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PREFACE

I have been undertaking the research and practical applications of power
system optimization since the early 1980s. In the early stage of my career, [
worked in universities such as Chongqging University (China), Brunel
University (UK), National University of Singapore, and Howard University
(USA). Since 2000 I have been working for AREVA T&D Inc (USA). When
I was a full-time professor at Chongqing University, I wrote a tutorial on power
system optimal operation, which I used to teach my senior undergraduate
students and postgraduate students in power engineering until 1996. The topics
of the tutorial included advanced mathematical and operations research
methods and their practical applications in power engineering problems. Some
of these were refined to become part of this book.

This book comprehensively applies all kinds of optimization methods to
solve power system operation problems. Some contents are analyzed and
discussed for the first time in detail in one book, although they have appeared
in international journals and conferences. These can be found in Chapter 9
“Steady-State Security Regions”, Chapter 11 “Optimal Load Shedding”,
Chapter 12 “Optimal Reconfiguration of Electric Distribution Network”, and
Chapter 13 “Uncertainty Analysis in Power Systems.”

This book covers not only traditional methods and implementation in
power system operation such as Lagrange multipliers, equal incremental
principle, linear programming, network flow programming, quadratic pro-
gramming, nonlinear programming, and dynamic programming to solve the
economic dispatch, unit commitment, reactive power optimization, load shed-
ding, steady-state security region, and optimal power flow problems, but also
new technologies and their implementation in power system operation in the
last decade. The new technologies include improved interior point method,
analytic hierarchical process, neural network, fuzzy set theory, genetic algo-
rithm, evolutionary programming, and particle swarm optimization. Some new
topics (wheeling model, multiarea wheeling, the total transfer capability com-
putation in multiareas, reactive power pricing calculation, congestion manage-
ment) addressed in recent years in power system operation are also dealt with
and put in appropriate chapters.

Xvii
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In addition to having the rich analysis and implementation of all kinds of
approaches, this book contains much hand-on experience for solving power
system operation problems. I personally wrote my own code and tested the
presented algorithms and power system applications. Many materials pre-
sented in the book are derived from my research accomplishments and pub-
lications when I worked at Chongqing University, Brunel University, National
University of Singapore, and Howard University, as well as currently with
AREVA T&D Inc. I appreciate these organizations for providing me such
good working environments. Some IEEE papers have been used as primary
sources and are cited wherever appropriate. The related publications for each
topic are also listed as references, so that those interested may easily obtain
overall information.

I wish to express my gratitude to IEEE book series editor Professor
Mohammed El-Hawary of Dalhousie University, Canada, Acquisitions Editor
Steve Welch, Project Editor Jeanne Audino, and the reviewers of the book for
their keen interest in the development of this book, especially Professor Kit
Po Wong of the Hong Kong Polytechnic University, Professor Loi Lei Lai of
City University, UK, Professor Ruben Romero of Universidad Estadual
Paulista, Brazil, and Dr. Ali Chowdhury of California Independent System
Operator, who offered valuable comments and suggestions for the book during
the preparation stage.

Finally, I wish to thank Professor Guoyu Xu, who was my PhD advisor
twenty years ago at Chongqing University, for his high standards and strict
requirements for me ever since I was his graduate student. Thanks to everyone,
including my family, who has shown support during the time-consuming
process of writing this book.

J1ZHONG ZHU



INTRODUCTION

The electric power industry is being relentlessly pressured by governments,
politicians, large industries, and investors to privatize, restructure, and deregu-
late. Before deregulation, most elements of the power industry, such as power
generation, bulk power sales, capital expenditures, and investment decisions,
were heavily regulated. Some of these regulations were at the state level, and
some at the national level. Thus new deregulation in the power industry meant
new challenges and huge changes. However, despite changes in different struc-
tures, market rules, and uncertainties, the underlying requirements for power
system operations to be secure, economical, and reliable remain the same.

This book attempts to cover all areas of power systems operation. It also
introduces some new topics and new applications of the latest new technolo-
gies that have appeared in recent years. This includes the analysis and discus-
sion of new techniques for solving the old problems and the new problems
that are arising from deregulation.

According to the different characteristics and types of the problems as well
as their complexity, power systems operation is divided into the following
aspects that are addressed in the book:

+ Power flow analysis (Chapter 2)

+ Sensitivity analysis (Chapter 3)

+ Classical economic dispatch (Chapter 4)

+ Security-constrained economic dispatch (Chapter 5)
* Multiarea systems economic dispatch (Chapter 6)

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
Copyright © 2009 Institute of Electrical and Electronics Engineers



2 INTRODUCTION

+ Unit commitment (Chapter 7)

+ Optimal power flow (Chapter 8)

+ Steady-state security regions (Chapter 9)

+ Reactive power optimization (Chapter 10)

+ Optimal load shedding (Chapter 11)

+ Optimal reconfiguration of electric distribution network (Chapter 12)
+ Uncertainty analysis in power system (Chapter 13)

From the view of optimization, the various techniques including traditional
and modern optimization methods, which have been developed to solve these
power system operation problems, are classified into three groups [1-13]:

(1) Conventional optimization methods including
+ Unconstrained optimization approaches
+ Nonlinear programming (NLP)
+ Linear programming (LP)
+ Quadratic programming (QP)
+ Generalized reduced gradient method
+ Newton method
+ Network flow programming (NFP)

Mixed-integer programming (MIP)
« Interior point (IP) methods

(2) Intelligence search methods such as
+ Neural network (NN)
+ Evolutionary algorithms (EAs)
+ Tabu search (TS)
+ Particle swarm optimization (PSO)

(3) Nonquantity approaches to address uncertainties in objectives and
constraints

+ Probabilistic optimization
+ Fuzzy set applications
+ Analytic hierarchical process (AHP)

1.1 CONVENTIONAL METHODS

1.1.1 Unconstrained Optimization Approaches

Unconstrained optimization approaches are the basis of the constrained
optimization algorithms. In particular, most of the constrained optimization
problems in power system operation can be converted into unconstrained
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optimization problems. The major unconstrained optimization approaches
that are used in power system operation are gradient method, line search,
Lagrange multiplier method, Newton—Raphson optimization, trust-region
optimization, quasi-Newton method, double dogleg optimization, and conju-
gate gradient optimization, etc. Some of these approaches are used in Chapter
2, Chapter 3, Chapter 4, Chapter 7, and Chapter 9.

1.1.2 Linear Programming

The linear programming (LP)-based technique is used to linearize the nonlin-
ear power system optimization problem, so that objective function and con-
straints of power system optimization have linear forms. The simplex method
is known to be quite effective for solving LP problems. The LP approach has
several advantages. First, it is reliable, especially regarding convergence prop-
erties. Second, it can quickly identify infeasibility. Third, it accommodates a
large variety of power system operating limits, including the very important
contingency constraints. The disadvantages of LP-based techniques are inac-
curate evaluation of system losses and insufficient ability to find an exact
solution compared with an accurate nonlinear power system model. However,
a great deal of practical applications show that LP-based solutions generally
meet the requirements of engineering precision. Thus LP is widely used to
solve power system operation problems such as security-constrained economic
dispatch, optimal power flow, steady-state security regions, reactive power
optimization, etc.

1.1.3 Nonlinear Programming

Power system operation problems are nonlinear. Thus nonlinear programming
(NLP) based techniques can easily handle power system operation problems
such as the OPF problems with nonlinear objective and constraint functions.
To solve a nonlinear programming problem, the first step in this method is to
choose a search direction in the iterative procedure, which is determined by
the first partial derivatives of the equations (the reduced gradient). Therefore,
these methods are referred to as first-order methods, such as the generalized
reduced gradient (GRG) method. NLP-based methods have higher accuracy
than LP-based approaches, and also have global convergence, which means
that the convergence can be guaranteed independent of the starting point, but
a slow convergent rate may occur because of zigzagging in the search direction.
NLP methods are used in this book from Chapter 5 to Chapter 10.

1.1.4 Quadratic Programming

Quadratic programming (QP) is a special form of nonlinear programming. The
objective function of QP optimization model is quadratic, and the constraints
are in linear form. Quadratic programming has higher accuracy than LP-based
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approaches. Especially, the most often-used objective function in power system
optimization is the generator cost function, which generally is a quadratic. Thus
there is no simplification for such objective function for a power system opti-
mization problem solved by QP. QP is used in Chapters 5 and 8.

1.1.5 Newton’s Method

Newton’s method requires the computation of the second-order partial deriv-
atives of the power flow equations and other constraints (the Hessian) and
is therefore called a second-order method. The necessary conditions of opti-
mality commonly are the Kuhn-Tucker conditions. Newton’s method is
favored for its quadratic convergence properties, and is used in Chapters 2,
4, and 8.

1.1.6 Interior Point Methods

The interior point (IP) method is originally used to solve linear programming.
It is faster and perhaps better than the conventional simplex algorithm in
linear programming. IP methods were first applied to solve OPF problems in
the 1990s, and recently, the IP method has been extended and improved to
solve OPF with QP and NLP forms. The analysis and implement of IP methods
are discussed in Chapters 8 and 10.

1.1.7 Mixed-Integer Programming

The power system problem can also be formulated as a mixed-integer pro-
gramming (MIP) optimization problem with integer variables such as trans-
former tap ratio, phase shifter angle, and unit on or off status. MIP is extremely
demanding of computer resources, and the number of discrete variables is an
important indicator of how difficult an MIP will be to solve. MIP methods that
are used to solve OPF problems are the recursive mixed-integer programming
technique using an approximation method and the branch and bound (B&B)
method, which is a typical method for integer programming. A decomposition
technique is generally adopted to decompose the MIP problem into a continu-
ous problem and an integer problem. Decomposition methods such as Benders’
decomposition method (BDM) can greatly improve efficiency in solving a
large-scale network by reducing the dimensions of the individual subproblems.
The results show a significant reduction of the number of iterations, required
computation time, and memory space. Also, decomposition allows the applica-
tion of a separate method for the solution of each subproblem, which makes
the approach very attractive. Mixed-integer programming can be used to solve
the unit commitment, OPF, as well as the optimal reconfiguration of electric
distribution network.
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1.1.8 Network Flow Programming

Network flow programming (NFP) is special linear programming. NFP was
first applied to solve optimization problems in power systems in 1980s. The
early applications of NFP were mainly on a linear model. Recently, nonlinear
convex network flow programming has been used in power systems’ optimiza-
tion problems. NFP-based algorithms have the features of fast speed and
simple calculation. These methods are efficient for solving simplified OPF
problems such as security-constrained economic dispatch, multiarea systems
economic dispatch, and optimal reconfiguration of an electric distribution
network.

1.2 INTELLIGENT SEARCH METHODS

1.2.1 Optimization Neural Network

Optimization neural network (ONN) was first used to solve linear pro-
gramming problems in 1986. Recently, ONN was extended to solve nonlinear
programming problems. ONN is completely different from traditional opti-
mization methods. It changes the solution of an optimization problem into
an equilibrium point (or equilibrium state) of nonlinear dynamic system, and
changes the optimal criterion into energy functions for dynamic systems.
Because of its parallel computational structure and the evolution of dynam-
ics, the ONN approach appears superior to traditional optimization methods.
The ONN approach is applied to solve the classic economic dispatch,
multiarea systems economic dispatch, and reactive power optimization in
this book.

1.2.2 Evolutionary Algorithms

Natural evolution is a population-based optimization process. The evolution-
ary algorithms (EAs) are different from the conventional optimization
methods, and they do not need to differentiate cost function and constraints.
Theoretically, like simulated annealing, EAs converge to the global optimum
solution. EAs, including evolutionary programming (EP), evolutionary strat-
egy (ES), and GA are artificial intelligence methods for optimization based
on the mechanics of natural selection, such as mutation, recombination, repro-
duction, crossover, selection, etc. Since EAs require all information to be
included in the fitness function, it is very difficult to consider all OPF con-
straints. Thus EAs are generally used to solve a simplified OPF problem such
as the classic economic dispatch, security-constrained economic power dis-
patch, and reactive optimization problem, as well as optimal reconfiguration
of an electric distribution network.
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1.2.3 Tabu Search

The tabu search (TS) algorithm is mainly used for solving combinatorial opti-
mization problems. It is an iterative search algorithm, characterized by the use
of a flexible memory. It is able to eliminate local minima and to search areas
beyond a local minimum. The TS method is also mainly used to solve simpli-
fied OPF problems such as unit commitment and reactive optimization
problems.

1.2.4 Particle Swarm Optimization

Particle swarm optimization (PSO) is a swarm intelligence algorithm, inspired
by social dynamics and an emergent behavior that arises in socially organized
colonies. The PSO algorithm exploits a population of individuals to probe
promising regions of search space. In this context, the population is called a
swarm and the individuals are called particles or agents. In recent years,
various PSO algorithms have been successfully applied in many power engi-
neering problems including OPF. These are analyzed in Chapters 7, 8 and 10.

1.3 APPLICATION OF FUZZY SET THEORY

The data and parameters used in power system operation are usually derived
from many sources, with a wide variance in their accuracy. For example,
although the average load is typically applied in power system operation
problems, the actual load should follow some uncertain variations. In addition,
generator fuel cost, VAR compensators, and peak power savings may be
subject to uncertainty to some degree. Therefore, uncertainties due to insuf-
ficientinformation may generate an uncertain region of decisions. Consequently,
the validity of the results from average values cannot represent the uncertainty
level. To account for the uncertainties in information and goals related to
multiple and usually conflicting objectives in power system optimization, the
use of probability theory, fuzzy set theory, and analytic hierarchical process
may play a significant role in decision-making.

The probabilistic methods and their application in power systems operation
with uncertainty are discussed in Chapter 13. The fuzzy sets may be assigned
not only to objective functions, but also to constraints, especially the nonproba-
bilistic uncertainty associated with the reactive power demand in constraints.
Generally speaking, the satisfaction parameters (fuzzy sets) for objectives and
constraints represent the degree of closeness to the optimum and the degree
of enforcement of constraints, respectively. With the maximization of these
satisfaction parameters, the goal of optimization is achieved and simultane-
ously the uncertainties are considered. The application of fuzzy set theory to
the OPF problem is also presented in Chapter 13. The analytic hierarchical
process (AHP) is a simple and convenient method to analyze a complicated
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problem (or complex problem). It is especially suitable for problems that are
very difficult to analyze wholly quantitatively, such as OPF with competitive
objectives, or uncertain factors. The details of the AHP algorithm are given in
Chapter 7. AHP is employed to solve unit commitment, multiarea economic
dispatch, OPF, VAR optimization, optimal load shedding, and uncertainty
analysis in the power system.

REFERENCES

[1] L.K. Kirchamayer, Economic Operation of Power Systems, New York: John Wiley
& Sons, 1958.

[2] M.E. El-Hawary and G.S. Christensen, Optimal Economic Operation of Electric
Power Systems, Academic, New York, 1979.

[3] C. Gross, Power System Analysis, New York: John Wiley & Sons, 1986.

[4] A.J. Wood and B. Wollenberg, Power Generation Operation and Control, 2nd ed.
New York: John Wiley & Sons, 1996.

[5] G.T. Heydt, Computer Analysis Methods for Power Systems, Stars in a circle pub-
lications, AR. 1996.

[6] TH. Lee, D.H. Thorne, and E.F. Hill, “A transportation method for economic
dispatching—Application and comparison”, I[EEE Trans. on Power System”, 1980,
Vol. 99, pp. 2372-2385.

[7] JZ. Zhu and J.A. Momoh, “Optimal VAR pricing and VAR placement using
analytic hierarchy process,” Electric Power Systems Research, 1998, Vol. 48, No.1,
pp. 11-17.

[8] WJ. Zhang, FX. Li, and L.M. Tolbert, “Review of reactive power planning:
objectives, constraints, and algorithms,” IEEE Trans. Power Syst., vol. 22, no. 4,
2007, pp. 2177-2186.

[9] J.Z. Zhu, D. Hwang, and A. Sadjadpour “Real Time Congestion Monitoring and
Management of Power Systems,” IEEE/PES T&D 2005 Asia Pacific, Dalian,
August 14-18, 2005.

[10] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 1999.

[11] D.G. Luenberger, Introduction to linear and nonlinear programming, Addison-
Wesley Publishing Company, Inc. USA, 1973.

[12] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int.
Conf. Neural Networks, Perth, Australia, 1995, vol. 4, pp. 1942-1948.

[13] JI. Hopfield, “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities,” Proc Natl Acad Sci, USA, Vol.79, 1982, pp. 2554-2558.






POWER FLOW ANALYSIS

This chapter deals with the power flow problem. The power flow algorithms
include the Newton—Raphson method in both polar and rectangle forms, the
Gauss-Seidel method, the DC power flow method, and all kinds of decoupled
power flow methods such as fast decoupled power flow, simplified BX and XB
methods, as well as decoupled power flow without major approximation.

2.1 MATHEMATICAL MODEL OF POWER FLOW

Power flow is well known as “load flow.” This is the name given to a network
solution that shows currents, voltages, and real and reactive power flows at
every bus in the system. Since the parameters of the elements such as lines
and transformers are constant, the power system network is a linear network.
However, in the power flow problem, the relationship between voltage and
current at each bus is nonlinear, and the same holds for the relationship
between the real and reactive power consumption at a bus or the generated
real power and scheduled voltage magnitude at a generator bus. Thus power
flow calculation involves the solution of nonlinear equations. It gives us the
electrical response of the transmission system to a particular set of loads and
generator power outputs. Power flows are an important part of power system
operation and planning.

Generally, for a network with n independent buses, we can write the fol-
lowing n equations.

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
Copyright © 2009 Institute of Electrical and Electronics Engineers
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YnV1 +leV2 + ... ,+Yann = 11
Yzlvl +Yzzvz + ... ,+anVn = jz

(2.1)
)]n]Vl +Yn2Vz +, ... ,+YMV = jn
The matrix form is
Yo Yo Y. 1| Va I
Y, Yx Y., V, B jz (2 2)
Ynl Y"Z Ynn Vn In
or
[Y1Ivi=1 23)

where [ is the bus current injection vector, V' is the bus voltage vector, and Y
is called the bus admittance matrix. Its diagonal element Y is called the self-
admittance of bus i, which equals the sum of all branch admittances connecting
to bus i. The off-diagonal element of the bus admittance matrix Y} is the nega-
tive of branch admittance between buses i and j. If there is no line between
buses i and j, this term is zero. Obviously, the bus admittance matrix is a sparse
matrix.

In addition, the bus current can be represented by bus voltage and power,
that is,

I‘[_%_S‘GitS‘Di :(PGi_PDi)_Aj(QGi_QDi) (2'4)

o 7 7
where

S: The complex power injection vector

Pg;: The real power output of the generator connecting to bus i
Qg:: The reactive power output of the generator connecting to bus i
Pp;: The real power load connecting to bus i

Op;: The reactive power load connecting to bus i

Substituting equation (2.4) into equation (2.1), we have

(PGi_PDi)_j(QGi_QDi)
Vi

=Y Vi+ Y, Vot .. 4Y,V,, i=12...n (25)
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In the power flow problem, the load demands are known variables. We define
the following bus power injections as

F, = Fs; — P (2.6)
O, =i —Op; (2.7)

Substituting equations (2.6) and (2.7) into equation (2.5), we can get the
general form of power flow equation as

P-jQi &y
ISy, i=12n (2:8)
Vi j=1
or
P+jQ=ViY Y}V, i=12...n @9)
j=1

If we divide equation (2.9) into real and imaginary parts, we can get two equa-
tions for each bus with four variables, that is, bus real power P, reactive power
0, voltage V, and angle 6. To solve the power flow equations, two of these
should be known for each bus. According to the practical conditions of the
power system operation, as well as known variables of the bus, we can have
three bus types as follows:

(1) PV bus: For this type of bus, the bus real power P and the magnitude
of voltage V are known and the bus reactive power Q and the angle of
voltage 6 are unknown. Generally the bus connected to the generator
is a PV bus.

(2) PQ bus: For this type of bus, the bus real power P and reactive power
QO are known and the magnitude and the angle of voltage (V, 6) are
unknown. Generally the bus connected to load is a PQ bus. However,
the power output of some generators is constant or cannot be adjusted
under the particular operation conditions. The corresponding bus will
also be a PQ bus.

(3) Slack bus: The slack bus is also called the swing bus, or the reference
bus. Since power loss of the network is unknown during the power flow
calculation, at least one bus power cannot be given, which will balance
the system power. In addition, it is necessary to have a bus with a zero
voltage angle as reference for the calculation of the other voltage
angles. Generally, the slack bus is a generator-related bus, whose mag-
nitude and the angle of voltage (V, ) are unknown. The bus real power
P and reactive power Q are unknown variables. Traditionally, there is
only one slack bus in the power flow calculation. In the practical appli-
cation, distributed slack buses are used, so all buses that connect the
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adjustable generators can be selected as slack buses and used to balance
the power mismatch through some rules. One of these rules is that the
system power mismatch is balanced by all slacks based on the unit
participation factors.

Since the voltage of the slack bus is given, only n — 1 bus voltages need to
be calculated. Thus the number of power flow equations is 2(n — 1).
2.2 NEWTON-RAPHSON METHOD

2.2.1 Principle of Newton—Raphson Method
A nonlinear equation with single variable can be expressed as

f(x)=0 (2.10)
For solving this equation, select an initial value x°. The difference between the
initial value and the final solution will be Ax”. Then x = x" + Ax” is the solution
of nonlinear equation (2.10), that is,

F(X*+Ax") =0 (2.11)

Expanding the above equation with the Taylor series, we get

F0+AX) = F(x°)+ f7(x°) Ax? +f”(x0)%+,
NACTRO1C 8 A (212)
n.

where f/(x°), ..., f*(x°) are the derivatives of the function f(x).

If the difference Ax” is very small (meaning that the initial value x° is close
to the solution of the function), the terms of the second and higher derivatives
can be neglected. Thus equation (2.12) becomes a linear equation as below:

FXO+Ax) = F(x°)+ £7(x*) Ax* = 0 (2.13)
Then we can get
o__J(x")
Ax’= — 2.14
f(x) e

The new solution will be

f(x")
F1(x")

x'=x"+ A =x"—

(2.15)
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Since equation (2.13) is an approximate equation, the value of Ax" is also an
approximation. Thus the solution x is not a real solution. Further iterations
are needed. The iteration equation is

k
T = k4 Akl = ok _ f,(x k) (2.16)
F7(x*)
The iteration can be stopped if one of the following conditions is met:
|Ax¥| < g
2.17
oI l<e e

where €, €, which are the permitted convergence precision, are small positive
numbers.

The Newton method can also be expanded to a nonlinear equation with n
variables.

ﬁ(x17x29""xn)=0

flx X, x,)=0 (2.18)

fn(xth"--’xn):O

For a given set of initial values x{, x9, ..., xJ, we have the corrected values Ax!,
AxY, ..., Ax). Then equation (2.18) becomes

0 0 0 0 0 0
fi(xd +Ax), X3+ Ax3, ..., x) + Axy))
0 0 0 0 0 0
L)+ Ax?, X3+ AX3, ..., x) + Axy)

0
0

(2.19)
£+ A, X0+ AXS, . X0+ AX) = 0

Similarly, expanding equation (2.19) and neglecting the terms of second and
higher derivatives, we get

Y O I ) WA IR N SOL: 8 R I
E)xl 0 ax2 0 ax,, 0

B3|

Aot x)+ L A 2] a2 a0

01 |, 0x; |, 0x, |0 (2.20)
F XTI IO WA NI 1% RN SRR 1 e
8x1 0 8x2 0 8xn 0

X1 *2

Equation (2.20) can also be written in matrix form
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(Oh| O 9h| ]
0 0 0 0, ot ox; ) oo X 0
b E n Ax
e I C AR AR VA (b
fZ (xl s XDy eeny xn) __ ax1 X? axz Xg axn Yg ' 2 (221)
n O’ 0’ cec 2 : : : AXB
R A A A
_ax1 xll) axz "(z) axn X0

From equation (2.21) we can get Ax}, AxJ, ..., Ax_. Then the new solution can
be obtained. The iteration equation can be written as follows:

CARE TR T
. . . axl xi‘ axz xl2< o ax” Xﬁ
XE X5, 0, Xy Axf
et I R AR T
) 19sX25.eey Xy - _ axl xi‘ axz Xé axn x,lg .2 (222)
(K xk L Xk : : : Axy
A A AR
Ol Oxaly AN
xl=xk+ Ak i=1,2,...,n (2.23)
Equations (2.22) and (2.23) can be expressed as
F(X*)=-JFAX* (2.24)
Xk = Xk 4+ AXK (2.25)

where J is an n X n matrix and called a Jacobian matrix.

2.2.2 Power Flow Solution with Polar Coordinate System

If the bus voltage in equation (2.9) is expressed with a polar coordinate system,
the complex voltage and real and reactive powers can be written as

V,=V,(cos®, + jsin6;) (2.26)

P,' = ‘/, 2 ‘/j (G,] COS 9,-]- + Bi/' Sin 9,,) (227)
j=1

Qi = ‘/I 2 ‘/] (Gl] Sin 9,] - B,] COS 9,]) (228)
j=1

where 6; = 0, — 6;, which is the angle difference between bus i and bus j.
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Assuming that buses 1 ~ m are PQ buses, buses m + 1 ~n — 1 are PV buses
and the nth bus is the slack bus. The V,, 0, are given, and the magnitude of
the PV bus V,,; ~ V,, are also given. Then, n — 1 bus voltage angles are
unknown, and m magnitudes of voltage are unknown. For each PV or PQ bus
we have the following real power mismatch equation:

AP.=P,—P.=P,-V, i V(G cos®; + B;sin®; ) =0 (2.29)
For each PQ bus, we also have thejzflollowing reactive power equation:
AQ=0,-0,=0,-V, iV] (G;sin®; — B; cosB;;) =0 (2.30)
where P, Q, are the calculated ]:blus real and reactive power injection,
respectively.

According to the Newton method, the power flow equations (2.29) and
(2.30) can be expanded into Taylor series and the following first-order approxi-

mation can be obtained
AP _ 7 AO
AQ| Tlaviv

(s P Pt

AP,

AP
AP=| "7 (2.32)

(2.31)

where

APn—l

AQ: 7]
AQ = A:Qz (2.33)
v
AB; T

AB
Ao=| "7 (2.34)

Aen—] m

AV,

AV
AV =" (2.35)

AV,
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Vi
Vi
Vo= T (2.36)
Vi
His a (n—1) x (n — 1) matrix, and its element is H;; = aaT
i
. . . . OAP,
Nis a (n — 1) X m matrix, and its element is N; = V; T
i
K is a m x (n — 1) matrix, and its element is K;; = aaAeQi .
i
: . . . AQ;
L is a m x m matrix, and its element is L; =V —aaVQ .
j
If i # j, the expressions of the elements in Jacobian matrix are as follows:
H;=-V,V;(G; sin®; — B; cos8;) (2.37)
Nl] = _‘/L‘/J (G,] CcOS 9,] - BU Sin 911) (238)
Nt] = ‘/1‘/] (G” CcOS 911 - BL] Sin GU) (239)
L;=-V,V,(G;sin®; — B; cos6;) (2.40)

If i = j, the expressions of the elements in Jacobian matrix are as follows:

H;=V?B,;+0Q; (2.41)
N,;=-V?G,-P, (2.42)
K,;=V’G,;-P, (2.43)
L;=V?B,-0Q; (2.44)

The calculation steps of the Newton power flow solution are as follows [1,2]:

Step (1): Given input data.
Step (2): Form bus admittance matrix.
Step (3): Assume the initial values of bus voltage.

Step (4): Compute the power mismatch according to equations (2.29) and
(2.30). Check whether the convergence conditions are satisfied.

max |AP!| < g, (2.45)
max |AQf|< €, (2.46)

If equations (2.45) and (2.46) are met, stop the iteration, and calculate the
line flows and real and reactive power of the slack bus. If not, go to next step.
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@

1:k
FIGURE 2.1 Four-bus power system

Step (5): Compute the elements in Jacobian matrix (2.37)—(2.44).

Step (6): Compute the corrected values of bus voltage, using equation (2.31).
Then compute the bus voltage:

Vi = VE 4 AV (2.47)
0L+ = BF + AGK (2.48)

Step (7): Return to Step (4) with new values of bus voltage.

Example 2.1

The test example for power flow calculation, which is shown in Figure 2.1,
is taken from reference [2].
The parameters of the branches are as follows:

71, = 0.10 + j0.40
Yi20 = Y10 = j0.01528
713 =j0.30,k = 1.1
71, = 0.12 +j0.50
V140 = Va0 = j0.01920
7y, = 0.08 +j0.40
Yo40 = Va0 = j0.01413

Buses 1 and 2 are PQ buses, bus 3 is a PV bus, and bus 4 is a slack bus.
The given data are:
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P, +jQ; =-03 -j0.18
P, +jQ, = -0.55 —j0.13
P;=0.5;V;=1.1;
V,=1.056,=0

First, we form the bus admittance matrix as follows:

1.0421-78.2429  -0.5882+j2.3529  j3.6666 —0.4539+ j1.8911

| -0.5882+2.3529  1.0690 - j4.7274 0 —0.4808 + j2.4038
- 3.6666 0 -j3.3333 0
—0.4539+j1.8911  —0.4808 + j2.4038 0 0.9346 — j4.2616

given the initial bus voltage as
VP=VP=1.0£0°, Vi =1.1£0"
Computing the bus power mismatch with equations (2.29) and (2.30), we get

AP = P, - P = -0.30—(-0.02269) = —0.27731
AP = Py, — P = —0.55—(=0.02404) = —0.52596
AP =P,—P)=05

AQY = Q) — QY = —0.18 — (-0.12903) = -0.05097
AQY = Oy, — QY = —0.13—(~0.14960) = 0.0196

Then compute the bus voltage correction, using equation (2.31)

AY = —0.505922°, ABY=-6.177633", ABY=6.597038"
AV? =-0.00649, AVY =-0.02366

The new bus voltage will be

01 =67 + A8! = —0.505922°
0} =09+ A8) =-6.177633°
0} =03 + A8 = 6.597038"
V=V +AV! =0.99351
Vi =V} +AV)=0.97634
Conduct the second iteration, using new voltage values. If the convergence

tolerance is € = 107, the power flow will be converged after three iterations,
which are shown in Tables 2.1 and 2.2.
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Table 2.1 Bus power mismatch change

Iteration k AP; AP, AP; AQ, AQ,

0 -0.27731 -0.52596 0.5 —-0.05097 0.01960

1 —4.0x107 -—2.047x102 451x107° —4380x107% —2.454x107
2 1.0x10* —42x10* 8.0x10° —45x10* -32x10*

3 <107 <107 <107 <10™ <107

Table 2.2 Bus voltage change

Iteration k 0, 0, 0; Vi Vv,

1 —0.505922° —6.177633° 6.597038° 0.99351 0.97634
2 —-0.500765° —6.445204° 6.729964° 0.98477 0.96495
3 -0.500192° —6.450361° 6.732257° 0.98467 0.96480

Finally, we compute the power of the slack bus and the power flows for
all branches:
For slack bus:

P, +jQ4=0.3678824 + j0.2647003
For branches

Py, +jQ 1, = 0.2462439 — j0.0146505
P.; +jQus = —0.5000002 — j0.0292640
P, +jQy = —0.0462439 — 0.1360884
Py, +jQ,; = —0.2399902 + j0.0106270
P, + jQs = —0.3100099 — 0.1406267
P, +jQs; = 0.4999998 + j0.0934093
P, +jQu = 0.0482163+ j0.1045228
Py, +jQu = 0.3196662 + j0.1601774

2.2.3 Power Flow Solution with Rectangular Coordinate System

2.2.3.1 Newton Method If the bus voltage in equation (2.9) is expressed
with a rectangular coordinate system, the complex voltage and real and reac-
tive powers can be written as
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Vi=e +jf (2.49)

P=¢)Y (Gje;— B;f))+ fz G, f; + Bje;) (2.50)
j=1

O, = [ 2 (Gye;— By f;)—e ) (Gyf; + Bye;) (2.51)

j=1 j=1

For each PQ bus, we have the following power mismatch equations:

AP,=P,—P,=P,—e; ) (Gye; - B;f;)~ f: ) (G;fi + Bye;) =0  (2.52)
=1

j=1

Q QS! Qz Qsz fz ij€ B;/f} +e; 2 G,]f, +B,-/-€/-) =0 (253)

For each PV bus, we have the following equations:

AP, = =P, —e 2 sei—Bifi) = ;> (Gyf;+ Bye;) =0 (2.54)
j=1
AV2=V2+V2=V2—(e?+f?)=0 (2.55)

There are 2(n — 1) equations in equations (2.52)—(2.55). According to the
Newton method, we have the following correction equation:

AF =—JAV (2.56)

where

AP,
AQy
AP,
AQ,,
aF=| A9 (2.57)
APm+1
AVWth

APH—]
_AVnz—l a
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Ae;
Af,
Ae,,
A
av | A (2.58)
Aem+1
Afm+1
Aen—l
L Afn—l a
OAP,  OAP OAP, OAP, JAP, JAP, OAP,  JAP, T
ael afl aem afm aeerl aferl aen—l afn—l
0AQ;,  0AQ, 0AQ, 0AQ; 0AQ; 0JAQ, 0AQ;,  0AQ,
ael afl . aem afm aem+1 afm+1 ' aen—l afn—l
0AP,  0AP, 0AP, 0AP, O0AP, AP, 0AP,  0AP,
ael afl aem afm aeerl afm+l aen—l afn—l
0AQ,, 0AQ,, 0AQ,, 0AQ,, JAQ, JAQ, dAQ,, JdAQ,
de ofi . de, Of 0,41 Of a1 . de,_ Ofu
aAPm+] aAPm+] aAPerl aAPerl aAPerl aAPerl aAPerl aAPerl
ael afl - aem afm aem+1 afm+1 o aen—l afn—l
aAVrr21+1 aAVn21+1 aAsz+1 aAsz+1 aAVm2+1 aAsz+1 aAVrﬁ+1 aAVrﬁ+1
ael afl - aem afm aem+1 af;n+1 o aen—l afn—l
OAP,, OAP,,  0AP,, OAP,, OAP,, OAP,,  OAP,, AP,
ael afl - aem afm aem+1 afm+1 o aen—l afn—l
JAV,:, 0AV, AV, 0AV)., OAV}?, 0AV}, AV, 0AV,,
ael afl - aem afm aem+1 afm+1 aen—l afn—l a
(2.59)

If i # j, the expressions of the elements in the Jacobian matrix are as follows:

df;

OAR __9AQ
de; of;
AP, IAQ,

de;

= _(Gijei + Bijfi)

=—(Gyfi - Bye;)

(2.60)

2.61)
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0AV? __E)AV,‘2 _
de; o

0

(2.62)

If i = j, the expressions of the elements in the Jacobian matrix are as follows:

AP, .
—a = _Z(Gi/'e/' _Bi/fj)_Giiei - Bifi

; j=1

JAP, :
? = _Z (Gifj + Bje;)~ G fi + Bie;

i i=1

0AQ, _ <

e = Z (Gyf; + Bje;) =G f; + Bie;

€ j=1

0AQ, X
3 :_Z(Gijej - B;f;)+Giei + B f;

f; j=1

AV?
€
2
v,
of;
Equation (2.56) can be written in matrix form:
AR Ju Jo o Jiaa AV,
AFZ _ ]21 J22 J2,n—1 AVZ
AF‘n—l Jn—l,l Jn—1,2 cee Jn—l,n—l Avn—l

where AF; and AV; are two-dimensional vectors. J;; is a 2 X 2 matrix.

Ae;
AV, =
M

o)
AF, =
AQ;

OAP,  OAP,

For a PQ bus, we have

=
|

1 9A0,  9AQ,

For a PV bus, we have

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)
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AF, = [ AL } 2.73)
i~ A‘/LZ J
JAP.  JAP.
de; of;
Ji=| ' 274
0AV?  9AV? ( )
aej af}

It can be observed from equations (2.60)—(2.68) that the elements of the
Jacobian matrix are the function of bus voltage, which will be updated through
iterations. The element of the submatrix J; of the Jacobian matrix in equation
(2.69) is related to the corresponding element in bus admittance matrix Y. If
Y, =0, then J; = 0. Therefore, the Jacobian matrix in equation (2.69) is also a
sparse matrix that is the same as the bus admittance matrix.

The steps of rectangular coordination-based Newton power flow solution
are similar to those in the polar coordination-based algorithm, which was
described in Section 2.2.2.

Example 2.2

For the same system as in Example 2.1, the Newton method with the rec-
tangle coordinate system is used to solve power flow.

The bus admittance matrix is the same as in Example 2.1. Given the
initial values of bus voltages:

d=ed=el=1.0,
f=£=f=00,
ef=1.05 f’=0.0
Computing the bus power mismatch and AV;? with equations (2.52) and
(2.55), we get
AP = P, — P’ =-0.30-(-0.02269) = -0.27731
AP} = Py, — P} = —0.55-(-0.02404) = —0.52596
AP =P, —P)=05
AQY =0, -0 =-0.18-0.23767 = —0.41763
AQ7 = 0y, — 09 = -0.13-(-0.14960) = 0.0196
AVZO = Vi —|VE[ =021

Computing the elements of the Jacobian matrix with equations (2.60) and
(2.68), we get the following correction equation:
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[-1.01936 —8.00523 0.58823 2.35294 0.00000 3.66666 [ Ael] [AP]
-8.48049 1.06478 2.35294 -0.58823 3.66666 0.00000 || Af AQY
0.58823 235294 -1.04496 —4.87698 0.00000 0.00000 || Ae? AP}
2.35294 -0.58823 —4.57777 1.09304 0.00000 0.00000 || Afy AQY
0.00000 3.66666 0.00000 0.00000 0.00000 —3.66666 || Aed AP}
[ 0.00000 0.00000 0.00000 0.00000 -2.00000 0.00000 [[AfY | [AQY

It can be observed from the above equation that most of the elements
in the Jacobian matrix that have the maximal absolute values are not on
the diagonals, which easily cause a calculation error. To avoid this, we switch
rows 1 and 2, rows 3 and 4, rows 5 and 6; then we get:

[-8.48049 1.06478 2.35294 —0.58823 3.66666 0.00000 [ Ael| [AQ}
-1.01936 —8.00523 0.58823 2.35294 0.00000 3.66666 || AfY AP
2.35294 -0.58823 —-4.57777 1.09304 0.00000 0.00000 || Aed AQY
0.58823 2.35294 -1.04496 —4.87698 0.00000 0.00000 || AfY AP)
0.00000  0.00000 0.00000 0.00000 -2.00000 0.00000 || Ae? AQY
[ 0.00000 3.66666 0.00000 0.00000 0.00000 -3.66666]| AfY | | AP

Solving the above correction equation, we get

[Ae!] [-0.00369632
A | | -0.00943011
Ael | | —0.02220685
Af2 || -0.10808215
Aed | | 0.10500000
AR | [ 0.12693353

The new bus voltage will be

el =e? + Ael = 0.99630368
fir =2+ Af =-0.00943011
el =ed+Aed =0.97779365
=+ Afy =-0.10808215
el = el + Aed = 1.10500000
fi = +Aff =0.12693353
We then conduct the second iteration, using new voltage values. If the con-

vergence tolerance is € = 107, the power flow will be converged after three
iterations, which are shown in Tables 2.3 and 2.4.
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Table 2.3 Change of bus mismatches

Iteration

k AP] AQ] AP2 AQZ AP} AV32

0 -0.2773 -0.4176 -0.5260 0.0196 0.500 0.210

1 290 x 107 —418x 107 —-128x 102 -550x102 —-191x107° -2.71x107?
2 -129%x107° -6.74 x10° -2.86x10* —1.07 x 107 458 x10° -1.60 x 10™*
3 <107 <107 <107 <107 <107 <107

Table 2.4 Change of bus voltages

Iteration k e+ jfi e+ jb e+ jf

1 0.9963 —j0.0094 0.9778 —j0.1081 1.1050 + j0.1269
2 0.9848 — j0.0086 0.9590 — j0.1084 1.0925 + 0.1289
3 0.9846 — j0.0086 0.9587 —j0.1084 1.0924 +j0.1290

The final bus voltages are expressed in the polar coordinate system as

V, =0.9847 £ —0.500°
V, =0.9648 2 — 6.450°
V,=1.1£6.732°

Finally, we compute the power of the slack bus as
P, +jQ,=10.36788 +j0.26469
Compared with Example 2.1, the same power flow solution is obtained.
2.2.3.2 Second-Order Power Flow Method 1t is noted that equations

(2.50) and (2.51) are a second-order equation on voltage. They can be expanded
into Taylor series without approximation [3]. That is,

P oP
BSP:PiS aTA +afTAf+
P, 2P 2P,
—| Ae® Ae + Ae” T T A i
2[ ¢ Seget NeTAC ST AT A oo e+ A afafT f} @75)
a 1 1
Osp =0+ Q anT Af +

T aZQ’ 2Q’ r 9’0 - 00
2‘:A dede” e9eT e aafT Af +4f f de Soor AetAf afoTAf} (2.76)
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The matrix form is

{ig} ) ]Eﬂ ’ [32} (2.77)

Where J is the Jacobian matrix

0P, 0P,
" of"
20,90
deT of T

(2.78)

SP and SQ are the second-order term vectors and can be simplified as [3]

SP = P, (Ae, Af) (2.79)
SQ = Qis (Ae, Af) (280)

There are no third- or higher-order terms in equation (2.77). If we ignore the
second-order term, it will be similar to the Newton algorithm we just discussed
in this section. Here, we keep the second-order term, and estimate their values
based on the previous iteration values of voltage components. Thus equation
(2.77) can be written as

AP —-SP Ae
rosalls] (281)
AQ-SQ Af
From the above, we obtain increment voltage components:
Ae AP-SP
e sol (282)
Af AQ-SO

For a PV bus, the voltage magnitude is fixed; thus the increment voltage com-
ponents must satisfy the following equation:

Therefore, the reactive power equation in (2.77) for a PV bus will be replaced

by the above equation.
The second-order power flow algorithm is summarized below.

(1) Given the input data, initialize all the arrays.
(2) Set SP and SQ vectors equal to zero.
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(3) Compute the Pj, Q; vectors.
(4) Compute the power mismatches AP and AQ. Check whether the conver-

gence conditions are satisfied.
max|APf|< ¢, (2.84)
max|AQf| < €, (2.85)
If equations (2.84) and (2.85) are met, stop the iteration, and calculate the
line flows and real and reactive power of the slack bus. If not, go to next
step.
(5) Compute the Jacobian matrix.

(6) Compute Ae, Af, using equation (2.82).
(7) Update the voltages

el =ef + Ae (2.86)
1o fh o Af (2.87)

(8) Compute the second-order terms SP and SQ, using Ae, Af. Then go back
to step (3).

2.3 GAUSS-SEIDEL METHOD

For a nonlinear equation with n variables (2.18), we can get the solutions as

X =g1(x1, x2,...,X,)
x2=g2(xlax27"',xn) (288)
X = gn (X1, X250, X,)

If the values of the variables at the kth iteration are obtained, substituting
them into the right side of the above equation we can get the new values of
these variables as below:

xfth= gy (xf, x5, ..., xh)
x§+] 82 (-x{(’ x§7 ) -xr]:) (2 89)
it =g, (xf, x5, ., xk)
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or

k+1

xf=gi(xf, x5, ., xk), i=1,2,...,n (2.90)

The iteration will be stopped if the following convergence conditions are satis-
fied for all variables:

|x!‘+1 —
i

xf|<e (2.91)
The Newton method that is described in Section 2.2 is based on this iteration
calculation. To speed up the convergence, the formula of the iteration calcula-
tion is modified as below:

k+1 k k k

X1 —81(x1»x2,---7xn)
k+1 __ k+1 k k

x5t =g (xf Xy, X)) (2.92)
k+1 k+1 k+1 k+1

Xyt = g (X, X3 X0 x)

or
k+1 _ k+1 k+1 k+1 .
xi =g (et x5t L et xk), i=1,2,...,n (2.93)

The main idea of the approach is to substitute the new values of variables in
the calculation of the next variable immediately, rather than waiting until the
next iteration. This iteration method is called the Gauss—Seidel method. It can
be also used to solve the power flow equations.

Assuming the system consists of # buses. buses 1 ~ m are PQ buses, buses
m + 1 ~n —1 are PV buses, and the nth bus is the slack bus. The iteration
calculation does not include the slack bus.

From equation (2.8), we get

V= B2l _yyy (2.94)

According to the Gauss—Seidel method, the iteration formula of equation
(2.94) can be written as:

i-1 n
Vil = 7 ]Qz zy_jvjku _ Z Yl_ivjk (2.95)

j=i+l

For the PQ_ bus, the real and reactive powers are known. Thus, if the initial
bus voltage V" is given, we can use equation (2.95) to perform the iteration
calculation.
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For the PV bus, the bus real power and the magnitude of the voltage are
known. It is necessary to give the initial value for bus reactive power. The bus
reactive power will then be computed by iteration calculation. That is,

ot =it -l vt (S5 S0t )] e
=1 j=i

After the iteration is over, all bus real and reactive powers, as well as the volt-
ages, are obtained. The power of the slack bus can be obtained by solving the
following equation:

P+j0,=V, Y Y,V (2.97)

j=1

The line power flow can also be obtained as below:
Sy =Py +j0y=Vil; =V2y+Vi(V,=V))3; (2.98)

where y; is the admittance of the branch ij and y,, is the admittance of the
ground branch at the end i.

2.4 P-Q DECOUPLING METHOD

2.4.1 Fast Decoupled Power Flow

According to Section 2.2.2, the updated equation in the Newton power flow

method is as below:
AP HN AO
ol Lk )lvyav) @
AQ K L| VAV

The Newton power flow is a robust power flow algorithm. It is also called
full AC power flow since there is no simplification in the calculation. However,
the disadvantage of the Newton power flow is that the terms in the Jacobian
matrix must be recalculated in each iteration. Actually, the reactance of the
branch is generally far greater than the resistance of the branch in a practical
power system. Thus there exists a strong relationship between the real power
and the voltage angle, but weak coupling between the real power and the
magnitude of voltage. That means the real power is little influenced by changes
in voltage magnitude; that is,

OAP,
v

~0 (2.100)
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while the reactive power and the magnitude of voltage have a strong coupling
relationship and weak coupling for the reactive power and voltage angle. It
means that the reactive power is little influenced by changes in voltage angle;
that is,

0AQ,
20,

0 (2.101)

Therefore, the values of the elements in submatrix N and K in equation (2.99)
are very small; that is,

0AP,
N;=V, =0 2.102
J ] a‘/j ( )
J0AQ;
K, = =0 2.103
Equation (2.99) becomes
AP H 0 AO
oo lviw] @109
AQ 0 LJV3iaAV
or
AP =—HA® (2.105)
AQ ==LV 3 AV =—L(AV/V) (2.106)

The simplified equations (2.105) and (2.106) make power flow iteration very
easy. The bus real power mismatch is only used to revise the voltage angle, and
the bus reactive power mismatch is only used to revise the voltage magnitude.
These two equations are iteratively calculated, respectively, until the conver-
gence conditions are satisfied. This method is called the real and reactive
power decoupling method.

Actually, equations (2.105) and (2.106) can be further simplified. Since the
difference of the voltage angles of two ends in the line jj is small (generally
less than 10° — 20°), sin(®, — ©))is also small. Thus we have

cos6; =cos(6,—0,)=1

G;sin6; << By
Assuming that

Q<< ViB;
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then the elements of the matrices H and L can be expressed as

H;=VV,B; i,j=12,...n-1 (2.107)
L;=VVB; i,j=12,...m (2.108)

or we have the following derivatives:

%:—V,—V,-BU— iL,j=12,....,n-1 (2.109)
09,
20, ..

=-V\ViB; i,j=12,....m (2.110)

)

Therefore, the matrices H and L can be written as

[ ViBuVi ViBLV, ... ViBi, V.,
H= ‘/2321‘/1 V2B22V2 VZB2,n—1Vn—1
_Vn—an—l,lvl Vn—an—l,l‘/Z Vn—an—l,n—l‘/n—l
4 By By ... B Vi
V. By By ... B, V
= . S B VB’V (2111)
L Vn—l Bn—l,l Bn—1,2 (R Bn—l,n—l Vn—l
[ ViBuVi ViBi,V, ... ViBy,V,
I VaBouVi VaByVs .. VaBy, Vi

_VmBml‘/l VmBmZVZ s VmBmme

(Vi By By ...B, | [Vi
V. By By ... B, V,
= . e Y B -VB"V (2.112)
Vm Bml BmZ Bmm ‘/m

Substituting equations (2.111) and (2.112) into equations (2.105) and (2.106),
we have

AP =VB'VA® (2.113)
AQ =VB”AV (2.114)



32

POWER FLOW ANALYSIS

We rewrite equations (2.113) and (2.114) as below:

where

B=-

B”:_

AP = B’'VAO
v

50y
i Bll Bl2 Bl,n—l _Bll
BZI BZZ BZ,n—l _B21
_Bn—l,l Bn—l,Z Bn—],n—l _Bn—l,l
i Bll Bl2 Blm _Bll _812
B21 BZZ B2m _B21 _BZZ
_Bml Bm2 Bmm _Bml “DPm2

_BIZ
_BZZ
_Bn—l,Z
_Blm

_BZm

_Bmm

(2.115)

(2.116)

_Bl,n—l
_BZ,n—l

_Bn—l,n—l

Equations (2.113) and (2.114) are the simplified power flow adjustment equa-

tions, which can be written in matrix forms:

Cap
2
AP,
v, =

A QI?‘I

_Bll
_BZI

_312
_BZZ

“DPn-11 _Bn—l,Z

_Bll _BIZ
_ _321 _BZZ
“Pm1 T Pm2

an -

_Bl,n—l
_BZ,n—l

_Bn—l,n—l Vn—1A9n—l

V1A,
V246,

AV,
AV,

AV,

(2.117)

(2.118)

In equations (2.117) and (2.118), matrices B and B” only contain the imagina-
tion part of bus admittance matrix. Thus they are constant symmetrical matri-
ces and need to be triangularized once only at the beginning of the analysis.
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Thus equations (2.117) and (2.118) are called the “fast decoupled power flow
model” [4-6].

In practical application, the voltage magnitudes of the right side in equa-
tions (2.115) and (2.117) are assumed to be 1.0. In this way, the real power
adjustment equation in the fast decoupled power flow model can be further
simplified as

AP _pae (2.119)
1%
e
A‘; "By -Bun ... B [ 46,
V; _ —1:321 —1?22 —B?,n_l 46, 2.120)
Aénfl _Bn—l,l _Bn—l,Z _Bn—l,n—l Aen—l
L Vn—l .

In addition, there are two fast decoupled power flow versions according to the
different handling of the constant matrices B’, B”. These are the BX and XB
versions.

For the XB version, the resistance is ignored during the calculation of B’.
The elements of B’, B” are computed as

B, = _2 Bj (2.122)
j#i
B +G:
B/=—4 ¥ 2.123
=5 (2.123)
B/=-2B,- Y. B} (2.124)

j#i

where B, is the shunt reactance to ground.
In the practical calculation, the following assumptions are also adopted in
the XB version fast decoupled power flow model.

. 1
* Assume r; << x;, which leads to B; = ——
+ Eliminate all shunt reactance to ground.
+ Omit all effects from phase shift transformers

The XB version fast decoupled power flow model can then be expressed as
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Bj= _% (2.125)
ij
, 1
Bi=Y — (2.126)
J#EL M
- 2.127
] ’;]2 +x$ ( )
B = _z By (2.128)

i
where ry, x; are the resistance and reactance of branch ij, respectively.

For the BX version, the resistance is ignored during the calculation of B”.
The elements of B’, B” are computed as

2 2
Bij + G,]

B, = 2.129
= (2.129)
B, = _Z Bj (2.130)
j#i
B//= B; (2.131)
Bi;',= 2B - 2 Bi;', (2-132)

J#L
Similarly, the BX version of the fast decoupled power flow model can also be
simplified as

X

Bj = —m (2.133)

ij ij

, Xij

Bi=Y e (2.134)

j#i i ij

” 1

Bl=—— (2.135)
Bi= —2 B,;-’ (2.136)

J#L
It is noted that the fast decoupled power flow algorithm may fail to converge
when some of the major assumptions such as r; < x; do not hold. In this situ-

ation, Newton power flow or decoupled power flow without major approxima-
tion is recommended.

Example 2.3

In this example we solve the system in Example 2.1 with the decoupled PQ
method.
First form the B’, B” matrices as below:
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[—8.2429 23529  3.6666
B’=| 23529 -4.7274  0.0000
| 3.6666  0.0000 —3.3333

[—8.2429 2.3529}
| 23539 —-4.7274

BI’ —

Conducting triangular decomposition to B’, B”, respectively, we get Tables
2.5 and 2.6.

Given the initial bus voltage as
VP=VP=1.0£0°, V=110, V{=1.05£0°
Computing the bus real power mismatch with equation (2.29), we get
AP = P, — P’ = -0.30—(-0.02269) = —0.27731
AP = Py, — P) =-0.55—-(-0.02404) = -0.52596
AP = Pys— P =0.5

0
1

=-0.277308
‘/10
0
APg =-0.525961
%)
0
AL _ 0.454545
Vo

Computing the voltage angle by solving correction equation (2.117):
ABY =-0.737161°, A09=-6.7415620°, A6 =6.3656065"
0l =09 +A0Y=-0.7371761°
0} =05 + ABY = -6.7415620°
0} =09 + A0 = 6.3656065°

Table 2.5 Result of triangular decomposition to B’

—0.121317 —0.285452 —0.444829
—0.246565 —0.258069
—0.698234

Table 2.6 Result of triangular decomposition to B”

-0.121317 —0.285452
—0.246565




36

AQ! = 0y, — OF = —0.18 — (~0.1404097) = —0.0395903
AQY = Qs — Q! = —0.13— (~0.0015500) = —0.1315500
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0
A‘% =-0.0395904
1
0
AQ: _ -0.1315500
vy

AV = —-0.01486806, AVY =-0.035223
V=V + AV =0.985139
V)=V +AVP = 0.964777

Then perform the reactive power iteration. Computing the bus real power
mismatch with equation (2.30), we get

Compute voltage magnitude by solving correction equation (2.118):

Conduct the second iteration, using new voltage values. If the convergence
tolerance is € = 107, the power flow will be converged after five iterations,
which are shown in Tables 2.7 and 2.8.

Compared with the Newton method, the decoupled PQ method obtained
almost the same results.

Table 2.7 Bus power mismatch change
Iteration
k AP] APz AP3 AQI AQ2
0 -0.27731 —0.52596 0.5 -3.95903 x 10?% —-0.13155
1 4.051x 107 1444 x10?%  8.691 x 10° -2.037 x 107 1.568 x 107°
2 -6.603 x 10° -3.488x 107 6.826 x 10* -1.537 x 107 -1.123 x 107
3 -1.227x 107 2148 x 107 —4.967 x 10° -2.694 x 10~ 7.3477 x 107
4 9.798 x 107 -1.552 x 10* -1.140x10°  2.513 x 107 -3.277 x 107
5 <107 <107 <107 <107 <107
Table 2.8 Bus voltage change
Iteration k 61 62 93 V1 V2
1 -0.737° -6.742° 6.366° 0.9851 0.9648
2 -0.349° -6.356° 6.871° 0.9850 0.9650
3 —-0.497° -6.475° 6.737° 0.9847 0.9646
4 -0.500° -6.448° 6.732° 0.9847 0.9648
5 -0.500° -6.450° 6.732° 0.9847 0.9648




P-Q DECOUPLING METHOD 37

2.4.2 Decoupled Power Flow Without Major Approximation

Assuming the voltage magnitude in the Newton power flow model (2.99) to

be 1.0, we have
AP H N[ A6
AQ K LAV

Premultiplying the AP equations by KH™' and adding the resulting equa-
tions to the AQ equations leads to the system of equations

AP H N A0
AQ—-KH™'AP 0 L-KH'N]AV

Premultiplying the AQ equations by NL™ and adding the resulting equa-
tions to the AP equations leads to the system of equations

{AP—NLLAQ}:_[H—NLlK 0}[&9}

A0 p Ay (2.139)

By combining the operations performed to obtain equations (2.138) and
(2.139), we get

[AP—NL*AQ}_ [H—NL‘lK 0 }{Ae} 140
AQ-KH'AP] 0 L-KH'N | AV (2.140)
or
AP-NL'AQ H, 07748
== (2.141)
AQ—-KH™'AP 0 Ly |lAV

where the equivalent matrices H,, and L,, are defined as

H. =H-NL'K (2.142)
Ly=L—-KH'N (2.143)

It can be observed that equation (2.140) or (2.141) is equivalent to the
original system (2.137) but has the decoupled solution structure in which A6
and AV are calculated separately. This decoupled procedure is not approxima-
tion way by ignoring the off-diagonal submatrices N and K, which was adopted
in fast decoupled power flow in Section 2.4.1. Thus the solution will be close
to the Newton power flow solution. However, the solution procedures are
different from the Newton method, where the different A6 and AV are not
computed simultaneously but separately.
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The following decoupled algorithm can be used to solve equation (2.138)
for A® and AV [6]:

Step (1): Compute temporary angle corrections
AOy=—H'AP(V,0) (2.144)
Step (2): Compute voltage corrections
AV ==L AQ(V,0+A0y) (2.145)
Step (3): Compute additional angle corrections
ABy=-H'NAV (2.146)
It can be verified that AV and A6 = A8y + ABy are the solution vectors of equa-
tion (2.138). This algorithm considers the coupling effect represented by K.
For equation (2.139), we have the dual algorithm:
Step (1): Compute temporary voltage corrections
AV, =-L"AQ(V,0) (2.147)
Step (2): Compute angle corrections
AB=-H APV +AV,,0) (2.148)
Step (3): Compute additional voltage corrections
AV =-L"KA0 (2.149)
where AV = AV, + AV
Although the above iteration algorithms (2.144)—(2.146) and (2.147)—(2.149)
yield the correct solutions for the power flow model (2.137), they are not suited
for practical implementation [6]. The reasons are:
+ In the first algorithm angle corrections A6 are computed in two steps (A0

and AOy), while in the second algorithm voltage magnitude corrections
AV are computed in two steps (AV, and AVy).

* The matrices Hq and L., may be full.

The following iteration algorithm is suggested because of the above two
difficulties. For solving equations (2.144)—(2.146), the iteration steps for the
suggested algorithm are described below:
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AOY, =—H'AP(V*, 0%) (2.150)
ABELL = 0F + ABY, (2.151)
AVF = —LLAQ(VE, 0k (2.152)
AVEL =V 4 AVE (2.153)
ABK =—H'NAV* (2.154)
04+ = AOKLL + ABY (2.155)

Then compute the temporary angle vector of the next iteration:
ABj =—HAP(V*1, 9%1) (2.156)
AOLZ = 0k 4 AQY! (2.157)

By adding the two successive angle corrections, we get

AOY +ABY = —H ' [AP(VF, 0541 = NAV*]
~—H'[AP(V**, 0L )= HA®Y — NAVF]
~—H'AP(V*! 0KL) (2.158)

The above combined angle correction can be obtained by a single forward/
backward solution using the active mismatches computed at V**' and 6{,.
Similar iteration steps can be obtained for the algorithm (2.147)—(2.149).

2.5 DC POWER FLOW

AC power flow algorithms have high calculation precision but do not have fast
speed. In real power dispatch or power market analysis, the requirement of
calculation precision is not very high, but the requirement of calculation speed
is of most concern, especially for a large-scale power system. More simplifica-
tion power flow algorithms than fast decoupled power flow algorithms are
used. One algorithm is called “MW Only.” In this method, the Q-V equation
in the fast decoupled power flow model is completely dropped. Only the fol-
lowing P — 6 equation is used to correct the angle according to the real power
mismatch.

ap
[ B Be e =B ][ 48,
2
v, |= _'?21 _szz _BZ:,n—l A:ez (2.159)
Af;n_l “DOn-11 T Pn-12 - T Pn-1,n-1 Aen—l
L Vn—l .
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In the MW-only power flow calculation, the voltage magnitude can be handled
either as constant or as 1.0 during each P — 0 iteration. For the convergence,
only real power mismatch is checked no matter what the reactive power mis-
match is.

Another most simplified power flow algorithm is DC power flow. It is also
an MW-only method but has the following assumptions:

(1) All the voltage magnitudes are equal to 1.0.

(2) Ignore the resistance of the branch; i.e., the susceptance of the
branch is

B= - (2.160)

(3) The angle difference on the two ends of the branch is very small, so
that we have

cosf; =1 (2.162)

(4) Ignore all ground branches; that is,
Bio=Bjo=0 (2.163)

Therefore, the DC power flow model will be

AP, A8,
AR | 4 (2.164)
AP, A0,
or
[AP]=[B][A6] (2.165)

where the elements of the matrix B” are the same as those in the XB version
of fast decoupled power flow but we ignore the matrix B”. That is,

S (2.166)

x,«]-

Bi=-) Bj (2.167)

J#i
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The DC power flow is a purely linear equation, so only one iteration calcula-
tion is needed to obtain the power flow solution. However, it is only good for
calculating real power flows on transmission lines and transformers. The power
flowing on each line using the DC power flow is then

0, -6

Pj=-B;(6,-96;)= (2.168)

ij
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SENSITIVITY CALCULATION

Currently, sensitivity analysis is becoming more and more important in practi-
cal power system operations including in power market operations. This
chapter analyzes and discusses all kinds of sensitivity factors such as loss sen-
sitivity factor, generator shift factor, pricing node shift factor, constraint shift
factor, line outage distribution factor (LODF), outage transfer distribution
factor (OTDF), response factor for the transfer path, and voltage sensitivity
factor. It also addresses the practical application of these sensitivity factors
including a practical method to convert the sensitivities with different
references.

3.1 INTRODUCTION

This chapter focuses on the analysis and implementation details of the calcula-
tions of several sensitivities such as loss sensitivity, voltage sensitivity, genera-
tor constraint shift factor, and area-based constraint shift factor in the practical
transmission network and energy markets. The power operator uses these to
study and monitor market and system behavior and detect possible problems
in the operation. These sensitivity calculations are also used to determine
whether the online capacity as indicated in the resource plan is located in the
right place in the network to serve the forecasted demand. If congestion or
violation exists, the generation scheduling based on the sensitivity calculations
can determine whether or not a different allocation of the available resources
could resolve the congestion or violation problem.

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
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In the early energy market, transmission losses were neglected for compu-
tational simplicity reasons, but they are addressed in the standard market
design (SMD) [1-4]. Loss calculation is considered for the dispatch functions
of SMD such as location-based marginal prices (LMP). Loss allocation
does not affect generation levels or power flows; however, it does modify the
value of LMP [5]. The early and classic loss calculation approach is the loss
formula-B coefficient method [6], which has been replaced by the more accu-
rate inverse Jacobian transpose method [7]. Numerous loss calculation methods
have been proposed in the literature and can be categorized into pro rata [§],
incremental [9], proportional sharing [10], and Z-bus loss allocation [11].

Calculation of loss sensitivity is based on the distributed slack buses in the
energy control center [6, 11-13]. In real-time energy markets, LMP or eco-
nomic dispatch is implemented based on market-based reference, which is an
arbitrary slack bus, instead of the distributed slack buses in the traditional
energy management system. Meanwhile, the existing loss calculation methods
in traditional EMS systems are generally based on the generator slacks or ref-
erences. Since the units with automatic generation control (AGC) are selected
as the distributed slacks, and the patterns or status of AGC units are variable
for different time periods in the real-time energy market, the sensitivity values
will keep changing, which complicates the issue. This chapter presents a fast
and useful formula to calculate loss sensitivity for any slack bus [14, 15].

The simultaneous feasibility test (SFT) performs the network sensitivity
analysis in the base case and in contingency cases in the power system. The
base case and postcontingency MW flows are compared against their respec-
tive limits to generate the set of critical constraints. For each critical constraint,
SFT calculates constraint coefficients (shift factors) that represent linearized
sensitivity factors between the constrained quantity (e.g., MW branch flow)
and MW injections at network buses. The B-matrix used to calculate the shift
factors is constructed to reflect proper network topology [16-18].

The objective of SFT is to identify whether or not network operation is
feasible for a real power injection scenario. If operational limits are violated,
generic constraints are generated that can be used to prevent the violation if
presented with the same network conditions [16].

In the energy market systems, the trade is often considered between the
source and the sink (i.e., the point of delivery, POD and point of receipt, POR).
The source and the sink may be an area or any bus group. Therefore, the area-
based sensitivities are needed, which can be computed through the constraint
shift factors within the area.

Another type of sensitivity that is frequently used is related to voltage
stability, especially static voltage stability, which investigates the stability of an
operating point and applies a linearized model. Static voltage instability is
mainly associated with reactive power imbalance. This imbalance mainly
occurs on a local network or a specified bus in a system, which is called
the weak bus. Therefore, the reactive power supports have to be locally
adequate.
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Voltage sensitivity analysis can detect the weak buses/nodes in the power
system where the voltage is low. It can be used to select the optimal locations
of VAR support service [19-25]. According to the sensitivity values voltage
benefit factor (VBF) and loss benefit factor (LBF), a ranking of VAR support
sites can also be obtained.

3.2 LOSS SENSITIVITY CALCULATION

This section presents a fast and useful formula to calculate loss sensitivity for
any slack bus. The formula is based on the loss sensitivity results from the
distributed slacks without computing a new set of sensitivity factors through
the traditional power flow calculation. In particular, the loads are selected as
the distributed slacks rather than the usual generator slacks. The loss sensitiv-
ity values will be unchanged for the same network topology no matter how
the status of the AGC units changes.

In the energy market, the formulation of the optimum economic dispatch
can be represented as follows:

MinF=Y C;P, jeNG (3.1)
Such that l
sty Po+P. =Y Py jeNG (3.2)
Y SiP; < P jle NG, i€ Ky (3.3)
]PG,-mi,, < Py < Psjmax  j€NG (3.4)
where

Pp: The real power load

P..r: The maximum requirement of power supply at the active constraint i
Pg;: The real power output at generator bus j

Pgjmin: The minimal real power output at generator j

PGjmar: The maximal real power output at generator j

P;: The network losses

S, The sensitivity (shift factor) for resource or unit j and active constraint
i with respect to the market-based reference

C;: The real-time price for the resource (or unit) j
K,,...: The maximum number of active constraints
NG: The number of units

The Lagrangian function is obtained from equations (3.1) and (3.2).
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FL:Zﬁ(PD,-)+k[ZPDi+PL—ZPG,j (3.5)

Traditionally, generation reference (single or distributed slack) is used in
the calculation of loss allocation. This works, but it may be inconvenient or
confusing for the users who frequently use the loss factors. The reason is that
the AGC status or patterns of units are variable in the real-time EMS or
energy markets. The loss sensitivity values based on the distributed unit refer-
ences will keep changing because of the change of unit AGC status. Thus the
distributed load slack or reference is used here.

The optimality criteria of the Lagrange function (3.5) are written as follows:

of, _ df +x(1+ aPL):o ie ND (3.6)
0Py dPp, oFp;
of, _ df +x(aPL —1):0 je NG (3.7)
d i .
dP];i LD[ = 7\, lLe ND (3.8)
1 .
LDiZ_— lEND (39)
oP,
1+
0P
df; ,
“Lg=A NG 3.10
Py, Gj AS ( )
1 .
1-
oPg;

where

A:The Lagrangian multiplier
oR.
0Py,
oP.
oFs;

: The loss sensitivity with respect to load at bus i

: The loss sensitivity with respect to unit at bus j

We use aﬁ, which is the loss sensitivity with respect to an injection at bus
i, to stand for both E)i and ai

Di Gj
used here, all loss sensitivity factors are nonzero.

. Since the distributed slack buses are
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If an arbitrary slack bus, k, is selected, then P, is the function of the other
injections, i.e.,

P=f(P) ieni#k (3.12)

where 7 is the total number of buses in the system and P, is the power injec-
tion at bus i, which includes the load Pp; and generation Pg;. Actually, the load
can be treated as a negative generation. Then equations (3.9) and (3.11) can
be changed to equation (3.13), and equations (3.8) and (3.10) can be changed
to equation (3.14).

1 .
Li—l_—aPL ren (313)
oF,
dp
Equation (3.2) will be rewritten as
P=P+Y P ien (3.15)

i#k

The new Lagrangian function can be obtained from equations (3.1) and (3.15).

Ff‘=2ﬁ(m+x(PL—Pk—23j (3.16)
The optimality criteria can be obtained from the Lagrangian function (3.16).

ai:%+%ai+k(aﬁ—aﬁ—l):0 ieni#k (3.17)
oP, dP. dP, 9P, oP, JP,
From equation (3.15), we get

OP, . 0P
Lo+ 3.18
oF  oP (3.18)

From equations (3.17) and (3.18), we get

s -

i k

L’-"—# ienizk (3.20)
. b ’ ‘

oF,
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It is noted that L; and L are similar, but they have different meanings [14].
The former is based on the distributed slack buses, and the latter is based
on an arbitrary slack bus k. Similarly, the loss sensitivity in L; is based on
the distributed slack, i.e., 9B (the subscript DS means the distributed

OF; Ips
slack); the loss sensitivity in L is based on an arbitrary single slack bus k, i.e.,
8£ . Note that the kth loss sensitivity, with bus k as the slack bus, is zero.
oP |,

From equations (3.14) and (3.19), we have the following equation:

[F="t, [F=1 (3.21)

From equations (3.13), (3.20), and (3.21), we get

_9R
1 B dF Ips
TR T oR (322)
aR k aPz DS
_9R
aPL aP, DS
1- = 3.23
oP |, | _oR (3:23)
0P Ips

Hence, with one set of incremental transmission loss coefficients for the
distributed slack buses, the loss sensitivity for an arbitrary slack bus can be
calculated from the following formula:

OR| _9R
R | _ 9P lps 0Plns (3.24)
P |, _ R
aPk DS

The formula of loss sensitivity calculation is very simple, but it is
accurate and efficient for real-time energy markets. It will avoid computing
a new set of loss sensitivity factors whenever the slack bus k changes.
Consequently, it means a huge time savings. In addition, the loss factors
based on the distributed load reference will not be changed no matter how
the AGC statuses of units vary, as long as the network topology is the same
as before.
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3.3 CALCULATION OF CONSTRAINED SHIFT
SENSITIVITY FACTORS

3.3.1 Definition of Constraint Shift Factors

The objective of SFT is to identify whether or not network operation is fea-
sible for a real power injection scenario. If operational limits are violated,
generic constraints and corresponding sensitivities (the shift factors) are
generated, which can be used to prevent the violation if presented with the
same network conditions. Meanwhile, the shift factors can also be used in
the generation scheduling or economic dispatch to alleviate the overload of
transmission lines.

The SFT calculations include the contingency analysis (CA), in which the
decoupled power flow (DPF) or DC power flow is used. The set of component
changes that can be analyzed include transmission line, transformer, circuit
breaker, load demand, and generator outages. SFT informs the users about the
contingencies that could cause conditions violating operating limits. These
limits include branch overloads, abnormal voltages, and voltage angle differ-
ences across specified parts of the network. SFT reports the sensitivity (shift
factor) of the constraint with respect to the controls. These controls include
unit MW control, phase shifter, and load MW control.

3.3.1.1 Unit MW Control The unit MW control is the most efficient and
cheapest control among the available controls. The formulation of sensitivity
for a unit can be written as follows:

_db

= k=1, Ky =10 PG, 3.25
P j (3.25)

Sk

where

Si: The sensitivity of the power change on constraint k with respect to
power change on the unit MW control j

P,: The MW power on the constraint k

Pg;: The MW power on generating unit control j

K,,..: The maximum number of constraints

PG,,..: The maximum number of generator unit MW controls

According to KCL law, it is impossible that power change on the branch
constraint will be greater than one MW if the generator control has only
one MW power change. Thus the maximum value of the sensitivity of the
branch constraint with respect to the unit MW control is 1.0 (generally, less
than 1.0).
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3.3.1.2 Phase Shifter Control The phase shifter is another efficient
control among the available controls. There are some assumptions for the
phase shifter in the SFT design. The phase shifter control variable is tap
number (e.g., phase shifter angle). Normally tap number is an integer, but it
can be handled as a real number in the practical SFT calculation. In addition,
all opened phase shifters will be skipped over, that is, the sensitivity for the
phase shifter that is open at any end will not be calculated.

The step on the tap-type is the sensitivity of angle with respect to tap
number. Thus the sensitivity of the constraint to the phase shifter is about the
power change on the constraint to the angle change of the phase shifter. The
angle unit may be degree or radiant. Since the value of sensitivity may be very
small if the angle unit is degree, radiant is adopted in the practical calculation.
The formulation of sensitivity for phase shifter can be written as follows:

0 P,

— k=l K, jp=1e. PSS (3.26)
aq)jp

Skip =

where

Sip: The sensitivity of the constraint k to the phase shifter control jp
©»: The phase shifter angle of the phase shifter control jp

K,,..: The maximum number of constraints

PS,,...: The maximum number of phase shifter controls

It is noted that there is a special “branch in constraint” logic that must be
implemented when the phase shifter branch itself is in the constraint. Basically
the artificial flow through transformer branch must be subtracted from
constraint flow.

In addition, the sensitivity of the constraint to the phase shifter control is
different from the sensitivity of the constraint to the generator control or other
bus injection type control. The value of the latter cannot be greater than 1.0,
but the former does not have this constraint.

3.3.1.3 Load MW Control Theload MW control should be the last control
when other controls are not available. The formulation of sensitivity for load
MW control can be written as follows:

d b

o k=1, Kmaes jd=1,...... LDy (3.27)
al)jd

Skjd ==

where

Sija: The sensitivity of the constraint k to the load MW control jd
P;;: The MW power on load control jd
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K,,..: The maximum number of constraints
LD,,,: The maximum number of load MW controls in the whole system

It is noted that the sensitivity sign for load MW control is negative. The
reason is that increasing load will cause more serious constraint violation
rather than reducing the constraint violation. According to the sensitivity
relationship between the constraint and the load MW control, it is needed to
reduce/shed load for alleviating or deleting the constraint violation.

In the market application, the sensitivity of the pricing node is interested.
The pricing node does not have the generator or load connected to it. Thus
the above sensitivity calculation of unit/load control can be expanded to any
bus injection, that is,

0 P,
d Py,

Skbx ==

where

Sis: The sensitivity of the constraint k to the bus injection on bus bs
P,: The MW power injection on bus bs
NB,,.: The maximum number of buses in the whole system

3.3.1.4 Constraint Value For each constraint, the constraint value (DC
value) is computed from the control values multiplied by sensitivities. The
formulation can be written as follows:

U max
DCVAL, = Y, VAL_U,*S;, (3.28)

j=1
where

DCVAL,: The constraint value for constraint k

VAL_U;: The value of control j. Here, the controls include unit MW control,
phase shifter, and load MW control.

Sk The sensitivity or shift factor of constraint k to control j
U,..v: The maximum number of controls

3.3.2 Computation of Constraint Shift Factors

3.3.2.1 Constraint Shift Factors Without Line Outage The constraint
shift factors without line outage are also called as the generation shift
factor.

From DC power flow algorithm, we have the following equation:
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AP, AGH
AR | _ppry| A% (3.29)
AP, AD,

Then the standard matrix calculation of the DC power flow can be written as
below:

0=[X]P (3.30)

Since the DC power flow model is a linear model, we may calculate pertur-
bations about a given set of system conditions by use of the same model. Thus
we can compute the changes in bus phase angles A6 for a given set of changes
in the bus power injections AP:

AQ =[X]AP (3.31)

where the net perturbation of the reference bus equals the sum of the pertur-
bations on all the other buses.

Now we compute the generation shift factors for the generator on bus i. To
do this, we will set the perturbation on bus i to +1 pu and the perturbation on
all the other buses to zero. Then we can solve for the change in bus phase
angles with the following matrix calculation:

(3.32)

AQ = [X][—Fl}e row i

1]« ref row

The vector of bus power injection perturbations in equation represents the
situation when a 1-pu power increase is made at bus i and is compensated by
a 1-pu decrease in power at the reference bus. The A6 values in equation are
thus equal to the derivative of the bus angles with respect to a change in power
injection at bus i.

Thus the constraint shift factors S;; without considering the line outage can
be derived as follows.

Let p and g be the two ends of constraint k; the power flowing on the con-
straint line k using DC power flow is:

1
P, =—(9p—9q) (3.33)
Xk

The generation shift factors are defined as

dp, d [1 }
S =—t=—/|—(6,-86
ki dPi dP,- xk(p q)

do, d
:i( % _&jzi(xpi_xq,) (3.34)
X dP, dPl Xk

In the practical application, the generation shift factors of the network can
be directly obtained from [B’] through forward and back calculation.
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Suppose a branch k that is from p to g with the reactance x;.
From [B’][6] = [P], we get

+— |<r10W p

(B’][6]=| : (3.35)

—— |[«<T1OW ¢q

Through implying forward and back calculation to the above equation, the
solution will be the generation shift factors for all bus with respect to the
constraint line k. If a constraint consists of multiple lines (branches), the
superposition theory can be applied. For example, a constraint contains two
lines k (from p to q) and ¢t (from i to j) with reactance x, and x,, respectively.
We get the following relationship:

Xk |¢=TOW p

X, |[¢—TOW g

[B][6] =

x, | TOW

— TOW |
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Through implying forward and back calculation to the above equation, the
solution will be the generation shift factors for all buses with respect to lines
k and t.

3.3.2.2 Line Outage Distribution Factors [17] The simulation of line
outage is shown in Figure 3.1. Figure 3.1(a) is a network without line outage.

Bus m Busn
Connect to other

/ part of the network \

L b 4 line / N |
—

P,

mn

(a) Network before line / outage

Bus m Busn
Connect to other

/ part of the network \

line /
_% E— o—

(b) Network after line / outage

Bus m Bus n
Connect to other

/ part of the network \

e line / N O
T L
APm A})ﬂ

(¢) Modeling line / outage using injections

FIGURE 3.1 Network for simulating line outage
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Suppose line / from bus m to bus n were opened by circuit breakers as shown
in Figure 3.1(b). A line outage may be modeled by adding two power injections
to a system, one at each end of the line to be dropped, which is shown in Figure
3.1(c). The line is actually left in the system, and the effects of its being dropped
are modeled by injections. Note that when the circuit breakers are opened,
no current flows through them and the line is completely isolated from the
remainder of the network. In Figure 3.1, the breakers are still closed but injec-
tions AP, and AP, have been added to bus m and bus n, respectively. If
AP, = P,,, and AP, = -P,,,, where P, is equal to the power flowing over the
line, we will still have no current flowing through the circuit breakers even
though they are closed. As far as the remainder of the network is concerned,
the line is disconnected.
Using the equation relating to A@ and AP,

A@ = [X]AP (3.36)

Since only power injections at buses m and n have been changed after line
outage by adding two power injections to a system, then

.
0
AP,
0
AP=| (3.37)
0

AP,
0

0

Thus we can get the incremental changes of the phase angle at buses m and
n of the line / from the outage

A8,,= X,mAP, + X, AP, (3.38)
A8, = X,, AP, + X, AP, (3.39)

where

0,.: The phase angle at bus m of line / before the outage
0,: The phase angle at bus n of line / before the outage
P,.,: The power flow on line / from bus m to bus n before the outage

A®,,: The incremental changes of the phase angle at bus m of line / from the
outage
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AB,: The incremental changes of the phase angle at bus » of line / from the

outage

AP,,.: The incremental changes of the power flow on line / of line / from the

outage
6,.: The phase angle at bus m of line / after the outage
0,: The phase angle at bus n of line / after the outage

P,,: The power flow on line / from bus m to bus n after the outage

The outage modeling criterion requires that the incremental injections AP,
and AP,, equal the power flowing over the outaged line after the injections are

imposed. Then, if we let the line reactance be x;

Pn{m=APm=_APn
1
APmn = _(Aem _Aen)

X

Since AP, = —AP,,, equations (38) and (39) can be written as

A8, = X,,AP, + X,,,AP,, = X,,,(-AP,)) + X ,,,AP,,
= (Xmm _an)APm

Aen = XnnAPn + XnmAPm = Xnn (_APm) + XnmAPm
= (Xnm - Xnn)APm

where
an = Xnm

Thus

1

APmn = _(Aem _Aen)
X
1
= _[(Xmm _an)APm _(Xnm _er)APm]
X

= l()(mm +Xnn _Zan)APm

Xi

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

The power flow on line / from bus m to bus n after the outage P, is com-

puted as follows:
Prr,m :Pmrl+APmn

= Pmn +l(Xmm +Xnn _2an)APm

Xi

(3.46)
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From equations (3.40) and (3.46), we get

AP,=P,, +l(Xmm + X, —2X,.,) AP, (3.47)
X
that is,
AP, =— Eom (3.48)
1_7(Xmm +er _2an)
X

Since there are only two nonzero elements at buses m and n in the power
injection vector, the incremental change of phase angle at any bus i can be
computed as follows:

Aei = XinAPn + XimAPm

= (le _Xin)APm
Z(Xim_Xin)x 1 PV’"'
1_7()(mm +Xnn _2an)
X
X (Xim _Xin)Pmn — Si‘len (349)

B X _(Xmm +Xnn _2an)
where

S _A_G,«_ X (X — X))
o API xl_(Xmm +Xnn_2an)

(3.50)

which is the sensitivity factor of the change in phase angle of bus i with respect
to power flow on line / before the outage.

For computing the effect of line / outage on the other line &, the line outage
distribution factor is defined as below:

1

—(AB, —A8,)
LoDF, =20 % 7
TTAP, AP,
1 (Aep Aeq)
~x, \AP, AP,
1
= _(Sp.l - Sq,l) (3~51)
Xk

From equation (3.50), S,;, S,; can be written as
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AB, X( Xy — X ,0)

S,= = 3.52
r API Xi _(Xmm +Xnn _2an) ( )
AO Xom— X
=00 (K= Xo) (3.53)
AI)l xl_(Xmm+Xnn_2an)
Thus
1
LODFk,] :_(Sp,l_Sq,l)
Xk
:i( (X _Xn) _ xl(qu_an) )
(Xmm+er Zan) xl_(Xmm+Xnn_2an)
( pm pn —X (qu _an))
(Xmm+Xnn 2an)
1 (x,(X =Xy =X+ Xy )j
- X (Xmm + Xml 2an )
(Xpm X —Xpn+ X )
- (3.54)

l_(Xmm +Xnn _Zan)

3.3.2.3 Outage Transfer Distribution Factors Because we know that the
generation shift factors and line outage distribution factors are linear models,
we can use superposition to extend them to compute the network constraint
sensitivity factors after a branch has been lost. They are also called the outage
transfer distribution factors (OTDF). Let us compute the sensitivity factor
OTDF between line k and generator bus j when line / is opened. This is cal-
culated by first assuming that the change in generation on bus j, AP, has a
direct effect on line k and an indirect effect through its influence on the power
flowing on line /, which, in turn, influences line k when line / is in outage. Then

Therefore, the sensitivity OTDF after line / outage can be defined as
AP
OTDE, ; = AP =(S,; + LODF,,S;) (3.56)
J

where

OTDF,;:The sensitivity factor between line k and generator bus j when line
[ is opened
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3.3.3 Constraint Shift Factors with Different References

The shift factor computed in SFT is based on the reference bus in EMS topol-
ogy, but it can be easily converted to any market-based reference.

Let y be market-based reference unit, and the shift factor of the constraint
k with respect to any unit j that is obtained based on the EMS reference bus
is Sy;. For unit y, the shift factor of the constraint & is Sy,. Then, the shift factors
after converting to market-based reference unit k can be computed as follows:

S,=0 k=1L, Ko (3.57)
SI:f = Ski _Sky k= 17 """" P Kma)u ] Yy (358)

where

Sy The shift factor of constraint k& with respect to unit j that is based on the
EMS reference

Si,y: The shift factor of constraint k with respect to unit y that is based on
the EMS reference

Sij: The shift factor of constraint k with respect to unit j that is based on the
market-based reference y

Siy: The shift factor of constraint k with respect to unit y that is based on
the market-based reference y

We know that the shift factor of the constraint is related to the selected
reference, i.e., the value of shift factor will be different if the reference is dif-
ferent even if the system topology and conditions are the same. Sometimes
system operators would like to have the stable shift factor values without
caring about the selection of reference bus/unit. Thus the distributed load
reference will be used to get the unique constraint shift factors if the system
topology and conditions are unchanged.

Let Suarer be the sensitivity of load distribution reference for the constraint
k, and the shift factor of the constraint k& with respect to any control j that is
obtained based on the EMS reference bus is Sy;. Then the shift factors based
on the load distribution reference LDREF can be computed as follows:

S/:j = Skj - Sk[dref k = 1, ...... ) Kmax (359)
where

Swaret: The sensitivity of load distribution reference for constraint k, that is,

LD\T\RX
2 (Skja ¥ LDjq)
Stidaret = ]dzlLDmX k=1,...... s Konax (3.60)
Y, LD,

jd=1
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where

Sia: The sensitivity of load jd with respect to constraint k
LD;;: The load demand at load bus jd

In the practical energy markets such as the independent system operator
(ISO), the system consists of many areas, but one major area in the ISO system
is called the internal area and others are called external areas. If the internal
area is a major concern during the price calculation for this market system,
the load distribution reference can be selected based on the internal area only.
Similarly, Let LDA,,., be the total number of load controls in the internal area
of the ISO system, which is less than the total number of load controls in the
whole ISO system, LD,,,,. The shift factors based on the area load distribution
reference LDAREF can be computed as follows:

S/:j = Skj - Skldaref k = 1, ...... . Kmax (361)

where

Suaaret: The sensitivity of load distribution reference in area A for the con-
straint k, that is,

LDAmax

Z (Skia *LD;y)

_jd=1 _
Skldaref - LDAmax k= 1, ...... ) Kmax

Y. LD,

jd=1

LDA,, € LD (3.62)

where

LDA ... The maximum number of load MW controls in area A

3.3.4 Sensitivities for the Transfer Path

A transfer path is an energy transfer channel between a point of delivery
(POD) and a point of receipt (POR).The POD is the point of interconnection
on the transmission provider’s transmission system where capacity and/or
energy transmitted by the transmission provider will be made available to the
receiving party. The POR is the point of interconnection on the transmission
provider’s transmission system where capacity and/or energy transmitted will
be made available to the transmission provider by the delivering party.

The pair of POD and POR defines a path and the direction of flow on that
path. For internal paths, this would be a specific location in the area. For an
external path, this may be an area-to-area interface. Similar to the concept of
POD/POR, a transfer path can also be defined as from the source to the sink.
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If POD/POR (or Source/Sink) is a single unit or single injection node, the
sensitivity of POR or POD is the same as the constrained shift factor, which
is mentioned in Sections 3.2 and 3.3. If POD/POR (or Source/Sink) is an area,
the sensitivity of POR or POD can be computed as follows.

Let PF; be the participation factor of unit j, and the shift factor of the con-
straint k& with respect to any unit j is Sy. The area-based shift factor of the
constraint k is S;4, which can be computed as follows:

2 (PF;xS)
SkA ) ]EAZT k = 1’ """ ) Kmax’ ] € A (363)
J

jEA
where

Sia: The area-based shift factor of constraint k
PF;: The participation factor of unit j

Similarly, if considering the effect of the outage, the area-based shift factor
of constraint k can be computed as follows.

Y (PF;x OTDF;)
Siu= jeA 2 o k=1,...... K, jEA (3.64)
)
jeA

If a transfer path is from area A to area B, the sensitivity of the transfer
path will be computed as:

Srp(A— B) =S84 — Sk (3.65)

If a transfer path is from an injection node i to another injection node j, the
sensitivity of the transfer path will be computed as:

If a transfer path is from injection node i to area A, or from area A to

injection node i, the corresponding sensitivities of the transfer path will be
computed as:

STP (I — A) = OTDF/“ - SkA (367)
STP (A i I) = SkA - OTDF]U (368)
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3.4 PERTURBATION METHOD FOR SENSITIVITY ANALYSIS

So far, the sensitivity analysis methods described in this chapter are based on
the matrix (either B’ matrix or Jacobian matrix). The sensitivity values that
are computed based on partial differential term will be stable, or will not be
changed as long as the system topology is the same.

Sometimes, the perturbation method is also used in the sensitivity
calculation.

3.4.1 Loss Sensitivity

The perturbation method for loss sensitivity calculation is shown as below.

(a) Perform power flow calculation, and obtain the initial system power
loss P;y.

(b) Simulate the calculation of the loss sensitivity with respect to generator
i. Increase the power output of the generator i for APg; (if computing
the loss sensitivity of load k, reduce the power demand of load k for
APp,), and the slack unit will absorb the same amount of APg;.

(c) Run power flow again, and get the new system power loss P;.
(d) Compute the loss sensitivity as below:

For unit loss sensitivity:

LSg = P-Pu NG (3.69)
For load loss sensitivity:
PL - PL(J

LSy, = e ND (3.70)

Dk

Where LSg;, and LSy, are the loss sensitivity values with respect to the unit i
and load k, respectively.

3.4.2 Generator Shift Factor Sensitivity

The perturbation method for generator shift factor sensitivity calculation is
shown below.

(a) Chose a unit i and a branch constraint j.

(b) Perform power flow calculation, and obtain the initial power flow Py
for branch j.

(c) Simulate the calculation of the generator shift factor sensitivity
of branch j with respect to generator i. Increase the power output of
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generator i for APg;, and the slack unit will absorb the same amount of
APg,.
(d) Run power flow again, and get the new power flow P; for branch j.
(e) Compute the generator shift factor sensitivity as below:

P-P
GSF,=—/—2 eNG (3.71)
AP,

Gi

Where GSFj; is the generator shift factor sensitivity of branch j with respect
to unit i.

The calculation of the load shift factor sensitivity is similar to that of the
generator shift factor sensitivity by handling the load as the negative
generation.

3.4.3 Shift Factor Sensitivity for the Phase Shifter

The perturbation method for the phase shifter shift factor sensitivity calcula-
tion is shown as below.

(a) Chose a phase shifter ¢t and a branch constraint j.

(b) Perform power flow calculation, and obtain the initial power flow Pj,
for branch j.

(c) Simulate the calculation of the shift factor sensitivity of branch j with
respect to phase shifter ¢. Increase the taps of the phase shifter i for AT,
(or angle change A8,), which can be simulated by change the suseptance
of the phase shifter.

(d) Run power flow again, and get the new power flow P; for branch j.

(e) Compute the phase shifter shift factor sensitivity as below.

sk, =1t
Is
p.A_T}. (3.72)
or SF” — i 70
A8,

where SF;, is the shift factor sensitivity of branch j with respect to phase shifter ¢.

3.4.4 Line Outage Distribution Factor
The perturbation method for the line outage distribution factor calculation is

shown below:

(a) Chose a branch / that will be simulated as an outage and a branch
constraint j.
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(b) Perform power flow calculation before branch / is open, and obtain the
initial power flow P;, for branch j and P, for branch /.

(c) Simulate the calculation of the line outage distribution factor (LODF).
Open branch / while the unit power and load power are unchanged.

(d) Run power flow again, and get the new power flow P; for branch j. The
power flow P, for branch / will be zero since branch / is in outage.

(e) Compute the line outage distribution factor of branch j as branch / is
in outage as below:

P — Py

10

LODF,, =

(3.73)

where LODEF, is the line outage distribution factor of branch j with respect
to outage branch L

3.4.5 Outage Transfer Distribution Factor

The perturbation method for the outage transfer distribution factor calcula-
tion is shown below.

(a) Choose a unit, a branch / that will be simulated as outage, and a branch
constraint j.

(b) Perform power flow calculation before branch / is open, and obtain the
initial power flow P;, for branch j and P, for branch /.

(c) First of all, simulate the calculation of the generator shift factor sensi-
tivity of branches j and / with respect to generator i. Increase the power
output of generator i for AP, and the slack generator will absorb the
same amount of APg;.

(d) Conduct power flow calculation, and get the new power flow P; for
branch j and P, for branch /.

(e) Compute the generator shift factor sensitivity for the branch j and I.

P-P

GSF,; = ’A—fo ie NG (3.74)
Gi

GSF,; = L= NG (3.75)
Gi

(f) Then simulate the calculation of LODF for branch j with respect to
outage branch /. Open branch / while the unit power and load power
are unchanged.

(g) Once again run power flow, and get the new power flow P/ for branch
j. The power flow P’ for branch / will be zero since branch [ is in
outage.
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(h) Compute the line outage distribution factor of branch j as branch / is
in outage as below:

B~ P,
: 3.76
- (376)

!

Finally, the sensitivity OTDF of branch j after line / outage can be obtained
as below:

OTDF]’Z = GSF]’Z + LODFjJGSF]vi (377)

where OTDF;; is the sensitivity factor between line j and generator bus i when
line / is opened.

It is noted that the perturbation method for sensitivity calculation is very
straightforward, but there is a drawback. That is, the values of sensitivity
depend highly on the solution in addition to the topology. Even if the system
topology is not changed, the values of the sensitivity may be a little different
for the different initial points. Thus, to obtain accurate sensitivity results, the
approach based on a matrix is recommended. If the perturbation method is
used, the amount of the perturbation should be small so that the solution is
close to the initial operation points.

3.5 VOLTAGE SENSITIVITY ANALYSIS

Before we do voltage sensitivity analysis, we need to understand the concept
and importance of voltage stability. Voltage stability is the ability of a power
system to maintain adequate voltage magnitude so that when the system
nominal load is increased, the actual power transferred to that load will
increase. The main cause of voltage instability is the inability of the power
system to meet the demand for reactive power. The voltage stability problem
consists of two aspects: a large disturbance aspect and a small disturbance
aspect. The former is called dynamic stability, and the latter is called static
stability. The large disturbance involves short circuits and addresses postcon-
tingency system response. The small disturbance investigates the stability of
an operating point and applies a linearized model. The voltage sensitivity
analysis herein is used for static voltage stability.

Static voltage instability is mainly associated with reactive power imbal-
ance. This imbalance mainly occurs on a local network or a specified bus in a
system. Therefore, the reactive power supports must be locally adequate. With
static voltage stability, slowly developing changes in the power system occur
that eventually lead to a shortage of reactive power and declining voltage. This
phenomenon can be seen in Figure 3.2, a plot of power transferred versus
voltage at the receiving end.
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FIGURE 3.2 A plot of power versus voltage

These kinds of plots are generally called P-V curves or “nose” curves. As
power transfer increases, the voltage at the receiving end decreases. Eventually,
a critical (nose) point, the point at which the system reactive power is out of
usage, is reached where any further increase in active power transfer will lead
to very rapid decrease in voltage magnitude. Before reaching the critical point,
a large voltage drop due to heavy reactive power losses is observed. The only
way to save the system from voltage collapse is to reduce the reactive power
load or add additional reactive power before reaching the point of voltage
collapse.

The purpose of the voltage sensitivity analysis is to improve the voltage
profile and to minimize system real power losses through the optimal reactive
power controls (i.e., adding VAR supports). These goals are achieved by
proper adjustments of VAR variables in power networks through seeking the
weak buses in the system. Therefore, if the voltage magnitude at generator
buses, VAR compensation (VAR support), and transformer tap position
are chosen as the control variables, the optimal VAR control model can be
represented as:

min PL (Q57 VG7 T) (378)
such that
Q(st VG7T9 VD)=O (379)
QGmin < QG (Qs7 VG, T) < QGmax (380)
VDmin < VD (Qs» VG? T) < VDmax (381)
Osmin < Os < Osmax (3.82)
VGmin < VG < VGmax (383)

Tonin S T< T (3.84)
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where

P;: The system real power loss

Vs: The voltage magnitude at generator buses
QOs: The VAR support in the system

Qs The VAR generation in the system

T: The tap position of the transformer

Vp: The voltage magnitude at load buses

The subscripts “min” and “max” represent the lower and upper limits of the
constraint, respectively.

Two kinds of sensitivity-related factors can be computed through equations
(3.78)—(3.84). Here they are called voltage benefit factors (VBF) and loss
benefit factors (LBF), which are expressed as follows:

Y (Po— P (Q4))
LBF, = - 5 x100% ie ND (3.85)

si

Y (Vi(Qs)~Vio)
VBF, = - x100% ie ND (3.86)

si

where

Q,: The amount of VAR support at load bus i

LBF;: The loss benefit factors from VAR compensation Q;

VBF;: The voltage benefit factors from VAR compensation Q,;

P;y: The power transmission losses in the system without VAR
compensation

P (Q,): The power transmission losses in the system with VAR compensa-
tion Qy;

Vio: The voltage magnitude at load bus i without VAR compensation

Vi(Qs): The voltage magnitude at load bus i with VAR compensation QO

ND: The number of load buses

3.6 REAL-TIME APPLICATION OF THE SENSITIVITY FACTORS

In the EMS system and energy markets, the loss sensitivity factors and con-
straint shift factors are applied for LMP and/or alleviating overload (AOL)
calculation. The above-mentioned loss sensitivities and constraint shift factors
and the corresponding constraint elements (transmission lines or transform-
ers) will be passed to the constraint logger (CLOOGER) and then passed to
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the LMP calculator. The practical constraints can be divided into the following
types:

(1) Automatic constraints: All branches (lines, transformers, and inter-
faces) violations from EMS real-time contingency analysis (RTCA)
calculation

(2) Watch list constraints: The branches without violation in EMS RTCA
calculation but the branch flows close to their limits

(3) Active constraints: The constraints from LMP calculator that are needed
to recompute the constraint shift factors

(4) Flowgate constraints: The constraints from marketing system that are
needed to compute the shift factors with respect to the flowgate con-
straint. The term “flowgate” refers to a single grid facility or a set of
facilities.

(5) Quick selection constraints: Any branches (lines, transformers, and
interfaces) that operators want to know the shift factors and monitor
their branch flows

The sensitivity analysis and LMP calculation process is shown in Figure 3.3.
The market will require that the LMP be determined on a periodic basis. To
support this calculation, the network topology and data including loss sensitivi-
ties, network constraints, and their shift factors gathered in real time can be
transferred to the LMP automatically through the SE (state estimator), RTCA,
and SFT applications. If the results of the LMP calculator meet the constraints
described in equations (3.3) and (3.4), the LMP calculation was successful
and the LMP results may be recorded and recommended. If the LMP calcula-
tion results in any constraint violation, the violated constraint will be sent
back to AOL, and the LMP recalculation will be performed until all con-
straints are met.

3.7 SIMULATION RESULTS

The calculation results of the several sensitivities are illustrated with the IEEE
14-bus system and AREVA T&D 60-bus system. The one-line diagram of the
AREVA T&D 60-bus system is shown in Figure 3.4. The 60-bus system, which
has three areas, consists of 24 generation units (15 units are available in the
tests), 32 loads, 43 transmission lines, and 54 transformers.

3.7.1 Sample Computation for Loss Sensitivity Factors

The following test cases are used to analyze the loss sensitivity in this chapter.
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FIGURE 3.3 Application of the sensitivity factors

Calculate loss sensitivities with the distributed generation slack
and load slack, respectively. All units are AGC units (i.e., the status
of unit AGC is ON).

Calculate loss sensitivities with the distributed generation slack
and load slack, respectively. All units are AGC units except the
units under station DOUGLAS in Area 1.

Calculate loss sensitivities with the distributed generation slack
and load slack, respectively. All units are AGC units except the
units under station HEARN in Area 1.

Calculate loss sensitivities with the distributed generation slack
and load slack, respectively. All units are AGC units except the
units in Area 2.

Calculate loss sensitivities with the distributed generation slack
and load slack, respectively. All units are AGC units except the
units under station HOLDEN in Area 3.
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Case 6: Calculate loss sensitivities for the selected single slack based on
the loss factors under the distributed slack.

The simulation results are shown in Tables 3.1-3.6. All loss sensitivity factors
for units and loads are computed. For the purpose of simplification, only loss
sensitivities of generators are listed in Tables 3.1-3.6, in which column 1 is the
name of the station and the units. Column 2 is the area number that the unit
belongs to. Column 3 is the AGC status of the unit.

Tables 3.1-3.5 show the test results and comparison of loss sensitivity cal-
culation based on the distributed generation reference and distributed load
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Table 3.1 Test results and comparison of loss sensitivity calculation (Case 1: All units

on AGC)
Loss Sensitivity Loss Sensitivity

Station, Area AGC Distributed Distributed
Generator No. Unit Generation Slack Load Slack
DOUGLAS, G2 1 YES 0.015100 0.017000
DOUGLAS, G1 1 YES 0.012100 0.014000
DOUGLAS, CT1 1 YES 0.009900 0.011800
DOUGLAS, CT2 1 YES 0.009900 0.011800
DOUGLAS, ST 1 YES 0.009700 0.011600
HEARN, G1 1 YES -0.016500 —-0.014600
HEARN, G2 1 YES -0.016500 —0.014600
LAKEVIEW, G1 1 YES —-0.018800 —-0.017000
BVILLE, 1 2 YES -0.001000 —0.004200
WVILLE, 1 2 YES 0.000700 —0.002500
CHENAUX, 1 3 YES —-0.008900 —0.008900
CHEALLS, 1 3 YES 0.021200 0.021200
CHEALLS, 2 3 YES 0.021200 0.021200
HOLDEN, 1 3 YES 0.001000 0.001000
NANTCOKE, 1 3 YES -0.012200 —0.012200

Table 3.2 Test results and comparison of loss sensitivity calculation (Case 2: All units
on AGC except the units under station DOUGLAS in Area 1)

Loss Sensitivity

Loss Sensitivity

Station, Area AGC Distributed Distributed
Generator No. Unit Generation Slack Lload Slack
DOUGLAS, G2 1 NO 0.032800 0.017000
DOUGLAS, G1 1 NO 0.029900 0.014000
DOUGLAS, CT1 1 NO 0.027800 0.011800
DOUGLAS, CT2 1 NO 0.027800 0.011800
DOUGLAS, ST 1 NO 0.027600 0.011600
HEARN, G1 1 YES 0.001500 -0.014600
HEARN, G2 1 YES 0.001500 —0.014600
LAKEVIEW, G1 1 YES —-0.000800 —0.017000
BVILLE, 1 2 YES —-0.001000 —0.004200
WVILLE, 1 2 YES 0.000700 —-0.002500
CHENAUX, 1 3 YES —-0.008900 —0.008900
CHEALLS, 1 3 YES 0.021200 0.021200
CHEALLS, 2 3 YES 0.021200 0.021200
HOLDEN, 1 3 YES 0.001000 0.001000
NANTCOKE, 1 3 YES -0.012200 -0.012200
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Table 3.3 Test results and comparison of loss sensitivity calculation (Case 3: Only

units under HEARN in Area 1 not on AGC)

Loss Sensitivity

Loss Sensitivity

Station, Area AGC Distributed Distributed
Generator No. Unit Generation Slack Load Slack
DOUGLAS, G2 1 YES 0.012600 0.017000
DOUGLAS, G1 1 YES 0.009600 0.014000
DOUGLAS, CT1 1 YES 0.007400 0.011800
DOUGLAS, CT2 1 YES 0.007400 0.011800
DOUGLAS, ST 1 YES 0.007200 0.011600
HEARN, G1 1 NO —-0.019000 -0.014600
HEARN, G2 1 NO —-0.019000 -0.014600
LAKEVIEW, G1 1 YES —-0.021300 -0.017000
BVILLE, 1 2 YES —-0.001000 —-0.004200
WVILLE, 1 2 YES 0.000700 -0.002500
CHENAUX, 1 3 YES —-0.008900 —-0.008900
CHEALLS, 1 3 YES 0.021200 0.021200
CHEALLS, 2 3 YES 0.021200 0.021200
HOLDEN, 1 3 YES 0.001000 0.001000
NANTCOKE, 1 3 YES —-0.012200 -0.012200

Table 3.4 Test results and comparison of loss sensitivity calculation (Case 4: All units

on AGC except the units in Area 2)

Loss Sensitivity

Loss Sensitivity

Station, Area AGC Distributed Distributed
Generator No. Unit Generation Slack Load Slack
DOUGLAS, G2 1 YES 0.015200 0.017000
DOUGLAS, G1 1 YES 0.012200 0.014000
DOUGLAS, CT1 1 YES 0.010000 0.011800
DOUGLAS, CT2 1 YES 0.010000 0.011800
DOUGLAS, ST 1 YES 0.009900 0.011600
HEARN, G1 1 YES -0.016700 -0.014600
HEARN, G2 1 YES -0.016700 -0.014600
LAKEVIEW, G1 1 YES -0.019100 —0.017000
BVILLE, 1 2 NO —-0.021000 —-0.004200
WVILLE, 1 2 NO -0.019300 -0.002500
CHENAUX, 1 3 YES —-0.008900 —0.008900
CHEALLS, 1 3 YES 0.021200 0.021200
CHEALLS, 2 3 YES 0.021200 0.021200
HOLDEN, 1 3 YES 0.001000 0.001000
NANTCOKE, 1 3 YES —-0.012200 -0.012200
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Table 3.5 Test results and comparison of loss sensitivity calculation (Case 5: All units
on AGC except unit 3 under station HOLDEN in Area 3)

Loss Sensitivity Loss Sensitivity
Station, Area AGC Distributed Distributed
Generator No. Unit Generation Slack Load Slack
DOUGLAS, G2 1 YES 0.015100 0.017000
DOUGLAS, G1 1 YES 0.012100 0.014000
DOUGLAS, CT1 1 YES 0.009900 0.011800
DOUGLAS, CT2 1 YES 0.009900 0.011800
DOUGLAS, ST 1 YES 0.009700 0.011600
HEARN, G1 1 YES -0.016500 —-0.014600
HEARN, G2 1 YES -0.016500 —0.014600
LAKEVIEW, G1 1 YES —-0.018800 —-0.017000
BVILLE, 1 2 YES -0.001000 —0.004200
WVILLE, 1 2 YES 0.000700 —0.002500
CHENAUX, 1 3 YES —-0.008500 —0.008900
CHEALLS, 1 3 YES 0.021600 0.021200
CHEALLS, 2 3 YES 0.021600 0.021200
HOLDEN, 1 3 NO 0.001400 0.001000
NANTCOKE, 1 3 YES —-0.011800 —0.012200

reference, respectively. The loss factors computed from the distributed unit
reference are listed in column 4 of Tables 3.1-3.5. The loss factors computed
from the distributed load reference are listed in column 5 of Tables 3.1-3.5.

Generally, the values of loss sensitivities based on the generation reference
are different from those based on the load reference, because the distribution
of the units is not exactly the same as the distribution of loads in the power
system. The loss factors will be close or equal if the units are close to the load
locations. This can be observed from Table 3.1, where all units are on AGC
status. For the 60-bus system, each load in Area 3 has at least one unit con-
nected, so the loss factors in Area 3 are the same for both the distributed
generation slack and the distributed load slack.

It is noted from Tables 3.1-3.5 that the loss sensitivity factors based on the
distributed load slack are the same whether the status of the units is changed
or not. But the loss factors based on the distributed generation references are
changed since the AGC status of the units are different.

Generally, the change of AGC status of the units only affects the loss sen-
sitivities in the same area that these units belong to.

It can be seen from Tables 3.2 and 3.3 that, when AGC status of the
units in Area 1 changes, only the loss factors in Area 1 are affected. The loss
factors in the other areas are unchanged. For Table 3.5, when AGC status of
the units in Area 3 changes, only the loss factors in Area 3 are affected. The
loss factors in the other areas are unchanged. But for Table 3.4, there is no
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Table 3.6 Test results of loss sensitivity calculation (distributed slack vs single slack)

Loss Sensitivity ~ Loss Sensitivity

Station, AGC Loss Sensitivity Single Slack, Single Slack,
Generator Unit  Distributed Slack HOLDEN 1 Douglas ST
DOUGLAS, G2 YES 0.017000 0.016016 0.005463
DOUGLAS, G1 YES 0.014000 0.013013 0.002428
DOUGLAS,CT1  YES 0.011800 0.010811 0.000202
DOUGLAS,CT2  YES 0.011800 0.010811 0.000202
DOUGLAS, ST YES 0.011600 0.010611 0.000000
HEARN, G1 YES -0.014600 —0.015616 -0.026507
HEARN, G2 YES —0.014600 —-0.015616 —0.026507
LAKEVIEW, Gl  YES -0.017000 —0.018018 —0.028936
BVILLE, 1 YES —0.004200 —0.005205 —0.015985
WVILLE, 1 YES —0.002500 —0.003504 —0.014265
CHENAUX, 1 YES —0.008900 —0.009910 —-0.020741
CHEALLS, 1 YES 0.021200 0.020220 0.009713
CHEALLS, 2 YES 0.021200 0.020220 0.009713
HOLDEN, 1 YES 0.001000 0.000000 —-0.010724
NANTCOKE, 1 YES -0.012200 —-0.013213 -0.024079

AGC unit in Area 2; this means that there is no unit reference in Area 2. Then
the AGC units in the other areas will pick up the power mismatch (i.e., Area
1 in this case). Thus the loss factors in Areas 1 and 2 are changed. The loss
factors in the other areas are unchanged.

Through the above comparisons, it can be observed that the method of
distributed load references for loss sensitivity calculation is superior to the
method of distributed generation references in the real-time energy markets,
since the AGC status of the units are changeable in the real-time system.

The results of loss sensitivity calculation for a single slack, which are com-
puted from the proposed formula (3.24), are shown in Table 3.6. Column 3 in
Table 3.6 is the set of the loss sensitivity coefficients for the distributed
slack buses. Column 4 in Table 3.6 is the set of loss sensitivity factors with a
single slack bus at the location of HOLDEN 1. Column 5 in Table 3.6 is the
set of loss sensitivity factors with a single slack bus at the location of
DOUGLAS.

It is noted that all the loss sensitivities are nonzero if the distributed slacks
are selected. If the single slack is selected, the loss sensitivity of the slack equals
Zero.

Since the loss sensitivity values based on the distributed slacks from EMS
are unchanged as long as the system topology is the same, the loss sensitivities
for any market-based single slack can be easily and quickly acquired by use
of the loss sensitivity formula (3.24). Therefore, a large amount of computation
is avoided whenever the loss sensitivities for a market-based reference are
needed in the real-time energy markets.
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For example, in a practical system with 25,000 buses, the CPU time of com-
puting loss factors is about 60 seconds with the traditional power flow calcula-
tion but less than 0.1 second if the proposed method is used. This is a huge
time saving in the real-time energy markets.

To verify the correctness of the loss sensitivity equation (3.24), the loss
factors are computed and compared with the traditional power flow calcula-
tion. The results and comparison are shown in Figures 3.5 and 3.6 as well as
Tables 3.7 and 3.8, in which column 3 is the set of results from the power flow
calculation and column 4 is the set of results from equation (3.24). Table 3.7
shows the comparison of loss factor results for single slack bus at HOLDEN-1.
Table 3.8 shows the comparison of loss factor results for single slack bus at
DOUGLAS-ST.
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Table 3.7 Comparison of loss sensitivity calculation results for single slack bus at

HOLDEN-1 (proposed method vs power flow method)

Loss Sensitivity,

Loss Sensitivity,

Station, AGC HOLDEN 1— HOLDEN 1—

Generator Unit PF Method Equation (3.24) [Error %l
DOUGLAS, G2 YES 0.016029 0.016016 0.08110
DOUGLAS, G1 YES 0.013053 0.013013 0.30644
DOUGLAS, CT1 YES 0.010817 0.010811 0.05547
DOUGLAS, CT2 YES 0.010817 0.010811 0.05547
DOUGLAS, ST YES 0.010621 0.010611 0.09415
HEARN, G1 YES —-0.015630 -0.015616 0.08957
HEARN, G2 YES —-0.015630 -0.015616 0.08957
LAKEVIEW, G1 YES -0.018110 -0.018018 0.50801
BVILLE, 1 YES -0.005220 -0.005205 0.23002
WVILLE, 1 YES —-0.003500 —0.003504 0.02855
CHENAUX, 1 YES —0.009920 —0.009910 0.11088
CHEALLS, 1 YES 0.020247 0.020220 0.13335
CHEALLS, 2 YES 0.020247 0.020220 0.13335
HOLDEN, 1 YES 0.000000 0.000000 0.00000
NANTCOKE, 1 YES —-0.013240 -0.013213 0.20393

Table 3.8 Comparison of loss sensitivity calculation results for single slack bus at

Douglas-ST (proposed method vs power flow method)

Loss Sensitivity,

Loss Sensitivity,

Station, AGC Douglas ST— Douglas ST—

Generator Unit PF Method Equation (3.24) |[Error %I
DOUGLAS, G2 YES 0.005467 0.005463 0.07317
DOUGLAS, G1 YES 0.002421 0.002428 0.28914
DOUGLAS, CT1 YES 0.000202 0.000202 0.14829
DOUGLAS, CT2 YES 0.000202 0.000202 0.14829
DOUGLAS, ST YES 0.000000 0.000000 0.00000
HEARN, G1 YES —0.026530 —0.026507 0.08669
HEARN, G2 YES -0.026530 —0.026507 0.08669
LAKEVIEW, G1 YES —0.028950 —0.028936 0.04836
BVILLE, 1 YES —0.016000 —0.015985 0.09999
WVILLE, 1 YES —0.014280 —0.014265 0.10504
CHENAUX, 1 YES -0.020770 —-0.020741 0.13962
CHEALLS, 1 YES 0.009714 0.009713 0.01029
CHEALLS, 2 YES 0.009714 0.009713 0.01029
HOLDEN, 1 YES —-0.010730 —-0.010724 0.07454
NANTCOKE, 1 YES —0.024090 —0.024079 0.02491
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The difference or error of the results between the proposed method and
the power flow method is obtained from the following equation:

LFpy (i) — LFpr (7) .
|Error%| = | . x100%| ien (3.87)
| LFPF (l)

where

Error %:The percentage of the computation error for the proposed formula
LFpy: The loss factor computed from the proposed method
LFpr: The loss factor obtained with the traditional power flow calculation

It can be seen from Tables 3.7 and 3.8 that the loss sensitivity results from
the two methods are very close. The maximum error is less than 0.6%.

3.7.2 Sample Computation for Constrained Shift Factors

Tables 3.9-3.12 are the results of the detected constraint and the correspond-
ing shift factors. The results for the constraint branch T525 at Station
CHENAUX are listed in Table 3.9.

In Table 3.10, column 1 is the name of the station and the units. Column 2
is the area number that the unit belongs to. Column 3 is the AGC status of
the unit. Column 4 is the unit participation factors. Column 5 is the set of the
shift factors of the constraint T525 with respect to the units for the EMS-based
reference at station DOUGLAS.

It is noted that all the shift factors are zero for the units in Area 1 for the
EMS-based reference since the reference is located in Area 1 and all units in
Area 1 are close to the reference unit. If the market-based slack is selected,
the shift factors for the market-based reference can be easily obtained from
equations (3.57) and (3.58).

Table 3.11 shows the shift factors of the constraint T525 with respect to the
units for the market-based reference at the location of HOLDEN 1 and
BVILLE, respectively. The relationships of the shift factors to different refer-
ences are also shown in Figure 3.7.

Table 3.12 shows the area-based shift sensitivity factors of the constraint
T525, which are computed based on unit shift factors and participation factors
within the area. If the unit participation factors change, the value of the area-
based sensitivity will be changed.

Table 3.9 Example of the active constraint (branch T525 at station Chenaux)

Actual Flow Constraint Percent of
Constraint Name Rating (MVA) (MVA) Deviation Violation

Branch T525 1171.4 1542.7 371.3 131.7
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Table 3.10 Test results of shift factors for the active constraint T525 at EMS reference

(station DOUGLAS)

Unit Shift Factors on
Station, Area Unit in Participation EMS Reference at
Generator No. Serve Factor Station DOUGLAS
DOUGLAS, G2 1 YES 1.5 0.000000
DOUGLAS, G1 1 YES 1.8 0.000000
DOUGLAS, CT1 1 YES 1.2 0.000000
DOUGLAS, CT2 1 YES 1.6 0.000000
DOUGLAS, ST 1 YES 0.9 0.000000
HEARN, G1 1 YES 0.5 0.000000
HEARN, G2 1 YES 0.8 0.000000
LAKEVIEW, G1 1 YES 1.1 0.000000
BVILLE, 1 2 YES 1.2 -0.013650
WVILLE, 1 2 YES 1.3 —-0.024336
CHENAUX, 1 3 YES 1.7 0.617887
CHEALLS, 1 3 YES 0.6 0.521795
CHEALLS, 2 3 YES 1.9 0.521795
HOLDEN, 1 3 YES 2.2 0.304269
NANTCOKE, 1 3 YES 0.7 0.291815

Table 3.11 Test results of shift factors for the active constraint T525 at different

market references

Shift Factors on

Shift Factors on

Station, Area  Unitin  Market Reference at Market Reference
Generator No. Serve Station HOLDEN at Station BVILLE
DOUGLAS, G2 1 YES —0.304269 0.013650
DOUGLAS, G1 1 YES —0.304269 0.013650
DOUGLAS, CT1 1 YES —0.304269 0.013650
DOUGLAS, CT2 1 YES -0.304269 0.013650
DOUGLAS, ST 1 YES -0.304269 0.013650
HEARN, G1 1 YES —-0.304269 0.013650
HEARN, G2 1 YES -0.304269 0.013650
LAKEVIEW, G1 1 YES -0.304269 0.013650
BVILLE, 1 2 YES -0.317919 0.000000
WVILLE, 1 2 YES —-0.328605 0.010686
CHENAUX, 1 3 YES 0.313618 0.631537
CHEALLS, 1 3 YES 0.217526 0.535445
CHEALLS, 2 3 YES 0.217526 0.535445
HOLDEN, 1 3 YES 0.000000 0.317946
NANTCOKE, 1 3 YES -0.012454 0.305465




SIMULATION RESULTS 79

Table 3.12 Test results of area-based sensitivity for the active constraint T525 at
different references

Sensitivities on Sensitivities on Sensitivities on
EMS Reference Market Reference Market
Area at Station at Station Reference at
Area Name No. DOUGLAS HOLDEN Station BVILLE
EAST 1 0.000000 —-0.304269 0.013650
WEST 2 -0.019207 —0.323499 —0.005557
ECAR 3 0.454726 0.150458 0.468385
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FIGURE 3.7 The shift factors with different references

Table 3.13 shows the sensitivity factors of the transfer path with respect to
the constraint T525. There are four types of transfer paths:

(1) Transfer type 1—Area-Area: Both POR and POD (or SOURCE and

SINK) are areas.
(2) Transfer type 2—Single point: Both POR and POD (or SOURCE and

SINK) are single injection nodes.

(3) Transfer type 3—Point-Area: The POR (SOURCE) is a single injection
node and POD (SINK) is an area.

(4) Transfer type 4—Area-Point: The POR (SOURCE) is an area and POD
(SINK) is a single injection node.

It is noted from Table 3.13 that the sensitivity of the transfer path will be
the same no matter which reference is used.
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Table 3.13 Test results of sensitivity for transfer path for the active constraint T525 at
different references

Sensitivities Sensitivities

Sensitivities on on Market on Market
EMS Reference Reference Reference at
at Station at Station Station

Transfer Path Path Type DOUGLAS HOLDEN BVILLE
ECAR-WEST Area-Area 0.473933 0.473950 0.473940
WEST-EAST Area-Area -0.019207 -0.019230 -0.019207
ECAR-EAST Area-Area 0.454726 0.454727 0.454735
BV1-DOUGG1 Single point —-0.013650 -0.013650 -0.013650
WV1-DOUGG1 Single point —0.024336 —0.024336 —-0.024336
CX1-DOUGG1 Single point 0.617887 0.617887 0.617887
CS1-DOUGG1 Single point 0.521795 0.521795 0.521795
CS2-DOUGG1 Single point 0.521795 0.521795 0.521795
HD1-DOUGG1 Single point 0.304269 0.304269 0.304269
NK1-DOUGG1 Single point 0.291815 0.291815 0.291815
BV1-WV1 Single point 0.010686 0.010686 0.010686
CX1-CS1 Single point 0.096092 0.096092 0.096092
HD1-NK1 Single point 0.012454 0.012454 0.012454
HD1-BV1 Single point 0.317919 0.317919 0.317919
HD1-WV1 Single point 0.328605 0.328605 0.328605
BV1-EAST Point-Area -0.013650 -0.013650 -0.013650
HD1-EAST Point-Area 0.304269 0.304269 0.304269
HD1-WEST Point-Area 0.323476 0.323476 0.323476
WV1-ECAR Point-Area —0.479062 —-0.479062 —0.479062
EAST-WV1 Area-Point 0.024336 0.024336 0.024336
ECAR-BV1 Area-Point 0.468376 0.468376 0.468376
WEST-DOUGG1  Area-Point —-0.019207 -0.019207 -0.019207

3.7.3 Sample Computation for Voltage Sensitivity Analysis

The one line diagram of IEEE 14-bus system is shown in Figure 3.8. The cor-
responding parameters and data are listed in Tables 3.14 and 3.15.

Table 3.16 and Figure 3.9 show the major VAR support sites as well as the
corresponding benefit factors LBF and VBF for the IEEE 14-bus system. It
can be observed from Figure 3.9 that buses 9,11, 12, and 13 have relatively big
sensitivity values. The VAR supports at these locations will have bigger ben-
efits than other locations in IEEE 14-bus system.

3.8 CONCLUSION

This chapter introduces several approaches to compute the sensitivities in the
practical transmission network and energy markets. The analysis and imple-
mentation details of load sensitivity, voltage sensitivity, generator constraint
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FIGURE 3.9 Voltage sensitivity analysis of 14-bus system

shift factor, and area-based constraint shift factor are presented. The chapter
also comprehensively discusses how to compute the sensitivities under the
different references, as well as how to convert the sensitivities based on the
EMS system reference into those based on the market system reference. These
sensitivity calculations can be used to determine whether the online capacity
as indicated in the resource plan is located in the right place on the network
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Table 3.14 |EEE 14 bus network load and generator data

Bus MW Load MVAr Load Min Qg Max Qg
1 0.00 0.00 0.00 10.00
2 21.70 12.70 —40.00 50.00
3 94.20 19.00 0.00 40.00
4 47.80 0.00 0.00 0.00
5 7.60 1.60 0.00 0.00
6 11.2 7.50 -6.00 24.00
7 0.00 0.00 0.00 0.00
8 0.00 0.00 -6.00 24.00
9 29.50 16.60 0.00 0.00

10 9.00 5.80 0.00 0.00

11 3.50 1.80 0.00 0.00

12 6.10 1.60 0.00 0.00

13 13.50 5.80 0.00 0.00

14 14.90 5.00 0.00 0.00

Table 3.15 IEEE 14 bus network line data

Resistance Reactance Line Charging
From Bus To Bus (p-u.) (p.u.) (p-u.)
1 2 0.01938 0.05917 0.0528
1 5 0.05403 0.22304 0.0492
2 3 0.04699 0.19797 0.0438
2 4 0.05811 0.17632 0.0374
2 5 0.05695 0.17388 0.0340
3 4 0.06701 0.17103 0.0346
4 5 0.01355 0.04211 0.0128
4 7 0.00000 0.20912 0.0000
4 9 0.00000 0.55618 0.0000
5 6 0.00000 0.25202 0.0000
6 11 0.09498 0.19890 0.0000
6 12 0.12291 0.25581 0.0000
6 13 0.06615 0.13207 0.0000
7 8 0.00000 0.17615 0.0000
7 9 0.00000 0.11001 0.0000
9 10 0.03181 0.08450 0.0000
9 14 0.12711 0.27038 0.0000
10 11 0.08205 0.19207 0.0000
12 13 0.22092 0.19988 0.0000

13 14 0.17093 0.34802 0.0000
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Table 3.16 Voltage sensitivity analysis results for IEEE
14-bus systems

VAR Support Site LBF, VBF,

Bus 4 0.000376 0.000855
Bus 5 0.000337 0.000884
Bus 8 0.002309 0.001775
Bus 9 0.007674 0.001989
Bus 10 0.002618 0.002097
Bus 11 0.007407 0.002175
Bus 12 0.006757 0.002268
Bus 13 0.008840 0.002122

to serve the forecasted demand. This chapter will be especially useful for
power engineers since sensitivity analysis has already become daily work in
the power industry. Researchers, students, and power engineers will also have
the big picture on power system sensitivity analysis.
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CLASSIC ECONOMIC
DISPATCH

This chapter first introduces the input-output characteristic of a power-
generating unit as well as the corresponding practical calculation method, and
then presents several well-known optimization methods to solve the classic
economic dispatch problem. Finally, the applications of the latest methods
such as neural network and genetic algorithms to classic economic dispatch
(ED) are analyzed in the chapter.

4.1 INTRODUCTION

The aim of real power economic dispatch (ED) is to make the generator’s fuel
consumption or the operating cost of the whole system minimal by determin-
ing the power output of each generating unit under the constraint condition
of the system load demands. This is also called the classic economic dispatch,
in which the line security constraints are neglected [1]. The fundamental of the
economic dispatch problem is the set of input-output characteristic of a power-
generating unit.

4.2 INPUT-OUTPUT CHARACTERISTIC OF GENERATOR UNITS

4.2.1 Input-Output Characteristic of Thermal Units

For thermal units, we call the input-output characteristic the generating
unit fuel consumption function, or operating cost function. The unit of the
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generator fuel consumption function is Btu per hour heat input to the unit (or
MBtu/h). The fuel cost rate times Btu/h is the $ per hour ($/h) input to the
unit for fuel. The output of the generating unit will be designed by Pg, the
megawatt net power output of the unit.

In addition to the fuel consumption cost, the operating cost of a unit
includes labor cost, maintenance cost, and fuel transportation cost. It is difficult
to express these costs directly as a function of the output of the unit, so these
costs are included as a fixed portion of the operating cost.

The thermal unit system generally consists of the boiler, the steam turbine,
and the generator. The input of the boiler is fuel, and the output is the volume
of steam. The relationship of the input and output can be expressed as a convex
curve. The input of the turbine-generator unit is the volume of steam, and the
output is the electrical power. A typical boiler-turbine-generator unit consists
of a single boiler that generates steam to drive a single turbine-generator set.
The input-output characteristic of the whole generating unit system can be
obtained by combining directly the input-output characteristic of the boiler
and the input-output characteristic of the turbine-generator unit. It is a convex
curve, which is shown in Figure 4.1.

It can be observed from the input-output characteristic of the generating
unit that the power output is limited by the minimal and maximal capacity of
the generating unit, that is,

PGmin S PG S PGmax (41)

The minimal power output is determined by technical conditions or other
factors of the boiler or turbine. Generally, the minimum load at which a unit
can operate is influenced more by the steam generator and the regenerative
cycle than by the turbine. The only critical parameters for the turbine are shell
and rotor metal differential temperatures, exhaust hood temperature, and

AF

Input (MBtu/h or $/h)

P Gmin P Gmax P G
Output (MW)

FIGURE 4.1 Input-output characteristic of the generating unit



INPUT-OUTPUT CHARACTERISTIC OF GENERATOR UNITS 87

rotor and shell expansion. Minimum load limitations of the boiler are gener-
ally caused by fuel combustion stability, and the values, which will differ
with different types of boiler and fuel, are about 25-70% of design capacity.
Minimum load limitations of the turbine-generator unit are caused by inherent
steam generator design constraints, which are generally about 10-15%. The
maximal power output of the generating unit is determined by the design
capacity or rate capacity of the boiler, turbine, or generator.

Generally, the input-output characteristic of the generating unit is non-
linear. The widely used input-output characteristic of the generating unit is a
quadratic function, i.e.,

F=aP:+bP;+c (4.2)

where a, b, and ¢ are the coefficients of the input-output characteristic. The
constant ¢ is equivalent to the fuel consumption of the generating unit opera-
tion without power output, which is shown in Figure 4.1.

4.2.2 Calculation of Input-Output Characteristic Parameters

The parameters of the input-output characteristic of the generating unit may
be determined by the following approaches [2]:

(1) Based on the experiments of the generating unit efficiency
(2) Based on the historic records of the generating unit operation

(3) Based on the design data of the generating unit provided by
manufacturer

In the practical power systems, we can easily obtain the fuel statistic data
and power output statistic data. Through analyzing and computing a data set
(Fy, P), we can determine the shape of the input-output characteristic and
the corresponding parameters. For example, if the quadratic curve is the best
match according to the statistical data, we can use the least squares method
to compute the parameters. The calculation procedures are below.

Let (F;, P;) be obtained from the statistical data, where k = 1,2, ... n, and
the fuel curve will be a quadratic function. To determine the coefficients a, b,
and ¢, compute the following error for each data pair (F;, Py):

AFk = (aP,f + bPk + C)— Fk (43)

According to the principle of least squares, we form the following objective
function and make it minimal, i.e.,

J=(AF) =Y (aP?+bP +c-F,) (4.4)

k=1
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We will get the necessary conditions for an extreme value of the objective
function when we take the first derivative of the above function J with respect
to each of the independent variables a, b, and ¢ and set the derivatives equal
to zero:

=

a—J= Zsz(aPk2+bPk+c—Fk)=0 (45)
da (=
a ¢ i
- = 2Pk(aPk +bPk+C—Fk):O (46)
b =
Y A
— = Z(aPk +bPk+C—Fk)=O (47)
dc o

From equations (4.5)-(4.7), we get

(ng)cH(ng)bﬂqc: F, (4.8)

k=1
(iPk3ja+(iszjb+( " ijc= > (FP) (49)
k=1 k=1 k=1 k=1
( y Pk4)a+(iPk3)b+( szjc= y (Fksz) (410)
k=1 k=1 k=1 k=1

Coefficients a, b, and ¢ can be obtained by solving equations (4.8)—(4.10).

Example 4.1

We collected some statistical data for a generating unit in one power plant.
The capacity limits of the generator are

150 < P; £200

Four data samples of unit fuel consumption are selected, i.e., 0.405, 0.379,
0.368, and 0.399 (Btu/MW-h), which correspond to power output of 150,
170, 185, and 200 (MW), respectively. The corresponding fuel consumptions
are computed and listed in Table 4.1.

From Table 4.1, we get:

ZPk =150+170+185+200 = 705

k=1

PZ=150"+170% +185% +200* = 1.256 x 10°
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FIGURE 4.2 Four statistic data points

Table 4.1 Four data samples for a generating unit

Sample Data K=1 K=2 K=3 K=4
Unit consume fuel (Btu/MW.h) 0.405 0.379 0.368 0.399
Power output (MW) 150.0 170.0 185.0 200.0
Consume fuel (Btu/h) 60.75 64.43 68.08 79.80

z P! =150*+170* +185* +200* = 4.112x 10°

k=1

z F, =60.75+64.43+68.08 + 79.80 = 273.06

k=1

z F. P, =60.75x 150+ 64.43x 170+ 68.08 x 185+ 79.80 x 200 = 4.86 x 10*

k=1

2 F. P? =60.75x150% + 64.43x 170% + 68.08 x 185 + 79.80 x 200>
k=1 =8.75%x10°

From equations (4.8)—(4.10), we get
1.256 x 10°a+705b + 4¢ = 273.06
2.2619x107a+1.26 x10°h +705¢ = 4.86 x 10*
4.112x10%a+2.26x10’b+1.26 x10°¢ = 8.75x 10°

Solving these equations, we get the coefficients of the fuel consumption
function of the generating unit:
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a=0.0009, b=0.0457, ¢=31.9
The obtained quadratic fuel consumption function is as below:
F =0.0009P3 +0.0457 P; +31.9

The simulated input-output curve is shown in Figure 4.3. It is noted that
the accuracy of calculation will be increased if more data samples are used.

4.2.3 Input-Output Characteristic of Hydroelectric Units

The input-output characteristic of the hydroelectric unit is similar to that of
the thermal unit, but the input is different, which is expressed in terms of
volume of water per unit time. The unit of water volume is m*h. The output
is the same, i.e., electric power. Figure 4.4 shows a typical input-output curve
of a hydroelectric unit where the net hydraulic head is constant. This charac-
teristic shows an almost linear curve of input water volume requirements per

100 -
95
90 -
85 -
80
70 -
65
60
55
50 T T 1

100 150 200 250
FIGURE 4.3 Simulated input-output curve
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FIGURE 4.4 Hydroelectric unit input-output curve
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FIGURE 4.5 Hydroelectric unit input-output curve with variable water head

unit time as a function of power output as the power output increases from
minimum to rated load. Above this point corresponding to the rated load, the
water volume requirements increase as the efficiency of the unit falls off.

Figure 4.5 shows the input-output curve of a hydroelectric plant with vari-
able head. This type of characteristic occurs whenever the variation in the
storage pond and/or afterbay elevations is a fairly large percentage of the
overall net hydraulic head.

4.3 THERMAL SYSTEM ECONOMIC DISPATCH NEGLECTING
NETWORK LOSSES

4.3.1 Principle of Equal Incremental Rate

Given a system that consists of two generators connected to a single bus
serving a received electrical load Pp. The input-output characteristics of two
generating units are Fi(Pg;) and F,(Pg,), respectively. The total fuel consump-
tion of the system F is the sum of the fuel consumptions of the two generating
units. Assuming there is no power output limitation for both generators,
the essential constraint on the operation of this system is that the sum of the
output powers must equal the load demand. The economic power dispatch
problem of the system, which is to minimize F under the above-mentioned
constraint, can be expressed as:

minF:E(PG1)+F2(PG2) (411)
s.t.

Foir+ FPar= P (4.12)
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According to the principle of equal incremental rate [1], the total fuel con-
sumption F will be minimal if the incremental fuel rates of two generators are
equal, that is,

dr, dF,
dFs1  dFs,

(4.13)

i

where is the incremental fuel rate of generating unit #, which corresponds

Gi
to the slope of the input-output curve of the generating unit.
If two generators operate under the different incremental fuel rate, and

dF - dF,
dFs:  dFs:

the total output powers maintain the same. If generator 1 reduces output
power AP, generator 2 will increase output power AP. Then generator 1

dF

will reduce fuel consumption AP, and generator 2 will increase fuel

G1
dr,

consumption AP.The total savings of fuel consumption will be

G2

_df,

AF =
dFs:

ap—db AP:( df, _ dF )AP>0 (4.14)
dPG2 dPG1 dPGZ

It can be observed from equation (4.14) that AF will be zero when
dF, dE
drg,  dFs,

, that is, the incremental fuel rates of two generators are equal.

Example 4.2

The input-output characteristics of two generating units are as follows:

F1 = OOOOSPGzl + 0.2P01 +5 Btll/h
F2 = OOOOSPGZZ + 0.3P02 +4 Btl,l/h

We wish to determine the economic operation point for these two units
when delivering a total of 500MW power demand.

First of all, we can obtain the incremental fuel rate of two generating
units as follows:

A = df =0.0016P;, +0.2

Gl
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ro=3E _0001P,,+03

G2

According to the principle of equal incremental rate [equation (4.13)], we
have

A=A,
That is,
0.0016 P, +0.2=0.001F5, +0.3

or

1.6 5y — P, =100
Given a system load of 500 MW, then

Psi+ Ps, =500

Solving the above two equations for Pg;, P, We get

P =230.77 MW

Py =269.23 MW

Example 4.3

Suppose the input-output characteristics of two generating units are a little
different from those of Example 4.2, which are as follows:

We still wish to determine the economic operation point for these two units
when delivering a total of 500 MW power demand.

First of all, we can obtain the incremental fuel rate of two generating
units as follows:
_ 4R

G1

A

=0.0016 P4, +0.02

Ay = dF, =0.001P5, +0.03

G2
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According to the principle of equal incremental rate [equation (4.13)], we
have

A=A,
that is,
0.0016 P5; +0.02 = 0.001P5, +0.03
or
1.6P; — Ps>, =10
Given a system load of 500MW, then
Pgi+ Ps, =500
Solving the above two equations for Pg;, Pg,, we get

4.3.2 Economic Dispatch without Network Losses

4.3.2.1 Neglect the Constraints of Power Output The equal incre-
mental principle can be used for a system with N thermal-generating units.
Given that the input-output characteristics of N generating units are F;(Pg,),
Fy(Pgy), ..., F,(Pg,), respectively, the total system load is Pp. The problem is
to minimize total fuel consumption F subject to the constraint that the sum of
the power generated must equal the received load. That is,

min F = Fi(Fs1) + B (FPg) +-+ F,(Fs,) = zE(PGi) (4.15)

i=1

s.t.

N
Y Poi=Ppy (4.16)
i=1
This is a constrained optimization problem, and it can be solved by the
Lagrange multiplier method. First of all, the Lagrange function should be
formed by adding the constraint function to the objective function after the
constraint function has been multiplied by an undetermined multiplier.

L:F+X(PD—§:PG,-) (4.17)

i=1
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where A is the Lagrange multiplier.

The necessary conditions for the extreme value of the Lagrange function
are to set the first derivative of the Lagrange function with respect to each of
the independent variables equal to zero.

oL _9F 50 i=1,2,...,N (4.18)
oF;;  OF;
or
OF
=A i=12,....N 4.19
T i (4.19)

Since the fuel consumption function of each generating unit is only related
to its own power output, equation (4.19) can be written as:

dF
dF

=\ i=1,2,...,N (4.20)

or

df, _dR _  dFy _, (4.21)
dFs1  dFs, dFPsn

Equation (4.20) is the principle of equal incremental rate of economic power
operation for multiple generating units.

Example 4.4
Suppose the input-output characteristics of three generating units are as
follows:

F,=0.0006P5, +0.5P;, + 6 Btu/h

F,=0.0005P3, +0.6 P, + 5 Btu/h

F;=0.0007P3; + 0.4 P53 + 3 Btu/h

We wish to determine the economic operation point for these three units
when delivering a total of 500 MW and 800 MW power demand, respectively.

(A) Total load Pp = SOOMW
The incremental fuel rates of three generating units are calculated as
follows:
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_dF,
G1

7\.2 = ﬂ = 0001PGZ + 06
dFg,

As= dF; =0.0014P5;+0.4

G3

M =0.0012F5,+0.5

According to the principle of equal incremental rate, we have
M=k =2;
That is,
0.0012P5, +0.5=0.001F5, + 0.6 =0.0014 P55 + 0.4
From the above equation, we get

1.2PGI _PGZ = 100
1'2PG1 _1'4PGS = —100

Given a system load of S00MW, then
PG1+PG2+PG3:500
Solving the above three equations for Pgi, Pg,, Pss we get

Py, =172.897 MW
Py, = 107.477 MW
Py =219.626 MW

The corresponding system incremental fuel rate under this load level is

A =0.70748

(B) Total load Pp = 800MW
Similar to (A), we get the following equations:

1'2PG1_PG2 =1OO
1'2PG1 _1'4PGS = —100
PG1+P62+PG3=800

Solving the above three equations for Pgi, Py, Pgs, We get
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P, =225234 MW

The corresponding system incremental fuel rate under this load level is

A =0.82523

4.3.2.2 Consider the Constraints of Power Output We have discussed
the equal incremental principle of economic operation. Thus we know that the
necessary condition for thermal power system economic operation is that
the incremental fuel rates (or incremental cost rates) of all the units are equal.
However, we have not considered the two inequalities, i.e., the power output
of each unit must be greater than or equal to the minimum power permitted
and must also be less than or equal to the maximum power permitted on that
particular unit.

Considering the inequality constraints, the problem of economic dispatch
can be written as below:

N
min F = F(Ps) + F> (Poy) +++++ F,(Po,) = 3 F(Pa;) (422)
i=1
S.t.
N
> Poi=Py (4.23)
i=1
PGimin < PGi S PGimax (424)

The equal incremental principle can be still applied to equations (4.22)—(4.24).
The calculation process is as below:

(1) Neglect the inequality equation (4.24). Distribute the power among the
units according to the equal incremental principle.

(2) Check the power output limits for each unit according to equation (4.24).
If the power output is out of the limits, set the power output equal to the
corresponding limit, that is,

If PGk 2 Pkaaxa PGk = Pkaax (4-25)
If PGk < Pkaim PGk = Pkain (4-26)

(3) Handle the violated unit as a negative load, i.e.,

PSi=—Pgi for violated units k (k =1, ... nk)
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(4) Recompute the power balance equation as below:

iPGi:PD‘{':Zk]PISk (4.27)
ienk
or
N nk
iz],PGi:PD—;PGk (4'28)

ignk

(5) Go back to step (1) until all inequalities of units are met.

Example 4.5

Example 4.3 is used here but considering the inequality constraints of two
units, which are given as below:

100 £ P5, <250 MW
150 < P5, <300 MW
From Example 4.3, we know the economic operation point for these two
units without inequalities when delivering a total of 500 MW power demand.
That is,
P51 =196.15 MW
P5,=303.85 MW
By checking the inequality constraints of units, we can see that the power

output of unit 2 violated its upper limit. Thus we set the power output of
unit 2 to its upper limit.

Psr=303.852300(Psamax ) Por =300 MW
So the power dispatch becomes

Py =200 MW
Py, = 300 MW

Example 4.6

Example 4.4 is used here but considering the inequality constraints of three
units, which are given as below.
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100 < P5; £ 250 MW

100 < Py, <250 MW

100 < P53 <350 MW
(A) Total load Pp = S00MW

When delivering a total of S00MW power demand, the dispatch from
Example 4.4 is

FPs, =107.477T MW

By checking the inequality constraints of units, we know that all the power
outputs of the units are within the limits. Thus they are the optimum results,
and there is no violation of the inequality constraints.

(B) Total load Py, = 800MW
When delivering a total of 800MW power demand, the dispatch from
Example 4.4 is

Py =271.028 MW
Py, = 225.234 MW
Pys = 303.738 MW

By checking the inequality constraints of units, we can see that the
power output of unit 1 violated its upper limit. According to equation (4.25),
we get

P =250 MW
According to equation (4.27), we have

P3y=-250 MW
From equation (4.28), we get the new power balance equation

Pss + Ps; =800-250 =550

Applying the principle of equal incremental rate for units 2 and 3, we have

r=-3E 00012, +06

G2
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ra=-35 _00014P,,+0.4

G3

A=Az
that is,
0.001P5, +0.6 =0.0014 P55 +0.4
Then we can get the following two equations

PGZ _1’4PG3 = —200
PG2+PG3:550

Solving the above the equations, the power dispatch becomes

Py, =237.5 MW
Pss=312.5 MW

4.4 CALCULATION OF INCREMENTAL POWER LOSSES

Network losses are neglected in the previous sections on economic dispatch.
It is much more difficult to solve the economic dispatch problem with network
losses than the previous cases with no losses. There have been two general
approaches to compute the network losses and the corresponding incremental
power losses. The first is the development of a mathematical expression for
the losses in the network solely as a function of the power output of each of
the units. This is called the B-coefficient method. The other method is based
on power flow equations. The details on how to compute incremental power
losses are discussed in Chapter 3. Here, we just describe the simple B-coefficient
method.

Let S; be plural power losses of the network, and the corresponding real
and reactive power losses will be Py and Q. The plural power losses equal the
sum of the plural power injections of nodes, which can be expressed as

S =P +j0 =V'I (4.29)
V=2 (4.30)
Z=R+jX (4.31)

=1+l (4.32)
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where

V: Node voltage

I: Node current

Iy: Node current component corresponding to real power

I5: Node current component corresponding to reactive power
Z: Node impedance matrix
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Substituting equations (4.30)—(4.32) into equation (4.29), we get the real power

losses as below:
P.=I'RIp+ IERIQ

The node current can also be expressed as

j_BtiO _P+jO (P+j0)e
[ Vi Ve v
Since
e’ = cos0; + jsin®;
Thus

j= (P, +j0O;)(cos®; + jsin®;)
- 2

From equation (4.36), we get

_ (P cos6; +0Q;sin0;)

Iy %

_ (P:sin®; -, cosH;)

I,
! vV

Substituting equations (4.37) and (4.38) into equation (4.33), we get

netr @y Tallo)

Where the elements of A and B are

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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Ao R;jcos(0;-9))

) 4.40

j Vv, (4.40)
_ R;sin(6,-6;)

=y (4.41)

Suppose each node power consists of power generation and power demand.
Then node power and matrices A and B can be divided into two parts, i.e.,

P =[B! B] (442)

Q'=[0i 03] (443)

A=l:AGG AGDi| (4.44)
ADG ADD

B= [BGG BGD} (4.45)
BDG BDD

Substituting equations (4.42)—(4.45) into equation (4.39), we get

-B P, P,
netn il L qffle wo
GG G G G
where
I pT T App _BDD:||:PD:|
c=lm QD][BDD App L Op (47
CGD = 2(BGDQD - AGDPD) (4-48)
CDG = 2(BgGPD - ASGQD) (4-49)

Assuming the relationship between real and reactive power output of the
generator is linear, i.e.,

Qai = Qcoi — D Fa; (4'50)
equation (4.46) can be written as
P.=PIB.P;+B},P;+B, (4.51)
where

BL = FAGGF + AGG + 2FBGG (452)
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Blly=2050(As6F + Bsg) + Cho F + Cép (4.53)
By = 060Ac6Q60 + CpsQco +C (4.54)

Equation (4.51) is the B-coefficient formula of network losses. The incre-
mental power losses can be obtained from equation (4.51):

0P,
0P

4.5 THERMAL SYSTEM ECONOMIC DISPATCH WITH
NETWORK LOSSES

Considering the network power losses, the problem of thermal system eco-
nomic dispatch can be written as below.

N
minF = F(FPs) + B (FPgy) +-+ F,(FPg,) = ZE(PGi) (4.56)
i1
s.t.
N
ZPGi:PD+PL (4.57)
i1
PGimin < PGi < PGimax (458)

The Lagrange function is written as:

N
L=F+x(PD+PL—ZPG,.) (4.59)

i=1

The necessary conditions for the extreme value of the Lagrange function
are to set the first derivative of the Lagrange function with respect to each of
the independent variables equal to zero.

oL _dF _ (1_ BPLJZ() i=1,2,....,N (4.60)
aPGi dPGi aPGi

or
dF; 1 dfi o =12, N (4.61)

X =
dPGi (1_ aIJL ) dPGi
oFs;
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where

1

o)
0P

is the correction coefficient of network losses.

Considering the network losses, the equal incremental principle of classic
economic dispatch can be written as

a; =

(4.62)

dfi o —% i=1.2,...N (4.63)
dFs;
or
dE aq = d[:2 ay =--- dFN [lN:7\, (464)
dPg;; dFs, dFey

Equation (4.64) is also called the coordination equation of economic power
operation.

The solution procedure of thermal system economic power dispatch is as
follows.

(1) Pick a set of starting values Pg; that sum to the load.
(2) Calculate the incremental fuel ——.
Gi

53

(3) Calculate the incremental losses as well as the total losses.

Gi
(4) Calculate the value of A and Pg; according to the coordination equation
(4.64) and the power balance equation.
(5) Compare the Pg; from step (4) with the starting points Pg. If there is no
significant change in any one of the values, go to step (6); otherwise go
back to step 2.

(6) Done.

4.6 HYDROTHERMAL SYSTEM ECONOMIC DISPATCH

4.6.1 Neglect Network Losses

The hydrothermal system economic dispatch is usually more complex than the
economic operation of an all-thermal generation system. All hydro-systems
are different. The reasons for the differences are the natural differences in the
watersheds, the differences in the manmade storage and release elements used
to control the water flows, and the very many different types of natural and
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manmade constraints imposed on the operation of hydroelectric systems. The
coordination of the operation of hydroelectric plants involves the scheduling
of water release. According to the scheduling period, the hydro-system opera-
tion can be divided into long-range hydro-scheduling and short-range hydro-
scheduling problems.

The long-range hydro-scheduling problem involves the long-range forecast-
ing of water availability and the scheduling of reservoir water release for an
interval of time that depends on the reservoir capacities. Typical long-range
scheduling goes anywhere from 1 week to 1 year or several years. For hydro
schemes with a capacity of impounding water over several seasons, the long-
range problem involves meteorological and statistics analysis. Here we focus
on the short-range hydro-scheduling problem.

Short-range hydro-scheduling refers to time periods from 1 day to 1 week.
It involves the hour-by-hour scheduling of all generations on a hydrothermal
system to achieve minimum production cost (or minimum consumption fuel)
for the given time period.

Let Pr, F(Pr) be the power output and input-output characteristic of a
thermal plant, and let Py, W(Py) be the power output and input-output char-
acteristic of a hydro-electric plant. The hydrothermal system economic dis-
patch problem can be expressed as

min £ = | F[Py(n)]dr (4.65)
s.t.

Pa(t)+ Pr(t)— Py (1) = 0 (4.66)

WP (0)]dr- W, =0 (4.67)

We divide the operation period 7 into s time stages
T=Y Ay (4.68)
k=1

For any time stage, suppose that the power output of the hydro plant and the
thermal plant as well as load demand are constant. Then equations (4.66) and
(4.67) are changed as

Pae + P = P =0, k=1,2,....s (4.69)

Y W( P Aty =Wy =Y WA ~ Wy =0 (4.70)
k=1 k=1
The objective function (4.65) is also changed as

Fy=Y F(Pp)At =Y FAl (4.71)

k=1 k=1
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The Lagrange function is written as:

L =Y FAti =Y M (P + Pric — Por) At + y(ZWkAtk —sz (4.72)

k=1 k=1 k=1

The necessary conditions for the extreme value of the Lagrange function are

oL dw,
= Aty =M AL =0 k=1,2,...,s 4.73
P APy T “473)
oL dF,
= Aty =M AL =0 k=1,2,...,s 4.74
oPy, dp, ¢ T 474
JL
_:_(PHk+PTk_PDk)Atk:0 k:1,2,...,s (475)
oAy
a—L=ZWkAtk—WZ=O (4.76)
e =

From equations (4.73) and (4.74), we get

dF, dw,
= = 7\’ k = 1’ 2, ceey 4-77
APy APy " ’ @77

If the time stage is very short, equation (4.77) can be expressed as

dr dw
—=y—=A (4.78)
dPr dPy

Equation (4.78) is the equal incremental principle of hydrothermal system
economic dispatch. It means that when the thermal unit increases power
output AP, the incremental fuel consumption will be

aF =3 Ap (4.79)
dP;

When the hydro unit increases power output AP, the incremental water con-
sumption will be

AW = dw
dPy

AP (4.80)

From equations (4.78)—(4.80), we obtain
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y=AE (4.81)
AW

where v is the coefficient that converts water consumption to fuel. In other
words, the water consumption of a hydro unit multiplied by 7y is equivalent to
the fuel consumption of a thermal unit. Thus the hydro unit is equivalent to a
thermal unit.

Generally, the value of vy is related to given water consumption of a hydro
unit during a time period (e.g., 1 day). If the given water consumption is big,
the hydro unit can produce more power output to meet the load demand. In
this case, a smaller value of y will be selected. Otherwise, a bigger value of y
will be selected. The calculation procedures of hydrothermal system economic
dispatch are as below.

(1) Given a initial value y(0), set iteration number k = 0

(2) Compute power distribution for the hydrothermal system for all time
stages according to equation (4.77).

(3) Check whether the total water consumption W(k) equals the given water
consumption, i.e.,

|W(k)-Ws|<e (4.82)

If this is met, stop calculation; otherwise, go to the next step.

(4) If W(k) > Ws, it means that the selected yis too small. Make y(k + 1) > y(k).
If W(k) < Wy, it means that the selected vy is too big. Make y(k + 1) < y(k).
Go back to step (2).

Example 4.7

A system has one thermal plant and one hydro plant. The input-output
characteristic of the thermal plant is

F =0.00035P% +0.4P; + 3 Btu/h
The input-output characteristic of the hydro plant is
W =0.0015P3 +0.8P; +2 m’/s
The daily water consumption of the hydro plant is
Ws=15%x10" m?

The daily load demands of the system are as shown in Figure 4.6.
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FIGURE 4.6 Daily load demands for Example 4.7

The power output limit of the thermal plant is
50 £ Pr <600 MW
The power output limit of the hydro plant is
50 £ Py <450 MW
The problem is to determine the economic dispatch for this hydrothermal
system.
According to the input-output characteristics of the thermal plant and

the hydro plant and equation (4.78), we get the coordination equation as
below:

0.0007 Py +0.4 = y(0.003 P4 +0.8)
From the load curve, we know that there are three time stages. The loads
are the same within each time stage. Thus, for each time stage, we get the
corresponding power balance equation:
PHk+PTk:PDk k:1,2,3

From the above two equations, we get

_ 0.4-0.8y+0.0007 Py

Py = k=123
0.003y +0.0007

P = —0.4+ 0.8y +0.003yPp, k=1.2.3
0.003y +0.0007

Select the initial value of y as 0.5. For the first time stage, the load level is
350MW; we get
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_0.4-0.8x0.5+0.0007 x 350

- =111.36 MW
0.003x 0.5 +0.0007

= —04+0.8x0.5+0.003x0.5%350 _ o0 0y i
0.003 % 0.5 +0.0007

For the second time stage, the load level is 700 MW; we get

_0.4-0.8x0.5+0.0007 x 700

. = 22272 MW
2 T0.003% 0.5+ 0.0007
o _—04+08X0.5+0003x05X700 o\
2= 0.003%0.5+0.0007 o

For the third time stage, the load level is 500 MW; we get

0.4-0.8x0.5+0.0007 x 500

o =159.09 MW
"7 T0.003%0.5+0.0007
oo -0.4+0.8x0.5+0.003x0.5x500 340.91 MW
= 0.003% 0.5+0.0007 o

According to the power output of the hydro plant and the input-output
characteristic of the hydro plant, we can compute the daily water
consumption:

Wy =(0.0015%x111.36% + 0.8 x 111.36 + 2) x 8 x 3600 +
(0.0015x222.72* + 0.8 X 222.72 + 2) x 10 x 3600 +
(0.0015%159.09% + 0.8 x 159.09 + 2) x 6 x 3600 = 1.5936858 x 10" m’

The water consumption is greater than the daily given amount. So increase

the value of v, say let y = 0.52, and recompute the power output. For the
first time stage, the load level is 350 MW; we get

~0.4-0.8x0.52+0.0007 x 350

0.003x0.52 +0.0007
P = —-0.4+0.8x0.52+0.003%0.52 x 350 248,67 MW
0.003x0.52 +0.0007

For the second time stage, the load level is 700 MW; we get

. _ 04-0.8x0.52+0.0007x 700
B 0.003%0.52 +0.0007

=209.73 MW
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Table 4.2 lteration process of Example 4.7

Iteration Y Py (MW) Py (MW) Py (MW) Ws (10'm?)
1 0.5000 111.360 222.720 159.090 1.5936858
2 0.5200 101.330 209.730 147.790 1.4628090
3 0.5140 104.280 213.560 151.110 1.5009708
4 0.5145 104.207 213.463 151.031 1.5000051

~ —0.4+0.8%x0.52+0.003 x0.52 x 700

= = 490.27 MW
0.003%0.52+0.0007

For the third time stage, the load level is 500 MW; we get

~0.4-0.8x0.52+0.0007 x 500

P —147.79 MW
3 0.003 % 0.52 +0.0007
. 04+0.8x0.52+0.003x0.52X500 _ 1oy i
" 0.003 % 0.52 +0.0007 '

Then the daily water consumption can be computed as:

Wy =(0.0015x101.33% + 0.8 x 101.33+2) x 8 x 3600 +
(0.0015%209.73% + 0.8 x 209.73 + 2) x 10 x 3600 +
(0.0015x147.79% + 0.8 x 147.79 + 2) x 6 x 3600 = 1.462809 x 10" m?

The water consumption is less than the daily given amount. So reduce
the value of yand recompute the power output until the water consumption
equals the daily given amount, or equation (4.82) is satisfied. The iteration
process is listed in Table 4.2.

After the fourth iteration, the water consumption almost equals the daily
given amount. Stop the calculation.

4.6.2 Consider Network Losses

Suppose there are m hydro plants and »n thermal plants. The system load is
given in the time period. The given water consumption of hydro plant j is Wy;.
The hydrothermal system economic dispatch with network loss can be
expressed as below:

min F; = ZJOTF [Py (0)]dt (4.83)
i=1

s.t.
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j=1 i=1
[ WPy 0)]de-Wy =0 (4.85)

Similar to Section 4.6.1, we divide the operation period 7 into s time stages

T=Y A (4.86)
We get
F= Fi (Pryc) Aty (4.87)
i=1 k=1
> P+ Prc— P —Pox =0 k=1,2,....s (4.88)
j=1 i=1
zmk(Pij)Atk_Wz/':O, j:1,2,...,m (489)

k=1

The Lagrange function will be

L=22Ek(PTik)Atk Zxk(zpﬂjk*‘zPTzk Pi- PijAtk

i=1 k=1 j=1 i=1

ZY,(Z i (Puai) Aty — Wz,'j (4.90)

The necessary conditions for the extreme value of the Lagrange function
are

oL dWj,

0P
=155
aPH]k dPH/k

d Hijk

Atk Xk(l— )A[k=0 ]=1,2,,m, k=1,2,,s

(4.91)

oL _ dF, Atk—xk(1—aPLk

_— At,=0 i=1,2....,n, k=12,....,s 4.92
Py dPry ) g (492)

Tik

oL _ [ZPH]k+ZPM P, - PijAtk_O k=12,....,s (4.93)
akk j=1 i=1

S

=Y Widy —-Wiz=0 j=1,2,.. (4.94)
a’Y/ k=1
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From equations (4.91) and (4.92), we get

. dw.
by 1 =y, —x L =M k=1,2,...,s  (4.95)
dPTik 1- aPLk dPH/k 1-— aPLk

aP"l"ik aPH}'k

Equation (4.95) is true for any time stage, i.e.,

dF, 1 aw, 1
! X = . X = }\, 496
dPTi l_aPL Y] dPH] 1_ aPL ( )
aPTi aPH/

Equation (4.96) is the coordination equation of hydrothermal system eco-
nomic dispatch considering network losses.

4.7 ECONOMIC DISPATCH BY GRADIENT METHOD

4.7.1 Introduction

We discussed the equal incremental principle for classical economic dispatch
in the previous sections. Generally, the equal incremental principle is good
only if the input-output characteristic of a generation unit is a quadratic func-
tion or the incremental input-output characteristic is a piecewise linear func-
tion [2]. But the input-output characteristic of the generating unit may be a
cubic function, or more complex. For example,

FG,=A+BPG,+CP(%,+DPG3,+

Thus other methods are needed to get the optimum solution for the above
function. We discuss the gradient method in this section.

4.7.2 Gradient Search in Economic Dispatch

The principle of the gradient method is that the minimum of a function, f(x),
can be found by a series of steps that always go to the downward direction.
The gradient of the function f(x) can be expressed as below:

Fof T
ox;

o
Vf = a.X'2 (497)

of

ox, |
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The gradient Vf always points to the direction of maximum ascent. If we
want to move in the direction of maximum descent, we negate the gradient.
Thus the direction of steepest descent for minimizing a function can be found
by use of the direction of the negative gradient. Given any starting point x°,
the new point x' should be obtained as below:

x'=x"—eVf (4.98)
where € is a scale that is used to process the convergence of the gradient

method.

Applying the gradient method to economic dispatch, the objective function
will be

N
minF =Y fi(P,) (4.99)
i=1
The constraint is the real power balance equation, i.e.,

N
> Poi=Py (4.100)

i=1

As mentioned before, to solve this classic economic dispatch problem, the
Lagrange function should be constructed first, i.e.,

i=1

The gradient of the Lagrange function is

[ oL ] _dfl(PGl)_k_

0P5; drs,
oL dfz(Pez)_x

0P5, drs,

VL=| ! |= : (4.102)

oL di(PGN)_7b

0Psy dPsy
oL <

el PD—E,PGi ]

To use the gradient VL to solve the economic dispatch problem, the starting
values P8, PY,, ..., P9y, and A" should be given. Then the new values will be
computed by the following equation:
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x'=x"—eVL (4.103)

where the vectors x', x° are

_ PG] -
P,
x0=| (4.104)
Foy
7\’0

i PGI
P
xl=| (4.105)
Poy

)\4]

The more general expression of the gradient search is as below:
x"=x""-¢eVL (4.106)

where n is the iteration number.
The calculation steps for applying the gradient method to classic economic
dispatch are summarized as below.

Step (1): Select the starting values PJy, P, ..., Pdy, where
P£1+P82+’-~~s+Pé)N=PD

Step (2): Compute the initial A for each generator.

7\‘() — dfl(PGz)

, i=1...,N
aPG,- P(Oii

Step (3): Compute the initial average incremental cost A’
1 N
A=—» A
N

Step (4): Compute the gradient as below:
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[AA(RY) o]
dFs,
de (PGOZ) 0
dFs,
VL' = :
dfv (Pén)
dFey

N
Po-Y Pl
i=1

A0

Step (5): If VL = 0, the solution converges. Stop the iteration. Otherwise, go
to the next step.

Step (6): Select a scale € for handling the convergence.

Step (7): Compute the new values Pgy, P, ..., Piy, A' according to equation
(4.106).

Step (8): Substitute the new values into equation (4.102) in Step 4, and
recompute the gradient.

Example 4.8
For the same data as in Example 4.4, solve for the economic dispatch with
a total load of 500 MW. The solution procedures are below.
Select the starting values PJ, =300, P, =150, Py =250, and
P((3)1+P((})2 +P((3)N:500

Compute the initial A} for each generator:

dfi(F61)

A0 = TG _ 0012150 +0.5 = 0.68
G1
0

2= UF62) _ (6015100 +0.6 = 0.70

G2
afs(PL

A= A50F65) _ 0 0014 %250+ 0.4 = 0.75
dFs;

Compute the initial average incremental cost A’

3
A= %ZX? = %(0.68 +0.7+0.75)=0.71
i=1
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Compute the gradient as below:

0.68-0.71
0.70-0.71

1:

0.75-0.71

—-0.03
-0.01
0.04

500 —(150+ 100+ 250) 0.00

Select a scale € = 300 for handling the convergence, and compute the

new values Py, Pls, ..., PAy, A" according to equation (4.106).
PL7 150 ~0.037 [159
Pl 100 -0.01 103
9% 1= -300 =
P || 250 0.04| | 238
Al 0.71 0.0 0.71

Then compute the new gradient as below:

(0.0012x159+0.5)-0.717 [-0.0192
~1(0.0010x103+0.6)-0.71 | | -0.0070
1(0.0014%238+0.4)-0.71| | 0.0232

2

500 — (159 +103 +238) 0.00
P27 159 ~0.01927 [164.76
P |_|103 | . |-00070|_|105.10
P | 238 0.0232| [231.04
2 | o7t 0.0 0.71

Once again compute the new gradient.

(0.0012 x164.76 +0.5)—0.71 -0.0123
_— (0.0010x105.10+0.6)-0.71 | |-0.0049
T 1(0.0014%231.04+0.4)-0.71 | | 0.01346

500—-(164.76 +105.1+231.04) —0.900

The gradient VL # 0, so compute new solution.

P2, T164.76 -0.0123 168.45
P, | |105.10 0 ~0.0049 | |107.80
P3| |231.04 0.01346 | |227.00

5 0.71 —-0.900 270.71
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The iterations have led to no solution since the element A in the gradient
had huge jump and cannot be converged. To solve this problem, we present

three methods as below.

4.7.2.1 Gradient Method 1 In the calculation of the gradient, the element

A will be removed from the gradient, that is,

[ oL ] _dfl(PGl)_}\‘

elae dPs,
oL dfs (Fs2) Y

VL = BPGZ = dP02

OL | | dfy(Pon)
_aPGN R L dPGN

(4.107)

We always set the value of A equal to the average of the incremental cost of
the generators at the iterated generation values, that is,

oL $Tu0)]

N dF

Example 4.9

(4.108)

Reworking example 4.8 using gradient method 1, the results are shown in

Table 4.3.

This solution is much more stable and is converging to the optimum
solution. However, gradient method 1 cannot guarantee that the total
outputs of the generators meet the total load demand.

4.7.2.2 Gradient Method 2 This method is modified from method 1, but
we need to check the power balance equation each time when we finish the

iteration of gradient calculation. The method is as fo

Table 4.3 Gradient method 1 results (¢ = 300)

llows.

Tteration P P, Pgs A

0 150 100 250 0.71

1 159 103 238 0.709

2 164.46 104.8 230.74 0.708396
3 169.7388 105.5388 226.348 0.7086

4 171.21 106.4688 223.888 0.7085

5 172.11 107.0688 222.418 0.7083

6 172.65 107.4288 221.518 0.7082
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N
If 2 (P%) > Pp,select the unit with the maximal incremental generation cost
i=1
to pick up the power difference:

=F GkS -
}\vmax .

1

M=

Kk’
PGS

(P&)—PD) (4.109)

I
_

N
If z (P&) < Py, select the unit with the minimal incremental generation cost
i=1

to pick up the power difference:

Kk’
PGS

_ Pl +(pD —gN;(Pé;)) (4110)

max
1

Then recompute the average incremental generation cost, and conduct a new
iteration.

Example 4.10

Reworking Example 4.9 using gradient method 2, the results are shown in
Table 4.4.

This solution is much more stable and is converging to the optimum
solution. Obviously, gradient method 2 can guarantee that the total outputs
of generators meet the total load.

4.7.2.3 Gradient Method 3 This method is similar to method 2 but with
some simplification. One fixed unit is selected as the slack machine. For
example, selecting the last unit as the slack generator, we get

N-1

PGN:PD_Z(PGi) (4-111)

i=1

Table 4.4 Gradient method 2 results (¢ = 300)

Iteration P Ps, Pss P A

0 150 100 250 500 0.71

1 159 103 238 500 0.709

2 164.46 104.8 230.74 500 0.708396
3 169.7388 105.5388 224.7224%* 500 0.70793
4 171.0108* 106.2678 222.7214 500 0.7078

*The corresponding unit is selected to balance the total generations and total load.
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The objective function becomes
F=fi(Fs)+ fo(Poa)+, ..., fn (Fon)

:ﬁ(PG1)+f2(PG2)+v---»fN(PD_Z(PGi)) (4.112)

i=1

The gradient will become

[ dF i _d_fl(PGl)_di(PGN) i
dPs; dFPs, dPsy
dF dfs(Fs2)  dfn (Pon)
VF=|dPs, |=| dPs | dPoy (4.113)
dr dfin-n (Pov-n) — dfy (Pon)
LdPsv-n ] | dPowv-y dFsy

The gradient iteration will be the same as before:

x"=x""1-¢VF (4.114)
and
PG]
x= :Pm (4.115)
PG(N—I)
Example 4.11

Reworking Example 4.8 using gradient method 3, the results are shown in
Table 4.5.

This solution is also stable and is converging to the optimum solution,
which is similar to method 2. Obviously, gradient method 3 can also
guarantee that the total outputs of generators meet the total load.

Table 4.5 Gradient method 5 results (¢ = 300)

Iteration PGl PGZ PG3 onml
0 150 100 250 500
1 171 115 214 500
2 169.32 110.38 220.3 500
3 170.8908 109.792 219.3172 500
4 171.4728 108.937 219.59 500
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4.8

CLASSIC ECONOMIC DISPATCH

CLASSIC ECONOMIC DISPATCH BY GENETIC ALGORITHM

4.8.1 Introduction

Another type of method that is used to solve the classic economic dispatch
problem is Genetic Algorithm (GA) [3-5]. The theoretical foundation for GA
was first described by Holland and was extended by Goldberg. GA provides
a solution to a problem by working with a population of individuals each
representing a possible solution. Each possible solution is termed a “chromo-
some.” New points of the search space are generated through GA operations,
known as reproduction, crossover, and mutation. These operations consistently
produce fitter offspring through successive generations, which rapidly lead the
search toward global optima. The features of GA are different from other
search techniques in the following aspects:

(1) The algorithm is a multipath that searches many peaks in parallel,

hence reducing the possibility of local minimum trapping.

(2) GA works with a bit string encoding instead of the real parameters. The

coding of parameter will help the genetic operator to evolve the current
state into the next state with minimum computations.

(3) GA evaluates the fitness of each string to guide its search instead of

the optimization function. The genetic algorithm only needs to evaluate
objective function (fitness) to guide its search. There is no requirement
for the operation of derivatives.

(4) GA explores the search space where the probability of finding improved

performance is high.

The main operators of GA used are:

.

.

Crossover operator is applied with a certain probability. The parent gen-
erations are combined (exchange bits) to form two new generations that
inherit solution characteristics from both parents. Crossover, although
being the primary search operator, cannot produce information that does
not already exist within the population.

Mutation operator is also applied with a small probability. Randomly
chosen bits of the offspring genotype flip from 0 to 1 and vice versa to
give characteristics that do not exist in the parent population. Generally,
mutation is considered as a secondary but not useless operator that gives
a nonzero probability to every solution to be considered and evaluated.

Elitism is implemented so that the best solution of every generation is
copied to the next so that the possibility of its destruction through a
genetic operator is eliminated.

Fitness scaling is referred to a nonlinear transformation of genotype
fitness in order to emphasize small differences between near-optimal
qualities in a converged population.
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The GA-type algorithms are actually unconstrained optimization; all infor-
mation must be expressed in a fitness function. As mentioned at the beginning
of this chapter, the classic economic dispatch problem neglects the network
losses and network constraints. Thus the fitness function for classic ED can be
easily formed.

4.8.2 GA-Based ED Solution

According to Section 4.3, the classic economic dispatch problem can be stated
as below:

min F = iF,—(PG,-) (4.116)

i=1
s.t.

N
> Poi=Py (4.117)
i=1
In the application of GA to economic dispatch, the outputs of the N — 1
“free generators” can be chosen arbitrarily within limits while the output of
the “reference generator” (or slack bus generator) is constrained by the power
balance. It is assumed that the Nth generator is the reference generator. GAs
do not work on the real generator outputs themselves, but on bit string encod-
ing of them. The output of the free generators is encoded in string, for example,
an 8-bit string (an unsigned 8-bit integer) that gives a resolution of 2° discrete
power values in the range (Pgmin, Pomax)- These (N — 1) strings are concatenated
to form a consolidated solution bit string of 8 * (N — 1) bits called the genotype.
A population of m genotypes must be initially generated at random. Each
genotype is decoded to a power output vector. The output of the reference
unit is
N-1

Poy=Po— Y Py (4.118)
i=1
Adding penalty factors 4, &, to the violation of power output of the slack bus
unit, we can combine equations (4.117) and (4.118) as below:

N
Fy= ZE(PGi) + i (Pon = Ponmax)” + Mo ( Poymin = Pon)’ (4.119)
i=1
where Pgymin, Povmax are the lower and upper limits of the power output of the
slack bus unit, respectively. The value of the penalty factors should be large so
that there is no violation for unit output at the final solution.
Since GA is designed for the solution of maximization problems, the GA
fitness function is defined as the inverse of equation (4.119).

1
Eitness = F_ (41203)

A
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In the economic dispatch problem, the problem variables correspond to the
power generations of the units. Each string represents a possible solution and
is made of substrings, each corresponding to a generating unit. The length of
each substring is decided based on the maximum/minimum limits on the power
generation of the corresponding unit and the solution accuracy desired. The
string length, which depends on the length of each substring, is chosen based
on a trade-off between solution accuracy and solution time. Longer strings
may provide better accuracy but result in more solution time. Thus the step
size of the unit can be computed as follows:

_ PGimax B PGimin

T (4.120b)

i

where # is the length of the substring in binary codes corresponding to a unit.
For example, there are six units in a system, and the sixth unit is selected
as the slack bus unit. The power output limits of the five free units are.
20 < P51 <100 (MW)
10 £ P5, <100 (MW)
50 £ P53 <200 (MW)
20< P54 <120 (MW)
50 £ P55 <250 (MW)

If the length of the substring in binary codes is selected as 4, the step size
of each unit will be

g = PGlmax4_ PGlrnin — 100_ 20 = 533 MW
24 -1 15

€, = Fo2max = Foomin = 100-10 =6.00 MW
24 _1 15

83 — PG3max - PGSmin — 200_ 50 = 1000 MW
24 -1 15

€4= Foamax = P amin = 12020 =6.67 MW
241 15

€s5= Fosmax = Fsmin = 25050 =13.33 MW
24 _1 15

If the lIength of the substring in binary codes is selected as 5, the step size

of each unit will be
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_ PGlmax _PGlmin _ 100—20

e, : =258 MW
251 31

¢, = Lormn = Foomin _ 10010 _, g\ iy
2°-1 31

= PG3max5_ Fa3min — 200-50 =4.84 MW
251 31

€= Foamn = Poamin _ 120=20 _ 5 501y
25-1 31

e, = Fasmn = Posmin _ 25030 _ 0 s iy
251 31

It can be observed that the long string has a smaller step size, which verifies
that the length of the substring in binary codes has an effect on the solution
accuracy and solution speed.

In standard GAs, all the strings in the population are reformed during a
generation. Parents are crossed on the basis of their performance in compari-
son to the average fitness of the population, and mutation is allowed to occur
on the offspring. The selective pressure is provided by the fitness measure; the
differential need not be great to achieve good results. Both selective pressure
and initial population sizes may be tuned to match the problem space. The
type of crossover and rate of mutation need to be selected based on the
problem type. For a large-scale power system, there are many generators. If
the standard GA is used to economic dispatch, it appears to increase perfor-
mance. Little improvement on GA operator is needed; that is, we do not
replace the entire population with each generation. Instead, it probabilistically
chooses two parents to reform into two offspring. Recombination and muta-
tion occur, and then one of the offspring is discarded randomly. The remaining
offspring is placed in the population according to its fitness in relation to the
rest of the strings. The lowest-valued string is discarded. This keeps high-valued
strings within the population, directly accumulating high-performance hyper-
planes. It also bases the reproductive opportunity on rank within the popula-
tion, not on a string’s fitness value in comparison with the average of the
population, reducing the impact of selective pressure fluctuation. It also
reduces the importance of choosing a proper evaluation function for fitness in
that the difference in the fitness function between two adjacent strings is
irrelevant.

To use GA programming to solve classic economic dispatch, the following
parameters are needed for data input.

+ Number of chromosomes (that comprise a generation)
+ Bit resolution per generator
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+ Number of cross-points
+ Number of generations
Initial crossover probability (%)
Initial mutation probability (%)

+ Minimal power output of each unit
+ Maximal power output of each unit

Status of the unit
» Coefficient of unit cost function
Total load demand

Example 4.12

For example 4.6, using genetic algorithm to distribute the 500-MW load to
three units. The GA parameters are selected as follows

* Number of chromosomes = 100

+ Bit resolution per generator = 8

+ Number of cross-points = 2

+ Number of generations = 9000

+ Initial crossover probability = 92%
+ Initial mutation probability = 0.1%

The total load is SO0 MW, the output results are as below:

Py =172.897 MW
Py, = 107.477 MW
Py =219.626 MW

4.9 CLASSIC ECONOMIC DISPATCH BY HOPFIELD
NEURAL NETWORK

Since Hopfield introduced the neural network in the early 1980s [6], the
Hopfield neural networks (HNNs) have been used in many different applica-
tions. This section presents the application of HNN to the classic economic
dispatch problem [7-10].

4.9.1 Hopfield Neural Network Model

Let u; be the ith input of the neuron and V; its output. Suppose there are N
neurons that are connected together; the nonlinear differential equations of
HNN are described as below:
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du,

G ZT Vi + (4.121)
V= g(u) i=1, 2 ,N
where
1 N
_:ei“‘zTi/
R P (4.122)
Vi=g(w)

are the nonlinear characteristic of the neuron.
For a very high gain parameter A of the neuron, the output equation can
be defined as

1

( u; + 9, j
1+exp| ——
2]
where 6; is threshold bias.
The energy function of the system (4.121) is defined as

Vi=g(hu)= g(;‘—) = (4.123)

E:—%ii T,ViV; - iv,uz j g (V)av (4.124)

i=1 11

N
_
I
=N

From equation (4.124), we get

dE _ a—Eﬂ (4.125)
dar —~dV, dt
where
oE 1
—=—=YTV,- ZT v +——1
a‘/l 2 - 7
1 u;
=—E;(7}i—7})vj—(zTyvj—E+Lj
1 du
22‘( ! L dr
=—§2(T,-i—Ti,-)v,-—cz-[g-%vi)]'% (4.126)
j

Substituting equation (4.126) into equation (4.125), we get
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dE 1 dv; dv;
= —-SN(T,-T;)V, T (V: ( j 4.127
G — 3 2TV g -Gl vl (4.127)

Since the weight parameter matrix 7' in equation (4.121) is symmetric, we have
T,=T, (4.128)
Substituting equation (4.128) into equation (4.127), we get

daE

———Clg (V)] [dv) (4.129)

dr
Since g' is a monotone increasing function, and C; > 0, thus

dE _
dt

— _Clg (V)] (d_‘;) 0 (4.130)

This shows that the time evolution of the system is a motion in state space
that seeks out minima in £ and comes to a stop at such points.

4.9.2 Mapping of Economic Dispatch to HNN

As discussed above, the classic economic dispatch problem without line secu-
rity can be written as:

N
min F = F(FPs1)+ B (FPoo) +-+ F,(Fs,) = zFi(PGi) (4.131)
i-1
s.t.
N
N Po=Pr+ P, (4.132)
i-1
PGimin < PGi < PGimax (4133)

assuming that the generator cost function is a quadratic function, that is,
E‘(PGi):aiPéi"'biPGi""Ci (4.134)

and the network loss can be represented by the B-coefficient

N N
ZZ P By Py (4.135)

i=1 j=1



CLASSIC ECONOMIC DISPATCH BY HOPFIELD NEURAL NETWORK 127

To apply HNN to solve the above classic economic dispatch problem, the fol-
lowing energy function is defined by augmenting the objective function (4.131)
with the constraint (4.132):

2
E= %A(PD +P - ZPG,-) - %BZ(a,«Pé,« +b,Ps; +¢;) (4.136)

By comparing equation (4.136) with equation (4.124), whose threshold is
assumed to be zero, the weight parameters and external input of neuron / in
the network [7] are given by

T,=-A- B, (4.137)
T,=-A (4.138)
1,.=A(PD+PL)—BTb" (4.139)

where the diagonal weights are nonzero.
The sigmoid function (4.123) can be modified to meet the power limit con-
straint as follows [7]:

1
_ui(k)+9i)

Uy

‘/z(k+1) =(Rmax _Rmin) +Pimin (4140)

1+exp(

To speed up convergence of the ED problem solved by HNN;, two adjust-
ment methods can be used [9].

4.9.2.1 Slope Adjustment Method Since energy is to be minimized and
its convergence depends on the gain parameter u,, the gradient descent method
can be applied to adjust the gain parameters.

uo(k-i-l):uo(k)—T]SgTE (4141)
0

where 1, is a learning rate.
From equations (4.136) and (4.140), the gradient of energy with respect to
the gain parameter can be computed as

JE < 9E oP,

9% 9% (4.142)
al/i() i aP, aLl()

The update rule of equation (4.141) needs a suitable choice of the learning
rate 1. For a small value of m,, convergence is guaranteed but the speed is too
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slow. On the other hand, if the learning rate is too big, the algorithm becomes
unstable. The suggested learning rate will be

2
0<ni<— (4.143)

g s,max
where

gs,max =max "gﬂ (k)"
OE (k (4.144)
g =220
duy
Moreover, the optimal convergence is corresponding to

1

2
&s.max

ni= (4.145)

4.9.2.2 Bias Adjustment Method There is a limitation in the slope adjust-
ment method, in which the slopes are small near the saturation region of the
sigmoid function. If every input can use the same maximum possible slope,
convergence will be much faster. This can be achieved by changing the bias to
shift the input near the center of the sigmoid function, that is,

0,(k+1)=6,00)-n, 5 (4.146)

where 1, is a learning rate.

The bias can be applied to every neuron as in equation (4.123). Thus, from
equations (4.136) and (4.140), the derivate of energy with respect to a bias can
be computed as

9E_OE IR (147)
00, 0JP 06,
The suggested learning rate will be
O<mp<— (4.148)
N0
where
av, v,

go(k)= 3. T; 5 0 (4.149)

]
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Moreover, the optimal convergence is corresponding to
1
8y (k)

Ny =— (4.150)

4.9.3 Simulation Results

The test example and results of applying HNN to ED are taken from reference
[9]. The system data are shown in Table 4.6. Each generator has three types of
fuels. There are four values of load demand, that is, 2400, 2500, 2600, and
2700 MW.

Table 4.6 Cost coefficients for piecewise quadratic cost function

Generation
Min P1 P2 Max
Unit F1 F2 F3 F c b a
1 100 196 250 250 1 .2697¢2 —.3975e0 2176e-2
1 2 2 2 2113e2 —.3059¢0 .1861e-2
2 2113e2 —.3059¢0 .1861e-2
2 50 114 157 230 1 .1184e3 —.1269¢1 4194e-2
2 3 1 2 .1865¢e1 —.3988e-1 .1138e-2
3 .1365e2 —.1980e-1 .1620e-2
3 200 332 388 500 1 .3979¢2 -.3116€0 .1457e-2
1 2 3 2 —.5914¢2 .4864e0 1176e-4
3 —.2876¢1l .3389%¢-1 .8035e-3
4 99 138 200 265 1 .1983e1 —3114e-1 .1049¢-2
1 2 3 2 .5285¢e2 —.6348¢e0 .2758e-2
3 .2668e3 —.2338e¢1 .5935e-2
5 190 338 407 490 1 .1392¢e2 —.8733e-1 .1066e-2
1 2 3 2 .9976e2 —.5206€0 .1597e-2
3 .5399¢2 .4462e0 .1498e¢-3
6 85 138 200 265 1 .5285¢e2 —.6348¢e0 .2758e-2
2 1 3 2 .1983e1l —3114e-1 .1049¢-2
3 .2668e3 —.2338¢1 .5935e-2
7 200 331 391 500 1 .1893e2 —-.1325¢0 1107e-2
1 2 3 2 4377e2 -.2267¢0 .1165¢e-2
3 —.4335e2 .3559¢0 2454e-3
8 99 138 200 265 1 .1983el —3114e-1 .1049¢-2
1 2 3 2 .5285e2 —.6348¢e0 2758¢-2
3 .2668¢e3 —.2338el .5935¢-2
9 130 213 370 440 1 .8853¢e2 -.5675€0 .1554e-2
3 1 2 2 .1530e2 —4514e-1 .7033¢e-2
3 .1423e2 —.1817e-1 .6121e-3
10 200 362 407 490 1 .1397¢2 —.9938e-1 .1102e-2
1 3 2 2 —.6113e2 .5084¢e0 4164e-4
3 4671e2 —.2024e0 1137e-2
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Table 4.7 Results for slope adjustment method with fixed learning rate, 1.0 (A) and
adaptive learning rate (B)

2400MW 2500MW 2600MW 2700MW
Unit A B A B A B A B
1 196.8 189.9 205.6 205.1 215.7 214.5 2232 224.6
2 202.7 202.9 206.7 206.5 2111 211.4 216.1 215.7
3 251.2 252.1 265.3 266.4 278.9 278.8 292.5 291.9
4 2325 2329 236.0 235.8 239.2 2393 242.6 242.6
5 240.4 241.7 257.9 256.8 276.1 276.1 294.1 293.6
6 2325 232.9 236.0 235.9 239.2 239.1 242.4 242.5
7 2525 253.4 269.5 269.3 286.0 286.7 303.5 303.0
8 2325 2329 236.0 235.8 239.2 239.3 2427 242.6
9 320.2 321.0 331.8 334.0 3434 343.6 355.8 355.7

10 238.9 240.4 255.5 254.4 271.2 271.2 287.3 287.8
Total P 2400.0 2400.0 2500.0 2500.0 2600.0 2600.0 2700.0 2700.0
Cost 481.83 481.71 52623 52623 57436 57437 62627 626.24
Iters 99,992 84,791 80,156 86,081 72,993 79,495 99,948 99,811
U 95.0 110.0 120.0 100.0 130.0 120.0 160.0 120.0
n 1.5 1.0E-04 1.0 1.0E-04 1.0 1.0E-04 1.0 1.0E-04

The ED results based on the slope adjustment method are shown in Table
4.7. Compared with the conventional Hopfield network, the number of itera-
tions is reduced to about one-half, and oscillation is drastically reduced from
about 40,000 to less than 100 iterations. In addition, the degree of freedom of
the system increases from 1, which is 1, to 2. It can be observed that the final
results of the adaptive learning rate are close to those of the fixed learning
rate.

The ED results based on the bias adjustment method are shown in Table
4.8, which are similar to those based on the slope adjustment method. For the
adaptive learning rate, the number of iterations is reduced and the final results
of the adaptive learning rate are better than those of the fixed learning rate.

APPENDIX: OPTIMIZATION METHODS USED IN
ECONOMIC OPERATION

Here we introduce several methods [10-17] that are used for economic power
operation of power systems.

Although a wide spectrum of methods exists for optimization, methods can
be broadly categorized in terms of the derivative information that is, or is not,
used. Search methods that use only function evaluations are most suitable for
problems that are very nonlinear or have a number of discontinuities. Gradient
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Table 4.8 Results for the bias adjustment method with fixed learning rate, 1.0 (A) and
adaptive learning rate (B)

2400MW 2500MW 2600MW 2700MW
Unit A B A B A B A B
1 197.6 189.4 208.3 206.7 212.4 217.9 221.4 228.8
2 201.6 201.8 206.2 205.8 209.6 210.5 213.8 214.1
3 252.3 253.5 265.2 265.6 280.0 278.8 293.3 292.0
4 232.7 232.9 235.9 235.8 238.8 239.0 242.1 2422
5 239.9 2421 2571 258.2 277.9 275.8 295.4 293.6
6 232.7 2329 2359 235.8 238.6 239.0 242.0 2421
7 251.5 253.8 268.3 269.4 288.1 285.5 305.3 302.6
8 2327 2329 235.8 235.8 238.8 239.0 2421 242.1
9 318.8 319.3 330.9 330.1 341.9 342.1 345.2 3523

10 240.3 241.6 256.4 256.9 274.0 272.3 290.4 290.1
Total P 2400.0 2400.0 2500.0 2500.0 2600.0 2600.0 2700.0 2700.0
Cost 481.83  481.72 52624 52623 57443 57437 62632 626.27
Iters 99,960 99,904 99,987 88,776 99,981 99,337 99,972 73,250

U 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
theta 0.0 50.0 0.0 50.0 0.0 50.0 0.0 100.0
n 1.0 1.0 1.0 5.0 1.0 5.0 1.0 5.0

methods are generally more efficient when the function to be minimized is
continuous in its first derivative. Higher-order methods, such as Newton’s
method, are only really suitable when the second-order information is readily
and easily calculated, because calculation of second-order information, using
numerical differentiation, is computationally expensive.

Gradient Method

Gradient methods use information about the slope of the function to dictate
a direction of search where the minimum is thought to lie. The simplest of
these is the method of steepest descent in which a search is performed in a
direction.

Sk =_Vf(x¥) (4A.1)

where Vf(x¥) is the gradient of the objective function.
The optimum search step can be computed as follows:

e LV VF ()
[VF(x)]" H (x*)VF(x*)

(4A2)

where H(x") is the Hessian matrix of the objective function.
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The gradient method based on equation (4A.2) is also called the optimum
gradient method. However, this method is very inefficient when the function
to be minimized has long, narrow valleys.

Line Search

Line search is a search method that is used as part of a larger optimization
algorithm. At each step of the main algorithm, the line search method searches
along the line containing the current point, x, parallel to the search direction,
which is a vector determined by the main algorithm. That is, the iteration form
of the method can be expressed as:

Xk =xk ted* (4A.3)

where x* denotes the current iterate, d* is the search direction, and € is a scalar
step length parameter.

The line search method attempts to decrease the objective function along
the line x* + ed* by repeatedly minimizing polynomial interpolation models of
the objective function. The line search procedure has two main steps:

The bracketing phase determines the range of points on the line
x**1 = x* + ed" to be searched. The bracket corresponds to an interval specifying
the range of values of €.

The sectioning step divides the bracket into subintervals, on which
the minimum of the objective function is approximated by polynomial
interpolation.

The resulting step length € satisfies the Wolfe conditions:

F(x*+edd) < f(x*)+oue(VF4) d (4A.4)
VF (x4 +ed*) d > o,e(Vf*) d* (4A.5)

where o, and o, are constants with 0 < o, < o, < 1.

The first condition (4A.4) requires that € sufficiently decreases the objective
function. The second condition (4A.5) ensures that the step length is not
too small. Points that satisfy both conditions (4A.4) and (4A.5) are called
acceptable points.

Newton—-Raphson Optimization

The Newton-Raphson optimization is also called the Newton method or the
Hessian matrix method.

The objective function can be approximately expressed by use of the
second-order Taylor series expansion at the point x*, that is,

fx)= f(xk)+[Vf(xk)]TAx+%AxTH(x")Ax (4A.6)
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The necessary condition that a quadratic function achieves the minimum
value is that its gradient equals zero.

Vi(x)=Vf(x*)+ H(x*)Ax=0 (4A.7)
Thus the general iteration expression is as below:
Xk = xk [ H (x%)] 'V (x5) (4A.8)

It is noted that the Hessian matrix H(x) will be constant if the original non-
linear objective function is a quadratic function. In this case, the minimum
value of the function will be obtained through one iteration only. Otherwise,
the Hessian matrix H(x) will not be constant, and multiple iterations are
needed to obtain the minimum of the function. The formula of the search
direction is

St =—[H (x")]" Vf (x*) (4A.9)

The advantage of the Hessian matrix method is fast convergence. The disad-
vantage is that it needs to compute the inverse of the Hessian matrix, which
leads to an expensive memory and calculation burden.

Trust-Region Optimization

The convergence of the Newton optimization method can be made more
robust by using trust regions (TR) [11]. TR-based methods generate steps
based on a quadratic model of the objective function. A region around the
current solution is defined, within which the model is supposed to be an
adequate representation of the objective function. Then a step is selected to
minimize this approximate model in the trust region. Both the direction and
the length of the step are chosen simultaneously. If a step is not acceptable,
the size of the region is reduced and a new solution is found. In general, the
step direction changes whenever the size of the trust region is altered [11].

Since the trust-region method uses the gradient g(x*) and the Hessian
matrix H(x"), it requires that the objective function f(x) have continuous first-
and second-order derivatives inside the feasible region. The general trust-
region problem is expressed as

min f = g7 (x*) Ax +%AxTH(x")Ax (4A.10)
s.t.
IAx] < & (4A.11)

where § is the trust region radius.
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The general idea of the trust region is to solve the subproblem represented
by equations (4A.10) and (4A.11) to obtain a point y*. Then the value of the
true objective function is calculated at y* and compared to the value predicted
by the quadratic model, to verify whether the point located in the trust region
represents effective progress toward the optimal solution. For this purpose,
the size of the trust region is critical to the effectiveness of each step.

In practice, the size of the region is determined according to the evolution
of the iterative process. If the model is sufficiently accurate, the size of the
trust region is steadily increased to allow bigger steps. Otherwise, the quadratic
model is inadequate, so that the size of the trust region must be reduced. To
establish an algorithm to control the trust region radius, define the reduction
ratio evaluated at the kth iteration

IRV A
Q(xk)_Q(ka) :
where J(x*) and Q(x*) are the values of the summation of the weighted
squared residuals for the actual objective function and the corresponding

approximated quadratic model, respectively, evaluated at the kth iteration.

Newton-Raphson Optimization with Line Search

This technique uses the gradient g(x*) and the Hessian matrix H(x*) and thus
requires that the objective function have continuous first- and second-order
derivatives inside the feasible region. If second-order derivatives are com-
puted efficiently and precisely, the method may perform well for medium-sized
to large problems, and it does not need many function, gradient, and Hessian
calls.

This algorithm uses a pure Newton step when the Hessian is positive defi-
nite and when the Newton step reduces the value of the objective function
successfully. Otherwise, a combination of ridging and line search is done to
compute successful steps. If the Hessian is not positive definite, a multiple of
the identity matrix is added to the Hessian matrix to make it positive definite.
In each iteration, a line search is done along the search direction to find an
approximate optimum of the objective function. The default line-search
method uses quadratic interpolation and cubic extrapolation.

Quasi-Newton Optimization

The (dual) quasi-Newton method uses the gradient g(x*) and does not need
to compute second-order derivatives since they are approximated. It works
well for medium to moderately large optimization problems where the objec-
tive function and the gradient are much faster to compute than the Hessian.

The method builds up curvature information at each iteration to formulate
a quadratic model problem of the form
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: T 1 T
min f(x)=b+c x+5x Hx (4A.13)

where the Hessian matrix, H, is a positive definite symmetric matrix, ¢ is a
constant vector, and b is a constant. The optimal solution for this problem
occurs when the partial derivatives of x go to zero, i.e.,

Vf(x*)= Hx*+c=0 (4A.14)
The optimal solution point, x*, can be written as
x*=-H"¢c (4A.15)

Newton-type methods (as opposed to quasi-Newton methods) calculate H
directly and proceed in a direction of descent to locate the minimum after a
number of iterations. Calculating H numerically involves a large amount of
computation. Quasi-Newton methods avoid this by using the observed behav-
ior of f(x) and Vf{(x) to build up curvature information to make an approxima-
tion to H with an appropriate updating technique.

A large number of Hessian updating methods have been developed.
However, the formula of Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
is thought to be the most effective for use in a general purpose method
[12-17].

The formula given by BFGS is

o, 45 (HY) (8Y) stH

HA' = HF + - = (4A.16)
(qk) Sk (Sk) HkSk
where
Sk =xft—xk (4A.17)
g =Vf(x") -V (x") (4A.18)

As a starting point, H can be set to any symmetric positive definite matrix,
for example, the identity matrix /. To avoid the inversion of the Hessian H, we
can derive an updating method that avoids the direct inversion of H by using
a formula that makes an approximation of the inverse Hessian H™' at each
update. A well-known procedure is the DFP formula of Davidon, Fletcher,
and Powell. This uses the same formula as the BFGS method (4A.16) except
that g* is substituted for S*.

The gradient information is either supplied through analytically calculated
gradients or derived by partial derivatives using a numerical differentiation
method via finite differences. This involves perturbing each of the design vari-
ables, x, in turn and calculating the rate of change in the objective function.
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At each major iteration, k, a line search is performed in the direction

d=—(H")"Vf(x*) (4A.19)

Double Dogleg Optimization

The double dogleg optimization method combines the ideas of quasi-Newton
and trust region methods. The double dogleg algorithm computes in each
iteration the step S* as the linear combination of the steepest descent or ascent
search direction S{ and a quasi-Newton search direction S%,

S = 0, S¥ + a1, Sk (4A.20)

The step is requested to remain within a prespecified trust region radius.
The double dogleg optimization technique works well for medium to moder-
ately large optimization problems where the objective function and the gradi-
ent are much faster to compute than the Hessian.

Conjugate Gradient Optimization

Second-order derivatives are not used by conjugate gradient optimization. As
we discussed above the method of steepest descent (or gradient method)
converges slowly. The method of conjugate gradients is an attempt to mend
this problem. “Conjugacy” means that two unequal vectors, S; and §;, are
orthogonal with respect to any symmetric positive definite matrix, for example,

0O,ie.,
S§70S;=0 (4A.21)

This can be looked upon as a generalization of orthogonality, for which Q
is the unity matrix. The idea is to let each search direction S; be dependent on
all the other directions searched to locate the minimum of f{x) through equa-
tion (4A.21). A set of such search directions is referred to as a Q-orthogonal,
or conjugate, set, and it will take a positive definite n-dimensional quadratic
function to its minimum point in, at most, n exact linear searches. This method
is often referred to as conjugate directions, and a short description follows.

The conjugate gradients method is a special case of the method of conjugate
directions in which the conjugate set is generated by the gradient vectors. This
seems to be a sensible choice since the gradient vectors have proved their
applicability in the steepest descent method, and they are orthogonal to the
previous search direction.

Subsequently, the mutually conjugate directions are chosen so that

S = Y f (xk*1) 4 BrSE (4A.22)
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where the coefficient ¥ is given by, for example, the so called Fletcher-Reeves
formula:

VO] V)

B (4A.23)
(V7 ()] VF ()
The optimum search step can be computed as follows.
k17 ok
g = VIS (4A.24)

(SK)" H (x*)S*

During n successive iterations, uninterrupted by restarts or changes in the
working set, the conjugate gradient algorithm computes a cycle of n conjugate
search directions. In each iteration, a line search is done along the search
direction to find an approximate optimum of the objective function. The
default line-search method uses quadratic interpolation and cubic extrapola-
tion to obtain a step size € satisfying the Goldstein conditions. One of the
Goldstein conditions can be violated if the feasible region defines an upper
limit for the step size.

Lagrange Multipliers Method

Suppose there are M constraints to be met; then the optimization problem can
be written as below:

min f(x;), i=12,...,N (4A.25)
S.t.

h(x)=0, i=12,....,N (4A.26)

h(x;)=0, i=12,...,N (4A.27)

hy(x;)=0, i=12,....,N (4A.28)

The optimum point would posses the property that the gradient of f(x) and
the gradient of &y, h,, and h,, are linear dependent, i.e.,

The scaling variable A is called a Lagrange multiplier.

In addition, we can write the Lagrange equation according to equations
(4A.25)-(4A.28).
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L(xi, 7LM) = f(xi)+7\.]h1(x,»)+7\.2h/2(x,~), ooy +7LMhM(x,) l= 1, 2, ooy N
(4A.30)

To meet the conditions stated in equation (4A.29), we simply require that the
partial derivate of the Lagrange function with respect to each of the unknown

variables, x, X5, ..., Xy and Ay, As, ..., Ay, be equal to zero. That is,
oL _,
axl
9L _,
ox,
N (4A.31)
oL
=0
o\,
IdL _,
o,
oL 0
oAy

Kuhn-Tucker Conditions

Ifinequality constraints are involved in the optimization problem, the optimum
is reached if the Kuhn-Tucker conditions are met, which can be stated as
below:

minf(x,), i=12,...,N (4A.32)
S.t.
h(x)=0, j=12,...M, (4A.33)
g(x)<0, j=1,2,....M, (4A.34)

The Lagrange function can be formed based on equations (4A.32)-(4A.34).

Mj, Mg
L(x, A ) =F(0)+ 2 Ahi(x)+ D 1,8, (x) (4A.35)

j=1 j=1

The Kuhn-Tucker conditions for the optimum for the points x*, A*, u* are
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JL
ax;
2. h(x*) =0, j=1,2,..., M,
3. g(x*)<0, j=1,2,..., M,
4w (x) =0, ui=0, j=1,2,... M,

(X*’A‘*vu*)=0, i:1,2,...,N

The first condition is the set of partial derivatives of the Lagrange function
that must equal zero at the optimum. The second and third expressions are a
restatement of the constraint conditions on the problem. The fourth is the
complementary slackness condition. Since the product u7g;(x*) equals zero,
ui equals to zero, g;(x*) equals to zero, or both equal to zero. If u7 equals to
zero, g;(x*) is free to be nonbinding; if U} is positive, gj(x*) must be zero. Thus
we can know whether the inequality constraint is binding or not by looking at
the value of p.
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SECURITY-CONSTRAINED
ECONOMIC DISPATCH

The security-constrained economic dispatch (SCED) is one of the simplified
optimal power flow (OPF) problems. It is widely used in power industry. This
chapter first introduces several major approaches to solve the SCED problem
such as linear programming, network flow programming, and quadratic pro-
gramming. Then, nonlinear convex network flow programming and the genetic
algorithm are added to attack the security-constrained economic dispatch
problem. The implementation details of these methods and a great number of
numerical examples are provided in this chapter.

5.1 INTRODUCTION

Chapter 4 analyzes the model and algorithm of the classic economic dispatch,
where the network security constraints are neglected. In practical power
systems, it is very important to solve the economic dispatch with network
security constraints. Mathematical optimization methods such as linear pro-
gramming, quadratic programming, and network flow programming as well as
genetic algorithms are applied to solve this problem [1-19].

5.2 LINEAR PROGRAMMING METHOD

5.2.1 Mathematical Model of Economic Dispatch with Security

The mathematical model of real power economic dispatch with security con-
straints can be written as follows (model M-1):

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
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Min F = Y fi(Ps) (5.1)
ieNG
Such that
S.t. z PGi: z PDk +PL (52)
ieNG keND
|P,«]-| SPjmax jeNT (5.3)
PGimin S PGi SPGimax ie NG (54)
Where

Pp: The real power load

P;: The power flow of transmission line #j

Pjjmay: The power limits of transmission line ij

Pg;: The real power output at generator bus i

Pgimin: The minimal real power output at generator i
Pgimax: The maximal real power output at generator i
Py: The network losses

fi: The cost function of the generator i

NT:The number of transmission lines

NG: The number of generators

Since the input-output characteristic of generator units and system power
losses are nonlinear functions, the real power economic dispatch model is a
nonlinear model. To use a linear programming method to solve security con-
strained economic dispatch, it needs to linearize the objective function and
constraints in the model.

5.2.2 Linearization of ED Model

5.2.2.1 Linearization of Objective Function Let the initial operation
point of generator i be PZ.. The nonlinear objective function can be expressed
by use of Taylor series expansion, and only the first two terms are considered,
that is,

[i(Pei) = fi (Pc?,-)+M APy, =bAP;; +¢
o lrg (5.5)

or
fi(APGi):bAPGi

where
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b= 4 (Fei) (5.6)
dFai g
e=f(PS) (5.7)
are constant and
APy = P, — P (5.8)

5.2.2.2 Linearization of Power Balance Equation Since loads are
constant for the given time, we can get the following expression through
linearizing the real power balance equation:

%(-3%)

ieNG

0
IGi

5.2.2.3 Linearization of Branch Flow Constraints The real power flow
equation of a branch can be written as follows:

P; = Vg —V,V;(g;cos8; +Db;sinb;) (5.10)
where

P;: The sending end real power on transmission branch ij
V;: The node voltage magnitude of node i

0,;: The difference of node voltage angles between the sending end and
receiving end of the line ij

i issi ij
b;: The susceptance of transmission branch
g The conductance of transmission branch ij

Through linearizing equation (5.10), we get the incremental branch power
expression as below:

In a high-voltage power network, the value of 6; is very small, and the fol-
lowing approximate equations are easily obtained:

sin®; =0 (5.12)
cos6; =1 (5.13)

In addition, assume that the magnitudes of all bus voltages are the same
and equal to 1.0 p.u. Furthermore, suppose the reactance of the branch is
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much bigger than the resistance of the branch, so that we can neglect the
resistance of the branch. Thus,

R (5.14)

g.. —_—————
YR+ X

X. X.
P R (5.15)

Substituting equations (5.12)—(5.15) into equation (5.11), we get

AB; —AD;
AP; =—b;A0; = —b; (A6; - Ae/’) = # (5.16)

ij
The above equation can also be written in matrix form, i.e.,
AP, = B’A0 (5.17)

Where the elements of the susceptance matrix B’ are

, 1
B =-Yb; (5.19)
j=1

i
From chapter 1, the bus power injection equation can be written as
PGi _PDi :sz(gl] COSG,-j+b,«j Sine,‘/‘) (520)
j=1

Since the load demand is constant, the linearization expression of the equa-
tion (5.20) can be written as below:

AP =V VP (~g;sin®jA8, + by cosbjAl;)

=1

=V?Y VP (~g;sin®j +b; cos6) A, (5.21)
j=1

The above equation can also be written in the following matrix form

AP; = HA® (5.22)
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Equation (5.22) stands for the relationship between the incremental gen-
erator output power (except for the generator that is taken as slack unit) and
the incremental bus voltage angle. Matrix H can also be simplified by using
equations (5.12)—(5.15).

According to equations (5.17) and (5.22), we can get the direct linear rela-
tionship between the incremental branch power flow and incremental genera-
tor output power, i.e.,

AP, = B’AO = B"H'AP; = DAP; (5.23)
where
D=BH"' (5.24)

is also called as the linear sensitivity of the branch power flow with respect to
the generator power output.

Thus the linear expression of the branch power flow constraints can be
written as

|DAP;|< APy (5.25)

The element of the matrix AP, is the incremental power flow limit AP,
of the branch jj, i.e.,

APijmau( = Pijmax - PI]O (526)

If the branch outage is considered in the real power economic dispatch, the
outage transfer distribution factors (OTDF) in Chapter 3 will be used. So the
sensitivity factor OTDF between branch ij and generator bus i when line / is
opened is written as

AP;
OTDE]’, = F = (S,], + LODFij,iS/,i) (527)

Gi

In this case, the branch power flow can be written as
AP; =(S;; + LODEF; S, )AFs; (5.28)
The matrix form of the above equation is
AP, = D'APs (5.29)
The corresponding branch power flow constraints are written as

|D,APG| < Af)b'max (530)
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Comparing with D, APy, in equation (5.25), D’, AF/n.x in equation (5.30)
consider the effect of the branch outage. In this case, we call the real power
economic dispatch the N — 1 security economic dispatch.

5.2.2.4 Generator Output Power Constraint The incremental form of
the generator output power constraint is

PGimin_P(giSAPGiSPGimax_P(gi ie NG (531)

5.2.3 Linear Programming Model

The linearized economic dispatch model can be written as the standard linear
programming form:

minZ =c;x; + X, +--+CyXy
S.t.

ap X, +apXx, +--+anxXy > b1

Ay X1 +anXy +--+aynXy > b2

an1 X1 +any Xy -+ ayn Xy > bN

Ximin < Xi < Ximax

The basic algorithm of LP can be found in the Appendix in Chapter 9.

5.2.4 Implementation

5.2.4.1 Solution Steps of ED by LP The above-mentioned method for
solving economic dispatch by LP uses an iterative technique to obtain the
optimal solution, so it is also called a successive linear programming (SLP)
method. The solution procedures of SLP for economic dispatch are summa-
rized below:

Step 1. Select the set of initial control variables.

Step 2. Solve the power flow problem to obtain a feasible solution that satis-
fies the power balance equality constraint.

Step 3. Linearize the objective function and inequality constraints around the
power flow solution and formulate the LP problem.

Step 4. Solve the LP problem and obtain optimal incremental control varia-
bles APg;.

Step 5. Update the control variables: P& = P 4 AP,
Step 6. Obtain the power flow solution with updated control variables.
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Step 7. Check the convergence. If APg; in step 4 are below the user-defined
tolerance, the solution converges. Otherwise, go to step 3.

5.2.4.2 Test Results The linear programming-based economic dispatch
method is tested on IEEE 5-bus and 30-bus systems. The network topologies
of the IEEE test systems are shown in Figure 5.1. The corresponding system
data and parameters are listed in Tables 5.1-5.3. The data and parameters of
the 30-bus system are listed in Tables 5.4-5.6.

The calculation results of economic dispatch with N security for the IEEE
5-bus system are shown in Table 5.7. The calculation results of economic dis-
patch with N security for the IEEE 30-bus system are shown in Table 5.8, and
N — 1 security economic dispatch results are listed in Table 5.9.

Table 5.1 Generator data of 5-bus system

Generators #1 #2
PGimax(p-U.) 1.00 1.00
PGimi“(p.u.) 0.20 0.20
QGimax(p~u~) 080 080
QGimin(p.u.) -0.20 -0.20
Quadratic cost function

a; 50.00 50.00
b; 351.00 389.00
G 44.40 40.60

Table 5.2 Load data of 5-bus system

Load Bus #3 #4 #5
MW load Pp(p.u.) 0.60 0.40 0.60
MVAR load Qp(p.u.) 0.30 0.10 0.20

Table 5.3 Line data of 5-bus system

Line No. From-To Bus Resistance Reactance Line Charge
1 1-3 0.10 0.40 0.00
2 4-1 0.15 0.60 0.00
3 5-1 0.05 0.20 0.00
4 3-2 0.05 0.20 0.00
5 2-5 0.05 0.20 0.00
6 34 0.10 0.40 0.00
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(b) One-line diagram of IEEE 30-bus system

FIGURE 5.1 |EEE test systems
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Table 5.4 Generator data of 30-bus system

Generators #1 #2 #5 #8 #11 #13
PGimax(p-U.) 2.00 0.80 0.50 0.35 0.30 0.40
PGimin(p-u.) 0.50 0.20 0.15 0.10 0.10 0.12
QGimax(p-u.) 2.50 1.00 0.80 0.60 0.50 0.60
QGimin(p-u.) -0.20 -0.20 -0.15 -0.15 -0.10 -0.15
Quadratic cost function

a; 0.00375  0.0175  0.0625  0.0083  0.0250  0.0250
b; 2.00000  1.7500  1.0000  3.2500  3.0000  3.0000
G 0.00000  0.0000  0.0000  0.0000  0.0000  0.0000

Table 5.5 Load data of 30-bus system

Bus No. Pp(p-u.) Qp(p-u.) Bus No. Po(p.u.) Qp(p.u.)
1 0.000 0.000 16 0.035 0.016
2 0.217 0.127 17 0.090 0.058
3 0.024 0.012 18 0.032 0.009
4 0.076 0.016 19 0.095 0.034
5 0.942 0.190 20 0.022 0.007
6 0.000 0.000 21 0.175 0.112
7 0.228 0.109 22 0.000 0.000
8 0.300 0.300 23 0.032 0.016
9 0.000 0.000 24 0.087 0.067

10 0.058 0.020 25 0.000 0.000

11 0.000 0.000 26 0.035 0.023

12 0.112 0.075 27 0.000 0.000

13 0.000 0.000 28 0.000 0.000

14 0.062 0.016 29 0.024 0.009

15 0.082 0.025 30 0.106 0.019

5.2.5 Piecewise Linear Approach

Assuming that the objective function is a quadratic characteristic, the objec-
tive function can also be linearized by a piecewise linear approach.

If the objective function is divided into N linear segments, the real power
variable of each generator will also be divided into N variables. Figure 5.2 is
an objective function with three linear segments. The corresponding slopes
are by, by, and bs, respectively.

From Figure 5.2, the generator power output variables for each segment
can be presented as below:

PGimin < PGil < PGlmax (532)
PGlmin < PGiZ < PGZmax (533)
PGZmin < PG[3 < PGimax (534)
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Table 5.6 Line data of 30-bus system

Line No. From-To Bus Resistance (p.u.) Reactance (p.u.) Line Limit (p.u.)

1 1-2 0.0192 0.0575 1.30
2 1-3 0.0452 0.1852 1.30
3 24 0.0570 0.1737 0.65
4 34 0.0132 0.0379 1.30
5 2-5 0.0472 0.1983 1.30
6 2-6 0.0581 0.1763 0.65
7 4-6 0.0119 0.0414 0.90
8 5-7 0.0460 0.1160 0.70
9 6-7 0.0267 0.0820 1.30
10 6-8 0.0120 0.0420 0.32
1 6-9 0.0000 0.2080 0.65
12 6-10 0.0000 0.5560 0.32
13 9-10 0.0000 0.2080 0.65
14 9-11 0.0000 0.1100 0.65
15 4-12 0.0000 0.2560 0.65
16 12-13 0.0000 0.1400 0.65
17 12-14 0.1231 0.2559 0.32
18 12-15 0.0662 0.1304 0.32
19 12-16 0.0945 0.1987 0.32
20 14-15 0.2210 0.1997 0.16
21 16-17 0.0824 0.1932 0.16
22 15-18 0.1070 0.2185 0.16
23 18-19 0.0639 0.1292 0.16
24 19-20 0.0340 0.0680 0.32
25 10-20 0.0936 0.2090 0.32
26 10-17 0.0324 0.0845 0.32
27 10-21 0.0348 0.0749 0.32
28 10-22 0.0727 0.1499 0.32
29 21-22 0.0116 0.0236 0.32
30 15-23 0.1000 0.2020 0.16
31 22-24 0.1150 0.1790 0.16
32 23-24 0.1320 0.2700 0.16
33 24-25 0.1885 0.3292 0.16
34 25-26 0.2544 0.3800 0.16
35 25-27 0.1093 0.2087 0.16
36 28-27 0.0000 0.3960 0.65
37 27-29 0.2198 0.4153 0.16
38 27-30 0.3202 0.6027 0.16
39 29-30 0.2399 0.4533 0.16
40 8-28 0.0636 0.2000 0.32
41 6-28 0.0169 0.0599 0.32
42 10-10 0.0000 -5.2600

43 24-24 0.0000 —25.0000
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Table 5.7 Economic dispatch results for 5-bus system

151

Method LP Pimin Pimax
Psi(p.u.) 0.97864 0.2 1.0
Pg.(p.u.) 0.66622 0.2 1.0
Total Cost ($/hr) 757.74 / /
Total loss (p.u.) 0.04490 / /
Table 5.8 N security economic dispatch results by LP for IEEE 30-bus system
Generation No. Economic Dispatch PGimin PGimax
Pai 1.7626 0.50 2.00
Ps, 0.4884 0.20 0.80
Pss 0.2151 0.15 0.50
Pss 0.2215 0.10 0.35
Psu 0.1214 0.10 0.30
P:sis 0.1200 0.12 0.40
Total generation 2.9290 / /
Total real power losses 0.0948 / /
Total generation cost ($) 802.4000 / /

Table 5.9 N - 1 security economic dispatch results by LP for IEEE 30-bus system

Generator No. Economic Dispatch PGimin PGimax
Poi(p-u.) 1.38540 0.50 2.00
Pes(p-u.) 0.57560 0.20 0.80
Pgs(p-u.) 0.24560 0.15 0.50
Pgs(p-u.) 0.35000 0.10 0.35
Peu(p-u.) 0.17930 0.10 0.30
Peis(p-u.) 0.16910 0.12 0.40
Total generation(p.u.) 2.90500 / /
Total Cost ($/hr) 813.74 / /
Total loss (p.u.) 0.0711 / /
+ ftPg)

>
>

PGin PGimax PGomax PGmax Pg

FIGURE 5.2 Piecewise linear objective function
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If Pgimin 1s selected as the initial generator output power, the incremental
generator power outputs for each segment can be expressed as

AFcii = Foit = Fimin (5.35)
AF6ir = Foin = Foitmin (5.36)
AF6i3 = Foiz = Poizmin (5-37)

Thus the constraint equations (5.32)—(5.34) become

O < APGil < PGilmax - PGimin (538)
0 < APGi2 < PGiZmax - PGilmax (539)
0< APGi3 < PGimax - PGiZmax (540)

The piecewise linear objective function becomes

3 NG

NG
F=2ﬁ'(PGi)=zzbkAPGik (5.41)
i=1

k=1 i=1

Replacing the incremental generator power output APg; in constraints

3

(5.9) and (5.30) in Section 5.2.2 by ZAPGik, we can also obtain the linear
k=1

programming model for the economic dispatch problem.

5.3 QUADRATIC PROGRAMMING METHOD

A quadratic programming (QP) model contains a quadratic objective function
and linear constraints. As mentioned above in this chapter, the economic
dispatch problem is a nonlinear mathematical model. We discuss the succes-
sive linear programming method for solving the economic dispatch problem
in Section 5.2. The successive linear programming method can also be used in
the quadratic programming model of economic dispatch.

5.3.1 QP Model of Economic Dispatch

Let the initial operation point of generator i be PS,. The nonlinear objective
function can be expressed by use of Taylor series expansion, and only the first
three terms are considered, that is,
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fi(Pei) = fi(Pgi)-’-%ZG'i)pg_ AFs; +%%§i@)1)€_ AFG;
=aAP3; +bAP;; +c ) ) (5.42)
or
fi(APs;) = aAPE; + bAP; (5.43)
where
1 df/(Ps;
a= E% n (5.44)
b= f/(P) = % (5.45)
c=f(PY) (5.46)
are constant and
APg; = Ps; — PS; (5.47)

Linearizing the constraints using the same approach used in Section 5.2,
the quadratic programming model of real power economic dispatch can be
written as below.

N
min f;(APg;) = ) (aAPg; + bAP;) (5.48)

i=1

s.t.
oR
Y (1— L) APs; =0 (5.49)
ieNG aPGi Pgi

PGimin _PC(})i SAE)G[ < PGimax _PC(‘y)i ie NG (550)
|D,APG| < APb,max (551)

5.3.2 QP Algorithm

The economic dispatch model in equations (5.48)—(5.51) can be written as the
standard quadratic programming model.

min f(X)=CX + X"QX (5.52)
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s.t.

AX<B (5.53)
X0 (5.54)

where C is an n-dimensional row vector describing the coefficients of the linear
terms in the objective function, and Q is an (n x n) symmetric matrix describ-
ing the coefficients of the quadratic terms.

As in linear programming, the decision variables are denoted by the n-
dimensional column vector X, and the constraints are defined by an (m x n)
A matrix and an m-dimensional column vector B of right-hand-side coeffi-
cients. For the real power economic dispatch problem, we know that a feasible
solution exists and that the constraint region is bounded.

When the objective function f(X) is strictly convex for all feasible points,
the problem has a unique local minimum, which is also the global minimum.
A sufficient condition to guarantee strict convexity is for Q to be positive
definite. This is generally true for most of economic dispatch problems.

Equation (5.53) can be expressed as

g(X)=(AX-B)<0 (5.55)
Form the Lagrange function for equations (5.52) and (5.55), i.e.,
L(X,0)=CX+X"QX +ug(X) (5.56)
where U is an m-dimensional row vector.

According to the optimization theory, the Kuhn-Tucker (KT) conditions
for a local minimum are given as follows:

oL
>0,j=1,...,

ox, ! " (5.57)
C+2X"Q+uA =0

L 0i=1,....m

ou,; (5.58)
AX-B<0

,aL =0,j=1,....n

0X; (5.59)

X"(C"+2QX +A™w)=0

{u'lgl(X):O?l:l”m
WAX —B)=0

(5.60)
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{ffoo (5.61)

If we introduce nonnegative surplus variables y to the inequalities in equa-
tion (5.57) and nonnegative slack variables v to the inequalities in equation
(5.58), we get the following equivalent form.

C"+2QX+A"Tu"—y=0 (5.62)
AX-B+v=0 (5.63)

Then, the KT conditions can be written as below:

2QX +ATp" —y=—C" (5.64)
AX+v=B (5.65)
X>20,u=20,y>20,v>0 (5.66)
y'X=0,uv=0 (5.67)

The first two expressions are linear equalities, the third restricts all the vari-
ables to be nonnegative, and the fourth is the complementary slackness
condition.

Obviously, the KT conditions in equations (5.64)—(5.67) have a linear form
with the variables X, 1, y, and v. An approach similar to the modified simplex
can be used to solve equations (5.64)—(5.67). The procedures of the algorithm
are as below:

(1) Let the structural constraints be equations (5.64) and (5.65) defined by
the KT conditions.

(2) If any of the right-hand-side values are negative, multiply the corre-
sponding equation by —1.

(3) Add an artificial variable to each equation.

(4) Let the objective function be the sum of the artificial variables.

(5) Put the resultant problem into simplex form.

The goal is to find the solution to the linear programming problem that
minimizes the sum of the artificial variables with the additional requirement
that the complementary slackness conditions be satisfied at each iteration. If
the sum is zero, the solution will satisfy equations (5.64)—(5.67). To accom-
modate equation (5.67), the rule for selecting the entering variable must be
modified with the following relationships:

X; and y; are complementary forj=1,...,n

W, and v; are complementary fori=1,...,m
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The entering variable will be that whose reduced cost is most negative
provided that its complementary variable is not in the basis or would leave
the basis on the same iteration. At the conclusion of the algorithm, the vector
x defines the optimal solution and the vector p defines the optimal dual
variables.

This approach has been shown to work well when the objective function is
positive definite, and requires computational effort comparable to a linear
programming problem with m + n constraints, where m is the number of con-
straints and # is the number of variables in the QP. Fortunately, the objective
function in economic power dispatch is positive definite. Thus this approach
is very good for solving the QP model of economic dispatch.

5.3.3 Implementation

The first example is to solve the following QP problem using the mentioned
algorithm in Section 5.3.2.

min f(x) = x{+4x3-8x, — 16x,
subject to

X +x, <5
x; <3

x; 20, x,20

Solution: Convert the problem into the following quadratic programming
model:

min £(X)=CX + XTQX

s.t.
AX<B
X =0
where
r_[-8 }
c [—16
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o)
A =
1 0
5
B= [3}
x=7 ]
X2

As can be seen, the Q matrix is positive definite so the KT conditions are
necessary and sufficient for a global optimum.

Let
__Y1
Y _YZ:|
V:'Vl}
V2
:—IJ1:|
B %)

According to equations (5.64) and (5.65), we get

2x + U+, —y =8
8x, +Uu—y, =16
X +x+v,=5
X +v, =3

To create the appropriate linear programming problem, we add artificial
variables to each constraint and minimize their sum.

minZ =w; +w, + ws +wy
s.t.
2x1+u] +“'2_y] +W] =8
8x2 +u1—y2 +W2 =16
X]+XZ +V1+W3 =5

X1+V2+W4=3

x120,x,20,y,20,y,20,v; 20,v, 20,1, 20, n, 20,
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Applying the presented algorithm to this example, the optimal solution to
the original problem is (xi", x5") =(3,2). Table 5.10 shows the iterations of the
solution.

The second example is to apply the presented QP algorithm to solve the
real power economic dispatch problem. The testing system is the IEEE 30-bus
system, the data of which are given in Section 5.2. The following testing cases
are conducted.

Case 1: IEEE 30-bus system with the original data

Case 2: IEEE 30-bus system with the original data, but the limit of line 1 is
reduced to 1.0 p.u.

The security economic dispatch results for two cases are shown in
Table 5.11. The results of case 1 are also compared with those obtained
by using linear programming, which are shown in Table 5.12. It can be observed
that the ED results obtained by QP are a little better than those obtained
by LP.

Table 5.10 Iterations for QP example

Objective Entering Leaving

Iterations Basic Variables Solution Values Variable Variable
1 (Wi, wa, wi, wy) (8,16,5,3) 32 X, W,

2 (W1, X2, W3, wy) (8,2,3,3) 14 X Wi

3 (le X2, X1, W4) (252’3’0) 2 251 Wy

4 (W1, X2, X3, Wy) (2,2,3,0) 2 351 Wi

5 (W, X2, X3, 1y) (2,2,3,0) 0 / /

Table 5.11 Economic dispatch results by QP for IEEE 30-bus system

Generation No. Case 1 Case 2

Pai 1.7586 1.5174
Ps, 0.4883 0.5670
Pss 0.2151 0.2326
Pgs 0.2233 0.3045
Pan 0.1231 0.1517
Psis 0.1200 0.1400
Total generation 2.9285 29132
Total real power losses 0.0945 0.0792

Total generation cost ($) 802.3900 807.2400




NETWORK FLOW PROGRAMMING METHOD 159

Table 5.12 ED results and comparison between QP and LP for IEEE 30-bus system

Generation No. QP Method LP Method
Psi 1.7586 1.7626
| e 0.4883 0.4884
Pss 0.2151 0.2151
Pos 0.2233 0.2215
Psii 0.1231 0.1214
Psis 0.1200 0.1200
Total generation 2.9285 2.9290
Total real power losses 0.0945 0.0948
Total generation cost ($) 802.3900 802.4000

5.4 NETWORK FLOW PROGRAMMING METHOD

5.4.1 Introduction

Network flow programming (NFP) is a specialized linear programming. It is
characterized by simple manipulation and rapid convergence. NFP models of
N security economic dispatch have been proposed in recent years.

This section first presents a network flow model and uses the out-of-kilter
algorithm (OKA) for solving the online economic power dispatch with N and
N — 1 security. A fast N — 1 security analysis method solved by OKA is applied
to seek out all the overconstrained cases for all possible single line outages,
and then an “N — 1 constrained zone” is formed that is coordinated with the
network flow model. Based on the normal operating state a corrective incre-
mental network flow model for economic dispatch is established for the over-
constrained cases. Consequently, the calculation burden is reduced significantly
and the shortcoming of the NFP, imprecision, is mitigated to some extent.

5.4.2 Out-of-Kilter Algorithm

5.4.2.1 OKA Model According to graph theory, a network with n nodes
and m arcs (branches) can be shown as in Figure 5.3(a). The corresponding
minimum cost flow problem can be expressed as follows:

minC=Y C;f; ijem (5.68)

ij
such that

S (fi-fi)=r ien (5.69)

jen
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FIGURE 5.3 OKA network model with one source s and one sink t

where

C,: The arc cost per unit flow

fi The flow on arc 7j in the network

L;: The lower bound of the flow on arc ij in the network
U;: The upper bound of flow on arc ij in the network

n: The total number of the nodes in the network

m: The total number of the arcs in the network

According to the “out-of-kilter” algorithm (OKA) of network flow pro-
gramming, we can transform the original network into an OKA network by
introducing a “return arc” from sink node ¢ to source node s, while the internal
flows remain unchanged. The return arc flow f; equals the original network
flow r. The OKA network model is shown in Figure 5.3(b).

Similarly, if the original network has multiple sources and multiple sinks,
which is shown in Figure 5.4(a), the corresponding OKA model can be formed
as shown in Figure 5.4(b), where each source corresponds to a source arc con-
necting to a total source node s and each sink forms a sink arc connecting to
the total sink node ¢.

The corresponding mathematical model for OKA is given below:

minC =Y C;f; ije(m+ss+u+1) (5.71)
ij

such that
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FIGURE 5.4 OKA network model with multiple sources ss and multiple sinks tt

S (fi=fi)=0 ien (5.72)

jen

Li<f;<U; ije(m+ss+tt+1) (5.73)
where m is the total number of arcs other than the return arc.

5.4.2.2 Complementary Slackness Conditions for Optimality of OKA
The model consisting of equations (5.71)—(5.73) is a specialized linear pro-
gramming model. According to the dual theory, the corresponding primary
problem and dual problem can be expressed as below:

Primary Problem

max F’ = —Z Cif (5.74)
such that U
X (fi=1)=0 (575)
jen
L;<f;<U; ien,jenije(m+ss+it+1) (5.76)
Dual Problem

minG = ZUU(X"/ - z Li/‘Bij (577)
ij i
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such that

o; 20, B; 20 ien,jen,ije(m+ss+it+1) (5.79)
where 7 is the dual variable of the variable f of the primary problem; o and
correspond to the dual variables of the upper and lower limits of the primary
problem.

When all the variables f, &, o, and B meet the requirements of the con-

straints, there exists the following relationship between the objective functions
of primary and dual problems:

G-F'= ;Uijai/‘ _ZLI’J'BZ']’ +;Ciffif
= 0]- (n, —m,) +] 2 Uja; ; 2 LBy + Z Cifi
= z;ni(fij _]iji)+Z,Uij(;ij _;Lijéij +;Cijfif
= i[ni_nj + 0 =B ZFCij]fij +i(Uij —fijl)aii +Z(fij —L;)B; 20
] ] ] (5.80)

It will be true that G — F’ = 0 if the solution is optimal. Thus from equation
(5.80) we get

(U; - fi)oy; =0 (5.81)
(fi' _Li')Bij =0 (5.82)
(Cij+m—m+o; —B;)f; =0 (5.83)
That is,
(Cy+ oty =PBy)fy =0 (5.84)

From equations (5.81)-(5.84), we get:

Case 1: C_,, >0

Furthermore, if o;; > 0, §; # 0, then from equation (5.82) we can get
fi=1L;

Case 2: (,Tj<0

If BL] = C[] + aij, then ﬁ] ES O, and OL,, > ij
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Furthermore, if B; > 0, oi; # 0, then from equation (5.81) we can get
fi=Uj

Case 3: CT/ =0

From (5.84), we get (o, — B;)fi = 0, which can be analyzed as follows:

When o; > B;, then o; > 0, in this way, we get the following expression
from equation (5.81):

When B; > oy, then B; > 0, in this way, we get the following expression
from equation (5.82):

Both situations are conflicted with the assumption f; = 0. So we can be
sure f; # 0 for this case.
(3b) Assuming oy; = 0, then B;f; = 0

Since f; # 0 from (3a), we have B; =0
Therefore, from equation (5.81) we get

fi <U;
From equation (5.82) we get

fiz Ly
that iS, lf C_l/ = 0, then LU < ij < U,]

According to the three cases described above, the complementary slackness

conditions for optimality of OKA are summarized as follows:

fi=U,; for C;<0 (5.87)
where the relative cost is
Cij :Ci]-+TC,‘_TCj (588)

According to equations (5.85)-(5.87) and labeling technique, the arcs have

nine kinds of states, which are shown in Table 5.13.
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Table 5.13 States of OKA arcs

Symbol i fi State of Arcs

I a} >0 fi=L; In-kilter

L 7 -0 L;<f< U In-kilter
fi=Uyfi=Ly In-kilter

I, C; <0 fi=U; In-kilter

10, C;>0 fi<L; Out-of-kilter

1, C;=0 fi<L, Out-of-kilter

1L, Cy<0 f<U, Out-of-kilter

111, a >0 fi>L; Out-of-kilter

111, C;=0 f,> U, Out-of-kilter

111, C; <0 1> U Out-of-kilter

The complementary slackness conditions for optimality of OKA shown in
equations (5.85)—(5.87) correspond to the three “in-kilter” states of the arcs.
In addition, there are six “out-of-kilter” states that do not satisfy conditions
(5.85)—(5.87). If all the arcs are in kilter, then the optimal solution is obtained.
Otherwise, we must vary the relevant arc flows or node potentials (parameter
7) by the labeling technique so that the out-of-kilter states of the arcs come
into kilter.

The states of arcs and labeling rules can be explained with Figure 5.5.

In Figure 5.5, if the arc is in the in-kilter state, the point (f;, C;) will be
located on one of three dark lines /;, I,, and 5, where the dark line /; corre-
sponds to the lower bound L; of flow f;; the dark line /5 corresponds to the
upper bound Uj; of flow f;; and the dark line /, corresponds to the flow f;; that
is within L; < f; < Uj;.

If the flow of the arc is violated at the upper or lower limits, the point
(fi, C;;) will be located out of three dark lines, which correspond to six “out-
of-kilter” states in Figure 5.5. In these situations, the value of flow of the arc
will be either less than its lower limit or higher than its upper limit, that is,
fi>Uorf;< Ly

5.4.2.3 Labeling Rules and Algorithm of OKA According to labeling
technique, the labeling rules of OKA for the forward arc and backward arc
under nine OKA states in Table 5.13 are listed in Table 5.14, where symbol
“T stands for increase, “1” stands for reduce, “—” stands for change, and
“f.”” indicates that the flow is outside of the feasible region.
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FIGURE 5.5 States of OKA arcs

Table 5.14 Labeling rules of OKA algorithm

Forward Arc f* Backward arc f~

Symbol fi Labeling? Why? Labeling? Why?
11 ﬁf: Lif NO, er T_>fk+ NO’ f7 ‘L_>fk7
L Ly < f;i< U, Yes, f* T—> U Yes, f~l— L
ﬁ]' - U,'j ﬁ] = L,‘j NO, er T—) fk+ NO, f7 J/—) f];
I; fi=U; No, f*T— fi No, f~ = f¢
11, fi<L Yes, f* T U No, - f¢
11, fi<L; Yes, f* T— U No, f~4- f¢
11, fi < U Yes, f* T— U No, 1= f7
11, fi>Lj No, f+ T fi Yes, f~l— L
111, fi>U; No, f* T fi Yes, f~ 1 L
111, fi>U; No, £+ T f7 Yes, - U

According to the labeling rules mentioned above, the out-of-kilter algo-
rithm is implemented as follows.

5.4.2.3.1 With incremental flow Loop When there exists an incremental
flow loop, correct the values of flow for all arcs in the loop. The process is as
below:

(1) For forward arcs

(a) If CT,] >0, f; < L;, the node j is able to be labeled. The incremental
flow to the node j will be computed as
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q; =min[q;, L; - f;] (5.89)

(b) If CT,, <0, f; < Uy, the node j is able to be labeled. The incremental
flow to the node j will be computed as

q; =min[q;, U; - f;] (5.90)

(2) For backward arcs

(a) If CT,L 20, f;> Lj, the node j is able to be labeled. The incremental
flow to the node j will be computed as

qi :min[inffi _Lji] (5.91)

(b) It C_ﬂ <0, f; > U;, the node j is able to be labeled. The incremental
flow to the node j will be computed as

q; =min [4:, fi— Uji] (5.92)

5.4.2.3.2 Without Incremental Flow Loop When there does not exist an
incremental flow loop, correct the values of the relative cost Cy, or C; by
increasing the cost of the vertex =m. This is because the change of Cj, or
C;: causes the change of the path of minimum cost flow. Consequently, a new
incremental flow loop will be produced. The process of computing the incre-
mental vertex cost is as below.

Let B and B stand for the set of the labeled vertexes and unlabeled
vertexes, respectively. Obviously, the super source s € B, and super sink ¢ € B.
In addition, define two sets of arcs A; and A,:

A =lij,ieB,jeB,C;>0, f; <Uj (5.93)
A, ={ji,ieB,jeB,C; <0, f; 2 L, (5.94)

The incremental vertex cost is determined as below

where
8, =min{|C,[} >0 (5.96)
8, =min{|C;[} >0 (5.97)

If A, is an empty set, make §; = oo; If A, is an empty set, make &, = ~o. When
d = o, it means there is no feasible flow, which is no solution for the given
NFP problem. When 8 < e, update the vertex costs for all unlabeled vertexes,
that is,
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=m;+3 jeB (5.98)

In this way, the out-of-kilter arc will be changed into an in-kilter arc. When
all arcs are in in-kilter states, the optimum solution is obtained.
The procedures of the OKA algorithm are as follows:

Step 1. Set the initial values of the arc flows. The initial flows are requested
to satisfy constraint (5.72) only, but not necessarily constraint (5.73).

Step 2. Check the state of the arcs. If all arcs are in kilter, then the optimal
solution has been found. Terminate the iteration. Otherwise, go to step 3.

Step 3. Revise the state of the arcs. Arbitrarily choose an arc from the set of
arcs, which is out of kilter, to be revised. Using the labeling technique, when
a flow-augmenting loop exists, vary the values of flow f; for all arcs in
this loop. If no flow-augmenting loop is found, adjust the values of &
at unlabeled nodes, and hence change the relative cost C;, or C;;. This may
need some cross-iterations between flow and the relative cost so that the
out-of-kilter arc can be become an in-kilter arc. Once the arc state has been
revised, go back to step 2.

It should be noted that the revision process converges after a finite number
of iterations.

In comparison with the general algorithm of the minimum cost flow, the
main features of the OKA are:

(1) The nonzero lower bound of flow may be allowable.
(2) The initial flow does not have to be feasible or zero flow.
(3) Nonnegative constraints, f; > 0, are released.

(4) It is easy to imitate a change in network topology by changing the
specified bound values of the flows as the branch outage occurs.

5.4.3 N Security Economic Dispatch Model

In the normal operating case, the NFP model of real power economic dispatch
with N security can be written as follows:

minF’ = Y (a;PS? +bPS +c;)+h Y, RPY} (5.99)
ieNG JENT
such that
SPL+Y PL+Y P =0 wen (5.100)
i(w) (@) k(o)

Py <PY <Py (5.101)
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Py <PY<P; ieNG,jeNT,keND (5.102)

where

a;, b;, and c;: The cost coefficients of the ith generator.

PY;: The real power flow of generation arc i in the normal operating case
P: The real power flow of transmission arc j in the normal operating case
P, The real power flow of load arc k in the normal operating case

NG: The total number of generation arcs

NT:The total number of transmission arcs

ND: The total number of load arcs

N:The total number of nodes

R;: The resistance of transmission arc (line) j

P:The lower bound of the real power flow through the arc

P: The upper bound of the real power flow through the arc

The positive direction of flow is specified as the flow enters into the node
and the negative as it leaves the node. The symbol i(w) means that arc i is
adjacent to node w; so do j(w) and k(w).

The following points should be noted.

(1) The second term of the objective,

h RPY (5.103)

jeNT

is the penalty on transmission losses with the system marginal cost £ (in $ per
MWh). The total transmission loss is represented approximately, but validly,
as the sum of the products of the line resistance and the square of the trans-
mitted power on the line. This is obtained from the following real power loss
expression of the transmission line:

_P%+Q%/ X R,

P. = 5.104
Lj Vsz J ( )

under the assumptions of 1.0 p.u. flat voltage across the line and local supply
of the reactive power.

(2) The power loss of an individual line is assumed to be distributed equally
to its ends. Thus the real load PJ; in equation (5.100) would involve half the
transmission losses on all the lines connected to node k, which are estimated
preliminarily from the power flow calculation of the normal operation and
kept constant, or modified if necessary, that is,
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Py =Po+= ZR Py’ (5.105)

]—)k

Another half of the loss of the line that is not related to load will be added
on the flow of the return arc of the OKA network model.

(3) The transmitted real power acts as the independent variable, and the
line security constraints are introduced into the model straight away. The
secure line limit is based on its SIL and its length, and not on the thermal limit.

(4) The topology of the power system is preserved since the penalty factors
are not calculated in the usual sense. Therefore, the model can be solved easily
by NFP as well as the OKA.

Although this model is different from the traditional economic dispatch
model, it is verified that they are equivalent [4, 10].

The objective function of economic power dispatch in equation (5.99) is a
quadratic function. It can be linearized by use of the average cost. From the
previous section, we know that the OKA network model of economic power
dispatch consists of three types of arcs. These are the generation arc, the
transmission arc and the load arc. Obviously, each generation arc corresponds
to a generator, each transmission arc corresponds to a line or transformer,
and each load arc corresponds to a real power demand. In addition, there
is a return arc. The total arcs in a power network will be m + 1, where
m = NG + NT + ND.

Comparing the economic dispatch model shown in equations (5.99)—(5.102)
with the OKA model shown in equations (5.71)—(5.73), the average cost and
flow limits of each type of arc are

(a) The generation arc:

C,‘j = a,'PGi + bi (5106)
Lj=Ps (5.107)
U; = P (5.108)
(b) The transmission arc:
C; = hR;Py; (5.109)
Ly =Py (5.110)
U, =Py (5.111)

(c) The load arc:

D
[
()

(5.112)
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Ly =P, (5.113)
Uy, =P (5.114)
(d) The return arc:

C;=0 (5.115)
=Y B+ 2 R;P{? (5.116)

keND ]eNT
Uj= Y PO += z R; P}’ (5.117)

keND jENT

If the network loss is neglected in the economic dispatch OKA model,
the cost of transmission arc will be zero; load Py, will be replaced by Prpy.
Meanwhile, the part of power loss in the return arc will be zero, too.

It is noted that the flow P, on the return arc contains the total loads and
network losses, i.e.,

=Y PY+= 2 R;P{? (5.118)

keND jENT

Substituting equation (5.105) into equation (5.118), we get

1
Pi=Y (P8k+52R]-PT°j ] = > RPY

keND j—k ]eNT

= (P%)+ 2 RiP}? += z R; P}’
keND ]eNT ]eNT
=Y (PS)+ Y, RP
keND JeNT

Obviously, the KCL law at the super source node that connects to the
return arc will be

NG
ZPGI':PD"'PL (5.120)

i=1

This is exactly the real power balance equation in the traditional real power
economic dispatch model. Thus it is very easy to compute network losses in
the economic dispatch OKA model, which becomes to adjust the flow in the
flow-augmenting loop that contains the return arc.



NETWORK FLOW PROGRAMMING METHOD 171

5.4.4 Calculation of N — 1 Security Constraints

In the theoretical sense, the total number of N — 1 security constraints is very
large and equals n(n — 1) for the system with n transmission and transformer
branches. In the practical sense, power transmission systems are usually
designed well within the capacity of the system load and generation. Only a
small proportion of lines may be overloaded, even if a single branch outage
occurs. Therefore, it is neither necessary nor reasonable to incorporate all the
N — 1 security constraints into the calculation model directly. To detect all the
possible overconstrained cases, which must be considered, a fast contingency
analysis for a single line outage must be performed [20, 21].

Based on the normal generation schedule obtained from model M-1, the
NFP model M-2 of N — 1 security analysis is presented as

minF; = 3 R; Py’ (1) (5.121)
JeNT
such that
S PG+Y Py()+ Y P =0 oen (5.122)
i) J() k(w)
|Py(D|<vPy leNL (5.123)
Pr =0 (5.124)
where

Pri(l): The real power transmitted in line j while line / is in outage
NL: The set of the outage lines
v: A constant greater than unity (say 1 <y < 1.3)

The differences between models M-1 and M-2 are the following:

(1) The generation production costs in the objective equation (5.99) and
the inequality constraint equation (5.100) vanish, since all the genera-
tions and loads remain unchanged.

(2) Only the transmitted real power Pr(/) acts as a variable to adjust the
power flows. The inequality constraint equation (5.123) has replaced
equation (5.102). The constant v is introduced to find the overloaded
line when line / appears as an outage.

Once the overconstrained cases have been detected, the maximum value
of the violation in line j can be determined by the following equations:

APy =max{Py ()~ Py} jeNT1 (5.125)
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APy =min{Py())~ Py} jeNT2 (5.126)

where NT1 and NT2 represent the number of lines that violate their upper
and lower bounds, respectively, as line / appears as an outage.

5.4.5 N -1 Security Economic Dispatch

There is no guarantee that the economic schedules with N security in normal
operation will not violate the line limits if a single contingency occurs (or
multiple contingencies occur). If such a situation does arise, it is necessary to
reallocate the generations so that the line constraints are satisfied. An efficient
approach to incorporating N — 1 security constraints as a part of economic
dispatch is therefore desirable. Based on the normal case with consideration
of N security and the fast contingency analysis, the network flow model M-3
of N — 1 security economic power dispatch is presented as follows:

minAF = z [i APG,'J+h z oR; APy (5.127)
ieNG oF, Gi lpY; jeNT Tj p% '
such that

S AP +Y APy =0 ©e(NG+NT) (5.128)

(o) Jj(w)
Psi— P <AP; <Py~ Py ieNG (5.129)
|AFGi|< AP i€ NG (5.130)
APy =-AP; jeNT1 (5.131)
Py —P) <APy <Py —P) je(NT-NT1-NT2) (5.133)

where APg; and APp; are the incremental generations and transmissions,
respectively. The incremental generation and transmission costs are

—| =2a,P%+b .
I 2a;P8 +b, 5.134
OPsilp.
P
it} =2R, P}, (5.135)
aPTf Py

AF is the objective that is the total incremental product cost.
Obviously, M-3 is an incremental optimization model. The following issues
should be noted.
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(1) The objective equation (5.127) and the equality constraint equation
(5.128) are obtained under the assumption that the loads are held constant,
that is, APp, = 0. Exceptionally, if there is no feasible solution for problem
M-3 in the preventive control, some loads would be curtailed partially or
completely, so that the problem becomes solvable. In this case, the incremen-
tal loads may act as the variable introduced into M-3 without the cost. The
contents of load shedding can be found in Chapter 11.

(2) To realize the transition from the N to the N — 1 security schedule
successfully, the limits of the real power generation regulations (regulating
speeds), APs.; must be considered. These are determined from the product
of the relevant regulating speed and the regulating time specified. Thus the
regulating value of the generation is restricted by the two inequality equations
(5.129) and (5.130), which can be combined into one expression:

max {~APs,q, P — P4} < AP, Smin{AP,q, Ps; - P} ie NG (5.136)

(3) If any critical single line outage occurs, then the line security zone will
be contracted to some extent. Equations (5.131)—(5.133) reflect the changing
number of line security constraints. Recalling equations (5.125) and (5.126),
an “N — 1 constrained zone,” which is in fact formed by the intersection of the
secure zones for all single contingencies, can be determined from these equa-
tions. This means that an N — 1 security problem with the same number of
constraints as in the N security problem can be introduced into the network
flow model.

Substituting equations (5.125), (5.126), and (5.134)—(5.136) into model M-3,
the incremental network flow model of economic dispatch with N — 1 security,
model M-4, becomes

minAF = Y (24P +b;)APs +h Y, (2R, P) APy, (5.137)
ieNG JeNT
such that
N AP+ APy =0 ©e(NG+NT) (5.138)
i(w) Jj(®)

max {~APq,q, Poi — P4} < AP, Smin{APsq, Po — PS4} ie NG (5.139)

APy =-max{Py()- Py} jeNT1 (5.140)
APy :_En},ILl{PT/’(l)_PT/‘} jeNT2 (5.141)
Py—Py <APy <Py-Py je(NT-NT1-NT2)  (5.142)

The linear model M-4 corresponds to the OKA model and it can be solved
easily by the out-of-kilter algorithm.
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It is noted that model M-4 can provide the bigeneration schedule, that is,
the normal generation schedule from model M-1 is used in the normal opera-
tion state, while the postfault generation schedule from model M-4 is only
used in the postcontingency case. Furthermore, it can also be used as a single
generation schedule, which is applied both in the normal case and in post-
contingency, that is, the unique generation schedule not only guarantees
secure operation in the normal case but it also avoids the occurrence of an
overload in a possible single contingency. This scheme is easy to implement
because no rescheduling is needed. However, because all the N — 1 line secu-
rity constraints have to be satisfied, the constraint region is very narrow, and
hence the operating cost increases.

5.4.6 Implementation

5.4.6.1 Major Procedures of the OKA The essence of the OKA is to
revise the out-of-kilter states of arcs to in-kilter states according to comple-
mentary slackness conditions for optimality equations (5.85)—(5.87). It should
be noted that the correction process converges after a finite number of itera-
tions. A numerical example, which is taken from reference [2] to illustrate the
solution procedures, is given below.

The problem is to solve a secure economic dispatch of a simple power
system shown in Figure 5.6. There are two generators (PG, and PG,) and
three transmission lines to supply a load Pp. The system parameters are as
follows.

F(Fo1) = CiFo = 2P
Fy(Psy) =CyPsy = 5Ps;
0< P5 <2
0< Py <2

(2:2/0)

(3:4/0)
Pai

(0;3/3)

Pp
Psy

(5;2/0)
FIGURE 5.6 A simple power system (C;; Uy/L;)
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where, /1 is the line between the two generators PG, and PGy; I2 is the line

from the generator PG, to load Pp; and I3 is the line from the generator PG,
to the load Pp.

For simplification, the network loss is neglected. Then the economic dis-
patch model for this example can be written as follows:

mlnF =2PG] +5PG2

s.t.

Psi+Psr =3
0<P; <2
0<Psr 22
0<pP <1
0<P,<4
1P, L2

This economic dispatch problem can be expressed as the OKA network
flow model as mentioned above.

The corresponding network flow model for the OKA is depicted in Figure
5.7. The solution process of the OKA is demonstrated below:

(1) Assign the initial values: fi3 = f, = fu = fu = 2, fio = fsa = 0, and
T =7, = W3 = Ty = 0. These values and the relevant parameters are
given in Figure 5.8(a). Then calculate the relative cost C;.

(2:;2/0) (3;4/0)

(0;3/3)

FIGURE 5.7 Network flow model for the OKA corresponding to Figure 5.6
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FIGURE 5.8 The solution process of the OKA

(2) Check the state of the arcs. From Figure 5.8(a) we know that all the
arcs are out of kilter except arc 1-2 marked with a star.

(3) Choose an out-of-kilter arc, say arc 4-1. By the labeling technique, no
flow-augmenting loop exists, since only node 1 can be labeled, but
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nodes 2-4 cannot. Then change the value of & at nodes 2-4 as shown in
Figure 5.8(b). In this case, arc 4-1 is still out of kilter, but all the nodes
can be labeled. Then, a flow-augmenting loop 1-2-3-4-1 is found and
the augmenting value is equal to unity. After the flows in this loop are
adjusted, the result is shown in Figure 5.8(c). Now, arc 4-1 comes into
kilter, and so does arc 3-4 at the same time.

(4) Again check the state of the arcs. We can observe that arcs 1-3, 3-2,
and 2-4 are out of kilter.

(5) Choose arc 1-3 to be revised. The flow-augmenting loop 1-2-3-1 is
obtained since nodes 1, 2, and 3 can be labeled. Then modify the
relevant flows; the results are given in Figure 5.8(d). In this case, arc
1-3 is still out of kilter and the nodes cannot be labeled, except node 1.
Through changing the values of © and Cj;, arc 1-3 comes into kilter, as
shown in Figure 5.8(e).

(6) Check the state of the arcs once more. Only arc 2-4 is in the out-of-
kilter state.

(7) Revise the state of arc 2-4. No flow-augmenting loop exists since only
node 2 can be labeled. After the values of m and C; at nodes 1, 3,
and 4 have been changed, arc 2-4 comes into kilter, as shown in
Figure 5.8(f).

(8) By checking the state of the arcs, we see that all the arcs are in kilter
and all conditions for optimality have been satisfied. This shows that
the optimal (minimum cost) power flow of the system is obtained. Stop
the iteration.

The optimal results are:
(1) The relevant cost:
C,=0,C;3=0,Cr5=4,C5y =0,C3y =6,Cyy =5
(2) The vertex cost:
n,=3,m,=5mn,=8 m,=8,
(3) Flow on the arcs:

f=2fi5=113=0,fu=2,fu=1fu=3

5.4.6.2 Numerical Example of Economic Dispatch withN Security The
proposed model and algorithm are also tested on IEEE 5-bus and 30-bus
systems. Table 5.15 is the economic dispatch results of the 5-bus system
obtained by OKA algorithm, where the total generation costs are 757.50 $/hr,
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Table 5.15 Economic dispatch by OKA (5-bus system)

Generators or Lines  Real Power (p.u.) Lower Limit (p.u.)  Upper Limit (p.u.)

Pgi 0.9270 0.3000 1.2000
Pg, 0.7160 0.3000 1.2000
Py 0.2160 0.0000 1.0000
Py —-0.4110 0.0000 0.5000
Ps, —0.3000 0.0000 0.3000
Py —0.4000 0.0000 0.4000
Pys 0.3160 0.0000 1.0000
Py, 0.0000 0.0000 0.5000

Table 5.16 Economic dispatch by OKA (30-bus system)

Case Case 1 Case 2 Case 3 Case 4
Pgi(p.u.) 1.7588 1.75000 1.34665 1.69665
Pey(p.u.) 0.4881 0.26236 0.64571 0.33295
Pgs(p.u.) 0.2151 0.15000 0.15000 0.15000
Pcs(p.u.) 0.2236 0.31270 0.31270 0.31270
Pgyi(p-u.) 0.1230 0.30000 0.30000 0.30000
Pgis(p.u.) 0.12000 0.12000 0.12000 0.12000
Total cost ($/hr) 802.51 813.75 814.24 809.68
Total loss (p.u.) 0.0950 0.0782 0.0793 0.0783

and the total system losses are 0.043 p.u. The results are almost the same as
those obtained by linear programming.
The following simulation cases are conducted for 30-bus system.

Case 1: The original data including the power limit of the line.

Case 2: The original data, but the power limit of the lines 2 and 6 are
reduced to 0.45 and 0.35 p.u., respectively.

Case 3: The original data, but the power limit of the line 1 is reduced to
0.65 p.u.

Case 4: The original data, but the power limit of the line 1 is reduced to
1.00 p.u.

The corresponding economic dispatch results are shown in Table 5.16.

To analyze the impact of the weighting 4 to the calculation result, the data
of case 3 are used and the different values of 4 are selected. The results are
listed in Table 5.17, which shows that the optimal results are reached when
the weighting /4 equals to 20-25.
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Table 5.17 Economic dispatch with different h by OKA (30-bus system)

h >1600 200-1600 29-200 20-25
Pgi(p.u.) 0.56236 0.84236 1.34665 1.34665
Pao(p-u.) 0.80000 0.80000 0.29571 0.64571
Pas(p-u.) 0.50000 0.50000 0.15000 0.15000
Pegs(p-u.) 0.31270 0.31270 0.31270 0.31270
Pgii(p.u.) 0.30000 0.30000 0.30000 0.30000
Pgis(pu.) 0.40000 0.12000 0.12000 0.12000
Total cost ($/hr) 964.86 915.21 872.52 814.24
Total loss (p.u.) 0.0594 0.0620 0.0691 0.0793
Iteration No. 1 1 2 3

Table 5.18 N — 1 security analysis and calculation results (IEEE 30-bus system)

Outage Line Number Overloaded Lines Caused by Outage

1 L,(1.75662), L,(1.73162), L,(—1.08480)

2 L,(1.75662), L;5(0.56510), L,(—0.39087)

4 L,(1.73162), L1¢(0.56510), L15(0.39087)

5 L,(1.73162), Ls(1.30000), Lg(—0.72573), L;4(0.56508)

Table 5.19 Results and comparison of economic dispatch with N — 1 security (IEEE
30-bus system)

Generator No. OKA LP

Pgi(p.u.) 1.40625 1.38540
Pgy(pu.) 0.60638 0.57560
Pgs(p.u.) 0.25513 0.24560
Pgs(p.u.) 0.30771 0.35000
Pgii(p.u.) 0.17340 0.17930
Pgis(p.u.) 0.16154 0.16910
Total generation(p.u.) 2.91041 2.90500
Total cost ($/hr) 813.44 813.74

Total loss (p.u.) 0.07641 0.0711
5.4.6.3 Numerical Example of Economic Dispatch with N - 1

Security The same data of the IEEE 30-bus system are used to compute the
economic dispatch with N — 1 security. The results are listed in Tables 5.18
and 5.19.

From Table 5.18, through the N — 1 security analysis and calculation, the
N — 1 security cannot be satisfied as four single line outages (line number 1,
2,4 and 5) appear. Thus, these violated constraints need to be introduced in
the N — 1 security economic dispatch model to readjust the generators output
until no any violation appears. The final results are shown in Table 5.19.
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Through comparing with the conventional linear programming method that
is used to solve economic dispatch, the OKA network flow programming can
achieve almost the same results as LP, although sometimes the precision of
OKA may be a littler lower than that of the LP method, which can be neglected
from the view of the engineering.

It should be noted that the amount of calculation of the N — 1 security
economic dispatch is greatly reduced with the presented method because of
the use of the “N — 1 constrained zone”, which is formed by the fast N — 1
security analysis.

5.5 NONLINEAR CONVEX NETWORK FLOW PROGRAMMING
METHOD

5.5.1 Introduction

This section presents a new nonlinear convex network flow programming
(NLCNFP) model of EDC, which is solved by a combination approach of
quadratic programming (QP) and network flow programming (NFP). First of
all,anew NLCNFP model of economic power dispatch with security is deduced,
based on the load flow equations. Then, a new incremental NLCNFP model
of secure and economic dispatch can be set up. The new EDC model can be
transformed into a QP model, in which the search direction in the space of the
flow variables is found. The concept of a maximum basis in the network flow
graph is introduced, allowing the constrained QP model to be changed into an
unconstrained QP model that is then solved with the reduced gradient method.

5.5.2 NLCNFP Model of EDC

5.5.2.1 Mathematical Model 1t is well known that the active power flow
equations of a transmission line can be written as follows:

P = Vizgij —ViV;g;cosb; — Viijij sin 0, (5.143)
Pji = ‘/]2gl] +V,V] (—gl] COS@U +bU Slne,]) (5144)

where

P;: The sending end active power on transmission line #j
P;: The receiving end active power on transmission line #j
V:: The node voltage magnitude of node i

0;: The difference of node voltage angles between the sending end and
receiving end of line ij

b,: The susceptance of transmission line ij
2
g; The conductance of transmission line #j
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In a high-voltage power network, the value of 6; is very small, and the fol-
lowing approximate equations are easily obtained

V=10p.u (5.145)
sinB; =0; (5.146)
cosB; =1-67 /2 (5.147)

Substituting equations (5.145)—(5.147) into equations (5.143) and (5.144),
the active power load flow equations of a line can be simplified and deduced
as follows:

PcY
B = Fyc +%(—£) 8ii (5.148)
ij
1( PeY
P, =Py +_(_LCJ o (5.149)
where
Py = b0 (5.150)

is called an equivalent power flow on transmission line ij.
The active power loss on transmission line ij can be obtained according to
equations (5.148) and (5.149), i.e.,

P Y
Bj=PF;+P; :(_i] 8ij

R2+ X2
=P,-%c—( - ;2 ’])R,-,» (5.151)
ij

where

R;: The resistance of transmission line ij
X;;: The reactance of transmission line 7j

Let

(R +X7)

Z ic =
ijC ij

(5.152)

The active power loss on the transmission line ij can be expressed as
follows:
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PLij = B]’ZCZijC (5.153)

The traditional NFP model for economic dispatch problem can be written
as follows, i.e., model M-5,

mlnF = 2 (a,'Péi + biPGi +Ci) +h z PLij (5154)
ieNG ijeNT
such that
Po=Py+Y P, (5.155)
Jj—i
Py <Bi<Ppy JeNT (5.157)
where

Pg;: The active power of generator i

Pp;: The active power demand at load bus i

P;: The flow in the line connected to node i; would have a negative value
for a line in which the flow is toward node i

a;, b;, ¢i: The cost coefficients of the ith generator

NG: The number of generators in the power network

NT:The number of transmission lines in the power network

Pjn: The active power flow constraint on transmission line ij

Py, The active power loss on transmission line ij

h: The weighting coefficient of the transmission losses
J — i represents node j connected to node i through transmission line ij.

Subscripts m and M represent the lower and upper bounds of the
constraint.

The second term of the objective function (equation 5.154) is a penalty on
transmission losses based on the system marginal cost 4 (in $ per MWh).
Equation (5.157) is the line security constraint. Equation (5.156) defines the
generator power upper and lower limits. Equation (5.155) is Kirchhoff’s first
law (i.e., node current law, KCL).

Substituting equation (5.151) or (5.153) into equation (5.154), and substitut-
ing equation (5.148) into equation (5.155), the new NLCNFP model M-6 can
be written as follows:

mlnF= 2 (a,-Pé,» +biPGi +Cl)+h 2 PUZCZ,]C (5158)
ieNG ijeNT
such that
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P
P =PDL'+E|:B,'C +i€gij:| (5.159)
=i ij
Pgin S Psi < Poiy 1€ NG (5.156)
~Fjow < Fje < Pjew  jeNT (5.160)

where Z is called an equivalent impedance of transmission line ij, as shown
in equation (5.152).

Obviously, equation (5.159) is equivalent to the general system active
balance equation in the traditional EDC model, i.e.,

Y Pui=) Pu+h (5.161)

ieNG keND

where

ND: The number of load nodes

P.: The total system active power losses, which is obtained through
the computation of equation (5.162), rather than usual power flow
calculations

PL = 2 PLij = 2 P,IZCZ,JC (5162)

ijeNT ijeNT

The limit value of the equivalent line power flow P;cy in equation (5.160) can
be obtained from equation (5.148), i.e.,

2
B = Bjem + %(— PZCM J 8ij (5.163)
i

According to equation (5.163), we can get the positive limit value of the
equivalent line power flow P;cy (the negative root of P;cy is neglected), i.e.,

[V1+(28iPui/by) - 1]

E/‘CM =
g ij

(5.164)

5.5.2.2 Consideration of KVL It is well known that Kirchhoff’s second
law (i.e., loop voltage law, KVL) has not been considered in the study of
secure economic power dispatch using general NFP. This is why there always
exists some modeling error when secure economic power dispatch is solved
with traditional linear NFP. KVL is considered in this section.

The voltage drop on transmission line ij can be approximately expressed as

V, = P Zye (5.165)
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In this way, the voltage equation of the /th loop can be obtained, i.e.,

Y (PicZjc)uy =0 1=1,2,....,NM (5.166)

ij

where NM is the number of loops in the network and p;;, is the element in the
related loop matrix, which takes the value 0 or 1.

Introducing the KVL equation into model M-6, we get the following model
M-7, in which the augmented objective function is obtained from KVL equa-
tion (5.166) and objective function (5.158) in model M-6.

minFL = 2 (aiP(%l' +b,‘PG,‘ +C,‘)
ieNG

+ h 2 UCZUC Z(P,]CZ,]C )uij,l l = 1, 2, ceey NM (5167)

ijeNT ij

subject to constraints in equations (5.156), (5.159), (5.160) where A, is the
Lagrange multiplier, which can be obtained through minimizing equation
(5.167) with respect to variable Py, i.e.,

ZhP,]CZ,]c - MZZ,«]‘C},L,-]»J = 0 l = 1, 2, ey NM (5168)
i
=2hP;c /Zuw 1=1,2,...,NM (5.169)

By solving optimization NLCNFP model M-7, the generator power output
Pg; and the equivalent line power flow P;c can be obtained. Therefore, the
line power Py, angle 6, which is the difference of node voltage angles between
the sending end and the receiving end of the line, and system active power
losses P; can be computed from equations (5.148), (5.150) and (5.162), respec-
tively, rather than from the usual power flow calculations.

Similarly, the method of handling N — 1 security constraints in Section 5.4
is adopted here. Thus the incremental NLCNFP model of economic dispatch
with N — 1 security, model M-8, becomes

minAF = Y (2a;PS; +b;)APs; +h Y, (2Zyc Pj) APjc +x,22,,cu,]l (5.170)

ieNG ijeNT

such that

F;
APGi :z(1+b_]fgl]jABjC (5171)

Jj—i ij

max{_APGRCiM’ Fsim _P((})i} SAP; < min{APGRCiM7 Fsin _PC(}]I‘}, ie NG
(5.172)

APjc = —flnf\}z( {P@fc(l)_PtijM} JeNT1 (5.173)
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APjc = _gn]ilrl‘l{PijC (D)+Pjem} jeNT2 (5.174)
—Pijem — P,j(]c <APjc < Pjem — Pl;)C je(NT-NT1-NT?2) (5.175)

It is noted that the N — 1 security region may be very narrow since all con-
straints that are produced by all kinds of single outages are introduced in the
N — 1 security economic dispatch. In other words, the feasible range of the
generator’s power output becomes very small. Consequently, N — 1 security
is met, but the system economy may not be satisfied. Thus the idea of multi-
generation plans is used. The method is to solve the economic dispatch model
by considering one single outage only each time. This means that each effec-
tive single outage corresponds to one generation plan. Generally, there are
not too many effective single outages in a system. Therefore, it will not have
many generation plans. The incremental NLCNFP model of multigeneration
plans can be written as below:

minAF = z (2a;FS; +b;) APsi (D) + h z (2Zjjc Pjc ) APyc (l)+7\'lzzi/’cuij,l

ieNG ijeNT ij
(5.176)
such that
Pjc
AFsi(D) = 2 1+b_2gij Py (1) (5.177)
Jj—oi ij
max{_APGRCiMa Poim — P((J)i} SAPG (D)< min{APGRCiM, Foim — PGOi}’ ieNG
(5.178)
APi,C(l)=—(PijC(l)—BjCM) jeNT1,le NL (5.179)
APjc()=~(Pjc(D)+ Pjem) jeNT2,le NL (5.180)

~Pyow~ Pl <APc <Py —Pjt  je(NT-NT1-NT2)  (5.181)

5.5.3 Solution Method

Because of the special form of model M-7 or M-8, we introduce the following
algorithm for solving it.

Model M-7 or M-8 is easily changed into a standard model of nonlinear
convex network flow programming, i.e., model M-9,

minCch(f,-,-) (5.182)

such that

S(fi-fi)=r ien (5.183)

jen
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Li<f; <U; ijem (5.184)
Equation (5.183) can be written as
Af=r (5.185)

where A is a matrix with n x (n + m), in which every column corresponds
to an arc in the network and every row corresponds to a node in the
network.

Matrix A can be divided into a basic submatrix and a nonbasic submatrix,
which is similar to the convex simplex method, i.e.,

A=[B,S,N] (5.186)

where the columns of B form a basis; both § and N correspond to the nonbasic
arcs. S corresponds to the nonbasic arcs in which the flows are within the cor-
responding constraints. N corresponds to the nonbasic arcs in which the flows
reach the corresponding bounds.

A similar division can be made for the other variables. i.e.,

=115 fss ] (5.187)
8(f) =185 &s: &n1 (5.188)
G(f)=diag[Gs, Gs, Gy ] (5.189)
D =[Dg, Dy, Dy (5.190)

where

g(f): The first-order gradient of the objective function
G(f): The Hessian matrix of the objective function
D:The search direction in the space of the flow variables

To solve model M-9, Newton’s method can first be used to calculate the
search direction in the space of the flow variables. The idea behind Newton’s
method is that the function being minimized is approximated locally by a
quadratic function, and this approximate function is minimized exactly.

Suppose that fis a feasible solution and the search step along the search
direction in the space of flow variables B = 1. Then the new feasible solution
can be obtained.

f’=f+D (5.191)

Substituting equation (5.191) into the equations in model M-9, the nonlinear
convex network flow programming model M-9 can be changed into the
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following quadratic programming model M-10, in which the search direction
in the space of the flow variables is to be solved:

minC (D) :%DTG( D+g(f)' D (5.192)
such that
AD=0 (5.193)

Model M-10 is a special quadratic programming model that has the form of
network flow programming. To enhance the calculation speed, we present a
new approach, in place of the general quadratic programming algorithm, to
solve the model M-10. The main calculation steps are described below.

5.5.3.1 Temporarily Neglect Equations (5.194) and (5.195) This means
that L; < f; < U in this case. Thus Dy = 0 according to the definition of the
corresponding nonbasic arc.

From equation (5.193), we know that

Dy
AD=[B,S,N]| Ds |=0 (5.196)
0
From equation (5.196), we can obtain
DB = —BilsDS (5197)
-B'S
0

Substituting equation (5.198) into equation (5.192), we get
. 1
minC (D) =—(ZDs)' G(f)(ZDs)+8(f)" (ZDs) (5.199)

Through minimizing equation (5.199) to variable Dg, the model M-10 can be
changed into an unconstrained problem, the optimization solution of which
can be solved from the following equations:
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Dy =0 (5.200)
(Z'GZ)Dy=-Z"g (5.202)

5.5.3.2 Introduction of Equations (5.194) and (5.195) According to
equations (5.200)-(5.202), D can be solved from equation (5.202), and then
D can be solved from equation (5.201). If Dy violates the constraint equations
(5.194) and (5.195), a new basis must be sought to calculate the new search
direction in the space of flow variables. This step will not be terminated until
Dy satisfies constraint equations (5.194) and (5.195).

5.5.3.3 Introduction of Maximum Basis in Network Obviously, the
general repeated calculation of Dy and Dy, which is similar to that of pivoting
in linear programming, is not only time-consuming but also does not improve
the value of the objective function. To speed up the calculation, we adopt a
new method to form a basis in advance so that Dy and Djg can satisfy the
constraints (5.194) and (5.195). Therefore, the maximum basis in the network,
which consists of as many free basic arcs as possible, is introduced in this
chapter.

The maximum basis in a network can be obtained by solving the following
model M-11:

max 12]‘ d; A (5.203)

where

1, when arc ij is a free one, i.e., the flow in arc jj is within its bounds
d; =10, when arcij is not a free one, i.e., the flow in arc ij reaches its
bounds
Ao {1, when arc jj is in the basis B
’ 10, when arc jj is not in basis B

Suppose that basis B is the maximum basis from equation (5.203), only the
flows on the free arcs in basis B need to be adjusted in order to satisfy equa-
tion (5.203), if the flow on a free nonbasic arc needs to be adjusted [22].

The introduction of the maximum base indicates the adjusting direction of
flow, i.e., the change of flow is carried out according to the maximum basis.
Through selecting the maximum basis, equations (5.194) and (5.195) in model
M-10 can always be satisfied in the calculation of the search direction in the
space of the flow variables. Therefore, the quadratic programming model
M-10 is equivalent to unconstrained problem equations (5.200)—(5.202). To
enhance the calculation speed further, equations (5.200)—(5.202) can be solved
by the reduced gradient method.
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5.5.3.4 Reduced Gradient Algorithm with Weight Factor Equations
(5.200)—(5.202) can be written in compact format as below:

(Z'GZ)D=-Z"g (5.204)
If we use a unit matrix to replace the Hessian matrix (Z'GZ), we get

D=2V (5.206)

where

V:The negative reduced gradient
D:The direction of the reduced gradient

The main advantages of the reduced gradient method are: (1) the calcula-
tion is simple and (2) the required storage space is relatively small. The dis-
advantage is that it is an approximation. Thus the reduced gradient algorithm
has a linear convergence speed.

To improve the convergence speed of the reduced gradient method, select
a positive matrix that is not a unit matrix but can be easily inversed and use
it to replace the Hessian matrix (Z'GZ). In this way, we get a new reduced
gradient with weight, that is,

MV =-Z"¢ (5.207)
where

M: the weight of the reduced gradient.

Select the initial value of Z as

-B'S
Z=| 1 (5.208)
0

Substituting equation (5.208) into equation (5.207), we get
85
MV =-7"g=-[-S"(B")",L0]| g5 |=S"(B") 'gs-gs  (5209)
8N

According to equations (5.182) and (5.185), the following Lagrange func-
tion can be obtained:
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L=C(f)-MAf-r)
where
A: The Lagrange multiplier

According to the condition of optimization, we have

IL _

of

dC(f)
of

0

-A™\=0

That is,
g(f)=A"r

Expanding the above equation, we get

B™\ gs

STX =\ 8s

N™A| Lgw
BT7\« =8B

Substituting equation (5.215) into equation (5.209), we get

MV =ST(B")" B"A—gs=S"\—g;

(5.210)

(5.211)

(5.212)

(5.213)

(5.214)

(5.215)

(5.216)

In summary, the calculation steps of nonlinear convex network flow pro-
gramming model, which is solved by reduced gradient algorithm with weight,

are as follows:

(1) Compute A from equation (5.215).
(2) Compute V from equation (5.216).
(3) Compute D, from the following expression:

0, when (fs); =Ly, and V; <0.
Ds =10, when(fs); =Uj,and V; >0.

Vi, otherwise

(5.217)
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(4) Compute Dy from equation (5.201).
(5) Compute the new value of flow f'=f+ Dy

In the practical calculation, several parameters related to the algorithm
must be addressed.

(1) The convergence criteria

The convergence criteria are given as below:

max|(ST7L - gs)/.| <o (5.218)
where o is determined according to the required calculation precision.

(2) The selection of weighting matrix M

We can select the diagonal matrix of the Hessian matrix Z'GZ as the
weighting matrix M, i.e.,

M = diag(Z"GZ) (5.219)

(3) The selection of the search step

We assumed that the search step along the search direction in the space of
flow variables B = 1. To speed up the convergence, we can use the following
approach to compute the optimum search step along the search direction in
the space of flow variables. First of all, compute the initial step as below:

g'D

0_ _
P D'GD

(5.220)

Then compute the optimum step according to the following equation:

g(f+B*D)' D

<o, 0<o<l (5.221)
lg(£)" Dl

Meanwhile, the B* must meet the following equation:
C(f+B*D)-C(f)<m, 0<n<l1 (5.222)

If the above equation is not satisfied, use half of B* to recompute the flow
until the equation is met.

5.5.4 Implementation

For examining the NLCNFP model and algorithm, the numerical simulations
have been carried out on IEEE 5-bus and 30-bus systems. The results and
comparison of secure EDC are listed on Tables 5.20-5.22. To further raise the
precision of EDC and check the operation states of the system, the fast
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Table 5.20 Economic dispatch results comparison
(5-bus system)

Method OKA NLCNFP
Pgi(p.u.) 0.92700 0.97800
Pey(p.u.) 0.71600 0.66670
Total cost ($/hr) 757.500 757.673

Total loss (p.u.) 0.04300 0.04470

Table 5.21 ED results and comparison between NLCNFP and OKA for IEEE 30-bus
system

Scenario Scenario 1 Scenario 1 Scenario 2 Scenario 2
Method NLCNFP OKA NLCNFP OKA
Psi(p.u.) 1.7595 1.7588 1.5018 1.69665
Pc,(p.u.) 0.4884 0.4881 0.5645 0.33295
Pgs(p.u.) 0.2152 0.2151 0.2321 0.15000
Peg(p.u.) 0.2229 0.2236 0.3207 0.31270
Pgii(p.u.) 0.1227 0.1230 0.1518 0.30000
Pais(p-u.) 0.1200 0.12000 0.1413 0.12000
Total generation 2.9286 2.9290 2.9121 29151
Total real power losses 0.0946 0.0950 0.0781 0.0783
Total generation cost ($) 802.3986 802.51 807.80 809.68

Table 5.22 ED results and comparison among NLCNFP, QP, and LP for IEEE 30-bus
system

Generation No. NLCNFP Method QP Method LP Method
Pg, 1.7595 1.7586 1.7626
Pg, 0.4884 0.4883 0.4884
Pgs 0.2152 0.2151 0.2151
Peg 0.2229 0.2233 0.2215
Pgyy 0.1227 0.1231 0.1214
Pegis 0.1200 0.1200 0.1200
Total generation 2.9286 2.9285 2.9290
Total real power losses 0.0946 0.0945 0.0948
Total generation cost (§) 802.3986 802.3900 802.4000

decoupled power flow is also used in the calculation, but only in the first and
final stages.

Table 5.20 shows the economic dispatch results of the 5-bus system with
use of nonlinear convex network flow programming. The ED results with use
of out-of-kilter algorithm are also listed in Table 5.20 (column 3).
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The simulation results of the 30-bus system by NLCNFP are also compared
with those obtained by OKA in Section 5.4. The following two cases are used
to do comparison.

Scenario 1: The original data

Scenario 2: The original data, but the power limit value of the line 1 is
reduced to 1.00 p.u.

The corresponding calculation results and comparison based on two differ-
ent network flow techniques (NLCNFP and OKA) for these two scenarios are
listed in Table 5.21. Obviously, the ED solved by NLCNFP has higher preci-
sion than the ED solved by OKA.

Table 5.22 lists the ED results comparison among the NLCNFP method
and the conventional linear programming and quadratic programming
methods. The agreement between the conventional ED method through
power flow calculations and the NLCNFP method can be observed.

According the N — 1 security analysis in Section 5.4, there are four single
outages that cause the line violation for the 30-bus system. They are outage
lines 1, 2, 4, and 5. Applying the idea of multigeneration plans to the 30-bus
system, there will be five generation plans: one for the normal operation state
and four for the effective single outages, respectively. The detailed results of
the multigeneration plans are shown in Table 5.23.

Table 5.23 Multigeneration plans for IEEE 30-bus system

Normal Line 1 Line 2 Line 4 Line 5
Generation No. State Outage Outage Outage Outage
Py 1.7595 1.42884 1.40919 1.41584 1.57840
P, 0.4884 0.55222 0.57188 0.56521 0.38880
Pgs 0.2152 0.24135 0.24135 0.24135 0.25512
Pgs 0.2229 0.35000 0.35000 0.35000 0.35000
P 0.1227 0.17340 0.17340 0.17340 0.17340
Pgis 0.1200 0.16154 0.16154 0.16154 0.16154
Total generation 2.9286 2.90735 2.90736 2.90734 2.90726
Total real power 0.0946 0.07335 0.07336 0.07334 0.07326
losses
Total generation  802.3986 811.36192  812.64862  812.18859  808.30441
cost ($)
N security Satisfied / / / /
N — 1 security Not satisfied ~ Satisfied Satisfied Satisfied Satisfied
when one
of lines
#1,2,3,5is

in outage
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5.6 TWO-STAGE ECONOMIC DISPATCH APPROACH

5.6.1 Introduction

This section presents a two-stage economic dispatch approach according to
the practical operation situation of power systems. The first stage involves the
classic economic power dispatch without consideration of network loss. The
initial generation plans of the generator units are determined according to
the rank of fuel consumption characteristic of the units or the principle of
equal incremental rate. The second stage involves economic dispatch with
consideration of system power loss and network security constraints. Three
objectives can be used for the second stage. They are (1) minimize the fuel
consumption, (2) minimize system loss, and (3) minimize the movement of
generator output from the initial generation plans.

5.6.2 Economic Power Dispatch—Stage One

The equal incremental principle, which is introduced in Chapter 4, can be used
for the first stage of economic power dispatch. Given that the input-output
characteristic of NG generating units are F\(Pg:), F2(Pgy), -- ., F.(Pcn), respec-
tively, the total system load is Pp. The problem is to minimize the total fuel
consumption of generators F subject to the constraint that the sum of the
power generated must equal the received load. That is,

NG
min F = F (FPa1)+ F (Peo) ++ F, (P, ) = EE(PGI') (5.223)

i=1
s.t.

NG

Y Po=Pp (5.224)

i=1

This is a constrained optimization problem, and it can be solved by the
Lagrange multiplier method. According to Chapter 4, the principle of equal
incremental rate of economic power operation for multiple generating units
can be obtained as

dF;
dPGl

=\ i=12,..N (5.225)

or

df _dk _ dfy _, (5.226)
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The economic operation points P, of the first stage can be obtained from
the above equations (5.225) or (5.226).

5.6.3 Economic Power Dispatch—Stage Two

The second stage of the economic power dispatch includes loss correction
and network security constraints. On one hand, the system loss minimization
or the fuel consumption minimization can be selected as objective function.
On the other hand, the operators expect optimal dispatch points close to
the economic operation points FPJ; obtained from the first stage. Thus the fol-
lowing three objectives may be adopted in the second stage of economic
dispatch.
(1) Minimize the fuel consumption

min F; = EE(PGi) (5.227)
i1
(2) Minimize the system loss
minF, = B (5.228)
(3) Minimize the adjustment of generator output
NG
minF; = Y (Po - PY)’ (5.229)
i=1

The constraints include real power balance, generator power output limits,
and branch power flow constraints, that is,

Y Poi=) Pu+A (5.230)
ieNG keND

Foimin < Foi < Foimx 1€ NG (5.231)
|Pj| < Pjmax  5J€NT (5.232)

where

Pp: The real power load.

P;: The power flow of transmission line #j

Py max: The power limits of transmission line ij

Pg;: The real power output at generator bus i

Pg; min: The minimal real power output at generator i
Pg: max: The maximal real power output at generator i



196 SECURITY-CONSTRAINED ECONOMIC DISPATCH

P;: The network losses

F;: The fuel consumption function of the generator unit i
NT: The number of transmission lines

NG: The number of generators

It is noted that the two-stage approach for economic dispatch can be used
for dynamic economic dispatch or daily dispatch in the practical operation of
the power systems. To actualize the transition from the time point ¢ to ¢ + 1
schedule successfully, the real power generation regulations constraint,
APGreimax, Must be considered, i.e.,

|Poi — P&| < APsrcimax 1€ NG (5.233)

or
~APorcimax + P& < Poi < APsgreimax + PSi i€ NG (5.234)
Thus the regulating value of the generation is restricted by the two
inequality equations (5.231) and (5.234), which can be combined into one

expression:

max{_APGRCimax + PGOiv PGimin} < PGi < min{APGRCimaX + PGi, PGimax} l € NG
(5.235)

The economic dispatch model for the second stage can be written as

mlnF = thl + thz + h3F3 (5236)
s.t.
Y Poi=) Pu+P (5.237)
ieNG keND

0 . .
max {_APGRCimax + F5i5 Poimin } < P S min{AFPsrcimax + Fois Foimaxy 1€ NG

(5.238)
|Py|< Pjmex i €NT (5.239)

where
h+h+h=1 (5.240)

hy: The weighting factor of the fuel consumption objective function
h,: The weighting factor of the loss minimization objective function

h;: The weighting factor of the generator output adjustment objective
function
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The weighting factors can be determined according to the practical situa-
tion of the specific system. For example, if the network loss is the only concern
in a system, we can select h, = 1, and &, = h; = 0. If the network loss is not a
concern, and the economy is primary in a system, we can select 4, = 1, and
h2 = h3 = 0

The economic dispatch model for the second stage can be solved by any
algorithm mentioned in previous sections.

5.6.4 Evaluation of System Total Fuel Consumption

In practical system operation, the system total fuel consumption is mainly
concerned. Generally, the system total fuel consumption includes two parts:

(1) The total fuel consumption of the generators
(2) The equivalent fuel consumption of the system power losses

Generally, the system total fuel consumption before optimization is taken
as a reference point. It is expected that the system total fuel consumption
obtained after stage two is less than that in the reference point.

For the reference point, the initial system power losses P{ are obtained
from a power flow solution. In addition, since the line constraints are not
considered before optimization, there may be a branch flow violation. Thus
the penalty term for the power violation should be introduced in the calcula-
tion of the system total fuel consumption in the reference point. The system
total power violation can be computed as below:

NI
AP\/icl = Z (PUO - Pijmax) (5241)

ij=1

where NI is the set of violated branches.
The equivalent fuel consumption for the power violation is computed as

Fiiot = 72APyi01 (5.242)

Obviously, equivalent fuel consumption for the power violation Fi;,; will be
zero if there is no branch violation (i.e., N/ is empty set).
Thus the system total fuel consumption before optimization will be

NG
Fi =3 F (FS)+ 11 PL +Y:0Pu (5.243)

i=1

After stage two, the system power losses P, and the economic operation
points are computed by solving model equations (5.236)-(5.239) and power
flow. That is,
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NG
Fi =2Fi(PGi)+'YlPL (5.244)
i=1
where

v, Y- The coefficient’s of converting the system power loss and branch
power violation to the fuel consumption, respectively.

The requirement of the two-stage economic dispatch will be
Ff <F; (5.245)
where

Fi: The initial system total fuel consumption
F#: The final system total fuel consumption

Example 5.1

The test example is the IEEE 30-bus system with some data change. The
modified 30 bus system consists of 5 generation units, 21 loads, 41 transmis-
sion lines and transformers.

The fuel consumption functions of the generators are quadratic curves
and are shown in Table 5.24. The two-stage economic dispatch results are
shown in Tables 5.25 and 5.26.

Table 5.24 The fuel consumption function of generators for IEEE 30-bus system

Gen. No. a b C
1 0.00984 0.33500 0.00000
2 0.00834 0.22500 0.00000
5 0.00850 0.18500 0.00000
11 0.00884 0.13500 0.00000
13 0.00834 0.22500 0.00000

where: F, =a,P% +b;Ps; +¢;

Table 5.25 The results of generation scheduling for IEEE 30-bus system

Gen. No. Initial Point Stage Two for ED
1 54.645 51.305
2 59.480 60.330
5 60.570 61.440

11 57.370 58.190

13 59.480 60.190
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Table 5.26 The results of system fuel consumption for IEEE 30-bus system

Stage Initial Point Stage Two for ED
Total system loss (MW) 4.120 4.030
Total system fuel consumption 216.686 215.906

Table 5.25 shows the generation plans for the two stages, respectively.
Tables 5.26 shows system total losses and fuel consumption for the two
stages, respectively.

It can be observed from Table 5.26 that the system losses and fuel con-
sumption of the second stage are lower than those before optimization,
where loss is about 2.18% reduction, and total system fuel consumption is
about 0.36% reduction.

5.7 SECURITY-CONSTRAINED ED BY GENETIC ALGORITHMS

Genetic algorithms (GAs) are adaptive search techniques that derive their
models from the genetic processes of biological organisms based on evolution
theory. In Chapter 4, GAs are applied to solve the classic economic dispatch
problem, where the network losses and security constraints are neglected.

Considering the network losses Pp, and selecting unit N as the slack bus
unit, then the real power balance equation can be written as

N-1
Poy=Po+P. =) Py (5.246)

i=1

The network security constraints can be written as
|Pj|< Pimax  57=1,2,...,NL (5.247)

Adding penalty factors Ay, h, to the violation of power output of the slack bus
unit and 45 to the violation of line power, we get the augmented cost

NL

N
F, = ZE(PGI)+h1(PGN _PGNmax)z + (P n min _PGN)Z +h32(|Bj|_Pijmax)2
i1

ij=1

(5.248)

GA is designed for the solution of maximization problem, so the fitness
function for solving security economic dispatch problem is defined as the
inverse of equation (5.248):

1
Eitness = F_ (5249)

A
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The GA operations are stated in Chapter 4. The calculation steps for
solving GA-based ED with line flow constraints are as follows.

(1) Select the parameters related to GA such as population size, number
of generations, substring length, and number of trials.

(2) Generate initially random coded strings as population members in the
first generation.

(3) Decode the population to get power generations of the units in the
strings.

(4) Perform power flow analysis considering the unit generations in step
(3), so that GA is able to evaluate system transmission loss, slack bus
generation, line flows, and hence any violation for the slack bus genera-
tion and violation for the line flow limits.

(5) Check whether the number of trials reaches the maximal.
If the number of trials reaches the maximal, and there is no any gen-
erator power violation or line flow violation, stop and output the results.
If the number of trials reaches the maximal, but there exists a gen-
erator power violation or line flow violation, this means that the given
trial number is too small. Increase the trial numbers and recompute.
If the number of trials does not reach the maximal, go to the next
step.
(6) Evaluate the fitness of population members (i.e., strings).

(7) Execute selection of strings based on reproduction considering the
roulette wheel procedure with embedded elitism followed by crossover
with embedded mutation to create the new population for the next
generation. Go to step (2).

Example 5.2

The method of GAs for solving security economic dispatch problem is
tested on the IEEE 30-bus system. The test case is normal operation state
only. The parameters related to GAs are selected as below:

* Number of chromosomes = 100

+ Bit resolution per generator = §

+ Number of cross-points = 2

+ Number of generations = 18,000

+ Initial crossover probability = 92%
+ Initial mutation probability = 0.1%

The total load is 283.4 MW; the output results are listed in Table 5.27.
The GA-based ED results are also compared with those obtained by tra-
ditional optimization method (quadratic programming and linear program-
ming). The same results are obtained.
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Table 5.27 ED results by genetic algorithm and comparison for IEEE 30-bus system

Generation No. GA Method QP Method LP Method
Pei 1.7612 1.7586 1.7626
P, 0.4884 0.4883 0.4884
Pes 0.2152 0.2151 0.2151
Pes 0.2223 0.2233 0.2215
Peii 0.1221 0.1231 0.1214
Peis 0.1200 0.1200 0.1200
Total generation 2.9292 2.9285 2.9290
Total real power losses 0.0952 0.0945 0.0948
Total generation cost ($) 802.4634 802.3900 802.4000

APPENDIX: NETWORK FLOW PROGRAMMING

Network flow programming (NFP) is a special form of linear programming
(LP). The algorithms for LP including the simplex method can also be used
for NFP problem. However, since the specialization of NFP, especially when
NFP is applied to the economic dispatch problem of a power system, some
simplified algorithms are more efficient to solve NFP problem. Here we only
introduce several most important applications of network flow problems that
are used in power system optimal operation [22-27].

The Transportation Problem

The transportation problem is to find the amounts of goods to ship from the
supply site to the demand site to minimize the total transportation cost. As we
describe in Section 5.4, in the economic dispatch of a power system, the supply
sites correspond to the generator sources, the demand sites correspond to load
demands, and the transportation paths correspond to transmission lines.

In the transportation problem, the supply node is called the source and the
demand node is called the sink. The mathematical representation of the trans-
portation problem is as below:

s D
i=1 j=1
such that
2x,~j <s; ieS (5A.2)
jeD
Zx,-,» 21, jeD (5A.3)

ieS

x; 20 ieS,jeD (5A.4)



202 SECURITY-CONSTRAINED ECONOMIC DISPATCH

where

¢;;: The cost of supply from source i to sink j

x;: The supply from source i to sink j. It must be nonnegative.
s; The supply from the source

r; The supply received at the sink

S The total number of source nodes in the network

D The total number of sink nodes in the network

Obviously, the transportation problem is not feasible unless supply is at
least as great as demand

ZS,- > z 7 (5A.5)

ieS jeD

If this inequality is satisfied, then the transportation problem is feasible.
This is generally true for the economic dispatch problem of power systems,
in which the total generations equal the total load demands plus the system
power loss.

For simplification of the transportation problem it can be assumed that the
total demand is equal to the total supply, that is,

Nsi=dr (5A.6)

ieS jeD

Under this assumption, the inequalities in constraints (5A.2) and (5A.3) must
be satisfied with equalities, that is,

ZX,-,- =S l S S (5A7)
jeD
Zx,-j =r, jeD (5A.8)

ieS

This corresponds to the economic dispatch problem neglecting network
loss. We also can use this assumption even for economic dispatch with trans-
mission loss as we analyze in Section 5.4.

This problem can, of course, be solved by the simplex method described in
the Appendix of Chapter 9. However, the simplex tableau for this problem
involves an 1J by I + J constraint matrix. Instead, we use a more efficient
algorithm to solve it. The algorithm consists of four steps.

(1) Form a transportation array or table as in Table Al.
(2) Find a basic feasible shipping schedule, x;;.

(2a) Choose any available square from the table, say (i, ji), Specify Xioo
as large as possible subject to the constraints, and circle this
variable.



APPENDIX: NETWORK FLOW PROGRAMMING 203

Table A1 Transportation array

D, D, Dy
P i1 Ci2 Cip
1
X1 X1 Xip | 51
P, Cy Cx Cop s
2
X1 X2 Xop
PS CSI Csz s CSD
Xs1 Xs2 Xsp | S
ry I 'p

®)

(4)

(2b) Delete from consideration whichever row or column has its con-
straint satisfied, but not both. If there is a choice, do not delete a
row (column) if it is the last row (resp. column) undeleted.

(2c) Repeat steps (2a) and (2b) until the last available square is filled
with a circled variable, and then delete from consideration both
row and column.

Test for optimality.

Given a feasible shipping schedule x;, we can use the equilibrium
theorem to check for optimality. This entails finding feasible u; and v;
that satisfy the equilibrium conditions

Vj —U; = Cij; for xij > O (5A9)

where u; and v; are nonnegative dual variables of the primal problem
and satisfy the following constraint:

v;i—u; <c;, foralliandj (5A.10)

]

Then, the method for checking the optimality is as below:

(3a) Set one of the u; and v;, and use equation (A9) for squares con-
taining circled variables to find all the u; and v;.

(3b) Check feasibility, v; — u; < ¢;, for the remaining squares. If
feasible, the solution is optimal for the problem and its dual
problem.

If the test fails, find an improved basic feasible shipping schedule, and

repeat step (3).

(4a) Choose any square (i, j) with v; — u; > ¢, set x; = 6, but keep the
constraints satisfied by subtracting and adding 6 to appropriate
circled variables.



204 SECURITY-CONSTRAINED ECONOMIC DISPATCH

(4b) Choose 6 to be the minimum of the variables in the squares in
which 6 is subtracted.

(4c) Determine the new variable and remove from the circled vari-
ables one of the variables from which 6 was subtracted that is now
ZEero.

Example A1

There is a simplified power system that consists of three generators (G; = 6
p-u., G, =7 p.u.,and G; = 9 p.u.) and four load demands (D; =3 p.u.,D,=9
p.u., D; =4 p.u,, D, = 6 p.u.). Each generator connects to all loads, respec-
tively. Assume network loss is neglected. To compute the minimal transmis-
sion cost flow P; for this network:

1. We can form the transportation table in Table A2, where the number in
the table is the transmission cost for transfer the power from the genera-
tor to load.

2. Find an initial power flow P;.

Choose any square, say the upper left corner, (1, 1), and make P;; as
large as possible subject to the constraints. In this case, P, is chosen equal
to 3 (we delete the unit for simplification). It means that supply load D,
receives its demands from PG,. Thus, P, = P5; = 0.

We choose another square, say (1, 2), and make P, as large as possible
subject to the constraints. Then P, = 3, since there are only three units left
at PG,. Hence, Pj; = Py, = 0. Next, choose square (2, 2), say, and put P,, = 6,
so that load D, receives all of its demands, 3 units from PG, and 6 units
from PG,. Hence, P, = 0. One continues in this way until all the variables
P, are determined. The results are shown in Table A3.

Itis noted that this method of finding an initial feasible solution is simple
but may not be efficient. Here we introduce another approach that is called
the least cost method.

Table A2 Transportation array for Example A1

D, D, D, D,
G, | 2 10 12 3 ,
PG, | 8 5 6 4 ;
PG, 1 3 4 7 )
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Table A3 Feasible flow for Example A1

205

D, D, D, D,
10 12
PG, 3 3 6
8 5 6 4
PG
2 6 1 7
1 3 4 7
3 9 4 6
Table A4 Feasible flow using least cost rule for Example A1
D, D, D, D,
4 10 12 3
PG, 6 6
rG. | 8 5 6 4
. 3 4 0o |7
1 3 4 7

We choose a different order for selecting the squares in the example
above. We try to find a good initial solution by choosing the squares with
the smallest transmission costs first.

It can be observed from Table A3 that the smallest transmission cost is
in the lower left square, which is ¢;; = 1. Thus it will be most economical
to supply power from generator 3 to load 1. Since the maximal load is 3 for
D,, the maximal power flow P3 = 3 is determined and D; is satisfied, which
can be deleted for the other computation. Of the remaining squares, 3 is
the lowest transmission cost (there are two). We might choose the upper
right corner next. Thus Py, = 6 is determined, and we may delete either PG,
or D,, but not both, according to rule (2b). Say we delete PG;. Next P;, = 6
is determined and PGj is deleted. Of the generators, only PG, remains, so
we can determine P, = 3, P»; = 4 and P,, = 0. The results are shown in
Table A4.

3. Check optimality of the results

We check the feasible power flow in Table A4 for optimality. First solve
for u; and v;. We put u, = 0 because that allows us to solve quickly for v, =5,
v; = 6, and vy = 4. [Generally, it is a good idea to start with a u; = 0 (or
v; = 0) for which there are many determined variables in the corresponding
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Table A5 Optimality check for Example A1

3 5 6 4
[ 4 8 12 3
c |6
0 | 8 5 6 4
3 4 o |7
1 3 4 7
2
3 6 9
3 9 4 6

row (column).] Knowing v, = 4 allows us to solve for u; = 1. Knowing v, = 5
allows us to solve for u; = 2, which allows us to solve for v; = 3. We write
the v; variables across the top of the array and u; along the left, as shown
in Table AS.

Then, check the feasibility of the remaining six squares. The upper left
square satisfies the constraint v; — u; < ¢, since 3 — 1 = 2 < 4. Similarly, all
the squares may be seen to satisfy the constraints, and hence the above
gives the solution to both primal and dual problems. The optimal shipping
schedule is as noted, and the value is

X¥epx;=3-1+6-3+3-5+4-6+0-4+6-3=78.

We can check whether the solution is optimal by computing Xv;r; — Zus;,
which is the objective function of the dual problem. According to Corollary
2 of the duality theorem described in Appendix A, we have

zzcijxif =2erj _zuisi (5A.11)

If both primal and dual problems have the optimal solution.
ZV/-r,» —Zuisi =78

Thus the above solution is optimal.

Example A2

Example A2 is computed as for example Al with the transmission cost
shown in Table A6.

According to the least cost rule, we get the feasible flow table in Table
AT.

According to the equilibrium condition, we can compute u; and v;. The
corresponding results are shown in Table AS.

Through checking the optimality in Table A8, we find that the block
(2, 1) in Table A8 cannot satisfy the constraint v; — u; < ¢;, since
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Table A6 Transportation array for Example A2

D, D, D, D,
4
rG, 8 13 3 ,
rG, | 2 5 6 5 5
1 3 4 15
PG, 9
3 9 4 6

Table A7 Least cost flow for Example A2

D, D, D, D,
4 8 13 3
PG, 6 6
2 5 6 5
PG
2 3 4 7
1 3 4 15

Table A8 Optimality check for Example A2

3 5 6 5

2 [ 4 8 13 3
6 |6

0 2 5 6 5
3 4 7

, [ 3 1 15
3 6 9

3 9 4 6

vi—u, =3 -0 =32 ¢, =2. Thus the solution in Table A8 is not optimal.
We need to find an improved basic feasible shipping schedule and recheck
the optimality.

Choose any square (i, j) with v; — u; > ¢, set x; = 0, but keep the con-
straints satisfied by subtracting and adding 6 to appropriate selected vari-
ables. We would like to add 6 to block (2, 1). This requires subtracting
from squares (3, 1) and (2,2) and adding 6 to square (3,2), which are shown
in Table A9.
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Table A9 Optimality check for Example A2

3 5 6 5
2 4 8 13 3
6 6
0 2 5 6 5 -
+0 -0 3 4
> | 1 3 4 15
-0 3 +0 6 9
3 9 4 6
Table A10 Optimality check for Example A2
2 5 6 5
2 4 8 13 3
6 6
0 2 5 6 5 7
3 0 4
5 |1 3 4 15
0 9 9
3 9 4 6

We choose 6 to be the minimum of the x; in the squares in which we are
subtracting 6. In the example, 6 = 3. Determine the new variable and
remove from the selected variables one of the variables from which 6 was
subtracted that is now zero. Thus we get Table A10. We can check whether
all the constraints are met, and the optimal solution is 75.

Dijkstra Label Setting Algorithm

Dijkstra’s algorithm is a widely used label method for solving network flow
problems such as the shortest-path problem. The data structures that are
carried from one iteration to the next are a set F of finished nodes and two
arrays indexed by the nodes of the graph. The first array, v;, j € N, is just the
array of labels. The second array, %, i € N, indicates the next node to visit
from node i in a shortest path. As the algorithm proceeds, the set F contains
those nodes for which the shortest path has already been found. This set starts
out empty. Each iteration of the algorithm adds one node to it. This is why
the algorithm is called a label-setting algorithm, since each iteration sets one
label to its optimal value. For finished nodes, the labels are fixed at their
optimal values. For each unfinished node, the label has a temporary value,
which represents the length of the shortest path from that node to the root,
subject to the condition that all intermediate nodes on the path must be fin-
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ished nodes. At those nodes for which no such path exists, the temporary label
is set to infinity (or, in practice, a large positive number).

The algorithm is initialized by setting all the labels to infinity except for the
root node (or source node), whose label is set to 0. Also, the set of finished
nodes is initialized to the empty set. Then, as long as there remain unfinished
nodes, the algorithm selects an unfinished node j having the smallest tempo-
rary label, adds it to the set of finished nodes, and then updates each unfinished
“upstream” neighbor i by setting its label to ¢; + v; if this value is smaller
than the current value v;. For each neighbor i whose label gets changed, #; is
set to j.
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MULTIAREA SYSTEM
ECONOMIC DISPATCH

This chapter focuses on the operation of the multiarea system. In addition
to the introduction of the wheeling model, multiarea wheeling, the total
transfer capability computation in multiareas, this chapter introduces the
multiarea economic dispatch algorithms based on nonlinear convex network
flow programming, as well as the nonlinear optimization neural network
approach.

6.1 INTRODUCTION

Many countries have more than one major generation-transmission utility
with local distribution utilities. Because of the recent deregulation of power
industry, the industry structure is important in discussing the interchange of
power and energy since the purchase and sale of power and energy is a com-
mercial business in which the parties to any transaction expect to enhance
their own economic positions under nonemergency situations. The multiarea
system economic dispatch or interconnected systems economic dispatch is for
this purpose.

At present, many approaches have been considered for multiarea economic
dispatch (MAED) [1-5], which is an extension of economic dispatch. All kinds
of optimization algorithms and heuristic approaches have been used in eco-
nomic dispatch [6-18], which we also describe in Chapter 5.
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6.2 ECONOMY OF MULTIAREA INTERCONNECTION

Electric power systems are interconnected or multiple areas are intercon-
nected to one big system because the interconnected system is more reliable.
Here we use the term multiarea system to stand for the interconnected system.
In a multiarea system, generations and loads are coordinated with each other
through the tie-lines among the areas. A load change in any one of the areas
is taken care of by all generators in all areas. Similarly, if a generator is lost
in one control area, governing action from generators in all connected areas
will increase generation outputs to make up the mismatch. Another advantage
of a multiarea system is that it may be operated at less cost than if left as sepa-
rate parts. As we describe in Chapter 4, it will improve the operating econom-
ics if two generators that have different incremental costs are operating
together. This concept is also suited for the interconnected multiarea system
since the generator cost functions are different for different areas.

For example, the companies that are members of the broker system send
hourly buy-and-sell offers for energy to the broker, who matches them accord-
ing to certain market rules. Hourly, each member transmits an incremental
cost and the number of MWh it is willing to sell or its decremental cost and
the number of MWh it will buy. The broker sets up the transactions by match-
ing the lowest-cost seller with the highest-cost purchaser, proceeding in this
manner until all offers are processed. A common arrangement set up by the
broker for the buyers and sellers is to compensate the seller for the incremen-
tal generation costs and split the savings of the buyer equally with the seller.
The pricing formula for this arrangement is similar to the operation of two
generators with different incremental cost rates in a system. But we handle
the two generators like two utilities with one selling and the other buying.
Then, the transaction’s cost rate is computed as below [19]:

xc:xs%(xb—xs)

- %(xb ) 6.1)

where

As: Incremental cost of the selling utility ($/MWh)
Aot Decremental cost of the buying utility ($/MWh)
A.: Cost rate of the transaction ($/MWh)

Example 6.1

There are four utilities, with two selling and two buying. The related data
are listed in Tables 6.1 and 6.2. The maximum pool savings possible is
computed as below:



ECONOMY OF MULTIAREA INTERCONNECTION 213

Table 6.1 Data of utilities A and B

Utilities Selling Incremental Cost Seller’s Total
Energy ($/MWh) MWh for Sale Increase in Cost ($)
A 20 120 2400

B 28 80 2240

Table 6.2 Data of utilities C and D

Utilities Buying ~ Decremental Cost Buyer’s Total
Energy ($/MWh) MWh for Purchase = Decrease in Cost ($)
C 32 60 1920

D 46 140 6440

Net pool savings = (1920 + 6440) — (2440 + 2240) = 3720 ($)
The broker sets up transactions as shown below:

1. Transaction: A sells 120MWh to D

Transaction saving AF, = 120 x (46 — 20) = 3120 ($)
2. Transaction: B sells 20 MWh to D

Transaction saving AFg_p = 20 X (46 — 28) = 360 ($)
3. Transaction: B sells 60 MWh to C

Transaction saving AFg_ = 60 x (32 - 28) = 240 ($)

The total transaction savings are

AF; =60x(32-28)=3120+360+240 = 3720 ($)
Then the rate and payment of each transaction are computed as follows:

1. Transaction: A sells 120 MWh to D
Rate Ay p = (46 + 20)/2 = 33 ($/MWh)
Payment: F,_p = 33 x 120 = 3960 ($)

2. Transaction: B sells 20MWh to D
Rate A, p = (46 + 28)/2 = 37 ($/MWh)
Payment: F_, = 37 x 20 = 740 ($)

3. Transaction: B sells 60 MWh to C
Rate Ay p = (32 + 28)/2 = 30 ($/MWh)
Payment: F,_, = 30 x 60 = 1800 ($)

This means that utility A receives payment of $3960 from utility D, and
utility B receives payment of $2540 from C and D. The each participant
obtains benefit.
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AF, =3960 - 2400 = 1560 ($)

AFg =2540-2240 =300 ($)
AF:=1920-1800 =120 ($)

AFp = 6440 -3960 — 740 = 1740 ($)

Obviously, AF, + AFp + AF¢ + AFp = AF .

Therefore, there exist transactions among areas if the areas belong to dif-
ferent companies. One area may have a surplus of power and energy and may
wish to sell it to other areas with different companies on a long-term firm
supply basis. If excess this agreed amount, it will be on a “when and if avail-
able” basis with a different price. Meanwhile, some area may wish to buy
energy from the other areas in the connected system. It is possible that the
interconnected system will have interchange power being bought and sold
simultaneously within several areas. Thus the price for the interchange must
be set while taking account of the other transactions. For example, if one area
were to sell interchange power to two different areas in sequence, it would
probably quote a higher price for the second sale since the first sale would
have raised its incremental cost. On the other hand, if the selling utility was a
member of a power pool, the sale price might be set by the power and energy
pricing portions of the pool agreement to be at a level such that the seller
receives the cost of the generation for the sale plus one-half the total savings
of all the purchasers. In this case, it is assumed that a pool control center exists
and the sale price would be computed by this center and would differ from
the prices under multiple interchange contracts. In the United States, the
independent system operator (ISO) plays this kind of role.

The power pool or ISO is administered from a central location that has
responsibility for setting up interchange between members, as well as other
administrative tasks. The pool members relinquish certain responsibilities
to the pool operating office in return for greater economy in operation. The
agreement that the pool members sign is usually very complex. The complex-
ity arises because the members of the pool are attempting to gain greater
benefits from the pool operation and to allocate these benefits equitably
among the members. In addition to maximizing the economic benefits of
interchange between the members, the pool helps member companies by
coordinating unit commitment and maintenance scheduling, providing a cen-
tralized assessment of system security and reliability, as well as marketing
rules, and so on. The increased reliability provided by the pool allows the
members to draw energy from the pool transmission network during emergen-
cies as well as covering each others’ reserves when generating units are down
for maintenance or in outage.

The agreements among the pool members are very important for the
operation of a pool system. Obviously, the agreements will become more
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complicated if the members try to push for maximum economic operation.
Nevertheless, the savings obtainable are quite significant and have led many
interconnected utility systems (i.e., multiarea systems) throughout the world
to form centrally dispatched power pools when feasible. At present, there are
several organizations similar to the power pool in the United States. These
are MISO, ISONE, CAISO, PJM, NYISO, ERCOT, SPP, Entergy, etc. These
ISOs have SCADA and EMS systems, as well as a market system. They use
real-time data telemetered to central computers that calculate the best eco-
nomic dispatch for the whole organization (within footprint) and provide
signals to the member companies.

Example 6.2

For example 6.1, assume that four utilities were scheduled to transact energy
by a central dispatching scheme and 12% of the gross system savings was
to be set aside to compensate those systems that provided transmission
facilities to the pool. The maximum pool savings possible is computed as
below.

The net pool savings without transmission compensation is 3720 ($). Thus
the transmission compensation Freom, = 3720 X 12% = 446.4 (§)

The weighted average incremental cost for selling can be computed as
below:

A= 4=k (6.2)

where

A : The weighted average incremental cost for selling utilities ($/MWh)
Asi: The incremental cost for selling utility i ($)

Pg: The selling power for selling utility i (MWh)

NS: The number of selling utilities

The weighted average decremental cost for buying can be computed as
below:

Ao=L— (6.3)
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where
Ly : The weighted average incremental cost for buying utilities ($/MWh)

Ay The decremental cost for buying utility j ($)
Py;: The selling power for buying utility j (MWh)
NB:The number of buying utilities

For this example, the seller’s weighted average incremental cost is

20x120+28x% 80 — 232 ($/MWh)
120+80

To=

The buyer’s weighted average decremental cost is

7, 32X60+46x140 _ 418(8/MWh)
60+ 140

Considering the transmission compensation, the transaction savings for
seller and buyer can be computed as below:

Xh _ 7\'51

AF,;=(1- n%)TPsi (6.4)

Api —A
2

AFb,' = (1 - no/o)—SPb,' (65)

where
1 %: The transmission compensation rate

For utility A that sells 120 MWh to the pool, the transaction savings are
AF,=(1- 12%)# x120=1151.04($)

For utility B that sells 80 MWh to the pool, the transaction savings are

AFg=(1- 12%)# x 80 =485.76 ($)

For utility C that buys 60 MWh from the pool, the transaction savings are

AF,.=(1 —12%)%%0 =232.32($)
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For utility D that buys 140 MWh from pool, the transaction savings are

AF,, =1~ 12%)46_% x 140 = 1404.48 ($)

The total savings are

AFT = AFSA + AFSB + AFbC + AFbD
=1151.04+485.76 + 232.32 +1404.48 = 3273.6

The practical costs in the transactions for this hour are:
For A, it sells 120MWh and obtains
Fy =120%x23.2+1151.04 =3935.04 ($)
For B, it sells 80 MWh and obtains
Fz=80x%23.2+485.76 =2341.76 ($)
For C, it buys 60 MWh with payment
Fo=60x41.8—232.32=2275.68 ($)
For D, it buys 140 MWh with payment
Fp =140x41.8-1404.48 = 4447.52 ($)

The total payments for this transaction are F¢ + Fp = 2275.68 + 4447.52 =
6723.2.

The total costs that sellers obtained are F4 + Fg =3935.04 + 2341.76 = 6276.8

The difference between the total payments and the costs that sellers
obtained is 446.4, which equals the transmission charge or compensation.

6.3 WHEELING

6.3.1 Concept of Wheeling

Wheeling is the heart of the operational and economic issues of an open
access transmission. Let us use the following example to explain what “wheel-
ing” is. Assume utility A (e.g., in area A) needs to sell 200MW to another
utility B (e.g., in area B) through its own transmission (line 1) shown in
Figure 6.1(a). For simplification of explanation, the network power loss is
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Buy 200MW from A

Sell 200MW to B

Line 1 (ATC=200MW) Area B

—_—

200 MW
(a)
Buy 200MW from A
Sell 200MW to B
Area B

Area A
own line 1

Line 1 (ATC=100MW)
5 /
100 MW /

transmission
lines2 & 3

(b)
FIGURE 6.1 Explanation of wheeling

neglected. If the available transfer capacity (ATC) of line 1 is greater than
200MW, the transaction is simple and there is no “wheeling.” But if the ATC
of line 1 is only 100MW and the same amount of transaction is required,
utility A cannot complete the transaction through its own transmission lines.
Utility A has to “borrow” the path from the third party that owns trans-
mission lines 2 and 3, which connect to utilities A and B (unless utility A
constructs a new transmission line, which is an expensive investment). Thus
the transaction between utilities A and B is completed through the third
party, which is shown in Figure 6.1(b). This case involves “wheeling.” The
corresponding cost or pricing for this transaction is more complicated than
that for the case shown in Figure 6.1(a).

Thus we can simply say that “wheeling” is the use of some party’s (or
parties’) transmission system for the benefit of other parties. Each wheeling
utility is termed a wheel. Wheeling occurs on the interconnected areas or
systems that contain more than two utilities (or parties) whenever a transac-
tion takes place. When the contracted energy flow enters and leaves the wheel-
ing utility, the flows throughout the wheeling utility’s network will change.
The transmission losses incurred in the wheeling utility will change. Wheeling
rates are the prices it charges for use of its network, which determine the
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payments by the buyers or sellers, or both, to the wheeling utility to compen-
sate it for the generation and network costs incurred.

There are four major types of wheeling depending on the relationships
between the wheeling utility and the buyer-seller parties [20].

« Utility to utility: This is usually a case of area-to-area wheeling.

« Utility to private user or requirements customer: The former is usually a
case of area-to-bus wheeling, while the latter is usually a case of area-to-
area wheeling, unless the requirements customer is small enough to be
fed only at one bus, and thus it becomes area-to-bus wheeling.

« Private generator to utility: Bus-to-area wheeling.
« Private generator to private generator: Bus-to-bus wheeling.

Wheeling power may either increase or decrease transmission losses
depending on whether the power wheeled flows in the same direction as, or
counter to, the native load on the wheeler’s lines. Wheeling power on a heavily
loaded line causes more energy loss.

The cost of wheeling is a current high-priority problem throughout the
power industry for utilities, independent power producers, as well as regula-
tors. The following factors have led to the importance of the cost of the wheel-
ing problem in the United States:

(1) Enormous growth in transmission facilities at 230KV and above since
1960s

(2) Cost differentials for electric energy between different but intercon-
nected electric utilities

(3) High cost of new plant construction versus long-term, off-system capac-
ity purchase

(4) Dramatic growth in nonutility generation (NUG) capacity, which
includes independent power producers (IPP) and cogenerators, due to
the passage: of the Public Utility Regulatory Act in 1978 and the sub-
sequent introduction of competitive bidding for generation capacity
and energy.

Wheeling is necessary and important for any NUG, unless the customer of
a NUG is the utility itself to which it is directly connected.

It is noted that not all of the transaction flows over the direct interconnec-
tions between the two systems. The other systems are all wheeling some
amount of the transaction. These are called “parallel path or loop flows” in
the United States, where various arrangements have been worked out between
the utilities in different regions to facilitate interutility transactions that involve
wheeling. These past agreements would generally ignore flows over parallel
paths where the two systems were contiguous and owned sufficient trans-
mission capacity to permit the transfer [19]. In this case, wheeling was not
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taking place, by mutual agreement. The extension of this agreement to non-
contiguous utilities led to the artifice known as the “contract path.” To make
arrangements for wheeling, the two utilities would rent the capability needed
to any path that would interconnect these two utilities.

6.3.2 Cost Models of Wheeling

We considered energy transaction prices based on the split-savings concept
earlier in this book. Both the sellers and wheeling systems would want to
recover their cost and would wish to receive a profit by splitting the savings
of the purchaser. The transmission services may be offered on the basis of a
“cost plus” price. Other pricing schemes have been used. Most are based
upon simplified models that allow such fictions as the “contract path.” Some
are based on an attempt to mimic a power flow, in that they would base prices
on incremental power flows determined in some cases by using DC power
flow models. The very simplest rate is a charge per MWh transferred and
ignores any path considerations. More complex schemes are based on the
marginal cost of transmission that is based on the use of bus incremental
costs [19]. The numerical evaluation of bus incremental costs is straightfor-
ward for a system in economic dispatch. In that case, the bus penalty factor
times the incremental cost of power at the bus is equal to the system A, except
for the generator buses that are at upper or lower limits. This concept is not
only for the generator buses, but also for the load buses, even any bus that
does not have any generator or load connected to it. In the practical market-
ing system, this kind of bus or node is called the pricing bus or pricing node.
It is noted that this method is only good for a small increment of power at
a bus, rather than a large increment. If the increment of power is large, the
optimal power dispatch must be recalculated and the cost is not equal to the
incremental cost. We treat this case in next sections as well as Chapter 8 on
optimal power flow.
In this section, several cost models of wheeling are discussed.

6.3.2.1 Short-Run Marginal Cost Model The short-run marginal costs
(SRMC) of wheeling are the costs of the last MWh of energy wheeled, which
can be computed from the difference in the marginal costs of electricity at the
entry and exit buses, that is, the difference in the spot prices of these buses.

Figure 6.2 gives a wheeling example with system A selling APy MW to
system C and system B wheeling that amount. As we mentioned above, if the
operators were to purchase the block of wheeled power at bus i at the incre-
mental cost, and sell it to system C at the incremental cost of power at bus j,
the wheeling costs, using marginal cost pricing and related computations can
be obtained as below [21]:

oF,  OF,
aPGi aPGj

Aw= (6.6)
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FIGURE 6.2 Wheeling example

where
Aw: Short-run marginal costs of wheeling

Equation (6.6) is simply the equation of the spot prices. The total wheeling
costs with wheeling power APy, MW will be

(6.7)

Py P,

6.3.2.2 Embedded Cost Model The embedded cost of wheeling methods,
used throughout the utility industry, allocates the embedded capital costs and
the average annual operation (not production) maintenance costs of existing
facilities to a particular wheel; these facilities include transmission, subtrans-
mission, and substation facilities. Happ has given a detailed treatment of all
the methods as well as their algorithms. There are four types of embedded
methods [22, 23]:

(1) Rolled-in-embedded method
This method assumes that the entire transmission system is used in
wheeling, regardless of the actual transmission facilities that carry the
wheel. The cost of wheeling as determined by this method is indepen-
dent of the distance of the wheel, which is the reason that the method
is also known as the postage stamp method. The embedded capital costs
correspondingly reflect the entire transmission system.

(2) Contract path method
This method is based upon the assumption that the wheel is confined
to flow along a specified electrically continuous path through the wheel-
ing company’s transmission system. Changes in flows in facilities that
are not along the identified path are ignored. Thus this method is
limited to those facilities that lie along assumed path.

(3) Boundary flow method
This method incorporates changes in MW boundary flows of the wheel-
ing company due to a wheel, either on a line basis or on a net inter-
change basis, into the cost of wheeling. Two power flows, executed
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successively for every year with and without each wheel, yield the
changes in either individual boundary line or net interchange MW
flows. The load level represented in the power flows can be at peak load
or any other appropriate load.
(4) Line-by-line method

This method considers changes in MW flows due to the wheel in all
transmission lines of the wheeling company and the line lengths in
miles. Two power flows executed with and without the wheel yield the
changes in MW flows in all transmission lines.

There are two limitations common to all four embedded cost methods:

(1) The methods consider only the costs of existing transmission
facilities.

(2) The methods do not consider changes in production costs as a result of
required changes in dispatch and or unit commitment due to the pres-
ence of the wheel.

Other cost factors may exist that contribute to the cost of wheeling. In
particular, the available transfer capacity of the transmission network is not
considered, for example, the economic purchases or sales of power, which have
to be curtailed to accommodate the wheel because of transmission limits.

6.3.2.3 Long-Run Incremental Cost Model Ilong-runincremental trans-
mission costs for wheeling account for:

(1) The investment costs for reinforcement to accommodate the wheel, or
credit for delaying or avoiding reinforcements, and

(2) The charge in operating costs and incremental operation and mainte-
nance costs incurred because of the wheel.

There are currently two models for the LRIC methodologies: standard
long-run incremental cost (SLRIC) methodology and long-run fully incremen-
tal cost (LRFIC) methodology.

The standard long-run incremental cost method uses traditional system
planning approaches to determine reinforcements that are required, and cor-
responding investment schedules with and without each wheel, throughout the
study period. If more than one wheel is present in the study period, the cost
of each reinforcement and the change in operating costs have to be accurately
allocated to each wheel.

The long-run fully incremental cost method does not allow excess transmis-
sion capacity to be used by a wheel but forces a reinforcement along the path
of the wheel to accommodate it; if more than one wheel is present in the study
period, a reinforcement is required for each separate wheel [23].
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FIGURE 6.3 Multiarea wheeling topology

6.4 MULTIAREA WHEELING

Multiarea wheeling is a real-world practical concern, because wheeling from
a seller to a buyer involves power flow through several intermediate networks.
How much power should be wheeled through each path, what wheeling should
be applied to each such transaction, and how can these decisions be made
optimal?

Consider an interconnected system with multiple intermediate wheeling
utilities and multiple seller-buyer couples. An OKA network flow model,
which is described in Chapter 5, can be used to represent this energy transac-
tion system [24], where one seller can be treated as one source and one buyer
can be treated as a sink. OKA is able to introduce a super source (seller) and
a super sink (buyer) and make multiple seller-buyer pairs become one simple
seller-buyer pair.

Figure 6.3 is a simple system with four intermediate wheeling utilities W,
W,, W3, and W, and one buyer and seller pair (S-B). There are 10 interutility
wheeling paths, given by the directed path b; through b.

Suppose that the energy to be transported through each path is arbitrarily
set; then the computation of wheeling rates for each path can be obtained
from the solution of an economic dispatch problem using OKA network flow
programming [24]. To decide the optimal power flow on each path, the power
flows can be set as variables and the wheeling rates can be used to improve
the initial set values. The total operating costs must be minimized considering
the topological structure of multiwheeling areas and the feasible region of
wheeling power flow. The topological relation can be reflected in the following
matrix equation:
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.
b,
M 1110 0 0 0 0 07 b/l [1
10001 0 0 0 0 —1|b] |0
0100 -1 0 0 0 <1 0lb] |0
00100 1 0 -1 0 0/b] |0
0001 0 -1 -1 0 0 0lbl]|o0
00000 0 1 1 1 1]nbl 1]
by
_bIO

The assumptions made for the relation are [25]:

(1) Power inflow is given a positive sign and power outflow is given a
negative sign and

(2) We are only concerned with the sale of unit power from S to B.

Each row-column multiplication represents one power balance equation for
a particular utility (there are a total of 6 utilities in this example).

6.5 MAED SOLVED BY NONLINEAR CONVEX NETWORK
FLOW PROGRAMMING

6.5.1 Introduction

This section proposes a new nonlinear convex network flow programming
(NLCNFP) to solve the problem of security-constrained interconnected
MAED. The proposed MAED model considers tie-line security and transfer
constraints in each area. In addition, a simple analysis of buying and selling
contract in a MAED is also made. The NLCNFP model of security-
constrained MAED is set up and solved by using a combined method of
quadratic programming (QP) and network flow programming (NFP). For
examining the proposed approach, a network model of four interconnected
areas is constructed. Computation results are given below in the chapter.

6.5.2 NLCNFP Model of MAED

The aim of MAED is to minimize the total production cost of supplying loads
to all areas within security constraints. Initially, a basic formulation M-1 is
formulated
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n NG(k) n

MinFZZ 2 f;‘k(PGik)+hZ 2 P (6.8)
k=1 =l k=1ijeNT
such that
n NG(k) n_ ND(k)
PGik_z 2 Poix—P.=0 (6-9)
k=1 =1 k=1 i=1
PGikmin S PGik S PGikmaX (610)
|APGik|SAPGikGRC k=1,,n,l=1,,NG(k) (611)
|Pifk|SPijkmax k:l”n’]zl,,NL(k) (612)
|P|< Proex T=1,...,NT (6.13)
where

fu: The generation cost function of the ith generator in area k
Pg;: The active power output of the ith generator in area k
Ppi: The active load at node i in area k

Py: The active power on branch j in area k

P7: The active power on the tie-line

Py: The active power loss of the system

P The active power loss of branch j in area k

APgicre: The limit of the generation rate constraint (GRC)
NT:The number of tie-lines

n: The number of areas

NG(k): The number of generators in area k

ND(k): The number of loads in area k

NL(k): The number of transmission lines in area k

Subscripts “min” and “max” stand for the lower and upper bounds of a
constraint.
According to Chapter 5, we have the following approximate equations:

V=1.0p.u. (6.14)
sin®; =9 (6.15)
cos,=1-63/2 (6.16)

Then, the active power loss on branch #j can be expressed as follows.
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PLijk = Pi/%cZijk (6.17a)
where
R + X,
Zi= %Rﬁk (6.18a)
ijk
Py = b0« (6.19a)

R;;: The resistance of branch j in area k
X;;: The reactance of branch j in area k

6;,: The difference of node voltage angles between the sending end and
receiving end of branch j in area k

b;: The susceptance of branch j in area k

The active power loss on tie-line 7 can also be expressed as follows.

Pr=PiZr (6.17b)
where
2 2
7, Bt XD) p (6.18b)
X7
PT = —bTGT (619b)

R;: The resistance of tie-line branch T
X . The reactance of tie-line branch T’

0;: The difference of node voltage angles between the sending end and
receiving end of tie-line branch T

bs: The susceptance of tie-line branch T
Thus the total system power loss can be written as below:

n NI(k)

PL_ZZPLI/k+2PLT

k=1 ij=1
n NI(k)

- 2 2 ik Zijie + z PiZy (6.20)
=

k=1 ij=1

Similar to Chapter 5, we can get the power flow limit for each branch in
area k, as well as each tie-line.
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_ [+ (80P b5) - 1]

Pijkmax - (621)
Sk
J1+(2g:Pr /b)) -1
PTmaX=[ (gt /o) 1] (6.22)
8r

where g; and gr are the conductance of branch j in area k and the tie-line,
respectively.

If the KVL law is considered in the NFP model of MAED, the voltage
equation of the /th loop can be written as.

2 (Piijijk)lJvij‘l =0 [= 1, 2, .., NM (623)

q

where

NM: The number of loops in the network
;. The element in the related loop matrix, which takes the value O or 1.

Furthermore, assume that the input-output characteristics of the generators
in all areas are quadratic functions.

fu(Pow) = i Péix + by Pou + Cir (6.24)

Therefore, we can obtain the following nonlinear convex network flow pro-
gramming model for the MAED problem (M-2).

n NG(k) n

MinF = z Z (aikPéik + by Poir + Cix ) + hz z R/zkzi/k -\ z (PucZiji ) Mg (625)

k=1 i=1 k=1 ij ij

n NG(k) n ND(k) n NI(k) NT
35 R3S PD,-k—(z 3 e,-zkz,.,ﬁngzr}o (6.26)

k=1 i=1 k=1 i=1 k=1 ij=1 T=1
PGikmin S PG[k S PGikmax (627)
|APGik|SAPGikGRC k=1,,n,l=1,,NG(k) (628)

JT+ (2P [bZ) -1
|P,.,.k|s[ ( gf; e /bi) 1] k=1,...,mj=1,...,NL(k) (6.29)
ijk

J1+(2g:P, b3) -1
|PT|s[ CerPr/b) 1]
8r

. NT (6.30)

In the MAED model, equation (6.26) defines the total power balance of
multiarea systems. Equation (6.29) is the line security constraint in area k.
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Equation (6.30) is the tie line capacity constraint. Equation (6.27) defines the
generator power upper and lower limits. Equation (6.28) is the generation rate
constraint and can be written as

PC(}]ik - AI)GikGRC < PGik < PC(i)ik + AI)GikGRC (631)

where PJ; is the initial power of the ith generator in area k.
Thus the generation is regulated between two inequality equations (6.27)
and (6.31), which can be combined into one expression:

max {PGOik - AFsicre PGikmin} < Fou < min{PGOik + AFsiGres PGikmax} (6'32)

There can be contracts of buying and selling among areas. Suppose area A
sells electricity to area B, and Pagsy represents the amount of power sold or
Prany represents the amount of power purchased. The following constraints
are introduced into the MAED model:

ET: Prap = +Papgen (6.33)
; Prga =—Pyavuy (6.34)
or
(1-1) % Papsen < ; Prag < (14+M) % Pageer (6.35)
(1-1)% Poabuy < ;PTBA < (14M) % Poavuy (6.36)
where

Prap: The tie-line transfer between areas A and B. Power transfer from the
area is considered to be positive if it is an export.

P apeen: The amount of power sold from area A to area B
Pgapyy: The amount of power purchased

n: The trading error that is permitted in interconnected power system
operation

In this way, MAED model M-2 can be written into the following model M-3
that contains the contract constraints of buying and selling electricity among
areas.
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n NG(k)
MlnF z 2 alkPle + bzk Psz + Ctk + hz Z PlijI]k 7\-' Z (Pl]kZl]k l"l’l] !
k=1 i=1 k=1 1ij
2
+ B(Z Prag— PABsell) + Y( - PBAbuy) (6.37)
T T
Subject to

n NG(k) n_ ND(k) n_ NI(k)
PGik_Z 2 PDik_(Z 2 PiiZi +2PTZTJ 0 (6.26)

k=1 i=1 k=1 i=1 k=1 ij=1

max {PC(})ik — AFsikGres PGikmin} S Fou < min{PGOik + APsiGres PGikmaX} (6~32)

k=1,...,mi=1,...,NG(k)
ST+ Q2gaPr ) -1
IP,-,-kls[ (285 Py /bix) 1] k=1,...,nj=1,...,NL(k) (6.29)
8ijk
J1+(2grPr/b}) -1
Pls[ (2grPr/b7) 1] NT (6.30)
8r
(1=m) % Papsen < ZPTAB < (14m) % Pagsen (6.35)
T
(1=m)% Psabuy < ZPTBA < (14M) % Psavuy (6.36)
T

where [ and v are the penalty factors, which are large positive constants.

6.5.3 Solution Method

MAED model M-3 is easily changed into a standard model of nonlinear
convex network flow programming, i.e., model M-4

minC = c(f;) (6.38)
ij
such that
N(fi-fi)=r ien (6.39)
jen
L;<f;<U; ijem (6.40)

where
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fi The flow on arc jj in the network

L;: The lower bound of the flow on arc ij in the network
U;: The upper bound of flow on arc ij in the network

n: The total number of nodes in the network

m: The total number of arcs in the network

According to Chapter 5 (Section 5.5), the nonlinear convex network flow
programming model M-4 can be changed into the following quadratic pro-
gramming model M-5, in which the search direction in the space of the flow
variables is to be solved:

minC(D)z%DTG( AD+g(f)'D (6.41)

such that
AD=0 (6.42)
Dij S 0, When ﬁ] = U,“ (644)

Model M-5 is a special quadratic programming model, which has the form
of network flow. To enhance the calculation speed, we present a new approach,
in place of the general quadratic programming algorithm, to solve model M-5.
The details of the calculation steps are described in Chapter 5.

6.5.4 Test Results

For examining the proposed approach, a network of four interconnected areas
is constructed as shown in Figure 6.4. Area Al is an IEEE 30-bus system. It
has 6 generators, 21 loads, and 41 transformation branches, in which 1, 2, 5,
8, 11, and 13 are generators. The generator data of IEEE 30-bus system are

Area 1

FIGURE 6.4 The network model of four interconnected power systems
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Table 6.3 Data of generator nodes for IEEE 30-bus system (p.u.)

Node a; b; Ci PGimin PGimax APgicre
1 37.5 200 0.0 0.50 2.00 0.35
2 175 175 0.0 0.20 0.80 0.25
5 625 100 0.0 0.15 0.50 0.15
8 834 325 0.0 0.10 0.35 0.15

11 250 300 0.0 0.10 0.30 0.15

13 250 300 0.0 0.12 0.40 0.15

Note: The generation cost function is: f;=a; P + b; Py, + ;.

listed in Table 6.3. The network parameters, including network constraints of
the 30-bus system, are shown in Chapter 5. Parameters of areas A2, A3, A4
and tie lines are given as follows.

Fuel cost function and power upper and lower limits are:

FA2=80P§2 +175PA2 02£PA2S10
FA3=9OPA%3 +150PA3 OZSPAg,SlO
FA4=6OOP§4+3OOPA4 OZSPA2S10
Loads of areas A2, A3, and A4 are Ppa, + jOpar = 044 + jO.21;
PDA3 + jQDA3 =0.312 + ]014, and PDA4 + jQDA4 = 0.396 + ]018, reSpeCtiVely.
Parameters and capacity constraints of the tie line are:
Raz20=0.0340; X 5200 = 0.0680; Pp2.207max = 0.7
Ra317=0.0192; X 5347 = 0.0575; Pas.177max = 0.7
Rias10=0.0192; X 5319 = 0.0575; Prs19max = 0.7
Rps10=0.0267; X p4.10 = 0.8200; Prs-10Timax = 0.6
RA4_7 = 00267, XA4_7 = 08200, PA4-7Tmax = 06
The following test cases for MAED are performed in the study, in which the

symbol “+” represents the selling contract and “-” represents the purchase
contract.

Case 1: Neglecting the buying and selling contract among areas
Case 2: Considering the buying and selling contract among areas

Prs-arsen = 10.5; Pagatouy =—0.0
Case 3: Considering the buying and selling among areas

Prs.arsen = +0.55; Pag.arpuy = —0.10
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Table 6.4 Test results of security-constrained MAED for four interconnected systems
(NLCNFP method)

Test Cases Case 1 (p.u) Case 2 (p.u.) Case 3 (p.u.)
Area Al

P 1.1523 1.0718 1.1146
Pg, 0.3569 0.3471 0.3539
Pgs 0.1792 0.1839 0.1833
Pgs 0.1053 0.1163 0.1124
Pan 0.1248 0.1358 0.1319
Pgis 0.1253 0.1363 0.1324
Area A2

Pias 0.8832 0.8504 0.8684
Area A3

Pias 0.9297 0.8120 0.8620
Area A4

Pias 0.2053 0.3965 0.2964
Total Gen. 4.06176 4.04987 4.05534
Power losses 0.07975 0.06787 0.07333
Total gen. cost ($) 1041.987 1109.621 1068.4117
Tie-line power Pa 5 0.4432 0.4104 0.4284
Pas 17 0.4988 0.4086 0.4487
Pas 19 0.1189 0.0914 0.1013
Prysq 0.1364 0.2088 0.1684
Py 1o —0.3272 —0.2083 —0.2680
Line security Satisfied Satisfied Satisfied

To evaluate the calculation accuracy, the following performance index (PI)
on trading error is proposed, i.e.,

PIEAB (yo — |PTAB — PABselll X (VO (645)
ABsell
or
Prag—P,
Plgas% = M x % (6.46)
ABbuy

The calculation results of the security-constrained MAED for the above three
test cases are listed in Table 6.4. From Table 6.4 we can get:

Case 2:

PTAS—A] = PA3,17 + PA3,19 = 04086+00914 = 05
PIEA3-A1% = 00
PTA4—A1 = PA4,7 + PA4,10 = 02088 - 02083 = 00005

PIEA4-A10/0 = 005%
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Case 3:

Pras a1 = Pazar+ Pazi9=0.4487+0.1013 = 0.55
Plga341%=0.0
Prasar = Pag7+ Pay0=0.1684-0.2680 = —0.0996
Pl a1% =0.04%

The maximum trading error is only 0.05%. Therefore, the proposed MAED
approach not only satisfies all security constraints, but also has high
accuracy.

6.6 NONLINEAR OPTIMIZATION NEURAL NETWORK APPROACH

6.6.1 Introduction

This section presents a new nonlinear optimization neural network approach
to solve the problem of security-constrained interconnected multiarea eco-
nomic dispatch (MAED). The optimization neural network (ONN) can be
used to solve mathematical programming problems. It has attracted much
attention in recent years. In 1986, Tank and Hopfield first proposed an opti-
mization neural network—TH model, which was used to solve linear program-
ming problems. ONN is totally different from traditional optimization methods.
It changes the solution of an optimization problem into an equilibrium point
(or equilibrium state) of a nonlinear dynamic system, and changes optimal
criteria into energy functions for dynamic system. Because of its parallel com-
putational structure and the evolution of dynamics, the ONN approach is
superior to traditional optimization methods.

6.6.2 The Problem of MAED

According to the previous section, a basic formulation of MAED is formu-
lated as

n NG(k)
MinF =Y > fi(Poi) (6.47)
k=1 i=1
such that
n NG(k) n ND(k)
Foix —z z Poy—H. =0 (6.48)
k=1 i=1 k=1 i=1
PGikmin < PGik < PGikmaX (649)

|APGik|SAPGikGRC k=1,,n,l=1,,NG(k) (650)
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1Pl < Pimax k=1,...,m3ij=1,..., NL(k) (6.51)
|PT|SPTmaX T=1,,NT (652)

The generation is regulated between two inequality equations (6.49) and
(6.50), which can be combined into one expression:

max { P8y — APsucres Poiwmin } < Pou < min{ Py + APsicres Poikmax } (6.53)

There can be contracts of buying and selling among areas. Suppose area A
sells electricity to area B, and Pag, represents the amount of power sold or
Pranuy represents the amount of power purchased. The following constraints
are introduced into the MAED model, which are the same as in Section 6.5.

; Prap = +Papsan (6.54)
; Prga =—Poasuy (6.55)

or
(1-1) % Ppsen < ;PTAB < (1+M) % Pageer (6.56)

(1-m)% Psabuy < < (1+M) % Psabuy (6.57)

ZPTBA
T

The above MAED model can be written into the following model M-6,
which contains the contract constraints of buying and selling electricity among
areas.

n NG(k)

2
MinFZZ 2 f,-k(PG,-k)'i'B(ZPTAB—PABseu) +Y(

k=1 i=1

2
- PBAbuy) (6.58)

ZPTBA
T

such that

n NG(k) n ND(k)

Pou—Y, > Pox—P.=0 (6.59)

k=1 i=1 k=1 i=1
max {PGOik — AFsikGres PGikmin} < Foi < min{PGOik + A FsiGres PGikmax} (6.60)
k=1,....,mi=1,...,NG (k)
|Pb/'k|SPb/'kmax k=1,,l’l,]=1,,NL(k) (661)



NONLINEAR OPTIMIZATION NEURAL NETWORK APPROACH 235

|P|<Prowe T=1,...,NT (6.62)

(1-m)% Papsen < ZPTAB < (14 M) % Papsen (6.63)
T

ZPTBA
T

(1-m)% Psapey <

< (1+M) % Psabuy (6.64)

where 3 and vy are the penalty factors.

It is noted that there are some differences between the above MAED
model M-6 and the model M-3 described in Section 6.5, where some approxi-
mations are applied in order to use the nonlinear convex network flow pro-
gramming algorithm.

6.6.3 Nonlinear Optimization Neural Network Algorithm

6.6.3.1 Nonlinear Optimization Neural Network Model of MAED The
above MAED model M-6 can be solved by a new approach of the nonlinear
optimization neural network. The neural network approach is a penalty mini-
mizing neural network approach with weights based on optimization theory
and the neural optimization method. It can be used to solve the nonlinear
problem with equality and inequality constraints.

The MAED model M-6 can be rewritten into a general form of constrained
optimization, i.e., model M-7:

min f(x) (6.65)

such that
hi(x)=0 j=1...m (6.66)
g(x)=20 i=1,...,k (6.67)

To change the inequality constraints of equation (6.67) into equality con-
straints, new variables yy, ..., y,, (i.e., relaxation variables) are introduced into
equation (6.67). In this way, model M-7 can be written as model M-8, i.e.,

min f(x) (6.65)
such that

h(x)=0 j=1,....m (6.66)
e(X)=y2=0 i=1,... .k (6.68)
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The optimization neural network is applied to the solution of M-8. The
approach is totally different from traditional optimization methods. It changes
the solution of optimization problems into an equilibrium point of nonlinear
dynamic system, and changes optimal criteria into energy functions for
dynamic system. Therefore, the energy function of NNLONN must be formed
at the beginning.

According to optimization theory as described in Reference [26], we can
construct the following energy function of neural network for model M-8:

E(x, y, A1, 8) = F(x)—uTh(x) = A"[g (x) = y* ]+ (S/2) A (x)I
+(8/2)|g (- (6.69)

where A and p are Lagrange multipliers.

It is possible to construct a different energy function from the above, e.g.,
in an energy function as used in reference [27]. It is noted that a different
energy function will produce a different neural network and distinct charac-
teristics. There are two advantages for the proposed NNLONN approach. One
is that the first three terms in the energy function of equation (6.69) are just
an expanded Langrage functions as in conventional nonlinear programming.
Methods to guarantee optimal solution of such functions are well understood.
Another advantage is due to the quadratic penalties, which are formulated to
become part of the energy function (6.69) and equality constraints (6.66)—
(6.68). These penalties behave very effectively against any violation of
constraint.

Dynamic equations of the neural network can be obtained according to
equation (6.69).

dx/dr =—{V,.f (x)+(Sh(0) - )" V.2 () +[S (g(x) = y*) -] V.(g ()~ *)}

(6.70)
dy/dr =={V,f (x)+(Sh(x)= )" V,h(x)+[S (g (x)=y*) = 1] V,(g(x)-y)}
(6.71)
ou/or = Sh(x) (6.72)
/ot =S(g(x)—y*) (6.73)

From equation (6.69) we know that the variables x and y are separable. So we
can get

min £ (x, y, A, W, S)=minmin E (x, y, A, W, S)
X,y X y
:minE(x9 y*(x’ }\‘7 H’ S),}L, H, S) (674)
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where, y*(x, A, W, S) satisfies the following equation:
myinE(x, v, S)=E(x, y*(x, A, 1, S), A, 1, S) (6.75)
To obtain y*(x, A, W, S), we set dE/dy = 0. Then, from equation (6.69) we get
2y [A+Sy* = Sg(x)]=0 (6.76)

Obviously, from equation (6.76) we know if A — Sg(x) = 0, then y = 0; if
A — Sg(x) <0,then y = 0, or y* = (Sg(x) — A)/S, i.e.,

> [0, if A-Sg(x)=0
re {[Sg(x)—M/S, it A—Sg(x)<0 (6.77)
or
2 _[-8(x), if -g(x)=-A/S
Y -8l)= {—x/s, it —g(x)<—A/S (6.78)
From equation (6.78), we can get the following expressions:
y? - g(x) = max(-g(x),-A/S) (6.79)
y? =g (x)=—min(g(x),/S) (6.80)
g(x)—y?=min(g(x),A/S) (6.81)

Substituting equation (6.79) into equation (6.69), we get

E(x, M1, 8) = f(x) = pTh(x)+(S/2) A (x) = AT[-max (=g (x), -1/S)]

+(8/2)Imax (-g (x), -A/S)|’

= f(X)=uh(x)+(S/2)h () - (1/28)[21T max (-Sg(x),— 1))
+(1/28)Imax (=Sg (x), - M|’

= f() =W h(x)+ S/ O +(1/28) {= M + A
+ 21" max[-Sg (x), - A]+|lmax[-Sg (x), - A ]I’}

= f(x)—uTh(x)+(S/2)h (X))
+(1/28){II + max[-Sg (x), = A]I* = I }

= f(x)=u"h(x)+(S/2)h ()
+(1/28){llmax [0, A — Sg (x) ]I — Al } (6.82)



238 MULTIAREA SYSTEM ECONOMIC DISPATCH

Substituting equation (6.79) into equation (6.80), we get

dx/dt =—{V.,f()+[Sh(x)=u]" V.h(x)+[S (~max (-g (x),=A/S) = A]" V.g ()}
=—{V.f () +[Sh(x)~p]" V. /o (x) +[-max (=Sg (x), =A) ~A]" V,g ()]
=~{V.f () +[Sh(x)~u]" V.h(x)~[max (g (x), = 1) +A]" V. g (x)}
=—{V.f () +[Sh(x)-p]" V. h(x)-max[0,A = Sg (0] Vg (x)}  (6.83)

Substituting equation (6.81) into equation (6.73), we get
d\/dt =S -min(g(x),A/S)=min[Sg(x),\] (6.84)

According to equations (6.82), (6.83), (6.72), and (6.84), we have deduced
a new nonlinear optimization neural network model M-9, which can be used
to solve the optimization problem with equality and inequality constraints.
The NLONN model M-9 can be written as

E(x, AW, S) = f(x)—uTh(x)+(S/2) Ik (x)

+(1/28){lmax[0, 2 — Sg (x)]I° —IAJ* } (6.85)

dx/dt =—{V.f(x)+[Sh(x)—p]" V.h(x)-V.g(x)max[0,A—Sg(x)]'} (6.86)
du/dr = Sh(x) (6.87)

dA/dt = min[Sg(x), ] (6.88)

The Appendix to this chapter shows that the energy function equation
(6.85) in NNLONN model M-9 is a Lyapunov function, and the equilibrium
point of the neural network corresponds to the optimal solution of the con-
strained optimization problem M-7.

6.6.3.2 Numerical Simulation of NLONN Network The first-order Euler
method can be used in the numerical analysis of the NLONN network, i.e.,

dZ/dt =[Z (t+At)- Z (1)} At (6.89)

Z(t+At) = Z(t)+(dZ/dt) At (6.90)

So dynamic equations (6.86)—(6.88) of the NLONN network can be made
equivalent to the following equations:

x(t+A)=x ()= A{V, £ (x())+[Sh(x (1) —u]" V. A(x (1))
-V,g(x(t))max[0, L - Sg (x(t))]"} (6.91)
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w(t+At)=p(t)+AtSh(x(¢)) (6.92)
At +At)=A(t)+ At min[Sg (x (1)), L(1)] (6.93)

The calculation steps of the NLONN method are given below.
Step 1: Select a set of initial values x(0) and parameters A(0), 1(0), as well as

a set of positive ordinal numbers {S(k)} - S(k + 1) = pS(k).
Step 2: Calculate gradients.

@ (x)=V.E[x(k), A(k), k), S (k)]
= V. f (x (k) +[S(k)h (x (k) —w (k)] V. h(x (k)]
—max[0, L (k)= S (k) g (x (k)" Vg (x (k)) (6.94)

Step 3: Compute new state
x(k+1)=x(k)—Atd.(k) (6.95)

Step 4: Perform multiplier iteration

Wk +1)= (k) +AtS (k) h (x (k+1)) (6.96)
A(k+1)=A(k)+Armin[S (k) g (x (k +1)), L (k)] (6.97)
S(k+1)=pS(k) (6.98)

Step 5: Perform convergence check, using criteria

llx(k+1)—x(k)|< € (6.99)
I (k+1)—p(kl< e, (6.100)
A (k+1)= A (k)| < &5 (6.101)

Stop if equations (6.99)—(6.101) are satisfied. Otherwise, let k = k + 1, go back
to step 2.

6.6.4 Test Results

For examining the presented approach, a network of three interconnected
areas is constructed as shown in Figure 6.5. Area A1l is an IEEE 30-bus system.
The generator and load data of the IEEE 30-bus system are listed in Tables
6.5 and 6.6. The other data and parameters of the IEEE 30-bus system are
listed in Chapter 5. Parameters of areas A2, A3, and tie-lines are given as
follows.
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IEEE 30-
bus

FIGURE 6.5 The network model of three interconnected power systems

Table 6.5 Data of generator nodes for IEEE 30-bus system (p.u.)

Node a; b; Gi PGimin PGimax APgigre
1 37.5 200 0.0 0.50 2.00 0.50
2 175 175 0.0 0.20 0.80 0.30
5 625 100 0.0 0.15 0.50 0.25
8 83.4 325 0.0 0.10 0.35 0.25

11 250 300 0.0 0.10 0.30 0.15

13 250 300 0.0 0.12 0.40 0.15

Note: The generation cost function is: f;=a,P3 + b Ps; +c;.

Table 6.6 Data of load nodes for IEEE 30-bus system (p.u.)

Reactive Reactive
Node No. Real Power Power Node No. Real Power Power
1 0.000 0.000 16 0.035 0.018
2 0.217 0.127 17 0.090 0.058
3 0.024 0.012 18 0.032 0.009
4 0.076 0.016 19 0.095 0.034
5 0.942 0.190 20 0.022 0.007
6 0.000 0.000 21 0.175 0.112
7 0.228 0.109 22 0.000 0.000
8 0.300 0.300 23 0.032 0.016
9 0.000 0.000 24 0.087 0.067
10 0.058 0.020 25 0.000 0.000
11 0.000 0.000 26 0.035 0.023
12 0.112 0.075 27 0.000 0.000
13 0.000 0.000 28 0.000 0.000
14 0.062 0.016 29 0.024 0.009

15 0.082 0.025 30 0.106 0.019
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Fuel cost function and power upper and lower limits are:

F, =30P3+100P, 0.1<P,<09
Loads of areas A2 and A3 are Ppsx, + jOpar = 05 + j0.26 and

Ppas + JOpas = 0.4 + j0.21, respectively. Parameters and capacity constraints of
the tie line are:

R, 5, =0.0192; X5, =0.0575; P> 317imax = 0.6
Rs3 =0.0192; X3, =0.0575; Py 301max = 0.5
R31.07=0.057; X307 = 0.1737; Ps1577imax = 0.6
Ry =0.057; X351 = 0.1737; Py 517max = 0.5
R313,=0.0192; X355 = 0.0575; Py 50mmax = 0.5

The following test cases of security-constrained MAED are performed in
the study.

Case 1: Neglecting the buying and selling among areas

Case 2: Considering the buying and selling among areas. Pxs_ajen = 0.4;
Prr_azsen = 0.35 Paz_azsen = 0.0.

Case 3: Considering the buying and selling among areas. Pas_aisen = 0.32;
Pai_azsen = 0.32; Paz_aosen = 0.0.

To evaluate the calculation precision, the performance index (PI) on trading
error is used, i.e.,

PIEAB% — |PTAB — PABsel]l % % (6102)

ABsell

The calculation results of the security-constrained MAED for the above three
test cases are listed in Table 6.7. From Table 6.7 we get:

Case 2:

Prasai=Pog+ Py =0.172+0.228=0.4
Pleasa1% =0
Praiar= P+ P53 =0.4584 - 0.1585 = 0.2999
Pleaia2% =0.0333%
Prasar=Pp3 =00
Pleasar%=0
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Table 6.7 Test results of security-constrained MAED for three interconnected systems
(NLONN method)

Test Cases Case 1 (p.u.) Case 2 (p.u.) Case 3 (p.u.)
Area Al

P 1.5971 1.6588 1.5951
Pg, 0.4377 0.4636 0.4304
Pgs 0.2096 0.2122 0.2133
Pgs 0.2903 0.2252 0.3324
Pan 0.1459 0.1322 0.1748
Pegis 0.1366 0.1287 0.1699
Area A2

Pgs 0.1000 0.2001 0.1801
Area A3

Pgs, 0.9000 0.8000 0.7200
Total Gen. 3.81722 3.82081 3.81602
Power losses 0.08322 0.08681 0.08202
Total gen. cost ($) 923.0356 957.5161 974.6212
Tie-line power

Py g 0.1827 0.1720 0.1123
Ps 0.2364 0.2280 0.2077
Py 0.4687 0.4584 0.4624
Py —0.1422 —0.1585 -0.1425
Py 5 0.0808 0.0000 0.0000
Line security Satisfied Satisfied Satisfied
Case 3:

Prasar= Pyg+ Py =0.1123+0.2077 =0.32
Plpsp1% =0
Prains = Poas + Pyyyy = 0.4624—0.1425 = 0.3199
Pliaia2% =0.03125%
Prazar=Pi3=0.0
Plep300% =0

The maximum trading error is only 0.0333%. Therefore, the proposed MAED
approach not only satisfies all security constraints but also has high precision.

6.7 TOTAL TRANSFER CAPABILITY COMPUTATION IN MULTIAREAS

As we analyzed in previous sections that the transfer capability limits affect
the wheeling. It is useful to compute the total transfer capability (TTC) of the
multiareas.
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6.7.1 Continuation Power Flow Method

The general method to compute the TTC is the continuation power flow
(CPF) or repeated power flow (RPF) method [28-31]. It is sometimes called
the perturbation method.

The net active and reactive power injections at the sink and source buses
are functions of A.

0= Qi +AlLoi (6.104)
where

A: The parameter controlling the amount of injection
P,: The base case real power injections at the bus

Q:: The base case reactive power injections at the bus
Ly The real power load participation factors

Lo;: The reactive power load participation factors

The traditional power flow equations augmented by an extra equation for A
are expressed as

fO,V,0)=0 (6.105)
where

V:The vector of bus voltage magnitudes
6: The vector of bus voltage angles

Once a base case (for A = 0) solution is found, the next solution can be
predicted by taking an appropriately sized step in a direction tangent to the
solution path. The tangent vector is obtained as below:

d[£(6,V,M)]= f,do+ fudV + fidh (6.106)

Since equation (6.106) is rank deficient, an arbitrary value such as 1 can be
assigned as one of the elements of the tangent vector ¢ = [df, dV, dA]" = 1,

ie., t, = 1. Thus
fo A BT TO
[ " }[”‘M (6.107)

Where ¢, is a row vector with all elements zero, except for the kth entry, which
is equal to 1.
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The new solution after perturbation will then be computed as

0% [0 de
VE(=|V |+e|dV (6.108)
S d

Where € is a scalar used to adjust the step size.

The new solution obtained in equation (6.108) may violate the limits. Thus
it is necessary to correct the continuation parameter. The corrector is a slightly
modified Newton power flow algorithm in which the Jacobian matrix is
augmented by an equation to account for the continuation parameter.

Let x = [0, V, A]", x, = 1, then the new set of equations will take the form

[f (x)]:[O] (6.109)
e, —mM

Therefore, for a specific source/sink transfer case, the steps for computing
the TTC are summarized as below [28]:

(1) Input power system data.

(2) Select the contingency from the contingency list.

(3) Initialize:

(a) Run power flows to ensure that the initial point does not violate
any limits.

(b) Set the tolerance for the change of transfer power.

(4) Prediction step size of CPF:

(a) Calculate the tangent vector ¢ = [d6, dV, dA]"

(b) Choose the scalar € to design the prediction step size.

(c) Make a step of increase of the transfer power to predict the next
solution using equation (6.108).

(5) Correct step size of CPF with generator Q limits. Solve equation
(6.109).

(6) Check for limit violations: Check the solution of step (5) for violations
of operational or physical limits—line flow limit, voltage magnitude
limit, and voltage stability limit. If there are violations, reduce the trans-
fer power increment by € = 0.5¢; then go back to step (5) until
the change of the transfer power is smaller than the tolerance. The
maximum transfer power for the selected contingency is reached.
Otherwise, go to prediction step (4).

(7) Check whether all contingencies are processed. If they are, compare
the maximum transfer powers for all the contingencies and choose the
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smallest one as the TTC for this specific source/sink transfer case and
terminate the procedure. Otherwise, go to step (2).

6.7.2 Multiarea TTC Computation

In a multiarea system, it is assumed that each area operates autonomously by
its own independent operator. Each area carries out its own CPF calculation
and maintains its own detailed system model. Furthermore, each area uses
network equivalents to represent the buses in other areas, except for the
boundary. One of the equivalent methods is the REI equivalent. The basic
idea of the REI equivalent is to aggregate the injections of a group of buses
into a single bus. The aggregated injection is distributed to these buses via a
radial network called the REI network. After the aggregation, all buses with
zero injections are eliminated, yielding the equivalent [32, 33]. For example,
all PV and PQ buses except for the seller and buyer buses of outer external
area are grouped into two different REI equivalent networks, which are
assigned the corresponding bus types (PQ or PV) accordingly [28]. In this way,
systemwide TTC can be computed without exchanging information with each
other. However, the admittances of the REI network are functions of the
operating point for which the equivalent is constructed. Doing so will also
introduce errors in the multiarea TTC result. In light of this, the equivalent
must be properly updated during the TTC computation.

In the case of the multiarea CPF implementation, each area carries out its
own CPF, and the continuation parameter for each area may be different at
each step. Therefore, a strategy for choosing and updating the continuation
parameter that ensures synchronized CPF calculation in different areas is
introduced.

Another issue related to updating the equivalents is the generator Q limits.
As the power transfer increases at a chosen PQ bus, generator buses will
continue to hit their Q limits in succession. As each limit is reached, the gener-
ated reactive power will be held at the Q limit, bus type will be switched to
PQ, and the bus voltage will become an unknown increasing the dimension of
the Jacobian by one. While updating the equivalents, these generator buses
that are now of type PQ are grouped with other PQ buses in each area. This
will continue until other limits are reached.

A self-adaptive step size control is implemented for the sink area. A is
chosen as the continuation parameter when starting from the base case. Then
the continuation parameter is chosen from the voltage increment vector
[dV]". A constant voltage magnitude decrease is used to predict the next
solution. Usually, the scalar € in equation (6.118) is set as 0.02 [28]. Therefore,
a constant decrease in voltage magnitude will result in a large increase in
load at the beginning and a small increase in load as the nose point is
approached.

After each correction step, the load change at the sink area will be broad-
cast to all other areas. The continuation parameter continues to be A in all



246 MULTIAREA SYSTEM ECONOMIC DISPATCH

other areas, and the scalar € is set as the load change of the sink area at each
step. Hence, different areas will have the same load increase at each discrete
step of CPF calculation.

If contingencies are considered in the calculation of multiareas TTC, con-
tingencies associated with the tie lines must be comonitored by all areas.
However, contingencies caused by topology changes within individual areas
do not have to be modeled directly by others. Instead, when a contingency
occurs within one area, only the network model of this area will be changed.
As a result, the tie-line power flows and buyer bus voltages calculated from
different areas will have very large mismatches during the synchronized
computation. After updating the equivalents for the area experiencing the
contingency, the updated equivalent buses will reflect the effects of the con-
tingency. This way, other areas can account for the effects of the contingency
indirectly.

APPENDIX: COMPARISON OF TWO OPTIMIZATION NEURAL
NETWORK MODELS

Reference [27] also presented an optimization neural network model, which
can be written as M-10.

L(S,x)= F(0)+A"g () +n h(x0)(5/2)(lg* @ +Ih (0 (6A.1)
dx/dr = —Vf(x) = Vh(x)[Sh(x)+n]-Vg(x)"(Sg*(x)+1)  (6A2)
du/dr =g (Sh(x)) (6A.3)
dr/dr =g (Sg*(x)) (6A.4)

where € is a very small positive number and
g"(x) =max(0, g(x)] (6A.5)

It is noted that the proposed NLONN model M-9 is different from the
traditional optimization neural network model M-10. This can be seen by
analyzing the stability and optimization of two neural networks.

For Proposed Neural Network M-9

The derivative of energy function in M-9 to time ¢ can be obtained from the
following calculation:
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GE_9Edx 9Edu OF 0.
dt  ox dr ou dr O o

T % —S||h<x)||2+§{max[o,>»—8g<x>]—xf min[Sg (x), 1)
dx ’ 2 1 T
=l =SlA ol +§{maX[—7», Sg ()]} [-max (=Sg(x),—A)]
dx|’ 1
=5 | ~SWCOF ~lmax[-Sg (x). ~AIF (6A.6)

Obviously, from equation (6A.6) we can know that dE/ds < 0. When and only
when

h(x)=0; max[-A,—Sg(x)]=0; dx/dt=0 (6A.7)
then
dE/dt=0 (6A.8)
The meaning of max[-A, —Sg(x)] = 0 is that

Sg(x)=0 when A=0 (6A.9)

A=20 when Sg(x)=0 (6A.10)

Equations (6A.9) and (6A.10) are just the Kuhn-Tucker conditions in optimi-
zation theory. Thus max[-A, —Sg(x)] = 0 is tenable.

Certainly, any feasible solutions including the optimal solution satisfy the

equation A(x) = 0. So from equation (6.96) of M-9 we get the following
expression:

dx/dt =—{V.f(x)—uV, h(x)-max[0,A—Sg(x)]V.g(x)} (6A.11)
According to equations (6A.9) and (6A.10), we get
max [0, A—Sg(x)]V,.g(x)=AV, g(x) (6A.12)
According to equations (6A.11) and (6A.12), we get
dx/dr = =V, f ()= 0V i (x) = AV g (%)} (6A.13)
If dx/d¢ = 0, when and only when

V. f (X) =1V A(x) AV g (x) =0 (6A.14)
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Equation (6A.14) is just the optimality conditions of optimization problem
M-7. So this condition is tenable. It means that dx/dz = 0 is also tenable. Now
we have demonstrated that all conditions in equation (6A.7) are satisfied.
Therefore, equation (6A.8) is also satisfied. This has proved that the energy
function of the proposed NLONN neural network is a Lyapunov function. The
corresponding neural network is certainly stable and the equilibrium point of
neural network corresponds to the optimal solution of the constrained opti-
mization problem M-7.

For Neural Network M-10 in Reference [27]

According to equations (6A.1)-(6A.5), the derivative of energy function in
M-10 to time ¢ can be obtained from the following calculation:

aL_dLdx oL oL
dt  ox dr ouwdr O\ or

2

+e-Sh()f +e-S-g"(x)-g*(x) (6A.15)

Since ¢ is a very small positive number, and g*(x) = max|0, g(x)], the last two
terms in the right side of equation (6A.15) are not negative. This means that
dL/dr < 0 is untenable all along. Therefore, there exists a stability problem in
the neural network M-10.
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UNIT COMMITMENT

This chapter first introduces several major techniques for solving the unit
commitment problem such as the priority method, dynamic programming,
and the Lagrange relaxation method. Several new algorithms are then
added to attack the unit commitment problems. These are the evolutionary
programming-based Tabu search method, particle swarm optimization, and the
analytic hierarchy process. A great deal of numerical examples and analysis
are provided in the chapter.

7.1 INTRODUCTION

Since generators cannot instantly turn on and produce power, unit commit-
ment (UC) must be planned in advance so that enough generation is always
available to handle system demand with an adequate reserve margin in the
event that generators or transmission lines go out or load demand increases.
Unit commitment handles the unit generation schedule in a power system for
minimizing operating cost and satisfying prevailing constraints such as load
demand and system reserve requirements over a set of time periods [1-20].
The classic UC problem is aimed at determining the start-up and shutdown
schedules of thermal units to meet forecasted demand over certain time
periods (24h to 1 week) and belongs to a class of combinatorial optimization
problems. The methods that have been studied so far fall into roughly three
categories: heuristic search, mathematical programming, and hybrid methods.
Optimization techniques such as the priority list, augmented Lagrangian
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relaxation, dynamic programming, and the branch—and-bound algorithm have
been used to solve the classic UC problem. Genetic algorithms (GA), simu-
lated annealing (SA), analytic hierarchy process (AHP), and particle swarm
optimization (PSO) have also been used for UC problem since the beginning
of the last decade.

7.2 PRIORITY METHOD

The classic UC problem is to minimize total operational cost and is subject to
minimum up- and downtime constraints, crew constraints, unit capability limits,
generation constraints, and reserve constraints. Thus the objective function of
UC consists of the generation cost function and start-up cost function of the
generators. The former is described in Chapter 4. The latter involves the cost
of the energy that brings the unit online.

There are two types of startup cost model: one is bringing the unit online
from a cold start and the other is bringing it from bank status, in which the
unit is turned off but still close to operating temperature. The start-up cost
model when cooling can be expressed in the exponential function below:

FSC(t):(l—e‘[/“)xFJrCf (7.1)
where

Fs.: The cold start cost for the cooling model

Ci: The fixed cost of generator operation including crew expense, mainte-
nance expense

F: The fuel cost
t: Time that the unit was cooled
o: Thermal time constant for the unit

The start-up cost model when banking can be expressed as a linear function
as below:

FSb(t) = F() Xt+ C/ (72)
where

Fs,: The start-up cost for banking model
Fy: The cost of maintaining unit at operating temperature

The simplest unit commitment solution is to list all combinations of units
on and off, as well as the corresponding total cost to create a rank list, and
then make the decision according to the rank table. This method is called the
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priority list. The rank is based on the minimum average production cost of the
unit. The average production cost of the unit is defined as

where

_F(P)
P,

U

u: The average production cost of the unit

F(Pg): The generation cost function of the unit

Pg: The generator real power output

From Chapter 4, the incremental rate of the unit is defined as

5 = 9F(Fs)
-~ dP,

(1.3)

(7.4)

When the average production cost of the unit equals the incremental rate
of the unit, the corresponding average production cost is called the minimum
average production cost, Wy, Generally, the power output is close to rated
power when the unit is at the minimum average production cost.

Example 7.1

There are five generator units, and the minimum average production costs
WUmin are computed as shown in Table 7.1.
The priority order for these units based on the minimum average produc-
tion cost is shown in Table 7.2.
The steps of the priority list method are summarized as below:

Step (1): Compute the minimum average production cost of all units, and
order the units from the smallest value of W,,;,. Form the priority list.

Step (2): If the load is increasing during that hour, determine how many
units can be started up according to the minimum downtime of the unit.

Table 7.1 The minimum average production cost

Minimum Average

Unit Production Cost [y, Min MW Max MW
Gl1 10.56 100 400
G2 9.76 120 500
G3 11.95 100 300
G4 8.90 50 600
G5 12.32 150 250
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Table 7.2 The priority order for 5 units

Priority Order Unit Womin Min MW Max MW
1 G4 8.90 50 600
2 G2 9.76 120 500
3 Gl 10.56 100 400
4 G3 11.95 100 300
5 G5 12.32 150 250

Then select the top units for turning on from the priority list according
to the amount of load increasing.

Step (3): If the load is dropping during that hour, determine how many
units can be stopped according to the minimum up time of the unit. Then
select the last units for stopping from the priority list according to the
amount of load dropping.

Step (4): Repeat the process for the next hour.

There are other priority list methods such as ranking units based on the
full-load average production cost of each unit [21] as well as based on the
incremental cost rate of each unit [22].

7.3 DYNAMIC PROGRAMMING METHOD

Suppose a system has # units. If the enumeration approach is used, there would
be 2" — 1 combinations. The dynamic programming (DP) method consists in
implicitly enumerating feasible schedule alternatives and comparing them in
terms of operating costs. Thus DP has many advantages over the enumeration
method, such as reduction in the dimensionality of the problem.

There are two DP algorithms. They are forward dynamic programming and
backward dynamic programming. The forward approach, which runs forward
in time from the initial hour to the final hour, is often adopted in the unit
commitment. The advantages of the forward approach are:

+ Generally, the initial state and conditions are known.

+ The start-up cost of a unit is a function of the time. Thus the forward
approach is more suitable since the previous history of the unit can be
computed at each stage.

The recursive algorithm is used to compute the minimum cost in hour ¢ with
feasible state I, that is

Fet, )=min[F (1, N+5(t -1, L=1,1)+ F(t-1,1)] (7.5)
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where

F.(t, I): The total cost from initial state to hour ¢ state /

S.(t— 1, L = t, I): The transition cost from state (f — 1, L) to state (¢, I)
{L}: The set of feasible states at hour ¢ — 1

F(t, 1): The production cost for state (¢, I)

The following constraints should be satisfied for the UC problem solved by
dynamic program:

Y P& =P (7.6)

i=1
I3 t
x;PGimin < PGtL < Xi P(_{-imax (77)

where

P5: The system load at hour ¢

Péimin: The lower limit of the unit power output
Péimax: The upper limit of the unit power output
x!: The 0-1 variable

As we mentioned before, there are 2" — 1 combinations or states for n
units. The computation amount is large. We can combine the DP algorithm
and priority list method to discard some infeasible states as well as high-cost
states. In addition, we add the unit minimum uptime and minimum downtime
constraints, which can also reduce the states. For example, before we perform
unit commitment using the forward DP algorithm, we first order the units
according to the priority list and the unit minimum up-/downtime. The first
part of the units order is the must-up units, the last part is the must-down
units, and middle part is the unit ranking based on the minimum average
production cost of the rest of units. In this way, the computation amount of
DP will be reduced.

Example 7.2

We use priority list and dynamic programming to solve the unit commit-
ment for a simple four-unit system [21]. The data of the units and the load
pattern are listed in Tables 7.3 and 7.4, respectively.

In Table 7.3, the symbol “~” in the initial state means the unit is offline.
For example, “8” means the unit has been online for 8 hours,and “—6” means
the unit has been offline for 6 hours.

The total combinations of four units are 2" — 1 = 2* — 1 = 15. If we order
the unit combinations or states by the maximum net capacity of each
combination, we get Table 7.5.
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Table 7.3 The data of units

Min Up Min

Max Min Cost Ave. Start- Initial Times Down
Unit (MW) (MW) ($/h)  Cost up Cost State (h) Times (h)
1 80 25 213.00 23.54 350 -5 4 2
2 250 60 585.62  20.34 400 8 5 3
3 300 75 684.74 19.74 1100 8 5 4
4 60 20 252.00 28.00 0 -6 1 1

Table 7.4 The load pattern
Hour Load (MW)

450
530
600
540
400
280
290
500

0NN RN~

Table 7.5 The ordering of the unit combinations

State Unit Combination Max Net Capacity (MW)
15 1111 690
14 1110 630
13 0111 610
12 0110 550
11 1011 440
10 1101 390
9 1010 380
8 0011 360
7 1100 330
6 0101 310
5 0010 300
4 0100 250
3 1001 140
2 1000 80
1 0001 60
0 0000 0
(Unit) 1234
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Table 7.6 UC results by priority list

Hour Load (MW) Units On-Line Generation Cost
1 450 Units 3, and 2 9208

2 530 Units 3, and 2 10648.36

3 600 Units 3,2 and 1 12265.36

4 540 Units 3, and 2 10828.36

5 400 Units 3, and 2 8308.36

6 280 Unit 3 5573.54

7 290 Unit 3 5748.14

8 500 Units 3, and 2 10108.36

In the combinations of Table 7.5, “1” means committed (unit operating),
and “0” means uncommitted (unit shut down). For example, “0001” for
state 1 means unit 4 is committed, and units 1, 2, 3 are uncommitted; “1001”
for state 3 means units 1 and 4 are committed and units 2 and 3 are
uncommitted.

Case 1: Neglecting the constraints of unit minimum up/down time. Solve
UC problem using the priority list order.

In case 1, units are committed in order until the load is satisfied. The total
cost for the interval is the sum of the eight dispatch costs plus the transi-
tional costs for starting any units. It can be known from the average produc-
tion cost in Table 7.3 that the priority order for the four units is unit 3, unit
2, unit 1, unit 4. All possible commitments start from state 12 since the load
at first hour is 450 MW, and maximum net capacity from state 1 to state 11
is only 440MW. In addition, state 13 is discarded since it does not satisfy
the order of the priority list. The UC results for the priority ordered method
are listed in Table 7.6.

Case 2: Neglecting the constraints of unit minimum up/down time. Solve
UC problem using dynamic programming.

In case 2, first select the feasible states, using the priority list order. For
first 4 hours, the feasible states have only 12, 14, and 15 in Table 7.5. For last
4 hours, the feasible states have 5, 12, 14, and 15. Thus the total feasible
states are {5,12, 14,15}, and the initial state is 12. According to the recursive
algorithm of the dynamic programming, we can compute the minimum total
cost.

Fo(t, )=min[F(t, )+8(t-1, L=t 1)+ F(t-1,1)]

Fort=1:{L}={12},and {1} ={12, 14,15}

Fo(1,12) = F(1,12)+ 5.0, 12 = 1,12) + F(1,12)
= F(1,12)+5.(0,12 = 1,12) + 0 = 9208 + 0 = 9208
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F(1,14)=F(1,14)+ 5.(0,14 = 1,14) + F.(1, 14) = 9493 + 350 = 9843
F.(1,15)=F(1,15)+S.(0,15=1,15) + F.(1,15) = 9861+ 350 = 10211
Fort=2:{L}={12,14},and {1} ={12,14,15}
F.(2,15)= {{I;i&}[F(Z, 15)+S.(1, L= 2,15)+ F.(1, L)]

(350+9208)

=11301+ min[
(0+9843)

} =20859

And so on.
The UC results are the same as those in case 1.

7.4 LAGRANGE RELAXATION METHOD

Since the enumeration approach is involved in unit commitment solved by
dynamic programming, the computation burden is huge for large power
systems with many generators. The priority list is very simple, and has a fast
calculation speed, but it may discard the optimum scheme. The Lagrange
relaxation method can overcome the above-mentioned disadvantages.

The mathematical problem of the unit commitment can be expressed as
below.

1. Objective function

min Y Y [F(P&)xi + Fu(t)x{]= F (P&, x}) (7.8)
1

t=1 i=

2. Constraints
1) Load balance equation

N Phuxi=P, t=12,...T (7.9)

i=1
2) Generator power output limits
X;PG’imin < PGIz Sxi’PC[uimaxv t=1’2’~-~,T (710)

3) Power reserve constraint

Y PoimaXi 2 Py + P, 1=12,...,T (7.11)

i=1
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4) Minimum up-/downtime

(UR -T")(x " =x)20, r=12,....T,i=12,....,n (7.12)

1

(Uf_"l‘fj“ —Tid"‘”n)(xf —x,f’l) >0, t=12,....,T,i=1,2,...,n (7.13)
where

Fs;: Start-up cost of unit i at time period ¢

Pi: Power reserve at time period ¢

T;"": Minimum uptime for unit i in hours

T4°*": Minimum downtime for unit i in hours

U, - Number of consecutive uptime periods until time period ¢, measured
in hours

U Number of consecutive downtime periods until time period ¢, meas-
ured in hours

The UCP has two kinds of constraints: separable and coupling constraints.
Separable constraints such as capacity and minimum up- and downtime con-
straints are related to one single unit. On the other hand, coupling constraints
involve all units. A change in one unit affects the other units. The power
balance and power reserve constraints are examples of coupling constraints.
The LR framework relaxes the coupling constraints and incorporates them
into the objective function by a dual optimization procedure. Thus the objec-
tive function can be separated into independent functions for each unit, subject
to unit capacity and minimum up and down time constraints. The resulting
Lagrange function of the UCP is as follows:

T n T n
L(P,x,\B)=F (P&, x;)+ ZKI(PIS - zPé,-x,-[) + ZB[(PIS +P- Pcfmaxx{)
t=1 i=1 t=1 i=1
(7.14)

The unit commitment problem becomes the minimization of the Lagrange
function (7.14), subject to constraints (7.10), (7.12), and (7.13). For the sake of
simplicity, we have used the symbol P, without the subscripts Gi and ¢, to
denote any appropriate vector of elements P4;. The symbols x, A, and B are
handled the same way. The LR approach requires minimizing the Lagrange
function given as:

q (A B)=min L(P, x, A, B) (7.15)

Since g(A, B) provides a lower bound for the objective function of the original
problem, the LR method requires us to maximize the objective function over
the Lagrange multipliers:
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q*(\,B)= II%%XL](X, B) (7.16)

After eliminating constant terms such as A, P, and B,(P5+ B:) in equation
(7.14), equation (7.15) can be written as

q(\B)= H}}lxnz 2{[F1(Péz) + FSi(t)]xz! — A Fixi — BtPGimaxxz{} (7.17)

i=1 t=1
subject to

xt{P(t}iminSP(EJinitP(tEimam t:1a27"-7T
U», -T2 (" =x)20, t=1,2,...,T,i=1,2,...,n
(U =T (xf = x71) 20, ¢t=1,2,...,T,i=12,...,n

There are two basic steps for the Lagrange procedure to solve the UC
problem. They are:

(1) Initializing the Lagrange multipliers with values that try to make
q(A, B) larger.

(2) Assuming the values of the Lagrange multipliers in step (1) are fixed
and the Lagrange function (L) is minimized by adjusting P}; and x|.

This minimization is done separately for each unit, and different techniques
such as LP and dynamic programming can be used. The solutions for the N
independent subproblems are used in the master problem to find a new set of
Lagrange multipliers. This involves dual optimization. As we know for dual
optimization, the function to be optimized is convex and the variables are
continuous, then the maximization of the dual function gives the identical
result as minimizing the primal function. However, for unit commitment
problem, there are 0-1 integer variables that indicate the status of the units,
which are not continuous, or nonconvex. Thus the dual theory is not exactly
satisfied in UC problem. The application of the dual optimization method to
the UC problem has been given the name “Lagrange relaxation.” There exists
a gap between the results of the maximization of the dual function and mini-
mizing the primal function. The aim of the Lagrange relaxation method is to
reduce the duality gap by iterations. If a criterion is prespecified, this iterative
procedure continues until a duality gap criterion is met. The duality gap is also
used as a measure of convergence. If the relative duality gap between the
primal and the dual solutions is less than a specific tolerance, it is considered
that the optimum has been reached. The procedure then ends with finding a
feasible UC schedule.
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Actually, the multipliers can be updated by using a subgradient method with
a scaling factor and tuning constants, which are determined heuristically. This
method is as follows:

A vector g is called a subgradient of L(-) at A* if

L) SLAH)+A-A9"g (7.18)

If the subgradient is unique at a point A, then it is the gradient at that point.
The set of all subgradients at A is called the subdifferential, dL(A), and is
a closed convex set. A necessary and sufficient condition for optimality in
subgradient optimization is 0 € dL(A). The value of A can be adjusted by the
subgradient optimization algorithm as below:

A = 0K + ogh (7.19)

where gf is any subgradient of L(-) at A¥. The step size, o, must be chosen
carefully to achieve good performance by the algorithm. Here g* is calculated
as follows:

« _ OL(A) ;

==IaF = Pb =Y xf P (7.20)
t i=1

8

Example 7.3
The data for the three-unit, four-hour unit commitment problem are as
below, which is solved with Lagrange relaxation technique [21].

1. Units data

F(Ps,) =0.002P2, +10P;, + 500
Fy(Ps,) =0.0025P2, + 8P, + 300
Fy(Ps3) =0.005P2, + 6P +100
100 < Py, <600
100 < Py, <400
50 < Pg; <200

2. Hourly load data shown in Table 7.7

For simplification, there are no startup costs, no minimum up- or
downtime constraints. The results of several iterations are shown in Tables
7.8-7.13, starting from an initial condition where all A’ values are set to
zero. An economic dispatch is performed for each hour, provided there is
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Table 7.7 Hourly load data

Hour (¢) Load Py (MW)

1 170

2 520

3 1100

4 330
Table 7.8 lteration 1
Hour AW w  u Pg Ps,  Pgs AP Py P P&
1 0 0 0 0 0 0 0 170 0 0 0
2 0 0 0 0 0 0 0 520 0 0 0
3 0 0 0 0 0 0 0 1100 0 0 0
4 0 0 0 0 0 0 0 330 0 0 0
Where AP =P~ P&t

i=1

Table 7.9 Iteration 2
Hour A w uw u Psg Ps, Pss AP PY PSP
1 1.7 0 0 0 0 0 0 170 0 0 0
2 5.2 0 0 0 0 0 0 520 0 0 0
3 11.0 0 1 1 0 400 200 500 0 0 0
4 33 0 0 0 0 0 0 330 0 0 0
Table 7.10 Iteration 3
Hour 7\, uy u, us PG] PGZ P(;g AP Pg,(]j Péczl Pé%l
1 34 0 0 0 0 0 0 170 0 0 0
2 10.4 0 1 1 0 400 200 -80 0 320 200
3 16.0 1 1 1 600 400 200 -100 500 400 200
4 6.6 0 0 0 0 0 0 330 0 0 0
Table 7.11 lteration 4
Hour }\, Uy 1853 Uz PGl PGZ Pc,3 AP Pé‘lj Pég Pécgl
1 5.1 0 0 0 0 0 0 170 0 0 0
2 10.24 0 1 1 0 400 200 -80 0 320 200
3 15.8 1 1 1 600 400 200 =100 500 400 200
4 9.9 0 1 1 0 380 200 =250 0 130 200
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Table 7.12 lteration 5

Hour }\, u; U, Uz PGl PGZ Pc,3 AP PGetli Pé‘zi Pég

1

2
3
4

6.8 0 0 0 0 0 0 170 0 0 0
10.08 0 1 1 0 400 200 -80 0 320 200
15.6 1 1 1 600 400 200 -100 500 400 200

9.4 0 0 1 0 0 200 130 0 0 200

Table 7.13 lteration 6

Hour }\. u; U, Uz PGl PGZ Pc,3 AP P(%T Pé‘zi Pég

1

2
3
4

8.5 0 0 1 0 0 200 =30 0 0 170
9.92 0 1 1 0 384 200 —64 0 320 200
15.4 1 1 1 600 400 200 -100 500 400 200
10.7 0 1 1 0 400 200 =270 0 130 200

sufficient generation committed that hour. The primal value J* represents
the total generation cost summed over all hours as calculated by economic
dispatch. ¢(A) stands for the dual value. The duality gap will be J* — g*, or
]* — q*

the relative duality gap will be "
q

kg%
For iteration 1, g(A) = 0, j* = 40,000, and I =g =undefined. In the next

%

iteration, the A’ values have been increased as 1.7, 5.2, 11.0, and 3.3. The
results as well as the relative duality gap for the several iterations are shown
below.

*k_ gk
For iteration 2, g(1) = 14,982, j* = 40,000, and - 1= 1.67.

q
. . J* — q*
For iteration 3, g(A) = 18,344, j* = 36,024, and .= 0.965.
q
o . T — g
For iteration 4, g(A) = 19,214, j* = 28,906, and = 0.502.
q
. . J*—q*
For iteration 5, g(A) = 19,532, j* = 36,024, and = 0.844.
q
o . T — g
For iteration 6, g(A) = 19,442, j* = 20,170, and = 0.037.
q
*k_ gk
After 10 iterations, g(A) = 19,485, j* = 20,017, and J *q =0.027. The
q

relative duality gap is still not zero. The solution will not converge to a
final value. Therefore, a tolerance ¢ for the relative duality gap should be
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introduced if the Lagrange relaxation algorithm is used. It means that when
kg%
/ 'q < ¢ the Lagrange relaxation algorithm will be stopped.
q>.<

7.5 EVOLUTIONARY PROGRAMMING-BASED TABU
SEARCH METHOD

7.5.1 Introduction

Tabu search (TS) is a powerful optimization procedure that has been success-
fully applied to a number of combinatorial optimization problems. It has the
ability to avoid entrapment in local minima. The TS method uses a flexible
memory system (in contrast to “memory-less” systems such as simulated
annealing and genetic algorithm and rigid memory systems such as in branch-
and-bound). Specific attention is given to the short-term memory component
of TS, which has provided solutions superior to the best obtained with other
methods for a variety of problems.

Research endeavors, therefore, have been focused on efficient, near-optimal
UC algorithms, which can be applied to large-scale power systems and have
reasonable storage and computation time requirements. The major limitations
of the numerical techniques are the problem dimensions, the large computa-
tional time, and the complexity in programming.

The LR approach introduced in the previous section to solve the short-term
UC problems was found to provide a faster solution but will fail to obtain
solution feasibility and solution quality problems and becomes complex if the
number of the units increases.

Evolutionary programming (EP) is capable of determining a global or
near-global solution. It is based on the basic genetic operation of human
chromosomes. It operates with the stochastic mechanics, which combine off-
spring creation based on the performance of current trial solutions and com-
petition and selection based on the successive generations, from a considerably
robust scheme for large-scale real-valued combinational optimization. This
section will introduce the EP-based TS method to solve the unit commitment
problem.

7.5.2 Tabu Search Method

The same mathematical model of a UC problem in Section 7.4 is adopted.

The UC problem is a combinatorial problem with integer variables and
continuous variables. It can be decomposed into two subproblems, a combina-
torial problem in integer variables and a nonlinear optimization problem in
output power variables. The Tabu Search (TS) method is used to solve the
combinatorial optimization, and the nonlinear optimization is solved via a
quadratic programming [14]. The steps of the TS are as follows.



EVOLUTIONARY PROGRAMMING-BASED TABU SEARCH METHOD 265

Step (1): Assume that the fuel costs are fixed for each hour and all of the
generators share the loads equally.

Step (2): By optimum allocation, find the initial feasible solution on unit
status.

Step (3): Demand is taken as the control parameter.
Step (4): Generate the trial solution.

Step (5): Calculate the total operating cost as the summation of running cost
and startup—shutdown cost.

Step (6): Tabulate the fuel cost for each unit for every hour.

About the trial solution, the neighbors should be randomly generated.
Because of the constraints in the UCP, this is not a simple matter. The most
difficult constraints to satisfy are the minimum up-/downtimes. The TS algo-
rithm requires a starting feasible schedule that satisfies all of the system and
units constraints. This schedule is randomly generated.

Once a trial solution is obtained, the corresponding total operating cost is
determined. Since the production cost is a quadratic function, a quadratic
programming method can be used to solve the subproblem. The startup cost
is then calculated for the given schedule. The calculation is stopped if the
following conditions are satisfied:

+ The load balance constraints are satisfied.
+ The spinning reserve constraints are satisfied.

The Tabu list (TL) is controlled by the trial solutions in the order in which
they are made. Each time a new element is added to the “bottom” of a list,
the oldest element on the list is dropped from the “top.” Empirically, TL sizes,
which provide good results, often grow with the size of the problem, and
stronger restrictions are generally coupled with smaller sizes [14]. The best
sizes of TL lie in an intermediate range between these extremes. In some
applications, a simple choice of TL size in a range centered on seven seems to
be quite effective.

Another important criterion of TS arises when the move under consider-
ation has been found to be tabu. Associated with each entry in the TL there
is a certain value for the evaluation function called the “aspiration level.”
Normally, the aspiration level criteria are designed to override tabu status if
a move is “good enough” [14].

7.5.3 Evolutionary Programming

Evolutionary programming (EP) is a mutation-based evolutionary algorithm
applied to discrete search spaces. Real-parameter EP is similar in principle
to evolution strategy (ES), in which normally distributed mutations are per-
formed in both algorithms. Both algorithms encode mutation strength (or
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variance of the normal distribution) for each decision variable, and a self-
adapting rule is used to update the mutation strengths. For the case of evolu-
tionary strategies, Fogel remarks that “evolution can be categorized by several
levels of hierarchy: the gene, the chromosome, the individual, the species, and
the ecosystem” [24-26]. Thus, while genetic algorithms stress models of genetic
operators, ES emphasizes mutational transformation that maintains behav-
ioral linkage between each parent and its offspring at the level of the
individual.
The general EP algorithm is shown below [15, 24-26].

(1) The initial population is determined by setting
5; =8 ~U(a, b)), i=1,...,m (7.21)
where

Si: A random vector
s;: The outcome of the random vector

U(a;, by)*: A uniform distribution ranging over [a, b;] in each of k
dimensions

m: The number of parents

(2) Each s, is assigned a fitness score
(P(Si):G(F(si)aVi)’ iZla"'am (722)

where F maps s; - R and denotes the true fitness of s, v; represents
random alteration in the instantiation of s, G(F(s;), v;) describes the fitness
score to be assigned. In general, the functions F'and G can be as complex
as required. For example, F may be a function not only of a particular
s; but also of other members of the population, conditioned on a
particular.

(3) Each s, is altered and assigned to s,,,, such that
Sitm =S,’,+N(O, BJ(P(SL)+Z])’ ]=1,,k (723)
where N(0, B,o(s;) + z;) represents a Gaussian random variable. 3; is a

constant of proportionality of scale ¢(s;), and z; represents an offset to
guarantee a minimum amount of variance.

(4) Each s, is assigned a fitness score
(P(si+m) = G(F(SHm)a Vi+m)7 l = 17 R (724)

(5) For each s;,i =1, ... ,2m,a value a value w; is assigned according to
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t=1
Wi = {1, if o(s7) < 0(s:) (7.26)
0, otherwise

where c is the number of competitions.

(6) The solutions s;,i =1, ... ,2m are ranked in descending order of their cor-
responding value w;. The first m solutions are transcribed along with their
corresponding values @(s;) to be the basis of the next generation.

(7) The process proceeds to step (3) unless the available execution time is
exhausted or an acceptable solution has been discovered.

Applying the above mentioned evolutionary programming to unit commit-
ment problem, the calculation steps are shown below.

(1) Initialize the parent vector p = [py, pa, ... , pal, i = 1,2, ..., N, such that
each element in the vector is determined by p; ~ random(pjmin, Pjmax)»j = 1,
2, ..., N with one generator as dependent generator.

(2) Calculate the overall objective function of the UC problem, using the trail
vector p;, and find the minimum of the objective function Fy;.

(3) Create the offspring trail solution p; as follows.
(a) Compute the standard deviation

c; = B(i))(ﬂmax ~ Piuin) (7.27)

min (Fy;

(b) Add a Gaussian random variable N (0,67) to all of the state variables
of p,, to get p;.
(4) Select the first N, individuals from the total 2N, individuals of both p;
and p/ through evaluating each trail vector by W, = sum(W,), where
x=1,2,...,N,,i=1,2,...,2N, such that

. if LU < random(0, 1)
W, = Fr; + Fry, (7.28)

0, otherwise

(5) Sort the W, in descending order, and the first N, individuals will survive
and be transcribed along with their elements to form the basis of the next
generation.

(6) Back to step 2 until a maximum number of generations N, is
reached.
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7.5.4 EP-Based TS for Unit Commitment

In the TS technique for solving the UC problem, the initial operating schedule
status in terms of maximum real power generation of each unit is given as
input. As we know that TS is used to improve any given status by avoiding
entrapment in local minima, the offspring obtained from the EP algorithm is
given as input to TS, and the refined status is obtained. Considering the fea-
tures of EP and TS algorithms, the EP-based TS method is used for solving
unit commitment problem.

(1) Get the demand for 24 hours and number of iterations to be carried out.

(2) Generate a population of parents (V) by adjusting the existing solution
to the given demand to the form of state variables.

(3) Unit downtime makes a random recommitment.

(4) Check for constraint in the new schedule by TS. If the constraints are not
met, then repair the schedule. A repair mechanism to restore the feasibil-
ity of the constraints is applied and described as follows:

» Pick at random one of the OFF units at one of the violated hours.

+ Apply the rules in Section 7.5.2 to switch the selected unit from OFF
to ON, keeping the feasibility of the downtime constraints.

+ Check for the reserve constraints at this hour. Otherwise, repeat the
process at the same hour for another unit.

(5) Solve the master problem of UC and calculate total production cost for
each parent.

(6) Add the Gaussian random variable to each state variable and, hence,
create an offspring. This will further undergo some repair operations.
After these, the new schedules are checked in order to verify that all
constraints are met.

(7) Improve the status of the evolved offspring, and verify the constraints
by TS.

(8) Formulate the rank for the entire population.
(9) Select the best N number of population for next iteration.

(10) Has the iteration count been reached? If yes, go to step 11; otherwise, go
to step (2).

(11) Select the best population (s) by evolutionary strategy.
(12) Print the optimum schedule.

7.6 PARTICLE SWARM OPTIMIZATION FOR UNIT COMMITMENT

7.6.1 Algorithm

Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart
in 1995 [23] as an alternative to GAs. The PSO technique has turned out to
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be a competitor in the field of numerical optimization ever since. Similar to
GA, a PSO consists of a population refining its knowledge of the given search
space. PSO is inspired by particles moving around in the search space. The
individuals in a PSO thus have their own positions and velocities. These indi-
viduals are denoted as particles. Traditionally, PSO has no crossover between
individuals and has no mutation, and particles are never substituted by other
individuals during the run. Instead, the PSO refines its search by attracting the
particles to positions with good solutions. Each particle remembers its own
best position found so far in the exploration. This position is called the per-
sonal best and is denoted by A} in equation (7.29). Additionally, among these
Py, there is only one particle that has the best fitness, called the global best,
which is denoted by Py,; in equation (7.29). The velocity and position update
equations of PSO are given by

‘/it :w‘/,-t_l—‘rcl XK X(Pbti_l—Xit_l)'i‘Cz Xn X(Pgtl;il—X;_l) (729)
X;:Xit_l-i-‘/ir i=1,...,ND (730)

where

w: The inertia weight
C,, C,: The acceleration coefficients

Np: The dimension of the optimization problem (number of decision
variables)

r, 1 Two separately generated uniformly distributed random numbers
between 0 and 1

X:The position of the particle

V;: The velocity of the ith dimension

PSO has the following key features compared with the conventional opti-
mization algorithms.

« It only requires a fitness function to measure the “quality” of a solution
instead of complex mathematical operations like gradient, Hessian, or
matrix inversion. This reduces the computational complexity and relieves
some of the restrictions that are usually imposed on the objective function
like differentiability, continuity, or convexity.

« It is less sensitive to a good initial solution since it is a population-based
method.

+ It can be easily incorporated with other optimization tools to form hybrid
ones.

« It has the ability to escape local minima since it follows probabilistic
transition rules.
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More interesting PSO advantages can be emphasized when compared to
other members of evolutionary algorithms like the following.

+ It can be easily programmed and modified with basic mathematical and
logic operations.

+ It is inexpensive in terms of computation time and memory.
+ It requires less parameter tuning.

« It works with direct real-valued numbers, which eliminates the need to
do binary conversion of a classical canonical genetic algorithm.

The simplest version of PSO lets every individual move from a given point
to a new point that is a weighted combination of the individual’s best position
ever found and of the individual’s best position, Aj. The choice of the PSO
algorithm’s parameters (such as the inertia weight) seems to be of utmost
importance for the speed and efficiency of the algorithm.

If economic power dispatch (EPD) is also considered in the unit commit-
ment, a hybrid PSO (HPSO) can be used [20]. The blending real-valued PSO
(solving EPD) with binary-valued PSO (solving UC) are operated indepen-
dently and simultaneously. The binary PSO (BPSO) is made possible with a
simple modification to the particle swarm algorithm. This BPSO solves binary
problems similar to the traditional method. In binary particle swarm X; and
P can take on values of 0 or 1 only. The velocity V; will determine a probability
threshold. If V; is higher, the individual is more likely to choose 1, and lower
values favor the 0 choice. Such a threshold needs to stay in the range [0.0, 1.0].
One straightforward function for accomplishing this is common in neural
networks. The function is called the sigmoid function and is defined as follows:

1
s(Vi) Zm (7.31)

The function squashes its input into the requisite range and has properties
that make it agreeable for use as a probability threshold. A random number
(drawn from a uniform distribution between 0.0 and 1.0) is then generated,
whereby X; is set to 1 if the random number is less than the value from the
sigmoid function, that is,

,- ={1, if r<s(V;) (732)

0, otherwise

In the UC problem, X; represents the on or off state of generator i. To
ensure that there is always some chance of a bit flipping (on and off of genera-
tors), a V., constant the start of a trial to limit the range of V. A large V.
results in a low frequency of changing state of generator, whereas a small value
increases the frequency of on/off of a generator.



PARTICLE SWARM OPTIMIZATION FOR UNIT COMMITMENT 271

7.6.2 Implementation

The mathematical model of the UC problem, which is described in Section
7.4, can be expressed as the general form:

min f (x) (7.33)

such that
hi(x)=0 j=1,...,m (7.34)
g(x)=20 i=1,....k (7.35)

To handle the infeasible solutions, the cost function is used to evaluate a
feasible solution, that is,

@ (x)=f(x) (7.36)

The constraint violation measure ®,(x) for the r + m constraints are usually
defined as

@.0=F 80+ glhf(x)l (7.37)
or
P,(x)= %[g(gf (x)" + :1 (h (x))z} (7.38)
where

g/ (x): The magnitude of the violation of the ith inequality constraint
h{(x):The magnitude of the violation of the jth equality constraint
r: The number of inequality constraints

m: The number of equality constraints

Then the total evaluation of an individual x, which can be interpreted as
the error (for a minimization problem) of an individual x, is obtained as

D(x) =D (x)+7D,(x) (7.39)

where v is a penalty parameter of a positive (or negative) constant for the
minimization (or maximization) problem, respectively. By associating a
penalty with all constraint violations, a constrained problem is transformed
into an unconstrained problem such that we can deal with candidates that
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violate the constraints to generate potential solutions without considering the
constraints.

According to equation (7.39), we formulate the objective of the UC problem
as a combination of total production cost as the main objective with power
balance and spinning reserve as inequality constraints; then we get

®(x)=F(PL, x!) %i{cl(ag - ipg,,.x;)z + CZ(P]S + P -iPéimaxx;ﬂ
) - - (7.40)
The penalty factor yis computed at the kth generation defined by
Y="Yo+log(k+1) (7.41)

The choice of y determines the accuracy and speed of convergence. From
the experiment, a greater value of yincreases its speed and convergence rate.
For this reason, a value of 100 for v, is selected. The pressure on the infeasible
solution can be increased with the number of generations, as discussed in the
Kuhn-Tucker optimality theorem, and the penalty function theorem provides
guidelines to choose the penalty term. In equation (7.40), C, is set to 1 if a
violation to constraint (7.9) occurs and C, = 0 whenever equation (7.9) is not
violated. Similarly, C, is also set to 1 whenever a violation of equation (7.11)
is detected, and it remains O otherwise.

Substituting equation (7.8) into equation (7.40), we get

P(x)= ZZ[F P&) xi+ Fy(1) x|

t=1 i=1

T 2 n 2
%Z|:C1(PD ZPGIXL) +C2(P6+Pl£_zpéimaxx[r)

t=1 i=1 i=1

T {
=1 Li=1

n 2
+ CZ(Pﬁ +Pi-Y Pé,-m.dxx;j }} (7.42)

i=1

=

n 2
[F(P& )+ Fa(0)] ! +%{CI(P5 —zPé,-x:)
i=1

Equation (7.42) is the fitness function for evaluating every particle in the
population of PSO for time period 7. The initial values of power are generated
randomly within the power limits of a generator. As particles explore the
searching space, starting from initial values, which are generated randomly
within the power limit as shown in equation (7.10), they do encounter cases
whereby the power generated exceeds the boundary (minimum or maximum
capacity) and therefore violate the constraint in equation (7.10). To avoid the
boundary violation, we reinitialize the value whenever it is greater than the
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maximum capacity or smaller than the minimum capacity of a generator.
Again, the reinitialization is done within the power limits of a generator.

The minimum-up and minimum-down time can be easily handled. As the
solution is based upon the best particle ( Py, ) in the history of the entire
population, constraints are taken care of by forcing the binary value in Py
to change its state whenever either the minimum up or the minimum down
constraint is violated. However, this may change the current fitness, which is
evaluated with equation (7.42). It implies that the current Py, might no longer
be the best among all the other particles. To avoid this situation, the Py, will
be revaluated with the same equation. Ramping can be incorporated by adding
the ramping cost into the total production cost in equation (7.8).

7.7 ANALYTIC HIERARCHY PROCESS

The classical UC problem is aimed at determining the startup and shutdown
schedules of thermal units to meet forecasted demand over certain time
periods (24h to 1 week) and belongs to a class of combinatorial optimization
problems. The previous sections introduced several methods.

Although these techniques are effective for the problem posed, they do not
handle network constraints and bidding issues. This section addresses future
UC requirements in a deregulated environment where network constraints,
reliability, value of generation, and variational changes in demands and other
costs may be factors.

The classical UC Lagrange method cannot solve this problem because of
combinatorial explosion. Accordingly, as an initial approach to solve this
complex problem, we attempt to find a method for solving UC considering
network limitation and generation bids as a daily operational planning problem.
This approach supports the decision making effectively of ranking units in
terms of their values by using the analytic hierarchy process (AHP) and the
analytic network process (ANP) techniques. The scheduled generation over
time is studied as input into the optimal power flow (OPF) problem for
optimal dispatch within the network and generation constraint. The OPF
problem is deeply discussed in Chapter 8.

7.7.1 Explanation of Proposed Scheme

The basic concept of proposed optimal generation scheduling is as follows.
First, it is assumed that the ranking of generating units, and their priority
as well as demand, is known. As a result, the preferred generators for com-
petitive scheduling and pricing will be known. Therefore, the number of
generators whose fuel consumption constraints must be considered can be
reduced considerably. This reduces the difficulties of unit commitment and
optimal power flow. The proposed scheme addresses adequate ranking and
prioritizing of units before optimizing the pricing of generation units to meet
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a given demand. By incorporating the interaction of factors such as load
demand, generating cost curve, bid/sale price, unit up/down cost, and the
relative importance of different generation units, the scheme can be imple-
mented to address the technical and nontechnical constraints in the unit com-
mitment problem. This information is easily augmented with the optimization
scheme for effective optimal decisions. The scheme consists of the three fol-
lowing stages:

(1) Ranking of units in terms of their values by AHP/ANP
(2) Checking the constraints by rule-based method
(3) Solving optimization problem by interior point optimal power flow

Next, for all generators committed, the network availability for transfer
power, the constraints on startup and shutdown, and generated output
and reserve are determined for daily operational planning. In the daily UC
calculation, a Lagrange method is used without network constraints. Since
the majority of connected generators include network constraints, and
other equipment limitation to ensure feasibility, an OPF technique based
on the modified quadratic interior point (MQIP) method [27] is adopted
for solving the resulting optimal generation scheduling problem. This gives
the proposed scheme a significant advantage over classical heuristic or
Lagrange methods. Further work to evaluate this technique is ongoing for
multiutility areas where reliability and stability constraints on the networks
are requirements.

According to the above discussion, the scheme for optimal generation
scheduling can be represented as in Figure 7.1.

Input data .| Use AHP/ANP to | Getranked
from files "| rank generator units i results
A 4
Use AHP/ANP to
rank generator units

A 4

Solve the resulting problem
with the MQIP algorithm

A 4

Schedule units
for time te T

FIGURE 7.1 Scheme for optimal generation scheduling
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7.7.2 Formulation of Optimal Generation Scheduling

7.7.2.1 Objective Functions In general, in UC problems, the objective
function to be minimized is the sum of the operation and startup costs. First,
the fuel cost of the generation is a function of its output P,

For simplicity, we assume that the generation production cost is a quadratic
function. Thus the total generation cost can be expressed as

F,(Pyu(t)) = ﬁ (6:Pu(1)” + b P(t) + ;) (7.43)
i=1

where P(?) is the real power output of the ith generator in period .

P(1) is assumed to be within the maintenance schedule, i.e., considered to
be at an acceptable efficiency to meet the prescribed load. It should be noted
that machines being committed are not operating at 100% efficiency because
of imperfect operating conditions and aging.

The startup cost, on the other hand, increases with shutdown time of gen-
erator. We assume that the boiler and turbine cool down after shutdown and
the cost of preheating increases with shutdown time and is embedded in F;(t)
(startup cost of generator i at time t).

Therefore, if the number of generators is NG and the duration of the period
under consideration is 7, the objective function is

NG T

minF = Y[ (a;Pu(1)* + b Pu(t) +¢; )+ Fs(t) | x,(1) (7.44)

i=1 t=1

7.7.2.2 Constraints The constraints can be classified as coupling con-
straints and local constraints. The coupling constraints are related to all
generators (in service) under consideration, regardless of age or efficiency,
and the following are considered.

7.7.2.2.1 Demand-Supply Balance Constraint The sum of the generator
outputs must be equal to the demand Pp(¢)

NG

> (xit) Pu(1)) = Po(1) (7.45)

i=1

Again, x,(t) is a 0-1 variable expressing the state, i.e., (0: shutdown, 1: startup)
of the ith generator in period .

7.7.2.2.2 Reserve Power Constraint To deal with unpredictable distur-
bances (interruption of generation and transmission lines or unexpected
increase in demand), the output of generators in operation must increase, and



276 UNIT COMMITMENT

hence the instantaneous reserve power shown in the equation below must be
required

NG
> (XuOr(0) 2 Ri(0) (7.46)

where () is the contribution of unit i to spinning reserve at hour ¢, and R(f)
is the operational reserve requirement at period .

7.7.2.2.3 Generator Output Constraint When the generator is in the midst
of startup, its output must be between the upper limit Py, and the lower limit
P gimin+

X,-(l) Pgimin < Pgi(t) < X,-(l) Pgimax (747)

For unit ramp rate conditions
Py(t)— Py(t—1)<UP,; for unit ramp up of unit i (7.48)
P,(t—1)—- P,(t)< DR,; for unit ramp down of unit i (7.49)

For each selected generator for bid.
The constraint on bid price for unit i at period ¢ is

B,(t) > BPymin(t); i€ NG (7.50)
where By(f) is the bid price of unit 7 at time .

7.7.2.3 Network Limitation To account for network limitation during UC
dispatch, the network and operation constraints are specified as additional
constraints below.

Power Flow Equation:

The power flow equations at bus i with losses are given as

Py(t) = Py(t) = F(V, 6,1) (7.51)
Qui(1) = Qui(t) = F(V, 6, 1) (7.52)
where
NG
Fu()=Vi() Y, (V1) Y; cos(6, -6, - §;)) (7.53)

=1

NG
Fu()=V(n) Y, (V1) Y;sin(; -6, -8;)) (7.54)

j=1



ANALYTIC HIERARCHY PROCESS 277

The transformer taps in the circuit within limits to minimum loss or voltage
deviation

Timin < Tt(t) < Timax (755)
where

Timin: The minimum tap ratio of the transformer
Timax: The maximum tap ratio of the transformer

The minimum operation time and minimum shutdown due to fatigue limit
of the generator are

[upmin < ti < [upmax (756)

tdownmin < Z‘i < tdownmax (757)

The limits on line flow are defined as

V7 + V7 ~2V,V,cos(6,-6))
7z

<o (7.58)

where

Z;:The impedance of the transmission line
I max: The maximum current limit of the transmission line

Also, each generator is also required to maintain one of the following
generator limits for reactive power constraints:

xi(t) Qg[min < Qgi(t) < xi(t) Qgimax (759)
Vgimin(t) < Vgt(t) < Pgimax(t) (760)

and for load buses, we have the following constraint:
Vdimin(t) < Vdi(t) < Pdimax(t) (761)

The problem posed can be solved by many optimization methods such as
Lagrange relaxation methods, heuristic rules, and optimal power flow with
decomposition techniques. The Lagrange method utilizes the following primal
problem:

Given

Min F (x(t), Py(t), Fi(1)) (7.62)
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s.t.

1) local coupling constraints (7.45) to (7.49);
2) power flow constraints (7.51) and (7.54), given as
g,(x,(t), Pgl(t)) < O, l = 1, , NG

The function F expresses the sum of fuel consumption and startup cost.
Using the Lagrange multiplier, we determine A and p, which are introduced
in the Lagrange function as follows:

NG
L{xi(t), Py(t), A (1), u (1)) = F [x,(1), Py(t), Fsi(1)] - k(t)Z(xi(t)Pgi(t)_ Pp(1))
i=1

+ H([)Z(xz(t) })gimax(t)_Rs(t)) (763)

This is usually converted to a dual problem where
max {min L [x,(t), Py(t), M(2), u(2)]} (7.64)
S.t.
gi(xi(1), Pu(1)) <0 (7.65)

To include the network constraints and bidding of generators, a new UC-
based OPF/AHP is proposed [7]. Namely, we solve for the UC problem over
time, using OPF to account for the network voltage, transformer, and flow
constraints. Application of the MQIP optimization method solves for the
optimal operating point at each time period. The second phase of the algo-
rithm uses AHP/ANP to determine the value and merit of each generation
bid to be submitted for commitment.

7.7.3 Application of AHP to Unit Commitment

7.7.3.1 AHP Algorithm The AHP is a decision-making approach [28-30].
It presents the alternatives and criteria, evaluates trade-off, and performs a
synthesis to arrive at a final decision. AHP is especially appropriate for cases
that involve both qualitative and quantitative analysis. The ANP is the exten-
sion of AHP. It makes decisions when alternatives depend on criteria with
multiple interactions.

The steps of the AHP algorithm may be written as follows:

Step 1: Set up a hierarchy model.
Step 2: Form a judgment matrix.
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The value of elements in the judgment matrix reflects the user’s knowledge
about the relative importance between every pair of factors.

Step 3: Calculate the maximal eigenvalue and the corresponding eigenvector
of the judgment matrix.

Step 4: Hierarchy ranking and consistency check of results.

We can perform the hierarchy ranking according to the value of elements
in the eigenvector, which represents the relative importance of the corre-
sponding factor. The consistency index of a hierarchy ranking CI is defined as

xmax —n

Cl= (7.66)

n—1

where A, is the maximal eigenvalue of the judgment matrix and n is the
dimension of the judgment matrix.
The stochastic consistency ratio is defined as:

CcI

CR=—
RI

(7.67)

where R/ is a set of given average stochastic consistency indices and CR is the
stochastic consistency ratio.

For matrices with 1-9 dimension, respectively, the values of Rl will be as
below.

n: 1 2 3 4 5 6 7 8 9
RI  0.00 0.00  0.58 0.90 1.12 1.24 1.32 1.41 1.45

It is obvious that a matrix with 1 or 2 dimension is not necessary to check
the stochastic consistency ratio. Generally, the judgment matrix is satisfied if
the stochastic consistency ratio CR < 0.10.

It is possible to precisely calculate the eigenvalue and the corresponding
eigenvector of a matrix, but this would be time-consuming. Moreover, it is not
necessary to precisely compute the eigenvalue and the corresponding eigen-
vector of the judgment matrix. The reason is that the judgment matrix, which
is formed by the subjective judgment of the user, itself has some range of error.
Therefore, the following two approximate approaches are adopted to compute
the maximal eigenvalue and the corresponding eigenvector.

(A) Root Method

(1) Multiply all elements of each row in the judgment matrix

Mi=HiXija l=1,,n, j=1,...,n (768)
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where

n: The dimension of the judgment matrix A
X;;: An element in the judgment matrix A

(2) Calculate the nth root of M;
Wx=4M;, i=1,...,n (7.69)
We can obtain the vector
W= [Wes, Wi, .., WiE]" (7.70)

(3) Normalize the vector W*

(7.71)

In this way, we obtain the eigenvector of the judgment matrix A,
that is,

W=[W,W,,...,W,]" (7.72)

(4) Calculate the maximal eigenvalue A, of the judgment matrix

L(AW),
kmaxzz nW/ j=1...,n (7.73)

i=1

Where (AW), represents the ith element in vector AW.

Example 7.4

Compute the maximal eigenvalue A, and the corresponding eigenvector
for the following judgment matrix.

115 1/3
A=[5 1 3
313 1

The calculation steps of root method are as follows.
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(1) Multiply all elements of each row in the judgment matrix

M, =1><1><1=i=0.067
5 3 15
M, =5x1x3=15

M3=3><1><1=1
3

(2) Calculate the nth root of M,

Wi =3M, =0.067 =0.405
Wi =3IM, =15 =2.466
W3 =\3/M3 =%/I=1

We can obtain the vector
W = [WeF, Wi, Wit T =[0.405, 2.466, 1]"

(3) Normalize the vector W*

3
Y Wi =0.405+2.466+1=3.871
j=1

%k
W, =0 =%=0.105
Wi
j=1
w, =W %3? = 0.637
Swr
j=1
S
W; = 3W3 = ﬁ =0.258
2 W

The eigenvector of the judgment matrix A is obtained, that is,

W =[W,, Wy, W5]" =[0.105, 0.637,0.258]"

281
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(4) Calculate the maximal eigenvalue A, of the judgment matrix

1 1/5 1/37[0.105
AW=[5 1 3 [0637
3 1/3 100258

AW, =1x 0.105+%>< 0.637+%><0.258 =0.318
AW, =5%0.1054+1x%x0.637+3x0.258 =1.936
AW; =3 ><O.105+%><O.637+ 1x0.258 =0.785

A = Z (AW), _(Aw), N (AW), N (AW),
S aW,  3W,  3W, 3,
_ 0318 1936 0785
© 3x0.105 3x0.637 3x0.258

=3.037

(B) Sum Method

(1) Normalize every column in the judgment matrix

Xi=—"9_ ij=1...n (7.74)

D Xy

k=1

Now the judgment matrix A is changed into a new matrix A¥, in
which each column has been normalized.

(2) Add the all elements of each row in matrix A*
WrE=Y X, i=1l...n (7.75)
j=1

(3) Normalizing the vector W*, we have

o
W= o1 n (7.76)

S Wy
j=1

Hence, we obtain the eigenvector of the judgment matrix A,

W =[W, W,,...,W,] (7.77)
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(4) Calculate the maximal eigenvalue Ay, of the judgment matrix

L (AW),
Ay =S 2L =1, 778
21, il n (7.78)

Where (AW), represents the i-th element in vector AW.

Example 7.5

The judgment matrix A is the same as in Example 7.4. Compute the maximal
eigenvalue A, and the corresponding eigenvector with the sum method.
The calculation steps are as follows.

(1) Normalize every column in the judgment matrix.

3
Y X =1+5+3=9

k=1

X1 1

X =5 =g=0111
> X
k=1
X5 = 3X21 =3 _0.556
> X
k=1
Xi = 3X31 =3 0333
szl
k=1
3
Zxk2=1+1+1=1.533
P 5 3
X = 3X“ =—105‘§3=0.130
szz ’
k=1
xp=—2 - 92 (65

> 1.533
szz
k=1

X% = X3 =0.333=0.217

g 1.533
Y Xio
k=1
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3
Y Xis — 143412433
i 3

Xi= 3X“ giii 0.077
Y X3
k=1
X§=#=&=0692
ZXH '
Xi=5"2— Xy 43133_0231
Zst

Now the judgment matrix A is changed into a new matrix A*, in which
each column has been normalized.

0.111 0.130 0.077
=[0.556 0.652 0.692
0.333 0.217 0.231

(2) Add the all elements of each row in matrix A*

3
Wi =3 Xi=0.111+0.130+0.077=0.317

Jj=1

3
Wit = ZXE", =0.556+0.652+0.692 =1.900

Jj=1

3
Wit = z X3 =0.333+0.217+0.231=0.781

(=

(3) Normalizing the vector W*, we have

3 Wi =0317+1.900+0.781 = 2.998
=1
&
o W 03170
2.998
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k
w10,
2WrE
j=1
&
W, = 3W3 :%:ozm
s

The eigenvector of the judgment matrix A is obtained as below:
W =[W;, Wy, W3]' =[0.106, 0.634, 0.261]"
(4) Calculate the maximal eigenvalue A, of the judgment matrix

1 1/5 1/37[0.106
AW=|5 1 3 || 0.634
3 1/3 1 J{0.261

AW, =1x0.106 + % x0.634 + % % 0.261=10.320
AW, =5%0.106+1x0.634+3x0.261=1.941

AW; =3x%x0.106 + % %x0.634+1x0.261=0.785

A = i(AW)j _(AW), (AW),  (AW),
i=1 n W 3W1 3W2 3W3
0320 1.941 0785

= + + =3.036
3x0.106 3x0.634 3x0.261

285

It is noted from examples 7.4 and 7.5 that the root method and the sum

method can achieve similar results.

7.7.3.2 AHP-Based Unit Commitment According to the theory of AHP/

ANP, the following AHP/ANP model in Figure 7.2 is devised to handle ranking
of the generator units.

The hierarchical network model of units ranking consists of three

sections:

(1) The unified ranking of units

(2) The ranking criteria or performance indices, in which the Pl reflects

the relative importance of units
(3) The generating units Gy, ... , G,
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Unified Rank
Pl [¢ i/ \¥ > Plc
\ Pls

PI,

FIGURE 7.2 Hierarchical network model of units rank

The performance indices Plg, Pls, and PI, are defined as

1
Plg=——— _
¢ Fy(Py(1)) (7.79)
1
I = X0 (7.80)
I = — 7.81
* 7 BP,(1) (7.81)

The four ranking criteria Plg, PIs, Pl,, and Plc are interacted. The basic
principle of AHP/ANP is to calculate the eigenvector of the alternatives for
each criterion. For qualitative factors such as the relative importance of units
and criteria, the corresponding eigenvectors can be obtained by computing the
judgment matrix. The judgment matrix can be formed based on some scaling
method such as the 9-scaling method. For two performance indices A and B,
their relationship can be expressed as follows if the 9-scaling method is used.

If both performance indices A and B are equally important, then the scaling
factor will be “1.”

If performance index A is slightly more important compared with perfor-
mance index A B, then the scaling factor of A to B will be “3.”

If performance index A is more important than performance index B, then
the scaling factor of A to B will be “5.”

If performance index A is far more important than performance index B,
then the scaling factor of A to B will be “7.”

If performance index A is extremely important compared with performance
index B, then the scaling factor of A to B will be “9.”
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Table 7.14 Judgment matrix A-P/

A Pls Pl P, Pl
Plg 1 3 1 3
Pl 1/3 1 172 172
P, 1 172 1

Plc 1/3 2 12 1

Naturally, “2,” “4,” “6,” “8” are the median of both neighboring judgments,
respectively.

With the above 9-scaling, the judgment matrix for representing the relative
importance of four criteria is given as Table 7.14.

The ranking results of units for each time stage will be obtained from AHP/
ANP calculation. The list of unit ranking shows the priority of units to be
committed at each time stage. However, it has not considered the constraints
such as system real power balance and system spinning reserve requirement.
This chapter adopts the rule-based method to solve this problem.

AHP/ANP is used to decide total ranking of all units for each time stage,
and rule-based system decides the commitment state of units according to the
system power balance and system spinning reserve requirement. So the final
unit commitment results are obtained through the communication between
AHP/ANP ranking and rule-based constraints checking.

As mentioned above, the priority ranking of all units for each time stage
can be obtained by AHP/ANP. This priority rank considers the nontechnical
constraints and nonquantitative factors, but it does not involve the constraints
of power balance and reserve requirements in the unit commitment. Therefore,
the rule-based method is used to coordinate this problem. The implementation
steps of the rule-based unit commitment are as follows.

Step 1: Select the number 1 unit from the priority rank of units at hour .
Step 2: Check the constraints of the ramp up/down of the unit.
If the constraints are satisfied, go to step 4.

Step 3: If the constraints of the ramp up/down of the unit are not satisfied,
discard this unit at hour ¢. Select the next unit from the priority rank of
units, and go to step 2.

Step 4: Check the power balance. If system power can be balanced, go to step
5. Otherwise, add one more unit according to the priority of units, and go
to step 2.

Step 5: Check the spinning reserve at hour . If the system has enough spinning
reserve, go to the next step. Otherwise, add one more unit according to
the priority rank of units, and go to step 2.

Step 6: Stop. All units that were not selected as well as those that have been
discarded in the selection will not be committed at hour ¢. The other units
will be committed at hour ¢.
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7.7.3.2 Mathematical Demonstration of AHP 1t is noted that the AHP
method relies highly on the judgment matrix, which is formed according to
the experiences of the users using the some scaling method. It is possible that
consistency is not obtained. The higher the order of the judgment matrix, the
more serious this problem becomes. In this case, a series of problems must be
answered, as follows:

(A) Does there exist a single maximal eigenvalue of the judgment?

(B) Are all the components of the eigenvector of the judgment matrix
corresponding to the maximal eigenvalue positive?

(C) Is it necessary to check the consistency of the judgment matrix?

7.7.3.2.1 Maximal Eigenvalue and Corresponding Eigenvector of Judgment
Matrix To answer these questions, let us calculate the maximal eigenvalue
and corresponding eigenvector of the judgment matrix.

Generally, the judgment matrix A has the following characteristics:

ay=—, i#j (7.82)

where

a;: The element of the judgment matrix A
n: The dimension of the judgment matrix

Obviously, judgment matrix A is positive. Naturally, it is also a nonnegative
and irreducible matrix [31, 32].

According to Reference [33], we can prove that the judgment matrix is
primitive [31]. Therefore, judgment matrix A has a largest positive eigenvalue
Amax, Which is unique, and the eigenvector W of matrix A corresponding to
the maximal eigenvalue A, has positive components and is essentially
unique by the theorem of Perron-Frobenius and the properties of the judg-
ment matrix [31].

7.7.3.2.2 Consistency of Judgment Matrix We first give the definition of
the consistency matrix.

.. . . . . . a; .
Definition: We say matrix A = [a;] is consistent if there exist a; = =k for all i,
jand k. Qj

If a positive matrix A is consistent, it has the following properties:
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(a) a; = L (7.83)

aj =1/ i,j=12,...,n

(b) The transposition of A is also consistent.

(c) Each row in A can be obtained by multiplying any row by a positive
number.

(d) The maximal eigenvalue of A is An.x = n. The other eigenvalues of A
are all zero.

(e) If the eigenvector of A corresponding to the largest eigenvalue Apy,y is
X =[X1, X, ... X,]",

a,]=%; i,j=1,2,...,n (7'84)

J

Now, we discuss the case that the elements of the positive consistent matrix
are perturbed but still satisfy property (a). Obviously, the judgment matrix,
which we presented in this section, is such a case.

Suppose the eigenvector of the judgment matrix A corresponding to the
maximal eigenvalue Ay, is W= [W;, W,, ..., W,]". Let

aij:(Wi)X&j; i,j=12,...,n (7.85)
where
g; =1,
e - 1 (7.86)

When g; = 1 for all i and j, equation (7.85) is converted into equation (7.84).
In this case, the judgment matrix is consistent. When g; =1 (i #j,i,j = 1,2,...,
n), judgment matrix A is regarded as a perturbed matrix based on the
consistency.

According to property (d) of the consistent positive matrix and n eigenva-
lues of the judgment matrix, A; (=Amax), Az, .-, Ay, WE can obtain

Nhi=n, i=12,...,n (7.87)

We define the following equation as a matrix, which reflects that the judgment
matrix deviates from the consistent matrix:

“:_(ﬁ)zk"’ i=1,2,....n (7.88)
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From equation (7.87), we get
W= A =10 (7.89)
n—1
In fact, we can obtain the following theorem.

Theorem I: If the positive eigenvector of the judgment matrix A

corresponding to the largest eigenvalue W = [W, W,, ... , W,]", a; = (%j X €,
j
g; > 0, we have

1 1
n= —1+( ) {si- +—} (7.90)
n(n—1) 1%2" ey
Proof: According to Perron-Frobenius’ theorem, we obtain
W,
Amax = D @5 —’) iLj=12,..., 7.91
; J(W J n ( )
Anax — 1= a; (%) i,j=12,...,n (7.92)

J#

then

W, W,
7\‘max_ = ij _])+ ji — 793
o= 3 Ja Gt o 57 759

Consequently, we get

—7 1 w. W,
— max = —1 =+ i —]) + i — 794
h== n(n—lh%i"’(w “J(W-ﬂ (759

J

Substitute a; = (%jxs,j into equation (7.94), completing the proof of
i
Theorem 1.
We know from Theorem I that the smallest extremum of p is zero under

the condition of ¢; = 1 for all 7 and j.

Theorem 2: Let Ay, be the maximal eigenvalue of the judgment matrix A.
Then

Amax =1 (7.95)
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Let
gij = 1 + 6,]
S (7.96)
Then
w W,

Thus 9, can be regarded as the relative change of the consistency matrix
disturbed.
From equation (7.94), we have

1 52
“_(n(n_l)jlsgj‘slq[l"'sii} (7'98)

According to equations (7.89) and (7.98), we can obtain Theorem 2.
When § =maxd
ij

ijs

A <~ 3 52 <7DO 1)62 (7.99)

N gicjzn

From equations (7.95) and (7.99), we have

(n—-1)8?

N Aoy SH+ (7.100)

Therefore, in order to make the judgment matrix nearly consistent, we always
hope that p is near to zero, or Ay, is near n. Generally, the smaller J; is,
the nearer A, is to n. This is why we check the consistency of the judgment
matrix when we apply the analytic hierarchy process to power system
problems.

Example 7.6

The proposed approach is examined with the IEEE 39-bus test system,
which is taken from Reference [7]. The test system has 10 generators, i.e.,
G30, G31, G32, G33, G34, G35, G36, G37, G38, and G39. The daily load
demands are given in Table 7.15. The generating unit data are given in Table
7.16. Table 7.17 shows the bid price of generation power over a set of time
periods.

The calculation results of unit commitment are listed in Tables 7.18 and
7.19. Table 7.18 is the unit commitment schedule obtained from AHP/ANP
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Table 7.15 Daily load demands in MW

Hour Pp R Hour Py Rs Hour Py Rs
1 4878 244 9 6341 317 17 6524 326
2 5061 253 10 6585 329 18 6585 329
3 5183 259 11 6707 335 19 6402 320
4 5486 274 12 6768 338 20 6219 311
5 5610 281 13 6707 335 21 5792 290
6 5792 290 14 6646 332 22 5486 274
7 5853 293 15 6585 329 23 5183 259
8 6079 503 16 6463 323 24 4939 247
Table 7.16 Generating unit data

Unit No. a; b; G Piax Pinin Fsi(1)
30 0.834 2.50 0.00 500.0 0.00 800
31 0.650 0.00 0.00 999.0 0.00 900
32 0.834 0.00 0.00 700.0 0.00 850
33 0.824 0.00 0.00 700.0 0.00 850
34 0.814 0.00 0.00 700.0 0.00 850
35 0.804 0.00 0.00 700.0 0.00 850
36 0.830 0.00 0.00 700.0 0.00 850
37 0.800 0.00 0.00 700.0 0.00 850
38 0.650 0.00 0.00 900.0 0.00 870
39 0.600 0.00 0.00 1200.0 0.00 920

Table 7.17 Bid price of generation power over a set of time periods in dollars per MW

per hour

Unit 0-3 4-6 7-9 10-12 13-15 16-18 19-21 22-24
30 40 42 38 45 42 36 38 44
31 26 29 32 28 26 30 32 28
32 30 32 33 30 34 36 33 36
33 32 34 32 36 34 32 36 38
34 42 38 37 34 36 38 40 45
35 31 33 35 32 34 36 35 37
36 29 31 34 37 35 39 41 43
37 35 37 39 35 37 40 37 39
38 33 35 37 39 41 37 42 45
39 24 26 28 28 30 32 30 28

and the rule-based method. It has not considered the voltage security and
transmission security constraints. The corresponding power flow solution
also violates voltage limits and transmission security limits.

From Table 7.18, we find that power flows at hours 1, 2, 4, 5, 8, 22,
and 24 are infeasible. Table 7.19 is the final unit commitment schedule with
OPF corrections. It satisfies the voltage security and transmission security
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Table 7.18 Unit commitment without transmission
security and voltage constraints

Unit No. Hour (0-24)

30 000000000000000000000000
31 1111111111111 11111111111
32 ootttr1rrr11r1r1r1r111111111
33 t1t1111r1r1111111111111111
34 000000011111111111111000
35 1111111111111 11111111111
36 111111111111111111100000
37 000000101111111111111110
38 1111111111111 11111111111
39 t11111r11111111111111111

Table 7.19 Unit commitment with transmission security
and voltage constraints

Unit No. Hour (0-24)

30 000000000000000000000000
31 1111111111111 11111111111
32 1111111111111 11111111111
33 111111111111 111111111111
34 000000011111111111111000
35 t11111111111111111111111
36 111111111111111111100100
37 0ooo011101111111111111111
38 1111111111111 11111111111
39 1111111111111 11111111111

constraints. The total generation cost for unit commitment schedule in Table
7.19 is $11, 391.00. If the commitment states of units are taken as the input
of OPF, the total optimal generation cost will be reduced to $11 159.60.
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OPTIMAL POWER FLOW

This chapter selects several classic optimal power flow algorithms and gives
the implementation details. These algorithms include traditional methods such
as Newton method, gradient method, linear programming as well as latest
methods such as modified interior point method, analytic hierarchy process,
and particle swarm optimization method.

8.1 INTRODUCTION

The optimal power flow (OPF) was first introduced by Carpentier in 1962 [1].
The goal of OPF is to find the optimal settings of a given power system
network that optimize the system objective functions such as total generation
cost, system loss, bus voltage deviation, emission of generating units, number
of control actions, and load shedding while satisfying its power flow equations,
system security, and equipment operating limits. Different control variables,
some of which are generators’ real power outputs and voltages, transformer
tap changing settings, phase shifters, switched capacitors, and reactors, are
manipulated to achieve an optimal network setting based on the problem
formulation.

According to the selected objective functions, and constraints, there are
different mathematical formulations for the OPF problem. They can be
broadly classified as follows [1-65]:
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(1) Linear problem in which objectives and constraints are given in linear

forms with continuous control variables

(2) Nonlinear problem where either objectives or constraints or both com-

bined are nonlinear with continuous control variables

(3) Mixed-integer linear problems when control variables are both discrete

and continuous

Various techniques were developed to solve the OPF problem. The algo-
rithms may be classified into three groups: (1) conventional optimization
methods, (2) intelligence search methods, and (3) nonquantity approach to

address uncertainties in objectives and constraints.

8.2 NEWTON METHOD

8.2.1 Neglect Line Security Constraints

If the line security constraints are neglected, the optimal power flow problem

with real and reactive power variables can be represented as below:

NG
min F = zfi(PGi)

i=1

such that
Pi(V7 9) = PG — Py
Qi(V,0) =0 — Op;
PGimin < PGi(V’ e) < PGimax
QGimin < QGi (V, e) < QGimax
‘/imin S ‘/z S ‘/imax
where

Pg:: The real power output of the generator connecting to bus i
Qg The reactive power output of the generator connecting to bus i
Pp,;: The real power load connecting to bus i

Op:: The reactive power load connecting to bus i

P:: The real power injection at bus i

Q;: The reactive power injection at bus i

Vi: The voltage magnitude at bus i

fi: The generator fuel cost function

(8.1)

(8.2)
(8.3)
(8.4)
(8.5)
(8.6)
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The subscripts “min” and “max” in the equations represent the lower and
upper limits of the constraint, respectively.

Equations (8.2) and (8.3) are power flow equations, and can be written as
follows:

N

P(V,0)=V,> V,(Gjcosb; + By sin6;) (8.7)
j=1
N

0,(V,0)=V; Y V(G sin®; — B; cos6;) (8.8)

j=1

Substituting equations (8.7) and (8.8) into equations (8.2)-(8.6), we get

Min F(V, 6) (8.9)
s.t.
N
Wpi = ‘/lz ‘/](GL] COSGU- + B,'/’ Slne”)— PGi + PDi = 0 (810)
j=1
N
WQi = ‘/Lz V/ (GU sin 9,] - Bt] COS 9,,)— QGi + QDi =0 (811)
j=1
N
WPMi = ‘/,2 ‘/] (Gl] COSGL-]- + B,']' Slne,] ) - PGimax < 0 (812)
j=1
N
Weni =V: ), V;(Gj cos6;; + B sin 0 ) — Pojmin > 0 (8.13)
j=1
N
Womi = Vi 2 V;(Gj sin®;; — B;; 080, ) = QGimax < 0 (8.14)
j=1
N
Woni = V; 2 V;(G; sin8;; — By c0860;;) = Qgimin = 0 (8.15)
=1
Winmi =V = Vimax <0 (8.16)
Wini =V = Vimin 20 (8.17)

We construct the new augmented objective function by introducing con-
straints (8.10)—(8.17) into the original objective function (8.9) with penalty
factors.

N N N
L(X) = F(X)+ Y mWa (X)+ Y W5 (X)+ Y Wi (X)) (8.18)

i=1 i=1 i=1
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where

X: The vector that consists of V and 6

Wy Includes all constraints related to real power variables such as equa-
tions (8.10), (8.12), and (8.13)

Wor Includes all constraints related to reactive power variables such as
equations (8.11), (8.14), and (8.15)

Wy Includes all constraints related to voltage variables such as equations
(8.16) and (8.17)

rp:: The penalty factor for violated constraints related to real power varia-
ble. If there is no constraint violation, rp; = 0.

roi The penalty factor for violated constraints related to reactive power
variable. If there is no constraint violation, rq; = 0.

rve The penalty factor for violated constraints related to voltage variable.
If there is no constraint violation, ry; = 0.

N: The total number of buses

In this way, the OPF problem represented in equations (8.1)—(8.6) becomes
an unconstrained optimization problem (8.18). It is noted that only violated
constraints are introduced in equation (8.18) since the penalty factor will be
zero if the constraint is not violated. The unconstrained optimization problem
can be solved by the Newton method or the Hessian matrix method (see
Appendix in Chapter 4).

8.2.1.1 Calculation of Hessian Matrix and Gradient From equation
(8.18) as well as equations (8.10)—(8.17), we can get the gradient and Hessian
matrix of the augmented objective function as below:

Gradient:
aL F aQ
av V,- {ZmWn v, +;rg, 3, +rV/WV/j| (8.19)
oL aF N N 20
iWhi Woi — 8.20
20, 00, {;r’ "3 _+;rQ o ae} (820)

Hessian Matrix:

L _PF 3 o’F, (9P 2’0, (90.)
T _8V2+ erl{Wm 8V,-2 (E)V,-) +22rQ,[WQ, 32 (avj) +21

i=1

(821)
PL PF 9°F 9P, 8P,}
= +22rPi P, Yoo o
Wav, avav, =T avave Ty, o,
< °Q; 00 90 | .
2 | W, — = k 8.22
! ;rg{ %vav, av,av | 7 (8:22)
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%L N { o*P.  OP, aPL}
Z Wi, +—t—t
IV,90, avaek ~ aV,90, oV, 06,

+22r{W- AY +a£a£}
< T HY90, oV, 96,

L 9*F { *P.  OP aP,}
—+ erl WP[ —t
av,.ae av 9, = aV;00, 9V, 08,

9’0, 90; 90
2N o W, L 05 906 8.24
+ ;rQ1|: Qi a‘/]ae] +a‘/] ae] ( )

2L PF L 2P (9P » 20, (aQi )2
=0 | W L +23 10| Wor .
0 o0 ;r”{ " 907 (ae,-” ;rg[ %502 "\20,) | G

PL PF PP 9P IP
28 p| W, 2L 05 08
90,00, 90,08, ;r’{ " 36,00, 98, aek}

9’0, aQ E)Q}
23 1| Wo 8.26
i ,Z;YQ[ 930,06, 96, 96, (8.26)

(8.23)

where the derivatives of the bus power injection with respect to variables V'
and 6 can be obtained from the power flow equations, that is,

TV, V?Gi+P, =]
9B _ { ViV; (Gjsin®;; — Bj cos;) i #j (8.28)
26, ~V?B, -0, i=j '
e M e (829)
! an —VizBu' -0 i=]
20, _ {_V,-Vj (Gjj cos0; + By sin®;) i# (8.30)
26, ~V?G;+P, i=j '
azf;_{ 0 i#j (8.31)
l% 2G; i=j .
p 0 i#jizk
oV, E)Yi/ =1 GjcosH; + B; sin; i=k (8.32)
jj#-k “ |Gy cosBy + By sinby i=]
0P, V.V;(Gjsin®; — B; cos®;) i#j
,« ={ (G S8y =By i) tE] (8.33)
aV;00; -ViBi =0 1=]
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0 izjizk
o°P, . ,
—av ae = ‘/, (—G,] Sin 9,7 + B[j COS 9,,) 1= k
ka ‘ Vi (Gy sin®;, — By cos 0 ) i=j

aZP,' _ {‘/l‘/](_Gz] COS@,-j - Bij sin eij) i # ]

aefz ‘/izGii - B i= ]
2p 0 i#j,i#k
i = w‘/j(G,/ COSG,‘]' + Bij Sin e”) l = k
00,00, .
j;k ViVi (G cosOy + By sin0y, ) i=j
30, { 0 i#j
a‘/iz - -2B; i=]
52 0 i#j,i#k
ﬁ = G,] Sin 61] - B,] COS 9,] l = k
ji¢k , Gik sin Gik — Bik COS Gik = ]
V. 2’0, {V,-V,«(—G,,« cosO; —B;sin®;) i#j
" 9V,00, ~ViG+ P, i=j
P 0 i#j,i#k
j;k “ ol (Gix cos 0 + By, sin 0y, ) i=j
9%0; _ {—V,-V,-(G,-j sin®; — B; cosB;) i#]
aeiz —Visz‘i -0 i=j
20 0 i#j,i+k

jk ViVi(Gy sin®y — By, cos0;) i=j

(8.34)

(8.35)

(8.36)

(8.37)

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)

8.2.1.2 Computation of Search Direction The formula of the search

direction of the Newton method or the Hessian matrix method is

§*=—[H(X")]" g(x*)
where

g: The gradient of the augmented function
H: The Hessian matrix of the augmented function
S: The search direction

(8.43)
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The advantage of the Hessian matrix method is fast convergence. The dis-
advantage is that it requires computation of the inverse of the Hessian matrix,
which leads to an expensive memory and calculation burden. Thus we rewrite
equation (8.43) as below.

H(X*)Sk=-g(X") (8.44)

For a given gradient and Hessian matrix of the objective function at the X*,
the search direction $* can be obtained by solving equation (8.44) with the
Gauss elimination method. Since the Hessian matrix of the augmented func-
tion is a sparse matrix in the OPF problem, the sparsity programming tech-
nique can be used.

The iteration calculation based on the search direction is as follows:

X = X* 4+ BSk (8.45)
where P is a scalar step length.
The iteration calculation will be stopped if the following convergence con-
dition is satisfied:
||Xk+1 _ Xk " < € (846)

or

LX) = L(XF))
LX)

<eg, (8.47)
where €, €, are the permitted tolerances.

8.2.1.3 Steps of the Newton method The calculation steps of the Newton
method are summarized as below.

(1) Given the initial values for the penalty factors
(2) Given the permitted calculation tolerances

(3) Solve the initial power flow to get the values of the state variables X°,
and set the iteration number k = 0.

(4) Compute the augmented objective function L(X*) and its gradient g*
and Hessian matrix H*.

(5) Compute the search direction S* according to equation (8.43).
(6) Compute the step length B, using quadratic interpolation.
(7) Compute the new state variable X**! according to equation (8.45).

(8) Compute the augmented objective function L(X*"') and its gradient

£"! and Hessian matrix H*"!, and check the convergence conditions. If
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either equation (8.46) or (8.47) is met, go to next step. Otherwise, set
k =k + 1, go back to step (5).

(9) Check whether all constraints are met. If yes, stop the calculation.
Otherwise, double the penalty factor for the violated constraint, and
reset k = 0. Go back to step (4).

8.2.2 Consider Line Security Constraints

The line power constraints can be expressed as
l)lmin < B < Bmax (848)

Where P, is the power flow at the line / from bus j to bus &.
Similarly, the above constraint can be written as

WPMZ Bmax < 0 (849)
WPNI lem 20 (850)

We use Wy to express the above line power constraints and introduce it
into the augmented objective function (8.18). The new objective function will
be

NI
LX) = LX)+ Y. Wi (X) (8.51)

=1

where

rp: The penalty factor for violated line security constraints. If there is no
line power flow constraint violation, rp; = 0.

NI: The total number of lines

Since the augmented objective function includes a new penalty term on line
power flow violation, the gradient and Hessian matrix equations (8.19)—(8.26)
will be updated to add the corresponding term, that is,

oL

W av er,Wp, (8.52)
=1

oL* _ L 3

%, 26, ZrHWP, (8.53)
=1

aZL* 82 NI aZB (aPZ j2i|
—+2) | W 8.54
I = ”{ "oz oy, (8:54)
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CL L +2§, w. OB 0P oF
VoV, avav, &7 7T"avave oV, oV,

IL* _ IL +2§r [W 9’P, +aB aP,}
V.00, ove, =T av.e, oV, 06,

PL S8, [y, 20,90 00]
Ve, ovoe, =" ""av.ae, oV, 9,

azL* az NI 82P/ (E)P, )2
—+2 W,
02 00 ,2;”’{ 7362 "\ 96,

PLx PL +§r {W 9P 0B 0P
00,00, 00,00, H”’ 90,00,
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(8.55)

(8.56)

(8.57)

(8.58)

—} j#k  (859)

Letting the branch admittance of line / be gy + jby, and neglecting the line

charging, the line power flow can be expressed as

P=Py =V g~ V;Vi(gu cosO +bj sinB)

(8.60)

The derivatives of the line power with respect to variables V and 6 in equa-

tions (8.52)—(8.59) can be obtained from equation (8.60).

P, .
a—‘; =gy (2V; = Vi cos0; )— bV, sin®;
]
P, .
E?Vl —8uV;cos0, —byV;sin®
k
% = g]k‘/]Vk Sinejk —b]kV]Vk COSij
J
P, .
g?l = —gjijVk Slnejk +b]-ijVk Cosejk
k
0P, _
avy EK
0*P, _
oV}
0*P, .
=—gjx cos0 — Dby sinb;
a‘//avk Jjk Jjk jk Jk
9P,

——— =g, V,sin0,; —b;,; V, cos0;
aV,-an 8k Vi jk —Djx Vi jk

(8.61)

(8.62)

(8.63)

(8.64)

(8.65)

(8.66)

(8.67)

(8.68)
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P, .
aV ale = gjk‘//' Slne/’k _bik‘//' COSG,-k (869)
kEYj
0P, .
aV ale = _gjka Slne/‘k - bjka COSG,—k (870)
799
2
83 S)Ie :_gik‘/j Sinejk +b,—k‘//' Cose]‘k (871)
k k
o*P 9P .
EZI = aezl = gjk‘/jvk COSGI-k + b/-kV/-Vk Slnejk (872)
j k
J*P, .
ae ae = _gjk‘/jvk cosG,—k _b/'k‘/ij Sin e/’k (873)
799

The same calculation steps given in the previous section can be used when
line power flow constraints are considered.

Example 8.1

The test example is a 5-bus system, which is taken from reference [17]. The
data of generators are shown in Table 8.1. The generator fuel cost is a quad-
ratic function, that is, f; = a;P% + b, Ps; +c; . The other data and parameters
are shown in Figure 8.1, where the p.u. is used. Table 8.2 shows the initial
power flow results with the initial system cost of 4518.04. The OPF results
solved by the Newton method are shown in Table 8.3. The system minimum
cost is 4236.5.

Table 8.1 Data of generators for 5-bus system

Unlt NO- Ci bi a; PGimin PG[max QG[max QG[max
1 44.4 351 50 2.0 3.5 1.5 2.5
2 40.0 389 50 4.0 55 1.0 2.0
Table 8.2 Initial power flow results for 5-bus system

Bus No. P; 0O, Vi 0,

1 2.5794 2.2993 1.05 0

2 5.0 1.8130 1.05 21.84
3 -1.6 -0.8 0.8621 —4.38
4 -2.0 -1.0 1.0779 17.85
5 -3.7 -1.3 1.0364 —4.28
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Sps=2.0+j1.0 Sps =3.7+j1.3
j : 1.05:1  j0.03
2 j0.015 1:1.05 T_H 0.08+0.3 5T_‘ J
—__ @O
|
-j2.0 -j4.0
0.04+j0.25 0.1+j0.35
3
) Sp; =1.6+j0.8
-j4.0 I
FIGURE 8.1 A 5-bus system
Table 8.3 OPF results by Newton method for 5-bus system
Bus No. Pi Qi 1/1 ei ‘/imax ‘/imin
1 3.4351 2.0707 1.0999 0 1.1 0.9
2 3.9997 1.2000 1.0634 8.67 1.1 0.9
3 -1.6 -0.8 0.9324 -10.96 1.1 0.9
4 2.0 -1.0 1.1003 5.59 1.1 0.9
5 -3.7 -1.3 1.1000 -5.13 1.1 0.9

8.3 GRADIENT METHOD

8.3.1 OPF Problem without Inequality Constraints

The optimal power flow problem without inequality constraints can be repre-

sented as below:
NG
min F = f,(Ps)
i=1

such that

Pi(V,e) :PGi_PDi
Qi(V, 9)= QGi _QDi



308 OPTIMAL POWER FLOW

Before we solve the above OPF problem, we first define the state variables
X as

0
} on each PQ bus
X=\V

(8.74)
60 oneach PV bus
And all specified variables Y as
_ercf 1
on reference bus
‘/rcf
Py
Y = on each PQ bus (8.75)
Ob
Fs
on each PV bus
Vs i

For the parameters in the Y vector, some are adjustable, such as generator
power output and generator bus voltage, and some are fixed, such as P and Q
at each load bus. Thus vector Y can be partitioned into a vector U of control
parameters and a vector W of fixed parameters,

Y = [le]/} (8.76)

Then power flow equations can be expressed as

F(V,0)—(Foi— Po;) } on each bus

g(X,Y)= Q:(V,0)=(Qci —Oni)
BV, 0) = (Poi = Pox)

(8.77)
on each PV bus k, not

including the reference bus

Thus the OPF problem without inequality constraints can be expressed as
Min f(X,U) (8.78)
S.t.
g(X,U,W)=0 (8.79)
The unconstrained Lagrange function for the OPF problem is obtained.

LX,U, W)= f(X,U)+A"g(X,U, W) (8.80)
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or
NG
L(X» U’ W) = Z ﬁ(PGi)+ fref [Pref (V, e)]
;;:Jef
Pi (V, e) - Rnet
Qi (V, e) - Qinc
+[7\'1’7\'13'-'77\'m] t (881)
Pk(V7 e)_ Pknet
where
Pt = Poi — Py,
Oinet = Oci — Opi

The number of Lagrange multipliers is m since there are m power flow equa-
tions. According to the necessary conditions for a minimum, we get

oL of [agT
Y= ox Tax Tlax) M0 (8.82)
oL of [agT
Vij=——=—t || A=0 8.83
UToU T au LU (8.83)
VLk:g—i:g(X,U,W):O (8.84)

Since the objective function itself is not a function of the state variable except
for the reference bus, the derivatives of the objective function with respect to
the state variables become

I afrcf (Rcf ) aRcf i
aR’ef E)el

Of | Ofiet (Pret) OPres (8.85)
oX 0P IV,

The s—i in equation (8.82) is the Jacobian matrix for the Newton power

flow, which was discussed in Chapter 2. That is,
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[oP JP 9P oA ]
%0, v, 90, v,
901 001 9O IO
30, v, 08, oV,

%_lop o (5:56)
20, dJV,
20, 90,

00, dV;

Equation (8.83) is the gradient of the Lagrange function with respect to the

d
control variables, in which the vector —f is a vector of derivatives of the

U
objective function with respect to the control variables.
[fi(P)]
0P,
9 _|P) (8:87)
oU oP,

The other term in equation (8.83), g—f], consists of a matrix of all zeros with

some —1 terms on the diagonals, which correspond to equations in g(X, U, W)
where a control variables is present.
The solution steps of the gradient method of OPF are as follows [2, 13].

(1) Given a set of fixed parameters W, assume a starting set of control
variables U.

(2) Solve a power flow. This makes sure that equation (8.84) is satisfied.
(3) Solve equation (8.82) for A:

x=_[(;_;ﬂ‘;_; 559)

(4) Substitute A into equation (8.83), and compute the gradient of the
Lagrange function with respect to the control variables.

oro -2 ]2 22T (2] 2)

222 %
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The gradient will give the direction of maximum increase in the cost
function as a function of the adjustments in each of the control vari-
ables. Since the objective is minimization of cost function, it needs to
move in the negative direction of the gradient.

(5) If IVLyl is sufficiently small, the minimum has been reached. Otherwise,
go to next step.

(6) Find a new set of control parameters from
U =U* + AU =U* -B|VLy|

where f is the step length. Go back to step 2 with new values of control
variables.

8.3.2 Consider Inequality Constraints

8.3.2.1 Inequality Constraints on Control Parameters The inequality
constraints on control parameters such as generator bus voltage limits can be
expressed as follows.

Upin SU S U pax (8.90)
These constraints can be easily handled during the calculation of the new

control parameters in equation (8.89). If the control variable i exceeds one of
its limit, it will be set to the corresponding limit, that is,

Uimaxa lf Ulk +AU[ > U[max
U]-k+1 = Uimin, lf U,k +AU[ < Uimax (891)
Uf +AU,, otherwise

of

At the minimum the components 30 of VL will be

B_f: 0, if Ujnin <U; > U,pmax

aU;

I <o itu,=U,,. (8.92)
aU;

20, i Uy=Upy

U,

The Kuhn-Tucker theorem proves that the conditions of equation
(8.92) are necessary for a minimum, provided the functions involved are
convex.
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8.3.2.2 Functional Inequality Constraints The upper and lower limits
on the state variables such as bus voltages on PQ buses can also be functional
inequality constraints, which can be expressed as

h(X,U)<0 (8.93)

Compared with the inequality constraints on control variables, the functional
inequality constraints are difficult to handle; the method can become very time
consuming or practically impossible at some situations. Basically, a new direc-
tion, different from the negative gradient, must be found when confronting a
functional inequality constraint. The method often used is the penalty method,
in which the objective function is augmented by penalties for functional con-
straint violations. This forces the solution back sufficiently close to the con-
straint. The reasons that the penalty method is selected are as below.

(1) Generally, the functional constraints are seldom rigid limits in the strict
mathematical sense but are, rather, soft limits. For example, V < 1.0 on
a PQ bus means V should not exceed 1.0 by too much, and V = 1.01
may still be permissible. The penalty method produces just such soft
limits.

(2) The penalty method adds very little to the algorithm, as it simply

amounts to adding terms to ;—;{, and also to of if the functional

constraint is also a function of U.

(3) It produces feasible power flow solutions, with the penalties signaling
the trouble spots, where poorly chosen rigid limits would exclude
solutions.

Example 8.2

The test example is a 5-bus system, which was shown in Figure 8.1 in
Example 8.1. The data and parameters of the system are the same as
Example 8.1. The OPF results solved by the gradient method are shown in
Table 8.4. The system minimum cost is 4235.7

Table 8.4 OPF results by gradient method for 5-bus system

Bus No. P; O Vi 9; Vimax Vimin
1 3.4351 2.0359 1.0938 0 1.1 0.9
2 3.9987 1.2487 1.0650 8.53 1.1 0.9
3 -1.6 -0.8 0.9300 —-11.10 1.1 0.9
4 -2.0 -1.0 1.1014 5.45 1.1 0.9
5 -3.7 -1.3 1.0944 -5.18 1.1 0.9
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8.4 LINEAR PROGRAMMING OPF

The early LP-based OPF method was limited to network constrained eco-
nomic power dispatch, which we introduced in Chapter 5. The earliest versions
used the fixed constraint approximations, based on the purely DC power flow.
Later on, incremental formulations were introduced, whereby constraint lin-
earization is iterated with AC power flow, to model and enforce the con-
straints exactly [18]. The advantages of the LP based OPF are:

(1) Reliability of the optimization
(2) Ability to recognize problem infeasibility quickly, so that appropriate
strategies can be put into effect

(3) The range of operating limits can be easily accommodated and handled,
including contingency constraints

(4) Convergence to engineering accuracy is rapid, and also accepted when
the changes in the controls have become very small.

The large-scale application of LP-based methods has traditionally been
limited to network constrained real and reactive dispatch calculations whose
objectives are separable, comprising the sum of convex cost curves. The accu-
racy of calculation may be lost if the oversimplified approximation is adopted
in LP-based OPF. The piecewise linear segmentation of the generator fuel
cost curve should be good for avoiding this problem. The piecewise approach
can fit an arbitrary curve convexly to any desired accuracy with a sufficient
number of segments. Originally, a separable LP variable had to be used for
each segment, with the resulting large problems with multisegments cost curve
modeling were prohibitively time and storage consuming. The difficulty was
alleviated considerably by a separable programming procedure that uses a
single variable per cost curve, regardless of the number of the segments.
However, the number of segments still affects the solution speed and preci-
sion. If the segment sizes are large, the following issues may be appeared.

(1) Even a very small change in an OPF problem can cause some optimized
controls to jump to adjacent segment breakpoints.

(2) Discrete jumps between segment breakpoints occasionally produce
solution oscillations when iterating with AC power flow.

The technique of successive segment refinement can be used to overcome the
above problems. The idea is that the nonlinear cost curves are approximated
with relatively large segments at the beginning. Then, at each subsequent
iteration, each cost curve is modeled with a smaller segment size, until the
final degree of refinement has been reached.

For LP-based OPF, in addition to the linearization of the objective
function, the constraints also need to be linearized. Generally, the linearized



314 OPTIMAL POWER FLOW

power flow equations are used in LP-based OPF either based on a linear
sensitivity matrix or the fast decoupled power flow model. The latter can be
written as

[B’]AO = AP (8.94)
[B”]AV = AQ (8.95)

These provide accurate enforcement of the network constraints in the real or
reactive subproblems through the iterative process. The real power subprob-
lem in OPF based on equation (8.94) is restricted to the “real power” con-
straints that are strong functions of angle “0,” and the reactive power
subproblem in OPF based on equation (8.95) is restricted to the “reactive
power” constraints that are strong functions of the magnitude of voltage “V.”
Tests on a large power system have demonstrated that successive constrained
P and Q subproblems for OPF are effective in achieving practical overall
optimization. If only a real power subproblem is considered in OPF, it becomes
the security-constrained economic power dispatch, which was introduced in
Chapter 5.

For inequality constraints in LP-based OPF, the sensitivity approach is used
to express each selected constraint in terms of the control variables. Let U, X,
and P be the control, state variables, and bus power injections, respectively.
Y is the constraint whose sensitivities are to be computed. The incremental
relationships between these variables are:

AY = CAX + DAU (8.96)
AP =[B]AU (8.97)
AX =[A]' AP (8.98)

From the above equations, we get the following sensitivity vector:

AY -
AL C[A] [B]IAU+D (8.99)
The row vectors C and D are usually extremely sparse, and are specific to the
particular constraint Y. The power flow Jacobian matrix [A] and matrix [B]
are constant throughout the OPF iteration. The main work in calculating
the sensitivity vector from equation (8.99) is the repeat solution C[A]™ using
fast-forward substitution.

After the above handlings on OPF objective function and constraints, the
linear OPF model can be constructed and, consequently, solved by linear
programming algorithm.
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8.5 MODIFIED INTERIOR POINT OPF
8.5.1 Introduction

Optimal power flow (OPF) calculations determine optimal control variables
and system quantities for efficient power system planning and operation. OPF
has now become a useful tool in power system operation as well as in planning.
Over the years, different objective functions have emerged, and the con-
straints and size of systems to be solved have increased. An efficient OPF tool
is required to solve both the operations problem and the planning problem.
The operational OPF problem, considering a time duration from one-half
hour to a day, consists of many objective functions such as economic dispatch
and loss minimization. For VAR planning, the time duration can be up to 5
years. VAR planning can also consider the operational cost of losses, thus
forming a hybrid planning/operation problem.

An OPF package must handle large, interconnected power systems. In
some instances, the area to be optimized needs to be identified and the type
of optimization needs to be established before optimization. Generally the
available OPF packages do not determine the type of problem, recommend
the type of objective, or identify the area to be optimized. Also, in most OPF
packages, the model is predetermined and cannot be modified by the user
without access to the source code [27]. An OPF package that allows the user
to pick certain constraints from a specified list is useful for adapting the
package to the user’s needs.

To implement the above requirements, a more versatile OPF package is
necessary. Obviously, the conventional OPF algorithms are limited and too
slow for this purpose. The increasing burden being imposed on the optimiza-
tion is handled by rapidly advancing computer technology as well as through
the development of more efficient algorithms exploiting the sparse nature of
the power system structure. The interior point (IP) method is one of the most
efficient algorithms, as evidenced by the list of references [27-45]. The IP
method classification is a relatively new optimization approach that was
applied to solve power system optimization problems in the late 1980s and
early 1990s. This method is essentially a linear programming method, and, as
expected, linear programming problems dominate the IP classification. When
compared with other well-known linear programming techniques, IP methods
maintain their accuracy while achieving great advantages in speed of conver-
gence of as much as 12:1 in some cases. However, the IP methods, in general,
suffer from bad initial, termination, and optimality criteria and, in most cases,
are unable to solve nonlinear and quadratic objective functions. The extended
quadratic interior point (EQIP) method described here can handle quadratic
objective functions subject to linear and nonlinear constraints.

The optimization technique used in this section is an improved quadratic
interior point (IQIP) method. The IQIP method features a general starting
point (rather than a good point as in the former EQIP as well as general IP
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methods) and is even faster than the EQIP optimization scheme. Consequently,
the OPF approach described in this section offers great improvements in
speed, accuracy, and convergence in solving multiobjective and multi-
constraint optimization problems. It is also capable of solving the global opti-
mization of an interconnected system and a partitioned system for local
optimization. The scheduled generation, transformer taps, bus voltages, and
reactors are used to achieve a feasible and optimized power flow solution.

8.5.2 OPF Formulation

8.5.2.1 Objective Functions Three objective functions are considered.
They are fuel cost minimization, VAR planning, and loss minimization.

(1) Fuel cost minimization

) NG )
Min Fg = 'Zl(aini +bPy, +cl-) (8.100)
1=
(2) VAR planning
Nc . Nr .
: _ tot exist tot exist
Min Fg = ,zlsci(qci 4 )_ .leri(qri 4y )+S(1)PL (8.101)
1= 1=

(3) Loss minimization

min P} = F(Pgslack) (8.102)
where

P,: The real power generation at generator i

P, : The system real power loss

P The real power of slack generator

S The cost of unit capacitive VAR

S.: The cost of unit inductive VAR

q. The capacitive VAR support

q.: The inductive VAR support

I: The contingency case, / = 0, means the intact case or base case

Sy The coupling coefficient between the VAR and loss portions in the
VAR planning objective function

8.5.2.2 Constraints The linear and nonlinear constraints that include
voltage, flows, real generation, reactive sources and transformer taps are con-
sidered as follows:
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min < P < P ie NG (8.103)
N ND
Y Pi=Y Pu+P. (8.104)
i k=1
Pgi - Pdi —Fi(V, 9, T) =0 (8.105)
i=1,2, ... ,Nyus, I # Slack
0, —0u—-G;(V,6,T)=0 (8.106)

i=12,... , Nypus, I # Slack
V2+VE=2V,V,cos(6,-6;)

()<0 1=0,1,2,....., Nl (8.107)

Z(1y’ Lo
Oumin < Oy < Qymax» i€ NG (8.108)
0< g™ <gdi . ie VARsites (8.109)
0< g <qss | ie VAR sites (8.110)
g —q™ 20, ieVARsites (8.111)
gt —qo* >0, ie VAR sites (8.112)
Vigmin € Ve < Vmans i€ NG (8.113)
Vdimin = Vdi < Vdimax- 1€ ND (8.114)
Tin TS Timaxs (€ NT (8.115)
Poack = Faaa (V,0,T) (8.116)

where

Py The real power load at load bus k

Qg The reactive power load at load bus i
V. The voltage magnitude at generator bus i
V4 The voltage magnitude at load bus i

Q,: The VAR generation of generator i

Z,: The impedance of transmission line L

I} ma: The maximal current limit through transmission line L
T: The transformer tap position

6: The bus voltage angle

P, : The system real power loss

NG: The set of generation buses

NT: The set of transformer branches

ND: The set of load buses
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Ny The set of total network buses

¢,: The angle of phase shifter transformer i

NMo: The adjustment numbers of the phase shifter

NI: The set of the outage line (/ = 0 means no line outage)

The subscripts “min” and “max” stand for the lower and upper bounds of
a constraint, respectively.

We can pick certain constraints from equations (8.103)—(8.116) according
to the particular needs of the practical system. Generally, the constraints in
equations (8.103)—(8.108) and (8.113)—(8.115) are considered for economic
dispatch. The constraints in equations (8.104)—(8.116) are considered for VAR
planning. For loss minimization, the constraints in equations (8. 104)—(8.108)
and (8.113)—(8.116) are considered.

8.5.3 IP OPF Algorithms

8.5.3.1 General Interior Point Algorithm The OPF problem can be
expressed as general form as below:

Min f(x) (8.117)
s.t.
d(x)=0 (8.118)
x>0

There are several primal-dual interior point (IP) methods. Here we introduce
the logarithmic barrier function-based IP method. For the above problem, the
logarithmic barrier function is given by

b(x,w) = f(x, 1) —uY Ind;(x) -y Inx, (8.119)
j=1 i=1
where
W A positive parameter

m: The number of constraints
n: The number of variables

The barrier gradient and Hessian are
Vb(x,n)=g—-uB" D' —(uX'1) (8.120)

V2b(x,u) = V2 f — zdﬂvzd,. +UB"D2B+pX " (8.121)

j=1 i
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where
I: A column vector of ones

D: Diagonal matrix diag{d(x)}
X: Diagonal matrix diag{x}
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The solution to the above problem can be obtained via a sequence of solu-

tions to the unconstrained subproblem.
Minimize b(x, 1)
According to KT conditions, we have

Vb(x, 1) =0
V2b(x,u)=0 is positive definite
}E‘% (x,)=x*

[ *

Iim— =57}
u—=0 x. /
JH

: u *
lim =z
n=0dj(xy) !

where s¥ and zj are the Lagrange multipliers. The points (x,) define a

(8.122)

(8.123)
(8.124)

(8.125)

barrier

trajectory, or a local central path for equation (8.125). If we introduce the

slack variable
vo=d(x,), v,20
and define

Z=uD(x,) " I, 2,20
su=uX ', 5,20

then the central path is equivalent to

8u—Biz,—5,=0
dy—v,=0
V=Y 2 Vi +Bi V' Z, B, + X 'S, = 0
j=1

(8.126)

(8.127)
(8.128)

(8.129)
(8.130)

(8.131)
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Vizu=wd, v,,2,20 (8.132)
Xysy=md, x,,5,20 (8.133)
The above nonlinear equations can be expressed as below, which hold at (x,,
Vis Zys S
-g+BTz-5
d-v ~0 (8.134)

Vz—ul
Sx—ul

Applying Newton’s method to the above, we obtain

-W B'[Ax As —-BTz-
MM e
B 0 |LAz —-Av v—d

and
VAz+ZAv=pul-Zv (8.136)
SAx+ XAs =l — Xs (8.137)

The solution of the above linear systems can be obtained as follows.
First, compute As and Av.

Av=—v—ZVAz+uZ'I (8.138)
As=—-s— X'SAx+pX~'1 (8.139)

Then substitute the above two equations into equation (8.135) to get the
augmented system

-D BT [Ax —BTz—uX1
I el ] BT
B Z'V]|lAz wzr-d
where
D =W+X"'S (8.141)

Solving the above equation, we get Az as below:

Az =-V'ZBAx+ V' (ul - Zd) (8.142)
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The solution Ax can be obtained by solving the following normal system:

-KAx=h (8.143)

where
K=D,+B'V'ZB (8.144)
h=g-B"z+B"V(Zd—-ul)-puX"'I (8.145)

8.5.3.1.1 Calculation of the Step Length It should be noted that if started
far from a solution (or start point is not good), the primal-dual IP methods
may fail to converge to a solution [31-39]. For this reason, primal-dual
methods usually use a merit function in order to induce convergence. There
are, however, problems associated with the merit function, particularly with
the choice of the penalty parameter [66]. The filter technique [42] may be used
to handle convergence issue.

There are two competing aims in the primal-dual solution of equation
(8.117). The first aim is to minimize the objective, and the second is the satis-
faction of the constraints. These two conflicting aims can be written as

Min f(x) (8.146)

s.t.
Min 8 = (d —v)° (8.147)

A merit function usually combines equations (8.146) and (8.147) into a single
objective. Instead, we see equations (8.146) and (8.147) as two separate objec-
tives, similar to multiobjective optimization. However, the situation here is
different since it is essential to find a point where d = v if possible. In this
sense, the second objective has priority. Nevertheless, we will make use of the
principle of domination from multiobjective programming in order to intro-
duce the concept of the filter.

Definition 1 [66]: A pair (f*, 8") is said to dominate another pair (f7, &’) if and
only if f* < f and &* < &/.

In the context of the primal-dual method, this implies that the kth iterate
is at least as good as the jth iterate with respect to equations (8.146) and
(8.147). Next, we define the filter which will be used in the line search to accept
or reject a step.

Definition 2 [66]: A filter is a list of pairs (f/, 8') such that no pair dominates
any other. A point (f*, §%) is said to be accepted for inclusion in the filter if it
is not dominated by any point in the filter.
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The filter therefore accepts any point that either improves optimality or
infeasibility.

In most primal-dual methods, the separate step lengths are used for the
primal and dual variables [67]. A standard ratio test is used to ensure that
nonnegative variables remain nonnegative

op = min{o, o, } (8.148)
op=min{o,, o} (8.149)

where

oc]:min{l, O.9995><min{ D it Amj<0}}

Ao, (8.150)

0W=x,V2,5

The step lengths in the above are successively halved until the following
iteration becomes acceptable to the filter:

X' =x+0pAx (8.151)
vV =v+opAv (8.152)
7' =z+0pAz (8.153)
s’ =s+0pAs (8.154)

8.5.3.1.2 Selection of the Barrier Parameter Another important issue in
the primal-dual method is the choice of the barrier parameter. Many methods
are based on approximate complementarity where the centering parameter is
fixed a priori [68]. Mehrotra [69] suggested a scheme for linear programming
in which the barrier parameter is estimated dynamically during the iteration.
The heuristic originally proposed in may be used. First, the Newton equations
system is solved with the barrier u set to zero. The direction obtained in this
case (Ax% Av% Az®% As) is called the affine-scaling direction. The barrier
parameter is estimated dynamically from the estimated reduction in the com-
plementarity gap along the affine-scaling direction

_( g* )Z(ZTv+sTx) 8155
H= Zv+sTx m+n (8.153)

where
g% = (z+0BAZ%)" (VoA )+ (s+oBAsY) (x+ogAX®)  (8.156)

The step lengths in the affine-scaling direction are obtained by using equa-
tions (8.155) and (8.156). To avoid numerical instability, the above equation
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is used to compute @ when the absolute complementarity gap z'v + s'x > 1.
But if z'v + s"x < 1, we use following equation to compute y, that is,

1 2 T + T
u=( ) (Z vEs xj (8.157)
m+n m+n

8.5.3.2 The Improved Quadratic Interior Point Method The OPF model
discussed in this section is a nonlinear mathematical programming problem.
It can be reduced by an elimination procedure. The reduction of the OPF
model is based on the linearized load flow around base load flow solution for
small perturbation. The reduced OPF model can be expressed as

min F = %XTQX +G'X+C (8.158)
such that
AX =B (8.159)
X>0

Equation (8.158) is a scalar objective function, which corresponds to the objec-
tive functions of OPF. Equation (8.159) corresponds to constraints (8.103)-
(8.116) with linearization handling. X in (8.158) and (8.159) is a vector of
controllable variables, which is defined as X =[V,", T, PX]" in economic dis-
patch,or X =[V,;,T", 4!, q/, PLT]T in VAR planning, or X =[V,,T7, PLT]T in
loss minimization.

The model (8.158)—(8.159) has a quadratic objective function subject to the
linear constraints that satisfy the basic requirements of quadratic interior point
(QIP) scheme. The barrier-like IP methods discussed in the previous section
and the enhanced projection method used in quadratic interior point have the
enough speed and accuracy to solve optimal power flow problems such as
economic dispatch, loss minimization, and VAR optimization. However, the
effectiveness of these IP methods depends on a good starting point [27]. The
improved quadratic interior point (IQIP) is presented in this section. It fea-
tures the general starting point (rather than a good point) and faster conver-
gence. The calculation steps of IQIP are as follows.

S1 Given a starting point X7,
S2 X, = AX,

S3 A= B - AX,

S4 Amax := max|Ail

S5 if Amax < g, go to S10. Otherwise, go to next step.
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6 U=|[A(AA)"|A

S7 R :=min{Ui}

S8 if R+120,X;:=X; x(1+ U),go to S3. Otherwise, go to next step.
S9 OB :=-1/R, X, := X, * (1 + OB * U), go to S3.

S10 D, := diag[xy, x3, ..., X,]

S11 By := AD,

s12  dp*:=| B{(B.Bl)" B.-1|D,[OX"+G]
S13 B, ::—l,y< 0; B; := 10°, ¥ > 0 where y = min[dp} |
Y

S14 AT
B, := M if W>0;8,:=10°if W <0 where W = (D,dp")"Q(Ddp*)
w

S15  X*':= X* + a(BDydp"), where B = min[B,, B,]; 0(<0) is a variable step.
Set k := k + 1, and go to S11. End when dp* < m, where k is the iteration
counter.

The partitioning scheme and optimization modules are adopted here. The
partitioning scheme provides the objective function and the optimizable area.
The optimization module selects the default constraints for the selected objec-
tive unless otherwise specified. The user can add or remove constraints from
the default constraint set equations (8.103)—(8.116). The optimization is carried
out with the improved quadratic interior point (IQIP) method described
above. The nonlinear constraints are handled via successive linearization in
conjunction with an area power flow.

IQIP handles the initial value of the state variables before the optimization
so that it can solve the bad initial conditions encountered in other interior
point methods. Consequently, IQIP has a faster convergence speed than other
IP methods. IQIP achieves an optimum in the linearized space while the power
flow adjusts for the approximation caused by the linearization. The check of
the power flow mismatch should be performed in the optimization area first.
In this way, the optimization calculation accuracy will be increased. This
ensures local optimization with all violations removed. Then the check of the
power flow mismatch will be performed in the whole system including the
external areas, which adjusts the changes in the boundary injections caused
by the local optimization. The overall scheme ensures a local optimum, with
no violation in the optimized area, while satisfying a global power flow. The
local optimum will be the global optimum if there is only one area in the
system.

If the region formed by the constraints is very narrow, the solution may be
declared infeasible. Three options are available for infeasibility handling.
They are:
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(1) The bounds option, which allows the program to widen the bounds on
violating soft constraints. The new limits or a percent increase/decrease
from the current limits can be prespecified by the user for all objective
functions.

(2) VAR option I, which allows the program to add new VAR sites at
buses with big contributions to improving system performance (only
for VAR optimization).

(3) VAR option II, which allows the program to add new VAR sites at
buses with severe voltage violations (only for VAR optimization).

For economic dispatch or loss minimization, if infeasibility is detected the
bounds option is selected. The bounds on violating constraints are widened
accordingly. For VAR optimization, or planning, if infeasibility is detected
VAR option I is first selected, and the new VAR sites are added at buses with
big contributions to improve system performance such as reducing system loss
or voltage violations. If further infeasibilities occur, VAR option II is selected,
and other new VAR sites are added at buses with severe voltage violations.

8.5.3.3 Simulation Calculations The simulation examples are taken
from reference [27]. The two interior point-based OPF methods are tested on
IEEE 14-bus systems and modified IEEE 30-bus systems. One is the extended
quadratic interior point (EQIP); another is improved quadratic interior point
(IQIP). For comparison, the solution method of MINOS is also used to solve
the OPF problem with the same data and same conditions. MINOS is a
Fortran-based optimization package developed by Stanford University, which
is designed to solve large-scale optimization problems. The solution method
in the MINOS program is a reduced gradient algorithm or a projected aug-
mented Lagrange algorithm.

The data and parameters of the 14-bus system are shown in Chapter 3. The
optimization data used for simulating the IEEE 14-bus system using the three
objective functions are given in Tables 8.5-8.7.

Table 8.5 represents the generator data used for the IEEE 14-bus system.
Tables 8.6 and 8.7 represent the capacitor and inductor VAR allocation data
of the IEEE 14-bus system, respectively.

In the following calculations, optimization iteration will be stopped when
the difference of objective value AF is less than (e = 107°).

Table 8.5 Generator data for 14-bus system (p.u.)

Unit No. a b C Pgil‘nin Pgimax
1 0.0784 0.1350 0.0000 0.0000 3.0000
2 0.0834 0.2250 0.0000 0.0000 1.3000

6 0.0875 0.1850 0.0000 0.2000 2.0000




326 OPTIMAL POWER FLOW

Table 8.6 Capacitive VAR data for 14-bus system (p.u.)

VAR Site Fixed Unit Variable Unit Max. Capacitive Max. Inductive

Bus Cost Cost VAR VAR
5 2.3500 0.1500 0.8000 0.0000
9 3.4500 0.2000 0.8000 0.0000

13 3.4500 0.2000 0.8000 0.0000

Table 8.7 Inductive VAR data for 14-bus system (p.u.)
VAR Site Fixed Unit Variable Unit Max. Capacitive Max. Inductive

Bus Cost Cost VAR VAR
5 6.0000 0.2500 0.4000 0.0000
9 6.0000 0.2500 0.4000 0.0000

13 6.0000 0.2500 0.4000 0.0000

Table 8.8 Three test cases for OPF objective 1

Initial Value Case 1 Case 2 Case 3
PG1 0.0000 0.0000 0.0000
PG2 0.4000 0.3500 0.0000
PG6 0.7000 0.7000 0.7000
VG1 1.0500 1.0500 1.0500
VG2 1.0450 1.0450 1.0450
VG6 1.0500 1.0500 1.0500

8.5.3.3.1 Sample set of Results with IQIP/EQIP/MINOS Options (minimiza-
tion of the total generation cost as objective function) Three test cases are
given here for the 14-bus system for OPF with minimization of generation cost
as objective function (i.e., objective 1 in OPF model, Section 8.5.2). The initial
values of real power for the three cases are different as shown in Table 8.8.
The comparisons of results for three test cases using IQIP/EQIP/MINOS
methods are listed in Tables 8.9-8.11.

It can be observed from Tables 8.9-8.11 that the MINOS method cannot
converge for these test cases, while the other two methods evaluated the
optimization solutions. The improved IQIP method has high accuracy, fewer
iteration numbers, and fast calculation speed compared with OPF based on
the EQIP method. The maximum speed ratio between IQIP and EQIP can
reach 1:8 (see Table 8.9 and Table 8.10). If the initial starting point is good
(as in case 3), the OPF based on the EQIP method has a fast convergence
speed but the convergence speed is still slower than that of IQIP based OPFE.
Meanwhile, for the same iteration number, the objective value obtained by
IQIP is less than that by EQIP. Therefore, the improved IQIP method is
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Table 8.9 Optimization results and comparison for case 1 (p.u.)

Control Option 1QIP EQIP MINOS
PG1 1.53414 2.18319 /
PG2 0.93357 0.34326 /
PG6 0.38141 0.35392 /
VG1 1.05000 1.05000 /
VG2 1.04997 1.04683 /
VG6 1.05000 1.05000 /
T4-7 0.98454 0.97513 /
T4-9 1.01278 0.98307 /
T5-6 0.98454 0.94992 /
Total PG 2.84912 2.88037 /
Power loss 0.10912 0.14037 /
Total PG cost 0.7578562 0.8272073 /
Objective value 0.7578562 0.8272073 /

PF mismatch 0.1402E-6 0.4370E-4 /
Iteration no. 12 26 /
CPU time (s) 30.0 252.9 No convergence

Table 8.10 Optimization results and comparison for case 2 (p.u.)

Control Option 1QIP EQIP MINOS
PG1 1.65313 2.21476 /
PG2 0.84114 0.31538 /
PGo6 0.35920 0.35192 /
VG1 1.05000 1.05000 /
VG2 1.04997 1.04588 /
VGo6 1.04996 1.05000 /
T4-7 0.98208 0.97525 /
T4-9 1.01269 0.98293 /
T5-6 0.98853 0.94962 /
Total PG 2.85347 2.88206 /
Power loss 0.11347 0.14206 /
Total PG cost 0.7632329 0.8340057 /
Objective value 0.7632329 0.8340057 /

PF mismatch 0.1866E-4 0.4357E-4 /
Iteration no. 12 26 /
CPU time (s) 30.2 253.8 No convergence

superior to the EQIP method. It features a general starting point and fast
convergence.

Since the MINOS program cannot converge under specific operating condi-
tions and constraints, the other test case, the 30-bus system, is used to further
demonstrate the effectiveness of the IQIP method. The data and parameters
of the 30-bus system are taken from reference [3]. The optimization results
and comparison for IQIP/EQIP/MINOS methods are listed in Table 8.12. It
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Table 8.11 Optimization results and comparison for case 3 (p.u.)

Control Option I1QIP EQIP MINOS
PG1 1.55607 1.58973 /
PG2 0.93372 0.88235 /
PG6 0.36034 0.37895 /
VG1 1.05000 1.05000 /
VG2 1.04993 1.05000 /
VG6 1.04956 1.04987 /
T4-7 1.00047 0.99398 /
T4-9 1.00715 1.01298 /
T5-6 0.99392 0.97887 /
Total PG 2.85319 2.85100 /
Power loss 0.11319 0.11100 /
Total PG cost 0.7609503 0.7583547 /
Objective value 0.7609503 0.7583547 /
PF mismatch 0.9630E-6 0.1622E-4 /
Iteration no. 3 11 /
CPU time (s) 213 359 No convergence

Table 8.12 Optimization results and comparison for IEEE 30-bus system (p.u.)

Control Option 1QIP EQIP MINOS
PG1 0.73357 0.73921 0.75985
PG2 0.59838 0.59999 0.38772
PG5 0.61117 0.61412 0.66590
PG11 0.58787 0.57562 0.60000
PG13 0.34092 0.34321 0.40355
VG1 1.05000 1.05000 1.05000
VG2 1.04999 1.05000 1.03984
VG5 1.04998 1.05000 1.01709
VG11 1.04867 1.04915 1.05000
VG13 1.05000 1.05000 1.05000
T6-9 1.05160 1.08149 1.05461
T6-10 1.07615 1.01465 0.92151
T4-12 1.06768 1.09528 1.03377
T28-27 0.97443 0.94345 0.97217
Total PG 2.87190 2.87215 2.87120
Power loss 0.03790 0.03815 0.03720
Total PG cost 0.6575824 0.6581953 0.6572583
Objective value 0.6575824 0.6581953 0.6572583
PF mismatch 0.9447E-6 0.3988E-4 0.5734E-7
Iteration no. 7 12 9

CPU time (s) 147.0 267.4 567.9
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can be observed that the proposed IQIP method has the fastest convergence
speed, followed by the EQIP method. The MINOS method has the slowest
convergence speed.

8.5.3.3.2 Sample Set of Results with IQIP/EQIP/MINOS Options (VAR
optimal placement as objective function) The test case given here is for the
14-bus system for OPF with VAR optimal placement as objective function
(i.e., objective 2 in OPF model, Section 8.5.2). The initial voltages on load
buses are shown in Table 8.13. The optimization results and comparisons for
the IQIP/EQIP/MINOS methods are listed in Table 8.14.

Table 8.13 Initial voltages on load bus for 14-bus system (p.u.)

Bus No. Initial V V nin V max
3 0.94410 0.95000 1.05000
5 0.99220 0.95000 1.05000
7 0.94250 0.95000 1.05000
8 0.93270 0.95000 1.05000
9 0.93330 0.95000 1.05000

10 0.93910 0.95000 1.05000

13 0.98720 0.95000 1.05000

14 0.93530 0.95000 1.05000

Table 8.14 Optimization results and comparison for objective 2 (p.u.)

Control Option 1QIP EQIP MINOS
VG1 1.05000 1.05000 1.05000
VG2 1.05000 1.05000 1.04248
VG6 1.05000 1.05000 1.04430
T4-7 0.97001 0.97000 0.97000
T4-9 0.96001 0.96001 0.96000
T5-6 1.03000 1.03000 0.93000
VD3 0.98340 0.98340 0.97610
VD5 1.02600 1.02600 1.02030
VD7 1.00200 1.00200 0.99530
VD8 0.99270 0.99280 0.98600
VD9 0.98970 0.98970 0.98300
VD10 0.99130 0.99130 0.98470
VD13 1.02180 1.02180 1.01580
VD14 0.98320 0.98320 0.97670
Power loss 0.110866 0.110868 0.110459
Objective value 0.110866 0.110868 0.110459
PF mismatch 0.1596E-6 0.4634E-8 0.4225E-6
Iteration no. 4 4 8

CPU time (s) 115.9 150.4 184.4
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Table 8.15 Optimization results and comparison for loss minimization (p.u.)

Control Option 1QIP EQIP MINOS
VGl 1.05000 1.05000 1.05000
VG2 1.05000 1.05000 1.02837
VG6 1.05000 1.05000 1.03330
T4-7 0.97001 0.97001 0.97000
T4-9 0.96001 0.96001 0.96000
T5-6 1.03000 1.02999 1.03000
VD5 1.02600 1.02600 1.00930
VD9 0.98970 0.98970 0.97040
VD13 1.02180 1.02180 1.00430
Initial loss 0.1164598 0.1164598 0.1164598
Final loss 0.1108663 0.1108664 0.1118670
Objective value 0.1108663 0.1108664 0.1118670
PF mismatch 0.4132E-6 0.4634E-8 0.4339E-6
Iteration no. 3 3 8

CPU time (s) 222 27.0 70.7

It is observed from Table 8.14 that IQIP and EQIP have almost the same
optimization results, which are better than those obtained from the MINOS
method. The comparison of the results shows that three methods alleviate the
voltage violations satisfactorily. The convergence speed of the IQIP method
ranks first, followed by the EQIP method. The MINOS method ranks last.

8.5.3.3.3 Sample Set of Results with IQIP/EQIP/MINOS Options (loss
minimization as objective function) The test case given here is for the 14-bus
system for OPF with loss minimization as objective function (i.e., objective 3
in OPF model, Section 8.5.2). The optimization results and comparison for
loss minimization with IQIP/EQIP/MINOS methods are listed in Table 8.15.

From Table 8.15,IQIP and EQIP have almost the same optimization results
for loss minimization objective. In view of loss reduction, load voltage modi-
fication, and convergence speed, both IQIP and EQIP methods appear
superior to the MINOS method. Similarly, the IQIP method has the fastest
convergence speed for loss minimization.

8.6 OPF WITH PHASE SHIFTER

The problem of power system security has obtained much attention in the
deregulated power industry. To meet the load demand in a power system and
satisfy the stability and reliability criteria, either the existing transmission lines
must be utilized more efficiently or new line(s) should be added to the system.
The latter is often impractical. The reason is that building a new power trans-
mission line is in many countries a very time-consuming process and some-
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FIGURE 8.2 Phase shifter model

times an impossible task, because of environmental problems. Therefore, the
first alternative provides an economically and technically attractive solution
to power system security problem by use of some efficient controls, such as
controllable series capacitors, phase shifters, and load shedding, etc. This
chapter introduces power system security enhancement through optimal
power flow with phase shifter. The objective functions of OPF include minimum
line overloads and minimum adjustment of numbers of phase shifters. It is
noted that general OPF calculations are hourly based and the control variables
of OPF are continuous. However, the calculations of phase shifter are daily
based. The control variables associated with the phase shifter transformers are
discrete. To solve this problem, a rule-based OPF with a phase shifter scheme
can be adopted for practical system operation [25].

8.6.1 Phase Shifter Model

A phase shifter model can be represented by an equivalent circuit, which is
shown in Figure 8.2(a). It consists of an admittance in series with an ideal
transformer having a complex turns ratio k £ ¢.

The mathematical model of the phase shifter can be derived from Figure

8.2(a),i.e.,
L]_[Y/+Y, Y] v, (8.160)
ARSANRAENA 17 |
where
V.
Y= ;P-u(l_;j—f} (8.161)
k? KZ(-9))V,
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(1oL ¥
Y"_Y""Kl kquV]} 102

It can be known from equation (8.160) that the mathematical model of the
phase shifter makes the Y bus unsymmetrical. To make the Y bus symmetrical,
the phase shifter can be simulated by installing the additional injections at the
buses. The additional injections can be simplified as follows.

AP, =|V,||V;| B} cos(0; -6, )sin¢;
AP, =—|V;||V;| B} cos(6; —6;)sin¢;
AQ; =|V,||V;| B} sin(6; —6;)sin;
AQ; =|V,||V;| Bj sin(6; —6;)sin ¢;

where

I, P;: Current and real power flow at bus i

I, P;: Current and real power flow at bus j

Q: Reactive power at bus i

Q;: Reactive power at bus j

Vi £ 6;: Complex voltage at bus i

V; £ 6;: Complex voltage at bus j

k £ ¢: Complex turn ratio of the phase shifter
Y/ =G} + jBj : Series admittance of line ij

Therefore, the phase shifter model can be simulated by increasing the injec-
tions at the terminal buses as shown in Figure 8.2(b).

8.6.2 Rule-Based OPF with Phase Shifter Scheme
8.6.2.1 OPF Formulation with Phase Shifter

8.6.2.1.1 Objective Functions Because of the installation of the phase
shifter, the system will have lots of benefits such as overload release, system
loss reduction, generation cost reduction, and generation adjustment reduc-
tion. All these benefits may be selected as objective functions for OPF with
phase shifter. However, the primary purpose of installing the phase shifter is
to remove the line overload. Thus the minimal line overload is selected as the
primary objective function. In addition, since the adjustment numbers of the
phase shifter are limited in the practical system, the minimal adjustment
number of phase shifters is also selected as the objective function. Two objec-
tive functions are given as follows.



OPF WITH PHASE SHIFTER 333

(1) Minimal line overloads

) NB 2
MinFy= 3 (B ()= Pmax) (8.163)

where

F,: The overload objective function

P;(t): The overload flow on transmission line ij at time stage ¢
Pjmax: The transmission limit of line ij

NB: The set of overload lines

(2) Minimal adjustment number of phase shifters

NS
Min F,= 3 W0, (8.164)
i=1

where

Fy: The phase shifter adjustment objective function

0;: The angle of phase shifter transformer

W The priority coefficient of phase shifter transformers
NS: The set of phase shifter transformers

NG: The set of generators

8.6.2.1.2 Constraints In addition to the general linear/nonlinear con-
straints, the constraints relating to phase shifter variables such as phase
shifter angle and maximal adjustment numbers should be included in the
OPF formulation with phase shifter. The candidate constraints are as
follows:

Constraint 1: Real power flow equation
Constraint 2: Reactive power flow equation
Constraint 3: Upper and lower limits of real power output of the generators

Constraint 4: Upper and lower limits of reactive power output of the
generators

Constraint 5: Upper and lower limits of node voltages

Constraint 6: Available transfer capacity of the transmission lines
Constraint 7: Upper and lower limits of transformer taps
Constraint 8: Upper and lower limits of phase shifter taps
Constraint 9: Maximal adjustment times of phase shifters per day
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It is noted that constraints 8 and 9 are the phase shifter constraints that were
used in the rule-based search technique, and the limits of all control and state
variables are determined for the specific system under study.

The above-mentioned OPF model with phase shifter is a nonlinear
mathematical programming problem. It can be reduced by an elimination
procedure and solved by improved quadratic interior point method, which was
introduced in the previous section.

8.6.2.2 Rule-Based Scheme To determine the best location for installing
the phase shifter, sensitivity analysis is adopted. The formulation of sensitivity
analysis of objective function with respect to phase shifter variable can be
expressed as follows:
SF_¢= aPﬁo — Fo(o)_Fo(d?i) (8165)
90; |A¢: |

where

F,(0): The total line overload before phase shifter i is installed
F,(9,): The total line overload after phase shifter i is installed

In equation (8.165), the value of sensitivity S, will be greater than zero if
a power violation is reduced by the use of a phase shifter, i.e., F,((¢;) < F,(0).
Obviously, if phase shifter i is not helpful in alleviating line overload
Fy(¢;) = F,(0). In this case, we define the value of the sensitivity Sy, = 0.

In the rule-based system, the following rules are defined.

Rule 1: If the system operates in the normal state without load change, then
none of the existing phase shifters will change tap.

Rule 2: If the system load increases, or the system operates in contingency
state, then judge:
If no line overload appeared, then none of the existing phase shifters will
change tap.
If line overload occurred in system, then go to rule 3 to adjust the tap of
some phase shifters.

Rule 3: If the phase shifter leads to maximal overload reduce at time stage ¢,
then this phase shifter will be recommended at this time.

Rule 4: If phase shifters i and j lead to same overload reduce at time stage ¢,
then check the other benefits:
If phase shifter i makes less generation cost benefit than phase shifter j,
then phase shifter j will be recommended at this time.
If phase shifter i makes less system loss benefit than phase shifter j, then
phase shifter j will be recommended at this time.

Rule 5: Phase shifter I is recommended and the line overloads are still exist,
then the next priority phase shifter in the rank will be joined to remove the
violations until there is no more available phase shifter.
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Rule 6: If OPF suggests a solution, and RBS confirms that phase shifter con-
straints are met, then the problem at this time stage is solved.

Rule 7: If RBS checks OPF solution and OPF solution violates phase shifter
constraints, then freeze the corresponding tap of phase shifter.

Rule 8: If RBS checks state of phase shifters and phase shifter k has a frozen
tap, then phase shifter k will be out of service in the subsequent time stages.

A phase shifter tap will be frozen when the tap number of the phase shifter
at the time reaches its maximum. The IQIP algorithm then uses that which
was fixed or scheduled by the rule-based engine. The solution steps of the
integrated algorithm for OPF with phase shifter are as follows.

Step 1: Assume several contingencies.

Step 2: OPF calculation without phase shifter for each given contingency from
time stage ¢ (¢ = 1, first time stage).

Step 3: Judge whether OPF is solvable. If the answer is “Yes,” there is no
need to use phase shifter. If “No,” go to step 4.

Step 4: Contingency analysis through power flow calculation. Check the over-
load state of lines.

Step 5: Conduct sensitivity analysis for obtaining a list of phase shifter ranking
according to the amount of releasing the line overload for each phase
shifter. Then decide the corresponding weighting factor.

Step 6: OPF calculation with the available phase shifter.

Step 7: Use the rule-based method to check the operation limitation of the
phase shifter. Calculate the operation times, NM¢y; = NM¢; + 1, if phase
shifter i is operated in this time stage.

Step 8: If NMou(t) = NM®in.,, freeze the corresponding taps of the phase
shifter. That is, this phase shifter will be out of service in subsequent times.

Step 9: Check time stages. If ¢ = f,,.x (e.g., 24h), stop. Otherwise, t = ¢ + 1, go
to step 2.

Finally, in the search technique, the phase shifters are adjusted sequentially
and their direction of adjustments is governed by the impact on the primary
objective function of minimal line overload. The engineering rules are such
that the least number of phase shifters are adjusted at a time, provided that
they have the greatest impact in reducing the line flow overloads. The phase
shifter constraints, which are handled by the rule-based search technique, are
adjusted to produce discrete settings and in turn pass on to the IQIP module
of the algorithm.

Example 8.3

The integrated scheme of OPF with phase shifter is tested on the IEEE
30-bus system. The data and parameters of the 30-bus system are the same
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as in the previous section, and the limits of the installed phase shifters were
taken as +10° [25].

The total system load of the IEEE 30-bus system is 283.4 MW. The
corresponding load scaling factor (LSF) is 1.0. The daily load demands
of the IEEE 30-bus system are shown in Table 8.16. To determine the
degree of line violations at the line L, ;, the following performance index is
defined [25]:

B/' - l)ijmax
Pl = im
Pijmax

, ije NOL (8.166)

where

PI;: The performance index of line overloads
P;: The overload flow on transmission line
NOL: The set of overloaded lines

Through power flow analysis for each time stage, line overloads only
appeared at hours 8§, 15, 16, 17, 18, and 19, which are peak load periods. The
violation amounts of line flow for each time stage are summarized in Table
8.17.

The line overloads will become more serious if system contingency sce-
narios are considered. Therefore, OPF with phase shifter adjustment should
be employed for enhancing power system security.

For the purpose of simulation, the following line contingency scenarios are
given, that is, Lo 14, Lio-21, Lar2s, Loso7, and Lyg_z.

Table 8.18 is the summary of contingency analysis, and the total power
violations for all time stages are shown. It can be observed from Table 8.18
that the line L,y ,; outage is the most serious contingency case, where the total
line violation is 107.26 MW.

Table 8.19 gives the details of contingency calculation under the peak load
(at hour 18). The calculation results show that although the contingency ranks

Table 8.16 Daily load curve for IEEE 30-bus system
Time (hour) Load (LSF) Time Stage Load (LSF) Time Stage Load (LSF)

1 0.90 9 1.30 17 1.50
2 0.96 10 1.15 18 1.55
3 1.00 11 1.10 19 1.40
4 1.05 12 1.05 20 1.20
5 1.10 13 1.16 21 1.12
6 1.15 14 1.30 22 1.03
7 1.30 15 1.40 23 0.96
8 1.40 16 1.45 24 0.90
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Table 8.17 Total power flow violation without contingency

Time Overload Time Overload Time Overload
(hour) (MW) (hour) (MW) (hour) (MW)
1-7 0.00 15 5.12 18 13.08
8 5.12 16 6.78 19 5.12
9-14 0.00 17 9.62 20-24 0.00
Table 8.18 Summary of contingency analysis
Outage line Lo Lioa Loos Loyoy Looso
Overloaded L, L., | Y |
lines Lesg Leg Leg Lsg
Lo 10 Lon Loy Lo 1o Lo 19
Loy Lio2o Lio2o Loy Loy
Liga Ly
Overloaded T8, T15-T19 T7-9,T14-T20 T8, T15-T19 T8, T15-T19 T8, T15-T19
time stage
Total line 50.68 102.76 52.73 57.18 50.53
MW
violation
Table 8.19 Contingency analysis results at peak load time stage 18
Outage Overload Line Flow Overload Power Contingency
Line Line (MW)  Limit (MW)  Index (PI)  Violation Ranking
Lisis L. 130 0.144 33.63 4
Leg 55 0.167
Lo 65 0.042
Loy 65 0.046
| L., 130 0.144 43.38 1
Leg 55 0.176
Loy 65 0.034
Lioao 32 0.390
Ly os L. 130 0.144 31.665 5
Leg 55 0.187
Loy 65 0.021
Lioao 16 0.096
Louyr L. 130 0.139 38.53 2
Leg 55 0.135
Lo 65 0.045
Lo 65 0.063
Lo 32 0.188
Lo L., 130 0.144 33.86 3
Lesg 55 0.167
Loy 65 0.037
Loy 65 0.027
Lyrso 19 0.108
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Table 8.20 Ranking of phase shifter locations based on sensitivity analysis
(LSF = 1.55, outage line L)

Phase Phase Over- Phase
Shifter Shifter Loaded Line Flow Performance  Sensitivity Shifter
Location  Angle Lines Limit Indices Values S;  Ranking
(Ly) (deg) (L)  (MW) (PL)  (MWideg) (k)
L, +5 L 55 0.172 1.87 7
Ly 65 0.026
Lig» 32 0.382
L s +1 L 130 0.145 2.30 5
Loy 65 0.033
Lipa 32 0.383
Liss -3 Les 55 0.147 4.45 3
Loy 65 0.007
Lig» 32 0.257
Ly +1 L 130 0.125 1.99 6
Les 55 0.178
Loy 65 0.039
Liga 32 0.393
Lip +1 | P 55 0.160 15.5 1
Loy 65 0.009
Lio2o 16 0.055
Lioa 32 0.094
L6 +3 Lo 55 0.169 3.15 4
Loy 65 0.019
Lip 32 0.383
Loy ss +3 Loy 65 0.003 7.87 2
Loy oy 32 0.040

for different time stages are not totally the same, the selected worst con-
tingency case is the same, i.e., the line Ly, outage. The worst scenario
for this example is that the line L, ,; outage happens under the peak load
(at hour 18).

To determine the priority of phase shifters, the sensitivity analysis of phase
shifters is conducted under the peak load and the worst contingency case.
Simulation results show that system security will be greatly enhanced if the
phase shifter is installed at locations L1,3, L2,4, L2,6, L6—8v LI(LZZ» L15,13, L24,25,
respectively.

For the specified worst contingency, it can be seen from Table 8.20 that the
best three locations for installing phase shifter are Lig 5, L1518, Lo 25

Table 8.21 lists the results of phase shifter adjustments during the operation
period (24h) based on optimal power flow. Simulation results show that all
the line overloads are removed because of the use of the phase shifters.
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Table 8.21 Results of phase shifter adjustments

Phase Shifter Site Phase shifter angle Overload

Time (hour) (located at line L;) (degree) (MW)
1-6 None / /
7 L](J,zz +1 0.00
8 | +1 0.00
9 Ligo +1 0.00
10-13 None / /
14 Lo +1 0.00
15 Lo +1 0.00
16 | +1 0.00
17 Loy os +1 0.00
18 Lm,zz +1 0.00

Loy os +1 0.00

Lis s -2 0.00
19 Lo +1 0.00
20 Lo +1 0.00
21-24 None None /

8.7 MULTIPLE-OBJECTIVES OPF

The optimal power flow problem may have all kinds of objectives, which
create the complication in the implementation since these objectives do not
have a consistent goal to produce the optimum solution. This section intro-
duces the OPF problem that is a fully coupled active and reactive dispatch or
a combined active and reactive dispatch (CARD). The purpose of this OPF
is to achieve the overall objective of minimum generation cost and to improve
the distribution of reactive power and voltage, subject to constraints that
ensure system security. Security is defined as the maintenance of individual
circuit flows, generator real and reactive power output, and system voltages
within limits under normal system conditions and contingency cases. Five
different objective functions are considered [11]. They are minimization of
generator fuel cost, maximization of reactive power reserve margins, voltage
maximization, avoidance of voltage collapse, and improvement in the ability
of the system to maintain a higher system load level. The analytic hierarchical
process (AHP) is sued to handle these objectives during the implementation
of combined active and reactive dispatch (CARD).

8.7.1 Formulation of Combined Active and Reactive Dispatch

8.7.1.1 Objective Functions Five objective functions that are used in
combined active and reactive dispatch (CARD) are as follows [11, 12].



340 OPTIMAL POWER FLOW

8.7.1.1.1 Minimization of Generator Fuel Costs Generally, the generator
fuel cost can be expressed as a quadratic function:

z Z (a:;P} +bP;+c)T; (8.167)
JENSTEP ieNG
where

NG: The number of generators
NSTEP: The number of time steps
7 The approximate integration coefficients

Linearizing equation (8.167), we get

AF= Y Y (2a,P;+b)AP;T; (8.168)

JeNSTEP ieNG

If the generator fuel costs are modeled by linear functions relating monetary
units to energy supplied, the following expression can be used:

AF = Y Y (cAP)T; (8.169)

JENSTEP ieNG

where

T = 05711
T> = OS(E + T2)

Tnsrep = 0.5T\step, and

T, = duration of time stage j

The time factors 1; correspond to the integration of the fuel costs over the
operation period by means of the trapezoidal rule.

8.7.1.1.2 Maximization of Reactive Power Reserve Margins This objec-
tive aims to maximize the reactive power reserve margins and seeks to dis-
tribute the reserve among the generators and SVCs in proportion to ratings.
It can be expressed as

F= Y z(_?j (8.170)

JENSTEP ieNG Qi max

Linearizing the above equation, we get

AF=2 2(%j (8.171)

JENSTEP ieNG Qimax
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8.7.1.1.3 Maximization of Load Voltage This objective aims to optimize
the voltage profile by maximizing the sum of the load voltage.

AFs= Y Y AV, (8.172)

JeENSTEP ieND

where ND is the number of loads.

8.7.1.1.4 Avoidance of Voltage Collapse This objective aims to optimize
the voltage profile by maximizing the voltage collapse proximity indicator for
the whole system. It can be expressed as

AF,= ) Y Ak (8.173)

JENSTEP ke NCTG

where A; is a scalar (to be maximized) less than any bus voltage collapse
proximity indicator at time stage j, contingency k (k = 0, refer to base case).

8.7.1.1.5 Ability to Maintain Higher System Load Level This objective
aims to allow the generators to respond efficiently to system load changes by
optimizing the ability of the system to maintain a higher system load level,
while constraining generators within their reactive limits. It can be expressed
as.

AFs= Y Y Aoy (8.174)

JENSTEP ke NCTG
where o is a system load increment (to be maximized) at time stage j, con-

tingency k.
The objective function of CARD can be written as

AF = WlAE + W2AF2 + W3AF3 + W4AF4 + WSAFS (8175)

where w; is the weighting coefficient of the ith objective function. The calcula-
tion of w; is discussed later.

8.7.1.2 Constraints At each time step, the following constraints are taken
into account:

(a) Active Power Constraints

+ The active power balance equation
+ The generator active power upper and lower limits

+ The generator active power reserve upper and lower limits group import
and export constraints

+ The active power-reserve relationship constraints
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+ The system active power reserve constraint
+ The line active power flow upper and lower limits.

(b) Reactive Power Constraints

+ The reactive power balance equation

+ The generator reactive power upper and lower limits network voltage
limits

+ The transformer tap changer ranges

« Q- V characteristics of SVCs

+ The additional constraints aimed at avoiding voltage collapse
+ The additional constraints aimed at improving the ability of the system
to maintain higher system load.

(¢) Constraints That Are a Combined Function of Active and Reactive
Power

+ The generator capability chart limits (other than simple MW or MVAr
limits)

+ The branch current flow limits, modeled at midpoint of the branch.

+ The additional constraints aimed at improving the ability of the system
to maintain higher system load taking into account generator capability
chart limits.

Some of the constraints are straightforward constraints (constraints regard-

ing system variables) and others are functional constraints that are stated as
follows.

8.7.1.2.1 Group Limits Station limits and approximate network security
limits may be expressed by a number of group import and export constraints:

(z Pij ) - PDjlocal < Pexp (8176)

(Z Pi/' ) - PDjlocal 2 Pimp (8177)

Write the above equations in incremental form, that is,
2 AR/ < I)GXP - 2 BjO + PDjlocal (8178)

z APL] 2 Pimp - z [’ijo + PDjlocal (8179)

where Ppjoc is the local load demand within the group at time stage ;.
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8.7.1.2.2 Spinning Reserve Constraints The reserve available from a
generator may be modeled as a trapezoidal function of generation [11, 12].
The allocation of the corresponding independent variable AR; is then
subject to

Rimin - Rij() < AI?ij < Rimax - Ri/'() (8180)
AR;; + AP < Piax — Pjo — Ryjo (8.181)
2 AR 2 Siop — 2 Rijo (8.182)

gen gen

8.7.1.2.3 CQOperating Chart Limits for Generators The ability of generators
to absorb reactive power is generally limited by the machine minimum excita-
tion limit. A further limit is determined so as to provide an adequate margin
of safety for the machine thermal limit. A simplified generator capability chart
can be defined in which the leading and lagging limits of machine reactive
output are expressed as a function of the real power output. Using a trapezoi-
dal approximation, this can be represen