perovskites. We will return to this effect and spend 
a lot of time on it in Chapter 8, due to it being very advantageous for acoustic 
resonators. 

5.6.2. Kramers-Kronig relations 

We cannot speak of dielectric relaxation without bringing up Kramers-Kronig 
relations. Indeed, these relations that are obtained by purely mathematical 
calculations enable us to prove that the dielectric constant and dielectric losses are 
interdependent. It is even possible to calculate one in relation to the other, if one of 
the two is known throughout the entire frequency range. In this section, we sum up 
the main part of the procedure necessary for understanding how these relations are 
established, largely inspired by Jonscher’s reference book on dielectric relaxation, 
Dielectric Relaxation in Solids [JON 99]. 

Let us consider dielectric susceptibility, , as a complex value such as  
 = ' − i ''. We recall that  links polarization to the electric field through the 

relation P = E. When the electric field suddenly changes value in the dielectric, 
typically by applying a voltage step to the terminals of a capacitor, the polarization 
of the material evolves, but not instantaneously. Actually, the various contributions 
to the dielectric constant implicate entities that have a mass (with the exception of 
the vacuum, whose permittivity is 0). They therefore all have a non-null response 
time. Let us therefore consider this dielectric response f(t) as a function of time 
when an electric field dirac of amplitude E0 is applied to the dielectric. This function 
can only take a non-null value from the time the excitation dirac is applied. This 
evident remark is called the principle of causality and means that a consequence 
cannot precede the cause that produced it. In response to this dirac applied at t = 0, 
polarization at time t is equal to 0f(t)E0. Now, if the electric field evolves, the 
resultant polarization will be the sum of the responses at all diracs of the electric 
field applied over time. In other words, if the electric field is decomposed into parts 
of infinitesimal duration d  and variable amplitude over time E(t), polarization will 
be the sum of all these contributions distributed over time. 

It is the principle of superposition that is applied here. Translated into equations, 
the existence of f(t) refers to writing: 

( ) ( ) ( )0
0

P t f E t dε τ τ τ
+∞

= −  [5.27] 

To properly understand this equation, we must first place ourselves at time t. The 
field then takes the value E(t). The contribution of E(t) is “felt” by polarization after 
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a delay. This is translated by the term 0E(t)f(0) added to polarization. If we take the 
field that was applied at time t − t, its contribution to polarization is 0E(t − 

t)f( t). And so on and so forth until t = 0. As soon as t −  is <0, E is null. Next, 
according to the principle of causality, we can extend the integral to - . Thus, in 
mathematical terms, the integral of equation [5.27] corresponds to the convolution 
of f(t) and E(t).  

We can apply equation [5.27] when a voltage (or field) step is applied. This field 
step is such that E is null when t <0 and E = E0 when t >0. If we look at the 
polarization that results from this voltage step at the end of infinite time, we get: 

( ) ( )0 0
0

P E f t dtε
+∞

+∞ =  [5.28] 

This corresponds to the purely dielectric response of the material. The 
contribution of leakage current is not taken into consideration. Physically, this 
dielectric response comes from the movement of charges that remain inside the 
dielectric. These charges cannot escape from the dielectric. Furthermore, the leakage 
current comes from the movement of free charges that themselves completely cross 
the dielectric. These two physically very different contributions are sometimes 
difficult to distinguish, especially when high field strengths are applied to the 
terminals of the dielectric. The frequency study enables us to distinguish the leakage 
current from the purely dielectric part.  

Equation [5.28] also enables us to see that the integral of f(t) up to infinity must 
be finite, as the polarization of a material always keeps a finite value (even in the 
case of polarization catastrophe where nonlinear phenomena limit the divergence of 
polarization).  

From an experimental point of view, we must note that the measurement of 
depolarization current (the applied field suddenly goes from E0 to 0) is more 
appropriate for determining f(t), given that the leakage current does not exist in the 
absence of an applied field. We must, however, be sure to have achieved the 
permanent state of polarization as defined by equation [5.28].  

5.6.2.1. Frequency range 

The hypothesis of the existence of f(t) will enable us to link the real and 
imaginary parts of ' and ''. To do this, we must first express the Fourier transform 
of equation [5.27]. Let us recall that the Fourier transform f(w) of the time range to 
the frequency range of a function f(t) is given by the equation: 
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( ) ( )1
2

iwtf w f t e dt
π

+∞ −
−∞

=  [5.29] 

Thus, by applying this transformation to equation [5.27], (for the mathematical 
demonstration, see [JON 99]) we get: 

( ) ( ) ( )0P w f w E wε=  [5.30] 

In this expression, f(w) is identical to the definition of dielectric susceptibility 
(w). We can therefore write:  

( ) ( ) ( ) ( )' '' iwtw w i w f t e dtχ χ χ
+∞

−

−∞

= − =  [5.31] 

The real part ' corresponds to the amplitude of polarization in phase with the 
field of excitation E whereas the imaginary part '' corresponds to the amplitude of 
polarization in quadrature with the field E (in other words, the part that enables us to 
quantify dielectric losses). Decomposing the exponential in sine and cosine, 
equation [5.31] gives: 

( ) ( ) ( )

( ) ( ) ( )

'

''

cos

sin

w f t wt dt

w f t wt dt

χ

χ

+∞

−∞
+∞

−∞

=

=

 [5.32] 

As ' and '' both depend on f(t), it seems that it must be possible to determine 
one in relation to the other. Actually, the reverse Fourier transform of ' or '', 
enables us to extract f(t). We kept the integral between minus and plus infinity in 
order to give a stronger mathematical meaning. Indeed, it seems that ' is an even 
function of w, whereas '' is an odd function of w. 

From these properties, after several mathematical manipulations not detailed 
here (see [JON 99]), Kramers-Kronig relations take the following form: 
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( ) ( )

( ) ( )

''
'

2 2
0

'
''

2 2
0

2

2

x x
w dx

x w

xw
w dx

x w

χ
χ

π

χ
χ

π

+∞

+∞

=
−

= −
−

 [5.33] 

These relations are not specific to dielectrics. Indeed, they are valid for any 
passive linear system that has losses. In mathematical terms, for Kramers-Kronig 
relations to be applied this system must respect the principle of causality, must have 
a response that tends towards zero when frequency tends towards infinity, and must 
have one even real part in w and one odd imaginary part in w (see [KIT 04]). Thus, 
these relations are also applied for magnetic permeability or the optical index.  

An initial consequence of these relations is the following. If we take a null 
frequency, i.e. if we are interested in permittivity taking into consideration all 
polarization phenomena (even those at low frequency), equation [5.33] gives: 

( ) ( ) ( ) ( )
''

' ''

0

2 20 ln
x

dx x d x
x

χ
χ χ

π π

+∞ +∞

−∞

= =  [5.34] 

Thus, a very high dielectric susceptibility necessarily implies significant 
dielectric losses that will appear in a given frequency range. Said in another way, it 
is not possible to find a good quality dielectric without dielectric losses. These losses 
are intrinsic to the material and this is so regardless of the leakage current. The 
dielectric relaxation phenomenon is therefore closely linked to the dielectric effect 
and the stronger this effect, the more significant the associated losses will be. 
Physically, the frequency range in which the losses are important corresponds to the 
moment a dielectric mechanism stops contributing (domain walls, movement of 
ions, trapped charges, etc.).  

5.7. Electric energy density 

To take up the calculation of electric energy density, we will use the example of 
the plane capacitor, which is the case predominantly found for thin films. This is not 
the general case but generalizing the calculation of energy density does not modify 
the formulae obtained for the plane capacitor, although the demonstration is quite 
complex.  
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Thus, for the capacitor we choose a reference point in which axes 1 and 2 are in 
plane and axis 3 is out-of-plane. Electric voltage is applied along axis 3, i.e. 
perpendicularly to the electrodes, and we neglect the boundary effects. Everything 
therefore happens along axis 3 and the problem is one-dimensional. The energy 
stored in the capacitor corresponds to the work necessary to bring charges to the 
electrodes. An uncharged capacitor (i.e. without energy) has its two electrodes at the 
same potential. When a constant difference in potential, V, is applied between the 
electrodes with the help of a battery, if the leakage current is neglected for example 
the current that circulates in the circuit is exclusively there to charge the capacitor. 
In energy terms, everything happens as if charges were transferred from one 
electrode to another. The necessary work, W, for this transfer from a small charge 
quantity, Q, under the difference in potential V is V Q. The thickness, h, of the 
dielectric in the capacitor is constant. The absolute value of the applied electric field, 
E, in the dielectric is therefore V/h. Thus, W is equal to QE x h. QE is the 
electrostatic force that is applied on the charge, Q, and this force is applied over the 
distance h. W is therefore homogeneous to work in which we can make the electric 
field, but also the electric displacement D, appear: 

W V Q Eh Q E DhSδ δ δ δ= = =  [5.35] 

In this expression, S is the surface of the electrodes facing the dielectric and D 
is the small change in electric displacement due to the application of the electric 
field E. The infinitesimal change in electric energy density per unit of volume, dUel, 
in the case where a constant electric field is applied is therefore: 

( )eldU plane capacitor EdD=  [5.36] 

In the general case, the expression of this electric energy density is: 

3

1
el i i

i

dU E dD
=

=  [5.37] 

If electric displacement is expressed as a function of the dielectric constant (see 
equation [5.19]) and the field, equation [5.37] becomes: 

,
el ij i j

i j

dU E dEε=  [5.38] 
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Chapter 6 

Piezoelectric Formalism1 

6.1. Thermodynamic equations 

We saw before that piezoelectricity and electrostriction appear easily from 
energy considerations (see Chapter 2). This is the most natural method of defining 
them, even if there are microscopic models that enable us to better “appreciate” 
these phenomena.  

The thermodynamic method is used to define piezoelectric equations of any 
material. The method is found in the reference document Standards on 
Piezoelectricity [IEE 87]. Most of the time, these equations leave out the heat term 
by assuming that the constant (adiabatic) entropy or constant temperature 
(isothermal) coefficients are very similar. It is possible to develop free energies for 
the four different configurations of natural variables ((T,D), (T,E), (S,D) and (S,E)) 
and obtain four matrix equation couples that describe the same piezoelectric system, 
but considered based on different boundary conditions. 

To do this, it is enough to change the free energy in which we are interested into 
a function of the natural variables we wish to use. Therefore, for the (T,D) 
formalism already discussed, which uses Gibbs’ elastic energy (G1), we can re-write 
equations [2.59] and [2.60] by dropping the heat term, which gives: 

D
ij kl kij kijklS s T g D= +  [6.1] 

T
i ikl kl ik kE g T Dβ= − +  [6.2] 

                              
Chapter written by Emmanuel DEFAŸ and Mathieu PIJOLAT. 
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We saw that the Maxwell thermodynamic relations enable us to conclude that the 
piezoelectricity tensor is the same in both equations.  

After discovery of the direct piezoelectric effect in 1880 by the Curie brothers 
(equation [6.2]), using these thermodynamic considerations (in other words, energy 
conservation), Lippmann anticipated that the reverse effect should exist (see 
equation [6.1]) and should be equivalent in intensity to the direct effect [LIP 81]. 

As the piezoelectric tensor is of order 3, it has 27 coefficients. This tensor 
gathers an electric tensor of first order (three coefficients) to a symmetrical 
mechanical tensor of order 2 (six independent coefficients). It therefore has 18 
independent coefficients. Following the example of what was done for stress and 
strain tensors (see Chapter 4), it is possible to contract the indices, respecting certain 
rules of conversion based on those chosen for strains.  

As ij
kij

k T

S
g

D

∂
=

∂
 (therefore with Sij), the particular contraction rule is applied to 

g, which gives: 

gkp = gkij for i = j and p = 1,2,3 [6.3] 

gkp = 2gkij for i  j and p = 4,5,6 

The other forms of the formalism appear by taking other free energies. If we 
place ourselves at constant temperature, the four free energies to take into 
consideration are F, G, G1 and G2.  

Doing the same calculation as the one specified for G1, for G, F and G2 

respectively, we get:  

E
ij ijkl kl kij k

T
i ikl kl ik k

S s T d E

D d T Eε

= +

= +
 [6.4] 

D
ij ijkl kl kij k

S
i ikl kl ik k

T c S h D

E h S Dβ

= −

= − +
 [6.5] 

E
ij ijkl kl kij k

S
i ikl kl ik k

T c S e E

D e S Eε

= −

= +
 [6.6] 
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The four piezoelectric tensors are therefore g, d, h and e. We can use contracted 
notations for these four formalisms. Thus, d behaves like g and respects equation 
[6.3]. As e and h function with Tij, the contracted forms are simpler and give 
ekij = ekp and hkij = hkp. The nature of the index giving the blocked variable does not 
influence the contraction rule. 

These four equivalent formalisms induce relationships between all these terms. 
To obtain them, the equations must be crossed; for example, we can place Sij from 
equation [6.4] in equation [6.6] and identify the terms. These equations are given in 
the Standards on Piezoelectricity [IEE 87]. Here are some of the equations (the 
terms are considered to be matrices and Xt represents the transpose of matrix X): 

1

1

1

E E

D D

D E t t

D E t

T T

c s

c s

s s d d

c c e h

β

β ε

=

=

= −

= +

=

   

S T E t

t

E

S

dc d

g d

e c d

h e

ε ε

β

β

= −

=

=

=

 [6.7] 

6.2. Reducing coefficients using crystal symmetry 

In the same way we proceeded to reduce independent coefficients for the elastic 
tensor, we can reduce the independent coefficients of piezoelectric tensors by 
looking at the symmetries of the different point groups. In particular, as 
piezoelectricity is represented by a tensor of third order, we can quickly see why 
crystal classes, with one center of symmetry, have a null piezoelectric tensor. 
Actually, the center of symmetry gives the following relations for  coefficients dijk , 
for example: 

dijk = (-1)3 dmno hence dijk = 0 [6.8] 

Thus, for crystal classes with one center of symmetry, there cannot be a 
piezoelectric effect.  

For the crystal classes in which we are mainly interested, piezoelectric tensors (e 
taken as an example here) are given in Table 6.1, after taking into consideration the 
different symmetries. 

e is taken as an example as it does not pose any problems of conversion between 
the indices, just like h. For matrices d and g, we must take conversion into 
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consideration. In trigonal classes, this induces a doubling of the coefficients found in 
the sixth column (-2d22 for 3m and -2d11 for 32). 

We will note that for changes in reference system, it is a lot more accurate to 
work on un-reduced coefficients to avoid all ambiguity. 

6mm 4mm 

15

15

31 31 33

0 0 0 0 0
0 0 0 0 0

0 0 0

e

e

e e e

 
15

15

31 31 33

0 0 0 0 0
0 0 0 0 0

0 0 0

e

e

e e e

 

3m  32 

15 22

22 22 15

31 31 33

0 0 0 0
0 0 0

0 0 0

e e

e e e
e e e

−
−

 

11 11 14

14 11

0 0 0
0 0 0 0
0 0 0 0 0 0

e e e

e e

−
− −  

Table 6.1. Piezoelectric tensor e for point group 6mm, 4mm, 3m and 32 

6.2.1. Example of a calculation: point group 3m 

In the case of materials from class 3m, one of the symmetry operations is the 
120° rotation about the c-axis (axis 3 here). The rotation matrix can be expressed in 
space: 

cos sin 0
sin cos 0
0 0 1

A

θ θ
θ θ= −    

11 12 13

21 22 23

31 32 33

1/ 2 3 / 2 0
2 3 / 2 1/ 2 0
3

0 0 1

a a a

A a a a
a a a

π
−

= − − =  [6.9] 

Thus, e33 is not modified by a rotation of 2 /3 about the c-axis. Using the 
transformation formula, we get: 

' '
33 333 3 3 3 33 33 33 333 33

, ,
m n o mno

m n o

e e a a a e a a a e e= = = =  [6.10] 
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First of all, let us find the shape of matrix e (non-null coefficients): 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

e e e e e e

e e e e e e

e e e e e e  

In class 3m, the plane (YZ) that contains the c-axis is a plane of symmetry, as 
defined by the piezoelectric standards [IEE 87]: 

[e]='e’]=[Sym].[e] with [ ]
1 0 0

0 1 0
0 0 1

Sym
−

=   

Thus, e111 = (-1)3 e111 = - e111 = 0 and e112 = (-1)2 e112 = e112. To generalize, all the 
coefficients including an odd number of index 1s are therefore null. Thus: 

111 122 123 132 133 212 213 221 231 312 313 321 331 0e e e e e e e e e e e e e= = = = = = = = = = = = =  

In contracted notation: 11 12 14 13 26 25 36 35 0e e e e e e e e= = = = = = = = . 

Matrix e was therefore simplified into: 
15 16

21 22 23 24

31 32 33 34

0 0 0 0
0 0
0 0

e e
e e e e
e e e e

. 

6.2.1.1. Coefficients e23 and e34 

Let us use matrix A for an angle of 120° and for coefficient 23 (233 in extended 
notation): 

23 233 2 3 3 2 33 33 33
, ,

21 33 33 133 22 33 33 233 233

' '

1                              
2

m n o mno m m
m n o m

e e a a a e a a a e

a a a e a a a e e

= = = =

+ =
 

as e133 = 0,      23 233 23' ' 0e e e= = = . 

The same argument is applicable to e34 = e323 = 0. 

6.2.1.2. Coefficient e16  

Let us calculate coefficient e16, which poses a problem in some publications. 
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Let us find the relation between e16, e21 and e22. 

Still using the rotation of 2 /3, we have: 

16 112 1 1 2 11 11 22 112 11 12 21 121 12 11 21 211 12 12 22 222
, ,

' ' m n o mno
m n o

e e a a a e a a a e a a a e a a a e a a a e= = = + + +  

because e111 = e122 = e212= e221 = 0 and a23 = a13 = 0. 

112 112 112 211 222
1 1 1 1 3 3 3 1 3 3 3 1' .
2 2 2 2 2 2 2 2 2 2 2 2

e e e e e= − − − + − − + − − + −    

112 112 112 211 222 112 211 222
1 3 3 3 2 3 3'
8 8 8 8 8 8 8

e e e e e e e e= = − + + − = + −  

hence: 

( )112 211 2222e e e= −  [6.11] 

Similarly, for coefficient e21: 

21 211 2 1 1 21 11 12 112 22 11 11 211
, ,

22 12 12 222 21 12 11 121

' '

                                                      

m n o mno
m n o

e e a a a e a a a e a a a e

a a a e a a a e

= = = +

+ +
 

211 112 211

222 112

3 1 3 1 1 1' .
2 2 2 2 2 2

1 3 3 3 3 1                                                  
2 2 2 2 2 2

e e e

e e

= − − + − − −

+ − + − −

 

211 211 112 211 222 112 211 222
3 3 1 3 6 1 3'
8 8 8 8 8 8 8

e e e e e e e e= = + − − = − −  

hence: 

( )211 112 2223 2e e e= −  [6.12] 
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Similarly, for coefficient e22: 

22 222 2 2 2 21 21 22 112 22 21 21 211
, ,

22 22 22 222 21 22 21 121

' '

                                                        

m n o mno
m n o

e e a a a e a a a e a a a e

a a a e a a a e

= = = +

+ +
  

222 112 211

222 112

3 3 1 1 3 3' .
2 2 2 2 2 2

1 1 1 3 1 3
2 2 2 2 2 2

e e e

e e

= − − − + − − −

+ − − − + − − −

 

222 112 211 222 112 211 222
3 3 3 1 6 3 1'
8 8 8 8 8 8 8

e e e e e e e= − − − − = − − −  

hence:  

( )222 112 2113 2e e e= − −  [6.13] 

By linear combinations: 

− equation [6.11]-equation [6.12] : 

112 211 112 211 16 214 4e e e e e e⇔ = ⇔ = ⇔ = ; 

− equation [6.11]-equation [6.13] : 

112 222 211 222 112 211 222 211 22 212 3 2 2 2e e e e e e e e e e⇔ − = − + + ⇔ − = ⇔ = −  

The final relation is therefore: 16 21 22e e e= = − . 

However, because of the contraction rules for strain tensor indices that are also 
applied to the piezoelectric tensor d, we have: 16 21 222 2d d d= = − . 

6.2.1.3. Coefficient e31 

The 2 /3 rotation is applied to e322: 

322 322 3 2 2 2 2 3 21 21 311 21 22 312
, , ,

22 21 321 22 22 322

'

                                                                                   

m n o mno n o no
m n o n o

e e a a a e a a e a a e a a e

a a e a a e

= = = = +

+ +
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322 311 322 322 311 32 31
3 1
4 4

e e e e e e e= + = =  

6.2.1.4. Coefficient e15 

Still for a rotation of 120°, we have: 

 15 15 113 1 1 3 1 1 3
, , ,

' m n o mno m n mn
m n o m n

e e e a a a e a a e= = = =  

Only components e113 and e223 contribute to the result: 

22

15 113 11 11 113 12 12 223 113 223 113 223
1 3 1 3
2 2 4 4

e e a a e a a e e e e e= = + = − + = +  

hence: 15 113 223 24e e e e= = = . 

6.2.1.5. For class 3m 

The matrices to use here are: 

         
15 22

3 22 22 15

31 31 33

0 0 0 0
0 0 0

0 0 0
m

e e
e e e e

e e e

−
= −   

and   
15 22

3 22 22 15

31 31 33

0 0 0 0 2
0 0 0

0 0 0
m

d d
d d d d

d d d

−
= −  

6.3. One-dimensional microscopic model 

To get a more local idea of what piezoelectricity represents at the atomic level, 
the simplest thing is undoubtedly to take a linear chain made up of two successive 
ions joined by strings of different stiffness, as suggested by Royer and Dieulesaint 
[DIE 74] and Uchino [UCH 97]. 

This representation of a spring is quite close to reality as the position of atoms is 
balanced between Coulombic force and the Pauli principle repulsion. Having two 
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springs of different stiffness is also logical, since piezoelectricity only appears in 
crystals that do not have a center of symmetry.  

This chain of ions is represented in Figure 6.1. As we assume a one-dimensional 
ionic crystal, the elementary dipole moment p, which corresponds to that of one 
section, can be calculated, for example from one positive ion to another, separated 
by a distance a.  

The key is to consider the charges carried by each ion as belonging half to the 
right dipole and half to the left dipole. 

Thus, it results in: 

( ) ( )2
2 2 2
q q q

p a b b a b= − − = −  [6.14] 

Therefore we immediately see that if the distance between the ions is different 
(a-b  b), then p is not null and there is a spontaneous polarization (we have a 
pyroelectric crystal). It is noteworthy that polarization (only ionic in this model) is 
obtained, by definition, by multiplying p by n, the dipole number per unit of volume. 
If the initial lengths of the springs are the same (a − b = b), the crystal is either non-
pyroelectric piezoelectric (if k1  k2) or centrosymmetric.  

 

Figure 6.1. Model of a chain of two ions linked by springs of different stiffness. The bottom 
diagram represents the chain when an electric field is applied 

Applying an electric field, E, in the direction of the chain, the ions move in the 
opposite direction, like in the bottom part of Figure 6.1. A change in dipole moment, 
p, ensues so that: 
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( )2
2
q

p a bδ δ δ= −  [6.15] 

The static equilibrium of the ions imposes the following relation (here we take 
the example of a positive ion) that enables us to link a and b. Only the first order 
is considered (the spring is linear): 

( ) ( )1 2 0qE k a b k bδ δ− − + =  [6.16] 

To go further, one possibility is to calculate the internal energy of a section of 
the chain, for example between two positive ions. We will therefore be able to 
derive this internal energy as a function of natural variables to make a piezoelectric 
microscopic formalism emerge. The natural variables chosen are the strain, a/a = S, 
and the electric field, E. Internal energy is therefore similar to Gibbs’ electric energy 
G2 (see Chapter 2, however here we are looking at the microscopic scale). G2 takes 
the following form, by summing up the elastic and electric contributions: 

( ) ( )2 2
2 1 2

1 1
2 2

G k a b k b pEδ δ δ δ= − + −  [6.17] 

Inserting the expressions S, b (from equation [6.16]) and p (from equation 
[6.15]) into the equation, and after several simplifications, G2 becomes: 

2
2 2 21 2 2 1

2
1 2 1 2 1 2

1 1
2 2 2

k k k kq qa
G a S E SE

k k k k k k
δ −

= − −
+ + +

 [6.18] 

In this one-dimensional model, t is defined as the lineic mechanical stress, and p 
the polarization, such that: 

2

E

G
t

S
δ∂

=
∂

    2

S

G
p

E
δ∂

= −
∂

 [6.19] 

Thus we get: 

21 2 2 1

1 2 2 1
2

2 1

2 1 1 2

2

2

k k k kqa
t a S E

k k k k

k kqa q
p S E

k k k k

−
= −

+ +

−
= +

+ +

 [6.20] 
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We must note that p and t are not homogeneous, respectively to the polarization 
P (or the electric displacement D) and the stress T. To get homogeneity, we must 
multiply t and p by the dipole number per unit of volume n. 

Finally, we therefore get: 

21 2 2 1

1 2 2 1
2

2 1

2 1 1 2

2

2

k k k knqa
T n a S E

k k k k

k knqa nq
P S E

k k k k

−
= −

+ +

−
= +

+ +

 [6.21] 

Assuming that the piezoelectric effect is only due to the influence of the ions (we 
take the polarization P defined here, and not D), we can identify this equation with 
the one that comes from the piezoelectric formalism (see equation [6.6]) with the 
following parameters: 

 21 2

1 2

E k k
c n a

k k
=

+
  

2

1 2

S
ion

nq
k k

χ =
+

  2 1

2 12
k knqa

e
k k

−
=

+
 [6.22] 

This expression confirms the fact that piezoelectricity only exists if the two 
springs are different (k1  k2). Therefore, e is not null. ion

S corresponds to the ionic 
susceptibility of this crystal to constant strain. cE corresponds to the stiffness 
constant of the crystal at a constant electric field. It is also possible to define the 
electromechanical coupling coefficient kem, which determines the quantity of energy 
that can be transferred between mechanical and electric energies. To produce this, 
we sometimes use the following definition (equivalent to the one we give in the next 
section) based on a translation of the energy, E, of the crystal in the form: 

2
2 coupling
em

mech elec

E
k

E E
=  [6.23] 

The expressions of mechanical, electrical and coupling energies are identified 
with the expression of G2 (see equation [6.18]) so that G2 = Emech+Eelec+2Ecoupling. 
Thus, k2

em takes the following form:  

( )22
2 12

1 24em E S
ion

k ke
k

k kc χ
−

= =  [6.24] 

Making the ratio r = k2/k1 vary, we get Figure 6.2. 
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K2/k1 ratio  

Figure 6.2. Electromechanical coupling coefficient kem
2 from the static one-dimensional 

model as a function of the ratios of the two springs 

When the springs are equal (k2/k1 = 1), we see that coupling is null, which is 
logical since there is no piezoelectricity. When r tends towards 0 or infinity, 
coupling increases indefinitely, which is not physical beyond kem

2 1. Actually, the 
transformed energy cannot be greater than the invested energy. The crystal 
envisioned, in this case, has a much more flexible spring than the other one, which 
explains the very strong coupling, but this also induces an instability that the model 
does not translate. The mathematical limit translated by kem

2<1 is that the ratio of the 
greatest stiffness over the least stiffness must not be greater than 5.82 (more 
specifically 3+2 2).  

6.4. Electromechanical coupling coefficient 

The coupling coefficient (often written squared and called k²) is a concept that is 
often used in relation to piezoelectric materials as it enables us to quantify the 
amount of energy that can pass through one form to another (mechanical to electric). 
There are several possible definitions and ways of producing this coefficient as a 
function of use: static, transformer and resonator. For resonators, it changes, 
depending on the modes of resonance used and the boundary conditions. We will go 
into the details of two ways of producing the coupling coefficient. 

Taking a piezoelectric material, we can imagine applying a cycle that enables us 
to recover electric energy from mechanical energy. To do this, we can carry out a 
discharge at constant strain based on the cycle described in Figure 6.3. We assume 
that everything happens in one single direction, which enables us to work on a one-
dimensional model. 
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Figure 6.3. Electromechanical cycle of a piezoelectric material 
during a discharge at constant strain 

A stress T1 is applied to an open circuit piezoelectric material initially at rest 
(point O) to reach point A of the cycle. At A, the piezoelectric material is short-
circuited at constant strain. Experimentally, we observe a decrease in stress from T1 
to T0 to reach point B. Finally the stress is relaxed to reach point O. This cycle can 
be described using equations, as follows: 

− from O to A the circuit is open, therefore D is constant. The formalism (T,D) 
therefore gives DS s T= . The mechanical work supplied is: 

2
1

1
2

A A D D
OA

O O
W TdS s TdT s T= = =  

− from A to B the circuit is closed, therefore E is constant. As experimentally 
stress decreases from T1 to T0 at constant strain, there is a transfer of mechanical 
energy into electric energy, Welec, during the passage from A to B; 

− at constant E, stress is relaxed to move from B to 0. Untransformed mechanical 
energy is therefore: 

2
0

1
2

E
OBW s T=  

Welec is the difference between the mechanical energy supplied to the material 
(WOA) and the untransformed mechanical energy (WOB): 

2 2
1 0

1 1
2 2

D E
elec OA OBW W W s T s T= − = −  [6.25] 

Electromechanical coupling, k², is defined as the relationship between 
transformed energy and supplied energy: 
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2
2 0

2
1

1 1 1
E D

elec OB
D E

OA OA

W W s T s
k

W W s T s
= = − = − = −  [6.26] 

For the last conversion, we must note, on Figure 6.3, that S0 = sET0 = sDT1.  

k² is always <1 as sD<sE. It is often simpler to speak of stiffness coefficients cE 
and cD. As we saw that sc = 1, we can say that cD> cE. In other words, the open 
circuit stiffness of a piezoelectric material is always higher than in a closed circuit. 
This is why we often speak of stiffened coefficients. 

From this expression, it is possible to find another practical expression of k². The 
idea is to mix the two piezoelectric formalisms (T,D) and (T,E) in order to eliminate 
sD. Returning to equation [6.4] and assuming that there is only one dimension for all 
variables, we can insert the expression of E from the last equation into the first 
equation, which becomes: 

2
E

T T
d d

S s T D
ε ε

= − +  [6.27]  

Identifying the term in front of T in equation [6.27] with the term in front of T of 
equation [6.1], we get: 

2
D E

T
d

s s
ε

= −  [6.28] 

Inserting this equation in equation [6.26], k² becomes: 
2

2
E T
d

k
s ε

=  [6.29] 

This expression is very general (square piezoelectric coefficient divided by the 
product of the mechanical coefficient with the electric coefficient) and can be found 
with the other formalisms as a function of the cycle applied. k² is always transformed 
energy over implied energy, whether these energies are electric or mechanical.  

It is interesting to carry out a cycle based on the reverse principle: an initial 
electric energy, one part of which is transformed into mechanical energy. In 
Figure 6.4, a piezoelectric, always considered based on one single dimension, 
describes the following cycle: 

− from O to A, the piezoelectric is charged by applying an electric field E1. This 
charge happens at constant strain (the material is prevented from moving); 
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− from A to B, the material is mechanically released, and this is done in an open 
circuit (constant D). This is the stage during which the material supplies mechanical 
energy. The field moves from value E1 to E0; 

− from B to O, still at constant stress, the field returns to a null value.  

It is the electric displacement change that is considered here. Indeed, the value of 
spontaneous polarization does not matter here. We also assume that the field change 
does not change the orientation of the dipoles in the material.  

The energy balance of each of the phases gives: 

− O−A: 0 1
SD Eε=  therefore 2

1
1
2

O A S
eW Eε− =  ; 

− B−O: 0 0
TD Eε=  therefore 2

0
1
2

B O T
eW Eε− = . 

Energy conservation in the cycle gives the mechanical energy recovered during a 
cycle: 

2 2
1 0

1 1
2 2

A B O A B O S T
m e eW W W E Eε ε− − −= − = −   

The coupling coefficient k2 here is the ratio between the recovered mechanical 
energy and the “invested” electrical energy. 

Using the two forms of D0, k2 becomes: 

2 1
A B S

m
O A T
e

W
k

W

ε
ε

−

−= = −  [6.30] 

 

Figure 6.4. Electromechanical cycle of a piezoelectric material 
during a change in thickness at constant charge 
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Experimentally, S is always less than T, which induces a k² between 0 and 1. 
This is physically understandable because the dielectric effect is always greater 
when all the contributions can participate. If the material is blocked (therefore S is 
fixed), some contributions can no longer be added to the dielectric effect. 

In the same way as before, another form can be given for equation [6.30] by 
combining the equations of two piezoelectric formalisms. Using formalisms (T,E) 
and (S,E), we get: 

2
2 1

S

T T E
d

k
s

ε
ε ε

= − =  [6.31] 

This formula is identical to the one we found for the electromechanical cycle of 
discharge at constant strain (see Figure 6.3). 

This means that the piezoelectricy transforms the same way as mechanical 
energy into electric energy in the same and vice versa. This is completely logical as 
the piezoelectric effect is linear. 

A similar form is found for k² in the case of  acoustic resonances, as we will see 
in Chapter 7. The expression can vary depending on the boundary conditions and 
resonance mode considered.  

6.5. Piezoelectric coefficients of key materials 

In thin films, piezoelectric coefficients can be quite different from bulk 
materials, whether this is in single crystals or in ceramics. It is therefore often much 
more reliable to proceed to a direct measurement of coefficients through an adapted 
method. 

On the other hand, the materials deposited are often polycrystalline, with 
variable crystalline orientations. The piezoelectric coefficients as well as the 
dielectric constants and stiffness coefficients therefore have effective values that can 
be difficult to determine other than through direct measurement. Moreover, the 
substrate presence adds a difficulty for the measurement of intrinsic coefficients. 

Despite this, it is good to have some orders of magnitude for the materials most 
often used: Pb(ZrTi)O3, AlN, LiNbO3, LiTaO3. 
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Material LiNbO3 LiTaO3 
Bulk PZT 52/48 

(Motorola 3203HD) 
Single crystal 

AlN 

Point group 3m 3m 6mm 6mm 

Ref [KOV 90] [KOV 90] [SHE 97] [TSU 85] 

S11/ 0 45.6 40.9  8.0 

S33/ 0 26.3 42.3  9.5 

T11/ 0 84.45 52.51 2417  

T33/ 0 28.85 44.12 3332  

CE11 (GPa) 198 2.33  345 

CE12 (GPa) 55 0.465  125 

CE13 (GPa) 65 0.836 101 120 

CE14 (GPa) 7.9 -0.105  - 

CE33 (GPa) 228 2.760 141 395 

CE44 (GPa) 59 0.949  118 

sE11 (10-
12m²/N) 

  
15.6 3.53 

sE12 (10-
12m²/N) 

  
-4.2 -1.02 

sE13 (10-
12m²/N) 

  
-8.2 -0.76 

sE33 (10-
12m²/N) 

  
18.9 2.99 

sE44 (10-
12m²/N) 

  
 8.47 

d13 (pm/V)   -295 -2 

d33 (pm/V)   564 5 

d15 (pm/V)   560 -4.07 

e15 (C/m²) 3.69 2.64  -0.48 

e22 (C/m²) 2.42 1.86 - - 

e31 (C/m²) 0.3 -0.22 -12.2 -0.58 

e33 (C/m²) 1.77 1.71 19.3 1.55 

 (kg/m²) 4,628 7,454 7,850 3,260 

Table 6.2. Stiffness constants, dielectric and piezoelectric coefficients 
of LiNbO3, LiTaO3, PZT and AlN 
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6.6. Calculating coupling as a function of crystal orientation 

In the case of single crystal materials, cut simulations can be carried out with the 
help of tensor theory. This is typically the case for surface wave resonators, but is 
also possible in thin films for volume waves in the case of films bonded on a 
substrate. The techniques used to do this are bonding-thinning or implantation-
bonding separation (called Smart Cut, Chapter 1). Thus, using the change in 
reference system formulae, it is possible to calculate the most favorable crystal 
orientations for one property or another. For example, optimal electromechanical 
coupling can be previewed through calculation, once all the constants of the material 
are known. Let us take the case of coupling of one longitudinal wave (kt

2
longi) and 

two shear waves (kt
2

shear1 and kt
2
shear2) for a thin film from the 3m point group. The 

thickness is much smaller than the lateral dimensions and the lateral strains are very 
weak. On the other hand, if we place ourselves in the configuration of an electric 
field perpendicular to the plane of films, it can be wise to use D as the electric 
variable because divD = 0. The natural variables in this problem are therefore (S,D). 

Thus, the electromechanical couplings are: 

2
2 33

33 33
t longi D S

h
k

c β
=   

2
2 34

1
44 33

t shear D S
h

k
c β

=   
2

2 35
2

44 33
t shear D S

h
k

c β
=  [6.32] 

It is common to use different but absolutely equivalent expressions for these 
couplings. Indeed, we prefer to use the piezoelectric coefficients e and permittivity 
. Using conversion formulae, we get: 

2
2 33

33 33
t longi D S

e
k

c ε
=   

2
2 34

1
44 33

t shear D S
e

k
c ε

=   
2

2 35
2

44 33
t shear D S

e
k

c ε
=  [6.33] 

IMPORTANT NOTE.− These expressions are not equivalent to the couplings we get by 
using the formalism (S,E), in which coefficient e appears. In this case, the stiffness 
coefficient is at fixed E and not D. The expression of k2 corresponds to another 
experimental configuration for which the mechanism considered is, for example, a 
cylinder in direction 3 (and no longer a plate). This coefficient is called k33

2. We will 
return to this discussion in Chapter 7.  

The three-dimensional rotation matrix depends on three successive rotations of 
angles a (from 0 to 360°), b (from 0 to 360°) and c (from 0 to 180°), respectively, 
around the z axis from the new x' and from the new z' axes. 
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These three rotations enable us to sweep all the possible reference systems (this 
is different from all possible directions, which only need two angles). In the case of 
the 3m structure, considering the symmetries we vary a until 120° and b until 180°.  

Actually, the last rotation about z' does not change coefficient 33 and therefore 
does not have an influence on kt². The successive rotations are applied to matrices e, 
cD and S, which are therefore used to calculate kt

2
longi, kt

2
shear1 and kt

2
shear2.  

Angle b is the most important one for this 3m crystal class. Figure 6.5 gives the 
coupling calculated from rotation about the x axis as a function of angle  = b − 90° 
for LiNbO3 and LiTaO3. This angle is used by substrate manufacturers. We also note 
that a single rotation is applied in this case. 

In addition, a single shear wave is presented for all these cuts because coefficient 
e35 is cancelled, regardless of what angle  is. This is because the rotation about x 
does not modify the orientation in relation to the plane of symmetry YZ. This means 
that this shear wave is not coupled, although it can exist. It cannot simply be excited 
in this configuration.  

 

Figure 6.5. Maximum longitudinal coupling 
according to angle b for LiNbO3 and LiTaO3 

Several functioning points can turn out to be interesting:  

− the longitudinal maximum coupling with a null shear for avoiding parasite 
modes of resonance (  = 36°); 

− a shear maximum coupling for a null longitudinal mode (  =163°). 
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It is noteworthy that X-cut is obtained through a rotation of -90° about the z axis 
(angle a) followed by a rotation of 90° about the new axis x' (which corresponds to 
the old y axis).  

Similarly, Y-cut is obtained through a rotation of 90°about the x axis.  

6.7. Piezoelectric coefficients in the case of ferroelectric materials 

For ferroelectric materials, it is interesting to use the thermodynamic formalism 
to translate piezoelectricity in a more “fundamental” form. 

Indeed, in the paraelectric-ferroelectric phase transition analysis, we saw that it 
was possible to use a simplified form of free energy that describes this transition 
well (see Chapter 3). This expression of free energy is also well-adapted to the 
description of piezoelectricity of these materials. 

Actually, when the temperature is lower than the Curie temperature, there is a 
remanent polarization Pr in the ferroelectric phase. So let us take the total 
polarization Pt as the sum of Pr and P (Pt = Pr+P). Piezoelectricity appears when 
free energy is derived in relation to the natural variables of this energy. 

In equation [3.1], it is G1 that is used. It is therefore T and D that are the natural 
variables. To simplify the expressions, we identify D with Pt. 

Therefore we get: 

1 2t t t
G

E P QPT
D

α∂
= = −

∂   
21

t t
G

S sT QP
T

∂
− = = +

∂  [6.34] 

Decomposing Pt in the coupled term, these expressions become: 

2 2

2 2

2
t r r

t r r

E P P QP T QPT

S sT QP QP QP P

α α= + − −

= + + +
 [6.35] 

It is possible to decompose Et and St into one remanent term and one dynamic 
term, as for polarization. Keeping only the linear dynamic term (no P² term), we get: 

2

2

T
r

D
r

E P QP T P gT

S sT QP P s T gP

α β= − = −

= + = +
 [6.36] 
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We see that these equations can be interpreted as a piezoelectric formalism 
identical to equations [6.1] and [6.2]. Identifying the piezoelectric term, we have: 

2 rg QP=  [6.37] 

Therefore, in the case of ferroelectric piezoelectrics, the piezoelectric 
coefficients, g, are equivalent to the product between an electrostrictive coefficient 
and remanent polarization.  

We often have the habit of translating the piezoelectric effect through the 
relationship between strain, S, and the electric field, E. At first approximation, we 
get: 

2 2r rS gP QP P QP E dEε= = = =  [6.38] 

Coefficient d is therefore equal to 2QPr .  

6.8. Relation between piezoelectric formalism and matter 

As a final paragraph, it is noteworthy to develop some aspects of piezoelectric 
formalism with respect to what happens actually in matter once an external stimulus 
is applied to a piezoelectric material. This approach is very similar to what we 
showed in Chapter 5 about the dielectric effect. This highlights the permanent 
dielectric nature of all piezoelectric and pyroelectric materials.  

To do so, we take a piezoelectric slab as shown in Figure 6.5a. We disregard first 
the electrodes as they are not required to understand properly what happens. 
Moreover, we consider that there is no current circulation, which means that D 
(electric displacement) is kept constant during this experiment. The piezoelectric 
material used here is pyroelectric. Therefore, it exhibits a spontaneous polarization 
PS. This last is supposed to be constant during the experiment, like in the case of a 
non ferroelectric material as Aluminum Nitride. But this is valuable for ferroelectric 
materials as well; if one considers that the applied mechanical stimulus does not 
modify PS.  

We first calculate the electric field ESP induced by PSP in the piezoelectric slab 
by using Gauss theorem on surface 1, as depicted in figure 6.6a (see Chapter 5 and 
equation [5.3] for Gauss theorem). Then, we obtain: 

00 εε
σ sppol

sp

P
E ==−  [6.39] 
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2

+        +          +         +        +

PSP

+

ESP

- - - - -

1

+     +   +     +     +      +   +    

P

+

E

- - - - - - -

a. b. 
Force F

Force F
 

Figure 6.6. Charges on a piezoelectric slab by using Gauss theorem: a- initial state with a 
spontaneous polarization; b-  final state after applying force F inducing strain S. The dashed 

line shows the initial shape of the slab before applying force 

Then, we add an out-of-plane force F to the piezoelectric slab which induces 
strain S as observed in Figure 6.6b. Here, S is positive as thickness increases. As the 
material is piezoelectric, polarization P changes together with the internal electric 
field E. This can be expressed in an equation by considering surface 2 in Figure 6.6b 
and applying once again Gauss theorem, which gives: 

0 0

pol sp piezo dielectricP P P
E

σ
ε ε

+ +
− = =  [6.40] 

Two new terms actually appear in polarization: the first one Ppiezo coming from 
the piezoelectric effect and Pdielectric appearing as the dielectric response to the 
polarization variation. Indeed, this last induces an electric field variation which in 
turn induces a dielectric response, exactly as it was figured out in chapter 5 for a 
pure dielectric material (see equation [5.11]). According to the piezoelectric 
formalism (see equation [6.6]), as a strain is applied, we get Ppiezo=eS with e: 
longitudinal piezoelectric coefficient. It is important to note that even if D (electric 
displacement) is involved in the piezoelectric formalism, this piezoelectric term is 
actually a polarization variation. There is no approximation here. In addition, 
Pdielectric=( - 0)(E-Esp). Indeed, ( - 0) appears by combining equations [5.12], [5.17] 
and [5.18] and (E-Esp) corresponds to the variation of electric field induced by strain 
S. Therefore, by using these expressions in equation [6.40], one eventually obtains: 

 ( ) ( )0 0sp spE P eS E Eε ε ε− = + + − −  [6.41] 
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And by using equation [6.39]: 

ε
eS

EE sp
−=−   

The electric field variation when strain is applied is proportional to the 
piezoelectric coefficient, to strain and inversely proportional to the dielectric 
constant. This last statement is actually important as it means that the higher the 
dielectric constant, the lower the measured voltage. As an example, let us compare 
the behaviors of Aluminum Nitride (AlN) and lead zirconate titanate (PZT) 
materials. PZT exhibits a dielectric constant 100 times greater than AlN. Besides, its 
piezoelectric coefficients are roughly 10 times greater than AlN. Therefore, for a 
given strain S, output electric field is 10 times lower for PZT than for AlN. This is 
quite surprising but does not mean that AlN is a “better” piezoelectric material than 
PZT. Indeed, the converted energy is still much higher in the case of PZT. But for 
sensors applications, it can make sense to use AlN instead of PZT especially when 
one wants to use voltage as the output parameter.  

Adding electrodes to the model described in Figure 6.6 does not change the 
results. This allows us to compensate for the initial electric field by screening the 
initial polarization charges if one lets charges circulate before the force is applied. 
The initial electric field becomes zero, thanks to a new term coming from free 
charges on the electrodes. 

In the case of piezoelectric non-pyroelectric materials, the only difference is that 
there is no spontaneous polarization. Therefore, Esp=0.  

Finally, if one considers the pyroelectric effect instead of the piezoelectric effect 
for this pyroelectric slab, the treatment is exactly the same. If p is the pyroelectric 
coefficient, for a given temperature variation T, and if we still consider an 
experiment at constant D (free charges), we obtain: 

sp
p T

E E
Δ

ε
−− =  [6.42] 
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Chapter 7  

Acoustic Formalism 

7.1. Propagation of bulk waves 

7.1.1. Propagation of bulk waves in an elastic medium 

In Chapter 4, we have already established the equation for acoustic waves in an 
elastic medium: 

2 2

2
, ,

i k
ijkl

j lj k l

U U
c

X Xt
ρ ∂ ∂

=
∂ ∂∂

 [7.1] 

We consider monochromatic plane wave solutions in the simplest form possible: 

( ) ( ) ( ). .
0 0,

j t k X j t s X
U X t U e U e

ω ω− −
= =  [7.2] 

where  is the angular frequency, t the time coordinate, s the propagation slowness 
vector and X  the position vector. It is actually more convenient, even if less 
intuitive a priori, to argue in terms of propagation slowness than in terms of 
velocity. These two quantities are nevertheless linked by the relation: 

1
s n sn

v
= =  [7.3] 

                              
Chapter written by Alexandre REINHARDT. 
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where v is the velocity of wave propagation and n  the direction of propagation. The 
wave vector normally associated with propagating this plane wave can then be 
defined as: 

k sω=  [7.4] 

Having chosen the form of plane waves given in equation [7.2], time and spatial 
coordinate derivation operators can be replaced, respectively, by multiplications by 
j  and by -j si. Equation [7.1] then becomes: 

, ,
i ijkl j l k

j k l

U c s s Uρ =  [7.5] 

Including propagation velocity and the Kronecker symbol, , defined as: 

1,ijδ =  if i = j; 0,ijδ =  otherwise, [7.6] 

we end up with the Christoffel equation: 

( )2 2

,
0ijkl j l ik k ik ik k

k j l k

c n n v U v Uρ δ Γ ρ δ− = − =  [7.7] 

Equation [7.7], in practice, refers to solving an eigenvalue problem. Matrix , 
whose coefficients are defined by: 

,
ik ijkl j l

j l

c n nΓ =  [7.8] 

only depends on the elastic tensor of the medium and on the direction of 
propagation.  

Solving the eigenvalues problem enables us to determine the phase velocity, v, of 
plane waves propagating in direction, n . Eigenvectors ( )mU  associated with these 
consequently provide the acoustic polarizations of these plane waves. This term 
exists for all types of vector waves and was initially defined for electromagnetic 
waves. For the latter, the polarization vector corresponds to the direction of 
polarization induced in a medium by wave propagation (direction of the electric 
field). In the case of an acoustic wave, this vector has nothing to do with any 
polarization of the material, as discussed more widely in the remainder of this book. 
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This vector corresponds, rather, to the direction of particle displacements of the 
elastic medium considered. 

With  in the case of a lossless medium being a symmetric real matrix, by virtue 
of elastic tensor symmetry that we demonstrated in Chapter 2, its eigenvectors are 
orthogonal. Physically, this means that three plane waves with orthogonal 
polarizations can propagate simultaneously in the same direction. As velocity is 
defined apart from its sign, since it is its square that is given by the Christoffel 
equation solution, propagation in direction n  and in the opposite direction will be 
considered in the same way. Therefore, in all there are six plane waves that are 
solutions to propagation equation [7.1] at the same time for a given direction of 
propagation. 

Once the phase velocities and associated polarizations have been determined, the 
solutions to the propagation equation are generally expressed as a linear 
combination of the six plane waves determined by the Christoffel equation: 

( )( ) ( ) ( )( , )
m mj s X j s X m j t

m m
m

U X t A e B e U eω ω ω−= +  [7.9] 

To calculate stress field strength, we return to Hooke’s law. Inserting the 
expression that links strains to displacements, as well as the properties of elastic 
tensor symmetry into this law, we arrive at the relation between stress and 
displacement: 

,

k
ij ijkl

lk l

U
T c

X
∂

=
∂

 [7.10] 

After derivation of displacement fields, we get: 

( )( ) ( )( )( )

,

m mmm j s X j s X j t
ij ijkl l m mk

m k l

T j c s U A e B e eω ω ωω −= − −  [7.11] 

For the elastic wave propagation analysis, it is often useful to consider the forces 
applied to an orthogonal surface in the direction of propagation. It is expressed as: 

( , ) ( , ).F T X t T X t n= − = −  [7.12] 
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The “–” sign in equation [7.12] comes from the fact that, in Chapter 4, we 
considered stress as tensile and therefore vector T pointing outside the volume 
element considered, whereas the wave exerts an external force on this very volume 
element. 

 

X2 

X1 

X3 

F  

n  

 

Figure 7.1. Geometric representation of the force applied  
to an orthogonal surface in the direction of propagation (here, X1) 

Its components are therefore expressed as: 

, ,

j sX
i ij j ijkl j l k

j j k l

F T n j c n s U Ae ωω −= − =  [7.13] 

if equation [7.11], limited to a single plane wave solution to the Christoffel equation, 
is inserted into equation [7.12]. 

To reveal the components of the Christoffel matrix , we use the colinearity of 
the slowness vector with n : 

, ,

j sX j sX
i ijkl j l k ik k

j k l k

T j c n n sU Ae j s U Aeω ωω ω Γ− −= − = −  [7.14] 

With the polarization vector being, by definition, an eigenvector of matrix  for 
eigenvalue v2, we get: 

2 j sX
i i iT j s v U Ae ZVωω ρ −= − = −  [7.15] 

where the acoustic impedance was revealed as: 

Z vρ=  [7.16] 
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and the particle velocity defined by: 

U
V j U

t
ω∂= =

∂
 [7.17] 

The acoustic impedance is therefore the scalar quantity that links the force 
generated by the wave over a volume element in the direction of propagation to the 
particle velocity. This particle velocity is the instantaneous velocity of a point of the 
medium (not to be confused with the propagation velocity of the acoustic wave). The 
unit of acoustic impedance is the Rayleigh, abbreviated as “Rayl”. 

As an example, let us consider the propagation of a wave in an isotropic 
medium. As all the directions are a priori equivalent, without losing the general 
character of our example, we can take ( )1 0 0 Tn = . So the Christoffel relation is 
expressed: 

2
11

2
44

2
44

0 0

0 0 0

0 0
k

c v

c v U

c v

ρ

ρ

ρ

−

− =

−

 [7.18] 

With the matrix being directly diagonal, the solutions to the eigenvalue problem 
is immediate. We therefore find three velocities, two of which are identical: 

(1) 11

(2) (3) 44

c
v

c
v v

ρ

ρ

= ±

= = ±

 [7.19] 

The associated polarization vectors are respectively: 

( )
( )
( )

(1)

(2)

(3)

1 0 0

0 1 0

0 0 1

T

T

T

U

U

U

=

=

=

 [7.20] 
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These different vectors are represented in Figure 7.2. The first wave has a 
polarization colinear with the propagation direction: we therefore speak of a pure 
longitudinal wave. The two others have polarizations orthogonal to the propagation 
direction: we therefore speak of pure transverse waves. 

 

X1 

X2 

X3 

n )1(U

)3(U

)2(U

 

Figure 7.2. Geometric representation of direction and polarization vectors for the 
propagation of a wave along the X1 axis of an isotropic medium 

We will now seek to calculate the mechanical field strengths associated with the 
propagation of a single one of these waves. If we start with the longitudinal wave: 

( )(1)
1

1
( , ) 0

0

j t s X
U X t Ae

ω −
=  [7.21] 

using equation [7.11], we can calculate the stresses associated with the propagation 
of the longitudinal waves: 

( )(1)
1

11
(1)

12

12

0 0
( , ) 0 0

0 0

j t s X
c

T X t j c s Ae

c

ωω −
= −  [7.22] 
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As can be seen, the stress tensor is diagonal, which is characteristic of  
compression of the medium. This is why this wave is also sometimes called a 
compressional wave. In the same way, displacements associated with the 
propagation of the first transverse wave are expressed: 

( )(2)
1

0
( , ) 1

0

j t s X
U X t Ae

ω −
=  [7.23] 

The resultant strains of these displacements are expressed by: 

( )(2)
1(2)

0 1 0
1( , ) 1 0 0
2

0 0 0

j t s X
S X t j s Ae

ωω −
= −  [7.24] 

The only non-zero terms are those in S12 and S21. In the same way, for the second 
transverse wave, we could show that only terms S13 and S31 are non-zero. This wave 
only generates shear strains, and this is why it is also known as a shear wave. 

Let us note that in the general case of an anisotropic material, the velocities of 
the two transverse waves are not necessarily equal. To illustrate this point, let us 
consider propagation in direction [110] of a material that has a cubic crystal lattice. 
This direction corresponds to the diagonal of one of the faces of the cube and is 
represented in Figure 7.3. The direction of propagation is therefore defined by the 

normalized vector 1 1 0
2 2

T
n = . In this case, the Christoffel relation is 

expressed: 

2
11 44 12 44

2
12 44 11 44

2
44

0
1 0 0
2

0 0 2
k

c c v c c

c c c c v U

c v

ρ

ρ

ρ

+ − +

+ + − =

−

 [7.25] 

The first solution is immediate: 

(3) 44c
v

ρ
= ±  [7.26] 



150     Integration of Ferroelectric and Piezoelectric Thin Films 
 

 

)3(U

X1 

X2 

X3 

n

)1(U)2(U

 

Figure 7.3. Geometric representation of direction and polarization vectors for the 
propagation of a wave along the diagonal of one of the faces of the  

elementary lattice of a cubic symmetry material 

It presents a polarization ( )(3) 0 0 1 TU = . This is the vertically polarized 
transverse wave.  

The two other solutions to the Christoffel equation are coupled. To determine 
them, we must calculate the zeros of the characteristic determinant: 

2
11 44 12 44

2
12 44 11 44

0
c c v c c

c c c c v

ρ

ρ

+ − +
=

+ + −
 [7.27] 

After some algebraic manipulations, we get: 

(2) 11 12c c
v

ρ
−

= ±  [7.28] 

(1) 11 12 442c c c
v

ρ
+ +

= ±  [7.29] 

To get the polarizations associated with these waves, we re-insert the velocity 
values in the characteristic equation. For example, for (2)v , the following system is 
solved: 

(2)2
11 44 12 44 1

(2)2 212 44 11 44

0
0

c c v c c U

Uc c c c v

ρ

ρ

+ − +
=

+ + −
 [7.30] 
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This is a system of two equations with two unknowns. With its determinant 
being zero, it reduces to the relation between the components of the displacement 
vector: 

1 2 0U U+ =  [7.31] 

The vector that generates the set of these solutions, if we add the fact that 
component U3 is zero is therefore: 

( )(2) 1 1 1 0
2

TU = −  [7.32] 

This vector is perpendicular to the direction of propagation: it is therefore the 
transverse wave with a horizontal polarization. Let us note that unlike the previous 
example, its velocity of propagation is a priori different to that of the vertically 
polarized transverse wave. Intuitively, this result is understandable given that 
geometrically the conditions of propagation, and in particular the effective stiffness 
of the medium, are different in the direction perpendicular to that of propagation. 
Nevertheless, for an isotropic material, the relation between elastic constants renders 
the phase velocities of the two transverse waves equal. 

Using a similar procedure, we search for the last polarization. The system of two 
equations with two unknowns formed by substituting v(1) in the characteristic 
equation reduces to: 

1 2 0U U− =  [7.33] 

The vector that generates the solution set is therefore: 

( )(1) 1 1 1 0
2

TU =  [7.34] 

With this vector being equal to the direction of propagation, we now have to deal 
with the pure longitudinal wave.  

The two sections above gave examples of propagation where acoustic 
polarizations were always perpendicular or collinear to the direction of propagation. 
If we now consider, for example, propagation in some direction in the X1X2 plane, 
for example, of the same cubic symmetry material, we expect to obtain the same 
transverse vertical wave, given that we did not modify the vertical component of 
propagation direction. In this case, however, equation [7.27] becomes more complex to 
solve, because it takes the form: 
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( ) ( )

( ) ( )
2 2 2

11 1 44 1 12 44 1 2

2 2 2
12 44 1 2 11 2 44 2

1
0

1

c n c n v c c n n

c c n n c n c n v

ρ

ρ

+ − − +
=

+ + − −
 [7.35] 

One of the consequences of the difference that appears between the two diagonal 
terms is that the eigenvectors for the two waves with an acoustic polarization in the 
propagation plane are no longer exactly collinear or orthogonal with the direction of 
propagation. We therefore speak of quasi-longitudinal and quasi-transverse waves. 
The orthogonality of the three polarizations is nevertheless always assured, since the 
symmetry of the Christoffel matrix is independent of the symmetry properties of the 
medium and of the direction of propagation. 

To conclude this part on elastic waves, we are interested in the elastic energy 
density brought by the wave’s transit. 

The expression of this density was provided in Chapter 4 and is adapted here for 
complex fields: 

*

,

1
2elastic ij ij

i j

U T S= −  [7.36] 

Resuming the expression of displacements associated with an acoustic wave 
given by equation [7.9], we can express the strain tensor in the form: 

( ) ( )
( )( (

( ) ( ) ( )( )1,
2

m m

m m mm
ij j i i j

m

j s X j s X j t
m m

S X t j s U s U

A e B e eω ω ω

ω

= =−

= − +

−
 [7.37] 

Adding the form of stress fields calculated in equation [7.11], using the elastic 
tensor symmetry and the fact that the slowness and polarization vectors are all real 
(since the Christoffel matrix is real symmetric), we get: 

( )( )( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )

, , , , ,
*

2

m m n n

n m n m
elastic ijkl i jl k

i j k l m n

j s X j s X j s X j s X
m m n n

U c s s U U

A e B e A e B eω ω ω ω

ω

− −

=

− −

 [7.38] 
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In the case of a monochromatic plane wave of amplitude A (a priori complex), 
this expression is considerably simplified. Using the identities used to reveal the 
acoustic impedance between equations [7.14] and [7.15], we get: 

2 2
22 2

2elastic i
i

s
U v U A

ω ρ=  [7.39] 

With the polarization vectors being normalized, we finally get: 

2
2

2elasticU A
ρω=  [7.40] 

Furthermore, calculation of kinetic energy density is expressed: 

2 2
2 2 221

2 2 2kinetic i
i

U V U A A
ρω ρωρ= = =  [7.41] 

We therefore have equality between elastic and kinetic energy for a 
monochromatic plane wave. With strains and particle velocity being in opposition, in 
practice we have a constant transfer of energy from one form to the other [ROS 45]. 

7.1.2. Elastic wave propagation in a piezoelectric medium 

Having analyzed wave propagation in an elastic medium, let us now consider 
propagation in a piezoelectric medium. The fundamental difference between this 
type of material and a purely elastic material originates in the coupling between 
electric and mechanical quantities. We showed that, in a piezoelectric medium, the 
equations of piezoelectricity were substituted in Hooke’s law.  

Integrating the dynamic behavior of the material electrically through the 
quasistatic approximation of the Maxwell-Gauss equation, and mechanically 
through the fundamental relation of dynamics, we get: 

2 2 2

2
, , ,

i k
ijkl lij

j l j lj k l j l

U U V
c e

X X X Xt
ρ ∂ ∂ ∂= +

∂ ∂ ∂ ∂∂
 [7.42] 

22

, , ,
0j l

jk jkl
j j k j kj j k j k l

D UV
e

X X X X X
ε

∂ ∂∂= − + =
∂ ∂ ∂ ∂ ∂

 [7.43] 
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Let us note that, unlike in section 7.1.1, V designates the electric potential and 
not the particle velocity.  

As before, we consider solutions in the form of monochromatic plane waves. All 
the fields being linearly linked by the linear equations of piezoelectricity, we expect 
them to follow a similar dependence on electric and mechanical displacements at the 
same time, as well as for the electric potential. 

Under these assumptions, equations [7.36] and [7.37] are re-written in the forms: 

,
i ijkl k lij j l

j l k

U c U e V s sρ = +  [7.44] 

, , ,
jk j k jkl j k l

j k j k l

s s V e s s Uε =  [7.45] 

Equation [7.45] enables us to express the electric potential in terms of 
displacement fields, provided that the pathological case of a zero s  vector (which 
corresponds to uniform fields in the entire space) is eliminated: 

, ,

,

jkl j k l
j k l

pq p q
p q

e s s U

V
s sε

=  [7.46] 

Inserting this expression in equation [7.38], electric potential is eliminated to 
arrive at the mechanical displacements propagation equation: 

,

, ,
,

lij mnk m n
m n

i ijkl j l k
pq p qj k l

p q

e e s s

U c s s U
s s

ρ
ε

= +  [7.47] 

As in the purely elastic case, this matrix equation is revised in order to reproduce 
the Christoffel equation: 

2

,
0ijkl j l ik k

k j l

c n n v Uρ δ− =  [7.48] 
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where stiffened elastic constants are used, i.e. the elastic constants are modified by 
the presence of piezoelectricity and coupling with a quasielectric wave (of infinite 
slowness in the quasistatic approximation): 

( ), 2

,

1
lij mnk m n

m nE E
ijkl ijkl ijkl ijkl

pq p q
p q

e e n n

c c c k
n nε

= + = +  [7.49] 

in which we introduced a correction factor 2
ijklk  that takes into consideration the 

increase in wave propagation velocity compared to the purely elastic case. 

As an example, let us consider the propagation of an acoustic wave in direction 
X3 of a material of hexagonal class 6mm. For such a material, the elastic tensor was 
given in Chapter 4, equation [4.61]. 

As for its piezoelectric and dielectric tensors, they are expressed as: 

15

15

31 31 33

0 0 0 0 0
0 0 0 0 0

0 0 0

e

e e
e e e

=  [7.50] 

11

11

33

0 0
0 0
0 0

ε
ε ε

ε
=  [7.51] 

For a vector ( )0 0 1 Tn = , the Christoffel equation is expressed: 

2
44

2
44

2
233

33
33

0 0

0 0 0

0 0

k

c v

c v U

e
c v

ρ

ρ

ρ
ε

−

− =

+ −

 [7.52] 
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The three solutions to the equation are: 

(1) (2) 44c
v v

ρ
= = ±  [7.53] 

with respective polarizations: 

( )(1) 1 0 0 TU =  [7.54] 

( )(2) 0 1 0 TU =  [7.55] 

These are the two transverse waves that can propagate vertically. The last 
solution is: 

2
33

33(3) 33
ec

v
ε

ρ

+
= ±  [7.56] 

with polarization: 

( )(3) 0 0 1 TU =  [7.57] 

As can be seen, the solution to the Christoffel equation is identical to the purely 
elastic case at all points. In our example, the two shear waves found exhibit 
propagation velocities identical to those we encountered in a non-piezoelectric 
medium. On the other hand, for the longitudinal wave we note an increase in the 
propagation velocity caused by hardening of the elastic constants effectively 
involved in the Christoffel equation. 

The displacement fields are formally identical to those encountered in the purely 
elastic case: 

( )( ) ( ) ( )( , )
m mj s X j s X m j t

m m
m

U X t A e B e U eω ω ω−= +  [7.58] 
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To calculate the electric potential, we use equation [7.37] that, after double 
derivation and double integration of the mechanical displacements, gives us: 

( )( ) ( )

( ) ( )

, , ( )
( ) ( )

,
0 0

( , )
m m

m m
jkl j k

j k l j s X j s X m j t
m m lm m

pq p qm
p q

i i
i

e s s

V X t A e B e U e
s s

V X V

ω ω ω

ε
−= +

+ +

 [7.59] 

where 0
iV and 0V are integration constants that are possibly time-dependant. Since 

the slowness vector and direction of propagation are colinear, it is possible to 
eliminate the value of the slowness in the first term and express the electric potential 
in the form: 

( )( ) ( )

( )

, ,

,
0 0

( , )
m m

m
jkl j k l

j k l j s X j s X j t
m m

pq p qm
p q

i i
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e n n U

V X t A e B e e
n n

V X V

ω ω ω
ε

−= +

+ +

 [7.60] 

We therefore see that electric potential appears in the form of an electrostatic 
potential solution of Poisson’s equation 0VΔ =  (the second term involving 
integration constants 0

iV and 0V ) on which the electric contributions of each of the 
plane waves that can propagate in the medium are superimposed. We can note that 
these contributions are in phase with mechanical displacements and involve 
piezoelectric and dielectric properties of the medium at the same time. 

To calculate the stresses generated in the medium, we use the first 
piezoelectricity equation in which the electric field is expressed as a gradient of the 
electric potential and strains in terms of mechanical displacements: 

( )
,

, E k
ij ijkl kij

l kk l k

U V
T X t c e

X X
∂ ∂= +
∂ ∂

 [7.61] 
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After inserting the mechanical displacement and the electric potential 
expressions given by equations [7.58] and [7.60], we get: 

( )

( )( ) ( )

( ) ( )

, , ,( ) ( )
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,
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m m
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 [7.62] 

Through the symmetry of the elastic tensor, we can produce hardened elastic 
constants in the first term and thus write: 
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 [7.63] 

This expression is close to the one obtained for a purely elastic medium in 
equation [7.11], except that here we must consider hardened elastic constants instead 
of purely elastic factors.  

Furthermore, the second term corresponds to the stress generated in the medium 
by compressing or expanding the material, due to the electric field established by the 
electrostatic field existing in the medium. Similarly to an elastic medium, it becomes 
possible to introduce the notion of acoustic impedance associated with a plane wave 
as being the product of propagation velocity (taking into consideration piezoelectric 
hardening) by the density of the medium. 

To calculate electric displacement, we proceed in the same way, but this time 
using the second piezoelectricity equation: 

,

k
j jk jkl

k lk k l

UV
D e

X X
ε ∂∂= − +

∂ ∂
 [7.64] 

which, after inserting the expressions of electric potential and the mechanical 
displacements given in [7.58] and [7.60], gives us: 
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 [7.65] 

We can note that in particular cases, such as the example of propagation along 
the c-axis of a material from crystal class 6mm (which we saw before), the 
coefficients of the first term cancel each other out. In this case: 

0
j jj jD Vε= −  [7.66] 

Through the symmetry of the dielectric tensor, the electric displacement 
associated with propagation of the acoustic wave vanishes and this electric 
displacement is therefore uniquely electrostatic. Similar to a non-piezoelectric 
medium, we can calculate the elastic and kinetic energies associated with a plane 
wave. For this we use the stress expression [7.63], without the term corresponding to 
a static stress and equation [7.58]. Thanks to the use of stiffened elastic constants, 
we find the same expressions as for a non-piezoelectric medium: 

2
2

2elastic kineticU U A
ρω= =  [7.67] 

However, if we go back to the definition of elastic energy density (equation 
[7.36]) and insert the first piezoelectricity relation in it, elastic energy can be 
decomposed into two terms: 

* *1 1
2 2

E
elastic ijkl ij mij m ij

ijkl

mm em

U c S e E S

U U

= − +

= +

 [7.68] 

The first term corresponds to the elastic energy encountered in a classic 
dielectric medium. It is a purely mechanical energy. 

The second term, itself, contains electric and mechanical terms at the same time. 
It represents the portion of elastic energy that has an electric origin; the conversion 
being implemented through the use of piezoelectricity. 
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In the same way, the electric energy can be decomposed into two terms: 

*

* *

1
2

1 1
2 2

electric i i
i

ij i j mij m ij
ij mij

ee em

U E D

E E e E S

U U

ε

=

= +

= +

 [7.69] 

The first term corresponds to the electrostatic energy density in a classic 
dielectric medium. It is therefore purely electric energy. 

For the second term, it corresponds to the portion of electric energy that has an 
elastic origin, which is equal to the electromechanical term for elastic energy. 

Calculation of the purely mechanical energy associated with a plane wave is 
done by using the relation between strains and displacement, as well as the 
expression for displacements in a piezoelectric medium (equation [7.58]): 

2 2
2 2

22 2
E E

mm ijkl j l i k ijkl j l i k
ijkl ijkl

U c s s U U A c n n U U A
v

ω ω= =  [7.70] 

If the medium were non-piezoelectric, with the wave being a solution to the 
Christoffel equation [7.48], we could produce the propagation velocity, which would 
be simplified with slowness. We would therefore find the result of equation [7.36]. 
Due to the piezoelectric stiffening, this is no longer true. 

The calculation of purely electric energy is done using the expression for Uee and 
the electric potential expression [7.60], which is derived to produce the electric field: 
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 [7.71] 
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Finally, the coupled term is calculated from the derivatives of the electric 
potential and displacements: 

2
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 [7.72] 

We can note that terms Uee and Uem are equal, which means that the density of 
energy stored in electrostatic form is equal to that stored in electromechanical form. 

From these expressions, we can form the ratio of electrostatic (or 
electromechanical) and mechanical energy density: 

2

2
klm k l m

klmee em

mm mm S E
pq p q ijkl j l i k

pq ijkl

e n n U
U U

k
U U

n n c n n U Uε

= = =  [7.73] 

This ratio is called the piezoelectric coupling coefficient [ROS 45]. It provides 
information about the proportion of electromechanical energy, compared to the 
mechanical energy, brought by the plane wave during its propagation. To the extent 
that the direction of propagation and polarization of the wave are involved in its 
calculation, the term is specific to a polarization and a given direction. For this 
reason, it is often written in several variations. As an example, for the longitudinal 
wave propagating along the X3 axis of a material of 6mm crystal symmetry, this 
coefficient is normally expressed as k33

2 [IEE 87]: 

2
2 33

33
33 33
S E
e

k
cε

=  [7.74] 

Resuming relation [7.47], it is possible to re-write the plane wave velocity 
propagation expression in terms of the piezoelectric coupling coefficient: 
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2
lij mnk j l m n k
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v U c n n U
n n

ρ
ε

= +  [7.75] 

With the polarization vector being normalized and, for each value of i, 
multiplying this last expression by Ui and summing up all these expressions, we end 
up with: 

( )2 21E
ijkl j l i k

ijkl

v c n n U U kρ = +  [7.76] 

This seems as though the piezoelectric stiffening effect is directly proportional to 
the piezoelectric coupling coefficient. 

In the particular case of the longitudinal wave propagating along axis X3 of a 
material from crystal class 6mm, coefficient k33

2 is clearly related to hardened elastic 
constants, since according to equation [7.56], we similarly have: 

( )2
33 33 331Ec c k= +  [7.77] 

The second relation that it is possible to form is that between energy density in 
electromechanical form and the sum of pure mechanical and electrostatic energy 
densities. 

This relation is expressed as: 

2
2

21
em

mm ee

U k
K

U U k
= =

+ +
 [7.78] 

and is called the electromechanical coupling coefficient [ROS 45]. This expression 
provides information about the proportion of energy that can be exchanged between 
the mechanical and the electric forms. 

If we return to the example of a longitudinal wave propagating along axis X3 of a 
material from crystal class 6mm, we get: 

2 2
2 33 33

2
33 33 331 S

k e
K

k c ε
= =

+
 [7.79] 
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7.2. Bulk wave resonator 

Now that we have presented a formalism enabling us to describe acoustic wave 
propagation in an elastic or piezoelectric medium, we will use these results to 
analyze the vibration of a piezoelectric plate on a thickness mode.  

7.2.1. Piezoelectric plate vibrations 

In its simplest form, a bulk wave resonator is solely composed of a piezoelectric 
plate, which we will initially assume to be excited solely by infinitely thin 
electrodes, so that the electrodes only have an electric influence. This geometry is 
represented in Figure 7.4. Furthermore, we will assume that the lateral dimensions 
of the plate are very large compared to its thickness, so it is possible to assume it to 
be of infinite lateral extent and thus neglect all transverse effects. This means that all 
X1 and X2 coordinate derivatives are zero. The propagation slowness vector, and 
consequently the direction of propagation, can only therefore be vertical and thus 
colinear to the X3 axis, i.e. to the thickness of the plate. In addition, regarding the 
electric potential, only integration constants V3

0 and V0 are a priori non-zero. 

 

V=V0 ej t

X1 

X3 

+l 

-l 

V=-V0 ej t

 

Figure 7.4. Geometry used for analyzing vibration with the  thickness mode of a piezoelectric 
plate that is 2l thick 

With the direction of propagation being fixed, we can calculate the solutions to 
plane waves propagating in the medium by using the Christoffel equation. We can 
consequently consider electromechanical fields of the form established in equations 
[7.58], [7.60], [7.63] and [7.65]. 
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With the plate being assumed to be isolated in a vacuum, no mechanical force is 
applied. This is translated by cancelling the surface normal stresses at the edges of 
the plate. With the electric potential being imposed on these very faces, we find the 
value this potential at the level of planes X3 = ±l, if we assume that the plane is of 2l 
thick. The expression of these boundary conditions therefore provides the following 
set of equations: 
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Thus we have a set of eight equations with eight unknowns. This enables us to 
determine amplitudes AL, BL, AS1, BS1, AS2 and BS2, corresponding to longitudinal 
waves, transverse waves polarized along the X1 axis, and transverse waves polarized 
along the X2 axis, respectively, at the same time. 

In the general case, the symmetry of the piezoelectric material leads to a number 
of elastic and piezoelectric constants appearing in this set of equations being 
cancelled. Calculations therefore end up being considerably simplified. If we take 
the case, for example, of an aluminum nitride (AlN) film, which is a material of 
crystal class 6mm, the non-diagonal elastic and piezoelectric terms are cancelled. In 
this case, it seems that each of the shear waves is mechanically decoupled from the 
other waves and that the longitudinal wave is coupled to the electric potential 
through the piezoelectric constant e33. 

If we are interested in the first shear wave (called “S1”), the problem is limited 
to the matrix relation: 

( )
( )

1 1

1 1

1 13 3

1 13 3

0
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j s l j s l
S

j s l j s l S
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−

−

=−
= =
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 [7.84] 

The solutions to this equation are uniformly zero in the general case, except 
when the matrix determinant of the left-hand side cancels out. This condition is 
satisfied when: 

1sin 2 0Ss lω =  [7.85] 

or when the frequency is equal to: 

14 S

p
f

s l
=  [7.86] 

where p is an integer indicating the order of the solution. At these frequencies, the 
amplitudes of waves that can propagate in the film are non-zero and satisfy the 
relation AS1 = BS1. The waves are therefore totally reflected at the interface and the 
mechanical displacements are expressed in the form: 

( )
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0
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u X
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When condition [7.85] is satisfied, the mechanical displacements exhibit a 
profile corresponding to a multiple of a half-wavelength established in the thickness 
of the film. The vibration amplitude, given by AS1, nevertheless remains 
undetermined for lack of an explicit condition of excitation. The plate considered 
can therefore vibrate on an eigen mode, but disregarding the electric excitation. 

The same analysis can be carried out for the study of the second shear wave and 
leads to the same types of results: only the frequencies of resonance and the 
direction of mechanical displacements are potentially different. 

Regarding the longitudinal wave, on the other hand, the coupling of electric and 
mechanical fields leads to a matrix equation: 
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where the acoustic impedance 33L LZ s c=  was used to simplify the expressions a 
bit. The amplitudes of longitudinal waves, the electric field and the electric potential 
can thus be obtained in terms of electric and mechanical boundary conditions by 
inverting the matrix of equation [7.88].  

This can, for example, be carried out by calculating the transpose of the 
comatrix. With a few calculations, we get: 
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in which: 
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The unknowns that enable us to express the electromechanical fields in the film 
are deduced from this: 
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0 0V =  [7.93] 

Equation [7.91] enables us to notice that acoustic wave amplitudes are 
proportional to the voltage applied upon the two electrodes surrounding the 
piezoelectric film. They are also proportional to the dielectric constant involved as 
well as the coupling coefficient, which establishes the link between the electric and 
mechanical quantities. Finally, let us note that the amplitudes of the two waves 
propagating in opposite directions are equal, apart from their sign. This is the 
consequence of a perfect reflection of these waves at the interface between the 
piezoelectric solid and vacuum. 
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Once the unknowns of the problem have been determined, it is possible to arrive 
at the expressions for the mechanical and electrical fields in the piezoelectric film: 
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On the one hand, we can note that all these fields have the same denominator and 
therefore tend towards infinity when the denominator is canceled. This condition is 
satisfied from the moment that: 

2 tanL
L

t

s l
s l

k

ω ω=  [7.98] 

where we find again the electromechanical coupling coefficient expression defined 

in equation [7.79]: 
2

2 2 33

33 33
t

e
k K

cε
= = . Tiersten and Onoe obtained a similar 

equation for a thickness shear mode in a quartz plate [ONO 69, TIE 69], which 
proves that the approach presented here can be similarly applied to other 
polarizations. Due to the periodicity of the function tan x , this relation has an 
infinite number of non-analytical solutions. It is nevertheless possible to solve this 
equation numerically or even graphically because the solutions are given by the 

intersection of the function tan Ls lω  and 2
L

t

s l
k

ω . As can be seen in Figure 7.5, for 

a coefficient kt
2 in the order of a few per cent, as is normally the case for most 

piezoelectric materials, this condition is close to the one where the tangent diverges. 
It diverges from this, however, when the coefficient is increased, i.e. the material has 
significant piezoelectric properties. In comparison with the behavior of 
piezoelectrically uncoupled waves, for which mechanical resonance occurs when 
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condition [7.85] is satisfied, which corresponds to a divergence of the tangent 
function, we experience a frequency offset in the mechanical resonance. 

 

Figure 7.5. Graphical representation of the resonance condition  
for free piezoelectric plate vibration 

If we now turn our interest to the behavior of the plate at the frequency that 
corresponds to the mechanical resonance in the absence of the offset caused by 
piezoelectricity, we get: 

33
0 3

33
( , ) sinj t

LU X t V e s X
e

ωε ω= −  [7.99] 

This shows that the displacement field in the film presents a sinusoidal form with 
maximums at the interfaces delimiting this film. In practice, therefore, at this 
frequency the thickness is equal to an odd integer multiple of the half wavelength. 
The higher the piezoelectric coefficient; the lower the amplitude of vibration at this 
frequency.  

If we now turn our interest to the electric response of the component, it is 
necessary to calculate the current circulating in the electrodes obtained as a response 
to the voltage applied. This current is obtained by deriving the surface charge 
density accumulated at the interfaces delimiting the plate, themselves equal to the 
normal electric displacement value: 
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This admittance is given per surface unit. It is represented in Figure 7.6 in the 
case of a 2 μm-thick plate of aluminum nitride (AlN), the characteristics of which 
are provided in Table 7.1. This is the typical behavior of a plane capacitor on which 
a pole centered on the frequency of mechanical resonance is superimposed. When 
the tangent diverges, admittance, on the other hand, tends to cancel. Therefore this 
frequency is called the antiresonance frequency. It corresponds to the frequency at 
which all fields reach their minimum value. 

 

Figure 7.6. Electric response of a 2 μm-thick plate of AlN vibrating on a thickness mode 

Velocity of propagation of the longitudinal wave 11.1 km/s 

Dielectric constant 82.6 pF/m 

Electromechanical coupling coefficient 6.5% 

Table 7.1. Acoustic properties of AlN 

Using a graphic construction, we showed that the deviation between the 
resonance and antiresonance frequencies depends on the piezoelectric coupling 
coefficient. To evaluate the relation that links these three quantities, let us consider 
the condition of antiresonance: 

2 1
2A L

n
s lω π+=  [7.101] 
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with n being an integer number, from which we extract: 
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If we insert this in the condition of resonance [7.98], we get: 
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which finally leads to the expression of the piezoelectric coupling coefficient as a 
function of the spacing between resonance and antiresonance frequencies: 
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The most commonly used form of this relation is given for the fundamental 
mode of resonance (n = 0), for which we get: 
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From this, and as can be seen in Figure 7.5, the deviation between resonance and 
antiresonance decreases when the order of resonance increases. To quantify this 
effect more accurately, we will assume a priori that the spacing between the two 
frequencies is low. 

We can therefore simplify the tangent to the first order into: 

( ) ( )
2 2 2

22 2 1
2 1

4 4
R A R A R

t
A A A

n f f f f f
k n

f f f

π π+ − −
≈ ≈ +  [7.106] 

This simplified expression proves to be useful for relating the electromechanical 
coupling coefficient to the frequency spacing between resonance and antiresonance. 

7.2.2. Plate delimited by arbitrary acoustic impedance media 

In the previous section, we studied the behavior of a plate delimited by a 
vacuum. These boundary conditions had the effect of cancelling the stresses on the 
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borders of the plate. We will now generalize this concept, by assuming that the 
borders of the plate present a linear relation between displacements and stresses. 

As we saw before, this corresponds to assuming that the adjacent medium 
presents an acoustic impedance Z. According to equation [7.15], this refers to saying 
that when we only consider the propagation of a single plane wave, for example the 
longitudinal wave from the example in the previous section, we get: 

( )33 3 3 3( )tT X l j Z U X lω= = − =  [7.107] 

( )33 3 3 3( )bT X l j Z U X lω= − = − = −  [7.108] 

where Zt and Zb are the acoustic impedances presented at the top and bottom of the 
plate, respectively. These new boundary conditions lead us to re-write the matrix 
relation [7.88] in the form: 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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 [7.109] 

Through a derivation analogous to the free plate case, we can calculate the 
electric admittance of the resonators as a function of the acoustic impedances 
applied to the boundaries of the piezoelectric film. Thus we get [LAK 90]:  

( )
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=
+
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+
+ +

 [7.110] 

where Ls lΦ ω=  is the dephasing of the wave experiences when it travels across 
half the plate. 
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We find a form analogous to the one obtained for the ideal plate in section 7.2.1. 
A correction factor, depending on the frequency and the acoustic impedances of the 
adjacent media, nevertheless modifies the form of the admittance. 

As for the ideal plate, the resonance condition is obtained by canceling the 
admittance denominator. Conversely, the frequency of antiresonance is obtained 
when this denominator is at a minimum. In these two cases, searching for an 
analytical solution becomes difficult because of the complexity of the denominator. 
We will nevertheless consider a few particular cases. 

7.2.3. Bimorph plate 

Here, the piezoelectric plate is considered as being positioned on a substrate eS 
thick, density S and exhibiting a wave velocity VS (for shear or longitudinal, 
depending on the type of waves generated in the piezoelectric film) as represented in 
Figure 7.7. 

 X3 

+l 

-l 

-l-e 

substrate 

Piezoelectric 
film 

 

Figure 7.7. Piezoelectric plate positioned on a substrate 

In the substrate, we assume that mechanical displacements and stresses are 
expressed in the form: 
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( ) ( )3 3
3

S Sj t s X j t s X
S SU A e B eω ω− += +  [7.111] 

( ) ( )( )3 3
33

S Sj t s X j t s X
S S ST j Z A e B eω ωω − += −  [7.112] 

A free surface condition is applied to the bottom surface of the substrate. 
Cancelling the stresses therefore leads to: 

( )2 Sj s l e
S SB A e ω +=  [7.113] 

If this relation is now re-inserted into the expression of displacements, and then 
in the expression of stresses on the upper surface of the substrate we get: 

( )3 3 2 cosSj s l
S SU X l A e s eω ω= − =  [7.114] 

( )33 3 2 sinSj s l
S S ST X l Z A e s eωω ω= − =  [7.115] 

The effective acoustic impedance at the level of the interface between the 
piezoelectric plate and substrate can therefore be calculated: 

tanb S SZ jZ s eω=  [7.116] 

By continuity of stresses and displacements at the interface between the two 
media, this is also the impedance “seen” on the bottom surface of the piezoelectric 
film. Furthermore, the upper surface of the piezoelectric film is free of stress, 
therefore Zt = 0. Electric admittance is consequently expressed: 

( )
( )

( )

( )
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2

1
2 tan

tan 2tan cos 21 1
2 tan 2 tan

S
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t
L S S

Y j
l s e

Z Z
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Z Z s e

εω ω
ω

ΦΦ Φ
Φ Φ ω

=
+

− +
+

 [7.117] 

We thus find an expression similar to the expression for the electric admittance 
of a simple piezoelectric plate vibrating on a thickness mode, but including a 
correction factor that takes into consideration the interaction with the additional 
film. Another expression commonly encountered is Sittig’s expression [SIT 72]: 
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( ) 33

2

1
2 tan 2 tan

1 tan2 1
tan 2

S
S

t L

S S

L

Y j
Zl s e

k Z
Z s e
Z

εω ω
ω Φ

ωΦ
Φ

=
+

−
+

 [7.118] 

The condition for obtaining a resonance frequency always corresponds to the 
cancellation of the admittance denominator, namely: 

2
tan 2 tan 2 tan tan tan 2

2
S t S

S S
L L

Z k Z
s e s e

Z Z
Φ ω Φ ω Φ

Φ
+ = +  [7.119] 

Similarly, the condition of antiresonance corresponds to the frequency at which 
this very denominator tends towards infinity, i.e.: 

tan 2 tan 0S
S

L

Z
s e

Z
Φ ω+ =  [7.120] 

Initially, we will assume that the added film is thin compared to the piezoelectric 
film. This is translated by condition Ss eω Φ<< . Using this approximation, 
admittance is simplified into: 

33
2 2 2

1( )
tan2 1 tant t

Y j
l k Rk

εω ω Φ Φ
Φ

=
− −

 [7.121] 

where R is the mass ratio between substrate and piezoelectric film.  

For an added film of low mass, the ratio, R, is low and the resonance condition, 
which corresponds to cancellation of the admittance denominator, is therefore close 
to the one obtained for a single plate. In these conditions, the change in resonance 
frequency is also low. We can then develop the denominator of equation [7.121] 
around 0, which is the resonance frequency of the plate only, which is the solution 
to equation [7.98]. By a perturbation analysis, we express the relative frequency 
change due to the added mass as: 
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0

0
R

Φ Φ
Φ
−

= −  [7.122] 

This expression lets us show that the relative change in resonator mass leads to a 
relative change in frequency. It is on this principle that piezoelectric microbalances 
are realized. On the other hand, adding mass leads to a decrease in frequency. A 
more general approach reveals that the mass effect is, in practice, caused by a 
change in the resonator kinetic energy [YAN 04]. 

If we now consider the substrate to be very thick compared to the piezoelectric 
film, it becomes possible to consider the tanΦ  or tan 2Φ  terms as having an 
extremely slow change compared to the tan Ss eω terms. In practice, we can 
therefore consider them to be constants.  

The conditions of resonance and antiresonance given by relations [7.119] and 
[7.120] are therefore solely conditioned by substrate thickness and by the velocity of 
propagation of waves in the latter. Neglecting even the change in tanΦ , we can see 
that the conditions of resonance and antiresonance present a periodicity related to 
that of the tangent function. The frequency period at which these conditions are 
satisfied is: 

Ss eΔω π=  [7.123] 

i.e.: 

1
2 2

S

S

V
f

s e e
Δ = =  [7.124] 

where VS is the velocity of wave propagation in the substrate. This goes back to 
saying that a new resonance and antiresonance pair arises with each additional half 
wavelength in the thickness of the substrate. 

7.2.4. Piezoelectric plate between two electrodes 

In a manner similar to the bimorph plate, we will assume that the piezoelectric 
plate is sandwiched between two metal electrodes that we will assume to be 
symmetric in order to simplify the expressions. The acoustic impedance expression 
brought to the lower surface of the piezoelectric film is still given by equation 
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[7.116]. A similar calculation leads to an acoustic impedance brought to the upper 
surface of the piezoelectric film of:  

tant S SZ jZ s eω=  [7.125] 

The electric admittance of this resonator is consequently expressed: 

( )
( )

33

2

2
2

2
tan

1

1 tan

Lt

LS
S

L

j
lY
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 [7.126] 

The condition of resonance is therefore expressed: 
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ω ω

−
=  [7.127] 

The graphic construction providing the frequency of resonance is similar to that 
obtained for the ideal plate, except that the presence of a correction factor on the 
right hand side, which is lower than 1, and which causes a decrease of the 

2
2

2

1 tanS
S

L

t

Z
s e

Z
y x

k

ω−
=  curve, thus causing a decrease of the resonance 

frequency compared to the unelectroded plate, as represented in Figure 7.8. This 
decrease is either much stronger than the acoustic impedance or the electrodes are 
very thick. 

The expression for the admittance of the device (equation [7.126]) reveals 
admittance in the same form as for the ideal plate, but with an effective 
electromechanical coupling coefficient close to the frequency of antiresonance, 
which can be estimated as: 
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ω

≈

−

 [7.128] 

where R is the angular frequency of the frequency of resonance. 

 

Figure 7.8. Graphic representation of the condition of resonance  
for the vibration of a piezoelectric plate sandwiched 

between two electrodes 

We can therefore note that this effective coupling coefficient increases with the 
acoustic impedance of the metal film.  

As with the case of the piezoelectric plate charged by a very thin film, if we 
assume that electrodes are very thin compared to the thickness of the piezoelectric 
film, we can transform the condition of resonance (equation [7.127]) into: 

( )( )22
2

tan 1 1L
L

L t

s l
R s l

s l k

ω ω
ω

= −  [7.129] 
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where R is the ratio between the total mass of the electrodes and the mass of the 
piezoelectric film. A perturbation analysis enables us to retrieve the expression we 
have already established for the frequency change due to a small added mass: 

0

0

R R
Φ Φ

Φ
−

= −  [7.130] 

where, as before, 0 is the phase change undergone by the acoustic wave when it 
crosses half the piezoelectric film at the resonance frequency of the piezoelectric 
film only, and R is the phase change undergone at the resonance frequency of the 
film sandwiched between two electrodes. 

Re-inserting this result in the expression of the effective electromechanical 
coupling coefficient results in: 

( )( )
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t
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Z
s e R

Z
ω

=

− −

 [7.131] 

Returning to the expression of the deviation between resonance and 
antiresonance frequencies for the ideal plate, and remembering that the 
antiresonance frequency is related to the plate thickness and the velocity of acoustic 
wave propagation in the piezoelectric material, the effective coupling coefficient can 
be expressed as a function only of the acoustic impedances of the materials and of 
the mass ratio: 

( )

2
2

2 2
2 41 tan 1 1

2

t
eff

S t L

L S

k
k

Z k Z
R R

Z Z
π

π

=

− − −

 [7.132] 

For a fixed acoustic impedance ratio, the effective coupling coefficient no longer 
only depends on the mass ratio, R. In this case it is at a maximum when the term 

( )
2

2 4
tan 1 1

2
t L

S

k Z
R R

Z
π

π
− −  is also at its maximum. A first scenario bringing 

this term to be at maximum corresponds to the one where the tangent diverges, its 
argument being a multiple of /2. To do this, R must be a second-order solution of 
the following equation: 
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− + =

−

 [7.133] 

This is only possible if the discriminant of this equation is positive or zero, i.e. if: 

241

4

t

S L

k

Z Z π
−

≤  [7.134] 

This goes back to saying that the acoustic impedance of the metal used for 
electrodes must be extremely low. Most of the piezoelectric materials have acoustic 
impedances of the order of 20−50 MRayl. Condition [7.134] is therefore satisfied 
with difficulty, even when using aluminum, the common metal with the lowest 
acoustic impedance (except silver), as shown by Table 7.2. 

Metal Acoustic impedance 
(MRayl) 

Aluminum 17 

Silver 17 

Copper 40 

Nickel 52 

Gold 62 

Molybdenum 63 

Tantalum 65 

Ruthenium 73 

Tungsten 94 

Platinum 99 

Iridium 120 

Table 7.2. Acoustic impedance of the most common metals 

In practice, therefore, the effective coupling coefficient never diverges. It is at a 
maximum when R(1 − R) is maximum, i.e. for a mass ratio of ½. At that moment, 
we get a maximum effective coupling coefficient of: 
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− −

 [7.135] 

7.2.5. Equivalent electric circuit 

The form of the electric admittance of a bulk wave resonator (equation [7.100]) 
reveals a correction factor that corresponds to the plate capacitor formed by the 
piezoelectric medium sandwiched between a set of electrodes. An acoustic term is 
superimposed over this capacitance. Throughout the 7.2.4, we saw that this term 
depended on the considered structure. Nevertheless, it can still be mathematically 
represented by a pole appearing over the admittance. This admittance can therefore 
generally be expressed in the form: 

0 2

0

1

1

K
Y jC ω

ω
ω

= +

−

 [7.136] 

If we look for an equivalent electric circuit, superimposing a mathematical pole 
over the admittance of a capacitor is equivalent to considering a circuit in which a 
perfect capacitance C0 is connected in parallel with a resonant circuit. The simplest 
of these circuits is a resonator composed of a capacitor and an inductor in series (an 
LC resonator). Indeed, such an assembly exhibits an admittance: 

0
0 21

1

C
C

Y jC
LC

ω
ω

= +
−

 [7.137] 

with 0
1
LC

ω =  and K the ratio between capacitances C and C0. We thus find a 

circuit presenting the form of expression [7.136]. In practice, to better correspond 
with electric measurements, it is often useful to take dissipative phenomena into 
consideration and therefore add a resistance to the LC resonator. Thus we get the 
electric equivalent circuit, called the Butterworth-Van Dyke circuit represented in 
Figure 7.9. In this circuit, we distinguish the electric branch, which includes static 
capacitance C0, and the motional branch corresponding to purely mechanical terms 
[VAN 28]. 
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Figure 7.9. Butterworth-Van Dyke circuit 

The admittance expression of this electric circuit is slightly more complicated 
than the one presented in the lossless case: 
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K
Y jC

j
Q

ω
ω ω
ω ω

= +

− +

 [7.138] 

where the adimensional quantities traditionally used for an RLC resonant circuit, 
made of a resistor, an inductor and a capacitor in series, were introduced: 

0

mC
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C
=  [7.139] 

0
1
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ω =  [7.140] 

1 m

m m

L
Q

R C
=  [7.141] 

To link the parameters of this equivalent circuit to the physical parameters of a 
bulk wave resonator, like those studied in section 7.2.4, we identify the specific 
characteristics of the frequency response. Thus, the resonance frequency  
corresponds to cancelling the denominator of equation [7.138], i.e.: 

20
04 1 1

2 2
j

Q j
Q Q

ωω ω= − + ≈ +  [7.142] 

for large Q (i.e. a small motional resistance Rm and therefore low losses). 
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The mathematical effect of adding losses is that it shifts the admittance pole out 
of the real frequencies axis. Resonance is therefore generally defined as the 
projection of this pole onto the real frequencies axis, therefore R = 0: the 
frequency of the resonator is the same as that of the equivalent RLC series circuit. 
At this frequency, most of the current crosses the RLC branch. Most of the electric 
energy is therefore concentrated in the motional branch, which is analogous to the 
observation made earlier, that at resonance most of the energy is concentrated in 
mechanical form in the resonator. The antiresonance frequency is given by the 
cancellation of admittance. This goes back to cancelling the numerator of equation 
[7.138], i.e.: 

( )
2

0 0
1 0j K

Q
ω ω
ω ω

− − + =  [7.143] 

and therefore: 

( )20
04 1 1 1

2 2
j

Q K j K
Q Q

ωω ω= + − + ≈ + +  [7.144] 

Similarly to resonance, antiresonance is obtained by projecting the zero-
admittance frequency onto the real axis, which leads to: 

0 1A Kω ω= +  [7.145] 

Returning to the expression of 0 and K in terms of equivalent circuit parameters 
(equations [7.139] and [7.140]), we get: 

0

0

1m
A

m m m eq

C C
L C C L C

ω +
= =  [7.146] 

where the equivalent resistance “seen” at antiresonance is that given by theoretically 
putting C0 and Cm in series. This shows that at this frequency, the current circulates 
in the motional branch and re-loops through the purely electric branch, producing an 
overall minimization of the current crossing the whole circuit.  

In the perspective of equation [7.145], it is possible to link the effective 
electromechanical coupling coefficient to the ratio of the capacitances of the 
motional branches: 
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 [7.147] 

hence the expression of the capacitance ratio: 
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, [7.148] 

for a small effective electromechanical coupling coefficient. In other words, the ratio 
of motional and static capacitances directly corresponds to half the relative spacing 
between resonance and antiresonance frequencies. As we were able to express the 
parameters of the equivalent circuit in terms of physical characteristics of the resonator 
(again, apart from the quality coefficient), we can re-write the admittance expression 
in terms of the latter: 
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 [7.149] 

Maximum admittance is obtained at the resonance frequency: 
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Y jCω ω

π
= +  [7.150] 

Conversely, maximum impedance is obtained at the antiresonance frequency:  
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81 1
1

eff

A AA A

QkKQ
Z

jC jCC K Cω ωω π ω
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+
 [7.151] 

in which we assumed again that the effective coupling coefficient was small. These 
last two relations reveal that the amplitudes of the real part of admittance at 
resonance or impedance at antiresonance are directly proportional to the product of 
the quality factor by the electromechanical coupling factor and by the admittance or 
impedance of the static capacitance at the frequency considered. As for the 
imaginary part, it corresponds each time to that of the static capacitance alone. 
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7.3. Bulk acoustic waves filter 

Section 7.2 dealt in detail with  how to form an electric resonator by exploiting 
the resonance of bulk acoustic waves in a piezoelectric medium. Expressions [7.150] 
and [7.151] show in particular that for resonators exhibiting high quality and 
electromechanical coupling factors, changes in electrical impedance can reach 
several orders of magnitude. It is consequently common to use these components as 
elements of variable impedance as a function of frequency. At first glance, it is 
indeed possible to consider the resonator as behaving like a closed switch at 
resonance (its electric impedance becomes very small) and like an open switch at 
antiresonance (its electric impedance becomes very large). The most frequent use 
consists of associating bulk acoustic wave resonators in band-pass filter circuits. The 
most common of these circuits is the ladder structure, as represented in Figure 7.10, 
where some resonators are placed in series between the input and output of the filter, 
and another set of resonators is placed in parallel arms. This structure was initially 
proposed by Espenschied of AT&T to synthesize filters using quartz bulk acoustic 
wave resonators [BER 78]. 

 

Figure 7.10. Ladder structure of a filter 

In general, all resonators displayed on the series arm have the same resonance 
frequency, while all resonators displayed on parallel arms have a different 
frequency. 

To obtain a circuit allowing a signal to pass through at the center frequency of 
the filter, we arrange for the series resonators to be at their resonance frequency, in 
such a way that they behave like closed switches. Meanwhile parallel resonators 
must be at their antiresonance frequency, in order to behave like open switches, so 
that it looks like the diagram in Figure 7.11a. When this happens, the filter behaves 
like a completely conducting circuit, since current and voltage are transferred 
practically unchanged from the entrance to the exit.  

At the frequency of resonance of the parallel resonator, which is lower than the 
center frequency, the connection behaves like a short circuit, as illustrated in Figure 
7.11b. This prevents the signal from being transmitted. 
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Conversely, at the antiresonance frequency of the parallel resonators, which is 
higher than the center frequency, the connection presents open switches near the 
entrance and exit of the filter, as represented in Figure 7.11c. Here again, the electric 
signal can no longer be transmitted. 

 

    

 

    

 

 

a)   b)   c) 

Figure 7.11. Principle of operation of a ladder filter:  
a) at center frequency; b) at the resonance of parallel resonators;  

and c) at antiresonance of series resonators 

To simplify the calculations, let us consider a filter composed of only one series 
resonator and one parallel resonator. We calculate the transmission of the two-port  
network formed by a ladder section.  

2 2 0 2

2 0 22
21

1 1 0 10a V Z I

V Z Ib
S

a V Z I= =−

−
= =

+
 [7.152] 

where the currents and voltages are defined as illustrated in Figure 7.12. 

 

V1
V2 

I1 I2

 

Figure 7.12. Definition of the currents and voltages used for the filter analysis 

By classically applying Kirchhoff’s laws, we express all the currents and 
voltages as a function of the input current: 
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 [7.153] 

Finally, we form the relation giving the transmission of a single filter section: 
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2 2
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p s

s p s p p s s p

Z Z Z Y
S
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 [7.154] 

The transfer function obtained is illustrated in Figure 7.13. 

At antiresonance of the series resonator and resonance of the parallel resonator, 
transmission tends towards 0. It is high, however, at the center frequency f0, which 
was chosen as corresponding to the resonance of the series resonator and the 
antiresonance of the parallel resonator. 

 

Figure 7.13. Resonator admittances and associated filter transmission 

Several frequencies are particularly interesting. 
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At resonance of the parallel resonator, filter transmission is equal to: 
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since Yp becomes dominant compared to Ys and Z0. Transmission, as we said before, 
tends towards 0. 

At antiresonance of the series resonator, the contribution of admittance of this 
resonator becomes negligible and so: 
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 [7.156] 

and the transmission also tends towards 0, as we expect from more practical 
considerations. 

Far from resonances, we can compare Ys and Yp solely through the expression of 
their capacitances, i.e. at low frequency: 

( )
( )

2
0

2
0

1

1

s s s

p p p

Y jC K

Y jC K

ω

ω

≈ +

≈ +
 [7.157] 

and at high frequency: 
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In these conditions, at high frequency, the transmission module is expressed: 
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 [7.159] 

where R was introduced as being the ratio between static capacitance of the series 
resonator and that of the parallel resonator. An equivalent expression is obtained by 
replacing the value of the series resonator capacitance at high frequency with the 
value it presents at low frequency: ( )2

0 1s sC K+ . This relation shows that 
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transmission is approximately inversely proportional to the capacitance ratio of both 
types of resonator. This is illustrated in Figure 7.14. Hence, to increase the rejection 
of such a filter, it is necessary to increase the ratio of the static capacitances. 

 

Figure 7.14. Influence of the ratio of static capacitances of series and parallel 
resonators on out-of-band rejection 

At center frequency, the series resonator presents its maximum admittance, while 
the parallel resonator presents its maximum impedance. Assuming that the two types 
of resonators have approximately the same electromechanical coupling coefficients 
and quality factors, it results that: 
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 [7.160] 

For AlN thin film-based bulk wave resonators, the quality factors are in the order 
of 1000 for electromechanical coupling coefficients bringing K2 = 5%, which gives a 
product K2Q in the order of 50, which we will assume to be large compared to 1. In 
other words, we assume that at this frequency the effect of static capacitances of 
resonators is completely masked by resonances and antiresonances. Under these 
conditions: 
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 [7.161] 

This simplified expression makes it seem that filter losses, i.e. the maximum 
level of transmission, originate in two distinct causes: the impedance of the static 
capacitance of the parallel resonator at center frequency, compared to the 
characteristic impedance of the external circuit. The higher this capacitance, the 
more important the losses are. A comparison with relation [7.159] shows that at this 
level, a compromise must be found between maximizing the capacitance of the 
parallel resonator to provide a high rejection and minimizing this rejection to 
maximize the filter transmission. Insertion losses are highly dependent on the figure 
of merit QK2, i.e. finally on the amplitude of impedance changes of the resonators. 
Therefore, for filter applications, we look towards simultaneously maximizing the 
quality factors and electromechanical coupling coefficients of resonators. 
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Chapter 81 

Electrostrictive Formalism 

8.1. Foundations of electrostriction 

Electrostriction appears in all dielectric materials. Whereas the indirect 
piezoelectric effect induces a linear dependence on mechanical strain due to the 
imposed electric field, electrostriction induces a quadratic change in it. The 
piezoelectric effect only appears in non-centrosymmetric crystal lattices, whereas 
electrostriction appears in all dielectric materials. For these non-centrosymmetric 
lattices, the electrostrictive effect is often negligible compared to the piezoelectric 
effect and therefore rarely considered. The quadratic character of electrostriction 
made it less frequently studied than piezoelectricity. However, the study of PMN 
(Pb(Mg,Nb)O3), an electrostrictive relaxor material (in a Relaxor, whether we 
consider the temperature at which the dielectric constant maximum takes place 
depends on the frequency) proved that strain could reach the same values as the best 
piezoelectrics, of the order of a few tenths of a per cent without the inconvenience of 
hysteresis [DAM 92]. Many books therefore have been produced about these 
quadratic, electroactive materials, mainly based on Pb around PMN. It was, above 
all, ceramics and single crystals that were studied, especially to better understand 
how these relaxor materials work.  

Electrostriction is often defined with the following formula, linking strain, S, to 
polarization, P, with the electrostrictive term Q. The relationship between P and the 
electric field E (εr: relative permittivity, ε0: vacuum permittivity) is added: 

2 2 2
0² rS QP Q Eε ε= =  [8.1] 

                              
Chapter written by Emmanuel DEFAŸ. 
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If a constant field strength E0 is applied to an alternative field e that is negligible 
compared to E0, to the first order the term E² becomes E0

2 + 2E0e.  

The strain therefore becomes: 

2 2 2 2 2
0 0 0 02r rS Q E Q E eε ε ε ε= +  [8.2] 

On the right part of this equation, the left term describes the static strain whereas 
the right term can be qualified as piezoelectric induced with coefficient dinduced such 
that: 

2 2
0 02induced rd Q Eε ε=  [8.3] 

This coefficient therefore shows that, in an electrostrictive material (and 
therefore a paraelectric perovskite), an induced piezoelectric effect can be generated. 
The intensity of this effect varies linearly with the continuous electric field applied. 
This change in piezoelectric coefficient results in a change in the electromechanical 
coupling coefficient. 

This electrostrictive solution forces us to conserve a constant voltage while 
operating, especially in the case of an acoustic resonator. If the dielectric losses are 
low, the consumption that results from this mode of operation must be negligible 
because work is null. 

It can be interesting to remain in the paraelectric phase to make a tunable 
frequency resonator with a continuous voltage: there are no domain walls so there is 
a decrease in losses and no hysteresis due to the continuous field applied. 

The most studied materials are principally SrTiO3, (Ba,Sr)TiO3 (BST) and 
Pb(Mg,Nb)TiO3 because they are available in thin films and can present a Curie 
lower than ambient temperature. Let us recall, however, that all dielectrics present 
an electrostrictive effect. 

8.2. Thermodynamic model of electrostriction – case of the resonator 

For this model, it is imperative that the approaches are distinguished according to 
the paraelectric case and the piezoelectric case. Indeed, in the first case, the lattice 
considered is centro-symmetric. Therefore, no terms with an odd order electric 
contribution can exist, so they are directly eliminated. In the pure piezoelectric case 
like quartz or the pyroelectric case like AlN, the material is non centro-symmetric. 
This forces us to leave the odd terms and especially the piezoelectric term. In the 
case of ferroelectrics, even when the working temperature is lower than Curie 
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temperature, we can use an even development in free energy similar to the 
paraelectric case. Adding the spontaneous polarization in the formalism induces 
apparition of the piezoelectric term. We already addressed the formalism in 
Chapter 3. Here, we will provide a few extra details.  

The way to deal with this problem has been suggested in the literature by several 
authors [NÖT 07, VEN 08, VOL 08]. Here, we propose to summarize these works, 
which all have the same basis. The key to this calculation is to find the dominant 
parameters that enable us to explain the change in frequencies of resonance and 
antiresonance of the resonators due to the continuous voltage applied. 
Electrostriction can explain the coupling change observed (therefore the separation 
between resonance and antiresonance); whereas the quadratic mechanical change in 
stiffness due to the voltage applied gives the correct order of magnitude of the drift 
of the two frequencies due to the continuous voltage. The very significant change in 
the dielectric constant due to voltage is part of the development. The choice of 
electric variable used in the free energy is the electric displacement D, because it is 
this displacement that has the most physical sense. Indeed, we saw before that 
paraelectric-ferroelectric transition could be described by the same form of free 
energy using polarization as the order parameter. This choice also gives us the 
opportunity to use coefficients already identified and quantified in the literature. We 
will note that certain authors make the distinction between polarization and electric 
displacement in this method. Actually, Nöth says that only one part of the 
paraelectric is susceptible to polarizing, like a ferroelectric, whereas it remains a part 
of the material that can be considered as a much less polarizable dielectric (a notion 
called background permittivity) [NOT 09]. The effect is very weak, however, 
because typically the relative constant of this not very polarizable permittivity is 7 in 
BST for a “ferroelectric” constant around 300, which represents a bit more than 2%. 
Today, experimental results do not need this degree of finesse to understand and 
anticipate the behaviors of these resonators. We will therefore neglect this not very 
polarizable permittivity and we will consider a free energy that uses electric 
displacement as a variable.  

For the mechanical variable, the simplest thing is to choose the strain, especially 
in the case of a thin film resonator. Indeed, as the films are placed on a rigid 
substrate, the thin film hypothesis imposes a null strain in the plane (S1 = S2 = 0). 
Thus, only the out-of-plane strain S3 is non-zero. Dealing with the equations 
therefore looks like a problem with a single dimension (the axis perpendicular to the 
film’s plane), which is very practical. 

The free energy to consider is the one that uses (D,S) as variables, in other words 
Helmholtz free energy, F. We assume that we are working at constant temperature, 
which eliminates the heat term, d , in the expression of the total differential, dF. 
The terms introduced in this energy are:  
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− the electric terms in D2 and D4 (necessary for taking into consideration the 
strong change in permittivity) and then its nonlinearity; 

− the mechanical term in S2;  

− the electrostrictive coupling term in SD2; and  

− the nonlinear electrostriction term in S2D2.  

This development does not take into consideration the other terms that it would 
be a priori logical to add to conserve the same orders of power. Thus, the change in 
stiffness due to strain (the energy term in S3 and S4) is not considered as its change is 
extremely small compared to the other terms. It is very important to note that this 
argument is valid for materials with a very large change in polarization due to the 
electric field (such as perovskites).  

We recall that dF = TdS + EdD − d . F therefore takes the following form: 

2 2 4 2 2 2
0 0

1 1 1 1
2 2 4 2

D S SF F c S D D GD S MS Dβ γ− = + + + +  [8.4] 

We will note that the fractions in front of each term are determined by use more 
than by a perfect logic. The initial idea is to no longer have any multiplying term 
after derivation, but this does not apply for the electrostrictive term for which we 
assume a stress of the form GD². The term ½ is added in front of the nonlinear 
electrostriction term for a state-of-the-art conforming. These factors are not 
fundamentally useful but must be treated with precision as they are often subject to 
error when the various books are compared.  

In this expression, S and D are considered as referring to the out-of-plane 
component, in other words, S3 and D3 respectively. As S1 = S2 = 0 for a thin film on a 
substrate and we neglect all shear; only S3 is non-null. For D, we also consider 
D1 = D2 = 0 (plane capacitor), therefore only D3 is non-zero.  The problem is one-
dimensional. It is possible to express F with all its components, but we choose to 
keep this simple model to highlight the most important points of this electrostrictive 
approach.  

At the level of coefficients appearing in equation [8.4]:  

− c0
D is the coefficient of rigidity cD

33 at fixed D;  

− S is the dielectric impermittivity constant S
33 at fixed S;  

− S is the coefficient S
3333 of the nonlinear tensor of dielectric impermittivity at 

fixed S;  
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− G is the coefficient G3333 of the electrostriction tensor in the formalism (S,D); 
and  

− M is the coefficient M3333 of the nonlinear electrostriction tensor.  

It is noteworthy that the electrostriction tensor is a tensor of fourth order. 

With this formalism, the conjugate variables S and D are obtained by the 
following partial derivatives of F: 

D

F
T

S
∂ =
∂

    
S

F
E

D
∂ =
∂

 [8.5] 

Thus we have: 

2 2
0

3 22

D

S S

T c S GD MSD

E D D GSD MS Dβ γ

= + +

= + + +
 [8.6] 

8.3. The electrostriction tensor 

Similarly to piezoelectricity, several formalisms are possible for electrostriction 
depending on the natural variables chosen. Each time a fourth-order tensor is 
involved. Two other formalisms are often presented in the literature; these 
formalisms are different to the one presented before (T = GD²): S = ME² and 
S = QD² (or QP² identifying P with D in strong permittivity dielectrics).  

Using the index representation and not omitting the eventual presence of a 
piezoelectric effect, we have: 

ij kij k klij k lS d E M E E= +        ij kij k klij k lS g D Q D D= +  [8.7] 

In the same way as for the elasticity tensor, it is possible to move on to a 
contracted notation by respecting the following rule for Q and M, which are defined 
in relation to S, which is subject to the conversion rule: 

Qmn = Qijkl   (m, n = 1,2,3) 

Qmn = 2Qijkl   (m or n = 4,5,6) [8.8] 

Qmn = 4Qijkl   (m and n = 4,5,6) 
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On the other hand, G is not subject to this rule because it is defined in relation  
to T. 

Respecting symmetries enables us to decrease the independent coefficients based 
on the point groups considered. In the same way that we presented for piezoelectric 
crystals, the most useful electrostrictive tensors are given in Table 8.1 (see 
[UCH 97] for the other point groups). It must be noted that the electrostriction tensor 
is not necessarily symmetric, unlike the elasticity tensor. 

6mm 4mm 

( )
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Isotropic  

( )
( )

( )

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0
0 0 0
0 0 0

0 0 0 2 0 0
0 0 0 0 2 0
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Q Q Q
Q Q Q
Q Q Q

Q Q
Q Q

Q Q

−
−

−

 

Table 8.1. Electrostrictive tensors of point groups 6mm, 4mm, 3m, 32, m3m  
and isotropic materials  

We must note that the most useful tensors are m3m and isotropic materials 
because electrostriction is most often used without piezoelectric effect, as for 
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example with (Ba,Sr)TiO3 or Pb(Mg,Nb,Ti)O3 perovskite films in the paraelectric 
phase (m3m).  

These formulae are valid for Q and M. For G, the 2(Q11 − Q12) terms must be 
changed into (G11 − G12)/2 and finally, term 2Q14 into tensors 3m, and 32 is replaced 
by G14.  

8.4. Microscopic model of electrostriction 

8.4.1. One-dimensional model 

Just as for piezoelectricity, it is possible to suggest a one-dimensional model 
based on the succession of two ions of opposite sign, joined by springs. In the case 
of electrostriction, to suppress piezoelectricity the springs chosen are identical to 
each other (see Figure 8.1). For this example, we also use a method based on an 
energy balance to reveal the electrostrictive term. In the piezoelectric case, we saw 
that it was imperative that the springs have different stiffnesses for 
electromechanical coupling to appear.  

In the electrostrictive case, the springs are identical. To produce coupling, it is 
therefore imperative to reveal nonlinearities in the model. The most natural thing is 
to include a nonlinear stiffness for each spring. In other words, we assume that the 
springs are easier to stretch than to compress. Therefore, this nonlinearity allows us 
to see that the stiffness of the two adjacent springs is not exactly the same, as one of 
the springs is compressed when the other is stretched. Indeed, it is harder to get 
closer to an ion than to move away from it (which is modeled by the Born Mayer 
potential in statistical physics). The stiffness, k, of the springs is therefore defined 
as: 

1 2k k k aδ= −  [8.9] 

We will see that this method enables us to produce an electromechanical 
coupling.  

The dipole moment is null in the absence of an electric field, E. When E is 
present, p is equal to q/2( a − 2 b). The equilibrium of each ion is still valid and, 
taking into consideration the nonlinearity of the springs, we have: 

2 2
qE a

b
k

δ δ− + =  [8.10] 
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Figure 8.1. One-dimensional model of an electrostrictive chain of ions 

The different energy contributions to local Gibbs’ electric energy, G2, for one 
section (from one positive ion to another) are the elastic energy stored in the two 
springs and the dipole energy –pE. G2 is always the energy that translates system 
equilibrium since the natural variables are strain (S = a/a) and electric field. G2 is 
therefore: 

( ) ( )2 2
2

1 1
2 2

G k a b k b pEδ δ δ δ= − + −  [8.11] 

If k is not developed, G2 takes the following form: 

( )
2 2

2
2

1
4 4

q E
G k a

k
δ δ= −  [8.12] 

If k is simply equal to k1, we see that there is no coupling term in this energy, in 
accordance with what we expected. The first term corresponds to mechanical energy 
and the second to dipole energy. Nonlinearity is then introduced in the stiffness. To 
give a form that is easily exploitable, we can assume a weak nonlinearity, which 
enables us to make a first-order expansion. G2 becomes: 

( ) ( ) ( ) ( )
22 2 2 2

2 3 2 3 22
2 1 2 1 2 2

12 1
1

1

1 1 1 1
4 4 4 4 4 44 1

q kq E q E
G k a k a k a k a aE

kk kk a
k

δ δ δ δ δ δ
δ

= − − ≈ − − −
−

  

 [8.13] 

Returning to the definition of strain, S = a/a, G2 takes the following form: 

22 2
2 2 3 3 22

2 1 2 2
1 1

1 1
4 4 4 4

q akq E
G a k S k a S SE

k k
δ ≈ − − −  [8.14] 

This form of energy clearly highlights a quadratic mechanical energy term, 
another of the third order, a quadratic dipole energy term and the SE2 
electromechanical coupling term. In the same way as those defined for the 
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microscopic piezoelectric model, the S and E derivatives (respectively, lineic strain t 
and polarization p) give: 

2
2 3 2 22 2

1 2 2
1

22
2 2

2
1 1

1 3
2 4 4

2 2

E

S

G q ak
t a k S k a S E

S k

G q akq E
p SE

E k k

δ

δ

∂
= = − −

∂

∂
− = = +

∂

 [8.15] 

This form is very similar to the electrostrictive thermodynamic formalism 
highlighted in equation [8.6]. The various terms are therefore:  

2
0

1
2

Ea k c= : linear stiffness;  

3
2 1

3
4

Ek a c= : nonlinear stiffness;  

2

12
S
ion

q
k

χ= : dielectric susceptibility; and  

2
2

2
14

q ak
g

k
= : the electrostrictive coefficient that enables electromechanical 

coupling.  

We get: 

( ) 2
0 1

2

E E

S
ion

t c c S S gE

p E gSEχ

= − −

= +
 [8.16] 

We see that if the nonlinear stiffness coefficient (k2) is null, there is no longer 
coupling.  

8.4.2. Origin of spontaneous polarization in perovskite crystals 

It is possible to suggest a simple microscopic model enabling us to arrive at an 
energy expression, highlighting the presence of spontaneous polarization in 
materials such as perovskites. Actually, we could think that they should conserve a 
non-polar stable state, like when temperature is above Curie temperature (point 
group m3m). Taking into consideration dipole and elastic energies enables us to 
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produce this spontaneous polarization. This model is interesting as it enables us to 
create a local idea of the meaning of spontaneous polarization. We must, however, 
note that in the case of perovskites, the true microscopic model is quite far from this 
ion-related view. Indeed, at the end of the 1980s, Cohen showed that it was the 
covalent nature of the B-O combination that is responsible for the ferroelectric 
character of this structure [COH 92].  

To simplify things, let us assume a crystal structure in which the dipole moment, 
p, is due to the displacement of one single type of A ion in the crystal lattice. The 
presence of all the dipole moments induces a polarization, P, which creates a local 
electric field, El, even in the absence of a macroscopic field (as discussed in Chapter 5,  
dealing with the electric term of energy). If ion A has a polarizability , we see that 

0 lp Eε α= . In the Lorentz field hypothesis (isotropic case) with Eext = 0, the local field 
takes expression El = P/3 0, which gives: 

3
P

p
α=  [8.17] 

The energy of this dipole moment, wdip, is: 

2

0
.

9dip l
P

w p E
α

ε
= − = −  [8.18] 

If there are N ions per unit of volume, the energy per unit of volume Wdip is 
therefore: 

2

09dip
N P

W
α
ε

= −  [8.19] 

The displacement, u, of A ions is limited by the repulsion between the ions. The 
elastic energy of the crystal lattice must therefore increase. Let us assume that this 
repulsion is described by a spring with a linear term (k) and a quadratic term (k') 
essential here. The expression of elastic energy per unit of volume, Wel, is: 

2 41 1 '
2 4elW N ku k u= +  [8.20] 

On the other hand, polarization P is none other than Nqu, where q is the charge 
carried by the A ion. Substituting u for P, total energy Wtot becomes: 
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α
ε

= + = + −

= − +

 [8.21] 
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Figure 8.2. Illustration of the total energy of a crystal lattice taking into consideration the 
dipole and elastic energies: a) quadratic elastic energy term > dipole energy; and b) 

quadratic elastic energy term < dipole energy 
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Looking at this equation, we see that the sign of the P2 term determines whether 
or not there are two different stable positions of P = 0. Indeed, deriving Wtot in 
relation to P, we get a solution for non-zero P: 

3 4
2

2
0

8
' 9 2

S
N q N k

P
k Nq

α
ε

= −  [8.22] 

In the case where the harmonic elastic term (k) is greater than the dipole term, 
there is only one stable position in P = 0; whereas when the dipole term is greater 
than the elastic harmonic term, the stable position corresponds to a non-zero 
polarization given by equation [8.22]: it is the spontaneous polarization. This is 
illustrated in Figure 8.2. We find the same shapes of curves as in the macroscopic 
thermodynamic formalism but on a local scale.  

8.5. Electrostrictive resonator  

We saw that electrostriction induces an equation pair that is more complex than 
those of the piezoelectric formalism (see equation [8.6]). It is however possible to 
find a more customary form with which the same acoustic approach can be used to 
deal with the resonances of a resonator. To do this, we assume that a continuous 
voltage is added to the resonator. This induces a field Edc and an electric 
displacement Ddc, as well as a strain Sdc and a stress Tdc. We immediately note that 
Tdc is zero because T3 is zero in the thin film hypothesis (the film can freely deform 
in the out-of-plane direction). These DC parameters are assumed to be large 
compared to the variable values, which we will call AC. This hypothesis will enable 
us to implement a first-order expansion in equation [8.6] and reduce it to an 
equivalent piezoelectric formalism. Thus, eliminating the continuous term (in which 
only DC terms appear), equation [8.6] becomes: 

( ) ( )

( ) ( )

2
0

2 2

2 2

3 2 2 2

D
ac dc ac dc dc dc ac

S S
ac dc dc dc ac dc dc dc ac

T c MD S GD MS D D

E D GS MS D GD MS D Sβ γ

= + + +

= + + + + +
 [8.23] 

The terms between brackets do not depend on dynamic AC variables but on DC 
fields. The general form of this equation pair is identical to the piezoelectric 
formalism (S,D) for which we recall that: 

D

S

T c S hD

E D hSβ

= −

= −
 [8.24] 
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It is enough to identify the terms between the two equation pairs. We can 
progress a bit further in the calculation by expressing Sdc in terms of Ddc, using the 
fact that Tdc is zero. Replacing Tdc in equation [8.6], neglecting to the first order the 
influence of M (the experimental results show that its influence is lower than 1%, 
which justifies neglecting it) we get the following result: 

2

0

dc
dc D

GD
S

c
= −  [8.25] 

The coupling term of equation [8.23] becomes: 

2

0
2 2 2 1 dc

dc dc dc dc D
MD

GD MS D GD
c

+ = −  [8.26] 

We could explain the other terms of equation [8.23] containing Sdc but, for the 
case of paraelectric perovskites, the change in the dielectric constant due to the 
electric field is such that the electric term in  and  is dominant in relation to the G 
and M terms. As impermittivity is the inverse of permittivity, it is often the latter 
that we prefer to model. This permittivity can be modeled thanks to the LGD 
formalism when working temperature is below Curie temperature. It is therefore 
about solving the following third-degree equation: 

2 ' 2 2
1 1

3 ' 3 DCD E
ε

α α α α ε
≈ =

+ +
 [8.27] 

Starting with equation [8.27], Chase et al. suggested a practical sort of equation 
for modeling the behavior of the dielectric constant of the paraelectrics and of BST 
in particular [CHA 05]. They got the following equation, which is an exact solution 
to equation [8.27]: 

( ) max

1

1/2

22cosh sinh 2 1
3

E
E

E

εε
−

=
−

 
[8.28]

 

The two parameters to be extracted from the experimental data are max and E1/2, 
this last corresponding to the field value for which  = max/2.  

With these remarks and using Ddc = Edc, the formalism for equation [8.23] 
becomes: 
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2 2
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2 2
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M E
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c

M E
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εε ε

εε
ε

= + + −

= + −

 [8.29]  

We can therefore identify each of the terms with equation [8.24]: 

2 2

0
2 1 dc

dc D
M E

h G E
c

εε− = −         2 2
0

D D
dcc c M Eε= +          1Sβ

ε
=  [8.30] 

We notice that an index “0” is added to cD
0 to indicate that it is a constant that 

does not depend on any parameters; whereas cD depends on the DC electric field.  

In the (S,D) formalism, the coupling coefficient kt² of the piezoelectric thin film 
only is equal to h²/ ScD. Assuming that the correction factor of stiffness is low and 
making a first-order expansion, kt² is equal to: 

2 3 2 2 2
2

0 0

4 2
1dc dc

t D D
G E M E

k
c c

ε ε
≈ −  [8.31] 

We can simplify the kt² expression by eliminating the term between brackets 
(experimentally this term represents a maximum of 5% of the value of h). 

This gives the following formula: 

2 3 2
2

0

4 dc
t D

G E
k

c

ε
≈  [8.32] 

This expression is very interesting as it shows that coupling depends on the cube 
of the dielectric constant and on the square of the electric field DC. It is therefore 
favorable to work with materials that have a very strong dielectric constant and at 
strong electric field. We also note that the electrostrictive coefficient is squared at 
the numerator. This coefficient depends little on the ferroelectric, antiferroelectric or 
paraelectric nature of the material. It is also relatively insensitive to temperature. On 
the other hand, it is very sensitive to the notion of disorder in the structure. In 
perovskites (ABO3), many substitutions are possible on the cationic sites A and B. 
These substitutions can be made with atoms that have different valences and sizes. 
This induces varying degrees of disorder in the structure. Uchino reported that the 



Electrostrictive Formalism     205 

electrostrictive coefficient Q (such as S = QP²) increases when that order increases 
in the structure. He noticed that these same materials exhibit an opposite change to 
the Curie constant. We recall that the Curie constant, C, is such that  = C/( − C) 
when temperature is above Curie temperature, C, which is the case of 
electrostrictive materials. It is worth noting that Uchino empirically observed that 
electrostrictive materials exhibit an almost constant QC product [UCH 97]. For bulk 
materials in which he was interested, he reports QC  3.103m4C-2K. 

An intuitive way of understanding why QC is just about constant involves 
returning to the phenomenological approach. Referring to Chapter 2, we saw that we 
had: 

2 4

, ,

1 1 3 ' 5 " 2
T T

D D QT
θ θ

α α α
ε χ

≈ = + + −  [8.33] 

with 
C

Cθθα −= . 

Placing ourselves above C, the terms with D are cancelled and we can write: 

1
1
C

ε
θ

∂
=

∂
     

1

2Q
T
ε

∂
= −

∂
 [8.34] 

If we accept that the sensitivity of the dielectric constant of these materials is 
comparable versus both mechanical stresses (T) and temperature ( ) − which is true 
from the experimental point of view − we can imagine from equation [8.34] that QC 
can be roughly constant.  

A microscopic view also enables us to understand this property. A material with 
a lot of cationic disorder enables its cations to move easily without moving the 
oxygen octahedron. Therefore, during the application of an electric field, these 
cations can move a lot, which induces a big change in local charges and so a strong 
dielectric constant. As the octahedron is weakly moved, the exchange of mechanical 
energy is weak and therefore the induced strain is also weak. For this reason, the 
electrostrictive coefficient cannot be high. We can make the reverse argument for a 
material with a weak disorder that exhibits a weaker dielectric constant, but a higher 
electrostrictive coefficient.  
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This means that it is more interesting to choose materials with a high dielectric 
constant, since this last constant appears to the power of three, whereas G is only 
squared in the simplified expression of kt

2.  

To end, stiffness is the numerator of equation [8.32] which indicates that the 
more flexible the material, the more important its coupling. It is likely, however, that 
a flexible material presents a more important mechanical viscosity and therefore 
more significant acoustic losses, which tends to degrade the quality factor of the 
resonators.  
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Chapter 9  

Electric Characterization 

9.1. Static piezoelectric characterization of thin films 

9.1.1. Notion of effective coefficients 

The characterization of the piezoelectricity of thin films is not very simple and 
specific systems must be developed to arrive at them. The main difficulty comes 
from the fact that a well-defined stress or strain must be applied to the piezoelectric 
film, or we must be able to measure a very low displacement.  

There are several techniques in the literature. Some of them tend to be 
standardized, especially for determining coefficient d33 and, more recently, 
coefficient e31 (aixAcct company in Germany). We will note that the most 
sophisticated technique enables us to characterize d33 by using a double 
interferometer that measures the difference in thickness of a sample when the 
piezoelectric thin film is excited by a known electrical signal. A beam is reflected on 
the front and another on the back of the sample to suppress the contribution of 
bending, often of the same order of magnitude as the useful measurement. This 
technique is extremely precise (10-4 A) but necessitates a very elaborate slotted line 
[KHO 96].  

For transverse coefficient measurements, the simplest techniques are based on 
mechanical excitation of a bar of Si 1 cm long on which a piezoelectric film with its 
electrodes is placed. This much lighter technique enables us to find coefficient e31, to 
within a few percent, with a careful calibration of the experimental connection 
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[DES 92]. It is also possible to obtain coefficient d31 through the use of the reverse 
piezoelectric effect, which induces a mechanical strain when an electric field is 
applied. To have a consequent strain, however, it is often imperative to produce a 
micromanufactured beam, which induces a much more complicated process than the 
characterization of e31.  

Let us note that speaking of e31 or d33 is a misuse of language here because it 
more precisely involves effective coefficients due to particular boundary conditions 
applied to the film. Indeed, with the substrate being a lot thicker than the thin film, it 
is the former that imposes on the strain. Thus, if there is no substrate motion, in-
plane film strains are zero (S1 = S2 = 0). Moreover, the stress perpendicular to the 
plane of films is zero (T3 = 0). Using the piezoelectric formalisms previously 
detailed with these mechanical boundary conditions, we get the following effective 
coefficients: 

13
33 33 31

11 12
2

E

eff E E
s

d d d
s s

= −
+

                 13
31 31 33

33

E

eff E
c

e e e
c

= −  [9.1] 

Coefficient d33eff is therefore lower than d33 because s13
E is negative and d31 and 

d33 have opposite signs. As for e31eff, it is higher than e31 because c13
E and c33

E  are 
positive and e31 and e33 have opposite signs. It is common to see d33 >0 and d31 <0. 
This depends on the orientation of polarization in the material. We must be vigilant 
on this point in the case of ferroelectrics such as PZT, for which polarization can be 
reversed by an intense electric field. This is also the case with wurtzites such as 
AlN, for which the deposition process can generate the start of A1 or N growth and 
therefore a downward- or upward-oriented polarization.  

We will now go into the details of one of the techniques for measuring 
coefficient e31eff. There are several of them but they all rely on the same basis.  

9.1.2. Piezoelectric characterization of coefficient e31eff 

The original idea, published for the first time by Deschanvers et al. in 1992 
[DES 92], consists of placing a piezoelectric thin film in MIM (metal-insulator-
metal) configuration on a Si substrate, dividing a test sample that is longer than it is 
wide, and applying a uniaxial stress to it by blocking one end and causing the free-
clamped bar thus obtained to vibrate at its first bending mode. Charges are then 
created on electrodes and can be received on an oscilloscope. A variation of this 
technique is to apply a periodical mechanical excitation to the bar, which improves 
the quality of the signal received by using a lock-in [DUB 99].  
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It is possible to shape the signal by adding an impedance-match circuit between 
the oscilloscope and the piezoelectric film. This matching enables us to extract 
coefficient e31eff as well as the leakage current of the piezoelectric film without other 
electric measurements. A complete description of the set up is given in Figure 9.1 
[DEF 06]. 

 

Figure 9.1. Experimental connection for measuring coefficient e31  
of piezoelectric thin films 

The Si bar is typically 4 cm long by 1 cm wide. It is clamped on a fixed support. 
A jack enables a known initial arrow to be applied to the free end of the bar. The 
jack is mounted on a wheeled carriage that enables the bar to be released. At that 
time, the bar is vibrating mainly in its bending dominant mode if there is enough 
clamping (observed by optical profilometric method). Si transmits its strain to the 
piezoelectric film, which then creates charges. The piezoelectric film is modeled by 
a current source in parallel with static capacitance and a leakage resistance that 
includes dielectric losses. The electric signal then enters an amplifier, which has an 
input impedance of several G . The input impedance of this amplifier is therefore 
fixed by a parallel resistance whose value is between 3 and 82 M . The amplifier is 
mounted as a voltage follower. Its output voltage is therefore equal to its input 
voltage. This connection enables us to model the signal received and to eventually 
extract coefficient e31eff and the leakage resistance of the piezoelectric film.  
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9.1.3. Model 

The Si substrate has a thickness (typically 725 μm for a substrate 200 mm in 
diameter) that is larger than the thin films of the stack. It is therefore the substrate 
that imposes its in-plane strain on all other layers. The piezoelectric film does not 
undergo any out-of-plane T stress and the shear stress is neglected. Thus, the 
mechanical formalism allows us to find the strain, S, applied to the piezoelectric 
film. Furthermore, it is the voltage that we will follow experimentally. It would 
therefore be logical to take the electric field, E, as the electric parameter. However, 
the model is not further simplified by using E or D (electric displacement) because 
neither of the two is cancelled in the experiment. E is therefore used as the electric 
parameter for having access to parameter e31 rather than g31. The piezoelectric 
formalism chosen is therefore (S,E). 

Direction 1 is based on the length of the bar; direction 3 is the upward-directed 
normal to the surface of the film; and direction 2 completes the right-handed 
trihedron. Based on these definitions, the working hypothesis gives: 

E1 = E2 = 0           D1 = D2 = 0              T3 = 0 [9.2] 

The piezoelectric equations become, for a material from the 6mm point group: 

3 13 1 2 33 3 33 3( )E ET c S S c S e E= + + −  [9.3] 

3 31 1 2 33 3 33 3( ) SD e S S e S Eε= + + +  [9.4] 

The combination of equations [9.2] and [9.4] gives: 

3 31 1 2 33 3( ) S
eff effD e S S Eε= + +  [9.5] 

with 
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S S
eff E

e

c
ε ε= +  [9.6] 

Time differentiation of equation [9.5] gives the dielectric and piezoelectric 
current density. Multiplying by A the surface of the top electrode (supposedly the 
smallest one), we are dealing with current contributions of the capacitance, IC, and 
the current source, Ipiezo. 
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In this calculation, we assume that the electrode is short enough to be able to 
neglect any change in the physical parameters along axis 1. Typically, the electrode 
is 0.5 mm long for a 30 mm long beam:  
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With the conventions chosen in Figure 9.1, we get: 
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We have to add the contribution of the leakage current or losees of the 
piezoelectric material. This is modeled by the equivalent resistance, RI. Therefore, 
the effective resistance Reff  has to be taken into account, and the parallel association 
of Rl and Rin, the so-called input resistance (see Figure 9.1). This contribution is not 
directly taken into consideration by the piezoelectric formalism (except when 
complex matrices are applied with a losses term). According to Figure 9.1, we have: 

RinRlCpiezo IIII +=+  [9.9] 

By combining these equations, we obtain: 
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with 33
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In-plane strains are obtained by static calculation of a bent bar [FEY 99]. The bar 
is considered to be vibrating in its first bending mode and the influence of other 
modes is considered to be negligible: 
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with:  

− sijSi: Si compliance coefficients; 

− dSi : Si thickness; 

− L: vibrating length;  

− lm: average position of electrodes in direction 1; and  

− : deflection of the free end of the bar. k is introduced to simplify the following 
expressions.  

NOTE:– S1 + S2 is positive when the film is under tensile stress.  

It is interesting then to integrate the voltage V measured at the terminals of the 
oscilloscope over the time between 0 and infinity.  

[ ] [ ])0()()0()( 310
δδ −+∞+−+∞−=

+∞
kAeRVVCRVdt effeff

S
eff  [9.12] 

V(+ ) is zero as well as V(0) because the charges created during the initial strain 
are left to leak out into the resistance before letting the beam escape. Furthermore, 
(+ ) is also zero. The previous equation therefore becomes: 
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Thus, the reverse integral of the voltage V over the voltage time, linearly depends 
on the tracking input resistance, Rin. The slope, p, of this straight line depends on 
coefficient e31eff  whereas the ordinate at origin Y0 depends on the leakage resistance 
of the piezoelectric thin film. The final values of e31eff and Rl extracted from the 
model are: 

31
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(0)effe
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= −  and 

0
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R
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=  [9.14] 

The data required to extract these values are the surface area of the top electrode, 
the initial deflection, the elastic parameters and the thickness of the substrate (Si),  
the vibrating length and the distance between the clamped-end and the top electrode. 
We must note that it is not necessary to get the capacitance value, nor the thickness 
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of the film. The most delicate value is the vibrating length, L, because it appears to 
the power of three in the denominator and once in the numerator, which in theory 
produces an error twice as big in determining e31eff. The quality of clamping is 
therefore particularly sensitive. Estimating the influence of errors in parameter 
measurement entering the calculation of e31eff (2% per parameter), the accuracy of 
the estimation is in the order of +/-15%. With the losses, Rl, the precision is a lot less 
as the curve cuts the ordinates axis very close to zero, as we will see. This method 
enables us to measure the leakage resistance in leaky films. Having an ordinate at 
the origin close to zero proves that the film has a negligible leakage resistance 
compared to input resistances used in the set up. 

Determining e31eff does not necessarily require the calculation of the slope as a 
single datum obtained with one single input resistance can be enough, in accordance 
with equation [9.13] provided that Rl is found or neglected, which is possible in most 
cases. The slope method, however, is more accurate and checks the value of Rl.  

9.1.4. Example of characterization: PZT films 

The films characterized here are PZT films. The stack used is the following:  
Si substrate, SiO2 0.5μm (antidiffusion film in Si), TiO2 10nm (adhesion layer), Pt 
100 nm (lower electrode), sputtered PZT (piezoelectric) of variable thickness and Pt 
100 nm (upper electrode). Only the top Pt film is patterned by lift-off technique 
(lithography performed before Pt deposition). Access to the bottom electrode is via wet 
etching of PZT. 

The sample presented here is 265 nm thick and was annealed at 700 °C. It is 
poled under a field of 200 kV/cm at room temperature for 40 seconds. The top 
electrode therefore has negative potential during poling. The initial deflection is  
150 μm (downwards) for a beam 26 mm-long and an electrode placed at 5.5 mm 
from the clamped edge. The substrate is 532 μm thick. The surface of the top 
electrode is 480 x 550 μm². Figure 9.2a shows the curve for the reverse voltage 
integral measured in terms of the reverse input resistance used. The maximum 
resistance used is 10 M  and the minimum resistance is that of the oscilloscope 
(1 M ), which gives a rather weak signal with more uncertainty than the other 
resistances. 

Using the slope of the curve in Figure 9.2a, e31eff is equal to -4.0 C/m² +/- 15%. 
The sign is negative because the remanent polarization of the sample is in the 
direction of increasing z. This value corresponds to a rather modest coefficient 
whose low value is principally explained by low thickness. The best results 
published deal with sol-gel PZT films that reach a e31eff of -18 C/m² for a thickness 
of 2 μm with an optimized polarization (100 kV/cm, 10 minutes at 150°C) 
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[CAL 07]. The best sol-gel films between 100 and 200nm thick reach an e31eff of  
-6.5 C/m² for a polarization field of 200 kV/cm applied over a few seconds.  
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Figure 9.2. Reverse integral of the voltage versus time measured for two PZT samples: 
a) reference sample N°9; and b) poor quality sample using the vibrating 

beam method according to the reverse of different input resistances 



Electric Characterization     215 

The linear fit extracted from Figure 9.2a gives an ordinate at the negative origin 
inducing a negative leakage resistance that is not physical. This is the typical case 
for a very high film resistance compared to the input resistances of the set up. To 
test the measurement method suggested, Figure 9.2b shows the piezoelectric 
characterization of a poor quality film (Pb deficiency, significant porosity). The 
value of e31eff  extracted is -1.68 C/m². Intersection with the ordinate axis is very 
clear here and enables us to extract a leakage resistance of 2.7 M . This 
measurement has good precision because Rf is close to the input resistance values 
used in this experiment (3−22 M ).  

9.2. Piezoelectric and atomic force microscopy  

The atomic force microscope in piezoresponse mode is the piezoresponse force 
microscope (PFM). This is part of the family of scanning probe microscopes, the 
general principle of operation of which relies on interaction between a point of 
nanometric dimensions and a surface. The scanning tunneling microscope (STM) 
invented in 1982 by Binnig and Rohrer, two researchers from the Zurich IBM 
laboratory, is the precursor of this family of instruments [BIN 82], while the atomic 
force microscope (AFM), from which PFM is derived, is among the most frequently 
used of these near-field microscopes. This was invented by Binnig in 1986 
[BIN 86]. The piezoresponse mode was introduced in 1991 by Birk et al. with the 
aim of measuring the piezoelectric coefficient of a ferroelectric polymer film [BIR 
91]. Although initially adapted to an STM, the piezoresponse mode is most often 
coupled with an AFM today. We will therefore present AFM and PFM. 

9.2.1. Atomic force microscope 

Atomic force microscopy is a near-field technique, the basic principle of which 
consists of scanning the surface of an object with a very fine tip and detecting the 
effect of forces interacting with the surface. AFM is therefore a very high resolution 
profilometer enabling us to map forces at the atomic scale, thus revealing the  
surface topography of an object. A simplified schematic of an AFM is presented in 
Figure 9.3.  

The most important element of an AFM is the tip (see Figure 9.4). This tip is 
mounted at the end of a cantilever, which is comparable to a spring with a stiffness 
varying between 0.01 and 50 N/m. The shape and size of the tip are crucial 
parameters for an AFM. It must be as fine as possible, while being sufficiently 
mechanically robust to obtain an atomic resolution of the measurement. AFM tips 
are most often made of silicon nitride or crystalline silicon and have a radius of 
curvature of 10 nm. However, this radius deteriorates a bit after a certain number of 
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scans of the sample. This deterioration happens more or less quickly, depending on 
the roughness of the surface of the object analyzed and the mode of AFM operation 
(contact or intermittent contact).  

Deflections of the cantilever are detected through a laser diode and a 
photodetector. A laser beam is thus focused on the end of the cantilever, the surface 
of which is covered by a thin reflecting film. The beam is reflected in the direction 
of a photoelectric cell made of four photodiodes. The latter are illuminated in a 
different way due to reflections of the beam. Voltage differences generated are 
converted into units of length following fine calibration adjustments. Sample 
displacement along the x, y and z axes is obtained thanks to piezoelectric translators 
(generally PZT) that enable micro-displacements of a few angstroms up to one 
hundredth of a micrometer. The piezoelectric scanner can be located under the 
sample or in contact with the cantilever. 
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Figure 9.3. Diagram of a simplified AFM  

 

Figure 9.4. Scanning electron microscope image of an AFM tip 
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During an AFM analysis, the cantilever on which the tip is mounted will move 
very close to the surface of the object to be studied (a few angstroms), initially 
undergoing attractive forces, then repulsive ones. Figure 9.5 represents the evolution 
of the force of interaction between the tip and the surface of the sample in terms of 
the distance separating them. From this force curve, three modes of detection can be 
used to map the surface topography of a sample: the contact mode, the non-contact 
mode and the tapping mode. 

  

 

 

 

 
 

 

Figure 9.5. Curve of the interaction force as a function of the tip-sample distance 

In contact mode, the main interaction between the tip and the sample involves 
repulsive forces of very short reach (a few nanometers at maximum). The changes in 
these forces imposed by the topography are used to record an image. There are two 
principle modes of imagery: constant deflection mode and constant height mode. 

In the first case, deflection of the cantilever is kept constant while the tip sweeps 
the surface, thanks to a control loop that monitors displacement along z of the 
piezoelectric scanner under the sample. Changes in z of 0.01 nm can be measured. 
Isoforce lines are interpreted as the topography of the sample and the contrast of the 
image results solely from the z displacement of the sample. 

In the second case, the height of the sample is fixed and the changes in bending 
of the cantilever are measured. The origin of image contrast here is fluctuations in 
forces related to tip-sample interactions. Figure 9.6 is a topographical image of an 
epitaxial PZT (20/80) film, with a domain structure c/a/c, obtained in contact mode 
[VRE 06]. 
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Figure 9.6. Topographical image of a PZT (20/80) film  

In tapping contact mode, the surface is imaged by making the cantilever oscillate 
at or near its frequency of resonance. Each cantilever has a resonance frequency that 
depends especially on the geometry and on the mass of the cantilever. These 
oscillation frequencies typically go from a few tens of kHz to several hundreds of 
kHz. The height of the cantilever is adjusted in such a way that the tip only ends up 
touching the sample periodically. The gradient of forces modifies the frequency 
response and the amplitude of oscillation of the cantilever. We can therefore 
measure the displacement of the frequency of resonance, i.e. the change in 
amplitude of oscillation. It is this last detection technique that is most often used. 
Amplitude (or frequency) modulation is exploited in the control loop to follow the 
topography of the surface. Resolution is not quite as good as  in contact mode, but 
the resonant mode enables us to avoid deterioration of the tip and/or surface of the 
(fragile) sample. 

The non-contact mode is comparable to the tapping mode. The tip detects 
attractive forces. The control loop will be created by a shift in the frequency of 
resonance in order to follow the surface topography. This mode is preferentially 
used when we are working under a vacuum. The drawback is that the acquisition 
time of an image is relatively long.  

9.2.2. Piezoresponse force microscope 

AFM in piezoresponse mode is a near-field microscopy technique based on the 
reverse piezoelectric effect, which corresponds to a linear coupling between the 
electrical and mechanical properties of a material. This technique was initially 
developed to visualize the polar regions in ferroelectric films [GUT 92]. With 
ferroelectrics also being piezoelectric, they deform when subjected to applied 
voltage.  
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Let us take the simple case of a material with two opposite polarization fields 
perpendicular to the surface of the sample. In the PFM technique, the tip is used as 
an electrode that can be swept over the surface of the sample. At equilibrium, i.e. 
without applied voltage, the two domains will have the same dimension along Z (see 
Figure 9.7a). Now, if a voltage, V, is applied between the tip and the lower 
electrode, the electric field E generated in the sample will produce an extension of 
the field whose polarization is parallel to the electrical field and the contraction of 
the domain at the opposite polarization (see Figures 9.7b and 9.7c). This 
corresponds to the piezoelectric response of the ferroelectric material. 
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Figure 9.7. Basic principle of PFM: a) without voltage;  
b)positive voltage applied to the tip; c) negative voltage applied to the tip 

The measurement device has the same sensitivity as AFM, except that a 
synchronous detection amplifier is used to detect piezoelectric oscillations. A 
sinusoidal voltage, Vac, is applied between the tip and the lower electrode, thus 
necessitating the use of the microscope in contact mode. This voltage must not 
exceed the coercive voltage of the ferroelectric material with the risk of modifying 
the state of polarization of ferroelectric domains. It is also possible to apply a 
continuous voltage, Vdc, in order to polarize the material. Just as for AFM, the most 
important element is the tip. It must be conducting. The tips are most often made 
from strongly doped silicon or even silicon covered with a metal coating (Pt/Ir, 
WC2, Rh, Au). The cantilever generally has a high stiffness constant (>>1 N/m) so 
that the effects of electrostatic interaction between the cantilever/tip couple and the 
lower electrode of the sample are limited [CHR 98].  

Applying a voltage Vac sin(ωt) produces a sample vibration at the same 
frequency ω due to the reverse piezoelectric effect. Assuming that displacement of 
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the surface of the sample is solely linked to induced piezoelectric vibrations, the 
vertical displacement of point, Δz(t), is then expressed: 

Δz(t) = dzzVac sin(ωt + ϕ) [9.15] 

with dzz being the effective piezoelectric coefficient and ϕ = 0 or π depending on the 
orientation of the domains. Ferroelectric domains with opposite orientations will 
therefore lead to piezoresponse signals in phase opposition. This will be translated 
by a strong contrast on the piezoresponse image (see Figure 9.8). 

 

Figure 9.8. Piezoresponse image of a PZT (20/80) film with domains at 180° 

Ferroelectric domains can be viewed by analyzing the first harmonic signal. The 
piezoresponse signal (PRS) thus detected is directly linked to the phase and 
amplitude of surface vibrations via the sensitivity of the detector, δ: 

PRS = δ dzzVac cos(ϕ) [9.16] 

The piezoresponse signal thus contains information about the orientation of 
polarization via dephasing ϕ and about the amplitude of the piezoelectric coefficient, 
provided that ϕ can only take the value 0 or π.  

It is also possible to determine an in-plane component of the polarization vector. 
If the polarization vector is perpendicular to the electric field, there will be no 
piezoelectric strain, depending on the direction of the field. On the other hand, there 
will be a strain in the plane of the sample. This can lead to the cantilever twisting, 
which can be detected by the four quadrants of the photodiode. 
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As seen before in the case of out-of-plane domains, applying a voltage Vac will 
induce piezoelectric oscillation in the plane of the sample with a dephasing of 180° 
between the domains of opposite polarization. 

Figure 9.9 shows a topographical image and the associated piezoresponse image, 
both obtained simultaneously for a polycrystalline PZT (40/60) film. The 
topographical image informs us that the film is made up of grains between 50 nm 
and 200 nm. It is also possible to determine the roughness of the film surface. As for 
the piezoresponse image, it is quite a bit more complicated than the one presented in 
Figure 9.8. Indeed, the image reveals a structure that is rather complex and 
composed mainly of 90° domains (c/a/c structure) [ROY 76]. Nevertheless we can 
distinguish a few domains at 180° for which the contrast is very marked (black or 
white).  

a) b) 

 

Figure 9.9. a) Topography images and b) piezoresponse of a polycrystalline PZT film  

One of the main uses of PFM is local characterization of the electromechanical 
properties of the material with the help of the conducting tip [HAR 00]. This tip is 
positioned at the location we want to analyze. The piezoresponse signal must be 
calibrated beforehand with the use of a test sample, the piezoelectric coefficient of 
which is known (generally, X-cut quartz  for which d33 = 2.17 pm/V). We can 
therefore determine the effective piezoelectric coefficient by varying the voltage 
amplitude Vac between 0 V and the coercive voltage of the sample. We then get a 
straight line (see Figure 9.10a). The piezoelectric constant can be calculated from 
the slope of this straight line, which is expressed by the following equation: 

PRS = δ d33Vac [9.17] 
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where PRS is the piezoresponse signal measured for a PZT (20/80) film with 
tetragonal structure and δ the conversion factor between displacement of the tip and 
the deflection electric signal (sensitivity of the optical detector). In this case, PZT is 
oriented according to the c-axis so well that the piezoelectric coefficient detected is 
d33. It is also possible to measure piezoelectric hysteresis cycles. We then use a 
voltage source, Vdc, in series with the voltage, Vac. The hysteresis cycles are obtained 
by recording the piezoresponse signal while varying Vdc. An example of a hysteresis 
loop d33(V) is presented in Figure 9.10b. Finally, it is theoretically possible to 
estimate the coefficient of electrostriction from the second harmonic signal, 
provided that the noise is sufficiently low. The strain measured is then proportional 
to Eac², but forces us to find the local dielectric permittivity of the material. 

 

Figure 9.10. a) Measurements of the effective piezoelectric coefficient d33; and b) associated 
piezohysteresis cycle implemented on a PZT(20/80) film  

One particularity of the PFM technique is that the electric field in the sample is 
strongly non-uniform due to the asymmetry between the two electrodes [HAR 01]. 
According to Harnagea calculations, 90% of the voltage applied between the AFM 
tip and the lower electrode is confined to 30% of the thickness of the material 
[HAR 04]. So it is possible to observe phenomena that we could not see in the case 
of a plane capacitor. It is this way, for instance, that it is possible to visualize the 
movement of domain walls at 90° in a continuous PZT (20/80) film [LER 06]. These 
90° domains are said to be ferroelastic as they present two states of stable 
polarization orientation (ferroelectric) and it is possible to move from one to another 
of these states by applying a mechanical stress. The question of mobility of these 
ferroelastic domains was long the object of controversial discussions. The electric 
field that is developed under the tip has a non-negligible component in the plane, 
which can represent a certain mobile force for displacing the 90° domains. The 
images in Figure 9.11 were obtained after having swept the surface of the sample 
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with an AFM tip while applying a polarization voltage, Vdc. We clearly see that 
certain ferroelastic domains (vertical and horizontal lines) are mobile. 

 

a) b)

c) d)
 

Figure 9.11. Movement of c/a/c domain walls following the application of a voltage Vdc : a) 
initial state; b) after –6 V; c) after +3 V; and d) after +6 V 

Movement of these ferroelastic domains is translated by a local change in 
piezoelectric response. Figure 9.12 presents two piezoelectric hysteresis cycles 
measured on a PZT (20/80) film presenting a c/a/c structure as in Figure 9.11, where 
one is registered on a c domain and the other on an a domain (in-plane c-axis). The 
first cycle is completely classical and takes into consideration the reversal of 
polarization in a 180° domain. The second loop itself is completely distorted. The 
piezoelectric response at equilibrium (Vdc = 0 V) is close to zero because the 
polarization vector is in the plane of the sample. 

We therefore distinguish two loops depending on whether a positive or negative 
voltage is applied. Figure 9.12b enables us to understand the form of the cycle. For 
positive voltages, the volume probed by the tip is a mix of a and c domains. At 
saturation (Vdc = +5 V), the only contribution to the piezoelectric signal comes from 
the 180° domain. For negative voltages, the piezoelectric response remains constant 
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up to –4 V (domain a does not move), then quickly increases due to the expulsion of 
a domain under the tip. Furthermore, we note that the movement of ferroelastic 
domains is reversible because the piezoelectric signal returns to zero at equilibrium. 

 

Figure 9.12. The effect of movement of a 90° domain on the piezo-hysteresis cycle:  
a) comparison of cycles measured on a c domain and a domain (in-plane c axis). During 
measurement, voltage is swept in the following way: 0 → +5V → -5V → +5V; and b) a 

schematic representation of the movement of the ferroelastic domain under the tip during 
cycle measurement 

It is also possible to probe the piezoelectric response of a sample across a plane 
electrode. The electric contact between the tip and the surface therefore ends up 
being dramatically improved. This enables us to obtain more precise and reliable 
quantitative results. Figure 9.13 presents three piezoelectric hysteresis cycles 
recorded across a plane platinum electrode over a PZT film, as presented in 
Figure 9.11. Curve  was obtained in a region without ferroelastic domain. As for 
curves Δ and ο, they were measured near a 90° domain. A d33 coefficient that is 
twice as large as the one obtained for a c domain is observed locally. The strong 
spatial change in the piezoelectric coefficient d33 is explained by a localized 
movement of the ferroelastic domains [LER 07]. Although the quality of the 
piezoresponse images has deteriorated due to the presence of the platinum electrode, 
it is possible to distinguish the zones where the piezoelectric coefficient is strongly 
excited, i.e. along the 90° domains (white lines on the piezoresponse image). This 
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study enabled us to experimentally prove the increase in polarization near 90° 
domains, in accordance with Ishibashi et al.’s predictions [ISH 05]. 
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Figure 9.13. Piezohysteresis measured near a 90° domain (curves ο and Δ)  
and over a c domain (curve ) across a plane electrode 

The PFM technique is now a standard method of characterization of ferroelectric 
materials [ALE 04a]. It is widely used for studying nanostructures in all genres 
[ALE 04b] such as nanotubes [YUN 03], nanowires [FAN 06] and nanodiscs 
[HAN 09]. PFM has also contributed to the understanding fatigue mechanisms in 
ferroelectric films [COL 98] and reversals of ferroelectric domains [GRU 08]. 
Recently, the Kalinin group in the United States, which is very active in PFM 
instrumentation and its use for studying materials, developed a spectroscopy mode 
for PFM called switching spectroscopy PFM [JES 06]. This mode enables recording 
of a hysteresis loop at any point of an image during its acquisition. 

Thus we have access to a panel of data (coercive fields, imprint voltage and 
amplitude of piezoelectric response), which can be correlated with surface 
topography and can be very useful for representing spatial variations in the 
piezoelectric properties of a ferroelectric capacitor [JES 06]. 

9.3. Ferroelectric measurement 

The characteristic property of ferroelectric materials is that the change in 
polarization due to the electric field presents a hysteresis cycle. The term 
ferroelectricity was chosen by Muller in 1935, due to the analogy between the 
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hysteretic behavior of electric polarization as a function of the electric field and that 
of magnetization as a function of the magnetic field in ferromagnetic materials. 

At the structural level, the presence of a spontaneous polarization in a 
ferroelectric compound is due to the existence of dipole moments, the barycenter of 
positive and negative charges no longer coinciding. A ferroelectric material consists 
of domains within which the dipoles are oriented in the same direction. Under the 
application of a sufficient electric field, the material is polarized: domains oriented in 
the direction of the field grow to the detriment of the others. This contributes to the rise 
in total polarization. Unlike “ordinary” dielectrics in which polarization, P, linearly 
varies with the electric field, E, this phenomenon is manifested for ferroelectric materials 
by a hysteresis cycle, P(E), presented in Figure 9.14. Saturation polarization ± Ps is 
obtained when all electric dipoles of the material are oriented parallel to the applied 
electric field. Remanent polarization ± Pr is the value of polarization at zero electric 
field. The coercive field, Ec, is the electric field necessary for cancelling polarization 
in the material.  

 

Figure 9.14. Ferroelectric hysteresis loop  

In the absence of an applied electric field, a ferroelectric material can present 
two stable states of polarization with opposite signs. Non-volatile memories, the 
operating principle of which is based on switching between these two states of 
polarization, are a direct application of ferroelectricity in thin films [SCO 89]. 
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Measurement of the change in polarization with the electric field E can be done 
with the so-called Sawyer-Tower circuit or the “virtual ground” circuit. These two 
types of measurement are described below. 

9.3.1. Sawyer-Tower circuit 

The Sawyer-Tower circuit, see Figure 9.15, mainly uses a reference capacitor of 
known value, Cn, in series with the ferroelectric capacitor, CFE, to be characterized, 
both being subject to an alternative voltage [SAW 30]. 
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Figure 9.15. Sawyer-Tower circuit 

It allows us to measure the surface charge density D (D: normal electric 
displacement in the electrode plane) accumulated at the electrodes. This surface 
charge density is expressed by: 

D = ε0E + P [9.18] 

with ε0 being vacuum permittivity, E the electric field applied to the ferroelectric 
film and P the total polarization of the ferroelectric film. The hysteresis cycle D(E) 
therefore translates the nonlinear character of domain polarization due to the applied 
electric field. 

By measuring the voltage Vn at the terminals of the standard capacitor Cn in 
series with the film, we can determine the charge QFE of the film. Actually, 
considering two capacitors in series and neglecting the conduction currents in each 
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of them (the ideal capacitive circuit), the electric charge accumulated by each of the 
two capacitors is the same. 

So we write: 

QFE = Qn, with QFE = D.SFE and Qn = Cn 

SFE being the surface of the ferroelectric capacitor. We then get: 

D = n n

FE

C .V
S

 ≈ P [9.19] 

The measurement of Vn (path Y of the oscilloscope) therefore enables us to 
access the surface charge density D. In the case of ferroelectrics, the contribution of 
polarization is much greater than that of the electric field in equation [9.18]. D can 
therefore be compared to P. The electric field measurement E in the ferroelectric 
film happens via the X path of the oscilloscope. The voltage V of the generator is 
expressed: 

V = VFE + Vn [9.20] 

In practice, a sufficiently big Cn is chosen compared to CFE so that its impedance 
is negligible compared to that of the ferroelectric capacitor. This enables us to write  
V ≈ VFE. 

In the hypothesis of a uniform electric field in the film, with d being the 
thickness of the film, E is expressed: 

E = FEV
d

 [9.21] 

A major drawback of ferroelectric measurement via the Sawyer-Tower circuit is 
that the ferroelectric capacitor is continuously cycled during measurement time (a 
few seconds). For films with a precocious fatigue (from 104 polarization cycles, for 
example), we can see the hysteresis cycle progressively vanish (polarization tends to 
be cancelled) [LER 04]. Fatigue represents the loss of remanent polarization of the 
ferroelectric material subject to writing/reading cycles. This circuit is therefore not 
adapted to the study of the fatigue of ferroelectric materials. The “virtual ground” 
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circuit, which will be presented hereafter, enables us to carry out this type of study 
because a single period of the signal is applied to the film to make the polarization 
measurement.  

9.3.2. Virtual ground circuit 

In the method called the virtual ground circuit, the reference capacitor is 
replaced by an operational amplifier A1 (see Figure 9.16). With the differential input 
voltage ε being null (where A1 is ideal), the output voltage U of A1 is directly 
proportional to the displacement current idis crossing the ferroelectric sample 
(U = R.idis). The current displacement density Jdis is then expressed: 

Jdis = D
t

∂
∂

 = 
FE

U
R .S

 [9.22] 

Current density Jdis is then integrated and leads to the value of electric 
displacement D and therefore to polarization P: 

P = 
FE

U
R .S

t

dt [9.23] 
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Figure 9.16. Virtual ground circuit 

In the Sawyer-Tower  circuit, when input voltage is rigorously zero and if Cn is 
not high enough compared to CFE (Cn must be at least 10 times bigger than CFE), the 
sample undergoes a non-negligible voltage. This residual voltage applied to the 
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sample is called back voltage and does not allow the sample to completely relax. 
The way to minimize the effect of back voltage consists of choosing Cn>>CFE. In 
this case, however, the voltage levels measured at the terminals of Cn become very 
low and reduce the accuracy of the measurement of D. On the other hand, with the 
“virtual ground” circuit, the ferroelectric sample is never subjected to back voltage 
because ideally ε = 0 (in reality, a few microvolts). That is why this circuit is said to 
be at “virtual ground” since the ferroelectric capacitor is at mass potential  
without being materially linked to it. 

Moreover, the virtual ground system minimizes the effect of parasitic capacitors 
inherent to the measurement circuit (cables, ~7 to 10 pF). In the Sawyer-Tower 
circuit, the error introduced by the parasitic capacitor can be significant if Cn is not 
sufficiently big compared to the parasitic capacitor. On the other hand, in the virtual 
ground circuit, the parasitic effect is eliminated due to the fact that the input 
potential of amplifier A1 is null. 

It is important to specify that the measurements of hysteresis loops only enable 
us to determine a charge quantity, Q:  

Q = 2PrA + σEAt [9.24] 

with Pr being the remanent polarization, A the surface area of the capacitor, σ 
electric conductivity, E the applied electric field and t measurement time. With 
dielectric losses being proportional to conductivity, σ, these losses can contribute to 
the apparent polarization of the hysteresis cycle. One of Scott’s recent articles shows 
that the results of ferroelectric polarization loop measurement are too often 
misinterpreted due to the presence of measurement artifacts such as leakage currents 
[SCO 08]. Figure 9.17, which represents D−E cycles for non-ferroelectric 
dielectrics, illustrates this last remark [LIN 77]. 

Radiant Technologies suggests two methods for measuring remanent 
polarization. The first one is the method called the virtual ground method, seen 
above, which allows a hysteresis cycle measurement. The second method, called the 
Positive Up, Negative Down (PUND) method, consists of applying a sequence of 
five pulses (see Figure 9.18). The first (preset) pulse allows the ferroelectric 
domains to be oriented in a specified direction and make measurements with 
comparable initial conditions from one sample to the next. The four others lead the 
sample to a state of polarization and retain this state during the duration of the pulse. 
This PUND signal is characterized by three parameters: 

– applied voltage, the amplitude of which is identical for each of the five pulses; 

– the duration of the pulses; 

– the time interval between two consecutive pulses. 
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Eight polarization values are recorded during this sequence. 

 

Figure 9.17. Cycles D−E for: a) lossless linear dielectric; b) linear dielectric with losses; 
 c) nonlinear lossless dielectric; and d) nonlinear dielectric with losses 

 

Figure 9.18. Polarization found during PUND measurement 

The second pulse switches polarization to the opposite state and measures the 
associated polarization P* (switched polarization). In this case, P* contains the sum 
of two out-of-equilibrium polarization components (remanent + non-remanent). A 
second measurement is carried out at zero volts just before the third pulse is applied 
and it gives P*r. The time interval between pulses must be sufficient to eliminate the 
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non-remanent component before the measurement (sample relaxation). The third 
pulse is identical to the second, except that in this case polarization is not switched. 

The two measurements, called P^ and P^r, contain solely non-remanent 
polarization components. The fourth and fifth pulses correspond to the second and 
third pulses, but with opposite sign. 

From these different polarization values, also plotted on an arbitrary hysteresis 
cycle (see Figure 9.19), the term ΔP is defined as follows: 

ΔP = P* − P^ = (remanent + non- remanent) – non- remanent 

                      =  remanent polarization (2Pr). 

Similarly we define ΔPr = P*r – P^r so well that we have ΔP = ΔPr = 2 Pr. 
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Figure 9.19. View of the different polarizations on a hysteresis cycle  

9.4. Dielectric measurement 

A dielectric is an insulating material that is characterized by the presence of a 
dipole moment induced by application of an electric field. Such a material placed in 
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between two electrodes forms a capacitor. When a voltage V is applied to it, the 
energy stored by the capacitor is given by: 

W = 
2CV

2
 [9.25] 

For a plane capacitor, the capacitance C is expressed as follows: 

C = 0 rS
d

 [9.26] 

with ε0 vacuum permittivity, εr relative permittivity, S the surface area of the 
electrodes and d the thickness. 

Two quantities enable us to characterize a dielectric material: its dielectric 
constant and its dielectric losses. The relative dielectric constant εr is defined as 
being the ratio of the charge stored in a given volume of the material over the charge 
for an identical volume placed between two electrodes separated by a vacuum. Thus, 
it indicates the capacity of the material to store electrostatic energy. The dielectric 
losses correspond to the existence of a dephasing between the displacement current 
and the alternative voltage applied to the material. They therefore indicate the 
behavior of the material under an alternative voltage. 

A dielectric material can contain mobile and linked electric charges. In the 
dynamic regime, the total current crossing a capacitor made of a real dielectric is the 
sum of two contributions: the conduction current and the displacement current. In 
the case of a plane capacitor, quantities are uniformly distributed (perpendicular to 
the planes formed by the electrodes) and the current density crossing it is given by: 

J = σE + D
t

∂
∂

 [9.27] 

with J the current density, σ the conductivity, E the electric field applied and D  
the electric displacement. In the sinusoidal regime, expression [9.27], with 
D = ε0εrE, becomes: 

J = σE + jωε0εrE [9.28] 

with ω the angular frequency of electric quantities. In order to take into 
consideration dielectric losses appearing in the material when the frequency of the 
electric signal increases, permittivity is put in complex form: 

εr = ε' − jε'' [9.29] 



234     Integration of Ferroelectric and Piezoelectric Thin Films 
 

with ε' characterizing the faculty of the material to store electrostatic energy and 
'characterizing the possible dissipation of part of this energy (in the form of 
dielectric losses). From this, there results: 

J = (σ+ωε0ε'')E + jωε0ε'E [9.30] 

In the hypothesis of a uniform electric field perpendicular to the electrodes, 
E = V

d
, hence: 

I = 
c

V
R

 + 
d

V
R

 + jωCV [9.31] 

with I the electric current, Rc = d/(σ.S) the resistance due to the conduction current, 
Rd = d/(ωε0ε''S) the resistance due to dielectric losses and C = ε0ε'S/d the 
capacitance of the plane capacitor. In fact, the total current is the sum of two 
resistive terms, therefore in phase with V and a capacitive term in advanced 
quadrature with V. 

In practice and under dynamic conditions, for a sufficiently insulating material 
dielectric losses are typically dominant compared to losses by Joule effect, and the 
equivalent electric circuit of the capacitor is represented in Figure 9.20. 

Rd
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Figure 9.20. Equivalent circuit of the capacitor considering dielectric losses 

Total impedance can be given by the vector diagram in Figure 9.21, in which 
ω = 2πf.  

From this we can deduce: 

tan δ = 
d

1
R C

 = ''
'
 [9.32] 
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tan δ is called the energy loss in the insulator or the dielectric loss tangent. This 
function characterizes the relation between the current at the origin of dielectric 
losses and the one that would cross the capacitor in the absence of these losses. It 
therefore translates the absorption of energy by the material or the deviation 
presented by this material in comparison to a perfect insulator. A good dielectric 
therefore has a loss tangent that tends towards zero. 

ω.C

1/Rd

1/Z

δ

 

Figure 9.21. Vector diagram of a capacitor 

The capacitance and loss tangent of films due to the applied electric field and the 
frequency are measured with the help of an impedance meter. The capacitance of a 
capacitor is defined as the variation in the charge stored when this charge is 
subjected to a potential difference, i.e.: 

C = Q
V

∂
∂

 [9.33] 

The measurement is therefore carried out under dynamic conditions of small 
signals, i.e. by superimposing a sinusoidal signal V(t) of very low amplitude 
(10−100 mV) and controllable frequency at a continuous voltage V0. 

Given that Q = D.S and V = E.d, it happens that: 

C ≅ S
d

. D
E

∂
∂

 [9.34] 

Capacitance is therefore given by variations in electric displacement due to the 
electric field. 

Given that D = ε0.εr.E, then: 

C ≅ S
d

 ε0.εr [9.35] 
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It is therefore possible to determine the dielectric constant of the material. This 
constant varies with the applied electric field as shown in Figure 9.22 in the case of 
a paraelectric material (a) and a ferroelectric material (b). This property of 
permittivity tunability due to the applied electric field is the basis for agile 
microwave applications [GEV 09]. 

 
Figure 9.22. a) Dependence on the electric field of the dielectric constant  

of a paraelectric material; and b) a ferroelectric material  

9.5. Leakage current in metal/insulator/metal structures 

Before any interpretation of capacitors electrical characterization results, a 
description of the classical mechanisms for leakage current conduction in 
metal/insulator/metal structures is proposed, as well as a few notions concerning 
metal/insulator contact. 

9.5.1. Metal/insulator contact: definitions 

9.5.1.1. Fermi level, work function and electronic affinity 

In a crystal, electrons are located on energy levels separated by forbidden bands. 
At T = 0 K, all levels located below Fermi level EF are filled.  

If fn(E) is the probability that a given energy level E is occupied, we have: 

fn(E) = 1 if E < EF; 

fn(E) = 0 if E > EF. 

When the temperature increases, for T > 0 K, electronic distribution loses its 
“binary” nature. The probability that an energy level E is occupied is then 
determined by the Fermi-Dirac statistic: 
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In the case of metals, the Fermi level EF is located inside the conduction band. 
The work function of metal M represents the energy necessary for extracting an 
electron from the conduction band towards the vacuum level. The vacuum level is 
defined as the reference energy of an electron isolated in a vacuum. 

For an insulator or a semiconductor, the Fermi level EF is located inside the 
forbidden band. The energy necessary to extract an electron from the conduction 
band to the vacuum level is, in this case, represented by electronic affinity . The 
work function S necessary to extract an electron from the Fermi level to the 
vacuum level is then equal to  + , with  defined by the difference between 
EC − EF, as represented in Figure 9.23. 

When a metal and an insulator or a semiconductor, come into contact, and after 
thermodynamic equilibrium is reached, the Fermi levels of the two materials are 
aligned. The band structure in the vicinity of the interface is therefore conditioned 
by the eventual difference in work function of the two materials. 

M

Eg

EC

EV

EF

s 
EF

Evacuum 

Metal Insulator  

Figure 9.23. Out of contact metal/insulator energy level diagram 
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9.5.1.2. Neutral contact 

If the work functions are equivalent, M = S, the alignment of Fermi levels 
does not lead to any a band curvature in the insulator, as shown in Figure 9.24. The 
height of the interface barrier is then equal to 0 = M -  = .  

This barrier height represents the energy required by an electron to make it move 
from the Fermi level of the metal to the conduction band of the insulator. 

M = S

Eg

EC

EV

EFEF 

Evacuum

Metal Insulator  

Figure 9.24. Energy level diagram of a metal/insulator neutral contact 

9.5.1.3. Blocking contact 

If M >  + , in the case of an insulator or a semiconductor of type n, the 
alignment of Fermi levels leads to an upward band curvature, as indicated in Figure 
9.25. Indeed, the work function of the metal is in this case greater than the work 
function of the insulator. Hence, the electrons move from the insulator to the metal, 
leading to the creation of a depleted layer in the insulator and the appearance of a 
positive space charge zone. In the metal, an accumulation of electrons is observed at 
the interface, to ensure the electrical neutrality condition. The energy contact 
obtained in this scenario is qualified as a “blocking” contact, because the passage of 
carriers of metal to the insulator is conditioned by the bringing of a certain quantity 
of energy determined by the height of the barrier  = M – . The blocking contact 
can also be observed when M <  +  in the case of a semiconductor of type p 
[BAR 86]. 
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Figure 9.25. Diagram of the energy bands of a metal/insulator blocking contact 

9.5.1.4. Ohmic contact 

If M <  + , in the case of an insulator or a semiconductor of type n, the 
alignment of Fermi levels is accompanied by a downward band curvature, as 
represented in Figure 9.26. 

 

Figure 9.26. Diagram of energy bands of a metal/insulator ohmic contact 

Actually, with the work function of the metal being lower than that of the 
insulator, electrons are extracted from the metal to the insulator. A layer of electrons 
is formed at the interface of the insulator, while a layer of depletion appears in the 
side of the metal. When the width of accumulation reaches a dimension close to that 
of the insulator thickness, the electronic density greatly exceeds the intrinsic density 
of the carriers. 
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A perfect injection at the interface is hence obtained and the current is then only 
limited by the material bulk. This type of contact called ohmic contact is also 
observed when M >  +  in the case of an insulator or a semiconductor of type p 
[BAR 86]. 

9.5.1.5. Intrinsic and extrinsic carriers 

Carriers are called “intrinsic” when they come from the insulating material itself 
and “extrinsic” when they are injected by electrodes. Above a certain voltage level, 
conduction is ensured by extrinsic carriers and the transport mechanisms are then 
divided into two main families: 

– the injection of carriers is limited by interfaces and the electrons freely cross 
through the insulator bulk once they are injected (Schottky emission, tunnel 
conduction); or 

– the electrodes behave like infinite sources of carriers and the current is limited 
by the bulk of the insulator (Poole-Frenkel effect, conduction by carriers jumping 
from trap to trap, current limited by the space charge). 

9.5.2. Conduction mechanisms limited by the interfaces 

Conduction mechanisms limited by the interfaces are observed when 
metal/insulator contact is either neutral or blocking. 

9.5.2.1. Schottky emission 

In the case of Schottky emission or thermoionic emission, the current is 
generated by the carriers flowing above the potential barrier at the interface (see 
Figure 9.27). With m being the height of the energy barrier to be crossed by the 
carriers to be injected, the thermoionic current expression is given by: 

)exp(²*

Tk
TAJ

B

mΦ−
=  [9.37] 

where A* represents the Richardson constant modified by the introduction of m*, the 
effective mass of the electrons, which replaces m0, the free mass of the electrons: 
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The term m corresponds to the maximum of the potential energy curve of 
injected carriers, (x). This evolution of potential energy in the thickness of the film 



Electric Characterization     241 

is described by equation [9.39], in which 0, im(x) and Eext represent, respectively, 
the energy difference between the Fermi level of the metal and the conduction band 
of the insulator, the lowering of the barrier resulting from the force image [BAR 86] 
and the applied field: 

xExx extim −Φ−Φ=Φ )()( 0  [9.39] 

Using the approximation of the lowering im(x) valid for regions close to the 
interface [BAR 86], we have: 
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The maximum m is reached for the value xm that verifies the condition 
d (x)/dx = 0. By inserting equation [9.40] into equation [9.39], after derivation we 
get: 
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The energy barrier m at the metal/insulator interface is therefore obtained by 
taking x = xm in equation [9.39], i.e.: 
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The final expression giving the evolution of thermoionic current as a function of 
temperature and applied electrical field Eext is obtained by implementing the m 
expression in equation [9.37]: 

−Φ
−=

Tk
qE

TAJ
B

iext
2/1

00* )4/(
exp²

επε
 [9.43] 

At constant temperature, the semi-logarithmic representation ln(J) = f(Eext
1/2) of a 

Schottky current is a linear characteristic, with a slope controlled by the constant i, 
defined as the square of the optical refraction index of the material: i = n². 
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Figure 9.27. Diagram of energy bands of a metal/insulator/metal structure under the effect of 
an applied voltage Vext: illustration of the Schottky injection mechanism 

9.5.2.2. Tunnel conduction 

Tunnel conduction is observed when the carriers have insufficient energy to 
cross above the potential barrier at the interface. The only way for these carriers to 
be injected in the oxide is to cross the barrier using the tunnel effect. The current 
density therefore depends on the quantity of electrons likely to cross through the 
barrier by tunnel effect. It also depends on their energy distribution given by the 
Fermi-Dirac statistic f(E), as well as the transparence T(E) that represents the 
probability that an electron might cross the energetic barrier of the oxide [BAR 86]. 

Depending on the level of the electric field applied, two possibilities represented 
in Figures 9.28a and 9.28b, respectively, can be distinguished:  

– the direct tunnel effect; 

– the Fowler-Nordheim tunnel effect. 

a) 

Eap

Metal MetalInsulator  b) 

Eap

Metal MetalInsulator  

Figure 9.28. Illustration of: a) direct tunnel effect; and b) Fowler-Nordheim tunnel effect 
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The direct tunnel effect corresponds to a trapezoidal barrier configuration that is 
observed for low electric field strengths. In this case, the carriers are injected 
directly from one electrode to the other without passing through the conduction band 
of the insulator. 

The Fowler-Nordheim tunnel effect is observed for higher field strengths, in the 
case of a triangular barrier configuration. After having crossed the barrier, the 
carriers pass through the conduction band of the insulator before joining the other 
interface. In this last case, the simplified expression of the Fowler-Nordheim current 
density is expressed by [BAR 86]: 
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9.5.3. Bulk-limited conduction mechanisms 

In the case of an ohmic contact, the injection from interfaces is considered to be 
perfect and the leakage current depends only on electronic properties of the 
insulator. The conduction of carriers in the insulator relies on trapping/untrapping 
mechanisms by shallow trap levels Nt, as well as by donor levels ND localized from a 
few tens of eV to a few eV, respectively, under the conduction band.  

 

Figure 9.29. Diagram of the potential energy of an insulator, containing trap levels subjected 
to an applied voltage Vext. Thermoionic emission is produced the Poole-Frenkel-type mode of 

conduction, whereas the tunnel effect corresponds to hopping mode 
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As long as trap levels are not saturated, electronic conduction is ensured by the 
transfer of carriers from trap to trap. Considering the energy diagram in Figure 9.29, 
two conduction mechanisms can be observed: Poole-Frenkel emission (thermoionic 
effect) and hopping (tunnel effect from trap to trap). When the injection becomes 
strong, a space charge is established in the film due to the accumulation of charges 
in the insulator. We are entering the regime of conduction limited by space charge. 

9.5.3.1. Poole-Frenkel emission 

Poole-Frenkel emission takes place when carriers have enough energy to cross 
the potential barrier through thermoionic emission (Ecarriers > m). For a given trap 
site, the height of the barrier m to cross over is calculated by taking into 
consideration the decrease in potential energy due to Coulombic interactions of the 
carriers trapped in neighboring sites. Assuming that the trapping sites are 
sufficiently spread, evolution of the height of the energy barrier with the applied 
field Eext can be approximated by equation [9.45]: 
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In the case of a thin film for which the width of the zone where electrons 
accumulate at the interface is large in comparison with the film width, the evolution 
of Poole-Frenkel current is given by: 
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In this equation, we find the general expression for the transport of charges in a 
material, with  being the mobility of the carriers, Eext the electric field applied and q 

the elementary charge. The term −Φ
−
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N
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density of carriers coming from trapping levels and passing through the conduction 
band. 

9.5.3.2. Hopping conduction  

When the energy of the carriers is too low to cross the potential barrier 
(Ecarriers < m), conduction can be ensured by tunnel effect. This is called hopping 
conduction. The current is then directly proportional to the field applied, and also 
depends on the density of trapped electrons and the frequency of jumps between two 
sites. A simplified mathematical expression of the current density obtained by this 
mechanism is: 
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where 0 is a time constant, a represents the distance between two traps and n* is the 
density of trapped carriers. 

9.5.3.3. Space-charge-limited conduction 

In the two mechanisms limited by bulk − Poole-Frenkel and hopping conduction 
− the electric field is assumed to be constant across the thickness of the insulator. 
This hypothesis becomes false when the injection of carriers becomes too strong, 
due to the space charge that is established in the film. The distribution of potential is 
therefore modified according to Poisson’s law and the evolution of space-charge-
limited current density is given by: 
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where  represents the rate at which the traps are filled,  is the electronic mobility 
of the carriers, d represents the thickness of the film and Vext is the applied voltage. 

A very strong injection regime is achieved when all the traps are filled (  = 1). 
The transition between the strong and very strong injection regime is characterized 
by the trap filled limit voltage: 
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where Nt represents the trap density. 
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Chapter 10 

Piezoelectric Resonators and Filters1 

10.1. Acoustic resonators: principle and history 

10.1.1. Quartz resonators 

In practice, the first bulk acoustic wave resonators were produced using quartz 
plates. Longitudinal waves were initially used in this type of component, but these 
waves quickly proved to be temperature-sensitive, leading to frequency shifts of 
resonators with temperature changes. 

Crystal cuts enabling the generation of waves with reduced temperature 
sensitivities were therefore investigated. The AT cut, obtained by rotating the plate 
35.15° around the crystallographic X axis proves to be nearly insensitive to 
temperature changes close to the ambient temperature, with only a second-order 
frequency versus temperature derivative. This cut is still used today. Here, only slow 
transverse waves are piezoelectrically coupled.  

In the 1980s, other cuts appeared. These cuts were obtained by two successive 
rotations around the crystallographic axes. These cuts, called FC, IT or SC, exhibit a 
third-order temperature derivative only, but around a temperature higher than the 
ambient temperature (55°C for the FC cut, or even 95°C for the SC cut).  

Another major problem with these resonators is the arrangement of their support. 
During packaging, quartz crystals must be mechanically maintained without their 
vibrations being disturbed. For high-quality factor resonators, the geometries of the 
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resonators are optimized: the plates are generally chamfered or one (or two) of their 
faces is convex, which geometrically forces a confinement of acoustic energy to the 
center of the resonator and enables the plate to be fixed by its edges.  

In 1965, Newell described a way to transform the acoustic impedance of the 
mechanical support of a resonator in such a way that it was comparable to that of air 
or a vacuum and therefore provide a robust mechanical solution to the problem of 
mounting resonators in a package [NEW 65]. For this, Newell suggested stacking 
quarter-wavelength layers of materials with very different acoustic impedances 
above the substrate. This way, very low impedance can be obtained and vibration of 
the resonator is no longer transmitted into the substrate, which therefore no longer 
disturbs its operation. In practice, acoustic waves generated in the resonator are 
reflected by a Bragg lattice, which prevents the resonator from radiating into its 
support.  

Another interesting effect, as Newell showed, is that this also makes the 
complete structure more rigid and so decreases the amplitude of parasitic resonances 
produced by parasitic plate modes [NEW 65]. This idea has however never been 
implemented, because it forces us to stack a certain number of plates together while 
guaranteeing excellent mechanical contact at each interface. This invention is to be 
noted, however, as it will be reused for resonators based on piezoelectric thin films 
operating at high frequency, as we will see later. 

The solution finally retained was suggested in 1977 by Besson. He presents an 
architecture of suspensions that are used to fabricate the resonators with the highest 
quality factors [BES 77]: the central part, the only one to vibrate, is supported by 
four bridges, as represented in Figure 10.1. The bridges are oriented according to the 
direction of minimum sensitivity to stresses. The structure is monolithically 
determined by chemical etching of a single crystal disc.  

 

Figure 10.1. Architecture of the resonator suspended by bridges,  
also called self-suspended quartz  [BES 77] 
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Frequency stability was further improved by no longer placing electrodes on 
quartz, but on the encapsulation placed on both sides of the resonator. The space 
between the quartz crystal and its electrodes is only a few microns, so that the 
electric field generated in the quartz crystal is hardly modified compared to a classic 
resonator. The absence of contact between electrodes and the piezoelectric medium 
suppresses metal diffusion phenomena in the quartz, which guarantees the long-term 
stability of the resonator. This structure is designed like BVA: improved ageing 
packaging and is represented in Figure 10.2. 

 

 

Figure 10.2. Quartz improved ageing packaging [BES 77] 

Such very high spectral purity resonators are used for time-frequency metrology 
applications where very great frequency stability is necessary. Atomic clocks are a 
typical example of this: atomic time references (such as, for example, Cesium 
fountains) are, in practice, enslaved by quartz resonators to ensure their long-term 
stability [BES 95]. 

10.1.2. High-frequency operation of resonators 

The theoretical analysis of bulk wave resonators in Chapter 7 showed that 
resonance frequency  is directly related to the thickness of the piezoelectric material. 
In other words, the increase in operation frequency is obtained by thinning the 
piezoelectric substrates used. For a long time this has limited  quartz  resonator 
operation to a few hundreds of MHz. One way of pursuing the increase in frequency 
while keeping thicknesses compatible with classic quartz machining techniques was, 
initially, to make resonators work in harmonic modes. Nevertheless, as we saw, 
operating on a harmonic p leads to a decrease in the effective electromechanical 
coupling coefficient of p2, which seriously limits their use for filtering applications. 
In order to keep an effective coupling coefficient that is compatible with filter 
synthesis, in 1971 Roberts had the idea of using a cadmium sulfide (CdS) thin film 
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sandwiched between two electrodes and placed atop a quartz substrate [ROB 71], as 
represented in Figure 10.3. He showed that harmonic modes of a composite structure 
can exhibit effective coupling factors higher than the dominant vibration mode. He 
therefore ended up reaching effective coupling coefficients of 5% at 234 MHz, on 
the ninth harmonic, which is unattainable with quartz alone. 

 

Figure 10.3. CdS/quartz resonator [ROB 71] 

Another method, suggested in 1974 by Coussot [COU 74], is to locally thin a 
piezoelectric substrate made, for example, of lithium niobate in such a way as to 
form a membrane that is then metalized on its two faces. For mechanical reasons, 
the thickness of these membranes was initially limited to 10−20 μm, which only lead 
to frequencies of 100−200 MHz. In 1978, based on same idea, Berté [BER 78] 
created resonators made of 3 μm thick quartz membranes and he obtained a 
dominant mode at 525 MHz. 

In 1980, Grudkowski [GRU 80] and Lakin [LAK 80] combined the two 
approaches above to create composite resonators made of piezoelectric thin films 
supported by a silicon membrane obtained by a local etching of the substrate. These 
devices are represented in Figure 10.4. Their works take advantage of advances in 
the fields of piezoelectric thin film deposition and silicon etching. The advantage of 
using a silicon substrate is the possibility of co-integration with active circuits or 
with MEMS components.  

In order to precisely control the membrane thickness, the two authors implanted 
the silicon substrate with boron over the membrane. Etching of the substrate is based 
on a chemical attack that has a strong etching selectivity between the intrinsic and 
doped silicon, in such a way as to form almost an etch stop layer.  

With the piezoelectric film, the two candidates initially studied were zinc oxide 
(ZnO) and aluminum nitride (AlN), the first having slightly better piezoelectric 
properties than the second, but a lower bulk wave propagation velocity (11 km/s for 
AlN compared to 6.4 km/s for ZnO). This forces the use of thinner films at 
equivalent frequency and therefore is less suited to operation at higher frequencies. 
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In addition, AlN exhibits lower variations of its acoustic properties with 
temperature. This is why it is this material that is currently almost the only one used 
in industrial production. 

 

Figure 10.4. Composite ZnO/Si resonator [LAK 82] 

These two materials are of hexagonal crystal structure. Naturally, deposition of 
these materials on textured electrodes or an amorphous plane surface leads to the 
crystallographic axis of symmetry being perpendicular to the surface of the 
substrate. For this reason, when metalizing the two faces of the piezoelectric film, 
longitudinal waves are naturally excited across its width. The principal mode of 
vibration of these resonators is therefore different from the shear mode used in 
classic quartz resonators and bulk wave filters. Nevertheless, as shown by 
theoretical calculations, this has no fundamental impact on the operation of these 
components. 

The first resonators of this type, called thin film resonators (TFR), have a 
dominant mode at frequencies of several hundred MHz. In order to be able to 
increase operation frequency while trying to preserve the use of the fundamental 
vibration mode, it proved necessary to further reduce the resonator thickness. To this 
end, as soon as deposition processes enabled low-stress films to be obtained, support 
membranes proved to be useless. Resonators became then only composed of a self-
suspended piezoelectric film sandwiched between two electrodes, coming closer to  
the ideal resonator, as represented in Figure 10.5. In practice, such a structure does 
not enable temperature compensation as the piezoelectric films used do not present 
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intrinsic compensation. The temperature derivative is nevertheless similar to the one 
displayed by surface acoustic wave resonators (SAWs), which is the technology that 
is principally used for radio frequency filtering. Due to the polycrystalline character 
of the films deposited and defects in these films, suppressing a single crystal support 
leads to a more fragile structure and a decrease in its coefficient of quality at the 
same time. Nevertheless, it enables a clear increase in resonance frequency and in 
electromechanical coupling factor. These defects initially noticed have not been 
shown to be unacceptable for the use of these resonators in radiofrequency filters. 

As represented in Figures 10.4 and 10.5, the chemical etching of silicon 
originally used produces inclined grooves corresponding to the crystal planes with 
the lowest etching velocity. These grooves force us to foresee that etching openings 
will be considerably larger than the resonator, which strongly reduces the om-wafer 
integration. From an industrial point of view, therefore, this solution is not very 
profitable. Processes for dry deep etching of silicon were used to supply almost 
vertical grooves. Such a stage nevertheless remains expensive, as it requires a 
double-side alignment and relatively long etching times. 

 

Figure 10.5. Resonator with self-suspended piezoelectric film [LAK 82] 

To overcome these limitations, Satoh et al. [SAT 85] developed a process flow 
for obtaining  a suspended piezoelectric membrane offering  a high integration 
density, relying entirely on operations carried out on the top face of the substrate: 
the resonator is built on top of a sacrificial film. This film is removed by chemical 
etching or plasma etching across liberation orifices. At the end of this process, a 
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membrane suspended above an air gap is obtained, as represented in Figure 10.6. 
This new type of component is called a film bulk acoustic resonator (FBAR).  

 

Figure 10.6. Air gap resonator [SAT 85] 

Piezoelectric membranes, whether they are produced by backside etching of the 
substrate or by the use of a front face sacrificial layer, remain very flexible and  
mechanically fragile. In addition, they exhibit a reduced path for evacuation of the 
heat generated in the resonator during operation, which can be the source of power-
related problems. This is why Lakin, in 1995, suggested a new resonator concept 
based on piezoelectric thin films [LAK 95a]. Returning to Newell’s idea of using an 
acoustic Bragg mirror to isolate a quartz resonator from its support [NEW 65], he 
suggested applying this idea to resonators using piezoelectric thin films. At 
frequencies of a few GHz, the quarter-wavelength films necessary for forming a 
Bragg mirror have thicknesses accessible to thin film deposition techniques, just like 
the piezoelectric film.  For this reason, a mirror can be simply produced by a 
succession of thin film depositions. Such a device has been baptized a solidly 
mounted resonator (SMR) and is represented in Figure 10.7. 

 

Figure 10.7. Diagram of a SMR [LAK 95b] 
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10.1.3. Perfecting FBAR and SMR resonators 

Specifications of standards involving FBAR or SMR resonators require filters 
with relative pass bands varying between 3 and 4% of their center frequency. This 
requires resonators with electromechanical coupling factors in the order of 6−8% in 
order to allow a spacing between resonance and antiresonance frequencies sufficient 
to limit the insertion losses and ripple of the transmission function. AlN, almost 
exclusively used industrially for these applications, has an electromechanical 
coupling coefficient of 6.5%. It therefore fulfills the specification of only the least 
critical standards. Even for these standards, however, taking into consideration the 
frequency shifts caused by temperature changes requires filters with wider bands to 
be designed, which finally require electromechanical coupling coefficients 
approaching 7%. To be able to synthesize these filters, it is therefore necessary to 
prevent deterioration of this coupling coefficient and to seek to improve the intrinsic 
performances of the material used [KAI 07]. 

Furthermore, filter specifications exhibit a double constraint: minimizing filter 
insertion losses, i.e. maximizing in-band transmission; but at the same time, the 
filters must reject signals localized in adjacent frequency bands that end up, with the 
increase in spectral congestion, being ever closer. For this, it is necessary to 
maximize the quality of resonators, in order to offer maximum impedance variations 
with frequency. 

Section 10.1.2 showed the evolution of bulk wave resonators in the 1980s and 
1990s, ending up with the two current industrial solutions: FBARs, commercialized 
since the end of the 1990s, and SMRs. The basic structures are now determined and 
a large number of improvements have appeared over the last 10 years. These 
improvements aimed at increasing electromechanical coupling coefficients and 
quality factors. They have led to great complication of the conception and 
fabrication of these components. Thus, industrial SMR resonators currently involve 
no less than 15 mask levels: the technological complexity of these components 
comes close to that of integrated circuits [AIG 08]. 

10.1.3.1. Electrodes 

The simplest functional resonator, in terms of technological realization, is a 
SMR, all the films of which are deposited. Only the layer corresponding to the upper 
electrode needs to be patterned, as illustrated in Figure 10.8. It is therefore practical 
to have two resonators in series to be able to recover the electric contacts on the 
upper level. If the mass connection exhibits an area considerably larger than the 
other electrode, we end up with two strongly different series capacitors, which in the 
end behave like the smaller of the two capacitors. Such a device can already be used 
to characterize material stacks and estimate the performances of a resonator. This 
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only provides an estimation, however, as such geometries generally provide 
electrical parasitics, especially an increase in static capacitance caused by lines of 
electric fields leaving the upper electrode to reach the large overflow of the lower 
electrode. 

When it becomes critical to limit these parasitic capacitances, the overflow of the 
lower electrode compared to the upper electrode must be minimal. Indeed, 
piezoelectric resonators are very sensitive to a parasitic capacitance. If we return to 
the expression of the admittance of a resonator from the equivalent Butterworth-Van 
Dyke (BVD) model and add a parallel capacitor, we get the effective admittance: 
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Figure 10.8. Diagram of the simplest possible resonator,  
using only one step of photolithography [AIG 08] 

From this, it results that this capacitance leaves the frequency of resonance 
stable, but on the other hand it decreases the effective electromechanical coupling 
coefficient: 
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Therefore, to prevent the effective coupling coefficient deteriorating, it is 
necessary to limit these parasitic capacitances: a parasitic capacitance of 10% of the 
static capacitance (i.e. 0.1 pF for typical resonators of 1 pF) leads to a 10% decrease 
in the electromechanical coupling coefficient (or a drop from 6.5 to 6% of this 
factor). 

Nevertheless, a definition of the two metal levels with identical masks can be 
problematic from a technological point of view because with the slightest 
misalignment, it is the entire surface of the resonator and, therefore its static 
capacitance, which is modified. Despite the big lateral dimensions of the resonators 
(of about 100 μm), the lithography processes used should provide the maximum 
alignment precision to allow for reducing the extension of the bottom electrode from 
underneath the top electrode, and so to not substantially deteriorate the effective 
electromechanical coupling coefficient. With this structure, it becomes necessary to 
define contacts on the two electrode levels, which forces the formation of openings 
through the piezoelectric film and imposes extra photolithography and etching steps. 

Furthermore, the choice of electrode material is critical. Originally, low 
resistivity metals were used, typically aluminum, or even gold. Very quickly, studies 
on piezoelectric thin film deposition showed that the nature of the lower electrode 
had a strong impact on the quality of piezoelectric films and their piezoelectric 
properties. Metal films in particular must be strongly textured, i.e. they must clearly 
exhibit a crystal orientation, but at the same time their atoms must be positioned at 
the surface of the electrode to present a lattice parameter compatible with a quasi-
hepitaxial growth of the piezoelectric film. 

This constraint requires the use of a seed layer, which serves both as an adhesion 
layer between the substrate and the metal film, and as a layer enhancing the 
electrode texturation. In addition, it forces the use of a metal deposition process 
almost as critical as that of piezoelectric film deposition.  

The constraint of crystallographic compatibility between the metal and the 
piezoelectric film forces the use of specific metals. The best candidate is platinum 
oriented along its [111] crystallographic axis. But this metal has the disadvantages 
of exhibiting a high resistivity and being very expensive. Molybdenum (with a [110] 
orientation) is therefore usually preferred.  

Electrodes also have an influence on the propagation of acoustic waves in the 
layer stack of a resonator. In the section on the principles of operation of a bulk-
wave resonator, we saw that the presence of electrodes leads to a decrease in the 
resonance frequency caused by the mass loading effect. This loading can be 
compensated for by a decrease in the thickness of the piezoelectric film. At constant 
frequency, it is therefore possible to show that the thickness and nature of electrodes 
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influence the effective electromechanical coupling coefficient of the resonator. Very 
thick electrodes tend to uniformly deteriorate the electromechanical coupling 
coefficient. However, for small thicknesses, they allow it to increase. This gain is 
that much stronger than the acoustic impedance of the metal is high, as illustrated in 
Figure 10.9.  

 

Figure 10.9. Electromechanical coupling in terms of the relation between electrode thickness 
and that of the piezoelectric material for materials most normally used  

(Al, Pt, Mo, W, Ru)[KAI 07] 

The inconvenience is that metals with high acoustic impedance generally also 
exhibit a large resistivity, as shown in Figure 10.10. A compromise therefore needs 
to be found between resistive losses and improvement of the electromechanical 
coupling coefficient. It is in this way that molybdenum long remained the best 
compromise. More recently, iridium was suggested as an interesting alternative 
[IBO 08] because it exhibits a relatively low resistivity associated with extremely 
high acoustic impedance, as represented in Figure 10.10. 

The improvement in the electromechanical coupling coefficient is, in practice, 
due to acoustic waves being confined in the piezoelectric film and to a reduction of 
the amplitude of vibrations in metal films [REI 02], as represented in Figure 10.11. 
Lakin suggested an alternative to the usual compromise, which involves using 
electrodes made of two distinct metals: one with a strong acoustic impedance, 
generally tungsten, in contact with the piezoelectric film and the other with a strong 
conductivity, generally aluminum [LAK 01a], as represented in Figure 10.12. 
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Figure 10.10. Acoustic impedance and resistivity of most metals that can be used as  
bulk-wave resonator electrodes [REI 09] 

Varying the relative thicknesses of the two metals, we succeed in globally 
obtaining a resonator whose coupling coefficients and access resistances are located 
anywhere between the extremes formed by the use of each metal. This solution, 
although it needs to deposit and control more films (in terms of thickness and 
texture), offers greater freedom to filter designers. 

 

Figure 10.11. Displacement profiles in a resonator for a structure made up of 2.5 μm AlN 
and Al or Mo electrodes 250 nm thick, corresponding to piles presenting a maximum 

electromechanical coupling coefficient in two cases [REI 02] 
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Figure 10.12. Configuration of two-layer electrodes on: a) FBAR; and b) SMR resonators 

10.1.3.2. Bragg mirror  

For the first applications, Bragg mirrors made up of AlN and SiO2, for which 
seven layers are necessary, were used [LAK 01a]. Later, the use of silicon nitride 
(SiN) and silicon oxycarbide (SiOC) was suggested [CAR 05]. Although the 
acoustic impedance of each of these two materials is relatively low, their impedance 
ratio is nevertheless extremely high. Thus, only three pairs of quarter-wavelength 
films are necessary for ensuring transmission of acoustic waves of -35 dB (or a 
reflection of 99.9%) from the resonator towards the substrate, which is the condition 
of sufficient acoustic isolation. 

In comparison, Infineon suggested using mirrors made of layers of tungsten (W) 
and silica (SiO2), exhibiting equivalent performances [AIG 03]. The inconvenience of 
this type of mirror is that it uses a metal that risks forming inter-resonator parasitic 
connections, forming an electric path that crosses capacitors formed by the silica 
layers. With this effect being unacceptable for filtering applications as it directly 
short-circuits the whole device, it is necessary to limit tungsten layers and to localize 
them only under resonators. This necessitates extra lithography and etching steps. In 
some implementations, a planarization step aims to suppress the topology induced 
by the patterning of tungsten films. 

Initially, all these films had thicknesses equal to a quarter-wavelength of the 
longitudinal wave, to obtain a maximum reflection coefficient. However, with this 
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type of arrangement, the maximum quality coefficients reached in the first 
applications were approximately 700, which was insufficient for the synthesis of 
filters satisfying radio frequency (RF) specifications in terms of losses. 
Characterizations by optical interferometry showed that despite mirrors with 
coefficients of reflection >99.9%, vibrations could still be detected on the back of 
the substrate, providing evidence of energy leakage through the mirror [KAI 07]. In 
reality these vibrations are produced by shear waves crossing the mirror. As the 
propagation velocities of this type of wave are close to half those of longitudinal 
waves, the quarter-wavelength mirror presents a very weak reflection, as shown in 
Figure 10.13.  

These waves originate in the finite lateral dimensions of the resonators. In the 
acoustic formalism, we always assumed a resonator with infinite lateral dimensions, 
which forced a purely vertical propagation. In reality, this hypothesis is no longer 
respected and excited waves have a lateral propagation component that is low, but 
not zero. Mathematically, it is possible to show that a linear combination of 
longitudinal vibrations and shear vibrations must be considered to correctly describe 
the vibrations of the resonator. Even if <1% of acoustic energy is made up of shear 
vibrations, the leakage of this from the resonator towards the substrate is sufficient 
to limit quality coefficients to a value of 700−900 [MAR 05]. 

 

Figure 10.13. Transmission coefficients for a SiN/SiOC Bragg mirror  
composed of three pairs of quarter-wave films 

Recent resonators integrate Bragg mirrors designed to ensure a reflection of both 
longitudinal waves and transverse waves at the same time, in order to keep most of 
the energy inside the resonator. The transmission spectra of such a mirror are 



Piezoelectric Resonators and Filters     263 

 

represented in Figure 10.14. In practice, this implies that quarter-wavelength films 
should no longer be used and so there is a decrease in the coefficient of reflection of 
longitudinal waves. 

The very low deterioration of the maximum attainable coefficient of quality, 
however, due to a slightly reduced reflection coefficient is more than outweighed by 
the decrease in shear wave leakage and the corresponding increase in quality 
coefficient. 

 

Figure 10.14. Coefficients of transmission for a SiN/SiOC Bragg mirror with three pairs of 
films optimized for reflecting longitudinal and shear waves at the same time 

Optimization of the Bragg mirror enables us to confine vibrations vertically. For 
its effect to be fully beneficial, we must also ensure a lateral confinement. Naturally, 
in an aluminum nitride thin film resonator, this confinement is not assured: 
vibrations of the resonator initiate vibrations in its vicinity that manifest in the form 
of waves propagating away from the resonator and therefore taking  energy away 
with them, again producing losses through lack of lateral confinement. This 
behavior is explained by the fact that the waves exploited have a negative group 
velocity: the relation between frequency and wave vector, called the dispersion 
curve, has a negative slope, as illustrated in Figure 10.15. Thus, at resonance (i.e. at 
the frequency where the wave vector of the resonator is null), wave vectors can exist 
in the area surrounding the resonator.  
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Figure 10.15. Shape of dispersion curves for the thickness extensional mode in a stack, where 
it exhibits a negative group velocity [TIE 83]. The continuous line represents the area 
surrounding the resonator, and the dotted line the metalized area inside the resonator 

Group velocity is in practice influenced, in a homogeneous plate at least, by the 
Poisson’s ratio of the material. As a function of this coefficient, group velocity can 
even change sign and become positive [MIN 57]. The transition from one behavior 
to the other takes place for a Poisson’s ratio of 1:3, as illustrated in Figure 10.16.  

 

Figure 10.16. Influence of Poisson’s ratio on the dispersion curves of  
an isotropic material plate [FAT 05a] 

For a resonator, the same effect is obtained by artificially modifying the effective 
Poisson’s ratio of the material stack, causing the proportion of materials presenting a 
low Poisson’s ratio  (typically SiO2) to vary as well as those presenting a large ratio 
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(for example AlN). In practice, this effect is obtained by increasing the thickness of 
the upper layer of the Bragg mirror and compensating for this by reducing the 
thickness of the piezoelectric film [FAT 05a] to keep the same resonance frequency. 
With a positive group velocity, there can no longer be real solutions to the 
propagation equation outside the resonator at the resonance frequency: waves are 
laterally confined in the resonator. The drawback of this method is that it leads to a 
slight decrease in the effective electromechanical coupling coefficient, but it is the 
price that has to be paid to optimize the quality factor. 

10.1.3.3. Lateral loading of a resonator 

Whereas a three-dimensional confinement of waves in the resonator largely 
suppresses acoustic leakage, it also results in the appearance of a large number of 
parasitics on the electric response. These parasitics reduce the spectral purity of the 
resonator and can even be the cause of extra ripples in the in-band transmission of a 
filter. The parasitics are produced by the resonance of laterally propagating waves 
reflected at the edges of the resonator by their inability to propagate outside it 
[KAI 07]. 

With these parasitics being related to the lateral dimensions of electrodes, the 
techniques used to suppress them aim at making a resonator appear to be virtually 
infinite. A first method, suggested for FBAR resonators by Avago, consists of 
adopting electrodes with non-symmetric shapes [LAR 01], as illustrated in 
Figure 10.17.  

 

Figure 10.17. Shape of non-symmetric electrodes and path of a laterally  
propagating wave inside of the resonator [LAR 01] 

Without parallel sides, standing waves form with more difficulty. In practice, the 
resonance condition for these laterally propagating waves is spatially smeared out, 
which leads to a deterioration of their quality factor and spreading them out on the 
spectrum. The parasitics are therefore smoothed out rather than truly suppressed. 

A second method, suggested by Nokia, is analogous to the conditions of 
adaptation of radiofrequency transmission lines by adding localized loading at the 
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edges of the resonators, as illustrated in Figure 10.18. Such a localized loading has a 
well-chosen thickness and width, for which it ends up imposing an impedance 
matching condition between laterally propagating waves inside the resonator and the 
outside environment [KAI 04]. The reflection of these waves is therefore 
suppressed. In addition, the boundary conditions for these waves become the same 
as those that would be presented by an infinite resonator: these waves are simply not 
excited. It is therefore possible to reach quality factors >2,000. 

 

Figure 10.18. Top view (left) and cross-section (right) of a resonator  
with lateral loading over its electrodes [KAI 04] 

10.1.3.4. Mass loading 

To synthesize a filter, we saw in Chapter 7 that two types of resonators operating 
at different frequencies are necessary. In theory, this necessitates a specific material 
stack for each resonator, with its own set of thicknesses. This is not a profitable 
approach, however, in terms of area requirements or technological complexity. 
Instead, the two resonators are made in the same way and the frequency of 
resonators located in the parallel arms is slightly lowered by adding a mass loading. 
This loading takes the form of an extra layer patterned to cover the parallel 
resonators only.  

The first approaches consisted of using insulating films, which additionally 
protected the surface of the resonators. The one chosen at CEA LETI involves 
etching the upper electrodes to reduce their thickness over the series resonators. The 
interest in doing this is two-fold. First, electrical connections are slightly thicker 
than if they were made for the series resonators. This contributes to reducing the 
resistivity of these electrodes. Second, when using electrodes with high acoustic 
impedance, the effective electromechanical coupling coefficient is increased 
compared to solutions based on a dielectric layer, which usually exhibit lower 
acoustic impedance.  

10.1.3.5. Passivation 

Due to the small volume of a bulk acoustic wave (BAW) resonator, the power 
densities present are extremely high, even in the presence of an excitation in the 
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order of a Watt. This corresponds to the maximum level of the output signal of an 
amplifier in an RF chain. This power is mainly dissipated in the form of the Joule 
effect taking place in the electrodes and the warming caused by alternating 
compression and expansion of the piezoelectric film. During operation, a resonator 
can reach a temperature between 40 and 180°C, depending on its geometry and 
fabrication process [IVI 08]. Under the effect of temperature, the surfaces of 
electrodes tend to oxidize if exposed to air, which facilitates their destruction when 
the resonator is subjected to a strong electric stress. Resonators therefore need to be 
encapsulated by a layer serving as a barrier to oxygen diffusion. For the BAW 
technology developed at CEA LETI, for example, a thin film of SiN is used. This 
top layer influences the characteristics of the resonator in terms of resonance 
frequency and effective electromechanical coupling coefficient. It especially tends to 
deteriorate the latter. Thus, a minimum thickness is sought to maximize the 
properties of the resonator, but a limit is imposed by the need for a sufficiently thick 
barrier.  

The second advantage of this passivation layer is that the resonance and 
antiresonance frequencies vary almost linearly with thickness. The passivation layer 
can therefore be used to compensate for production errors and ensure that the 
frequency targets are reached at the end of their fabrication. With the appearance of 
etching equipment using ion beams or beams made of clusters of atoms, it has 
become possible to locally adjust the frequency of components and thus to correct 
frequency dispersions encountered on the same substrate, caused by the cumulating  
deposition inhomogeneity profiles of each film. This step is critical for an industrial 
process because it ensures a sufficient yield to ensure the industrial profitability of 
the process [REI 07]. 

10.1.3.6. Encapsulation 

After being manufactured, resonators must be able to be introduced into a 
ceramic package or be mounted on a substrate through a classic assembly technique:  

− wire-bonding (sticking it onto a substrate and connecting it by soldering gold 
or aluminum wires); or  

− flip-chip (a connection with the resonator flipped over with its face directed 
towards the substrate, and connections and mechanical assembly by solder balls).  

In the end, the assembly is generally sealed in a resist or polymer, before being 
encapsulated by molding of a plastic top. During these steps, it is necessary to 
protect the surface of the resonators to prevent contact between the surface and any 
other material, which would disturb the mechanical vibrations of resonators during 
operation. 
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The package connection covered by a metal cap is the simplest solution, but it 
has the drawback of providing a very bulky final component and necessitates cutting 
and unit manipulation of the chips. Collective capping techniques have therefore 
been developed. Avago and Infineon developed techniques based on forming silicon 
caps by etching dedicated wafers to form cavities, then bonding these wafers on the 
substrates that served to produce resonators. Finally, holes are etched through these 
caping substrates and filled with metal to form the electrical vias used to create an 
electric contact towards the filter electrodes, see Figure 10.19. 

 

Figure 10.19. Protection of a BAW resonator by encapsulation through a substrate  
in which a cavity and crossing pathways were made [TIM 04] 

CEA LETI developed a process based on using a resist forming a sacrificial 
layer, deposition of a mineral cap, etching the sacrificial layer through openings 
formed in the caps and finally sealing these sacrificial layer etching holes with a 
polymer. This solution has the advantage of being relatively cheap and not 
presenting significant topology, since the cavities formed above the resonators are 
only a few microns thick, as illustrated in Figure 10.20. In addition, electric 
measurements proved that the deposition then removal of the resist sacrificial layer 
does not disturb the electric response of a resonator: its resonance and antiresonance 
frequencies are unaffected. 

 

Figure 10.20. Protection of resonators from a BAW resonator   
by a thin film encapsulation according to [POR 07] 
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10.2. BAW technology 

10.2.1. Introduction 

The first publications on BAWs date from the beginning of the 1980s [GRU 80, 
LAK 82]. Worldwide research activity then increased until the beginning of the 
1990s. At this moment the enthusiasm aroused by this new technology decreased, 
especially because of the difficulty in developing a stabilized fabrication process.  

One of the most critical components of RF architecture of a mobile terminal is 
the duplexer. A duplexer is the assembly of two filters with the same input point (the 
antenna). It filters the RF signal going to the reception path (Rx filter) and the RF 
signal coming from the transmission path (Tx filter). With low insertion loss at the 
filter stage, you can relax the requirements on the LNA (low noise amplifier) of the 
RX path and on the PA (power amplifier) of the TX path, and that means having less 
consumption and thus a longer battery life. They must also have significant levels of 
out-of-band rejection to reject eventual interferers, such as GPS signals (1,575 MHz) 
and Bluetooth (2,400 MHz), but also to avoid leakage of the Tx signal into the Rx 
path. These filters must also remain linear. Finally, the Tx filter must support the RF 
output power levels of the power amplifier. It is often placed next to this amplifier; it 
must not shift with temperature. 

At the beginning of the 2000s, duplexers were based on ceramic filters for the Tx 
path and SAW filters for the Rx path. The first duplexers had acceptable 
performance but were very cumbersome while the second ones were limited to the 
Rx path because of their low power-handling capabilities. The first BAW duplexers 
introduced in 2001 by Agilent [RUB 99, RUB 01] to cover the personal 
communications service (PCS) band truly revolutionized the duplexer market 
(Agilent’s BAW team became Avago Technologies in 2005). Their much smaller 
size, very low insertion losses, excellent RF power-handling capabilities and 
electrostatic discharge (ESD) robustness, enabled them to cover most of the market. 

Since this era, BAW technology has extended to other types of RF filter and 
other standards (especially Universal Mobile Telecommunications System 
(UMTS)). Recently, a new application for this technology appeared in the literature 
[PET 08, PET 09]: BAW resonators dedicated to time reference applications. The 
possibility of replacing quartz with a component that can be integrated into silicon 
opened unimaginable perspectives in terms of complete RF system integration. 

In section 10.2.2, we will present a review of BAW technology by introducing 
the principle of BAW resonator and filter operation. We will identify the key 
parameters of resonators and explain what impacts they have on filter performances. 
We will then discuss a BAW from CEA LETI technology in detail and will give a 
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few examples of realizations. Section 10.2.3 will be devoted to an extension of 
BAW technology, which consists of producing acoustically coupled filters (coupled 
resonator filter, CRF) thanks to the vertical stacking of two piezoelectric resonators. 

10.2.2. BAW filter topology 

To build a BAW filter, we use the electric assembly of several resonators. The 
topologies are the same as those found in SAW filters; the most common topology is 
ladder topology, as can be seen in Figure 10.21a. 

 

 

Figure 10.21. a) Ladder topology; b) layout of a ladder BAW filter; 
and c) a ladder SAW filter 

A ladder filter is made up of several L sections; the number of sections 
determines the order of the filter. One L section is based on the electrical connection 
of two resonators: one in series and the other in parallel. The impedance of each of 
these two resonators, taken separately, presents two frequencies of resonance. At 
series resonance, impedance is minimal and is typically equal to <1 ohm to a few 
ohms. At parallel resonance, impedance is maximal and is equal to several thousand 
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ohms. For frequencies far from resonances, resonators behave like capacitors. In one 
L section, resonances of the parallel resonator are shifted slightly in relation to those 
of the series resonator, see Figure 10.22. Between frequencies fp2 and fs1, 
impedance is very low between the input and output of the L section and it is very 
high between the output and the ground. The L section acts as a band pass filter. At 
frequency fs2, all the current crossing the section is shorted towards the ground 
because the impedance of the parallel resonator is very low. This leads to zero 
transmission in the frequency response of the L section. At frequency fp1, 
impedance between the input and output of the section is very high (open circuit) on 
the series path and all the current is reflected to the input, this determines another 
transmission zero. Far from resonances of the two resonators, the L section behaves 
like a combination of two capacitors and it gives a certain level of rejection across a 
large frequency band. 

By cascading several L sections, a better out-of-band rejection can be obtained, 
but this also leads to an increase of the in-band insertion losses. It is also common to 
add one or more series elements, such as an inductor, or parallel ones, such as a 
capacitor. This enables the in-band ripple to be smoothed or the rejection to be 
optimized by shifting the transmission zero of the L section to a desired frequency. 
The specifications of the L section are entirely determined by the parameters of 
these constitutive elements, i.e. by BAW resonator parameters. They set the 
bandwidth, insertion losses and in-band ripple, out-of-band rejection, or even the 
level of in-band impedance matching. 

 

Figure 10.22. Operating principle of an L cell [TIL 07] 
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Another topology used to build BAW filters is lattice topology, which can be 
seen on the left in Figure 10.23. As in ladder topology, two types of resonators are 
connected together: series resonators (X1) and parallel resonators (X2). The 
frequencies of these two types of resonator are chosen to be slightly different to get 
a band pass filter. Several lattice cells can be cascaded to improve out-of-band 
rejection. This, on the other hand, leads to an increase in insertion losses in the pass 
band. The specificity of this topology in relation to ladder topology is its differential 
excitation mode. The filter has inputs and outputs that are not referenced in relation 
to the ground. This differential mode ensures a better noise immunity, thanks to the 
fact that signals are no longer referenced to a supply potential (often the ground), 
which is susceptible to being particularly noisy. 

 

Figure 10.23. a) Lattice filter topology; and, b) operating principle 

10.2.3. Parameters of the BAW resonator and their impact on filter response 

The main electrical parameters of a BAW resonator are:  

– fs: series resonance; 
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– fp: parallel resonance; 

– Qs: quality factor at series resonance; 

– Qp: quality factor at parallel resonance; 

– kt2: piezoelectric coupling coefficient; 

– Zmin: impedance at series resonance; 

– Zmax: impedance at parallel resonance; 

– Co: static capacitance. 

Figure 10.24 gives an example of parameter extraction from measurement of a 
SMR-type BAW resonator. On the left, we notice impedance in dB and on the right 
a Smith chart. 

 

Figure 10.24. Main electrical parameters of a BAW resonator 

Other complementary parameters are sometimes extracted [BIF 08], such as: 

– Zc: impedance of static capacitance Co at (fs + fp)/2; 

– Zmax/Zmin: ratio between min and max impedances; 

– FOM = kt
2 ×  Q: factor of merit for filter design. 

10.2.3.1. Frequencies of resonance 

Frequencies of resonance are fixed by the thickness of the piezoelectric material 
and the electrodes. The technological limitations for etching thick films or those for 
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controlling deposition of very thin films give minimum and maximum frequencies 
of resonance that can be reached with a BAW resonator. In the literature, different 
definitions for frequencies of resonance are found [IEE 87, LAR 00, STA 10]. We 
sum these up below. For series resonance we have:  

– fr: susceptance zero, i.e. fr = zero(Im(Y)); 

– fs: conductance maximum, i.e. fs = max(Re(Y)); 

– fm: impedance minimum, i.e. fm = min(|Z|); 

– fs_mbvd: resonance of the mechanical arm of the Modified Butterworth-Van 
Dyke (MBVD) model; 

and for parallel resonance:  

– fa: reactance zero, i.e. fa = zero(Im(Z)); 

– fp: resistance maximum, i.e. fp = max(Re(Z)); 

– fn: impedance maximum, i.e. fn = max(|Z|); 

– fp_mbvd: resonance of the two arms of the MBVD model. 

In most acoustic resonators, quartz as well as BAW, these four frequencies are 
close enough to not distinguish them [STA 10]: 

fr  fs  fm  fs_MBVD                            fa  fp  fn  fp_MBVD 

From a practical point of view, it is the couple (fr,fa) that is extracted. These two 
frequencies correspond to phase cancellation: 

fr = zero(Im(Y))  Im(Y) = 0  phase (Y) = 0; 

fa = zero(Im(Z))  Im(Z) = 0  phase (Z) = - phase(Y) = 0. 

The frequency fr corresponds to the first time the admittance phase passes 
through zero and frequency fa for the second time, see Figure 10.25. Determining 
the phase zeros is a much more robust method and is much easier to automate than 
looking for peaks on the real parts of admittance and impedance. 
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Figure 10.25. Impedance and admittance phase module of a BAW resonator  
between two resonances 

10.2.3.2. Coupling coefficient 

The piezoelectric coupling coefficient determines the degree of energy 
transferred between the mechanical and electric domains. It is mainly linked to the 
piezoelectric material, electrodes and interfaces with electrodes (roughness, 
orientations, etc) during deposition. Currently, the most commonly used 
piezoelectric material for BAW resonators and filters is AlN. With a good mastery 
of deposition and adequate electrodes, coupling coefficient values of 7% are 
obtained for AlN. This parameter is one of the most important for BAW resonators 
as it determines the bandwidth that can be reached by the filters.  

In Figure 10.26, on the left, transmission parameter S21 is represented and on the 
right, reflection parameter S11 for a ladder-type BAW filter. Parameter S21 gives 
the frequency response of the filter, i.e. the in-band insertion losses and the out-of-
band rejection. Parameter S11 gives the in-band impedance matching of the filter. 
We can see that the coupling coefficient has an influence on the bandwidth of the 
filter, generally calculated at -3 dB. It also has an effect on the insertion losses in the 
middle of the band and on the impedance matching in the middle of the band. The 
“hole” that appears on the curve of S21 in the middle of the pass band is called the 
ripple. For RF receivers using code-division multiple-access schemes, it is a critical 
point to watch. A maximum ripple value is often specified over the entire band  
(<0.5 dB for a band of 80 MHz, for example) but also in each transmission channel 
(<0.2 dB for each channel of 5 MHz, for example). 
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Figure 10.26. Effect of the kt
2 coupling coefficient of  resonators on  

the frequency response of a ladder-type filter 

A strong coupling coefficient therefore enables us to get larger bandwidth with 
less ripple. We must note that to increase industrial yield the coupling coefficient 
will have to be as uniform as possible over the wafer. 

For radiofrequency applications, such as UMTS duplexers or low-power radio 
filters (Zigbee or 802.11), the required bandwidths are around 80 MHz centered at 
2.14 GHz or 2.45 GHz. These values are reachable with coupling coefficients of at 
least 6.5%. 

There is a great interest in maximizing the coupling coefficient. A larger 
bandwidth is a way of ensuring that, even with temperature drifts, the filter will 
verify RF standard specifications. Secondly, a strong coupling coefficient gives an 
extra degree of freedom for compromises with other filter parameters.  

For example, the series quality factor Qs, which determines insertion losses of 
the filter, depends to a large extent on the resistive losses in electrodes. These losses 
can be reduced by thickening the electrodes, but this also has the effect of reducing 
the coupling coefficient. 

Another example is the use of a thicker passivation layer that reduces the 
hermeticity requirement of the final packaging, but which also has the effect of 
lowering the coupling coefficient [BIF 08]. The coupling coefficient can be 
extracted from a physical characterization of the material, but the bulk material often 
has a different behavior to the thin film. In addition to this its electrodes and other 
layers have an influence on this coupling coefficient.  
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It is generally preferred to deduce this parameter from a measurement of 
frequencies of series and parallel resonance. According to the admittance equation 
of a BAW resonator introduced before, the kt

2 coefficient is directly linked to the 
frequency deviation between the two frequencies of resonance. 

We therefore speak more of the effective coupling coefficient. More or less 
accurately approximated formulae are found in the literature [AIG 07, BIF 08, 
IEE 87]: 

2 tan
2 2

p ss
eff

p p

f ff
k

f f
π π −

=  [10.3]  

or Taylor approximation of the second order: 
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or Taylor approximation of the first order: 
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f
π −

= ×  [10.5]     

The first formula is the definition of k2
eff given in the IEEE standards [IEE 87], 

but it is not currently used. The Taylor series second-order approximation, which 
gives a good approximation and is simple to manipulate, is preferred.  

The last formula is sometimes used but it must be known that it overestimates 
the values of kt

2. 

10.2.3.3. Quality factor 

With the coupling coefficient, the quality factor is the most important parameter. 
It determines the insertion losses and selectivity that will be obtained with BAW 
filters. 

Two quality factors are defined:  

− Qs, or series quality factor, is the quality factor calculated at series resonance 
fs; and  
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− Qp, or parallel quality factor, is the quality factor calculated at parallel 
resonance fp. 

Figure 10.27 represents the frequency response of a ladder-type BAW filter for 
different quality factor couples (Qs, Qp). We notice that the quality factors Qs and Qp 
have a direct impact on the insertion losses of the filter. The series quality factor is 
acting more on the left-hand side of the band and the parallel quality factor more on 
the right side. A value of 1,000 for Qs and Qp is a minimum when designing filters 
with good performance. Suppliers of BAW filters, like Avago or Triquint, use 
values > 2,000. 

The extraction of quality factors is particularly critical. It is very sensitive to 
measurement noises and acoustic parasites over the response of resonators. Several 
methods are currently used. Depending on the type of BAW resonator, they lead to 
sometimes very different results [AIG 07]. 

 

Figure 10.27. Effect of series and parallel quality factors of resonators  
on the frequency response of a ladder-type filter 

10.2.3.3.1. The -3 dB method  

Here 
3

s
s

dB

f
Q

fΔ −
=  with 3dBfΔ − , the width of the impedance peak Z at half the 

maximum and 
3

p
p

dB

f
Q

fΔ −
=  with 3dBfΔ − , the width of the admittance peak Y at 

half of the maximum. 

This classic method does not seem to be used anymore because it is too 
dependent on the frequency step and the number of points used during measurement 
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and also because it is sensitive to the parasites over the response of the resonator. 
The data must be smoothed out and this is an important source of error.  

10.2.3.3.2. Phase derivative method 

From the phase derivative 

( )1
2s s

series

Q f
d Y

df

Φ
= × ×  [10.6]   

with ( )YΦ  admittance phase and: 

( )1
2p p

parallel

Q f
d Y

df

Φ
= × ×  [10.7]  

This method is also very sensitive to the frequency step of measurement df. For a 
similar resonator at 2 GHz, a Q value of 1,500 is extracted with df = 0.25 MHz and 
a value of 2,000 with df = 0.5 MHz in [BIF 08]. This method is increasingly being 
replaced by methods based on the extraction of parameters of the MBVD model that 
are much more robust in the case of parasitic responses. Another argument for not 
using this and the -3 dB method is that they are only valid around resonances and 
therefore they do not enable us to trace the frequency-change in Q on the Smith 
chart, which is necessary for modeling, for example, pass band filters. 

10.2.3.3.3. Fitting with a MBVD model  

To not rely on the response of the resonator or a step of measurement that is too 
big. The idea is to derive a MBVD model that fits the electric response measured on 
the operating band of the resonator and then, either to use the formulas [10.6] and 
[10.7], or calculate the energy stored in each reactance of the model and divide it by 
the energy lost by the cycle in the resistances, i.e. by the term I2*R [AIG 07]. This 
last method gives the value of the quality factor at all frequencies.  

10.2.3.3.4. Bode’s method 

Another method, called Bode’s method, was published in 2007 by the Avago 
team [RUB 07] to overcome the limitations of the first two methods. One of its 
advantages is to give the quality factor at all frequencies using the following 
equation:  
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with ( )( ) dPhase
f

d
ωτ

ω
= − , the group delay of S11 and mag(S11) the S11 module.  

The group delay and S11 module are read directly on the vector analyzer during 
RF measurement. This method is sensitive to the frequency step of measurement, 
like the phase derivative method, and so we need to take a sufficient number of 
measurement points to extract a correct value of the quality factor. Another 
drawback of this method is its sensitivity to digital noises linked to the group delay 
method of calculation by the vector analyzer [BIF 08]. 

This method is an approximation and it only gives correct results if the 
mechanical losses are low in the resonator. In this case, the results obtained are 
identical to those of the fit method of the MBVD model. 

10.2.4. Examples of realizations 

Here we give a few examples of filters produced in the clean rooms at LETI in 
collaboration with STMicroelectronics Crolles.  

10.2.4.1. Lattice filters 

The first example is a filter with a double lattice-type topology (see 
Figure 10.28). The targeted application is the filtering of the reception path (Rx) for 
W-CDMA standard. For this standard, the specifications are the following:  

− a central frequency of 2.14 GHz; 

− maximal insertion losses of 2.7 dB; 

− a useful bandwidth of 60 MHz between 2,110 MHz and 2,170 MHz; and 

− differential input and output impedances of 100 ohms.  

The filter created fulfills the specifications set. The quality factors of the 
resonators are estimated here at Qs = 1,800 and Qp = 1,400. These “not optimized” 
values prevent us obtaining very low insertion losses. 



Piezoelectric Resonators and Filters     281 

 

 

Figure 10.28. RF performances of a SMR-type double-lattice BAW filter  

The filter design (see Figure 10.23b) could be further optimized by working on 
the lengths and thickness of RF access paths in order to limit series losses. The 
double lattice topology enables us to obtain a good out-of-band rejection, greater 
than 20 dB up to 20 GHz. 

10.2.4.2. Ladder filters  

The second example is a filter with a simple ladder-type topology consisting of 
three resonators: two in series and one in parallel. The out-of-band rejection shown 
on the right in Figure 10.29 is, here, limited to –10 dB because of the reduced 
number of resonators. This filter is destined to be assembled in a W-CDMA 
duplexer to filter the transmission path (Tx). 

The idea is to obtain the lowest possible insertion losses. The out-of-band 
rejection is finally optimized by adding external elements (capacitors and inductors) 
at the input and output of the filter. 

 

Figure 10.29. SMR-type ladder, BAW filter produced at LETI 
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10.2.4.3. Temperature-compensated resonators 

The last example of technological realization is a temperature-compensated 
resonator. Here, the thicknesses of the Bragg mirror, the electrode and the 
piezoelectric layer are jointly optimized, not only to obtain the desired frequency of 
resonance but also to get minimal temperature sensitivity. 

To do so, we are playing on the thermal expansion coefficients of opposing signs 
between the different layers. A compromise must often be made because 
cancellation of temperature sensitivity occurs, most times, to the detriment of the 
quality factor. 

Figure 10.30a shows an example of a temperature-compensated BAW resonator 
produced at LETI. Thermistors that will serve to calibrate the oscillating circuit in 
which the resonator will be integrated are around the resonator. The resonator does 
not respect the specifications in itself; it is therefore necessary to make an extra 
compensation thanks to an external circuit consisting of switched capacitors. 

Finally, we get a temperature derivative of the frequency of resonance that is  
<± 20 ppm over a temperature range between -40°C and +80°C, see Figure 10.30b. 
More details can be found in [PET 08] and [PET 09].  

 
a)                       b) 

Figure 10.30. a) Temperature-compensated SMR-type BAW resonator produced at LETI; and 
b) frequency derivative versus temperature of the oscillator 

with and without calibration circuit  
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10.3. CRF technology 

10.3.1. Introduction 

CRF technology is an evolution of BAW technology that consists of vertically 
stacking two BAW resonators and acoustically coupling them, see Figure 10.31. 
This technology appeared at the beginning of the 2000s [LAK 01b], and has aroused 
increasing interest because it allows the combination of the advantages of SAW and 
BAW filters. A galvanic isolation between the input and output is obtained thanks to 
the acoustic coupling layers and it makes impedance and mode conversions possible. 
This is also possible in SAW filters but not in BAW filters. In addition, CRFs keep 
the advantages of BAW filters compared to SAW filters, i.e. a better RF power-
handling capability and ESD robustness, a lower sensitivity to temperature and a 
compatibility with classic silicon technologies.  

Finally, CRF filters are potentially much more compact than their SAW and 
BAW homologues. After the precursory works of TFR Technologies, Inc. 
[LAK 01b], other groups began to develop CRFs. Readers may wish to refer to the 
Infineon publications [FAT 04, FAT 05b], LETI/ST Microelectronics [VOL 06, 
BIL 09] and finally Avago [SMA 07, JAM 09]. Nevertheless, commercial 
applications will certainly wait a while because the economic viability of such a 
technology does not seem so clear due the significant number of steps and the 
drastic control on thicknesses of layers that are necessary to obtain an acceptable 
final yield.  

Below, we will go into the details of the operating principle of CRF filters by 
giving a few examples of realizations.  

10.3.2. Operating principles of CRF filters 

Figure 10.31 shows a cross-section of a four-pole CRF filter with two sections. 
One section is made up of the vertical stacking of two BAW resonators acoustically 
coupled by a Bragg mirror between them. As in classic BAW resonators, substrate-
acoustic isolation is obtained either by a Bragg mirror (as is the case in this diagram), 
or by a membrane forming an air gap. We therefore speak, respectively, of SMR- or 
FBAR -type CRFs. 
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Figure 10.31. Cross-section of a CRF filter 

The application of an electric field at the input upper resonator generates an 
acoustic wave that propagates at the lower resonator through the coupling layer. At 
the bottom resonator, the acoustic wave is inversely converted into an electric field 
that passes to the lower resonator of the second section. This electric field generates 
an acoustic wave that goes back up to the upper resonator of the second section that 
finally converts the acoustic wave into an electric field. 

The coupling Bragg mirror plays a very important role by fixing the bandwidth 
of the filter, as seen in Figure 10.32. Decoupling the two resonators enables us to 
make them vibrate partly independently and to form two more or less spaced out 
frequencies of resonance. Acoustic coupling also determines the ripple in the pass 
band and in part the insertion losses. It also influences the out-of-band rejection by 
offering a relatively strong galvanic isolation between the input and output of the 
filter. To optimize the Bragg mirror, the number of layers and their nature can be 
modified. Classically, this Bragg mirror is made up of three layers of very different 
acoustic impedance materials. Infineon [FAT 04, FAT 05b] and LETI/ST 
Microelectronics [BIL 09, VOL 06] used a layer of W sandwiched between two 
layers of SiO2. LETI/ST Microelectronics showed that we could use a purely 
dielectric SiN and SiOC tri-layer, which avoids to engraving the conducting W 
layer, which is necessary to avoid inter-resonator parasitic electric couplings. More 
recently, Avago showed very promising results by using a single polymer or CDO 
(Carbon Doped Oxide) coupling layer [SMA 07, JAM 09]. This last solution simplifies 
the process, but at the cost of a decrease in out-of-band rejection. 
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Figure 10.32. Acoustic coupling of two CRF resonators to form a pass band filter 

The main advantage of CRF filters over BAW filters is the possibility of having 
an impedance conversion and a mode conversion at the level of the filter. The mode 
conversion is obtained quite simply by placing two CRF filtering paths side-by-side 
and connecting them together. For a differential-to-differential mode excitation (see 
Figure 10.33a), the two filtering paths are linked at level of the bottom electrode of 
the upper resonator; the four top electrodes of the upper resonator are left floating 
and they constitute differential inputs/outputs. For a single-to-differential excitation 
(see Figure 10.33b), the architecture is identical, except that one of the top 
electrodes is referenced on the ground at the input. We must note that we can also 
obtain this mode conversion with a single filtering path, as in Figure 10.33c. In this 
case it is the bottom electrodes of the upper resonators that are referenced on the 
ground (at the input level) or left floating (at the output level). 

 

Figure 10.33. Mode conversion principle 
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Figure 10.34. Impedance conversion of factor 4 obtained by electric connections [VOL 06] 

There are two approaches by which to obtain the impedance conversion. The 
first is based on specific electric connections (see Figure 10.34) and the second is 
based on the combination of CRF sections of different surface areas (see 
Figure 10.35). Figure 10.34 gives an example of 50−200 ohm impedance conversion 
based on the first principle. The differential to differential filter is obtained by 
placing to CRF filtering paths side-by-side. The surface area of the resonators of 
each of the two filtering paths is calculated for input/output impedance to be  
100 ohms. At the input level, the two resonators are connected in an anti-parallel 
way, which leads to an impedance of 50 ohms. At the output level the two 
resonators are connected in series: this gives an impedance of 200 ohms. This 
approach is particularly effective for obtaining an impedance conversion by a factor 
of 4. To obtain a factor of 2, three CRF filtering paths will have to be connected, and 
for a factor of 3, four CRF filtering paths will be needed. As a result a 50 ohms-
input filter with a conversion factor of 2 will need three filtering paths side-by-side 
designed to have an input impedance of 150 ohms; this can be done with resonators 
with very small surface areas that are more sensitive to acoustic parasitics and 
difficult to optimize.  

Figure 10.35 illustrates the second method of obtaining an impedance 
conversion, this time being based on CRF sections with different surface area. 
Therefore an impedance relation of a factor of 2 is easily obtained with a single CRF 
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filtering path: conversion from 50 to 25 ohms and from 50 to 100 ohms is presented 
in Figure 10.35a. This method can be applied to all types of filters. The filter in 
Figure 10.35b is a single-to-differential filter with an impedance conversion of 50 
ohms to 100 ohms. One of the advantages of this approach is that it enables us to 
obtain low input/output impedances by using resonators with a large surface area 
that are less sensitive to acoustic parasitics. The impact of this method on insertion 
losses of the filter is quite low, at about 0.5 dB. On the other hand, it produces a 
reduction in the impedance matching of the filter in the pass band. The in-band 
impedance match is often a critical parameter for certain RF standards, which is why 
this method is generally confined to impedance conversion by a factor of less than 
three.  

 
a)                   b) 

Figure 10.35. a) Impedance conversion of factor 2 obtained by a change in surface area; and  
 b) impedance conversion of factor 2 obtained by change in surface area  

coupled to a mode conversion 

10.3.3. Example of implementations 

Below we give a few examples of CRF filters produced in the clean rooms at 
LETI [BIL 09].  

10.3.3.1. Two port filters 

The first example is a 50 ohms to 50 ohms two-port filter centered at 2.14 GHz. 
Figure 10.36 shows two versions of this filter: the first (a) is the basic version with 
square resonators; the second (b) is an optimized version in which the resonators are 
apodized to limit acoustic parasitics. 
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a) 

 
b) 

Figure 10.36. Examples of two-port CRF filters 

The filter fulfills the requirements of the application, see Figure 10.37a: it is 
centered at 2.14 GHz with 60 MHz of bandwidth and has <3 dB of losses. The 
bandwidth of the filter extracted at -3 dB is 81.6 MHz. Insertion losses in the band 
are at minimum -1.86 dB and at maximum -3 dB. In-band matching, S22 in 
Figure 10.37a, is greater than -8 dB, which is just enough. Out-of-band rejection is  
>-40 dB from 0−9 GHz, see Figure 10.37b. This first example shows the potential of 
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CRF technology: this filter with a much reduced size, of around 0.16 mm2, has 
remarkable performance.  

 
         a)             b) 

Figure 10.37. a) In-band response of a two port CRF filter;  
and b) wideband filter response 

10.3.3.2. Three-port filters 

Below is an example of a three-port CRF filter. The mode conversion is obtained 
by using two CRF filtering paths side-by-side and connecting one of the input ports 
to the ground. Impedance conversion from 50 ohms to 200 ohms is based on the use 
of anti-parallel and series electric connections between the two filtering paths. Each 
of the resonators is of identical size and has an impedance of 100 ohms. In Figure 
10.38, we can observe the pathways between the two resonators of the first sections 
that have the anti-parallel connection between the top and bottom electrodes of the 
upper resonators.  

In this photograph, the apodization of the resonators that aims to limit the 
acoustic parasitics can also be seen. Extraction at -3 dB gives a central frequency of 
2.131 GHz and a bandwidth of 73 MHz. In-band insertion losses are at minimum 
-2.6 dB and at maximum -4.2 dB. Input and output impedance matches, 
respectively, S11 and Sdd in Figure 10.38a, are >-8 dB into the pass band. For this 
parameter, this impedance conversion solution is better than the having different 
surface areas. Out-of-band rejection is excellent and >40 dB up to 9 GHz. 
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      a)            b) 

 
c) 

Figure 10.38. Second example of a three-port CRF filter: a) in-band response; 
b) wide band response; and c) photograph of the filter 

10.3.3.3. Four-port filters 

The final example is a four-port differential-to-differential filter with an 
impedance conversion from 50 ohms to 12 ohms based on anti-parallel and series 
electric connections; the resonators are of identical size. Each resonator shows an 
impedance of 25 ohm. This filter is dedicated to an output filtering application of a 
power amplifier, which explains its low output impedance.  

The version of this filter presented in Figure 10.39 is the one that was divided 
and reported by flip-chip. In Figure 10.39c, the circular pads that will receive the 
flip-chip balls are observed. In Figure 10.39d, we can see the thin-film packaging on 
each of the four upper resonators. This packaging is not hermetic and therefore does 
not serve as final packaging. On the other hand, it is robust enough to protect the 
resonators during the sawing and reporting phases. Extraction at -3 dB gives a 
central frequency of 2.134 GHz and a pass band of 82 MHz. In-band insertion losses 
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are at minimum -1.9 dB and at maximum -3.4 dB. In-band impedance matching is 
not so good (>8 dB) for differential input and output. Out-of-band rejection is 
around 30 dB up to 20 GHz.  

 
      a)            b) 

           
c)           d) 

Figure 10.39. Example of a four-port CRF filter: a) in-band response;  
b) wideband response; c) photograph before thin-film packaging;  

and d) photograph after thin-film packaging 
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Chapter 11 

High Overtone Bulk Acoustic Resonator 
(HBAR)1 

11.1. About HBAR 

Among elastic wave components, high-overtone bulk acoustic resonators occupy 
a place apart from the main stream of radio frequency (RF) acoustic-electric devices. 
Indeed, these components whose structural simplicity might be compared with that 
of classic surface and bulk wave components are affected, as indicated by their 
name, by a spectral density that is not very compatible with the specifications of RF 
components generally used for single-mode filtering or filtering with controlled 
spectral density, which allow out-of-band signal rejections that conform to the needs 
of the electronic systems concerned. They are not currently a solution regularly 
implemented at the industrial level. They nevertheless represent a path for the 
development of future components exploited for sensors of various physico-
chemical quantities. They are also sources of high stability and spectral purity that 
can potentially be integrated into direct synthesis, consequently eliminating 
frequency multiplications that artificially increase the phase noise of corresponding 
oscillators. As such, they enable us to obtain the highest coefficients of quality of all 
acousto-electric devices and show extremely low volume. For certain specific 
applications, it is also possible to exploit them for narrowband and average filtering 
functions (between 1/1000 and 1/10 of the relative bandwidth). 

Here we will present the important points characterizing these components by 
first recalling the great lines of their operation, their modalities of implementation 
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and the associated technologies and materials. Finally, we will show examples of 
implementation and characterization of such resonators through several applications 
in the domain of sources of frequency and remote access sensors. 

11.1.1. Generalities 

HBAR (high overtone bulk acoustic resonators) or OMR (overmoded resonators) 
are composite structures made of a thin piezoelectric film over a substrate whose 
thickness is largely greater than that of the film above. A characteristic figure of 
merit of these resonators is the frequency – quality factor product, greater by at least 
one order of magnitude than that of bulk or surface elastic wave resonators on 
fundamental mode. This figure of merit is consequently greater for HBAR than for 
film bulk wave resonators (FBAR) or solidly-mounted resonator (SMR).  

Thanks to these outstanding coefficients of quality, HBARs can be used in 
oscillation loops to develop high-stability frequency sources with high spectral 
purity. These structures originate from the first bulk wave delay lines and constitute 
reflective delay lines as such, (the transducer emits a bulk wave package that 
propagates in the substrate, reflects on its back, and returns to the transducer that 
reconverts it into an electric signal).  

Their use in applications as resonators was revealed as soon as their 
implementation techniques were improved. These resonators, first studied towards 
the end of the 1970s [LAK 93], re-gained in interest in the 1990s and 2000s. This 
success was due partly to the enormous progress in developing piezoelectric thin 
films on substrates of high crystalline quality as well as the new uses generated by 
the multiplication of standards and their associated frequency sources.  

State-of-the-art HBAR resonators correspond to a record Q.f product of 1.1x1014 
Hz obtained by Lakin et al. in 1993 with AlN on sapphire [LAK 93]. In comparison, 
the best FBAR solutions have a quality factor of 3,500 at 1.9 GHz or a Q.f product 
of 7.1012 Hz [RUB 09] and bulk wave resonators on quartz reach 1.5x1013 Hz. 
Intensifying work in the field enables us to expect new improvements in these 
devices in years to come and the establishment of new operational limits in terms of 
functional characteristics (electromechanical coupling, quality factor, frequency 
control, etc.). 

11.1.2. Principle  

A bulk elastic wave is generated in the (classic) piezoelectric thin film electrode 
stack and then propagates into the substrate. The distinctive characteristic of HBAR 
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is that it uses the substrate as a cavity resonator for the acoustic wave. Actually, 
contrary to FBAR or SMR encountered in the previous chapters, the substrate is in 
no way decoupled from the piezoelectric stack. It is even thanks to the cavity 
resonator that the Q.f product of HBARs can reach the 1014 Hz range. This cavity 
must, nevertheless, respond to quality criteria. A simple HBAR example will be 
used in this part: an aluminum nitride (AlN) thin film surrounded by two electrodes, 
all placed on a silicon substrate. 

Electrodes Piezoelectric thin film 

Substrate = resonant 
cavityAcoustic wave 

propagation  
 

Figure 11.1. Schematic of an HBAR 

11.1.3. Description of the spectrum 

In order to understand the spectrum of HBAR resonances, the resonance 
conditions defined in Chapter 7 on acoustic formalism can be reused: 
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Once again, taking the case where the piezoelectric film is of negligible 
thickness compared to that of the substrate, the conditions of resonance of the cavity 
are actually provided by the ( )tan Ss e  terms. Yet, these resonances cannot be 
dissociated from the change, though slow, in response of the piezoelectric film 
contained in the  terms. Two views of an HBAR resonator are then distinguished: 
the influence of the substrate (cavity resonator) and the influence of the piezoelectric 
film (the transducer).  
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11.1.3.1. Influence of the substrate 

The frequency of resonance of the fundamental mode of the cavity (the 
substrate) is f0  v/2s, with v being the velocity of the elastic wave in the substrate 
and s the thickness of the substrate. The periodicity of the tangent function explains 
the resonances of the following or harmonic modes, with a frequency separation of 

f0  f0. 

Frequencies of resonance and antiresonance can be extracted from the real parts 
of admittance and impedance, respectively. These frequency-real parts are presented 
as Dirac peaks in the absence of intrinsic losses of the materials, in the perfectly 
parallel planes of reflection hypothesis and in the absence of power flow angles 
(deviation between the direction of propagation and power flow in the thickness of 
the substrate, also called beam-steering angle). 

In the case where these accumulated losses turn out to be low, the peaks are no 
longer infinitely thin spectrally but are close to a Lorentzian function, from which it 
is possible to extract quality factors with the full width at half maximum (see 
Figure 11.2) based on the formula Q = f/ f. 

In addition, effective coupling of the mode considered can be extracted thanks to 
the electromechanical coupling formula.  
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Figure 11.2. Frequency separation f0  f0 of two successive harmonics, fn and fn+1, for an 
AlN/Si HBAR. f is used to extract the quality factor Q 
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11.1.3.2. Influence of the transducer: the piezoelectric film 

When the piezoelectric thin film is placed on a substrate of semi-infinite 
thickness or made of absorbent material, only the influence of the thin film is visible 
in the electric response. Coupled energy is maximal when the frequency resonance 
corresponds to the resonance of the piezoelectric thin film. This condition is fulfilled 
when a half-wavelength gets close to the thickness of the piezoelectric film. As soon 
as the substrate is of finite thickness, however, the response is modulated by the 
effects of resonance in this cavity and the response of the piezoelectric layer is an 
envelope of all the harmonics due to the substrate. The comparison is shown in 
Figure 11.3, where the response stimulated by an AlN film on a semi-infinite silicon 
substrate is shown in gray, the experimental response of an HBAR in black, and the 
mathematical evaluation per average of adjacent points to the HBAR response 
enclosure in light gray. 

 

Figure 11.3. Comparison of the resonance spectrum of an AlN/SI HBAR with a 
representation of the average of 100 adjacent points and a simulation of an HBAR, 

the substrate of which has an infinite thickness 

Depending on the ratio of thickness of the thin film to that of the substrate, 
resonances will generally be in this zone of strong coupling. The goal in the 
framework of an oscillator is stability: the lower the ratio, the more spectral purity is 
favored and the more stable the oscillation loop. In addition to the oscillator 
applications, this envelope turns out to be useful for evaluating the 
electromechanical coupling of a piezoelectric film. Indeed, as soon as frequency 
corresponds to the response of the piezoelectric film, we can wonder about the 
properties of the film from which HBAR electric responses can be extracted. This is 
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so much more important that the technological process for obtaining an HBAR can 
be reduced to a one-level mask, unlike FBAR or SMR technologies which are 
largely more complex (we speak of at least five levels of lithography). The standard 
formula due to frequencies of resonance and antiresonance can be used with the 
peaks of the envelope. The coupling constant extracted is, however, overvalued by 
10% to 20%. From the experimental measurement of an AlN HBAR on silicon (see 
Figure 11.4), the frequencies of resonance and antiresonance, fr and fa, respectively, 
are extracted from the envelope. The extracted electromechanical coupling factor is 
about 10%. Once again, the systematic overvaluation enables us to deduce that 
electromechanical coupling of the AlN piezoelectric film is close to the value 
obtained by simulating the same stack, i.e. 7% (the theoretical AlN thickness 
coupling value is also 7%). 

 

Figure 11.4. Extraction of resonance and antiresonance frequencies  to obtain the 
electromechanical coupling constant of the film 

The electromechanical coupling constant extraction will be justified later for a 
technological implementation of an HBAR, followed by a deep etching, in order to 
obtain the corresponding FBAR. The electromechanical couplings extracted from 
the HBAR’s electrical response and that of the FBAR will then be compared. 

11.2. Technology 

11.2.1. Technological constraints 

While the main figure of merit of an HBAR is its Q.f product and its propensity 
to favor high-frequency operating, any parameter that is not in favor with this figure 
of merit must be minimized or even avoided. With the piezoelectric stack, the 



High Overtone Bulk Acoustic Resonator     303 

demands are the same as for an FBAR or a SMR. For the substrate (the resonant 
cavity), the key parameters are: 

– the parallelism of the two faces in order to avoid acoustic energy leakage at the 
sides of the resonator; 

– polishing of the two faces with a mirror quality. Indeed, the reflection of the 
acoustic wave on the rear face of the substrate must be perfect so it does not lose 
energy; 

– the recommended thickness for inserting an HBAR in the oscillation loop does 
not have to be very large. When it is inserted in an oscillation loop, the resonance 
peak on which the oscillator is stabilized must be detached from the other peaks. 
Indeed, the frequency separation of the peaks that corresponds to the first mode is 
directly inversely proportional to the thickness of the substrate. Decreasing the 
thickness then returns to favoring the presence of one single peak in the most 
coupled zone of the envelope [MAS 07] but it leads to technological difficulties 
inherent to this type of operation. 

11.2.2. Choice of materials  

11.2.2.1. Substrate 

The substrate used for HBARs must limit dielectric as well as viscoelastic losses. 
With the goal of an HBAR being to obtain the highest possible frequency – quality 
factor products, it is necessary to use single-crystal plates composed of materials 
known for their low viscoelastic and dielectric losses, such as YiG or YaG (see 
[LAK 93]), sapphire (Al2O3), lithium niobate (LNO or LiNbO3), lithium tantalate 
(LiTaO3) or even quartz (SiO2). Quartz also has crystal orientations compensated for 
temperature effects for bulk waves such as AT or BT cuts. With the aim of 
integration and stability, choosing quartz can enable us to develop oven-controlled 
crystal oscillators (OCXO) without temperature regulation systems. This generally  
responds to the heat stability demands of systems controlled in this way. 

11.2.2.2. Piezoelectric material 

The choice of a piezoelectric material depends on the final use. The HBAR is 
clearly not suited for wide RF bandwidth filtering, a contrario to BAW and SAW 
filters. We could think, on first consideration, that electromechanical coupling of the 
piezoelectric film is not critical. However, an HBAR will be much easier to integrate 
in an oscillator loop if resonance peaks exhibit a significant dynamic, i.e. the 
admittance module peak is big compared to the noise floor. Therefore, the material 
must show a sufficiently high electromechanical coupling to effectively couple the 
HBAR harmonics, still keeping in mind that the strong couplings can result in an 
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increase in electric losses (ohmic losses in metallic and contact films). A second 
issue, just as for BAWs, will be the crystal quality of the material. LNO is an 
excellent choice, especially for its unique bulk wave cuts, such as the Y+36°cut, 
with the longitudinal wave with a coupling coefficient kt²  26% as the only coupled 
wave and Y+163° cut, with a shear wave with a coupling coefficient kt²  40% as the 
only coupled wave. 

11.2.3. Geometry of resonators 

Although they allow the use of longitudinal or shear polarization bulk elastic 
waves, depending on the nature and properties of the transducer film, resonators of 
the HBAR type are often conceived in a similar way to resonators on thin films 
(FBAR and SMR). They also give rise to the same electrode geometries, although 
they are not subjected to the same low-frequency parasitic-mode rejection issues that 
modulate the response of the mode exploited.  

The resonators tested next will be those with one or two ports, as described in 
Figures 11.5a and 11.5b. The most common and most intuitive configuration 
consists of the simple port structure, which pertains to classic bulk wave resonators. 
This can be represented by a lumped elements diagram with two parallel branches:  

− one linked to the static capacitance made up of the two electrodes facing each 
other separated by the transducer material (in majority dielectric);  

− the other linked to the motional effects describing the resonances (as with 
many motional branches, resonance branches will then be compared to the HBAR 
resonator described).  

Nevertheless we do know the structures of bulk wave monolithic filters for 
which we exploit mode couplings, allowing energy exchange between the input and 
output ports of the component. 

 
a)    b) 

Figure 11.5. Geometry of resonators: a) two ports; and b) one port 
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11.3. Examples of implementations 

In this part, two examples of HBAR realizations will be developed and 
characterized. The first example concerns an HBAR that includes a single crystal 
thin film of LNO and its electrode reported on a substrate of LNO through Smart 
Cut™ technology. The second example is a LNO-based HBAR stuck to a silicon 
substrate then mechanically thinned, with an FBAR obtained from a similar stack 
thanks to a deep etching of the substrate backside to obtain electrode–LNO–
electrode membranes. The RF measurements are produced through pre-calibrated 
reflection (one-port measurements) or transmission (two-port measurements) with 
vector network analyzers (short open load thru calibration).  

11.3.1. LNO on LNO 

11.3.1.1. Experimental process 

LNO is one of the most frequently used materials for SAW technology. Existing 
in the form of single crystal wafers 10 cm in diameter, the industry uses more than 
100,000 wafers per year, mainly to produce surface elastic wave RF filters for 
mobile telephony applications. Its use in bulk wave configuration dates from the 
1960s, as a delay line.  

Attempts at integration with the film report and polishing were also carried out 
[GAC 08, HUA 74, UCH 73], but among the other outstanding LNO applications, 
we will cite acoustic imaging and acousto-electric modulators that also drain a large 
part of global annual production. With LNO being strongly anisotropic, crystal 
orientation must be chosen in terms of the object we wish to produce and the mode 
of propagation we seek to exploit. In addition, the coupling efficiency of elastic 
waves depends especially on orientation, as well as the principal physical 
characteristics of the corresponding waves: mode polarization (longitudinal, shear), 
phase velocity and the intrinsic losses that are related to the material. In this section, 
HBARs are produced by transferring an X-cut submicronic single crystal thin film 
of LiNbO3 thanks to Smart CutTM Technology. This X orientation based on the 
normal to the plate was chosen for the two coupled shear waves that it allows to be 
exploited. The most coupled wave shows an electromechanical coupling reaching 
kt² = 45%, i.e. seven times more than aluminum nitride coupling. In order to create 
HBAR test vehicles, the following steps are carried out: 

– Metal deposit, which will form the buried electrode. 

– Ionic implantation in a LNO substrate. The average depth of implantation is 
imposed by the energy given to the ions during acceleration, a platinum deposit 
playing the role of buried electrode, a SiO2 deposit on this same substrate, as well as 
another “B” LNO substrate. 
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– Direct bonding of the two plates together after specific preparation of these two 
wafers followed by a heat treatment: a fracture at the level of the zone that is mainly 
implanted is realized. A single crystal thin film is therefore transferred onto the B 
substrate, a platinum deposit (the top electrode) followed by a photolithography 
aimed at defining the planar patterns of the resonators. Finally, the LNO thin film is 
etched to create RF access points at the bottom electrode. 
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a)    b) 

Figure 11.6. a) Transmission electron microscopy (TEM) picture after film transfer; and b) 
high-resolution TEM picture in the transferred LNO film: the crystal lattice is visible and no 

clear defect is detected 

Physical characterizations are performed after these technological steps in order 
to verify the single-crystal character of the transferred film [MOU 08]. 

The high-resolution transmission electron microscopy image enables us to see 
that there are no clear defects visible in the crystal lattice (see Figures 11.6a and 
11.6b). 

This observation is confirmed by an X-ray diffraction study showing a 
crystalline quality that is comparable to the LNO substrate, although of slightly 
poorer quality. 

11.3.1.2. Electric results 

11.3.1.2.1. Broadband measurement 

In broadband measurement, the influence of the piezoelectric film, i.e. its 
resonance modulated by the HBAR resonance peaks is observed.  
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In Figure 11.7, two contributions of the admittance module can be distinguished: 

– a very broad band contribution, from which the frequencies of resonance and 
antiresonance due to the piezoelectric film (the carrier) are extracted, i.e. the curve 
of the average over 100 points of experimental data; 

– a slightly narrower contribution that is in reality solely a measurement artifact. 
Indeed, in broadband measurement, the number of points per measurement is too 
low to correctly describe them and thus a periodicity artificially appears (aliasing 
phenomenon). 

The contribution of the piezoelectric film is extracted from the response 
envelope and an electromechanical coupling of around 40% is thus determined. This 
value is partially comparable to theoretical couplings of LNO bulk waves based on 
elastic, dielectric and piezoelectric constants, i.e. 45%.  

This strong electromechanical coupling enables us to envisage broadband RF 
filtering applications [MOU 08]. 

Taking into consideration the low quality factors of the envelope, the validity of 
the extraction of an electromechanical coupling can be discussed. This extraction 
will be validated in section 11.3.2. 
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Figure 11.7. Broadband measurement of the HBAR admittance module versus frequency 

In Figure 11.8, the envelope of the third harmonic due to the piezoelectric film is 
observed. The second harmonic is not visible because it does not satisfy the coupling 
conditions, as described in Chapter 8, for a single piezoelectric plate. The coupling of 
this third harmonic is around 4% i.e. 32 = 9 times less than the first harmonic, a 
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phenomenon that is explained by the average energy ratio in the piezoelectric film 
for the two harmonics (see Chapter 7, equation [7.106]). This further confirms the 
coupling extracted. Moreover, such a coupling for harmonic 3 lets the possibility of 
an increase in frequency by exploiting odd harmonics of the piezoelectric film (we 
can expect 2% for harmonic 5). 
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Figure 11.8. Modulation of the third harmonic of the piezoelectric film by the acoustic  
cavity resonators 

11.3.1.2.2. Narrowband measurement 

After the overview provided by broadband measurements, narrowband 
measurement is performed on a frequency sweep of 16 MHz covering four HBAR 
resonances. Simulations based on an admittance calculation exploiting Green’s 
function of the medium considered [PIJ 08, PIJ 09, REI 03] enable correspondence 
of the experimental and simulated data, especially by adjusting key parameters such 
as acoustic and dielectric losses, and velocities (through the use of elastic constants) 
[PIJ 08]. 

In Figure 11.9, the real part of admittance is plotted in terms of frequency: the 
peaks observed are the HBAR resonances studied for which quality factors of 
around 45,000 are extracted at 1.95 GHz, i.e. Q.f = 8.8 1013 Hz. This results in 
perfect coherence with other results obtained based on an alternative resonator 
manufacturing technology that is more rudimentary than the Smart Cut™ method 
used here [GAC 08]. 
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The reader can see the presence of two sets of peaks with different amplitudes 
and spectral distances. 

It is in fact the harmonics of the two shear waves coupled in the LNO: the 
frequency-distribution deviation between the two waves comes from the difference 
in their phase velocities (slow and fast shear) and amplitude is dependant on the 
coupling of each wave. 
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Figure 11.9. Comparison of resonances between experimental and simulated data, 
conductance versus frequency 

11.3.2. Validation of parameter extractions: LNO on HBAR/FBAR Si 

This second HBAR example corresponds to the relation of an X-cut LNO 
substrate on a silicon substrate (100). The goal of this experiment is to compare the 
HBAR results with the FBAR results coming from a similar structure. By deep 
etching silicon, we get a FBAR with a piezoelectric stack, which is the same as that 
in the HBAR tested before [PIJ 09]. 

11.3.2.1. First stage: HBAR manufacturing 

The first stages of implementation concern the bonding of a lithium substrate on 
a silicon plate followed by its thinning. 

HBAR is thus obtained by successively performing: 

– an AlCu deposit on the X-cut LNO substrate: this will be the bottom HBAR 
electrode after the layer transfer; 
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– an SiO2 deposit on this same substrate as well as on a “B” silicon substrate, the 
two faces of which are polished; 

– direct bonding of the two wafers; 

– thinning of the LNO substrate by the back side, first roughly to a thickness of 
about 50 μm; 

– the application of a CMP type process in order to reduce the LNO thickness to 
<10 μm. Thus we get a LNO film ranging from 4−8 μm in thickness; 

– an aluminum deposit followed by photolithography in order to pattern the 
resonators. 

The stack thus created constitutes an HBAR, the piezoelectric transducer of 
which is successively composed of AlCu, X-cut LNO and aluminum. Narrowband 
measurements are not shown − on one hand because of quality factors that are too 
weak, and on the other hand because of the goal of the experiment: broadband 
measurements and the extraction of HBAR then FBAR electromechanical coupling 
coefficients. 

Thus, from Figure 11.10, the frequencies of resonance and antiresonance are 
extracted from the envelope relative to the single-crystal piezoelectric film. The kt² 
coupling extracted is evaluated as being somewhere around 40%, very close to the 
theoretical coupling of LNO for this cut. 

 

Figure 11.10. Broadband spectrum of the HBAR response showing the first three modulated 
harmonics of the transferred and thinned piezoelectric film 
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11.3.2.2. Second stage: FBAR 

After HBAR RF characterizations, the additional steps are performed on the 
same stack in order to obtain the FBAR, i.e.: 

– photolithography on the rear face with a front side/back side alignment in order 
to correctly position the membranes with respect to the top electrodes delimiting the 
resonators; 

– deep etching following the Bosch process, which alternates SF6 anisotropic 
etching cycles and C4F8 passivation. The 550 μm of the silicon substrate is thus 
removed; the SiO2 film stopping the etching.  

 

Figure 11.11. Image obtained by scanning electron microscopy 
of the deep etching of silicon from the back side 

The final FBAR structure is thus obtained: SiO2 (400 nm)/AlCu (120 nm)/ LNO 
(4−8 μm)/Al (200 nm). Figure 11.11 is a view of the back side opening obtained by 
scanning electron microscopy. Relatively straight, though slightly porous, grooves 
are observed, the cause probably being linked to insufficient groove passivation 
stages. Nevertheless, the membranes obtained do not break and the RF tests can be 
carried out under the proper conditions. 

On broadband measurements, shown in Figure 11.12, we find the three 
resonances of the piezoelectric film present in the form of envelopes in the case of 
HBAR (see Figure 11.11). These resonances correspond to FBAR harmonics 1, 3 
and 5. Frequencies of resonance and antiresonance do not change for the first 
harmonic: the electromechanical coupling coefficient of the single crystal film of 
LNO is directly measured so that kt² = 43%. The HBAR and FBAR results 
correspond with each other, enabling us to justify the previously detailed HBAR 
approach for first-approximation extraction of electromechanical couplings of 
piezoelectric films. 
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Figure 11.12. First three FBAR resonances and antiresonances;   
kt² electromechanical coupling extracted is 43%,  

close to the 40% evaluated after extracting HBAR measurements 

This study on FBARs is taken further in an article [PIJ 09] dealing with the 
problem of the limited quality factor observed on these FBARs. 

11.4. Conclusions about HBAR 

HBARs are resonators that are, at first sight, difficult to exploit because of the 
strong density of resonance peaks presented by their spectrum. Yet, they can turn 
out to be perfectly adapted for oscillator stabilization applications for the 
development of ultra-stable frequency sources. The quality factor frequency product 
can reach 1014 and then exceed that of FBAR or SMR technologies by more than 
one order of magnitude, naturally improving the frequency stability of the oscillators 
thus stabilized. 

In addition, it is possible to extract the electromechanical coupling coefficient kt² 
from the envelope corresponding to the response of the piezoelectric film. Though 
limited in precision, this technique is very useful for evaluating the adequacy of a 
piezoelectric thin film for RF signal processing applications by passive components. 

Finally, to the extent that the spectral density of these resonators is measured and 
we are shown to be capable of accurately adjusting the resonance frequency, we can 
exploit them as elements of wireless and batteryless measurement systems, instead 
of surface elastic wave resonators. We can therefore draw part of their strong 



High Overtone Bulk Acoustic Resonator     313 

coefficients of quality to improve their operational characteristics [MAS 07, 
MAS 09]. 
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Chapter 12 

Electrostrictive Resonators1 

12.1. Introduction 

In this chapter, we will deal mainly with the case of acoustic resonators that use 
or undergo the electrostrictive phenomenon. The latter corresponds to a mechanical 
strain that depends on the square of the electric field or displacement. It is therefore 
a quadratic phenomenon that enables us to control coupling properties by a 
continuous electric field, as we will explain. This phenomenon is also used for 
actuators to eliminate the hysteresis phenomenon observed in piezoelectric 
materials, such as PbZrTiO3 (PZT). The price we pay is the continuous application 
of a voltage to the terminals of the electrostrictive material to emulate a piezoelectric 
effect. 

After a state-of-the-art rapid survey of devices using this quadratic effect, we 
will go into the details of the thermodynamic model and the devices referring to 
BaSrTiO3 (BST)- or SrTiO3 (STO)-type paraelectric perovskite resonators that 
today constitute most of the research on the subject. We will then close this chapter 
with the behavior of AlN, a permanent piezoelectric (even pyroelectric), when under 
a continuous electric field. The nonlinear phenomenon appears here and dealing 
with this situation enables us to suggest a few applications. It also helps us to 
properly understand the phenomenological development that underlies this entire 
book. 

                              
Chapter written by Alexandre VOLATIER, Brice IVIRA, Christophe ZINCK, Nizar BEN HASSINE 
and Emmanuel DEFAŸ. 
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12.2. State of the art 

12.2.1. Introduction  

Technological research in the domain of thin-film electrostrictive resonators is 
very active today. This domain is not as accomplished as that of piezoelectric 
resonators because the first results only appeared in the literature at the beginning of 
the 2000s. Scientific articles relating to thin-film electrostrictive resonators are good 
to follow because each advancement is notable: first resonances yielded, first 
modeling, first acoustic insulation, first adapted Bragg mirror, comparison of 
materials (all of the perovskite type), first coupling greater than that of AlN (7%), 
electric field-change in antiresonance frequency, and maximum quality factor 
discussion. This last point is the ultimate step for convincing the majority of the 
scientific community of the value of this alternative approach. These results are now 
imminent.  

In this section we will go into the details of the state of the art of electrostrictive 
resonators. From this domain, we entirely exclude ferroelectric phase resonators, 
such as PZT. Although PZT could be considered an electrostrictive material with a 
spontaneous polarization, the presence of domain walls is unacceptable with regard 
to the possibility of producing a resonator with low acoustic losses. It is admitted in 
the literature that these domain walls induce acoustic losses by generating shear 
waves, hence the low intrinsic quality factor of PZT [MUR 05]. Single crystal 
growth is, however, a serious way to obtain PZT, the nature of the domains of which 
could be much better mastered, thus reducing their negative effect on the quality 
factor.  

There are a few examples of electrostrictive resonators in the literature. It seems 
that Morito et al., in 2003, were the first to specifically study electromechanical 
resonators induced by a continuous field biasing a STO metal-insulator-metal or 
MIM capacitor [MOR 03]. In 2004, Tappe et al. presented similar observations on a 
BST MIM capacitor with a more acoustic approach than Morito, but considering a 
constant induced piezoelectric constant, thus neglecting the frequency change with 
the constant electric field applied [TAP 04]. 

In 2006, Gevorgian et al. analyzed the change in frequency of resonance on 
STO- and BST-based electrostrictive stacks [GEV 06]. The acoustic model 
developed identify the various modes of resonance and prove that the frequency for 
which dielectric losses are maximal corresponds to an electrostrictive effect, and 
more specifically to the resonance frequency. Despite this, there is no information 
about the antiresonance frequency for which it would have been necessary to follow 
the real part of admittance. Although they demonstrate the concept, experimental 
results of all these works show many spurious parasitic resonances as acoustic 
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insulation is not implemented. In 2007, during the IEEE Microwave Symposium 
conference, Zhu et al. presented a free-standing membrane using BST [ZHU 07]. 
The spurious resonances were then suppressed and the kt² extracted reached 7% 
(under 25 V bias), which is equivalent to AlN. Their model predicted a quality factor 
of 1,000 for BST after extraction of the influence of electrodes. This result seems to 
prove that paraelectric materials, devoid of domain walls, present acoustic losses 
that are much lower than perovskites in the ferroelectric phase. In this article, there 
are unfortunately no exploitable data on change in frequencies of resonance and 
antiresonance with applied voltage.  

In 2008, Vendik suggested an attractive acoustic model taking the antiresonance 
frequency into consideration independently of the electromechanical coupling. The 
resonators developed are made of BST and BaTiO3 (BTO). This approach is in very 
good agreement with experience [VEN 08]. Still in the same year, Volatier et al. 
presented the first STO resonator that was acoustically insulated from the substrate 
through the use of an acoustic W/SiO2 Bragg mirror [VOL 08]. The main difficulty 
with this approach is mastering the thermal budget that is mandatory for STO 
crystallization, but which in turn tends to destroy the Bragg mirror. It has been 
proven that an annealing temperature of 450°C enabled STO to crystallize while 
preserving the Bragg mirror. The maximum coupling is 3% at 30 V and the 
maximum change in the frequency of resonance reaches 1.6% towards the low 
frequencies. Due to the material not being optimized, the quality factor is only about 
50, which is not enough for radio frequency (RF) filtering applications. 
Improvement in intrinsic properties of the material is required. One of the most 
advanced pieces of research in the domain is that reported in Nöth’s PhD work at 
EPFL held in 2009 [NÖT 09]. The basic structure on which he worked is a BST 
resonator on membrane. Maximum coupling is 4%, the best quality factor  
reaches 200 and the changes in resonance and antiresonance frequencies reach  
-2.4% and -0.6%, respectively. More recently, Gevorgian et al. showed that hot 
sputtered BST can reach quality factor as high as 350, which is very promising for 
the field [GEV 10].  

In view of these results considered as state of the art in 2010, the progress that is 
still necessary to overtake typical AlN results is measured (kt² AlN = 7%,  
Q AlN = 2,000). There are still many paths available for improving these values. 
The possibility of adding commutation and frequency adjustment functions 
controlled by voltage at existing resonators has aroused vibrant interest. 

12.2.2. Formalism of the electrostrictive resonator 

The implementation of this formalism enables us to construct an acoustic model 
from the parameters of the electrostrictive material. We will first deal with the case 
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of the electrostrictive film alone. We will therefore speak about the real case in 
which we have to take the electrodes and the acoustic Bragg mirror into 
consideration. This  mirror is used to confine acoustic energy in the resonator. This 
way of confining energy is similar to what we saw in the case of piezoelectric 
resonators (see Chapter 7). 

12.2.2.1. Acoustic model of the electrostrictive film alone 

To build this model, we rely on Figure 12.1. The acoustic influence of the 
electrodes is neglected. In other words, we assume that their acoustic impedance is 
negligible as it involves an interface with air. However, the electric role of the 
electrodes is  retained. The electrostrictive film is t thick. Acoustic propagation of 
the longitudinal wave takes place perpendicularly to the planes of the films (along 
the z axis). In other words, it is the thickness mode that is considered. PDC and EDC 
are in the direction of positive z. The surface of the in-plane resonator is A. 

 

 

    

 
  

  
  

 

 

 

Figure 12.1. Scheme of the structure modeled only considering  
the electrostrictive material 

We will calculate the electric impedance of this electrostrictive film in order to 
determine the analytic expressions of the resonance and antiresonance frequencies in 
terms of EDC. We must note that we will consider a film without dielectric or 
acoustic losses, which prevents from looking at the quality factor. This analysis 
allows to discuss electromechanical coupling as well as the shift in characteristic 
frequencies in terms of the DC voltage applied.  

We saw that the acoustic propagation equation is of the following form, with u 
the mechanical displacement so that S = u/ z: 

2

2
u T

zt
ρ ∂ ∂=

∂∂
 [12.1] 



Electrostrictive Resonators     319 
 

Taking the piezoelectric formalism (S, D) (see Chapter 7), we get: 

( )2 2

2 2

D
D D

c S hDu S u
c c

z zt z
ρ

∂ −∂ ∂ ∂= = =
∂ ∂∂ ∂

 [12.2] 

The derivative of D in relation to z is zero. As there are no free charges in the 
electrostrictive dielectric (ideal case), divergence from D must be zero according to 
the Maxwell equation. Since the only non-zero contribution of D is along z, we 
have: 

 divD = D/ z = 0  =>  0
jwtD D e=  [12.3] 

where D0 is a constant. We then make the hypothesis that u takes the following 
form: 

( )sin cosjwtu e A kz B kz= +  [12.4] 

where k is the wave vector. Inserting equation [12.4] into the propagation equation 
(equation [12.2]) induces the formula for k: 
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ρ

= =  [12.5] 

where vD is the acoustic velocity of the wave considered at constant D. 

The boundary conditions are used to determine A and B. Indeed, the mechanical 
stresses vanish at the interfaces. Therefore, in z = t/2 and z = -t/2, we get: 
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Thus: 
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Including this expression in equation [12.4], u and S take the following forms: 
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Electric impedance Ze is the ratio between voltage V and the current I generated 
by the electrostrictive film. To simplify, we will take a positive voltage for this 
calculation, so that V is defined as E = +gradV.  

V is calculated by integrating E along z: 
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 [12.9] 

Then we get: 

( )
( )

( ) ( )

2

2
2

11 2 sin / 2
cos / 2

tan / 2 tan / 2
1 1

/ 2 / 2

S
D S

S S
tD S

h
V Dt kt

ktc kt

kt kth
Dt Dt k

kt ktc

β
β

β β
β

= −

= − = −

 [12.10] 

The electromechanical conversion coefficient kt² is  h²/cD S.  

Current I is the change in charge Q versus time across the dielectric: 

dQ dD
I A jwAD

dt dt
= = =  [12.11] 

As Z = V/I, the expression of Z is: 

( ) ( )2 2

0

tan / 2 tan / 211 1
/ 2 / 2

S

t t
kt ktt

Z k k
jwA kt jC w kt
β= − = −  [12.12] 



Electrostrictive Resonators     321 
 

where C0 represents the blocked capacitance (at constant S) of the resonator defined 
by the formula of the planar capacitor, in which the dielectric constant at fixed 
displacement is involved: 

0

S

S
A A

C
tt

ε
β

= =  [12.13] 

The antiresonance frequency is defined as the frequency for which impedance is 
infinite. In this model, we assumed that the resonator is ideal, and therefore lossless. 
The definition of the characteristic frequencies is therefore not ambiguous. As soon 
as acoustic losses are introduced (often through the quality factor, see Chapter 7), it 
is important to clearly determine the conditions for which the frequencies are 
defined. We choose to follow the Standards on Piezoelectricity, that recommend 
using frequencies of resonance fs and antiresonance fp, which are defined as being, 
respectively, the frequencies for which the real parts of admittance and impedance 
are maximal [IEE 87].  

For fp, we get this condition when the tangent of equation [12.12] tends towards 
infinity, which happens for the first mode of resonance when: 
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This expression is an exact solution. Unfortunately, the exact analytical solution 
for resonance does not exist because it involves solving the following transcendental 
equation originating from the cancellation of impedance at the resonance frequency 
(equation [12.12]): 

( )2/ 2 tan / 2tkt k kt=  [12.16]  

It is very important to see that coupling can be experimentally calculated from 
frequencies of resonance and antiresonance, from an exact formula that we will get 
by combining equation [12.15] and equation [12.16], which gives: 
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In the case of resonators that are weakly coupled (a few per cent), it is possible to 
give an approximate expression of fs. According to equation [12.17], if coupling is 
low, the difference between fp and fs is low. Therefore  kt /2 is equal to almost /2 at 
resonance (resonance takes place before antiresonance). We can therefore make an 
approximation near the tangent pole just before /2 which gives: 

( )22
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−
 [12.18] 

By inserting this approximation into equation [12.16], we get: 
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This approximation becomes too inaccurate for coupling of a few per cent. It is 
generally more secure to use the exact definitions of fp and kt. 

This analytical analysis, which applies to piezoelectric resonators, can be used 
for the electrostrictive case by replacing the piezoelectric coefficient h by its 
electrostrictive counterpart, as discussed in Chapter 8 and more specifically in 
equation [8.30]. We also give the approximate value for the resonance frequency for 
low couplings:  
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 [12.20] 

12.2.2.2. Model of the electrostrictive film charged by the electrodes, Bragg mirror 
and substrate 

In the case of a real thin film structure, the electrodes play an important role in 
the values of the characteristic frequencies of the resonator and also in the value of 
electromechanical coupling, as we saw in the case of the piezoelectric resonator. 
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Acoustic insulation is influenced by electrodes, the Bragg mirror and the substrate. 
Modeling the behaviors of the resonator requires to take these different contributions 
into consideration. To do this, we proceed in a similar way to the film alone by 
calculating the electric impedance of the charged resonator. This calculation was 
explained in the section on piezoelectric materials and gives the following result 
(slightly adapted here): 
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 [12.21] 

with / 2ktϕ = , k and t, the wave vector and the thickness of the electrostrictive 
film, respectively, kt² the stiffened electromechanical coupling h²/cD S, ztop and zbot 
the normalized acoustic impedances of the mechanical loads on both sides of the 
piezoelectric film. 
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Figure 12.2. Description and notation of an acoustically-loaded  
electrostrictive resonator with electrodes and Bragg mirror 

These impedances, ztop and zbot, are normalized by the acoustic impedance of the 

electrostrictive material, 0 D
e eZ cρ= , so that: 
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where Ztop and Zbot are the acoustic impedances resulting from the layers above and 
below the electrostrictive material, respectively, as shown in Figure12.2. These 
impedances are not solely a combination of impedances of materials making up the 
stack because they include phase information. Indeed, acoustic propagation takes 
place across the entire structure, like a line of electromagnetic propagation. For a 
given wave, passing from one material to another one the acoustic and electric 
transfer relations are respected. If the electrically inactive layers above and below 
the electrostrictive film are considered alone, these transfer relations at the interfaces 
are purely mechanical and therefore boil down to the equality of normal stresses on 
one hand and displacement of particles on the other. As acoustic impedance is 
defined as the ratio between the mechanical stress (negatively counted) and the 
velocity of displacement, the transfer relations can be translated as the equality of 
acoustic impedances at the level of the interface between two films in contact. We 
will now explain the acoustic impedance of an electrically-inactive mechanical film 
included in a complex stack. 

12.2.2.3. Acoustic impedance of an electrically-inactive mechanical film 

Let us focus on the case of an electrically-inactive acoustic film for which the 
stress and strain of the particles are considered in accordance with Figure 12.3.  

Non-electro-active
acoustic film

z

z1

z2

- T2: z2 stress
v 2: z2 stress

- T1: z1 stress
v 1: z1 velocity

d

-T2(z2)     v2(z2)

-T1(z1)   v1(z1)

 

Figure 12.3. Diagram and notation of a non-electro-active acoustic film 

As in the case of an electro-active film, acoustic propagation induces a 
displacement u of the particles as follows: ( )jwt jkz jkz jkz jkzu e Ae Be ae be− −= + = + . 
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The jwte  time term is placed into terms a and b. For the velocity of displacement v, 
this gives: 

( )jkz jkzu
v jw ae be

t
−∂= = +

∂
 [12.23] 

with c being the mechanical stiffness coefficient for the propagation mode 
considered, stress T is defined as: 

( )jkz jkzu
T c jkc ae be

z
−∂= = − +

∂
 [12.24] 

writing T and v in z1 and z2 and combining the equations, we get: 

0 1 2
1 tan sin

v v
T Z

j kd j kd
− = −  and 0 1 2

2 sin tan
v v

T Z
j kd j kd

− = −  [12.25] 

By definition, 2 2 2/Z T v= −  and 1 1 1/Z T v= . Stress is counted negatively in Z2 
because it is the wave compression that is considered, therefore the stress directed 
towards the material. In equation [12.25], we divide -T1 by v1 and -T2 by v2. We then 
eliminate the ratio v2/v1 by combining the two equations obtained, which finally 
gives: 

0
0 2

1 0
2

cos sin
cos sin

Z kd jZ kd
Z Z

Z kd jZ kd

+
=

+
 [12.26] 

If we want to generalize this formula in the case of a stack of three materials  
n − 1, n and n + 1, we get: 

0
0 1

0
1

cos sin
cos sin

n n
n n

n n

Z kd jZ kd
Z Z

Z kd jZ kd
−

−

+
=

+
 [12.27] 

where:  

− 0
nZ  is the impedance of the material making up the film n (therefore 

0
n n nZ cρ= ); 

− 1nZ −  is the impedance of the film n − 1 supposedly known at the level of the 
interface between films n − 1 and n; 
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− nZ  is the impedance of film n at the level of the interface between films n  
and n+1; 

− d is the thickness of material n; 

− k is the wave vector in material n;  

 − kd represents the wave phase considered in the material n.  

For this calculation, we always start from an interface with air and step-by-step, 
we reach the electroactive material from the top (normalized impedance, ztop) and by 
the bottom (normalized impedance, zbot). Thus,  the acoustic impedance of the entire 
stack can be determined. 

12.3. Experimental implementations 

We will now implement these models on three experimental devices using an 
electrostrictive material: a resonator without acoustic insulation, another on a Bragg 
mirror and the last one on a released membrane.  

12.3.1. 70/30 BST resonator without acoustic insulation 

12.3.1.1. Structure 

For this first example, the device is simply a MIM capacitor like the one in 
Figure 12.4. The implementation is simplified to the maximum by structuring only 
the last film corresponding to the top electrode. The RF test for measuring 
resonances is therefore carried out by placing the GSG (ground-signal-ground) RF 
probes directly on the structure. Tip S is on a central ring with a diameter of 50 μm 
whereas the G probes are placed on the circumference, the surface area of which is 
more than 1,000 times greater than that of the central ring. The equivalent diagram is 
therefore two MIM capacitors in series. One corresponds to the BST between the 
central ring and the lower electrode, whereas the other is made up of the BST 
between the circumference and the bottom electrode. The potential measured at the 
terminals of the tips between G and S therefore corresponds to < 0.1% of that 
applied between the top electrode of the central ring and the buried bottom 
electrode. This configuration is therefore very close to the one which has a direct 
contact with the bottom electrode and enables us to avoid etching the BST. This is 
the simpler structure for gauging the coupling potential of an electroactive film. 

We will see, however, that this structure only gives a rough estimate of the 
intrinsic quality factor of the electrostrictive film because of the significant influence 
of the substrate on the electric response of the resonator.  
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TiO2 10nm

Pt 100nm

BST 70/30 300nm

Pt 100nm
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G 
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G 
 

Figure 12.4. Configuration of the acoustically uninsulated BST electrostrictive resonators  

12.3.1.2. Technology 

In this example, silicon 200 mm in diameter and 730 μm thick is thermally 
oxidized in order to form 500 nm of SiO2. A 5 nm Ti film is then deposited by 
sputtering, then stabilized by oxidization at 700°C for three minutes (rapid thermal 
annealing by halogen lamps). A 100 nm Pt film is deposited at 450°C using 
sputtering. 70/30 BST is deposited using the sol-gel technique. The composition 
Ba/Sr = 70/30 is chosen because its Curie temperature  is close to room temperature, 
which induces a strong dielectric constant and a strong change in this constant in 
terms of the continuous voltage that will be applied. The counterpart is an important 
influence of temperature. BST thickness is 300 nm, obtained after the deposition of 
eight successive films of around 40 nm each. Each coating is followed by a 
calcination annealing at 400°C for 10 minutes and crystallization at 700°C for two 
minutes under air. A top Pt electrode is deposited, then structured by ion milling in 
accordance with the top view in Figure 12.4. A final polishing stage of the back of 
the substrate is carried out to improve resonances in the substrate. Although these 
resonances are not desired most of the time, they can enable to characterize the 
properties of the electroactive film that generates these waves (structure for a High 
overtone Bulk Acoustic wave Resonator, or HBAR). Polishing is carried out by a 
chemico-mechanical process.  

12.3.1.3. RF measurements and discussion 

Figure 12.5 shows the impedance module measured on the BST resonator for 
different continuous voltages applied during measurement. At 0 V, the change in 
impedance conforms to that of a 1/Cw capacitance. A very slight inflection is 
noticed around 3.5 GHz, a sign of low piezoelectric activity in the BST without 
continuous voltage. Although the BST composition is supposed to be paraelectric, 
the residual stresses in BST can introduce a change in Curie temperature as we saw 
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in Chapter 3. It is therefore likely to have a weak piezoelectric phenomenon due to 
the ferroelectricity of BST.  

This low piezoelectric activity is neglected in the model. When the bias voltage 
increases, two phenomena appear. The first is the very clear resonance followed by 
antiresonance, which is characteristic of any electromechanical coupling. The 
second phenomenon is the increase in out-of-resonance impedance, which is due to 
the BST dielectric constant sensitivity to the  voltage. We also note an important 
“line width” on the high voltage curves. This is due to the presence of numerous 
parasites of the substrate, as we will see in more detail hereafter.  

 

Figure 12.5. Impedance module of the BST resonator in terms of frequency for different 
continuous voltages applied during the measurement 

To go further in the extraction of characteristic values of the resonator, it is more 
accurate to work on the real parts of impedance and admittance. Figure 12.6 shows 
the real parts of impedance and admittance for the BST resonator with a DC voltage 
of 32 V. The frequency range is reduced to between 3.2 and 3.6 GHz in order to 
produce tighter resonances corresponding to harmonics of high orders in the 
acoustic cavity (silicon substrate in this case). Actually, these 6 MHz-spaced 
resonances correspond to harmonics of order n of the thickness mode in the silicon 
based on the formula nvSi/2d, with n integer, vSi the acoustic velocity of the 
longitudinal mode in silicon and d silicon thickness.  

We already discussed about these HBAR devices in Chapter 11. Here, however, 
the quality factor is much lower than in the case of optimized HBARs. Moreover, 
Figure 12.6 enables us to appreciate the difference in frequency between the 
maximum of the real parts of impedance and admittance corresponding, 
respectively, to the antiresonance and resonance frequencies of the complete 
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resonator. To extract the coupling coefficient, it is much more precise and complete 
to apply the model detailed above in the chapter on electrostrictive formalism and to 
find the characteristic values of the resonator ( S, kt

2, cD). Comparing the different 
voltages, we will thus be able to extract the characteristic values of BST that are 
parameters G, M and c0

D.  

 

Figure 12.6. Real parts of impedance and admittance of the BST resonator  
in terms of frequency for a direct current voltage of 32 V 

Figure 12.7 presents the experimental curves and those of the model for the real 
parts of admittance and impedance for two different continuous voltages: 32 V and 
2 V. The model is based on the above use of impedance in series with a resistance 
that mainly corresponds to the resistivity of Pt electrodes. The order of magnitude of 
this resistance is around 1 . The model is adjusted to the experimental curves by 
playing on the quality factors of silicon QSi and BST QBST and on the values of cD,  
and kt

2. The value of series resistance is also slightly adjusted between 0.9 and 1.2  
depending on the DC voltage.  

We observe that the model explains, with remarkable precision, the behavior of 
this electrostrictive resonator in terms of the DC voltage applied, in accordance with 
what it is possible for a piezoelectric resonator. It is worth noting that the quality 
factor of silicon QSi can be extracted with the model. We get 750, which is quite 
modest compared to what we can get building our capacitor on an optimized double 
sided polished substrate. In this case, we can reach a value of 2000. It is worth 
noting that this HBAR configuration does not enable us to correctly extract QBST. 
The model only indicates a minimum value of QBST of 50.  
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Figure 12.7. Comparison of experimental curves and modeled curves of the real parts  
of admittance and impedance of the BST resonator for two DC voltages:  

32 V (strong field) and 2 V (low field) 
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The values of cD,  and kt
2 extracted from the experimental curves from the 

impedance model are respectively plotted in Figures 12.8, 12.9 and 12.10. The 
curves of the adjusted electrostrictive model on these experimental curves are also 
plotted on these figures.  

In the case of cD (see Figure 12.8), a decrease due to the applied DC voltage is 
observed. This is the case for BST and STO in their paraelectric phase, but can be a 
hysteresis curve for PZT [ZIN 04] and BTO [VEN 08]. The fit of the electrostrictive 
model is not very accurate but it gives the correct trend. This imprecision comes 
from the fact that the curve of the real part of impedance is modulated by the 
tightened resonances due to the harmonics of the thickness mode of the substrate. In 
addition, as the effective quality factor of the curve is low (around 11), the 
maximum is not very sharp, which adds to the imprecision. The extracted values are 
c0

D = 1.52.1011 N/m² and M = -8.1011  N.m²/C².  
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Figure 12.8. cD extracted from experimental data (triangles) from the charged impedance 
model and cD extracted from the electrostrictive model (squares)  

after adjustment of the experimental values  

For , the decrease due to DC voltage is in accordance with the usual behavior of 
perovskites in the paraelectric phase. We will note a very large change in the value 
of , which moves from 320 to 80, for a DC voltage of 0 V and 32 V respectively. 
The corresponding relative change in  is 75% for an electric field of 1.07 MV/cm. 
This change is the main driving force of the electrostrictive effect.  

In this example, the experimental curve and the model are represented in 
Figure 12.9 with max = 320 and E1/2 = 3.5 107 V/m. The small discrepancy observed 
at low voltage can be due to not taking the parasitic capacitors into consideration (a 
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delicate RF problem) or to the fact that the RF signal is not negligible compared to 
the DC electric field. 
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Figure 12.9.  extracted from experimental data (rhombuses) from the loaded   
impedance model and  extracted from the LGD model (squares)  

after adjustment of the experimental values 

Finally, the correspondence between the model and experimentation for kt
2 

coupling presented Figure 12.10 is of good quality, which proves that the foremost 
effects in the model are taken into consideration. The curve seems to have two rising 
slopes according to DC voltage: a first one is quite high up to 12 V; then a second is 
much less marked. This behavior comes from the competition between the increase 
in the electric field and the decrease in the dielectric constant, as suggested by the 
model.  

We will note that taking into consideration the change in stiffness is only 
responsible for 3% of the calculation of kt

2. Everything else comes from the change 
of the dielectric constant with the electric field. The coefficient of electrostriction, 
G, extracted from the model reaches 2.8 x 1010 m/F. 

We must notice that kt
2 reaches 8.5%, which is about one third greater than AlN. 

Although this figure is encouraging, we must temper this value by not taking into 
consideration the BST quality factor and by the fact that the necessary electric field 
is of the order of 1 MV/cm, which is close to the breakdown field of BST. 

These two observations highlight the paths we need to improve to make this 
electrostrictive solution a realistic alternative to broadband RF filters for telecoms 
applications.  
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Figure 12.10. kt
2 extracted from experimental data (rhombuses) from the loaded  

impedance model and kt
2 extracted from the electrostrictive model  

(squares) after adjustment of the experimental values 

This thermodynamic model uses a fit of the parameters over the experimental 
values. It is theoretically possible to do better by using the linear and nonlinear 
electrostriction coefficients coming from ab initio calculation, as suggested by Nöth 
in his thesis. The very nature of the material, however, like its degree of porosity, 
exact composition or stress level can greatly affect these coefficients. It is eventually 
more efficient to proceed to a fit of the model parameters. The first step before the 
prediction is to ensure the reproducibility of the material. This represents an 
indispensable task for confirming its capability to generate acoustic waves of very 
good quality. We must note that the quality required for an electroacoustic material 
is more drastic than for a dielectric material because the material must exhibit very 
good dielectric and mechanical properties at the same time. Using BST as a strong 
permittivity dielectric for decoupling capacitors or variables has been validated at 
the industrial level, but not yet for electrostrictive applications. 

12.3.2. STO resonator on Bragg mirror  

In the previous example, we discussed the results of a resonator not insulated 
from the substrate. Parasitic resonances induced by the substrate impede the use of 
these resonators in oscillators or filters. The implementation suggested here uses the 
principle of the Bragg mirror as acoustic insulation. The same model as before is 
used to take into consideration the stack of all the films in the acoustic behavior of 
the resonator. The main difficulty of this technological job is mastering the thermal 
budget supported by the Bragg mirror. Indeed, the electrostrictive material (here 
STO) requires crystallization annealing at 450°C, which can induce cracks in the 
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underlying films. Ion beam sputtering (IBS) deposition plays a dominant role here 
because it enables this low temperature crystallization of STO.  

12.3.2.1. Structure 

Figure 12.11 is a diagram of the implemented stack: Si (525 μm)/[Ti (20 nm)/W 
(610 nm)/SiO2 (710 nm)] x 2/Ti (40 nm)/Pt (140 nm)/STO (400 nm)/Pt (80 nm)/Ti 
(20 nm)/Au (100 nm) substrate. 

 

Figure 12.11. Diagram of the stack of the electrostrictive resonator 
with a Bragg mirror [VOL 06] 

The Bragg mirror consists of a double stack of W (strong acoustic 
impedance)/SiO2 (low acoustic impedance). Pt is kept in contact with STO because 
it improves its electrical characteristics. Gold is finally added in order to reduce 
contact resistance during RF tests. Ti films improve adhesion. After deposition, STO 
is air-annealed at 450°C, without deteriorating the Bragg mirror.  

X-ray diffraction shows that the perovskite phase is alone and that the film does 
not exhibit any preferential orientation. The design is based on a one-port resonator 
with remote contacts. The active surface area is 30 x 80 μm². The measurements are 
performed using a vector network analyzer (HP8753E). As for BST HBAR, a DC 
voltage is added to the device during the test. The contribution of RF plots is 
extracted thanks to correction patterns (de-embedding). 

12.3.2.2. RF characterization and discussion  

Figure 12.12 represents the broadband impedance response of the STO resonator 
with and without DC voltage. No resonance is observed at 0 V, whereas with 20 V 
the impedance shape is characteristic of a resonance with electromechanical 
coupling. We can therefore imagine a switching function. The resonance frequency 
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is around 2.2 GHz for a target at 2.14 GHz. Thanks to the one-dimensional model, 
we know that this value corresponds to the half-wavelength-thickness mode 
resonance of the stack made up of STO with its electrodes (Pt and Pt/Au). The 
parasitic resonances induced by the substrate are not present here, which proves the 
efficiency of the Bragg mirror. We can also note a global increase in impedance 
under DC voltage because of the decrease in dielectric constant under electric field, 
as for BST. Finally, we see that the impedance module is of the order of a few . To 
be around 50 , it would be necessary to reduce the capacitor surface. Typically, a 
surface of 25 x 25 μm² would ensure 50  at 2 GHz. 

 

Figure 12.12. Impedance module in terms of frequency with and without DC voltage of the 
STO resonator around the thickness mode of the stack (STO + electrodes) 

Figures 12.13a and 12.13b, respectively, show conductance and resistance of the 
resonator near principle resonance with a DC voltage varying between 0 and 30 V. 
The resonance frequency, fs (conductance maximum), decreases when voltage 
increases (-1.62% at 30 V, compared to 0 V). The antiresonance frequency fp 
(resistance maximum) also decreases, but more modestly (-0.59% at 30 V). No 
hysteresis is observed, which is evidence of the electrostrictive state of the material. 

Figure 12.14 represents the resistance (Real part of impedance) and conductance  
(Real part of admittance) curves stemming from the previous model applied to this 
example of the STO resonator near the thickness mode. The similarity of the 
experimental and modeled curves attests to the quality of the electrostrictive model. 
To account for the electrodes resistance, a series resistance of 2.5  was added to 
the resonator model. The quality factor extracted is low for the two characteristic 
frequencies because it is around 30. We will return to the reasons for this low value. 
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a) 

 

b) 

Frequency GHZ

Real Part Z (Ohm-1)Real part Y (Ohm-1) 

Frequency GHZ  

Figure 12.13. a) Conductance; and b) resistance of the STO resonator 
around the thickness mode [VOL 08] 
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Figure 12.14. a) Modeled conductance; and b) modeled resistance 
of the STO resonator around thickness mode  

As in the HBAR case above, it is possible to extract the characteristic values of 
the phenomenological model from the impedance of the resonator. The relative 
dielectric constant of STO varies here between 100 at 7 V and 76 at 30 V, which 
represents a maximum applied electric field of 0.75 MV/cm. The behavior is similar 
to that of BST, but the maximum value for STO is lower. For the stiffness coefficient, 
returning to the electrostrictive formalism and fitting the parameters with the 
experimental curve (as represented in Figure 12.15a), the values extracted are 
c0

D = 1.56 x 1011 N/m² and M = -1.2 X 1012 Nm²/C². For the coupling coefficient, kt
2, 

the experimental values of the model are plotted in Figure 12.15b. A linear 
coefficient of electrostriction G = 2.5 x 1010 m/F is extracted. 



Electrostrictive Resonators     337 
 

    
    
    
    
    
    
     
     
    

                     35     

  

        

 
a) 

 

0

0.005

0.01 
0.015

0.02 
0.025

0.03 
0.035

5 10 15 20 25 30
Continuous voltage (V) 

C
ou

pl
in

g 
kt

²

kt² exp
kt² model
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Figure 12.15. cD and kt
2 of the STO resonator extracted from experimental data (rhombuses)  

from the loaded impedance model and cD extracted from the electrostrictive (squares) model 
after fitting the experimental values 

The value of the coupling coefficient obtained is low (3% at 30 V). This is 
related to the rather low dielectric constant of STO around 120 at 0 V, together with 
its weak variation with DC bias, compared to BST.  
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We showed that the coupling coefficient varies to the power of three with εr. The 
increase in εr must therefore induce an increase in coupling, as for BST. The low 
annealing temperature leads to a disturbed crystallization of STO, as proved by the 
transmission electron microscopy image in Figure 12.16. The small grains, a few nm 
in size, observed are cavities in STO. It is likely that these cavities have a non-
negligible role on the dielectric constant of STO, as well as on the acoustic losses 
that induce a low quality factor. 

On the other hand, X-ray diffraction diagrams showed a random orientation of 
STO. There are therefore grains with different orientations that are strained 
simultaneously during RF excitation. As STO different orientations do not have the 
same acoustic velocities, this induces a phase shift of the acoustic waves that could 
also explain a decrease in the quality factor. 

 

Figure 12.16. Transmission electron microscopy image of a STO film between two Pt 
electrodes annealed at 450°C for 30 minutes under air 

12.3.3. BST resonator on an acoustic Bragg mirror 

The work in this section is taken from the literature produced by the works of 
Professor Gevorgian’s team, which is one of the precursors of these electrostrictive 
resonators [GEV 06]. The stack studied is very close to the example above and the 
test structure is identical to that of Figure 12.4. The Bragg lattice is probably made 
up of alternating layers of AlN and SiO2 layers. The bottom electrode is in Pt and 



Electrostrictive Resonators     339 
 

the top one in Au. The electrostrictive material is BST25/75 (Ba/Sr = 25/75) 
obtained by pulsed laser ablation deposition (PLD).  

 

Figure 12.17. a) Real part of impedance; and b) admittance 
of a BST25/75 resonator on a Bragg mirror [GEV 06] 

The experiment curves of the real parts of impedance and admittance are plotted 
in Figure 12.17. The authors used the same model as previously described to explain 
the experiment curves. The correspondence between model and experience, as seen 
in Figure 12.17, is good. 

The maximum kt
2 extracted reaches 1%, which is quite low. The quality factor 

reaches 80 for resonance and antiresonance, which is encouraging. The change in 
frequencies versus DC voltage is around 1%. 
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12.3.4. BST resonator on a membrane 

This last example is the one published by Professor Tagantsev’s team at EPFL 
and it is one that likely arouses the most hope with regards to future use of this 
technology because of the results obtained [NOT 09]. 

The basic structure is a BST resonator between a Pt bottom electrode and a top 
Al electrode. The resonator is released by back-etching of the substrate using a dry 
process. The paper [NÖT 09] summarizes the important points of the main 
approaches possible right now:  

− use of paraelectric BST (coupling higher than STO); 

− deposition through the PLD process enabling high quality deposited material 
(but not an industrial process yet);  

− acoustically-insulated structure;  

− electrodes that are highly conductive; and  

− an acoustic model implementing the change in stiffness. 

 

Figure 12.18. Results obtained on BST 
mounted on a membrane [NOT 09] 

The typical results obtained instance a change in frequencies of resonance and 
antiresonance of -2.4% and -0.6%, respectively, for a field of 600 kV/cm, a 
maximum kt² coupling of 4% for the same field and one of the best quality factors 
reported reaching 200 at resonance and 120 at antiresonance. Let us add here that 
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Professor Gevorgian recently published data on BST resonators reaching a quality 
factor of 350 [GEV 10]. This high value is likely the results of a special deposition 
mean called hot sputtering. The advantage of this technique is that no further 
annealing is necessary to crystallize BST, as it is already in the perovskite phase 
after deposition. These results are plotted in Figure 12.18 and were analyzed with 
the same model as the one presented above.  

12.4. Simulation of a filter with electrostrictive resonators 

From the model implemented, it is possible to simulate all sorts of filters in the 
same way as was presented for AlN-based resonators (see Chapter 10). Here we 
present a ladder-based structure with a single cell (a series resonator and a parallel 
one). The values of the model correspond to the BST developed at LETI (see Table 
12.1) with a quality factor of 200. The transmission response in dB of this filter 
structure for different DC voltages is given in Figure 12.19. 

 

Figure 12.19. Transmission response of a ladder filter composed of one section  
with two electrostrictive resonators (in dB) 

Between 10 V and 30 V, the width of the band-pass is roughly constant because 
of the quasi-constant value of kt

2 (due to the equilibrium between the increase in 
electric field and the decrease in the dielectric constant). The band-pass shifts 
towards low frequencies of about 1% when the DC voltage changes from  
10 V to 30 V. 
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We also note that at 0 V, the filter is none other than a voltage divider with 
capacitors since the resonators are no longer active. This simulation gives a general 
idea of what it is possible to design from this model but as mentioned earlier the 
performances of the filters in terms of loss and steepness depends mainly on the 
quality factor of the material. 

12.5. Status of perovskite electrostrictive resonators 

In Table 12.1, we resume the main results of electrostrictive resonators observed 
in the literature. Some values from the literature were calculated or estimated from 
available information.  

 

Materials BST LETI STO LETI
BST 

(Vendik) 
BTO 

(Vendik) 
BST 

(Noth) 
STO 

(Saddick) 
PZT 

(Muralt) 

Reference [DEF 10] [VOL 08] [VEN 08] [VEN 08] [NOT 09] [SAD 07] [CON 08] 

c0 (N/m²) 1.52 x 1011 1.56 x 1011 2.50 x 1011 1.30 x 1011 2.53 x 1011 3.48 x 1011 1.30 x 1011 

fp /fp (%) -1.70 -0.62 -1.12 +4.2 -0.4 ? -3.2 

fs /fs  (%) -3.20 -1.69 -1.57 +1.3 -2.0 -1.05 -5.0 

M (Nm²/C²) -8.0 x 1011 -1.2 x 1012 -1.5 x 1012 4.3 x 1012 -5.0 x 1011 ? ? 

G (m/F) 2.8 x 1010 2.5 x 1010 1.6 x 1010 3.0 x 1010 1.8 x 1010 1.6 x 1010 6.5 x 109 

r max 320 100 140 140 300 ? 1,100 

r min 78 76 100 100 170 80 650 

Emax 
(MV/cm) 

1.07 x 108 7.50 x 107 5.00 x 107 5.00 x 107 6.00 x 107 1.25 x 108 2.00 x 107 

Q >50 30 80 30 120−200 80 50 

kt² model 
(%) 

8.4 2.73 0.71 4.78 6.26 1.63 9.87 

kt² exp 
(%)  

8.5 3 1 6 4.5 2 9.5 

Device  HBAR SMR SMR SMR FBAR SMR FBAR 

Table 12.1. State of the art of electrostrictive resonators (in 2009) 

It seems that BST, PZT and to a lesser extent BTO show couplings that can 
compete with AlN. It is worth noting that PZT and BTO, which are ferroelectrics, 
were considered electrostrictive by extension. However, the use of ferroelectrics 
prevents us from conceiving a switch operation like that for pure electrostrictive 
materials because of the ferroelectric hysteresis cycle. 
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The main physical reason that explains the strong coupling is the strong 
dielectric constant (and its huge variation with DC bias) associated with a high 
electric field. The stiffness values extracted from the literature are often quite 
scattered, but the order of magnitude is roughly the same. A preliminary stage of 
characterization by picosecond ultrasonics seems like the best solution for obtaining 
a correct value of acoustic velocity. We must note that this stiffness appears in the 
denominator in the kt

2 formula, which induces an increase in coupling when the 
material is less stiff. It is likely, however, that this also produces a greater loss of 
energy and therefore a decrease in the quality factor. This low quality factor, 
regardless of the structure studied, remains a major issue with this technology.  

In terms of change in characteristic frequencies, the orders of magnitude are 
around 1% for the antiresonance frequency for purely electrostrictive materials. 
Only the stiffness variation is to be invoked to explain the antiresonance frequency 
change. Indeed, for electrostrictive materials, electromechanical coupling is only 
involved in the resonance frequency change, in accordance with equation [12.20]. 
This change always goes in the direction of a decrease in stiffness when a DC 
voltage is applied. The microscopic reason for this change is not very clear but is 
certainly linked to the increase in the distance between atoms when voltage is 
applied. Experimentally, an electrostrictive material expands in the direction of 
thickness when a DC voltage is applied,  whatever the sign of voltage. We must also 
note that this change in stiffness cannot be explained by the change in length 
induced by the electrostrictive effect, because the latter is about 20 times lower 
compared to the stiffness variation extracted from the model. We are therefore 
dealing with a real change in stiffness of the electrostrictive material. The change in 
resonance frequency, which includes the change in stiffness effects and those of 
electromechanical coupling, can reach 2−3% in the direction of the decrease in 
frequency. For ferroelectrics (BTO, PZT), the changes can reach 4% with a 
hysteresis cycle. The interpretation of the changes in frequencies is much less clear 
in the particular case of ferroelectric materials because coupling and change in 
stiffness is involved in the two frequencies due to hysteresis. Up to 5% change is 
observed for PZT.  

These significant changes in frequencies enable us to see the potential for RF 
filters. The possibility to increase these changes up to 10% would permit us to 
reconfigure the filters in order to move from one telecommunication standard to 
another. These perspectives dodge very important work by design teams that it is 
impossible to avoid to properly gauge these electrostrictive devices in the 
framework of RF applications. Indeed, the combined, non-identical change of the 
characteristic frequencies due to the DC voltage applied complicates the traditional 
diagram of acoustic filters.  
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These perspectives are only interesting if we are able to improve the properties 
of the material, and especially the quality factor. There are several ways by which 
we can do this: high-temperature annealing; another deposition technique; or a 
Bragg mirror that can support a higher temperature and ensure a unique orientation. 
Single-crystal thin films are undoubtedly a very good path to follow, just like 
searching for a maximum density associated with a minimum roughness.  

12.6. PZT-based tunable frequency ferroelectric acoustic resonator  

12.6.1. Introduction  

As previously discussed, it can be interesting to replace AlN, a polar 
piezoelectric material with a material whose resonance frequency can be adjusted by 
applying a DC voltage. The need to adjust the resonance frequency comes from the 
extreme precision that must be exhibited by the resonators. As this frequency is 
fixed to the first order by the thickness of the piezoelectric and the precision of 
current deposition machines is not sufficient, a method of frequency adjustment is 
mandatory. To avoid the localized ion manufacturing that is used today (trimming 
method), which is extremely difficult to implement, a solution enabling frequencies 
to be adjusted by adding a DC voltage is very attractive.  

Electromechanical coupling of a piezoelectric  resonator depends on the 
piezoelectric coefficients. In the case of ferroelectrics, these coefficients vary in 
terms of the state in which the dipoles inside the material are found. With the LGD 
formalism (see Chapter 3), we showed that for perovskite materials (like PZT), 
piezoelectricity in the ferroelectric phase comes from the simultaneous existence of 
electrostrictive properties and remanent polarization of the material. In this 
calculation, piezoelectric coefficients depend on this remanent polarization, the 
dielectric constant, the electrostrictive coefficients and the DC electric field.  

Thus, the change in remanent polarization in the ferroelectric obtained by 
applying a DC electric field greater than the coercive field will result in a change in 
piezoelectric coefficients and electromechanical coupling coefficients. As the latter 
depend on resonance and antiresonance frequencies of a resonator, applying a DC 
field must let the characteristic frequencies of a ferroelectric resonator vary.  

Next, we present a suspended resonator involving PZT characterized in the range 
of GHz. The resonance frequency is changed by applying a DC voltage.  
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12.6.2. Technology 

A sketch of the final structure of this ferroelectric resonator is given in Figure 
12.20a. The membrane is released by SF6/C4F8 anisotropic dry etching with a stop 
on a thermal SiO2 film of 1 μm. This oxide film is then etched at the end of the 
process by dry etching. The resonant structure released is made up of 500 nm Si3N4. 
The bottom Pt electrode (100 nm) with its supporting Ti film (50 nm), followed by 
370 nm of sputtered 52/48 PZT annealed at 675°C under air for 30 minutes. The top 
Pt/Ti/Pt electrode (20 nm/30 nm/100 nm) is critical to improve adherence, while 
ensuring Pt contact with the ferroelectric. A film of SiO2 deposited by Plasma-
Enhanced Chemical Vapor Deposition (PECVD) is used to insulate the electrodes. 
The nitride film ensures mechanical solidity of the released membrane, although the 
ideal solution would be to remove this film, which has a non-negligible impact on 
the resonant properties of the structure. Figure 12.20b is a view from the top of the 
tested structure on which we see the three test probes (GSG) on the left and the 
capacitance with a particular non-regular shape, in order to minimize the parasitic 
modes originating in lateral modes of resonance. The changes in tone in Figure 
12.20b are proof of a membrane deformed by relaxing residual stresses.  

a)

SiO2

Si

SiN

Ti/Pt

PZT
SiO2

Si

SiN

Ti/Pt

PZT

SiO2 Ti/Pt

 

b)  

Figure 12.20. a) Sketch of a PZT-based ferroelectric FBAR with release by the back side; and 
b) view from the top of the RF released tested structure 
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12.6.3. RF characterization and discussion 

RF design corresponds to a one-port structure that enables us to measure the S11 
parameter of capacitance (network analyzer: HP8753E). Correction patterns are 
added to the mask in order to eliminate the parasitic capacitors of the probe pad. A 
DC voltage is added to the RF signal to measure the changes in resonance and 
antiresonance frequencies of the structure near dominant mode. This mode is located 
around 1.5 GHz and corresponds to a resonance of the whole stack, especially the 
nitride film, which is not optimal for coupling. 

Figure 12.21a shows the change in frequencies fs and fp where the DC electric 
field varies between -280 kV/cm and +280 kV/cm in the two directions. A butterfly-
shaped curve is observed for the two frequencies that are explained by the 
ferroelectric character of PZT. This hysteresis is an extra difficulty to manage in the 
case of an integrated device. 

In Figure 12.21a, the change is more pronounced on the resonance frequency 
than on the antiresonance frequency. The change in resonance frequency reaches 
1.9%, which could be sufficient for compensating the frequency spread of resonators 
due to thicknesses variation inherent of deposition techniques. We must however 
take into consideration the way the filter function is implemented. In the case of 
most common filter topologies (so-called ladder or lattice), two types of resonators 
(A and B) with two different resonance frequencies are needed. For the filter to 
work, the resonance frequency of the A resonators (series elements) must 
correspond to the antiresonance frequency of the B resonators (shunt elements). In 
these basic topologies, one can see that the side-effect of a filter frequency 
adjustment would be a bandwidth change due to a coupling change. Although 
limiting the scope of such filter, this combined change in bandwidth might be 
acceptable for some applications. One way to overcome this issue would be to work 
on filter topology that only use one of the two characteristic frequencies by 
adjoining passive elements in the filtering chain [CAR 05]. Theoretically a 
frequency adjustment could then be achieved while keeping the bandwidth identical. 
This technique, however induces the use of passive elements with high quality 
factors, which in itself constitutes a technological challenge. 

In the same year as this study (2004), Schreiter et al. observed these changes in 
frequencies of resonance and antiresonance due to a DC field on a PZT FBAR 
resonator [SCH 04]. They reported a behavior different to the resonators following 
the PZT composition: in the Ti-rich tetragonal phase (PZT 25/75), the frequency of 
resonance barely drifts with the DC field; whereas the frequency of antiresonance 
drifts by a maximum of 1.9%. It is exactly the opposite for the Zr-rich rhombohedral 
phase (PZT 58/42). The authors explain this phenomenon by competition between 
two effects. On one hand, a different behavior of the material stiffness at constant 
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field strength (called c33
E) versus the DC field following its crystalline phase. On the 

other hand, there is the electromechanical coupling effect.  

Schreiter uses the thickness mode resonance model and obtains approximate 
formula for the resonance and antiresonance frequencies that only depend on c33

E, 
the density and kt². This approach is interesting because it enables us to put forward 
an explanation based on the field-enhanced movement of domain walls, which 
induces a change in stiffness in the rhombohedral case for a (111)-oriented film, 
which is their case. With this model, in the tetragonal phase the possible domain 
directions are such that no change in stiffness can occur. Therefore, for the 
tetragonal phase, the frequency changes are due solely to the change in kt² (fp varies 
and fs is almost constant). For the rhombohedral phase, however, the influence of 
change in stiffness compensates that of kt² for fp, whereas it makes up the source of 
change of fs. Consequently, we can consider that the rates of change in resonance 
and antiresonance frequencies of a PZT resonator can be adjusted in terms of the 
Zr/Ti ratio and so these relative quantities of the tetragonal and rhombohedral 
phases. 
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Figure 12.21. a) Series (fs) and parallel (fp) change in frequencies of the PZT resonator due 
to the continuous electric field applied; and b) change in the equivalent coupling coefficient 

(kt²) calculated from the changes in fs and fp  

Figure 12.21b represents the kt² coupling coefficient of the resonator calculated 
with the resonance and antiresonance frequencies. A butterfly-shaped curve is found 
with two field values that cancel any piezoelectric effect. This can be interesting for 
RF switch operations. The maximum value reached by kt² is 7%, which is quite low 
for PZT. The best results in the literature reach >30% [LAR 04]. The likely reasons 
are first a non-optimal quality of PZT (sputtered here) and second the presence of 
the silicon nitride film whose volume represents about half the stack, which is not 
negligible in the calculation of kt². Third, the quality factor of resonances is low 
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(<100). Here, also, the quality of PZT is to be challenged (porosity, low Pb content). 
We must also note that PZT intrinsically displays very high acoustic losses. Muralt 
discusses this problem in an article that makes reference to the subject [MUR 05].  

The ferroelastic domain walls make a very important contribution to the 
piezoelectric effect (roughly 50%), but this movement induces considerable acoustic 
losses. As the morphotropic phase of PZT (Zr/Ti = 52/48) is the one that has the 
greatest domain wall mobility because of the presence of a monoclinic phase 
[NOH 00], it is also the one that must exhibit the largest losses. The movement of 
domain walls generates shear waves in the material that are similar to a dielectric 
relaxation, the characteristic frequency of which is close to that of the thickness 
mode, which explains these losses. Let us recall that ferroelastic domain walls 
appear between two domains with different directions of polarization as domains, a 
and c in the case of the tetragonal lattice. If the walls are between two flipped 
domains (called 180°-domains), they are not ferroelastic.   

To suppress these unacceptable losses for a filtering application that necessitates 
coefficients of quality of the order of 1,000, Muralt suggests dropping domain walls 
by using materials that only have one possible direction of polarization, such as 
those belonging to a tungsten bronze structure or ilmenite (LiNbO3, LiTaO3). He 
also suggests playing on the stresses induced by the substrate to force the domains in 
one single direction (see Janolin’s thesis on heteroepitaxy of PZT on an STO 
substrate [JAN 06]). The use of single-crystal films of lithium niobate or tantalate 
oriented in a favorable direction was already discussed in this book. Another 
possibility could be to use an electrostrictive effect rather than a piezoelectric one, as 
previously detailed. 

12.7. Nonlinear effect in piezoelectric AlN 

12.7.1. Introduction 

AlN is a purely piezoelectric material, without the possibility of cancelling this 
effect like in ferroelectrics. It can show, however, nonlinearities when external 
stresses become important, like a continuous electric field for example. This effect is 
low but it is notable and quantifiable by a thermodynamic approach similar to that 
put forward for pure electrostrictives (see Chapter 8). In this section, the changes in 
characteristic frequencies and electromechanical coupling of AlN resonators will be 
explained. The main difference with pure electrostrictives like perovskites is found 
at the level of the dielectric constant, which is a lot lower in the case of AlN  
( r   10). Its change with DC voltage is also a lot more modest, which considerably 
limits the changes in characteristics observed on the AlN resonators. The differences 
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are notable, quantifiable and predictable thanks to this phenomenological model. It 
therefore seemed interesting to develop the model here. 

12.7.2. Piezoelectric-electrostrictive phenomenological model 

In accordance with what was observed analytically for the acoustic propagation 
equation, it is very practical to use D as a variable in the development of this model 
because the antiresonance frequency is defined directly from cD without 
electromechanical coupling, which considerably simplifies extraction of parameters. 
It can seem more logical to use the electric field as the variable because it is this 
variable that is applied directly to the resonator, but this considerably complicates 
the development.  

For the mechanical variable, as we are again considering a thin film on a 
substrate, it is simpler to use S because the in-plane strains are zero to the first order. 
We can therefore work on a one-dimensional model to explain the changes in 
resonance of the thickness mode. No index will be indicated in the development, but 
all the coefficients concerned relate to the direction of propagation, naturally the z 
(or 3) axis.  

Just as before, the free energy considered is F, Helmholtz free energy. 
Temperature is considered to be constant, which eliminates the heat term in F. In the 
case of a piezoelectric material, there is no reason to eliminate the odd terms 
because there is no center of symmetry. There are therefore no more terms to 
determine.  

The changes in frequencies of resonance of AlN due to a DC field are extremely 
small: it is therefore necessary to make a free energy development taking into 
consideration all the terms for a given order. 

As we will consider the electrostrictive term, it is the third-order energy that 
must be considered. F takes the following form: 

2 2 2
0 0 0 0

2 3 3

1 1
2 2

1 1                           
3 3

D SF F c S D h DS GD S

NS D OD RS

β− = + − + +

+ +
 [12.28] 

where c0
D, 0

S and h0 are, respectively, the coefficient of stiffness at constant D, 
impermittivity at constant S and the piezoelectric coefficient. G is the linear 
electrostriction coefficient. 
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N, O and R are defined by equation [12.28]. It does not seem useful to 
specifically name them.  

A first-order derivation of F as a function of S and D gives: 

2 2
0 0 2D

D

F
T c S h D GD NSD RS

S
∂ = = − + + +
∂

 

2 2
0 0 2S

S

F
E D h S GDS NS OD

D
β∂ = = − + + +

∂
 [12.29] 

By applying a  DC voltage, it is possible to simplify these equations as before by 
only keeping the first order of the DC terms, which gives: 

( ) ( )

( ) ( )
0 0

0 0

2 2 2 2

2 2 2 2

D
dc dc dc dc

S
dc dc dc dc

T c ND RS S h GD NS D

E h GD NS S GS OD Dβ

= + + + − + +

= − + + + + +
 [12.30] 

where DC stress in the propagation direction is zero in the case considered, which to 
the first order induces: 

0

0

dc
dc D

h D
S

c
=  [12.31] 

The equation [12.30] set therefore becomes: 

0 0
0 0

0 0

0 0
0 0

0 0

2 2

2 2

D
dc dcD D

S
dc dcD D

Rh Nh
T c N D S h G D D

c c

Nh Gh
E h G D S O D D

c c
β

= + + + − + +

= − + + + + +

 [12.32] 

We find a formalism (S,D) with the following equivalent cD, h and  terms: 
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 [12.33] 

Use of the above acoustic model is always valid for AlN by using the new 
parameters cD, h and . To the first order, Ddc can be considered the ratio Edc/ 0

S. We 
therefore assume that the correction factors of S are weak. Making this 
approximation, the different terms of equation [12.33] become: 
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 [12.34] 

12.7.3. Application: AlN resonator on a Bragg mirror  

In this example, we study an AlN resonator (1.27 μm) with Mo electrodes  
(250 nm each) on a Bragg lattice based on the couple of SiOC (low impedance)/SiN 
(high impedance) materials, as in Figure 12.22.  

To observe the changes in characteristic frequencies of this resonator, a DC 
voltage is simultaneously applied to the RF signal. Figure 12.23 illustrates the real 
parts of impedance and admittance due to frequency for three DC voltages: -200 V,  
0 V and 200 V. 

We have to note that the maximum voltage that can be supported by AlN is very 
important (breakdown field >5 MV/cm). Shifts in resonance (ReY) and 
antiresonance (ReZ) frequencies are observed. At first sight these seem to be of the 
same order of magnitude, unlike those observed on BST. 
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Figure 12.22. Stack of a Mo/AlN/Mo resonator on a Bragg mirror  

We can immediately deduce from this that the change in coupling will be very 
low according to the continuous voltage applied. The greater part of this change is 
therefore due to the variation in stiffness of AlN, which is related to the change in 
frequency of antiresonance fp. Indeed, in the sections above, we saw that the change 
in fp can only be due to the influence of stiffness in this chosen piezoelectric 
formalism.  

An evolution of the amplitude of ReZ and ReY in terms of continuous voltage, 
Vbias, is observed in the opposite direction. Indeed, when Vbias increases, the 
amplitude of ReY decreases when that of ReZ increases. Mason’s model enables us 
to easily see that this opposite change is linked to the decrease (in the order of 
several per cent) of the AlN dielectric constant when Vbias increases. 

Using Mason’s model discussed above, it is possible to extract cD, S and kt
2 in 

terms of Vbias. Figure 12.24 shows the results of fitting the model on the 
experimental data. Accuracy is not optimal because of a parasitic resonance on the 
experiment curves. It is however sufficient to observe the expected effects of 
change. The values extracted from the model are plotted in Table 12.2. 
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Figure 12.23. Real parts of impedance and admittance near characteristic frequencies of the 
thickness mode of the AlN resonator for three DC voltages  

(-200 V, 0 V, 200 V) 

 

Figure 12.24. Fitting the model on the experimental values of: a) ReZ; and b) ReY 

V bias (V)  -200 0 200 

cD (N/m²) 3.83 x 1011 3.87 x 1011 3.91 x 1011 

kt
2 0.059 0.0577 0.0563 

S 10 9.7 9.3 

Table 12.2. Values extracted from the model after adjustment 
against the experimental results in Figure 12.24 
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The changes are quite low (a few per cent) compared to those observed with 
BST. On the other hand, the changes in dielectric constant and stiffness are of the 
same order of magnitude. The direct consequence of this observation is that it is not 
possible to make the hypothesis on the cancellation of certain coefficients of free 
energy of AlN (equation [12.28]). We therefore end up with a system that has more 
unknowns than the number of equations known. In our case, fitting gives the 
following results: 
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0
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+ = − ×    [12.35] 
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+ = − ×   

It is fundamental to note that we cannot cancel parameters O and R, as they are 
not involved in the coupling. If these two parameters are cancelled, N and G, the 
coupled terms, do not succeed in explaining the changes in coupling due to Vbias. We 
therefore cannot neglect any order of degree 3 of energy. We will note that R 
nevertheless enters the change in stiffness in terms of Vbias, because of the 
spontaneous strain that results from Vbias.  

12.7.4. Conclusion with nonlinear AlN 

We have seen in this part that it is possible to explain the behavior of an AlN 
resonator in terms of a DC voltage with the help of a thermodynamic approach, just 
like BST. However, as the change in dielectric constant is a lot lower in the case of 
AlN, it is essential to keep all terms of the same order in the free energy 
development so that we can explain the changes observed. The changes in 
frequencies of resonance and antiresonance can reach 1.5% for 400 V DC.  

12.8. Conclusion with electrostriction  

We see that electrostriction is a second-order phenomenon that includes, by 
extension, several nonlinear effects, especially the change in stiffness in cases of 
pure electrostrictive materials. This phenomenon has two main characteristics: first, 
the electro-mechanical coupling phenomenon only appears in the presence of a DC 
voltage; and second, the frequencies of resonance and antiresonance present changes 
due to DC voltage. Most of the time, these changes are not identical, which is 
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characteristic of a coupling change due to this voltage. The main contribution to this 
phenomenon is the change in dielectric constant due to the applied DC voltage. It is 
for this reason that perovskite materials in the paraelectric phase at room 
temperature, such as BST or STO, are materials with a high electrostrictive effect. 
Coupling can reach values higher than that of AlN and the changes in resonance 
frequency can reach a few per cent.  

The applications viewed are mainly located around the notion of frequency 
agility for RF filters (reconfigurability and compensation of process variation). The 
main question that remains is whether it is possible to increase the quality factor of 
resonances that are currently located around 300. The main ideas for improvement 
are around the intrinsic quality of the material: single crystals (epitaxy, Smart 
CutTM), hot sputtering, the decrease in roughness and the nature of electrodes.  

On the other hand, we saw that the changes in frequencies of resonance of a true 
piezoelectric resonator can also be explained by the same phenomenological 
approach. To do this, we must add terms of greater orders in the free energy in 
relation to the second order development to explain the piezoelectric phenomenon. A 
third order electrostriction term is added to the free energy, but we must take into 
consideration all terms of the same order in the case of AlN, unlike pure 
electrostrictives for which the change in dielectric constant is such that it is enough 
to explain nearly all of the phenomena observed. The changes in frequency obtained 
with AlN are roughly 0.5% for 100 V, which probably makes it a difficult technique 
to implement.  

As a final remark, let us note that the majority of research about this idea of 
electrostriction is currently concentrated around perovskite materials. 
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Chapter 13 

Thin Film Piezoelectric Transducers1 

13.1. Introduction 

In this chapter, we will begin by briefly outlining state of the art of thin film 
piezoelectric transducers, and then we will give a few typical examples of 
transducers. As resonators were largely discussed in previous chapters, we will not 
discuss them here. In addition, in the literature there are several articles that review 
different applications that use piezoelectric thin films. The most complete reviews 
are undoubtedly those of Professor Muralt of EPFL. He has published about one 
state of the art review per year in this domain since 2000 [MUR 09].  

In order to illustrate this chapter, we will give three examples of implementations 
of thin film piezoelectric transducers, from the most basic to the most elaborate. 
These examples use a design methodology that is representative of the domain:  

− design based on analytical or FEM (finite element method) models; 

− an important section dedicated to the technology of each building block that 
remains the heart of this domain, because many techniques are not yet normalized; 
and finally  

− an integration of these “core bricks” in order to implement the final object.  

The study ends with a series of tests adapted to each device. The objects we will 
describe are the following, in order of increasing complexity: an active membrane, a 
resonating micromirror and finally a radio frequency (RF) micro-switch. 

                                   
Chapter written by Matthieu CUEFF, Patrice REY, Fabien FILHOL and Emmanuel DEFAŸ. 
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13.2. State of the art 

Piezoelectric applications of ferroelectric thin films have greatly progressed 
since the beginning of the 1990s. The pioneer laboratories for these devices are 
located at Penn State University in the United States and at EPFL in Switzerland. 
Today, research has extended to other countries, especially to Asia where Korea and 
Japan have much activity in this domain. In Europe, apart from EPFL, several 
laboratories have also acquired know-how about piezoelectric materials and 
transducers: SINTEF  in Norway, Cranfield University in England, CEA-LETI in 
France, and several others mainly in Northern Europe.  

Details of the first thin film piezoelectric micromotor were published in 1992 by 
Flynn et al. with a PZT film on which a self-standing rotor is placed [FLY 92]. 
Between 1995 and 1998, the EPFL presented several more developed micromotors 
based on a Si/PZT membrane used as the motor stator [MUR 95, DUB 98]. The 
system works but efficiency is very low because electromechanical coupling in this 
configuration of a clamped membrane is not favorable (k² <1%) and because the 
efficiency between the stator and the rotor is 5%. A micro-pump based on 
manufactured microvalves and a piezoelectric accelerometer was produced in 1995 
by Polla in the United States [POL 96]. Several orientable micromirrors were 
produced, one of which was at LETI [FIL 05, MAE 97].  

Several laboratories have worked on atomic force microscopy (AFM) tips with a 
piezoelectric film to carry out detection thanks to the piezoelectric effect rather than 
by using the classic photodiode [FUJ 96]. Piezoelectric micromachined ultrasonic 
transducers or pMUTs were widely investigated by EPFL, especially through 
Ledermann’s 2002 thesis and the European Parmenide project [LED 02]. The idea 
was to implement Si/piezoelectric bimorph membranes in order to generate acoustic 
waves in the air or a liquid. A potential application of this is increasing the 
resolution of echographic probes by multiplying the number of sensors, creating 
matrices from piezoelectric membranes as the size of each can be much smaller than 
the macroscopic sensors used today. Capacitive-MUT (c-MUT) competition is very 
active because the coupling factor of the latter can be much stronger. Actually, the 
electrostatic force is in the same direction as displacement of the membrane, 
whereas in pMUT we actually use a bimorph effect that limits coupling 
(k² max = 6% [LED 02]).  

Finally, micro-switches are going through rapid development because there is a 
strong need for switches for RF devices, especially cell phones. The micro-switches 
with CMOS technology that are used today have a rather low insulation and 
therefore consume in the non-conducting state. The interest in MEMS switches is 
consequently great, although the technology is complex.  



Thin Film Piezoelectric Transducers     359 
 

There are several active principles that have been developed for micro-switches: 
electrostatic, thermal, magnetic and piezoelectric [REB 03]. The advantage of the 
piezoelectric principle is that it consumes little and its dependence on electrical 
voltage is linear, thus enabling us to benefit from low actuating voltages, unlike 
electrostatic switches. For such switches, deflection for a given voltage depends on 
the reverse of the square of the distance between the electrodes and on the square of 
the voltage.  

For piezoelectric devices, it is worth noting the outstanding work by LG in 
Korea, which put forward a solution based on a PZT and silicon nitride beam 
realized on a silicon wafer called the actuator wafer. A cap wafer containing the RF 
lines is assembled on the top of the actuator wafer. When the piezoelectric beam is 
directed upwards, the RF contact is switched on. In order to work properly, the 
height of the gap between the assembled wafers must be lower 5 μm [HEE 05, 
PAR 06]. LETI, in 2010, put forward a completely integrated micro-switch that has 
characteristics very close to LG’s, but includes temperature compensation [CUE 10]. 
It is this last device that will be detailed at the end of this chapter.  

Penn State, in 2003, put forward a switch based on a beam operated by the 
longitudinal piezoelectric effect (d33), rather than the more standard transverse effect 
(d31) [GRO 03]. This means that the useful strain and electric field applied are in the 
same direction. The latter is then applied through the use of an interdigital comb 
without any bottom electrode under the piezoelectric materials (PZT). The interest in 
this design is to use the d33 coefficient, which is two to three times higher than d31. 
However, the space between the fingers of the comb is defined by the resolution of 
lithography, which gives widths in the micron range inducing actuating voltages 
higher than in the case of transverse architecture (electrodes perpendicular to strain).  

The two main materials used for these applications are AlN and PZT. ZnO is 
used less frequently because it has piezoelectric properties close to AlN, but it is 
more difficult to master in terms of technology. AlN, which crystallizes in the 
wurzite phase, exhibits piezoelectric coefficients (e31 = 1 C/m² [DUB 99]) about 10 
times lower than those of PZT, which remains the reference material (e31 = 12 C/m² 
[LED 03]). PZT has a relative dielectric constant 100 times bigger than that of AlN, 
( PZT = 1,000, AlN = 10).  

It is worth noting that a sensor based on voltage detection will be more efficient 
if it exhibits a low dielectric constant. Indeed, for a given sensor and a given 
stimulus, if the capacitance value decreases, the output voltage increases. AlN is 
therefore interesting for sensor applications. PZT is the preferred choice for all 
actuator applications because the force that can be applied is directly proportional to 
the piezoelectric coefficient, regardless of the dielectric constant. The sensors based 
on current detection take advantage of using PZT as well. 
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Thus, we see that it is possible to define different factors of merit depending on 
applications. The analysis developed in Ledermann’s thesis is very interesting 
[LED 02]. The sensor and actuator applications are discussed and here the figures of 
merit are put forward in the usual case of an electric field applied in the direction 
perpendicular to the plane of the films. 

“Sensor” criteria Figure of merit Commentary 

Current detection 31,effectivee  Favors PZT 

Voltage detection 
31,

33

effective

effective

e

ε
 

Favors AlN and ZnO 
because of their low 
dielectric constant 

Signal to noise ratio 
31,

33 tan
effective

effective

e

ε δ
 AlN has very low losses 

compared to PZT 

Table 13.1. Figures of merit for piezoelectric sensor applications 

“Actuator” criteria Figure of merit Commentary 

Force 31,effectivee  Favors PZT 

Coupling factor (usual 
case of a piezo/silicon 

bimorph operation using 
the transverse effect) 

( )2
31,2

33

2 1effective Si
effective

effective Si

e
k

Y
ν

ε
−

=  
PZT is the best due to 
its strong piezoelectric 

coefficient 

Power efficiency 
2

tan
effectivek

δ
 

AlN has very low 
losses compared to 

PZT 

Table 13.2. Figures of merit for piezoelectric actuator applications 

The main manufacturing differences between the two materials are the 
following. To be piezoelectric, AlN must be properly oriented during deposition. 
Indeed, it is along the c-axis of the wurzite lattice that stands the polarization. This 
orientation is obtained by a wise choice of the bottom electrode, the lattice 
parameters of which must be close to those of AlN. Thus, Pt and Mo are commonly 
used with AlN [JAK 03]. With PZT being ferroelectric, it can be oriented ex situ by 
applying an electric field that will control the direction of the dipoles. It has been 
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theoretically and experimentally shown that the (100) orientation of PZT increases 
the piezoelectric properties [OUY 05]. Thus, the use of growth layers to favor this 
orientation has become very widespread [MUR 98].  

Another big difference between the two materials is the deposition technique. 
AlN is deposited by direct current-pulsed reactive sputtering from an Al target at a 
temperature between 300°C and 450°C. PZT is mostly deposited by RF sputtering 
[VEL 99, ZIN 04] or by sol-gel [HDO 94] and crystallization is often ensured by a 
classic annealing or rapid thermal annealing (annealing by radiation), the 
temperature of which is generally between 600°C and 700°C.  

One last difference that must be noted between AlN and PZT is the maximum 
working voltage. The breakdown field of AlN is around 5 MV/cm, whereas that of 
PZT is located around 1 MV/cm. For a given thickness, the maximum voltage 
applicable is therefore five times stronger in the case of AlN. On the other hand, to 
remain linear, PZT must not experience field strength higher than the coercive field 
or the field can change the domain’s structure, inducing nonlinear effects. This 
coercive field of PZT thin films is around 50 kV/cm. Thus, we see that for a given 
application, the choice between AlN and PZT needs a more extensive analysis than 
the simple comparison of piezoelectric coefficients. 

13.3. Resonant membranes 

13.3.1. Technology of PZT resonant membranes 

Following the example of Professor Muralt on piezoelectric resonant membranes 
published in 1995 [MUR 95b], many teams throughout the world have mastered the 
implementation of silicon-piezoelectric thin film heterogeneous membranes. These 
can, for example, serve to implement resonant membranes that can be used as 
pressure sensors [DEF 02]. Here we will present the major lines of standard 
technology as well as a few experimental results obtained with these PZT-based 
resonant membranes [ZIN 04].  

The deposition technique of the piezoelectric material used here is sputtering, but 
it can be sol-gel. Two technologies are presented in Figure 13.1. 

The two technologies are both based on TiO2/Pt/PZT/Pt stack deposition on an 
oxidized Si substrate. The main difference relies on etching of the backside of the 
substrate. For KOH or TMAH wet Si etching, the etching is very delicate. Deep 
etching by a dry process is done by SF6 (etching)/C4F8 (wall passivation) 
manufacturing – the Bosch process – with SiO2 layer used as to stop the etching. 
The etching stop process on SiO2, useable in dry and wet etching, is a lot easier to 
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manage. The size of the membrane matters because beyond a side of a few 
millimeters, the residual stresses can cause the membrane to break. 

 
a) 

 
b) 

Figure 13.1. Technology for implementing PZT resonant membranes: 
a) KOH backside etching; and b) dry backside etching by DRIE (Deep Reactive Ion Etching) 
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13.3.2. Frequency characterization of membranes 

Figure 13.2a shows the experimental set-up that enables us to observe the 
displacement of a composite Si/PZT membrane in terms of the excitation frequency 
of PZT. The PZT used here is 1 μm thick and pre-poled with a field of 175 kV/cm 
applied for 15 minutes at room temperature. The square Si membrane is 15.5 μm 
thick and 3 mm per side. The size and shape of the upper electrode were optimized 
by FEM (Ansys software) in order to maximize displacement for a given voltage. 
For a 3 mm-long membrane, the optimal size of the electrode is 1.7 mm per side. An 
alternating current signal (1.26 V amplitude) without bias voltage and with a 
variable frequency between 10 and 100 kHz is applied to the PZT.  

Out-of-plane displacement of the membrane is observed through a laser vibro-
meter (Polytec OFV 2000) and is plotted in Figure 13.2b. Four modes of resonance 
are observed in the curve at 18.3 kHz, 40.0 kHz, 80.4 kHz and 97.3kHz. For each of 
these modes, a phase change of 180° is observed (not represented here). Only the 
first mode is clearly identified as being the fundamental mode by measurement of 
out-of-plane displacement from one edge to the other of the membrane, which is 
maximal at the center of the membrane. It exhibits a maximal sensitivity of  
1.4 μm/V at resonance. Although the membrane is symmetrical, the simulation 
indicates that the modes observed at higher frequencies are asymmetrical. This can 
originate from the arrival of an electrode on one side (see Figure 13.2a), which 
brings the dissymmetry. 

 

 

Figure 13.2. a) Experimental connection of the frequency characterization of composite 
Si/PZT membranes and b) membrane displacement in terms of the frequency of excitation 
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Displacement measurement using an optical method is accurate, but using a 
piezoelectric actuation enables us to make an electric measurement of resonance by 
the piezoelectric film itself. This change in impedance measurement is illustrated in 
Figure 13.3 for another membrane: a) out-of-plane displacement measurement with 
a vibro-meter; and b) change in admittance measured with a HP4194a impedance 
meter. We note that it is not the dominant mode that gives the strongest change in 
impedance. The change in admittance around 67 kHz (see Figure 13.3b) corresponds 
to a mode of resonance because a significant out-of-plane displacement is 
simultaneously observed by vibrometry (see Figure 13.3a). The change in 
impedance in Figure 13.3 allows us to extract dynamic kdyn² coupling of this particular 
mode of resonance. Indeed, this coupling depends on the frequencies of resonance and 
antiresonance of the membrane, respectively, identified respectively as the maximums of 
the real parts of admittance and impedance. A kdyn² of 0.7% is extracted, which is a 
modest value. The main reason for this is that the active part (piezoelectric film 
under the top electrode of 700 μm a side) is very small compared to the inert mass of 
the device (Si membrane 3 mm long and 10μm thick plus 2 μm of SiO2).  

 

 
a)     b) 

Figure 13.3. a) Observation of the frequency sensitivity of a composite PZT/Si membrane 
with 3 mm long with the help of a laser vibro-meter; and b) change in admittance near the 

resonance of the mode at 67 kHz 

13.3.3. A resonant pressure sensor 

One possible application of these membranes is a resonant pressure sensor. The 
principle is given in Figure 13.4. The idea is to measure a change in resonance 
frequency of a composite Si/PZT membrane according to the difference in pressure 
between the two sides. The experimental set-up allows us to reduce the  pressure on 
the back by using a pump. The top side remains under atmospheric pressure. 
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Vacuum grease ensures a seal between the two sides. A macroscopic pressure sensor 
gives the value of pressure on the back. An alternate current voltage excites the PZT 
and its frequency is chosen in such a way as to be placed on a mode of resonance of 
the membrane. Out-of-plane displacement is observed thanks to a laser vibro-meter.  

The characterized membrane is the same as the one shown in Figure 13.2 (Si: 
15.5 μm – SiO2: 0.5 μm – TiO2: 20 nm – Pt: 100 nm – PZT: 1 μm – Pt: 100 nm) and 
it is the fundamental mode at 18.3 kHz that is observed. The change in resonance 
frequency measured in terms of the difference in pressure applied between the two 
sides of the membrane is plotted in Figure 13.4b. 

 

Figure 13.4. a) Experimental set-up of the resonant pressure sensor based on a composite 
Si/PZT membrane; and b) frequency of resonance of the membrane in terms of the difference 

in applied pressure between the two sides of the membrane 

The maximum difference in pressure applicable is 140 mbar. Beyond that, it is 
no longer possible to observe the out-of-plane displacement of the mode of 
resonance with the vibro-meter. This change in frequency is linear. The sensitivity 
measured is 115 Hz/mbar. Normalized sensitivity ( f/(f0 P)) is 6,800 ppm/mbar, 
which is a high value. As a comparison, the resonant sensor developed by Thales 
exhibits a normalized sensitivity of 2,500 ppm/mbar [MAN 95].  

In view of the strong sensitivity obtained, the simple principle put forward is 
interesting. The reason for this sensitivity originates in the increase in stresses in the 
membrane when the difference in pressure increases between the two sides. It is 
therefore strongly linked to the size and shape of the membrane as a whole. 
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13.3.4. Conclusion on the study of Si/PZT resonant membranes 

The study of composite Si/PZT membranes has enabled us to measure PZT 
integration in a microsystem, the difficulty of which mainly focuses on the final 
release outside material optimization. The characterizations of resonance and the 
sensitivity and difference in pressure of a membrane have resulted in the operation 
of a resonant pressure sensor. 

These works represent the beginnings of research on the implementation of 
piezoelectric microsystems. Other parameters must be taken into consideration in 
the conception stages: residual stresses in the different films; the technological 
compatibilities between the processes of elaboration of a complete system and the 
decrease in the influence of temperature on the mobile parts of microsystems.  

13.4. Resonant micromirror 

13.4.1. Introduction 

Here, the objective is to design optical scanners that could be integrated with 
barcode readers or laser printers. New applications are conceivable with these 
integrated scanners: mobile phone screens with better definition, micro-projectors of 
images, or retinal projectors. Micromirrors can be used in a static or resonant mode. 
It is this last category that is focused on here. There are three integrated micromirror 
solutions (i.e. silicon technology microsystems) in the literature. The electrostatic 
solution with use of micromachined interdigitated combs requires high actuation 
voltages (250 V) [CON 00]. The electromagnetic solutions give good results but 
often require an external macroscopic inductance to generate the magnetic field 
[MIY 01]. Finally, there are resonant micromirrors using piezoelectric thin films 
[TAN 04]. 

The solution proposed here uses a PZT film co-integrated with a resonant mirror 
of optical quality. The principle is based on asymmetric position of the mirror in 
relation to the actuators.  

13.4.2. Technology and design of the resonant micromirror 

Figure 13.5 shows a diagram and a view from the top of a piezoelectric resonant 
micromirror. A circular mirror with a gold upper surface is fixed using two torsion 
bars on a frame equipped with thin-film piezoelectric bimorphous actuators. These 
actuators are found over a flexible membrane, whereas the mirror is solely linked to 
the actuators by the torsion arms. The operation frequency corresponds to the 
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resonant frequency of the system in the first torsional mode. The mirror is positioned 
asymmetrically in relation to the frame, in order to favor this torsional mode.  

 

Figure 13.5. Diagram and view from above of the piezoelectric resonant micromirror 

The design of the mirror must respect several constraints:  

− a diameter large enough to limit angular spreading of the beam and thus 
increase the definition of the final optical device;  

− a static deformation and a dynamic deformation of the mirror which must not 
exceed, respectively, one-quarter and one-tenth of the smallest wavelength used;  

−a resonant frequency  of the order of a tenth of a kHz to ensure a fast optical 
scan.  

This design was developed with the help of analytical formulae from mechanics, 
as well as from modeling using the FEM with Coventor software. The optimization 
work results in the dimensions expressed in Figure 13.6a. The diameter of the semi-
circles of the actuators is 3 mm. The maximum deformation is obtained when the 
diameter of the semi-circular actuators is equal to two-fifths of the diameter of the 
flexible membrane (see Figure 13.5). It can be noted that that the thickness 
necessary to achieve mirror flatness is 20 μm. The width of the torsion arms is 
between 4 and 20 μm, depending on the resonant frequency aimed at for the device. 
The diameter of the mirror is fixed at 500 μm.  

There is also a rectangular version of the actuators, clamped at both ends, with a 
surface equivalent to those of the semi-circular actuators. The rectangular ones are 
more efficient. Figure 13.6b is an example of simulation of the torsional mode with 
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a resonance around 10 kHz, excited by rectangular actuators. This torsional mode is 
the one with the lowest resonance frequency for this device. 

 

 
a) 

 
b) 

Figure 13.6. a) Dimensions of the resonant micromirror by design; 
 b) simulation of the torsional resonant mode with resonance at about 10kHz 

The sequence of technological steps is given in Figure 13.7. The 20 m thickness 
of the  mirror is ensured by a silicon on insulator (SOI) film of Si. This choice of 
substrate has the advantage that it provides a very well defined etch-stop on the 
buried oxide layer for the silicon etch from the rear face. All films are first deposited 
and structured on the front face (see Figure 13.7a):  

− Si oxidation (400 nm); 

− lower Pt electrode deposition (150 nm) with a Ti adhesion layer (10 nm); 

− PZT deposition (500 nm) by sputtering and annealing at 675°C; 

− Plasma-Enhanced Chemical Vapor Desposition (PECVD) Si3N4 insulation 
between the electrodes (450 nm); 

− upper Pt electrode (150 nm)/Ti (20 nm)/Au (300 nm).  

This last gold film also serves as a reflective surface for the mirror. Thermal 
oxide and Si3N4 are structured by dry etching, inferior platinum by ion milling, PZT 
by HF/HC1 chemical etching before annealing, Ti by HF etching, upper Pt by lift-
off and gold by chemical etching. Trenches are then realized in the SOI layer by 
deep etching (using the Bosch process, Figure 13.7b). Rear face etching is also 
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performed by deep etching with etch stop on the buried oxide layer (see Figure 
13.7c). The latter is finally dry-etched to release the structure.  

 

Figure 13.7. Sequence of technological steps for the fabrication  
of the resonant micromirror 

13.4.3. Characterization of the devices 

Owing to the 20 μm mirror thickness, a static deformation <100 nm (a quarter of the 
minimum optical wavelength used) is measured, which corresponds to the 
specifications. This deformation is due to residual stresses in the Ti and gold films 
of the mirror. 

The deflection generated by the mirror is measured by projecting the steered 
optical beam on a screen. The deflection is too large to be measured by a laser vibro-
meter or an interferometer, which are limited to a few degrees. It must be borne in 
mind that the optical scanning angle measured is four times the oscillation amplitude 
of the mirror.  

Figure 13.8a shows the optical scanning angle measured for a rectangular 
actuator structure (width of torsion arms: 8.5 μm) with respect to the amplitude of 
the alternative signal applied. An offset voltage of +6 V is added to the alternating  
signal. The shape of the signal of excitation may seem strange, but it is this choice 
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that gives the best results. The amplitude of the signal is greater than the coercive 
voltage of the PZT, located between 3 and 5 V. 
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Figure 13.8. a) Optical scanning angle (light gray) and resonance frequency 
(dark gray) of a micromirror with rectangular actuators; and b) optical scanning angle 

in terms of frequency for different amplitudes of excitation, highlighting 
of nonlinear effects near resonance 

This means that PZT is polarized differently at each signal alternation. For a 
frequency of excitation, f, a mechanical stress due to the piezoelectric effect is 
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therefore applied at frequency 2f. This in-plane tensile stress is theoretically of the 
same value as soon as the applied electric field exceeds the coercive field in the 
positive or the negative. The mirror therefore behaves as a seesaw on which an 
identical pulse would be given on each side at each passage. The offset voltage of +6 
V limits PZT fatigue. Without this voltage, a rapid decrease in the deflection angle is 
observed. For a more perennial operation avoiding fatigue, unipolar excitation 
would be undoubtedly better adapted.  

It can be noted that the optical scanning angle can reach 100°, which is very 
large. The increase in deflection with signal amplitude is linear up to 15 V and slows 
down after that. Two phenomena contribute to this effect. On one hand, PZT shows 
a decrease in the piezoelectric effect at high field because of the decrease in mobility 
of the domains. Piezoelectric strain is equal to the product of the applied electric 
field and the piezoelectric coefficient, which therefore decreases slightly at high 
field. On the other hand, the increase in the scanning angle induces an increase in 
the stiffness of the torsion arms, as proven by the increase in frequency of resonance 
of the mirror shown on the dark grey curve in Figure 13.8a. This increase in stiffness 
is modeled by adding a 3 term in the equation of movement of the mirror. For the 
highest amplitudes of excitation, this phenomenon can lead to instabilities near 
resonance belonging to nonlinear oscillators, as can be seen on Figure 13.8b. It 
should be noted that the scanning angle in Figure 13.8a was measured for each 
voltage at the resonant frequency of the system. The quality factor of the torsional 
mode of resonance is about 300.  

13.4.4. Conclusion about micromirrors 

This study shows that PZT can be integrated in a microsystem with complex 
technology. The main characteristics of the piezoelectric micromirror are an optical 
deflection of 100° from a mirror with diameter 500 μm for an electric excitation of 
40 V with a frequency close to 10 kHz. These values meet the initial requirements 
and show real advantages in terms of integration compared to other solutions in the 
literature: no external coil, unlike the magnetic solutions, and moderate excitation 
voltage limited to 40 V compared to 250 V for an electrostatic solution.  

13.5. Piezoelectric micro-switch 

13.5.1. Interest in piezoelectric films for micro-switches 

For a few years, micro-switches have been greatly studied for nomadic 
applications for which low consumption constitutes a leading issue. CMOS switches 
do not perform as well as microsystems because of their higher energy consumption, 
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bad insulation during the non-conducting state, and high insertion losses during the 
conducting state at high frequencies. Although potentially very interesting, MEMS 
micro-switches exhibit extreme integration issues, the cost of which is not the least 
important. Another issue for these microsystems is operation voltage. Today, a cell 
phone works with a battery with nominal voltage of 3.6 V, which could be further 
reduced in the future. It is possible to use charge pumps to increase voltage, but a 
solution operating at nominal voltage would be a lot closer to integration because it 
is less costly and more energetically efficient. 

There are four major principles for micro-switch actuation: electrostatic, 
magnetic, thermal and piezoelectric. The electrostatic solution is the most 
developed. It is well adapted to micro-technologies and uses materials that are well-
known in microelectronics, such as doped silicon, silica, silicon nitride and gold 
[RAD 10]. Consumption is quite low but actuating voltage is high (several tens of 
volts) because of the quadratic effect of the force applied in terms of distance 
between the electrodes. The decrease in this voltage needs to move the cell phone  
switch parts closer, which complicates the technology. Moreover, this technique is 
particularly sensitive to the charging effect of insulating dielectrics used to avoid 
contact between electrodes in the conducting state of the switch.  

In addition, a distance that is too small between the electrodes harms insulation 
in the non-conducting state. The magnetic solution lets us reach high contact forces 
and deflections, but requires an external magnetic field or an integrated coil, 
inducing a significant consumption [MEI 01]. The thermal solution also gives good 
results in terms of deflections and contact forces, but the principle based on the 
Joule effect induces consumption that is not compatible with a nomadic system. The 
piezoelectric solution is attractive for this particular application because 
consumption is low and mechanical energy supplied by the piezoelectric film can 
have the order of magnitude required to actuate and maintain the switch. 
Technological solutions are complex and rare, but serious studies exist: LG has put 
forward a completely integrated and packaged piezoelectric micro-switch operating 
at 5 V [PAR 06].  

Although problems remain, the characteristics obtained are interesting, with insertion 
losses of 0.63 dB in the conducting state and insulation of 26.4 dB at 5 GHz 
[JAE 06]. More recently, LETI, in collaboration with Freescale, put forward another 
solution of integrated piezoelectric switches, which will be detailed in the following 
section.  
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13.5.2. General description of the component 

The component developed is a micro-switch whose aim is to block a RF signal in 
the range of several GHz or let it pass through. The actuating voltage is limited to  
5 V. The temperature of use is between -40°C and +80°C. To do this, the idea is to 
use a piezoelectric actuation that has the advantage of being efficient from low 
voltages, unlike an electrostatic actuation that requires voltages of a few tens of volts 
[REB 03]. The device is based on assembling two silicon substrates, as described in 
Figure 13.9. 

All commands occur from the cap substrate. Conductive paths between the two 
substrates are ensured by Sn-Au vias. The substrates are sealed with the help of  
Sn-Au alloy. To increase the contact force, and therefore to decrease contact 
resistance, an electrostatic hold was added to the design. The RF signal crosses the 
cap substrate and circulates over the mobile beam, as we will see later. The beam is 
actuated by a PZT piezoelectric thin film. 

As the device must operate in a large temperature range, temperature 
compensation was also anticipated at the stacking level of the actuator.  

Top substrate

Piezoelectric actuating
RF signal

Electrostatic support

Actuating substrate 

Seal 
Thermal 

compensation

Seal 
Conductive paths 

Electrostatic hold

 

Figure 13.9. Cross-section of the piezoelectric micro-actuator based 
on assembling two silicon substrates 

Figure 13.10 represents a top view of the piezoelectric actuator. On the final 
device, there are two actuators that surround the RF line. There are also two 
electrostatic holds. The emptied parts between the actuator and the hold as well as 
the hold and the contact allow stiffness variation of the mechanical structure. 

Indeed, as represented in Figure 13.9, it is necessary to let the beam lose its 
shape for the electrostatic hold to be effective. Moreover, it is also necessary to 
manage the stiffness of the contact zone. 
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We will now describe the actuator more precisely. 

Electrostatic 
hold

Electrostatic 
hold

  

Figure 13.10. View from the top of the piezoelectric actuator:  
On the left, the diagram; on the right, the photo of the final device 

13.5.3. Analytical development of the bimorph beam as actuator of the  
micro-switch 

Here, we take the case where the mobile part of the micro-switch is made up of a 
micro beam. This beam is composed of a stack that corresponds to a bimorph in 
which only a purely elastic film is considered, on which a piezoelectric film is 
deposited, as shown in Figure 13.11. It is instructive to analyze this core structure of 
microsystems. This structure has the additional advantage of being able to be 
analytically modeled. 
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Figure 13.11. Elastic-piezoelectric bimorphous structure considered 

In the final structure, the contact is located on the free end of the beam. For now, 
the mechanical role of electrodes and other possible films that are useful for the 
technology is neglected. The equations of this pure static bimorph bending problem 
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for which stresses along z and the width are neglected, have been widely developed 
in the literature, especially by Smits in 1991 [SMI 91]. The principle was developed 
for the first time by Timoshenko [TIM 68]. The explanation of the equations is 
based on system equilibrium and the continuity of in-plane strains at the interface 
between two materials. We assume that there is no sliding between the films 
constituting the beam. We assume that the beam is at equilibrium, even when it is 
deformed. In this deformed state, we imagine that this beam is cut along a section 
perpendicular to x. We are interested, for example, in the left-hand part of the 
section (see Figure 13.12). To maintain pre-established equilibrium, Timoshenko 
[TIM 68] suggested replacing the influence of the right-hand part of the beam on the 
left-hand part, by the forces and moments of each material making up the beam, as 
seen in Figure 13.12.  

 

F1

F2

M1

M2

x

z

A

t1

t2

0O  

Figure 13.12. Example of a deformed bimorph bar at equilibrium on which the dotted part  
was replaced by a set of forces F and moments M 

As the bar is at equilibrium, the sum of applied forces on each material is zero: 

1 2 0F F+ =  [13.1] 

In the same way, the sum of bending moments and those resulting from applied 
forces must be zero. The bending moments of each film are, by definition, equal to 
YI/R, with Y being Young’s modulus, I the area moment of inertia and R the radius 
of curvature. They originate in the resistance of the bended beam when a radius of 
curvature R is applied to each film. We assume that the radius of curvature is the 
same for each film. In the case of a beam of thickness e and width l (in direction y), 
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the area moment of inertia is equal to le3/12. Assuming that each force is applied to 
the center of each film and is perpendicular to the section, we write that the sum of 
moments is zero, for example at point A (see Figure 13.12): 

3 3
1 1 1 2 2 2 1 2

1 2 112 12 2 2
l Y t l Y t t t

F F t
R R

+ = + +  [13.2] 

A third equation is given by the continuity of in-plane strains at the interface 
between the two materials because we assume that there is no sliding between the 
films. The top film (2) is the piezoelectric film and the bottom film (1) is only 
elastic. Residual stresses ( r) and thermal expansion (coefficient of expansion ) of 
each film are taken into consideration. In-plane piezoelectric strain S1p is equal to 
d31E3, with E3 being the electric field applied: 

( )

( )

2 2 2
31 3 2 0

2 2 2 2

1 1 1
1 0

1 1 1 1

2

                                   
2

r

r

F t
d E T T

Y Y l t R

F t
T T

Y Y l t R

σα

σα

+ − − + + =

− − + −
 [13.3] 

This equation is a bit more complex and deserves a few explanations. The first 
term is piezoelectric strain (at the very end of this chapter we will look at an 
important point about the sign of d31). The second term is thermal expansion. The 
third term is strain due to residual stresses. The sign is negative because in common 
conventions tensile stresses are positively counted. A tensile stress however, 
measured for example by the Stoney method, induces a film that wants to hold less 
space when it can. It therefore induces a negative planar strain. The fourth term is 
the strain induced by the external force F2. The fifth term is strain due to the radius 
of curvature of the piezoelectric film considered alone. Thus, for this contribution, 
the neutral fiber is in the middle of the piezoelectric film and at the interface the film 
is elongated, hence the strain in +t2/2R.  

Positive R corresponds to an upwards deflection. The argument is identical for 
the terms on the right-hand side, with the sign of the last term simply being reversed 
because of the compressive zone of the interface for film 1. Finally, we must note 
that the thermal expansion term is spotted in relation to the temperature T0 at which 
the residual stresses were measured. 

The unknowns are therefore F1, F2 and R. With three equations, the system must 
have a solution if its determinant is non-zero. We are only interested in R. 
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We get: 

( )1 2 1 2 1 2 1 2
31 3 2 12 4 2 4 2 2

1 21 1 2 2 1 2 1 2 1 1 2 2

6 ( )1
2 (2 3 2 )

Y Y t t t t
d E T

R Y YY t Y t Y Y t t t t t t

σ σα α Δ+
= − + − + −

+ + + +
 

  [13.4] 

The radius of the curvature is geometrically linked to the first and second 
derivatives of z in relation to x by: 

2

2

3
2 2

1

1

d z

dx
R

dz
dx

=

+

 [13.5] 

In the case of a cantilever structure like the one considered, with small strains the 
equation above can be simplified to: 

2

2
1 d z
R dx

=  [13.6] 

We can show that this approximation is valid for clamped-freed cantilevers even 
for very important deflections because the overall rigidity of the structure is not very 
sensitive to the deformed structure, unlike a clamped-clamped structure. Thus, 
combining equations [13.4] and [13.6], integrating twice in relation to x, and noting 
that at the clamp z(O) = 0 and dz/dx(O) = 0, we have: 

( ) ( )
2

1 2 1 2 1 2 1 2
31 3 2 12 4 2 4 2 2

1 21 1 2 2 1 2 1 2 1 1 2 2

3 ( )
2 (2 3 2 )

Y Y t t t t x
z x d E T

Y YY t Y t Y Y t t t t t t

σ σα α Δ+
= − + − + −

+ + + +
 

 [13.7] 

This equation shows that the piezoelectric, thermal and residual stress effects 
have the same impact on the beam deflection. It is therefore essential to be able to 
neglect the parasitic effects of the piezoelectric motor for an integrated technological 
solution. 

Here are a few examples using data to define the orders of magnitude. Electrical 
voltage is fixed at -3 V. Piezoelectric materials can be AlN or PZT. Elastic films can 
be SiN or SiO2. The useful physical properties of these materials are reported in 
Table 13.3. The values shown are measured on materials developed at LETI, with 
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the exception of the coefficient of thermal expansion (CDT) of AlN originating in 
the literature. Young’s moduli are measured by nano-indentation [DEL 06] for PZT 
and SiO2 and by picosecond ultrasonics [DEV 06] for AlN and SiN. Actually, nano-
indentation gives correct values provided that the probed material is not as stiff as 
the substrate, which is not the case of SiN and AlN. Residual stresses are measured 
by the wafer curvature method, called the Stoney method [STO 09]. For PZT, we 
confirmed measurement by X-ray diffraction with the sin²  method [KUI 03]. TCE 
(Temperature Coefficient of Expansion) is obtained by measuring the curvature of a 
substrate with the probed film at different temperatures (Stoney temperature). 

The piezoelectric coefficient d31 is deduced from measurements of  
e31 and measurements from Young’s moduli. 

Material Young’s 
Modulus (GPa) 

Coefficient of thermal 
expansion (ppm/°C) 

Residual 
stresses 
(MPa) 

d31 
(pm/V) 

AlN 300 5 -450/0 -2.5 

PZT 120 9.2 200 -80 

SiN 220 2.1 400-1,000 - 

SiO2 70 0.4 -280 - 

Table 13.3. Typical physical properties of films susceptible to being part of the  
piezoelectric bimorph 

Figure 13.13a gives the deflection calculated at the free end of a 150 μm-long 
SiN/PZT beam, with a SiN thickness of 1.2 μm with compensation for stresses and 
temperature effects obtained by adjusting PZT thickness for a voltage of -3 V. 
Deflection increases when PZT thickness decreases and reaches 3.3 μm for a PZT 
thickness of 100 nm. Actually, for a given voltage, the field applied to the PZT 
increases in a manner that is inversely proportional to thickness. Therefore, at a 
given voltage, if the piezoelectric thickness decreases, the piezoelectric stress 
imposed in the PZT increases in the same way. The piezoelectric force, which is the 
product of the stress by the driving section, remains constant because the increase in 
stress is compensated by a decrease in the driving section. Actually, the increase in 
deflection comes, on one hand, from moving the driving zone away from the neutral 
fiber of the beam, which induces an increase in the driving moment; and on the other 
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hand by the decrease in stiffness of the beam, which is proportional to the cube of 
the total thickness. 

Figure 13.13b gives the deflection calculated from the same beam in terms of 
PZT thickness, by adjusting the SiN thickness in order that the stiffness of the beam 
is always the same (Smits equations [SMI 91]). This curve confirms that for a given 
voltage, at constant stiffness, optimum deflection is obtained for the smallest 
possible thickness of piezoelectric material. At negligible piezoelectric thickness, 
the gain becomes zero because at constant stiffness only neutral fiber removal plays 
a role in the increase in deflection. As thickness is very low, distance variation is 
also low. 

According to this calculation, optimal thickness is fixed by the breakdown field 
of the material. Typically, PZT has a breakdown field of 1 MV/cm, which gives a 
thickness of 30 nm at 3 V. A thickness of 100 nm  therefore  supports about one-
third of the maximum field applicable on the PZT.  

However, this calculation assumes that the piezoelectric properties are constant 
with thickness, which is far from being the case, especially for PZT. Most papers 
published on thin-film coefficients focus on thicknesses of about 1 μm, but the drop 
in d33 with thickness was observed by several teams, especially by Rèmiens et al. for 
PZT [RÈM 02] and Martin et al. for AlN [MAR 04]. Moreover, applying such a 
great field to PZT induces exceeding the coercive field: the voltage therefore poles 
the PZT each time. This can be interesting for avoiding fatigue but as field and 
polarization are always in the same direction, the applicable stress always has the 
same sign and the beam can only go upwards in the example given.  

For micro-actuator application, beam stiffness plays an important role as it fixes 
the restoring force coming from the elastic energy stored in the beam. This force 
avoids sticking to the contact. For a width of 70 μm, the beam described in 
Figure 13.13b has a stiffness of 2.2 N/m. The maximum energy stored in the beam 
for a deflection of 3.3 μm is therefore around 10 pJ. If this energy is shared between 
the contact force and the restoring force, these are in the order of 3 μN. This value is 
quite low for the contact force and it is better to avoid reducing it in order to limit 
contact resistance. The deflection obtained (3 μm) is in the order of magnitude it is 
possible to master technologically. It is therefore difficult to reduce this. For this 
reason, we have the orders of magnitude of geometrical parameters for this problem.  
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Figure 13.13. a) Deflection calculated at -3 V of a SiN-PZT 150μm-long beam with 
compensated stresses and at room temperature in terms of PZT thickness; and  
b) same calculation as curve a) but adjusting SiN thickness in order to have  

a constant beam thickness 
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We can now discuss the effects of residual stresses and temperature on deflection 
of the beam. Figure 13.14 gives deflection measured at 0 V for the same beam 
described before with 100 nm PZT; in terms of residual stresses in SiN at room 
temperature for the curve in Figure 13.14a, and in terms of a deviation in 
temperature compared to room temperature for compensated stresses for the curve in 
Figure 13.14b. The range of stress is 100 MPa and the starting point (400 MPa) 
corresponds to the minimum stress that can be displayed by LPCVD SiN 
(compatible at 700°C). Adjustment of this stress occurs during deposition (LPCVD 
nitride) by inserting more or less Si. We see that it is not possible with this beam to 
compensate for these initial stresses and that the initial deflection is 1 μm 
downwards. Moreover, an error of 50 MPa on the stress leads to a deflection change 
of 1 μm. Knowing that piezoelectric deflection is 3.3 μm, the effect of residual 
stresses is therefore not at all negligible. 

Viewing equation [13.7], stress equilibrium is only possible between films that 
have the same stress sign, independently of thicknesses. Thus, using SiO2 that is still 
in compression as an elastic film with PZT cannot enable us to have a straight beam. 

Concerning the effect of temperature, a change of 120°C (operation between  
-40°C and 80°C, for example) can result in a change in the initial position of the  
3 μm bimorph beam, which is of the same order of magnitude as piezoelectric 
deflection. For this calculation, we take room temperature as the reference because 
residual stresses were measured at this temperature. 

The effect of temperature on the initial position must be compensated for 
because, unlike residual stresses for which the design can enable us to work without 
a straight initial beam, it is not possible to avoid the change in temperature of the 
integrated object.  

To end this discussion on equation [13.7], we must note that if we factorize the 
expression by the inverse of the piezoelectric thickness 1/t2, we obtain a constant 
piezoelectric term (d31V) added to the terms of thermoelastic and residual stresses, 
which are both multiplied by t1. 

Therefore, still for a given voltage, the thinner the piezoelectric is, the lower the 
negative effect of thermoelastic and residual stresses.  

For AlN, the difficulty is greater because the piezoelectric coefficient is 20 times 
lower than PZT. If we suppose a bimetallic AlN/SiO2 bimorph to balance the 
stresses (thin AlN and SiO2 exhibit compressive stresses) with the same stiffness as 
the bimetallic SiN/PZT bimorph above, and AlN as thin as possible (30 nm, because 
the breakdown field is at least three times higher than PZT), deflection at 3 V is 
0.5 μm.  
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a) Room temperature and V = 0 

 

 

 

 

 

 

 

 

       

     

 

  
b) Compensated stresses: V = 0 

Figure 13.14. a) Deflection measured at 0 V for the same beam described above with 100 nm 
of PZT in function of residual stresses in SiN at room temperature; and b) in terms of a 

temperature variation with room temperature for compensated stresses 
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The negative effects of residual stresses and temperature expansion are even 
more important in the case of AlN, because they are of the same order of magnitude 
in the two configurations. 

In summary, integrating a bimorph beam for a micro-switch requires a specific 
control of stresses in each layer and the role of electrodes can no longer be neglected 
(Pt is very tensile). 

Moreover, the working device needs a temperature insensitivity that is not the 
case described for the bimorphs. The use of thermal compensation solutions 
therefore turns out to be essential. There are linear analytical models that take into 
consideration a much larger number of films [HSU 06]. 

Nonlinear treatment can be ensured by simulation tools. The optimal solution put 
forward imposes high piezoelectric coefficients with low thickness, around 100 nm. 

13.5.4. Stack chosen for the piezoelectric actuator  

Details of the stack are given in Figure 13.15. It is quite complex because it 
integrates the actuator itself (Pt/PZT/Pt), an adhesion layer (TiO2), an antidiffusion 
layer (SiO2), the mechanical layer that ensures the bimorph effect with the PZT 
actuator (low stress SiN), a thermal compensation layer (TiN) and a SiO2 film that 
protects the TiN during the actuator release (performed by XeF2). The polysilicon 
layer increases the speed of release. 

 

Figure 13.15. Stack chosen for the piezoelectric actuator 
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We see that this stack is quite complex and requires very good control of each 
one of the films as well as a reliable model. The silicon substrate has a very high 
resistivity. This property reduces resistive losses at RF frequencies. 

13.5.5. Multilayer analytical model 

After release, the beam is composed of eight layers. Beam deflection after 
release must be much smaller than the gap defined by the packaging (5 μm), just as 
for deflection variation over the temperature range. 

Despite the complexity of the problem, beam deflection can be given thanks to a 
rather simple analytical model whose equations we will describe. The use of this 
model assumes that the mechanical and thermal characteristics (Young’s modulus, 
stresses) of each material (coefficient of thermal expansion) are well-known. 

It is possible to use the extension of the model developed above with two layers. 
However, this approach forces us to inverse a n x n matrix, where n is the number of 
layers. The formula obtained becomes extremely hard to simplify. Hsueh’s model 
[HSU 02a] enables us to have a general formula regardless of the number of films 
used. The originality of this model is to explicitly calculate the beam average strain 
in the length c (uniform strain component) direction  and the bending axis position 
tb, which enables us to simplify the equations at the end. 

Figure 13.16 shows notations following direction z, perpendicular to the beam 
length. It is a one-dimensional model for which a constant radius of curvature R is 
considered along the beam.  

 

Figure 13.16. Notations used for the multilayer model 
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Deflection  at the end of the L long beam is given by the following formula, 
with the same assumptions as in the case above with two layers: 

2

2
L
R

δ =  [13.8] 

Indeed, by assuming that the problem is linear, the radius of curvature is given as 
the inverse second derivative of z in relation to x. After calculation, c, tb and R are 
given by the following formulae: 
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 [13.9] 

where: 

–Yi: Young’s modulus of film i; 

– ti: thickness of film i; 

– L: length of the bimorph; 

– d31: transverse piezoelectric coefficient (negative here); 

– αi: coefficients of heat expansion of film i; 

– T: difference in T° between working temperature and reference temperature; 

– σi: residual stress in film i measured at reference temperature;  

– Vi: applied voltage (positive here).  
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The results of this model are very similar to experimental results and to FEM 
(Finite Element Model) simulation. We must note that this comes from the fact that 
we are studying a simple cantilever structure. Indeed, this structure enables us to 
release stresses in the structure without modifying its stiffness. A full fixed beam 
and membrane are devices that are much trickier to model analytically. The use of 
FEM is therefore often recommended.  

13.5.6. Effect of temperature compensation 

Figure 13.17 represents a measurement of a compensated and released beam 
over a temperature range of 60°C. The stack used is the one given in Figure 13.15, 
with a wise choice of thicknesses. 
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Figure 13.17. Experimental measurement of a temperature compensated beam, represented 
with the calculation of an un-compensated beam 

On the same curve the deflection calculated for an uncompensated beam is 
given. For this one, deflection over +60°C is -5 μm, which is equal to the distance 
run through by the contact. We therefore notice that this compensation is mandatory 
for the device to be temperature functional. 
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13.5.7. The piezoelectric film 

The piezoelectric film is a PZT film deposited by sol-gel method and air-
annealed at 650°C. The final thickness of the film is 120 nm. Three layers deposited 
by spin-coating were necessary to achieve this thickness. 

A cross-section of this stack is given on the left in Figure 13.18. PZT is dense 
and non-porous. In the top view, 100 nm wide grains are observed. The crystalline 
orientation of this film is (111), which is not optimal. To get a (100) orientation, it is 
possible to add a nucleation layer before PZT deposition. This nucleation layer can 
be a PbTiO3 film a few tenths of a nm deposited by the sol-gel method. 

Piezoelectric characterization of this PZT film by the direct method of the 
vibrating beam showed an e31 reaching -5 C/m², which is completely acceptable for 
such a thin PZT film. The choice of a very thin piezoelectric film is based on the fact 
that we want to keep a high electric field (greater than the coercive field) in the PZT 
film with 5 V. This enables us to have a material poled by the working voltage and 
to solve the PZT depolarization problem that appears during component packaging 
(part of the process at 260°C, which depolarizes the material). 

 
  

Figure 13.18. Cross-section view (left) and top view (right) of the PZT film  
deposited for the piezoelectric actuator 

13.5.8. Releasing the membrane 

The membrane is released by the XeF2 gas process, which etches the silicon with 
a velocity that can reach several μm per minute. 
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In this device, extra subtlety involved adding SiO2 walls to stop the etching. This 
enables us to precisely determine the dimensions of the structure, as shown in Figure 
13.19, as well as improve the quality of anchoring. 

   

         a)    b) 

Figure 13.19. a) Isotropic etching of silicon by XeF2; and  
b) etching stop thanks to SiO2 walls on the right 

13.5.9. Electrical characterizations 

13.5.9.1. Measurement deflection of the actuator using the piezoelectric effect 

Measurement of the deflection obtained by the piezoelectric effect during the 
application of a constant voltage is realized before sealing the two substrates in 
order to optically measure the deflection at the beam free-end. 

The measuring device is a light interferometer (Wyko) and the result is 
represented in Figure 13.20. A hysteresis effect due to the ferroelectric nature of 
PZT is observed. This induces a repolarization of the material during application of 
a voltage greater than the coercive voltage, which is located here around 1 V. At 
these voltages (-1 V and +1 V), the material is depolarized and therefore no longer 
displays the piezoelectric effect. 

Maximal deflection is around 7 μm. To calculate e31 by this method we used the 
previous analytical method that gives -5 C/m² for a voltage of 1 V, in perfect 
agreement with the direct method of the vibrating beam. We must note that 
maximum deflection is always upwards, which is also due to the ferroelectric nature 
of PZT. Indeed, a high field applied on the PZT leads to polarization in the same 
direction as the electric field. Strain induced by the piezoelectric effect is of the 
same sign when the field and polarization are aligned. We therefore notice that it is 
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not possible in this case to use the piezoelectric effect to obtain a deflection 
downwards.  
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Figure 13.20. Optical measurement of deflection of the 170 μm-long beam 

To illustrate the orders of magnitude, in Figure 13.21, we present the deflection 
observed (7 μm) at the tip of the 170 μm-long film by a scanning electron 
microscope during  in situ application of a 5 V voltage.  

a.

b.

 

Figure 13.21. Scanning electron microscope view of a piezoelectric film: a) at 0 V; b) at 5 V 

13.5.9.2. Radiofrequency tests 

Figure 13.22 represents a schematic view of the implemented RF test. The S21 
signal that crosses the switch in the conducting and non-conducting case is 
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measured. Contact is closed by voltage application to the PZT capacitor. Moreover, 
the contact force is enhanced by voltage application to the electrostatic hold. S21 is 
commonly called insertion losses. 

Bulk

Bulk

signal signal

Bulk

Bulk

Port 1 Port 2

contact

PZT

PZT Hold 

Hold 

 

Figure 13.22. Operational diagram of the RF test (top view) 

In Figure 13.23, the S21 signal (representation of the signal quantity that crosses 
the structure from port 1 to port 2) is observed in the conducting case. By applying a 
5 V bias to the PZT, contact occurs and S21 reaches -0.83 dB. By applying an 
additional 5 V to the electrostatic support, S21 reaches -0.74 dB, improving the 
insertion losses by almost 0.1 dB. Furthermore, return losses (S11) reach 27 dB at 2 
GHz, which could be improved by optimizing the gold line through which the RF 
signal passes. When no voltage is applied to the PZT, 20 V is necessary to contact 
the switch with the electrostatic support only.  

 

Figure 13.23. S21 in the conducting case: a 5 V direct voltage is applied to the PZT  
(piezo only) and 5 V applied simultaneously to the PZT and the electrostatic support  

(piezo and electrostatic hold) 



Thin Film Piezoelectric Transducers     391 
 

When the switch is not conducting, insulation is measured by using S21. Thanks 
to the wide space between the contact and the line (5 μm), this insulation reaches 
43.6 dB at 2 GHz (see Figure 13.24). It is this characteristic that is particularly 
interesting for these devices compared to solid-state switches.  

 

Figure 13.24. Insulation in the case of a non-conducting switch 

Losses due to the influence of surrounding silicon only are measured by 
implementing RF lines, but without a switch. Insertion losses in this case reach -0.6 
dB, which is considerable. This proves that the losses induced by contact with 5 V 
above PZT and the support are equal at 0.74 – 0.6 = 0.14 dB. To improve this 
device, it is therefore essential to work on the losses due to the switch environment 
represented mainly by the two silicon substrates, even if we already use high 
resistivity substrates. Glass substrates could be an attractive solution.  

Finally, this device presents remarkable characteristics for a voltage of 5 V 
[CUE 10]. 

13.6. Sign of piezoelectric coefficients 

It is important to make a note about the sign of piezoelectric coefficients, 
especially in the case of actuators where it can be interesting to find in which 
direction the mobile part will go! Actually, it is common to consider positive d33 and 
negative d31. In practice, it is not so simple and we should be careful. In the case of 
polar materials such as AlN, these signs depend on crystalline orientation. Let us 
take the following example (see Figure 13.25). Polarization is upwards. Axis 3 is 
considered to be positive upwards. Thus, when a positive voltage is applied, charges 
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on the electrodes are face-to-face with the polarization charges with the same sign in 
the dielectric. We easily imagine that the charges repel each other. The material then 
undergoes a decrease in its thickness by indirect piezoelectric effect. The strain S3 
that is deduced is therefore negative. As we took a positive voltage, the field E3 is 
negative. Thus, as S3 = d33E3, d33 is positive. We directly deduce that if S3 is negative 
then S1 is positive (crushing thickness inducing an in-plane lengthening). As 
S1 = d31E3, then d31 is negative.  
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Figure 13.25. Example of verification of the sign of the piezoelectric coefficient d33 in the 
case of a polar material with positive polarization along axis 3 (AlN type) 

If we now come to reverse polarization in the material, leaving all other 
parameters equal, then strain S3 becomes positive because the opposite charges will 
attract each other. d33 then becomes negative and therefore d31 positive. It turns out 
that it is common to have downward AlN polarization when it is deposited by 
sputtering. d33 is therefore negative. 

For ferroelectric materials, the fact that polarization is controllable by the electric 
field adds a difficulty, especially for thin films. Actually, for these films, it is very 
common to apply a voltage inducing an electric field greater than the coercive field. 
This voltage then repolarizes the ferroelectric. In this case, electric field and 
polarization are in the same direction, regardless of the sign of the electric field.  

Let us recreate the scenario above with this argument. Let us first assume the 
voltage is positive (see Figure 13.26). As we assume that the electric field is greater 
than the coercive field, material polarization follows the electric field, therefore 
orienting itself downwards. In this configuration, identical to the electrostrictive 
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case, S3 is positive (out-of-plane inflation of the material). As E3 is negative, d33 is 
negative, and therefore d31 is positive.  
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Figure 13.26. Verification of the sign of d33 in the case of a ferroelectric material to which a 
positive voltage greater than coercive voltage is applied 

Now let us reverse the sign of the voltage applied, which then becomes negative 
(see Figure 13.27). Polarization follows the field and therefore becomes positive. In 
this case, as field and polarization are in the same direction, strain S3 is also positive. 
As the field is positive, then d33 is positive and d31 negative. 
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Figure 13.27. Verification of the sign of d33 in the case of a ferroelectric material to which a 
negative voltage with absolute value greater than coercive voltage is applied 
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Therefore, in the case of ferroelectric thin films to which an electric voltage 
greater than coercive voltage is applied, a rule of thumb is that voltage and d31 have 
the same sign. 
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