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1 INTRODUCTION

Optimization refers to the study of problems where an objective function is minimized

or maximized by systematically choosing the values of real and/or integer variables from

within an allowed set. Many real world and theoretical problems may be modeled in

the general framework of an optimization problem. Power system is one of the complex

fields in electrical engineering, where optimization plays an important role. Some of the

basic problems are Economic Load Dispatch (ELD), Unit Commitment (UC) and Opti-

mal Power Flow (OPF). Solutions of power system optimization problems are difficult,

due to the large size, complexity, wide geographical distribution and influence of many

unexpected events. This situation is further aggravated by the presence of a large number

of nonlinear equality and inequality constraints. Handling of all these constraints is a

complicated task in traditional optimization methods like Lagrangian, gradient, Newton’s

methods. Most of the algorithms proposed for solving nonlinear optimization problems

are not capable of making a distinction between local optimal solutions and global optimal

solutions, and will treat the local solution as actual solutions to the original problem. It is

therefore necessary to employ most efficient optimization methods to take full advantages

in simplifying the formulation and implementation of the problem.

In recent years, heuristic methods are widely employed for solving such complex problems.

Simulating these processes on a computer, results in stochastic optimization techniques

that can often perform better than classical methods of optimization, when applied to

difficult real world problems. These methods, though efficient, are time consuming. Var-

ious evolutionary techniques like Genetic Algorithm (GA), Evolutionary Programming

(EP), Evolutionary Strategies (ES) and Particle Swarm Optimization (PSO), have been

applied to power system optimization problems (Miranda et al., 1998). Differential Evo-

lution (DE) is a relatively new evolutionary algorithm proposed by Storn and Price (1997)

which is simple, yet powerful, for solving complex optimization problems.

Practical optimization problems are often characterized by several non-commensurable

and often competing objectives. The presence of multiple objectives in a problem, in

principle, gives rise to a set of optimal solutions known as Pareto-optimal solution, instead
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of a single optimal solution (Coello, 1999). In the absence of any further information, it

is not possible to decide which of these Pareto-optimal solutions is better than the other.

Hence, the operator has to find as many Pareto-optimal solutions as possible from which

the most suitable solution is chosen to meet a particular requirement. The use of true

Multi-objective Optimization (MO) techniques in power system have advantages like:

(a) it allows the management of different objectives, (b) it simplifies the decision making

process, and (c) it gives indications on the consequences of the decision with respect to

all the objective functions considered. In this way, the power system operator has several

alternative solutions for decision making.

2 MOTIVATION

Constrained active and reactive OPF problems have complicated non-analytical, non-

static and partially discrete formulations. A number of mathematical programming based

techniques such as Linear Programming (LP), gradient method (Dommel and Tinney,

1968), Newton method (Sun et al., 1984), Sequential Quadratic Programming (SQP)

(Grudinin, 1998) and Interior Point Method (IPM) (Zhu and Xiong, 2003) have been

proposed to solve the OPF problem. These methods rely on convexity to obtain the

global optimal solution and as such are forced to simplify the relationships in order to

ensure convexity. However the OPF problem is in general non-convex and as a result

many local minima may exist. LP requires the objective function and constraints to be

linear, which may lead to loss of accuracy. The gradient and Newton methods suffer from

difficulty in handling inequality constraints. Conventional methods are not efficient in

handling problems with discrete variables. In recent years, global optimization techniques

such as GA (Devaraj and Yegnanarayana, 2006), Enhanced GA (Bakirtzis et al., 2002),

EP (Lai and Ma, 1997), ES (Das and Patvardhan, 2003), and PSO (Abido, 2002) have

been proposed to solve the OPF problem.

Most realistic optimization problems require the simultaneous optimization of more than

one objective function. Different mathematical techniques such as weighted summation,

ǫ-constraint, and goal programming have been proposed to solve the MO active and
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reactive power dispatch problem (Dhillon et al., 1994), (Muslu, 2004), (Chen, 1998),

(Chen and Liu, 1994). Conventional optimization methods usually convert the multi-

objective optimization problem to a single-objective optimization problem by emphasizing

one particular Pareto-optimal solution at a time. For finding multiple solutions, such

methods require multiple runs, finding a different solution at each simulation run. DE

has the potential to achieve a true multi-objective optimization resulting in a set of Pareto

optimal solutions.

In literature constraints were handled by use of a penalty function approach, i.e., the

constraint violation is multiplied by a penalty coefficient and added to the objective

function. Deb (2000) proposed a ‘penalty parameterless’ scheme to overcome the difficulty

of choosing penalty coefficients for GA based constrained optimization problems. The

penalty parameterless constraint handling technique can be effectively incorporated in

DE as it uses pair-wise comparison for selection operator.

3 OBJECTIVES AND SCOPE

The objectives of this work are

1. developing DE based solution techniques for OPF problems with single and multiple
objectives and comparing the performance and computational effectiveness of DE
with other evolutionary and conventional techniques,

2. solving single objective OPF problems like (i) generation cost minimization con-
sidering network security and (ii) real power loss minimization with mixed integer
variables, and

3. solving multi-objective OPF problems like (i) thermal dispatch with economic and
emission objectives and (ii) volt-var optimization with real power loss in transmis-
sion lines and sum of voltage deviations at load buses as objectives.

Two-objective optimization, a subset of multi-objective optimization, is considered for

this study, though the DE based solution technique can be extended to problems with

more than two objectives.
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4 Differential Evolution

DE is a simple population based, stochastic search evolutionary algorithm for global

optimization and is capable of handling non-differentiable, non-linear, and multi-modal

objective functions (Price et al., 2005). The population of a DE algorithm is randomly

initialized within the initial parameter bounds. The optimization process is conducted by

means of three main operations: mutation, crossover and selection. In each generation,

each individual of the current population becomes a target vector. For each target vector,

the mutation operation produces a mutant vector, by adding the weighted difference

between two randomly chosen vectors to a third vector. The crossover operation generates

a new vector, called trial vector, by mixing the parameters of the mutant vector with

those of the target vector. If the trial vector obtains a better fitness value than the target

vector, then the trial vector replaces the target vector in the next generation. Generally

the algorithm can be described in the following steps:

Step 1. An individual i in generation G is a multidimensional vector xi
G = (xi,1, . . . , xi,D).

The population is initialized as

xG
i,k = xkmin

+ rand(0, 1) × (xkmax
− xkmin

) i ∈ [1, Np], k ∈ [1, D] (1)

where, Np is the population size and D is the number of control variables. Each
variable k in the individual is initialized within its boundaries xkmin

and xkmax
.

Step 2. For every i ∈ [1, . . . , Np] the weighted difference of two randomly chosen individ-
uals xr2

and xr3
, is added to another randomly selected individual xr1

to build
a mutated vector vi.

vi = xr1

G + F (xr2

G − xr3

G) (2)

In Eq. (2), i, r1, r2 and r3 are mutually different indices from the current gener-
ation. F is the step size which is chosen from the range [0, 2].

Step 3. The target vector xi is mixed with the mutated vector vi using the following
scheme, to yield the trial vector ui.

ui = uG+1

i,k =

{

vi,k if randk,i ≤ CR or k = Irand

xG
i,k if randk,i > CR and k 6= Irand

(3)

where randk,i ∈ [0, 1] and Irand is chosen randomly from the interval [1, . . . , D]
once for each vector to ensure that at least one vector component originates
from the mutated vector vi. Eq. (3) is applied for every vector component
i ∈ [1, . . . , Np], k ∈ [1, . . . , D]. CR is the DE control parameter, called the
Crossover Rate, and is a user defined parameter within range [0,1].
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Step 4. Select the individuals for the next generation as follows:

xG+1

i
=

{

uG+1

i
if f(uG+1

i ) ≤ f(xG
i )

xG

i
otherwise

(4)

For MO problems, the selection procedure differs from the basic DE algorithm.
For the present work non-dominated sorting and ranking selection procedure
developed by Deb et al. (2002) is used.

Step 5. Repeat the mutation, crossover and selection operators until termination criteria,
such as maximum number of generation, is met.

5 DESCRIPTION OF THE RESEARCH WORK

The OPF is a steady state, non-linear, and non-convex optimization problem, which

schedules the power system controls to optimize an objective function while satisfying

a set of nonlinear equality and inequality constraints (Dommel and Tinney, 1968). In

general the OPF problem can be stated as

min f(x,u) (5)

s.t. g(x,u) = 0 (6)

h(x,u) ≤ 0 (7)

xmin ≤ x ≤ xmax, umin ≤ u ≤ umax (8)

Here, f(x,u) is the objective function that typically includes total generation cost (active

power dispatch) or total losses in transmission system (reactive power dispatch), g(x,u)

represents nonlinear equality constraints (power flow equations) and h(x,u) is the non-

linear inequality constraints of vector arguments of x and u. The vector x contains

dependent variables consisting of bus voltage angles θ, load bus voltage magnitudes VL,

slack bus real power generation Pg,slack, and generator reactive power Qg. The vector u

consists of control variables like real power generation, Pg, generator terminal voltage, Vg,

transformer tap ratio, t, and shunt compensation, Qsh. Of the control variables Pg and

Vg are continuous variables, while tap ratio of the tap changing transformer and reactive

power output of shunt devices, Qsh, are discrete variables.
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5.1 Optimal Active Power Dispatch

The objective of Optimal Active Power Dispatch (OAPD) is to minimize the generation

cost by adjusting the real power output of the committed generators. The generator cost

curves are represented by quadratic functions and the total operating cost FC in ($/h)

can be expressed as

FC(Pg) =

Ng
∑

i=1

(ai + biPgi
+ ciP

2
gi
) (9)

where Ng is the number of thermal generators; ai, bi and ci are the cost coefficients of the

ith generator; and Pgi
is the real power output of the ith generator. OAPD problem was

solved using the proposed method, PSO and SQP for standard IEEE 14, 30 and 57-bus

systems. Fig. 1(a) shows the network diagram of IEEE 30-bus system and Fig. 1(b)

shows the performance of the optimization technique in terms of cost with DE and PSO

for the best run out of 30 trials on IEEE 30-bus system.
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Figure 1: IEEE 30-bus system

In order to verify the robustness of the proposed methodology simulation is carried out

for 30 independent runs with different initial population. In each case, the best solution

and CPU time were observed. The important statistical details like best, worst, average,

standard deviation and variance, along with average CPU time, are listed in Table 1. It

can be observed that DE algorithm is more robust and faster than PSO. To ensure a near

optimum solution for any random trial, the standard deviation for multiple runs should

be very low, which is satisfied better by DE, when compared to PSO. The minimum gen-
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erating cost (best value) obtained by various techniques along with number of iterations

taken, CPU time and number of load flows required are given in Table 2 for all the three

test systems.

Table 1: OAPD - Statistical results for IEEE 30-bus system

Compared Item DE PSO

Min Cost ($/hr) 949.41 949.47

Max Cost ($/hr) 949.48 949.55

Average Cost ($/hr) 949.46 949.50

Standard Deviation 0.0215 0.0218

Average Iteration 40 49

Average CPU Time (s) 4.365 5.118

Table 2: OAPD - Comparison between DE, PSO and SQP for various test systems

Compared Item
IEEE 14-bus IEEE 30-bus IEEE 57-bus

DE PSO SQP DE PSO SQP DE PSO SQP

Min Cost ($/hr) 743.78 747.38 763.48 949.4 949.50 951.72 10719.56 10720.71 11303

No. of iteration 57 91 9 40 50 74 77 86 21

CPU time (s) 4.232 7.252 0.855 4.325 4.4 6.123 14.708 16.503 5.315

NLFE 1710 2730 NA 1200 1500 NA 2310 2580 NA

NLFE - No. of Load Flow Evaluations NA - Not Applicable

5.2 Optimal Reactive Power Dispatch

The Optimal Reactive Power Dispatch (ORPD) problem has significant influence on

secure and economic operation of power systems. It is aimed at minimizing the active

power loss in the transmission system by proper adjustments of reactive power variables

under several security constraints. In ORPD it is assumed that the real power dispatch is

performed separately and real power generation (except at the slack bus) is regarded as

constant. Network losses, either for the whole network or for certain sections of network,

are non-separable functions of dependent and independent variables. It is given as

Ploss =

Nl
∑

k=1

gk[(tkVi)
2 + V 2

j − 2tkViVjcosθij] (10)
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where, gk is the conductance of branch k connected between buses i and j ; Nl is the num-

ber of transmission lines; tk is the tap ratio of transformer k ; Vi is the voltage magnitude

at bus i ; θij is the voltage angle difference between buses i and j. To verify the effec-

tiveness of the proposed DE based reactive dispatch optimization approach, simulation

is carried out on standard IEEE 14, 30 and 57-bus systems and the results are compared

with PSO and SQP. As in the previous case DE was found to be more robust as it gave

minimum standard deviation among the solutions obtained from multiple random trials.
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Figure 2: ORPD convergence for IEEE 30-bus system

Fig. 2 shows the objective function value (Ploss) plotted against number of generations

obtained by DE and PSO. It can be observed that PSO settles to a sub-optimal value.

The statistical details for 30 independent simulation runs are provided in Table 3. The

minimum loss (best value) obtained by various techniques along with number of iterations

taken, CPU time and number of load flow evaluations is given in Table 4 for all the three

test systems.

Table 3: ORPD - Statistical results for IEEE 30-bus system

Compared Item DE PSO

Min Ploss (MW) 5.011 5.116

Max Ploss (MW) 5.022 5.218

Average Ploss (MW) 5.013 5.125

Standard Deviation 0.0026 0.0291

Average Iterations 66 69

Average CPU Time (s) 13.647 16.420

8



Table 4: ORPD - Comparison between DE, PSO and SQP for various test systems

Compared Item
IEEE 14-bus IEEE 30-bus IEEE 57-bus

DE PSO SQP DE PSO SQP DE PSO SQP

Min Ploss (MW) 13.239 13.250 13.246 5.011 5.116 5.043 25.048 25.305 26.010

No. of iteration 63 80 9 66 70 36 162 120 67

CPU time (s) 4.232 7.252 0.85 4.325 4.4 6.123 14.708 16.503 5.315

NLFE 1890 2400 NA 1980 2100 NA 4860 3600 NA

NLFE - No. of Load Flow Evaluations NA - Not Applicable

5.3 Economic Emission Dispatch

The environmental regulations have forced electric utilities to consider the environmen-

tal impact of generating plants in the normal operation of power systems. Under these

circumstances, generation allocation is not only governed by the units capable of mini-

mizing the total generation costs but also satisfying the emissions requirements (Abido,

2006). The economic-emission dispatch determines the real power allocation that reduces

generation cost considering the amount of pollutant emission like sulphur oxides and ni-

trogen oxides. It is required to minimize two competing objective functions, generation

cost and emission, while satisfying several equality and inequality constraints. The total

generation cost is given in Eq. (9). The total emission FE in (ton/h) of atmospheric

pollutants such as sulphur oxides and nitrogen oxides caused by the operation of fossil

fueled thermal generation can be expressed as

FE(Pg) =

Ng
∑

i=1

(αi + βiPgi
+ γiP

2
gi

+ ζie
λiPgi ) (11)

where αi, βi, γi, ζi, and λi are coefficients of the ith generator emission characteristics.

To study the performance of economic emission dispatch using Multi-Objective Differ-

ential Evolution (MODE), simulations were performed on the standard IEEE 30-bus

system with a population size of 30. To compare the results of the proposed approach

for EED, the problem was also solved by the conventional weighted summation method

and Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001). To gen-

erate a 30 non-dominated solutions with SPEA2 a main population size of 100 is used.
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All the security constraints were considered while dispatching real power generation for

Economic-Emission Dispatch (EED). Fig. 3(a) gives a comparison between the Pareto

optimal solutions obtained by the MODE and SPEA2. It can be seen that with the

proposed approach, solutions obtained are diverse and well distributed over the Pareto

front. CPU time for MODE, SPEA2 and weighted summation method are 28.161, 82.862

and 122.8 seconds respectively.
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Figure 3: Pareto optimal solutions obtained for EED

Table 5: Minimum cost, minimum emission and best compromise solutions obtained by
MODE and SPEA2 for EED

Control MODE SPEA2

Variable Min FC Min FE BCS Min FC Min FE BCS

Pg1 0.1361 0.4184 0.3017 0.1701 0.4061 0.3085

Pg2 0.3455 0.4622 0.4019 0.3845 0.4546 0.3917

Pg3 0.7573 0.5441 0.5815 0.7074 0.5569 0.5621

Pg4 0.6016 0.3793 0.5967 0.6038 0.3872 0.5980

Pg5 0.5998 0.5520 0.5352 0.5762 0.5469 0.5384

Pg6 0.4162 0.5068 0.4436 0.4153 0.5107 0.4628

FC ($/hr) 618.45 645.74 622.37 618.38 644.06 622.67

FE (ton/hr) 0.2051 0.1942 0.1975 0.2051 0.1942 0.1973

BCS - Best Compromise Solution

The Pareto front given by weighted summation method after 30 simulation runs is shown

in Fig. 3(b). It is clear that varying the weight coefficients in equal increments do

not guarantee uniformly distributed solutions in the Pareto front. Further, all the non-

dominated solutions cannot be obtained and some of the solutions obtained are inferior.
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Once the set of Pareto optimal solutions is found, the compromise solution is chosen

using a fuzzy function (Abido, 2006). Table 5 shows the control variable setting, FC and

FE for minimum cost, minimum emission, best compromise solution obtained by MODE

and SPEA2.

5.4 Multi-objective Volt-Var optimization

The ORPD problem is formulated as a non-linear constrained multi-objective optimiza-

tion problem with active power loss in the transmission network and sum of load bus

voltage magnitude deviations from specified nominal values as competing objectives. Net-

work losses are non-separable functions of dependent and independent variables as given

in Eq. (10). Bus voltage magnitude is one of the important security and service quality

indexes. It is required to keep the voltage magnitude deviation of each load bus, from

the specified nominal or reference value, as small as possible. Hence Voltage Deviation

(VD) is taken as an objective given by

V D =

NPQ
∑

k=1

|Vk − V
ref
k | (12)

where, V
ref
k is the specified reference value of the voltage magnitude at load bus k, which

is usually set to 1.0 p.u. and NPQ is the number of load buses.
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Figure 4: Pareto optimal solutions obtained for multi-objective volt-var optimization
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Results for simulation carried out on standard IEEE 30-bus system are presented. Fig.

4(a) shows the performance comparison of MODE and SPEA2. Fig. 4(b) shows the

Pareto front obtained by weighted summation method after 30 runs. CPU time taken by

MODE, SPEA2 and weighted summation method for volt-var optimization are 58.424,

198.816 and 173.843 seconds respectively. Table 6 shows the control variable setting, FC

and FE for minimum cost, minimum emission, best compromise solution obtained by

MODE and SPEA2.

Table 6: Minimum loss, minimum deviation and best compromise solutions obtained by
MODE and SPEA2 for volt-var optimization

Item
MODE SPEA2

Min Ploss Min V D BCS Min Ploss Min V D BCS

VG2 1.0438 1.0409 1.0408 1.4025 1.0371 1.0427

VG5 1.0235 1.0115 1.0214 1.0201 1.0112 1.0191

VG8 1.0246 0.9971 1.0211 1.0230 0.9994 1.0207

VG11 1.1000 1.0647 1.0363 1.0432 1.0153 1.0278

VG13 1.1000 0.9983 1.0405 1.1000 1.0140 1.0440

T6−9 0.9800 0.9100 0.9100 1.0100 0.9700 0.9500

T6−10 1.1000 1.1000 1.1000 1.1000 1.0600 1.0600

T4−12 1.0800 1.0900 0.9800 1.0600 1.0500 1.0100

T27−28 1.0800 1.0500 1.0200 1.0800 1.0500 1.0300

QC10 0.3000 0.0800 0.1600 0.3000 0.1700 0.2200

QC24 0.0900 0.1400 0.1200 0.1200 0.1300 0.1200

Ploss (p.u.) 0.0501 0.0555 0.0516 0.0502 0.0541 0.0514

V D (p.u.) 1.5649 0.1512 0.2505 1.4175 0.1508 0.3451

BCS - Best Compromise Solution

6 CONCLUSIONS

Differential Evolution algorithm based single and multiple objective optimal power flow

solutions have been proposed. Solutions to optimal active power and reactive power dis-

patch problems with single objectives like cost minimization and loss minimization have

been developed. The problems are formulated as a mixed integer nonlinear optimization

problems. Simulation results demonstrated the capability of DE to obtain better optimal

solutions when compared to PSO and SQP. Also, DE took lesser number of iterations
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and function evaluations than PSO.

Multi-objective optimization using DE have been attempted to solve the economic emis-

sion dispatch and volt-var optimization problems. Economic emission problem has gen-

eration cost and emission of pollutants as non-commensurable objectives. Volt-var op-

timization has been formulated with real power loss in transmission lines and sum of

voltage deviations at load buses from specified nominal values, as competing objectives.

The results of the proposed approach show that it is efficient for solving multi-objective

reactive power dispatch problem where multiple Pareto-optimal solutions can be found

in single simulation run. The obtained Pareto-optimal solutions are well-distributed and

have good diversity characteristics.

Compared to other population based optimization tools like GA and PSO, DE has fewer

control parameters. Further, the penalty parameterless technique of handling inequality

constraints employed in this work, for both single as well as multiple objective opti-

mization problems, effectively eliminates the trial and error method of assigning penalty

coefficients. This makes the optimization procedure independent of test system being

used. DE based OPF was found to be more robust as it provided least standard devia-

tion among the solutions obtained from multiple random trials.
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