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Abstract

Following fault clearing, undesirable protection operation may play a role in weakening a
power system. Such cascaded protection operation can lead to angle instability and/or
voltage collapse. An energy function approach to assessing this protection operation was
proposed in [7]. The critical energy used in the approach was given by a minimization
problem. Unfortunately this minimization is di�cult to solve due to its non-convex nature,
and the presence of a large number of protection constraints. This paper develops several
gradient-based optimization methods which display desirable convergence properties.

1 INTRODUCTION

Angle instability and voltage collapse are two im-
portant modes of system failure. Following fault
clearing, undesirable protection operation may play
a role in weakening a power system. For exam-
ple, cascaded protection operation is a contribut-
ing factor in many cases of voltage collapse. Also,
angle instability between generators frequently re-
sults in distance protection tripping feeders, which
in turn may lead to system separation and island-
ing. Therefore there is value in the development of
techniques for assessing whether a disturbance will
initiate unwanted and often unmodelled protection
action.

Transient energy function (TEF) methods have tra-
ditionally focussed on the assessment of angle insta-
bility [5]. Assessment of system behaviour is based
on a comparison of the energy acquired during the
disturbance with a critical value of energy. This
critical energy provides an estimate of the bound-
ary of the stability region. A similar approach can
now be used to assess voltage collapse with recent
developments in energy functions [3] which allow
load dynamics to be modelled.

However, modi�cations are required to incorporate
protection operation into TEF methods. This re-
volves around a new procedure for calculating the
critical energy. Rather than the critical energy re-
ecting the stability boundary, it must now provide
an estimate of the conditions under which protec-
tion operation would occur. The �rst step in deter-

mining this critical energy is to de�ne mathemati-
cally the protection surface, i.e., the set of points in
state space at which the protection relay will op-
erate. The critical energy is then the amount of
energy that could be acquired by the system such
that the post-fault trajectory was tangential to the
protection surface. Acquisition of a larger amount
of energy could result in the system trajectory en-
countering the protection surface, and hence pro-
tection operation. Protection would not operate if
the system acquired less energy.

In [7], this critical energy was found as the solu-
tion of a constrained minimization problem. An
overview is given in Section 3. Unfortunately the
minimization is di�cult to solve due to the non-
convex nature of the cost function and constraints.
This is especially so for power systems which con-
tain a large number of protection relays, i.e., actual
power systems. Non-traditional optimization tech-
niques such as simulated annealing [8] have been
used to solve this problem. However, they are often
slow. Several gradient-based optimization meth-
ods display more desirable convergence properties.
This paper developes those methods.

2 MODELS

2.1 Power System Model

Rigorous development of direct protection assess-
ment concepts requires the use of a strict Lyapunov
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Figure 1: 3-Machine 3-Bus system.

energy function. For this, generators are modelled
using the classical machine model, active loads are
considered to be constant and reactive power loads
are modelled using either a static voltage depen-
dent or dynamic load model [3]. Under these as-
sumptions, the power system model can be written
in a general di�erential-algebraic (DA) form

_x = f(x; y) (1)

0 = g(x; y) (2)

where x = [!t �t xtq ]
t; ! is a m-vector of genera-

tor speeds; � is a (m � 1)-vector of generator an-
gles; xq is the d-vector of dynamic load states; and
y is the 2n-vector of algebraic variables, i.e., load
bus voltage magnitudes and angles. (Superscript
`t' denotes matrix transpose). It will be assumed

throughout that Jacobian @g
@y

is nonsingular, i.e.,

solutions of g = 0 are well de�ned.

Exact details of model and energy function devel-
opment can be found in [3]. The corresponding
energy function has the form

V (!g ; �; xq; v) = VKE(!g) + VPE(�; xq ; v) (3)

where VKE and VPE can be thought of as kinetic
and potential energy terms respectively. Contours
of potential energy (PE) for the simple unloaded
system of Figure 1 are shown in Figure 2 (dark
lines).

2.2 Protection Model

This paper considers distance protection relays [1],
though the concepts extend to any constraints
which restrict system behaviour to a region of state
space. Distance protection relays monitor the ap-
parent impedance seen from a bus, and operate if
that impedance enters the trip region. The operat-
ing criterion can be written in the general form

Hik(y) � 0: (4)
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Full details of the relationship between (4) and typ-
ical mho characteristics can be found in [6].

It is convenient to de�ne each protection operating
region by the set

Sik = f(x; y) j Hik(y) � 0g : (5)

Its boundary �Sik is given by Hik(y) = 0, and shall
be referred to as the protection surface. As an ex-
ample, a state space view of all protection surfaces
�Sik, i = 1; � � � ; 3, k = 1; � � � ; 3, corresponding to
zone 3 are depicted in Figure 2 for the system of
Figure 1.

3 PROBLEM FORMULA-

TION

The value of critical energy required for assessment
of protection operation is given by minimizing po-
tential energy over all protection surfaces, i.e.,

min
(x; y) 2 S

VPE(x; y) (6)

s.t. g(x; y) = 0 (7)

where
S =
[

i;k

Sik : (8)

Figure 2 shows the solution of this optimization
problem for the example 3-machine 3-bus system.
The global minimum for the protection constraints
occurs at (30.62, -129.83), with potential energy
equal to 5.55. It was shown in [7] that if the
fault was cleared with this critical energy, then
the system trajectory never encountered the pro-
tection surfaces, and hence system integrity was
maintained without any cascaded protection ac-
tion. However, note from Figure 2 that the po-
tential energy function and protection constraints



are quite non-convex, posing substantial di�culty
in determining the local minimum of interest.

Simulated annealing algorithms were proposed in
[8] to locate the global minimum. However those
algorithms are not preferable for the following two
reasons: (i) the global minimum is not always the
local minimum of interest, possibly resulting in con-
servative stability assessment; and (ii) they are of-
ten slow. A more e�cient way of locating the
local minimum is required. This paper proposes
gradient-based algorithms which demonstrate bet-
ter convergence results. They make use of La-
grangian multiplier theory [2].

It has been observed that following a fault, only
certain relays on certain lines are likely to operate.
The rest of the relays are not relevant to that dis-
turbance, and should not be included in calculating
the critical energy. The relays that may operate
are called controlling relays, whilst the relay which
ultimately operates �rst will be referred to as the
critical relay.

Suppose the most critical relay for the given fault
has been found [4, 6]. This implies that we need
consider only the single protection constraint cor-
responding to that relay. Using Lagrangian multi-
plier theory, the constrained minimization problem
(6)-(7) can be transformed into locating the uncon-
strained minimum of the Lagrangian function L :
<m+d+4n 7�! < de�ned as

L(x; y; �; �) = VPE(x; y) +
2nX

i=1

�igi(x; y) +�Hik(y)

(9)
where � is a 2n-dimensional (column) vector of La-
grangian multipliers associated with constraints g,
and � is the the Lagrangian multiplier associated
with the protection constraint Hik . (Note that in
(9), x only includes � and xq). The minimum of L
is given by the �rst order optimality conditions [2].
If (x�; y�; ��; ��) is a local minimum of function L,
then �rst order optimal conditions can be written
as

rx;y;�;�L(x
�; y�; ��; ��) = 0: (10)

The �rst order optimal conditions (10) represent
m+d+4n equations in m+d+4n unknowns, viz.,
the states x, y and the Lagrangian multipliers �
and �. Equation (10) can be written explicitly as

rxVPE + gtx � = 0 (11)

gty �+ �ryHik(y) = 0 (12)

g(x; y) = 0 (13)

Hik(y) = 0 (14)

where gx �
@g
@x
, and other partial derivatives fol-

low the same convention. Equations (11)-(14) also
make use of the facts that Hik(y) is not a function

of x, and ryVPE(x; y) = g(x; y) = 0 at all solu-
tion points [5]. They form a fully determined set
of equations, and can be solved simultaneously to
give local minima (x�; y�; ��; ��). Note that mul-
tiple solutions may exist. Special care should be
exercised in determining the local minimum of in-
terest.

4 GRADIENT-BASED AL-

GORITHMS

4.1 Background

The Newton-Raphson algorithm can be used to
solve the system of equations (11)-(14). The ad-
vantage of using this gradient-based algorithm over
simulated annealing algorithms is that if a good
initial guess is known, then Newton-Raphson takes
only a few iterations to converge. Writing (11)-(14)
as

F (z) = 0

where z = [xt yt �t �]t, the Newton-Raphson algo-
rithm uses the iterative process

zk+1 = zk � �k J�1(zk)F (zk) (15)

to move from the kth to the (k + 1)th iteration.
In (15), � is the stepsize (accelaration factor) and
J is the Jacobian matrix of the system (11)-(14)
calculated at the kth iteration. J is also the Hessian
matrix of the Lagrangian function L [2].

Unfortunately the Newton-Raphson algorithm suf-
fers from the major disadvantage of requiring a
good initial guess. For the example system in Fig-
ure 1, the state space is only 2-dimensional and a
good guess of the initial point is possible from the
geometry of the cost function VPE and the protec-
tion surfaces; see Figure 2. However the state space
of practical power systems has high dimension, so
visualization becomes impossible.

The di�culty of �nding a good initial guess is com-
pounded by the presence of Lagrangian multipliers,
which introduce 2n+ 1 extra variables. To ensure
convergence, it is desirable that the initial guess is
close to the optimal solution, or at least some of
the equations (11)-(14) are satis�ed. The stable
equilibrium point (SEP) often provides a suitable
initial guess. The advantage of using the SEP as
the initial guess is that rxVPE is zero and g = 0,
i.e., 2n of the m+ d+ 4n equations are satis�ed.

Several approaches have been adopted to imple-
ment (15) using the SEP as the initial guess. They
are now discussed.



4.2 One Step Approach

The one step algorithm starts from the SEP and
follows a sequence of points produced by (15) that
(hopefully) converge to the optimum solution. One
approach is to use a constant stepsize, with very
small initial values for � and �. Unfortunately,
(15) diverges if the stepsize is too big. Testing has
shown that convergence can usually be obtained for
� in the range 0 < � < 1. However, the choice of
� is crucial. Di�erent stepsizes can result in con-
vergence to di�erent local minima. Also, if � is too
small, the convergence rate is quite slow, especially
when approaching the optimum solution. This is
because the gradient F of the Lagrangian function
L vanishes and the improvement in the cost reduces
as the optimum solution point is approached.

The convergence rate can be improved by using a
variable stepsize. Initially 0 < � < 1, then � is
increased as the optimum solution is approached.
Simulations indicate that this variable stepsize al-
gorithm converges 2-3 times faster than the con-

stant stepsize version. The �nal value of � can be
up to 10 times the initial value.

It should be noted though that the success of both
the constant and variable stepsize approaches de-
pends of the choice of initial �. Unfortunately,
there is no systematic way of determining that ini-
tial value, so their application is limited. Hence
these one step approaches will not be discussed fur-
ther.

4.3 Two Step Approach

The SEP is often remote from the desired solu-
tion of (11)-(14). Therefore a better initial guess is
needed for reliable convergence of (15). To achieve
this, a two step approach is proposed. The �rst
step of the algorithm �nds a point that is closer to
the optimum solution. In the second step, (11)-(14)
are solved, starting from the initial point obtained
in the �rst step.

The function Hik(y) is directly related to the ap-
parent impedance [6]. Therefore at the SEP,
Hik(y) > 0. Movement from the SEP towards the
protection operating characteristic corresponds to
a reduction in Hik(y). (Recall that at the oper-
ating characteristic, Hik(y) = 0.) The direction in
whichHik(y) reduces fastest generally indicates the
region of state space where protection operation is
most likely to occur.

Therefore the �rst step of the two step approach
begins at the SEP and minimizes Hik(y) along the
steepest decent direction until Hik(y) = 0. From
(2), it can be seen that y is an implicit function
of x, so we can de�ne Hik(y(x)) � �Hik(x). Then
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Figure 3: Two Step Approach Lands Close to the
Optimum Solution.

points along the steepest decent direction are given
by

xk+1 = xk � �krx
�Hik(x

k) (16)

with (2) satis�ed at each point. The total deriva-
tive of (2) allows (16) to be rewritten as

xk+1 = xk + �kryHik(y)
tg�1y gx: (17)

The algorithm (17) moves in the steepest de-
scent direction of Hik(y), and will continue until
Hik(y) = 0. If the function Hik(y) is convex, at
least near the SEP, and has a nice shape in state
space, then the �nal point of the �rst step will be
close to the optimum solution. It can be used as the
initial guess in the second step to solve the original
optimization (11)-(14). Note that another advan-
tage of using this point is that both (13) and (14)
are satis�ed.

Implementation of the two step approach is illus-
trated in Figure 3 for the three protection surfaces
�S12, �S31 and �S32. Points Aik are end points of the
�rst step, and Bik are the optimum solutions ly-
ing on the corresponding protection surfaces �Sik.
Note that points A31 and A32 are close to the
corresponding optimum points B31 and B32. The
Newton-Raphson algorithm (15) gave fast conver-
gence in these cases.

It should be mentioned that the Lagrangian multi-
pliers also play a signi�cant role in the minimiza-
tion of the Lagrangian function L. In fact the algo-
rithm may diverge if poor initial guesses of � and
� are used, even if x and y are at the exact opti-
mum solution. The following section addresses the
issue of Lagrangian multipliers in more detail, and
proposes several ways to compute them.



4.4 Computation of Lagrangian
Multipliers

Section 4.3 presented techniques for obtaining ini-
tial guesses of x and y that are close to the optimum
solution. However to e�ciently carry out the min-
imization of the Lagrangian function L, it is also
important to reduce the uncertainty in the initial
guesses of the Lagrangian multipliers � and �. This
can be achieved either by eliminating (at least par-
tially) � and � from the original problem, or com-
puting them systematically. Both approaches are
now considered.

4.4.1 Partial Elimination of Lagrangian

Multipliers

Partial elimination of Lagrangian multipliers in the
given optimization problem follows from the rela-
tionship between � and � given by (12). Simple
manipulation yields

� = ��gt
�1

y ryHik; (18)

i.e., at any point where (12) is satis�ed, � can be
calculated by specifying � only. Note that in the
two step approach, (13) and (14) are satis�ed at
the end of the �rst step. Also, if the end point
is su�ciently close to the optimum solution, for
example A31 and A32 in Figure 3, it is reasonable
to assume that (11) and (12) are approximately
satis�ed, i.e.,

gty�+ �ryHik � 0 (19)

and hence � can be calculated from (18) by spec-
ifying just one multiplier �. This greatly reduces
the uncertainty in the initial guess of Lagrangian
multipliers.

The above approximation can be demonstrated for
�S32. First note that the actual values of � and �
at the optimum solution point B32 are �� = 2:502
and

�� = [0:054 � 0:303 0:083 0:138 1:053 0:115]t:

Assume for now that �� is known. Then �� can be
approximated using (18) to give

��approx = [0:092 �0:343 0:097 0:130 1:098 0:122]t;

which is quite close to ��.

4.4.2 Quadratic Approximation of �

In Section 4.4.1, �� was used to �nd an approxi-
mate ��. However �� is usually not known. An

approach is now proposed for �nding an approxi-
mate value for �� near the optimum solution. That
estimate can then be used to obtain ��approx.

By substituting � from (18) into (11), we have

rxVPE � �(g�1y gx)
tryHik = 0: (20)

Equation (20) is approximately satis�ed at the end
point of the �rst step in the two step approach.
An approximate value of �� is given by the value
of � which minimizes the di�erence between the
LHS and RHS of (20), calculated at the end point.
De�ne

Q = rxVPE � �(g�1y gx)
tryHik :

The appropriate value of � can be found by solving
the quadratic optimization problem

min
�

QtQ: (21)

The solution of (21) is given by r�Q
tQ = 0, which

results in

��approx =

m+d�1X

i=1

rxi
VPE pi

m+d�1X

i=1

p2i

(22)

where p = (g�1y gx)
tryHik . For the previous exam-

ple based on �S32, (22) gave �
�

approx = 2:218, which
is very close to the actual �� = 2:502. Once ��approx
is known, ��approx can easily be found using (18).

4.4.3 Successive Computation of La-

grangian Multipliers

In the two step approach, partial elimination of �
along with quadratic approximation of � works well
if the point at the end of the �rst step is close to the
optimum solution, i.e., if assumption (19) holds.
However, that is not always the case, as shown by
surface �S12 in Figure 3. In badly behaved cases,
the two step approach fails to give a good initial
guess of the states x and y, and the Lagrangian
multipliers � and �. To overcome these di�culties,
a more robust continuation-type algorithm, which
successively computes the Lagrangian multipliers,
has been developed.

As mentioned in Section 4.3, Hik(ysep) > 0 at
the SEP. Let Hik(ysep) = �sep. Also recall that
Hik(y) = 0 on the protection surface. Therefore
the desired minimization can be achieved by solv-
ing

rxVPE + gtx � = 0 (23)

gty�+ �ryHik(y) = 0 (24)

g(x; y) = 0 (25)

Hik(y)� � = 0 (26)
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for a sequence of values of � from �sep to 0. Note
that rxVPE = 0 at the SEP. So when � = �sep,
(23)-(26) are trivially satis�ed by � = 0 and � = 0.

Each step along the path from the SEP to the de-
sired minimum consists of two parts. Consider the
step from �l to �l+1. Initially a steepest descent
direction is followed from the minimum point on
Hik(y) = �l to a point on Hik(y) = �l+1. This is
similar to the �rst step in the two step approach
given in Section 4.3. The minimization (23)-(26) is
then solved for this new protection constraint. The
initial guess of all variables at each step is available
from the solution of the previous step. This process
is continued until � = 0, when the minimization
gives the desired value of critical energy.

The successive computation algorithm has been
successfully applied to minimization over all the in-
dividual protection characteristics of the system in
Figure 1. But for clearer illustration, in this case
we shall use the 2-machine 1-dynamic load exam-
ple given in [3]. Minimization over the most criti-
cal protection surface S32 is illustrated in Figure 4.
(The minimum potential energy is 0.036, which oc-
curs at the point (�g2; xq) = (82:1o;�0:57).) The
path P1 leads to the required minimum point. The
algorithm terminates when the path encounteres
the desired protection constraint.

The successive computation algorithm has been
found to be the most robust of all the gradient-
based and simulated annealing algorithms. Unfor-
tunately the computational cost can very high if
small steps in � are required. However, speed can
be improved using sparse matrix techniques and by
avoiding inversion of the Jacobian J at every step.

5 CONCLUSIONS

Locating the correct local minimum is crucial in
calculating the critical energy for energy function
assessment of protection operation. This is a dif-
�cult minimization problem. Lagrangian multi-
plier theory is used in this paper to motivate some
gradient-based algorithms. These techniques ex-
hibit better convergence properties than the simu-
lated annealing algorithms given in [8].

The gradient-based algorithms require a good ini-
tial guess of all problem variables to ensure con-
vergence. Several approaches have been presented
for obtaining a good initial guess of the states x
and y. Also, techniques have been proposed and
illustrated for the e�cient estimation of initial val-
ues of the Lagrangian multipliers � and �. Exam-
ples have been used to illustrate the advantages and
shortcomings of the various algorithms.
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