
Optimization

and

Dynamical Systems

Uwe Helmke1

John B. Moore2

2nd Edition

March 1996

1. Department of Mathematics, University of Würzburg, D-97074
Würzburg, Germany.
2. Department of Systems Engineering and Cooperative Research Centre
for Robust and Adaptive Systems, Research School of Information Sci-
ences and Engineering, Australian National University, Canberra, ACT
0200, Australia.



Preface

This work is aimed at mathematics and engineering graduate students and
researchers in the areas of optimization, dynamical systems, control sys-
tems, signal processing, and linear algebra. The motivation for the results
developed here arises from advanced engineering applications and the emer-
gence of highly parallel computing machines for tackling such applications.
The problems solved are those of linear algebra and linear systems the-
ory, and include such topics as diagonalizing a symmetric matrix, singular
value decomposition, balanced realizations, linear programming, sensitivity
minimization, and eigenvalue assignment by feedback control.

The tools are those, not only of linear algebra and systems theory, but
also of differential geometry. The problems are solved via dynamical sys-
tems implementation, either in continuous time or discrete time , which
is ideally suited to distributed parallel processing. The problems tackled
are indirectly or directly concerned with dynamical systems themselves, so
there is feedback in that dynamical systems are used to understand and
optimize dynamical systems. One key to the new research results has been
the recent discovery of rather deep existence and uniqueness results for the
solution of certain matrix least squares optimization problems in geomet-
ric invariant theory. These problems, as well as many other optimization
problems arising in linear algebra and systems theory, do not always admit
solutions which can be found by algebraic methods. Even for such problems
that do admit solutions via algebraic methods, as for example the classical
task of singular value decomposition, there is merit in viewing the task as a
certain matrix optimization problem, so as to shift the focus from algebraic
methods to geometric methods. It is in this context that gradient flows on
manifolds appear as a natural approach to achieve construction methods
that complement the existence and uniqueness results of geometric invari-
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ant theory.
There has been an attempt to bridge the disciplines of engineering and

mathematics in such a way that the work is lucid for engineers and yet
suitably rigorous for mathematicians. There is also an attempt to teach, to
provide insight, and to make connections, rather than to present the results
as a fait accompli.

The research for this work has been carried out by the authors while
visiting each other’s institutions. Some of the work has been written in
conjunction with the writing of research papers in collaboration with PhD
students Jane Perkins and Robert Mahony, and post doctoral fellow Weiy-
ong Yan. Indeed, the papers benefited from the book and vice versa, and
consequently many of the paragraphs are common to both. Uwe Helmke
has a background in global analysis with a strong interest in systems theory,
and John Moore has a background in control systems and signal processing.
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Foreword

By Roger W. Brockett

Differential equations have provided the language for expressing many of
the important ideas of automatic control. Questions involving optimiza-
tion, dynamic compensation and stability are effectively expressed in these
terms. However, as technological advances in VLSI reduce the cost of com-
puting, we are seeing a greater emphasis on control problems that involve
real-time computing. In some cases this means using a digital implemen-
tation of a conventional linear controller, but in other cases the additional
flexibility that digital implementation allows is being used to create sys-
tems that are of a completely different character. These developments have
resulted in a need for effective ways to think about systems which use both
ordinary dynamical compensation and logical rules to generate feedback
signals. Until recently the dynamic response of systems that incorporate
if-then rules, branching, etc. has not been studied in a very effective way.

From this latter point of view it is useful to know that there exist families
of ordinary differential equations whose flows are such as to generate a
sorting of the numerical values of the various components of the initial
conditions, solve a linear programming problem, etc. A few years ago, I
observed that a natural formulation of a steepest descent algorithm for
solving a least-squares matching problem leads to a differential equation
for carrying out such operations. During the course of some conversation’s
with Anthony Bloch it emerged that there is a simplified version of the
matching equations, obtained by recasting them as flows on the Lie algebra
and then restricting them to a subspace, and that this simplified version can
be used to sort lists as well. Bloch observed that the restricted equations are
identical to the Toda lattice equations in the form introduced by Hermann
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Flaschka nearly twenty years ago. In fact, one can see in Jürgen Moser’s
early paper on the solution of the Toda Lattice, a discussion of sorting
couched in the language of scattering theory and presumably one could have
developed the subject from this, rather different, starting point. The fact
that a sorting flow can be viewed as a gradient flow and that each simple
Lie algebra defines a slightly different version of this gradient flow was the
subject of a systematic analysis in a paper that involved collaboration with
Bloch and Tudor Ratiu.

The differential equations for matching referred to above are actually
formulated on a compact matrix Lie group and then rewritten in terms of
matrices that evolve in the Lie algebra associated with the group. It is only
with respect to a particular metric on a smooth submanifold of this Lie
algebra (actually the manifold of all matrices having a given set of eigen-
values) that the final equations appear to be in gradient form. However, as
equations on this manifold, the descent equations can be set up so as to
find the eigenvalues of the initial condition matrix. This then makes contact
with the subject of numerical linear algebra and a whole line of interesting
work going back at least to Rutishauser in the mid 1950s and continuing to
the present day. In this book Uwe Helmke and John Moore emphasize prob-
lems, such as computation of eigenvalues, computation of singular values,
construction of balanced realizations, etc. involving more structure than
just sorting or solving linear programming problems. This focus gives them
a natural vehicle to introduce and interpret the mathematical aspects of
the subject. A recent Harvard thesis by Steven Smith contains a detailed
discussion of the numerical performance of some algorithms evolving from
this point of view.

The circle of ideas discussed in this book have been developed in some
other directions as well. Leonid Faybusovich has taken a double bracket
equation as the starting point in a general approach to interior point meth-
ods for linear programming. Wing Wong and I have applied this type of
thinking to the assignment problem, attempting to find compact ways to
formulate a gradient flow leading to the solution. Wong has also exam-
ined similar methods for nonconvex problems and Jeffrey Kosowsky has
compared these methods with other flow methods inspired by statistical
physics. In a joint paper with Bloch we have investigated certain partial
differential equation models for sorting continuous functions, i.e. generating
the monotone equi-measurable rearrangements of functions, and Saveliev
has examined a family of partial differential equations of the double bracket
type, giving them a cosmological interpretation.

It has been interesting to see how rapidly the literature in this area has
grown. The present book comes at a good time, both because it provides
a well reasoned introduction to the basic ideas for those who are curious
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and because it provides a self-contained account of the work on balanced
realizations worked out over the last few years by the authors. Although
I would not feel comfortable attempting to identify the most promising
direction for future work, all indications are that this will continue to be a
fruitful area for research.
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CHAPTER 1

Matrix Eigenvalue
Methods

1.1 Introduction

Optimization techniques are ubiquitous in mathematics, science, engineer-
ing, and economics. Least Squares methods date back to Gauss who de-
veloped them to calculate planet orbits from astronomical measurements.
So we might ask: “What is new and of current interest in Least Squares
Optimization?” Our curiosity to investigate this question along the lines of
this work was first aroused by the conjunction of two “events”.

The first “event” was the realization by one of us that recent results from
geometric invariant theory by Kempf and Ness had important contributions
to make in systems theory, and in particular to questions concerning the
existence of unique optimum least squares balancing solutions. The second
“event” was the realization by the other author that constructive proce-
dures for such optimum solutions could be achieved by dynamical systems.
These dynamical systems are in fact ordinary matrix differential equations
(ODE’s), being also gradient flows on manifolds which are best formulated
and studied using the language of differential geometry.

Indeed, the beginnings of what might be possible had been enthusias-
tically expounded by Roger Brockett (Brockett, 1988) He showed, quite
surprisingly to us at the time, that certain problems in linear algebra could
be solved by calculus. Of course, his results had their origins in earlier work
dating back to that of Fischer (1905), Courant (1922) and von Neumann
(1937), as well as that of Rutishauser in the 1950s (1954; 1958). Also there
were parallel efforts in numerical analysis by Chu (1988). We also mention
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the influence of the ideas of Hermann (1979) on the development of applica-
tions of differential geometry in systems theory and linear algebra. Brockett
showed that the tasks of diagonalizing a matrix, linear programming, and
sorting, could all be solved by dynamical systems, and in particular by
finding the limiting solution of certain well behaved ordinary matrix dif-
ferential equations. Moreover, these construction procedures were actually
mildly disguised solutions to matrix least squares minimization problems.

Of course, we are not used to solving problems in linear algebra by cal-
culus, nor does it seem that matrix differential equations are attractive
for replacing linear algebra computer packages. So why proceed along such
lines? Here we must look at the cutting edge of current applications which
result in matrix formulations involving quite high dimensional matrices,
and the emergent computer technologies with distributed and parallel pro-
cessing such as in the connection machine, the hypercube, array processors,
systolic arrays, and artificial neural networks. For such “neural” network
architectures, the solutions of high order nonlinear matrix differential (or
difference) equations is not a formidable task, but rather a natural one. We
should not exclude the possibility that new technologies, such as charge
coupled devices, will allow N digital additions to be performed simultane-
ously rather than in N operations. This could bring about a new era of
numerical methods, perhaps permitting the dynamical systems approach
to optimization explored here to be very competitive.

The subject of this book is currently in an intensive state of develop-
ment, with inputs coming from very different directions. Starting from the
seminal work of Khachian and Karmarkar, there has been a lot of progress
in developing interior point algorithms for linear programming and nonlin-
ear programming, due to Bayer, Lagarias and Faybusovich, to mention a
few. In numerical analysis there is the work of Kostant, Symes, Deift, Chu,
Tomei and others on the Toda flow and its connection to completely inte-
grable Hamiltonian systems. This subject also has deep connections with
torus actions and symplectic geometry. Starting from the work of Brockett,
there is now an emerging theory of completely integrable gradient flows on
manifolds which is developed by Bloch, Brockett, Flaschka and Ratiu. We
also mention the work of Bloch on least squares estimation with relation
to completely integrable Hamiltonian systems. In our own work we have
tried to develop the applications of gradient flows on manifolds to systems
theory, signal processing and control theory. In the future we expect more
applications to optimal control theory. We also mention the obvious con-
nections to artificial neural networks and nonlinear approximation theory.
In all these research directions, the development is far from being complete
and a definite picture has not yet appeared.

It has not been our intention, nor have we been able to cover thoroughly
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all these recent developments. Instead, we have tried to draw the emerging
interconnections between these different lines of research and to raise the
reader’s interests in these fascinating developments. Our window on these
developments, to which we invite the reader to share, is of course our own
research of recent years.

We see then that a dynamical systems approach to optimization is rather
timely. Where better to start than with least squares optimization? The
first step for the approach we take is to formulate a cost function which
when minimized over the constraint set would give the desired result. The
next step is to formulate a Riemannian metric on the tangent space of
the constraint set, viewed as a manifold, such that a gradient flow on the
manifold can be readily implemented, and such that the flow converges
to the desired algebraic solution. We do not offer a systematic approach
for achieving any “best” selections of the metric, but rather demonstrate
the approach by examples. In the first chapters of the monograph, these
examples will be associated with fundamental and classical tasks in linear
algebra and in linear system theory, therefore representing more subtle,
rather than dramatic, advances. In the later chapters new problems, not
previously addressed by any complete theory, are tackled.

Of course, the introduction of methods from the theory of dynamical sys-
tems to optimization is well established, as in modern analysis of the clas-
sical steepest descent gradient techniques and the Newton method. More
recently, feedback control techniques are being applied to select the step
size in numerical integration algorithms. There are interesting applications
of optimization theory to dynamical systems in the now well established
field of optimal control and estimation theory. This book seeks to catalize
further interactions between optimization and dynamical systems.

We are familiar with the notion that Riccati equations are often the
dynamical systems behind many least squares optimization tasks, and en-
gineers are now comfortable with implementing Riccati equations for esti-
mation and control. Dynamical systems for other important matrix least
squares optimization tasks in linear algebra, systems theory, sensitivity
optimization, and inverse eigenvalue problems are studied here. At first en-
counter these may appear quite formidable and provoke caution. On closer
inspection, we find that these dynamical systems are actually Riccati-like
in behaviour and are often induced from linear flows. Also, it is very com-
forting that they are exponentially convergent, and converge to the set of
global optimal solutions to the various optimization tasks. It is our predic-
tion that engineers will become familiar with such equations in the decades
to come.

To us the dynamical systems arising in the various optimization tasks
studied in this book have their own intrinsic interest and appeal. Although
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we have not tried to create the whole zoo of such ordinary differential equa-
tions (ODE’s), we believe that an introductory study is useful and worthy of
such optimizing flows. At this stage it is too much to expect that each flow
be competitive with the traditional numerical methods where these apply.
However, we do expect applications in circumstances not amenable to stan-
dard numerical methods, such as in adaptive, stochastic, and time-varying
environments, and to optimization tasks as explored in the later parts of
this book. Perhaps the empirical tricks of modern numerical methods, such
as the use of the shift strategies in the QR algorithm, can accelerate our
gradient flows in discrete time so that they will be more competitive than
they are now. We already have preliminary evidence for this in our own
research not fully documented here.

In this monograph, we first study the classical methods of diagonalizing a
symmetric matrix, giving a dynamical systems interpretation to the meth-
ods. The power method, the Rayleigh quotient method, the QR algorithm,
and standard least squares algorithms which may include constraints on the
variables, are studied in turn. This work leads to the gradient flow equa-
tions on symmetric matrices proposed by Brockett involving Lie brackets.
We term these equations double bracket flows, although perhaps the term
Lie-Brockett could have some appeal. These are developed for the primal
task of diagonalizing a real symmetric matrix. Next, the related exercise of
singular value decomposition (SVD) of possibly complex nonsymmetric ma-
trices is explored by formulating the task so as to apply the double bracket
equation. Also a first principles derivation is presented. Various alternative
and related flows are investigated, such as those on the factors of the de-
compositions. A mild generalization of SVD is a matrix factorization where
the factors are balanced. Such factorizations are studied by similar gradient
flow techniques, leading into a later topic of balanced realizations. Double
bracket flows are then applied to linear programming. Recursive discrete-
time versions of these flows are proposed and rapproachement with earlier
linear algebra techniques is made.

Moving on from purely linear algebra applications for gradient flows,
we tackle balanced realizations and diagonal balancing as topics in linear
system theory. This part of the work can be viewed as a generalization of
the results for singular value decompositions.

The remaining parts of the monograph concerns certain optimization
tasks arising in signal processing and control. In particular, the emphasis
is on quadratic index minimization. For signal processing the parameter
sensitivity costs relevant for finite-word-length implementations are mini-
mized. Also constrained parameter sensitivity minimization is covered so
as to cope with scaling constraints in a digital filter design. For feedback
control, the quadratic indices are those usually used to achieve trade-offs
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between control energy and regulation or tracking performance. Quadratic
indices are also used for eigenvalue assignment.

For all these various tasks, the geometry of the constraint manifolds is
important and gradient flows on these manifolds are developed. Digres-
sions are included in the early chapters to cover such topics as Projective
Spaces, Riemannian Metrics, Gradient Flows, and Lie groups. Appendices
are included to cover the relevant basic definitions and results in linear al-
gebra, dynamical systems theory, and global analysis including aspects of
differential geometry.

1.2 Power Method for Diagonalization

In this chapter we review some of the standard tools in numerical linear
algebra for solving matrix eigenvalue problems. Our interest in such meth-
ods is not to give a concise and complete analysis of the algorithms, but
rather to demonstrate that some of these algorithms arise as discretizations
of certain continuous-time dynamical systems. This work then leads into
the more recent matrix eigenvalue methods of Chapter 2, termed double
bracket flows, which also have application to linear programming and topics
of later chapters.

There are excellent textbooks available where the following standard
methods are analyzed in detail; one choice is Golub and Van Loan (1989).

The Power Method

The power method is a particularly simple iterative procedure to determine
a dominant eigenvector of a linear operator. Its beauty lies in its simplic-
ity rather than its computational efficiency. Appendix A gives background
material in matrix results and in linear algebra.

Let A : Cn → Cn be a diagonalizable linear map with eigenvalues
λ1, . . . , λn and eigenvectors v1, . . . , vn. For simplicity let us assume that
A is nonsingular and λ1, . . . , λn satisfy |λ1| > |λ2| ≥ · · · ≥ |λn|. We then
say that λ1 is a dominant eigenvalue and v1 a dominant eigenvector . Let

‖x‖ =
( n∑
i=1

|xi|2
)1/2

(2.1)

denote the standard Euclidean norm of Cn. For any initial vector x0 of Cn

with ‖x0‖ = 1, we consider the infinite normalized Krylov-sequence (xk) of
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unit vectors of Cn defined by the discrete-time dynamical system

xk =
Axk−1

‖Axk−1‖ =
Akx0

‖Akx0‖ , k ∈ N. (2.2)

Appendix B gives some background results for dynamical systems.
Since the growth rate of the component of Akx0 corresponding to the

eigenvector v1 dominates the growth rates of the other components we
would expect that (xk) converges to the dominant eigenvector of A:

lim
k→∞

xk = λ
v1

‖v1‖ for some λ ∈ C with |λ| = 1. (2.3)

Of course, if x0 is an eigenvector of A so is xk for all k ∈ N. Therefore
we would expect (2.3) to hold only for generic initial conditions, that is
for almost all x0 ∈ Cn. This is indeed quite true; see Golub and Van Loan
(1989), Parlett and Poole (1973).

Example 2.1 Let

A =

[
1 0
0 2

]
with x0 =

1√
2

[
1
1

]
.

Then

xk =
1√

1 + 22k

[
1
2k

]
, k ≥ 1,

which converges to
[
0
1

]
for k → ∞.

Example 2.2 Let

A =

[
1 0
0 −2

]
, x0 =

1√
2

[
1
1

]
.

Then

xk =
1√

1 + 22k

[
1

(−2)k

]
, k ∈ N,

and the sequence (xk | k ∈ N) has
{[

0
1

]
,

[
0
−1

]}

as a limit set, see Figure 2.1.
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 0  1

 x0

 xk
 x �

FIGURE 2.1. Power estimates of
[
0
1

]

In both of the above examples, the power method defines a discrete-
dynamical system on the unit circle

{
(a, b) ∈ R2 | a2 + b2 = 1

}
[
ak+1

bk+1

]
=

1√
a2
k + 4b2k

[
ak

2εbk

]
(2.4)

with initial conditions a2
0 + b20 = 1, and ε = ±1. In the first case, ε = 1, all

solutions (except for those where
[
a0
b0

]
= ±[

1
0

]
) of (2.4) converge to either[

0
1

]
or to −[

0
1

]
depending on whether b0 > 0 or b0 < 0. In the second case,

ε = −1, no solution with b0 �= 0 converges; in fact the solutions oscillate
infinitely often between the vicinity of

[
0
1

]
and that of

[
0
−1

]
, approaching{[

0
1

]
,
[

0
−1

]}
closer and closer.

The dynamics of the power iterations (2.2) become particularly transpar-
ent if eigenspaces instead of eigenvectors are considered. This leads to the
interpretation of the power method as a discrete-time dynamical system on
the complex projective space; see Ammar and Martin (1986) and Parlett
and Poole (1973). We start by recalling some elementary terminology and
facts about projective spaces, see also Appendix C on differential geometry.

Digression: Projective Spaces and Grassmann Manifolds
The n-dimensional complex projective space CP

n is defined as the set of all
one-dimensional complex linear subspaces of C

n+1. Likewise, the n-dimen-
sional real projective space RP

n is the set of all one-dimensional real linear
subspaces of R

n+1. Thus, using stereographic projection, RP
1 can be de-

picted as the unit circle in R
2. In a similar way, CP

1 coincides with the
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IRIP
�

CIP
�

.�

0 1

FIGURE 2.2. Circle RP
1 and Riemann Sphere CP

1

familiar Riemann sphere C ∪ {∞} consisting of the complex plane and the
point at infinity, as illustrated in Figure 2.2.

Since any one-dimensional complex subspace of C
n+1 is generated by a unit

vector in C
n+1, and since any two unit row vectors z = (z0, . . . , zn), w =

(w0, . . . , wn) of C
n+1 generate the same complex line if and only if

(w0, . . . , wn) = (λz0, . . . , λzn)

for some λ ∈ C, |λ| = 1, one can identify CP
n with the set of equiva-

lence classes [z0 : · · · : zn] = {(λz0, . . . , λzn) | λ ∈ C, |λ| = 1} for unit vec-
tors (z0, . . . , zn) of C

n+1. Here z0, . . . , zn are called the homogeneous
coordinates for the complex line [z0 : · · · : zn]. Similarly, we denote by
[z0 : · · · : zn] the complex line which is, generated by an arbitrary nonzero
vector (z0, . . . , zn) ∈ C

n+1.

Now , let H1 (n+ 1) denote the set of all one-dimensional Hermitian pro-
jection operators on C

n+1. Thus H ∈ H1 (n+ 1) if and only if

H = H∗, H2 = H, rankH = 1. (2.5)

By the spectral theorem every H ∈ H1 (n+ 1) is of the form H = x · x∗ for
a unit column vector x = (x0, . . . , xn)′ ∈ C

n+1. The map

f : H1 (n+ 1) →CP
n

H �→Image of H = [x0 : · · · : xn]
(2.6)

is a bijection and we can therefore identify the set of rank one Hermitian
projection operators on C

n+1 with the complex projective space CP
n. This

is what we refer to as the isospectral picture of the projective space. Note
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that this parametrization of the projective space is not given as a collection
of local coordinate charts but rather as a global algebraic representation.
For our purposes such global descriptions are of more interest than the local
coordinate chart descriptions.

Similarly, the complex Grassmann manifold GrassC (k, n+ k) is defined as
the set of all k-dimensional complex linear subspaces of C

n+k. If Hk (n+ k)
denotes the set of all Hermitian projection operators H of C

n+k with rank k

H = H∗, H2 = H, rankH = k,

then again, by the spectral theorem, every H ∈ Hk (n+ k) is of the form
H = X ·X∗ for a complex (n+ k) × k-matrix X satisfying X∗X = Ik. The
map

f : Hk (n+ k) → GrassC (k, n+ k) (2.7)

defined by

f (H) = image (H) = column space of X (2.8)

is a bijection. The spaces GrassC (k, n+ k) and CP
n = GrassC (1, n+ 1) are

compact complex manifolds of (complex) dimension kn and n, respectively.
Again, we refer to this as the isospectral picture of Grassmann manifolds.

In the same way the real Grassmann manifolds GrassR (1, n+ 1) = RP
n

and GrassR (k, n+ k) are defined; i.e. GrassR (k, n+ k) is the set of all k-
dimensional real linear subspaces of R

n+k of dimension k.

Power Method as a Dynamical System

We can now describe the power method as a dynamical system on the
complex projective space CPn−1. Given a complex linear operatorA : Cn →
Cn with det A �= 0, it induces a map on the complex projective space CPn−1

denoted also by A:

A : CP
n−1 →CP

n−1,

� �→A · �, (2.9)

which maps every one-dimensional complex vector space � ⊂ Cn to the
image A ·� of � under A. The main convergence result on the power method
can now be stated as follows:

Theorem 2.3 Let A be diagonalizable with eigenvalues λ1, . . . , λn satis-
fying |λ1| > |λ2| ≥ · · · ≥ |λn|. For almost all complex lines �0 ∈ CPn−1
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the sequence
(
Ak · �0 | k ∈ N

)
of power estimates converges to the dominant

eigenspace of A:

lim
k→∞

Ak · �0 = dominant eigenspace of A.

Proof 2.4 Without loss of generality we can assume that A =
diag (λ1, . . . , λn). Let �0 ∈ CP

n−1 be any complex line of C
n, with ho-

mogeneous coordinates of the form �0 = [1 : x2 : · · · : xn]. Then

Ak · �0 =
[
λk1 : λk2x2 : · · · : λknxn

]

=

[
1 :

(
λ2

λ1

)k
x2 : · · · :

(
λn
λ1

)k
xn

]
,

which converges to the dominant eigenspace �∞ = [1 : 0 : · · · : 0], since∣∣ λi

λ1

∣∣ < 1 for i = 2, . . . , n.

An important insight into the power method is that it is closely related
to the Riccati equation. Let F ∈ Cn×n be partitioned by

F =

[
F11 F12

F21 F22

]
,

where F11, F12 are 1×1 and 1×(n− 1) matrices and F21, F22 are (n− 1)×1
and (n− 1)× (n− 1). The matrix Riccati differential equation on C(n−1)×1

is then for K ∈ C(n−1)×1:

K̇ = F21 + F22K −KF11 −KF12K, K (0) ∈ C
(n−1)×1. (2.10)

Given any solution K (t) = (K1 (t) , . . . ,Kn−1 (t))
′

of (2.10), it defines a
corresponding curve

� (t) = [1 : K1 (t) : · · · : Kn−1 (t)] ∈ CP
n−1

in the complex projective space CPn−1. Let etF denote the matrix expo-
nential of tF and let

etF : CP
n−1 →CP

n−1

� �→etF · � (2.11)

denote the associated flow on CPn−1. Then it is easy to show and in fact
well known that if

� (t) = etF · �0 (2.12)
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and � (t) = [�0 (t) : �1 (t) : · · · : �n−1 (t)], then

K (t) = (�1 (t) /�0 (t) , . . . , �n−1 (t) /�0 (t))
′

is a solution of the Riccati equation (2.10), as long as �0 (t) �= 0, and
conversely.

There is therefore a one-to-one correspondence between solutions of the
Riccati equation and curves t �→ etF · � in the complex projective space.

The above correspondence between matrix Riccati differential equations
and systems of linear differential equations is of course well known and
is the basis for explicit solution methods for the Riccati equation. In the
scalar case the idea is particularly transparent.

Example 2.5 Let x (t) be a solution of the scalar Riccati equation

ẋ = ax2 + bx+ c, a �= 0.

Set
y (t) = e

−a ∫ t
t0
x(τ)dτ

so that we have ẏ = −axy. Then a simple computation shows that y (t)
satisfies the second-order equation

ÿ = bẏ − acy.

Conversely if y (t) satisfies ÿ = αẏ+βy then x (t) = ẏ(t)
y(t) , y (t) �= 0, satisfies

the Riccati equation
ẋ = −x2 + αx+ β.

With this in mind, we can now easily relate the power method to the
Riccati equation.

Let F ∈ Cn×n be a matrix logarithm of a nonsingular matrix A

eF = A, logA = F. (2.13)

Then for any integer k ∈ N, Ak = ekF and hence
(
Ak · �0 | k ∈ N

)
=(

ekF · �0 | k ∈ N
)
. Thus the power method for A is identical with constant

time sampling of the flow t �→ � (t) = etF · �0 on CPn−1 at times t =
0, 1, 2, . . . . Thus,

Corollary 2.6 The power method for nonsingular matrices A corresponds
to an integer time sampling of the Riccati equation with F = logA.

The above results and remarks have been for an arbitrary invertible
complex n × n matrix A. In that case a logarithm F of A exists and we
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can relate the power method to the Riccati equation. If A is an invertible
Hermitian matrix, a Hermitian logarithm does not exist in general, and
matters become a bit more complex. In fact, by the identity

det eF = etrF , (2.14)

F being Hermitian implies that det eF > 0. We have the following lemma.

Lemma 2.7 Let A ∈ Cn×n be an invertible Hermitian matrix. Then there
exists a pair of commuting Hermitian matrices S, F ∈ Cn×n with S2 = I
and A = SeF . Also, A and S have the same signatures.

Proof 2.8 Without loss of generality we can assume A is a real diagonal
matrix diag (λ1, . . . , λn). Define F := diag (log |λ1| , . . . , log |λn|) and S :=
diag

(
λ1
|λ1| , . . . ,

λn

|λn|
)
. Then S2 = I and A = SeF .

Applying the lemma to the Hermitian matrix A yields

Ak =
(
SeF

)k
= SkekF =

{
ekF for k even
SekF for k odd.

(2.15)

We see that, for k even, the k-th power estimate Ak · l0 is identical with
the solution of the Riccati equation for the Hermitian logarithm F = logA
at time k. A straightforward extension of the above approach is in study-
ing power iterations to determine the dominant k-dimensional eigenspace
of A ∈ Cn×n. The natural geometric setting is that as a dynamical system
on the Grassmann manifold GrassC (k, n). This parallels our previous de-
velopment. Thus let A ∈ C

n×n denote an invertible matrix, it induces a
map on the Grassmannian GrassC (k, n) denoted also by A:

A : GrassC (k, n) →GrassC (k, n)
V �→A · V

which maps any k-dimensional complex subspace V ⊂ Cn onto its image
A · V = A (V ) under A. We have the following convergence result.

Theorem 2.9 Assume |λ1| ≥ · · · ≥ |λk| > |λk+1| ≥ · · · ≥ |λn|. For al-
most all V ∈ GrassC (k, n) the sequence (Aν · V | ν ∈ N) of power estimates
converges to the dominant k-dimensional eigenspace of A:

lim
ν→∞Aν · V = the k-dimensional dominant eigenspace of A.

Proof 2.10 Without loss of generality we can assume that A =
diag (Λ1,Λ2) with Λ1 = diag (λ1, . . . , λk), Λ2 = diag (λk+1, . . . , λn). Given
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a full rank matrix X ∈ Cn×k, let [X ] ⊂ Cn denote the k-dimensional sub-
space of Cn which is spanned by the columns of X . Thus [X ] ∈
GrassC (k, n). Let V =

[(
X1
X2

)] ∈ GrassC (k, n) satisfy the genericity con-
dition det (X1) �= 0, with X1 ∈ Ck×k, X2 ∈ C(n−k)×k. Thus

Aν · V =

[(
Λν1 ·X1

Λν2 ·X2

)]

=

[(
Ik

Λν2X2X
−1
1 Λ−ν

1

)]
.

Estimating the 2-norm of Λν2X2X
−1
1 Λ−ν

1 gives∥∥Λν2X2X
−1
1 Λ−ν

1

∥∥ ≤‖Λν2‖
∥∥Λ−ν

1

∥∥∥∥X2X
−1
1

∥∥
≤

( |λk+1|
|λk|

)ν ∥∥X2X
−1
1

∥∥

since ‖Λν2‖ = |λk+1|ν , and
∥∥Λ−ν

1

∥∥ = |λk|−ν for diagonal matrices. Thus
Λν2X2X

−1
1 Λ−ν

1 converges to the zero matrix and hence Aν · V converges to[(
Ik

0

)]
, that is to the k-dimensional dominant eigenspace of A.

Proceeding in the same way as before, we can relate the power iterations
for the k-dimensional dominant eigenspace of A to the Riccati equation
with F = logA. Briefly, let F ∈ Cn×n be partitioned as

F =

[
F11 F12

F21 F22

]

where F11, F12 are k×k and k×(n− k) matrices and F21, F22 are (n− k)×k
and (n− k) × (n− k). The matrix Riccati equation on C(n−k)×k is then
given by (2.10) with K (0) and K (t) complex (n− k) × k matrices. Any
(n− k) × k matrix solution K (t) of (2.10) defines a corresponding curve

V (t) =

[
Ik

K (t)

]
∈ GrassC (k, n+ k)

in the Grassmannian and

V (t) = etF · V (0)

holds for all t. Conversely, if V (t) = etF · V (0) with V (t) =
[(
X1(t)
X2(t)

)]
,

X1 ∈ Ck×k, X2 ∈ C(n−k)×k then K (t) = X2 (t)X−1
1 (t) is a solution of the

matrix Riccati equation, as long as detX1 (t) �= 0.
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Again the power method for finding the k-dimensional dominant eigen-
space of A corresponds to integer time sampling of the (n− k) × k matrix
Riccati equation defined for F = logA.

Problem 2.11 A differential equation ẋ = f (x) is said to have finite es-
cape time if there exists a solution x (t) for some initial condition x (t0)
such that x (t) is not defined for all t ∈ R. Prove

(a) The scalar Riccati equation ẋ = x2 has finite escape time.

(b) ẋ = ax2 + bx+ c, a �= 0, has finite escape time.

Main Points of Section

The power method for determining a dominant eigenvector of a linear non-
singular operator A : Cn → Cn has a dynamical system interpretation. It
is in fact a discrete-time dynamical system on a complex projective space
CPn−1, where the n-dimensional complex projective space CPn is the set
of all one dimensional complex linear subspaces of Cn+1.

The power method is closely related to a quadratic continuous-time ma-
trix Riccati equation associated with a matrix F satisfying eF = A. It is
in fact a constant period sampling of this equation.

Grassmann manifolds are an extension of the projective space concept
and provide the natural geometric setting for studying power iterations to
determine the dominant k-dimensional eigenspace of A.

1.3 The Rayleigh Quotient Gradient Flow

Let A ∈ R
n×n be real symmetric with eigenvalues λ1 ≥ · · · ≥ λn and

corresponding eigenvectors v1, . . . , vn. The Rayleigh quotient of A is the
smooth function rA : Rn − {0} → R defined by

rA (x) =
x′Ax

‖x‖2 . (3.1)

Let Sn−1 = {x ∈ Rn | ‖x‖ = 1} denote the unit sphere in Rn. Since
rA (tx) = rA (x) for all positive real numbers t > 0, it suffices to con-
sider the Rayleigh quotient on the sphere where ‖x‖ = 1. The following
theorem is a special case of the celebrated Courant-Fischer minimax the-
orem characterizing the eigenvalues of a real symmetric n× n matrix, see
Golub and Van Loan (1989).
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Theorem 3.1 Let λ1 and λn denote the largest and smallest eigenvalue of
a real symmetric n× n-matrix A respectively. Then

λ1 = max
‖x‖=1

rA (x) , (3.2)

λn = min
‖x‖=1

rA (x) . (3.3)

More generally, the critical points and critical values of rA are the eigen-
vectors and eigenvalues for A.

Proof 3.2 Let rA : Sn−1 → R denote the restriction of the Rayleigh quo-
tient on the (n− 1)-sphere. For any unit vector x ∈ Sn−1 the Fréchet-
derivative of rA is the linear functional DrA|x : TxSn−1 → R defined on
the tangent space TxSn−1 of Sn−1 at x as follows. The tangent space is

TxS
n−1 = {ξ ∈ R

n | x′ξ = 0} , (3.4)

and

DrA|x (ξ) = 2 〈Ax, ξ〉 = 2x′Aξ. (3.5)

Hence x is a critical point of rA if and only if DrA|x (ξ) = 0, or equivalently,

x′ξ = 0 =⇒ x′Aξ = 0,

or equivalently,
Ax = λx

for some λ ∈ R. Left multiplication by x′ implies λ = 〈Ax, x〉. Thus the
critical points and critical values of rA are the eigenvectors and eigenvalues
of A respectively. The result follows.

This proof uses concepts from calculus, see Appendix C. The approach
taken here is used to derive many subsequent results in the book. The ar-
guments used are closely related to those involving explicit use of Lagrange
multipliers, but here the use of such is implicit.

From the variational characterization of eigenvalues of A as the critical
values of the Rayleigh quotient, it seems natural to apply gradient flow
techniques in order to search for the dominant eigenvector. We now include
a digression on these techniques, see also Appendix C.

Digression: Riemannian Metrics and Gradient Flows Let M be
a smooth manifold and let TM and T ∗M denote its tangent and cotangent
bundle, respectively. Thus TM =

⋃
x∈M TxM is the set theoretic disjoint
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union of all tangent spaces TxM of M while T ∗M =
⋃

x∈M T ∗
xM denotes

the disjoint union of all cotangent spaces T ∗
xM = Hom(TxM,R) (i.e. the

dual vector spaces of TxM) of M .

A Riemannian metric on M then is a family of nondegenerate inner prod-
ucts 〈 , 〉x, defined on each tangent space TxM , such that 〈 , 〉x depends
smoothly on x ∈ M . Once a Riemannian metric is specified, M is called a
Riemannian manifold . Thus a Riemannian metric on R

n is just a smooth
map Q : R

n → R
n×n such that for each x ∈ R

n, Q (x) is a real symmet-
ric positive definite n × n matrix. In particular every nondegenerate inner
product on R

n defines a Riemannian metric on R
n (but not conversely) and

also induces by restriction a Riemannian metric on every submanifold M of
R

n. We refer to this as the induced Riemannian metric on M .

Let Φ : M → R be a smooth function defined on a manifold M and let
DΦ : M → T ∗M denote the differential, i.e. the section of the cotangent
bundle T ∗M defined by

DΦ (x) : TxM → R, ξ �→ DΦ(x) · ξ,
where DΦ (x) is the derivative of Φ at x. We also often use the notation

DΦ|x (ξ) = DΦ (x) · ξ
to denote the derivative of Φ at x. To be able to define the gradient vector
field of Φ we have to specify a Riemannian metric 〈 , 〉 on M . The gradient
grad Φ of Φ relative to this choice of a Riemannian metric on M is then
uniquely characterized by the following two properties.

(a) Tangency Condition

grad Φ (x) ∈ TxM for all x ∈M.

(b) Compatibility Condition

DΦ(x) · ξ = 〈grad Φ (x) , ξ〉 for all ξ ∈ TxM.

There exists a uniquely determined vector field grad Φ : M → TM on M
such that (a) and (b) hold. grad Φ is called the gradient vector field of Φ.

Note that the Riemannian metric enters into Condition (b) and therefore
the gradient vector field grad Φ will depend on the choice of the Riemannian
metric; changing the metric will also change the gradient.

If M = R
n is endowed with its standard Riemannian metric defined by

〈ξ, η〉 = ξ′η for ξ, η ∈ R
n

then the associated gradient vector field is just the column vector

∇Φ (x) =

(
∂Φ

∂x1
(x) , . . . ,

∂Φ

∂xn
(x)

)′
.
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If Q : R
n → R

n×n denotes a smooth map with Q (x) = Q (x)′ > 0 for all
x then the gradient vector field of Φ : R

n → R relative to the Riemannian
metric 〈 , 〉 on R

n defined by

〈ξ, η〉x := ξ′Q (x) η, ξ, η ∈ Tx (Rn) = R
n,

is

grad Φ (x) = Q (x)−1 ∇Φ(x) .

This clearly shows the dependence of grad Φ on the metric Q (x).

The following remark is useful in order to compute gradient vectors. Let
Φ : M → R be a smooth function on a Riemannian manifold and let V ⊂M
be a submanifold. If x ∈ V then grad (Φ|V ) (x) is the image of grad Φ (x)
under the orthogonal projection TxM → TxV . Thus let M be a submani-
fold of R

n which is endowed with the induced Riemannian metric from R
n

(Rn carries the Riemannian metric given by the standard Euclidean inner
product), and let Φ : R

n → R be a smooth function. Then the gradient vec-
tor grad

(
Φ|M

)
(x) of the restriction Φ : M → R is the image of ∇Φ(x) ∈ R

n

under the orthogonal projection R
n → TxM onto TxM .

Returning to the task of achieving gradient flows for the Rayleigh quo-
tient, in order to define the gradient of rA : Sn−1 → R, we first have to
specify a Riemannian metric on Sn−1, i.e. an inner product structure on
each tangent space TxSn−1 of Sn−1 as in the digression above; see also
Appendix C.

An obviously natural choice for such a Riemannian metric on Sn−1 is
that of taking the standard Euclidean inner product on TxS

n−1, i.e. the
Riemannian metric on Sn−1 induced from the imbedding Sn−1 ⊂ Rn. That
is we define for each tangent vectors ξ, η ∈ TxS

n−1

〈ξ, η〉 := 2ξ′η. (3.6)

where the constant factor 2 is inserted for convenience. The gradient ∇rA
of the Rayleigh quotient is then the uniquely determined vector field on
Sn−1 which satisfies the two conditions

(a) ∇rA (x) ∈ TxS
n−1 for all x ∈ Sn−1, (3.7)

(b) DrA|x (ξ) = 〈∇rA (x) , ξ〉
= 2∇rA (x)′ ξ for all ξ ∈ TxS

n−1.
(3.8)
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Since DrA|x (ξ) = 2x′Aξ we obtain

[∇rA (x) −Ax]′ ξ = 0 ∀ξ ∈ TxS
n−1. (3.9)

By (3.4) this is equivalent to

∇rA (x) = Ax+ λx

with λ = −x′Ax, so that x′∇rA (x) = 0 to satisfy (3.7). Thus the gradient
flow for the Rayleigh quotient on the unit sphere Sn−1 is

ẋ = (A− rA (x) In)x. (3.10)

It is easy to see directly that flow (3.10) leaves the sphere Sn−1 invariant:
d

dt
(x′x) =ẋ′x+ x′ẋ

=2x′ (A− rA (x) I)x

=2 [rA (x) − rA (x)] ‖x‖2

=0.

We now move on to study the convergence properties of the Rayleigh
quotient flow. First, recall that the exponential rate of convergence ρ > 0
of a solution x (t) of a differential equation to an equilibrium point x̄ refers
to the maximal possible α occurring in the following lemma (see Appendix
B).

Lemma 3.3 Consider the differential equation ẋ = f (x) with equilibrium
point x̄. Suppose that the linearization Df |x̄ of f has only eigenvalues with
real part less than −α, α > 0. Then there exists a neighborhood Nα of x̄
and a constant C > 0 such that

‖x (t) − x̄‖ ≤ Ce−α(t−t0) ‖x (t0) − x̄‖
for all x (t0) ∈ Nα, t ≥ t0.

In the numerical analysis literature, often convergence is measured on
a logarithmic scale so that exponential convergence here is referred to as
linear convergence.

Theorem 3.4 Let A ∈ Rn×n be symmetric with eigenvalues λ1 ≥ · · · ≥
λn. The gradient flow of the Rayleigh quotient on Sn−1 with respect to the
(induced) standard Riemannian metric is given by (3.10). The solutions
x (t) of (3.10) exist for all t ∈ R and converge to an eigenvector of A.
Suppose λ1 > λ2. For almost all initial conditions x0, ‖x0‖ = 1, x (t) con-
verges to a dominant eigenvector v1 or −v1 of A with an exponential rate
ρ = λ1 − λ2 of convergence.
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Proof 3.5 We have already shown that (3.10) is the gradient flow of rA :
Sn−1 → R. By compactness of Sn−1 the solutions of any gradient flow of
rA : Sn−1 → R exist for all t ∈ R. It is a special case of a more general result
in Duistermaat, Kolk and Varadarajan (1983) that the Rayleigh quotient
rA is a Morse-Bott function on Sn−1. Such functions are defined in the
subsequent digression on Convergence of Gradient Flows. Moreover, using
results in the same digression, the solutions of (3.10) converge to the critical
points of rA, i.e. ,by Theorem 3.1, to the eigenvectors of A. Let vi ∈ Sn−1

be an eigenvector of A with associated eigenvalue λi. The linearization of
(3.10) at vi is then readily seen to be

ξ̇ = (A− λiI) ξ, v′iξ = 0. (3.11)

Hence the eigenvalues of the linearization (3.11) are

(λ1 − λi) , . . . , (λi−1 − λi) , (λi+1 − λi) , . . . , (λn − λi) .

Thus the eigenvalues of (3.11) are all negative if and only if i = 1, and
hence only the dominant eigenvectors ±v1 of A can be attractors for (3.10).
Since the union of eigenspaces of A for the eigenvalues λ2, . . . , λn defines
a nowhere dense subset of Sn−1, every solution of (3.10) starting in the
complement of that set will converge to either v1 or to −v1. This completes
the proof.

Remark 3.6 It should be noted that what is usually referred to as the
Rayleigh quotient method is somewhat different to what is done here; see
Golub and Van Loan (1989). The Rayleigh quotient method uses the re-
cursive system of iterations

xk+1 =
(A− rA (xk) I)

−1
xk∥∥∥(A− rA (xk) I)

−1
xk

∥∥∥
to determine the dominant eigenvector at A and is thus not simply a dis-
cretization of the continuous-time Rayleigh quotient gradient flow (3.10).
The dynamics of the Rayleigh quotient iteration can be quite complicated.
See Batterson and Smilie (1989) for analytical results as well as Beattie and
Fox (1989). For related results concerning generalised eigenvalue problems,
see Auchmuty (1991). �

We now digress to study gradient flows; see also Appendices B and C.

Digression: Convergence of Gradient Flows Let M be a Rieman-
nian manifold and let Φ : M → R be a smooth function. It is an immediate
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consequence of the definition of the gradient vector field grad Φ on M that
the equilibria of the differential equation

ẋ (t) = − grad Φ (x (t)) (3.12)

are precisely the critical points of Φ : M → R. For any solution x (t) of
(3.12)

d

dt
Φ(x (t)) = 〈grad Φ (x (t)) , ẋ (t)〉

= − ‖grad Φ (x (t))‖2 ≤ 0

(3.13)

and therefore Φ (x (t)) is a monotonically decreasing function of t. The fol-
lowing standard result is often used in this book.

Proposition 3.7 Let Φ : M → R be a smooth function on a Rieman-
nian manifold with compact sublevel sets, i.e. for all c ∈ R the sublevel
set {x ∈M | Φ(x) ≤ c} is a compact subset of M . Then every solution
x (t) ∈M of the gradient flow (3.12) on M exists for all t ≥ 0. Furthermore,
x (t) converges to a connected component of the set of critical points of Φ as
t→ +∞.

Note that the condition of the proposition is automatically satisfied if M
is compact. Moreover, in suitable local coordinates of M , the linearization
of the gradient flow (3.12) around each equilibrium point is given by the
Hessian HΦ of Φ. Thus by symmetry, HΦ has only real eigenvalues. The
linearization is not necessarily given by the Hessian if grad Φ is expressed
using an arbitrary system of local coordinate charts of M . However, the
numbers of positive and negative eigenvalues of the Hessian HΦ and of the
linearization of grad Φ at an equilibriuim point are always the same. In
particular, an equilibrium point x0 ∈ M of the gradient flow (3.12) is a
locally stable attractor if the Hessian of Φ at x0 is positive definite.

It follows from Proposition 3.7 that the solutions of a gradient flow have a
particularly simple convergence behaviour. There are no periodic solutions,
strange attractors or any chaotic behaviours. Every solution converges to a
connected component of the set of equilibria points. Thus, if Φ : M → R has
only finitely many critical points, then the solutions of (3.12) will converge
to a single equilibrium point rather than to a set of equilibria. We state this
observation as Proposition 3.8.

Recall that the ω-limit set Lω (x) of a point x ∈ M for a vector field X on
M is the set of points of the form limn→∞ φtn (x), where (φt) is the flow
of X and tn → +∞. Similarly, the α-limit set Lα (x) is defined by letting
tn → −∞ instead of +∞.

Proposition 3.8 Let Φ : M → R be a smooth function on a Riemannian
manifold M with compact sublevel sets. Then
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(a) The ω-limit set Lω (x), x ∈M , of the gradient vector field grad Φ is a
nonempty, compact and connected subset of the set of critical points of
Φ : M → R.

(b) Suppose Φ : M → R has isolated critical points. Then Lω (x), x ∈
M , consists of a single critical point. Therefore every solution of the
gradient flow (3.12) converges for t→ +∞ to a critical point of Φ.

In particular, the convergence of a gradient flow to a set of equilibria rather
than to single equilibrium points occurs only in nongeneric situations. We
now focus on the generic situation. The conditions in Proposition 3.9 below
are satisfied in all cases studied in this book.

Let M be a smooth manifold and let Φ : M → R be a smooth function.
Let C (Φ) ⊂ M denote the set of all critical points of Φ. We say Φ is a
Morse-Bott function provided the following three conditions (a), (b) and (c)
are satisfied.

(a) Φ : M → R has compact sublevel sets.

(b) C (Φ) =
⋃k

j=1Nj with Nj disjoint, closed and connected submanifolds
of M such that Φ is constant on Nj , j = 1, . . . , k.

(c) ker (HΦ (x)) = TxNj , ∀x ∈ Nj , j = 1, . . . , k.

Actually, the original definition of a Morse-Bott function also includes a
global topological condition on the negative eigenspace bundle defined by
the Hessian, but this condition is not relevant to us.

Here ker (HΦ (x)) denotes the kernel of the Hessian of Φ at x, that is the
set of all tangent vectors ξ ∈ TxM where the Hessian of Φ is degenerate. Of
course, provided (b) holds, the tangent space Tx (Nj) is always contained in
ker (HΦ (x)) for all x ∈ Nj . Thus Condition (c) asserts that the Hessian of
Φ is full rank in the directions normal to Nj at x.

Proposition 3.9 Let Φ : M → R be a Morse-Bott function on a Rieman-
nian manifold M . Then the ω-limit set Lω (x), x ∈ M , for the gradient
flow (3.12) is a single critical point of Φ. Every solution of the gradient flow
(3.12) converges as t→ +∞ to an equilibrium point.

Proof 3.10 Since a detailed proof would take us a bit too far away from
our objectives here, we only give a sketch of the proof. The experienced
reader should have no difficulties in filling in the missing details.

By Proposition 3.8, the ω-limit set Lω (x) of any element x ∈M is contained
in a connected component of C (Φ). Thus Lω (x) ⊂ Nj for some 1 ≤ j ≤
k. Let a ∈ Lω (x) and, without loss of generality, Φ (Nj) = 0. Using the
hypotheses on Φ and a straightforward generalization of the Morse lemma
(see, e.g., Hirsch (1976) or Milnor (1963)), there exists an open neighborhood
Ua of a in M and a diffeomorphism f : Ua → R

n, n = dimM , such that
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FIGURE 3.1. Flow around a saddle point

(a) f (Ua ∩Nj) = R
n0 × {0}

(b) Φ ◦ f−1 (x1, x2, x3) = 1
2

(‖x2‖2 − ‖x3‖2
)
, x1 ∈ R

n0 , x2 ∈ R
n− ,

x3 ∈ R
n+ , n0 + n− + n+ = n.

With this new system of coordinates on Ua, the gradient flow (3.12) of Φ on
Ua becomes equivalent to the linear gradient flow

ẋ1 = 0, ẋ2 = −x2, ẋ3 = x3 (3.14)

of Φ ◦ f−1 on R
n, depicted in Figure 3.1. Note that the equilibrium point is

a saddle point in x2, x3 space. Let U+
a :=

{
f−1 (x1, x2, x3) | ‖x2‖ ≥ ‖x3‖

}
and U−

a =
{
f−1 (x1, x2, x3) | ‖x2‖ ≤ ‖x3‖

}
. Using the convergence prop-

erties of (3.14) it follows that every solution of (3.12) starting in U+
a −{

f−1 (x1, x2, x3) | x3 = 0
}

will enter the region U−
a . On the other hand, ev-

ery solution starting in
{
f−1 (x1, x2, x3) | x3 = 0

}
will converge to a point

f−1 (x, 0, 0) ∈ Nj , x ∈ R
n0 fixed. As Φ is strictly negative on U−

a , all so-
lutions starting in U−

a ∪ U+
a − {

f−1 (x1, x2, x3) | x3 = 0
}

will leave this set
eventually and converge to some Ni �= Nj . By repeating the analysis for Ni

and noting that all other solutions in Ua converge to a single equilibrium
point in Nj , the proof is completed.

Returning to the Rayleigh quotient flow, (3.10) gives the gradient flow
restricted to the sphere Sn−1. Actually (3.10) extends to a flow on R

n−{0}.
Is this extended flow again a gradient flow with respect to some Riemannian
metric on Rn − {0}? The answer is yes, as can be seen as follows.

A straightforward computation shows that the directional (Fréchet)
derivative of rA : Rn − {0} → R is given by

DrA|x (ξ) =
2

‖x‖2 (Ax− rA (x)x)′ ξ.
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Consider the Riemannian metric defined on each tangent space
Tx (Rn − {0}) of Rn − {0} by

〈〈ξ, η〉〉 :=
2

‖x‖2 ξ
′η.

for ξ, η ∈ Tx (Rn − {0}). The gradient of rA : Rn − {0} → R with respect
to this Riemannian metric is then characterized by

(a) grad rA (x) ∈ Tx (Rn − {0})
(b) DrA|x (ξ) = 〈〈grad rA (x) , ξ〉〉

for all ξ ∈ Tx (Rn − {0}). Note that (a) imposes no constraint on grad rA (x)
and (b) is easily seen to be equivalent to

grad rA (x) = Ax− rA (x) x

Thus (3.10) also gives the gradient of rA : Rn − {0} → R. Similarly, a
stability analysis of (3.10) on R

n − {0} can be carried out completely.
Actually, the modified flow, termed here the Oja flow

ẋ = (A− x′AxIn)x (3.15)

is defined on Rn and can also be used as a means to determine the dominant
eigenvector of A. This property is important in neural network theories
for pattern classification, see Oja (1982). The flow seems to have certain
additional attractive properties, such as being structurally stable for generic
matrices A.

Example 3.11 Again consider A =
[

1 0
0 2

]
. The phase portrait of the gra-

dient flow (3.10) is depicted in Figure 3.2. Note that the flow preserves
x′ (t)x (t) = x′0x0.

Example 3.12 The phase portrait of the Oja flow (3.15) on R2 is depicted
in Figure 3.3. Note the apparent structural stability property of the flow.

The Rayleigh quotient gradient flow (3.10) on the (n− 1) sphere Sn−1

has the following interpretation. Consider the linear differential equation
on Rn

ẋ = Ax

for an arbitrary real n× n matrix A. Then

LA (x) = Ax− (x′Ax) x
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x1

x2

x–space

x1 axis unstable

x2 axis stable

FIGURE 3.2. Phase portrait of Rayleigh quotient gradient flow

x1

x2

0

FIGURE 3.3. Phase portrait of the Oja flow
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FIGURE 3.4. Orthogonal projection of Ax

is equal to the orthogonal projection of Ax, x ∈ Sn−1, along x onto the
tangent space TxSn−1 of Sn−1 at x. See Figure 3.4.

Thus (3.10) can be thought of as the dynamics for the angular part of the
differential equation ẋ = Ax. The analysis of this angular vector field (3.10)
has proved to be important in the qualitative theory of linear stochastic
differential equations.

An important property of dynamical systems is that of structural stability
or robustness. In heuristic terms, structural stability refers to the property
that the qualitative behaviour of a dynamical system is not changed by
small perturbations in its parameters. Structural stability properties of
the Rayleigh quotient gradient flow (3.10) have been investigated by de la
Rocque Palis (1978). It is shown there that for A ∈ Rn×n symmetric, the
flow (3.10) on Sn−1 is structurally stable if and only if the eigenvalues of
A are all distinct.

Now let us consider the task of finding, for any 1 ≤ k ≤ n, the k-
dimensional subspace of R

n formed by the eigenspaces of the eigenvalues
λ1, . . . , λk. We refer to this as the dominant k-dimensional eigenspace of
A. Let

St (k, n) =
{
X ∈ R

n×k | X ′X = Ik
}

denote the Stiefel manifold of real orthogonal n× k matrices. The general-
ized Rayleigh quotient is the smooth function

RA : St (k, n) → R,
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defined by

RA (X) = tr (X ′AX) . (3.16)

Note that this function can be extended in several ways on larger subsets
of Rn×k. A näıve way of extending RA to a function on Rn×k−{0} would be
as RA (X) = tr(X ′AX)/ tr(X ′X). A more sensible choice which is studied
later is as RA (X) = tr

(
X ′AX (X ′X)−1).

The following lemma summarizes the basic geometric properties of the
Stiefel manifold, see also Mahony, Helmke and Moore (1996).

Lemma 3.13 St (k, n) is a smooth, compact manifold of dimension kn−
k (k + 1) /2. The tangent space at X ∈ St (k, n) is

TXSt (k, n) =
{
ξ ∈ R

n×k | ξ′X +X ′ξ = 0
}
. (3.17)

Proof 3.14 Consider the smooth map F : R
n×k → R

k(k+1)/2, F (X) =
X ′X− Ik, where we identified Rk(k+1)/2 with the vector space of k×k real
symmetric matrices. The derivative of F at X , X ′X = Ik, is the linear map
defined by

DF |X (ξ) = ξ′X +X ′ξ. (3.18)

Suppose there exists η ∈ Rk×k real symmetric with tr (η (ξ′X +X ′ξ)) =
2 tr (ηX ′ξ) = 0 for all ξ ∈ R

n×k. Then ηX ′ = 0 and hence η = 0. Thus
the derivative (3.18) is a surjective linear map for all X ∈ St (k, n) and the
kernel is given by (3.17). The result now follows from the fiber theorem;
see Appendix C.

The standard Euclidean inner product on the matrix space Rn×k induces
an inner product on each tangent space TXSt (k, n) by

〈ξ, η〉 := 2 tr (ξ′η) .

This defines a Riemannian metric on the Stiefel manifold St (k, n), which
is called the induced Riemannian metric.

Lemma 3.15 The normal space TXSt (k, n)⊥, that is the set of n × k
matrices η which are perpendicular to TXSt (k, n), is

TXSt (k, n)⊥ =
{
η ∈ R

n×k | tr (ξ′η) = 0 for all ξ ∈ TXSt (k, n)
}

=
{
XΛ ∈ R

n×k | Λ = Λ′ ∈ R
k×k} . (3.19)
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Proof 3.16 For any symmetric k × k matrix Λ we have

2 tr
(
(XΛ)′ ξ

)
= tr (Λ (X ′ξ + ξ′X)) = 0 for all ξ ∈ TXSt (k, n)

and therefore
{
XΛ | Λ = Λ′ ∈ R

k×k} ⊂ TXSt (k, n)⊥ .

Both TXSt (k, n)⊥ and
{
XΛ ∈ R

n×k | Λ = Λ′ ∈ R
k×k} are vector spaces of

the same dimension and thus must be equal.

The proofs of the following results are similar to those of Theorem 3.4,
although technically more complicated, and are omitted.

Theorem 3.17 Let A ∈ Rn×n be symmetric and let X = (v1, . . . , vn) ∈
Rn×n be orthogonal with X−1AX = diag (λ1, . . . , λn), λ1 ≥ · · · ≥ λn.
The generalized Rayleigh quotient RA : St (k, n) → R has at least

(
n
k

)
=

n!/ (k! (n− k)!) critical points XI = (vi1 , . . . , vik) for 1 ≤ i1 < · · · < ik ≤
n. All other critical points are of the form ΘXIΨ, where Θ, Ψ are arbitrary
n× n and k× k orthogonal matrices with Θ′AΘ = A. The critical value of
RA at XI is λi1 + · · ·+ λik . The minimum and maximum value of RA are

max
X′X=Ik

RA (X) =λ1 + · · · + λk, (3.20)

min
X′X=Ik

RA (X) =λn−k+1 + · · · + λn. (3.21)

Theorem 3.18 The gradient flow of the generalized Rayleigh quotient with
respect to the induced Riemannian metric on St (k, n) is

Ẋ = (I −XX ′)AX. (3.22)

The solutions of (3.22) exist for all t ∈ R and converge to some generalized
k-dimensional eigenbasis ΘXIΨ of A. Suppose λk > λk+1. The generalized
Rayleigh quotient RA : St (k, n) → R is a Morse-Bott function. For almost
all initial conditions X0 ∈ St (k, n), X (t) converges to a generalized k-
dimensional dominant eigenbasis and X (t) approaches the manifold of all
k-dimensional dominant eigenbasis exponentially fast.

The equalities (3.20), (3.21) are due to Fan (1949). As a simple con-
sequence of Theorem 3.17 we obtain the following eigenvalue inequalities
between the eigenvalues of symmetric matrices A, B and A+B.

Corollary 3.19 Let A,B ∈ Rn×n be symmetric matrices and let λ1 (X) ≥
· · · ≥ λn (X) denote the ordered eigenvalues of a symmetric n × n matrix
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X. Then for 1 ≤ k ≤ n:
k∑
i=1

λi (A+B) ≤
k∑
i=1

λi (A) +
k∑
i=1

λi (B) .

Proof 3.20 We have RA+B (X) = RA (X)+RB (X) for any X ∈ St (k, n)
and thus

max
X′X=Ik

RA+B (X) ≤ max
X′X=Ik

RA (X) + max
X′X=Ik

RB (X)

Thus the result follows from (3.20)

It has been shown above that the Rayleigh quotient gradient flow (3.10)
extends to a gradient flow on Rn − {0}. This also happens to be true for
the gradient flow (3.22) for the generalized Rayleigh quotient. Consider the
extended Rayleigh quotient.

RA (X) = tr
(
X ′AX (X ′X)−1

)

defined on the noncompact Stiefel manifold

ST (k, n) =
{
X ∈ R

n×k | rkX = k
}

of all full rank n × k matrices. The gradient flow of RA (X) on ST (k, n)
with respect to the Riemannian metric on ST (k, n) defined by

〈〈ξ, η〉〉 := 2 tr
(
ξ′ (X ′X)−1

η
)

on TX ST (k, n) is easily seen to be

Ẋ =
(
In −X (X ′X)−1

X ′
)
AX. (3.23)

For X ′X = Ik this coincides with (3.22). Note that every solution X (t) of
(3.23) satisfies d

dt (X ′ (t)X (t)) = 0 and hence X ′ (t)X (t) = X ′ (0)X (0)
for all t.

Instead of considering (3.23) one might also consider (3.22) with arbitrary
initial conditions X (0) ∈ ST (k, n). This leads to a more structurally stable
flow on ST (k, n) than (3.22) for which a complete phase portrait analysis
is obtained in Yan, Helmke and Moore (1993).

Remark 3.21 The flows (3.10) and (3.22) are identical with those ap-
pearing in Oja’s work on principal component analysis for neural network
applications, see Oja (1982; 1990). Oja shows that a modification of a Heb-
bian learning rule for pattern recognition problems leads naturally to a
class of nonlinear stochastic differential equations. The Rayleigh quotient
gradient flows (3.10), (3.22) are obtained using averaging techniques. �
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Remark 3.22 There is a close connection between the Rayleigh quotient
gradient flows and the Riccati equation. In fact let X (t) be a solution of
the Rayleigh flow (3.22). Partition X (t) as

X (t) =

[
X1 (t)
X2 (t)

]
,

where X1 (t) is k × k, X2 (t) is (n− k) × k and detX1 (t) �= 0. Set

K (t) = X2 (t)X1 (t)−1 .

Then
K̇ = Ẋ2X

−1
1 −X2X

−1
1 Ẋ1X

−1
1 .

A straightforward but somewhat lengthy computation (see subsequent
problem) shows that

Ẋ2X
−1
1 −X2X

−1
1 Ẋ1X

−1
1 = A21 +A22K −KA11 −KA12K,

where

A =

[
A11 A12

A21 A22

]
.

�

Problem 3.23 Show that every solution x (t) ∈ Sn−1 of the Oja flow
(3.15) has the form

x (t) =
eAtx0

‖eAtx0‖
Problem 3.24 Verify that for every solution X (t) ∈ St (k, n) of (3.22),
H (t) = X (t)X ′ (t) satisfies the double bracket equation (Here, let [A,B] =
AB −BA denote the Lie bracket)

Ḣ (t) = [H (t) , [H (t) , A]] = H2 (t)A+AH2 (t) − 2H (t)AH (t) .

Problem 3.25 Verify the computations in Remark 3.22.

Main Points of Section

The Rayleigh quotient of a symmetric matrix A ∈ Rn×n is a smooth func-
tion rA : Rn − {0} → R. Its gradient flow on the unit sphere Sn−1 in Rn,
with respect to the standard (induced) , converges to an eigenvector of A.
Moreover, the convergence is exponential. Generalized Rayleigh quotients
are defined on Stiefel manifolds and their gradient flows converge to the
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k-dimensional dominant eigenspace, being a locally stable attractor for the
flow. The notions of tangent spaces, normal spaces, as well as a precise
understanding of the geometry of the constraint set are important for the
theory of such gradient flows. There are important connections with Riccati
equations and neural network learning schemes.

1.4 The QR Algorithm

In the previous sections we deal with the questions of how to determine
a dominant eigenspace for a symmetric real n × n matrix. Given a real
symmetric n×n matrix A, the QR algorithm produces an infinite sequence
of real symmetric matrices A1, A2, . . . such that for each i the matrix Ai
has the same eigenvalues as A. Also, Ai converges to a diagonal matrix as
i approaches infinity.

The QR algorithm is described in more precise terms as follows. Let
A0 = A ∈ Rn×n be symmetric with the QR-decomposition

A0 = Θ0R0, (4.1)

where Θ0 ∈ Rn×n is orthogonal and

R0 =



∗ . . . ∗

. . .
...

0 ∗


 (4.2)

is upper triangular with nonnegative entries on the diagonal. Such a decom-
position can be obtained by applying the Gram-Schmidt orthogonalization
procedure to the columns of A0.

Define

A1 := R0Θ0 = Θ′
0A0Θ0. (4.3)

Repeating the QR factorization for A1,

A1 = Θ1R1

with Θ1 orthogonal and R1 as in (4.2). Define

A2 = R1Θ1 = Θ′
1A1Θ1 = (Θ0Θ1)

′
A0Θ0Θ1. (4.4)

Continuing with the procedure a sequence (Ai | i ∈ N) of real symmetric
matrices is obtained with QR decomposition

Ai =ΘiRi, (4.5)
Ai+1 =RiΘi = Θ′

iAiΘi, i ∈ N. (4.6)



1.4. The QR Algorithm 31

Thus for all i ∈ N

Ai =(Θ0 . . .Θi)
′ A0 (Θ0 . . .Θi) , (4.7)

and Ai has the same eigenvalues as A0. Now there is a somewhat surprising
result; under suitable genericity assumptions on A0 the sequence (Ai) al-
ways converges to a diagonal matrix, whose diagonal entries coincide with
the eigenvalues of A0. Moreover, the product Θ0 . . .Θi of orthogonal ma-
trices approximates, for i large enough, the eigenvector decomposition of
A0. This result is proved in the literature on the QR-algorithm, see Golub
and Van Loan (1989), Chapter 7, and references.

The QR algorithm for diagonalizing symmetric matrices as described
above, is not a particularly efficient method. More effective versions of the
QR algorithm are available which make use of so-called variable shift strate-
gies; see e.g. Golub and Van Loan (1989). Continuous-time analogues of the
QR algorithm have appeared in recent years. One such analogue of the QR
algorithm for tridiagonal matrices is the Toda flow, which is an integrable
Hamiltonian system. Examples of recent studies are Symes (1982), Deift,
Nanda and Tomei (1983), Nanda (1985), Chu (1984a), Watkins (1984),
Watkins and Elsner (1989). As pointed out by Watkins and Elsner, early
versions of such continuous-time methods for calculating eigenvalues of ma-
trices were already described in the early work of Rutishauser (1954; 1958).
Here we describe only one such flow which interpolates the QR algorithm.

A differential equation

Ȧ (t) = f (t, A (t)) (4.8)

defined on the vector space of real symmetric matrices A ∈ Rn×n is called
isospectral if every solution A (t) of (4.8) is of the form

A (t) = Θ (t)′A (0)Θ (t) (4.9)

with orthogonal matrices Θ (t) ∈ Rn×n, Θ (0) = In. The following simple
characterization is well-known, see the above mentioned literature.

Lemma 4.1 Let I ⊂ R be an interval and let B (t) ∈ Rn×n, t ∈ I, be a
continuous, time-varying family of skew-symmetric matrices. Then

Ȧ (t) = A (t)B (t) −B (t)A (t) (4.10)

is isospectral. Conversely, every isospectral differential equation on the vec-
tor space of real symmetric n× n matrices is of the form (4.10) with B (t)
skew-symmetric.
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Proof 4.2 Let Θ (t) denote the unique solution of

Θ̇ (t) = Θ (t)B (t) , Θ′ (0)Θ (0) = In. (4.11)

Since B (t) is skew-symmetric we have
d

dt
Θ (t)′ Θ (t) =Θ̇ (t)′ Θ (t) + Θ (t)′ Θ̇ (t)

=B (t)′ Θ (t)′ Θ (t) + Θ (t)′ Θ (t)B (t)

=Θ (t)′ Θ (t)B (t) −B (t)Θ (t)′ Θ (t) ,

(4.12)

and Θ (0)′ Θ (0) = In. By the uniqueness of the solutions of (4.12) we
have Θ (t)′ Θ (t) = In, t ∈ I, and thus Θ (t) is orthogonal. Let Â (t) =
Θ (t)′A (0)Θ (t). Then Â (0) = A (0) and

d

dt
Â (t) =Θ̇ (t)′A (0)Θ (t) + Θ (t)′A (0) Θ̇ (t)

=Â (t)B (t) −B (t) Â (t) .
(4.13)

Again, by the uniqueness of the solutions of (4.13), Â (t) = A (t), t ∈ I,
and the result follows.

In the sequel we will frequently make use of the Lie bracket notation

[A,B] = AB −BA (4.14)

for A,B ∈ Rn×n. Given an arbitrary n × n matrix A ∈ Rn×n there is a
unique decomposition

A = A− +A+ (4.15)

where A− is skew-symmetric and A+ is upper triangular. Thus for A =
(aij) ∈ Rn×n symmetric then

A− =




0 −a21 . . . −an1

a21 0
. . .

...
...

. . . . . . −an,n−1

an1 . . . an,n−1 0



,

A+ =




a11 2a21 . . . 2an1

0 a22
. . .

...
...

. . . . . . 2an,n−1

0 . . . 0 ann



.

(4.16)
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For any positive definite real symmetric n × n matrix A there exists a
unique real symmetric logarithm of A

B = log (A)

with eB = A. The restriction to positive definite matrices avoids any possi-
ble ambiguities in defining the logarithm. With this notation we then have
the following result, see Chu (1984a) for a more complete theory.

Theorem 4.3 The differential equation

Ȧ =
[
A, (logA)−

]
= A (logA)− − (logA)−A, A (0) = A0

(4.17)

is isospectral and the solution A (t) exists for all A0 = A′
0 > 0 and t ∈ R. If

(Ai | i ∈ N) is the sequence produced by the QR-algorithm for A0 = A (0),
then

Ai = A (i) for all i ∈ N. (4.18)

Proof 4.4 The proof follows that of Chu (1984a). Let

et·logA(0) = Θ (t)R (t) (4.19)

be the QR-decomposition of et·logA(0). By differentiating both sides with
respect to t, we obtain

Θ̇ (t)R (t) + Θ (t) Ṙ (t) = logA (0) et·logA(0)

=(logA (0)) · Θ (t)R (t) .

Therefore
Θ (t)′ Θ̇ (t) + Ṙ (t)R (t)−1 = log

(
Θ (t)′A (0)Θ (t)

)

Since Θ (t)′ Θ̇ (t) is skew-symmetric and Ṙ (t)R (t)−1 is upper triangular,
this shows

Θ̇ (t) = Θ (t)
(
log

(
Θ (t)′ A (0)Θ (t)

))
− . (4.20)

Consider A (t) := Θ (t)′A (0)Θ (t). By (4.20)

Ȧ =Θ̇′A (0)Θ + Θ′A (0) Θ̇
= − (logA)− Θ′A (0)Θ + Θ′A (0)Θ (logA)− .

=
[
A, (logA)−

]
.
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Thus A (t) is a solution of (4.17). Conversely, since A (0) is arbitrary and
by the uniqueness of solutions of (4.17), any solution A (t) of (4.17) is of
the form A (t) = Θ (t)′A (0)Θ (t) with Θ (t) defined by (4.19). Thus

et·logA(t) =et·log(Θ(t)′A(0)Θ(t)) = Θ (t)′ et·logA(0)Θ (t)
=R (t)Θ (t) .

Therefore for t = 1, and using (4.19)

A (1) =elogA(1) = R (1)Θ (1)

=Θ (1)′ Θ (1)R (1)Θ (1)

=Θ (1)′A (0)Θ (1) .

Proceeding by induction this shows that for all k ∈ N

A (k) = Θ (k)′ . . .Θ (1)′A (0)Θ (1) . . .Θ (k)

is the k-th iterate produced by the QR algorithm. This completes the proof.

As has been mentioned above, the QR algorithm is not a numerically
efficient method for diagonalizing a symmetric matrix. Neither would we
expect that integration of the continuous time flow (4.17), by e.g. a Runge-
Kutta method, leads to a numerically efficient algorithm for diagonaliza-
tion. Numerically efficient versions of the QR algorithms are based on vari-
able shift strategies. These are not described here and we refer to e.g. Golub
and Van Loan (1989) for a description.

Example 4.5 For the case A0 =
[

1 1
1 2

]
, the isospectral flow (4.17) is plot-

ted in Figure 4.1. The time instants t = 1, 2, . . . are indicated.

Main Points of Section

The QR algorithm produces a sequences of real symmetric n × n matri-
ces Ai, each with the same eigenvalues, and which converges to a diag-
onal matrix A∞ consisting of the eigenvalues of A. Isospectral flows are
continuous-time analogs of the QR algorithm flows. One such is the Lie-
bracket equation Ȧ =

[
A, (logA)−

]
where X− denotes the skew-symmetric

component of a matrix X . The QR algorithm is the integer time sampling
of this isospectral flow. Efficient versions of the QR algorithm require shift
strategies not studied here.
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FIGURE 4.1. Isospectral flow and QR algorithm

1.5 Singular Value Decomposition (SVD)

The singular value decomposition is an invaluable tool in numerical linear
algebra, statistics, signal processing and control theory. It is a cornerstone
of many reliable numerical algorithms, such as those for solving linear equa-
tions, least squares estimation problems, controller optimization, and model
reduction. A variant of the QR algorithm allows the singular value decom-
position of an arbitrary matrix A ∈ Rm×n with m ≥ n. The singular value
decomposition (SVD) of A is

A = V ΣU ′ or V ′AU = Σ, Σ =

[
diag (σ1, . . . , σn)

0(m−n)×n

]
. (5.1)

Here U , V are orthogonal matrices with U ′U = UU ′ = In, V ′V = V V ′ =
Im, and the σi ∈ R are the nonnegative singular values ofA, usually ordered
so that σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The singular values σi (A) are the
nonnegative square roots of the eigenvalues of A′A. If A is Hermitian,
then the singular values of A are identical to the absolute values of the
eigenvalues of A. However, this is not true in general. The columns of V
and U ′ are called the left and the right singular vectors of A, respectively.

Of course from (5.1) we have that

U ′ (A′A)U =Σ2 = diag
(
σ2

1 , . . . , σ
2
n

)
,

V ′ (AA′)V =

[
Σ2 0
0 0

]
= diag

(
σ2

1 , . . . , σ
2
n, 0, . . . , 0︸ ︷︷ ︸

m−n

)
.

(5.2)
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Clearly, since A′A, AA′ are symmetric the application of the QR algorithm
to A′A or AA′ would achieve the decompositions (5.1), (5.2). However, an
unattractive aspect is that matrix squares are introduced with associated
squaring of condition numbers and attendant loss of numerical accuracy.

An alternative reformulation of the SVD task which is suitable for ap-
plication of the QR algorithm is as follows: Define

Â =

[
0 A

A′ 0

]
= Â′, (5.3)

then for orthogonal V̂ ,

V̂ ′ÂV̂ =



Σ 0 0
0 −Σ 0
0 0 0




= diag (σ1, . . . , σn,−σ1, . . . ,−σn, 0, . . . , 0︸ ︷︷ ︸
m−n

) .

(5.4)

Simple manipulations show that

V̂ =
1√
2

[
V1 V1 V2

U −U 0

]
,

V =
[
V1︸︷︷︸
n

V2︸︷︷︸
m−n

] (5.5)

with orthogonal matrices U , V satisfying (5.1). Actually, the most com-
mon way of calculating the SVD of A ∈ Rm×n is to apply an implicit QR
algorithm based on the work of Golub and Kahan (1965). In this text, we
seek implementations via dynamical systems, and in particular seek gra-
dient flows, or more precisely self-equivalent flows which preserve singular
values. A key result on such flows is as follows.

Lemma 5.1 Let C (t) ∈ Rn×n and D (t) ∈ Rm×m be a time-varying con-
tinuous family of skew-symmetric matrices on a time interval. Then the
flow on Rm×n,

Ḣ (t) = H (t)C (t) +D (t)H (t) (5.6)

is self equivalent on this interval. Conversely, every self-equivalent differen-
tial equation on Rm×n is of the form (5.6) with C (t), D (t) skew-symmetric.
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Proof 5.2 Let (U (t) , V (t)) denote the unique solutions of

U̇ (t) =U (t)C (t) , U (0) =In,

V̇ (t) = − V (t)D (t) , V (0) =Im.
(5.7)

Since C, D are skew-symmetric, then U , V are orthogonal matrices. Let
A (t) = V ′ (t)H (0)U (t). Then A (0) = H (0) and

Ȧ (t) = V ′ (t)H (0) U̇ (t) + V̇ ′ (t)H (0)U (t) = A (t)C (t) +D (t)A (t) .

Thus A (t) = H (t) by uniqueness of solutions.

Remark 5.3 In the discrete-time case, any self equivalent flow takes the
form

Hk+1 = Ske
CkHke

DkTk, (5.8)

where Ck, Dk are skew-symmetric with Sk, Tk appropriate sign matrices
of the form diag (±1, 1, . . . , 1) and consequently eCk , eDk are orthogonal
matrices. The proof is straightforward. �

Remark 5.4 In Chu (1986) and Watkins and Elsner (1989), self-equivalent
flows are developed which are interpolations of an explicit QR based SVD
method. In particular, for square and nonsingular H0 such a flow is

Ḣ (t) =
[
H (t) , (log (H ′ (t)H (t)))−

]
, H (0) = H0. (5.9)

Here, the notation A− denotes the skew-symmetric part of A, see (4.15)
- (4.16). This self-equivalent flow then corresponds to the isospectral QR
flow of Chu (1986) and Watkins and Elsner (1989). Also so called shifted
versions of the algorithm for SVD are considered by Watkins and Elsner
(1989). �

Main Points of Section

The singular value decomposition of A ∈ Rm×n can be achieved using the
QR algorithm on the symmetric matrix Â =

[
0 A
A′ 0

]
. The associated flows

on rectangular matrices A preserve the singular values and are called self-
equivalent flows. General self-equivalent flows on R

m×n are characterized
by pairs of possibly time-variant skew-symmetric matrices. They can be
considered as isospectral flows on symmetric (m+ n) × (m+ n) matrices.
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1.6 Standard Least Squares Gradient Flows

So far in this chapter, we have explored dynamical systems evolving on
rather simple manifolds such as spheres, projective spaces or Grassmanni-
ans for eigenvalue methods. The dynamical systems have not always been
gradient flows nor were they always related to minimizing the familiar
least squares measures. In the next chapters we explore more systemati-
cally eigenvalue methods based on matrix least squares. As a prelude to
this, let us briefly develop standard vector least squares gradient flows. In
the first instance there will be no side constraints and the flows will be on
Rn.

The standard (vector) least squares minimization task is to minimize
over x ∈ R

n and for A ∈ R
m×n, b ∈ R

m, the 2-norm index

Φ (x) = 1
2 ‖Ax − b‖2

2

= 1
2 (Ax− b)′ (Ax− b)

(6.1)

The directional derivative DΦ|x (ξ) is given in terms of the gradient
∇Φ (x) =

(
∂Φ
∂x1

, . . . , ∂Φ
∂xn

)′ as

DΦ|x (ξ) = (Ax− b)′Aξ =: ∇Φ (x)′ ξ (6.2)

Consequently, the gradient flow for least squares minimizing (6.1) in Rn is

ẋ = −∇Φ (x) , ∇Φ (x) = A′ (Ax− b) (6.3)

Here Rn is considered in the trivial way as a smooth manifold for the flow,
and x (0) ∈ R

n. The equilibria satisfy

∇Φ (x) = A′ (Ax− b) = 0 (6.4)

If A is injective, then A′A > 0 and there is a unique equilibrium x∞ =
(A′A)−1

A′b which is exponentially stable. The exponential convergence
rate is given by ρ = λmin (A′A), that is by the square of the smallest
singular value of A.

Constrained Least Squares

Of more interest to the theme of the book are constrained least squares
gradient flows. Let us impose for example an additional affine equality
constraint, for a full row rank matrix L ∈ Rp×n, c ∈ Rp

Lx = c (6.5)
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This affine constraint defines a smooth constraint manifold M in Rn with
tangent spaces given by

TxM = {ξ | Lξ = 0} , x ∈M. (6.6)

The gradient flow on M requires an orthogonal projection of the directional
derivative into the tangent space, so we need that the gradient ∇Φ (x)
satisfy both (6.2) and L∇Φ (x) = 0. Note that P := I − L#L := I −
L′ (LL′)−1

L = I −L′ (L#
)′ is the linear projection operator from Rn onto

TxM . Thus

ẋ = −∇Φ (x) , ∇Φ (x) =
(
I − L#L

)
A′ (Ax− b) (6.7)

is the gradient flow on M . Of course, the initial condition x (0) satisfies
Lx (0) = c. Here # denotes the pseudo-inverse. Again, there is exponential
convergence to the equilibrium points satisfying ∇Φ (x) = 0. There is a
unique equilibrium when A is full rank. The exponential convergence rate
is given by ρ = λmin

[(
I − L#L

)
A′A

]
.

As an example of a nonlinear constraint , let us consider least squares
estimation on a sphere. Thus, consider the constraint ‖x‖2 = 1, defining
the (n− 1)-dimensional sphere Sn−1. Here the underlying geometry of the
problem is the same as that developed for the Rayleigh quotient gradient
flow of Section 1.3. Thus the gradient vector

∇Φ (x) = A′ (Ax − b) − (x′A′ (Ax− b))x (6.8)

satisfies both (6.2) on the tangent space TxSn−1 = {ξ ∈ R
n | x′ξ = 0} and

is itself in the tangent space for all x ∈ Sn−1, since x′∇Φ (x) = 0 for all
‖x‖2 = 1. The gradient flow for least squares estimation on the sphere Sn−1

is ẋ = −∇Φ (x) , that is

ẋ = (x′A′ (Ax− b))x−A′ (Ax− b) (6.9)

and the equilibria are characterized by

(x′A′ (Ax− b))x = A′ (Ax− b) .

In general, there is no simple analytical formula for the equilibria x. How-
ever, for m = n, it can be shown that there are precisely two equilibria.
There is a unique minimum (and a unique maximum), being equivalent
to a minimization of the distance of b ∈ R

n to the surface of the ellip-
soid

{
y ∈ Rn | ∥∥A−1y

∥∥ = 1
}

in Rn, as depicted in Figure 6.1. If A is an
orthogonal matrix, this ellipsoid is the sphere Sn−1, and the equilibria are
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Generic A Orthogonal A

FIGURE 6.1. Least squares minimization

x∗ = ± ∥∥A−1b
∥∥−1

A−1b. A linearization of the gradient flow equation at the
equilibrium point with a positive sign yields an exponentially stable linear
differential equation and thus ensures that this equilibrium is exponentially
stable. The maximum is unstable, so that for all initial conditions differ-
ent from the maximum point the gradient flow converges to the desired
optimum.

Main Points of Section

Certain constrained least squares optimization problems can be solved via
gradient flows on the constraint manifolds. The cases discussed are the
smooth manifolds Rn, an affine space in Rn, and the sphere Sn−1. The
estimation problem on the sphere does not always admit a closed-form
solution, thus numerical techniques are required to solve this problem.

The somewhat straightforward optimization procedures of this section
and chapter form a prototype for some of the more sophisticated matrix
least squares optimization problems in later chapters.
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Notes for Chapter 1

For a general reference on smooth dynamical systems we refer to Palis and
de Melo (1982). Structural stability properties of two-dimensional vector
fields were investigated by Andronov and Pontryagin (1937), Andronov,
Vitt and Khaikin (1987) and Peixoto (1962). A general investigation of
structural stability properties of gradient vector fields on manifolds is due
to Smale (1961). Smale shows that a gradient flow ẋ = gradΦ (x) on a
smooth compact manifold is structurally stable if the Hessian of Φ at each
critical point is nondegenerate, and the stable and unstable manifolds of
the equilibria points intersect each other transversally. Morse has consid-
ered smooth functions Φ : M → R such that the Hessian at each critical
point is nondegenerate. Such functions are called Morse functions and they
form a dense subset of the class of all smooth functions on M . See Mil-
nor (1963) and Bott (1982) for nice expositions on Morse theory. Other
recent references are Henniart (1983) and Witten (1982). A generalization
of Morse theory is due to Bott (1954) who considers smooth functions with
nondegenerate manifolds of critical points. An extension to Morse theory
on infinite dimensional spaces is due to Palais (1962).

Thom (1949) has shown that the stable and unstable manifolds of an
equilibrium point of a gradient flow ẋ = gradΦ (x), for a smooth Morse
function Φ : M → R, are diffeomorphic to Euclidean spaces R

k, i.e. they are
cells. The decomposition of M by the stable manifolds of a gradient flow for
a Morse function Φ : M → R is a cell decomposition. Refined topological
properties of such cell decompositions were investigated by Smale (1960).

Convergence and stability properties of gradient flows may depend on
the choice of the Riemannian metric. If a ∈ M is a nondegenerate critical
point of Φ : M → R, then the local stability properties of the gradient
flow ẋ = gradΦ (x) around a do not change with the Riemannian metric.
However, if a is a degenerate critical point, then the qualitative picture of
the local phase portrait of the gradient around a may well change with the
Riemannian metric. See Shafer (1980) for results in this direction.

For an example of a gradient flow where the solutions converge to a
set of equilibrium points rather than to single equilibria, see Palis and
de Melo (1982). A recent book on differential geometric methods written
from an applications oriented point of view is Doolin and Martin (1990),
with background material on linear quadratic optimal control problems, the
Riccati equation and flows on Grassmann manifolds. Background material
on the matrix Riccati equation can be found in Reid (1972) and Anderson
and Moore (1990). An analysis of the Riccati equation from a Lie theoretic
perspective is given by Hermann (1979), Hermann and Martin (1982). A
complete phase portrait analysis of the matrix Riccati equation has been
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obtained by Shayman (1986).
Structural stability properties of the matrix Riccati equation were stud-

ied by Schneider (1973), Bucy (1975). Finite escape time phenomena of the
matrix Riccati differential equation are well studied in the literature, see
Martin (1981) for a recent reference.

Numerical matrix eigenvalue methods are analyzed from a Lie group the-
oretic perspective by Ammar and Martin (1986). There also the connection
of the matrix Riccati equation with numerical methods for finding invariant
subspaces of a matrix by the power method is made. An early reference for
this is Parlett and Poole (1973).

For a statement and proof of the Courant-Fischer minmax principle see
Golub and Van Loan (1989). A generalization of Theorem 3.17 is Wielandt’s
minmax principle on partial sums of eigenvalues. For a proof as well as ap-
plications to eigenvalue inequalities for sums of Hermitian matrices see
Bhatia (1987). The eigenvalue inequalities appearing in Corollary 3.19 are
the simplest of a whole series of eigenvalue inequalities for sums of Hermi-
tian matrices. They include those of Cauchy-Weyl, Lidskii, and Thompson
and Freede. For this we refer to Bhatia (1987) and Marshall and Olkin
(1979).

For an early investigation of isospectral matrix flows as a tool for solv-
ing matrix eigenvalue problems we refer to Rutishauser (1954). Appar-
ently his pioneering work has long been overlooked until its recent redis-
covery by Watkins and Elsner (1989). The first more recent papers on
dynamical systems applications to numerical analysis are Kostant (1979),
Symes (1980a; 1982), Deift et al. (1983), Chu (1984a; 1986), Watkins (1984)
and Nanda (1985).



CHAPTER 2

Double Bracket
Isospectral Flows

2.1 Double Bracket Flows for Diagonalization

Brockett (1988) has introduced a new class of isospectral flows on the set
of real symmetric matrices which have remarkable properties. He considers
the ordinary differential equation

Ḣ (t) = [H (t) , [H (t) , N ]] , H (0) = H0 (1.1)

where [A,B] = AB −BA denotes the Lie bracket for square matrices and
N is an arbitrary real symmetric matrix. We term this the double bracket
equation. Brockett proves that (1.1) defines an isospectral flow which, under
suitable assumptions on N , diagonalizes any symmetric matrix H (t) for
t → ∞. Also, he shows that the flow (1.1) can be used to solve various
combinatorial optimization tasks such as linear programming problems and
the sorting of lists of real numbers. Further applications to the travelling
salesman problem and to digital quantization of continuous-time signals
have been described, see Brockett (1989a; 1989b) and Brockett and Wong
(1991). Note also the parallel efforts by Chu (1984b; 1984a), Driessel (1986),
Chu and Driessel (1990) with applications to structured inverse eigenvalue
problems and matrix least squares estimation.

The motivation for studying the double bracket equation (1.1) comes
from the fact that it provides a solution to the following matrix least squares
approximation problem.

Let Q = diag (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn be a given real
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diagonal matrix and let

M (Q) =
{
Θ′QΘ ∈ R

n×n | ΘΘ′ = In
}

(1.2)

denote the set of all real symmetric matrices H = Θ′QΘ orthogonally
equivalent to Q. Thus M (Q) is the set of all symmetric matrices with
eigenvalues λ1, . . . , λn. Given an arbitrary symmetric matrix N ∈ Rn×n,
we consider the task of minimizing the matrix least squares index (distance)

‖N −H‖2 = ‖N‖2 + ‖H‖2 − 2 tr (NH) (1.3)

of N to any H ∈M (Q) for the Frobenius norm ‖A‖2 = tr (AA′). This is a
least squares estimation problem with spectral constraints. Since ‖H‖2 =∑n
i=1 λ

2
i is constant for H ∈M (Q), the minimization of (1.3) is equivalent

to the maximization of the trace functional φ (H) = tr (NH) defined on
M (Q).

Heuristically, if N is chosen to be diagonal we would expect that the
matrices H∗ ∈ M (Q) which minimize (1.3) are of the same form, i.e.
H∗ = πQπ′ for a suitable n × n permutation matrix. Since M (Q) is a
smooth manifold (Proposition 1.1) it seems natural to apply steepest de-
scent techniques in order to determine the minima H∗ of the distance func-
tion (1.3) on M (Q).

This program will be carried out in this section. The intuitive meaning of
equation (1.1) will be explained by showing that it is actually the gradient
flow of the distance function (1.3) on M (Q). Since M (Q) is a homogeneous
space for the Lie group O (n) of orthogonal matrices, we first digress to the
topic of Lie groups and homogeneous spaces before starting our analysis of
the flow (1.1).

Digression: Lie Groups and Homogeneous Spaces A Lie group
G is a group, which is also a smooth manifold, such that

G×G→ G, (x, y) �→ xy−1

is a smooth map. Examples of Lie groups are

(a) The general linear group GL (n,R) =
{
T ∈ R

n×n | det (T ) �= 0
}
.

(b) The special linear group SL (n,R) =
{
T ∈ R

n×n | det (T ) = 1
}
.

(c) The orthogonal group O (n) =
{
T ∈ R

n×n | TT ′ = In

}
.

(d) The unitary group U (n) =
{
T ∈ C

n×n | TT ∗ = In

}
.

The groups O (n) and U (n) are compact Lie groups, i.e. Lie groups which are
compact spaces. Also, GL (n,R) and O (n) have two connected components
while SL (n,R) and U (n) are connected.
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The tangent space G := TeG of a Lie group G at the identity element e ∈ G
carries in a natural way the structure of a Lie algebra. The Lie algebras of
the above examples of Lie groups are

(a) gl (n,R) =
{
X ∈ R

n×n
}

(b) sl (n,R) =
{
X ∈ R

n×n | tr (X) = 0
}

(c) skew (n,R) =
{
X ∈ R

n×n | X ′ = −X}
(d) skew (n,C) =

{
X ∈ C

n×n | X∗ = −X}
In all of these cases the product structure on the Lie algebra is given by the
Lie bracket

[X,Y ] = XY − Y X

of matrices X,Y.

A Lie group action of a Lie group G on a smooth manifold M is a smooth
map

σ : G×M →M, (g, x) �→ g · x
satisfying for all g, h ∈ G, and x ∈M

g · (h · x) = (gh) · x, e · x = x.

The group action σ : G×M →M is called transitive if there exists x ∈M
such that every y ∈M satisfies y = g ·x for some g ∈ G. A space M is called
homogeneous if there exists a transitive G-action on M .

The orbit of x ∈M is defined by

O (x) = {g · x | g ∈ G} .

Thus the homogeneous spaces are the orbits of a group action. If G is a
compact Lie group and σ : G×M →M a Lie group action, then the orbits
O (x) of σ are smooth, compact submanifolds of M .

Any Lie group action σ : G×M →M induces an equivalence relation ∼ on
M defined by

x ∼ y ⇐⇒ There exists g ∈ G with y = g · x

for x, y ∈M . Thus the equivalence classes of ∼ are the orbits of σ : G×M →
M . The orbit space of σ : G×M →M , denoted by M/G = M/ ∼, is defined
as the set of all equivalence classes of M , i.e.

M/G := {O (x) | x ∈M} .

HereM/G carries a natural topology, the quotient topology, which is defined
as the finest topology on M/G such that the quotient map

π : M →M/G, π (x) := O (x) ,



46 Chapter 2. Double Bracket Isospectral Flows

is continuous. Thus M/G is Hausdorff only if the orbits O (x), x ∈ M , are
closed subsets of M .

Given a Lie group action σ : G×M →M and a point X ∈M , the stabilizer
subgroup of x is defined as

Stab (x) := {g ∈ G | g · x = x} .

Stab (x) is a closed subgroup of G and is also a Lie group.

For any subgroup H ⊂ G the orbit space of the H-action α : H × G → G,
(h, g) �→ gh−1, is the set of coset classes

G/H = {g ·H | g ∈ G}

which is a homogeneous space. If H is a closed subgroup of G, then G/H is
a smooth manifold. In particular, G/ Stab (x), x ∈M , is a smooth manifold
for any Lie group action σ : G×M →M .

Consider the smooth map

σx : G→M, g �→ g · x,

for a given x ∈M . Then the image σx (G) of σx coincides with the G-orbit
O (x) and σx induces a smooth bijection

σ̄x : G/ Stab (x) → O (x) .

This map is a diffeomorphism if G is a compact Lie group. For arbitrary
non-compact Lie groups G, the map σ̄x need not be a homeomorphism.
Note that the topologies of G/ Stab (x) and O (x) are defined in a different
way : G/Stab (x) is endowed with the quotient topology while O (x) carries
the relative subspace topology induced from M . If G is compact, then these
topologies are homeomorphic via σ̄x.

Returning to the study of the double bracket equation (1.1) as a gradient
flow on the manifold M (Q) of (1.2), let us first give a derivation of some
elementary facts concerning the geometry of the set of symmetric matrices
with fixed eigenvalues. Let

Q =



λ1In1 0

. . .

0 λrInr


 (1.4)

be a real diagonal n × n matrix with eigenvalues λ1 > · · · > λr occurring
with multiplicities n1, . . . , nr, so that n1 + · · · + nr = n.
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Proposition 1.1 M (Q) is a smooth, connected, compact manifold of di-
mension

dimM (Q) =
1
2

(
n2 −

r∑
i=1

n2
i

)
.

Proof 1.2 The proof uses some elementary facts and the terminology from
differential geometry which are summarized in the above digression on Lie
groups and homogeneous spaces. Let O (n) denote the compact Lie group
of all orthogonal matrices Θ ∈ R

n×n. We consider the smooth Lie group
action σ : O (n) × Rn×n → Rn×n defined by σ (Θ, H) = ΘHΘ′. Thus
M (Q) is an orbit of the group action σ and is therefore a compact man-
ifold. The stabilizer subgroup Stab (Q) ⊂ O (n) of Q ∈ Rn×n is defined
as Stab (Q) = {Θ ∈ O (n) | ΘQΘ′ = Q}. Since ΘQ = QΘ if and only if
Θ = diag (Θ1, . . . ,Θr) with Θi ∈ O (ni), we see that

Stab (Q) = O (n1) × · · · ×O (nr) ⊂ O (n) . (1.5)

Therefore M (Q) ∼= O (n) / Stab (Q) is diffeomorphic to the homogeneous
space

M (Q) ∼=O (n) /O (n1) × · · · ×O (nr) , (1.6)

and

dimM (Q) = dimO (n) −
r∑
i=1

dimO (ni)

=
n (n− 1)

2
− 1

2

r∑
i=1

ni (ni − 1)

=
1
2

(
n2 −

r∑
i=1

n2
i

)
.

To see the connectivity of M (Q) note that the subgroup SO (n) =
{Θ ∈ O (n) | detΘ = 1} of O (n) is connected. Now M (Q) is the image
of SO (n) under the continuous map f : SO (n) → M (Q), f (Θ) = ΘQΘ′,
and therefore also connected. This completes the proof.

We need the following description of the tangent spaces of M (Q).

Lemma 1.3 The tangent space of M (Q) at H ∈M (Q) is

THM (Q) =
{
[H,Ω] | Ω′ = −Ω ∈ R

n×n} . (1.7)
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Proof 1.4 Consider the smooth map σH : O (n) → M (Q) defined by
σH (Θ) = ΘHΘ′. Note that σH is a submersion and therefore it induces a
surjective map on tangent spaces. The tangent space of O (n) at the n× n
identity matrix I is TIO (n) = {Ω ∈ Rn×n | Ω′ = −Ω} (Appendix C) and
the derivative of σH at I is the surjective linear map

DσH |I : TIO (n) →THM (Q) ,
Ω �→ΩH −HΩ.

(1.8)

This proves the result.

We now state and prove our main result on the double bracket equation
(1.1). The result in this form is due to Bloch, Brockett and Ratiu (1990).

Theorem 1.5 Let N ∈ Rn×n be symmetric, and Q satisfy (1.4).

(a) The differential equation(1.1),

Ḣ = [H, [H,N ]] , H (0) = H ′ (0) = H0,

defines an isospectral flow on the set of all symmetric matrices H ∈
Rn×n.

(b) There exists a Riemannian metric on M (Q) such that (1.1) is the
gradient flow Ḣ = gradfN (H) of the function fN : M (Q) → R,
fN (H) = − 1

2 ‖N −H‖2.

(c) The solutions of (1.1) exist for all t ∈ R and converge to a connected
component of the set of equilibria points. The set of equilibria points
H∞of (1.1) is characterized by [H∞, N ] = 0, i.e. NH∞ = H∞N .

(d) Let N = diag (µ1, . . . , µn) with µ1 > · · · > µn. Then every so-
lution H (t) of (1.1) converges for t → ±∞ to a diagonal matrix
π diag (λ1, . . . , λn)π′ = diag

(
λπ(1), . . . , λπ(n)

)
, where λ1, . . . , λn are

the eigenvalues of H0 and π is a permutation matrix.

(e) Let N = diag (µ1, . . . , µn) with µ1 > · · · > µn and define the function
fN : M (Q) → R, fN (H) = − 1

2 ‖N −H‖2. The Hessian of fN :
M (Q) → R at each critical point is nonsingular. For almost all initial
conditions H0 ∈M (Q) the solution H (t) of (1.1) converges to Q as
t → ∞ with an exponential bound on the rate of convergence. For
the case of distinct eigenvalues λi �= λj, then the linearization at a
critical point H∞ is

ξ̇ij = − (
λπ(i) − λπ(j)

)
(µi − µj) ξij , i > j, (1.9)

where H∞ = diag
(
λπ(1), . . . , λπ(n)

)
, for π a permutation matrix.
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Proof 1.6 To prove (a) note that [H,N ] = HN −NH is skew-symmetric
if H , N are symmetric. Thus the result follows immediately from
Lemma 1.4.1. It follows that every solution H (t), t belonging to an in-
terval in R, of (1.1) satisfies H (t) ∈ M (H0). By Proposition 1.1, M (H0)
is compact and therefore H (t) exists for all t ∈ R. Consider the time
derivative of the t function

fN (H (t)) = − 1
2 ‖N −H (t)‖2 = − 1

2 ‖N‖2 − 1
2 ‖H0‖2 + tr (NH (t))

and note that

d

dt
fN (H (t)) = tr

(
NḢ (t)

)
= tr (N [H (t) , [H (t) , N ]]) .

Since tr (A [B,C]) = tr ([A,B]C), and [A,B] = − [B,A], then with A, B
symmetric matrices, we have [A,B]′ = [B,A] and thus

tr (N [H, [H,N ]]) = tr ([N,H ] [H,N ]) = tr
(
[H,N ]′ [H,N ]

)
.

Therefore

d

dt
fN (H (t)) = ‖[H (t) , N ]‖2

. (1.10)

Thus fN (H (t)) increases monotonically. Since fN : M (H0) → R is a
continuous function on the compact space M (H0), then fN is bounded
from above and below. It follows that fN (H (t)) converges to a finite value
and its time derivative must go to zero. Therefore every solution of (1.1)
converges to a connected component of the set of equilibria points as t→ ∞.
By (1.10), the set of equilibria of (1.1) is characterized by [N,H∞] = 0. This
proves (c). Now suppose that N = diag (µ1, . . . , µn) with µ1 > · · · > µn. By
(c), the equilibria of (1.1) are the symmetric matrices H∞ = (hij) which
commute with N and thus

µihij = µjhij for i, j = 1, . . . , n. (1.11)

Now (1.11) is equivalent to (µi − µj)hij = 0 for i, j = 1, . . . , n and
hence, by assumption on N , to hij = 0 for i �= j. Thus H∞ is a diag-
onal matrix with the same eigenvalues as H0 and it follows that H∞ =
π diag (λ1, . . . , λn)π′. Therefore (1.1) has only a finite number of equilib-
rium points. We have already shown that every solution of (1.1) converges
to a connected component of the set of equilibria and thus to a single
equilibrium H∞. This completes the proof of (d).

In order to prove (b) we need some preparation. For any H ∈M (Q) let
σH : O (n) →M (Q) be the smooth map defined by σH (Θ) = Θ′HΘ. The
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derivative at In is the surjective linear map

DσH |I : TIO (n) →THM (Q) ,
Ω �→HΩ − ΩH.

Let skew (n) denote the set of all real n×n skew-symmetric matrices. The
kernel of DσH |I is then

K = ker DσH |I = {Ω ∈ skew (n) | HΩ = ΩH} . (1.12)

Let us endow the vector space skew (n) with the standard inner prod-
uct defined by (Ω1,Ω2) �→ tr (Ω′

1Ω2). The orthogonal complement of K in
skew (n) then is

K⊥ = {Z ∈ skew (n) | tr (Z ′Ω) = 0 ∀Ω ∈ K} . (1.13)

Since
tr

(
[N,H ]′ Ω

)
= − tr (N [H,Ω]) = 0

for all Ω ∈ K, then [N,H ] ∈ K⊥ for all symmetric matrices N .
For any Ω ∈ skew (n) we have the unique decomposition

Ω = ΩH + ΩH (1.14)

with ΩH ∈ K and ΩH ∈ K⊥.
The gradient of a function on a smooth manifold M is only defined with

respect to a fixed Riemannian metric on M (see Sections C.9 and C.10).
To define the gradient of the distance function fN : M (Q) → R we
therefore have to specify which Riemannian metric on M (Q) we consider.
Now to define a Riemannian metric on M (Q) we have to define an in-
ner product on each tangent space THM (Q) of M (Q). By Lemma 1.3,
DσH |I : skew (n) → THM (Q) is surjective with kernel K and hence in-
duces an isomorphism of K⊥ ⊂ skew (n) onto THM (Q). Thus to define an
inner product on THM (Q) it is equivalent to define an inner product on
K⊥. We proceed as follows:

Define for tangent vectors [H,Ω1] , [H,Ω2] ∈ THM (Q)

〈〈[H,Ω1] , [H,Ω2]〉〉 := tr
((

ΩH1
)′

ΩH2
)
, (1.15)

where ΩHi , i = 1, 2, are defined by (1.14). This defines an inner product on
THM (Q) and in fact a Riemannian metric on M (Q). We refer to this as
the normal Riemannian metric on M (Q).

The gradient of fN : M (Q) → R with respect to this Riemannian metric
is the unique vector field grad fN on M (Q) which satisfies the condition
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(a) gradfN (H) ∈ THM (Q) for all H ∈M (Q)

(b) DfN |H ([H,Ω]) = 〈〈gradfN (H) , [H,Ω]〉〉
for all [H,Ω] ∈ THM (Q) . (1.16)

By Lemma 1.3, condition (1.16) implies that for all H ∈M (Q)

grad fN (H) = [H,X ] (1.17)

for some skew-symmetric matrix X (which possibly depends on H). By
computing the derivative of fN at H we find

DfN |H ([H,Ω]) = tr (N [H,Ω]) = tr
(
[H,N ]′ Ω

)
.

Thus (1.16) implies

tr
(
[H,N ]′ Ω

)
= 〈〈grad fN (H) , [H,Ω]〉〉
= 〈〈[H,X ] , [H,Ω]〉〉
= tr

((
XH

)′
ΩH

) (1.18)

for all Ω ∈ skew (n).
Since [H,N ] ∈ K⊥ we have [H,N ] = [H,N ]H and therefore

tr
(
[H,N ]′ Ω

)
= tr

(
[H,N ]′ ΩH

)
. By (1.17) therefore

XH = [H,N ] . (1.19)

This shows

gradfN (H) = [H,X ] =
[
H,XH

]
= [H, [H,N ]] .

This completes the proof of (b).
For a proof that the Hessian of fN : M (Q) → R is nonsingular at each

critical point, without assumption on the multiplicities of the eigenvalues of
Q, we refer to Duistermaat et al. (1983). Here we only treat the generic case
where n1 = · · · = nn = 1, i.e. Q = diag (λ1, . . . , λn) with λ1 > · · · > λn.

The linearization of the flow (1.1) on M (Q) around any equilibrium
point H∞ ∈M (Q) where [H∞, N ] = 0 is given by

ξ̇ = H∞ (ξN −Nξ) − (ξN −Nξ)H∞, (1.20)

where ξ ∈ TH∞M (Q) is in the tangent space of M (Q) at H∞ =
diag

(
λπ(1), . . . , λπ(n)

)
, for π a permutation matrix. By Lemma 1.3, ξ =
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[H∞,Ω] holds for a skew-symmetric matrix Ω. Equivalently, in terms of the
matrix entries, we have ξ = (ξij), Ω = (Ωij) and ξij =

(
λπ(i) − λπ(j)

)
Ωij .

Consequently, (1.20) is equivalent to the decoupled set of differential equa-
tions.

ξ̇ij = − (
λπ(i) − λπ(j)

)
(µi − µj) ξij

for i, j = 1, . . . , n. Since ξij = ξji the tangent space TH∞M (Q) is paramet-
rized by the coordinates ξij for i > j. Therefore the eigenvalues of the
linearization (1.20) are − (

λπ(i) − λπ(j)

)
(µi − µj) for i > j which are all

nonzero. Thus the Hessian is nonsingular. Similarly, π = In is the unique
permutation matrix for which

(
λπ(i) − λπ(j)

)
(µi − µj) > 0 for all i > j.

Thus H∞ = Q is the unique critical point of fN : M (Q) → R for which
the Hessian is negative definite.

The union of the unstable manifolds (see Section C.11) of the equilibria
points H∞ = diag

(
λπ(1), . . . , λπ(n)

)
for π �= In forms a closed subset of

M (Q) of co-dimension at least one. (Actually, the co-dimension turns out
to be exactly one). Thus the domain of attraction for the unique stable
equilibrium H∞ = Q is an open and dense subset of M (Q). This completes
the proof of (e), and the theorem.

Remark 1.7 In the generic case, where the ordered eigenvalues λi, µi of
H0, N are distinct, then the property ‖N −H0‖2 ≥ ‖N −H∞‖2 leads
to the Wielandt-Hoffman inequality ‖N −H0‖2 ≥ ∑n

i=1 (µi − λi)
2. Since

the eigenvalues of a matrix depend continuously on the coefficients, this
last inequality holds in general, thus establishing the Wielandt-Hoffman
inequality for all symmetric matrices N , H . �

Remark 1.8 In Part (c) of Theorem 1.5 it is stated that every solution of
(1.1) converges to a connected component of the set of equilibria points.
Actually Duistermaat et al. (1983) has shown that fN : M (Q) → R is
always a Morse-Bott function. Thus, using Proposition 1.3.7, it follows
that any solution of (1.1) is converging to a single equilibrium point rather
than to a set of equilibrium points. �

Remark 1.9 If Q =
[
Ik 0
0 0

]
is the standard rank k projection operator,

then the distance function fN : M (Q) → R is a Morse-Bott function
on the Grassmann manifold GrassR (k, n). This function then induces a
Morse-Bott function on the Stiefel manifold St (k, n), which coincides with
the Rayleigh quotient RN : St (k, n) → R. Therefore the Rayleigh quotient
is seen as a Morse-Bott function on the Stiefel manifold. �

Remark 1.10 The rôle of the matrix N for the double bracket equation
is that of a parameter which guides the equation to a desirable final state.
In a diagonalization exercise one would choose N to be a diagonal matrix
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while the matrix to be diagonalized would enter as the initial condition of
the double bracket flow. Then in the generic situation, the ordering of the
diagonal entries of N will force the eigenvalues of H0 to appear in the same
order. �

Remark 1.11 It has been shown that the gradient flow of the least squares
distance function fN : M (Q) → R with respect to the normal Riemannian
metric is the double bracket flow. This is no longer true if other Riemannian
metrices are considered. For example, the gradient of fN with respect to
the induced Riemannian metric is given by a very complicated formula in
N and H which makes it hard to analyze. This is the main reason why the
somewhat more complicated normal Riemannian metric is chosen. �

Flows on Orthogonal Matrices

The double bracket flow (1.1) provides a method to compute the eigenvalues
of a symmetric matrix H0. What about the eigenvectors of H0? Following
Brockett, we show that suitable gradient flows evolving on the group of
orthogonal matrices converge to the various eigenvector basis of H0.

Let O (n) denote the Lie group of n × n real orthogonal matrices and
let N and H0 be n × n real symmetric matrices. We consider the smooth
potential function

φ : O (n) → R, φ (Θ) = tr (NΘ′H0Θ) (1.21)

defined on O (n). Note that

‖N − Θ′H0Θ‖2 = ‖N‖2 − 2φ (Θ) + ‖H0‖2 ,

so that maximizing φ (Θ) over O (n) is equivalent to minimizing the least
squares distances ‖N − Θ′H0Θ‖2 of N to Θ′H0Θ ∈M (H0).

We need the following description of the tangent spaces of O (n).

Lemma 1.12 The tangent space of O (n) at Θ ∈ O (n) is

TΘO (n) =
{
ΘΩ | Ω′ = −Ω ∈ R

n×n} . (1.22)

Proof 1.13 Consider the smooth diffeomorphism λΘ : O (n) → O (n)
defined by left multiplication with Θ, ı.e. λΘ (ψ) = Θψ for ψ ∈ O (n).
The tangent space of O (n) at the n × n identity matrix I is
TIO (n) = {Ω ∈ Rn×n | Ω′ = −Ω}; i.e. is equal to the Lie algebra of skew-
symmetric matrices.

The derivative of λΘ at I is the linear isomorphism between tangent
spaces

D (λΘ)|I : TIO (n) → TΘO (n) , Ω �→ ΘΩ. (1.23)
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The result follows.

The standard Euclidean inner product 〈A,B〉 = tr (A′B) on R
n×n in-

duces an inner product on each tangent space TΘO (n), defined by

〈ΘΩ1,ΘΩ2〉 = tr
(
(ΘΩ1)

′ (ΘΩ2)
)

= tr (Ω′
1Ω2) . (1.24)

This defines a Riemannian matrix on O (n) to which we refer to as the
induced Riemannian metric on O (n). As an aside for readers with a back-
ground in Lie group theory, this metric coincides with the Killing form on
the Lie algebra of O (n), up to a constant scaling factor.

Theorem 1.14 Let N,H0 ∈ Rn×n be symmetric. Then:

(a) The differential equation

Θ̇ (t) = H0Θ (t)N − Θ (t)NΘ′ (t)H0Θ (t) , Θ (0) ∈ O (n)

(1.25)

induces a flow on the Lie group O (n) of orthogonal matrices. Also
(1.25) is the gradient flow Θ̇ = ∇φ (Θ) of the trace function (1.21)
on O (n) for the induced Riemannian metric on O (n).

(b) The solutions of (1.25) exist for all t ∈ R and converge to a connected
component of the set of equilibria points Θ∞ ∈ O (n). The set of
equilibria points Θ∞ of (1.25) is characterized by [N,Θ′

∞H0Θ∞] = 0.

(c) Let N = diag (µ1, . . . , µn) with µ1 > · · · > µn and suppose H0 has
distinct eigenvalues λ1 > · · · > λn. Then every solution Θ (t) of
(1.25) converges for t → ∞ to an orthogonal matrix Θ∞ satisfying
H0 = Θ∞ diag

(
λπ(1), . . . , λπ(n)

)
Θ′

∞ for a permutation matrix π. The
columns of Θ∞ are eigenvectors of H0.

(d) Let N = diag (µ1, . . . , µn) with µ1 > · · · > µn and suppose H0 has
distinct eigenvalues λ1 > · · · > λn. The Hessian of φ : O (n) → R

at each critical point is nonsingular. For almost all initial conditions
Θ0 ∈ O (n) the solution Θ (t) of (1.25) converges exponentially fast
to an eigenbasis Θ∞ of H0, such that H0 = Θ∞ diag (λ1, . . . , λn)Θ′∞
holds.

Proof 1.15 The derivative of φ : O (n) → R, φ (Θ) = tr (NΘ′H0Θ), at
Θ ∈ O (n) is the linear map on the tangent space TΘO (n) defined by

Dφ|Θ (ΘΩ) = tr (NΘ′H0ΘΩ −NΩΘ′H0Θ)
= tr ([N,Θ′H0Θ]Ω)

(1.26)
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for Ω′ = −Ω. Let ∇φ (Θ) denote the gradient of φ at Θ ∈ O (n), defined
with respect to the induced Riemannian metric on O (n). Thus ∇φ (Θ) is
characterized by

(a) ∇φ (Θ) ∈ TΘO (n) ,

(b) Dφ|φ (ΘΩ) = 〈∇φ (Θ) ,ΘΩ〉 = tr
(∇φ (Θ)′ ΘΩ

)
, (1.27)

for all skew-symmetric matrices Ω ∈ Rn×n. By (1.26) and (1.27) then

tr
(
(Θ′∇φ (Θ))′ Ω

)
= tr ([N,Θ′H0Θ]Ω) (1.28)

for all Ω′ = −Ω and thus, by skew symmetry of Θ′∇φ (Θ) and [N,Θ′H0Θ],
we have

Θ′∇φ (Θ) = − [N,Θ′H0Θ] . (1.29)

Therefore (1.25) is the gradient flow of φ : O (n) → R, proving (a).
By compactness of O (n) and by the convergence properties of gradient

flows, the solutions of (1.25) exist for all t ∈ R and converge to a connected
component of the set of equilibria points Θ∞ ∈ O (n), corresponding to a
fixed value of the trace function φ : O (n) → R. Also, Θ∞ ∈ O (n) is an
equilibrium print of (1.25) if and only if Θ∞ [N,Θ′∞H0Θ∞] = 0, i.e. as Θ∞
is invertible, if and only if [N,Θ′

∞H0Θ∞] = 0. This proves (b).
To prove (c) we need a lemma.

Lemma 1.16 Let N = diag (µ1, . . . , µn) with µ1 > · · · > µn. Let
ψ ∈ O (n) with H0 = ψ diag (λ1In1 , . . . , λrInr )ψ′, λ1 > · · · > λn and∑r
i=1 ni = n. Then the set of equilibria points of (1.25) is characterized as

Θ∞ = ψDπ (1.30)

where D = diag (D1, . . . , Dr) ∈ O (n1) × · · · × O (nr), Di ∈ O (ni),
i = 1, . . . , r, and π is an n× n permutation matrix.

Proof 1.17 By (b), Θ∞ is an equilibrium point if and only if
[N,Θ′

∞H0Θ∞] = 0. As N has distinct diagonal entries this condition is
equivalent to Θ′∞H0Θ∞ being a diagonal matrix Λ. This is clearly true for
matrices of the form (1.30). Now the diagonal elements of Λ are the eigen-
values of H0 and therefore Λ = π′ diag (λ1In1 , . . . , λrInr )π for an n × n
permutation matrix π. Thus

diag (λ1In1 , . . . , λrInr ) =πΘ′
∞H0Θ∞π′ (1.31)

=πΘ′
∞ψ diag (λ1In1 , . . . , λrInr )ψ′Θ∞π′.
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Thus ψ′Θ∞π′ commutes with diag (λ1In1 , . . . , λrInr ). But any orthogonal
matrix which commutes with diag (λ1In1 , . . . , λrInr ), λ1 > · · · > λr, is of
the form D = diag (D1, . . . , Dr) with Di ∈ O (ni), i = 1, . . . , r, orthogonal.
The result follows.

It follows from this lemma and the genericity conditions on N and H0

in (c) that the equilibria of (1.25) are of the form Θ∞ = ψDπ, where
D = diag (±1, . . . ,±1) is an arbitrary sign matrix and π is a permutation
matrix. In particular there are exactly 2nn! equilibrium points of (1.25). As
this number is finite, part (b) implies that every solution Θ (t) converges
to an element Θ∞ ∈ O(n) with Θ′∞H0Θ∞ = π′ diag (λ1, . . . , λn)π = diag(
λπ(1), . . . , λπ(n)

)
.

In particular, the column vectors of Θ∞ are eigenvectors of H0. This
completes the proof of (c).

To prove (d) we linearize the flow (1.25) around each equilibrium point.
The linearization of (1.25) at Θ∞ = ψDπ, where D = diag (d1, . . . , dn),
di ∈ {±1}, is

ξ̇ = −Θ∞ [N, ξ′H0Θ∞ + Θ′
∞H0ξ] (1.32)

for ξ = Θ∞Ω ∈ TΘ∞O (n). Thus (1.32) is equivalent to

Ω̇ = − [N, [Θ′
∞H0Θ∞,Ω]] (1.33)

on the linear space skew (n) of skew-symmetric n× n matrices Ω. As

Θ′
∞H0Θ∞ = diag

(
λπ(1), . . . , λπ(n)

)
,

this is equivalent, in terms of the matrix entries of Ω = (Ωij), to the
decoupled set of linear differential equations

Ω̇ij = − (
λπ(i) − λπ(j)

)
(µi − µj)Ωij , i > j. (1.34)

From this it follows immediately that the eigenvalues of the lineariza-
tion at Θ∞ are nonzero. Furthermore, they are all negative if and only if(
λπ(1), . . . , λπ(n)

)
and (µ1, . . . , µn) are similarly ordered, that is if and only

if π = In. Arguing as in the proof of Theorem 1.5, the union of the unstable
manifolds of the critical points Θ∞ = ψDπ with π �= In is a closed subset
of O (n) of co-dimension at least one. Its complement thus forms an open
and dense subset of O (n). It is the union of the domains of attractions
for the 2n locally stable attractors Θ∞ = ψD, with D = diag (±1, . . . ,±1)
arbitrary. This completes the proof of (d).

Remark 1.18 In Part (b) of the above theorem it has been stated that
every solution of (1.24) converges to a connected component of the set of
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equilibria points. Again, it can be shown that φ : O (n) → R, φ (Θ) =
tr (NΘ′H0Θ), is a Morse-Bott function. Thus, using Proposition 1.3.9, any
solution of (1.24) is converging to an equilibrium point rather than a set
of equilibria. �

It is easily verified that Θ (t) given from (1.25) implies that

H (t) = Θ′ (t)H0Θ (t) (1.35)

is a solution of the double bracket equation (1.1). In this sense, the double
bracket equation is seen as a projected gradient flow from O (n). A final
observation is that in maximizing φ (Θ) = tr (NΘ′HΘ) over O (n) in the
case of generic matrices N , H0 as in Theorem 1.14 Part (d), then of the
2nn! possible equilibria Θ∞ = ψDπ, the 2n maxima of φ : O (n) → R with
π = In maximize the sum of products of eigenvalues

∑n
i=1 λπ(i)µi. This

ties in with a classical result that to maximize
∑n
i=1 λπ(i)µi there must be

a “similar” ordering; see Hardy, Littlewood and Polya (1952).

Problem 1.19 For a nonsingular positive definite symmetric matrix A,
show that the solutions of the equation Ḣ = [H,A [H,N ]A] converges to
the set of H∞ satisfying [H∞, N ] = 0. Explore the convergence properties
in the case where A is diagonal.

Problem 1.20 Let A,B ∈ Rn×n be symmetric. For any integer i ∈ N

define adiA (B) recursively by adA (B) := AB − BA, adiA (B) =
adA

(
adi−1

A (B)
)
, i ≥ 2. Prove that adiA (B) = 0 for some i ≥ 1 implies

adA (B) = 0. Deduce that for i ≥ 1 arbitrary

Ḣ =
[
H, adiH (N)

]
has the same equilibria as (1.1).

Problem 1.21 Let diag (H) = diag (h11, . . . , hnn) denote the diagonal ma-
trix with diagonal entries identical to those of H. Consider the problem
of minimizing the distance function g : M (Q) → R defined by g (H) =
‖H − diag (H)‖2. Prove that the gradient flow of g with respect to the nor-
mal Riemannian metric is

Ḣ = [H, [H, diag (H)]] .

Show that the equilibrium points satisfy [H∞, diag (H∞)] = 0.

Problem 1.22 Let N ∈ Rn×n be symmetric. Prove that the gradient flow
of the function H �→ tr

(
NH2

)
on M (Q) with respect to the normal Rie-

mannian metric is
Ḣ =

[
H,

[
H2, N

]]
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Investigate the convergence properties of the flow. Generalize to tr (NHm)
for m ∈ N arbitrary!

Main Points of Section

An eigenvalue/eigenvector decomposition of a real symmetric matrix can
be achieved by minimizing a matrix least squares distance function via a
gradient flow on the Lie group of orthogonal matrices with an appropriate
Riemannian metric. The distance function is a smooth Morse-Bott function.

The isospectral double bracket flow on homogeneous spaces of symmetric
matrices converges to a diagonal matrix consisting of the eigenvalues of the
initial condition. A specific choice of Riemannian metric allows a particu-
larly simple form of the gradient. The convergence rate is exponential, with
stability properties governed by a linearization of the equations around the
critical points.

2.2 Toda Flows and the Riccati Equation

The Toda Flow

An important issue in numerical analysis is to exploit special structures of
matrices to develop faster and more reliable algorithms. Thus, for example,
in eigenvalue computations an initial matrix is often first transformed into
Hessenberg form and the subsequent operations are performed on the set
of Hessenberg matrices. In this section we study this issue for the double
bracket equation. For appropriate choices of the parameter matrix N , the
double bracket flow (1.1) restricts to a flow on certain subclasses of sym-
metric matrices. We treat only the case of symmetric Hessenberg matrices.
These are termed Jacobi matrices and are banded, being tri-diagonal, sym-
metric matrices H = (hij) with hij = 0 for |i− j| ≥ 2.

Lemma 2.1 Let N = diag (1, 2, . . . , n) and let H be a Jacobi matrix. Then
[H, [H,N ]] is a Jacobi matrix, and (1.1) restricts to a flow on the set of
isospectral Jacobi matrices.

Proof 2.2 The (i, j)-th entry of B = [H, [H,N ]] is

bij =
n∑
k=1

(2k − i− j)hikhkj .
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Hence for |i− j| ≥ 3 and k = 1, . . . , n, then hik = 0 or hkj = 0 and
therefore bij = 0. Suppose j = i+ 2. Then for k = i+ 1

bij = (2 (i+ 1) − i− j)hi,i+1hi+1,i+2 = 0.

Similarly for i = j + 2. This completes the proof.

Actually for N = diag (1, 2, . . . , n) and H a Jacobi matrix

HN −NH = Hu −H�, (2.1)

where

Hu =




h11 h12 0

0 h22
. . .

...
. . . . . . hn−1,n

0 . . . 0 hnn,




and

H� =




h11 0 . . . 0

h21 h22
. . .

...
. . . . . . 0

0 hn,n−1 hnn




denote the upper triangular and lower triangular parts of H respectively.
(This fails if H is not Jacobi; why?) Thus, for the above special choice of
N , the double bracket flow induces the isospectral flow on Jacobi matrices

Ḣ = [H,Hu −H�] . (2.2)

The differential equation (2.2) is called the Toda flow. This connection
between the double bracket flow (1.1) and the Toda flow has been first ob-
served by Bloch (1990b). For a thorough study of the Toda lattice equation
we refer to Kostant (1979). Flaschka (1974) and Moser (1975) have given
the following Hamiltonian mechanics interpretation of (2.2). Consider the
system of n idealized mass points x1 < · · · < xn on the real axis.

Let us suppose that the potential energy of this system of points
x1, . . . , xn is given by

V (x1, . . . , xn) =
n∑
k=1

exk−xk+1
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� � � � � �

x0 = −∞ x1 xi xi+1 xn xn+1 = +∞

FIGURE 2.1. Mass points on the real axis

xn+1 = +∞, while the kinetic energy is given as usual by 1
2

∑n
k=1 ẋ

2
k. Thus

the total energy of the system is given by the Hamiltonian

H (x, y) =
1
2

n∑
k=1

y2
k +

n∑
k=1

exk−xk+1 , (2.3)

with yk = ẋk the momentum of the k-th mass point. Thus the associated
Hamiltonian system is described by

ẋk =
∂H

∂yk
= yk,

ẏk = − ∂H

∂xk
= exk−1−xk − exk−xk+1 , (2.4)

for k = 1, . . . , n. In order to see the connection between (2.2) and (2.4) we
introduce the new set of coordinates (this trick is due to Flaschka).

ak = 1
2e

(xk−xk+1)/2, bk = 1
2yk, k = 1, . . . , n. (2.5)

Then with

H =




b1 a1 0

a1 b2
. . .

. . . . . . an−1

0 an−1 bn



,

the Jacobi matrix defined by ak, bk, it is easy to verify that (2.4) holds if
and only if H satisfies the Toda lattice equation (2.2).

Let Jac (λ1, . . . , λn) denote the set of n× n Jacobi matrices with eigen-
values λ1 ≥ · · · ≥ λn. The geometric structure of Jac (λ1, . . . , λn) is rather
complicated and not completely understood. However Tomei (1984) has
shown that for distinct eigenvalues λ1 > · · · > λn the set Jac (λ1, . . . , λn) is
a smooth, (n− 1)-dimensional compact manifold. Moreover, Tomei (1984)
has determined the Euler characteristic of Jac (λ1, . . . , λn). He shows that
for n = 3 the isospectral set Jac (λ1, λ2, λ3) for λ1 > λ2 > λ3 is a compact
Riemann surface of genus two. With these remarks in mind, the following
result is an immediate consequence of Theorem 1.5.
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Corollary 2.3

(a) The Toda flow (2.2) is an isospectral flow on the set of real symmetric
Jacobi matrices.

(b) The solution H (t) of (2.2) exists for all t ∈ R and converges to a
diagonal matrix as t→ ±∞.

(c) Let N = diag (1, 2, . . . , n) and λ1 > · · · > λn. The Toda flow on
the isospectral manifold Jac (λ1, . . . , λn) is the gradient flow for the
least squares distance function fN : Jac (λ1, . . . , λn) → R, fN (H) =
− 1

2 ‖N −H‖2.

Remark 2.4 In Part (c) of the above Corollary, the underlying Rieman-
nian metric on Jac (λ1, . . . , λn) is just the restriction of the Riemannian
metric 〈 , 〉 appearing in Theorem 1.5 from M (Q) to Jac (λ1, . . . , λn). �

Connection with the Riccati equation

There is also an interesting connection of the double bracket equation (1.1)
with the Riccati equation. For any real symmetric n× n matrix

Q = diag (λ1In1 , . . . , λrInr ) (2.6)

with distinct eigenvalues λ1 > · · · > λr and multiplicities n1, . . . , nr, with∑r
i=1 ni = n, let

M (Q) = {Θ′QΘ | Θ′Θ = In} (2.7)

denote the isospectral manifold of all symmetric n × n matrices H which
are orthogonally similar to Q. The geometry of M (Q) is well understood,
in fact, M (Q) is known to be diffeomorphic to a flag manifold. By the
isospectral property of the double bracket flow, it induces by restriction a
flow on M (Q) and therefore on a flag manifold. It seems difficult to analyze
this induced flow in terms of the intrinsic geometry of the flag manifold;
see however Duistermaat et al. (1983). We will therefore restrict ourselves
to the simplest nontrivial case r = 2. But first let us digress on the topic
of flag manifolds.

Digression: Flag Manifolds
A flag in R

n is an increasing sequence of subspaces V1 ⊂ · · · ⊂ Vr ⊂ R
n of

R
n, 1 ≤ r ≤ n. Thus for r = 1 a flag is just a linear subspace of R

n. Flags
V1 ⊂ · · · ⊂ Vn ⊂ R

n with dim Vi = i, i = 1, . . . , n, are called complete, and
flags with r < n are called partial.
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Given any sequence (n1, . . . , nr) of nonnegative integers with n1 + · · · +
nr ≤ n, the flag manifold Flag (n1, . . . , nr) is defined as the set of all flags
(V1, . . . , Vr) of vector spaces with V1 ⊂ · · · ⊂ Vr ⊂ R

n and dimVi = n1+· · ·+
ni, i = 1, . . . , r. Flag (n1, . . . , nr) is a smooth, connected, compact manifold.
For r = 1, Flag (n1) = GrassR (n1, n) is just the Grassmann manifold of
n1-dimensional linear subspaces of R

n. In particular, for n = 2 and n1 = 1,
Flag (1) = RP

1 is the real projective line and is thus homeomorphic to the
circle S1 =

{
(x, y) ∈ R

2 | x2 + y2 = 1
}
.

Let Q = diag (λ1In1 , . . . , λrInr ) with λ1 > · · · > λr and n1 + · · · + nr = n
and let M (Q) be defined by (1.2). Using (1.6) it can be shown that M (Q) is
diffeomorphic to the flag manifold Flag (n1, . . . , nr). This isospectral picture
of the flag manifold will be particularly useful to us. In particular for r =
2 we have a diffeomorphism of M (Q) with the real Grassmann manifold
GrassR (n1, n) of n1-dimensional linear subspaces of R

n. This is in harmony
with the fact, mentioned earlier in Chapter 1, that for Q = diag (Ik, 0) the
real Grassmann manifold GrassR (k, n) is diffeomorphic to the set M (Q) of
rank k symmetric projection operators of R

n.

Explicitly, to any orthogonal matrix n× n matrix

Θ =




Θ1

...

Θr




with Θi ∈ R
ni×n, i = 1, . . . , r, and n1 + · · · + nr = n, we associate the flag

of vector spaces

VΘ := (V1 (Θ) , . . . , Vr (Θ)) ∈ Flag (n1, . . . , nr) .

Here Vi (Θ), i = 1, . . . , r, is defined as the (n1 + · · · + ni)-dimensional vec-
tor space in R

n which is generated by the row vectors of the sub-matrix
[ Θ′

1 ... Θ′
i ]′ This defines a map

f : M (Q) →Flag (n1, . . . , nr)

Θ′QΘ �→VΘ.

Note that, if Θ′QΘ = Θ̂′QΘ̂ then Θ̂ = ψΘ for an orthogonal matrix ψ
which satisfies ψ′Qψ = Q. But this implies that ψ = diag (ψ1, . . . , ψr) is
block diagonal and therefore VΘ̂ = VΘ, so that f is well defined.

Conversely, VΘ̂ = VΘ implies Θ̂ = ψΘ for an orthogonal matrix ψ =
diag (ψ1, . . . , ψr). Thus the map f is well-defined and injective. It is easy
to see that f is in fact a smooth bijection. The inverse of f is

f−1 : Flag (n1, . . . , nr) →M (Q)

V = (V1, . . . , Vr) �→Θ′
VQΘV
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where

ΘV =




Θ1

...

Θr


 ∈ O (n)

and Θi is any orthogonal basis of the orthogonal complement V ⊥
i−1 ∩ Vi of

Vi−1 in Vi; i = 1, . . . , r. It is then easy to check that f−1 is smooth and thus
f : M (Q) → Flag (n1, . . . , nr) is a diffeomorphism.

With the above background material on flag manifolds, let us proceed
with the connection of the double bracket equation to the Riccati equation.
Let GrassR (k, n) denote the Grassmann manifold of k-dimensional linear
subspaces of Rn. Thus GrassR (k, n) is a compact manifold of dimension
k (n− k). For k = 1, GrassR (1, n) = RPn−1 is the (n− 1)-dimensional
projective space of lines in R

n (see digression on projective spaces of Sec-
tion 1.2).

For

Q =

[
Ik 0
0 0

]
,

M (Q) coincides with the set of all rank k symmetric projection operators
H of Rn:

H ′ = H, H2 = H, rankH = k, (2.8)

and we have already shown (see digression) that M (Q) is diffeomorphic to
the Grassmann manifold GrassR (k, n). The following result is a generaliza-
tion of this observation.

Lemma 2.5 For Q = diag (λ1Ik, λ2In−k), λ1 > λ2, the isospectral mani-
fold M (Q) is diffeomorphic to the Grassmann manifold GrassR (k, n).

Proof 2.6 To any orthogonal n× n matrix

Θ =

[
Θ1

Θ2

]
, Θ1 ∈ R

k×n, Θ2 ∈ R
(n−k)×n,

we associate the k dimensional vector-space VΘ1 ⊂ Rn, which is generated
by the k orthogonal row vectors of Θ1. This defines a map

f : M (Q) →GrassR (k, n) ,
Θ′QΘ �→VΘ1 .

(2.9)
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Note that, if Θ′QΘ = Θ̂′QΘ̂ then Θ̂ = ψΘ for an orthogonal matrix ψ
which satisfies ψ′Qψ = Q. But this implies that ψ = diag (ψ1, ψ2) and
therefore VΘ̂1

= VΘ1 and f is well defined. Conversely, VΘ̂1
= VΘ1 implies

Θ̂ = ψΘ for an orthogonal matrix ψ = diag (ψ1, ψ2). Thus (2.9) is injective.
It is easy to see that f is a bijection and a diffeomorphism. In fact, asM (Q)
is the set of rank k symmetric projection operators, f (H) ∈ GrassR (k, n)
is the image of H ∈ M (Q). Conversely let X ∈ Rn×k be such that the
columns of X generate a k-dimensional linear subspace V ⊂ Rn. Then

PX := X (X ′X)−1
X ′

is the Hermitian projection operator onto V and

f−1 : GrassR (k, n) →M (Q)

column span (X) �→X (X ′X)−1
X ′

is the inverse of f . It is obviously smooth and a diffeomorphism.

Every n×n matrix N ∈ Rn×n induces a flow on the Grassmann manifold

ΦN : R × GrassR (k, n) → GrassR (k, n)

defined by

ΦN (t, V ) = etN · V, (2.10)

where etN · V denotes the image of the k-dimensional subspace V ⊂ Rn

under the invertible linear transformation etN : R
n → R

n. We refer to
(2.10) as the flow on GrassR (k, n) which is linearly induced by N .

We have already seen in Section 1.2, that linearly induced flows on the
Grassmann manifold GrassR (k, n) correspond to the matrix Riccati equa-
tion

K̇ = A21 +A22K −KA11 −KA12K (2.11)

on R
(n−k)×k, where A is partitioned as

A =

[
A11 A12

A21 A22

]
.

Theorem 2.7 Let N ∈ Rn×n be symmetric and Q = diag (λ1Ik, λ2In−k),
λ1 > λ2, for 1 ≤ k ≤ n − 1. The double bracket flow (1.1) is equivalent
via the map f , defined by (2.9), to the flow on the Grassmann manifold
GrassR (k, n) linearly induced by (λ1 − λ2)N . It thus induces the Riccati
equation (2.11) with generating matrix A = (λ1 − λ2)N .
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Proof 2.8 Let H0 = Θ′
0QΘ0 ∈M (Q) and let H (t) ∈M (Q) be a solution

of (1.1) with H (0) = H0. We have to show that for all t ∈ R

f (H (t)) = et(λ1−λ2)NV0, (2.12)

where f is defined by (2.9) and V0 = VΘ0 . By Theorem 1.14, H (t) =
Θ (t)′QΘ (t) where Θ (t) satisfies the gradient flow on O (n)

Θ̇ = Θ (Θ′QΘN −NΘ′QΘ) . (2.13)

Hence for X = Θ′

Ẋ = NXQ−XQX ′NX. (2.14)

Let X (t), t ∈ R, be any orthogonal matrix solution of (2.14). (Note
that orthogonality of X (t) holds automatically in case of orthogonal initial
conditions.) Let S (t) ∈ Rn×n, S (0) = In, be the unique matrix solution of
the linear time-varying system

Ṡ = X (t)′NX (t) ((λ1 − λ2)S −QS) +QX (t)′NX (t)S. (2.15)

Let Sij (t) denote the (i, j)-block entry of S (t). Suppose S21 (t0) = 0 for
some t0 ∈ R. A straightforward computation using (2.15) shows that then
also Ṡ21 (t0) = 0. Therefore (2.15) restricts to a time-varying flow on the
subset of block upper triangular matrices. In particular, the solution S (t)
with S (0) = In is block upper triangular for all t ∈ R

S (t) =

[
S11 (t) S12 (t)

0 S22 (t)

]
.

Lemma 2.9 For any solution X (t) of (2.14) let

S =

[
S11 S12

0 S22

]

be the solution of (2.15) with S (0) = In. Then

X (t) · S (t) = et(λ1−λ2)N ·X (0) . (2.16)

Proof 2.10 Let Y (t) = X (t) · S (t). Then

Ẏ =ẊS +XṠ

=NXQS −XQX ′NXS +NX ((λ1 − λ2)S −QS) +XQX ′NXS
=(λ1 − λ2)NY.

Let Z (t) = et(λ1−λ2)N ·X (0). Now Y and Z both satisfy the linear dif-
ferential equation ξ̇ = (λ1 − λ2)Nξ with identical initial condition Y (0) =
Z (0) = X (0). Thus Y (t) = Z (t) for all t ∈ R and the lemma is proved.
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We now have the proof of Theorem 2.7 in our hands. In fact, let V (t) =
f (H (t)) ∈ GrassR (k, n) denote the vector space which is generated by the
first k column vectors of X (t). By the above lemma

V (t) = et(λ1−λ2)NV (0)

which completes the proof.

One can use Theorem 2.7 to prove results on the dynamic Riccati equa-
tion arising in linear optimal control, see Anderson and Moore (1990). Let

N =

[
A −BB′

−C′C −A′

]
(2.17)

be the Hamiltonian matrix associated with a linear system

ẋ = Ax+Bu, y = Cx (2.18)

where A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n. If m = p and (A,B,C) =

(A′, C′, B′) then N is symmetric and we can apply Theorem 2.7.

Corollary 2.11 Let (A,B,C) = (A′, C′, B′) be a symmetric controllable
and observable realization. The Riccati equation

K̇ = −KA−A′K +KBB′K − C′C (2.19)

extends to a gradient flow on GrassR (n, 2n) given by the double bracket
equation (1.1) under (2.19). Every solution in GrassR (n, 2n) converges to
an equilibrium point. Suppose

N =

[
A −BB′

−C′C −A′

]

has distinct eigenvalues. Then (2.19) has ( 2n
n ) equilibrium points in the

Grassmannian GrassR (n, 2n), exactly one of which is asymptotically stable.

Proof 2.12 By Theorem 2.7 the double bracket flow on M (Q) for Q =[
Ik 0
0 0

]
is equivalent to the flow on the Grassmannian GrassR (n, 2n) which

is linearly induced by N . If N has distinct eigenvalues, then the double
bracket flow on M (Q) has

(
2n
n

)
equilibrium points with exactly one be-

ing asymptotically stable. Thus the result follows immediately from Theo-
rem 1.5.
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Remark 2.13 A transfer function G (s) = C (sI −A)−1
B has a symmet-

ric realization (A,B,C) = (A′, C′, B′) if and only if G (s) = G (s)′ and
the Cauchy index of G (s) is equal to the McMillan degree; Youla and Tissi
(1966), Brockett and Skoog (1971). Such transfer functions arise frequently
in circuit theory. �

Remark 2.14 Of course the second part of the theorem is a well-known
fact from linear optimal control theory. The proof here, based on the proper-
ties of the double bracket flow, however, is new and offers a rather different
approach to the stability properties of the Riccati equation. �

Remark 2.15 A possible point of confusion arising here might be that in
some cases the solutions of the Riccati equation (2.19) might not exist for
all t ∈ R (finite escape time) while the solutions to the double bracket equa-
tion always exist for all t ∈ R. One should keep in mind that Theorem 2.7
only says that the double bracket flow on M (Q) is equivalent to a linearly
induced flow on GrassR (n, 2n). Now the Riccati equation (2.19) is the vec-
tor field corresponding to the linear induced flow on an open coordinate
chart of GrassR (n, 2n) and thus, up to the change of variables described by
the diffeomorphism f : M (Q) → GrassR (n, 2n), coincides on that open co-
ordinate chart with the double bracket equation. Thus the double bracket
equation on M (Q) might be seen as an extension or completion of the
Riccati vector field (2.19). �

Remark 2.16 For Q =
[
Ik 0
0 0

]
any H ∈M (Q) satisfies H2 = H . Thus the

double bracket equation on M (Q) becomes the special Riccati equation on
Rn×n

Ḣ = HN +NH − 2HNH

which is shown in Theorem 2.7 to be equivalent to the general matrix
Riccati equation (for N symmetric) on R

(n−k)×k. �

Finally we consider the case k = 1, i.e. the associated flow on the pro-
jective space RPn−1. Thus let Q = diag (1, 0, . . . , 0). Any H ∈ M (Q) has
a representation H = x · x′ where x′ = (x1, . . . , xn),

∑n
j=1 x

2
j = 1, and x is

uniquely determined up to multiplication by ±1. The double bracket flow
on M (Q) is equivalent to the gradient flow of the standard Morse function

Φ (x) =
1
2

tr (Nxx′) =
1
2

n∑
i,j=1

nijxixj .

on RP
n−1 see Milnor (1963). Moreover, the Lie bracket flow (1.25) on O (n)

induces, for Q as above, the Rayleigh quotient flow on the (n− 1) sphere
Sn−1 of Section 1.3.
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Problem 2.17 Prove that every solution of

Ḣ = AH +HA− 2HAH, H (0) = H0, (2.20)

has the form

H (t) = etAH0

(
In −H0 + e2tAH0

)−1
etA, t ∈ R.

Problem 2.18 Show that the spectrum (i.e. the set of eigenvalues)
σ (H (t)) of any solution is given by

σ (H (t)) = σ
(
H0

(
e−2tA (In −H0) +H0

))
.

Problem 2.19 Show that for any solution H (t) of (2.20) also G (t) =
In −H (−t) solves (2.20).

Problem 2.20 Derive similar formulas for time-varying matrices A (t).

Main Points of Section

The double bracket equation Ḣ = [H, [H,N ]] with H (0) a Jacobi matrix
and N = diag (1, 2, . . . , n) preserves the Jacobi property in H (t) for all
t ≥ 0. In this case the double bracket equation is the Toda flow Ḣ =
[H,Hu −H�] which has interpretations in Hamiltonian mechanics.

For the case of symmetric matrices N and Q = diag (λ1Ik, λ2In−k)
with λ1 > λ2, the double bracket flow is equivalent to the flow on the
Grassmann manifold GrassR (k, n) linearly induced by (λ1 − λ2)N . This
in turn is equivalent to a Riccati equation (2.11) with generating matrix
A = (λ1 − λ2)N . This result gives an interpretation of certain Riccati
equations of linear optimal control as gradient flows.

For the special case Q = diag (Ik, 0, . . . , 0), then H2 = H and the double
bracket equation becomes the special Riccati equation Ḣ = HN +NH −
2HNH . When k = 1, then H = xx′ with x a column vector and the double
bracket equation is induced by ẋ = (N − x′NxIn)x, which is the Rayleigh
quotient gradient flow of tr (Nxx′) on the sphere Sn−1.

2.3 Recursive Lie-Bracket Based Diagonalization

Now that the double bracket flow with its rich properties has been studied,
it makes sense to ask whether or not there are corresponding recursive
versions. Indeed there are. For some ideas and results in this direction we
refer to Chu (1992b), Brockett (1993), and Moore, Mahony and Helmke
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(1994). In this section we study the following recursion, termed the Lie-
bracket recursion,

Hk+1 = e−α[Hk,N ]Hke
α[Hk,N ], H0 = H ′

0, k ∈ N (3.1)

for arbitrary symmetric matrices H0 ∈ Rn×n, and some suitably small
scalar α, termed a step size scaling factor. A key property of the recursion
(3.1) is that it is isospectral. This follows since eα[Hk,N ] is orthogonal, as
indeed is any eA where A is skew symmetric.

To motivate this recursion (3.1), observe that Hk+1 is also the solution
at time t = α to a linear matrix differential equation initialized by Hk as
follows

dH̄

dt
=

[
H̄, [Hk, N ]

]
, H̄ (0) = Hk,

Hk+1 =H̄ (α) .

For small t, and thus α small, H̄ (t) appears to be a solution close to
that of the corresponding double bracket flow H (t) of Ḣ = [H, [H,N ]],
H (0) = Hk. This suggests, that for step-size scaling factors not too large,
or not decaying to zero too rapidly, that the recursion (3.1) should inherit
the exponential convergence rate to desired equilibria of the continuous-
time double bracket equation. Indeed, in some applications this piece-wise
constant, linear, and isospectral differential equation may be more attrac-
tive to implement than a nonlinear matrix differential equation.

Our approach in this section is to optimize in some sense the α selections
in (3.1) according to the potential of the continuous-time gradient flow. The
subsequent bounding arguments are similar to those developed by Brockett
(1993), see also Moore et al. (1994). In particular, for the potential function

fN (Hk) = − 1
2 ‖N −Hk‖2 = tr (NHk) − 1

2 ‖N‖2 − 1
2 ‖H0‖2 (3.2)

we seek to maximize at each iteration its increase

∆fN (Hk, α) := fN (Hk+1) − fN (Hk) = tr (N (Hk+1 −Hk)) (3.3)

Lemma 3.1 The constant step-size selection

α =
1

4 ‖H0‖ · ‖N‖ (3.4)

satisfies ∆fN (Hk, α) > 0 if [Hk, N ] �= 0.
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Proof 3.2 Let Hk+1 (τ) = e−τ [Hk,N ]Hke
τ [Hk,N ] be the k+1th iteration of

(3.1) for an arbitrary step-size scaling factor τ ∈ R. It is easy to verify that

d

dτ
Hk+1 (τ) = [Hk+1 (τ) , [Hk, N ]]

d2

dτ2
Hk+1 (τ) = [[Hk+1 (τ) , [Hk, N ]] , [Hk, N ]] .

Applying Taylor’s theorem, then since Hk+1 (0) = Hk

Hk+1 (τ) =Hk + τ [Hk, [Hk, N ]] + τ2R2 (τ) ,

where

R2 (τ) =
∫ 1

0

[[Hk+1 (yτ) , [Hk, N ]] , [Hk, N ]] (1 − y) dy. (3.5)

Substituting into (3.3) gives, using matrix norm inequalities outlined in
Sections A.6 and A.9,

∆fN (Hk, τ) = tr
(
N

(
τ [Hk, [Hk, N ]] + τ2R2 (τ)

))
=τ ‖[Hk, N ]‖2 + τ2 tr (NR2 (τ))

≥τ ‖[Hk, N ]‖2 − τ2 |tr (NR2 (τ))|
≥τ ‖[Hk, N ]‖2 − τ2 ‖N‖ · ‖R2 (τ)‖
≥τ ‖[Hk, N ]‖2 − τ2 ‖N‖

·
∫ 1

0

‖[[Hk+1 (yτ) , [Hk, N ]] , [Hk, N ]]‖ (1 − y) dy

≥τ ‖[Hk, N ]‖2 − 2τ2 ‖N‖ · ‖H0‖ · ‖[Hk, N ]‖2

=:∆fLN (Hk, τ) . (3.6)

Thus ∆fLN (Hk, τ) is a lower bound for ∆fN (Hk, τ) and has the property
that for sufficiently small τ > 0, it is strictly positive, see Figure 3.1. Due
to the explicit form of ∆fLN (Hk, τ) in τ , it is immediately clear that if
[Hk, N ] �= 0, then α = 1/ (4 ‖H0‖ ‖N‖) is the unique maximum of (3.6).
Hence, fN (Hk, α) ≥ fLN (Hk, α) > 0 for [Hk, N ] �= 0.

This lemma leads to the main result of the section.

Theorem 3.3 Let H0 = H ′
0 be a real symmetric n× n matrix with eigen-

values λ1 ≥ · · · ≥ λn and let N = diag (µ1, . . . , µn), µ1 > · · · > µn. The
Lie-bracket recursion (3.1), restated as

Hk+1 = e−α[Hk,N ]Hke
α[Hk,N ], α = 1/ (4 ‖H0‖ · ‖N‖) (3.7)

with initial condition H0, has the following properties:
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FIGURE 3.1. The lower bound on ∆fL
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(a) The recursion is isospectral.

(b) If (Hk) is a solution of the Lie-bracket algorithm, then fN (Hk) of
(3.2) is a strictly monotonically increasing function of k ∈ N, as long
as [Hk, N ] �= 0.

(c) Fixed points of the recursive equation are characterised by matrices
H∞ ∈ M (H0) such that [H∞, N ] = 0, being exactly the equilibrium
points of the double bracket equation (1.1).

(d) Let (Hk), k = 1, 2, . . . , be a solution to the recursive Lie-bracket
algorithm, then Hk converges to a matrix H∞ ∈M (H0), [H∞, N ] =
0, an equilibrium point of the recursion.

(e) All equilibrium points of the recursive Lie-bracket algorithm are un-
stable, except for Q = diag (λ1, . . . , λn) which is locally exponentially
stable.

Proof 3.4 To prove Part (a), note that the Lie-bracket [H,N ]′ = − [H,N ]
is skew-symmetric. As the exponential of a skew-symmetric matrix is or-
thogonal, (3.1) is just conjugation by an orthogonal matrix, and hence is an
isospectral transformation. Part (b) is a direct consequence of Lemma 3.1.

For Part (c) note that if [Hk, N ] = 0, then by direct substitution into
(3.1) we see Hk+l = Hk for l ≥ 1, and thus Hk is a fixed point. Conversely
if [Hk, N ] �= 0, then from (3.6), ∆fN (Hk, α) �= 0, and thus Hk+1 �= Hk.
In particular, fixed points of (3.1) are equilibrium points of (1.1), and
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furthermore, from Theorem 1.5, these are the only equilibrium points of
(1.1).

To show Part (d), consider the sequence Hk generated by the recursive
Lie-bracket algorithm for a fixed initial conditionH0. Observe that Part (b)
implies that fN (Hk) is strictly monotonically increasing for all k where
[Hk, N ] �= 0. Also, since fN is a continuous function on the compact set
M (H0), then fN is bounded from above, and fN (Hk) will converge to
some f∞ ≤ 0 as k → ∞. As fN (Hk) → f∞ then ∆fN (Hk, α

c) → 0.
For some small positive number ε, define an open set Dε ⊂ M (H0)

consisting of all points of M (H0), within an ε-neighborhood of some equi-
librium point of (3.1). The set M (H0)−Dε is a closed, compact subset of
M (H0), on which the matrix function H �→ ‖[H,N ]‖ does not vanish. As
a consequence, the difference function (3.3) is continuous and strictly posi-
tive on M (H0)−Dε, and thus, is under bounded by some strictly positive
number δ1 > 0. Moreover, as ∆fN (Hk, α) → 0, there exists a K = K (δ1)
such that for all k > K then 0 ≤ ∆fN (Hk, α) < δ1. This ensures that
Hk ∈ Dε for all k > K. In other words, (Hk) is converging to some subset
of possible equilibrium points.

From Theorem 1.5 and the imposed genericity assumption on N , it is
known that the double bracket equation (1.1) has only a finite number
of equilibrium points. Thus Hk converges to a finite subset in M (H0).
Moreover, [Hk, N ] → 0 as k → ∞. Therefore ‖Hk+1 −Hk‖ → 0 as k →
∞. This shows that (Hk) must converge to an equilibrium point, thus
completing the proof of Part (d).

To establish exponential convergence, note that since α is constant, the
map

H �→ e−α[H,N ]Heα[H,N ]

is a smooth recursion on all M (H0), and we may consider the lineariza-
tion of this map at an equilibrium point π′Qπ. The linearization of this
recursion, expressed in terms of Ξk ∈ Tπ′QπM (H0), is

Ξk+1 = Ξk − α [(ΞkN −NΞk)π′Qπ − π′Qπ (ΞkN −NΞk)] . (3.8)

Thus for the elements of Ξk = (ξij)k we have

(ξij)k+1 =
[
1 − α

(
λπ(i) − λπ(j)

)
(µi − µj)

]
(ξij)k , for i, j = 1, . . . , n.

(3.9)

The tangent space Tπ′QπM (H0) at π′Qπ consists of those matrices Ξ =
[π′Qπ,Ω] where Ω ∈ skew (n), the class of skew symmetric matrices. Thus,
the matrices Ξ are linearly parametrized by their components ξij , where
i < j, and λπ(i) �= λπ(j). As this is a linearly independent parametrisa-
tion, the eigenvalues of the linearization (3.8) can be read directly from
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the linearization (3.9), and are 1−α (
λπ(i) − λπ(j)

)
(µi − µj), for i < j and

λπ(i) �= λπ(j). From classical stability theory for discrete-time linear dy-
namical systems, (3.8) is asymptotically stable if and only if all eigenvalues
have absolute value less than 1. Equivalently, (3.8) is asymptotically stable
if and only if

0 < α
(
λπ(i) − λπ(j)

)
(µi − µj) < 2

for all i < j with λπ(i) �= λπ(j). This condition is only satisfied when
π = I and consequently π′Qπ = Q. Thus the only possible stable equilib-
rium point for the recursion is H∞ = Q. Certainly (λi − λj) (µi − µj) <
4 ‖N‖2 ‖H0‖2. Also since ‖N‖2 ‖H0‖2 < 2 ‖N‖ ‖H0‖ we have α <

1
2‖N‖2‖H0‖2

. Therefore α (λi − λj) (µi − µj) < 2 for all i < j which es-
tablishes exponential stability of (3.8). This completes the proof.

Remark 3.5 In the nongeneric case whereN has multiple eigenvalues, the
proof techniques for Parts (d) and (e) do not apply. All the results except
convergence to a single equilibrium point remain in force. �

Remark 3.6 It is difficult to characterise the set of exceptional initial
conditions, for which the algorithm converges to some unstable equilibrium
point H∞ �= Q. However, in the continuous-time case it is known that the
unstable basins of attraction of such points are of zero measure in M (H0),
see Section 2.1. �

Remark 3.7 By using a more sophisticated bounding argument, a vari-
able step size selection can be determined as

αk =
1

2 ‖[Hk, N ]‖ log

(
‖[Hk, N ]‖2

‖H0‖ · ‖[N, [Hk, N ]]‖ + 1

)
(3.10)

Rigorous convergence results are given for this selection in Moore et al.
(1994). The convergence rate is faster with this selection. �

Recursive Flows on Orthogonal Matrices

The associated recursions on the orthogonal matrices corresponding to the
gradient flows (1.25) are

Θk+1 = Θke
αk[Θ′

kH0Θk,N], α = 1/ (4 ‖H0‖ · ‖N‖) (3.11)

where Θk is defined onO (n) and α is a general step-size scaling factor. Thus
Hk = Θ′

kH0Θk is the solution of the Lie-bracket recursion (3.1). Precise
results on (3.11) are now stated and proved for generic H0 and constant
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step-size selection, although corresponding results are established in Moore
et al. (1994) for the variable step-size scaling factor (3.10).

Theorem 3.8 Let H0 = H ′
0 be a real symmetric n×n matrix with distinct

eigenvalues λ1 > · · · > λn. Let N ∈ Rn×n be diag (µ1, . . . , µn) with µ1 >
· · · > µn. Then the recursion (3.11) referred to as the associated orthogonal
Lie-bracket algorithm, has the following properties:

(a) A solution Θk, k = 1, 2, . . . , to the associated orthogonal Lie-bracket
algorithm remains orthogonal.

(b) Let fN,H0 : O (n) → R, fN,H0 (Θ) = − 1
2 ‖Θ′H0Θ −N‖2 be a func-

tion on O (n). Let Θk, k = 1, 2, . . . , be a solution to the associated
orthogonal Lie-bracket algorithm. Then fN,H0 (Θk) is a strictly mono-
tonically increasing function of k ∈ N, as long as [Θ′

kH0Θk, N ] �= 0.

(c) Fixed points of the recursive equation are characterised by matrices
Θ ∈ O (n) such that

[Θ′H0Θ, N ] = 0.

There are exactly 2nn! such fixed points.

(d) Let Θk, k = 1, 2, . . . , be a solution to the associated orthogonal Lie-
bracket algorithm, then Θk converges to an orthogonal matrix Θ∞,
satisfying [Θ′

∞H0Θ∞, N ] = 0.

(e) All fixed points of the associated orthogonal Lie-bracket algorithm are
strictly unstable, except those 2n points Θ∗ ∈ O (n) such that

Θ′
∗H0Θ∗ = Q,

where Q = diag (λ1, . . . , λn). Such points Θ∗ are locally exponentially
asymptotically stable and H0 = Θ∗QΘ′

∗ is the eigenspace decomposi-
tion of H0.

Proof 3.9 Part (a) follows directly from the orthogonal nature of
eα[Θ

′
kH0Θk,N]. Let g : O (n) → M (H0) be the matrix valued function

g (Θ) = Θ′H0Θ. Observe that g maps solutions (Θk | k ∈ N) of (3.11) to
solutions (Hk | k ∈ N) of (3.1).

Consider the potential fN,H (Θk) = − 1
2 ‖Θ′

kH0Θk −N‖2, and the po-
tential fN = − 1

2 ‖Hk −N‖2. Since g (Θk) = Hk for all k = 1, 2, . . . , then
fN,H0 (Θk) = fN (g (Θk)) for k = 1, 2, . . . . Thus fN (Hk) = fN (g (Θk)) =
fN,H0 (Θk) is strictly monotonically increasing for [Hk, N ] = [g (Θk) , N ] �=
0, and Part (b) follows.
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If Θk is a fixed point of the associated orthogonal Lie-bracket algorithm
with initial condition Θ0, then g (Θk) is a fixed point of the Lie-bracket algo-
rithm. Thus, from Theorem 3.3, [g (Θk) , N ] = [Θ′

kH0Θk, N ] = 0. Moreover,
if [Θ′

kH0Θk, N ] = 0 for some given k ∈ N, then by inspection Θk+l = Θk for
l = 1, 2, . . . , and Θk is a fixed point of the associated orthogonal Lie-bracket
algorithm. A simple counting argument shows that there are precisely 2nn!
such points and Part (c) is established.

To prove (d) note that since g (Θk) is a solution to the Lie-bracket al-
gorithm, it converges to a limit point H∞ ∈ M (H0), [H∞, N ] = 0, by
Theorem 3.3. Thus Θk must converge to the pre-image set of H∞ via the
map g. The genericity condition on H0 ensures that the set generated by
the pre-image of H∞ is a finite disjoint set. Since ‖[g (Θk) , N ]‖ → 0 as
k → ∞, then ‖Θk+1 − Θk‖ → 0 as k → ∞. From this convergence of Θk

follows.
To prove Part (e), observe that, due to the genericity condition on H0,

the dimension of O (n) is the same as the dimension of M (H0). Thus g
is locally a diffeomorphism on O (n), and taking a restriction of g to such
a region, the local stability structure of the equilibria are preserved under
the map g−1. Thus, all fixed points of the associated orthogonal Lie-bracket
algorithm are locally unstable except those that map via g to the unique
locally asymptotically stable equilibrium of the Lie-bracket recursion.

Simulations

A simulation has been included to demonstrate the recursive schemes de-
veloped. The simulation deals with a real symmetric 7 × 7 initial con-
dition, H0, generated by an arbitrary orthogonal similarity transforma-
tion of matrix Q = diag (1, 2, 3, 4, 5, 6, 7). The matrix N was chosen to be
diag (1, 2, 3, 4, 5, 6, 7) so that the minimum value of fN occurs atQ such that
fN (Q) = 0. Figure 3.2 plots the diagonal entries of Hk at each iteration
and demonstrates the asymptotic convergence of the algorithm. The expo-
nential behaviour of the curves appears at around iteration 30, suggesting
that this is when the solution Hk enters the locally exponentially attractive
domain of the equilibrium point Q. Figure 3.3 shows the evolution of the
potential fN (Hk) = − 1

2 ‖Hk −N‖2, demonstrating its monotonic increas-
ing properties and also displaying exponential convergence after iteration
30.

Computational Considerations

It is worth noting that an advantage of the recursive Lie-bracket scheme
over more traditional linear algebraic schemes for the same tasks, is the
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presence of a step-size α and the arbitrary target matrix N . The focus in
this section is only on the step size selection. The challenge remains to de-
vise more optimal (possibly time-varying) target matrix selection schemes
for improved performance. This suggests an application of optimal control
theory.

It is also possible to consider alternatives of the recursive Lie-bracket
scheme which have improved computational properties. For example, con-
sider a (1, 1) Padé approximation to the matrix exponential

eα[Hk,N ] ≈ 2I − α [Hk, N ]
2I + α [Hk, N ]

.

Such an approach has the advantage that, as [Hk, N ] is skew symmetric,
then the Padé approximation will be orthogonal, and will preserve the
isospectral nature of the Lie-bracket algorithm. Similarly, an (n, n) Padé
approximation of the exponential for any n will also be orthogonal.

Actually Newton methods involving second order derivatives can be de-
vised to give local quadratic convergence. These can be switched in to
the Lie-bracket recursions here as appropriate, making sure that at each
iteration the potential function increases. The resulting schemes are then
much more competitive with commercial diagonalization packages than the
purely linear methods of this section. Of course there is the possibility that
quadratic convergence can also be achieved using shift techniques, but we
do not explore this fascinating territory here.

Another approach is to take just an Euler iteration,

Hk+1 = Hk + α [Hk, [Hk, N ]] ,

as a recursive algorithm on R
n×n. A scheme such as this is similar in form

to approximating the curves generated by the recursive Lie-bracket scheme
by straight lines. The approximation will not retain the isospectral nature
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of the Lie-bracket recursion, but this fact may be overlooked in some appli-
cations, because it is computationally inexpensive. We cannot recommend
this scheme, or higher order versions, except in the neighborhood of an
equilibrium.

Main Points of Section

In this section we have proposed a numerical scheme for the calculation of
double bracket gradient flows on manifolds of similar matrices. Step-size
selections for such schemes has been discussed and results have been ob-
tained on the nature of equilibrium points and on their stability properties.
As a consequence, the schemes proposed in this section could be used as a
computational tool with known bounds on the total time required to make
a calculation. Due to the computational requirements of calculating matrix
exponentials these schemes may not be useful as a direct numerical tool
in traditional computational environments, however, they provide insight
into discretising matrix flows such as is generated by the double bracket
equation.
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Notes for Chapter 2

As we have seen in this chapter, the isospectral set M (Q) of symmetric ma-
trices with fixed eigenvalues is a homogeneous space and the least squares
distance function fN : M (Q) → R is a smooth Morse-Bott function. Quite
a lot is known about the critical points of such functions and there is a rich
mathematical literature on Morse theory developed for functions defined
on homogeneous spaces.

If Q is a rank k projection operator, then M (Q) is a Grassmannian.
In this case the trace function H �→ tr (NH) is the classical example of
a Morse function on Grassmann manifolds. See Milnor (1963) for the case
where k = 1 and Wu (1965), Hangan (1968) for a slightly different construc-
tion of a Morse function for arbitrary k. For a complete characterization
of the critical points of the trace functional on classical groups, the Stiefel
manifold and Grassmann manifolds, with applications to the topology of
these spaces, we refer to Frankel (1965) and Shayman (1982). For a com-
plete analysis of the critical points and their Morse indices of the trace
function on more general classes of homogeneous spaces we refer to Her-
mann (1962; 1963; 1964), Takeuchi (1965) and Duistermaat et al. (1983).
For results on gradient flows of certain least squares functions defined on
infinite dimensional homogeneous spaces arising in physics we refer to the
important work of Atiyah and Bott (1982), Pressley (1982) and Pressley
and Segal (1986). The work of Byrnes and Willems (1986) contains an in-
teresting application of moment map techniques from symplectic geometry
to total least squares estimation.

The geometry of varieties of isospectral Jacobi matrices has been stud-
ied by Tomei (1984) and Davis (1987). The set Jac (λ1, . . . , λn) of Jacobi
matrices with distinct eigenvalues λ1 > · · · > λn is shown to be a smooth
compact manifold. Furthermore, an explicit construction of the universal
covering space is given. The report of Driessel (1987b) contains another
elementary proof of the smoothness of Jac (λ1, . . . , λn). Also the tangent
space of Jac (λ1, . . . , λn) at a Jacobi matrix L is shown to be the vector
space of all Jacobi matrices ζ of the form ζ = LΩ − ΩL, where Ω is skew
symmetric. Closely related to the above is the work by de Mari and Shay-
man (1988) de Mari, Procesi and Shayman (1992) on Hessenberg varieties;
i.e. varieties of invariant flags of a given Hessenberg matrix. Furthermore
there are interesting connections with torus varieties; for this we refer to
Gelfand and Serganova (1987).

The double bracket equation (1.1) and its properties were first studied
by Brockett (1988); see also Chu and Driessel (1990). The simple proof of
the Wielandt-Hoffman inequality via the double bracket equation is due
to Chu and Driessel (1990). A systematic analysis of the double bracket



2.3. Recursive Lie-Bracket Based Diagonalization 79

flow (1.2) on adjoint orbits of compact Lie groups appears in Bloch, Brock-
ett and Ratiu (1990; 1992). For an application to subspace learning see
Brockett (1991a). In Brockett (1989b) it is shown that the double bracket
equation can simulate any finite automaton. Least squares matching prob-
lems arising in computer vision and pattern analysis are tackled via double
bracket-like equations in Brockett (1989a). An interesting connection exists
between the double bracket flow (1.1) and a fundamental equation arising
in micromagnetics. The Landau-Lifshitz equation on the two-sphere is a
nonlinear diffusion equation which, in the absence of diffusion terms, be-
comes equivalent to the double bracket equation. Stochastic versions of the
double bracket flow are studied by Colonius and Kliemann (1990).

A thorough study of the Toda lattice equation with interesting links to
representation theory has been made by Kostant (1979). For the Hamil-
tonian mechanics interpretation of the QR-algorithm and the Toda flow
see Flaschka (1974; 1975), Moser (1975), and Bloch (1990b). For connec-
tions of the Toda flow with scaling actions on spaces of rational functions
in system theory see Byrnes (1978), Brockett and Krishnaprasad (1980)
and Krishnaprasad (1979). An interesting interpretation of the Toda flow
from a system theoretic viewpoint is given in Brockett and Faybusovich
(1991); see also Faybusovich (1989). Numerical analysis aspects of the Toda
flow have been treated by Symes (1980b; 1982), Chu (1984b; 1984a), De-
ift et al. (1983), and Shub and Vasquez (1987). Expository papers are
Watkins (1984), Chu (1984a). The continuous double bracket flow Ḣ =
[H, [H, diagH ]] is related to the discrete Jacobi method for diagonaliza-
tion. For a phase portrait analysis of this flow see Driessel (1987a). See also
Wilf (1981) and Golub and Van Loan (1989), Section 8.4 “Jacobi methods”,
for a discussion on the Jacobi method.

For the connection of the double bracket flow to Toda flows and flows on
Grassmannians much of the initial work was done by Bloch (1990b; 1990a)
and then by Bloch, Brockett and Ratiu (1990) and Bloch, Flaschka and
Ratiu (1990). The connection to the Riccati flow was made explicit in
Helmke (1991) and independently observed by Faybusovich. The paper of
Faybusovich (1992b) contains a complete description of the phase portrait
of the Toda flow and the corresponding QR algorithm, including a discus-
sion of structural stability properties. In Faybusovich (1989) the relation-
ship between QR-like flows and Toda-like flows is described. Monotonicity
properties of the Toda flow are discussed in Lagarias (1991). A VLSI type
implementation of the Toda flow by a nonlinear lossless electrical network
is given by Paul, Hüper and Nossek (1992).

Infinite dimensional versions of the Toda flow with applications to sorting
of function values are in Brockett and Bloch (1989), Deift, Li and Tomei
(1985), Bloch, Brockett, Kodama and Ratiu (1989). See also the closely
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related work by Bloch (1985a; 1987) and Bloch and Byrnes (1986).
Numerical integration schemes of ordinary differential equations on man-

ifolds are presented by Crouch and Grossman (1991), Crouch, Grossman
and Yan (1992a; 1992b) and Ge-Zhong and Marsden (1988). Discrete-time
versions of some classical integrable systems are analyzed by Moser and
Veselov (1991). For complexity properties of discrete integrable systems
see Arnold (1990) and Veselov (1992). The recursive Lie-bracket diagonal-
ization algorithm (3.1) is analyzed in detail in Moore et al. (1994). Related
results appear in Brockett (1993) and Chu (1992a). Step-size selections for
discretizing the double bracket flow also appear in the recent PhD thesis
of Smith (1993).



CHAPTER 3

Singular Value
Decomposition

3.1 SVD via Double Bracket Flows

Many numerical methods used in application areas such as signal process-
ing, estimation, and control are based on the singular value decomposition
(SVD) of matrices. The SVD is widely used in least squares estimation,
systems approximations, and numerical linear algebra.

In this chapter, the double bracket flow of the previous chapter is applied
to the singular value decomposition (SVD) task. In the following section, a
first principles derivation of these self-equivalent flows is given to clarify the
geometry of the flows. This work is also included as a means of re-enforcing
for the reader the technical approach developed in the previous chapter.
The work is based on Helmke and Moore (1992). Note also the parallel
efforts of Chu and Driessel (1990) and Smith (1991).

Singular Values via Double Bracket Flows

Recall, that the singular values of a matrix H ∈ Rm×n with m ≥ n are
defined as the nonnegative square roots σi of the eigenvalues of H ′H , i.e.
σi (H) = λ

1/2
i (H ′H) for i = 1, . . . , n. Thus, for calculating the singular

values σi of H ∈ R
m×n, m ≥ n, let us first consider, perhaps näıvely, the

diagonalization of H ′H or HH ′ by the double bracket isospectral flows
evolving on the vector space of real symmetric n× n and m×m matrices.
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d

dt
(H ′H) = [H ′H, [H ′H,N1]] ,

d

dt
(HH ′) = [HH ′, [HH ′, N2]] .

(1.1)

The equilibrium points of these equations are the solutions of

[(H ′H)∞ , N1] = 0, [(HH ′)∞ , N2] = 0. (1.2)

Thus if

N1 = diag (µ1, . . . , µn) ∈ R
n×n,

N2 = diag (µ1, . . . , µn, 0, . . . , 0) ∈ R
m×m,

(1.3)

for µ1 > . . . µn > 0, then from Theorem 2.1.5 these equilibrium points are
characterised by

(H ′H)∞ =π1 diag
(
σ2

1 , . . . , σ
2
n

)
π′

1,

(HH ′)∞ =π2 diag
(
σ2

1 , . . . , σ
2
n, 0, . . . , 0

)
π′

2.
(1.4)

Here σ2
i are the squares of the singular values of H (0) and π1, π2 are per-

mutation matrices. Thus we can use equations (1.1) as a means to compute,
asymptotically, the singular values of H0 = H (0).

A disadvantage of using the flow (1.1) for the singular value decomposi-
tion is the need to “square” a matrix, which as noted in Section 1.5, may
lead to numerical problems. This suggests that we be more careful in the
application of the double bracket equations.

We now present another direct approach to the SVD task based on
the double-bracket isospectral flow of the previous chapter. This approach
avoids the undesirable squarings of H appearing in (1.1). First recall, from
Section 1.5, that for any matrix H ∈ Rm×n with m ≥ n, there is an asso-
ciated symmetric matrix Ĥ ∈ R

(m+n)×(m+n) as

Ĥ :=

[
0 H

H ′ 0

]
. (1.5)

The crucial fact is that the eigenvalues of Ĥ are given by ±σi, i = 1, . . . , n,
and possibly zero, where σi are the singular values of H .

Theorem 1.1 With the definitions

Ĥ (t) =

[
0 H (t)

H ′ (t) 0

]
, N̂ =

[
0 N

N ′ 0

]
, Ĥ0 =

[
0 H0

H ′
0 0

]
,

(1.6)
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where N ∈ Rm×n, then Ĥ (t) satisfies the double bracket isospectral flow
on R(m+n)×(m+n)

dĤ (t)
dt

=
[
Ĥ (t) ,

[
Ĥ (t) , N̂

]]
, Ĥ (0) = Ĥ0, (1.7)

if and only if H (t) satisfies the self-equivalent flow on Rm×n

Ḣ =H (H ′N −N ′H) − (HN ′ −NH ′)H, H (0) = H0

=H {H,N} − {H ′, N ′}H. (1.8)

using a mild generalization of the Lie-bracket notation

{X,Y } = X ′Y − Y ′X = {Y,X}′ = −{Y,X} . (1.9)

The solutions H (t) of (1.8) exist for all t ∈ R. Moreover, the solutions
of (1.8) converge, in either time direction, to the limiting solutions H∞
satisfying

H ′
∞N −N ′H∞ = 0, H∞N ′ −NH∞ = 0. (1.10)

Proof 1.2 Follows by substitution of (1.6) into (1.7), and by applying
Theorem 2.1.5 for double bracket flows.

Remark 1.3 The matrix N̂ is of course not diagonal and, more impor-
tant, 0 is a multiple eigenvalue of N̂ for m �= n. Thus certain of the sta-
bility results of Theorem 2.1.5 do not apply immediately to the flow (1.8).
However, similar proof techniques as used in deriving the stability results
in Theorem 2.1.5 do apply. This is explained in the next section. �

Remark 1.4 The gradient flow associated with the maximization of
tr
(
N̂Θ̂′Ĥ0Θ̂

)
on the manifold of orthogonal (m+ n) × (m+ n) matrices

Θ̂, is given by Theorem 2.1.14 as

d

dt
Θ̂ (t) = Θ̂ (t)

[
Θ̂′ (t) Ĥ0Θ̂ (t) , N̂

]
(1.11)

If Θ̂ = [ V 0
0 U ], (1.11) is easily seen to be equivalent to

U̇ =U {V ′H0U,N} ,
V̇ =V

{
(V ′H0U)′ , N ′

}
.

(1.12)

This gradient flow on O (m) × O (n) allows the determination of the left
and right eigenvectors of H0. Its convergence properties are studied in the
next section. �
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Problem 1.5 Verify that the flow Ḣ = H [H ′H,N1] − [HH ′, N2]H for
H (t) implies (1.1) for H (t)H ′ (t) and H ′ (t)H (t).

Problem 1.6 Flesh out the details of the proof of Theorem 1.1 and verify
the claims in Remark 1.4.

Main Points of Section

The singular value decomposition of a matrix H0 ∈ Rm×n can be obtained
by applying the double bracket flow to the symmetric (m+ n) × (m+ n)
matrix (1.6). The resulting flow can be simplified as a self equivalent flow
(1.8) for SVD.

3.2 A Gradient Flow Approach to SVD

In this section, we parallel the analysis of the double bracket isospectral
flow on symmetric matrices with a corresponding theory for self-equivalent
flows on rectangular matrices H ∈ R

m×n, for m ≥ n. A matrix H0 ∈ R
m×n

has a singular value decomposition (SVD)

H0 = V ΣU ′ (2.1)

where U , V are real n×n and m×m orthogonal matrices satisfying V V ′ =
Im, UU ′ = In and

Σ =

[
diag (σ1In1 , . . . , σrInr)

0(m−n)×n

]
=

[
Σ1

0

]
,

r∑
i=1

ni = n,
(2.2)

with σ1 > · · · > σr ≥ 0 being the singular values of H0. We will approach
the SVD task by showing that it is equivalent to a certain norm minimiza-
tion problem.

Consider the class S (Σ) of all real m × n matrices H having singular
values (σ1, . . . σr) occurring with multiplicities (n1, . . . , nr) as

S (Σ) =
{
V ′ΣU ∈ R

m×n | U ∈ O (n) , V ∈ O (m)
}
, (2.3)

with O (n) the group of all real orthogonal n × n matrices. Thus S (Σ) is
the compact set of all m×n matrices H which are orthogonally equivalent
to Σ via (2.1). Given an arbitrary matrix N ∈ Rm×n, we consider the task
of minimizing the least squares distance

‖H −N‖2 = ‖H‖2 + ‖N‖2 − 2 tr (N ′H) (2.4)
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of N to any H ∈ S (Σ). Since the Frobenius norm ‖H‖2 =
∑r

i=1 niσ
2
i

is constant for H ∈ S (Σ), the minimization of (2.4) is equivalent to the
maximization of the inner product function φ (H) = 2 tr (N ′H), defined on
S (Σ). Heuristically, if N is chosen to be of the form

N =

[
N1

0(m−n)×n

]
, N1 = diag (µ1, . . . , µn) ∈ R

n×n, (2.5)

we would expect the minimizing matrices H∗ ∈ S (Σ) of (2.4) to be of the
same form. i.e. H∗ = [ π 0

0 I ] Σπ′S for a suitable n× n permutation matrix π
and a sign matrix S = diag (±1, . . . ,±1). In fact, if N1 = diag (µ1, . . . , µn)
with µ1 > · · · > µn > 0 then we would expect the minimizing H∗ to be
equal to Σ. Since S (Σ) turns out to be a smooth manifold (Proposition 2.1)
it seems natural to apply steepest descent techniques in order to determine
the minima H∗ of the distance function (2.4) on S (Σ).

To achieve the SVD we consider the induced function on the product
space O (n) ×O (m) of orthogonal matrices

φ : O (n) ×O (m) → R,

φ (U, V ) = 2 tr (NV ′H0U) ,
(2.6)

defined for fixed arbitrary real matrices N ∈ Rn×m, H0 ∈ S (Σ). This leads
to a coupled gradient flow

U̇ (t) =∇Uφ (U (t) , V (t)) , U (0) =U0 ∈ O (n) ,

V̇ (t) =∇V φ (U (t) , V (t)) , V (0) =V0 ∈ O (m) ,
(2.7)

on O (n) × O (m). These turn out to be the flows (1.12) as shown subse-
quently.

Associated with the gradient flow (2.7) is a flow on the set of real m× n
matrices H , derived from H (t) = V ′ (t)H0U (t). This turns out to be a
self-equivalent flow (i.e. a singular value preserving flow) (2.4) on S (Σ)
which, under a suitable genericity assumption on N , converges exponen-
tially fast, for almost every initial condition H (0) = H0 ∈ S (Σ), to the
global minimum H∗ of (2.4).

We now proceed with a formalization of the above norm minimization
approach to SVD. First, we present a phase portrait analysis of the self-
equivalent flow (1.8) on S (Σ). The equilibrium points of (1.8) are deter-
mined and, under suitable genericity assumptions on N and Σ, their sta-
bility properties are determined. A similar analysis for the gradient flow
(2.7) is given.
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Self-equivalent Flows on Real Matrices

We start with a derivation of some elementary facts concerning varieties of
real matrices with prescribed singular values.

Proposition 2.1 S (Σ) is a smooth, compact, manifold of dimension

dimS (Σ) =




n (m− 1) −∑r
i=1

ni(ni−1)
2 if σr > 0,

n (m− 1) −∑r
i=1

ni(ni−1)
2

− nr
(
nr−1

2 + (m− n)
) if σr = 0.

Proof 2.2 S (Σ) is an orbit of the compact Lie group O (m)×O (n), acting
on Rm×n via the equivalence action:

η : (O (m) ×O (n)) × R
m×n → R

m×n, η ((V, U) , H) = V ′HU.

See digression on Lie groups and homogeneous spaces. Thus S (Σ) is a
homogeneous space of O (m) × O (n) and therefore a compact manifold.
The stabilizer group Stab (Σ) = {(V, U) ∈ O (m) ×O (n) | V ′ΣU = Σ} of
Σ is the set of all pairs of block-diagonal orthogonal matrices (V, U)

U = diag (U11, . . . , Urr) , V = diag (V11, . . . , Vr+1,r+1) ,
Uii = Vii ∈ O (ni) , i = 1, . . . , r, Vr+1,r+1 ∈ O (m− n)

(2.8)

if σr > 0, and if σr = 0 then

U = diag (U11, . . . , Urr) , V = diag (V11, . . . , Vrr) ,

Uii = Vii ∈ O (ni) ,
i = 1, . . . , r − 1, Urr ∈ O (nr) , Vrr ∈ O (m− n+ nr) .

Hence there is an isomorphism of homogeneous spaces S (Σ) ∼=
(O (m) ×O (n)) / Stab (Σ) and

dimS (Σ) =dim (O (m) ×O (n)) − dim Stab (Σ) ,

=
m (m− 1)

2
+
n (n− 1)

2
− dim Stab (Σ) .

Moreover,

dim Stab (Σ) =

{∑r
i=1

ni(ni−1)
2 + (m−n)(m−n−1)

2 if σr > 0,∑r
i=1

ni(ni−1)
2 + (m−n+nr)(m−n+nr−1)

2 if σr = 0.

The result follows.
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Remark 2.3 Let Q =
[

In
0(m−n)×n

]
. Then S (Q) is equal to the (compact)

Stiefel manifold St (n,m) consisting of all X ∈ Rm×n with X ′X = In. In
particular, for m = n, S (Q) is equal to the orthogonal group O (n). Thus
the manifolds S (Σ) are a generalization of the compact Stiefel manifolds
St (n,m), appearing in Section 1.3. �

Let

Σ0 =




µ1In1 0
. . .

0 µrInr

0(m−n)×n




be given with µ1, . . . , µr arbitrary real numbers. Thus Σ0 ∈ S (Σ) if and
only if {|µ1| , . . . , |µr|} = {σ1, . . . , σr}. We need the following description
of the tangent space of S (Σ) at Σ0.

Lemma 2.4 Let Σ be defined by (2.2) and Σ0 as above, with σr > 0. Then
the tangent space TΣ0S (Σ) of S (Σ) at Σ0 consists of all block partitioned
real m× n matrices

ξ =



ξ11 . . . ξ1r
...

. . .
...

ξr+1,1 . . . ξr+1,r




ξij ∈R
ni×nj , i, j =1, . . . , r

ξr+1,j ∈R
(m−n)×nj , j =1, . . . , r

with ξ′ii = −ξii, i = 1, . . . , r.

Proof 2.5 Let skew (n) denote the Lie algebra of O (n), i.e. skew (n) con-
sists of all skew-symmetric n × n matrices and is identical with tangent
space of O (n) at the identity matrix In, see Appendix C. The tangent
space TΣ0S (Σ) is the image of the R-linear map

L : skew (m) × skew (n) →R
m×n,

(X,Y ) �→ −XΣ0 + Σ0Y,
(2.9)

i.e. of the Fréchet derivative of η : O (m) ×O (n) → R, η (U, V ) = V ′Σ0U ,
at (Im, In).

It follows that the image of L is contained in the R-vector space Ξ con-
sisting of all block partitioned matrices ξ as in the lemma. Thus it suffices
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to show that both spaces have the same dimension. By Propostion 2.1

dim image (L) = dimS (Σ)

=nm−
r∑
i=1

ni (ni + 1)
2

.

From (2.9) also dim Ξ = nm−∑r
i=1

ni(ni+1)
2 and the result follows.

Recall from Section 1.5, that a differential equation (or a flow)

Ḣ (t) = f (t,H (t)) (2.10)

defined on the vector space of real m × n matrices H ∈ Rm×n is called
self-equivalent if every solution H (t) of (2.10) is of the form

H (t) = V ′ (t)H (0)U (t) (2.11)

with orthogonal matrices U (t) ∈ O (n), V (t) ∈ O (m), U (0) = In, V (0) =
Im. Recall that self-equivalent flows have a simple characterization given
by Lemma 1.5.1.

The following theorem gives explicit examples of self-equivalent flows on
R
m×n.

Theorem 2.6 Let N ∈ Rm×n be arbitrary and m ≥ n

(a) The differential equation (1.8) repeated as

Ḣ = H (H ′N −N ′H) − (HN ′ −NH ′)H, H (0) = H0

(2.12)

defines a self-equivalent flow on Rm×n.

(b) The solutions H (t) of (2.12) exist for all t ∈ R and H (t) converges to
an equilibrium point H∞ of (2.12) as t → +∞. The set of equilibria
points H∞ of (2.12) is characterized by

H ′
∞N = N ′H∞, NH ′

∞ = H∞N ′. (2.13)

(c) Let N be defined as in (2.5), with µ1, . . . , µn real and µi + µj �= 0 of
all i, j = 1, . . . , n. Then every solution H (t) of (2.12) converges for
t→ ±∞ to an extended diagonal matrix H∞ of the form

H∞ =




λ1 0
. . .

0 λn

0(m−n)×n




(2.14)
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with λ1, . . . , λn real numbers.

(d) If m = n and N = N ′ is symmetric ( or N ′ = −N is skew-
symmetric), (2.12) restricts to the isospectral flow

Ḣ = [H, [H,N ]] (2.15)

evolving on the subset of all symmetric (respectively skew-symmetric)
n× n matrices H ∈ R

n×n

Proof 2.7 For every (locally defined) solutionH (t) of (2.12), the matrices
C (t) = H ′ (t)N (t)−N ′ (t)H (t) and D (t) = N (t)H ′ (t)−H (t)N ′ (t) are
skew-symmetric. Thus (a) follows immediately from Lemma 1.5.1. For any
H (0) = H0 ∈ Rm×n there exist orthogonal matrices U ∈ O (n), V ∈ O (m)
with V ′H0U = Σ as in (2.1) where Σ ∈ Rm×n is the extended diagonal
matrix given by (2.2) and σ1 > · · · > σr ≥ 0 are the singular values of H0

with corresponding multiplicities n1, . . . , nr. By (a), the solution H (t) of
(2.12) evolves in the compact set S (Σ) and therefore exists for all t ∈ R.

Recall that {H,N}′ = {N,H} = −{H,N}, then the time derivative of
the Lyapunov-type function tr (N ′H (t)) is

2
d

dt
tr (N ′H (t))

= tr
(
N ′Ḣ (t) + Ḣ (t)′N

)

=tr (N ′H {H,N} −N ′ {H ′, N ′}H − {H,N}H ′N +H ′ {H ′, N ′}N)

= tr
(
{H,N} {H,N}′ + {H ′, N ′} {H ′, N ′}′

)

=
(
‖{H,N}‖2 + ‖{H ′, N ′}‖2

)
.

(2.16)

Thus tr (N ′H (t)) increases monotonically. Since H �→ tr (N ′H) is a con-
tinuous function defined on the compact space S (Σ), then tr (N ′H) is
bounded from below and above. Therefore (2.16) must go to zero as t →
+∞ (and indeed for t→ −∞). It follows that every solution H (t) of (2.12)
converges to an equilibrium point and the set of equilibria of (2.12) is char-
acterized by {H∞, N} = {H ′∞, N ′} = 0, or equivalently (2.13). This proves
(b). To prove (c) recall that (2.5) partitions N as

[
N1
0

]
with N1 = N ′

1. Now
partition H∞ as H∞ =

[
H1
H2

]
. This is an equilibrium point of (2.12) if and

only if

H ′
1N1 = N1H1, N1H

′
1 = H1N1, N1H

′
2 = 0.

(2.17)
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Since N1 is nonsingular, (2.17) implies H2 = 0. Also since N1 = N ′
1,

then N1 (H1 −H ′
1) = (H ′

1 −H1)N1 and therefore with H1 =
(hij | i, j = 1, . . . , n)

(µi + µj) (hij − hji) = 0

for all i, j = 1, . . . , n. By assumption µi + µj �= 0 and therefore H1 = H ′
1

is symmetric. Thus under (2.17) N1H1 = H1N1, which implies that H1 is
real diagonal.

To prove (d) we note that for symmetric (or skew-symmetric) matrices
N , H , equation (2.12) is equivalent to the double bracket equation (2.15).
The isospectral property of (2.15) now follows readily from Lemma 1.5.1,
applied for D = −C. This completes the proof of Theorem 2.6.

Remark 2.8 Let N ′ = U ′
0

(
N1, 0n×(m−n)

)
V0 be the singular value de-

composition of N ′ with real diagonal N1. Using the change of variables
H �→ V ′

0HU0 we can always assume without loss of generality that N ′ is
equal to

(
N1, 0n×(m−n)

)
with N1 real diagonal. �

From now on we will always assume that Σ and N are given from (2.2)
and (2.5).

An important property of the self-equivalent flow (2.12) is that it is a
gradient flow. To see this, let

Ŝ (Σ) :=
{
Ĥ ∈M

(
Σ̂
)
| H ∈ S (Σ)

}

denote the subset of (m+ n) × (m+ n) symmetric matrices Ĥ ∈ M
(
Σ̂
)

which are of the form (1.6). Here M
(
Σ̂
)

is the isospectral manifold defined
by

{
ΘΣ̂Θ′ ∈ R(m+n)×(m+n) | Θ ∈ O (m+ n)

}
. The map

i : S (Σ) →M
(
Σ̂
)
, i (H) = Ĥ

defines a diffeomorphism of S (Σ) onto its image Ŝ (Σ) = i (S (Σ)). By
Lemma 2.4 the double bracket flow (1.7) has Ŝ (Σ) as an invariant sub-
manifold.

Endow M
(
Σ̂
)

with the normal Riemannian metric defined in Chap-
ter 2. Thus (1.7) is the gradient flow of the least squares distance function
fN : M

(
Σ̂
) → R, fN (H) = − 1

2 ‖N −H‖2, with respect to the normal Rie-
mannian metric. By restriction, the normal Riemannian metric on M

(
Σ̂
)

induces a Riemannian metric on the submanifold Ŝ (Σ); see Appendix C.
Therefore, using the diffeomorphism i : S (Σ) → Ŝ (Σ), a Riemannian met-
ric on M

(
Σ̂
)

induces a Riemannian on S (Σ). We refer to this as the normal
Riemannian metric on S (Σ). Since

∥∥N̂ − Ĥ
∥∥2 = 2 ‖N −H‖2, Lemma 2.4

implies that the gradient of FN : S (Σ) → R, FN (H) = −‖N −H‖2, with
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respect to this normal Riemannian metric on S (Σ) is given by (1.8). We
have thus proved

Corollary 2.9 The differential equation (2.12) is the gradient flow of the
distance function FN : S (Σ) → R, FN (H) = −‖N −H‖2, with respect to
the normal Riemannian metric on S (Σ).

Since self-equivalent flows do not change the singular values or their
multiplicities, (2.12) restricts to a flow on the compact manifold S (Σ).
The following result is an immediate consequence of Theorem 2.6(a)–(c).

Corollary 2.10 The differential equation (2.12) defines a flow on S (Σ).
Every equilibrium point H∞ on S (Σ) is of the form

H∞ =

[
πΣ1π

′S
0

]
(2.18)

where π is an n × n permutation matrix and S = diag (s1, . . . , sn), si ∈
{−1, 1}, i = 1, . . . , n, is a sign matrix.

We now analyze the local stability properties of the flow (2.12) on S (Σ)
around each equilibrium point. The linearization of the flow (2.12) on S (Σ)
around any equilibrium point H∞ ∈ S (Σ) is given by

ξ̇ = H∞ (ξ′N −N ′ξ) − (ξN ′ −Nξ′)H∞ (2.19)

where ξ ∈ TH∞S (Σ) is the tangent space of S (Σ). By Lemma 2.4

ξ =



ξ11 . . . ξ1r
...

. . .
...

ξr+1,1 . . . ξr+1,r


 =

[
ξ1

ξ2

]

with ξ1 = (ξij) ∈ Rn×n, ξ′ii = −ξii, and ξ2 = [ξr+1,1, . . . , ξr+1,r] ∈
R(m−n)×n.

Using (2.18), (2.19) is equivalent to the decoupled system of equations

ξ̇1 =πΣ1π
′S (ξ′1N1 −N ′

1ξ1) − (ξ1N1 −N1ξ
′
1)πΣ1π

′S

ξ̇2 = − ξ2N1πΣ1π
′S

(2.20)

In order to simplify the subsequent analysis we now assume that the
singular values of Σ =

[
Σ1
0

]
are distinct, i.e.

Σ1 = diag (σ1, . . . , σn) , σ1 > · · · > σn > 0. (2.21)
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Furthermore, we assume that N =
[

N1
O(m−n)×n

]
with

N1 = diag (µ1, . . . , µn) , µ1 > · · · > µn > 0.

Then πΣ1π
′S = diag (λ1, . . . , λn) with

λi = siσπ(i), i = 1, . . . , n, (2.22)

and ξii = −ξii are zero for i = 1, . . . , n. Then (2.20) is equivalent to the
system for i, j = 1, . . . , n,

ξ̇ij = − (λiµi + λjµj) ξij + (λiµj + λjµi) ξji,

ξ̇n+1,j = − µjλjξn+1,j .
(2.23)

This system of equations is equivalent to the system of equations

d

dt

[
ξij

ξji

]
=

[
− (λiµi + λjµj) (λiµj + λjµi)
(λiµj + λjµi) − (λiµi + λjµj)

][
ξij

ξji

]
, i < j

ξ̇n+1,j = − µjλjξn+1,j . (2.24)

The eigenvalues of
[
− (λiµi + λjµj) λiµj + λjµi

λiµj + λjµi − (λiµi + λjµi)

]

are easily seen to be {− (λi + λj) (µi + µj) ,− (λi − λj) (µi − µj)} for i < j.
Let H∞ be an equilibrium point of the flow (2.12) on the manifold S (Σ).

Let n+ and n− denote the number of positive real eigenvalues and negative
real eigenvalues respectively of the linearization (2.19). The Morse index
indH∞ of (2.20) at H∞ is defined by

ind (H∞) = n− − n+. (2.25)

By (2.21), (2.22) the eigenvalues of the linearization (2.23) are all nonzero
real numbers and therefore

n+ + n− =dimS (Σ) = n (m− 1)

n− =
1
2

(n (m− 1) + ind (H∞))
(2.26)

This sets the stage for the key stability results for the self-equivalent flows
(2.12).
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Corollary 2.11 Let σ1 > · · · > σn > 0 and let (λ1, . . . , λn) be defined
by (2.22). Then (2.12) has exactly 2n.n! equilibrium points on S (Σ). The
linearization of the flow (2.12) on S (Σ) at H∞ =

[
πΣ1π

′S
0

]
is given by

(2.23) and has only nonzero real eigenvalues. The Morse index at H∞ is

ind (H∞) = (m− n)
n∑
i=1

si +
∑
i<j

sign
(
siσπ(i) − sjσπ(j)

)

+
∑
i<j

sign
(
siσπ(i) + sjσπ(j)

)
.

(2.27)

In particular, ind (H∞) = ± dimS (Σ) if and only if s1 = · · · = sn = ±1
and π = In. Also, H∞ = Σ is the uniquely determined asymptotically stable
equilibrium point on S (Σ).

Proof 2.12 It remains to prove (2.27). By (2.23) and as µi > 0

ind (H∞) = (m− n)
n∑
i=1

signµiλi

+
∑
i<j

(sign (µi − µj) (λi − λj) + sign (µi + µj) (λi + λj))

= (m− n)
n∑
i=1

signλi +
∑
i<j

sign (λi − λj)

+
∑
i<j

sign (λi + λj)

with λi = siσπ(i). The result follows.

Remark 2.13 From (2.23) and Corollary 2.11 it follows that, for almost
all initial conditions on S (Σ), the solutions of (2.12) on S (Σ) approach
the attractor Σ exponentially fast. The rate of exponential convergence to
Σ is equal to

ρ = min
{
µnσn,min

i<j
(µi − µj) (σi − σj)

}
. (2.28)

�

A Gradient Flow on Orthogonal Matrices

Let N ′ =
(
N1, 0n×(m−n)

)
with N1 = diag (µ1, . . . , µn) real diagonal and

µ1 > · · · > µn > 0. Let H0 be a given real m×n matrix with singular value
decomposition

H0 = V ′
0ΣU0 (2.29)
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where U0 ∈ O (n), V0 ∈ O (m) and Σ is given by (2.2). For simplicity we
always assume that σr > 0. With these choices of N , H0 we consider the
smooth function on the product space O (n)×O (m) of orthogonal groups

φ : O (n) ×O (m) → R, φ (U, V ) = 2 tr (N ′V ′H0U) . (2.30)

We always endow O (n) × O (m) with its standard Riemannian met-
ric 〈 , 〉 defined by

〈
(Ω1,Ω2) ,

(
Ω̂1, Ω̂2

)〉
= tr

(
Ω1Ω̂′

1

)
+ tr

(
Ω2Ω̂′

2

)
for

(Ω1,Ω2) ,
(
Ω̂1, Ω̂2

) ∈ T(U,V ) (O (n) ×O (m)). Thus 〈 , 〉 is the Riemannian
metric induced by the imbedding O (n) × O (m) ⊂ Rn×n × Rm×m, where
Rn×n × Rm×m, is equipped with its standard symmetric inner product.
The Riemannian metric 〈 , 〉 on O (n) × O (m) in the case where m = n
coincides with the Killing form, up to a constant scaling factor.

Lemma 2.14 The gradient flow of φ : O (n)×O (m) → R (with respect to
the standard Riemannian metric) is

U̇ =U {V ′H0U,N} , U (0) =U0 ∈ O (n) ,

V̇ =V {U ′H ′
0V,N

′} , V (0) =V0 ∈ O (m) .
(2.31)

The solutions (U (t) , V (t)) of (2.31) exist for all t ∈ R and converge to
an equilibrium point (U∞, V∞) ∈ O (n) ×O (m) of (2.31) for t→ ±∞.

Proof 2.15 We proceed as in Section 2.1. The tangent space of O (n) ×
O (m) at (U, V ) is given by

T(U,V ) (O (n) ×O (m))

=
{
(UΩ1, V Ω2) ∈ R

n×n × R
m×m | Ω1 ∈ skew (n) , Ω2 ∈ skew (m)

}
.

The Riemannian matrix on O (n) × O (m) is given by the inter
product 〈 , 〉 on the tangent space T(U,V ) (O (n) ×O (m)) defined for
(A1, A2) , (B1, B2) ∈ T(U,V ) (O (n) ×O (m)) by

〈(A1, A2) , (B1, B2)〉 = tr (A1B
′
1) + tr (A2B

′
2)

for (U, V ) ∈ O (n) ×O (m).
The derivative of φ : O (n) × O (m) → R, φ (U, V ) = 2 tr (N ′V ′H0U),

at an element (U, V ) is the linear map on the tangent space
T(U,V ) (O (n) ×O (m)) defined by

Dφ|(U,V ) (UΩ1, V Ω2)

=2 tr (N ′V ′H0UΩ1 −N ′Ω2V
′H0U)

= tr [(N ′V ′H0U − U ′H ′
0V N)Ω1 + (NU ′H ′

0V − V ′H0UN
′)Ω2]

= tr
(
{V ′H0Y,N}′ Ω1 + {U ′H ′

0V,N
′}′ Ω2

) (2.32)
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for skew-symmetric matrices Ω1 ∈ skew (n), Ω2 ∈ skew (m). Let

∇φ =

(
∇Uφ

∇V φ

)

denote the gradient vector field of φ, defined with respect to the above
Riemannian metric on O (n) ×O (m). Thus ∇φ (U, V ) is characterised by

(a) ∇φ (U, V ) ∈ T(U,V ) (O (n) ×O (m))

(b) Dφ|(U,V ) (UΩ1, V Ω2)

= 〈∇φ (U, V ) , (UΩ1, V Ω2)〉
=tr

(∇Uφ (U, V )′ UΩ1

)
+ tr

(∇V φ (U, V )′ V Ω2

)

for all (Ω1,Ω2) ∈ skew (n) × skew (m). Combining (2.32) and (a), (b) we
obtain

∇Uφ =U {V ′H0U,N}
∇V φ =V {U ′H ′

0V,N
′} .

Thus (2.32) is the gradient flow U̇ = ∇Uφ (U, V ), V̇ = ∇V φ (U, V ) of φ.
By compactness of O (n) × O (m) the solutions of (2.31) exist for all

t ∈ R. Moreover, by the properties of gradient flows as summarized in the
digression on convergence of gradient flows, Section 1.3, the ω-limit set of
any solution (U (t) , V (t)) of (2.31) is contained in a connected component
of the intersection of the set of equilibria (U∞, V∞) of (2.31) with some
level set of φ : O (n) ×O (m) → R.

It can be shown that φ : O (n) × O (m) → R is a Morse-Bott function.
Thus, by Proposition 1.3.9, any solution (U (t) , V (t)) of (2.32) converges
to an equilibrium point.

The following result describes the equilibrium points of (2.31).

Lemma 2.16 Let σr > 0 and (U0, V0) ∈ O (n) × O (m) as in (2.29). A
pair (U, V ) ∈ O (n)×O (m) is an equilibrium point of (2.31) if and only if

U =U ′
0 diag (U1, . . . , Ur)π′S,

V =V ′
0 diag (U1, . . . , Ur, Ur+1)

[
π′ 0
0 Im−n

]
,

(2.33)

where π ∈ R
n×n is a permutation matrix, S = diag (s1, . . . , sn), si ∈

{−1, 1}, is a sign-matrix and (U1, . . . , Ur, Ur+1) ∈ O (n1) × · · · × O (nr) ×
O (n−m) are orthogonal matrices.
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Proof 2.17 From (2.31) it follows that the equilibria (U, V ) are charac-
terised by {V ′H0U,N

′} = 0, {U ′H ′
0V,N

′} = 0. Thus, by Corollary 2.10,
(U, V ) is an equilibrium point of (2.31) if and only if

V ′H0U =

[
πΣ1π

′S
0

]
. (2.34)

Thus the result follows from the form of the stabilizer group given in (2.8).

Remark 2.18 In fact the gradient flow (1.12) is related to the self-equiv-
alent flow (1.8). Let (U (t) , V (t)) be a solution of (1.12). Then H (t) =
V (t)′H0U (t) ∈ S (Σ) is a solution of the self-equivalent flow (1.8) since

Ḣ =V ′H0U̇ + V̇ ′H0U

=V ′H0U {V ′H0U,N} −
{

(V ′H0U)′ , N ′
}
V ′H0U

=H {H,N} − {H ′, N ′}H.
Note that by (2.33) the equilibria (U∞, V∞) of the gradient flow satisfy

V ′
∞H0U∞ =

[
π 0
0 Im−n

]
Σπ′S

=

[
πΣ1π

′S
0

]
.

Thus, up to permutations and possible sign factors, the equilibria of (1.12)
just yield the singular value decomposition of H0. �

In order to relate the local stability properties of the self-equivalent flow
(1.8) on S (Σ) to those of the gradient flow (2.31) we consider the smooth
function

f : O (n) ×O (m) → S (Σ)

defined by

f (U, V ) = V ′H0U. (2.35)

By (2.8), f (U, V ) = f
(
Û , V̂

)
if and only if there exists orthogonal matrices

(U1, . . . , Ur, Ur+1) ∈ O (n1) × · · · ×O (nr) ×O (m− n) with

Û =U ′
0 diag (U1, . . . , Ur)U0 · U,

V̂ =V ′
0 diag (U1, . . . , Ur, Ur+1)V0 · V.

(2.36)
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and (U0, V0) ∈ O (n) × O (m) as in (2.29). Therefore the fibres of (2.35)
are all diffeomorphic to O (n1) × · · · ×O (nr)×O (m− n). For π an n× n
permutation matrix and S = diag (±1, . . . ,±1) an arbitrary sign-matrix
let C (π, S) denote the submanifold of O (n) × O (m) which consists of all
pairs (U, V )

U =U ′
0 diag (U1, . . . , Ur)π′S,

V =V ′
0 diag (U1, . . . , Ur+1)

[
π 0
0 Im−n

]
,

with (U1, . . . , Ur, Ur+1) ∈ O (n1)×· · ·×O (nr)×O (m− n) arbitrary. Thus,
by Lemma 2.16, the union

C =
⋃

(π,S)

C (π, S) (2.37)

of all 2n · n! sets C (π, S) is equal to the set of equilibria of (2.31). That
is, the behaviour of the self-equivalent flow (1.8) around an equilibrium
point

[
πΣ1π

′S
0

]
now is equivalent to the behaviour of the solutions of the

gradient flow (2.31) as they approach the invariant submanifold C (π, S).
This is made more precise in the following theorem. For any equilibrium
point (U∞, V∞) ∈ C let W s (U∞, V∞) ⊂ O (n) × O (m) denote the stable
manifold. See Section C.11. Thus W s (U∞, V∞) is the set of all initial con-
ditions (U0, V0) such that the corresponding solution (U (t) , V (t)) of (1.12)
converges to (U∞, V∞) as t→ +∞.

Theorem 2.19 Suppose the singular values σ1, . . . , σn of H0 are pairwise
distinct with σ1 > · · · > σn > 0. Then W s (U∞, V∞) is an immersed sub-
manifold in O (n) × O (m). Convergence in W s (U∞, V∞) to (U∞, V∞) is
exponentially fast. Outside of a union of invariant submanifolds of codi-
mension ≥ 1, every solution of the gradient flow (1.12) converges to the
submanifold C (In, In).

Proof 2.20 By the stable manifold theorem, Section C.11, W s(U∞, V∞)
is an immersed submanifold. The stable manifold W s (U∞, V∞) of (1.12)
at (U∞, V∞) is mapped diffeomorphically by f : O (n) × O (m) → S (Σ)
onto the stable manifold of (1.8) at H∞ = V ′

∞H0U∞. The second claim
follows since convergence on stable manifolds is always exponential. For
any equilibrium point (U∞, V∞) ∈ C (In, In)

H∞ = V ′
∞H0U∞ = Σ

is the uniquely determined exponentially stable equilibrium point of (1.8)
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and its stable manifold W s (H∞) is the complement of a union Γ of sub-
manifolds of S (Σ) of codimension ≥ 1. Thus

W s (U∞, V∞) = O (n) ×O (m) − f (Γ)

is dense in O (n) ×O (m) with codim f−1 (Γ) ≥ 1. The result follows.

Problem 2.21 Verify that φ : O (n) × O (m) → R, φ (U, V ) =
tr (N ′V ′H0U), is a Morse-Bott function. Here

N =

[
N1

O(m−n)×n

]
, N1 = diag (µ1, . . . , µn) , µ1 > · · · > µn > 0.

Problem 2.22 Let A,B ∈ Rn×n with singular values σ1 ≥ · · · ≥ σn and
τ1 ≥ · · · ≥ τn respectively. Show that the maximum value of the trace
function tr (AUBV ) on O (n) ×O (n) is

max
U,V ∈O(n)

tr (AUBV ) =
n∑
i=1

σiτi.

Problem 2.23 Same notation as above. Show that

max
U,V ∈SO(n)

tr (AUBV ) =
n−1∑
i=1

σiτi + (sign (det (AB)))σnτn

Main Points of Section

The results on finding singular value decompositions via gradient flows, de-
pending on the viewpoint, are seen to be both a generalization and special-
ization of the results of Brockett on the diagonalization of real symmetric
matrices. The work ties in nicely with continuous time interpolations of the
classical discrete-time QR algorithm by means of self-equivalent flows.
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Notes for Chapter 3

There is an enormous literature on the singular value decomposition (SVD)
and its applications within numerical linear algebra, statistics, signal pro-
cessing and control theory. Standard applications of the SVD include those
for solving linear equations and least squares problems; see Lawson and
Hanson (1974). A strength of the singular value decomposition lies in the
fact that it provides a powerful tool for solving ill-conditioned matrix prob-
lems; see Hansen (1990) and the references therein. A lot of the current
research on the SVD in numerical analysis has been pioneered and is based
on the work of Golub and his school. Discussions on the SVD can be found
in almost any modern textbook on numerical analysis. The book of Golub
and Van Loan (1989) is an excellent source of information on the SVD. A
thorough discussion on the SVD and its history can also be found in Klema
and Laub (1980).

A basic numerical method for computing the SVD of a matrix is the
algorithm by Golub and Reinsch (1970). For an SVD updating method
applicable to time-varying matrices we refer to Moonen, van Dooren and
Vandewalle (1990). A neural network algorithm for computing the SVD
has been proposed by Sirat (1991).

In the statistical literature, neural network theory and signal process-
ing, the subject of matrix diagonalization and SVD is often referred to as
principal component analysis or the Karhunen-Loeve expansion/transform
method; see Hotelling (1933; 1935), Dempster (1969), Oja (1990) and Fer-
nando and Nicholson (1980). Applications of the singular value decomposi-
tion within control theory and digital signal processing have been pioneered
by Mullis and Roberts (1976) and Moore (1981). Since then the SVD has
become an invaluable tool for system approximation and model reduction
theory; see e.g. Glover (1984). Applications of the SVD for rational matrix
valued functions to feedback control can be found in Hung and MacFarlane
(1982).

Early results on the singular value decomposition, including a charac-
terization of the critical points of the trace function (2.6) as well as a
computation of the associated Hessian, are due to von Neumann (1937).
The idea of relating the singular values of a matrix A to the eigenvalues of
the symmetric matrix

[
0 A′
A 0

]
is a standard trick in linear algebra which is

probably due to Wielandt. Inequalities for singular values and eigenvalues
of a possibly nonsymmetric, square matrix include those of Weyl, Polya,
Horn and Fan and can be found in Gohberg and Krein (1969) and Bhatia
(1987).

Generalizations of the Frobenius norm are unitarily invariant matrix
norms. These satisfy ‖UAV ‖ = ‖A‖ for all orthogonal (or unitary) matrices
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U , V and arbitrary matrices A. A characterization of unitarily invariant
norms has been obtained by von Neumann (1937). The appropriate gener-
alization of the SVD for square invertible matrices to arbitrary Lie groups
is the Cartan decomposition. Basic textbooks on Lie groups and Lie alge-
bras are Bröcker and tom Dieck (1985) and Humphreys (1972). The Killing
form is a symmetric bilinear form on a Lie algebra. It is nondegenerate if
the Lie algebra is semisimple.

An interesting application of Theorem 2.6 is to the Wielandt-Hoffman
inequality for singular values of matrices. For this we refer to Chu and
Driessel (1990); see also Bhatia (1987). For an extension of the results of
Chapter 3 to complex matrices see Helmke and Moore (1992). Parallel work
is that of Chu and Driessel (1990) and Smith (1991). The analysis in Chu
and Driessel (1990) is not entirely complete and they treat only the generic
case of simple, distinct singular values. The crucial observation that (2.12)
is the gradient flow for the least squares cost function (2.4) on S (Σ) is
due to Smith (1991). His proof, however, is slightly different from the one
presented here.

For an analysis of a recursive version of the self-equivalent flow (2.12) we
refer to Moore et al. (1994). It is shown that the iterative scheme

Hk+1 = e−αk{H′
k,N

′}Hke
αk{Hk,N} , k ∈ N0,

with initial condition H0 and step-size selection αk := 1/ (8 ‖H0‖ · ‖N‖)
defines a self-equivalent recursion on S (H0) such that every solution
(Hk | k ∈ N0) converges to the same set of equilibria points as for the con-
tinuous flow (2.12). Moreover, under suitable genericity assumption, the
convergence is exponentially fast, see also Brockett (1993).

For extensions of the singular value decomposition to several matrices
and restricted versions we refer to Zha (1989a; 1989b) and de Moor and
Golub (1989).



CHAPTER 4

Linear Programming

4.1 The Rôle of Double Bracket Flows

In Chapter 2, the double bracket equation

Ḣ (t) = [H (t) , [H (t) , N ]] , H (0) = H0 (1.1)

for a real diagonal matrix N , and its recursive version, is presented as
a scheme for diagonalizing a real symmetric matrix. Thus with a generic
initial condition H (0) = H0 where H0 is real symmetric, H (t) converges
to a diagonal matrix H∞, with its diagonal elements ordered according to
the ordering in the prespecified diagonal matrix N .

If a generic non-diagonal initial matrix H0 = Θ′Σ0Θ is chosen, where Σ0

is diagonal with a different ordering property than N , then the flow thus
allows a re-ordering, or sorting. Now in a linear programming exercise, one
can think of the vertices of the associated compact convex constraint set as
needing an ordering to find the one vertex which has the greatest cost. The
cost of each vertex can be entered in a diagonal matrix N . Then the double
bracket equation, or its recursive form, can be implemented to achieve,
from an initial H0 = H ′

0 with one nonzero eigenvalue, a diagonal H∞ with
one nonzero diagonal element. This nonzero element then “points” to the
corresponding diagonal element of N , having the maximum value, and so
the maximum cost vertex is identified.

The optimal solution in linear programming via a double bracket flow
is achieved from the interior of the constraint set, and is therefore similar
in spirit to the celebrated Khachian’s and Karmarkar’s algorithms. Actu-
ally, there is an essential difference between Karmarkar’s and Brockett’s
algorithms due to the fact that the optimizing trajectory in Brockett’s
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approach is constructed using a gradient flow evolving on a higher dimen-
sional smooth manifold. An important property of this gradient flow and
its recursive version is that it converges exponentially fast to the optimal
solution. However, we caution that the computational effort in evaluating
the vertex costs entered into N , is itself a computational cost of order m,
where m is the number of vertices.

Starting from the seminal work of Khachian and Karmarkar, the devel-
opment of interior point algorithms for linear programming is currently
making fast progress. The purpose of this chapter is not to cover the main
recent achievements in this field, but rather to show the connection be-
tween interior points flows for linear programming and matrix least squares
estimation. Let us mention that there are also exciting connections with
artificial neural network theory; as can be seen from the work of, e.g., Pyne
(1956), Chua and Lin (1984), Tank and Hopfield (1985). A connection
of linear programming with completely integrable Hamiltonian systems is
made in the important work of Bayer and Lagarias (1989), Bloch (1990b)
and Faybusovich (1991a; 1991b; 1991c).

In this chapter we first formulate the double bracket algorithm for lin-
ear programming and then show that it converges exponentially fast to
the optimal solution. Explicit bounds for the rate of convergence are given
as well as for the time needed for the trajectory produced to enter an
ε-neighborhood of the optimal solution. In the special case where the con-
vex constraint set is the standard simplex, Brockett’s equation, or rather
its simplification studied here, is shown to induce an interior point algo-
rithm for sorting. The algorithm in this case is formally very similar to
Karmarkar’s interior point flow and this observation suggests the possi-
bility of common generalizations of these algorithms. Very recently, Fay-
busovich (1991a; 1991b; 1991c) have proposed a new class of interior point
flows and for linear programming which, in the case of a standard simplex,
coincide with the flow studied here. These interior point flows are studied
in Section 4.3.

The Linear Programming Problem

Let C (v1, . . . , vm) ⊂ Rn denote the convex hull of m vectors v1, . . . , vm ∈
Rn. Given the compact convex set C (v1, . . . , vm) ⊂ Rn and a nonzero row
vector c′ = (c1, . . . , cn) ∈ Rn the linear programming problem then asks
to find a vector x ∈ C (v1, . . . , vm) which maximizes c′ · x. Of course, the
optimal solution is a vertex point vi∗ of the constraint set C (v1, . . . , vm).

Since C (v1, . . . , vm) is not a smooth manifold in any reasonable sense it
is not possible to apply in the usual way steepest descent gradient methods
in order to find the optimum. One possible way to circumvent such techni-
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cal difficulties would be to replace the constraint set C (v1, . . . , vm) by some
suitable compact manifold M so that the optimization takes place on M in-
stead of C (v1, . . . , vm). A mathematically convenient way here would be to
construct a suitable resolution space for the singularities of C (v1, . . . , vm).
This is the approach taken by Brockett.

Let �m−1 = {(η1, . . . , ηm) ∈ Rm | ηi ≥ 0,
∑m

i=1 ηi = 1} denote the stan-
dard (m− 1)-dimensional simplex in Rm. Let

T = (v1, . . . , vm) (1.2)

be the real n×m matrix whose column vectors are the vertices v1, . . . , vm.
Thus T : Rm → Rn maps the simplex �m−1 ⊂ Rm linearly onto the set
C (v1, . . . , vm). We can thus use T in order to replace the constraint set
C (v1, . . . , vm) by the standard simplex �m−1.

Suppose that we are to solve the linear programming problem consisting
of maximizing c′x over the compact convex set of all x ∈ C (v1, . . . , vm).
Brockett’s recipe to solve the problem is this (cf. Brockett (1988), Theo-
rem 6).

Theorem 1.1 Let N be the real m×m matrix defined by

N = diag (c′v1, . . . , c′vm) , (1.3)

and assume that the genericity condition c′vi �= c′vj for i �= j holds. Let
Q = diag (1, 0, . . . , 0) ∈ Rm×m. Then for almost all orthogonal matrices
Θ ∈ O (m) the solution H (t) of the differential equation

Ḣ = [H, [H,N ]]

=H2N +NH2 − 2HNH, H (0) = Θ′QΘ

converges as t → ∞ to a diagonal matrix H∞ = diag (0, . . . , 0, 1, 0, . . . , 0),
with the entry 1 being at position i∗ so that x = vi∗ is the optimal vertex
of the linear programming problem.

In fact, this is an immediate consequence of the remark following The-
orem 2.1.5. Thus the optimal solution of a linear programming problem
can be obtained by applying the linear transformation T to a vector ob-
tained from the diagonal entries of the stable limiting solution of (1.4).
Brockett’s method, while theoretically appealing, has however a number of
shortcomings.

First, it works with a huge overparametrization of the problem. The
differential equation (1.4) evolves on the 1

2m (m+ 1)-dimensional vector
space of real symmetric m×m matrices H , while the linear programming
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problem is set up in the n-dimensional space C (v1, . . . , vm). Of course,
usually n will be much smaller than 1

2m (m+ 1).
Second, convergence to H∞ is guaranteed only for a generic choice of

orthogonal matrices. No explicit description of this generic set of initial
data is given.

Finally the method requires the knowledge of the values of the cost func-
tional at all vertex points in order to define the matrix N .

Clearly the last point is the most critical one and therefore Theorem 1.1
should be regarded only as a theoretical approach to the linear program-
ming problem. To overcome the first two difficulties we proceed as follows.

Let Sm−1 =
{
(ξ1, . . . , ξm) ∈ Rm | ∑m

i=1 ξ
2
i = 1

}
denote the set of unit

vectors of Rm. We consider the polynomial map

f : Sm−1 → �m−1

defined by

f (ξ1, . . . , ξm) =
(
ξ21 , . . . , ξ

2
m

)
. (1.4)

By composing f with the map T : �m−1 → C (v1, . . . , vm) we obtain a real
algebraic map

πT = T ◦ f : Sm−1 →C (v1, . . . , vm) ,

(ξ1, . . . , ξm) �→T



ξ21
...
ξ2m


 .

(1.5)

The linear programming task is to maximize the restriction of the linear
functional

λ : C (v1, . . . , vm) →R

x �→c′x
(1.6)

overC (v1, . . . , vm). The idea now is to consider instead of the maximization
of (1.6) the maximization of the induced smooth function λ◦πT : Sm−1 →
R on the sphere Sm−1. Of course, the function λ ◦ πT : Sm−1 → R has
the same form as that of a Rayleigh quotient, so that we can apply our
previous theory developed in Section 1.4. Let Sm−1 be endowed with the
Riemannian metric defined by

〈ξ, η〉 = 2ξ′η, ξ, η ∈ TxS
m−1. (1.7)
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Theorem 1.2 Let N be defined by (1.3) and assume the genericity condi-
tion

c′ (vi − vj) �= 0 for all i �= j. (1.8)

(a) The gradient vector-field of λ ◦ πT on Sm−1 is

ξ̇ = (N − ξ′NξI) ξ, (1.9)

|ξ|2 = 1. Also, (1.9) has exactly 2m equilibrium points given by the
standard basis vectors ±e1, . . . ,±em of Rm.

(b) The eigenvalues of the linearization of (1.9) at ±ei are

c′ (v1 − vi) , . . . , c′ (vi−1 − vi) , c′ (vi+1 − vi) , . . . , c′ (vm − vi) ,
(1.10)

and there is a unique index 1 ≤ i∗ ≤ m such that ±ei∗ is asymptoti-
cally stable.

(c) Let X ∼= Sm−2 be the smooth codimension-one submanifold of Sm−1

defined by

X = {(ξ1, . . . , ξm) | ξi∗ = 0} . (1.11)

With the exception of initial points contained in X, every solution
ξ (t) of (1.9) converges exponentially fast to the stable attractor
[±ei∗ ]. Moreover, πT (ξ (t)) converges exponentially fast to the op-
timal solution πT (±ei∗) = vi∗ of the linear programming problem,
with a bound on the rate of convergence

|πT (ξ (t)) − vi∗ | ≤ const e−µ(t−t0),

where

µ = min
j �=i∗

|c′ (vj − vi∗)| . (1.12)

Proof 1.3 For convenience of the reader we repeat the argument for
the proof, taken from Section 1.4. For any diagonal m × m matrix N =
diag (n1, . . . , nm) consider the Rayleigh quotient ϕ : Rm−{0} → R defined
by

ϕ (x1, . . . , xm) =
∑m

i=1 nix
2
i∑m

i=1 x
2
i

. (1.13)
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FIGURE 1.1. The convex set C (v1, . . . , vm)

A straightforward computation shows that the gradient of ϕ at a unit vector
x ∈ Sm−1 is

∇ϕ (x) = (N − x′Nx)x.

Furthermore, if ni �= nj for i �= j, then the critical points of the induced
map ϕ : Sm−1 → R are, up to a sign ±, the standard basis vectors, i.e.
±e1, . . . ,±em. This proves (a). The Hessian of ϕ : Sm−1 → R at ±ei is
readily computed as

Hϕ (±ei) = diag (n1 − ni, . . . , ni−1 − ni, ni+1 − ni, . . . ,mm − ni) .

Let i∗ be the unique index such that ni∗ = max1≤j≤m nj . Thus Hϕ (±ei) <
0 if and only if i = i∗ which proves (b). Let X ∼= Sm−2 be the closed
submanifold of Sm−1 defined by (1.11). Then Sm−1 − X is equal to the
stable manifold of ±ei∗ and X is equal to the union of the stable manifolds
of the other equilibrium points ±ei, i �= i∗. The result follows.

Remark 1.4 From (1.11)

πT (X) = C (v1, . . . , vi∗−1, vi∗+1, . . . , vm) . (1.14)

Thus if n = 2 and C (v1, . . . , vm) ⊂ R
2 is the convex set, illustrated by

Figure 1.1 with optimal vertex point vi∗ then the shaded region describes
the image πT (X) of the set of exceptional initial conditions. The gradient
flow (1.9) on the (m− 1)-space Sm−1 is identical with the Rayleigh quotient
gradient flow; see Section 1.2. �

Remark 1.5 Moreover, the flow (1.4) with Q = diag (1, 0, . . . , 0) is equiva-
lent to the double bracket gradient flow (1.9) on the isospectral setM (Q) =
RPm−1. In fact, with H = ξξ′ and ξ (t) a solution of (1.9) we have H2 = H
and

Ḣ =ξ̇ξ′ + ξξ̇′ = (N − ξ′NξI) ξξ′ + ξξ′ (N − ξ′NξI)
=NH +HN − 2HNH = [H, [H,N ]] .

(1.15)
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Also, (1.9) has an interesting interpretation in neural network theory; see
Oja (1982). �

Remark 1.6 For any (skew-) symmetric matrix Ω ∈ Rm×m

ξ̇ = (N + Ω − ξ′ (N + Ω) ξIm) ξ (1.16)

defines a flow on Sm−1. If Ω = −Ω′ is skew-symmetric, the functional
ϕ (ξ) = ξ′ (N + Ω) ξ = ξ′Nξ is not changed by Ω and therefore has the
same critical points. Thus, while (1.16) is not the gradient flow of ϕ (if
Ω = −Ω′), it can still be of interest for the linear programming problem. If
Ω = Ω′ is symmetric, (1.16) is the gradient flow of ψ (ξ) = ξ′ (N + Ω) ξ on
Sm−1. �

Interior Point Flows on the Simplex

Brockett’s equation (1.4) and its simplified version (1.9) both evolve on
a high-dimensional manifold M so that the projection of the trajectories
into the polytope leads to a curve which approaches the optimum from
the interior. In the special case where the polytope is the (m− 1)-simplex
�m−1 ⊂ Rm, (1.9) actually leads to a flow evolving in the simplex such that
the optimum is approached from all trajectories starting in the interior of
the constraint set. Such algorithms are called interior point algorithms, an
example being the celebrated Karmarkar algorithm (1984), or the algorithm
proposed by Khachian (n.d.). Here we like to take such issues a bit further.

In the special case where the constraint set is the standard simplex
�m−1 ⊂ Rm, then equation (1.9) on Sm−1 becomes

ξ̇i =
(
ci −

m∑
j=1

cjξ
2
j

)
ξi, i = 1, . . . ,m, (1.17)

∑m
i=1 ξ

2
i = 1. Thus with the substitution xi = ξ2i , i = 1, . . . ,m, we obtain

ẋi = 2
(
ci −

m∑
j=1

cjxj

)
xi, i = 1, . . . ,m, (1.18)

xi ≥ 0,
∑m

i=1 xi = 1. Since
∑m

i=1 ẋi = 0, (1.18) is a flow on the simplex
�m−1. The set X ⊂ Sm−1 of exceptional initial conditions is mapped by
the quadratic substitution xi = ξ2i , i = 1, . . . ,m, onto the boundary ∂�m−1

of the simplex. Thus Theorem 1.2 implies
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FIGURE 1.2. Phase portrait of (1.18)

Corollary 1.7 Equation (1.18) defines a flow on �m−1. Every solution
x (t) with initial condition x (0) in the interior of �m−1 converges to the
optimal solution ei∗ of the linear programming problem: Maximize c′x over
x ∈ �m−1. The exponential rate of convergence is given by

|x (t) − ei∗ | ≤ const e−2µt, µ = min
j �=i∗

(ci∗ − cj) .

Remark 1.8 Equation (1.18) is a Volterra-Lotka type of equation and
thus belongs to a well studied class of equations in population dynamics;
cf. Schuster, Sigmund and Wolff (1978), Zeeman (1980). �

Remark 1.9 If the interior �̊m−1 of the simplex is endowed with the
Riemannian metric defined by

〈〈ξ, η〉〉 =
m∑
i=1

ξiηi
xi

, x = (x1, . . . , xm) ∈ �̊m−1,

then (1.18) is actually (up to an irrelevant factor by 2) the gradient flow of
the linear functional x �→ c′x on �̊m−1, see Figure 1.2. �

Remark 1.10 Karmarkar (1990) has analyzed a class of interior point
flows which are the continuous-time versions of the discrete-time algorithm
described in Karmarkar (1984). In the case of the standard simplex, Kar-
markar’s equation turns out to be

ẋi =
(
cixi −

m∑
j=1

cjx
2
j

)
xi, i = 1, . . . ,m, (1.19)

xi ≥ 0,
∑m

i=1 xi = 1. This flow is actually the gradient flow for the quadratic
cost function

∑m
j=1 cjx

2
j rather than for the linear cost function

∑m
j=1 cjxj .
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Thus Karmakar’s equation solves a quadratic optimization problem on the
simplex. A more general class of equations would be

ẋi =
[
cifi (xi) −

m∑
j=1

cjfj (xj)xj

]
xi, i = 1, . . . ,m, (1.20)

with fj : [0, 1] → R monotonically increasing C1 functions, see Section 4.2.
Incidentally, the Karmarkar flow (1.19) is just a special case of the equations
studied by Zeeman (1980). �

The following result estimates the time a trajectory of (1.18) needs in
order to reach an ε-neighborhood of the optimal vertex.

Proposition 1.11 Let 0 < ε < 1 and µ = minj �=i∗ (ci∗ − cj). Then for any
initial condition x (0) in the interior of �m−1 the solution x (t) of (1.18)
is contained in an ε-neighborhood of the optimum vertex ei∗ if t ≥ tε where

tε =

∣∣log (min1≤i≤m xi (0)) ε2/2
∣∣

2µ
. (1.21)

Proof 1.12 We first introduce a lemma.

Lemma 1.13 Every solution x (t) of (1.18) is of the form

x (t) =
e2tNx (0)
〈e2tNx (0)〉 , (1.22)

where N = diag (c1, . . . , cm) and
〈
e2tNx (0)

〉
=

∑m
j=1 e

2tcjxj (0).

Proof 1.14 In fact, by differentiating the right hand side of (1.22) one
sees that both sides satisfy the same conditions (1.18) with identical initial
conditions. Thus (1.22) holds.

Using (1.22) one has

‖x (t) − ei∗‖2 = ‖x (t)‖2 − 2

〈
e2tNx (0) , ei∗

〉
〈e2tNx (0)〉 + 1

≤2 − 2
e2tci∗xi∗ (0)
〈e2tNx (0)〉 .

(1.23)

Now
m∑
j=1

e2t(cj−ci∗)xj (0) ≤ e−2µt + xi∗ (0) , (1.24)



110 Chapter 4. Linear Programming

and thus

‖x (t) − ei∗‖2 ≤ 2 − 2
(
1 + e−2µtxi∗ (0)−1

)−1

.

Therefore ‖x (t) − ei∗‖ ≤ ε if

(
1 + e−2µtxi∗ (0)−1

)−1

> 1 − ε2

2
,

i.e., if

t ≥
∣∣∣∣∣∣
log

(
ε2xi∗ (0)

2−ε2
)

2µ

∣∣∣∣∣∣ .

From this the result easily follows.

Note that for the initial condition x (0) = 1
m (1, . . . , 1) the estimate (1.21)

becomes

tε ≥

∣∣∣log ε2

2m

∣∣∣
2µ

, (1.25)

and (1.25) gives an effective lower bound for (1.21) valid for all x (0) ∈
�̊m−1.

We can use Proposition 1.11 to obtain an explicit estimate for the time
needed in either Brockett’s flow (1.4) or for (1.9) that the projected interior
point trajectory πT (x (t)) enters an ε-neighborhood of the optimal solution.

Thus let N , T be defined by (1.2), (1.3) with (1.8) understood and let
vi∗ denote the optimal solution for the linear programming problem of
maximizing c′x over the convex set C (v1, . . . , vm).

Theorem 1.15 Let 0 < ε < 1, µ = minj �=i∗ (c′vi∗ − c′vj), and let X be
defined by (1.11). Then for all initial conditions ξ (0) ∈ Sm−1 − X the
projected trajectory πT (ξ (t)) ∈ C (v1, . . . , vm) of the solution ξ (t) of (1.9)
is in an ε-neighborhood of the optimal vertex vi∗ for all t ≥ tε with

tε =

∣∣∣log (ε/‖T‖)2
2m

∣∣∣
2µ

. (1.26)

Proof 1.16 By (1.5) πT (ξ (t)) = Tx (t) where x (t) =
(
ξ1 (t)2, . . . , ξm (t)2

)
satisfies

ẋi = 2
(
c′vi −

m∑
j=1

c′vjxj

)
xi, i = 1, . . . ,m.
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Proposition 1.11 implies ‖x (t) − ei∗‖ < ε
‖T‖ for t ≥

∣∣log (ε/‖T‖)2
2m

∣∣
2µ and

hence
‖πT (ξ (t)) − vi∗‖ ≤ ‖T ‖ · ‖x (t) − ei∗‖ < ε.

Main Points of the Section

The “gradient method” for linear programming consists in the following
program:

(a) To find a smooth compact manifold M and a smooth map π : M →
Rn, which maps M onto the convex constraint set C.

(b) To solve the gradient flow of the smooth function λ ◦ π : M → R and
determine its stable equilibria points.

In the cases discussed here we have M = Sm−1 and π : Sm−1 → R
n

is the Rayleigh quotient formed as the composition of the linear map T :
�m−1 → C (v1, . . . , vm) with the smooth map from Sm−1 → �m−1 defined
by (1.4).

Likewise, interior point flows for linear programming evolve in the interior
of the constraint set.

4.2 Interior Point Flows on a Polytope

In the previous sections interior point flows for optimizing a linear func-
tional on a simplex were considered. Here, following the pioneering work of
Faybusovich (1991a; 1992a), we extend our previous results by considering
interior point gradient flows for a cost function defined on the interior of
an arbitrary polytope. Polytopes, or compact convex subsets of Rn, can be
parametrized in various ways. A standard way of describing such polytopes
C is as follows.

Mixed Equality-Inequality Constraints

For any x ∈ Rn we write x ≥ 0 if all coordinates of x are non-negative.
Given A ∈ Rm×n with rkA = m < n and b ∈ Rm let

C = {x ∈ R
n | x ≥ 0, Ax = b}

be the convex constraint set of our optimization problem. The interior of
C is the smooth manifold defined by

C̊ = {x ∈ R
n | x > 0, Ax = b}
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In the sequel we assume that C̊ is a nonempty subset of Rn and C is
compact. Thus C is the closure of C̊. The optimization task is then to
optimize (i.e. minimize or maximize) the cost function φ : C → R over C.
Here we assume that φ : C → R is the restriction of a smooth function
φ : R

n → R. Let

∇φ (x) =
(
∂φ

∂x1
(x) , . . . ,

∂φ

∂xn
(x)

)′
(2.1)

denote the usual gradient vector of φ in Rn.
For x ∈ Rn let

D (x) = diag (x1, . . . , xn) ∈ R
n×n. (2.2)

For any x ∈ C̊ let Tx
(C̊) denote the tangent space of C̊ at x. Thus Tx

(C̊)
coincides with the tangent space of the affine subspace of {x ∈ Rn | Ax = b}
at x:

Tx
(C̊) = {ξ ∈ R

n | Aξ = 0} , (2.3)

that is, with the kernel of A; cf. Section 1.6. For any x ∈ C̊, the diagonal
matrix D (x) is positive definite and thus

〈〈ξ, η〉〉 := ξ′D (x)−1
η, ξ, η ∈ Tx

(C̊), (2.4)

defines a positive definite inner product on Tx
(C̊) and, in fact, a Riemannian

metric on the interior C̊ of the constraint set.
The gradient gradφ of φ : C̊ → R with respect to the Riemannian metric

〈〈 , 〉〉, at x ∈ C̊ is characterized by the properties

(a) gradφ (x) ∈ Tx
(C̊)

(b) 〈〈gradφ (x) , ξ〉〉 = ∇φ (x)′ ξ

for all ξ ∈ Tx
(C̊). Here (a) is equivalent to A · gradφ (x) = 0 while (b) is

equivalent to
(
D (x)−1 gradφ (x) −∇φ (x)

)′
ξ = 0 ∀ξ ∈ kerA

⇐⇒D (x)−1 gradφ (x) −∇φ (x) ∈ (kerA)⊥ = Im (A′)

⇐⇒D (x)−1 gradφ (x) −∇φ (x) = A′λ
(2.5)

for a uniquely determined λ ∈ Rm.
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Thus

gradφ (x) = D (x)∇φ (x) +D (x)A′λ. (2.6)

Multiplying both sides of this equation by A and noting that A·gradφ (x) =
0 and AD (x)A′ > 0 for x ∈ C̊ we obtain

λ = − (AD (x)A′)−1
AD (x)∇φ (x) .

Thus

gradφ (x) =
[
In −D (x)A′ (AD (x)A′)−1

A
]
D (x)∇φ (x) (2.7)

is the gradient of φ at an interior point x ∈ C̊. We have thus proved

Theorem 2.1 The gradient flow ẋ = gradφ (x) of φ : C̊ → R with respect
to the Riemannian metric (2.4) on the interior of the constraint set is

ẋ =
(
In −D (x)A′ (AD (x)A′)−1

A
)
D (x)∇φ (x) . (2.8)

We refer to (2.8) as the Faybusovich flow on C̊. Let us consider a few special
cases of this result. If A = (1, . . . , 1) ∈ R1×n and b = 1, the constraint set C
is just the standard (n− 1)-dimensional simplex �n−1. The gradient flow
(2.8) then simplifies to

ẋ = (D (∇φ (x)) − x′∇φ (x) In)x,

that is, to

ẋi =
(
∂φ

∂xi
−

n∑
j=1

xj
∂φ

∂xj

)
xi, i = 1, . . . , n. (2.9)

If φ (x) = c′x then (2.9) is equivalent to the interior point flow (1.18) on
�n−1 (up to the constant factor 2). If

φ (x) =
n∑
j=1

fj (xj)

then (2.8) is equivalent to

ẋi =
(
f ′
i (xi) −

n∑
j=1

xjf
′
j (xj)

)
xi, i = 1, . . . , n,
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i.e. to (1.20). In particular, Karmarkar’s flow (1.19) on the simplex is thus
seen as the gradient flow of the quadratic cost function

φ (x) =
1
2

n∑
j=1

cjx
2
j

on �n−1.
As another example, consider the least squares cost function on the sim-

plex φ : �n−1 → R defined by

φ (x) = 1
2 ‖Fx− g‖2

Then ∇φ (x) = F ′ (Fx− g) and the gradient flow (2.8) is equivalent to

ẋi = ((F ′Fx)i − (F ′g)i − x′F ′Fx+ x′F ′g)xi i = 1, . . . , n
(2.10)

In particular, for F = In, (2.9) becomes

ẋi =
(
xi − gi − ‖x‖2 + x′g

)
xi, i = 1, . . . , n (2.11)

If g �∈ �n−1, then the gradient flow (2.11) in �̊n−1 converges to the best
approximation of g ∈ Rn by a vector on the boundary ∂�n−1 of �n−1; see
Figure 2.1.

Finally, for A arbitrary and φ (x) = c′x the gradient flow (2.8) on C̊
becomes

ẋ =
[
D (c) −D (x)A′ (AD (x)A′)−1

AD (c)
]
x (2.12)

which is identical with the gradient flow for linear programming proposed
and studied extensively by Faybusovich (1991a; 1991b; 1991c). Indepen-
dently, this flow was also studied by Herzel, Recchioni and Zirilli (1991).
Faybusovich (1991a; 1992a) have also presented a complete phase portrait
analysis of (2.12). He shows that the solutions x (t) ∈ C̊ converge exponen-
tially fast to the optimal vertex of the linear programming problem.

Inequality Constraints

A different description of the constraint set is as

C = {x ∈ R
n | Ax ≥ b} (2.13)
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FIGURE 2.1. Best approximation of b on a simplex

where A ∈ Rm×n, b ∈ Rm. Here we assume that x �→ Ax is injective, that
is rkA = n ≤ m. Consider the injective map

F : R
n → R

m, F (x) = Ax− b

Then
C = {x ∈ R

n | F (x) ≥ 0}
and

C̊ = {x ∈ R
n | F (x) > 0}

In this case the tangent space Tx
(C̊) of C̊ at x is unconstrained and thus

consists of all vectors ξ ∈ Rn. A Riemannian metric on C̊ is defined by

〈〈ξ, η〉〉 := DF |x (ξ)′ diag (F (x))−1
DF |x (η)

=ξ′A′ diag (Ax− b)−1Aη
(2.14)

for x ∈ C̊ and ξ, η ∈ Tx
(C̊) = Rn. Here DF |x : Tx

(C̊) → TF (x)R
m is the

derivative or tangent map of F at x and D (F (x)) is defined by (2.2). The
reader may verify that (2.14) does indeed define a positive definite inner
product on R

n, using the injectivity of A. It is now rather straightforward
to compute the gradient flow ẋ = gradφ (x) on C̊ with respect to this
Riemannian metric on C̊. Here φ : Rn → R is a given smooth function.

Theorem 2.2 The gradient flow ẋ = gradφ (x) of a smooth function φ :
C̊ → R with respect to the Riemannian metric (2.14) on C̊ is

ẋ =
(
A′ diag (Ax− b)−1

A
)−1

∇φ (x) (2.15)

where ∇φ (x) =
(
∂φ
∂x1

, . . . , ∂φ∂xn

)′
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Proof 2.3 The gradient is defined by the characterization

(a) gradφ (x) ∈ Tx
(C̊)

(b) 〈〈gradφ (x) , ξ〉〉 = ∇φ (x)′ ξ for all ξ ∈ Tx
(C̊).

Since Tx
(C̊) = Rn we only have to consider Property (b) which is equiv-

alent to
gradφ (x)′A′ diag (Ax− b)−1

Aξ = ∇φ (x)′ ξ

for all ξ ∈ Rn. Thus

gradφ (x) =
(
A′ diag (Ax− b)−1A

)−1

∇φ (x) .

Let us consider some special cases. If φ (x) = c′x, as in the linear pro-
gramming case, then (2.15) is equivalent to

ẋ =
(
A′ diag (Ax− b)−1

A
)−1

c. (2.16)

If we assume further that A is invertible, i.e. that we have exactly n in-
equality constraints, then (2.16) becomes the linear differential equation

ẋ = A−1 diag (Ax− b) (A′)−1
c. (2.17)

Let us consider next the case of a n-dimensional simplex domain C =
{x ∈ Rn | x ≥ 0,

∑n
i=1 xi ≤ 1}, now regarded as a subset of Rn. Here m =

n+ 1 and

A =

[
In

−e′
]
, b =




0
...
0
−1




with e′ = (1, . . . , 1) ∈ Rn. Thus

diag (Ax− b)−1 = diag

(
x−1

1 , . . . , x−1
n ,

(
1 −

n∑
i=1

xi

)−1
)
.

and

A′ diag (Ax− b)−1
A = diag (x)−1 +

(
1 −

n∑
1

xi

)−1

ee′.



4.3. Recursive Linear Programming/Sorting 117

Using the matrix inversion lemma, see Appendix A, gives
(
A′ diag (Ax− b)−1

A
)−1

=
(
D (x)−1 + (1 − Σxi)

−1 ee′
)−1

=D (x) −D (x) e (e′D (x) e+ (1 − Σxi))
−1
e′D (x)

= (I −D (x) ee′)D (x) .

Thus the gradient flow (2.17) in this case is

ẋ = (I −D (x) ee′)D (x) c
= (D (c) − xc′)x
= (D (c) − c′xIn)x.

in harmony with Corollary 1.7.

Problem 2.4 Let A ∈ Rm×n, rkA = m < n, B ∈ Rm×n and consider the
convex subset of positive semidefinite matrices

C =
{
P ∈ R

n×n | P = P ′ ≥ 0, AP = B
}

with nonempty interior

C̊ =
{
P ∈ R

n×n | P = P ′ > 0, AP = B
}
.

Show that
〈〈ξ, η〉〉 := tr

(
P−1ξP−1η

)
, ξ, η ∈ TP

(C̊),
defines a Riemannian metric on C̊.

Problem 2.5 Let W1,W2 ∈ Rn×n be symmetric matrices. Prove that the
gradient flow of the cost function φ : C̊ → R, φ (P ) = tr

(
W1P +W2P

−1
)

with respect to the above Riemannian metric on C̊ is

Ṗ =
(
In − PA′ (APA′)−1

A
)

(PW1P −W2) .

4.3 Recursive Linear Programming/Sorting

Our aim in this section is to obtain a recursive version of Brockett’s linear
programming/sorting scheme (1.4). In particular, we base our algorithms
on the recursive Lie-bracket algorithm of Section 2.3, as originally presented
in Moore et al. (1994).
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Theorem 1.2 gives an analysis of the Rayleigh quotient gradient flow on
the sphere Sm−1,

ξ̇ = (N − ξ′NξI) ξ, ξ (0) = ξ0 (3.1)

and shows how this leads to a solution to the linear programming/sorting
problem. As pointed out in the remarks following Theorem 1.2, any solution
ξ (t) of (3.1) induces a solution to the isospectral double bracket flow

Ḣ = [H, [H,N ]] , H (0) = H0 = ξ0ξ
′
0

via the quadratic substitution H = ξξ′. Similarly, if (ξk) is a solution to
the recursion

ξk+1 = e−α[ξkξ
′
k,N]ξk, α =

1
4 ‖N‖ , ξ0 ∈ Sm−1, (3.2)

evolving on Sm−1, then (Hk) = (ξkξ′k) is a solution to the recursive Lie-
bracket scheme

Hk+1 = e−α[Hk,N ]Hke
α[Hk,N ], α =

1
4 ‖N‖ , ξ0 ∈ Sm−1.

(3.3)

We now study (3.2) as a recursive solution to the linear programming/
sorting problem.

Theorem 3.1 (Linear Programming/Sorting Algorithm) Consider
the maximization of c′x over the polytope C (v1, . . . , vm), where x, c, vi ∈
Rn. Assume the genericity condition c′vi �= c′vj holds for all i �= j. Let
N = diag (c′v1, . . . , c′vm). Then:

(a) The solutions (ξk) of the recursion (3.2) satisfy

i ξk ∈ Sm−1 for all k ∈ N.

ii There are exactly 2m fixed points corresponding to ±e1, . . . ,±em,
the standard basis vectors of Rm.

iii All fixed points are unstable, except for ±ei∗ with c′vi∗ =
max

i=1,...,m
(c′vi), which is exponentially stable.

iv The recursive algorithm (3.2) acts to monotonically increase the
cost

rN (ξk) = ξ′kNξk.
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(b) Let

p0 =
m∑
i=1

ηivi ∈ C, ηi ≥ 0, η1 + · · · + ηm = 1

be arbitrary and define ζ0 =
(√
η1, . . . ,

√
ηm

)
. Now let ξk =

(ξk,1, . . . , ξk,m) be given by (3.2). Then the sequence of points

pk =
m∑
i=1

ξk,ivi (3.4)

converges exponentially fast to the unique optimal vertex of the poly-
tope C for generic initial conditions ξ0.

Proof 3.2 The proof of Part (a) is an immediate consequence of The-
orem 2.3.8, once it is observed that ξk is the first column vector of an
orthogonal matrix solution Θk ∈ O (n) to the double bracket recursion

Θk+1 = e−α[ΘkQΘ′
k,N]Θk.

Here Q = diag (1, 0, . . . , 0) and ξ0 = Θ0e1.
Part (b) follows immediately from Part (a).

Remark 3.3 By choosing p0 = 1
m

∑m
i=1 vi ∈ C as the central point of

the polytope and setting ξ0 =
(

1√
m
, . . . , 1√

m

)
, it is guaranteed that the

sequence of interior points pk defined by (3.4) converges to the optimal
vertex. �

Remark 3.4 Of course, it is not our advise to use the above algorithm as
a practical method for solving linear programming problems. In fact, the
same comments as for the continuous time double bracket flow (1.4) apply
here. �

Remark 3.5 It should be noted that a computationally simple form of
(3.2) exists which does not require the calculation of the matrix exponential
(see Mahony et al. (1996)).

ξk+1 =
(

cos (αyk) − ξ′kNξk
sin (αyk)

yk

)
ξk +

sin (αyk)
yk

Nξk

yk =
(
x′kN

2xk − (x′kNxk)
2
)1/2

(3.5)

�
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FIGURE 3.1. The recursion occurring inside the polytope C

Remark 3.6 Another alternative to the exponential term eA =
e−αk(ξkξ

′
kN−Nξkξ

′
k) is a (1, 1) Padé approximation 2I+A

2I−A which preserves
the orthogonal nature of the recursion ξk and reduces the computational
cost of each step of the algorithm. �

Remark 3.7 Although the linear programming/sorting algorithm evolves
in the interior of the polytope to search for the optimal vertex, it is not
strictly a dynamical system defined on the polytope C, but rather a dynam-
ical system with output variables on C. It is a projection of the recursive
Rayleigh quotient algorithm from the sphere Sm−1 to the polytope C.

It remains as a challenge to find isospectral-like recursive interior point
algorithms similar to Karmarkar’s algorithm evolving on C. Actually, one
interesting case where the desired algorithm is available as a recursive inte-
rior point algorithm, is the special case where the polytope is the standard
simplex �m−1, see Problem 3.10. �

Remark 3.8 An attraction of this algorithm, is that it can deal with time-
varying or noisy data. Consider a process in which the vertices of a linear
polytope are given by a sequence of vectors {vi (k)} where k = 1, 2, . . . ,
and similarly the cost vector c = c (k) is also a function of k. Then the only
difference is the change in target matrix at each step as

N (k) = diag (c′ (k) v1 (k) , . . . , c′ (k) vm (k)) .

Now since such a scheme is based on a gradient flow algorithm for which
the convergence rate is exponential, it can be expected that for slowly time-
varying data, the tracking response of the algorithm should be reasonable,
and there should be robustness to noise. �
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Iterations

E
rr

or

FIGURE 3.2. Response to a time-varying cost function

Simulations

Two simulations were run to give an indication of the nature of the recur-
sive interior-point linear programming algorithm. To illustrate the phase
diagram of the recursion in the polytope C, a linear programming problem
simulation with 4 vertices embedded in R2 is shown in Figure 3.1. This
figure underlines the interior point nature of the algorithm.

The second simulation in Figure 3.2 is for 7 vectors embedded in R7. This
indicates how the algorithm behaves for time-varying data. Here the cost
vector c ∈ Rn has been chosen as a time varying sequence c = c (k) where
c(k+1)−c(k)

c(k) ∼ 0.1. For each step the optimum direction ei∗ is calculated
using a standard sorting algorithm and then the norm of the difference
between the estimate ‖ξ (k) − ei∗‖2 is plotted. Note that since the cost
vector c (k) is changing the optimal vertex may change abruptly while the
algorithm is running. In this simulation such a jump occurs at iteration 10.
It is interesting to note that for the iterations near to the jump the change
in ξ (k) is small indicating that the algorithm slows down when the optimal
solution is in doubt.

Problem 3.9 Verify (3.5).

Problem 3.10 Verify that the Rayleigh quotient algorithm (3.5) on the
sphere Sm−1 induces the following interior point algorithm on the simplex
�m−1. Let c = (c1, . . . , cm)′. For any solution ξk = (ξk,1, . . . , ξk,m) ∈ Sm−1

of (3.5) set xk = (xk,1, . . . , xk,m) :=
(
ξ2k,1, . . . , ξ

2
k,m

) ∈ �m−1. Then (xk)
satisfies the recursion

xk+1 =
((

cos (αyk) − c′xk
sin (αyk)

yk

)
I +

sin (αyk)
yk

N

)2

xk
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with α = 1
4‖N‖ and yk =

√∑m
i=1 c

2
i xk,i − (

∑m
i=1 cixk,i)

2.

Problem 3.11 Show that every solution (xk) which starts in the interior
of the simplex converges exponentially to the optimal vertex ei∗ with ci∗ =
max

i=1,...,m
ci.

Main Points of Section

The linear programming/sorting algorithm presented in this section is
based on the recursive Lie-bracket scheme in the case where H0 is a rank
one projection operator. There are computationally simpler forms of the
algorithm which do not require the calculation of the matrix exponential.

An attraction of the exponentially convergent algorithms, such as is de-
scribed here, is that they can be modified to be tracking algorithms which
can the track time-varying data or filter noisy data. In such a situation the
algorithms presented here provide simple computational schemes which will
track the optimal solution, and yet be robust.
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Notes for Chapter 4

As textbooks on optimization theory and nonlinear programming we men-
tion Luenberger (1969; 1973). Basic monographies on linear programming,
the simplex method and combinatorial optimization are Dantzig (1963),
Grötschel, Lovász and Schrijver (1988). The book Werner (1992) also con-
tains a discussion of Karmarkar’s method.

Sorting algorithms are discussed in Knuth (1973). For a collection of ar-
ticles on interior point methods we refer to Lagarias and Todd (1990) as
well as to the Special Issue of Linear Algebra and its Applications (1991),
Volume 151. Convergence properties of interior point flows are investigated
by Meggido and Shub (1989). Classical papers on interior point methods
are those of Khachian (n.d.) and Karmarkar (1984). The paper of Kar-
markar (1990) contains an interesting interpretation of the (discrete-time)
Karmarkar algorithm as the discretization of a continuous time interior
point flow. Variable step-size selections are made with respect to the cur-
vature of the interior point flow trajectories. For related work we refer to
Sonnevend and Stoer (1990) and Sonnevend, Stoer and Zhao (1990; 1991).

The idea of using isospectral matrix flows to solve combinatorial opti-
mization tasks such as sorting and linear programming is due to Brockett
(1991b); see also Bloch (1990b) and Helmke (1993b) for additional infor-
mation. For further applications to combinatorial assignment problems and
least squares matching problems see Brockett and Wong (1991), Brockett
(1989a). Starting from the work of Brockett (1991b), a systematic approach
to interior point flows for linear programming has been developed in the
important pioneering work of Faybusovich.

Connections of linear programming with completely integrable Hamil-
tonian systems are made in Bayer and Lagarias (1989), Bloch (1990b)
and Faybusovich (1991a; 1991b; 1992a). For a complete phase portrait
analysis of the interior point gradient flow (2.12) we refer to Faybuso-
vich (1991a; 1992a). Quadratic convergence to the optimum via a discretiza-
tion of (2.12) is established in Herzel et al. (1991).

An important result from linear algebra which is behind Brockett’s ap-
proach to linear programming is the Schur-Horn theorem. The Schur-Horn
theorem states that the set of vectors formed by the diagonal entries of
Hermitian matrices with eigenvalues λ1, . . . , λn coincides with the convex
polytope with vertices

(
λπ(1), . . . , λπ(n)

)
, where π varies over all n! permu-

tations of 1, . . . , n; Schur (1923), Horn (1953). A Lie group theoretic gener-
alization of this result is due to Kostant (1973). For deep connections of such
convexity results with symplectic geometry we refer to Atiyah (1982; 1983);
see also Byrnes and Willems (1986), Bloch and Byrnes (1986).

There is an interesting connection of interior point flows with population
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dynamics. In population dynamics interior point flows on the standard
simplex naturally arise. The book of Akin (1979) contains a systematic
analysis of interior point flows on the standard simplex of interest in popu-
lation dynamics. Akin refers to the Riemannian metric (2.4) on the interior
of the standard simplex as the Shahshahani metric. See also the closely
related work of Smale (1976), Schuster et al. (1978) and Zeeman (1980) on
Volterra-Lotka equations for predator-prey models in population dynam-
ics. For background material on the Volterra-Lotka equation see Hirsch and
Smale (1974).

Highly interconnected networks of coupled nonlinear artificial neurons
can have remarkable computational abilities. For exciting connections of
optimization with artificial neural networks we refer to Pyne (1956), Chua
and Lin (1984), Hopfield and Tank (1985), Tank and Hopfield (1985). Hop-
field (1982; 1984) have shown that certain well behaved differential equa-
tions on a multidimensional cube may serve as a model for associative
memories. In the pioneering work Hopfield and Tank (1985) show that such
dynamical systems are capable of solving complex optimization problems
such as the Travelling Salesman Problem. See also Peterson and Soeder-
berg (1989) for related work. For an analysis of the Hopfield model we refer
to Aiyer, Niranjan and Fallside (1990). For further work we refer to Yuille
(1990) and the references therein. An open problem for future research is
to find possible connections between the interior point flows, as described
in this chapter, and Hopfield type neural networks for linear programming.



CHAPTER 5

Approximation and
Control

5.1 Approximations by Lower Rank Matrices

In this chapter, we analyse three further matrix least squares estimation
problems. The first is concerned with the task of approximating matrices
by lower rank ones. This has immediate relevance to total least squares
estimation and representations by linear neural networks. The section also
serves as a prototype for linear system approximation. In the second, short
section we introduce dynamical systems achieving the polar decomposition
of a matrix. This has some contact with Brockett’s (1989a) investigation
on matching problems of interest in computer vision and image detection.
Finally the last section deals with inverse eigenvalue problems arising in
control theory. This section also demonstrates the potential of the dynam-
ical systems approach to optimize feedback controllers.

In this section, we study the problem of approximating finite-dimensional
linear operators by lower rank linear operators. A classical result from
matrix analysis, the Eckart-Young-Mirsky Theorem, see Corollary 1.17,
states that the best approximation of a given M ×N matrix A by matrices
of smaller rank is given by a truncated singular value decomposition of A.
Since the set M (n,M ×N) of real M × N matrices X of fixed rank n
is a smooth manifold, see Proposition 1.14, we thus have an optimization
problem for the smooth Frobenius norm distance function

fA : M (n,M ×N) → R, fA (X) = ‖A−X‖2
.

This problem is equivalent to the total linear least squares problem, see
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Golub and Van Loan (1980). The fact that we have here assumed that
the rank of X is precisely n instead of being less than or equal to n is no
restriction in generality, as we will later show that any best approximant
X̂ of A of rank ≤ n will automatically satisfy rank X̂ = n.

The critical points and, in particular, the global minima of the distance
function fA (X) = ‖A−X‖2 on manifolds of fixed rank symmetric and
rectangular matrices are investigated. Also, gradient flows related to the
minimization of the constrained distance function fA (X) are studied. Sim-
ilar results are presented for symmetric matrices. For technical reasons it
is convenient to study the symmetric matrix case first and then to deduce
the corresponding results for rectangular matrices. This work is based on
Helmke and Shayman (1995) and Helmke, Prechtel and Shayman (1993).

Approximations by Symmetric Matrices

Let S (N) denote the set of all N×N real symmetric matrices. For integers
1 ≤ n ≤ N let

S (n,N) =
{
X ∈ R

N×N | X ′ = X, rankX = n
}

(1.1)

denote the set of real symmetric N ×N matrices of rank n. Given a fixed
real symmetric N ×N matrix A we consider the distance function

fA : S (n,N) → R, X �→ ‖A−X‖2 (1.2)

where ‖X‖2 = tr (XX ′) is the Frobenius norm. We are interested in finding
the critical points and local and global minima of fA, i.e. the best rank n
symmetric approximants of A. The following result summarizes some basic
geometric properties of the set S (n,N).

Proposition 1.1

(a) S (n,N) is a smooth manifold of dimension 1
2n (2N − n+ 1) and has

n+ 1 connected components

S (p, q;N) = {X ∈ S (n,N) | sigX = p− q} (1.3)

where p, q ≥ 0, p + q = n and sig denotes signature. The tangent
space of S (n,N) at an element X is

TXS (n,N) =
{
∆X +X∆′ | ∆ ∈ R

N×N}
(1.4)

(b) The topological closure of S (p, q;N) in RN×N is

S (p, q;N) =
⋃

p′≤p, q′≤q
S (p′, q′;N) (1.5)
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and the topological closure of S (n,N) in RN×N is

S (n,N) =
n⋃
i=0

S (i, N) (1.6)

Proof 1.2 The function which associates to every X ∈ S (n,N) its signa-
ture is locally constant. Thus S (p, q;N) is open in S (n,N) with S (n,N) =⋃
p+q=n, p,q≥0 S (p, q;N). It follows that S (n,N) has at least n + 1 con-

nected components.
Any element X ∈ S (p, q;N) is of the form X = γQγ′ where

γ ∈ GL (N,R) is invertible and Q = diag (Ip,−Iq, 0) ∈ S (p, q;N). Thus
S (p, q;N) is an orbit of the congruence group action (γ,X) �→ γXγ′ of
GL (N,R) on S (n,N). It follows that S (p, q;N) with p, q ≥ 0, p+ q = n,
is a smooth manifold and therefore also S (n,N) is. Let GL+ (N,R) denote
the set of invertible N×N matrices γ with det γ > 0. Then GL+ (N,R) is a
connected subset of GL (N,R) and S (p, q;N) = {γQγ′ | γ ∈ GL+ (N,R)}.
Consider the smooth surjective map

η : GL (N,R) → S (p, q;N) , η (γ) = γQγ′. (1.7)

Then S (p, q;N) is the image of the connected set GL+ (N,R) under the
continuous map γ and therefore S (p, q;N) is connected. This completes
the proof that the sets S (p, q;N) are precisely the n + 1 connected com-
ponents of S (n,N). Furthermore, the derivative of η at γ ∈ GL (N,R) is
the linear map Dη (γ) : TγGL (N,R) → TXS (p, q;N), X = γQγ′, defined
by Dη (γ) (∆) = ∆X +X∆′ and maps TγGL (N,R) ∼= R

N×N surjectively
onto TXS (p, q;N). Since X and p, q ≥ 0, p + q = n, are arbitrary this
proves (1.4). Let

∆ =



∆11 ∆12 ∆13

∆21 ∆22 ∆23

∆31 ∆32 ∆33




be partitioned according to the partition (p, q,N − n) of N . Then ∆ ∈
kerDη (I) if and only if ∆13 = 0, ∆23 = 0 and the n× n submatrix

[
∆11 ∆12

∆21 ∆22

]

is skew-symmetric. A simple dimension count thus yields dim kerDη (I) =
1
2n (n− 1) +N (N − n) and therefore

dimS (p, q;N) = N2 − dim kerDη (I) = 1
2n (2N − n+ 1) .
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This completes the proof of (a). The proof of (b) is left as an exercise to
the reader.

Theorem 1.3

(a) Let A ∈ Rn×n be symmetric and let

N+ = dim Eig+ (A) , N− = dim Eig− (A) (1.8)

be the numbers of positive and negative eigenvalues of A, respectively.
The critical points X of the distance function fA : S (n,N) → R are
characterized by AX = XA = X2.

(b) If A has N distinct eigenvalues λ1 > · · · > λN , and A =
Θ diag (λ1, . . . , λN )Θ′ for Θ ∈ O (N), then the restriction of the dis-
tance function fA : S (p, q;N) → R has exactly

(
N+

p

)
·
(
N−
q

)
=

N+!N−!
p! (N+ − p)!q! (N− − q)!

critical points. In particular, fA has critical points in S (p, q;N) if
and only if p ≤ N+ and q ≤ N−. The critical points X ∈ S (p, q;N)
of fA with p ≤ N+, q ≤ N−, are characterized by

X = Θ diag (x1, . . . , xN )Θ′ (1.9)

with

xi = 0 or xi = λi, i = 1, . . . , N (1.10)

and exactly p of the xi are positive and q are negative.

Proof 1.4 Without loss of generality, we may assume that A =
diag (λ1, . . . , λN ) with λ1 ≥ · · · ≥ λN . A straightforward computation
shows that the derivative of fA : S (n,N) → R at X is the linear map
DfA (X) : TXS (n,N) → R defined by

DfA (X) (∆X +X∆′) = − 2 tr ((A−X) (∆X +X∆′))
= − 4 tr (X (A−X)∆)

(1.11)

for all ∆ ∈ RN×N . Therefore X ∈ S (n,N) is a critical point of fA if and
only if X2 = XA. By symmetry of X then XA = AX . This proves (a).
Now assume that λ1 > · · · > λN . From X2 = AX = XA, and since A has
distinct eigenvalues, X must be diagonal. Thus the critical points of fA
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FIGURE 1.1. Real symmetric matrices of rank ≤ 1

are the diagonal matrices X = diag (x1, . . . , xN ) with (A−X)X = 0 and
therefore xi = 0 or xi = λi for i = 1, . . . , N . Also, X ∈ S (p, q;N) if and
only if exactly p of the xi are positive and q are negative. Consequently,
using the standard symbol for the binomial coefficient, there are

(
N+

p

)
·
(
N−
q

)

critical points of fA in S (p, q;N), characterized by (1.9). This completes
the proof.

Example 1.5 Let N = 2, n = 1 and A =
[
a b
b c

]
. The variety of rank ≤ 1

real symmetric 2 × 2 matrices is a cone
{
X = [ x yy z ] | xz = y2

}
depicted in

Figure 1.1.
The function fA : S (1, 2) → R has generically 2 local minimum, if

sig (A) = 0, and 1 local = global minimum, if A > 0 or A < 0. No other
critical points exist.

Theorem 1.3 has the following immediate consequence.

Corollary 1.6 Let A = Θ diag (λ1, . . . , λN )Θ′ with Θ ∈ O (N) a real or-
thogonal N × N matrix and λ1 ≥ · · · ≥ λN . A minimum X̂ ∈ S (p, q;N)
for fA : S (p, q;N) → R exists if and only if p ≤ N+ and q ≤ N−. One
such minimizing X̂ ∈ S (p, q;N) is given by

X̂ = Θ diag (λ1, . . . , λp, 0, . . . , 0, λN−q+1, . . . , λN )Θ′ (1.12)

and the minimum value of fA : S (p, q;N) → R is
∑N−q
i=p+1 λ

2
i . X̂ ∈

S (p, q;N) given by (1.12) is the unique minimum of fA : S (p, q;N) → R

if λp > λp+1 and λN−q > λN−q+1.

The next result shows that a best symmetric approximant of A of rank
≤ n with n < rankA necessarily has rank n. Thus, for n < rankA, the
global minimum of the function fA : S (n,N) → R is always an element of
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S (n,N). Recall that the singular values of A ∈ RN×N are the nonnegative
square roots of the eigenvalues of AA′.

Proposition 1.7 Let A ∈ RN×N be symmetric with singular values σ1 ≥
· · · ≥ σN and let n ∈ N be any integer with n < rankA. There exists
X̂ ∈ S (n,N) which minimizes fA : S (n,N) → R. Moreover, if X̂ ∈ RN×N

is any symmetric matrix which satisfies

rank X̂ ≤n∥∥A− X̂
∥∥ = inf {‖A−X‖ | X ∈ S (i, N) , 0 ≤ i ≤ n}

(1.13)

then necessarily rank X̂ = n. In particular, the minimum value

µn (A) = min {fA (X) | X ∈ S (n,N)} (1.14)

coincides with the minimum value min {fA (X) | X ∈ S (i, N) , 0 ≤ i ≤ n}.
One has

‖A‖2 = µ0 (A) > µ1 (A) > · · · > µr (A) = 0, r = rankA,
(1.15)

and for 0 ≤ n ≤ r

µn (A) =
N∑

i=n+1

σ2
i . (1.16)

Proof 1.8 By Proposition 1.1

S (n,N) =
n⋃
i=0

S (i, N)

is a closed subset of RN×N and therefore fA : S (n,N) → R is proper.
Since any proper continuous function f : X → Y has a closed image f (X)
it follows that a minimizing X̂ ∈ S (n,N) for fA : S (n,N) → R exists:

∥∥A− X̂
∥∥2 = min

{
fA (X) | X ∈ S (n,N)

}

Suppose rk ˆ(X) < n. Then for ε ∈ R and b ∈ RN , ‖b‖ = 1, arbitrary we
have rk

(
X̂ + εbb′

) ≤ n and thus

∥∥A− X̂ − εbb′
∥∥2 =

∥∥A− X̂
∥∥2 − 2ε tr

((
A− X̂

)
bb′

)
+ ε2

≥∥∥A− X̂
∥∥2
.
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Thus for all ε ∈ R and b ∈ RN , ‖b‖ = 1,

ε2 ≥ 2ε tr
((
A− X̂

)
bb′

)
.

This shows tr
((
A − X̂

)
bb′

)
= 0 for all b ∈ RN . Hence A = X̂, contrary

to assumption. Therefore X̂ ∈ S (n,N) and µ0 (A) > · · · > µr (A) = 0 for
r = rk (A). Thus (1.16) follows immediately from Corollary 1.6.

We now show that the best symmetric approximant of a symmetric ma-
trix A ∈ RN×N in the Frobenius norm is in general uniquely determined.

Theorem 1.9 Let A = Θ diag (λ1, . . . , λN )Θ′ with Θ ∈ O (N) real orthog-
onal N ×N matrix and λ2

1 ≥ · · · ≥ λ2
n > λ2

n+1 ≥ · · · ≥ λ2
N . Then

X̂ = Θ diag (λ1, . . . , λn, 0, . . . , 0)Θ′ ∈ S (n,N) (1.17)

is the uniquely determined best symmetric approximant of A of rank ≤ n.

Proof 1.10 We have

∥∥A− X̂
∥∥2 =

N∑
i=n+1

λ2
i = µn (A)

by (1.16), and thus X̂ ∈ S (n,N) is a global minimum of fA : S (n,N) → R.
By Proposition 1.7 every symmetric best approximant of A of rank ≤ n
has rank n. Let X0 ∈ S (n,N) denote any minimum of fA : S (n,N) → R.
Then X0 is a critical point of fA and therefore, by Theorem 1.3, is of the
form

X0 = Θ diag (x1, . . . , xn)Θ′

with xi = λi for indices i satisfying 1 ≤ i1 < · · · < in ≤ N and xi = 0
otherwise. For I = {i1, . . . , in} the minimal distance ‖A−X0‖2 =

∑
i�∈I λ

2
i

coincides with µn (A) =
∑N
i=n+1 λ

2
i if and only if I = {1, . . . , n}, ı.e. if and

only if X0 = Θ diag (λ1, . . . , λn, 0, . . . , 0)Θ′.

An important problem in linear algebra is that of finding the best positive
semidefinite symmetric approximant of a given symmetric N × N matrix
A. By Corollary 1.6 we have

Corollary 1.11 Let A = Θ diag (λ1, . . . , λN )Θ′ with Θ ∈ O (N) real or-
thogonal and λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λN , λn > 0. Then

X̂ = Θ diag (λ1, . . . , λn, 0, . . . , 0)Θ′ ∈ S (n,N) (1.18)

is the unique positive semidefinite symmetric best approximant of A of rank
≤ n.



132 Chapter 5. Approximation and Control

In particular

X̂ = Θ diag
(
λ1, . . . , λN+ , 0, . . . , 0

)
Θ′ (1.19)

is the uniquely determined best approximant of A in the class of positive
semidefinite symmetric matrices. This implies the following result due to
Higham (1988).

Corollary 1.12 Let A ∈ RN×N and let B = 1
2 (A+A′) be the symmetric

part of A. Let B = UH be the polar decomposition (UU ′ = IN , H = H ′ ≥
0). Then X̂ = 1

2 (B +H) is the unique positive semidefinite approximant
of A in the Frobenius norm.

Proof 1.13 For any symmetric matrixX we have ‖A−X‖2 = ‖B −X‖2+
1
2

(
‖A‖2 − tr

(
A2

))
. Let B = Θ diag (λ1, . . . , λN )Θ′ and let B = UH be

the polar decomposition of B. Then

diag (λ1, . . . , λN ) = (Θ′UΘ) · (Θ′HΘ)

is a polar decomposition of diag (λ1, . . . , λN ) and thus

H = Θ diag (|λ1| , . . . , |λN |)Θ′

and
U = Θ diag

(
IN+ ,−IN−N+

)
Θ′,

where N+ is the number of positive eigenvalues of 1
2 (A+A′). Note that

H =
(
B2

)1/2 is uniquely determined. Therefore, by Corollary 1.11

1
2 (B +H) = 1

2 (U + I)H = Θ diag
(
IN+ , 0

)
Θ′H

=Θ diag
(
λ1, . . . , λN+ , 0, . . . , 0

)
Θ′ (1.20)

is the uniquely determined best approximant of B in the class of positive
semidefinite symmetric matrices. The result follows.

Approximations by Rectangular Matrices

Here we address the related classical issue of approximating a real rectan-
gular matrix by matrices of lower rank.

For integers 1 ≤ n ≤ min (M,N) let

M (n,M ×N) =
{
X ∈ R

M×N | rankX = n
}

(1.21)
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denote the set of real M × N matrices of rank n. Given A ∈ RM×N the
approximation task is to find the minimum and, more generally, the critical
points of the distance function

FA : M (n,M ×N) → R, FA (X) = ‖A−X‖2 (1.22)

for the Frobenius norm ‖X‖2 = tr (XX ′) on RM×N .

Proposition 1.14 M (n,M ×N) is a smooth and connected manifold of
dimension n (M +N − n), if max (M,N) > 1. The tangent space of
M (n,M ×N) at an element X is

TXM (n,M ×N) =
{
∆1X +X∆2 | ∆1 ∈ R

M×M , ∆2 ∈ R
N×N}

.
(1.23)

Proof 1.15 Let Q ∈ M (n,M ×N) be defined by Q =
[
In 0
0 0

]
Since

every X ∈ M (n,M ×N) is congruent to Q by the congruence action
((γ1, γ2) , X) �→ γ1Xγ

−1
2 , γ1 ∈ GL (M,R), γ2 ∈ GL (N,R), the set

M (n,M ×N) is an orbit of this smooth real algebraic Lie group action
of GL (M) × GL (N) on R

M×N and therefore a smooth manifold; see
Appendix C. Here γ1, γ2 may be chosen to have positive determinant.
Thus M (n,M ×N) is the image of the connected subset GL+ (M) ×
GL+ (N) of the continuous (and in fact smooth) map π : GL (M) ×
GL (N) → RM×N , π (γ1, γ2) = γ1Qγ

−1
2 , and hence is also connected.

The derivative of π at (γ1, γ2) is the linear map on the tangent space
T(γ1,γ2) (GL (M) ×GL (N)) ∼= RM×M × RN×N defined by

Dπ (γ1, γ2) ((∆1,∆2)) = ∆1

(
γ1Qγ

−1
2

)− (
γ1Qγ

−1
2

)
∆2

and TXM (n,M ×N) is the image of this map. Finally, the dimension
result follows from a simple parameter counting. In fact, from the Schur
complement formula, see Horn and Johnson (1985), any M ×N matrix of
rank n

X =

[
X11 X12

X21 X22

]
=

[
X11 0
X21 I

][
I X−1

11 X12

0 X22 −X21X
−1
11 X12

]

with X11 ∈ Rn×n invertible, X21 ∈ R(M−n)×n, X12 ∈ Rn×(N−n) sat-
isfies X22 = X21X

−1
11 X12 and thus depends on n2 + n (M +N − 2n) =

n (M +N − n) independent parameters. This completes the proof.

The general approximation problem for rectangular matrices can be re-
duced to the approximation problem for symmetric matrices, using the
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same symmetrisation trick as in Chapter 3. To this end, define for A,X ∈
RM×N

Â =

[
0 A

A′ 0

]
, X̂ =

[
0 X

X ′ 0

]
. (1.24)

Thus Â and X̂ are (M +N)× (M +N) symmetric matrices. If A ∈ RM×N

has singular values σ1, . . . , σk, k = min (M,N), then the eigenvalues of Â
are ±σ1, . . . ,±σk, and possibly 0. By (1.24) we have a smooth injective
imbedding

M (n,M ×N) → S (2n,M +N) , X �→ X̂ (1.25)

with 2 ‖A−X‖2 =
∥∥Â− X̂

∥∥2.
It is easy to check that, for X ∈M (n,M ×N), X̂ is a critical point (or a

minimum) for fÂ : S (2n,M +N) → R if and only ifX is a critical point (or
a minimum) for FA : M (n,M ×N) → R. Thus the results for the symmet-
ric case all carry over to results on the function FA : M (n,M ×N) → R,
and the next result follows. Recall, see Chapter 3, that an M ×N matrix
A has a singular value decomposition

A = Θ1ΣΘ2, and Σ =




σ1 0
. . .

...
σk 0

0 . . . 0 0


 ∈ R

M×N

where Θ1, Θ2 are orthogonal matrices.
Let Σn, n ≤ k, be obtained from Σ by setting σn+1, . . . , σk equal to zero.

Theorem 1.16 Let A = Θ1ΣΘ2 be the singular value decomposition of
A ∈ RM×N with singular values σ1 ≥ · · · ≥ σk > 0, 1 ≤ k ≤ min (M,N).

(a) The critical points of FA : M (n,M ×N) → R, FA (X) = ‖A−X‖2,
are characterized by (A−X)X ′ = 0, X ′ (A−X) = 0.

(b) FA : M (n,M ×N) → R has a finite number of critical points if and
only if M = N and A has M distinct singular values.

(c) If σn > σn+1, n ≤ k, there exists a unique global minimum Xmin of
FA : M (n,M ×N) → R which is given by

Xmin = Θ1ΣnΘ2. (1.26)
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As an immediate Corollary we obtain the following classical theorem of
Eckart and Young (1936).

Corollary 1.17 Let A = Θ1ΣΘ2 be the singular value decomposition of
A ∈ RM×N , Θ1Θ′

1 = IM , Θ2Θ′
2 = IN , Σ =

[
diag(σ1,...,σk) 0

0 0

] ∈ RM×N with
σ1 ≥ · · · ≥ σk > 0. Let n ≤ k and σn > σn+1. Then with

Σn =

[
diag (σ1, . . . , σn, 0, . . . , 0) 0

0 0

]
∈ R

M×N

Xmin = Θ1ΣnΘ2 is the unique M × N matrix of rank n which minimizes
‖A−X‖2 over the set of matrices of rank less than or equal to n.

Gradient Flows

In this subsection we develop a gradient flow approach to find the
critical points of the distance functions fA : S (n,N) → R and
FA : M (n,M ×N) → R. We first consider the symmetric matrix case.

By Proposition 1.1 the tangent space of S (n,N) at an element X is the
vector space

TXS (n,N) =
{
∆X +X∆′ | ∆ ∈ R

N×N}
.

For A,B ∈ RN×N we define

{A,B} = AB +B′A′ (1.27)

which, by the way, coincides with the product defined on RN×N , when
RN×N is considered as a Jordan algebra. Thus the tangent space
TXS (n,N) is the image of the linear map

πX : R
N×N → R

N×N , ∆ �→ {∆, X} (1.28)

while the kernel of πX is

kerπX =
{
∆ ∈ R

N×N | ∆X +X∆′ = 0
}

(1.29)

Taking the orthogonal complement

(kerπX)⊥ =
{
Z ∈ R

N×N | tr (Z ′∆) = 0 ∀∆ ∈ kerπX
}
,

with respect to the standard inner product on RN×N

〈A,B〉 = tr (A′B) , (1.30)
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yields the isomorphism of vector spaces

(kerπX)⊥ ∼= R
N×N/ kerπX ∼= TXS (n,N) . (1.31)

We have the orthogonal decomposition of RN×N

R
N×N = kerπX ⊕ (kerπX)⊥

and hence every element ∆ ∈ RN×N has a unique decomposition

∆ = ∆X + ∆X (1.32)

where ∆X ∈ kerπX and ∆X ∈ (kerπX)⊥.
Given any pair of tangent vectors {∆1, X}, {∆2, X} of TXS (n,M) we

define

〈〈{∆1, X} , {∆2, X}〉〉 := 4 tr
((

∆X
1

)′
∆X

2

)
. (1.33)

It is easy to show that 〈〈 , 〉〉 defines a nondegenerate symmetric bilinear
form on TXS (n,N) for each X ∈ S (n,N). In fact, 〈〈 , 〉〉 defines a Rieman-
nian metric of S (n,N). We refer to 〈〈 , 〉〉 as the normal Riemannian metric
on S (n,N).

Theorem 1.18 Let A ∈ RN×N be symmetric.

(a) The gradient flow of fA : S (n,N) → R with respect to the normal
Riemannian metric 〈〈 , 〉〉 is

Ẋ = − gradfA (X)
= {(A−X)X,X}
= (A−X)X2 +X2 (A−X)

(1.34)

(b) For any X (0) ∈ S (n,N) the solution X (t) ∈ S (n,N) of (1.34)
exists for all t ≥ 0.

(c) Every solution X (t) ∈ S (n,N) of (1.34) converges to an equilibrium
point X∞ characterized by X (X −A) = 0. Also, X∞ has rank less
than or equal to n.

Proof 1.19 The gradient of fA with respect to the normal metric is the
uniquely determined vector field on S (n,N) characterized by

DfA (X) ({∆, X}) = 〈〈grad fA (X) , {∆, X}〉〉
gradfA (X) = {Ω, X} ∈ TXS (n,N)

(1.35)
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for all ∆ ∈ RN×N and some (unique) Ω ∈ (kerπX)⊥. A straightforward
computation shows that the derivative of fA : S (n,N) → R at X is the
linear map defined on TXS (n,N) by

DfA (X) ({∆, X}) =2 tr (X {∆, X} −A {∆, X})
=4 tr

(
((X −A)X)′ ∆

)
.

(1.36)

Thus (1.35) is equivalent to

4 tr
(
((X −A)X)′ ∆

)
= 〈〈gradfA (X) , {∆, X}〉〉
= 〈〈{Ω, X} , {∆, X}〉〉
=4 tr

((
ΩX

)′
∆X

)

=4 tr
(
Ω′∆X

)
(1.37)

since Ω ∈ (kerπX)⊥ implies Ω = ΩX . For all ∆ ∈ kerπX

tr (X (X −A)∆) = 1
2 tr ((X −A) (∆X +X∆′)) = 0

and therefore (X −A)X ∈ (kerπX)⊥. Thus

4 tr
(
((X −A)X)′ ∆

)
=4 tr

(
((X −A)X)′

(
∆X + ∆X

))
=4 tr

(
((X −A)X)′ ∆X

)
and (1.37) is equivalent to

Ω = (X −A)X

Thus

gradfA (X) = {(X −A)X,X} (1.38)

which proves (a).
For (b) note that for any X ∈ S (n,N) we have {X,X (X −A)} ∈

TXS (n,N) and thus (1.34) is a vector field on S (n,N). Thus for any
initial condition X (0) ∈ S (n,N) the solution X (t) of (1.34) satisfies
X (t) ∈ S (n,N) for all t for which X (t) is defined. It suffices therefore
to show the existence of solutions of (1.34) for all t ≥ 0. To this end con-
sider any solution X (t) of (1.34). By

d

dt
fA (X (t)) =2 tr

(
(X −A) Ẋ

)

=2 tr ((X −A) {(A−X)X,X})
= − 4 tr

(
(A−X)2X2

)

= − 4 ‖(A−X)X‖2

(1.39)
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(since tr (A {B,C}) = 2 tr (BCA) for A = A′). Thus fA (X (t)) decreases
monotonically and the equilibria points of (1.34) are characterized by
(X −A)X = 0. Also,

‖A−X (t)‖ ≤ ‖A−X (0)‖
and X (t) stays in the compact set{

X ∈ S (n,N)
∣∣∣ ‖A−X‖ ≤ ‖A−X (0)‖

}
.

By the closed orbit lemma, see Appendix C, the closure S (n,N) of each
orbit S (n,N) is a union of orbits S (i, N) for 0 ≤ i ≤ n. Since the vector
field is tangent to all S (i, N), 0 ≤ i ≤ n, the boundary of S (n,N) is
invariant under the flow. Thus X (t) exists for all t ≥ 0 and the result
follows.

Remark 1.20 An important consequence of Theorem 1.18 is that the dif-
ferential equation on the vector space of symmetric N ×N matrices

Ẋ = X2 (A−X) + (A−X)X2 (1.40)

is rank preserving, ı.e. rank X (t) = rank X (0) for all t ≥ 0, and therefore
also signature preserving. Also, X (t) always converges in the spaces of
symmetric matrices to some symmetric matrix X (∞) as t→ ∞ and hence
rkX (∞) ≤ rkX (0). Here X (∞) is a critical point of fA : S (n,N) → R,
n ≤ rkX (0). �

Remark 1.21 The gradient flow (1.34) of fA : S (n,N) → R can also be
obtained as follows.

Consider the task of finding the gradient for the function gA : GL (N) →
R defined by

gA (γ) = ‖A− γ′Qγ‖2 (1.41)

whereQ ∈ S (n,N). Let 〈〈ξ, η〉〉 = 4 tr
((
γ−1ξ

)′(
γ−1η

))
for ξ, η ∈ TγGL (N).

It is now easy to show that

γ̇ = γγ′Qγ (γ′Qγ −A) (1.42)

is the gradient flow of gA : GL (N) → R with respect to the Riemannian
metric 〈〈 , 〉〉 on GL (N). In fact, the gradient grad (gA) with respect to 〈〈 , 〉〉
is characterized by

gradgA (γ) =γ · Ω
DgA (γ) (ξ) = 〈〈grad gA (γ) , ξ〉〉

=4 tr
(
Ω′γ−1ξ

) (1.43)
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for all ξ ∈ TγGL (N). The derivative of gA on TγGL (N) is (X = γ′Qγ)

DgA (γ) (ξ) = −4 tr ((A−X)γ′Qξ)

and hence
Ω′γ−1 = (X −A) γ′Q.

This proves (1.42). It is easily verified that X (t) = γ (t)′Qγ (t) is a solution
of (1.34), for any solution γ (t) of (1.42). �

We now turn to the task of determining the gradient flow of FA :
M (n,M ×N) → R. A differential equation Ẋ = F (X) evolving on the
matrix space RM×N is said to be rank preserving if the rank rkX (t) of
every solution X (t) is constant as a function of t. The following character-
ization is similar to that of isospectral flows.

Lemma 1.22 Let I ⊂ R be an interval and let A (t) ∈ RM×M , B (t) ∈
RN×N , t ∈ I, be a continuous time-varying family of matrices. Then

Ẋ (t) = A (t)X (t) +X (t)B (t) , X (0) ∈ R
M×N (1.44)

is rank preserving. Conversely, every rank preserving differential equation
on RM×N is of the form (1.44) for matrices A (t), B (t).

Proof 1.23 For any fixed X ∈ RM×N with rank X = n, and n ≤
min (M,N) arbitrary, A (t)X + XB (t) ∈ TXM (n,M ×N). Thus (1.44)
defines a time varying vector field on each subset M (n,M ×N) ⊂ RM×N .
Thus for any initial condition X0 ∈ M (n,M ×N) the solution X (t) of
(1.44) satisfies X (t) ∈ M (n,M ×N) for all t ∈ I. Therefore (1.44) is
rank preserving. Conversely, suppose Ẋ = F (X) is rank preserving. Then
it defines a vector field on M (n,M ×N) for any 1 ≤ n ≤ min (M,N).
By Proposition 1.14 therefore F (X) = ∆1 (X) · X + X · ∆2 (X), X ∈
M (n,M ×N), for M × M and N × N matrices ∆1 and ∆2. Setting
A (t) = ∆1 (X (t)), B (t) = ∆2 (X (t)) completes the proof.

To obtain the gradient flow of the distance function FA :
M (n,M ×N) → R in the general approximation problem we proceed as
above. Let

i : M (n,M ×N) → S (2n,M +N)

denote the imbedding defined by

i (X) = X̂ =

[
0 X

X ′ 0

]
.
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The gradient flow of fÂ : S (2n,M +N) → R is

Ż = −(
Z2

(
Z − Â

)
+

(
Z − Â

)
Z2

)
, Z ∈ S (2n,M +N)

For Z = X̂ =
[

0 X
X′ 0

]
the right hand side is simplified as

−
[

0 XX ′ (X −A) + (X −A)X ′X
(XX ′ (X −A) + (X −A)X ′X)′ 0

]

Thus the gradient flow (1.34) on S (2n,M +N) of fÂ leaves the submani-
fold i (M (n,M ×N)) ⊂ S (2n,M +N) invariant. The normal Riemannian
metric of S (2n,M +N) induces by restriction a Riemannian metric on
i (M (n,M ×N)) and hence on M (n,M ×N). We refer to this as the nor-
mal Riemannian metric ofM (n,M ×N). The above computation together
with Theorem 1.18 then shows the following theorem.

Theorem 1.24 Let A ∈ R
M×N .

(a) The gradient flow of FA : M (n,M ×N) → R, FA (X) = ‖A−X‖2,
with respect to the normal Riemannian metric on M (n,M ×N) is

Ẋ = − gradFA (X) = XX ′ (A−X) + (A−X)X ′X (1.45)

(b) For any X (0) ∈M (n,M ×N) the solution X (t) of (1.45) exists for
all t ≥ 0 and rankX (t) = n for all t ≥ 0.

(c) Every solution X (t) of (1.45) converges to an equilibrium point satis-
fying X∞ (X ′

∞ −A′) = 0, X ′
∞ (X∞ −A) = 0 and X∞ has rank ≤ n.

A Riccati Flow

The Riccati differential equation

Ẋ = (A−X)X +X (A−X)

appears to be the simplest possible candidate for a rank preserving flow
on S (N) which has the same set of equilibria as the gradient flow (1.34).
Moreover, the restriction of the right hand side of (1.34) on the subclass of
projection operators, characterized by X2 = X , coincides with the above
Riccati equation. This motivates us to consider the above Riccati equation
in more detail. As we will see, the situation is particularly transparent for
positive definite matrices X .
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Theorem 1.25 Let A ∈ RN×N be symmetric.

(a) The Riccati equation

Ẋ = (A−X)X +X (A−X) , (1.46)

for X (0) ∈ S (n,N), defines a rank preserving flow on S (n,N).

(b) Assume A is invertible. Then the solutions X (t) of (1.46) are given
by

X (t) = etAX0

[
IN +A−1

(
e2At − IN

)
X0

]−1
etA (1.47)

(c) For any positive semidefinite initial condition X (0) = X (0) ≥ 0, the
solution X (t) of (1.46) exists for all t ≥ 0 and is positive semidefi-
nite.

(d) Every positive semidefinite solution X (t) ∈ S+ (n,N) = S (n, 0;N)
of (1.46) converges to a connected component of the set of equilib-
rium points, characterized by (A−X∞)X∞ = 0. Also X∞ is posi-
tive semidefinite and has rank ≤ n. If A has distinct eigenvalues then
every positive semidefinite solution X (t) converges to an equilibrium
point.

Proof 1.26 The proof of (a) runs similarly to that of Lemma 1.22; see
Problem. To prove (b) it suffices to show that X (t) defined by (1.47) sat-
isfies the Riccati equation. By differentiation of (1.47) we obtain

Ẋ (t) = AX (t) +X (t)A− 2X (t)2 ,

which shows the claim.
For (c) note that (a) implies that X (t) ∈ S+ (n,N) for all t ∈ [0, tmax[.

Thus it suffices to show that X (t) exists for all t ≥ 0; ı.e. tmax = ∞.
This follows from a simple Lyapunov argument. First, we note that the
set S+ (n,N) of positive semidefinite matrices X of rank ≤ n is a closed
subset of S (N). Consider the distance function fA : S (N) → R+ defined by
fA (X) = ‖A−X‖2. Thus fA is a proper function of S (N) and hence also
on S+ (n,N). For every positive semidefinite solution X (t), t ∈ [0, tmax[,
let X (t)1/2 denote the unique positive semidefinite symmetric square root.
A simple computation shows

d

dt
fA (X (t)) = − 4 tr

[
(A−X (t)) Ẋ (t)

]

= − 4
∥∥∥(A−X (t))X (t)1/2

∥∥∥2

≤ 0.
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FIGURE 1.2. Riccati flow on positive semidefinite matrices

Thus fA is a Lyapunov function for (1.46), restricted to the class of positive
semidefinite matrices, and equilibrium points X∞ ∈ S+ (n,N) are charac-
terized by (A−X∞)X∞ = 0. In particular, fA (X (t)) is a monotonically
decreasing function of t and the solution X (t) stays in the compact subset

{
X ∈ S+ (n,N) | fA (X) ≤ fA (X (0))

}
.

Thus X (t) is defined for all t ≥ 0. By the closed orbit lemma, Appendix
C, the boundary of S+ (n,N) is a union of orbits of the congruence action
on GL (N,R). Since the Riccati vectorfield is tangent to these orbits, the
boundary is invariant under the flow. Thus X (t) ∈ S+ (n,N) for all t ≥ 0.
By La Salle’s principle of invariance, the ω-limit set of X (t) is a connected
component of the set of positive semidefinite equilibrium points. If A has
distinct eigenvalues, then the set of positive semidefinite equilibrium points
is finite. Thus the result follows.

Remark 1.27 The above proof shows that the least squares distance func-
tion fA (X) = ‖A−X‖2 is a Lyapunov function for the Riccati equation,
evolving on the subset of positive semidefinite matrices X . In particular,
the Riccati equation exhibits gradient-like behaviour if restricted to posi-
tive definite initial conditions. If X0 is an indefinite matrix then also X (t)
is indefinite, and fA (X) is no longer a Lyapunov function for the Riccati
equation. �

Figure 1.2 illustrates the phase portrait of the Riccati flow on S (2) for
A = A′ positive semidefinite. Only a part of the complete phase portrait is
shown here, concentrating on the cone of positive semidefinite matrices in
S (2). There are two equilibrium points on S (1, 2). For the flow on S (2),
both equilibria are saddle points, one having 1 positive and 2 negative
eigenvalues while the other one has 2 positive and 1 negative eigenvalues.
The induced flow on S (1, 2) has one equilibrium as a local attractor while
the other one is a saddle point. Figure 1.3 illustrates the phase portrait in
the case where A = A′ is indefinite.
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�
FIGURE 1.3. Riccati flow on S (1, 2).

Problem 1.28 Let I ⊂ R be an interval and let A (t) ∈ RN×N , t ∈ I, be
a continuous family of matrices. Show that

Ẋ (t) = A (t)X (t) +X (t)A (t)′ , X (0) ∈ S (n)

is a rank (and hence signature) preserving flow on S (N). Prove that, con-
versely, any rank preserving vector field on S (N) is of this form.

Problem 1.29 Let A,B ∈ RN×N . What is the gradient flow of the total
least squares function FA,B : M (n,N ×N) → R, FA,B (X) = ‖A−BX‖2,
with respect to the normal Riemannian metric on M (n,N ×N)? Charac-
terize the equilibria!

Main Points of Section

The approximation problem of a matrix by a lower rank one in the Frobe-
nius norm is a further instance of a matrix least squares estimation problem.
The general matrix case can be reduced to the approximation problem for
symmetric matrices. Explicit formulas are given for the critical points and
local minima in terms of the eigenspace decomposition. A certain Rieman-
nian metric leads to a particularly simple expression of the gradient vector
field. A remarkable property of the gradient vector field is that the solutions
are rank preserving.

5.2 The Polar Decomposition

Every real n× n matrix A admits a decomposition

A = Θ · P (2.1)

where P is positive semidefinite symmetric and Θ is an orthogonal matrix
satisfying ΘΘ′ = Θ′Θ = In. While P = (A′A)1/2 is uniquely determined,
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Θ is uniquely determined only if A is invertible. The decomposition (2.1)
is called the polar decomposition of A. While effective algebraic algorithms
achieving the polar decomposition are well known, we are interested in
finding dynamical systems achieving the same purpose.

Let O (n) and P (n) denote the set of real orthogonal and positive definite
symmetric n×nmatrices respectively. In the sequel we assume for simplicity
that A is invertible. Given A ∈ Rn×n, det (A) �= 0, we consider the smooth
function

FA : O (n) × P (n) → R, FA (Θ, P ) = ‖A− ΘP‖2 (2.2)

where ‖A‖2 = tr (AA′) is the Frobenius norm. Since F (Θ0, P0) = 0 if
and only if A = Θ0P0 we see that the global minimum of F corresponds
to the polar decomposition. This motivates the use of a gradient flow for
FA : O (n) × P (n) → R to achieve the polar decomposition. Of course,
other approximation problems suggest themselves as well. Thus, if Θ is
restricted to be the identity matrix, we have the problem studied in the
previous section of finding the best positive definite approximant of a given
matrix A. Similarly if P is restricted to be the identity matrix, then the
question amounts to finding the best orthogonal matrix approximant of a
given invertible matrix A. In this case ‖A− Θ‖2 = ‖A‖2 − 2 tr (A′Θ) + n
and we have a least square matching problem, studied by Shayman (1982)
and Brockett (1989a).

Theorem 2.1 Let A ∈ Rn×n, det (A) �= 0, and let O (n) and P (n) be
endowed with the constant Riemannian metric arising from the Euclidean
inner product of Rn×n. The (minus) gradient flow of FA : O (n)×P (n) → R

is

Θ̇ = ΘPA′Θ −AP

Ṗ = −2P +A′Θ + Θ′A.
(2.3)

For every initial condition (Θ (0) , P (0)) ∈ O (n) × P (n) the solution
(Θ (t) , P (t)) of (2.3) exists for all t ≥ 0 with Θ (t) ∈ O (n) and P (t) sym-
metric (but not necessarily positive semidefinite). Every solution of (2.3)
converges to an equilibrium point of (2.3) as t → +∞. The equilibrium
points of (2.3) are (Θ∞, P∞) with Θ∞ = Θ0Ψ, Ψ ∈ O (n),

P∞ = 1
2 (P0Ψ + Ψ′P0)

Ψ (P∞P0)Ψ = P0P∞
(2.4)

and A = Θ0P0 is the polar decomposition. For almost every initial condition
Θ (0) ∈ O (n), P (0) ∈ P (n), then (Θ (t) , P (t)) converges to the polar
decomposition (Θ0, P0) of A.
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Proof 2.2 The derivative of FA : O (n)×P (n) → R at (Θ, P ) is the linear
map on the tangent space

DF (Θ, P ) (ΘΩ, S)

= − 2 tr (A′ΘΩP ) − 2 tr (A′ΘS) + 2 tr (PS)
= − tr ((PA′Θ − Θ′AP )Ω) − tr ((A′Θ − P − P + Θ′A)S)

for arbitrary matrices Ω′ = −Ω, S′ = S. Thus the gradient is ∇FA =
(∇ΘFA,∇PFA) with

∇ΘFA =Θ (Θ′AP − PA′Θ) = AP − ΘPA′Θ
∇PFA =2P −A′Θ − Θ′A.

This is also the gradient flow of the extended function F̂A : O (n)×S (n) →
R, F̂A (Θ, S) = ‖A− ΘS‖2, where S (n) is the set of all real symmetric
matrices. Since F̂A : O (n)×S (n) → R is proper, the existence of solutions
(2.3) for t ≥ 0 follows. Moreover, every solution converges to a critical point
of F̂A characterized by (1.30).

A difficulty with the above ODE approach to the polar decomposition
is that equation (2.3) for the polar part P (t) does not in general evolve
in the space of positive definite matrices. In fact, positive definiteness may
be lost during the evolution of (2.3). For example, let n = 1, a = 1, and
Θ0 = −1. Then (Θ∞, P∞) = (−1,−1). If, however, A′Θ∞ +Θ′

∞A ≥ 0 then
P (t) > 0 for all t ≥ 0.

Research Problems

More work is to be done in order to achieve a reasonable ODE method
for polar decomposition. If P (n) is endowed with the normal Riemannian
metric instead of the constant Euclidean one used in the above theorem,
then the gradient flow on O (n) × P (n) becomes

Θ̇ =Θ (PA′)Θ −AP

Ṗ =4
[(

1
2 (A′Θ + Θ′A) − P

)
P 2 + P 2

(
1
2 (A′Θ + Θ′A) − P

)]
.

Show that this flow evolves onO (n)×P (n), ı.e. Θ (t) ∈ O (n), P (t) ∈ P (n)
exists for all t ≥ 0. Furthermore, for all initial conditions Θ (0) ∈ O (n),
P (0) ∈ P (n), (Θ (t) , P (t)) converges (exponentially?) to the unique polar
decomposition Θ0P0 = A of A (for t → ∞). Thus this seems to be the right
gradient flow.
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A different, somewhat simpler, gradient-like flow on O (n)×P (n) which
also achieves the polar decomposition is

Θ̇ =Θ (PA′)Θ −AP

Ṗ =
(

1
2 (A′Θ + Θ′A) − P

)
P + P

(
1
2 (A′Θ + Θ′A) − P

)
.

Note that the equation for P now is a Riccati equation. Analyse these flows.

Main Points of Section

The polar decomposition of a matrix is investigated from a matrix least
squares point of view. Gradient flows converging to the orthogonal and
positive definite factors in a polar decomposition are introduced. These
flows are coupled Riccati equations on the orthogonal matrices and positive
definite matrices, respectively.

5.3 Output Feedback Control

Feedback is a central notion in modern control engineering and systems the-
ory. It describes the process of “feeding back” the output or state variables
in a dynamical systems configuration through the input channels. Here we
concentrate on output feedback control of linear dynamical systems.

Consider finite-dimensional linear dynamical systems of the form

ẋ (t) =Ax (t) +Bu (t)
y (t) =Cx (t) .

(3.1)

Here u (t) ∈ Rm and y (t) ∈ Rp are the input and output respectively of
the system while x (t) is the state vector and A ∈ Rn×n, B ∈ Rn×m and
C ∈ Rp×n are real matrices. We will use the matrix triple (A,B,C) to
denote the dynamical system (3.1). Using output feedback the input u (t)
of the system is replaced by a new input

u (t) = Ky (t) + v (t) (3.2)

defined by a feedback gain matrix K ∈ Rm×p. Combining equations (3.1)
and (3.2) yields the closed loop system

ẋ (t) = (A+BKC)x (t) +Bv (t)
y (t) =Cx (t)

(3.3)
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An important task in linear systems theory is that of pole placement
or eigenvalue assignment via output feedback. Thus for a given system
(A,B,C) and a self-conjugate set {s1, . . . , sn} ⊂ C one is asked to find a
feedback matrix K ∈ Rm×p such that A+BKC has eigenvalues s1, . . . , sn.
A simple dimension count shows that the condition mp ≥ n is necessary
for the solvability of the problem; see also the notes for Chapter 5. Thus,
in general, for mp < n, there is no choice of a feedback gain matrix K such
that A+BKC has prescribed eigenvalues. It is desirable in this case to find
a feedback matrix that generates the best closed loop approximation to a
specified eigenstructure. Thus, for a fixed matrix F ∈ Rn×n with eigenval-
ues s1, . . . , sn the task is to find matrices T ∈ GL (n,R) and K ∈ Rm×p

that minimize the distance
∥∥F − T (A+ BKC)T−1

∥∥2. One would hope to
find an explicit formulae for the optimal feedback gain that achieves the
best approximation, however, the question appears to be too difficult to
tackle directly. Thus, algorithmic solutions become important.

A natural generalization of eigenvalue or eigenstructure assignment of
linear systems is that of optimal system assignment. Here the distance
of a target system (F,G,H) to an output feedback orbit (see below) is
minimized. In this section a gradient flow approach is developed to solve
such output feedback optimization problems. More complicated problems,
such as simultaneous eigenvalue assignment of several systems or eigenvalue
assignment problems for systems with symmetries, can be treated in a
similar manner. We regard this as an important aspect of the approach.
Although no new output feedback pole placement theorems are proved here
we believe that the new methodology introduced is capable of offering new
insights into these difficult questions.

Gradient Flows on Output Feedback Orbits

We begin with a brief description of the geometry of output feedback orbits.
Two linear systems (A1, B1, C1) and (A2, B2, C2) are called output feedback
equivalent if

(A2, B2, C2) =
(
T (A1 +B1KC1)T−1, TB1, C1T

−1
)

(3.4)

holds for T ∈ GL (n,R) and K ∈ Rm×p. Thus the system (A2, B2, C2) is
obtained from (A1, B1, C1) using a linear change of basis T ∈ GL (n,R)
in the state space Rn and a feedback transformation K ∈ Rm×p. Observe
that the set GL (n,R) × R

m×p of feedback transformation is a Lie group
under the operation (T1,K1) ◦ (T2,K2) = (T1T2,K1 +K2). This group is
called the output feedback group.
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The Lie group GL (n,R) × Rm×p acts on the vector space of all triples

L (n,m, p) =
{
(A,B,C) | (A,B,C) ∈ R

n×n × R
n×m × R

p×n} (3.5)

via the Lie group action

α :
(
GL (n,R) × R

m×p)× L (n,m, p) → L (n,m, p)

((T,K) , (A,B,C)) �→ (
T (A+BKC)T−1, TB,CT−1

)
(3.6)

Thus, the orbits

F (A,B,C) ={(
T (A+BKC)T−1, TB,CT−1

) | (T,K) ∈ GL (n,R) × R
m×p}

(3.7)

are the set of systems which are output feedback equivalent to (A,B,C).
It is readily verified that the transfer function G (s) = C (sI −A)−1B
associated with (A,B,C), Section B.1, changes under output feedback via
the linear fractional transformation

G (s) �→ GK (s) = (Ip −G (s)K)−1
G (s) .

Let G (s) be an arbitrary strictly proper p ×m rational transfer function
of McMillan degree n, see Appendix B for results on linear system theory.
It is a consequence of Kalman’s realization theorem that

FG =
{
(A,B,C) ∈ L (n,m, p)

| C (sIn −A)−1
B = (Ip −G (s)K)−1

G (s) for some K ∈ R
m×p}

=F (A,B,C)

coincides with the output feedback orbit F (A,B,C), for (A,B,C) control-
lable and observable.

Lemma 3.1 Let (A,B,C) ∈ L (n,m, p). Then

(a) The output feedback orbit F (A,B,C) is a smooth submanifold of all
triples L (n,m, p).

(b) The tangent space of F (A,B,C) at (A,B,C) is

T(A,B,C)F =
{
([X,A] +BLC,XB,−CX) | X ∈ R

n×n, L ∈ R
m×p}

(3.8)
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Proof 3.2 F (A,B,C) is an orbit of the real algebraic Lie group action
(3.6) and thus, by Appendix C, is a smooth submanifold of L (n,m, p). To
prove (b) we consider the smooth map

Γ : GL (n,R) × R
m×p → L (n,m, p)

(T,K) �→ (
T (A+BKC)T−1, TB,CT−1

)
.

The derivative of Γ at the identity element (In, 0) of GL (n,R) × Rm×p is
the surjective linear map

DΓ|(In,0)
: T(In,0)

(
GL (n,R) × R

m×p) → T(A,B,C)F (A,B,C)

(X,L) �→ ([X,A] +BLC,XB,−CX)

for X ∈ TInGL (n,R), L ∈ T0R
m×p. The result follows.

Let (A,B,C) , (F,G,H) ∈ L (n,m, p) and consider the potential

Φ : F (A,B,C) → R

Φ
(
T (A+ BKC)T−1, TB,CT−1

)
:=

∥∥T (A+BKC)T−1 − F
∥∥2

+ ‖TB −G‖2 +
∥∥CT−1 −H

∥∥2
(3.9)

In order to determine the gradient flow of this distance function we must
specify a Riemannian metric on F (A,B,C). The construction of the Rie-
mannian metric that we consider parallels a similar development in Sec-
tion 5.1. By Lemma (3.1), the tangent space T(A,B,C)F (A,B,C) at an
element (A,B,C) is the image of the linear map

π : R
n×n × R

m×p → L (n,m, p)

defined by
π (X,L) = ([X,A] +BLC,XB,−CX) ,

which has kernel

kerπ =
{
(X,L) ∈ R

n×n × R
m×p | ([X,A] +BLC,XB,−CX) = (0, 0, 0)

}
.

Taking the orthogonal complement (kerπ)⊥ with respect to the standard
Euclidean inner product on Rn×n × Rm×p

〈(Z1,M1) , (Z2,M2)〉 := tr (Z1Z
′
2) + tr (M1M

′
2)

yields the isomorphism of vector spaces

(kerπ)⊥ ≈ T(A,B,C)F (A,B,C) .
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We have the orthogonal decomposition of Rn×n × Rm×p

R
n×n × R

m×p = kerπ ⊕ (kerπ)⊥

and hence every element has a unique decomposition

(X,L) = (X⊥, L⊥) +
(
X⊥, L⊥)

with (X⊥, L⊥) ∈ kerπ,
(
X⊥, L⊥) ∈ (kerπ)⊥. Given any pair of tangent

vectors ([Xi, A] +BLiC,XiB,−CXi), i = 1, 2, of T(A,B,C)F (A,B,C) we
define

〈〈([X1, A] +BL1C,X1B,−CX1) , ([X2, A] +BL2C,X2B,−CX2)〉〉
:= 2 tr

(
X⊥

1

(
X⊥

2

)′)
+ 2 tr

(
L⊥

1

(
L⊥

2

)′)

It is easily shown the 〈〈·,·〉〉 defines a nondegenerate symmetric bilinear
form on T(A,B,C)F (A,B,C). In fact, 〈〈·,·〉〉 defines a Riemannian metric on
F (A,B,C) which is termed the normal Riemannian metric.

Theorem 3.3 (System Assignment) Suppose

(A,B,C) , (F,G,H) ∈ L (n,m, p) .

(a) The gradient flow
(
Ȧ, Ḃ, Ċ

)
= − gradΦ (A,B,C) of Φ :

F (A,B,C) → R given by (3.9), with respect to the normal Rieman-
nian metric is

Ȧ = [A, [A− F,A′] + (B −G)B′ − C′ (C −H)]
−BB′ (A− F )C′C

Ḃ = − ([A− F,A′] + (B −G)B′ − C′ (C −H))B

Ċ =C ([A− F,A′] + (B −G)B′ − C′ (C −H))

(3.10)

(b) Equilibrium points (A∞, B∞, C∞) of (3.10) are characterised by

[A∞ − F,A′
∞] + (B∞ −G)B′

∞ − C′
∞ (C∞ −H) = 0 (3.11)

B′
∞ (A∞ − F )C′

∞ = 0 (3.12)

(c) For every initial condition (A (0) , B (0) , C (0)) ∈ F (A,B,C) the so-
lution (A (t) , B (t) , C (t)) of (3.10) exists for all t ≥ 0 and remains
in F (A,B,C).
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(d) Every solution (A (t) , B (t) , C (t)) of (3.10) converges to a connected
component of the set of equilibrium points (A∞, B∞, C∞) ∈
F (A,B,C).

Proof 3.4 The derivative of Φ : F (A,B,C) → R at (A,B,C) is the linear
map on the tangent space T(A,B,C)F (A,B,C) defined by

DΦ|(A,B,C) ([X,A] +BLC,XB,−CX)

=2 tr (([X,A] +BLC) (A′ − F ′) +XB (B′ −G′) − (C′ −H ′)CX)
=2 tr (X ([A,A′ − F ′] +B (B′ −G′) − (C′ −H ′)C))

+ 2 tr (LC (A′ − F ′)B) .

The gradient of Φ with respect to the normal metric is the uniquely de-
termined vector field on F (A,B,C) characterised by gradΦ (A,B,C) =
([Z,A] +BMC,ZB,−CZ),

DΦ|(A,B,C) ([X,A] +BLC,XB,−CX)

= 〈〈gradΦ (A,B,C) , ([X,A] +BLC,XB,−CX)〉〉
=2 tr

(
Z⊥ (

X⊥)′)
+ 2 tr

(
M⊥ (

L⊥)′)

for all (X,L) ∈ Rn×n×Rm×p and some (Z,M) ∈ Rn×n×Rm×p. Virtually
the same argument as for the proof of Theorem 1.18 then shows that

Z⊥ =([A,A′ − F ′] +B (B′ −G′) − (C′ −H ′)C)′ (3.13)

M⊥ =(C (A′ − F ′)B)′ . (3.14)

Therefore (3.10) gives the (negative of the) gradient flow of Φ, which
proves (a). Part (c) is an immediate consequence of (3.13) and (3.14).
As Φ : L (n,m, p) → R is proper it restricts to a proper function Φ :
F (A,B,C) → R on the topological closure of the output feedback orbit.
Thus every solution (A (t) , B (t) , C (t)) of (3.10) stays in the compact set{

(A1, B1, C1) ∈ F (A (0) , B (0) , C (0))

| Φ (A1, B1, C1) ≤ Φ (A (0) , B (0) , C (0))
}

and thus exists for all t ≥ 0. By the orbit closure lemma, see Section C.8,
the boundary of F (A,B,C) is a union of output feedback orbits. Since the
gradient flow (3.10) is tangent to the feedback orbits F (A,B,C), the solu-
tions are contained in F (A (0) , B (0) , C (0)) for all t ≥ 0. This completes
the proof of (b). Finally, (d) follows from general convergence results for
gradient flows, see Section C.12.
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Remark 3.5 Although the solutions of the gradient flow (3.10) all con-
verge to some equilibrium point (A∞, B∞, C∞) as t → +∞, it may well
be that such an equilibrium point is contained the boundary of the out-
put feedback orbit. This seems reminiscent to the occurrence of high gain
output feedback in pole placement problems; see however, Problem 3.17. �

Remark 3.6 Certain symmetries of the realization (F,G,H) result in as-
sociated invariance properties of the gradient flow (3.10). For example, if
(F,G,H) = (F ′, H ′, G′) is a symmetric realization, then by inspection the
flow (3.10) on L (n,m, p) induces a flow on the invariant submanifold of
all symmetric realizations (A,B,C) = (A′, C′, B′). In this case the induced
flow on {(A,B) ∈ Rn×n × Rn×m | A = A′} is

Ȧ = [A, [A,F ] +BG′ −GB′] −BB′ (A− F )BB′

Ḃ = − ([A,F ] +BG′ −GB′)B.

In particular, for G = 0, we obtain the extension of the double bracket flow

Ȧ = [A, [A,F ]] −BB′ (A− F )BB′

Ḃ = − ([A,F ])B.

Observe that the presence of the feedback term BB′ (A− F )BB′ in the
equation for A (t) here destroys the isospectral nature of the double bracket
equation. �

Flows on the Output Feedback Group

Of course there are also associated gradient flows achieving the optimal
feedback gain K∞ and state space coordinate transformation T∞. Let
(A,B,C) ∈ L (n,m, p) be a given realization and let (F,G,H) ∈ L (n,m, p)
be a “target system”. To find the optimal output feedback transformation
of (A,B,C) which results in a best approximation of (F,G,H), we consider
the smooth function

φ : GL (n,R) × R
m×p → R (3.15)

φ (T,K) =
∥∥T (A+BKC)T−1 − F

∥∥2
+ ‖TB −G‖2 +

∥∥CT−1 −H
∥∥2

on the feedback groupGL (n,R)×Rm×p. Any tangent vector of GL (n,R)×
Rm×p at an element (T,K) is of the form (XT,L) for X ∈ Rn×n and
L ∈ Rm×p. In the sequel we endow GL (n,R) × Rm×p with the normal
Riemannian metric defined by

〈〈(X1T, L1) , (X2T, L2)〉〉 := 2 tr (X ′
1X2) + 2 tr (L′

1L2) (3.16)
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for any pair of tangent vectors (XiT, Li) ∈ T(T,K) (GL (n,R) × Rm×p), i =
1, 2.

Theorem 3.7 Let (A,B,C) ∈ L (n,m, p) and consider the smooth func-
tion φ : GL (n,R) × Rm×p → R defined by (3.15) for a target system
(F,G,H) ∈ L (n,m, p).

(a) The gradient flow
(
Ṫ , K̇

)
= − gradφ (T,K) of φ with respect to the

normal Riemannian metric (3.16) on GL (n,R) × R
m×p is

Ṫ = −
[
T (A+BKC)T−1− F,

(
T (A+BKC)T−1

)′]

− (TB −G)B′T ′T + (T ′)−1
C′ (CT−1 −H

)
T

K̇ = −B′T ′ (T (A+BKC)T−1 − F
)
(T ′)−1

C′

(3.17)

(b) The equilibrium points (T∞,K∞) ∈ R
n×n × R

n×m are characterised
by

[
T∞ (A+BK∞C)T−1

∞ − F,
(
T∞ (A+BK∞C) T−1

∞
)′]

= (T ′
∞)−1

C′ (CT−1
∞ −H

)− (T∞B −G)B′T ′
∞,

CT−1
∞

(
T∞ (A+BK∞C) T−1

∞ − F
)′
T∞B = 0.

(c) Let (T (t) ,K (t)) be a solution of (3.17). Then (A (t) , B (t) , C (t)) :=(
T (t) (A+BK (t)C)T (t)−1

, T (t)B,CT (t)−1
)

is a solution (3.10).

Proof 3.8 The Fréchet-derivative of φ : GL (n,R) × R
m×p → R is the

linear map on the tangent space defined by

DΦ|(T,K) (XT,L)

=2 tr
((
T (A+BKC)T−1 − F

)′
× ([

X,T (A+BKC)T−1
]
+ TBLCT−1

))

+ 2 tr
(
(TB −G)′XTB − (

CT−1 −H
)
CT−1X

)
=2 tr

(
X

([
T (A+BKC)T−1,

(
T (A+BKC)T−1 − F

)′]

+ TB (TB −G)′ − (
CT−1 −H

)′
CT−1

))

+ 2 tr
(
L
(
CT−1

(
T (A+BKC)T−1 − F

)′
TB

))
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Therefore the gradient vector gradφ (T,K) is

gradφ (T,K) =




[
T (A+BKC)T−1 − F,

(
T (A+BKC)T−1

)′]
T

+ (TB −G)B′T ′T − (T ′)−1
C′ (CT−1 −H

)
T

B′T ′ (T (A+BKC)T−1 − F
)
(T ′)−1

C′




This proves (a). Part (b) follows immediately from (3.17). For (c) note that
(3.17) is equivalent to

Ṫ = − [A (t) − F,A (t)′
]
T − (B (t) −G)B (t)′ T + C (t)′ (C −H)T

K̇ = B (t)′ (A (t) − F ) C (t)′ ,

where A = T (A+BKC)T−1, B = TB and C = CT−1. Thus,

Ȧ =
[
Ṫ T−1,A

]
+ BK̇C

= − [[A− F,A′] + (B −G)B′ − C′ (C −H) ,A] − BB′ (A− F ) C′C
Ḃ = Ṫ T−1B = − ([A− F,A′] + (B −G)B′ − C′ (C −H))B
Ċ = CṪT−1 = C ([A− F,A′] + (B −G)B′ − C′ (C −H)) ,

which completes the proof of (c).

Remark 3.9 Note that the function φ : GL (n,R) × Rm×p → R is not
necessarily proper. Therefore the existence of the solutions (T (t) ,K (t)) of
(3.17) for all t ≥ 0 is not guaranteed a-priori. In particular, finite escape
time behaviour is not precluded. �

Remark 3.10 A complete phase portrait analysis of (3.17) would be desir-
able but is not available. Such an understanding requires deeper knowledge
of the geometry of the output feedback problem. Important question here
are:

(a) Under which conditions are there finitely many equilibrium points of
(3.17)?

(b) Existence of global minima for φ : GL (n,R) × R
m×p → R?

(c) Are there any local minima of the cost function φ : GL (n,R) ×
Rm×p → R besides global minima?

�
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Optimal Eigenvalue Assignment

For optimal eigenvalue assignment problems one is interested in minimizing
the cost function

ϕ : GL (n,R) × R
m×p → R

ϕ (T,K) =
∥∥T (A+BKC)T−1 − F

∥∥2 (3.18)

rather than (3.15). In this case the gradient flow
(
Ṫ , K̇

)
= − gradϕ (T,K)

on GL (n,R) × R
m×p is readily computed to be

Ṫ =
[(
T (A+BKC)T−1

)′
, T (A+BKC)T−1 − F

]
T

K̇ =B′T ′ (F − T (A+BKC)T−1
)
(T ′)−1

C′. (3.19)

The following result is an immediate consequence of the proof of Theo-
rem 3.3.

Corollary 3.11 (Eigenvalue Assignment) Let (A,B,C) ∈ L (n,m, p)
and F ∈ Rn×n.

(a) The gradient flow
(
Ȧ, Ḃ, Ċ

)
= − gradΨ (A,B,C) of Ψ :

F (A,B,C) → R, Ψ (A,B,C) = ‖A− F‖2, with respect to the nor-
mal Riemannian metric is

Ȧ = [A, [A− F,A′]] −BB′ (A− F )C′C

Ḃ = − [A− F,A′]B

Ċ =C [A− F,A′]

(3.20)

(b) Equilibrium points (A∞, B∞, C∞) of (3.20) are characterized by

[A∞ − F,A′
∞] =0 (3.21)

B′
∞ (A∞ − F )C∞ =0 (3.22)

(c) For every initial condition (A (0) , B (0) , C (0)) ∈ F (A,B,C) the so-
lution (A (t) , B (t) , C (t)) of (3.20) exists for all t ≥ 0 and remains
in F (A,B,C).

In the special case where (F,G,H) = (F ′, H ′, G′) and also (A,B,C) =
(A′, C′, B′) are symmetric realizations the equation (3.19) restricts to a
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gradient flow on O (n)×S (m), where S (m) is the set of m×m symmetric
matrices. In this case the flow (3.19) simplifies to

Θ̇ = [F,Θ (A+BKB′)Θ′] Θ, Θ0 ∈O (n)

K̇ =B′ (Θ′FΘ − (A+BKB′))B, K0 ∈S (m)

The convergence properties of this flow is more easily analysed due to the
compact nature of O (n), see Mahony and Helmke (1995). In this case we
also have the result:

Every solution (A (t) , B (t) , C (t)) of (3.20) converges to a connected
component of the set of equilibrium points (A∞, B∞, C∞) ∈ F (A,B,C).

To achieve such a result more generally, one can impose upper bounds
on ‖T ‖ and

∥∥T−1
∥∥ in the optimization. See Jiang and Moore (1996).

Problem 3.12 A flow on L (n,m, p)

Ȧ =f (A,B,C)

Ḃ =g (A,B,C)

Ċ =h (A,B,C)

is called feedback preserving if for all t the solutions (A (t) , B (t) , C (t))
are feedback equivalent to (A (0) , B (0) , C (0)), i.e.

F (A (t) , B (t) , C (t)) = F (A (0) , B (0) , C (0))

for all t and all (A (0) , B (0) , C (0)) ∈ L (n,m, p). Show that every feedback
preserving flow on L (n,m, p) has the form

Ȧ (t) = [A (t) ,L (t)] +BM (t)C

Ḃ (t) =L (t)B (t)

Ċ (t) = − CL (t)

for suitable matrix functions t �→ L (t), t �→ M (t). Conversely, show that
every such flow on L (n,m, p) is feedback preserving.

Problem 3.13 Let N (s)D (s)−1 = C (sI −A)−1
B be a coprime factor-

ization of the transfer function C (sI −A)−1
B, where N (s) ∈ R [s]p×m,

D (s) ∈ R [s]m×m. Show that the coefficients of the polynomial entries ap-
pearing in N (s) are invariants for the flow (3.10). Use this to find n inde-
pendent algebraic invariants for (3.10) when m = p = 1!
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Problem 3.14 For any integer N ∈ N let (A1, B1, C1) , . . . , (AN , BN , CN) ∈
L (n,m, p) be given. Prove that

F ((A1, B1, C1) , . . . , (AN , BN , CN ))

:=
{(
T (A1 +B1KC1)T−1, TB1, C1T

−1
)
, . . .

,
(
T (AN +BNKCN )T−1, TBN , CNT

−1
)

| T ∈ GL (n,R) , K ∈ R
m×p}

is a smooth submanifold of the N -fold product space L (n,m, p) × · · · ×
L (n,m, p).

Problem 3.15 Prove that the tangent space of

F ((A1, B1, C1) , . . . , (AN , BN , CN ))

at (A1, B1, C1) , . . . , (AN , BN , CN ) is equal to

{([X,A1] +B1LC1, XB1,−CX1) ,

. . . , ([X,AN ] +BNLCN , XBN ,−CXN ) | X ∈ R
n×n, L ∈ R

m×p} .
Problem 3.16 Show that the gradient vector field of

Ψ ((A1, B1, C1) , . . . , (AN , BN , CN )) :=
N∑
i=1

‖Ai − Fi‖2

with respect to the normal Riemannian metric on the orbit

F ((A1, B1, C1) , . . . , (AN , BN , CN ))

is

Ȧi =


Ai,

N∑
j=1

[
Aj − Fj , A

′
j

]

−

N∑
j=1

BjB
′
j (Aj − Fj)C′

jCj ,

Ḃi = −
N∑
j=1

[
Aj − Fj , A

′
j

]
Bi,

Ċi = Ci

N∑
j=1

[
Aj − Fj , A

′
j

]
,

for i = 1, . . . , N . Characterize the equilibrium points.

Problem 3.17 Show that every solution (T (t) ,K (t)) of (3.17) satisfies
the feedback gain bound

‖K (t) −K (0)‖2 ≤ 1
2φ (T (0) ,K (0)) .
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Main Points of Section

The optimal eigenstructure assignment problem for linear systems (A,B,C)
is that of finding a feedback equivalent system such that the resulting closed
loop state matrix T (A+BKC)T−1 is as close as possible to a prescribed
target matrix F . A related task in control theory is that of eigenvalue
assignment or pole placement. A generalisation of the eigenstructure as-
signment problem is that of optimal system assignment. Here the distance
of a target system to an ouput feedback orbit is minimized. Gradient flows
achieving the solution to these problems are proposed . For symmetric
systems realizations these flows generalise the double bracket flows. The
approach easily extends to more complicated situations, i.e. for systems
with symmetries and simultaneous eigenvalue assignment tasks.
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Notes for Chapter 5

For a thorough investigation of the total least squares problem we refer to
Golub and Van Loan (1980). In de Moor and David (1992) it is argued
that behind every least squares estimation problem there is an algebraic
Riccati equation. This has been confirmed by de Moor and David (1992) for
the total least squares problem. A characterization of the optimal solution
for the total least squares problem in terms of a solution of an associated
algebraic Riccati equation is obtained. Their work is closely related to that
of Helmke (1991) and a deeper understanding of the connection between
these papers would be desirable.

The total least squares problem amounts to fitting a k-dimensional vector
space to a data set in n real or complex dimensions. Thus the problem can
be reformulated as that of minimizing the total least squares distance func-
tion, which is a trace function tr (AH) defined on a Grassmann manifold
of Hermitian projection operators H . See Pearson (1901) for early results.
Byrnes and Willems (1986) and Bloch (1985b) have used the symplectic
structure on a complex Grassmann manifold to characterize the critical
points of the total least squares distance function. Bloch (1985b; 1987)
have analyzed the Hamiltonian flow associated with the function and de-
scribed its statistical significance. In Bloch (1990a) the Kähler structure of
complex Grassmannians is used to derive explicit forms of the associated
Hamiltonian and gradient flows. He shows that the gradient flow of the to-
tal least squares distance function coincides with Brockett’s double bracket
equation.

In Helmke et al. (1993) a phase portrait analysis of the gradient flow
(1.45) and the Riccati flow on spaces of symmetric matrices is given. Lo-
cal stability properties of the linearizations at the equilibria points are
determined. A recursive numerical algorithm based on a variable step-size
discretization is proposed. In Helmke and Shayman (1995) the critical point
structure of matrix least squares distance functions defined on manifolds
of fixed rank symmetric, skew-symmetric and rectangular matrices is ob-
tained.

Eckart and Young (1936) have solved the problem of approximating a
matrix by one of lower rank, if the distance is measured by the Frobe-
nius norm. They show that the best approximant is given by a trun-
cated singular value decomposition. Mirsky (1960) has extended their re-
sult to arbitrary unitarily invariant norms, i.e. matrix norms which satisfy
‖UXV ‖ = ‖X‖ for all unitary matrices U and V . A generalization of
the Eckart-Young-Mirsky theorem has been obtained by Golub, Hoffman
and Stewart (1987). In that paper also the connection between total least
squares estimation and the minimization task for the least squares distance
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function FA : M (n,M ×N) → R, FA (X) = ‖A−X‖2, is explained. Ma-
trix approximation problems for structured matrices such as Hankel or
Toeplitz matrices are of interest in control theory and signal processing.
Important papers are those of Adamyan, Arov and Krein (1971), who de-
rive the analogous result to the Eckart-Young-Mirsky theorem for Hankel
operators. The theory of Adamyan, Arov and Krein had a great impact on
model reduction control theory, see Kung and Lin (1981).

Halmos (1972) has considered the task of finding a best symmetric posi-
tive semidefinite approximant P of a linear operator A for the 2-norm. He
derives a formula for the distance ‖A− P‖2. A numerical bisection method
for finding a nearest positive semidefinite matrix approximant is studied by
Higham (1988). This paper also gives a simple formula for the best positive
semidefinite approximant to a matrix A in terms of the polar decomposition
of the symmetrization (A+A′) /2 of A. Problems with matrix definiteness
constraints are described in Fletcher (1985), Parlett (1978). For further
results on matrix nearness problems we refer to Demmel (1987), Higham
(1986) and Van Loan (1985).

Baldi and Hornik (1989) has provided a neural network interpretation of
the total least squares problem. They prove that the least squares distance
function (1.22) FA : M (n,N ×N) → R, FA (X) = ‖A−X‖2, has generi-
cally a unique local and global minimum. Moreover, a characterization of
the critical points is obtained. Thus, equivalent results to those appearing
in the first section of the chapter are obtained.

The polar decomposition can be defined for an arbitrary Lie group. It
is then called the Iwasawa decomposition. For algorithms computing the
polar decomposition we refer to Higham (1986).

Textbooks on feedback control and linear systems theory are those of
Kailath (1980), Sontag (1990b) and Wonham (1985). A celebrated result
from linear systems theory is the pole-shifting theorem of Wonham (1967).
It asserts that a state space system (A,B) ∈ Rn×n × Rn×m is controllable
if and only if for every monic real polynomial p (s) of degree n there exists
a state feedback gain K ∈ R

m×n such that the characteristic polynomial of
A+BK is p (s). Thus controllability is a necessary and sufficient condition
for eigenvalue assignment by state feedback.

The corresponding, more general, problem of eigenvalue assignment by
constant gain output feedback is considerably harder and a complete so-
lution is not known to this date. The question has been considered by
many authors with important contributions by Brockett and Byrnes (1981),
Byrnes (1989), Ghosh (1988), Hermann and Martin (1977), Kimura (1975),
Rosenthal (1992), Wang (1991) and Willems and Hesselink (1978). Impor-
tant tools for the solution of the problem are those from algebraic geometry
and topology. The paper of Byrnes (1989) is an excellent survey of the re-
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cent developments on the output feedback problem.
Hermann and Martin (1977) has shown that the conditionmp ≥ n is nec-

essary for generic eigenvalue assignment by constant gain output feedback.
A counter-example (m = p = 2, n = 4) of Willems and Hesselink (1978)
shows that the condition mp ≥ n is in general not sufficient for generic
eigenvalue assignment. Brockett and Byrnes (1981) has shown that generic
eigenvalue assignment is possible if mp = n and an additional hypothesis on
the degree of the pole-placement map is satisfied. Wang (1991) has shown
that mp > n is a sufficient condition for generic eigenvalue assignment via
output feedback.

For results on simultaneous eigenvalue assignment of a finite number of
linear systems by output feedback we refer to Ghosh (1988).

The development of efficient numerical methods for eigenvalue assign-
ment by output feedback is a challenge. Methods from matrix calculus
have been applied by Godbout and Jordan (1980) to determine gradient
matrices for output feedback. In Mahony and Helmke (1995) gradient flows
for optimal eigenvalue assignment for symmetric state space systems, of in-
terest in circuit theory, are studied.





CHAPTER 6

Balanced Matrix
Factorizations

6.1 Introduction

The singular value decomposition of a finite-dimensional linear operator is
a special case of the following more general matrix factorization problem:

Given a matrix H ∈ Rk×� find matrices X ∈ Rk×n and Y ∈ Rn×� such
that

H = XY. (1.1)

A factorization (1.1) is called balanced if

X ′X = Y Y ′ (1.2)

holds and diagonal balanced if

X ′X = Y Y ′ = D (1.3)

holds for a diagonal matrix D. If H = XY then H = XT−1TY for all
invertible n × n matrices T , so that factorizations (1.1) are never unique.
A coordinate basis transformation T ∈ GL (n) is called balancing, and
diagonal balancing, if

(
XT−1, TY

)
is a balanced, and diagonal balanced

factorization, respectively.
Diagonal balanced factorizations (1.3) with n = rank (H) are equivalent

to the singular value decomposition of H . In fact if (1.3) holds for H = XY
then with

U = D−1/2Y, V = XD−1/2, (1.4)
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we obtain the singular value decomposition H = VDU , UU ′ = In, V ′V =
In.

A parallel situation arises in system theory, where factorizations H =
O ·R of a Hankel matrix H by the observability and controllability matri-
ces O and R are crucial for realization theory. Realizations (A,B,C) are
easily constructed from O and R. Balanced and diagonal balanced realiza-
tions then correspond to balanced and diagonal balanced factorizations of
the Hankel matrix. While diagonal balanced realizations are an important
tool for system approximation and model reduction theory, they are not al-
ways best for certain minimum sensitivity applications arising, for example
in digital filtering. There is therefore the need to study both types of fac-
torizations as developed in this chapter. System theory issues are studied
in Chapters 7–9, based on the analysis of balanced matrix factorizations as
developed in this chapter.

In order to come to grips with the factorization tasks (1.1)–(1.3) we have
to study the underlying geometry of the situation.

Let

F (H) =
{
(X,Y ) ∈ R

k×n × R
n×� | H = XY

}
, n = rk (H)

(1.5)

denote the set of all minimal, that is full rank, factorizations (X,Y ) of H .
Applying a result from linear algebra, Section A.8, we have

F (H) =
{(
XT−1, TY

) ∈ R
k×n × R

n×� | T ∈ GL (n)
}

(1.6)

for any initial factorization H = XY with rk (X) = rk (Y ) = n. We are
thus led to study the sets

O (X,Y ) :=
{(
XT−1, TY

) ∈ R
k×n × R

n×� | T ∈ GL (n)
}

(1.7)

for arbitrary n, k, l. The geometry of O (X,Y ) and their topological closures
is of interest for invariant theory and the necessary tools are developed in
Sections 6.2 and 6.3. It is shown there that O (X,Y ) and hence F (H)
are smooth manifolds. Balanced and diagonal balanced factorizations are
characterized as the critical points of the cost functions

ΦN : O (X,Y ) → R

ΦN
(
XT−1, TY

)
= tr

(
N (T ′)−1

X ′XT−1
)

+ tr (NTY Y ′T ′)
(1.8)

in terms of a symmetric target matrix N , which is the identity matrix or a
diagonal matrix, respectively. If N is the identity matrix, the function ΦI ,
denoted Φ, has the appealing form

Φ
(
XT−1, TY

)
=

∥∥XT−1
∥∥2

+ ‖TY ‖2
, (1.9)
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for the Frobenius norm.
We are now able to apply gradient flow techniques in order to compute

balanced and diagonal balanced factorizations. This is done in Sections 6.3–
6.5.

6.2 Kempf-Ness Theorem

The purpose of this section is to recall an important recent result as well as
the relevant terminology from invariant theory. The result is due to Kempf
and Ness (1979) and plays a central rôle in our approach to the balanced
factorization problem. For general references on invariant theory we refer
to Kraft (1984) and Dieudonné and Carrell (1971).

Digression: Group Actions

Let GL (n) denote the group of invertible real n×n matrices and let O (n) ⊂
GL (n) denote the subgroup consisting of all real orthogonal n×n matrices
Θ characterized by ΘΘ′ = Θ′Θ = In.

A group action of GL (n) on a finite dimensional real vector space V is a
map

α : GL (n) × V → V, (g, x) �→ g · x (2.1)

satisfying for all g, h ∈ GL (n), x ∈ V

g · (h · x) = (gh) · x, e · x = x

where e = In denotes the n× n identity matrix.

If the coordinates of g · x in (2.1) are polynomials in the coefficients of
g, x and det (g)−1 then, (2.1) is called an algebraic group action, and α :
GL (n) × V → V is called a linear algebraic group action if in addition the
maps

αg : V → V, αg (x) = g · x (2.2)

are linear, for all g ∈ GL (n).

A typical example of a linear algebraic group action is the similarity action

α : GL (n) × R
n×n →R

n×n,

(S,A) �→SAS−1
(2.3)

where the (i, j)-entry of SAS−1 is a polynomial in the coefficients of S, A
and (detS)−1.
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Given a group action (2.1) and an element x ∈ V , the stabilizer of x is the
subgroup of GL (n) defined by

Stab (x) = {g ∈ GL (n) | g · x = x} (2.4)

The orbit of x is defined as the set O (x) of all y ∈ V which are GL (n)-
equivalent to x, that is

O (x) = {g · x | g ∈ GL (n)} (2.5)

We say that the orbit O (x) is closed if O (x) is a closed subset of V .

In the above example, the orbit O (A) of an n× n matrix A is just the set
of all matrices B which are similar to A.

If GL (n) /Stab (x) denotes the quotient space of GL (n) by the stabilizer
group Stab (x) then O (x) is homeomorphic to GL (n) /Stab (x). In fact, for
any algebraic group action of GL (n), both O (x) and GL (n) / Stab (x) are
smooth manifolds which are diffeomorphic to each other; see Appendix C.

A positive definite inner product 〈 , 〉 on the vector space V is called
orthogonally invariant with respect to the group action (2.1) if

〈Θ · x,Θ · y〉 = 〈x, y〉 (2.6)

holds for all x, y ∈ V and Θ ∈ O (n). This induces an O (n)-invariant
Hermitian norm on V defined by ‖x‖2 = 〈x, x〉.

Choose any such O (n)-invariant norm on V . For any given x ∈ V we
consider the distance or norm functions

Φ : O (x) →R, Φ (y) = ‖y‖2 (2.7)

and

φx : GL (n) →R, φx (g) = ‖g · x‖2 (2.8)

Note that φx (g) is just the square of the distance of the transformed vector
g · x to the origin 0 ∈ V .

We can now state the Kempf-Ness result, where the real version presented
here is actually due to Slodowy (1989). We will not prove the theorem here,
because we will prove in Chapter 7 a generalization of the Kempf-Ness
theorem which is due to Azad and Loeb (1990).

Theorem 2.1 Let α : GL (n) × V → V be a linear algebraic action of
GL (n) of a finite-dimensional real vector space V and let ‖·‖ be derived
from an orthogonally invariant inner product on V . Then
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(a) The orbit O (x) is closed if and only if the norm function Φ : O (x) →
R (respectively φx : G → R) has a global minimum (i.e. ‖g0 · x‖ =
infg∈G ‖g · x‖ for some g0 ∈ G).

(b) Let O (x) be closed. Every critical point of Φ : O (x) → R is a global
minimum and the set of global minima of Φ is a single O (n)-orbit.

(c) Let O (x) be closed and let C (Φ) ⊂ O (x) denote the set of all critical
points of Φ. Let x0 ∈ C (Φ) be a critical point of Φ : O (x) → R. Then
the Hessian D2Φ

∣∣
x0

of Φ at x0 is positive semidefinite and D2Φ
∣∣
x0

degenerates exactly on the tangent space Tx0C (Φ).

Any function F : O (x) → R which satisfies Condition (c) of the above
theorem is called a Morse-Bott function. We say that Φ is a perfect Morse-
Bott function.

Example 2.2 (Similarity Action) Let α : GL (n) × Rn×n → Rn×n,
(S,A) �→ SAS−1, be the similarity action on Rn×n and let ‖A‖2 = tr (AA′)
be the Frobenius norm. Then ‖A‖ = ‖ΘAΘ′‖ for Θ ∈ O (n) is an orthogo-
nal invariant Hermitian norm of Rn×n. It is easy to see and a well known
fact from invariant theory that a similarity orbit

O (A) =
{
SAS−1 | S ∈ GL (n)

}
(2.9)

is a closed subset of R
n×n if and only if A is diagonalizable over C. A

matrix B = SAS−1 ∈ O (A) is a critical point for the norm function

Φ : O (A) → R, Φ (B) = tr (BB′) (2.10)

if and only if BB′ = B′B, i.e. if and only if B is normal. Thus the Kempf-
Ness theorem implies that, for A diagonalizable over C, the normal matrices
B ∈ O (A) are the global minima of (2.10) and that there are no other
critical points.

Main Points of Section

The important notions of group actions and orbits are introduced. An ex-
ample of a group action is the similarity action on n× n matrices and the
orbits here are the equivalence classes formed by similar matrices. Closed
orbits are important since on those there always exists an element with
minimal distance to the origin. The Kempf-Ness theorem characterizes the
closed orbits of a GL (n) group action and shows that there are no criti-
cal points except for global minima of the norm distance function. In the
case of the similarity action, the normal matrices are precisely those orbit
elements which have minimal distance to the zero matrix.
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6.3 Global Analysis of Cost Functions

We now apply the Kempf-Ness theorem to our cost functions Φ :
O (X,Y ) → R and ΦN : O (X,Y ) → R introduced in Section 6.1.

Let V = R
k×n × R

n×� denote the vector space of all pairs of k × n and
n× � matrices X and Y . The group GL (n) of invertible n×n real matrices
T acts on V by the linear algebraic group action

α : GL (n) × (
R
k×n × R

n×�) → R
k×n × R

n×�

(T, (X,Y )) �→ (
XT−1, TY

)
.

(3.1)

The orbits
O (X,Y ) =

{(
XT−1, TY

) | T ∈ GL (n)
}

are thus smooth manifolds, Appendix C. We endow V with the Hermitian
inner product defined by

〈(X1, Y1) , (X2, Y2)〉 = tr (X ′
1X2 + Y1Y

′
2) (3.2)

The induced Hermitian norm

‖(X,Y )‖2 = tr (X ′X + Y Y ′) (3.3)

is orthogonally invariant, that is
∥∥(XΘ−1,ΘY

)∥∥ = ‖(X,Y )‖ for all orthog-
onal n× n matrices Θ ∈ O (n).

Lemma 3.1 Let (X,Y ) ∈ Rk×n × Rn×�. Then

(a) O (X,Y ) is a smooth submanifold of Rk×n × Rn×�.

(b) The tangent space of O = O (X,Y ) at (X,Y ) is

T(X,Y )O =
{
(−XΛ,ΛY ) | Λ ∈ R

n×n} (3.4)

Proof 3.2 O (X,Y ) is an orbit of the smooth algebraic Lie group action
(3.1) and thus, by Appendix C, a smooth submanifold of Rk×n×Rn×�. To
prove (b) we consider the smooth map

ϕ : GL (n) → O (X,Y ) , T �→ (
XT−1, TY

)
(3.5)

The derivative of ϕ at the identity matrix In is the surjective linear map
Dϕ|In

: TInGL (n) → T(X,Y )O defined by

Dϕ|In
(Λ) = (−XΛ,ΛY )

for Λ ∈ TInGL (n) = Rn×n. The result follows.
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The above characterization of the tangent spaces of course remains in
force if the point (X,Y ) ∈ O is replaced by any other point (X1, Y1) ∈ O.
In the sequel we will often denote a general point (X1, Y1) of O (X,Y )
simply by (X,Y ).

The following lemma is useful in order to characterize the closed orbits
O (X,Y ) for the group action (3.1). Let Ā denote the topological closure
of subset A of a topological space M .

Lemma 3.3

(a) (X1, Y1) ∈ O (X,Y ) if and only if X1Y1 = XY , ker (Y1) = ker (Y )
and image (X1) = image (X).

(b) (X1, Y1) ∈ O (X,Y ) if and only if X1Y1 = XY , ker (Y1) ⊃ ker (Y )
and image (X1) ⊂ image (X).

(c) O (X,Y ) is closed if and only if ker (Y ) = ker (XY ) and image (X) =
image (XY ).

Proof 3.4 See Kraft (1984).

Corollary 3.5 O(X,Y ) is closed if and only if rk (X) = rk (Y ) = rk (XY ).

Proof 3.6 By Lemma 3.3 the orbit O (X,Y ) is closed if and only if
dim ker (Y ) = dim ker (XY ) and dim image (X) = dim image (XY ). But
rk (Y ) + dim ker (Y ) = � and thus the condition is satisfied if and only if
rk (X) = rk (Y ) = rk (XY ).

Let Φ : O (X,Y ) → R be the smooth function on O (X,Y ) defined by

Φ
(
XT−1, TY

)
=

∥∥XT−1
∥∥2

+ ‖TY ‖2

= tr
(
(T ′)−1

X ′XT−1 + TY Y ′T ′
) (3.6)

We have

Theorem 3.7

(a) An element (X0, Y0) ∈ O (X,Y ) is a critical point of Φ if and only if
X ′

0X0 = Y0Y
′
0 .

(b) There exists a minimum of Φ : O (X,Y ) → R in O (X,Y ) if and only
if rk (X) = rk (Y ) = rk (XY ).

(c) All critical points of Φ : O (X,Y ) → R are global minima. If (X1, Y1),
(X2, Y2) ∈ O (X,Y ) are global minima, then there exists an orthogo-
nal transformation Θ ∈ O (n) such that (X2, Y2) =

(
X1Θ−1,ΘY1

)
.
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(d) Let C (Φ) ⊂ O (X,Y ) denote the set of all critical points of Φ :
O (X,Y ) → R. Then the Hessian D2Φ

∣∣
(X0,Y0)

is positive semidefi-
nite at each critical point (X0, Y0) of Φ and D2Φ

∣∣
(X0,Y0)

degenerates
exactly on the tangent space T(X0,Y0)C (Φ) of C (Φ).

Proof 3.8 The derivative DΦ|(X,Y ) : T(X,Y )O → R of Φ at any point
(X,Y ) ∈ O is the linear map defined by

DΦ|(X,Y ) (ξ, η) = 2 tr (X ′ξ + ηY ′) .

By Lemma 3.1, the tangent vectors of O at (X,Y ) are of the form (ξ, η) =
(−XΛ,ΛY ) for an n× n matrix Λ. Thus

DΦ|(X,Y ) (ξ, η) = −2 tr [(X ′X − Y Y ′) Λ] ,

which vanishes on T(X,Y )O if and only if X ′X = Y Y ′. This proves (a).
Parts (b), (c) and (d) are an immediate consequence of the Kempf-Ness
Theorem 2.1 together with Corollary 3.5.

Let N = N ′ ∈ R
n×n be an arbitrary symmetric positive definite matrix

and let ΦN : O (X,Y ) → R be the weighted cost function defined by

ΦN
(
XT−1, TY

)
= tr

(
N (T ′)−1

X ′XT−1 +NTY Y ′T ′
)

(3.7)

Note that ΦN is in general not an orthogonally invariant norm function.
Thus the next theorem does not follow immediately from the Kempf-Ness
theory.

Theorem 3.9 Let N = N ′ > 0.

(a) (X0, Y0) is a critical point of ΦN if and only if NX ′
0X0 = Y0Y

′
0N .

(b) There exists a minimum of ΦN : O (X,Y ) → R in O (X,Y ) if
rk (X) = rk (Y ) = rk (XY ).

(c) Let N = diag (µ1, . . . , µn) with µ1 > · · · > µn > 0. Then (X0, Y0) is
a critical point of ΦN if and only if (X0, Y0) is diagonal balanced.

Proof 3.10 The derivative of ΦN : O (X,Y ) → R at (X,Y ) is
DΦN |(X,Y ) : T(X,Y )O → R with

DΦN |(X,Y ) (ξ, η) = 2 tr (NX ′ξ +NηY ′)

= −2 tr ((NX ′X − Y Y ′N) Λ)



6.3. Global Analysis of Cost Functions 171

for (ξ, η) = (−XΛ,ΛY ). Hence DΦN |(X,Y ) = 0 on T(X,Y )O if and only
if NX ′X = Y ′Y N , which proves (a). By Corollary 3.5 the rank equal-
ity condition of (b) implies that O (X,Y ) is closed. Consequently, ΦN :
O (X,Y ) → R+ is a proper function and therefore a minimum in O (X,Y )
exists. This proves (b). To prove (c) note that NX ′X = Y Y ′N is equiva-
lent to NX ′XN−1 = Y Y ′. By symmetry of Y Y ′ thus N2X ′X = X ′XN2

and hence (
µ2
i − µ2

j

)
x′ixj = 0 for all i, j = 1, . . . , n

where X = (x1, . . . , xn). Since µ2
i �= µ2

j for i �= j then x′ixj = 0 for i �= j
and therefore both X ′X and Y Y ′ must be diagonal and equal. The result
follows.

Finally let us explore what happens if other orthogonal invariant norms
are used. Thus let Ω1 ∈ Rk×k, Ω2 ∈ R�×� be symmetric positive definite
and let

Ψ : O (X,Y ) → R, Ψ (X,Y ) = tr (X ′Ω1X + YΩ2Y
′) (3.8)

The function Ψ defines an orthogonally invariant norm on O (X,Y ). The
critical points of Ψ : O (X,Y ) → R are easily characterized by

X ′Ω1X = YΩ2Y
′ (3.9)

and thus the Kempf-Ness Theorem (2.1) implies the following.

Corollary 3.11 Let Ω1 ∈ Rk×k and Ω2 ∈ R�×� be positive definite sym-
metric matrices. Then:

(a) The critical points of Ψ : O (X,Y ) → R defined by (3.8) are charac-
terized by X ′Ω1X = YΩ2Y

′.

(b) There exists a minimum of Ψ in O (X,Y ) if and only if rk (X) =
rk (Y ) = rk (XY ).

(c) The critical points of Ψ : O (X,Y ) → R are the global minima.
If the pairs (X1, Y1) , (X2, Y2) ∈ O (X,Y ) are global minima, then
(X2, Y2) =

(
X1Θ−1,ΘY1

)
for an orthogonal matrix Θ ∈ O (n).

A similar result, analogous to Theorem 3.9, holds for ΨN : O (X,Y ) → R,
ΨN (X,Y ) = tr (NX ′Ω1X) + tr (NYΩ2Y

′).

Problem 3.12 State and prove the analogous result to Theorem 3.9 for
the weighted cost function ΨN : O (X,Y ) → R.
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Main Points of Section

A global analysis of the cost functions for balancing matrix factorizations is
developed. The orbits O (X,Y ) are shown to be smooth manifolds and their
tangent spaces are computed. The closed orbits are characterized using the
Kempf-Ness theorem. The global minima of the cost function are shown to
be balanced. Similarly, diagonal balanced factorizations are characterized
as the critical points of a weighted cost function. The Kempf-Ness theory
does not apply to such weighted cost functions.

6.4 Flows for Balancing Transformations

In this section gradient flows evolving on the Lie group GL (n) of invertible
coordinate transformations T ∈ GL (n) are constructed which converge
exponentially fast to the class of all balancing coordinate transformations
for a given factorization H = XY . Thus let cost functions Φ : GL (n) → R

and ΦN : GL (n) → R be defined by

Φ (T ) =
∥∥XT−1

∥∥2
+ ‖TY ‖2 (4.1)

and
ΦN (T ) = tr

(
N (T ′)−1

X ′XT−1
)

+ tr (NTY Y ′T ′) (4.2)

Given that

Φ (T ) = tr
[
(T ′)−1

X ′XT−1 + TY Y ′T ′
]

=tr
(
X ′XP−1 + Y Y ′P

) (4.3)

for

P = T ′T (4.4)

it makes sense to consider first the task of minimizing Φ with respect to
the positive definite symmetric matrix P = T ′T .

Gradient flows on positive definite matrices

Let P (n) denote the set of positive definite symmetric n × n matrices
P = P ′ > 0. The function we are going to study is

φ : P (n) → R, φ (P ) = tr
(
X ′XP−1 + Y Y ′P

)
(4.5)
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Lemma 4.1 Let (X,Y ) ∈ Rk×n × Rn×� with rk (X) = rk (Y ) = n. The
function φ : P (n) → R defined by (4.5) has compact sublevel sets, that is{
P ∈ P (n) | tr

(
X ′XP−1 + Y Y ′P

) ≤ a
}

is a compact subset of P (n) for
all a ∈ R.

Proof 4.2 LetMa :=
{
P ∈ P (n) | tr

(
X ′XP−1 + Y Y ′P

) ≤ a
}

andNa :={
T ∈ GL (n) | ∥∥XT−1

∥∥2 + ‖TY ‖2 ≤ a
}
. Suppose that X and Y are full

rank n. Then

ϕ : GL (n) →O (X,Y )

T �→ (
XT−1, TY

)

is a homeomorphism which maps Na homeomorphically onto φ (Na) ={
(X1, Y1) ∈ O (X,Y ) | ‖X1‖2 + ‖Y1‖2 ≤ a

}
. By Corollary 3.5, φ (Na) is

the intersection of the compact set
{
(X1, Y1) ∈ R

k×n × R
n×� | ‖X1‖2 + ‖Y1‖2 ≤ a

}

with the closed set O (X,Y ) and therefore is compact. Thus Na must be
compact. Consider the continuous map

F : Ma ×O (n) → Na, F (P,Θ) = ΘP 1/2.

By the polar decomposition of T ∈ GL (n), F is a bijection and its
inverse is given by the continuous map F−1 : Na → Ma×O (n), F−1 (T ) =(
T ′T, T (T ′T )−1/2). Thus F is a homeomorphism and the compactness of
Na implies that of Ma. The result follows.

Flanders (1975) seemed to be one of the first which has considered the
problem of minimizing the function φ : P (n) → R defined by (4.5) over the
set of positive definite symmetric matrices. His main result is as follows.
The proof given here which is a simple consequence of Theorem 3.7 is
however much simpler than that of Flanders.

Corollary 4.3 There exists a minimizing positive definite symmetric
matrix P = P ′ > 0 for the function φ : P (n) → R, φ (P ) =
tr

(
X ′XP−1 + Y Y ′P

)
, if and only if rk (X) = rk (Y ) = rk (XY ).

Proof 4.4 Consider the continuous map φ : P (n) → O (X,Y ) defined by
φ (P ) =

(
XP−1/2, P 1/2Y

)
. There exists a minimum for φ : P (n) → R

if and only if there exists a minimum for the function O (X,Y ) → R,
(X,Y ) �→ ‖X‖2 + ‖Y ‖2. The result now follows from Theorem 3.7(b).
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We now consider the minimization task for the cost function φ : P (n) →
R from a dynamical systems viewpoint. Certainly P (n) is a smooth sub-
manifold of Rn×n. For the subsequent results we endow P (n) with the
induced Riemannian metric. Thus the inner product of two tangent vectors
ζ, η ∈ TPP (n) is 〈ζ, η〉 = tr (ζ′η).

Theorem 4.5 (Linear index gradient flow) Let (X,Y ) ∈ Rk×n×Rn×�

with rk (X) = rk (Y ) = n.

(a) There exists a unique P∞ = P ′∞ > 0 which minimizes φ : P (n) → R,
φ (P ) = tr

(
X ′XP−1 + Y Y ′P

)
, and P∞ is the only critical point of

φ. This minimum is given by

P∞ = (Y Y ′)−1/2
[
(Y Y ′)1/2 (X ′X) (Y Y ′)1/2

]1/2

(Y Y ′)−1/2

(4.6)

and T∞ = P
1/2
∞ is a balancing transformation for (X,Y ).

(b) The gradient flow Ṗ (t) = −∇φ (P (t)) on P (n) is given by

Ṗ = P−1X ′XP−1 − Y Y ′, P (0) = P0 (4.7)

For every initial condition P0 = P ′
0 > 0, P (t) ∈ P (n) exists for all

t ≥ 0 and converges exponentially fast to P∞ as t→ ∞, with a lower
bound for the rate of exponential convergence given by

ρ ≥ 2
σmin (Y )3

σmax (X)
(4.8)

where σmin (A) and σmax (A) are the smallest and largest singular
value of a linear operator A respectively.

Proof 4.6 The existence of P∞ follows immediately from Lemma 4.1 and
Corollary 4.3. Uniqueness of P∞ follows from Theorem 3.7(c). Similarly by
Theorem 3.7(c) every critical point is a global minimum.

Now simple manipulations using standard results from matrix calculus,
reviewed in Appendix A, give

∇φ (P ) = Y Y ′ − P−1X ′XP−1 (4.9)

for the gradient of φ. Thus the critical point of Φ is characterized by

∇φ (P∞) = 0 ⇔X ′X = P∞Y Y ′P∞

⇔ (Y Y ′)1/2X ′X (Y Y ′)1/2 =
(
(Y Y ′)1/2 P∞ (Y Y ′)1/2

)2

⇔P∞ = (Y Y ′)−1/2
[
(Y Y ′)1/2X ′X (Y Y ′)1/2

]1/2

(Y Y ′)−1/2
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Also X ′X = P∞Y Y ′P∞ ⇔ T−1∞ X ′XT−1∞ = T∞Y Y ′T∞ for T∞ = P
1/2
∞ .

This proves (a) and (4.7). By Lemma 4.1 and standard properties of gra-
dient flows, reviewed in Appendix C, the solution P (t) ∈ P (n) exists for
all t ≥ 0 and converges to the unique equilibrium point P∞. To prove the
result about exponential stability, we first review some known results con-
cerning Kronecker products and the vec operation, see Section A.10. Recall
that the Kronecker product of two matrices A and B is defined by

A⊗B =




a11B a12B . . . a1kB

a21B a22B . . . a2kB
...

...
. . .

...
an1B an2B . . . ankB


 .

The eigenvalues of the Kronecker product of two matrices are given by the
product of the eigenvalues of the two matrices, that is

λij (A⊗B) = λi (A)λj (B) .

Moreover, with vec (A) defined by

vec (A) =
[
a11 . . . an1 a12 . . . an2 . . . a1m . . . anm

]′
,

then

vec (MN) = (I ⊗M) vec (N) = (N ′ ⊗ I) vec (M)
vec (ABC) = (C′ ⊗A) vec (B) .

A straightforward computation shows that the linearization of the right
hand side of (4.7) at P∞ is given by the linear operator

ξ �→ −P−1
∞ ξP−1

∞ X ′XP−1
∞ − P−1

∞ X ′XP−1
∞ ξP−1

∞ .

Since P−1
∞ X ′XP−1

∞ = Y Y ′ it follows that

d

dt
vec (P − P∞) =

(−P−1
∞ ⊗ Y Y ′ − Y Y ′ ⊗ P−1

∞
)
vec (P − P∞)

(4.10)

is the linearization of (4.7) around P∞. The smallest eigenvalue of JSV D =
P−1∞ ⊗ Y Y ′ + Y Y ′ ⊗ P−1∞ can then be estimated as (see Appendix A)

λmin (JSVD) ≥ 2λmin

(
P−1
∞

)
λmin (Y Y ′) > 0
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which proves exponential convergence of P (t) to P∞. To obtain the bound
on the rate of convergence let S be an orthogonal transformation that
diagonalizes P∞, so that SP∞S′ = diag (λ1, . . . , λn). Let X̄ = XS−1 and
Ȳ = SY . Then X̄ ′X̄ = SP∞S′Ȳ Ȳ ′SP∞S′ and thus by

∥∥X̄ei∥∥2 = e′iX̄
′X̄e′i = λ2

i

∥∥Ȳ ′ei
∥∥2
, i = 1, . . . , n,

we obtain

λmin

(
P−1
∞

)
= min

i

∥∥Ȳ ′ei
∥∥∥∥X̄ei∥∥ ≥ σmin

(
Ȳ
)

σmax

(
X̄

) =
σmin (Y )
σmax (X)

and therefore by λmin (Y Y ′) = σmin (Y )2 we obtain (4.8).

In the sequel we refer to (4.7) as the linear index gradient flow. Instead of
minimizing the functional φ (P ) we might as well consider the minimization
problem for the quadratic index function

ψ (P ) = tr
(
(Y Y ′P )2 +

(
X ′XP−1

)2
)

(4.11)

over all positive definite symmetric matrices P = P ′ > 0.
Since, for P = T ′T , ψ (P ) is equal to

tr
(

(TY Y ′T ′)2 +
(
(T ′)−1

X ′XT−1
)2

)
,

the minimization of (4.11) is equivalent to the task of minimizing the quar-
tic function tr

(
(Y Y ′)2 + (X ′X)2

)
over all full rank factorizations (X,Y )

of a given matrix H = XY . The cost function ψ has a greater penalty for
being away from the minimum than the cost function φ, so can be expected
to converge more rapidly.

By the formula

tr
[
(Y Y ′)2 + (X ′X)2

]
= ‖X ′X − Y Y ′‖2 + 2 tr (X ′XY Y ′)

= ‖X ′X − Y Y ′‖2 + 2 ‖H‖2

we see that the minimization of tr
[
(X ′X)2 +(Y Y ′)2

]
over F (H) is equiva-

lent to the minimization of the least squares distance ‖X ′X − Y Y ′‖2 over
F (H).

Theorem 4.7 (Quadratic index gradient flow) Let (X,Y ) ∈ Rk×n ×
Rn×� with rk (X) = rk (Y ) = n.
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(a) There exists a unique P∞ = P ′
∞ > 0 which minimizes ψ : P (n) → R,

ψ (P ) = tr
((
X ′XP−1

)2 + (Y Y ′P )2
)
, and

P∞ = (Y Y ′)−1/2
[
(Y Y ′)1/2 (X ′X) (Y Y ′)1/2

]1/2

(Y Y ′)−1/2

is the only critical point of ψ. Also, T∞ = P
1/2
∞ is a balancing coor-

dinate transformation for (X,Y ).

(b) The gradient flow Ṗ (t) = −∇ψ (P (t)) is

Ṗ = 2P−1X ′XP−1X ′XP−1 − 2Y Y ′PY Y ′, P (0) = P0

(4.12)

For all initial conditions P0 = P ′
0 > 0, the solution P (t) of (4.12)

exists in P (n) for all t ≥ 0 and converges exponentially fast to P∞.
A lower bound on the rate of exponential convergence is

ρ > 4σmin (Y )4 (4.13)

Proof 4.8 Again the existence and uniqueness of P∞ and the critical
points of ψ follows as in the proof of Theorem 4.5. Similarly, the expression
(4.12) for the gradient flow follows easily from the standard rules of matrix
calculus. The only new point we have to check is the bound on the rate of
exponential convergence (4.13).

The linearization of the right hand side of (4.12) at the equilibrium point
P∞ is given by the linear map (ξ = ξ′)

ξ �→ −2
(
P−1
∞ ξP−1

∞ X ′XP−1
∞ X ′XP−1

∞ + P−1
∞ X ′XP−1

∞ ξP−1
∞ X ′XP−1

∞
+ P−1

∞ X ′XP−1
∞ X ′XP−1

∞ ξP−1
∞ + Y Y ′ξY Y ′)

That is, using P∞Y Y ′P∞ = X ′X , by

ξ �→ −2
(
P−1
∞ ξY Y ′P∞Y Y ′ + 2Y Y ′ξY Y ′ + Y Y ′P∞Y Y ′ξP−1

∞
)

(4.14)

Therefore the linearization of (4.12) at P∞ is

d

dt
vec (P − P∞) = −2

(
2Y Y ′ ⊗ Y Y ′ + P−1

∞ ⊗ Y Y ′P∞Y Y ′

+ Y Y ′P∞Y Y ′ ⊗ P−1
∞

)
vec (P − P∞)

(4.15)
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Therefore (see Appendix A) the minimum eigenvalue of the self adjoint
linear operator given by (4.14) is greater than or equal to

4λmin (Y Y ′)2 + 4λmin

(
P−1
∞

)
λmin (Y Y ′P∞Y Y ′)

≥4λmin (Y Y ′)2
(
1 + λmin

(
P−1
∞

)
λmin (P∞)

)
>4λmin (Y Y ′)2

>0.

The result follows.

We refer to (4.12) as the quadratic index gradient flow. The above results
show that both algorithms converge exponentially fast to P∞, however their
transient behaviour is rather different. In fact, simulation experiment with
both gradient flows show that the quadratic index flow seems to behave
better than the linear index flow. This is further supported by the following
lemma. It compares the rates of exponential convergence of the algorithms
and shows that the quadratic index flow is in general faster than the linear
index flow.

Lemma 4.9 Let ρ1 and ρ2 denote the rates of exponential convergence of
(4.7) and (4.12) respectively. Then ρ1 < ρ2 if σmin (XY ) > 1

2 .

Proof 4.10 By (4.10), (4.15),

ρ1 = λmin

(
P−1
∞ ⊗ Y Y ′ + Y Y ′ ⊗ P−1

∞
)
,

and

ρ2 = 2λmin

(
2Y Y ′ ⊗ Y Y ′ + P−1

∞ ⊗ Y Y ′P∞Y Y ′ + Y Y ′P∞Y Y ′ ⊗ P−1
∞

)
.

We need the following lemma; see Appendix A.

Lemma 4.11 Let A,B ∈ Rn×n be symmetric matrices and let λ1 (A) ≥
· · · ≥ λn (A) and λ1 (B) ≥ · · · ≥ λn (B) be the eigenvalues of A, B, or-
dered with respect to their magnitude. Then A−B positive definite implies
λn (A) > λn (B).

Thus, according to Lemma 4.11, it suffices to prove that

4Y Y ′ ⊗ Y Y ′ + 2P−1
∞ ⊗ Y Y ′P∞Y Y ′ +

2Y Y ′P∞Y Y ′ ⊗ P−1
∞ − P−1

∞ ⊗ Y Y ′ − Y Y ′ ⊗ P−1
∞

=4Y Y ′ ⊗ Y Y ′ + P−1
∞ ⊗ (2Y Y ′P∞Y Y ′ − Y Y ′) +

(2Y Y ′P∞Y Y ′ − Y Y ′) ⊗ P−1
∞

>0.
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But this is the case, whenever

2Y Y ′P∞Y Y ′ =2 (Y Y ′)1/2
[
(Y Y ′)1/2X ′X (Y Y ′)1/2

]1/2

(Y Y ′)1/2 > Y Y ′

⇔2
[
(Y Y ′)1/2X ′X (Y Y ′)1/2

]1/2

> In

⇔λmin

(
(Y Y )1/2X ′X (Y Y ′)1/2

)
> 1

4

⇔λmin (X ′XY Y ′) > 1
4

We have used the facts that λi
(
A2

)
= λi (A)2 for any operator A = A′ and

therefore λi
(
A1/2

)2
= λi

((
A1/2

)2)
= λi (A) as well as λi (AB) = λi (BA).

The result follows because

λmin (X ′XY Y ′) = λmin

(
(XY ) (XY )′

)
= σmin (XY )2 .

Gradient flows on GL (n)

Once the minimization of the cost functions φ, ψ on P (n) has been per-
formed the class of all balancing transformations is {ΘT∞ | Θ ∈ O (n)}
where T∞ = P

1/2
∞ is the unique symmetric, positive definite balancing

transformation for (X,Y ). Of course, other balancing transformations than
T∞ might be also of interest to compute in a similar way and therefore one
would like to find suitable gradient flows evolving on arbitrary invertible
n × n matrices. See Appendix C for definitions and results on dynamical
systems.

Thus for T ∈ GL (n) we consider

Φ (T ) = tr
(
TY Y ′T ′ + (T ′)−1

X ′XT−1
)

(4.16)

and the corresponding gradient flow Ṫ = −∇Φ (T ) on GL (n). Here and in
the sequel we always endow GL (n) with its standard Riemannian metric

〈A,B〉 = 2 tr (A′B) (4.17)

i.e. with the constant Euclidean inner product (4.17) defined on the tangent
spaces of GL (n). Here the constant factor 2 is introduced for convenience.

Theorem 4.12 Let rk (X) = rk (Y ) = n.

(a) The gradient flow Ṫ = −∇Φ (T ) of Φ : GL (n) → R is

Ṫ = (T ′)−1
X ′X (T ′T )−1 − TY Y ′, T (0) = T0 (4.18)
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and for any initial condition T0 ∈ GL (n) the solution T (t) of (4.18)
exists in GL (n) for all t ≥ 0.

(b) For any initial condition T0 ∈ GL (n) the solution T (t) of (4.18)
converges to a balancing transformation T∞ ∈ GL (n) and all bal-
ancing transformations of (X,Y ) can be obtained in this way, for
suitable initial conditions T0 ∈ GL (n). Moreover, Φ : GL (n) → R is
a Morse-Bott function.

(c) Let T∞ be a balancing transformation and let W s (T∞) denote the
set of all T0 ∈ GL (n) such that the solution T (t) of (4.18) with
T (0) = T0 converges to T∞ as t→ ∞. Then W s (T∞) is an immersed
invariant submanifold of GL (n) of dimension n (n+ 1) /2 and every
solution T (t) ∈W s (T∞) converges exponentially fast in W s (T∞) to
T∞.

Proof 4.13 The derivative of Φ : GL (n) → R at T is the linear operator
given by

DΦ|T (ξ) =2 tr
((
Y Y ′T ′ − T−1 (T ′)−1

X ′XT−1
)
ξ
)

=2 tr
((

TY Y ′ − (T ′)−1
X ′X (T ′T )−1

)′
ξ

)

and therefore

∇Φ (T ) = TY Y ′ − (T ′)−1
X ′X (T ′T )−1

.

To prove that the gradient flow (4.18) is complete, i.e. that the solutions
T (t) exist for all t ≥ 0, it suffices to show that Φ : GL (n) → R has com-
pact sublevel sets {T ∈ GL (n) | Φ (T ) ≤ a} for all a ∈ R. Since rk (X) =
rk (Y ) = n the map φ : GL (n) → O (X,Y ), φ (T ) =

(
XT−1, TY

)
, is a

homeomorphism and, using Theorem 3.7,
{
(X1, Y1) ∈ O (X,Y ) | ‖X1‖2 + ‖Y1‖2 ≤ a

}

is compact for all a ∈ R. Thus

{T ∈ GL (n) | Φ (T ) ≤ a}
= φ−1

({
(X1, Y1) ∈ O (X,Y ) | ‖X1‖2 + ‖Y1‖2 ≤ a

})

is compact. This shows (a).
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To prove (b) we note that, by (a) and by the steepest descent property of
gradient flows, any solution T (t) converges to the set of equilibrium points
T∞ ∈ GL (n). The equilibria of (4.18) are characterized by

(T ′
∞)−1

X ′X (T ′
∞T∞)−1 = T∞Y Y ′ ⇔ (T ′

∞)−1
X ′XT−1

∞ = T∞Y Y ′T ′
∞

and hence T∞ is a balancing transformation. This proves (b), except that
we haven’t yet proved convergence to equilibrium points rather than to the
entire set of equilibria; see below.

Let

E := {T∞ ∈ GL (n) | (T ′
∞T∞)Y Y ′ (T ′

∞T∞) = X ′X} (4.19)

denote the set of equilibria points of (4.18). To prove (c) we need a lemma.

Lemma 4.14 The tangent space of E at T∞ ∈ E is

TT∞E =
{
S ∈ R

n×n | S′T∞ + T ′
∞S = 0

}
(4.20)

Proof 4.15 Let P∞ denote the unique symmetric positive definite so-
lution of PY Y ′P = X ′X . Thus E = {T | T ′T = P∞} and therefore
TT∞E is the kernel of the derivative of T �→ T ′T − P∞ at T∞, i.e. by
{S ∈ Rn×n | S′T∞ + T ′∞S = 0}.

Let
φ (P ) = tr

(
Y Y ′P +X ′XP−1

)
, λ (T ) = T ′T.

Thus Φ (T ) = φ (λ (T )). By Theorem 4.5

Dφ|P∞ = 0, D2φ
∣∣
P∞

> 0.

Let L denote the matrix representing the linear operator Dλ|T∞ (S) =
T ′
∞S + S′T∞. Using the chain rule we obtain

D2Φ
∣∣
T∞

= L′ · D2φ
∣∣
P∞

· L

for all T∞ ∈ E . By D2φ
∣∣
P∞

> 0 thus D2Φ
∣∣
T∞

≥ 0 and D2Φ
∣∣
T∞

degenerates
exactly on the kernel of L; i.e. on the tangent space TT∞E . Thus Φ is a
Morse-Bott function, as defined in Appendix C. Thus Proposition C.12.3
implies that every solution T (t) of (4.18) converges to an equilibrium point.

From the above we conclude that the set E of equilibria points is a
normally hyperbolic subset for the gradient flow; see Section C.11. It follows
(see Appendix C) that W s (T∞) the stable manifold of (4.18) at T∞ is
an immersed submanifold of GL (n) of dimension dimGL (n) − dim E =
n2−n (n− 1) /2 = n (n+ 1) /2, which is invariant under the gradient flow.
Since convergence to an equilibrium is always exponentially fast on stable
manifolds this completes the proof of (c).
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Now consider the following quadratic version of our objective function
Φ (T ). For T ∈ GL (n), let

Ψ (T ) := tr
(

(TY Y ′T ′)2 +
(
(T ′)−1

X ′XT−1
)2

)
(4.21)

The proof of the following theorem is completely analogous to the proof of
Theorem 4.12 and is therefore omitted.

Theorem 4.16

(a) The gradient flow Ṫ = −∇Ψ (T ) of Ψ (T ) on GL (n) is

Ṫ = 2
[
(T ′)−1

X ′X (T ′T )−1
X ′X (T ′T )−1 − TY Y ′T ′TY Y ′

]
(4.22)

and for all initial conditions T0 ∈ GL (n), the solution T (t) of exist
in GL (n) for all t ≥ 0.

(b) For all initial conditions T0 ∈ GL (n), every solution T (t) of (4.20)
converges to a balancing transformation and all balancing transfor-
mations are obtained in this way, for suitable initial conditions T0 ∈
GL (n). Moreover, Ψ : GL (n) → R is a Morse-Bott function.

(c) For any balancing transformation T∞ ∈ GL (n) let W s(T∞) ⊂ GL (n)
denote the set of all T0 ∈ GL (n), such that the solution T (t) of (4.20)
with initial condition T0 converges to T∞ as t → ∞. Then W s (T∞)
is an immersed submanifold of GL (n) of dimension n (n+ 1) /2 and
is invariant under the flow of (4.20). Every solution T (t) ∈W s (T∞)
converges exponentially to T∞.

Diagonal balancing transformations

The previous results were concerned with the question of finding balancing
transformations via gradient flows; here we address the similar issue of
computing diagonal balancing transformations.

We have already shown in Theorem 3.9 that diagonal balancing factor-
izations of a k × � matrix H can be characterized as the critical points of
the weighted cost function

ΦN : O (X,Y ) → R, ΦN (X,Y ) = tr (NX ′X +NY Y ′)

for a fixed diagonal matrix N = diag (µ1, . . . , µn) with distinct eigenvalues
µ1 > · · · > µn. Of course a similar result holds for diagonal balancing
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transformations. Thus let ΦN : GL (n) → R be defined by

ΦN (T ) = tr
(
N

(
TY Y ′T ′ + (T ′)−1

X ′XT−1
))

.

The proof of the following result parallels that of Theorem 3.9 and is left
as an exercise for the reader. Note that for X ′X = Y Y ′ and T orthogonal,
the function ΦN : O (n) → R, restricted to the orthogonal group O (n),
coincides with the trace function studied in Chapter 2. Here we are inter-
ested in minimizing the function ΦN rather than maximizing it. We will
therefore expect an order reversal relative to that of N occurring for the
diagonal entries of the equilibria points.

Lemma 4.17 Let rk (X) = rk (Y ) = n and N = diag (µ1, . . . , µn) with
µ1 > · · · > µn > 0. Then

(a) T ∈ GL (n) is a critical point for ΦN : GL (n) → R if and only if T
is a diagonal balancing transformation.

(b) The global minimum Tmin ∈ GL (n) has the property TminY Y
′T ′

min =
diag (d1, . . . , dn) with d1 ≤ d2 ≤ · · · ≤ dn.

Theorem 4.18 Let rk (X) = rk (Y ) = n and N = diag (µ1, . . . , µn) with
µ1 > · · · > µn > 0.

(a) The gradient flow Ṫ = −∇ΦN (T ) of ΦN : GL (n) → R with respect
to the Riemannian metric (4.17) is

Ṫ = (T ′)−1
X ′XT−1N (T ′)−1 −NTY Y ′, T (0) = T0

(4.23)

and for all initial conditions T0 ∈ GL (n) the solution T (t) of (4.23)
exists in GL (n) for all t ≥ 0.

(b) For any initial condition T0 ∈ GL (n) the solution T (t) of (4.23) con-
verges to a diagonal balancing transformation T∞ ∈ GL (n). More-
over, all diagonal balancing transformations can be obtained in this
way.

(c) Suppose the singular values of H = XY are distinct. Then (4.23)
has exactly 2nn! equilibrium points. These are characterized by
(T ′

∞)−1
X ′XT−1

∞ = T∞Y Y ′T ′
∞ = D where D is a diagonal ma-

trix. There are exactly 2n stable equilibrium points of (4.23) which
are characterized by (T ′

∞)−1
X ′XT−1

∞ = T∞Y Y ′T ′
∞ = D, where

D = diag (d1, . . . , dn) is diagonal with d1 < · · · < dn.
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(d) There exists an open and dense subset Ω ⊂ GL (n) such that for all
T0 ∈ Ω the solution of (4.23) converges exponentially fast to a stable
equilibrium point T∞. The rate of exponential convergence is bounded
below by λmin

(
(T∞T ′

∞)−1)min
i<j

((di − dj) (µj − µi) , 4diµi). All other
equilibria are unstable.

Proof 4.19 Using Lemma 4.17, the proof of (a) and (b) parallels that of
Theorem 4.12 and is left as an exercise for the reader. To prove (c) consider
the linearization of (4.23) around an equilibrium T∞ , given by

ξ̇ = −NξT−1
∞ D (T ′

∞)−1 −DξT−1
∞ N (T ′

∞)−1

− (T ′
∞)−1

ξ′DN (T ′
∞)−1 −DN (T ′

∞)−1
ξ′ (T ′

∞)−1
,

using (T ′
∞)−1X ′XT∞ = T∞Y Y ′T ′

∞ = D. Using the change of variables
η = ξT−1

∞ thus

η̇ (T∞T ′
∞) = −NηD −DηN − η′DN −DNη′

Thus, using Kronecker products and the vec notation, Appendix A, we
obtain

(T∞T ′
∞ ⊗ In) vec (η̇)
= − (D ⊗N +N ⊗D) vec (η) − (DN ⊗ In + In ⊗DN) vec (η′)

Consider first the special case when T∞T ′
∞ = I, and η is denoted η∗

vec (η̇∗) = − (D ⊗N +N ⊗D) vec (η∗) − (DN ⊗ I + I ⊗DN) vec
(
η∗′

)
.

(4.24)

Then for i < j,
[
η̇∗ij
η̇∗ji

]
= −

[
diµj + µidj djµj + diµi

diµi + djµj diµj + µidj

][
η∗ij
η∗ji

]

and for all i,
η̇∗ii = −4diµiη∗ii.

By assumption, µi > 0, and di > 0 for all i. Thus (4.24) is exponentially
stable if and only if (di − dj) (µj − µi) > 0 for all i, j, i < j, or equivalently,
if and only if the diagonal entries of D are distinct and in reverse ordering
to those of N . In this case, (4.24) is equivalent to (4.25)

vec (η̇∗) = −F vec (η∗) . (4.25)
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with a symmetric positive definite matrix F = F ′ > 0.
Consequently, exponential convergence of (4.25) is established with a

rate given by λmin (F) as follows:

λmin (F) = min
i<j

(
λmin

([
diµj + µidj djµj + diµi

diµi + djµj diµj + µidj

])
, 4diµi

)

= min
i<j

((di − dj) (µj − µi) , (4diµi))

Since (T∞T ′∞ ⊗ I) is positive definite, exponential stability of (4.25) im-
plies exponential stability of

((T∞T ′
∞) ⊗ I) vec (η̇) = −F vec (η) .

The rate of exponential convergence is given by λmin

((
(T∞T ′

∞)−1 ⊗ I
)F)

.
Now since A = A′ > 0, B = B′ > 0 implies λmin (AB) ≥ λmin (A)λmin (B),
a lower bound on the convergence rate is given from

λmin

((
(T∞T ′

∞)−1 ⊗ I
)
F
)
≥ λmin

(
(T∞T ′

∞)−1 ⊗ I
)
λmin (F)

= λmin

(
(T∞T ′

∞)−1
)

min
i<j

((di − dj) (µj − µi) , 4diµi)

as claimed. Since there are only a finite number of equilibria, the union of
the stable manifolds of the unstable equilibria points is a closed subset of
O (X,Y ) of codimension at least one. Thus its complement Ω in O (X,Y )
is open and dense and coincides with the union of the stable manifolds of
the stable equilibria. This completes the proof.

Problem 4.20 Show that 〈〈ζ, ν〉〉 := tr
(
P−1ζP−1η

)
defines an inner

product on the tangent spaces TPP (n) for P ∈ P (n).

Problem 4.21 Prove that 〈〈 , 〉〉 defines a Riemannian metric on P (n).
We refer to this as the intrinsic Riemannian metric on P (n).

Problem 4.22 Prove that the gradient flow of (4.5) with respect to the
intrinsic Riemannian metric is the Riccati equation

Ṗ = − gradφ (P ) = X ′X − PY Y ′P.

Problem 4.23 Prove the analogous result to Theorem 4.5 for this Riccati
equation.

Problem 4.24 Concrete proofs of Theorem 4.16, and Lemma 4.17.
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Main Points of Section

Gradient flows can be developed for matrix factorizations which converge
exponentially fast to balancing factorizations, including to diagonal bal-
anced factorizations. Such flows side step the usual requirement to find the
balancing transformations.

6.5 Flows on the Factors X and Y

In the previous section gradient flows for balancing or diagonal balancing
coordinate transformations T∞ and P∞ = T ′

∞T∞ were analyzed. Here we
address the related issue of finding gradient flows for the cost functions
Φ : O (X,Y ) → R and ΦN : O (X,Y ) → R on the manifold O (X,Y ) of
factorizations of a given matrix H = XY .

Thus for arbitrary integers k, � and n let

O (X,Y ) =
{(
XT−1, TY

) ∈ R
k×n × R

n×� | T ∈ GL (n)
}

denote the GL (n)-orbit of (X,Y ). We endow the vector space Rk×n×Rn×�

with its standard inner product (3.2) repeated here as

〈(X1, Y1) , (X2, Y2)〉 = tr (X ′
1X2 + Y1Y

′
2) (5.1)

By Lemma 3.1, O (X,Y ) is a submanifold of Rk×n × Rn×� and thus the
inner product (5.1) on R

k×n × R
n×� induces an inner product on each

tangent space T(X,Y )O of O by

〈(−XΛ1,Λ1Y ) , (−XΛ2,Λ2Y )〉 = tr (Λ′
2X

′XΛ1 + Λ2Y Y
′Λ1)

(5.2)

and therefore a Riemannian metric on O (X,Y ); see Appendix C and (3.4).
We refer to this Riemannian metric as the induced Riemannian metric on
O (X,Y ). It turns out that the gradient flow of the above cost functions
with respect to this Riemannian metric has a rather complicated form; see
Problems.

A second, different, Riemannian metric on O (X,Y ) is constructed as
follows. Here we assume that rk (X) = rk (Y ) = n. Instead of defining the
inner product of tangent vectors (−XΛ1,Λ1Y ) , (−XΛ2,Λ2Y ) ∈ T(X,Y )O
as in (5.2) we set

〈〈(−XΛ1,Λ1Y ) , (−XΛ2,Λ2Y )〉〉 := 2 tr (Λ′
1Λ2) (5.3)

It is easily seen (using rk (X) = rk (Y ) = n) that this defines an inner
product on each tangent space T(X,Y )O and in fact a Riemannian metric
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on O = O (X,Y ). We refer to this as the normal Riemannian metric on
O (X,Y ). This is in fact a particularly convenient Riemannian metric with
which to work. In this, the associated gradient takes a particularly simple
form.

Theorem 5.1 Let rk (X) = rk (Y ) = n. Consider the cost function Φ :
O (X,Y ) → R, Φ (X,Y ) = tr (X ′X + Y Y ′).

(a) The gradient flow
(
Ẋ, Ẏ

)
= − gradΦ (X,Y ) for the normal Rieman-

nian metric is:

Ẋ = −X (X ′X − Y Y ′) , X (0) =X0

Ẏ =(X ′X − Y Y ′)Y, Y (0) =Y0

(5.4)

(b) For every initial condition (X0, Y0) ∈ O (X,Y ) the solutions
(X (t) , Y (t)) of (5.4) exist for all t ≥ 0 and (X (t) , Y (t)) ∈ O (X,Y )
for all t ≥ 0.

(c) For any initial condition (X0, Y0) ∈ O (X,Y ) the solutions
(X (t) , Y (t)) of (5.4) converge to a balanced factorization (X∞, Y∞)
of H = XY . Moreover the convergence to the set of all balanced fac-
torizations of H is exponentially fast.

Proof 5.2 Let grad Φ = (gradΦ1, gradΦ2) denote the gradient of Φ :
O (X,Y ) → R with respect to the normal Riemannian metric. The deriva-
tive of Φ at (X,Y ) ∈ O is the linear map DΦ|(X,Y ) : T(X,Y )O → R defined
by

DΦ|(X,Y ) (−XΛ,ΛY ) = 2 tr ((Y Y ′ −X ′X)Λ) (5.5)

By definition of the gradient of a function, see Appendix C, gradΦ (X,Y )
is characterized by

gradΦ (X,Y ) ∈ T(X,Y )O (5.6)

and

DΦ|(X,Y ) (−XΛ,ΛY ) = 〈〈(gradΦ1, gradΦ2) , (−XΛ,ΛY )〉〉 (5.7)

for all Λ ∈ Rn×n. By Lemma 3.1, (5.6) is equivalent to

gradΦ (X,Y ) = (−XΛ1,Λ1Y ) (5.8)
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for an n× n matrix Λ1. Thus, using (5.5), (5.7) is equivalent to

2 tr ((Y Y ′ −X ′X) Λ) = 〈〈(−XΛ1,Λ1Y ) , (−XΛ,ΛY )〉〉
=2 tr (Λ′

1Λ)

for all Λ ∈ Rn×n. Thus

Y Y ′ −X ′X = Λ1 (5.9)

Therefore gradΦ (X,Y ) = (−X (Y Y ′ −X ′X) , (Y Y ′ −X ′X)Y ). This
proves (a).

To prove (b) note that Φ (X (t) , Y (t)) decreases along every solution of
(5.4). By Corollary 3.5 {(X,Y ) ∈ O | Φ (X,Y ) ≤ Φ (X0, Y0)} is a compact
set. Therefore (X (t) , Y (t)) stays in that compact subset of O (X,Y ) and
therefore exists for all t ≥ 0. This proves (b). Since (5.4) is a gradient flow
of Φ : O (X,Y ) → R and since Φ : O (X,Y ) → R has compact sublevel sets
the solutions (X (t) , Y (t)) all converge to the set of equilibria of (5.4). But
(X∞, Y∞) is an equilibrium point of (5.4) if and only if X ′∞X∞ = Y∞Y ′∞.
Thus the equilibria are in both cases the balanced factorizations of H =
XY .

By Theorem 3.7 the Hessian of Φ : O (X,Y ) → R is positive semidefinite
at each critical point and degenerates exactly on the tangent spaces at the
set of critical points. This implies that the linearization of (5.4) is expo-
nentially stable in directions transverse to the tangent spaces of the set of
equilibria. Thus Proposition C.12.3 implies that any solutions (X (t) , Y (t))
of (5.4) converges to an equilibrium point. Exponential convergence follows
from the stable manifold theory, as summarized in Section C.11.

A similar approach also works for the weighted cost functions

ΦN : O (X,Y ) → R, ΦN (X,Y ) = tr (N (X ′X + Y Y ′)) .

We have the following result.

Theorem 5.3 Consider the weighted cost function ΦN : O (X,Y ) → R,
ΦN (X,Y ) = tr (N (X ′X + Y Y ′)), with N = diag (µ1, . . . , µn), µ1 > · · · >
µn > 0. Let rk (X) = rk (Y ) = n.

(a) The gradient flow
(
Ẋ, Ẏ

)
= − gradΦN (X,Y ) for the normal Rie-

mannian metric is

Ẋ = −X (X ′XN −NY Y ′) , X (0) =X0

Ẏ = (X ′XN −NY Y ′)Y, Y (0) =Y0

(5.10)
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(b) For any initial condition (X0, Y0) ∈ O (X,Y ) the solutions
(X (t) , Y (t)) of (5.10) exist for all t ≥ 0 and (X (t) , Y (t)) ∈
O (X,Y ) for all t ≥ 0.

(c) For any initial condition (X0, Y0) ∈ O (X,Y ) the solutions
(X (t) , Y (t)) of (5.10) converge to a diagonal balanced factorization
(X∞, Y∞) of H = XY .

(d) Suppose that the singular values of H = X0Y0 are distinct. There
are exactly 2nn! equilibrium points of (5.10) The set of such asymp-
totically stable equilibria is characterized by X ′∞X∞ = Y∞Y ′∞ = D
, where D = diag (d1, . . . , dn) satisfies d1 < · · · < dn. In particular
there are exactly 2n asymptotically stable equilibria, all yielding the
same value of ΦN . The diagonal entries di are the singular values
of H = X0Y0 arranged in increasing order. All other equilibria are
unstable.

(e) There exists an open and dense subset Ω ⊂ O (X,Y ) such that for all
(X0, Y0) ∈ Ω the solutions of (5.10) converge exponentially fast to a
stable equilibrium point (X∞, Y∞).

Proof 5.4 The proof of (a) and (b) goes mutatis mutandis as for (a)
and (b) in Theorem 5.1. Similarly for (c), except that we have yet to
check that the equilibria of (5.10) are the diagonal balanced factoriza-
tions. The equilibria of (5.10) are just the critical points of the function
ΦN : O (X,Y ) → R and the desired result follows from Theorem 3.9(c).

To prove (d), first note that we cannot apply, as for Theorem 5.1, the
Kempf-Ness theory. Therefore we give a direct argument based on lineariza-
tions at the equilibria. The equilibrium points of (5.10) are characterized
by X ′

∞X∞ = Y∞Y ′
∞ = D, where D = diag (d1, . . . , dn). By linearizing

(5.10) around an equilibrium point (X∞, Y∞) we obtain

ξ̇ = −X∞ (ξ′X∞N +X ′
∞ξN −NηY ′

∞ −NY∞η′)
= (ξ′X∞N +X ′

∞ξN −NηY ′
∞ −NY∞η′)Y∞

(5.11)

where (ξ, η) = (X∞Λ,−ΛY∞) ∈ T(X∞,Y∞)O (X,Y ) denotes a tangent vec-
tor. Since (X∞, Y∞) are full rank matrices (5.11) is equivalent to the linear
ODE on Rn×n

Λ̇ = − (Λ′X ′
∞X∞N +X ′

∞X∞ΛN +NΛY∞Y ′
∞ +NY∞Y ′

∞Λ′)
= − (Λ′DN +DΛN +NΛD+NDΛ′)

(5.12)

The remainder of the proof follows the pattern of the proof for Theo-
rem 4.18.
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An alternative way to derive differential equations for balancing is by
the following augmented systems of differential equations. They are of a
somewhat simpler form, being quadratic matrix differential equations.

Theorem 5.5 Let (X,Y ) ∈ R
k×n × R

n×�, Λ ∈ R
n×n, N =

diag (µ1, . . . , µn) with µ1 > · · · > µn > 0 and κ > 0 a scaling factor.
Assume rk (X) = rk (Y ) = n.

(a) The solutions (X (t) , Y (t)) of

Ẋ = −XΛ, X (0) =X0

Ẏ =ΛY, Y (0) =Y0

Λ̇ = − κΛ +X ′X − Y Y ′, Λ (0) =Λ0

(5.13)

and of

Ẋ = −XΛN , X (0) =X0

Ẏ =ΛNY, Y (0) =Y0

Λ̇N = − κΛN +X ′XN −NY Y ′, ΛN (0) =Λ0

(5.14)

exist for all t ≥ 0 and satisfy X (t) Y (t) = X0Y0.

(b) Every solution (X (t) , Y (t) ,ΛN (t)) of (5.14) converges to an equi-
librium point (X∞, Y∞,Λ∞), characterized by Λ∞ = 0 and (X∞, Y∞)
is a diagonal balanced factorization.

(c) Every solution (X (t) , Y (t) ,Λ (t)) of (5.13) converges to the set of
equilibria (X∞, Y∞, 0). The equilibrium points of (5.13) are char-
acterized by Λ∞ = 0 and (X∞, Y∞) is a balanced factorization of
(X0, Y0).

Proof 5.6 For any solution (X (t) , Y (t) ,Λ (t)) of (5.13), we have

d

dt
X (t)Y (t) = ẊY +XẎ = −XΛY +XΛY ≡ 0

and thus X (t)Y (t) = X (0)Y (0) for all t. Similarly for (5.14).
For any symmetric n× n matrix N let ΩN : O (X0, Y0) × Rn×n → R be

defined by

ΩN (X,Y,Λ) = ΦN (X,Y ) + 1
2 tr (ΛΛ′) (5.15)
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By Corollary 3.5 the function ΩN : O (X0, Y0) × Rn×n → R has com-
pact sublevel sets and ΩN (X,Y,Λ) ≥ 0 for all (X,Y,Λ). For any solution
(X (t) , Y (t) ,Λ (t)) of (5.14) we have
d

dt
ΩN (X (t) , Y (t) ,Λ (t))

= tr
(
NX ′Ẋ +NẎ Y ′ + Λ̇Λ′

)

= tr (−NX ′XΛ +NΛY Y ′ + (−κΛ +X ′XN −NY Y ′) Λ′)
= −κ tr (ΛΛ′)
≤ 0.

Thus ΩN decreases along the solutions of (5.14) and Ω̇N = 0 if and only
if Λ = 0. This shows that ΩN is a weak Lyapunov function for (5.14) and
La Salle’s invariance principle (Appendix B) asserts that the solutions of
(5.14) converge to a connected invariant subset of O (X0, Y0) × {0}. But a
subset of O (X0, Y0) × {0} is invariant under the flow of (5.14) if and only
if the elements of the subset satisfy X ′XN = NY Y ′. Specializing now to
the case where N = diag (µ1, . . . , µn) with µ1 > · · · > µn > 0 we see that
the set of equilibria points of (5.14) is finite. Thus the result follows from
Proposition C.12.2. IfN = In, then we conclude from Proposition C.12.2(b)
that the solutions of (5.13) converge to a connected component of the set
of equilibria. This completes the proof.

As a generalization of the task of minimizing the cost function Φ :
O (X,Y ) → R let us consider the minimization problem for the functions

Φ(X0,Y0) : O (X,Y ) → R,

Φ(X0,Y0) = ‖X −X0‖2 + ‖Y − Y0‖2 (5.16)

for arbitrary (X0, Y0) ∈ Rk×n × Rn×�.

Theorem 5.7 Suppose rk (X) = rk (Y ) = n. The gradient flow of
Φ(X0,Y0) : O (X,Y ) → R with respect to the normal Riemannian metric
is

Ẋ =X ((Y − Y0)Y ′ −X ′ (X −X0)) , X (0) =X0

Ẏ = ((Y − Y0)Y ′ −X ′ (X −X0))Y, Y (0) =Y0

(5.17)

The solutions (X (t) , Y (t)) exist for all t ≥ 0 and converge to a connected
component of the set of equilibrium points, characterized by

Y∞ (Y ′
∞ − Y ′

0) = (X ′
∞ −X ′

0)X∞ (5.18)
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Proof 5.8 The derivative of Φ(X0,Y0) at (X,Y ) is

DΦ|(X0,Y0)
(−XΛ,ΛY ) =2 tr

(− (X −X0)
′XΛ + ΛY (Y − Y0)

′)
=2 tr

(
((Y − Y0) Y ′ −X ′ (X −X0))

′ Λ
)

The gradient of Φ(X0,Y0) at (X,Y ) is gradΦ(X0,Y0) (X,Y ) = (−XΛ1,Λ1Y )
with

DΦ|(X0,Y0)
(−XΛ,ΛY ) =

〈〈
gradΦ|(X0,Y0)

(X,Y ) , (−XΛ,ΛY )
〉〉

=2 tr (Λ′
1Λ)

and hence
Λ1 = (Y − Y0)Y ′ −X ′ (X −X0) .

Therefore

gradΦ(X0,Y0) (X,Y ) = (−X ((Y − Y0) Y ′ −X ′ (X −X0)) ,
((Y − Y0)Y ′ −X ′ (X −X0))Y )

which proves (5.17). By assumption, O (X,Y ) is closed and therefore func-
tion Φ(X0,Y0) : O (X,Y ) → R is proper. Thus the solutions of (5.17) for all
t ≥ 0 and, using Proposition C.12.2, converge to a connected component
of the set of equilibria. This completes the proof.

For generic choices of (X0, Y0) there are only a finite numbers of equilibria
points of (5.17) but an explicit characterization seems hard to obtain. Also
the number of local minima of Φ(X0,Y0) on O (X,Y ) is unknown and the
dynamical classification of the critical points of Φ(X0,Y0), i.e. a local phase
portrait analysis of the gradient flow (5.17), is an unsolved problem.

Problem 5.9 Let rkX = rkY = n and let N = N ′ ∈ Rn×n be an arbi-
trary symmetric matrix. Prove that the gradient flow Ẋ = −∇XΦN (X,Y ),
Ẏ = −∇Y ΦN (X,Y ), of ΦN : O (X,Y ) → R, ΦN (X,Y ) =
1
2 tr (N (X ′X + Y Y ′))′ with respect to the induced Riemannian metric (5.2)
is

Ẋ = −XΛN (X,Y )

Ẏ = ΛN (X,Y )Y

where
ΛN (X,Y ) =

∫ ∞

0

e−sX
′X (X ′XN −NY Y ′) e−sY Y

′
ds

is the uniquely determined solution of the Lyapunov equation

X ′XΛN + ΛNY Y ′ = X ′XN −NY Y ′.
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Problem 5.10 For matrix triples (X,Y, Z) ∈ Rk×n × Rn×m × Rm×� let

O (X,Y, Z) =
{(
XS−1, SY T−1, TZ

) | S ∈ GL (n) , T ∈ GL (m)
}
.

Prove that O = O (X,Y, Z) is a smooth manifold with tangent spaces

T(X,Y,Z)O =
{
(−XΛ,ΛY − Y L,LZ) | Λ ∈ R

n×n, L ∈ R
m×m}

.

Show that

Ẋ = −X (X ′X − Y Y ′)

Ẏ =(X ′X − Y Y ′)Y − Y (Y ′Y − ZZ ′)

Ż =(Y ′Y − ZZ ′)Z

(5.19)

is a gradient flow (
Ẋ = − gradX φ (X,Y, Z) ,

Ẏ = − gradY φ (X,Y, Z) ,

Ż = − gradZ φ (X,Y, Z)
)

of

φ : O (X,Y, Z) �→ R, φ (X,Y, Z) = ‖X‖2 + ‖Y ‖2 + ‖Z‖2 .

(Hint: Consider the natural generalization of the normal Riemannian met-
ric (5.3) as a Riemannian metric on O (X,Y, Z)!)

Main Points of Section

Gradient flows on positive definite matrices and balancing transformations,
including diagonal balancing transformations, can be used to construct
balancing matrix factorizations. Under reasonable (generic) conditions, the
convergence is exponentially fast.

6.6 Recursive Balancing Matrix Factorizations

In order to illustrate, rather than fully develop, discretization possibilities
for the matrix factorization flows of this chapter, we first focus on a dis-
cretization of the balancing flow (5.4) on matrix factors X , Y , and then
discretize the diagonal balancing flow (5.10).
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Balancing Flow

Following the discretization strategy for the double bracket flow of Chap-
ter 2 and certain subsequent flows, we are led to consider the recursion, for
all k ∈ N.

Xk+1 =Xke
−αk(X′

kXk−YkY
′

k)

Yk+1 =eαk(X′
kXk−YkY

′
k)Yk,

(6.1)

with step-size selection

αk =
1

2λmax (X ′
kXk + YkY ′

k)
(6.2)

initialized by X0, Y0 such that X0Y0 = H . Here Xk ∈ Rm×n, Yk ∈ Rn×�

for all k and H ∈ Rm×�

Theorem 6.1 (Balancing flow on factors) Consider the recursion
(6.1), (6.2) initialized by X0, Y0 such that X0Y0 = H and rkX0 = rkY0 =
n. Then

(a) for all k ∈ N

XkYk = H. (6.3)

(b) The fixed points (X∞, Y∞) of the recursion are the balanced matrix
factorizations, satisfying

X ′
∞X∞ = Y∞Y ′

∞, H = X∞Y∞. (6.4)

(c) Every solution (Xk, Yk), k ∈ N, of (6.1) converges to the class of
balanced matrix factorizations (X∞, Y∞) of H, satisfying (6.4).

(d) The linearization of the flow at the equilibria, in transversal direc-
tions to the set of equilibria, is exponentially stable with eigenvalues
satisfying, for all i, j

0 ≤ 1 − λi (X ′∞X∞) + λj (X ′∞X∞)
2λmax (X ′∞X∞)

< 1. (6.5)

Proof 6.2 Part (a) is obvious. For Part (b), first observe that for any
specific sequence of positive real numbers αk, the fixed points (X∞, Y∞) of
the flow (6.1) satisfy (6.4). To proceed, let us introduce the notation

X (α) = Xe−α∆, Y (α) = eα∆Y, ∆ = X ′X − Y Y ′,
Φ (α) 2 := Φ (X (α) , Y (α)) = tr (X ′ (α)X (α) + Y (α)Y ′ (α)) ,
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and study the effects of the step size selection α on the potential function
Φ (α). Thus observe that

∆Φ (α) :=Φ (α) − Φ (0)

= tr
(
X ′X

(
e−2α∆ − I

)
+ Y Y ′ (e2α∆ − I

))

=
∞∑
j=1

(2α)j

j!
tr

((
X ′X + (−1)j Y Y ′

)
(−∆)j

)

=
∞∑
j=1

{
(2α)2j−1

(2j − 1)!
tr

(
(X ′X − Y Y ′)∆2j−1

)

+
(2α)2j

(2j)!
tr

(
(X ′X + Y Y ′) ∆2j

)}

=
∞∑
j=1

tr

((
X ′X + Y Y ′ − 2j

2α
I

)
(2α∆)2j

(2j)!

)

≤
∞∑
j=1

tr
(
X ′X + Y Y ′ − 1

α
I

)
(2α∆)2j

(2j)!
.

With the selection α∗ of (6.2), deleting subscript k, then ∆Φ (α∗) < 0.
Consequently, under (6.1) (6.2), for all k

Φ (Xk+1, Yk+1) < Φ (Xk, Yk) .

Moreover, Φ (Xk+1, Yk+1) = Φ (Xk, Yk) if and only if

∞∑
j=1

1
(2j)!

tr (2αk (X ′
kXk − YkY

′
k))

2j = 0,

or equivalently, since αk > 0 for all k, X ′
kXk = YkY

′
k. Thus the fixed points

(X∞, Y∞) of the flow (6.1) satisfy (6.4), as claimed, and result (b) of the
theorem is established. Moreover, the ω-limit set of a solution (Xk, Yk) is
contained in the compact set O (X0, Y0)∩{(X,Y ) | Φ (X,Y ) ≤ Φ (X0, Y0)},
and thus is a nonempty compact subset of O (X0, Y0). This, together with
the property that Φ decreases along solutions, establishes (c).

For Part (d), note that the linearization of the flow at (X∞, Y∞) with
X ′

∞X∞ = Y∞Y ′
∞ is

Λk+1 = Λk − α∞ (ΛkY∞Y ′
∞ + Y∞Y ′

∞Λ′
k +X ′

∞X∞Λk + Λ′
kX

′
∞X∞)

where Λ ∈ Rn×n parametrizes uniquely the tangent space T(X∞,Y∞) ×
O (X0, Y0).
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The skew-symmetric part of Λk corresponds to the linearization in di-
rections tangent to the set of equilibria. Similarly the symmetric part of
Λk corresponds to the linearization in directions transverse to the set of
equilibria. Actually, the skew-symmetric part of the Λk remains constant.
Only the dynamics of the symmetric part of Λk is of interest here. Thus,
the linearization with Λ = Λ′ is,

Λk+1 =Λk − 2α∞ (ΛkX ′
∞X∞ +X ′

∞X∞Λk) ,
vec (Λk+1) = (I − 2α∞ ((X ′

∞X∞) ⊗ I + I ⊗ (X ′
∞X∞))) (vec Λk) .

Since X ′
∞X∞ = Y∞Y ′

∞ is square, the set of eigenvalues of
((X ′∞X∞) ⊗ I + I ⊗ (X ′∞X∞)) is given by the set of eigenvalues
[λi (X ′

∞X∞) + λj (X ′
∞X∞)] for all i, j. The result (d) follows.

Remark 6.3 Other alternative step-size selections are

(a) α̂k = 1
2 (λmax (X ′

kXk) + λmax (YkY ′
k))

−1

= 1
2

(
σmax (Xk)

2 + σmax (Yk)
2
)−1

.

(b) α̃k = 1
2

(
‖Xk‖2 + ‖Yk‖2

)

�

Diagonal Balancing Flows

The natural generalization of the balancing flow (6.1), (6.2) to diagonal
balancing is a discrete-time version of (5.10). Thus consider

Xk+1 =Xke
−αk(X′

kXkN−NYkY
′

k)

Yk+1 =eαk(X′
kXkN−NYkY

′
k)Yk,

(6.6)

where

αk =
1

2 ‖X ′
kXkN −NYkY ′

k‖
(6.7)

× log


 ‖(X ′

kXk − YkY
′
k)N +N (X ′

kXk − YkY
′
k)‖2

4 ‖N‖ ‖X ′
kXkN −NYkY ′

k‖
(
‖Xk‖2 + ‖Yk‖2

) + 1


 ,

initialized by full rank matrices X0, Y0 such that X0Y0 = H . Again Xk ∈
Rm×n, Yk ∈ Rn×� for all k and H ∈ Rm×�. We shall consider N =
diag (µ1, . . . µn) with µ1 > µ2 · · · > µn.
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Theorem 6.4 Consider the recursion (6.6), (6.7) initialized by (X0, Y0)
such that X0Y0 = H and rkX0 = rkY0 = n. Assume that N =
diag (µ1, . . . , µn) with µ1 > · · · > µn. Then

(a) for all k ∈ N

XkYk = H. (6.8)

(b) The fixed points X∞, Y∞ of the recursion are the diagonal balanced
matrix factorizations satisfying

X ′
∞X∞ = Y∞Y ′

∞ = D, (6.9)

with D = diag (d1, . . . , dn).

(c) Every solution (Xk, Yk), k ∈ N, of (6.6), (6.7) converges to the class
of diagonal balanced matrix factorizations (X∞, Y∞) of H. The sin-
gular values of H are d1, . . . , dn.

(d) Suppose that the singular values of H are distinct. There are exactly
2nn! fixed points of (6.6). The set of asymptotically stable fixed points
is characterized by (6.9) with d1 < · · · < dn. The linearization of the
flow at the fixed points is exponentially stable.

Proof 6.5 The proof follows that of Theorem 5.3, and Theorem 6.1. Only
its new aspects are presented here. The main point is to derive the step-
size selection (6.7) from an upper bound on ∆ΦN (α). Consider the lin-
ear operator AF : Rn×n → Rn×n defined by AF (B) = FB + B′F ′. Let
Am
F (B) = AF

(Am−1
F (B)

)
, A0

F (B) = B, be defined recursively for m ∈ N.
In the sequel we are only interested in the case where B = B′ is symmet-
ric, so that AF maps the set of symmetric matrices to itself. The following
identity is easily verified by differentiating both sides

eαFBeαF
′
=

∞∑
m=0

αm

m!
Am
F (B) .

Then∥∥∥eαFBeαF ′ − αAF (B) − B
∥∥∥ =

∥∥∥∥
∞∑
m=2

αm

m!
Am
F (B)

∥∥∥∥
≤

∞∑
m=2

|α|m
m!

‖Am
F (B)‖

≤
∞∑
m=2

|α|m
m!

2m ‖F‖m ‖B‖

=
(
e2|α|‖F‖ − 2 |α| ‖F‖ − 1

)
‖B‖ .
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Setting B = X ′X and F = X ′XN − NY Y ′, then simple manipulations
give that

∆ΦN (α) = tr
(
N

(
e−αF

′
X ′Xe−αF + αAF (X ′X) −X ′X

)

+N
(
eαF

′
Y Y ′eαF − αAF (Y Y ′) − Y Y ′

))

− α tr (F (F + F ′)) .

Applying the exponential bound above, then

∆ΦN (α) ≤− α

2
‖F + F ′‖2

+
(
e2|α|‖F‖ − 2 |α| ‖F‖ + 1

)
‖N‖

(
‖X‖2 + ‖Y ‖2

)

=:∆ΦUN (α) .

Since d2

dα2 ∆ΦUN (α) > 0 for α ≥ 0, the upper bound ∆ΦUN (α) is a strictly
convex function of α ≥ 0. Thus there is a unique minimum α∗ ≥ 0 of
∆ΦUN (α) obtained by setting d

dαΦUN (α) = 0. This leads to

α∗ =
1

2 ‖F‖ log


 ‖F + F ′‖2

4 ‖F‖ ‖N‖
(
‖X‖2 + ‖Y ‖2

) + 1




and justifies the variable step-size selection (6.7).
A somewhat tedious argument shows that—under the hypothesis of the

theorem—the linearization of (6.6) at an equilibrium point (X∞, Y∞) sat-
isfying (6.9) is exponentially stable. We omit these details.

Remark 6.6 The discrete-time flows of this section on matrix factoriza-
tion for balancing inherit the essential properties of the continuous-time
flows, namely exponential convergence rates. �

Remark 6.7 Actually, the flows of this section can be viewed as hybrid
flows in that a linear system continuous-time flow can be used to calculate
the matrix exponential and at discrete-time instants a recursive update
of the linear system parameters is calculated. Alternatively, matrix Padé
approximations could perhaps be most in lieu of matrix exponentials. �

Main Points of Section

There are discretizations of the continuous-time flows on matrix factors for
balancing, including diagonal balancing. These exhibit the same conver-
gence properties as the continuous-time flows, including exponential con-
vergence rates.
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Notes for Chapter 6

Matrix factorizations (1.1) are of interest in many areas. We have already
mentioned an application in system theory, where factorizations of Han-
kel matrices by the observability and controllability matrices are crucial
for realization theory. As a reference to linear system theory we mention
Kailath (1980). Factorizations (1.1) also arise in neural network theory; see
e.g. Baldi and Hornik (1989).

In this chapter techniques from invariant theory are used in a substan-
tial way. For references on invariant theory and algebraic group actions
we refer to Weyl (1946), Dieudonné and Carrell (1971), Kraft (1984) and
Mumford, Fogarty and Kirwan (1994). It is a classical result from in-
variant theory and linear algebra that any two full rank factorizations
(X,Y ) , (X1, Y1) ∈ Rn×r × Rr×m of a n × m-matrix A = XY = X1Y1

satisfy (X1, Y1) =
(
XT−1, TY

)
for a unique invertible r × r-matrix T . In

fact, the first fundamental theorem of invariant theory states that any poly-
nomial in the coefficients of X and Y which is invariant under the GL (r,R)
group action (X,Y ) �→ (

XT−1, TY
)

can be written as a polynomial in the
coefficient of XY . See Weyl (1946) for a proof.

The geometry of orbits of a group action plays a central rôle in invari-
ant theory. Of special significance are the closed orbits, as these can be
separated by polynomial invariants. For a thorough study of the geometry
of the orbits O (X,Y ) including a proof of Lemma 3.3 we refer to Kraft
(1984).

The standard notions from topology are used throughout this chapter.
An algebraic group such as GL (n,C) however also has a different, coarser
topology: the Zariski topology.

It can be shown that an orbit of an algebraic group action GL (n,C) ×
CN → Cn is a Zariski-closed subset of CN if and only if it is a closed subset
of CN in the usual sense of Euclidean topology. Similar results hold for real
algebraic group actions; see Slodowy (1989).

The Hilbert-Mumford criterion, Mumford et al. (1994) and Kraft (1984),
yields an effective test for checking whether or not an orbit is closed.

The Kempf-Ness theorem can be generalized to algebraic group actions
of reductive groups. See Kempf and Ness (1979) for proofs in the complex
case and Slodowy (1989) for a proof in the real case. Although this has not
been made explicitly in the chapter, the theory of Kempf and Ness can be
linked to the concept of the moment map arising in symplectic geometry
and Hamiltonian mechanics. See Guillemin and Sternberg (1984). The book
Arnold (1989) is an excellent source for classical mechanics.

The problem of minimizing the trace function ϕ : P (n) → R defined by
(4.5) over the set of positive definite symmetric matrices has been consid-
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ered by Flanders (1975) and Anderson and Olkin (1978). For related work
we refer to Wimmer (1988). A proof of Corollary 4.3 is due to Flanders
(1975).

The simple proof of Corollary 4.3, which is based on the Kempf-Ness
theorem is due to Helmke (1993a).



CHAPTER 7

Invariant Theory and
System Balancing

7.1 Introduction

In this chapter balanced realizations arising in linear system theory
are discussed from a matrix least squares viewpoint. The optimiza-
tion problems we consider are those of minimizing the distance
‖(A0, B0, C0) − (A,B,C)‖2 of an initial system (A0, B0, C0) from a mani-
fold M of realizations (A,B,C). Usually M is the set of realizations of a
given transfer function but other situations are also of interest. If B0, C0

and B, C are all zero then we obtain the least squares matrix estimation
problems studied in Chapters 1–4. Thus the present chapter extends the
results studied in earlier chapters on numerical linear algebra to the system
theory context. The results in this chapter have been obtained by Helmke
(1993a).

In the sequel, we will focus on the special situation where (A0, B0, C0) =
(0, 0, 0), in which case it turns out that we can replace the norm functions
by a more general class of norm functions, including p-norms. This is mainly
for technical reasons. A more important reason is that we can apply the
relevant results from invariant theory without the need for a generalization
of the theory.

Specifically, we consider continuous-time linear dynamical systems

ẋ (t) =Ax (t) +Bu (t)
y (t) =Cx (t) ,

t ∈ R, (1.1)
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or discrete-time linear dynamical systems of the form

xk+1 =Axk +Buk,

yk =Cxk,
k ∈ N0, (1.2)

where (A,B,C) ∈ Rn×n×Rn×m×Rp×n and x, u, y are vectors of suitable
dimensions. The systems (1.1) or (1.2) are called asymptotically stable if the
eigenvalues of A are in the open left half plane C− = {z ∈ C | Re (z) < 0}
or in the unit disc D = {z ∈ C | |z| < 1}, respectively.

Given any asymptotically stable system (A,B,C), the controllability
Gramian Wc and observability Gramian Wo are defined in the discrete
and continuous-time case, respectively, by

Wc =
∞∑
k=0

AkBB′ (A′)k , Wo =
∞∑
k=0

(A′)k C′CAk,

Wc =
∫ ∞

0

etABB′etA
′
dt, Wo =

∫ ∞

0

etA
′
C′CetAdt,

(1.3)

For unstable systems, finite Gramians are defined, respectively, by

W (N)
c =

N∑
k=0

AkBB′ (A′)k , W (N)
o =

N∑
k=0

(A′)k C′CAk,

Wc (T ) =
∫ T

0

etABB′etA
′
dt, Wo (T ) =

∫ T

0

etA
′
C′CetAdt,

(1.4)

for N ∈ N and T > 0 a real number.
Thus (A,B,C) is controllable or observable if and only Wc > 0 or Wo >

0. In particular, the ‘sizes’ of Wc and Wo as expressed e.g. by the norms
‖Wc‖, ‖W0‖ or by the eigenvalues of Wc, Wo measure the controllability
and observability properties of (A,B,C). Functions such as

f (A,B,C) = tr (Wc) + tr (Wo)

or, more generally
fp (A,B,C) = tr (W p

c ) + tr (W p
o ) , p ∈ N,

measure the controllability and observability properties of (A,B,C).
In the sequel we concentrate on asymptotically stable systems and the

associated infinite Gramians (1.3), although many results also carry over
to finite Gramians (1.4).

A realization (A,B,C) is called balanced if the controllability and ob-
servability Gramians are equal

Wc = Wo (1.5)
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and is called diagonal balanced if

Wc = Wo = D

For a stable system (A,B,C), a realization in which the Gramians are
equal and diagonal as

Wc = Wo = diag (σ1, . . . , σn)

is termed a diagonally balanced realization. For a minimal, that is control-
lable and observable, realization (A,B,C), the singular values σi are all
positive. For a non minimal realization of McMillan degree m < n, then
σm+i = 0 for i > 0. Corresponding definitions and results apply for Grami-
ans defined on finite intervals T . Also, when the controllability and observ-
ability Gramians are equal but not necessarily diagonal the realizations are
termed balanced. Such realizations are unique only to within orthogonal
basis transformations.

Balanced truncation is where a system (A,B,C) with A ∈ R
n×n, B ∈

Rn×m, C ∈ Rp×n is approximated by an rth order system with r < n and
σr > σr+1, the last (n− r) rows of (A,B) and last (n− r) columns of [AC ] of
a balanced realization are set to zero to form a reduced rth order realization
(Ar, Br, Cr) ∈ Rr×r ×Rr×m×Rp×r. A theorem of Pernebo and Silverman
(1982) states that if (A,B,C) is balanced and minimal, and σr > σr+1,
then the reduced r-th order realization (Ar, Br, Cr) is also balanced and
minimal.

Diagonal balanced realizations of asymptotically stable transfer func-
tions were introduced by Moore (1981) and have quickly found widespread
use in model reduction theory and system approximations. In such diag-
onal balanced realizations, the controllability and observability properties
are reflected in a symmetric way thus, as we have seen, allowing the pos-
sibility of model truncation. However, model reduction theory is not the
only reason why one is interested in balanced realizations. For example, in
digital control and signal processing an important issue is that of optimal
finite-wordlength representations of linear systems. Balanced realizations
or other related classes of realizations (but not necessarily diagonal bal-
anced realizations!) play an important rôle in these issues; see Mullis and
Roberts (1976) and Hwang (1977).

To see the connection with matrix least squares problems we consider
the manifolds

OC (A,B,C)

=
{(
TAT−1, TB,CT−1

) ∈ R
n×n × R

n×m × R
p×n | T ∈ GL (n)

}
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for arbitrary n, m, p. If (A,B,C) is controllable and observable then
OC (A,B,C) is the set of all realizations of a transfer function

G (z) = C (zI −A)−1
B ∈ R

p×m (z) , (1.6)

see Kalman’s realization theorem; Section B.5.
Given any p×m transfer function G (z) = C (zI −A)−1

B we are inter-
ested in the minima, maxima and other critical points of smooth functions
f : OC (A,B,C) → R defined on the set OC (A,B,C) of all realizations of
G (z). Balanced and diagonal balanced realizations are shown to be char-
acterized as the critical points of the respective cost functions

f : OC (A,B,C) →R, f (A,B,C) = tr (Wc) + tr (Wo) (1.7)

and
fN : OC (A,B,C) →R, fN (A,B,C) = tr (NWc) + tr (NWo)

(1.8)

for a symmetric matrix N = N ′. Suitable tools for analyzing the critical
point structure of such cost functions come from both invariant theory and
several complex variable theory. It has been developed by Kempf and Ness
(1979) and, more recently, by Azad and Loeb (1990).

For technical reasons the results in this chapter have to be developed
over the field of complex numbers. Subsequently, we are able to deduce
the corresponding results over the field of real numbers, this being of main
interest. Later chapters develop results building on the real domain theory
in this chapter.

7.2 Plurisubharmonic Functions

In this section we recall some basic facts and definitions from several com-
plex variable theory concerning plurisubharmonic functions. One reason
why plurisubharmonic functions are of interest is that they provide a coor-
dinate free generalization of convex functions. They also play an important
rôle in several complex variable theory, where they are used as a tool in the
solution of Levi’s problem concerning the characterization of holomorphy
domains in C

n. For textbooks on several complex variable theory we refer
to Krantz (1982) and Vladimirov (1966).

Let D be an open, connected subset of C = R2. An upper semicontinuous
function f : D → R ∪ {−∞} is called subharmonic if the mean value
inequality

f (a) ≤ 1
2π

∫ 2π

0

f
(
a+ reiθ

)
dθ (2.1)
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holds for every a ∈ D and each open disc B (a, r) ⊂ B (a, r) ⊂ D;B (a, r) =
{z ∈ C | |z − a| < r}. More generally, subharmonic functions can be defined
for any open subset D of Rn. If f : D → R is twice continuously differen-
tiable then f is subharmonic if and only if

∆f =
n∑
i=1

∂2f

∂x2
i

≥ 0 (2.2)

on D. For n = 1, condition (2.2) is just the usual condition for convexity
of a function. Thus, for n = 1, the class of subharmonic functions on R

coincides with the class of convex functions.
Let X ⊂ Cn be an open and connected subset of Cn. An upper semicon-

tinuous function f : X → R ∪ {−∞} is called plurisubharmonic (plush) if
the restriction of f to any one-dimensional complex disc is subharmonic,
i.e. if for all a, b ∈ Cn and z ∈ C with a+ bz ∈ X the function

z �→ f (a+ bz) (2.3)

is subharmonic. The class of plurisubharmonic functions constitutes a nat-
ural extension of the class of convex functions: Any convex function on X
is plurisubharmonic. We list a number of further properties of plurisubhar-
monic functions:

Properties of Plurisubharmonic Functions

(a) Let f : X → C be holomorphic. Then the functions log |f | and |f |p,
p > 0 real, are plurisubharmonic (plush).

(b) Let f : X → R be twice continuously differentiable. The f is plush if
and only if the Levi form of f

L (f) :=
(

∂2f

∂zi∂z̄j

)
(2.4)

is positive semidefinite on X . We say that f : X → R is strictly plush
if the Levi form L (f) is positive definite, i.e. L (f) > 0, on X .

(c) Let f, g : X → R be plush, a ≥ 0 real. Then the functions f + g and
a · f are plush.

(d) Let f : X → R be plush and let ϕ : R → R be a convex and
monotonically increasing function. Then the composed map ϕ ◦ f :
X → R is plush.
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(e) Let ϕ : X → Y be holomorphic and f : Y → R be plush. Then
f ◦ ϕ : X → R is plush. By property this property the notion of
plurisubharmonic functions can be extended to functions on any com-
plex manifold. We then have the following important property:

(f) Let M ⊂ X be a complex submanifold and f : X → R (strictly)
plush. Then the restriction f |M : M → R of f to M is strictly plush.

(g) Any norm on Cn is certainly a convex function of its arguments and
therefore plush. More generally we have by Property (f):

(h) Let ‖·‖ be any norm on C
n and let X be a complex submanifold

of Cn. Then for every a ∈ Cn the distance function φa : X → R,
φa (x) = ‖x− a‖ is plurisubharmonic.

Let 〈 , 〉 be any (positive definite) Hermitian inner product on C
n. Thus

for all z = (z1, . . . , zn) and w = (w1, . . . , wn) ∈ Cn we have

〈z, w〉 =
n∑

i,j=1

aijziw̄j (2.5)

where A = (aij) ∈ Cn×n a uniquely determined positive definite complex
Hermitian n × n-matrix. If ‖z‖ := 〈z, z〉1/2 is the induced norm on Cn

then the Levi form of f : Cn → R , f (z) = ‖z‖2, is L (f) = A > 0 and
therefore f : Cn → R is strictly plurisubharmonic. More generally, if ‖·‖ is
the induced norm of positive definite Hermitian inner product on C

n and
X ⊂ Cn is a complex analytic submanifold, then the distance functions
φa : X → R, φa (x) = ‖x− a‖2, are strictly plurisubharmonic, a �∈ X .

Problem 2.1 For A ∈ Cn×n let ‖A‖F := [tr (AA∗)]1/2 be the Frobenius
norm. Show that f : Cn×n → R, f (A) = ‖A‖2

F , is a strictly plurisubhar-
monic function.

Problem 2.2 Show that the condition number, in terms of Frobenius
norms,

K (A) = ‖A‖F
∥∥A−1

∥∥
F

defines a strictly plurisubharmonic function K2 : GL (n,C) → R, K2 (A) =
‖A‖2

F

∥∥A−1
∥∥2

F
, on the open subset of invertible complex n× n - matrices.

Main Points of Section

Plurisubharmonic functions extend the class of subharmonic functions for
a single complex variable to several complex variables. They are also a
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natural coordinate-free extension of the class of convex functions and have
better structural properties. Least squares distance functions from a point
to a complex analytic submanifold are always strictly plurisubharmonic.
Strictly plurisubharmonic functions are characterized by the Levi form be-
ing positive definite.

7.3 The Azad-Loeb Theorem

We derive a generalization of the Kempf-Ness theorem, employed in the
previous chapter, by Azad and Loeb (1990). The result plays a central rôle
in our approach to balanced realizations.

Let GL (n,C) denote the group of all invertible complex n× n matrices
and let U (n,C) ⊂ GL (n,C) denote the subgroup consisting of all complex
unitary matrices Θ characterized by ΘΘ∗ = Θ∗Θ = In.

A holomorphic group action of GL (n,C) on a finite dimensional complex
vector space V is a holomorphic map

α : GL (n,C) × V → V, (g, x) �→ g · x (3.1)

such that for all x ∈ V and g, h ∈ GL (n,C)

g · (h · x) = (gh) · x, e · x = x

where e = In denotes the n× n identity matrix. Given an element x ∈ V ,
the subset of V

GL (n,C) · x = {g · x | g ∈ GL (n,C)} (3.2)

is called an orbit of α. Since GL (n,C) is a complex manifold, each orbit
GL (n,C) · x is a complex manifold which is biholomorphic to the complex
homogeneous space GL (n,C) /H , where H = {g ∈ GL (n,C) | g · x = x}
is the stabilizer subgroup of x, Appendix C.

A function ϕ : GL (n,C) · x → R on a GL (n,C) - orbit GL (n,C) · x is
called unitarily invariant if for all g ∈ GL (n,C) and all unitary matrices
Θ ∈ U (n,C)

ϕ (Θg · x) = ϕ (g · x) (3.3)

holds. We are interested in the critical points of unitarily invariant plurisub-
harmonic functions, defined on GL (n,C) - orbits of a holomorphic group
action α. The following result (except for Part (b)) is a special case of a
more general result due to Azad and Loeb (1990).



208 Chapter 7. Invariant Theory and System Balancing

Theorem 3.1 Let ϕ : GL (n,C) · x→ R be a unitarily invariant plurisub-
harmonic function defined on a GL (n,C)-orbit GL (n,C) · x of a holo-
morphic group action α. Suppose that a global minimum of ϕ exists on
GL (n,C) · x. Then

(a) The local minima of ϕ : GL (n,C) · x → R coincide with the global
minima. If ϕ is smooth then all its critical points are global minima.

(b) The set of global minima is connected.

(c) If ϕ is a smooth strictly plurisubharmonic function on GL (n,C) · x,
then any critical point of ϕ is a point where ϕ assumes its global
minimum. The set of global minima is a single U (n,C) − orbit.

Proof 3.2 Let GL (n,C) = U (n,C) · P (n) denote the polar decomposi-
tion. Here P (n) denotes the set of positive definite Hermitian matrices and
U (n,C) =

{
eiΩ | Ω∗ = −Ω

}
is the group of unitary matrices. Suppose that

x0 ∈ GL (n,C) · x is a local minimum (a critical point, respectively) of ϕ.
By Property (e) of plurisubharmonic functions, the scalar function

φ (z) = ϕ
(
eizΩ · x0

)
, z ∈ C (3.4)

is (pluri)subharmonic for all Ω∗ = −Ω. Since eizΩ is a unitary matrix
for purely imaginary z, the invariance property of ϕ implies that φ (z)
depends only on the real part of z, Re (z). Thus for t real, t �→ φ (t) is a
convex function. Thus ϕ

(
eitΩ · x0

) ≥ ϕ (x0) for all t ∈ R and all Ω∗ = −Ω.
By the unitary invariance of ϕ it follows that ϕ (g · x0) ≥ ϕ (x0) for all
g ∈ GL (n,C). This proves (a).

To prove (b) suppose that x0, x1 ∈ GL (n,C) · x are global minima of ϕ.
Thus for x1 = ueiΩ · x0 with Ω∗ = −Ω, u ∈ U (n,C), we have

ϕ
(
ueitΩ · x0

)
= ϕ (x0)

for t = 0, 1. By the above argument, t �→ ϕ
(
ueitΩ · x0

)
is convex and

therefore ϕ (t) = ϕ (0) for all 0 ≤ t ≤ 1. Since U (n,C) is connected there
exists a continuous path [0, 1] → U (n,C), t �→ ut, with u0 = In, u1 =
u. Thus t �→ ute

itΩ · x0 is a continuous path connecting x0 with x1 and
ϕ
(
ute

itΩ · x0

)
= ϕ (x0) for all 0 ≤ t ≤ 1. The result follows.

For (c) note that everything has been proved except for the last state-
ment. But this follows immediately from Lemma 2 in Azad and Loeb (1990).

Since any norm function induced by an unitarily invariant positive def-
inite Hermitian inner product on V is strictly plurisubharmonic on any
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GL (n,C)− orbit of a holomorphic group action x, Part (b) of the Kempf-
Ness Theorem (6.2.1) (in the complex case) follows immediately from the
Azad-Loeb result.

Main Points of Section

The theorem of Azad and Loeb generalizes the scope of the Kempf-Ness
theorem from unitarily invariant Hermitian norms to arbitrary unitarily
invariant strictly plurisubharmonic functions. This extension is crucial for
the subsequent application to balancing.

7.4 Application to Balancing

We now show how the above result can be used to study balanced realiza-
tions. The work is based on Helmke (1993a).

Consider the complex vector space of triples (A,B,C)

LC (n,m, p) :=
{
(A,B,C) ∈ C

n×n × C
n×m × C

p×n} . (4.1)

The complex Lie group GL (n,C) of complex invertible n×n matrices acts
on LC (n,m, p) via the holomorphic group action

σ : GL (n,C) × LC (n,m, p) → LC (n,m, p)

(S, (A,B,C)) �→ (
SAS−1, SB,CS−1

)
.

(4.2)

The orbits of σ

OC (A,B,C) =
{(
SAS−1, SB,CS−1

) | S ∈ GL (n,C)
}

(4.3)

are complex homogenous spaces and thus complex submanifolds of the
space LC (n,m, p).

Of course, by a fundamental theorem in linear systems theory (Kalman’s
realization theorem; Appendix B) the orbits (4.3) of controllable and ob-
servable triples (A,B,C) are in one-to-one correspondence with strictly
proper complex rational transfer functions G (z) ∈ C (z)p×m via

OC (A,B,C) ↔ G (z) = C (zI −A)−1
B. (4.4)

A function f : OC (A,B,C) → R is called unitarily invariant if for all
unitary matrices S ∈ U (n,C), SS∗ = In,

f
(
SAS−1, SB,CS−1

)
= f (A,B,C) (4.5)
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holds. We are interested in the critical point structure of smooth, unitary
invariant plurisubharmonic functions f : OC (A,B,C) → R on GL (n,C)-
orbits OC (A,B,C). A particular case of interest is where the function
f : OC (A,B,C) → R is induced from a suitable norm on LC (n,m, p).

Thus let 〈 , 〉 denote a positive definite Hermitian inner product on the
C-vector space LC (n,m, p). The induced Hermitian norm of (A,B,C) is
defined by

‖(A,B,C)‖2 = 〈(A,B,C) , (A,B,C)〉 (4.6)

A Hermitian norm (4.6) is called unitarily invariant, if
∥∥(SAS−1, SB,CS−1

)∥∥ = ‖(A,B,C)‖ (4.7)

holds for all unitary transformations S, with SS∗ = In, and (A,B,C) ∈
LC (n,m, p). Any Hermitian norm (4.6) defines a smooth strictly plurisub-
harmonic function

φ : OC (A,B,C) →R(
SAS−1, SB,CS−1

) �→ ∥∥(SAS−1, SB,CS−1
)∥∥2 (4.8)

on OC (A,B,C).
In the sequel we fix a strictly proper transfer function G (z) ∈ Cp×m (z)

of McMillan degree n and an initial controllable and observable realization
(A,B,C) ∈ LC (n,m, p) of G (z):

G (z) = C (zI −A)−1
B. (4.9)

Thus the GL (n,C)-orbit OC (A,B,C) parametrizes the set of all (minimal)
realizations of G (z).

Our goal is to study the variation of the norm
∥∥(SAS−1, SB,CS−1

)∥∥2

as S varies in GL (n,C). More generally, we want to obtain answers to the
questions:

(a) Given a function f : OC (A,B,C) → R, does there exists a realization
of G (z) which minimizes f?

(b) How can one characterize the set of realizations of a transfer function
which minimize f : OC (A,B,C) → R?

As we will see, the theorems of Kempf-Ness and Azad-Loeb give a rather
general solution to these questions. Let f : OC (A,B,C) → R be a smooth
function on OC (A,B,C) and let ‖·‖ denote a Hermitian norm defined on
LC (n,m, p).
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C

   

 GL(n,   ) – orbit

FIGURE 4.1. Norm minimality

A realization

(F,G,H) =
(
S0AS

−1
0 , S0B,CS

−1
0

)
(4.10)

of a transfer function G (s) = C (sI −A)−1
B is called norm balanced and

function balanced respectively, if the function

φ : GL (n,C) →R

S �→ ∥∥(SAS−1, SB,CS−1
)∥∥2 (4.11)

or the function

F : GL (n,C) →R

S �→f
(
SAS−1, SB,CS−1

) (4.12)

respectively, has a critical point at S = S0; i.e. the Fréchet derivative

Dφ|S0
=0 (4.13)

respectively,
DF|S0

=0 (4.14)

vanishes. (F,G,H) is called norm minimal or function minimizing, if
φ (S0), respectively, F (S0) is a global minimum for the function (4.11)
or (4.12) on GL (n,C), see Figure 4.1

We need the following characterization of controllable and observable
realizations. Using the terminology of geometric invariant theory, these
are shown to be the GL (n,C)-stable points for the similarity action
(A,B,C) �→ (

SAS−1, SB,CS−1
)
.
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Lemma 4.1 (A,B,C) ∈ LC (n,m, p) is controllable and observable if and
only if the following conditions are satisfied:

(a) The similarity orbit

OC (A,B,C) :=
{(
SAS−1, SB,CS−1

) | S ∈ GL (n,C)
}

is a closed subset of LC (n,m, p).

(b) dimCOC (A,B,C) = n2.

Proof 4.2 The necessity of (b) is obvious, since GL (n,C) acts freely on
controllable and observable triples via similarity. The necessity of (a) fol-
lows from realization theory, since OC (A,B,C) is a fibre of the continuous
map

H : LC (n,m, p) →
∞∏
i=1

C
p×m

(F,G,H) �→ (
HF iG | i ∈ N0

) (4.15)

where
∏∞
i=1 Cp×m is endowed with the product topology.

To prove the sufficiency, let us assume that, e.g., (A,B) is not controllable
while Conditions (a) and (b) are satisfied. Without loss of generality

A =

[
A11 A12

0 A22

]
, B =

[
B1

0

]
, C = [C1, C2]

and (A11, B1) controllable, Aii ∈ Cni×ni for i = 1, 2. Consider the one-
parameter group of transformations

St :=

[
In1 0
0 t−1In2

]
∈ GL (n,C)

for t �= 0. Then (At, Bt, Ct) :=
(
StAS

−1
t , StB,CS

−1
t

) ∈ OC (A,B,C) with

At =

[
A11 tA22

0 A22

]
, Bt :=

[
B1

0

]
, Ct := [C1, tC2]

Since OC (A,B,C) is closed

(A0, B0, C0) =

([
A11 0
0 A22

]
,

[
B1

0

]
, [C1, 0]

)
∈ OC (A,B,C)

the stabilizer of which is St, t ∈ C
∗, there is a contradiction to Condi-

tion (b). Thus (A,B) must be controllable, and similarly (A,C) must be
observable. This proves the lemma.
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The above lemma shows that the orbits OC (A,B,C) of controllable and
observable realizations (A,B,C) are closed subsets of LC (n,m, p). It is still
possible for other realizations to generate closed orbits with complex di-
mension strictly less than n2. The following result characterizes completely
which orbits OC (A,B,C) are closed subsets of LC (n,m, p).

Let

R (A,B) = (B,AB, . . . , AnB) (4.16)

O (A,C) =




C

CA
...

CAn


 (4.17)

denote the controllability and observability matrices of (A,B,C) respec-
tively and let

H (A,B,C) =O (A,C)R (A,B)

=




CB CAB . . . CAnB

CAB
. . .

...
...

CAnB . . . CA2nB




(4.18)

denote the corresponding (n+ 1) × (n+ 1) block Hankel matrix.

Lemma 4.3 A similarity orbit OC (A,B,C) is a closed subset of
LC (n,m, p) if and only if there exists (F,G,H) ∈ OC (A,B,C) of the form

F =

[
F11 0
0 F22

]
, G =

[
G1

0

]
, H = [H1, 0]

such that (F11, G1, H1) is controllable and observable and F22 is diagonal-
izable. In particular, a necessary condition for OC (A,B,C) to be closed
is

rkR (A,B) = rkO (A,C) = rkH (A,B,C) (4.19)

Proof 4.4 Suppose OC (A,B,C) is a closed subset of LC (n,m, p) and
assume, for example, that (A,B) is not controllable. Then there exists
(F,G,H) ∈ OC (A,B,C) with

F =

[
F11 F12

0 F22

]
, G =

[
G1

0

]
, H = [H1, H2] (4.20)
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and (F11, G1) controllable. The same argument as for the proof of
Lemma 4.1 shows that F12 = 0, H2 = 0. Moreover, arguing similarly
for (A,C) we may assume that (F11, H1) is observable. Suppose F22 is
not diagonalizable. Then there exists a convergent sequence of matrices(
F

(n)
22 | n ∈ N

)
with F∞

22 = limn→∞ F
(n)
22 , such that F (n)

22 is similar to F22

for all n ∈ N but F∞
22 is not. As OC (A,B,C) is closed, it follows that for

F (n) =

[
F11 0
0 F

(n)
22

]

one has
(
F (n), G,H

) ∈ OC (A,B,C) for all n ∈ N. Moreover,(
F (∞), G,H

)
= limn→∞

(
F (n), G,H

) ∈ OC (A,B,C). But this implies that
F∞

22 is similar to F22, therefore leading to a contradiction. This proves the
necessity part of the theorem.

Conversely, suppose that (A,B,C) is given as

A =

[
A11 0
0 A22

]
, B =

[
B1

0

]
, C = [C1, 0]

with (A11, B1, C1) controllable and observable, and A22 diagonalizable.
Then suppose OC (A,B,C) is not a closed subset of LC (n,m, p). By the
closed orbit lemma, Kraft (1984), there exists a closed orbit OC (F,G,H) ⊂
OC (A,B,C). Using the same arguments as above for the necessary part of
the lemma we may assume without loss of generality that

F =

[
F11 0
0 F22

]
, G =

[
G1

0

]
, H = [H1, 0]

with (F11, G1, H1) controllable and observable and F22 diagonalizable. As
the entries of the Hankel matrix H (A,B,C) depend continuously on A, B,
C, we obtain

H (F11, G1, H1) =H (F,G,H)

=

H (A11, B1, C1) =H (A,B,C)

Thus the Hankel matrices of (F11, G1, H1) and (A11, B1, C1) coincide and
therefore, by Kalman’s realization theorem,

(F11, G1, H1) =
(
S1A11S

−1
1 , S1B1, C1S

−1
1

)
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by an invertible matrix S1. Since F is in the closure of the similarity orbit of
A, their characteristic polynomials coincide: det (sI − F ) = det (sI −A).
Thus

det (sI − F22) =
det (sI − F )

det (sI − F11)

=
det (sI −A)

det (sI −A11)
=det (sI −A22)

and F22, A22 must have the same eigenvalues. Both matrices are diagonaliz-
able and therefore F22 is similar to A22. Therefore (F,G,H) ∈ OC (A,B,C)
and OC (A,B,C) = OC (F,G,H) is closed. This contradiction completes
the proof.

The following theorems are our main existence and uniqueness results
for function minimizing realizations. They are immediate consequences of
Lemma 4.1 and the Azad-Loeb Theorem 3.1 and the Kempf-Ness Theo-
rem 6.2.1, respectively.

Recall that a continuous function f : X → R on a topological space
X is called proper if the inverse image f−1 ([a, b]) of any compact interval
[a, b] ⊂ R is a compact subset of X . For every proper function f : X → R

the image f (X) is a closed subset of R.

Theorem 4.5 Let (A,B,C) ∈ LC (n,m, p) with G (z) = C (zI −A)−1
B.

Let f : OC (A,B,C) → R+ with R+ = [0,∞) be a smooth unitarily invari-
ant, strictly plurisubharmonic function on OC (A,B,C) which is proper.
Then:

(a) There exists a global minimum of f in OC (A,B,C).

(b) A realization (F,G,H) ∈ OC (A,B,C) is a critical point of f if and
only if it minimizes f .

(c) If (A1, B1, C1) , (A2, B2, C2) ∈ OC (A,B,C) are minima of f , then
there exists a unitary transformation S ∈ U (n,C) such that

(A2, B2, C2) =
(
SA1S

−1, SB1, C1S
−1

)
.

S is uniquely determined if (A,B,C) is controllable and observable.

Proof 4.6 Part (a) follows because any proper function f : OC (A,B,C) →
R+ possesses a minimum. Parts (b) and (c) are immediate consequences of
the Azad-Loeb Theorem.
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A direct application of Theorem 4.5 to the question of norm balancing
yields the following result.

Theorem 4.7 Let ‖·‖2 be a norm on LC (n,m, p) which is induced from
an invariant unitarily Hermitian inner product and let G (z) ∈ Cp×m (z)
denote a strictly proper rational transfer function of McMillan degree n.

(a) There exists a norm minimal realization (A,B,C) of G (z).

(b) A controllable and observable realization (A,B,C) ∈ LC (n,m, p) of
G (z) is norm minimal if and only if it is norm balanced.

(c) If (A1, B1, C1) , (A2, B2, C2) ∈ LC (n,m, p) are controllable and ob-
servable norm minimal realizations of G (z), then there exists a
uniquely determined unitary transformation S ∈ U (n,C) such that

(A2, B2, C2) =
(
SA1S

−1, SB1, C1S
−1

)
.

Proof 4.8 Let (A,B,C) be a controllable and observable realization of
G (z). By Lemmma 4.1, the similarity orbit OC (A,B,C) is a closed
complex submanifold of LC (n,m, p). Thus the norm function (A,B,C) �→
‖(A,B,C)‖2 defines a proper strictly plurisubharmonic function on
OC (A,B,C). The result now follows immediately from Theorem 4.5

Corollary 4.9 Let G (z) ∈ Rp×m (z) denote a strictly proper real rational
transfer function of McMillan degree n and let ‖·‖2 be a unitarily invari-
ant Hermitian norm on the complex vector space LC (n,m, p). Similarly,
let f : OC (A,B,C) → R+ be a smooth unitarily invariant strictly plurisub-
harmonic function on the complex similarity orbit which is proper and in-
variant under complex conjugation. That is, f

(
F̄ , Ḡ, H̄

)
= f (F,G,H) for

all (F,G,H) ∈ OC (A,B,C). Then:

(a) There exists a real norm (function) minimal realization (A,B,C) of
G (z).

(b) A real controllable and observable realization (A,B,C) ∈ LC (n,m, p)
of G (z) is norm (function) minimal if and only if it is norm (func-
tion) balanced.

(c) If (A1, B1, C1) , (A2, B2, C2) ∈ LC (n,m, p) are real controllable and
observable norm (function) minimal realizations of G (z), then there
exists a uniquely determined real orthogonal transformation S ∈
O (n,R) such that (A1, B1, C1) transforms into a real realization
(A2, B2, C2) =

(
SA1S

−1, SB1, C1S
−1

)
.
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Proof 4.10 The following observation is crucial for establishing the above
real versions of Theorems 4.5 and 4.7. If (A1, B1, C1) and (A2, B2, C2) are
real controllable and observable realizations of a transfer function
G (z), then any co-ordinate transformation S with (A2, B2, C2) =(
SA1S

−1, SB1, C1S
−1

)
is necessarily real, i.e. S ∈ GL (n,R). This follows

immediately from Kalman’s realization theorem, see Section B.5. With this
observation, then the proof follows easily from Theorem 4.5.

Remark 4.11 The norm balanced realizations were also considered by
Verriest (1988) where they are referred to as “optimally clustered”. Verri-
est points out the invariance of the norm under orthogonal transformations
but does not show global minimality of the norm balanced realizations. An
example is given which shows that not every similarity orbit OC (A,B,C)
allows a norm balanced realization. In fact, by the Kempf-Ness Theo-
rem 6.2.1(a), there exists a norm balanced realization in OC (A,B,C) if and
only if OC (A,B,C) is a closed subset of LC (n,m, p). Therefore Lemma 4.3
characterizes all orbits OC (A,B,C) which contain a norm balanced real-
ization. �

Remark 4.12 In the above theorems we use the trivial fact that
LC (n,m, p) is a complex manifold, however, the vector space structure
of LC (n,m, p) is not essential. �

Balanced realizations for the class of asymptotically stable linear systems
were first introduced by Moore (1981) and are defined by the condition that
the controllability and observability Gramians are equal and diagonal. We
will now show that these balanced realizations can be treated as a special
case of the theorems above. For simplicity we consider only the discrete-
time case and complex systems (A,B,C).

A complex realization (A,B,C) is called N -balanced if and only if

N∑
k=0

AkBB∗ (A∗)k =
N∑
k=0

(A∗)k C∗CAk (4.21)

An asymptotically stable realization (A,B,C) (i.e. σ (A) < 1) is said to be
balanced, or ∞-balanced, if and only if

∞∑
k=0

AkBB∗ (A∗)k =
∞∑
k=0

(A∗)k C∗CAk (4.22)

We say that (A,B,C) is diagonally N-balanced, or diagonally balanced re-
spectively, if the Hermitian matrix (4.21), or (4.22), respectively, is diago-
nal.
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Note that the above terminology differs slightly from the common ter-
minology in the sense that for balanced realizations controllability, respec-
tively observability Gramians, are not required to be diagonal. Of course,
this can always be achieved by an orthogonal change of basis in the state
space. In Gray and Verriest (1987) realizations (A,B,C) satisfying (4.21)
or (4.22) are called essentially balanced.

In order to prove the existence of N -balanced realizations we consider
the minimization problem for the N-Gramian norm function

fN (A,B,C) := tr
( N∑
k=0

(
AkBB∗ (A∗)k + (A∗)k C∗CAk

))
(4.23)

for N ∈ N ∪ {∞}. Let (A,B,C) ∈ LC (n,m, p) be a controllable and ob-
servable realization with N ≥ n. Consider the smooth unitarily invariant
function on the GL (n,C)-orbit

fN : OC (A,B,C) → R+

(
SAS−1, SB,CS−1

) �→ fN
(
SAS−1, SB,CS−1

)
(4.24)

where fN
(
SAS−1, SB,CS−1

)
is defined by (4.23) for any N ∈ N ∪ {∞}.

In order to apply Theorem 4.5 to the cost function fN (A,B,C), we need
the following lemma.

Lemma 4.13 Let (A,B,C) ∈ LC (n,m, p) be a controllable and observable
realization with N ≥ n, N ∈ N ∪ {∞}. For N = ∞ assume, in addition,
that A has all its eigenvalues in the open unit disc. Then the function
fN : OC (A,B,C) → R defined by (4.24) is a proper, unitarily invariant
strictly plurisubharmonic function.

Proof 4.14 Obviously fN : OC (A,B,C) → R+ is a smooth, unitarily in-
variant function for all N ∈ N ∪ {∞}. For simplicity we restrict attention
to the case where N is finite. The case N = ∞ then follows by a sim-
ple limiting argument. Let RN (A,B) =

(
B, . . . , ANB

)
and ON (A,C) =(

C′, A′C′, . . . , (A′)N C′)′ denote the controllability and observability ma-
trices of length N + 1, respectively. Let

OC (ON , RN ) =
{(
ON (A,C)T−1, TRN (A,B)

) | T ∈ GL (n,C)
}

denote the complex orbit of (ON (A,C) , RN (A,B))—see Chapter 6. By
controllability and observability of (A,B,C) and using N ≥ n, both
OC (A,B,C) and OC (ON , RN ) are closed complex submanifolds. More-
over, for N ≥ n, the map ρN : OC (A,B,C) → OC (ON , RN ) defined by
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(
SAS−1, SB,CS−1

) �→ (
ON (A,C)S−1, SRN (A,B)

)
is seen to be biholo-

morphic. The Frobenius norm defines a strictly plurisubharmonic function

ϕ : OC (ON , RN ) → R,

ϕ
(
ON (A,C)S−1, SRN (A,B)

)
=

∥∥ON (A,C)S−1
∥∥2

+ ‖SRN (A,B)‖2
.

Thus fN = ϕ ◦ ρN : OC (A,B,C) → R with

fN
(
SAS−1, SB,CS−1

)
=

∥∥ON (A,C)S−1
∥∥2

+ ‖SRN (A,B)‖2

is strictly plurisubharmonic, too. Similarly, as OC (ON , RN ) is closed, the
Frobenius norm ϕ : OC (ON , RN ) → R+ is a proper function. Since ρN :
OC (A,B,C) → OC (O,R) is a homeomorphism, then also FN = ϕ ◦ ρN is
proper. This completes the proof of the lemma.

Using this lemma we can now apply Theorem 4.5. To compute the critical
points of fN : OC (A,B,C) → R+, we consider the induced function on
GL (n,C):

FN : GL (n,C) → R+

S �→ fN
(
SAS−1, SB,CS−1

)
(4.25)

for any N ∈ N ∪ {∞}. A simple calculation of the gradient vector ∇FN at
S = In shows that

∇FN (In) = 2
N∑
k=0

(
AkBB∗ (A∗)k − (A∗)k C∗CAk

)
(4.26)

for any N ∈ N ∪ {∞}. We conclude

Corollary 4.15 Given a complex rational strictly proper transfer function
G (z) of McMillan degree n, then for all finite N ≥ n there exists a realiza-
tion (A∗, B∗, C∗) of G (z) that is N -balanced. If (A1, B1, C1), (A2, B2, C2, )
are N -balanced realizations of G (z) of order n,N ≥ n, then

(A2, B2, C2) =
(
SA1S

−1, SB1, C1S
−1

)
for a uniquely determined unitary transformation S ∈ U (n,C). A realiza-
tion (A1, B1, C1) is N-balanced if and only if it minimizes the N-Gramian
norm taken over all realizations of G (z) of order n.

For asymptotically stable linear systems we obtain the following am-
plifications of Moore’s fundamental existence and uniqueness theorem for
balanced realizations, see Moore (1981).
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Theorem 4.16 Suppose there is given a complex, rational, strictly-proper
transfer function G (z) of McMillan degree n and with all poles in the open
unit disc. Then there exists a balanced realization (A1, B1, C1) of G (z) of
order n. If (A1, B1, C1), (A2, B2, C2) are two balanced realizations of G (z)
of order n, then

(A2, B2, C2) =
(
SA1S

−1, SB1, C1S
−1

)
for a uniquely determined unitary transformation S ∈ U (n,C). An n-
dimensional realization (A1, B1, C1) of G (z) is balanced if and only if
(A1, B1, C1) minimizes the Gramian norm (4.24) (for N = ∞), taken over
all realizations of G (z) of order n.

Problem 4.17 Deduce Corollary 4.15 from Theorem 3.1. Hint: Work with
the factorization of the (N + 1) × (N + 1) block Hankel HN = ON · RN ,
where RN =

(
B,AB, . . . , ANB

)
, ON :=

(
C′, A′C′, . . . , (A′)N C′)′.

Problem 4.18 Prove that the critical points of the cost function fp :
O (A,B,C) → R, fp (A,B,C) = tr (Wc (A,B)p +Wo (A,C)p), p ∈ N, are
the balanced realizations (A0, B0, C0) satisfying Wc (A0, B0) = Wo (A0, C0).

Main Points of Section

Function balanced realizations are the critical points of a function defined
on the manifold of all realizations of a fixed transfer function. Function min-
imizing realizations are those realizations of given transfer function which
minimize a given function. In the case of strictly plurisubharmonic func-
tions, a general existence and uniqueness result on such function balanced
realizations is obtained using the Azad-Loeb theorem. Standard balanced
realizations are shown to be function minimizing, where the function is the
sum of the eigenvalues of the controllability and observability Gramians.
This function is unitarily invariant strictly plurisubharmonic.

7.5 Euclidean Norm Balancing

The simplest candidate of a unitarily invariant Hermitian norm on the
space LC (n,m, p) is the standard Euclidean norm, defined by

‖(A,B,C)‖2 := tr (AA∗) + tr (BB∗) + tr (C∗C) (5.1)

where X∗ = X̄ ′ denotes Hermitian transpose. Applying Theorem 4.7, or
more precisely its Corollary 4.9, to this norm yields the following result,
which describes a new class of norm minimal realizations.
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Theorem 5.1 Let G (z) be a real, rational, strictly-proper transfer func-
tion of McMillan degree n. Then:

(a) There exists a (real) controllable and observable realization (A,B,C)
of G (z) with

AA′ +BB′ = A′A+ C′C (5.2)

(b) If (A1, B1, C1), (A2, B2, C2) are (real) controllable and observable re-
alizations of G (z) satisfying (5.2). Then there exists a unique orthog-
onal transformation S ∈ O (n,R) with

(A2, B2, C2) =
(
SA1S

−1, SB1, C1S
−1

)

(c) An n-dimensional realization (A,B,C) of G (z) satisfies (5.2) if and
only if it minimizes the Euclidean norm (5.1) taken over all possible
n-dimensional realizations of G (z).

Proof 5.2 For any controllable and observable realization (A,B,C) of
G (z), consider the function φ : GL (n,R) → R defined by the Euclidean
norm

φ (S) =
∥∥(SAS−1, SB,CS−1

)∥∥2

Thus

φ (S) = tr
(
SAS−1 (S′)−1

A′S′
)

+ tr (SBB′S′) + tr
(
(S′)−1

C′CS−1
)

The gradient vector of φ at S = In is

∇φ (In) = 2 (AA′ −A′A+BB′ − C′C) (5.3)

and thus (A,B,C) is norm balanced for the Euclidean norm (5.1) if and
only if

AA′ −A′A+BB′ − C′C = 0

which is equivalent to (5.2). The result now follows immediately from The-
orem 4.7 and its Corollary 4.9.

Similar results hold for symmetric or Hamiltonian transfer functions. Re-
call that a real rational m×m-transfer function G (z) is called a symmetric
realization if for all z ∈ C

G (z) =G (z)′ (5.4)

and a Hamiltonian realization, if for all z ∈ C

G (z) =G (−z)′ (5.5)
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Every strictly proper symmetric transfer function G (z) of McMillan degree
n has a minimal signature symmetric realization (A,B,C) satisfying

(AIpq)
′ = AIpq, C

′ = IpqB (5.6)

where p+ q = n and Ipq = diag (ε1, . . . , εn) with

εi =

{
1 i = 1, . . . , p
−1 i = p+ 1, . . . , n

Here p− q is the Cauchy-Maslov index of G (z); cf. Anderson and Bitmead
(1977) and Byrnes and Duncan (1989). Similarly, every strictly proper
Hamiltonian transfer function G (z) ∈ R (z)m×m of McMillan degree 2n
has a minimal Hamiltonian realization (A,B,C) satisfying

(AJ)′ = AJ, C′ = JB (5.7)

where

J =

[
0 −In
In 0

]
(5.8)

is the standard complex structure. Let O (p, q), respectively, Sp (n,R) de-
note the (real) stabilizer groups of Ipq respectively, J , i.e.

T ∈ O (p, q) ⇐⇒T ′IpqT = Ipq , T ∈GL (n,R)
T ∈ Sp (n,R) ⇐⇒T ′JT = J, T ∈GL (2n,R)

(5.9)

Analogues of Theorem 5.1 are now presented for the symmetric and Hamil-
tonian transfer functions, The proof of Theorem 5.3 requires a more subtle
argument than merely an application of the Corollary 4.9.

Theorem 5.3

(a) Every strictly proper symmetric transfer function G (z) ⊂ R (z)m×m

with McMillan degree n and Cauchy-Maslov index p−q has a control-
lable and observable signature symmetric realization (A,B,C) satis-
fying

(AIpq)
′ = AIpq, C′ = IpqB (5.10)

AA′ +BB′ = A′A+ C′C (5.11)

(b) If (A1, B1, C1), (A2, B2, C2) are two minimal realizations of G (z)
satisfying (5.10), (5.11), then there exists a unique orthogonal trans-
formation S = diag (S1, S2) ∈ O (p) ×O (q) ⊂ O (n) with

(A2, B2, C2) =
(
SA1S

−1, SB1, C1S
−1

)
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Proof 5.4 We first prove (a). By Theorem 5.1 there exists a minimal re-
alization (A,B,C) of the symmetric transfer function G (s) which satis-
fies (5.11) and (A,B,C) is unique up to an orthogonal change of basis
S ∈ O (n,R). By the symmetry of G (s), with (A,B,C) also (A′, C′, B′) is
a realization of G (s). Note that if (A,B,C) satisfies (5.11), also (A′, C′, B′)
satisfies (5.11). Thus, by the above uniqueness Property (b) of Theorem 5.1
there exists a unique S ∈ O (n,R) with

(A′, C′, B′) = (SAS′, SB,CS′) (5.12)

By transposing (5.12) we also obtain

(A,B,C) = (SA′S′, SC′, B′S′) (5.13)

or equivalently

(A′, C′, B′) = (S′AS, S′B,CS) (5.14)

Thus (by minimality of (A,B,C)) S = S′ is symmetric orthogonal. A
straightforward argument, see Byrnes and Duncan (1989) for details, shows
that the signature of S is equal to the Cauchy-Maslov index p−q of G (s) =
C (sI −A)−1

B. Thus S = T ′IpqT for T ∈ O (n,R) and the new realization

(F,G,H) := (TAT ′, TB,CT ′)

satisfies (5.11).
To prove Part (b), let

(A2, B2, C2) =
(
SA1S

−1, SB1, C1S
−1

)

be two realizations of G (s) which satisfy (5.10), (5.11). Byrnes and Duncan
(1989) has shown that (5.10) implies S ∈ O (p, q). By Theorem 5.1(b) also
S ∈ O (n,R). Since O (p) ×O (q) = O (p, q) ∩O (n,R) the result follows.

A similar result holds for Hamiltonian transfer functions.

Theorem 5.5

(a) Every strictly proper Hamiltonian transfer function G (s) ∈ R (s)m×m

with McMillan degree 2n has a controllable and observable Hamilto-
nian realization (A,B,C) satisfying

(AJ)′ = AJ, C′ = JB (5.15)
AA′ +BB′ = A′A+ C′C (5.16)
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(b) If (A1, B1, C1), (A2, B2, C2) are two minimal realizations of G (s) sat-
isfying (5.15), (5.16), then there exists a unique symplectic transfor-
mation S ∈ Sp (n,R) ∩O (2n,R) with

(A2, B2, C2) =
(
SA1S

−1, SB1, C1S
−1

)

Proof 5.6 This result can be deduced directly from Theorem 4.7, gener-
alized to the complex similarity orbits for the reductive group Sp (n,C).
Alternatively, a proof can be constructed along the lines of that for Theo-
rem 5.3.

Problem 5.7 Prove that every strictly proper, asymptotically stable sym-
metric transfer function G (z) ∈ R (z)m×m with McMillan degree n and
Cauchy-Maslov index p − q has a controllable and observable signature-
symmetric balanced realization satisfying

(AIpq)
′ = AIpq , C

′ = IpqB, Wc (A,B) = Wo (A,C) = diagonal.

Problem 5.8 Prove as follows an extension of Theorem 5.1 to bilinear
systems. Let W (n) = {I = (i1, . . . , ik) | ij ∈ {1, 2} , 1 ≤ k ≤ n}∪{∅} be or-
dered lexicographically. A bilinear system (A1, A2, B, C) ∈ Rn×n ×Rn×n ×
Rn×m × Rp×n is called span controllable if and only if R (A1, A2, B) =
(AIB | I ∈W (n)) ∈ Rn×N , N = m

(
2n+1 − 1

)
, has full rank n. Here

Aφ := In. Similarly (A1, A2, B, C) is called span observable if and only
if O (A1, A2, C) = (CAI | I ∈W (n)) ∈ RM×n, M = p

(
2n+1 − 1

)
, has full

rank n.

(a) Prove that, for (A1, A2, B, C) span controllable and observable, the
similarity orbit

O = O (A1, A2, B, C)

=
{(
SA1S

−1, SA2S
−1, SB,CS−1

) | S ∈ GL (n)
}

is a closed submanifold of R2n2+n(m+p) with tangent space

T(A1,A2,B,C)O =
{
([X,A1] , [X,A2] , XB,−CX) | X ∈ R

n×n} .
(b) Show that the critical points (F1, F2, G,H) ∈ O (A1, A2, B, C) of Φ :

O (A1, A2, B, C) → R,

Φ (F1, F2, G,H) = ‖F1‖2 + ‖F2‖2 + ‖G‖2 + ‖H‖2
,

are characterized by

F1F
′
1 + F2F

′
2 +GG′ = F ′

1F1 + F ′
2F2 +H ′H.
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(c) Prove that, for (A1, A2, B, C) span controllable and observable, the
critical points of Φ : O (A1, A2, B, C) → R form a uniquely deter-
mined O (n)-orbit

{(
SF1S

−1, SF2S
−1, SG,HS−1

) | S ∈ O (n)
}
.

Main Points of Section

Function minimizing realization of a transfer function, where the distance
function is the matrix Euclidean norm, are characterized. These realiza-
tions minimize the Euclidean norm distance to the zero realization (0, 0, 0).
The existence and characterization of signature symmetric norm minimal
realizations for symmetric or Hamiltonian transfer functions is shown.
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Notes for Chapter 7

For results on linear system theory we refer to Kailath (1980) and Son-
tag (1990a). Balanced realizations for asymptotically stable linear systems
were introduced by Moore (1981) as a tool for model reduction and system
approximation theory. For important results on balanced realizations see
Moore (1981), Pernebo and Silverman (1982), Jonckheere and Silverman
(1983), Verriest (1983) and Ober (1987). In signal processing and sensitiv-
ity analysis, balanced realizations were introduced in the pioneering work
of Mullis and Roberts (1976); see also Hwang (1977). In these papers sen-
sitivity measures such as weighted trace functions of controllability and
observability Gramians are considered and the global minima are charac-
terized as balanced, input balanced or sensitivity optimal realizations.

For further results in this direction see Williamson (1986) and Williamson
and Skelton (1989). A systematic optimization approach for defining and
studying various classes of balanced realizations has been developed by
Helmke (1993a). The further development of this variational approach to
balancing has been the initial motivation of writing this book. We also
mention the closely related work of Gray and Verriest (1987), Gray and
Verriest (1989) and Verriest (1986; 1988) who apply differential geometric
methods to characterize balanced realizations. For further applications of
differential geometry to define balanced realizations for multi-mode systems
and sensitivity optimal singular systems we refer to Verriest (1988) and
Gray and Verriest (1989).

Techniques from geometric invariant theory and complex analysis, such
as the Kempf-Ness or the Azad-Loeb theorems, for the study of system
balancing and sensitivity optimization tasks have been introduced by
Helmke (1992; 1993a). Both the Kempf-Ness theorem and the theorem
by Azad and Loeb are initially stated over the field of complex numbers.
In fact, for applications of these tools to systems balancing it becomes cru-
cial to work over the field of complex numbers, even if one is ultimately
interested in real data. Therefore we first focus in this chapter on the com-
plex case and then deduce the real case from the complex one. In the later
chapters we mainly concentrate on the real case.

For textbooks on several complex variable theory we refer to Krantz
(1982) and Vladimirov (1966).

Preliminary results on norm balanced realizations were obtained by Ver-
riest (1988), where they are referred to as “optimally clustered”. The ex-
istence and uniqueness results Theorems 5.1–5.5 were obtained by Helmke
(1993a). In contrast to balanced realizations, no simple algebraic methods
such as the SVD are available to compute norm balanced realizations. To
this date, the dynamical systems methods for finding norm balanced real-
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izations are the only available tools to compute such realizations. For an
application of these ideas to solve an outstanding problem in sensitivity
optimization of linear systems see Chapter 9.





CHAPTER 8

Balancing via Gradient
Flows

8.1 Introduction

In the previous chapter we investigate balanced realizations from a varia-
tional viewpoint, i.e. as the critical points of objective functions defined on
the manifold of realizations of a given transfer function. This leads us nat-
urally to the computation of balanced realizations using steepest descent
methods. In this chapter, gradient flows for the balancing cost functions are
constructed which evolve on the class of positive definite matrices and con-
verge exponentially fast to the class of balanced realizations. Also gradient
flows are considered which evolve on the Lie group of invertible coordinate
transformations. Again there is exponential convergence to the class of
balancing transformations. Of course, explicit algebraic methods are avail-
able to compute balanced realizations which are reliable and comparatively
easy to implement on a digital computer, see Laub, Heath, Paige and Ward
(1987) and Safonov and Chiang (1989).

So why should one consider continuous-time gradient flows for balanc-
ing, an approach which seems much more complicated and involved? This
question of course brings us back to our former goal of seeking to replace
algebraic methods of computing by analytic or geometric ones, i.e. via the
analysis of certain well designed differential equations whose limiting solu-
tions solve the specific computational task. We believe that the flexibility
one gains while working with various discretizations of continuous-time sys-
tems, opens the possibility of new algorithms to solve a given problem than
a purely algebraic approach would allow. We see the possibility of adaptive
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schemes, and perhaps even faster algorithms based on this approach. It is
for this reason that we proceed with the analysis of this chapter.

For any asymptotically stable minimal realization (A,B,C) the control-
lability Gramian Wc and observability Gramian Wo are defined in discrete
time and continuous time, respectively, by

Wc =
∞∑
k=0

AkBB′A′k, Wo =
∞∑
k=0

A′kC′CAk (1.1)

Wc =
∫ ∞

0

eAtBB′eA
′tdt, Wo =

∫ ∞

0

eA
′tC′CeAtdt. (1.2)

For an unstable system the controllability and observability Gramians are
defined by finite sums or integrals, rather than the above infinite sums or
integrals. In the following, we assume asymptotic stability and deal with
infinite sums, however, all results hold in the unstable case for finite sum
Gramians such as in (7.1.4).

Any linear change of coordinates in the state space Rn by an invert-
ible transformation T ∈ GL (n,R) changes the realization by (A,B,C) �→(
TAT−1, TB,CT−1

)
and thus transforms the Gramians via

Wc �→ TWcT
′, Wo �→ (T ′)−1

WoT
−1 (1.3)

We call a state space representation (A,B,C) of the transfer function
G (s) balanced if Wc = Wo. This is more general than the usual definition
of balanced realizations, Moore (1981), which requires that Wc = Wo =
diagonal, which is one particular realization of our class of balanced re-
alizations. In this latter case we refer to (A,B,C) as a diagonal balanced
realization.

In the sequel we consider a given, fixed asymptotically stable minimal
realization (A,B,C) of a transfer function G (s) = C (sI −A)−1

B.
To get a quantitative measure of how the Gramians change we consider

the function

φ (T ) = tr
(
TWcT

′ + (T ′)−1
WoT

−1
)

=tr
(
WcT

′T +Wo (T ′T )−1
)

=tr
(
WcP +WoP

−1
)

(1.4)

with

P = T ′T (1.5)
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Note that φ (T ) is the sum of the eigenvalues of the controllability and
observability Gramians of

(
TAT−1, TB,CT−1

)
and thus is a crude numeri-

cal measure of the controllability and observability properties of(
TAT−1, TB,CT−1

)
.

Moreover, as we have seen in Chapter 7, the critical points of the potential
φ (·) are balanced realizations.

Main Points of Section

In seeking a balanced realization of a state space linear system representa-
tion, it makes sense to work with a quantitative measure of how the con-
trollability and observability Gramians change with the co-ordinate basis
transformation. We choose the sum of the eigenvalues of these two Grami-
ans.

8.2 Flows on Positive Definite Matrices

In this and the next section, we consider a variety of gradient flows for
balancing. The intention is that the reader browse through these to grasp
the range of possibilities of the gradient flow approach.

Let P (n) denote the set of positive definite symmetric n × n matrices
P = P ′ > 0. The function we are going to study is

φ : P (n) → R, φ (P ) = tr
(
WcP +WoP

−1
)

(2.1)

Let X,Y ∈ Rn×n be invertible square root factors of the positive definite
Gramians Wc, Wo so that

X ′X = Wo, Y Y ′ = Wc (2.2)

The following results are then immediate consequences of the more general
results from Section 6.4.

Lemma 2.1 Let Wc, Wo be defined by (1.1) for an asymptotically sta-
ble controllable and observable realization (A,B,C). Then the function
φ : P (n) → R, φ (P ) = tr

(
WcP +WoP

−1
)

has compact sublevel sets,
i.e. for all a ∈ R,

{
P ∈ P (n) | tr

(
WcP +WoP

−1
) ≤ a

}
is a compact sub-

set of P (n). There exists a minimizing positive definite symmetric matrix
P = P ′ > 0 for the function φ : P (n) → R defined by (2.1).
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Theorem 2.2 (Linear index gradient flow)

(a) There exists a unique P∞ = P ′∞ > 0 which minimizes φ : P (n) → R,
φ (P ) = tr

(
WcP +WoP

−1
)
, and P∞ is the only critical point of φ.

This minimum is given by

P∞ = W−1/2
c

(
W 1/2
c WoW

1/2
c

)1/2

W−1/2
c (2.3)

T∞ = P
1/2
∞ is a balancing transformation for (A,B,C).

(b) The gradient flow Ṗ (t) = −∇φ (P (t)) on P (n) is given by

Ṗ = P−1WoP
−1 −Wc, P (0) = P0. (2.4)

For every initial condition P0 = P ′
0 > 0, P (t) exists for all t ≥ 0 and

converges exponentially fast to P∞ as t→ ∞, with a lower bound for
the rate of exponential convergence given by

ρ ≥ 2
λmin (Wc)

3/2

λmax (Wo)
1/2

(2.5)

where λmin (A), λmax (A), denote the smallest and largest eigenvalue
of A, respectively.

In the sequel we refer to (2.4) as the linear index gradient flow. Instead
of minimizing φ (P ) we can just as well consider the minimization problem
for the quadratic index function

ψ : P (n) → R, ψ (P ) = tr
(
(WcP )2 +

(
WoP

−1
)2

)
(2.6)

over all positive symmetric matrices P = P ′ > 0. Since, for P = T ′T ,
ψ (P ) is equal to tr

(
(TWcT

′)2+
(
(T ′)−1WoT

−1
)2), the minimization prob-

lem for (2.6) is equivalent to the task of minimizing tr
(
W 2
c +W 2

o

)
=

‖Wc‖2 + ‖Wo‖2 over all realizations of a given transfer function G (s) =
C (sI −A)−1B where ‖X‖ denotes the Frobenius norm. Thus ψ (P ) is
the sum of the squared eigenvalues of the controllability and observability
Gramians of

(
TAT−1, TB,CT−1

)
. The quadratic index minimization task

above can also be reformulated as minimizing
∥∥TWcT

′ − (T ′)−1
WoT

−1
∥∥2.

A theorem corresponding to Theorem 6.4.7 now applies.
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Theorem 2.3 (Quadratic index gradient flow)

(a) There exists a unique P∞ = P ′∞ > 0 which minimizes

ψ : P (n) → R, ψ (P ) = tr
(
(WcP )2 +

(
WoP

−1
)2

)
,

and

P∞ = W−1/2
o

(
W 1/2
c WoW

1/2
c

)1/2

W−1/2
c

is the only critical point of ψ. Also, T∞ = P
1/2
∞ is a balancing coor-

dinate transformation for (A,B,C).

(b) The gradient flow Ṗ (t) = −∇ψ (P (t)) on P (n) is

Ṗ = 2P−1WoP
−1WoP

−1 − 2WcPWc. (2.7)

For all initial conditions Po = P ′
0 > 0, the solution P (t) of (2.7)

exists for all t ≥ 0 and converges exponentially fast to P∞. A lower
bound on the rate of exponential convergence is

ρ > 4λmin (Wc)
2 (2.8)

We refer to (2.7) as quadratic index gradient flow. Both algorithms con-
verge exponentially fast to P∞, although the rate of convergence is rather
slow if the smallest singular value of Wc is near to zero. The convergence
rate of the linear index flow, however, depends inversely on the maximal
eigenvalue of the observability Gramian. In contrast, the convergence of the
quadratic index flow is robust with respect to the observability properties
of the system.

In general, the quadratic index flow seems to behave better than the lin-
ear index flow. The following lemma, which is a special case of Lemma 6.4.9,
compares the rates of exponential convergence of the algorithms and shows
that the quadratic index flow is in general faster than the linear index flow.

Lemma 2.4 Let ρ1 and ρ2 respectively denote the rates of exponential con-
vergence of (2.5) and (2.8) respectively. Then ρ1 < ρ2 if the smallest sin-
gular value of the Hankel operator of (A,B,C) is > 1

2 , or equivalently, if
λmin (WoWc) > 1

4 .
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FIGURE 2.1. The quadratic index flow is faster than the linear index flow in the
shaded region

Simulations

The following simulations show the exponential convergence of the diagonal
elements of P towards the solution matrix P∞ and illustrate what might
effect the convergence rate. In Figure 2.2a–c we have

Wo =




7 4 4 3
4 4 2 2
4 2 4 1
3 2 1 5


 and Wc =




5 2 0 3
2 7 −1 −1
0 −1 5 2
3 −1 2 6




so that λmin (WoWc) ≈ 1.7142 > 1
4 . Figure 2.2a concerns the linear index

flow while Figure 2.2b shows the evolution of the quadratic index flow, both
using P (0) = P1 where

P (0) = P1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , P (0) = P2 =




2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2


 .

Figure 2.2c shows the evolution of both algorithms with a starting value
of P (0) = P2. These three simulations demonstrate that the quadratic
algorithm converges more rapidly than the linear algorithm when
λmin (WoWc) > 1

4 . However, the rapid convergence rate is achieved at the
expense of approximately twice the computational complexity, and conse-
quently the computing time on a serial machine may increase.
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FIGURE 2.2. The linear and quadratic flows
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In Figure 2.2d

Wo =




7 4 4 3
4 4 2 2
4 2 4 1
3 2 1 3


 and Wc =




5 4 0 3
4 7 −1 −1
0 −1 5 2
3 −1 2 6




so that λmin (WoWc) ≈ 0.207 < 1
4 . Figure 2.2d compares the linear index

flow behaviour with that of the quadratic index flow for P (0) = P1. This
simulation demonstrates that the linear algorithm does not necessarily con-
verge more rapidly than the quadratic algorithm when λmin (WoWc) < 1

4 ,
because the bounds on convergence rates are conservative.

Riccati Equations

A different approach to determine a positive definite matrix P = P ′ > 0
with Wo = PWcP is via Riccati equations. Instead of solving the gradient
flow (2.4) we consider the Riccati equation

Ṗ = Wo − PWcP, P (0) = P0. (2.9)

It follows from the general theory of Riccati equations that for every posi-
tive definite symmetric matrix P0, (2.9) has a unique solution as a positive
definite symmetric P (t) defined for all t ≥ 0, see for example Anderson
and Moore (1990). Moreover, P (t) converges exponentially fast to P∞ with
P∞WcP∞ = Wo.

The Riccati equation (2.9) can also be interpreted as a gradient flow
for the cost function φ : P (n) → R, φ (P ) = tr

(
WcP +WoP

−1
)

by con-
sidering a different Riemannian matrix to that used above. Consider the
Riemannian metric on P (n) defined by

〈〈ξ, η〉〉 := tr
(
P−1ξP−1η

)
(2.10)

for tangent vectors ξ, η ∈ TP (P (n)). This is easily seen to define a sym-
metric positive definite inner product on TPP (n). The Fréchet derivative
of φ : P (n) → R at P is the linear map Dφ|P : TPP (n) → R on the
tangent space defined by

Dφ|P (ξ) = tr
((
Wc − P−1WoP

−1
)
ξ
)
, ξ ∈ TP (P (n))

Thus the gradient gradφ (P ) of φ with respect to the Riemannian metric
(2.10) on P (n) is characterized by

Dφ|P (ξ) = 〈〈gradφ (P ) , ξ〉〉
= tr

(
P−1 gradφ (P )P−1ξ

)
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for all ξ ∈ TPP (n). Thus P−1 gradφ (P )P−1 = Wc − P−1WoP
−1, or

equivalently

gradφ (P ) = PWcP −Wo (2.11)

Therefore (2.9) is seen as the gradient flow Ṗ = − gradφ (P ) of φ on P (n)
and thus has equivalent convergence properties to (2.4). In particular, the
solution P (t), t ≥ 0 converges exponentially to P∞.

This Riccati equation approach is particularly to balanced realizations
suitable if one is dealing with time-varying matrices Wc and Wo.

As a further illustration of the above approach we consider the following
optimization problem over a convex set of positive semidefinite matrices.
Let A ∈ Rm×n, rkA = m < n, B ∈ Rm×n and consider the convex subset
of positive semidefinite matrices

C =
{
P ∈ R

n×n | P = P ′ ≥ 0, AP = B
}

with nonempty interior

C̊ =
{
P ∈ R

n×n | P = P ′ > 0, AP = B
}
.

A Riemannian metric on C̊ is

〈〈ξ, η〉〉 = tr
(
P−1ξ′P−1η

) ∀ξ, η ∈ TP
(C̊)

with
TP

(C̊) =
{
ξ ∈ R

n×n | Aξ = 0
}
.

Similarly, we consider for A ∈ Rm×n, rkA = m < n, and B ∈ Rm×m

D =
{
P ∈ R

n×n | P = P ′ ≥ 0, APA′ = B
}

D̊ =
{
P ∈ R

n×n | P = P ′ > 0, APA′ = B
}

Here the Riemannian metric is the same as above and

TP
(D̊)

=
{
ξ ∈ R

n×n | AξA′ = 0
}
.

We now consider the cost function

φ : C̊ → R respectively φ : D̊ → R

defined by
φ (P ) = tr

(
W1P +W2P

−1
)

for symmetric matrices W1,W2 ∈ Rn×n.
The gradient of φ : C̊ → R is characterized by
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(a) gradφ (P ) ∈ TP
(C̊)

(b) 〈〈gradφ (P ) , ξ〉〉 = Dφ|P (ξ) , ∀ξ ∈ TP
(C̊)

Now

(a) ⇐⇒A · gradφ (P ) = 0

and

(b) ⇐⇒ tr
((
W1 − P−1W2P

−1
)
ξ
)

= tr
((
P−1 gradφ (P )P−1

)′
ξ
)
, ∀ξ ∈ TP

(C̊)
⇐⇒W1 − P−1W2P

−1 − P−1 gradφ (P )P−1 ∈ TP
(C̊)⊥

⇐⇒W1 − P−1W2P
−1 − P−1 gradφ (P )P−1 = A′Λ

From this it follows, as above∗ that

gradφ (P ) =
(
In − PA′ (APA′)−1

A
)
P

(
W1 − P−1W2P

−1
)
P︸ ︷︷ ︸

PW1P−W2

Thus the gradient flow on C̊ is
(
Ṗ = gradφ (P )

)

Ṗ =
(
In − PA′ (APA′)−1

A
)

(PW1P −W2)

For D̊ the gradient gradφ (P ) of φ : Ḋ → R, is characterized by

(a) A · gradφ (P )A′ = 0

(b) tr
((
P−1 gradφ (P )P−1

)′
ξ
)

= tr
((
W1 − P−1W2P

−1
)
ξ
)
, ∀ξ : AξA′ = 0.

Hence

(b) ⇐⇒ P−1 gradφ (P )P−1 − (
W1 − P−1W2P

−1
) ∈ {ξ | AξA′ = 0}⊥

∗P∇φ (P ) P − PA′ΛP = grad φ and Λ = (APA′)−1 AP∇φ (P )
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Lemma 2.5 Let A ∈ Rm×n, AA′ > 0.
{
ξ ∈ R

n×n | AξA′ = 0
}⊥ =

{
A′ΛA | Λ ∈ R

m×m}
Proof 2.6 As

tr (A′Λ′Aξ) = tr (Λ′AξA′) = 0 ∀ξ with AξA′ = 0,

the right hand side set in the lemma is contained in the left hand side set.
Both spaces have the same dimension. Thus the result follows.

Hence with this lemma

(b) ⇐⇒ P−1 gradφ (P )P−1 −∇φ (P ) = A′ΛA

and therefore
gradφ (P ) = P∇φ (P )P + PA′ΛAP.

Thus
AP∇φ (P )PA′ = −APA′ΛAPA′,

i.e.
Λ = − (APA′)−1

AP∇φ (P )PA′ (APA′)−1

and therefore

gradφ (P ) = P∇φ (P )P − PA′ (APA′)−1
AP∇φ (P )PA′ (APA′)−1

AP.

We conclude

Theorem 2.7 The gradient flow Ṗ = gradφ (P ) of the cost function
φ (P ) = tr

(
W1P +W2P

−1
)

on the constraint sets C̊ and D̊, respectively,
is

(a)
Ṗ =

(
In − PA′ (APA′)−1

A
)

(PW1P −W2)

for P ∈ C̊.

(b) Ṗ =PW1P −W2

− PA′ (APA′)−1
A (PW1P −W2)A′ (APA′)−1

AP

for P ∈ D̊.

In both cases the underlying Riemannian metric is defined as above.
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Dual Flows

We also note the following transformed versions of the linear and quadratic
gradient flow. Let Q = P−1, then (2.4) is equivalent to

Q̇ = QWcQ−Q2WoQ
2 (2.12)

and (2.7) is equivalent to

Q̇ = 2QWcQ
−1WcQ− 2Q2WoQWoQ

2. (2.13)

We refer to (2.12) and (2.13) as the transformed linear and quadratic index
gradient algorithms respectively. Clearly the analogue statements of The-
orems 2.2 and 2.3 remain valid. We state for simplicity only the result for
the transformed gradient algorithm (2.12).

Theorem 2.8 The transformed gradient flow (2.12) converges exponen-
tially from every initial condition Qo = Q′

0 > 0 to Q∞ = P−1∞ . The rate of
exponential convergence is the same as for the Linear Index Gradient Flow.

Proof 2.9 It remains to prove the last statement. This is true since P �→
P−1 = Q is a diffeomorphism of the set of positive definite symmetric
matrices onto itself. Therefore the matrix

J = −P−1
∞ ⊗Wc −Wc ⊗ P−1

∞

of the linearization ξ̇ = J · ξ of (2.4) at P∞ is similar to the matrix Ĵ of
the linearization

η̇ = −Q∞ηQ−1
∞ WcQ∞ −Q∞WcQ

−1
∞ ηQ∞

of (2.12) via the invertible linear map ξ �→ η = −Q−1∞ ξQ∞. It follows that
J and Ĵ have the same eigenvalues which completes the proof.

The dual versions of the linear and quadratic gradient flows are defined
as follows. Consider the objective functions

φd (P ) = tr
(
WcP

−1 +WoP
)

and
ψd (P ) = tr

((
WcP

−1
)2

+ (WoP )2
)

Thus φd (P ) = φ
(
P−1

)
, ψd (P ) = ψ

(
P−1

)
. The gradient flows of φd and

ψd respectively are the dual linear flow

Ṗ = −Wo + P−1WcP
−1 (2.14)
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and the dual quadratic flow

Ṗ = 2P−1WcP
−1WcP

−1 − 2WoPWo. (2.15)

Thus the dual gradient flows are obtained from the gradient flows (2.4),
(2.7) by interchanging the matrices Wc and Wo.

In particular, (2.14) converges exponentially to P−1
∞ , with a lower bound

on the rate of convergence given by

ρd ≥ 2
λmin (Wo)

3/2

λmax (Wc)
1/2

(2.16)

while (2.15) converges exponentially to P−1∞ , with a lower bound on the
rate of convergence given by

ρd ≥ 4λmin (Wo)
2 . (2.17)

Thus in those cases where Wc is ill-conditioned, i.e. the norm of Wc is
small, we may prefer to use (2.16). In this way we can obtain a relatively
fast algorithm for computing P−1∞ and thus, by inverting P−1∞ , we obtain the
desired solution P∞. By transforming the gradient flows (2.12), respectively,
(2.13) with the transformation P → P−1 = Q we obtain the following
results.

Theorem 2.10 For every initial condition Po = P ′
o > 0, the solution P (t)

of the ordinary differential equation

Ṗ = PWoP − P 2WcP
2 (2.18)

exists within P (n) for all t ≥ 0 and converges exponentially fast to P∞,
with a lower bound on the rate of convergence

ρ ≥ 2
λmin (Wo)

3/2

λmax (Wc)
1/2

(2.19)

Theorem 2.11 For every initial condition Po = P ′
o > 0, the solution P (t)

of the ordinary differential equation

Ṗ = 2PWoP
−1WoP − 2P 2WcPWcP

2 (2.20)

exists in P (n) for all t ≥ 0 and converges exponentially fast to P∞. A lower
bound on the rate of convergence is

ρ ≥ 4λmin (Wo)
2 (2.21)
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Proof 2.12 Apply the transformation P → P−1 = Q to (2.14), respec-
tively, (2.15) to achieve (2.19), respectively (2.21). The same bounds on
the rate of convergence as (2.16), (2.17) carry over to (2.18), (2.20).

Thus, in cases where ‖Wc‖ (respectively λmin (Wc)) is small, one may
prefer to use (2.18) (respectively (2.20)) as a fast method to compute P∞.

Simulations

These observations are also illustrated by the following figures, which show
the evolution of the diagonal elements of P towards the solution matrix
P∞. In Figure 2.3a–b, Wo and Wc are the same as used in generating
Figure 2.2d simulations so that λmin (WoWc) ≈ 0.207 < 1

4 . Figure 2.3a uses
(2.14) while Figure 2.3b shows the evolution of (2.15), both using P (0) =
P1. These simulations demonstrate that the quadratic algorithm converges
more rapidly than the linear algorithm in the case when λmin (WoWc) < 1

4 .
In Figure 2.3c–d Wo and Wc are those used in Figure 2.2a–e simulations
with λmin (WoWc) ≈ 1.7142 > 1

4 . Figure 2.3c uses (2.14) while Figure 2.3d
shows the evolution of (2.15), both using P (0) = P1. These simulations
demonstrate that the linear algorithm does not necessarily converge more
rapidly than the quadratic algorithm in this case when λmin (WoWc) > 1

4 .

Newton-Raphson Gradient Flows

The following modification of the gradient algorithms (2.4), (2.7) is a
continuous-time version of the (discrete-time) Newton-Raphson method to
minimize φ (P ), respectively ψ (P ).

The Hessians of φ and ψ are given by:

Hφ (P ) = − P−1 ⊗ P−1WoP
−1 − P−1WoP

−1 ⊗ P−1 (2.22)

and

Hψ (P ) = − 2P−1 ⊗ P−1WoP
−1WoP

−1 − 2P−1WoP
−1 ⊗ P−1WoP

−1

− 2P−1WoP
−1WoP

−1 ⊗ P−1 − 2Wc ⊗Wc (2.23)

Thus

Hφ (P )−1 = − (P ⊗ P ) [P ⊗Wo +Wo ⊗ P ]−1 (P ⊗ P ) (2.24)

and

Hψ (P )−1 = − (P ⊗ P )
[
P ⊗WoP

−1Wo +Wo ⊗Wo +WoP
−1Wo ⊗ P

+ PWcP ⊗ PWcP ]−1 (P ⊗ P ) (2.25)
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We now consider the Newton-Raphson gradient flows

vec
(
Ṗ
)

= −Hφ (P )−1 vec (∇φ (P )) (2.26)

respectively,

vec
(
Ṗ
)

= −Hψ (P )−1 vec (∇ψ (P )) (2.27)

where φ and ψ are defined by (2.4), (2.7). The advantage of these flows
is that the linearization of (2.26), (2.27) at the equilibrium P∞ has all
eigenvalues equal to −1 and hence each component of P converges to P∞
at the same rate.

Theorem 2.13 Let κ > 0 be given. The Newton-Raphson gradient flow
(2.26) is

d

dt
vec (P ) =κ (P ⊗ P ) [P ⊗Wo +Wo ⊗ P ]−1

× (P ⊗ P ) vec
(
P−1WoP

−1 −Wc

) (2.28)

which converges exponentially fast from every initial condition P0 = P ′
0 > 0

to P∞. The eigenvalues of the linearization of (2.28) at P∞ are all equal
to −κ.

Simulations

Figure 2.4a–d shows the evolution of these Newton Raphson equations.
It can be observed in Figure 2.4e–f that all of the elements of P , in one
equation evolution, converge to P∞ at the same exponential rate. In Fig-
ure 2.4a,b,e, Wo = W1, Wc = W2 with λmin (WoWc) ≈ 0.207 < 1

4 . Fig-
ure 2.4a uses (2.27) while Figure 2.4b shows the evolution of (2.26) both
using P (0) = P1. These simulations demonstrate that the linear algorithm
does not necessarily converge more rapidly than the quadratic algorithm
when λmin (WoWc) ≈ 1.7142 > 1

4 . Figure 2.4c uses (2.27) while Figure 2.4d
shows the evolution of (2.26), both using P (0) = P1. These simulations
demonstrate that the quadratic algorithm converges more rapidly than the
linear algorithm in this case when λmin (WoWc) > 1

4 .
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Main Points of Section

With T denoting the co-ordinate basis transformation of a linear system
state space realization, then gradient flows on the class of positive definite
matrices P = TT ′ are developed which lead to equality of the controllability
and observability Gramians. A different choice of the Riemannian metric
leads to the Riccati Equation. Constrained optimization tasks on positive
definite matrices can also be solved along similar lines. A Newton-Raphson
flow involving second derivatives of the cost function is developed, and
flows on Q = P−1 are also studied. A variation involving a quadratic index
is also introduced. Each flow converges exponentially fast to the balanced
realization, but the rates depend on the eigenvalues of the Gramians, so
that at various extremes of conditioning, one flow converges more rapidly
than the others.

8.3 Flows for Balancing Transformations

In the previous section we studied gradient flows which converged to P∞ =
T 2
∞, where T∞ is the unique symmetric positive definite balancing trans-

formation for a given asymptotically stably system (A,B,C). Thus T∞ is
obtained as the unique symmetric positive definite square root of P∞. In
this section we address the general problem of determining all balancing
transformations T ∈ GL (n,R) for a given asymptotically stable system
(A,B,C), using a suitable gradient flow on the set GL (n,R) of all invert-
ible n× n matrices.

Thus for T ∈ GL (n) we consider the cost function defined by

Φ (T ) = tr
(
TWcT

′ + (T ′)−1
WoT

−1
)

(3.1)

and the associated gradient flow Ṫ = −∇Φ (T ) on GL (n). Of course, in
order to define the gradient of a function we have to specify a Riemannian
metric. Here and in the sequel we always endow GL (n,R) with its standard
Riemannian metric

〈A,B〉 = 2 tr (A′B) (3.2)

i.e. with the constant Euclidean inner product (3.2) defined on the tangent
spaces of GL (n,R). For the geometric terminology used in Part (c) of
the following theorem we refer to Appendix B; cf. also the digression on
dynamical systems in Chapter 6.
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Theorem 3.1

(a) The gradient flow Ṫ = −∇Φ (T ) of the cost function Φ on GL (n,R)
is

Ṫ = (T ′)−1
Wo (T ′T )−1 − TWc (3.3)

and for any initial condition T0 ∈ GL (n,R) the solution T (t) of
(3.3), T (0) = T0, exists, and is invertible, for all t ≥ 0.

(b) For any initial condition T0 ∈ GL (n,R), the solution T (t) of (3.3)
converges to a balancing transformation T∞ ∈ GL (n,R) and all bal-
ancing transformations can be obtained in this way, for suitable initial
conditions T0 ∈ GL (n,R).

(c) Let T∞ be a balancing transformation and let In (T∞) denote the
set of all T0 ∈ GL (n,R), such that the solution T (t) of (3.3) with
T (0) = T0 converges to T∞ at t → ∞. Then the stable manifold
W s (T∞) is an immersed invariant submanifold of GL (n,R) of di-
mension n (n+ 1) /2 and every solution T (t) ∈ W s (T∞) converges
exponentially fast in W s (T∞) to T∞.

Proof 3.2 Follows immediately from Theorem 6.4.12 with the substitution
Wc = Y Y ′, Wo = X ′X .

In the same way the gradient flow of the quadratic version of the objective
function Φ (T ) is derived. For T ∈ GL (n,R), let

Ψ (T ) = tr
(

(TWcT
′)2 +

(
(T ′)−1

WoT
−1

)2
)

(3.4)

The next theorem is an immediate consequence of Theorem 6.4.16, using
the substitutions Wc = Y Y ′, Wo = X ′X .

Theorem 3.3

(a) The gradient flow Ṫ = −∇Ψ (T ) of the objective function Ψ on
GL (n,R) is

Ṫ = 2
(
(T ′)−1

Wo (T ′T )−1
Wo (T ′T )−1 − TWcT

′TWc

)
(3.5)

and for all initial conditions T0 ∈ GL (n,R), the solutions T (t) ∈
GL (n,R) of (3.5) exist for all t ≥ 0.
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(b) For all initial conditions T0 ∈ GL (n,R), every solution T (t) of (3.5)
converges to a balancing transformation and all balancing transfor-
mations are obtained in this way, for a suitable initial conditions
T0 ∈ GL (n,R).

(c) For any balancing transformation T∞ ∈ GL (n,R) let W s (T∞) ⊂
GL (n,R) denote the set of all T0 ∈ GL (n,R), such that the solution
T (t) of (3.5) with initial condition T0 converges to T∞ as t → ∞.
Then W s (T∞) is an immersed submanifold of GL (n,R) of dimension
n (n+ 1) /2 and is invariant under the flow of (3.5). Every solution
T (t) ∈W s (T∞) converges exponentially to T∞.

Diagonal balancing transformations

Here we address the related issue of computing diagonal balancing trans-
formations for a given asymptotically stable minimal realization (A,B,C).

Again the results are special cases of the more general results derived in
Section 6.4. Let us consider a fixed diagonal matrix N = diag (µ1, . . . , µn)
with distinct eigenvalues µ1 > · · · > µn. Using N , a weighted cost function
for balancing is defined by

ΦN (T ) = tr
(
NTWcT

′ +N (T ′)−1
WoT

−1
)

(3.6)

We have the following immediate corollaries of Lemma 6.4.17 and Theo-
rem 6.4.18.

Lemma 3.4 Let N = diag (µ1, . . . , µn) with µ1 > · · · > µn. Then

(a) T ∈ GL (n,R) is a critical point of ΦN : GL (n,R) → R if and only
if T is a diagonal balancing transformation, i.e.

TWcT
′ = (T ′)−1

WoT
−1 = diagonal

(b) A global minimum Tmin ∈ GL (n,R) of ΦN exists, if (A,B,C) is
controllable and observable.

Theorem 3.5 Let (A,B,C) be asymptotically stable, controllable and ob-
servable and let N = diag (µ1, . . . , µn) with µ1 > · · · > µn.

(a) The gradient flow Ṫ = −∇ΦN (T ) of the weighted cost function ΦN :
GL (n) → R is

Ṫ = (T ′)−1
WoT

−1N (T ′)−1 −NTWc, T (0) = T0 (3.7)

and for all initial conditions T0 ∈ GL (n) the solution of (3.7) exists
and is invertible for all t ≥ 0.
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(b) For any initial condition T0 ∈ GL (n) the solution T (t) of (3.7)
converges to a diagonal balancing coordinate transformation T∞ ∈
GL (n) and all diagonal balancing transformations can be obtained in
this way, for a suitable initial condition T0 ∈ GL (n).

(c) Suppose the Hankel singular values di, i = 1, . . . , n, of (A,B,C) are
distinct. Then (3.7) has exactly 2nn! equilibrium points T∞. These
are characterized by (T ′

∞)−1
WoT

−1
∞ = T∞WcT∞ = D where D is

a diagonal matrix. There are exactly 2n stable equilibrium points of
(3.7), where now D = diag (d1, . . . , dn) is diagonal with d1 < · · · <
dn. There exists an open and dense subset Ω ⊂ GL (n) such that
for all T0 ∈ Ω the solution of (3.7) converges exponentially fast to a
stable equilibrium point T∞. The rate of exponential convergence is
bounded below by

λmin (T∞T ′
∞)−1

.min
i<j

((di − dj) (µj − µi) , 4diµi) .

All other equilibria are unstable.

Main Points of Section

Gradient flows on the co-ordinate basis transformations are studied for both
balancing and diagonal balancing. Again, exponential convergence rates are
achieved.

8.4 Balancing via Isodynamical Flows

In this section we construct ordinary differential equations

Ȧ =f (A,B,C)

Ḃ =g (A,B,C)

Ċ =h (A,B,C)

evolving on the space of all realizations (A,B,C) of a given transfer function
G (s), with the property that their solutions (A (t) , B (t) , C (t)) all converge
for t → ∞ to balanced realizations

(
Ā, B̄, C̄

)
of G (s). These equations

generalize the class of isospectral flows, defined by B = 0, C = 0, and are
thus of theoretical interest.
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A differential equation

Ȧ (t) =f (t, A (t) , B (t) , C (t))

Ḃ (t) =g (t, A (t) , B (t) , C (t))

Ċ (t) =h (t, A (t) , B (t) , C (t))

(4.1)

defined on the vector space of all triples (A,B,C) ∈ Rn×n×Rn×m×Rp×n

is called isodynamical if every solution (A (t) , B (t) , C (t)) of (4.1) is of the
form

(A (t) , B (t) , C (t)) =
(
S (t)A (0)S (t)−1

, S (t)B (0) , C (0)S (t)−1
)
(4.2)

with S (t) ∈ GL (n), S (0) = In. Condition (4.2) implies that the transfer
function

Gt (s) = C (t) (sI −A (t))−1B (t) = C (0) (sI −A (0))−1B (0)
(4.3)

is independent of t. Conversely if (4.3) holds with (A (0) , B (0) , C (0)) con-
trollable and observable, then (A (t) , B (t) , C (t)) is of the form (4.2). This
is the content of Kalman’s realization theorem, see Appendix B.

There is a simple characterization of isodynamical flows which extends
the characterization of isospectral flows given in Chapter 1.

Lemma 4.1 Let I ⊂ R be an interval and let Λ (t) ∈ Rn×n, t ∈ I, be a
continuous time-varying family of matrices. Then

Ȧ (t) =Λ (t)A (t) −A (t) Λ (t)

Ḃ (t) =Λ (t)B (t)
C (t) = − C (t) Λ (t)

(4.4)

is isodynamical. Conversely, every isodynamical differential equation (4.1)
on Rn×n × Rn×m × Rp×n is of the form (4.4).

Proof 4.2 Let T (t) denote the unique solution of the linear differential
equation

Ṫ (t) = Λ (t)T (t) , T (0) = In,

and let
(
Â (t) , B̂ (t) , Ĉ (t)

)
=

(
T (t)A (0)T (t)−1 , T (t)B (0) , C (0)T (t)−1

)
.
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Then
(
Â (0) , B̂ (0) , Ĉ (0)

)
= (A (0) , B (0) , C (0)) and

d

dt
Â (t) =Ṫ (t)A (0)T (t)−1 − T (t)A (0)T (t)−1 Ṫ (t)T (t)−1

=Λ (t) Â (t) − Â (t) Λ (t)
d

dt
B̂ (t) =Ṫ (t)B (0) = Λ (t) B̂ (t)

d

dt
Ĉ (t) =C (0) − T (t)−1

Ṫ (t)T (t)−1 = −Ĉ (t) Λ (t) .

Thus every solution
(
Â (t) , B̂ (t) , Ĉ (t)

)
of an isodynamical flow satisfies

(4.4). On the other hand, for every solution (A (t) , B (t) , C (t)) of (4.4),(
Â (t) , B̂ (t) , Ĉ (t)

)
is of the form (4.2). By the uniqueness of the solutions

of (4.4),
(
Â (t) , B̂ (t) , Ĉ (t)

)
= (A (t) , B (t) , C (t)), t ∈ I, and the result

follows.

In the sequel let (A,B,C) denote a fixed asymptotically stable realiza-
tion. At this point we do not necessarily assume that (A,B,C) is control-
lable or observable. Let

O (A,B,C) =
{(
SAS−1, SB,CS−1

) | S ∈ GL (n,R)
}

(4.5)

Since O (A,B,C) is an orbit for the similarity action on Rn×(n+m+p), see
Chapter 7, it is a smooth submanifold of Rn×(n+m+p).

Let Φ : O (A,B,C) → R denote the cost function defined by

Φ
(
SAS−1, SB,CS−1

)
= tr

(
Wc

(
SAS−1, SB

)
+Wo

(
SAS−1, CS−1

))
(4.6)

where Wc (F,G) and Wo (F,H) denote the controllability and observability
Gramians of (F,G,H) respectively. The following proposition summarizes
some important properties of O (A,B,C) and Φ : O (A,B,C) → R.

Proposition 4.3 Let (A,B,C) ∈ Rn×(n+m+p).

(a) O (A,B,C) is a smooth submanifold of Rn×(n+m+p). The tangent
space of O (A,B,C) at (F,G,H) ∈ O (A,B,C) is

T(F,G,H)O (A,B,C) ={
([X,F ] , XG,−HX) ∈ R

n×(m+m+p) | X ∈ R
n×n

}
(4.7)

Let (A,B,C) be asymptotically stable, controllable and observable.
Then
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(b) O (A,B,C) is a closed subset of Rn×(n+m+p).

(c) The function Φ : O (A,B,C) → R defined by (4.6) is smooth and has
compact sublevel sets.

Proof 4.4 O (A,B,C) is an orbit of the GL (n,R) similarity action

σ : GL (n) × R
n×(n+m+p) →R

n×(n+m+p)

(S, (A,B,C)) → (
SAS−1, SB,CS−1

)

and thus a smooth submanifold of R
n×(n+m+p); see Appendix C. This

proves (a). Now assume (A,B,C) is asymptotically stable, controllable
and observable. Then (b) and (c) follow immediately from Lemmas 6.4.1
and 6.4.17.

We now address the issue of finding gradient flows for the objective
function Φ : O (A,B,C) → R, relative to some Riemannian metric on
O (A,B,C). We endow the vector space Rn×(n+m+p) of all triples (A,B,C)
with its standard Euclidean inner product 〈 , 〉 defined by

〈(A1, B1, C1) , (A2, B2, C2)〉 = tr (A1A
′
2 +B1B

′
2 + C1C

′
2) (4.8)

Since the orbit O (A,B,C) is a submanifold of Rn×(n+m+p), the inner prod-
uct 〈 , 〉 on Rn×(n+m+p) induces an inner product on each tangent space
T(F,G,H)O (A,B,C) by

〈([X1, F ] , X1G,−HX1) , ([X2, F ] , X2G,−HX2)〉
= tr

(
[X1, F ] · [X2, F ]′ +X1GG

′X ′
2 +HX1X

′
2H

′) (4.9)

and therefore defines a Riemannian metric on O (A,B,C); see Appendix C
and (4.7). We refer to this Riemannian metric as the induced Riemannian
metric on O (A,B,C)

A second, and for the subsequent development, a more important Rie-
mannian metric on O (A,B,C) is defined as follows. Here we assume that
(A,B,C) is controllable and observable. Instead of defining the inner prod-
uct of tangent vectors ([X1, F ] , X1G,−HX1) , ([X2, F ] , X2G,−HX2) ∈
T(F,G,H)O (A,B,C) as in (4.9) we set

〈〈([X1, F ] , X1G,−HX1) , ([X2, F ] , X2G,−HX2)〉〉 := 2 tr (X ′
1X2)

(4.10)

The next lemma shows that (4.10) defines an inner product on the tangent
space.
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Lemma 4.5 Let (A,B,C) be controllable or observable. Then

([X,A] , XB,−CX) = (0, 0, 0)

implies X = 0.

Proof 4.6 If XB = 0 and AX = XA then X
(
B,AB, . . . , An−1B

)
= 0.

Thus by controllability X = 0. Similarly for observability of (A,B,C).

It is easily verified, using controllability and observability of (F,G,H),
that (4.10) defines a Riemannian metric on O (A,B,C). We refer to this as
the normal Riemannian metric on O (A,B,C). In order to determine the
gradient flow of Φ : O (A,B,C) → R we need the following lemma.

Lemma 4.7 Let Φ : O (A,B,C) → R be defined by Φ (F,G,H) =
tr (Wc (F, G) +Wo (F,H)) for all (F,G,H) ∈ O (A,B,C). Then the
derivative of Φ at (F,G,H) ∈ O (A,B,C) is the linear map on
T(F,G,H)O (A,B,C) defined by

DΦ(F,G,H) ([X,F ] , XG,−HX) = 2 tr ((Wc (F,G) −Wo (F,H))X)
(4.11)

Proof 4.8 Consider the smooth map σ : GL (n) → O (A,B,C) defined
by σ (S) =

(
SFS−1, SG,HS−1

)
for S ∈ GL (n). The composed map of Φ

with σ is φ = Φ · σ with

φ (S) = tr
(
SWc (F,G)S′ + (S′)−1

Wo (F,H)S−1
)

By the chain rule we have Dφ|I (X) = DΦ|(F,G,H) ([X,F ] , XG,−HX)
and

Dφ|I (X) = 2 tr (Wc (F,G) −Wo (F,H)X)

This proves the result.

Theorem 4.9 Let (A,B,C) be asymptotically stable, controllable and ob-
servable. Consider the cost function Φ : O (A,B,C) → R, Φ (F,G,H) =
tr (Wc (F,G) +Wo (F,H)).

(a) The gradient flow Ȧ = −∇AΦ (A,B,C), Ḃ = −∇BΦ (A,B,C), Ċ =
−∇CΦ (A,B,C) for the normal Riemannian metric on O (A,B,C)
is

Ȧ (t) = − [A (t) ,Wc (A (t) , B (t)) −Wo (A (t) , C (t))]

Ḃ (t) = − (Wc (A (t) , B (t)) −Wo (A (t) , C (t)))B (t)

Ċ (t) =C (t) (Wc (A (t) , B (t)) −Wo (A (t) , C (t))) .
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(b) For every initial condition (A (0) , B (0) , C (0)) ∈ O (A,B,C) the so-
lution (A (t) , B (t) , C (t)) of (4.12) exist for all t ≥ 0 and (4.12) is an
isodynamical flow on the open set of asymptotically stable controllable
and observable systems (A,B,C).

(c) For any initial condition (A (0) , B (0) , C (0)) ∈ O (A,B,C) the solu-
tion (A (t) , B (t) , C (t)) of (4.12) converges to a balanced realization
(A∞, B∞, C∞) of the transfer function C (sI −A)−1

B. Moreover the
convergence to the set of all balanced realizations of C (sI −A)−1

B
is exponentially fast.

Proof 4.10 The proof is similar to that of Theorem 6.5.1. Let gradΦ =
(gradΦ1, gradΦ2, gradΦ3) denote the three components of the gradient
of Φ with respect to the normal Riemannian metric. The derivative, i.e.
tangent map, of Φ at (F,G,H) ∈ O (A,B,C) is the linear map DΦ|(F,G,H) :
T(F,G,H)O (A,B,C) → R defined by

DΦ|(F,G,H) ([X,F ] , XG,−HX) = 2 tr (X (Wc (F,G) −Wo (F,H))) ,
(4.12)

see Lemma 5.1. By definition of the gradient of a function, see Appendix
C, gradΦ (F,G,H) is characterized by the conditions

gradΦ (F,G,H) ∈ T(F,G,H)O (A,B,C) (4.13)

and

DΦ|(F,G,H) ([X,F ] , XG,−HX)

= 〈〈(gradΦ1, gradΦ2, gradΦ3) , ([X,F ] , XG,−HX)〉〉 (4.14)

for all X ∈ Rn×n. By Proposition 4.3, (4.13) is equivalent to

gradΦ (F,G,H) = ([X1, F ] , X1G,−HX1) (4.15)

for X1 ∈ Rn×n. Note that by Lemma 4.7, the matrix X1 is uniquely deter-
mined. Thus (4.14) is equivalent to

2 tr ((Wc (F,G) −Wo (F,H))X)

= 〈〈([X1, F ] , X1G,−HX1) , ([X,F ] , XG,−HX)〉〉
=2 tr (X ′

1X)
(4.16)

for all X ∈ Rn×n. Thus

X1 = Wc (F,G) −Wo (F,H)
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and therefore

gradΦ (F,G,H) =
(
[Wc (F,G) −Wo (F,H) , F ] ,

(Wc (F,G) −Wo (F,H))G,−H (Wc (F,G) −Wo (F,H))
)
.

This proves (a). The rest of the argument goes as in the proof of Theo-
rem 6.5.1. Explicitly, for (b) note that Φ (A (t) , B (t) , C (t)) decreases along
every solution of (4.12). By Proposition 4.3,

{(F,G,H) ∈ O (A,B,C) | Φ (F,G,H) ≤ Φ (Fo, Go, Ho)}
is a compact set. Therefore (A (t) , B (t) , C (t)) stays in that compact subset
(for (Fo, Go, Ho) = (A (0) , B (0) , C (0))) and thus exists for all t ≥ 0. By
Lemma 4.1 the flows are isodynamical. This proves (b). Since (4.12) is a gra-
dient flow of Φ : O (A,B,C) → R and since Φ : O (A,B,C) → R has com-
pact sublevel sets the solutions (A (t) , B (t) , C (t)) all converge to the equi-
libria points of (4.12), i.e. to the critical points of Φ : O (A,B,C) → R. But
the critical points of Φ : O (A,B,C) → R are just the balanced realizations
(F,G,H) ∈ O (A,B,C), being characterized by Wc (F,G) = Wo (F,H);
see Lemma 4.7. Exponential convergence follows since the Hessian of Φ at
a critical point is positive definite, cf. Lemma 6.4.17.

A similar ODE approach also works for diagonal balanced realizations.
Here we consider the weighted cost function

ΦN : O (A,B,C) → R,

ΦN (F,G,H) = tr (N (Wc (F,G) +Wo (F,H)))
(4.17)

for a real diagonal matrix N = diag (µ1, . . . , µn), µ1 > · · · > µn. We have
the following result.

Theorem 4.11 Let (A,B,C) be asymptotically stable, controllable and ob-
servable. Consider the weighted cost function

ΦN : O (A,B,C) → R,

ΦN (F, G, H) = tr (N (Wc (F,G) +Wo (F,H))) ,

with N = diag (µ1, . . . , µn), µ1 > · · · > µn.

(a) The gradient flow
(
Ȧ = −∇AΦN , Ḃ = −∇BΦN , Ċ = −∇CΦN

)
for

the normal Riemannian metric is

Ȧ = − [A,Wc (A,B)N −NWo (A,C)]

Ḃ = − (Wc (A,B)N −NWo (A,C))B

Ċ =C (Wc (A,B)N −NWo (A,C))

(4.18)
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(b) For any initial condition (A (0) , B (0) , C (0)) ∈ O (A,B,C) the so-
lution (A (t) , B (t) , C (t)) of (4.18) exists for all t ≥ 0 and the flow
(4.18) is isodynamical.

(c) For any initial condition (A (0) , B (0) , C (0)) ∈ O (A,B,C) the so-
lution matrices (A (t) , B (t) , C (t)) of (4.18) converges to a diagonal
balanced realization (A∞, B∞, C∞) of C0 (sI −A0)

−1
B0.

Proof 4.12 The proof of (a) and (b) goes—mutatis mutandis—as for (a)
and (b) in Theorem 4.9. Similarly for (c) once we have checked that the
critical point of ΦN : O (A,B,C) → R are the diagonal balanced realiza-
tions. But this follows using the same arguments given in Theorem 6.3.9.

We emphasize that the above theorems give a direct method to com-
pute balanced or diagonal balanced realizations, without computing any
balancing coordinate transformations.

Discrete-time Balancing Flows

Based on earlier observations in this chapter, it is no surprise that discrete-
time flows to achieve balanced realizations and diagonal balanced realiza-
tions follow directly from the balanced matrix factorization algorithms of
Chapter 6 and inherit their convergence properties. Here we restrict atten-
tion to isodynamical balancing flows derived by taking the matrix factors
X , Y to be the m-th controllability and observability matrices as follows:

Y =Rm (A,B) =
(
B,AB, . . . , Am−1B

)
(4.19)

X =Om (A,C) =




C

CA
...

CAm−1


 . (4.20)

Now the observability and controllability Gramians are

W (m)
o (A,C) = X ′X, W (m)

c (A,B) = Y Y ′ (4.21)

From now on let us assume that m ≥ n+ 1. The case m = ∞ is allowed if
A is allowed to be discrete-time stable. We claim that the matrix factoriza-
tion balancing flow (6.6.1) (6.6.2) specialized to this case gives by simple
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manipulations the discrete-time isodynamical flow

Ak+1 =e−αk(W (m)
c (Ak,Bk)−W (m)

o (Ak,Ck))Akeαk(W (m)
c (Ak,Bk)−W (m)

o (Ak,Ck))

Bk+1 =e−αk(W (m)
c (Ak,Bk)−W (m)

o (Ak,Ck))Bk

Ck+1 =Ckeαk(W (m)
c (Ak,Bk)−W (m)

o (Ak,Ck))

(4.22)

αk =
1

2λmax
(
W

(m)
c (Ak, Bk) +W

(m)
o (Ak, Ck)

) (4.23)

In fact from (6.6.1), (6.6.2) we obtain for Tk = e−αk(YkY
′

k−X′
kXk) ∈ GL (n)

that

Xk+1 =XkT
−1
k , Yk+1 =TkYk, k ∈N,

X0 =Om (A0, C0) , Y0 =Rm (A0, B0) .

A simple induction argument on k then establishes the existence of
(Ak, Bk, Ck) with

Xk = Om (Ak, Ck) , Yk = Rm (Ak, Bk)

for all k ∈ N0. The above recursion on (Xk, Yk) is now equivalent to

Om (Ak+1, Ck+1) =Om (Ak, Ck)T−1
k = Om

(
TkAkT

−1
k , CkT

−1
k

)
Rm (Ak+1, Bk+1) =TkRm (Ak, Bk) = Rm

(
TkAkT

−1
k , TkBk

)

for k ∈ N. Thus, using m ≥ n+ 1, we obtain

Ak+1 = TkAkT
−1
k , Bk+1 = TkBk, Ck+1 = CkT

−1
k ,

which is equivalent to (4.22). Likewise for the isodynamical diagonal bal-
ancing flows, we have

Ak+1 =e−αk(W (m)
c (Ak,Bk)N−NW (m)

o (Ak,Ck))

×Ake
αk(W (m)

c (Ak,Bk)N−NW (m)
o (Ak,Ck))

Bk+1 =e−αk(W (m)
c (Ak,Bk)N−NW (m)

o (Ak,Ck))Bk

Ck+1 =Ckeαk(W (m)
c (Ak,Bk)N−NW (m)

o (Ak,Ck))

(4.24)
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αk =
1

2
∥∥∥W (m)

o N −NW
(m)
c

∥∥∥ (4.25)

× log




∥∥∥(W (m)
o −W

(m)
c

)
N +N

(
W

(m)
o −W

(m)
c

)∥∥∥
4 ‖N‖ ·

∥∥∥(W (m)
o N −NW

(m)
c

)∥∥∥ tr
(
W

(m)
c +W

(m)
o

) + 1




where the Ak, Bk, Ck dependance of αk has been omitted for simplicity.
Also, as before N is taken for most applications as N = diag (µ1, . . . , µn),
µ1 > · · · > µn.

By applying Theorem 6.6.4 we conclude

Theorem 4.13 Let (A0, B0, C0) ∈ L (n,m, p) be controllable and observ-
able and let N = diag (µ1, . . . , µn) with µ1 > · · · > µn. Then:

(a) The recursion (4.24) is a discrete-time isodynamical flow.

(b) Every solution (Ak, Bk, Ck) of (4.24) converges to the set of all diag-
onal balanced realizations of the transfer function C0 (sI −A0)

−1
B0.

(c) Suppose that the singular values of the Hankel matrix Hm =
Om (A0, C0)Rm (A0, B0) are distinct. There are exactly 2nn! fixed
points of (4.24), corresponding to the diagonal balanced realizations of
C0 (sI −A0)

−1
B0. The set of asymptotically stable fixed points cor-

respond to those diagonal balanced realizations (A∞, B∞, C∞) with
Wc (A∞, B∞) = Wo (A∞, C∞) = diag (σ1, . . . , σn), where σ1 < · · · <
σn are the singular values of Hm.

Main Points of Section

Ordinary differential equations on the linear system matrices A, B, C are
achieved which converge exponentially to balancing, or diagonal balancing
matrices. This avoids the need to work with co-ordinate basis transforma-
tions. Discrete-time isodynamical flows for balancing and diagonal balanc-
ing are in essence matrix factorization flows for balancing and inherit the
same geometric and dynamical system properties.

8.5 Euclidean Norm Optimal Realizations

We now consider another type of balancing that can be applied to systems
regardless of their stability properties. This form of balancing was intro-
duced in Verriest (1988) and Helmke (1993a) and interesting connections
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exist with least squares matching problems arising in computer graphics,
Brockett (1989a). The techniques in this section are crucial to our analysis
of L2-sensitivity optimization problems as studied in the next chapter.

The limiting solution of a gradient algorithm appears to be the only
possible way of finding such least squares optimal realizations and direct
algebraic algorithms for the solutions are unknown.

Rather than minimizing the sum of the traces of the controllability and
observability Gramians (which may not exist) the task here is to minimize
the least squares or Euclidean norm of the realization, that is∥∥(TAT−1, TB,CT−1

)∥∥2

= tr
(
TAT−1T ′−1A′T ′ + TBB′T ′ + CT−1T ′−1C′) (5.1)

Observe that (5.1) measures the distance of
(
TAT−1, TB,CT−1

)
to the

zero realization (0, 0, 0). Eising has considered the problem of finding the
best approximations of a given realization (A,B,C) by uncontrollable or
unobservable systems with respect to the Euclidean norm (5.1). Thus this
norm is sometimes called the Eising distance.

Using the substitution P = T ′T the function to be minimized, over the
class of symmetric positive definite matrices P , is Γ : P (n) → R,

Γ (P ) = tr
(
AP−1A′P +BB′P + P−1C′C

)
. (5.2)

The gradient ∇Γ (P ) is then

∇Γ (P ) = AP−1A′ − P−1A′PAP−1 +BB′ − P−1C′CP−1

(5.3)

and the associated gradient flow Ṗ = −∇Γ (P ) is

Ṗ = −AP−1A′ −BB′ + P−1 (A′PA+ C′C)P−1. (5.4)

Any equilibrium P∞ of such a gradient flow will be characterized by

AP−1
∞ A′ +BB′ = P−1

∞ (A′P∞A+ C′C)P−1
∞ . (5.5)

Any P∞ = P ′
∞ > 0 satisfying (5.5) is called Euclidean norm optimal.

Let P∞ = P ′
∞ > 0 satisfy (5.5) and T∞ = P

1/2
∞ be the positive definite

symmetric square root. Then (F,G,H) =
(
T∞AT−1∞ , T∞B,CT−1∞

)
satisfies

FF ′ +GG′ = F ′F +H ′H. (5.6)

Any realization (F,G,H) ∈ O (A,B,C) which satisfies (5.6) is called Eu-
clidean norm balanced. A realization (F,G,H) ∈ O (A,B,C) is called Eu-
clidean diagonal norm balanced if

FF ′ +GG′ = F ′F +H ′H = diagonal. (5.7)



260 Chapter 8. Balancing via Gradient Flows

The diagonal entries σ1 ≥ · · · ≥ σn > 0 of (5.7) are called the gener-
alized (norm) singular values of (F,G,H) and FF ′ + GG′, F ′F + H ′H
are called the Euclidean norm controllability Gramian and Euclidean norm
observability Gramian, respectively.

For the subsequent stability of the gradient flow we need the following
technical lemma.

Lemma 5.1 Let (A,B,C) be controllable or observable (but not necessar-
ily asymptotically stable!). Then the linear operator

In ⊗AA′ +A′A⊗ In −A⊗ A−A′ ⊗A′ + In ⊗BB′ + C′C ⊗ In
(5.8)

has all its eigenvalues in C+ = {λ ∈ C | Re (λ) > 0}.
Proof 5.2 Suppose there exists λ ∈ C and X ∈ Cn×n such that

XAA′ +A′AX −A′XA−AXA′ +XBB′ + C′CX = λ ·X
Let X∗ = X̄ ′ denote the Hermitian transpose. Then

tr(XAA′X∗ +AXX∗A′ −AXA′X∗

−A′XAX∗ +XBB′X∗ + CXX∗C′) = Re (λ) · ‖X‖2

A straightforward manipulation shows that the left hand side is equal to

‖AX −XA‖2 + ‖XB‖2 + ‖CX‖2 ≥ 0

and therefore Re (λ) ≥ 0.
Suppose AX = XA, XB = 0 = CX . Then by Lemma 4.7 X = 0. Thus

taking vec operations and assuming X �= 0 implies the result.

Lemma 5.3 Given a controllable and observable realization (A,B,C), the
linearization of the flow (5.4) at any equilibrium point P∞ > 0 is exponen-
tially stable.

Proof 5.4 The linearization (5.4) about P∞ is given by d
dt vec (ξ) = J ·

vec (ξ) where

J =AP−1
∞ ⊗AP−1

∞ − P−1
∞ ⊗ P−1

∞ (A′P∞A+ C′C)P−1
∞

− P−1
∞ (A′P∞A+ C′C)P−1

∞ ⊗ P−1
∞ + P−1

∞ A′ ⊗ P−1
∞ A′

Let F = P
1/2
∞ AP

−1/2
∞ , G = P

1/2
∞ B, H = CP

−1/2
∞ . Then with

J̄ =
(
P 1/2
∞ ⊗ P 1/2

∞
)
J
(
P 1/2
∞ ⊗ P 1/2

∞
)
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J̄ = F ⊗ F − I ⊗ F ′F + F ′ ⊗ F ′ − F ′F ⊗ I − I ⊗H ′H −H ′H ⊗ I
(5.9)

and using (5.6) gives

J̄ = F ⊗ F + F ′ ⊗ F ′ − I ⊗ (FF ′ +GG′) − (F ′F +H ′H) ⊗ I
(5.10)

By Lemma 5.1 the matrix J̄ has only negative eigenvalues. The symmetric
matrices J̄ and J are congruent, i.e. J̄ = X ′JX for an invertible n × n
matrix X . By the inertia theorem, see Appendix A, J and J̄ have the
same rank and signatures and thus the numbers of positive respectively
negative eigenvalues coincide. Therefore J has only negative eigenvalues
which proves the result.

The uniqueness of P∞ is a consequence of the Kempf-Ness theorem and
follows from Theorem 7.5.1. Using Lemma 5.3 we can now give an alterna-
tive uniqueness proof which uses Morse theory. It is intuitively clear that
on a mountain with more than one maximum or minimum there should
also be a saddle point. This is the content of the celebrated Birkhoff min-
imax theorem and Morse theory offers a systematic generalization of such
results. Thus, while the intuitive basis of the uniqueness of P∞ should be
obvious from Theorem 7.4.7, we show how the result follows by the formal
machinery of Morse theory. See Milnor (1963) for a thorough account on
Morse theory.

Proposition 5.5 Given any controllable and observable system (A,B,C),
there exists a unique P∞ = P ′

∞ > 0 which minimizes Γ : P (n) → R

and T∞ = P
1/2
∞ is a least squares optimal coordinate transformation. Also,

Γ : P (n) → R has compact sublevel sets.

Proof 5.6 Consider the continuous map

τ : P (n) → R
n×(n+m+p)

defined by
τ (P ) =

(
P 1/2AP−1/2, P 1/2B,CP−1/2

)
.

By Lemma 7.4.1 the similarity orbit O (A,B,C) is a closed subset of
Rn×(n+m+p) and therefore

Ma := {(F,G,H) ∈ O (A,B,C) | tr (FF ′ +GG′ +H ′H) ≤ a}
is compact for all a ∈ R. The function τ : P (n) → O (A,B,C) is a home-
omorphism and therefore τ−1 (Ma) = {P ∈ P (n) | Γ (P ) ≤ a} is compact.
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This proves that Γ : P (n) → R has compact sublevel sets. By Lemma 5.3,
the Hessian of Γ at each critical point is positive definite. A smooth func-
tion f : P (n) → R is called a Morse function if it has compact sublevel
sets and if the Hessian at each critical point of f is invertible. Morse func-
tions have isolated critical points, let ci (f) denote the number of critical
points where the Hessian has exactly i negative eigenvalues, counted with
multiplicities. Thus c0 (f) is the number of local minima of f . The Morse in-
equalities bound the numbers ci (f), i ∈ No for a Morse function f in terms
of topological invariants of the space P (n), which are thus independent of
f . These are the so-called Betti numbers of P (n).

The i-th Betti number bi (P (n)) is defined as the rank of the i-th (sin-
gular) homology group Hi (P (n)) of P (n). Also, b0 (P (n)) is the number
of connected components of P (n). Since P (n) is homeomorphic to the
Euclidean space Rn(n+1)/2 we have

bi (P (n)) =

{
1 i = 0,
0 i ≥ 1.

(5.11)

From the above, Γ : P (n) → R is a Morse function on P (n). The Morse
inequalities for Γ are

c0 (Γ) ≥b0 (P (n))
c0 (Γ) − c1 (Γ) ≤b0 (P (n)) − b1 (P (n))

c0 (Γ) − c1 (Γ) + c2 (Γ) ≥b0 (P (n)) − b1 (P (n)) + b2 (P (n))
...

dimP(n)∑
i=0

(−1)i ci (Γ) =
dimP(n)∑
i=0

(−1)i bi (P (n)) .

Since ci (Γ) = 0 for i ≥ 1 the Morse inequalities imply, using (5.11),
c0 (Γ) ≥1

c0 (Γ) − c1 (Γ) =c0 (Γ) ≤ b0 (P (n)) = 1.

Hence c0 (Γ) = 1, and ci (Γ) = 0 for i ≥ 1, i.e. Γ has a unique local = global
minimum. This completes the proof.

We summarize the above results in a theorem.

Theorem 5.7 Let (A,B,C) be controllable and observable and let Γ :
P (n) → R be the smooth function defined by

Γ (P ) = tr
(
AP−1A′P +BB′P + C′CP−1

)
.
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The gradient flow Ṗ (t) = −∇Γ (P (t)) on P (n) is given by

Ṗ = −AP−1A′ −BB′ + P−1 (A′PA+ C′C)P−1. (5.12)

For every initial condition P0 = P ′
0 > 0, the solution P (t) ∈ P (n) of

the gradient flow exists for all t ≥ 0 and P (t) converges to the uniquely
determined positive definite matrix P∞ satisfying (5.5).

As before we can find equations that evolve on the space of realizations
rather than on the set of positive definite squared transformation matrices.

Theorem 5.8 Let the matrices (A,B,C) be controllable and observable
and let Γ : O (A,B,C) → R be the least squares cost function defined by
Γ (F,G,H) = tr (FF ′ +GG′ +H ′H) for (F,G,H) ∈ O (A,B,C).

(a) The gradient flow
(
Ȧ = −∇AΓ, Ḃ = −∇BΓ, Ċ = −∇CΓ

)
for the

normal Riemannian metric on O (A,B,C) given by (4.10) is

Ȧ = [A, [A,A′] +BB′ − C′C]

Ḃ = − ([A,A′] +BB′ − C′C)B

Ċ =C ([A,A′] +BB′ − C′C)

(5.13)

(b) For all initial conditions (A (0) , B (0) , C (0)) ∈ O (A,B,C), the so-
lution (A (t) , B (t) , C (t)) of (5.13), exist for all t ≥ 0 and (5.13),
is an isodynamical flow on the set of all controllable and observable
triples (A,B,C).

(c) For any initial condition, the solution (A (t) , B (t) , C (t)) of (5.13)
converges to a Euclidean norm optimal realization, characterized by

AA′ +BB′ = A′A+ C′C (5.14)

(d) Convergence to the class of Euclidean norm optimal realizations
(5.14) is exponentially fast.

Proof 5.9 Let gradΓ = (gradΓ1, gradΓ2, gradΓ3) denote the gradient of
Γ : O (A,B,C) → R with respect to the normal Riemannian metric. Thus
for each (F,G,H) ∈ O (A,B,C), then gradΓ (F,G,H) is characterized by
the condition

gradΓ (F,G,H) ∈ T(F,G,H)O (A,B,C) (5.15)
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and

DΓ|(F,G,H) ([X,F ] , XG,−HX)

= 〈〈(gradΓ1, gradΓ2, gradΓ3) , ([X,F ] , XG,−HX)〉〉 (5.16)

for all X ∈ R
n×n. The derivative of Γ at (F,G,H) is the linear map defined

on the tangent space T(F,G,H)O (A,B,C) by

DΓ|(F,G,H) ([X,F ] , XG,−HX) = 2 tr [([F, F ′] +GG′ −H ′H)X ]
(5.17)

for all X ∈ Rn×n. By (4.14)

gradΓ (F,G,H) = ([X1, F ] , X1G,−HX1)

for a uniquely determined n× n matrix X1. Thus with (5.17), then (5.16)
is equivalent to

X1 = [F, F ′] +GG′ −H ′H (5.18)

This proves (a). The proofs of (b) and (c) are similar to the proofs of
Theorem 4.9. We only have to note that Γ : O (A,B,C) → R has compact
sublevel sets (this follows immediately from the closedness of O (A,B,C)
in Rn×(n+m+p)) and that the Hessian of Γ on the normal bundle of the set
of equilibria is positive definite.

The above theorem is a natural generalization of Theorem 6.5.1. In fact,
for A = 0, (5.13) is equivalent to the gradient flow (6.5.4). Similarly for
B = 0, C = 0, (5.13) is the double bracket flow Ȧ = [A, [A,A′]].

It is inconvenient to work with the gradient flow (5.13) as it involves
solving a cubic matrix differential equation. A more convenient form leading
to a quadratic differential equation is to augment the system with a suitable
differential equation for a matrix parameter Λ.

Problem 5.10 Show that the system of differential equations

Ȧ =AΛ − ΛA

Ḃ = − ΛB

Ċ =CΛ

Λ̇ = − Λ + [A,A′] +BB′ − C′C

(5.19)

is Lyapunov stable, where Λ = Λ′ is symmetric. Moreover, every solution
(A (t) , B (t) , C (t) ,Λ (t)) of (5.19) exists for all t ≥ 0 and converges to
(A∞, B∞, C∞, 0) where (A∞, B∞, C∞) is Euclidean norm balanced.
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Main Points of Section

A form of balancing involving a least squares (Euclidean) norm on the
system matrices is achieved via gradient flow techniques. There does not
appear to be an explicit algebraic solution to such balancing. At this stage,
the range of application areas of the results of this section is not clear,
but there are some applications in system identification under study, and
there is a generalization which is developed in Chapter 9 to sensitivity
minimizations.
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Notes for Chapter 8

Numerical algorithms for computing balanced realizations are described
in Laub et al. (1987), Safonov and Chiang (1989). These are based on
standard numerical software. Least squares optimal realizations have been
considered by Verriest (1988) and Helmke (1993a). Numerical linear algebra
methods for computing such realizations are unknown and the gradient flow
techniques developed in this chapter are the only available computational
tools.

An interesting feature of the dynamical systems for balancing as de-
scribed in this chapter is their robustness with respect to losses of control-
lability or observability properties. For example, the linear and quadratic
gradient flows on positive definite matrices have robust or high rates of
exponential convergence, respectively, if the observability properties of the
system are poor. Thus for certain applications such robustness properties
may prove useful.

Discrete-time versions of the gradient flows evolving on positive definite
matrices are described in Yan, Moore and Helmke (1993). Such recursive
algorithms for balancing are studied following similar ideas for solving Ric-
cati equations as described by Hitz and Anderson (1972).

Isodynamical flows are a natural generalization of isospectral matrix
flows (where B = C = 0). Conversely, isodynamical flows may also be
viewed as special cases of isospectral flows (evolving on matrices [A B

C 0 ]).
Moreover, if A = 0, then the class of isodynamical flows is equivalent those
evolving on orbits O (B,C), studied in Chapter 6. For some early ideas con-
cerning isodynamical flows see Hermann (1979). Flows on spaces of linear
systems are discussed in Krishnaprasad (1979) and Brockett and Faybuso-
vich (1991).

A number of open research problems concerning the material of Chap-
ter 8 are listed below

(a) Is there a cost function whose critical points are the Euclidean
norm diagonal balanced realizations? N.B.: The trace function
tr (N (AA′ +BB′ + C′C)) does not seem to work!

(b) Pernebo and Silverman (1982) has shown that truncated subsystems
of diagonal balanced realizations of asymptotically stable systems are
also diagonal balanced. Is there a “cost function” proof of this? What
about other types of balancing? The truncation property does not
hold for Euclidean norm balancing.

(c) Develop a Singular Perturbation Approach to balanced realization
model reduction, i.e. find a class of singular perturbation isodynami-
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cal flows which converge to reduced order systems.

(d) Study measures for the degree of balancedness! What is the minimal
distance of a realization to the class of balanced ones? There are two
cases of interest: Distance to the entire set of all balanced realiza-
tions or to the subset of all balanced realizations of a given transfer
function.





CHAPTER 9

Sensitivity Optimization

9.1 A Sensitivity Minimizing Gradient Flow

In this chapter, the further development and application of matrix least
squares optimization techniques is made to minimizing linear system pa-
rameter sensitivity measures. Even for scalar linear systems, the sensitivity
of the system transfer function with respect to the system state space re-
alization parameters is expressed in terms of norms of matrices. Thus a
matrix least squares approach is a very natural choice for sensitivity min-
imization. See also Helmke and Moore (1993), Yan and Moore (1992) and
Yan, Moore and Helmke (1993).

For practical implementations of linear systems in signal processing and
control, an important issue is that of sensitivity of the input/output be-
haviour with respect to the internal parameters. Such sensitivity is depen-
dent on the co-ordinate basis of the state space realization of the
parametrized system. In this section we tackle, via gradient flow techniques,
the task of L2-sensitivity minimization over the class of all co-ordinate ba-
sis. The existence of L2-sensitivity optimal realizations is shown and it is
proved that the class of all optimal realizations is obtained by orthogonal
transformations from a single optimal one. Gradient flows are constructed
whose solutions converge exponentially fast to the class of sensitivity opti-
mal realizations. The results parallel the norm-balancing theory developed
in Chapters 7 and 8. Since the sensitivity optimum co-ordinate basis se-
lections are unique to within arbitrary orthogonal transformations, there
remains the possibility of ‘super’ optimal designs over this optimum class
to achieve scaling and sparseness constraints, with the view to good finite-
word-length filter design. Alternatively, one could incorporate such con-
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straints in a more complex ‘sensitivity’ measure, or as side constraints in
the optimization, as developed in the last section.

As far as we know, the matrix least squares L2-sensitivity minimization
problem studied here can not be solved by algebraic means. For the authors,
this chapter is a clear and convincing demonstration of the power of the
gradient flow techniques of this book. It sets the stage for future gradient
flow studies to solve optimization problems in signal processing and control
theory not readily amenable to algebraic solution.

The classic problem of robust continuous-time filter design insensitive
to component value uncertainty is these days often replaced by a corre-
sponding problem in digital filter design. Finite-word-length constraints
for the variables and coefficients challenge the designer to work with re-
alizations with input/output properties relatively insensitive to coefficient
values, as discussed in Williamson (1991) and Roberts and Mullis (1987).
Input/output shift operator representations involving regression state vec-
tors are notoriously sensitive to their coefficients, particularly as the system
order increases. The so called delta operator representations are clearly
superior for fast sampled continuous-time systems, as are the more gen-
eral delay representation direct forms, as discussed in Williamson (1991)
and Middleton and Goodwin (1990). The challenge is to select appropriate
sensitivity measures for which optimal co-ordinate basis selections can be
calculated, and which translate to practical robust designs.

A natural sensitivity measure to use for robust filter design is an L2-index
as in Thiele (1986). Thus consider a discrete-time filter transfer function
H (z) with the (minimal) state space representation

H (z) = c (zI −A)−1
b (1.1)

where (A, b, c) ∈ R
n×n × R

n×1 × R
1×n. The L2-sensitivity measure is

S (A, b, c) =
∥∥∥∥∂H∂A (z)

∥∥∥∥
2

2

+
∥∥∥∥∂H∂b (z)

∥∥∥∥
2

2

+
∥∥∥∥∂H∂c (z)

∥∥∥∥
2

2

(1.2)

where
‖X (z)‖2

2 =
1

2πi

∮
|z|=1

tr
(
X (z)X (z)∗

) dz
z
,

and X (z)∗ = X ′ (z−1
)
. The associated optimization task is to select a

co-ordinate basis transformation T such that S (
TAT−1, T b, cT−1

)
is min-

imized. Incidentally, adding a direct feedthrough constant d in (1.1) changes
the index (1.2) by a constant and does not change the analysis. Also for
p×m transfer function matrices H (z) = (Hij (z))

H (z) = C (zI −A)−1
B, with Hij (z) = ci (zI −A)−1

bj
(1.3)
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where B = (b1, b2, . . . , bm), C′ =
(
c′1, c

′
2, . . . , c

′
p

)
, the corresponding sensi-

tivity measure is

S (A,B,C) =
∥∥∥∥∂H∂A

∥∥∥∥
2

2

+
∥∥∥∥∂H∂B

∥∥∥∥
2

2

+
∥∥∥∥∂H∂C

∥∥∥∥
2

2

=
p∑
i=1

m∑
j=1

S (A, bj , ci)
(1.4)

or more generally S (
TAT−1, TB,CT−1

)
.

In tackling such sensitivity problems, the key observation of Thiele (1986)
is that although the term

∥∥∂H
∂A

∥∥2

2
appears difficult to work with techni-

cally, such difficulties can be circumvented by working instead with a term∥∥∂H
∂A

∥∥2

1
, or rather an upper bound on this. There results a mixed L2/L1

sensitivity bound optimization which is mainly motivated because it allows
explicit solution of the optimization problem. Moreover, the optimal real-
ization turns out to be, conveniently, a balanced realization which is also
the optimal solution for the case when the term

∥∥ ∂H
∂A

∥∥2

2
is deleted from the

sensitivity measure. More recently in Li, Anderson and Gevers (1992), the
theory for frequency shaped designs within this L2/L1 framework as first
proposed by Thiele (1986) has been developed further. It is shown that,
in general, the sensitivity term involving ∂H

∂A does then affect the optimal
solution. Also the fact that the L2/L1 bound optimal T is not unique is
exploited. In fact the ‘optimal’ T is only unique to within arbitrary or-
thogonal transformations. This allows then further selections, such as the
Schur form or Hessenberg forms, which achieve sparse matrices. One ob-
vious advantage of working with sparse matrices is that zero elements can
be implemented with effectively infinite precision.

In this chapter, we achieve a complete theory for L2 sensitivity realiza-
tion optimization both for discrete-time and continuous-time, linear, time-
invariant systems. Constrained sensitivity optimization is studied in the
last section.

Our aim in this section is to show that an optimal coordinate basis trans-
formation T̄ exists and that every other optimal coordinate transformation
differs from T̄ by an arbitrary orthogonal left factor. Thus P̄ = T̄ ′T̄ is
uniquely determined. While explicit algebraic constructions for T̄ or P̄ are
unknown and appear hard to obtain we propose to use steepest descent
methods in order to find the optimal solution. Thus for example, with the
sensitivities S (

TAT−1, T b, cT−1
)

expressed as a function of P = T ′T , de-
noted S̄ (P ), the gradient flow on the set of positive definite symmetric
matrices P is constructed as

Ṗ = −∇S̄ (P ) (1.5)
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with

P̄ = lim
t→∞P (t) (1.6)

The calculation of the sensitivities S (P ) and the gradient ∇S (P ), in the
first instance, requires unit circle integration of matrix transfer functions
expressed in terms of P , A, b, c. For corresponding continuous-time results,
the integrations would be along the imaginary axis in the complex plane.
Such contour integrations can be circumvented by solving appropriate Lya-
punov equations.

Optimal L2-sensitivity Measure

We consider the task of optimizing a total L2-sensitivity function over
the class of all minimal realizations (A, b, c) of single-input, single-output,
discrete-time, asymptotically stable, rational transfer functions

H (z) = c (zI −A)−1
b. (1.7)

Continuous-time, asymptotically stable, transfer functions can be treated in
a similar way and present no additional difficulty. Here asymptotic stability
for discrete-time systems means that A has its eigenvalues all in the open
unit disc {z ∈ C | |z| < 1}. Likewise, continuous time systems (A, b, c) are
called asymptotically stable if the eigenvalues of A all have real parts less
than zero. In the sequel (A, b, c) ∈ Rn×n × Rn×1 × R1×n always denotes
an asymptotically stable controllable and observable realization of H (z).
Given any such initial minimal realization (A, b, c) of H (z), the similarity
orbit

RH :=
{(
TAT−1, T b, cT−1

) | T ∈ GL (n)
}

(1.8)

of all minimal realizations of H (z) is a smooth closed submanifold of
Rn×n × Rn×1 × R1×n, see Lemma 7.4.1. Note that we here depart from
our previous notation O (A, b, c) for (1.8).

To define a sensitivity measure on RH we first have to determine the
partial derivatives of the transfer function H (z) with respect to the vari-
ables A, b and c. Of course, in the course of such computations we have to
regard the complex variable z ∈ C as a fixed but arbitrary constant. Let
us first introduce the definitions

B (z) := (zI −A)−1
b

C (z) :=c (zI −A)−1

A (z) :=B (z) · C (z)

(1.9)
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By applying the standard rules of matrix calculus ,see Appendix A, we
obtain well known formulas for the partial derivatives as follows:

∂H (z)
∂A

= A (z)′ ,
∂H (z)
∂b

= C (z)′ ,
∂H (z)
∂c

= B (z)′

(1.10)

We see that the derivatives ∂H∂A (z), ∂H∂b (z), ∂H∂c (z) are stable rational matrix
valued functions of z and therefore their L2-norms exist as the unit circle
contour integrals:

∥∥∥∥∂H∂A
∥∥∥∥

2

2

= ‖A (z)‖2
2 =

1
2πi

∮
tr

(A (z)A (z)∗
) dz
z∥∥∥∥∂H∂b

∥∥∥∥
2

2

= ‖C (z)‖2
2 =

1
2πi

∮
tr

(C (z)∗ C (z)
) dz
z∥∥∥∥∂H∂c

∥∥∥∥
2

2

= ‖B (z)‖2
2 =

1
2πi

∮
tr

(B (z)B (z)∗
) dz
z

(1.11)

The total L2-sensitivity function S : RH → R is defined by (1.2),which
can be reformulated using the following identities for the controllability
Gramian and observability Gramian obtained by expanding B (z) and C (z)
in a Laurent series.

Wc =
∞∑
k=0

Akbb′ (A′)k =
1

2πi

∮
B (z)B (z)∗

dz

z

Wo =
∞∑
k=0

(A′)k c′cAk =
1

2πi

∮
C (z)∗ C (z)

dz

z

(1.12)

as

S (A, b, c) =
1

2πi

∮
tr

(A (z)A (z)∗
) dz
z

+ trWc + trWo (1.13)

The first term involving contour integration can be expressed in explicit
form as ∥∥∥∥∂H∂A

∥∥∥∥
2

2

=
1

2πi

∮
tr (AA∗)

dz

z

=
∑
k,l,r,s

r+l=k+s

tr
(
(A′)k c′b′ (A′)lAsbcAr

)

=
∑
k,l,r,s

r+l=k+s

cAr (A′)k c′ · b′ (A′)l Asb

(1.14)
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Consider now the effect on S (A, b, c) of a transformation to the state space
(A, b, c) �→ (

TAT−1, T b, cT−1
)
, T ∈ GL (n,R). It is easily seen that

S (
TAT−1, T b, cT−1

)
=

1
2πi

∮
tr

(
TA (z)T−1 (T ′)−1 A (z)∗ T ′

) dz
z

+
1

2πi

∮
tr

(
TB (z)B (z)∗ T ′) dz

z

+
1

2πi

∮
tr

(
(T ′)−1 C (z)∗ C (z)T−1

) dz
z

Setting P = T ′T , we can reformulate S (
TAT−1, T b, cT−1

)
as a cost func-

tion on P (n), the set of positive definite matrices in Rn×n, as

S̄ (P ) (1.15)

=
1

2πi
tr

∮ (A (z)P−1A (z)∗ P + B (z)B (z)∗ P + C (z)∗ C (z)P−1
) dz
z

Lemma 1.1 The smooth sensitivity function S̄ : P (n) → R defined by
(1.15) has compact sublevel sets.

Proof 1.2 Obviously S̄ (P ) ≥ 0 for all P ∈ P (n). For any P ∈ P (n) the
inequality

S̄ (P ) ≥ tr (WcP ) + tr
(
WoP

−1
)

holds by (1.13). By Lemma 6.4.1,
{
P ∈ P (n) | tr

(
WcP +WoP

−1
) ≤ a

}
is

a compact subset of P (n). Thus
{
P ∈ P (n) | S̄ (P ) ≤ a

} ⊂ {
P ∈ P (n) | tr

(
WcP +WoP

−1
) ≤ a

}

is a closed subset of a compact set and therefore also compact.

Any continuous function f : P (n) → R with compact sublevel sets is
proper and thus possesses a minimum, see Section C.1. Thus Lemma 1.1
immediately implies the following corollary.

Corollary 1.3 The sensitivity function S̄ : P (n) → R (and S : RH →
R) defined by (1.15) (respectively (1.13)) assumes its global minimum, i.e.
there exists Pmin ∈ P (n) (and (Amin, bmin, cmin) ∈ RH) such that

S̄ (Pmin) = inf
P∈P(n)

S̄ (P )

S (Amin, bmin, cmin) = inf
(F,g,h)∈RH

S (F, g, h)
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Following the analysis developed in Chapters 6 and 8 for Euclidean norm
balancing, we now derive the gradient flow Ṗ = −∇S̄ (P ). Although the
equations look forbidding at first, they are the only available reasons for
solving the L2-sensitivity optimal problem. Subsequently, we show how
to work with Lyapunov equations rather than contour integrations. Using
(1.15), we obtain for the total derivative of S̄ at P

DS̄∣∣
P

(ξ) =
1

2πi

∮
tr

(A (z)P−1A (z)∗ ξ −A (z)P−1ξP−1A (z)∗ P

+ B (z)B (z)∗ ξ − C (z)∗ C (z)P−1ξP−1
) dz
z

=
1

2πi

∮
tr

(A (z)P−1A (z)∗ − P−1A (z)∗ PA (z)P−1

+B (z)B (z)∗ − P−1C (z)∗ C (z)P−1
)
ξ
dz

z

Therefore the gradient for S̄ : P (n) → R with respect to the induced
Riemannian metric on P (n) is given by

∇S̄ (P ) =
1

2πi

∮ (A (z)P−1A (z)∗ − P−1A (z)∗ PA (z)P−1

+ B (z)B (z)∗ − P−1C (z)∗ C (z)P−1
)dz
z

The gradient flow Ṗ = −∇S̄ (P ) of S̄ is thus seen to be

Ṗ =
1

2πi

∮ (
P−1A (z)∗ PA (z)P−1 −A (z)P−1A (z)∗

− B (z)B (z)∗ + P−1C (z)∗ C (z)P−1
)dz
z

(1.16)

The equilibrium points P∞ of this gradient flow are characterized by Ṗ = 0,
and consequently

1
2πi

∮ (A (z)P−1
∞ A (z)∗ + B (z)B (z)∗

) dz
z

= P−1
∞

1
2πi

∮ (A (z)∗ P∞A (z) + C (z)∗ C (z)
) dz
z
P−1
∞ (1.17)

Any co-ordinate transformation T∞ ∈ GL (n) such that P∞ = T ′
∞T∞

satisfies (1.17) is called an L2-sensitivity optimal co-ordinate transforma-
tion. Moreover, any realization (Amin, bmin, cmin) which minimizes the L2-
sensitivity index S : RH → R is called L2-sensitivity optimal. Having es-
tablished the existence of the L2-sensitivity optimal transformations, and



276 Chapter 9. Sensitivity Optimization

realizations, respectively, we now turn to develop a gradient flow approach
to achieve the L2-sensitivity optimization.

The following results are straightforward modifications of analogous re-
sults developed in Chapters 7 and 8 for the case of Euclidean norm balanced
realizations. The only significant modification is the introduction of contour
integrations. We need the following technical lemma.

Lemma 1.4 Let (A, b, c) be a controllable or observable asymptotically sta-
ble realization. Let (A (z) ,B (z) , C (z)) be defined by (1.9) and (1.10). Then
the linear operator

1
2πi

∮ (
I ⊗ (A (z)A (z)∗ + B (z)B (z)∗

)
+

(A (z)∗ A (z) + C (z)∗ C (z)
)⊗ I

−A (z) ⊗A (z) −A (z)∗ ⊗A (z)∗
)dz
z

has all its eigenvalues in C+ = {λ ∈ C | Re (λ) > 0}.
Proof 1.5 Suppose there exists λ ∈ C and a non zero matrix X ∈ Cn×n

such that (writing A instead of A (z), etc.)

1
2πi

∮
(XAA∗ + A∗AX −A∗XA−AXA∗ +XBB∗ + C∗CX)

dz

z
= λX

Let X∗ = X̄ ′ denote the Hermitian transpose. Then

1
2πi

∮
tr
(
XAA∗X∗ + AXX∗A∗ −AXA∗X∗

−A∗XAX∗ +XBB∗X∗ + CXX∗C∗)dz
z

= Re (λ) ‖X‖2

A straightforward manipulation shows that left hand side is equal to

1
2πi

∮ (
‖A (z)X −XA (z)‖2 + ‖XB (z)‖2 + ‖C (z)X‖2

) dz
z

≥ 0

Thus Re (λ) ≥ 0. The integral on the left is zero if and only if

A (z)X = XA (z) , XB (z) = 0, C (z)X = 0

for all |z| = 1. Now suppose that Re (λ) = 0. Then any X satisfying these
equations satisfies

XB (z) = X (zI −A)−1 b = 0 (1.18)

for all |z| = 1 and hence, by the identity theorem for analytic functions,
for all z ∈ C. Thus controllability of (A, b) implies X = 0 and similarly for
(A, c) observable. Thus Re (λ) �= 0 and the proof is complete.
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Lemma 1.6 Given any initial controllable and observable asymptotically
stable realization (A, b, c), then the linearization of the gradient flow (1.16)
at any equilibrium point P∞ > 0 is exponentially stable.

Proof 1.7 The linearization of (1.16) at P∞ is given by

J̄ =
1

2πi

∮ [
AP−1

∞ ⊗AP−1
∞ − P−1

∞ ⊗ P−1
∞ [A∗P∞A + C∗C]P−1

∞
−P−1

∞ (A∗P∞A + C∗C)P−1
∞ ⊗ P−1

∞ + P−1
∞ A∗ ⊗ P−1

∞ A∗

]
dz

z

Let F := P
1/2
∞ AP 1/2

∞ , G = P
1/2
∞ B, H = CP−1/2

∞ . Then with

Ĵ =
(
P 1/2
∞ ⊗ P 1/2

∞
)
J̄
(
P 1/2
∞ ⊗ P 1/2

∞
)

we have

Ĵ =
1

2πi

∮ (F ⊗ F + F∗ ⊗F∗

− I ⊗ (F∗F + H∗H) − (F∗F + H∗H) ⊗ I
)dz
z

Using (1.17) gives

Ĵ =
1

2πi

∮ (F ⊗ F + F∗ ⊗F∗

− I ⊗ (FF∗ + GG∗) − (F∗F + H∗H) ⊗ I
)dz
z

By Lemma 1.6, Ĵ has only negative eigenvalues. Therefore, by Sylvester’s
inertia theorem, see Appendix A, J̄ has only negative eigenvalues. The
result follows.

We can now state and prove one of the main results of this section.

Theorem 1.8 Consider any minimal asymptotically stable realization
(A, b, c) of the transfer function H (z). Let (A (z) ,B (z) , C (z)) be defined
by (1.9) and (1.10).

(a) There exists a unique P∞ = P ′∞ > 0 which minimizes S̄ (P ) and
T∞ = P

1/2
∞ is an L2-sensitivity optimal transformation. Also, P∞

is the uniquely determined critical point of the sensitivity function
S̄ : P (n) → R, characterized by (1.17).

(b) The gradient flow Ṗ (t) = −∇S̄ (P (t)) is given by (1.16) and for
every initial condition P0 = P ′

0 > 0, the solution P (t) exists for all
t ≥ 0 and converges exponentially fast to P∞.



278 Chapter 9. Sensitivity Optimization

(c) A realization (A, b, c) ∈ RH is a critical point for the total L2-
sensitivity function S : RH → R if and only if (A, b, c) is a global
minimum for S : RH → R. The set of global minima of S : RH → R

is a single O (n)-orbit
{(
SAS−1, Sb, cS−1

) | S′S = SS′ = I
}
.

Proof 1.9 We give two proofs. The first proof runs along similar lines to
the proof of Proposition 8.5.5. The existence of P∞ is shown in Corol-
lary 1.3. By Lemma 1.1 the function S̄ : P (n) → R has compact sublevel
sets and therefore the solutions of the gradient flow (1.16) exist for all t ≥ 0
and converges to a critical point. By Lemma 1.6 the linearization of the
gradient flow at each critical point is exponentially stable, with all its eigen-
values on the negative real axis. As the Hessian of S̄ at each critical point is
congruent to Ĵ , it is positive definite. Thus S̄ has only isolated minima as
critical points and S̄ is a Morse function. The set P (n) of symmetric pos-
itive definite matrices is connected and homeomorphic to Euclidean space
R(n+1

2 ). From the above, all critical points have index
(
n+1

2

)
. Thus by the

Morse inequalities, as in the proof of Proposition 8.5.5, (see also Milnor
(1963)).

c0
(S̄) = b0 (P (n)) = 1

and therefore there is only one critical point, which is a local and indeed
global minimum. This completes the proof of (a), (b). Part (c) follows since
every L2-sensitivity optimal realization is of the form

(
ST 1/2

∞ AT−1/2
∞ S−1, ST 1/2

∞ b, CT−1/2
∞ S−1

)

for a unique orthogonal matrix S ∈ O (n). The result follows.
For the second proof we apply the Azad-Loeb theorem. It is easy to

see, using elementary properties for plurisubharmonic functions that the
function (A, b, c) �→ 1

2πi

∮ ‖A (z)‖2 dz
z defines a plurisubharmonic function

on the complex similarity orbit

OC (A, b, c) =
{(
TAT−1, T b, cT−1

) | T ∈ GL (n,C)
}
.

Similarly, as in Chapter 8, the sum of the controllability and observability
Gramians defines a strictly plurisubharmonic function (A, b, c) �→ trWc +
trWo on OC (A, b, c). As the sum of a plurisubharmonic and a strictly plush
function is strictly plush, we see by formula (1.13) that the sensitivity
function S (A, b, c) is a strictly plush function on OC (A, b, c).

As in Chapter 7, the real case follows from the complex case. Thus
Part (c) of Theorem 1.8 follows immediately from the Azad-Loeb theorem.
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Remark 1.10 By Theorem 1.8(c) any two optimal realizations which min-
imize the L2-sensitivity function (1.2) are related by an orthogonal simi-
larity transformation. One may thus use this freedom to transform any
optimal realization into a canonical form for orthogonal similarity trans-
formations, such as e.g. into the Hessenberg form or the Schur form. In
particular the above theorem implies that there exists a unique sensitivity
optimal realization (AH , bH , cH) which is in Hessenberg form

AH =




∗ . . . . . . ∗
⊗ . . .

...
. . . . . .

...
0 ⊗ ∗



, bH =




⊗
0
...
0


 , cH = [∗ . . . ∗]

where the entries denoted by ⊗ are positive. These condensed forms are
useful since they reduce the complexity of the realization. �

From an examination of the L2 sensitivity optimal condition (1.17), it
makes sense to introduce the two modified Gramian matrices, termed L2-
sensitivity Gramians of H (z) as follows

W̃c � 1
2πi

∮ (A (z)A (z)∗ + B (z)B (z)∗
) dz
z

W̃o � 1
2πi

∮ (A (z)∗ A (z) + C (z)∗ C (z)
) dz
z

(1.19)

These Gramians are clearly both a generalization of the standard Gramians
Wc, Wo of (1.12) and of the Euclidean norm Gramians appearing in (8.5.6).

Now the above theorem implies the corollary.

Corollary 1.11 With the L2-sensitivity Gramian definitions (1.19), the
necessary and sufficient condition for a realization (A, b, c) to be L2-sensi-
tivity optimal is the L2-sensitivity balancing property

W̃c = W̃o. (1.20)

Any controllable and observable realization of H (z) with the above prop-
erty is said to be L2-sensitivity balanced.

Let us also denote the singular values of W̃o, when W̃o = W̃c, as the
Hankel singular values of an L2-sensitivity optimal realization of H (z).

Moreover, the following properties regarding the L2-sensitivity Gramians
apply:
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(a) If the two L2-sensitivity optimal realizations (A1, b1, c1, d1) and
(A2, b2, c2, d2) are related by a similarity transformation T , i.e.

[
A2 b2

c2 d2

]
=

[
T 0
0 I

][
A1 b1

c1 d1

][
T 0
0 I

]−1

then P = T ′T = In and T is orthogonal. Moreover, in obvious nota-
tion

W̃ (2)
c = TW̃ (1)

c T ′

so that the L2-sensitivity Hankel singular values are invariant of or-
thogonal changes of co-ordinates.

(b) There exists an L2-sensitivity optimal realization such that its L2-
sensitivity Gramians are diagonal with diagonal elements in descend-
ing order.

(c) The eigenvalues of W̃cW̃o are invariant under orthogonal state space
transformations.

(d) If
(
W̃c, W̃o

)
are the L2-sensitivity Gramians of (A, b, c), then so are(

W̃ ′
o, W̃

′
c

)
of (A′, c′, b′).

Contour integrations by Lyapunov equations

The next result is motivated by the desire to avoid contour integrations
in calculating the L2-sensitivity gradient flows, and L2-sensitivity Grami-
ans. Note the emergence of coupled Riccati-like equations with Lyapunov
equations.

Proposition 1.12 Given a minimal realization (A, b, c) of H (z). Let

R =

[
R11 R12

R21 R22

]
and Q =

[
Q11 Q12

Q21 Q22

]

be the solutions to the following two Lyapunov equations, respectively,
[
A bc

0 A

][
R11 R12

R21 R22

][
A′ 0
c′b′ A′

]
−

[
R11 R12

R21 R22

]
= −

[
bb′ 0
0 I

]

[
A′ c′b′

0 A′

][
Q11 Q12

Q21 Q22

][
A 0
bc A

]
−

[
Q11 Q12

Q21 Q22

]
= −

[
c′c 0
0 I

] (1.21)
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Then the L2-sensitivity Gramian pair
(
W̃c, W̃o

)
of (A, b, c) equals

(R11, Q11). Moreover, the differential equation (1.16) can be written in the
equivalent form

Ṗ = P−1Q11 (P )P−1 −R11 (P ) (1.22)

where
[
A bc

0 A

][
R11 (P ) R12 (P )
R21 (P ) R22 (P )

][
A′ 0
c′b′ A′

]
−

[
R11 (P ) R12 (P )
R21 (P ) R22 (P )

]

= −
[
bb′ 0
0 P−1

]
(1.23)

[
A′ c′b′

0 A′

][
Q11 (P ) Q12 (P )
Q21 (P ) Q22 (P )

][
A 0
bc A

]
−

[
Q11 (P ) Q12 (P )
Q21 (P ) Q22 (P )

]

= −
[
c′c 0
0 P

]
(1.24)

Proof 1.13 It is routine to compute the augmented state equations and
thereby the transfer function of the concatenation of two linear systems to
yield

(A (z) ,B (z)) = B (z) (C (z) , I) = Ca (zI −Aa)
−1
Ba

where

Aa =

[
A bc

0 A

]
, Ba =

[
0 b

I 0

]
, Ca = [I 0] .

Thus we have

W̃c =
1

2πi

∮
(A (z) ,B (z)) (A (z) ,B (z))∗

dz

z

=Ca

{
1

2πi

∮ (
(zI −Aa)

−1
BaB

′
a (z̄I −A′

a)
−1

)∗ dz
z

}
C′
a

=CaRC′
a

=R11

Similarly, it can be proved that W̃o = Q11. As a consequence, (1.22)–(1.24)
follow.
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Remark 1.14 Given P > 0, R11 (P ) and Q11 (P ) can be computed either
indirectly by solving the Lyapunov equations (2.6)–(2.7) or directly by
using an iterative algorithm which needs n iterations and can give an exact
value, where n is the order of H (z). Actually, a simpler recursion for L2-
sensitivity minimization based on these equations is studied in Yan, Moore
and Helmke (1993) and summarized in Section 9.3. �

Problem 1.15 Let H (z) be a scalar transfer function. Show, using the
symmetry of H (z) = H (z)′, that if (Amin, bmin, cmin) ∈ RH is an L2-
sensitivity optimal realization then also (A′

min, b
′
min, c

′
min) is.

Problem 1.16 Show that there exists a unique symmetric matrix Θ ∈
O (n) such that (A′

min, b
′
min, c

′
min) = (ΘAminΘ′,Θbmin, cminΘ′).

Main Points of Section

The theory of norm-balancing via gradient flows completely solves the L2

sensitivity minimization for linear time-invariant systems. Since the opti-
mal co-ordinate basis selections are optimal to within a class of orthogonal
matrices, there is the possibility for ‘super’ optimal designs based on other
considerations, such as sparseness of matrices and scaling/overflow for state
variables. Furthermore, the results open up the possibility for tackling other
sensitivity measures such as those with frequency shaping and including
other constraints in the optimization such as scaling and sparseness con-
straints. Certain of these issues are addressed in later sections.

9.2 Related L2-Sensitivity Minimization Flows

In this section, we first explore isodynamical flows to find optimal L2-
sensitivity realizations. Differential equations are constructed for the ma-
trices A, b, c, so that these converge to the optimal ones. Next, the results of
the previous section are generalized to cope with frequency shaped indices,
so that emphasis can be placed in certain frequency bands to the sensitiv-
ity of H (z) to its realizations. Then, the matrix transfer function case is
considered, and the case of sensitivity to the first N Markov parameters of
H (z).

Isodynamical Flows

Following the approach to find balanced realizations via differential equa-
tions as developed in Chapter 7, we construct certain ordinary differential
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equations

Ȧ =f (A, b, c)

ḃ =g (A, b, c)
ċ =h (A, b, c)

which evolve on the space RH of all realizations of the transfer function
H (z), with the property that the solutions (A (t) , b (t) , c (t)) all converge
for t→ ∞ to a sensitivity optimal realization ofH (z). This approach avoids
computing any sensitivity optimizing coordinate transformation matrices
T . We have already considered in Chapter 8 the task of minimizing cer-
tain cost functions defined on RH via gradient flows. Here we consider
the related task of minimizing the L2-sensitivity index via gradient flows.
Following the approach developed in Chapter 8 we endow RH with its
normal Riemannian metric. Thus for tangent vectors ([X1, A] , X1b,−cX1),
([X2, A] , X2b,−cX2) ∈ T(A,b,c)RH we work with the inner product

〈〈([X1, A] , X1b,−cX1) , ([X2, A] , X2b,−cX2)〉〉 := 2 tr (X ′
1X2) ,

(2.1)

which defines the normal Riemannian metric, see (8.4.10).
Consider the L2-sensitivity function

S : RH → R

S (A, b, c) =
1

2πi

∮
tr

(A (z)A (z)∗
) dz
z

+ tr (Wc) + tr (Wo) ,
(2.2)

This has critical points which correspond to L2-sensitivity optimal realiza-
tions.

Theorem 2.1 Let (A, b, c) ∈ RH be a stable controllable and observable
realization of the transfer function H (z) and let Λ (A, b, c) be defined by

Λ (A, b, c) =
1

2πi

∮ (A (z)A (z)∗ −A (z)∗ A (z)
) dz
z

+ (Wc −Wo)

(2.3)

(a) Then the gradient flow of the L2-sensitivity function S : RH → R on
RH

(
Ȧ = − gradA S, ḃ = − gradb S, ċ = − gradc S

)
with respect to the

normal Riemannian metric is

Ȧ =AΛ (A, b, c) − Λ (A, b, c)A

ḃ = − Λ (A, b, c) b
ċ =cΛ (A, b, c)

(2.4)
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Now for all initial conditions (A0, b0, c0) ∈ RH the solution
(A (t) , b (t) , c (t)) of (2.4) exists for all t ≥ 0 and converges for t→ ∞
to an L2-sensitivity optimal realization

(
Ā, b̄, c̄

)
of H (z).

(b) Convergence to the class of sensitivity optimal realizations is expo-
nentially fast.

(c) The transfer function of any solution (A (t) , b (t) , c (t)) is indepen-
dent of t, i.e. the flow is isodynamical.

Proof 2.2 By Proposition 8.4.3 and Lemma 8.4.5, the gradient vector
field S := (gradA S, gradb S, gradc S) is of the form gradA S = ΛA − AΛ,
gradb S = Λb, gradc S = −cΛ, for a uniquely determined n × n ma-
trix Λ. Recall that a general element of the tangent space T(A,b,c)RH is
([X,A] , Xb,−cX) for X ∈ Rn×n, so that the gradient for the normal Rie-
mannian metric satisfies

DS|(A,b,c) ([X,A] , Xb,−cX)

= 〈〈([Λ, A] ,Λb,−cΛ) , ([X,A] , Xb,−cX)〉〉
=2 tr (Λ′X)

at (A, b, c) ∈ RH .
Let S̄ : GL (n) → R be defined by S̄ (T ) = S (

TAT−1, T b, cT−1
)
. A

straightforward computation using the chain rule shows that the total
derivative of the function S (A, b, c) is given by

DS|(A,b,c) ([X,A] , Xb,−cX)

= DS̄∣∣
In

(X)

=
1
πi

∮
tr
(
X

(A (z)A (z)∗ −A (z)∗ A (z)

+ B (z)B (z)∗ − C (z)∗ C (z)
))dz
z

=
1
πi

tr
(
X

∮ (A (z)A (z)∗ −A (z)∗ A (z)
)) dz

z

+ 2 tr (X (Wc −Wo))

for all X ∈ Rn×n. This shows that (2.4) is the gradient flow
(
Ȧ = − gradA S, ḃ = − gradb S, ċ = − gradc S

)

of S. The other statements in Theorem 2.1 follow easily from Theorem 8.4.9.
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Remark 2.3 Similar results to the previous ones hold for parameter de-
pendent sensitivity function such as

Sε (A, b, c) = ε

∥∥∥∥∂H∂A
∥∥∥∥

2

2

+
∥∥∥∥∂H∂b

∥∥∥∥
2

2

+
∥∥∥∥∂H∂c

∥∥∥∥
2

2

for ε ≥ 0. Note that for ε = 0 the function S0 (A, b, c) is equal to the sum
of the traces of the controllability and observability Gramians. The opti-
mization of the function S0 : RH → R is well understood, and in this case
the class of sensitivity optimal realizations consists of the balanced realiza-
tions, as studied in Chapters 7 and 8. This opens perhaps the possibility
of using continuation type of methods in order to compute L2-sensitivity
optimal realization for S : RH → R, where ε = 1. �

Frequency Shaped Sensitivity Minimization

In practical applications of sensitivity minimization for filters, it makes
sense to introduce frequency domain weightings. It may for example be that
insensitivity in the pass band is more important that in the stop band. It is
perhaps worth mentioning that one case where frequency shaping is crucial
is to the case of cascade filters H = H1H2 where Hi (z) = ci (zI −Ai)

−1
bi.

Then ∂H
∂A1

= ∂H1
∂A1

H2 and ∂H
∂A2

= H1
∂H2
∂A2

and H2, H1 can be viewed as the
frequency shaping filters. It could be that each filter Hi is implemented with
a different degree of precision. Other frequency shaping filter selections to
minimize pole and zero sensitivities are discussed in Thiele (1986).

Let us consider a generalization of the index S (A, b, c) of (1.2) as

Sw (A, b, c) =
∥∥∥∥wA ∂H∂A

∥∥∥∥
2

2

+
∥∥∥∥wb ∂H∂b

∥∥∥∥
2

2

+
∥∥∥∥wc ∂H∂c

∥∥∥∥
2

2

(2.5)

where weighting wA etc denote the scalar transfer functions wA (z) etc.
Thus

wc (z)
∂H

∂c
(z) =wc (z)B (z)′ =: Bw (z)′

wb (z)
∂H

∂b
(z) =wb (z)C (z)′ =: Cw (z)′

wA (z)
∂H

∂A
(z) =wA (z)C (z)B (z)′ =: Aw (z)′

(2.6)

The important point to note is that the derivations in this more general
frequency shaped case are now a simple generalization of earlier ones. Thus
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the weighted index Sw expressed as a function of positive definite matrices
P = T ′T is now given from a generalization of (1.15) as

S̄w (P ) =
1

2πi
tr

∮ (Aw (z)P−1Aw (z)∗ P

+ Bw (z)Bw (z)∗ P + Cw (z)∗ Cw (z)P−1
)dz
z
.
(2.7)

The gradient flow equations are corresponding generalizations of (1.16):

Ṗ =
1

2πi

∮ (
P−1Aw (z)∗ PAw (z)P−1 −Aw (z)P−1Aw (z)∗

− Bw (z)Bw (z)∗ + P−1Cw (z)∗ Cw (z)P−1
)dz
z
.

(2.8)

With arbitrary initial conditions satisfying P0 = P ′
0 > 0, the unique limit-

ing equilibrium point is P∞ = P ′
∞ > 0, characterized by

1
2πi

∮ (Aw (z)P−1
∞ Aw (z)∗ + Bw (z)Bw (z)∗

) dz
z

= P−1
∞

1
2πi

∮ (Aw (z)∗ P∞Aw (z) + Cw (z)∗ Cw (z)
) dz
z
P−1
∞ (2.9)

To complete the full analysis, it is necessary to introduce the genericity
conditions on wb, wc:

No zeros of wb (z) , wc (z) are poles of H (z) . (2.10)

Under (2.10), and minimality of (A, b, c), the weighted Gramians are posi-
tive definite:

Wwc =
1

2πi

∮
Bw (z)Bw (z)∗

dz

z
> 0

Wwo =
1

2πi

∮
Cw (z)∗ Cw (z)

dz

z
> 0

(2.11)

Moreover, in generalizing (1.18) and its dual, likewise, then

XBw (z) =X (zI − A)−1
bwb (z) = 0

Cw (z)X =wc (z) c (zI −A)−1X = 0

for all z ∈ C implies X = 0 as required. The frequency shaped generaliza-
tions are summarized as a theorem.

Theorem 2.4 Consider any controllable and observable asymptotically
stable realization (A, b, c) of the transfer function H (z). Consider also the
weighted index (2.5), (2.7) under definition (2.6).
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(a) There exists a unique P∞ = P ′
∞ > 0 which minimizes S̄w (P ), P ∈

P (n), and T∞ = P
1/2
∞ is an L2-frequency shaped sensitivity optimal

transformation. Also, P∞ is the uniquely determined critical point of
S̄w : P (n) → R.

(b) The gradient flow Ṗ (t) = −∇S̄w (P (t)) on P (n) is given by (2.8).
Moreover, its solution P (t) of (2.8) exists for all t ≥ 0 and converges
exponentially fast to P∞ satisfying (2.9).

Sensitivity of Markov Parameters

It may be that a filter HN (z) has a finite Markov expansion

HN (z) =
N∑
k=0

cAkbz−k−1.

Then definitions (1.9) specialize as

BN (z) =
N∑
k=0

Akbz−k−1, CN (z) =
N∑
k=0

cAkz−k−1,

and the associated Gramians are finite sums

W (N)
c =

N∑
k=0

Akbb′ (A′)k , W (N)
o =

N∑
k=0

(A′)k c′cAk

In this case the sensitivity function for HN is with AN (z) = BN (z)CN (z),

SN (A, b, c) =
∥∥∥∥∂HN

∂A

∥∥∥∥
2

2

+
∥∥∥∥∂HN

∂b

∥∥∥∥
2

2

+
∥∥∥∥∂HN

∂c

∥∥∥∥
2

2

=
1

2πi

∮
tr

(AN (z)AN (z)∗
) dz
z

+ tr
(
W (N)
c

)
+ tr

(
W (N)
o

)

=
∑

0≤k,l,r,s≤N
r+l=k+s

b′ (A′)r AkbcAs (A′)l c′ + tr
(
WN
c

)
+ tr

(
WN
o

)

This is just the L2-sensitivity function for the first N+1 Markov param-
eters. Of course, SN is defined for an arbitrary, even unstable, realization. If
(A, b, c) were stable, then the functions SN : RH → R converge uniformly
on compact subsets of RH to the L2-sensitivity function (1.2) as N → ∞.
Thus one may use the function SN in order to approximate the sensitivity
function (1.2). If N is greater or equal to the McMillan degree of (A, b, c),
then earlier results all remain in force if S is replaced by SN and likewise
(zI −A)−1 by the finite sum

∑N
k=0 A

kz−k−1.
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The Matrix Transfer Function Case

Once the multivariable sensitivity norm is formulated as the sum of scalar
variable sensitivity norms as in (1.3), (1.4), the generalization of the scalar
variable results to the multivariable case is straightforward.

Thus let H (z) = (Hij (z)) = C (zI −A)−1B be a p×m strictly proper
transfer function with a controllable and observable realization (A,B,C) ∈
Rn×n × Rn×m × Rp×n, so that Hij (z) = ci (zI −A)−1 bj for i = 1, . . . , p,
j = 1, . . . ,m. The set of all controllable and observable realizations of H (z)
then is the similarity orbit

RH =
{(
TAT−1, TB,CT−1

) | T ∈ GL (n)
}
.

By Lemma 7.4.1, RH is a closed submanifold of R
n×n × R

n×m × R
p×n.

Here, again, RH is endowed with the normal Riemannian metric defined
by (2.1).

The multivariable sensitivity norm S (A,B,C) is then seen to be the sum
of scalar variable sensitivities as

S (A,B,C) =
p∑
i=1

m∑
j=1

S (A, bj , ci) .

Similarly S : P (n) → R, S (P ) = S (
TAT−1, TB,CT−1

)
, is

S̄ (P ) =
p∑
i=1

m∑
j=1

S̄ij (P )

S̄ij (P ) =
1

2πi
tr

∮ (Aij (z)P−1Aij (z)∗ P (2.12)

+ Bij (z)Bij (z)∗ P + Cij (z)∗ Cij (z)P−1
) dz
z

with, following (1.9), (1.10)

Cij (z) =
(
∂Hij (z)

∂b

)′
= ci (zI −A)−1

Bij (z) =
(
∂Hij (z)

∂c

)′
= (zI −A)−1 bj

Aij (z) =
(
∂Hij (z)
∂A

)′
= Bij (z)Cij (z)

(2.13)

The gradient flow (1.5) is generalized as

Ṗ = −∇S̄ (P ) = −
p∑
i=1

m∑
j=1

∇S̄ij (P ) . (2.14)
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Therefore

S̄ (P ) =
1

2πi
tr

∮ 
 p∑
i=1

m∑
j=1

Aij (z)P−1Aij (z)∗ P


 dz

z

+ p tr (WcP ) +m tr
(
WoP

−1
)
.

The equilibrium point P∞ of the gradient flow is characterized by

∇S̄ (P∞) =
p∑
i=1

m∑
j=1

∇S̄ij (P∞) = 0 (2.15)

which, following (1.17), is now equivalent to

1
2πi

∮ p∑
i=1

m∑
j=1

(Aij (z)P−1
∞ Aij (z)∗ + Bij (z)Bij (z)∗

) dz
z

= P−1
∞

1
2πi

∮ p∑
i=1

m∑
j=1

(Aij (z)∗ P∞Aij (z) + Cij (z)∗ Cij (z)
) dz
z
P−1
∞

(2.16)

The introduction of the summation terms is clearly the only effect of
generalization to the multivariable case, and changes none of the argu-
ments in the proofs. A point at which care must be taken is in generalizing
(1.18). Now XBij (z) = 0 for all i, j, and thus X (zI −A)−1B = 0, re-
quiring (A,B) controllable to imply X = 0. Likewise, the condition (A, c)
observable generalizes as (A,C) observable.

We remark that certain notational elegance can be achieved using vec
and Kronecker product notation in the multivariable case, but this can
also obscure the essential simplicity of the generalization as in the above
discussion.

We summarize the first main multivariable results as a theorem, whose
proof follows Theorem 1.8 as indicated above.

Theorem 2.5 Consider any controllable and observable asymptotically
stable realization (A,B,C) of the transfer function H (z) = C (zI −A)−1

B,
H (z) = (Hij (z)) with Hij (z) = ci (zI −A)−1

bj. Then:

(a) There exists a unique P∞ = P ′
∞ > 0 which minimizes the sensi-

tivity index (1.3), also written as S̄ (P ) =
∑p

i=1

∑m
j=1 S̄ij (P ), and

T∞ = P
1/2
∞ is an L2-sensitivity optimal transformation. Also, P∞
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is the uniquely determined critical point of the sensitivity function
S̄ : P (n) → R.

(b) The gradient flow Ṗ = −∇S̄ (P ) of S̄ : P (n) → R is given by (2.14)–
(2.13). The solution exists for arbitrary P0 = P ′

0 > 0 and for all t ≥ 0,
and converges exponentially fast to P∞satisfying (2.15)–(2.16).

(c) A realization (A,B,C) ∈ RH is a critical point for the total L2-
sensitivity function S : RH → R if and only if (A,B,C) is a global
minimum for S : RH → R. The set of global minima of S : RH → R

is a single O (n) orbit
{(
SAS−1, SB,CS−1

) | S′S = SS′ = I
}
.

The second main multivariable result generalizes Theorem 2.1 as follows.

Theorem 2.6 Let (A,B,C) ∈ RH be a stable controllable and observable
realization of the transfer function H (z), and let Λ = Λ (A,B,C) be defined
by

Λ (A,B,C) =
p∑
i=1

m∑
j=1

1
2πi

∮ (Aij (z)Aij (z)∗ −Aij (z)∗ Aij (z)
) dz
z

+ (pWc −mWo)

Then the gradient flow of the L2-sensitivity function S : RH → R

on RH

(
Ȧ = −∇AS, Ḃ = −∇BS, Ċ = −∇CS

)
with respect to the induced

Riemannian metric is

Ȧ =AΛ (A,B,C) − Λ (A,B,C)A

Ḃ = − Λ (A,B,C)B

Ċ =CΛ (A,B,C) .

For all initial conditions (A0, B0, C0) ∈ RH the solution (A (t) , B (t) , C (t))
exists for all t ≥ 0 and converges for t → ∞ exponentially fast to an L2-
sensitivity optimal realization

(
Ā, B̄, C̄

)
of H (z), with the transfer function

of any solution (A (t) , B (t) , C (t)) independent of t.

Proof 2.7 Follows that of Theorem 2.1 with the multivariable generaliza-
tions.
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Main Points of Section

Differential equations on the system matrices A, b, c which converge ex-
ponentially fast to optimal L2-sensitivity realizations are available. Also
generalizations of the gradient flows to cope with frequency shaping and
the matrix transfer function case are seen to be straightforward, as is the
case of L2-sensitivity minimization for just the first N Markov parameters
of the transfer function.

9.3 Recursive L2-Sensitivity Balancing

To achieve L2-sensitivity optimal realizations on a digital computer, it
makes sense to seek for recursive algorithms which converge to the same
solution set as that for the differential equations of the previous sections.

In this section, we present such a recursive scheme based on our work in
Yan, Moore and Helmke (1993). This work in turn can be viewed as a gen-
eralization of the work of Hitz and Anderson (1972) on Riccati equations.
Speed improvements of two orders of magnitude of the recursive algorithm
over Runge-Kutta implementations of the differential equations are typical.
Full proofs of the results are omitted here since they differ in spirit from
the other analysis in the book. The results are included because of their
practical significance.

For the L2-sensitivity minimization problem, we have the following re-
sult.

We concentrate on the task of finding the unique minimum P∞ ∈ P (n)
of the L2-sensitivity cost S̄ : P (n) → R. The set of all sensitivity optimal
coordinate transformations T∞ is then given as T ′

∞T∞ = P∞.

Theorem 3.1 Given an initial stable, controllable and observable realiza-
tion (A, b, c) of H (z) = c (zI −A)−1

b. The solution of the difference equa-
tion

Pk+1 =Pk − 2
[
Pk + W̃o (Pk) /α

]

×
[
2Pk + W̃o (Pk) /α+ αW̃c (Pk)

−1
]−1 [

Pk + W̃o (Pk) /α
]

+ 2W̃o (Pk) /α

(3.1)

converges exponentially to P∞ ∈ P (n) from any initial condition P0 ∈
P (n) and P∞ minimizes the L2-sensitivity function S̄ : P (n) → R. Here
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α is any positive constant. W̃c (P ) and W̃o (P ) are defined by

W̃c (P ) � 1
2πi

∮ (A (z)P−1A (z)∗ + B (z)B (z)∗
) dz
z

(3.2)

W̃o (P ) � 1
2πi

∮ (A (z)∗ PA (z) + C (z)∗ C (z)
) dz
z
. (3.3)

Proof 3.2 See Yan, Moore and Helmke (1993) for full details. Suffice it
to say here, the proof technique works with an upper bound PUk for Pk
which is monotonically decreasing, and a lower bound PLk for Pk which
is monotonically increasing. In fact, PUk is a solution of (3.1) with initial
condition PU0 suitably “large” satisfying PU0 > P0 > 0. Also, PLk is a
solution of (3.1) with initial condition PL0 suitably “small” satisfying 0 <
PU0 < P0. Since it can be shown that lim

k→∞
PUk = PLk , then lim

k→∞
Pk = P∞

is claimed.

Remark 3.3 Of course, the calculation of the Gramians W̃c (P ), W̃o (P )
on (3.2) (3.3) can be achieved by the contour integrations as indicated, or
by solving Lyapunov equations. The latter approach leads then to the more
convenient recursive implementation of the next theorem. �

Remark 3.4 When W̃c (P ) and W̃o (P ) are replaced by constant matri-
ces, then the algorithm specializes to the Riccati equation studied by Hitz
and Anderson (1972). This earlier result stimulated us to conjecture the
above theorem. The proof of the theorem is not in any sense a straightfor-
ward consequence of the Riccati theory as developed in Hitz and Anderson
(1972). �

Theorem 3.5 With the same hypotheses as in Theorem 3.1, let U (P ) and
V (Q) be the solutions of the Lyapunov equations

U (P ) =

[
A′ c′b′

0 A′

]
U (P )

[
A 0
bc A

]
+

[
c′c 0
0 P

]
(3.4)

V (Q) =

[
A bc

0 A

]
V (Q)

[
A′ 0
c′b′ A′

]
+

[
bb′ 0
0 Q

]
(3.5)

Then for any α > 0 and any initial condition (P0, U0, V0) ∈ P (n)×P (2n)×
P (2n), the solution (Pk, Uk, Vk) of the system of difference equations

Pk+1 =Pk − 2
(
Pk + U11

k /α
)

×
[
2Pk + U11

k /α+ α
(
V 11
k

)−1
]−1 (

Pk + U11
k /α

)
+ 2U11

k /α

(3.6)
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Uk+1 �
[
U11
k+1 U12

k+1

U21
k+1 U22

k+1

]

=

[
A′ c′b′

0 A′

][
U11
k U12

k

U21
k U22

k

][
A 0
bc A

]
+

[
c′c 0
0 Pk

] (3.7)

Vk+1 �
[
V 11
k+1 V 12

k+1

V 21
k+1 V 22

k+1

]

=

[
A bc

0 A

][
V 11
k V 12

k

V 21
k V 22

k

][
A′ 0
c′b′ A′

]
+

[
bb′ 0
0 P−1

k

] (3.8)

converges to
(
P∞, U (P∞) , V

(
P−1
∞

)) ∈ P (n) × P (2n) × P (2n).
Here P∞ minimizes the sensitivity function S̄ : P (n) → R and U∞ =

U(P∞), V∞ = V
(
P−1∞

)
are the L2-sensitivity Gramians W̃c (P∞), W̃o (P∞)

respectively.

Proof 3.6 See Yan, Moore and Helmke (1993) for details.

Remark 3.7 There does not appear to be any guarantee of exponential
convergences of these difference equations, at least with the proof tech-
niques as in Theorem 3.1. �

Example 3.8 To demonstrate the effectiveness of the proposed algorithms,
consider a specific minimal state-space realization (A, b, c) with

A =




0.5 0 1.0
0 −0.25 0
0 0 0.1


 , b =




0
1
2


 , c =

(
1 5 10

)

Recall that there exists a unique positive definite matrix P∞ such that the
realization

(
TAT−1, T b, cT−1

)
is L2-sensitivity optimal for any similarity

transformation T with T ′
∞T∞ = P∞. It turns out that P∞ is exactly given

by

P∞ =




0.2 0 0.5
0 5.0 0

0.5 0 5.0


 (3.9)

which indeed satisfies (1.17).
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FIGURE 3.1. The trajectory of Pk of
(3.1) with α = 300
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FIGURE 3.2. The trajectory of P (t)
of (1.16)

We first take the algorithm (3.1) with α = 300 and implement it starting
from the identity matrix. The resulting trajectory Pk during the first 500 it-
erations is shown in Figure 3.1 and is clearly seen to converge very rapidly
to P∞. In contrast, referring to Figure 3.2, using Runge-Kutta integration
methods to solve the differential equation (1.16) with the same initial con-
dition, even after 2400 iterations the solution does not appear to be close
to P∞ and it is converging very slowly to P∞. Adding a scalar factor to the
differential equation (1.16) does not reduce significantly the computer time
required for solving it on a digital computer.

Next we examine the effect of α on the convergence rate of the algo-
rithm (3.1). For this purpose, define the deviation between Pk and the true
solution P∞ in (3.9) as

dα (k) = ‖Pk − P∞‖2

where ‖·‖2 denotes the spectral norm of a matrix. Implement (3.1) with

α = 0.1, 10, 25, 100, 300, 2000,

respectively, and depict the evolution of the associated deviation dα (k) for
each α in Figure 3.3. Then one can see that α = 300 is the best choice.
In addition, as long as α ≤ 300, the larger α, the faster the convergence
of the algorithm. On the other hand, it should be observed that a larger α
is not always better than a smaller α and that too small α can make the
convergence extremely slow.

Finally, let us turn to the algorithm (3.6)–(3.8) with α = 300, where
all the initial matrices required for the implementation are set to identity
matrices of appropriate dimension. Define

d (k) = ‖Pk − P∞‖2
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FIGURE 3.3. Effect of different α on
the convergence rate of (3.1)
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FIGURE 3.4. Convergence of algo-
rithm (3.6)–(3.8) with α = 300

as the deviation between the first component Pk of the solution and P∞.
Figure 3.4 gives its evolution and manifestly exhibits the convergence of the
algorithm. Indeed, the algorithm (3.6)–(3.8) is faster compared to (3.1) in
terms of the execution time; but with the same number of iterations the
former does not produce a solution as satisfactory as the latter.

Main Points of Section

Recursive L2-sensitivity balancing schemes are devised which achieve the
same convergence points as the continuous-time gradient flows of the pre-
vious sections. The algorithms are considerably faster than those obtained
by applying standard numerical software for integrating the gradient flows.

9.4 L2-Sensitivity Model Reduction

We consider an application of L2-sensitivity minimization to model reduc-
tion, first developed in Yan and Moore (1992). Recall that a L2-sensitivity
optimal realization (A, b, c) of H (z) can be found so that

W̃c = W̃o = diag (σ1, σ2, . . . , σn) =

[
Σ1 0
0 Σ2

]
(4.1)

where σ1 ≥ · · · ≥ σn1 > σn1+1 ≥ · · · ≥ σn and Σi is ni × ni, i = 1, 2.
Partition compatibly (A, b, c) as

A =

[
A11 A12

A21 A22

]
, b =

[
b1

b2

]
, c =

[
c1 c2

]
(4.2)
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Then it is not hard to prove that

∥∥∥∥ ∂H

∂A11

∥∥∥∥
2

2

+
∥∥∥∥∂H∂b1

∥∥∥∥
2

2

≥
∥∥∥∥ ∂H

∂A22

∥∥∥∥
2

2

+
∥∥∥∥∂H∂c2

∥∥∥∥
2

2

+ tr (Σ1 − Σ2) (4.3)

∥∥∥∥ ∂H

∂A11

∥∥∥∥
2

2

+
∥∥∥∥∂H∂c1

∥∥∥∥
2

2

≥
∥∥∥∥ ∂H

∂A22

∥∥∥∥
2

2

+
∥∥∥∥∂H∂b2

∥∥∥∥
2

2

+ tr (Σ1 − Σ2) (4.4)

which suggests that the system is generally less sensitive with respect
to (A22, b2, c2) than to (A11, b1, c1). In this way, the nth1 order model
(A11, b1, c1) may be used as an approximation to the full order model. How-
ever, it should be pointed out that in general the realization (A11, b1, c1) is
no longer sensitivity optimal.

Let us present a simple example to illustrate the procedure of performing
model reduction based on L2-sensitivity balanced truncation.

Example 4.1 Consider the discrete-time state transfer function H (z) =
c (zI −A)−1 b with

A =

[
0 1

−0.25 −1

]
, b =

[
0
1

]
, c =

[
1 5

]
(4.5)

This is a standard Lyapunov balanced realization with discrete-time con-
trollability and observability Gramians

Wc = Wo = diag (10.0415, 0.7082) (4.6)

The first order model resulting from direct truncation is

H1 (z) =
5.2909

z + 0.6861
.

The magnitude plot of the reduced order model H1 (z) is shown in Figure 4.1
with point symbol and compared to that of the full order model H (z). An L2-
sensitivity balanced realization

(
Ã, b̃, c̃

)
of H (z) satisfying (4.1) is found

to be

Ã =

[
−0.6564 0.1564
−0.1564 −0.3436

]
, b̃ =

[
−2.3558
0.7415

]
, c̃ =

[
−2.3558 −0.7415

]

with the associated L2-sensitivity Gramians being

W̃c = W̃o = diag (269.0124, 9.6175)
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FIGURE 4.1. Frequency responses of
H (z), H1 (z)
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FIGURE 4.2. Frequency responses of
H (z), H2 (z)

Thus by directly truncating this realization, there results a first order model

H2 (z) =
5.5498

z + 0.6564
(4.7)

which is stable with a dotted magnitude plot as depicted in Figure 4.2. Com-
paring Figure 4.1 and Figure 4.2, one can see that H2 (z) and H1 (z) have
their respective strengths in approximating H (z) whereas their difference
is subtle.

At this point, let us recall that a reduced order model resulting from
truncation of a standard balanced stable realization is also stable. An issue
naturally arises as to whether this property still holds in the case of L2-
sensitivity balanced realizations. Unfortunately, the answer is negative. To
see this, we consider the following counterexample.

Example 4.2 H (z) = c (zI −A)−1 b where

A =

[
0.5895 −0.0644
0.0644 0.9965

]
, b =

[
0.8062
0.0000

]
, c =

[
0.8062 0.0000

]

It is easily checked that the realization (A, b, c) is Lyapunov balanced with
‖A‖2 = 0.9991 < 1. Solving the relevant differential or difference equation,
we find the solution of the L2−sensitivity minimization problem to be

P∞ =

[
1.0037 −0.0862
−0.0862 1.0037

]

from which a L2−sensitivity-optimizing similarity transformation is con-
structed as

T∞ =

[
0.0431 −1.0009
1.0009 −0.0431

]
.
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As a result, the L2-sensitivity optimal realization
(
Ã, b̃, c̃

)
is

Ã =

[
1.0028 −0.0822
0.0822 0.5832

]
, b̃ =

[
0.0347
0.8070

]
, c̃ =

[
−0.0347 0.8070

]

with the L2-sensitivity Gramians

W̃c = W̃o = diag (27.7640, 4.2585)

One observes that the spectral norm of Ã is less than 1, but that the
first order model resulting from the above described truncation procedure
is unstable. It is also interesting to note that the total L2-sensitivities of
the original standard balanced realization and of the resulting sensitivity
optimal one are 33.86 and 33.62, respectively, which shows little difference.

Main Points of Section

Just as standard balancing leads to good model reduction techniques, so
L2-sensitivity balancing can achieve equally good model reduction. In the
latter case, the reduced order model is, however, not L2-sensitivity bal-
anced, in general.

9.5 Sensitivity Minimization with Constraints

In the previous section, parameter sensitivity minimization of a linear sys-
tem realization is achieved using an L2-sensitivity norm. However, to min-
imize roundoff noise in digital filters due to the finite word-length imple-
mentations, it may be necessary to ensure that each of the states fluctuates
over the same range. For such a situation, it is common to introduce an L2

scaling constraint. One such constraint for controllable systems, studied in
Roberts and Mullis (1987) is to restrict the controllability Gramian Wc,
or rather TWcT

′ under a co-ordinate basis transformation T , so that its
diagonal elements are identical. Here, without loss of generality we take
these elements to be unity.

The approach taken in this section to cope with such scaling constraints,
is to introduce gradient flows evolving on the general linear group of invert-
ible n×n co-ordinate basis transformation matrices, T , but subject to the
constraint diag (TWcT

′) = In. Here Diag (X) denotes a diagonal matrix
with the same diagonal elements as X , to distinguish from the notation
diag (X) = (x11, . . . , xnn)′. Thus we restrict attention to the constraint set

M = {T ∈ GL (n) | diag (TWcT
′) = In} (5.1)
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The simplest sensitivity function proposed in Roberts and Mullis (1987)
for optimization is

φ : M → R, φ (T ) = tr
(
(T ′)−1

WoT
−1

)
. (5.2)

A natural approach in order to obtain the minimum of φ is to solve the
relevant gradient flow of φ. In order to do this we first have to explore the
underlying geometry of the constraint set M .

Lemma 5.1 M is a smooth manifold of dimension n (n− 1) which is dif-
feomorphic to the product space Rn(n−1)/2 ×O (n). Here O (n) denotes the
group of n×n orthogonal matrices. The tangent space TanT (M) at T ∈M
is

TanT (M) =
{
ξ ∈ R

n×n | diag (ξWcT
′) = 0

}
(5.3)

Proof 5.2 Let γ : GL (n) → Rn denote the smooth map defined by

γ (T ) = diag (TWcT
′)

The differential of γ at T0 ∈ GL (n) is the linear map Dγ|T0
: Rn×n → Rn

defined by
Dγ|T0

(ξ) = 2 diag (ξWcT
′
0)

Suppose there exists a row vector c′ ∈ R
n which annihilates the image

of Dγ|T0
. Thus 0 = c′ diag (ξWcT

′
0) = tr (D (c) ξWcT

′
0) for all ξ ∈ Rn×n,

where D (c) = diag (c1, . . . , cn). This is equivalent to

WcT
′
0 D(c) = 0 ⇔ D(c) = 0

since Wc and T0 are invertible. Thus γ is a submersion and therefore for
all x ∈ Rn

γ−1 (x) = {T ∈ GL (n) | diag (TWcT
′) = x}

is a smooth submanifold of codimension n. In order to prove that M is
diffeomorphic to Rn(n−1)/2×O (n) we observe first that M is diffeomorphic
to {S ∈ GL (n) | diag (SS′) = In} via the map

T �→ S := TW 1/2
c

Applying the Gram-Schmidt orthogonalization procedure to S yields

S = L · U
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where

L =



∗ 0
...

. . .

∗ . . . ∗




is lower triangular with positive elements on the diagonal and U ∈ O (n) is
orthogonal. Hence L satisfies Diag (LL′) = In if and only if the row vectors
of L have all norm one. The result follows.

Lemma 5.3 The function φ : M → R defined by (5.2) has compact sub-
level sets.

Proof 5.4 M is a closed subset of GL (n). By Lemma 8.2.1, the set
{
P = P ′ > 0 | tr (WcP ) = n, tr

(
WoP

−1
) ≤ c

}
is a compact subset of GL (n). Let P = T ′T . Hence,

T ∈ φ−1 ((−∞, c]) ⇔ tr
(
(T ′)−1

WoT
−1

)
≤ c and diag (TWcT

′) =In

⇒ tr
(
WoP

−1
) ≤ c and tr (WcP ) =n

shows that φ−1 ((−∞, c]) is a closed subset of a compact set and therefore
is itself compact.

Since the image of every continuous map φ : M → R with compact
sublevel sets is closed in R and since φ (T ) ≥ 0 for all T ∈ M , Lemma 5.3
immediately implies

Corollary 5.5 A global minimum of φ : M → R exists.

In order to define the gradient of φ we have to fix a Riemannian metric
on M . In the sequel we will endow M with the Riemannian metric which is
induced from the standard Euclidean structure of the ambient space Rn×n,
i.e.

〈ξ, η〉 := tr (ξ′η) for all ξ, η ∈ TanT (M)

Let TanT (M)⊥ denote the orthogonal complement of TanT (M) with re-
spect to the inner product in Rn×n. Thus

η ∈ TanT (M)⊥ ⇔ tr (η′ξ) = 0 for all ξ ∈ TanT (M) (5.4)

By Lemma 5.1., dim TanT (M)⊥ = n. Now given any diagonal matrix
diag (η1, . . . , ηn) let

η := diag (η1, . . . , ηn)TWc (5.5)
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Since

tr (η′ξ) = tr (WcT
′ diag (η1, . . . , ηn) ξ)

= tr (diag (η1, . . . , ηn)Diag (ξWcT
′))

=0

for all ξ ∈ TanT (M). Thus any η of the form (5.5) is orthogonal to the
tangent space TanT (M) and hence is contained in TanT (M)⊥. Since the
vector space of such matrices η has the same dimension n as TanT (M)⊥

we obtain.

Lemma 5.6

TanT (M)⊥

=
{
η ∈ R

n×n | η = diag (η1, . . . , ηn)TWc for some η1, . . . , ηn
}
.

We are now ready to determine the gradient of φ : M → R. The gra-
dient ∇φ is the uniquely determined vector field on M which satisfies the
condition

(a) ∇φ (T ) ∈ TanT (M)

(b) Dφ|T (ξ) = − 2 tr
(
(T ′)−1

WoT
−1ξT−1

)

= 〈∇φ (T ) , ξ〉
= tr

(∇φ (T )′ ξ
) (5.6)

for all ξ ∈ TanT (M). Hence

tr
((

∇φ (T )′ + 2T−1 (T ′)−1
WoT

−1
)
ξ
)

= 0

for all ξ ∈ TanT (M). Thus by Lemma 5.6 there exists a (uniquely deter-
mined) vector η = (η1, . . . , ηn) such that

∇φ (T )′ + 2T−1 (T ′)−1
WoT

−1 = (diag (η)TWc)
′

or, equivalently,

∇φ (T ) = −2 (T ′)−1
WoT

−1 (T ′)−1 + diag (η)TWc (5.7)

Using (5.6) we obtain

diag (η)Diag
(
TW 2

c T
′) = 2 Diag

(
(T ′)−1

Wo (T ′T )−1
WcT

′
)
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and therefore with Wc being positive definite

diag (η) = 2 Diag
(
(T ′)−1

Wo (T ′T )−1
WcT

′
) (

Diag
(
TW 2

c T
′))−1

(5.8)

We therefore obtain the following result arising from Lemma 5.6.

Theorem 5.7 The gradient flow Ṫ = −∇φ (T ) of the function φ : M → R

defined by (5.2) is given by

Ṫ =2 (T ′)−1
Wo (T ′T )−1

− 2 Diag
(
(T ′)−1

Wo (T ′T )−1
WcT

′
) (

Diag
(
TW 2

c T
′))−1

TWc

(5.9)

For any initial condition T0 ∈ GL (n) the solution T (t) ∈ GL (n) of (5.9)
exists for all t ≥ 0 and converges for t → +∞ to a connected component
of the set of equilibria points T∞ ∈ GL (n).

The following lemma characterizes the equilibria points of (5.9). We use
the following terminology.

Definition 5.8 A realization (A,B,C) is called essentially balanced if
there exists a diagonal matrix ∆ = diag (δ1, . . . , δn) of real numbers such
that for the following controllability and observability Gramians

Wo = ∆Wc. (5.10)

Note that for ∆ = In this means that the Gramians coincide while for
∆ = diag (δ1, . . . , δn) with δi �= δj for i �= j the (5.10) implies that Wc and
Wo are both diagonal.

Lemma 5.9 A coordinate transformation T ∈ GL (n) is an equilibrium
point of the gradient flow (5.9) if and only if T is an essentially balancing
transformation.

Proof 5.10 By (5.9), T is an equilibrium point if and only if

(T ′)−1
WoT

−1 = Diag
(
(T ′)−1

WoT
−1 (T ′)−1

WcT
′
)

× (
Diag

(
TW 2

c T
′))−1

TWcT
′ (5.11)

Set WT
c := TWcT

′, WT
o = (T ′)−1

WoT
−1. Thus (5.11) is equivalent to

B = Diag (B) (Diag (A))−1
A (5.12)
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where

B = WT
o (T ′)−1

WcT
′, A = TW 2

c T
′ (5.13)

Now B = ∆A for a diagonal matrix ∆ implies (DiagB) (DiagA)−1 = ∆
and thus (5.12) is equivalent to

WT
o = ∆WT

c (5.14)

for a diagonal matrix ∆ = Diag
(
WT
o

) (
Diag

(
WT
c

))−1

Remark 5.11 By (5.12) and since T ∈M we have

∆ = Diag
(
WT
o

)
(5.15)

so that the equilibrium points T∞ are characterized by

WT
o = Diag

(
WT
o

)
WT
c (5.16)

�

Remark 5.12 If T is an input balancing transformation, i.e. if WT
c = In,

WT
o diagonal, then T satisfies (5.16) and hence is an equilibrium point of

the gradient flow. �

Trace Constraint

The above analysis indicates that the task of finding the critical points
T ∈ M of the constrained sensitivity function (4.6) may be a difficult
one. It appears a hard task to single out the sensitivity minimizing coor-
dinate transformation T ∈ M . We now develop an approach which allows
us to circumvent such difficulties. Here, let us restrict attention to the en-
larged constraint set M∗ = {T ∈ GL (n) | tr (TWcT

′) = n}, but expressed
in terms of P = T ′T as

N = {P ∈ P (n) | tr (WcP ) = n} . (5.17)

Here P (n) is the set of positive definite real symmetric n × n matrices.
Of course, the diagonal constraint set M is a proper subset of M∗. More-
over, the extended sensitivity function on M∗, φ (T ) = tr

(
(T ′)−1

WoT
−1

)
,

expressed in terms of P = T ′T is now

Φ : N → R, Φ (P ) = tr
(
WoP

−1
)
. (5.18)

Before launching into the global analysis of the constrained cost function
(5.18), let us first clarify the relation between these optimization problems.
For this, we need a lemma
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Lemma 5.13 Let A ∈ Rn×n be symmetric with trA = n. Then there
exists an orthogonal coordinate transformation Θ ∈ O (n) such that
Diag (ΘAΘ′) = In.

Proof 5.14 The proof is by induction on n. For n = 1 the lemma is
certainly true. Thus let n > 1. Let λ1 ≥ · · · ≥ λn denote the eigenvalues of
Λ. Thus

∑n
i=1 λi = n, which implies λ1 ≥ 1 and λn ≤ 1. Using the Courant-

Fischer minmax Theorem 1.3.1, the mean value theorem from real analysis
then implies the existence of a unit vector x ∈ Sn−1 with x′Ax = 1. Extend
x to an orthogonal basis Θ′ = (x1, x2, . . . , xn) ∈ O (n) of R

n. Then

ΘAΘ′ =

[
1 �

� A1

]

with A1 ∈ R(n−1)×(n−1) symmetric and trA1 = n− 1. Applying the induc-
tion hypothesis on A1 thus completes the proof.

Effective numerical algorithms for finding orthogonal transformations
Θ ∈ O (n) such as described in the above lemma are available. See Hwang
(1977) for an algorithm based on Householder transformations. Thus
we see that the tasks of minimizing the sensitivity function φ (T ) =
tr
(
(T ′)−1

WoT
−1

)
over M and M∗ respectively are completely equivalent.

Certainly the minimization of Φ : N → R over N is also equivalent to min-
imizing φ : M∗ → R over M∗, using any square root factor T of P = T ′T .
Moreover the minimum value of φ (T ) where T ∈ M coincides with the
minimum value of Φ (P ) where P ∈ N . Thus these minimization tasks on
M and N are equivalent.

Returning to the analysis of the sensitivity function Φ : N → R we begin
with two preparatory results. The proofs are completely analogous to the
corresponding ones from the first subsection and the details are than left
as an easy exercise to the reader.

Lemma 5.15 N = {P ∈ P (n) | tr (WcP ) = n} is a smooth manifold of
dimension d = 1

2n (n+ 1) − 1 which is diffeomorphic to Euclidean space
Rd. The tangent space TPN at P ∈ N is

TPN =
{
ξ ∈ R

n×n | ξ′ = ξ, tr (Wcξ) = 0
}
. (5.19)

Proof 5.16 Follows the steps of Lemma 5.1. Thus let Γ : P (n) → R

denoted the smooth map defined by

Γ (P ) = tr (WcP ) .

The derivative of Γ at P ∈ P (n) is the surjective map DΓ|P : S (n) → R

defined on the vector space S (n) of symmetric matrices ξ by DΓ|P (ξ) =
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tr (Wcξ). Thus the first result follows from the fibre theorem from Appendix
C. The remainder of the proof is virtually identical to the steps in the proof
of Lemma 5.1.

Lemma 5.17 The function Φ : N → R defined by (5.18) has compact
sublevel sets. Moreover, a global minimum of Φ : N → R exists.

Proof 5.18 This is virtually identical to that of Lemma 5.3 and its corol-
lary.

In order to determine the gradient of Φ we have to specify a Riemannian
metric. The following choice of a Riemannian metric on N is particularly
convenient. For tangent vectors ξ, η ∈ TPN define

〈〈ξ, η〉〉 := tr
(
P−1ξP−1η

)
. (5.20)

It is easily seen that this defines an inner product on TPN and does in
fact define a Riemannian metric on N . We refer to this as the intrinsic
Riemannian metric on N .

Theorem 5.19 Let Φ : N → R be defined by (5.18).

(a) The gradient flow Ṗ = −∇Φ (P ) of the function Φ with respect to the
intrinsic Riemannian metric on N is given by

Ṗ = Wo − λ (P )PWcP, P (0) = P0 (5.21)

where

λ (P ) =
tr (WcWo)
tr (WcP )2

(5.22)

(b) There exists a unique equilibrium point P∞ ∈ N . P∞ satisfies the
balancing condition

Wo = λ∞P∞WcP∞

with λ∞ =
(

1
n

n∑
i=1

σi

)2

and σ1, . . . , σn are the singular values of the

associated Hankel, i.e. σi = λ
1/2
i (WcWo). P∞ is the global minimum

of Φ : N → R.

(c) For every initial condition P0 ∈ N the solution P (t) of (5.21) exists
for all t ≥ 0 and converges to P∞ for t → +∞, with an exponential
rate of convergence.
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Proof 5.20 Let ∇Φ denote the gradient vector field. The derivative of
Φ : N → R at an element P ∈ N is the linear map on the tangent space
DΦ|P : TPN → R given by

DΦ|P (ξ) = − tr
(
WoP

−1ξP−1
)

= − 〈〈Wo, ξ〉〉
for all ξ ∈ TPN . It is easily verified that the orthogonal complement
(TPN)⊥ of TPN in the vector space of symmetric matrices with respect to
the inner product 〈〈 , 〉〉 is

(TPN)⊥ = {λPWcP | λ ∈ R} ,
i.e. it coincides with the scalar multiplies of PWcP . Thus

DΦ|P (ξ) = 〈〈∇Φ (P ) , ξ〉〉
for all ξ ∈ TPN if and only if

∇Φ (P ) = −Wo + λPWcP.

The Lagrange multiplier λ (P ) is readily computed such as to satisfy
(−Wo + λPWcP ) ∈ TPN . Thus

tr (Wc (−Wo + λPWcP )) = 0

or equivalently,

λ (P ) =
tr (WcWo)

tr (WcPWcP )
.

This shows (a).
To prove (b), consider an arbitrary equilibrium point P∞ of (5.21). Thus

Wo = λ∞P∞WcP∞.

for a real number λ∞ = λ (P∞) > 0. By (8.2.3) we have

λ1/2
∞ P∞ = W−1/2

c

(
W 1/2
c WoW

1/2
c

)1/2

W−1/2
c .

Therefore, using the constraint tr (WcP∞) = n we obtain

nλ1/2
∞ = tr

(
W 1/2
c WoW

1/2
c

)1/2

= σ1 + · · · + σn

and hence

λ∞ =
(

1
n

(σ1 + · · · + σn)
)2

.
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Also P∞ is uniquely determined and hence must be the global minimum of
Φ : N → R. This proves (b). A straightforward argument now shows that
the linearization of the gradient flow (5.21) at P∞ is exponentially stable.
Global existence of solutions follows from the fact that Φ : N → R has
compact sublevel sets. This completes the proof of the theorem.

As a consequence of the above theorem we note that the constrained
minimization problem for the function Φ : N → R is equivalent to the un-
constrained minimization problem for the function Ψ : P (n) → R defined
by

Ψ (P ) = tr
(
WoP

−1
)

+ λ∞ tr (WcP ) (5.23)

where λ∞ =
(

1
n (σ1 + · · · + σn)

)2. This is of course reminiscent of the usual
Lagrange multiplier approach, where λ∞ would be referred to as a Lagrange
multiplier.

So far we have considered the optimization task of minimizing the observ-
ability dependent measure tr

(
WoP

−1
)

over the constraint set N . A similar
analysis can be performed for the minimization task of the constrained L2-
sensitivity cost function S̄ : N → R, defined for a matrix-valued transfer
function H (z) = C (zI −A)−1

B. Here the constrained sensitivity index is
defined as in Section 9.1. Thus in the single input, single output case

S̄ (P ) =
1

2πi

∮
tr

(A (z)P−1A (z)∗ P
) dz
z

+ tr (WcP ) + tr
(
WoP

−1
)
,

while for m input, p output systems (see (2.15))

S̄ (P ) =
1

2πi

∮ p∑
i=1

m∑
j=1

tr
(Aij (z)P−1Aij (z)∗ P

) dz
z

+ p tr (WcP ) +m tr
(
WoP

−1
) (5.24)

Here of course the constraint condition on P is tr (WcP ) = n, so that this
term does not influence the sensitivity index.

Following the notation of Section 9.3 define the L2-sensitivity Gramians

W̃c (P ) :=
1

2πi

∮ p∑
i=1

m∑
j=1

(Aij (z)P−1Aij (z)∗ + Bij (z)Bij (z)∗
) dz
z

W̃o (P ) :=
1

2πi

∮ p∑
i=1

m∑
j=1

(Aij (z)∗ PAij (z) + Cij (z)∗ Cij (z)
) dz
z
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A straightforward computation, analogous to that in the proof of Theo-
rem 5.19, shows that the gradient flow Ṗ = −∇S̄ (P ) with respect to the
intrinsic Riemannian metric on N is

Ṗ = W̃o (P ) − PW̃c (P )P − λ (P )PWcP (5.25)

where

λ (P ) =
tr

(
Wc

(
W̃o (P ) + PW̃c (P )P

))
tr (WcP )2

(5.26)

Here Wc =
∑∞

k=0 A
kBB′ (A′)k is the standard controllability Gramian

while W̃o (P ) and W̃c (P ) denote the L2-sensitivity Gramians.
Arguments virtually identical to those for Theorem 2.5 show

Theorem 5.21 Consider any controllable and observable discrete-time
asymptotically stable realization (A,B,C) of the matrix transfer function
H (z) = C (zI −A)−1

B, H (z) = (Hij (z)) with Hij (z) = ci (zI −A)−1
bj.

Then

(a) There exist a unique positive definite matrix Pmin ∈ N which min-
imizes the constrained L2-sensitivity index S̄ : N → R defined by
(5.24) and Tmin = P

1/2
min ∈M∗ is a constrained L2 sensitivity optimal

coordinate transformation. Also, Pmin ∈ N is the uniquely determined
critical point of the L2-sensitivity index S̄ : N → R.

(b) The gradient flow Ṗ = −∇S̄ (P ) of S : N → R for the intrinsic
Riemannian metric on N is given by (5.25), (5.26). Moreover, Pmin

is determined from the gradient flow (5.25), (5.26) as the limiting
solution as t → +∞, for arbitrary initial conditions Po ∈ N . The
solution P (t) exists for all t ≥ 0, and converges exponentially fast to
Pmin.

Results similar to those developed in Section 9.3 hold for recursive
Riccati-like algorithms for constrained L2-sensitivity optimization, which
by pass the necessity to evaluate the gradient flow (5.25) for constrained
L2-sensitivity minimization.

Main Points of Section

In minimizing sensitivity functions of linear systems subject to scaling con-
straints, gradient flow techniques can be applied. Such flows achieve what
are termed essentially balanced transformations.
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Notes for Chapter 9

The books for Roberts and Mullis (1987), Middleton and Goodwin (1990)
and Williamson (1991) give a background in digital control. An introduc-
tory textbook on digital signal processing is that of Oppenheim and Schafer
(1989). A recent book on sensitivity optimization in digital control is Gevers
and Li (1993). For important results on optimal finite-word-length repre-
sentations of linear systems and sensitivity optimization in digital signal
processing, see Mullis and Roberts (1976), Hwang (1977) and Thiele (1986).
The general mixed L2/L1 sensitivity optimization problem, with frequency
weighted sensitivity cost functions, is solved in Li et al. (1992).

Gradient flow techniques are used in Helmke and Moore (1993) to derive
the existence and uniqueness properties of L2-sensitivity optimal realiza-
tions. In Helmke (1992), corresponding results for Lp-sensitivity optimiza-
tion are proved, based on the Azad-Loeb theorem. In recent work, Gevers
and Li (1993) also consider the L2-sensitivity problem. Their proof of Parts
(a) and (c) of Theorem 1.8 is similar in spirit to the second proof, but is
derived independently of the more general balancing theory developed in
Chapter 7, which is based on the Azad-Loeb theorem. Gevers and Li (1993)
also give an interesting physical interpretation of the L2-sensitivity index,
showing that it is a more natural measure of sensitivity than the previously
studied mixed L2/L1 indices. Moreover, a thorough study of L2-sensitivity
optimization with scaling constraints is given.

For further results on L2-sensitivity optimal realizations including a
preliminary study of L2-sensitivity optimal model reduction we refer to
Yan and Moore (1992). Efficient numerical methods for computing L2-
sensitivity optimal coordinate transformations are described in Yan, Moore
and Helmke (1993). Also, sensitivity optimal controller design problems are
treated by Madievski, Anderson and Gevers (1993).

Much more work remains to be done in order to develop a satisfactory
theory of sensitivity optimization for digital control and signal processing.
For example, we mention the apparently unsolved task of sensitivity opti-
mal model reduction, which has been only briefly mentioned in Section 9.4.
Also sensitivity optimal controller design such as developed in Madievski
et al. (1993) remains a challenge. Other topics of interest are sensitivity
optimization with constraints and sensitivity optimal design for nonlinear
systems.

The sensitivity optimization problems arising in signal processing are
only in very exceptional cases amenable to explicit solution methods based
on standard numerical linear algebra, such as the singular value decompo-
sition. It is thus our conviction that the dynamical systems approach, as
developed in this book, will prove to be a natural and powerful tool for
tackling such complicated questions.





APPENDIX A

Linear Algebra

This appendix summarizes the key results of matrix theory and linear al-
gebra results used in this text. For more complete treatments, see Barnett
(1971) and Bellman (1970).

A.1 Matrices and Vectors

Let R and C denote the fields of real numbers and complex numbers, re-
spectively. The set of integers is denoted N = {1, 2, . . .}.

An n ×m matrix is an array of n rows and m columns of elements xij
for i = 1, . . . , n, j = 1, . . . ,m as

X =




x11 x12 . . . x1m

x12 x22 . . . x2m

...
...

. . .
...

xn1 xn2 . . . xnm


 = (xij) , x =




x1

x2

...
xn


 = (xi) .

The matrix is termed square when n = m. A column n- vector x is an n×1
matrix. The set of all n-vectors (row or column) with real arbitrary entries,
denoted Rn, is called n-space. With complex entries, the set is denoted Cn

and is called complex n-space. The term scalar denotes the elements of
R, or C. The set of real or complex n ×m matrices is denoted by Rn×m

or Cn×m, respectively. The transpose of an n×m matrix X , denoted X ′,
is the m × n matrix X ′ = (xji). When X = X ′, the square matrix is
termed symmetric. When X = −X ′, then the matrix is skew symmetric.
Let us denote the complex conjugate transpose of a matrix X as X∗ = X̄ ′.
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Then matrices X with X = X∗ are termed Hermitian and with X = −X∗

are termed skew Hermitian. The direct sum, of two square matrices X , Y ,
denotedX+̇Y , is [X 0

0 Y ] where 0 is a zero matrix consisting of zero elements.

A.2 Addition and Multiplication of Matrices

Consider matrices X,Y ∈ Rn×m or Cn×m, and scalars k, � ∈ R or C. Then
Z = kX + �Y is defined by zij = kxij + �yij . Thus X + Y = Y + X and
addition is commutative. Also, Z = XY is defined for X an n × p matrix
and Y an p × m matrix by ξij =

∑p
k=1 xikykj , and is an n × m matrix.

Thus W = XY Z = (XY )Z = X (Y Z) and multiplication is associative.
Note that when XY = Y X , which is not always the case, we say that X ,
Y are commuting matrices.

When X ′X = I and X is real then X is termed an orthogonal matrix and
when X∗X = I with X complex it is termed a unitary matrix. Note real
vectors x, y are orthogonal if x′y = 0 and complex vectors are orthogonal
if x∗y = 0. A permutation matrix π has exactly one unity element in each
row and column and zeros elsewhere. Of course π is orthogonal. An n× n
square matrix X with only diagonal elements and all other elements zero
is termed a diagonal matrix and is written X = diag (x11, x22 . . . , xnn).
When xii = 1 for all i and xij = 0 for i �= j, then X is termed an identity
matrix, and is denoted In, or just I. Thus for an n × m matrix Y , then
Y Im = Y = InY . A sign matrix S is a diagonal matrix with diagonal
elements +1 or −1, and is orthogonal. For X , Y square matrices the Lie
bracket of X and Y is

[X,Y ] = XY − Y X.

Of course, [X,Y ] = − [Y,X ], and for symmetric X , Y then [X,Y ]′ =
[Y,X ] = − [X,Y ]. Also, if X is diagonal, with distinct diagonal elements
then [X,Y ] = 0 implies that Y is diagonal. For X,Y ∈ Rn×m or Cn×m, the
generalized Lie-bracket is {X,Y } = X ′Y − Y ′X . It follows that {X,Y }′ =
−{X,Y }.

A.3 Determinant and Rank of a Matrix

A recursive definition of the determinant of a square n × n matrix X ,
denoted det (X), is

det (X) =
n∑
j=1

(−1)i+j xij det (Xij)
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where det (Xij) denotes the determinant of the submatrix of X constructed
by detecting the i-th row and the j-th column deleted. The element
(−1)i+j det (Xij) is termed the cofactor of xij . The square matrix X is said
to be a singular matrix if det (X) = 0, and a nonsingular matrix other-
wise. It can be proved that for square matrices det (XY ) = det (X) det (Y ),
det (In +XY ) = det (In + Y X). In the scalar case det (I + xy′) = 1 + y′x.

The rank of an n ×m matrix X , denoted by rk (X) or rank (X), is the
maximum positive integer r such that some r×r submatrix of X , obtained
by deleting rows and columns is nonsingular. Equivalently, the rank is the
maximum number of linearly independent rows and columns of X . If r is
either m or n then X is full rank. It is readily seen that

rank (XY ) ≤ min (rankX, rankY ) .

A.4 Range Space, Kernel and Inverses

For an n × m matrix X , the range space or the image space R (X ), also
denoted by image (X), is the set of vectors Xy where y ranges over the set
of all m vectors. Its dimension is equal to the rank of X . The kernel ker (X)
of X is the set of vectors z for which Xz = 0. It can be seen that for real
matrices R (X ′) is orthogonal to ker (X), or equivalently, with y1 = X ′y
for some y and if Xy2 = 0, then y′1y2 = 0.

For a square nonsingular matrix X , there exists a unique inverse of
X , denoted X−1, such that X−1X = XX−1 = I. The ij-th element of
X−1 is given from det (X)−1 × cofactor of xji. Thus

(
X−1

)′ = (X ′)−1 and
(XY )−1 = Y −1X−1. More generally, a unique (Moore-Penrose) pseudo-
inverse of X , denoted X#, is defined by the characterizing properties
X#Xy = y for all y ∈ R (X ′) and X#y = 0 for all y ∈ ker (X ′). Thus
if det (X) �= 0 then X# = X−1, if X = 0, X# = 0,

(
X#

)# = X ,
X#XX# = X#, XX#X = X

For a nonsingular n× n matrix X , a nonsingular p× p matrix A and an
n × p matrix B, then provided inverses exist, the readily verified Matrix
Inversion Lemma tells us that(

I +XBA−1B′)−1
X =

(
X−1 +BA−1B′)−1

=X −XB (B′XB +A)−1
B′X

and (
I +XBA−1B′)−1

XBA−1 =
(
X−1 +BA−1B′)−1

BX−1

=XB (B′XB +A)−1
.
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A.5 Powers, Polynomials, Exponentials and
Logarithms

The p-th power of a square matrix X , denoted Xp, is the p times product
XX . . .X when p is integer. Thus (Xp)q = Xpq, XpXq = Xp+q for integers
p, q. Polynomials of a matrixX are defined by p (X) =

∑p
i=0 siX

i, where si
are scalars. Any two polynomials p (X), q (X) commute. Rational functions
of a matrix X , such as p (X) q−1 (X), also pairwise commute.

The exponential of a square matrix X , denoted eX , is given by the limit
of the convergent series eX =

∑∞
i=0

1
i!X

i. It commutes with X . For X any
square matrix, eX is invertible with

(
eX

)−1 = e−X . If X is skew-symmetric
then eX is orthogonal. If X and Y commute, then e(X+Y ) = eXeY = eY eX .
For general matrices such simple expressions do not hold. One has always

eXY e−X =Y + [X,Y ] + 1
2! [X, [X,Y ]]

+ 1
3! [X, [X, [X,Y ]]] + . . . .

When Y is nonsingular and eX = Y , the logarithm is defined as logY = X .

A.6 Eigenvalues, Eigenvectors and Trace

For a square n × n matrix X , the characteristic polynomial of X is
det (sI −X) and its real or complex zeros are the eigenvalues of X , de-
noted λi. The spectrum spec (X) of X is the set of its eigenvalues. The
Cayley-Hamilton Theorem tells us that X satisfies its own characteristic
equation det (sI −X) = 0. For eigenvalues λi, then Xvi = λivi for some
real or complex vector vi, termed an eigenvector. The real or complex vec-
tor space of such vectors is termed the eigenspace. If λi is not a repeated
eigenvalue, then vi is unique to within a scalar factor. The eigenvectors are
real or complex according to whether or not λi is real or complex. When
X is diagonal then X = diag (λ1, λ2, . . . , λn). Also, det (X) = Πn

i=1λi
so that det (X) = 0, if and only if at least one eigenvalue is zero. As
det (sI −XY ) = det (sI − Y X), XY has the same eigenvalues as Y X .

A symmetric, or Hermitian, matrix has only real eigenvalues, a skew
symmetric, or skew-Hermitian, matrix has only imaginary eigenvalues, and
an orthogonal, or unitary, matrix has unity magnitude eigenvalues.

The trace of X , denoted tr (X), is the sum
∑n
i=1 xii =

∑n
i=1 λi.

Notice that tr (X + Y ) = tr (X) + tr (Y ), and with XY square, then
tr (XY ) = tr (Y X). Also, tr (X ′X) =

∑n
i=1

∑n
j=1 x

2
ij and tr2 (XY ) ≤

tr (X ′X) tr (Y ′Y ). A rather useful identity is det
(
eX

)
= etr(X).
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If X is square and nonsingular, then log det (X) ≤ trX − n and with
equality if and only if X = In.

The eigenvectors associated with distinct eigenvalues of a symmetric (or
Hermitian) matrix are orthogonal. A normal matrix is one with an orthog-
onal set of eigenvectors. A matrix X is normal if and only if XX ′ = X ′X .

If X , Y are symmetric matrices, the minimum eigenvalue of X is denoted
by λmin (X). Then

λmin (X + Y ) ≥ λmin (X) + λmin (Y ) .

Also, if X and Y are positive semidefinite (see Section A.8) then

tr (X) tr (Y ) ≥
[
Σiλ

1/2
i (XY )

]2

,

λmin (XYX) ≥λmin

(
X2

)
λmin (Y ) ,

λmin (XY ) ≥λmin (X)λmin (Y ) .

With λmax (X) as the maximum eigenvalue, then for positive semidefinite
matrices, see Section A.8.

tr (X) + tr (Y ) ≥2Σiλ
1/2
i (XY ) ,

λmax (X + Y ) ≤λmax (X) + λmax (Y ) ,

λmax (XYX) ≤λmax

(
X2

)
λmax (Y ) ,

λmax (XY ) ≤λmax (X)λmax (Y ) .

If λ1 (X) ≥ · · · ≥ λn (X) are the ordered eigenvalues of a symmetric
matrix X , then for 1 ≤ k ≤ n and symmetric matrices X , Y :

k∑
i=1

λi (X + Y ) ≤
k∑
i=1

λi (X) +
k∑
i=1

λi (Y ) .

k∑
i=1

λn−i+1 (X + Y ) ≥
k∑
i=1

λn−i+1 (X) +
k∑
i=1

λn−i+1 (Y )

A.7 Similar Matrices

Two n×n matrices X , Y are called similar if there exists a nonsingular T
such that Y = T−1XT . Thus X is similar to X . Also, if X is similar to Y ,
then Y is similar to X . Moreover, if X is similar to Y and if Y is similar to
Z, then X is similar to Z. Indeed, similarity of matrices is an equivalence
relation, see Section C.1. Similar matrices have the same eigenvalues.
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If for a given X , there exists a similarity transformation T such that
Λ = T−1XT is diagonal, then X is termed diagonalizable and Λ =
diag (λ1, λ2 . . . λn) where λi are the eigenvalues of X . The columns of T are
then the eigenvectors of X . All matrices with distinct eigenvalues are di-
agonalizable, as are orthogonal, symmetric, skew symmetric, unitary, Her-
mitian, and skew Hermitian matrices. In fact, if X is symmetric, it can
be diagonalized by a real orthogonal matrix and when unitary, Hermitian,
or skew-Hermitian, it can be diagonalized by a unitary matrix. If X is
Hermitian and T is any invertible transformation, then Sylvester’s inertia
theorem asserts that T ∗XT has the same number P of positive eigenval-
ues and the same number N of negative eigenvalues as X . The difference
S = P −N is called the signature of X , denoted sig (X).

For square real X , there exists a unitary matrix U such that U∗XU is
upper triangular the diagonal elements being the eigenvalues of X . This
is called the Schur form. It is not unique. Likewise, there exists a unitary
matrix U , such that U∗XU is a Hessenberg matrix with the form




x11 x12 . . . x1n

x21 x22 . . . x2n

. . . . . .
...

0 xn,n−1 xnn


 .

A Jacobi matrix is a (symmetric) Hessenberg matrix, so that in the Hessen-
berg form xij = 0 for |i− j| ≥ 2. The Hessenberg form of any symmetric
matrix is a Jacobi matrix.

A.8 Positive Definite Matrices and Matrix
Decompositions

With X = X ′ and real, then X is positive definite (positive definite or
nonnegative definite) if and only if the scalar x′Xx > 0 (x′Xx ≥ 0) for
all nonzero vectors x. The notation X > 0 (X ≥ 0) is used. In fact X >
0 (X ≥ 0) if and only if all eigenvalues are positive (nonnegative). If X =
Y Y ′ then X ≥ 0 and Y Y ′ > 0 if and only if Y is an m × n matrix with
m ≤ n and rkY = m. If Y = Y ′, so that X = Y 2 then Y is unique and
is termed the symmetric square root of X , denoted X1/2. If X ≥ 0, then
X1/2 exists.

If Y is lower triangular with positive diagonal entries, and Y Y ′ = X , then
Y is termed a Cholesky factor of X . A successive row by row generation of
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the nonzero entries of Y is termed a Cholesky decomposition. A subsequent
step is to form Y ΛY ′ = X where Λ is diagonal positive definite, and Y is
lower triangular with 1’s on the diagonal. The above decomposition also
applies to Hermitian matrices with the obvious generalizations.

For X a real n × n matrix, then there exists a polar decomposition
X = ΘP where P is positive semidefinite symmetric and Θ is orthogonal
satisfying Θ′Θ = ΘΘ′ = In. While P = (X ′X)1/2 is uniquely determined,
Θ is uniquely determined only if X is nonsingular.

The singular values of possibly complex rectangular matrices X , denoted
σi (X), are the positive square roots of the eigenvalues of X∗X . There exist
unitary matrices U , V such that

V ′XU =




σ1 0
. . .

0 σn

0 . . . 0
...

. . .
...

0 . . . 0




=: Σ.

If unitary U , V yield V ′XU , a diagonal matrix with nonnegative entries
then the diagonal entries are the singular values of X . Also, X = V ΣU ′ is
termed a singular value decomposition (SVD) of X .

Every real m×n matrix A of rank r has a factorization A = XY by real
m× r and r×n matrices X and Y with rkX = rkY = r. With X ∈ Rm×r

and Y ∈ R
r×n, then the pair (X,Y ) belong to the product space R

m×r ×
Rr×n. If (X,Y ), (X1, Y1) ∈ Rm×r×Rr×n are two full rank factorizations of
A, i.e. A = XY = X1Y1, then there exists a unique invertible r× r matrix
T with (X,Y ) =

(
X1T

−1, TY1

)
.

For X a real n × n matrix, the QR decomposition is X = ΘR where Θ
is orthogonal and R is upper triangular (zero elements below the diagonal)
with nonnegative entries on the diagonal. If X is invertible then Θ, R are
uniquely determined.

A.9 Norms of Vectors and Matrices

The norm of a vector x, written ‖x‖, is any length measure satisfying
‖x‖ ≥ 0 for all x, with equality if and only if x = 0, ‖sx‖ = |s| ‖x‖ for
any scalar s, and ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y. The Euclidean norm
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or the 2-norm is ‖x‖ =
(∑n

i=1 x
2
i

)1/2, and satisfies the Schwartz inequality
|x′y| ≤ ‖x‖ ‖y‖, with equality if and only if y = sx for some scalar s.

The operator norm of a matrix X with respect to a given vector norm, is
defined as ‖X‖ = max‖x‖=1 ‖Xx‖. Corresponding to the Euclidean norm
is the 2-norm ‖X‖2 = λ

1/2
max (X ′X), being the largest singular value of X .

The Frobenius norm is ‖X‖F = tr1/2 (X ′X). The subscript F is deleted
when it is clear that the Frobenius norm is intended. For all these norms
‖Xx‖ ≤ ‖X‖ ‖x‖. Also, ‖X + Y ‖ ≤ ‖X‖ + ‖Y ‖ and ‖XY ‖ ≤ ‖X‖ ‖Y ‖.
Note that tr (XY ) ≤ ‖X‖F ‖Y ‖F . The condition number of a nonsingular
matrix X relative to a norm ‖ · ‖ is ‖X‖∥∥X−1

∥∥.

A.10 Kronecker Product and Vec

With X an n×m matrix, the Kronecker product X ⊗ Y is the matrix,



x11Y . . . x1nY

...
. . .

...
xn1Y . . . xnmY


 .

With X , Y square the set of eigenvalues of X⊗Y is given by λi (X)λj (Y )
for all i, j and the set of eigenvalues of (X ⊗ I + I ⊗ Y ) is the set
{λi (X) + λj (Y )} for all i, j. Also (X ⊗ Y ) (V ⊗W ) = XV ⊗ YW , and
(X ⊗ Y )′ = X ′ ⊗ Y ′. If X , Y are invertible, then so is X ⊗ Y and
(X ⊗ Y )−1 = X−1 ⊗ Y −1.

Vec (X) is the column vector obtained by stacking the second column of
X under the first, and then the third, and so on. In fact

vec (XY ) = (I ⊗X) vecY = (Y ′ ⊗ I) vec (X)
vec (ABC) = (C′ ⊗A) vec (B) .

A.11 Differentiation and Integration

Suppose X is a matrix valued function of the scalar variable t. Then X (t)
is called differentiable if each entry xij (t) is differentiable. Also,

dX

dt
=

(
dxij
dt

)
,

d

dt
(XY ) =

dX

dt
Y +X

dY

dt
,

d

dt
etX = XetX = etXX.
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Also,
∫
Xdt =

(∫
xijdt

)
. Now with φ a scalar function of a matrix X , then

∂φ

∂X
= the matrix with ij-th entry

∂φ

∂xij
.

If Φ is a matrix function of a matrix X , then

∂Φ
∂X

= a block matrix with ij-th block
∂φij
∂X

.

The case when X , Φ are vectors is just a specialization of the above
definitions. If X is square (n× n) and nonsingular ∂

∂X

(
tr

(
WX−1

))
=

−X−1WX−1. Also log det (X) ≤ trX − n and with equality if and only
if X = In. Furthermore, if X is a function of time, then d

dtX
−1 (t) =

−X−1 dX
dt X

−1, which follows from differentiating XX−1 = I.
If P = P ′, ∂

∂x (x′Px) = 2Px.

A.12 Lemma of Lyapunov

If A, B, C are known n×n, m×m and n×m matrices, then the linear equa-
tion AX+XB+C = 0 has a unique solution for an n×m matrix X if and
only if λi (A)+λj (B) �= 0 for any i and j. In fact [I ⊗A+B′ ⊗ I] vec (X) =
− vec (C) and the eigenvalues of [I ⊗ A+B′ ⊗ I] are precisely given by
λi (A) + λj (B). If C > 0 and A = B′, the Lemma of Lyapunov for
AX + XB + C = 0 states that X = X ′ > 0 if and only if all eigenval-
ues of B have negative real parts.

The linear equation X − AXB = C, or equivalently, [In2 −B′ ⊗A]×
vec (X) = vec (C) has a unique solution if and only if λi (A) λj (B) �= 1 for
any i, j. If A = B′ and |λi (A)| < 1 for all i, then for X − AXB = C, the
Lemma of Lyapunov states that X = X ′ > 0 for all C = C′ > 0.

Actually, the condition C > 0 in the lemma can be relaxed to requiring
for any D such that DD′ = C that (A,D) be completely controllable, or
(A,D) be completely detectable, see definitions Appendix B.

A.13 Vector Spaces and Subspaces

Let us restrict to the real field R (or complex field C), and recall the spaces
R
n (or C

n). These are in fact special cases of vector spaces over R (or
C) with the vector additions and scalar multiplications properties for its
elements spelt out in Section A.2. They are denoted real (or complex) vector
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spaces. Any space over an arbitrary field K which has the same properties
is in fact a vector space V . For example, the set of all m×n matrices with
entries in the field as R (or C), is a vector space. This space is denoted by
Rm×n (or Cm×n).

A subspace W of V is a vector space which is a subset of the vector space
V . The set of all linear combinations of vectors from a non empty subset
S of V , denoted L (S), is a subspace (the smallest such) of V containing
S. The space L (S) is termed the subspace spanned or generated by S.
With the empty set denoted φ, then L (φ) = {0}. The rows (columns) of
a matrix X viewed as row (column) vectors span what is termed the row
(column) space of X denoted here by [X ]r ([X ]c). Of course, R (X ′) = [X ]r
and R (X) = [X ]c.

A.14 Basis and Dimension

A vector space V is n-dimensional (dim V = n), if there exists linearly
independent vectors, the basis vectors, {e1, e2, . . . , en} which span V . A
basis for a vector space is non-unique, yet every basis of V has the same
number n of elements. A subspace W of V has the property dimW ≤ n,
and if dimW = n, then W = V . The dimension of the row (column) space
of a matrix X is the row (column) rank of X . The row and column ranks
are equal and are in fact the rank of X . The co-ordinates of a vector x in
V with respect to a basis are the (unique) tuple of coefficients of a linear
combination of the basis vectors that generate x. Thus with x =

∑
i aiei,

then a1, a2, . . . , an are the co-ordinates.

A.15 Mappings and Linear Mappings

For A, B arbitrary sets, suppose that for each a ∈ A there is assigned a
single element f (a) of B. The collection f of such is called a function, or
map and is denoted f : A → B. The domain of the mapping is A, the
codomain is B. For subsets As, Bs, of A, B then f (As) = {f (a) : a ∈ As}
is the image of As, and f−1 (Bs) = {a ∈ A : f (a) ∈ Bs} is the preimage or
fiber of Bs. If Bs = {b} is a singleton set we also write f−1 (b) instead of
f−1 ({b}). Also, f (A) is the image or range of f . The notation x �→ f (x)
is used to denote the image f (x) of an arbitrary element x ∈ A.

The composition of mappings f : A→ B and g : B → C, denoted gof , is
an associative operation. The identity map idA : A→ A is the map defined
by a �→ a for all a ∈ A.
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A mapping f : A→ B is one-to-one or injective if different elements of A
have distinct images, i.e. if a1 �= a2 ⇒ f (a1) �= f (a2). The mapping is onto
or surjective if every b ∈ B is the image of at least one a ∈ A. A bijective
mapping is one-to-one and onto (surjective and injective). If f : A → B
and g : B → A are maps with g ◦ f = idA, then f is injective and g is
surjective.

For vector spaces V , W over R or C (denoted K) a mapping F : V →W
is a linear mapping if F (v + w) = F (v) + F (w) for any v, w ∈ V , and as
F (kv) = kF (v) for any k ∈ K and any v ∈ V . Of course F (0) = 0. A
linear mapping is called an isomorphism if it is bijective. The vector spaces
V , W are isomorphic if there is an isomorphism of V onto W . A linear
mapping F : V → U is called singular if it is not an isomorphism.

For F : V → U , a linear mapping, the image of F is the set

Im (F ) = {u ∈ U | F (v) = u for some v ∈ V } .
The kernel of F , is ker (F ) = {u ∈ V | F (u) = 0}. In fact for finite dimen-
sional spaces dimV = dim ker (F ) + dim Im (F ).

Linear operators or transformations are linear mappings T : V → V , i.e.
from V to itself.

The dual vector space V ∗ of a K-vector space V is defined as the K-vector
space of all K-linear maps λ : V → K. It is denoted by V ∗ = Hom (V,K).

A.16 Inner Products

Let V be a real vector space. An inner product on V is a bilinear map
β : V × V → R, also denoted by 〈 · , · 〉, such that β (u, v) = 〈u, v〉 satisfies
the conditions

〈u, v〉 = 〈v, u〉 , 〈u, sv + tw〉 = s 〈u, v〉 + t 〈u,w〉
〈u, u〉 >0, for u ∈ V − {0}

for all u, v, w ∈ V , s, t ∈ R.
An inner product defines a norm on V , by ‖u‖ := 〈u, u〉1/2 for u ∈ V ,

which satisfies the usual axioms for a norm. An isometry on V is a linear
map T : V → V such that 〈Tu, T v〉 = 〈u, v〉 for all u, v ∈ V . All isometries
are isomorphisms though the converse is not true. Every inner product on
V = Rn is uniquely determined by a positive definite symmetric matrix
Q ∈ Rn×n such that 〈u, v〉 = u′Qv holds for all u, v ∈ Rn. If Q = In,
〈u, v〉 = u′v is called the standard Euclidean inner product on Rn. The
induced norm ‖x‖ = 〈x, x〉1/2 is the Euclidean norm on Rn. A linear map
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A : V → V is called selfadjoint if 〈Au, v〉 = 〈u,Av〉 holds for all u, v ∈ V .
A matrix A : Rn → Rn taken as a linear map is selfadjoint for the inner
product 〈u, v〉 = u′Qv if and only if the matrix QA = A′Q is symmetric.
Every selfadjoint linear map A : Rn → Rn has only real eigenvalues.

Let V be a complex vector space. A Hermitian inner product on V is a
map β : V × V → C, also denoted by 〈 · , · 〉, such that β (u, v) = 〈u, v〉
satisfies

〈u, v〉 =〈v, u〉, 〈u, sv + tw〉 = s 〈u, v〉 + t 〈u,w〉 .
〈u, u〉 >0, for u ∈ V − {0}

holds for all u, v, w ∈ V , s, t ∈ C, where the superbar denotes the complex
conjugate.

The induced norm on V is ‖u‖ = 〈u, u〉1/2, u ∈ V . One has the same
notions of isometries and selfadjoint maps as in the real case. Every Her-
mitian inner product on V = Cn is uniquely defined by a positive definite
Hermitian matrix Q = Q∗ ∈ Cn×n such that 〈u, v〉 = ū′Qv holds for all
u, v ∈ C

n. The standard Hermitian inner product on C
n is 〈u, v〉 = u∗v

for u, v ∈ Cn. A complex matrix A : Cn → Cn is selfadjoint for the Her-
mitian inner product 〈u, v〉 = u∗Qv if and only if the matrix QA = A∗Q
is Hermitian. Every selfadjoint linear map A : Cn → Cn has only real
eigenvalues.



APPENDIX B

Dynamical Systems

This appendix summarizes the key results of both linear and nonlinear
dynamical systems theory required as a background in this text. For more
complete treatments, see Irwin (1980), Isidori (1985), Kailath (1980) and
Sontag (1990b).

B.1 Linear Dynamical Systems

State equations

Continuous-time, linear, finite-dimensional, dynamical systems initialized
at time t0 are described by

ẋ :=
dx

dt
= Ax+Bu, x (t0) = x0, y = Cx +Du

where x ∈ Rn, u ∈ Rm, y ∈ Rp and A, B, C, D are matrices of appropriate
dimension, possibly time varying.

In the case when B = 0, then the solution of ẋ = A (t)x, with ini-
tial state x0 is x (t) = Φ (t, t0)x0 where Φ (t, t0) is the transition matrix
which satisfies Φ̇ (t, t0) = A (t) Φ (t, t0), Φ (t0, t0) = I and has the property
Φ (t2, t1) Φ (t1, t0) = Φ (t2, t0). For any B, then

x (t) = Φ (t, t0)x0 +
∫ t

t0

Φ (t, τ)B (τ) u (τ) dτ.

In the time-invariant case where A (t) = A, then Φ (t, t0) = e(t−t0)A.
In discrete-time, for k = k0, k0 + 1, . . . with initial state xk0 ∈ Rn

xk+1 = Axk +Buk, yk = Cxk +Duk.
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The discrete-time solution is,

xk = Φk,k0xk0 +
k∑

i=ko

Φk,iBiui

where Φk,k0 = AkAk−1 . . . Ak0 . In the time invariant case Φk,k0 = Ak−k0 .
A continuous-time, time-invariant system (A,B,C) is called stable if the

eigenvalues of A have all real part strictly less than 0. Likewise a discrete-
time, time-invariant system (A,B,C) is called stable, if the eigenvalues
of A are all located in the open unit disc {z ∈ C | |z| < 1}. Equivalently,
limt→+∞ etA = 0 and limk→∞ Ak = 0, respectively.

Transfer functions

The unilateral Laplace transform of a function f (t) is the complex valued
function

F (s) =
∫ ∞

0+
f (t) e−stdt.

A sufficient condition for F (s) to exist as a meromorphic function is that
|f (t)| ≤ Ceat is exponentially bounded for some constants C, a > 0. In the
time-invariant case, transfer functions for the continuous-time system are
given in terms of the Laplace transform in the complex variable s as

H (s) = C (sI −A)−1B +D.

Thus when x0 = 0, then Y (s) =
(
C (sI −A)−1

B + D
)
U (s) gives the

Laplace transform Y (s) of y (·), expressed as a linear function of the
Laplace transform U (s) of u (·). When s = iw (where i = (−1)1/2),
then H (iw) is the frequency response of the systems at a frequency w.
The transfer function s−1 is an integrator. The Z-transform of a sequence
(hk | k ∈ N0) is the formal power series in z−1

H (z) =
∞∑
k=0

hkz
−k.

In discrete-time, the Z-transform yields the transfer function H (z) =
C (zI −A)−1

B + D in terms of the Z-transform variable z. For x0 = 0,
then Y (z) =

(
C (zI − A)−1

B+D
)
U (z) expresses the relation between the

Z-transforms of the sequences {uk} and {yk}. The transfer function z−1 is
a unit delay. The frequency response of a periodically sampled continuous-
time signal with sampling period T is H (z) with z = eiwT .
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B.2 Linear Dynamical System Matrix Equations

Consider the matrix differential equation

Ẋ :=
dX (t)
dt

= A (t)X (t) +X (t)B (t) + C (t) , X (t0) = X0.

Its solution when A, B are constant is

X (t) = e(t−t0)AX0e
(t−t0)B +

∫ t

t0

e(t−τ)AC (τ) e(t−τ)Bdτ.

When A, B, and C are constant, and the eigenvalues of A, B have negative
real parts, then X (t) → X∞ as t→ ∞ where

X∞ =
∫ ∞

0

etACetBdt

which satisfies the linear equation AX∞ +X∞B+C = 0. A special case is
the Lyapunov equation AX +XA′ + C = 0, C = C′ ≥ 0.

B.3 Controllability and Stabilizability

In the time-invariant, continuous-time, case, the pair (A,B) with A ∈ Rn×n

and B ∈ Rn×m is termed completely controllable (or more simply control-
lable) if one of the following equivalent conditions holds:

• There exists a control u taking ẋ = Ax+Bu from arbitrary state x0

to another arbitrary state x1, in finite time.

• Rank
(
B,AB, . . . , An−1B

)
= n

• (λI −A,B) full rank for all (complex) λ

• Wc (T ) =
∫ T
0 etABB′etA

′
dt > 0 for all T > 0

• AX = XA and XB = 0 implies X = 0

• w′etAB = 0 for all t implies w = 0

• w′AiB = 0 for all i implies w = 0

• There exists a K of appropriate dimension such that A + BK has
arbitrary eigenvalues.
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• There exists no co-ordinate basis change such that

A =

[
A11 A12

0 A22

]
, B =

[
B1

0

]
.

The symmetric matrix Wc (T ) =
∫ T
0
etABB′etA

′
dt > 0 is the controllabil-

ity Gramian, associated with ẋ = Ax+Bu. It can be found as the solution
at time T of Ẇc (t) = AWc (t)+Wc (t)A′ +BB′ initialized by Wc (t0) = 0.
If A has only eigenvalues with negative real part, in short Re (λ (A)) < 0,
then Wc (∞) = limt→∞Wc (t) exists.

In the time-varying case, only the first definition of controllability applies.
It is equivalent to requiring that the Gramian

Wc (t, T ) =
∫ t+T

t

Φ (t+ T, τ)B (τ)B′ (τ) Φ′ (t+ T, τ) dτ

be positive definite for all t and some T . The concept of uniform complete
controllability requires that Wc (t, T ) be uniformly bounded above and be-
low from zero for all t and some T > 0. This condition ensures that a
bounded energy control can take an arbitrary state vector x to zero in an
interval [t, t+ T ] for arbitrary t. A uniformly controllable system has the
property that a bounded K (t) exists such that ẋ = (A+BK)x has an
arbitrary degree of (exponential) stability.

The discrete-time controllability conditions, Gramians, etc are analo-
gous to the continuous-time definitions and results. In particular, the N -
controllability Gramian of a discrete-time system is defined by

W (N)
c :=

N∑
k=0

AkBB′ (A′)k

for N ∈ N. The pair (A,B) is controllable if and only if W (N)
c is positive

definite for all N ≥ n− 1. If A has all its eigenvalues in the open unit disc
{z ∈ C | |z| < 1}, in short |λ (A)| < 1, then for N = ∞

Wc :=
∞∑
k=0

AkBB′ (A′)k

exists and is positive definite if and only if (A,B) is controllable.

B.4 Observability and Detectability

The pair (A,C) has observability/detectability properties according to the
controllability/stabilizability properties of the pair (A′, C′); likewise for the
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time-varying and uniform observability cases. The observability Gramians
are known as duals of the controllability Gramians, e.g. in the continuous-
time case

Wo (T ) =
∫ T

o

etA
′
C′CetAdt, Wo =

∫ ∞

0

etA
′
C′CetAdt

and in the discrete-time case,

W (N)
o =

N∑
k=0

(A′)k C′CAk, Wo :=
∞∑
k=0

(A′)k C′CAk.

B.5 Minimality

The state space systems of Section B.1 denoted by the triple (A,B,C)
are termed minimal realizations, in the time-invariant case, when (A,B) is
completely controllable and (A,C) is completely observable. The McMil-
lan degree of the transfer functions H (s) = C (sI −A)−1

B or H (z) =
C (zI −A)−1B is the state space dimension of a minimal realization.
Kalman’s realization theorem asserts that any p×m rational matrix func-
tion H (s) with H (∞) = 0 (that is h (s) is strictly proper) has a minimal
realization (A,B,C) such that G (s) = C (sI −A)−1

B holds. Moreover,
given two minimal realizations denoted (A1, B1, C1) and (A2, B2, C2). then
there always exists a unique nonsingular transformation matrix T such
that TA1T

−1 = A2, TB1 = B2, C1T
−1 = C2. All minimal realizations of

a transfer function have the same dimension.

B.6 Markov Parameters and Hankel Matrix

With H (s) strictly proper (that is for H (∞) = 0), then H (s) has the
Laurent expansion at ∞

H (s) =
M0

s
+
M1

s2
+
M2

s3
+ · · ·
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where the p×m matrices Mi are termed Markov parameters. The Hankel
matrices of H (s) of size Np×Nm are then

HN =




M0 M1 . . . MN−1

M1 M2 . . . MN

...
...

. . .
...

MN−1 MN . . . M2N−1


 , N ∈ N.

If the triple (A,B,C) is a realization of H (s), then Mi = CAiB for
all i. Moreover, if (A,B,C) is minimal and of dimension n, then rank
HN = n for all N ≥ n. A Hankel matrix HN of the transfer function
H (s) = C (sI −A)−1

B has the factorization HN = ON ·RN where RN =(
B, . . . , AN−1B

)
and ON =

(
C′, . . . , (A′)N−1

C′)′ are the controllability
and observability matrices of length N . Thus for singular values, σi (HN ) =
λi

(
W

(N)
c W

(N)
o

)1/2.

B.7 Balanced Realizations

For a stable system (A,B,C), a realization in which the Gramians are equal
and diagonal as

Wc = Wo = diag (σ1, . . . , σn)

is termed a diagonally balanced realization. For a minimal realization
(A,B,C), the singular values σi are all positive. For a non minimal re-
alization of McMillan degree m < n, then σm+i = 0 for i > 0. Correspond-
ing definitions and results apply for Gramians defined on finite intervals T .
Also, when the controllability and observability Gramians are equal but not
necessarily diagonal the realizations are termed balanced. Such realizations
are unique only to within orthogonal basis transformations.

Balanced truncation is where a system (A,B,C) with A ∈ Rn×n, B ∈
Rn×m, C ∈ Rp×n is approximated by an rth order system with r < n
and σr > σr+1, the last (n− r) rows of (A,B) and last (n− r) columns of
[AC ] of a balanced realization are set to zero to form a reduced rth order
realization (Ar, Br, Cr) ∈ Rr×r×Rr×m×Rp×r. A theorem of Pernebo and
Silverman states that if (A,B,C) is balanced and minimal, and σr > σr+1,
then the reduced r-th order realization (Ar, Br, Cr) is also balanced and
minimal.
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B.8 Vector Fields and Flows

Let M be a smooth manifold and let TM denote its tangent bundle; see
Appendix C. A smooth vector field on M is a smooth section X : M → TM
of the tangent bundle. Thus X (a) ∈ TaM is a tangent vector for each
a ∈M . An integral curve of X is a smooth map α : I →M , defined on an
open interval I ⊂ R, such that α (t) is a solution of the differential equation
on M .

α̇ (t) = X (α (t)) , t ∈ I. (8.1)

Here the left-hand side of (8.1) is the velocity vector α̇ (t) = Dα|t (1) of
the curve α at time t. In local coordinates on M , (8.1) is just an ordinary
differential equation defined on an open subset U ⊂ Rn, n = dimM . It
follows from the fundamental existence and uniqueness result for solutions
of ordinary differential equations, that integral curves of smooth vector
fields on manifolds always exist and are unique. The following theorem
summarizes the basic properties of integral curves of smooth vector fields.

Theorem 8.1 Let X : M → TM be a smooth vector field on a manifold
M .

(a) For each a ∈M there exists an open interval Ia ⊂ R with 0 ∈ Ia and
a smooth map αa : Ia →M such that the following conditions hold

i α̇a (t) = X (αa (t)), αa (0) = a, t ∈ Ia.
ii Ia is maximal with respect to (a)i.. That is, if β : J → M is

another integral curve of X satisfying (a)i. then J ⊂ Ia.

(b) The set D = {(t, a) ∈ R ×M | t ∈ Ia} is an open subset of R ×M
and

φ : D →M, φ (t, a) = αa (t) ,

is a smooth map.

(c) φ : D →M satisfies

i φ (0, a) = a for all a ∈M .
ii φ (s, φ (t, a)) = φ (s+ t, a) whenever both sides are defined.
iii The map

φt : Dt →M, φt (a) = φ (t, a)

on the open set Dt = {a ∈M | (t, a) ∈ D} is a diffeomorphism
of Dt onto its image. The inverse is given by

(φt)
−1 = φ−t.
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The smooth map φ : D → M or the associated one-parameter family of
diffeomorphisms φt : Dt → M is called the flow of X . Thus, if (φt) is the
flow of X , then t �→ φt (a) is the unique integral curve of (8.1) which passes
through a ∈M at t = 0.

It is not necessarily true that a flow (φt) is defined for all t ∈ R (finite
escape time phenomena) or equivalently that the domain of a flow is D =
R × M . We say that the vector field X : M → TM is complete if the
flow (φt) is defined for all t ∈ R. If M is compact then all smooth vector
fields X : M → TM are complete. If a vector field X on M is complete
then (φt : t ∈ R) is a one-parameter group of diffeomorphism M →M and
satisfying

φt+s = φt ◦ φs, φ0 = idM , φ−t = (φt)
−1

for all s, t ∈ R.
In the case where the integral curves of a vector field are only considered

for nonnegative time, we say that (φt | t ≥ 0) (if it exists) is a one-parameter
semigroup of diffeomorphisms.

An equilibrium point of a vector field X is a point a ∈ M such that
X (a) = 0 holds. Equilibria points of a vector field correspond uniquely to
fixed points of the flow, i.e. φt (a) = a for all t ∈ R. The linearization of a
vector field X : M → TM at an equilibrium point is the linear map

TaX = Ẋ (a) : TaM → TaM.

Note that the tangent map TaX : TaM → T0 (TM) maps TaM into the
tangent space T0 (TM) of TM at X (a) = 0. But T0 (TM) is canonically
isomorphic to TaM ⊕ TaM , so that the above map is actually defined
by composing TaX with the projection onto the second summand. The
associated linear differential equation on the tangent space TaM

ξ̇ = Ẋ (a) · ξ, ξ ∈ TaM (8.2)

is then referred to as the linearization of (8.1). If M = Rn this corresponds
to the usual concept of a linearization of a system of differential equations
on Rn.

B.9 Stability Concepts

Let X : M → TM be a smooth vector field on a manifold and let φ : D →
M be the flow of X . Let a ∈ M be an equilibrium point of X , so that
X (a) = 0.
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The equilibrium point a ∈ M is called stable if for any neighborhood
U ⊂M of a there exists a neighborhood V ⊂M of a such that

x ∈ V → φt (x) ∈ U for all t ≥ 0.

Thus solutions which start in a neighborhood of a stay near to a for all
time t ≥ 0. In particular, if a ∈ M is a stable equilibrium of X then all
solutions of ẋ = X (x) which start in a sufficiently small neighborhood of
a are required to exist for all t ≥ 0.

The equilibrium point a ∈M of X is asymptotically stable if it is stable
and if a convergence condition holds: There exists a neighborhood U ⊂M
of a such that for all x ∈ U

lim
t→+∞φt (x) = a.

Global asymptotic stability holds if a is a stable equilibrium point and if
limt→+∞ φt (x) = a holds for all x ∈ M . Smooth vector fields generating
such flows can exist only on manifolds which are homeomorphic to Rn.

Let M be a Riemannian manifold and X : M → TM be a smooth vector
field. An equilibrium point a ∈M is called exponentially stable if it is stable
and there exists a neighborhood U ⊂ M of a and constants C > 0, α > 0
such that

dist (φt (x) , a) ≤ Ce−αt dist (x, a)

for all x ∈ U , t ≥ 0. Here dist (x, y) denotes the geodesic distance of x and
y on M . In such cases, the solutions converging to a are said to converge
exponentially.

The exponential rate of convergence ρ > 0 refers to the maximal possible
α in the above definition.

Lemma 9.1 Given a vector field X : M → TM on a Riemannian manifold
M with equilibrium point a ∈ M . Suppose that the linearization Ẋ (a) :
TaM → TaM has only eigenvalues with real part less than −α, α > 0. Then
a is (locally) exponentially stable with an exponential rate of convergence
ρ ≥ α.

Let X : M → TM be a smooth vector field on a manifold M and let
(φt) denote the flow of X . The ω-limit set Lω (x) of a point x of the vector
field X is the set of points of the form limn→∞ φtn (x) with the tn → +∞.
Similarly, the α-limit set Lα (x) is defined by letting tn → −∞ instead
of converging to +∞. A subset A ⊂ M is called positively invariant or
negatively invariant, respectively, if for each x ∈ A the associated integral
curve satisfies φt (a) ∈ A for all t ≥ 0 or φt (a) ∈ A for t ≤ 0, respectively.
Also, A is called invariant, if it is positively and negatively invariant, and
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A is called locally invariant, if for each a ∈ A there exists an open interval
]a, b[ ⊂ R with a < 0 < b such that for all t ∈ ]a, b[ the integral curve φt (a)
of X satisfies φt (a) ∈ A.

B.10 Lyapunov Stability

We summarize the basic results from Lyapunov theory for ordinary differ-
ential equations on Rn.

Let

ẋ = f (x) , x ∈ R
n (10.1)

be a smooth vector field on Rn. We assume that f (0) = 0, so that x = 0
is an equilibrium point of (10.1). Let D ⊂ Rn be a compact neighborhood
of 0 in Rn.

A Lyapunov function of (10.1) on D is a smooth function V : D → R

having the properties

(a) V (0) = 0, V (x) > 0 for all x �= 0 in D.

(b) For any solution x (t) of (10.1) with x (0) ∈ D

V̇ (x (t)) =
d

dt
V (x (t)) ≤ 0. (10.2)

Also, V : D → R is called a strict Lyapunov function if the strict inequality
holds

V̇ (x (t)) =
d

dt
V (x (t)) < 0 for x (0) ∈ D − {a} . (10.3)

Theorem 10.1 (Stability) If there exists a Lyapunov function V : D →
R defined on some compact neighborhood of 0 ∈ Rn, then x = 0 is a stable
equilibrium point.

Theorem 10.2 (Asymptotic Stability) If there exists a strict Lya-
punov function V : D → R defined on some compact neighborhood of
0 ∈ Rn, then x = 0 is an asymptotically stable equilibrium point.

Theorem 10.3 (Global Asymptotic Stability) If there exists a proper
map V : Rn → R which is a strict Lyapunov function with D = Rn, then
x = 0 is globally asymptotically stable.



B.10. Lyapunov Stability 333

Here properness of V : Rn → R is equivalent to V (x) → ∞ for ‖x‖ → ∞,
see also Section C.1.

Theorem 10.4 (Exponential Asymptotic Stability) If one has in
Theorem 10.2

α1 ‖x‖2 ≤V (x) ≤ α2 ‖x‖2
,

−α3 ‖x‖2 ≤V̇ (x) ≤ −α4 ‖x‖2

for some positive αi, i = 1, . . . , 4, then x = 0 is exponentially asymptotically
stable.

Now consider the case where X : M → TM is a smooth vector field on
a manifold M .

A smooth function V : M → R is called a (weak) Lyapunov function if V
has compact sublevel sets i.e. {x ∈M | V (x) ≤ c} is compact for all c ∈ R,
and

V̇ (x (t)) =
d

dt
V (x (t)) ≤ 0

for any solution x (t) of ẋ (t) = X (x (t)).
Recall that a subset Ω ⊂ M is called invariant if every solution x (t) of

ẋ = X (x) with x (0) ∈ Ω satisfies x (t) ∈ Ω for all t ≥ 0.
La Salle’s principle of invariance then asserts

Theorem 10.5 (Principle of Invariance) Let X : M → TM be a
smooth vector field on a Riemannian manifold and let V : M → R be
a smooth weak Lyapunov function for X. Then every solution x (t) ∈ M
of ẋ = X (x) exists for all t ≥ 0. Moreover the ω-limit set Lω (x) of any
point x ∈ M is a compact, connected and invariant subset of
{x ∈M | 〈gradV (x) , X (x)〉 = 0}.





APPENDIX C

Global Analysis

In this appendix we summarize some of the basic facts from general topol-
ogy, manifold theory and differential geometry. As further references we
mention Munkres (1975) and Hirsch (1976).

In preparing this appendix we have also profited from the appendices on
differential geometry in Isidori (1985) as well as from unpublished lectures
notes for a course on calculus on manifolds by Gamst (1975).

C.1 Point Set Topology

A topological space is a set X together with a collection of subsets of X ,
called open sets, satisfying the axioms

(a) The empty set φ and X are open sets.

(b) The union of any family of open sets is an open set.

(c) The intersection of finitely many open sets is an open set.

A collection of subsets of X satisfying (a)–(c) is called a topology on X .
A neighbourhood of a point a ∈ X is a subset which contains an open subset
U of X with a ∈ U . A basis for a topology on X is a collection of open
sets, called basic open sets, satisfying

• X is the union of basic open sets.

• The intersection of two basic open sets is a union of basic open sets.

A subset A of a topological space X is called closed if the complement
X − A is open. The collection of closed subsets satisfies axioms dual to
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(a)–(c). In particular, the intersection of any number of closed subsets is
closed and the union of finitely many closed subsets is a closed subset.

The interior of a subset A ⊂ X , denoted by Å, is the largest (possibly
empty) open subset of X which is contained in A. A is open if and only if
A = Å. The closure of A in X , denoted by Ā, is the smallest closed subset
of X which contains A. A is closed if and only if A = Ā.

A subset A ⊂ X is called dense in X if its closure coincides with X . A
subset A ⊂ X is called generic if it contains a countable intersection of
open and dense subsets of X . Generic subsets of manifolds are dense.

If X is a topological space and A ⊂ X a subset, then A can be made into
a topological space by defining the open subsets of A as the intersections
A ∩ U by open subsets U of X . This topology on A is called the subspace
topology.

Let X and Y be topological spaces. The cartesian product X × Y can
be endowed with a topology consisting of the subsets U × V where U and
V are open subsets of X and Y respectively. This topology is called the
product topology.

A spaceX is called Hausdorff, if any two distinct points ofX have disjoint
neighborhoods. We say the points can be separated by open neighborhoods.

A topological space X is called connected if there do not exist disjoint
open subsets U , V with U ∪ V = X . Also, X is connected if and only if
the empty set and X are the only open and closed subsets of X . Every
topological space X is the union of disjoint connected subsets Xi, i ∈ I,
such that every connected subset C ofX intersects only oneXi. The subsets
Xi, i ∈ I, are called the connected components of X .

Let A be a subset of X . A collection C of subsets of X is said to be a
covering of A if A is contained in the union of the elements of C. Also,
A ⊂ X is called compact if every covering of A by open subsets of X
contains a finite subcollection covering A. Every closed subset of a compact
space is compact. Every compact subset of a Hausdorff space is closed. A
topological space X is said to be locally compact if and only if every point
a ∈ X has a compact neighborhood.

The standard Euclidean n-space is Rn. A basis for a topology on the
set of real numbers R is given by the collection of open intervals ]a, b[ =
{x ∈ R | a < x < b}, for a < b arbitrary. We use the notations

[a, b] := {x ∈ R | a ≤ x ≤ b}
[a, b[ := {x ∈ R | a ≤ x < b}
]a, b] := {x ∈ R | a < x ≤ b}
]a, b[ := {x ∈ R | a < x < b}

Each of these sets is connected. For a, b ∈ R, [a, b] is compact.
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A basis for a topology on Rn is given by the collection of open n-balls

Br (a) =
{
x ∈ R

n

∣∣∣∣
n∑
i=1

(xi − ai)
2 < r

}

for a ∈ Rn and r > 0 arbitrary. The same topology is defined by taking the
product topology via

Rn = R × · · · × R (n-fold product). A subset A ⊂ Rn is compact if and
only if it is closed and bounded.

A map f : X → Y between topological spaces is called continuous if
the pre-image f−1 (Y ) = {p ∈ X | f (p) ∈ Y } of any open subset of Y is an
open subset of X . Also, f is called open (closed) if the image of any open
(closed) subset of X is open (closed) in Y . The map f : X → Y is called
proper if the pre-image of every compact subset of Y is a compact subset of
X . The image f (K) of a compact subset K ⊂ X under a continuous map
f : X → Y is compact. Let X and Y be locally compact Hausdorff spaces.
Then every proper continuous map f : X → Y is closed. The image f (A)
of a connected subset A ⊂ X of a continuous map f : X → Y is connected.

Let f : X → R be a continuous function on a compact space X . The
Weierstrass theorem asserts that f possesses a minimum and a maximum.
A generalization of this result is: Let f : X → R be a proper continuous
function on a topological space X . If f is lower bounded, i.e. if there exists
a ∈ R such that f (X) ⊂ [a,∞[, then there exists a minimum xmin ∈ X for
f with

f (xmin) = inf {f (x) | x ∈ X}
A map f : X → Y is called a homeomorphism if f is bijective and f and

f−1 : Y → X are continuous. An imbedding is a continuous, injective map
f : X → Y such that f maps X homeomorphically onto f (X), where f (X)
is endowed with the subspace topology of Y . If f : X → Y is an imbedding,
then we also write f : X ↪→ Y . If X is compact and Y a Hausdorff space,
then any bijective continuous map f : X → Y is a homeomorphism. If
X is any topological space and Y a locally compact Hausdorff space, then
any continuous, injective and proper map f : X → Y is an imbedding and
f (X) is closed in Y .

Let X and Y be topological spaces and let p : X → Y be a continuous
surjective map. Then p is said to be a quotient map provided any subset
U ⊂ Y is open if and only if p−1 (U) is open in X . Let X be a topological
space and Y be a set. Then, given a surjective map p : X → Y , there
exists a unique topology on Y , called the quotient topology, such that p is
a quotient map. It is the finest topology on Y which makes p a continuous
map.
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Let ∼ be a relation on X . Then ∼ is called an equivalence relation,
provided it satisfies the three conditions

(a) x ∼ x for all x ∈ X

(b) x ∼ y if and only if y ∼ x for x, y ∈ X .

(c) For x, y, z ∈ X then x ∼ y and y ∼ z implies x ∼ z.

Equivalence classes are defined by [x] := {y ∈ X | x ∼ y}. The quotient
space is defined as the set X/ ∼:= {[x] | x ∈ X} of all equivalence classes
of ∼. It is a topological space, endowed with the quotient topology for the
map p : X → X/ ∼, p (x) = [x], x ∈ X .

The graph Γ of an equivalence relation ∼ on X is the subset of X ×X
defined by Γ := {(x, y) ∈ X ×X | x ∼ y}. The closed graph theorem states
that the quotient space X/ ∼ is Hausdorff if and only if the graph Γ is a
closed subset of X ×X .

C.2 Advanced Calculus

Let U be an open subset of Rn and f : U → R a function. f : U → R is
called a smooth, or C∞, function if f is continuous and the mixed partial
derivatives of any order exist and are continuous. A function f : U → R

is called real analytic if it is C∞ and for each x0 ∈ U the Taylor series
expansion of f at x0 converges on a neighborhood of x0 to f (x). A smooth
map f : U → Rm is an m-tuple (f1, . . . , fm) of smooth functions fi : U →
R. Let x0 ∈ U and f : U → Rm be a smooth map. The Fréchet derivative
of f at x0 is defined as the linear map Df (x0) : Rn → Rm which has the
following ε− δ characterization:

For any ε > 0 there exists δ > 0 such that for ‖x− x0‖ < δ

‖f (x) − f (x0) −Df (x0) (x− x0)‖ < ε ‖x− x0‖

holds. The derivative Df (x0) is uniquely determined by this condition. We
also use the notation

Df |x0
(ξ) = Df (x0) · ξ

to denote the Fréchet derivative Df (x0) : Rn → Rm, ξ �→ Df (x0) (ξ).
If Df (x0) is expressed with respect to the standard basis vectors of R

n

and Rm then the associatedm×n-matrix of partial derivatives is the Jacobi
matrix
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Jf (x0) =



∂f1
∂x1

(x0) . . . ∂f1
∂xn

(x0)
...

. . .
...

∂fm

∂x1
(x0) . . . ∂fm

∂xn
(x0)


 .

The second derivative of f : U → R
m at x0 ∈ U is a bilinear map D2f (x0) :

Rn × Rn → Rm. It has the ε− δ characterization:
For all ε > 0 there exists δ > 0 such that for ‖x− x0‖ < δ

∥∥∥∥f (x) − f (x0) −Df (x0) (x− x0) − 1
2!
D2f (x0) (x− x0, x− x0)

∥∥∥∥
< ε ‖x− x0‖2

holds. Similarly, for any integer i ∈ N, the i-th derivative Dif (x0) :∏i
j=1 Rn → Rm is defined as a multilinear map on the i-th fold products

R
n × · · · × R

n. The Taylor series is the formal power series

∞∑
i=0

Dif (x0)
i!

(x− x0, . . . , x− x0) .

The matrix representation of the second derivative D2f (x0) of a function
f : U → R with respect to the standard basis vectors on Rn is the Hessian

Hf (x0) =




∂2f
∂x2

1
(x0) . . . ∂2f

∂x1∂xn
(x0)

...
. . .

...
∂2f

∂xn∂x1
(x0) . . . ∂2f

∂x2
n

(x0)


 .

It is symmetric if f is C∞.
The chain rule for the derivatives of smooth maps f : Rm → Rn, g :

Rn → Rk asserts that

D (g ◦ f) (x0) = Dg (f (x0)) ◦Df (x0)

and thus for the Jacobi matrices

Jg◦f (x0) = Jg (f (x0)) · Jf (x0) .

A diffeomorphism between open subsets U and V of R
n is a smooth

bijective map f : U → V such that f−1 : V → U is also smooth. A map
f : U → V is called a local diffeomorphism if for any x0 ∈ U there exists
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open neighborhoods U (x0) ⊂ U and V (f (x0)) ⊂ V of x0 and f (x0),
respectively, such that f maps U (x0) diffeomorphically onto V (f (x0)).

Theorem 2.1 (Inverse Function Theorem) Let f : U → V be a
smooth map between open subsets of R

n. Suppose the Jacobi matrix Jf (x0)
is invertible at a point x0 ∈ U . Then f maps a neighborhood of x0 in U
diffeomorphically onto a neighborhood of f (x0) in V .

A critical point of a smooth map f : U → Rn is a point x0 ∈ U where
rank Jf (x0) < min (m,n). Also, f (x0) is called a critical value. Regular
values y ∈ Rn are those such that f−1 (y) contains no critical point. If
f : U → R is a function, critical points x0 ∈ U are those whereDf (x0) = 0.
A local minimum (local maximum) of f is a point x0 ∈ U such that f (x) ≥
f (x0) (f (x) ≤ f (x0)) for all points x ∈ U0 in a neighborhood U0 ⊂ U
of x0. Moreover, x0 ∈ U is called a global minimum (global maximum) if
f (x) ≥ f (x0) (f (x) ≤ f (x0)) holds for all x ∈ U . Local minima or maxima
are critical points. All other critical points x0 ∈ U are called saddle points.

A critical point x0 ∈ U of f : U → R is called a nondegenerate crit-
ical point if the Hessian Hf (x0) is invertible. A function f : U → R is
called a Morse function if all its critical points x0 ∈ U are nondegenerate.
Nondegenerate critical points are always isolated.

Let x0 ∈ U be a critical point of the function f . If the Hessian Hf (x0) is
positive definite, i.e. Hf (x0) > 0, then x0 is a local minimum. If Hf (x0) <
0, then x0 is a local maximum. The Morse lemma explains the behaviour
of a function around a saddle point.

Lemma 2.2 (Morse Lemma) Let f : U → R be a smooth function and
let x0 ∈ U be a nondegenerate critical point of f . Let k be the number of
positive eigenvalues of Hf (x0). Then there exists a local diffeomorphism φ
of a neighborhood U (x0) of x0 onto a neighborhood V ⊂ Rn of 0 such that

(
f ◦ φ−1

)
(x1, . . . , xn) =

k∑
j=1

x2
j −

n∑
j=k+1

x2
j .

In constrained optimization, conditions for a point to be a local minimum
subject to constraints on the variables are often derived using Lagrange
multipliers.

Let f : Rm → R be a smooth function. Let g : Rm → Rn, g =
(g1, . . . , gn), n < m, be a smooth map such that constraints are defined
by g (x) = 0. Assume that 0 is a regular value for g, so that rkDg (x) = n
for all x ∈ Rm satisfying g (x) = 0.
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Condition 2.3 (First-Order Necessary Condition) Let x0 ∈ Rm,
g (x0) = 0, be a local minimum of the restriction of f to the constraint
set {x ∈ Rm | g (x) = 0}. Assume that 0 is a regular value of g. Then
there exists real numbers λ1, . . . , λn such that x0 is a critical point of
f (x) +

∑n
j=1 λjgj (x), i.e.

D

(
f +

n∑
j=1

λjgj

)
(x0) = 0.

The parameters λ1, . . . , λn appearing in the above necessary condition
are called the Lagrange multipliers.

Condition 2.4 (Second-Order Sufficient Condition) Let f : R
n →

R be a smooth function and let 0 be a regular value of g : Rn → Rm. Also
let x0 ∈ Rm, g (x0) = 0, satisfy

D (f + λjgj) (x0) = 0

for real numbers λ1, . . . , λn. Suppose that the Hessian

Hf (x0) +
n∑
j=1

λjHgj (x0)

of the function f +
∑
λjgj at x0 is positive definite on the linear subspace

{ξ ∈ Rn | Dg (x0) · ξ = 0} of Rn. Then x0 is a local minimum for the re-
striction of f on {x ∈ R

n | g (x) = 0}.

C.3 Smooth Manifolds

Let M be a topological space. A chart of M is a triple (U, φ, n) consisting
of an open subset U ⊂ M and a homeomorphism φ : U → Rn of U onto
an open subset φ (U) of Rn. The integer n is called the dimension of the
chart. We use the notation dimxM = n to denote the dimension of M at
any point x in U . φ = (φ1, . . . , φn) is said to be a local coordinate system
on U .

Two charts (U, φ, n) and (V, ψ,m) of M are called C∞ compatible charts
if either U ∩ V = ∅, the empty set, or if

(a) φ (U ∩ V ) and ψ (U ∩ V ) are open subsets of Rn and Rm.
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FIGURE 3.1. Coordinate charts

(b) The transition functions

ψ ◦ φ−1 : φ (U ∩ V ) → ψ (U ∩ V )

and
φ ◦ ψ−1 : ψ (U ∩ V ) → φ (U ∩ V )

are C∞ maps, see Figure 3.1.

It follows that, if U ∩V �= ∅ then the dimensions of the charts m and n are
the same.

A C∞ atlas of M is a set A = {(Ui, φi, ni) | i ∈ I} of C∞ compatible
charts such that M = ∪i∈IUi. An atlas A is called maximal if every chart
(U, φ, n) ofM which is C∞ compatible with every chart from A also belongs
to A.

Definition 3.1 A smooth or C∞ manifold M is a topological Hausdorff
space, having a countable basis, that is equipped with a maximal C∞ atlas.
If all coordinate charts of M have the same dimension n, then M is called
an n-dimensional manifold.

If M is connected, then all charts of M must have the same dimension
and therefore the dimension of M coincides with the dimension of any
coordinate chart.

Let U ⊂M be an open subset of a smooth manifold. Then U is a smooth
manifold. The charts of M which are defined on open subsets of U form a
C∞ atlas of U . Also, U is called an open submanifold of M .

Let M and N be smooth manifolds. Any two coordinate charts (U, φ,m)
and (V, ψ, n) of M and N define a coordinate chart (U × V, φ× ψ,m+ n)
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of M × N . In this way, M × N becomes a smooth manifold. It is called
the product manifold of M and N . If M and N have dimensions m and n,
respectively, then dim (M ×N) = m+ n.

Let M and N be smooth manifolds. A continuous map f : M → N
is called smooth if for any charts (U, φ,m) of M and (V, ψ, n) of N with
f (U) ⊂ V the map ψ ◦ f ◦ φ−1 : φ (U) → Rn is C∞. The map ψfφ−1 is
called the expression of f in local coordinates.

A continuous map f : M → Rn is smooth if and only if each component
function fi : M → R, f = (f1, . . . , fn), is smooth. The identity map idM :
M → M , x �→ x, is smooth. If f : M → N and g : N → P are smooth
maps, then also the composition g ◦ f : M → P . If f, g : M → Rn are
smooth maps, so is every linear combination. If f, g : M → R are smooth,
so is the sum f + g : M → R and the product f · g : M → R.

A map f : M → N between smooth manifolds M and N is called
a diffeomorphism if f : M → N is a smooth bijective map such that
f−1 : N → M is also smooth. M and N are called diffeomorphic if there
exists a diffeomorphism f : M → N .

Let M be a smooth manifold and (U, φ, n) a coordinate chart of M . Then
φ : U → Rn defines a diffeomorphism φ : U → φ (U) of U onto φ (U) ⊂ Rn.
An example of a smooth homeomorphism which is not a diffeomorphism is
f : R → R, f (x) = x3. Here f−1 : R → R, f−1 (x) = x1/3 is not smooth at
the origin.

A smooth map f : M → N is said to be a local diffeomorphism at
x ∈ M if there exists open neighborhoods U ⊂ M , V ⊂ N of x and f (x)
respectively with f (U) ⊂ V , such that the restriction f : U → V is a
diffeomorphism.

C.4 Spheres, Projective Spaces and Grassmannians

The n-sphere in Rn+1 is defined by Sn=
{
x ∈ Rn+1 | x2

1 + · · · + x2
n+1 = 1

}
.

It is a smooth, compact manifold of dimension n. Coordinate charts of
Sn can be defined by stereographic projection from the north pole xN =
(0, . . . , 0, 1) and south pole xS = (0, . . . , 0,−1).

Let UN := Sn − {xN} and define ψN : UN → Rn by

ψN (x1, . . . , xn+1) =
x− xn+1xN

1 − xn+1
for x = (x1, . . . , xn+1) ∈ UN .

Then ψ−1
N : Rn → UN is given by

ψ−1
N (y) =

(
‖y‖2 − 1

)
xN + 2 (y, 0)

‖y‖2 + 1
, y ∈ R

n.
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FIGURE 4.1. Stereographic projection

where ‖y‖2 = y2
1 + · · ·+y2

n. Similarly for US = Sn−{xS}, the stereographic
projection from the south pole is defined by ψS : US → Rn,

ψS (x) =
x+ xn+1xS
1 + xn+1

for x = (x1, . . . , xn+1) ∈ US

and

ψ−1
S (y) =

1 − ‖y‖2

1 + ‖y‖2xS +
2

1 + ‖y‖2 (y, 0) , y ∈ R
n.

By inspection, the transition functions ψS ◦ ψ−1
N , ψN ◦ ψ−1

S : Rn − {0} →
R
n−{0} are seen to be C∞ maps and thus A = {(UN , ψN , n) , (US , ψS , n)}

is a C∞ atlas for Sn.
The real projective n-space RPn is defined as the set of all lines through

the origin in Rn+1. Thus RPn can be identified with the set of equivalence
classes [x] of nonzero vectors x ∈ Rn+1 − {0} for the equivalence relation
on Rn+1 − {0} defined by

x ∼ y ⇐⇒ x = λy for λ ∈ R − {0} .
Similarly, the complex projective n-space CP

n is the defined as the set of
complex one-dimensional subspaces of Cn+1. Thus CPn can be identified
with the set of equivalence classes [x] of nonzero complex vectors x ∈
C
n+1 − {0} for the equivalence relation

x ∼ y ⇐⇒ x = λy for λ ∈ C − {0}
defined on Cn+1−{0}. It is easily verified that the graph of this equivalence
relation is closed and thus RPn and CPn are Hausdorff spaces.

If x = (x0, . . . , xn) ∈ Rn+1 − {0}, the one-dimensional subspace of Rn+1

generated by x is denoted by

[x] = [x0 : · · · : xn] ∈ RP
n.
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The coordinates x0, . . . , xn are called the homogeneous coordinates of [x].
They are uniquely defined up to a common scalar multiple by a nonzero
real number.

Coordinate charts for RPn are defined by

Ui := {[x] ∈ RP
n | xi �= 0}

and φi : Ui → Rn with

φi ([x]) =
(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
∈ R

n

for i = 0, . . . , n. It is easily seen that these charts are C∞ compatible and
thus define a C∞ atlas of RP

n. Similarly for CP
n.

Since every one dimensional real linear subspace of Rn+1 is generated by
a unit vector x ∈ Sn one has a surjective continuous map

π : Sn → RP
n, π (x) = [x] ,

with π (x) = π (y) ⇐⇒ y = ±x. One says that RP
n is defined by identifying

antipodal points on Sn. We obtain that RPn is a smooth compact and
connected manifold of dimension n. Similarly CPn is seen as a smooth
compact and connected manifold of dimension 2n.

Both RP1 and CP1 are homeomorphic to the circle S1 and the Riemann
sphere S2 respectively. Also, RP2 is a non orientable surface which cannot
be visualized as a smooth surface imbedded in R3.

For 1 ≤ k ≤ n the real Grassmann manifold GrassR (k, n) is defined as
the set of k-dimensional real linear subspaces of R

n. Similarly the complex
Grassmann manifold GrassC (k, n) is defined as the set of k-dimensional
complex linear subspaces of Cn, where k means the complex dimension of
the subspace.

GrassR (k, n) is a smooth compact connected manifold of dimension
k (n− k). Similarly GrassC (k, n) is a smooth compact connected manifold
of dimension 2k (n− k). For k = 1, GrassR (1, n) and GrassC (1, n) coincide
with the real and complex projective spaces RPn−1 and CPn−1 respectively.

The points of the Grassmann manifold GrassR (k, n) can be identified
with equivalence classes of an equivalence relation on rectangular matrices.
Let

ST (k, n) =
{
X ∈ R

n×k | rkX = k
}

denote the noncompact Stiefel manifold, i.e. the set of full rank n×k matri-
ces. Any such matrices are called k-frames Let [X ] denote the equivalence
class of the equivalence relation defined on ST (k, n) by

X ∼ Y ⇐⇒ X = Y T for T ∈ GL (k,R) .
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Thus X,Y ∈ ST (k, n) are equivalent if and only if their respective column-
vectors generate the same vector space. This defines a surjection

π : ST (k, n) → GrassR (k, n) , π (X) = [X ] ,

and GrassR (k, n) can be identified with the quotient space ST (k, n) / ∼. It
is easily seen that the graph of the equivalence relation is a closed subset of
ST (k, n)×ST (k, n). Thus GrassR (k, n), endowed with the quotient topol-
ogy, is a Hausdorff space. Similarly GrassC (k, n) is seen to be Hausdorff.

To define coordinate charts on GrassR (k, n), let I = {i1 < · · · < ik} ⊂
{1, . . . , n} denote a subset having k elements. Let I ′ = {1, . . . , n} − I
denote the complement of I. For X = (x′1, . . . , x

′
n)

′ ∈ Rn×k, let XI =(
x′i1 , . . . , x

′
ik

)′ ∈ Rk×k denote the submatrix of X of those row vectors xi
of X with i ∈ I. Similarly let XI′ be the (n− k) × k submatrix formed by
those row vectors xi with i �∈ I.

Let UI := {[X ] ∈ GrassR (k, n) | det (XI) �= 0} with ψI : UI → Rk(n−k)

defined by
φI ([X ]) = XI′ · (XI)

−1 ∈ R
(n−k)×k

It is easily seen that the system of
(
n
k

)
coordinate charts

{(UI , ψI , (n− k) k) | I ⊂ {1, . . . , n} and |I| = k}

is a C∞ atlas for GrassR (k, n). Similarly coordinate charts and a C∞ atlas
for GrassC (k, n) are defined.

As the Grassmannian is the image of the continuous surjective map
π : St (k, n) → GrassR (k, n) of the compact Stiefel manifold St (k, n) ={
X ∈ Rn×k | X ′X = Ik

}
it is compact. Two orthogonal k-frames X and

Y ∈ St (k, n) are mapped to the same point in the Grassmann manifold if
and only if they are orthogonally equivalent. That is, π (X) = π (Y ) if and
only if X = Y T for T ∈ O (k) orthogonal. Similarly for GrassC (k, n).

C.5 Tangent Spaces and Tangent Maps

Let M be a smooth manifold. There are various equivalent definitions of
the tangent space of M at a point x ∈ M . The following definition is
particularly appealing from a geometric viewpoint.

A curve through x ∈M is a smooth map α : I → M defined on an open
interval I ⊂ R with 0 ∈ I, α (0) = x. Let (U, φ, n) be a chart of M with
x ∈ U . Then φ ◦ α : I → φ (U) ⊂ Rn is a smooth map and its derivative at
0 is called the velocity vector (φα)′ (0) of α at x with respect to the chart
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(U, φ, n). If (V, ψ, n) is another chart with x ∈ V , then the velocity vectors
of α with respect to the two charts are related by

(ψα)′ (0) = D
(
ψφ−1

)∣∣
φ(x)

· (φα)′ (0) (5.1)

Two curves α and β through x are said to be equivalent, denoted by
α ∼x β, if (φα)′ (0) = (φβ)′ (0) holds for some (and hence any) coordinate
chart (U, φ, n) around x. Using (5.1), this is an equivalence relation on the
set of curves through x. The equivalence class of a curve α is denoted by
[α]x.

Definition 5.1 A tangent vector of M at x is an equivalence class ξ = [α]x
of a curve α through x ∈M . The tangent space TxM of M at x is the set
of all such tangent vectors.

Working in a coordinate chart (U, φ, n) one has a bijection

τφx : TxM → R
n, τφx ([α]x) = (φα)′ (0)

Using the vector space structure on Rn we can define a vector space
structure on the tangent space TxM such that τφx becomes an isomorphism
of vector spaces. The vector space structure on TxM is easily verified to be
independent of the choice of the coordinate chart (U, φ, n) around x. Thus if
M is a manifold of dimension n, the tangent spaces TxM are n-dimensional
vector spaces.

Let f : M → N be a smooth map between manifolds. If α : I → M is
a curve through x ∈ M then f ◦ α : I → N is a curve through f (x) ∈ N .
If two curves α, β : I → M through x are equivalent, so are the curves
f ◦ α, f ◦ β : I → N through f (x). Thus we can consider the map [α]x �→
[f ◦ α]f(x) on the tangent spaces TxM and Tf(x)N .

Definition 5.2 Let f : M → N be a smooth map, x ∈ M . The tangent
map Txf : TxM → Tf(x)N is the linear map on tangent spaces defined by
Txf ([α]x) = [f ◦ α]f(x) for all tangent vectors [α]x ∈ TxM .

Expressed in local coordinates (U, φ,m) and (V, ψ, n) of M and N at x
and f (x), the tangent map coincides with the usual derivative of f (ex-
pressed in local coordinates). Thus

τψf(x) ◦ Txf ◦ (
τφx

)−1
= D

(
ψfφ−1

)∣∣
φ(x)

.

One has a chain rule for the tangent map. Let idM : M → M be the
identity map and let f : M → N and g : N → P be smooth. Then

Tx (idM ) = idTxM , Tx (g ◦ f) = Tf(x)g ◦ Txf.
The inverse function theorem for open subsets of Rn implies
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Theorem 5.3 (Inverse Function Theorem) Let f : M → M be
smooth and x ∈ M . Then Txf : TxM → Tf(x)M is an isomorphism if
and only if f is a local diffeomorphism at x.

Let M and N be smooth manifolds, and x ∈ M , y ∈ N . The tangent
space of the product manifold M ×N at a point (x, y) is then canonically
isomorphic to

T(x,y) (M ×N) = (TxM) × (TyN) .

The tangent space of Rn (or of any open subset U ⊂ Rn) at a point x is
canonically isomorphic to R

n, i.e.

Tx (Rn) = R
n.

If f : M → Rn is a smooth map then we use the above isomorphism of
Tf(x) (Rn) with Rn to identify the tangent map Txf : TxM → Tf(x) (Rn)
with the linear map

Df |x : TxM → R
n.

Let f : M → R be a smooth function on M . A critical point of f is a
point x ∈ M where the derivative Df |x : TxM → R is the zero map, i.e.
Df |x (ξ) = 0 for all tangent vectors ξ ∈ TxM .

A point x0 ∈M is a local minimum (or local maximum) if there exists an
open neighborhood U of x in M such that f (x) ≥ f (x0) (or f (x) ≤ f (x0))
for all x ∈ U . Local minima maxima are critical points of f .

The Hessian Hf (x0) of f : M → R at a critical point x0 ∈ M is the
symmetric bilinear form

Hf (x0) : Tx0M × Tx0M → R

Hf (x0) (ξ, ξ) = f (α)′′ (0)

for any tangent vector ξ = [α]x0
∈ Tx0M . Thus for tangent vectors ξ, η,∈

Tx0M

Hf (x0) (ξ, η)

= 1
2 (Hf (x0) (ξ + η, ξ + η) −Hf (x0) (ξ, ξ) −Hf (x0) (η, η)) .

Note that the Hessian of f is only well defined at a critical point of f .
A critical point x0 ∈M where the Hessian Hf (x0) is positive definite on

TxM is a local minimum. Similarly, a critical point x0 with Hf (x0) (ξ, ξ) <
0 for all ξ ∈ Tx0M , ξ �= 0, is a local maximum.

A critical point x0 ∈M is called nondegenerate if the Hessian Hf (x0) is
a nondegenerate bilinear form; i.e. if

Hf (x0) (ξ, η) = 0, for all η ∈ Tx0M =⇒ ξ = 0
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Nondegenerate critical points are always isolated and there are at most
countably many of them. A smooth function f : M → R with only nonde-
generate critical points is called a Morse function.

The Morse index indf (x0) of a critical point x0 ∈ M is defined as the
signature of the Hessian:

indf (x0) = sigHf (x0) .

Thus indf (x0) = dimTx0M if and only if Hf (x0) > 0, i.e. if and only if
x0 is a local minimum of f .

If x0 is a nondegenerate critical point then the index

indf (x0) = dimM − 2n−,

where n− is the dimension of the negative eigenspace of Hf (x0). Often the
number n− of negative eigenvalues of the Hessian is known as the Morse
index of f at x0.

C.6 Submanifolds

Let M be a smooth manifold of dimension m. A subset A ⊂M is called a
smooth submanifold of M if every point a ∈ A possesses a coordinate chart
(V, ψ,m) around a ∈ V such that ψ (A ∩ V ) = ψ (V )∩(

Rk × {0}) for some
0 ≤ k ≤ n.

In particular, submanifolds A ⊂ M are also manifolds. If A ⊂ M is a
submanifold, then at each point x ∈ A, the tangent space TxA ⊂ TxM is
considered as a sub vector space of TxM . Any open subset U ⊂ M of a
manifold is a submanifold of the same dimension as M . There are subsets
A of a manifold M , such that A is a manifold but not a submanifold of M .
The main difference is topological: In order for a subset A ⊂M to qualify
as a submanifold, the topology on A must be the subspace topology.

Let f : M → N be a smooth map of manifolds.

(a) f is an immersion if the tangent map Txf : TxM → Tf(x)N is injec-
tive at each point x ∈M .

(b) f is a submersion if the tangent map Txf : TxM → Tf(x)N is surjec-
tive at each point x ∈M .

(c) f is a subimmersion if the tangent map Txf : TxM → Tf(x)N has
constant rank on each connected component of M .
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(d) f is an imbedding if f is an injective immersion such that f induces a
homeomorphism of M onto f (M), where f (M) is endowed with the
subspace topology of N .

Submersions are open mappings. If f : M → N is an imbedding, then
f (M) is a submanifold of N and f : M → f (M) is a diffeomorphism.
Conversely, if M is a submanifold of N than the inclusion map inc : M →
N , inc (x) = x for x ∈M , is an imbedding.

The image f (M) of an injective immersion f : M → N is called an
immersed submanifold of N , although it is in general not a submanifold of
N . A simple example of an immersed submanifold which is not a subman-
ifold are the so-called “irrational lines on a torus”. Here N = S1 × S1 is
the two-dimensional torus and f : R → S1 × S1, f (t) =

(
eit, e2πit

)
, is an

injective immersion with dense image f (R) in S1 × S1. Thus f (R) cannot
be a submanifold of S1 × S1.

A simple condition for an injective immersion to be an imbedding is
stated as a proposition.

Proposition 6.1 Let f : M → N be an injective immersion. If M is
compact then f is an imbedding.

An important way to produce submanifolds is as fibers of smooth maps.

Theorem 6.2 (Fiber Theorem) Let f : M → N be a subimmersion.
For a ∈ M let A = f−1 (f (a)) be the fiber of f through a. Then A is a
smooth submanifold of M with

TxA = kerTxf for all x ∈ A.

In particular, for x ∈ A

dimxA = dimxM − rkTxf

Important special cases are

(a) Let q (x) = x′Ax =
∑n
i,j=1 aijxixj be a quadratic form on Rn with

A = (aij) a symmetric invertible n × n matrix. Then M =
{x ∈ Rn | q (x) = 1} is a submanifold of Rn with tangent spaces

TxM = {ξ ∈ R
n | x′Aξ = 0} , x ∈M.

(b) Let f : Rn → R be smooth with

∇f (x) =
(
∂f

∂x1
(x) , . . . ,

∂f

∂xn
(x)

)′
�= 0
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for all x ∈ Rn satisfying f (x) = 0. Then M = {x ∈ Rn | f (x) = 0}
is a smooth submanifold with tangent spaces

TxM =
{
ξ ∈ R

n | ∇f (x)′ ξ = 0
}
, x ∈M.

If M �= ∅, then M has dimension n− 1.

(c) Let f : Rn → Rk be smooth and M = {x ∈ Rn | f (x) = 0}. If the
Jacobi matrix

Jf (x) =
(
∂fi
∂xj

(x)
)

∈ R
k×n

has constant rank r ≤ min (n, k) for all x ∈ M then M is a smooth
submanifold of R

n. The tangent space of M at x ∈M is given by

TxM = {ξ ∈ R
n | Jf (x) ξ = 0} .

If M �= φ, it has dimension n− r.

(d) Let f : M → N be a submersion. Then A = f−1 (f (a)) is a subman-
ifold of M with dimA = dimM − dimN , for every a ∈M .

C.7 Groups, Lie Groups and Lie Algebras

A group is a set G together with an operation ◦ which assigns to every
ordered pair (a, b) of elements of G a unique element a ◦ b such that the
following axioms are satisfied

(a) (a ◦ b) ◦ c = a ◦ (b ◦ c)
(b) There exists some element e ∈ G with e ◦ a = a for all a ∈ G.

(c) For any a ∈ G there exists a−1 ∈ G with a−1 ◦ a = e

A subgroup H ⊂ G is a subset of G which is also a group with respect to
the group operation ◦ of G.

A Lie group is a group G, which is also a smooth manifold, such that the
map

G×G→ G, (x, y) �→ xy−1

is smooth. A Lie subgroup H ⊂ G is a subgroup of G which is also a
submanifold. By Ado’s theorem, closed subgroups of a Lie group are Lie
subgroups. Compact Lie groups are Lie groups which are compact as topo-
logical spaces. A compact subgroup H ⊂ G is called maximal compact if
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there is no compact subgroup H ′ with G � H ′ ⊂ G. If H is a compact Lie
group, then the only maximal compact Lie subgroup is G itself.

Similar definitions exist for complex Lie groups, or algebraic groups, etc.
Thus a complex Lie group G is a group G which is also a complex manifold,
such that the map G×G→ G, (x, y) �→ xy−1, is holomorphic

The tangent space G = TeG of a Lie group G at the identity element e ∈
G has in a natural way the structure of a Lie algebra. A Lie algebra is a real
vector space which is endowed with a product structure, [ , ] : V ×V → V ,
called the Lie bracket, satisfying

(a) [x, y] = − [y, x] for all x, y ∈ V .

(b) For α, β ∈ R and x, y, z ∈ V

[αx+ βy, z] = α [x, z] + β [y, z] .

(c) The Jacobi identity is satisfied

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

for all x, y, z ∈ V .

Example 7.1 The general linear group

GL (n,K) =
{
T ∈ K

n×n | det (T ) �= 0
}

for K = R, or C is a Lie group of dimension n2, or 2n2, under matrix
multiplication. A maximal compact subgroup of GL (n,K) is the orthogonal
group

O (n) = O (n,R) =
{
T ∈ R

n×n | TT ′ = In
}

for K = R and the unitary group

U (n) = U (n,C) =
{
T ∈ C

n×n | TT ∗ = In
}

for K = C. Here T ∗ denotes the Hermitian transpose of T . Also GL (n,R)
and O (n,R) each have two connected components,

GL+ (n,R) = {T ∈ GL (n,R) | det (T ) > 0} ,
GL− (n,R) = {T ∈ GL (n,R) | det (T ) < 0} ,
O+ (n,R) = {T ∈ O (n,R) | det (T ) = 1} ,
O− (n,R) = {T ∈ O (n,R) | det (T ) = −1} ,

while GL (n,C) and U (n,C) are connected.
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The Lie algebra of GL (n,K) is

gl (n,K) =
{
X ∈ K

n×n}

endowed with the Lie bracket product structure

[X,Y ] = XY − Y X

for n× n matrices X, Y . The Lie algebra of O (n,R) is the vector space of
skew-symmetric matrices

skew (n,R) =
{
X ∈ R

n×n | X ′ = −X}

and the Lie algebra of U (n,C) is the vector space of skew-Hermitian ma-
trices

skew (n,C) =
{
X ∈ C

n×n | X∗ = −X}
.

In both cases the Lie algebras are endowed with the Lie bracket product
[X,Y ] = XY − Y X.

Example 7.2 The special linear group

SL (n,K) =
{
T ∈ K

n×n | det (T ) = 1
}
.

A maximal compact subgroup of SL (n,K) is the special orthogonal group

SO (n) = SO (n,R) =
{
T ∈ R

n×n | TT ′ = In, det (T ) = 1
}
.

for K = R and the special unitary group

SU (n) = SU (n,C) =
{
T ∈ C

n×n | TT ∗ = In, det (T ) = 1
}

for K = C. The groups SO (n,R) and SU (n,C) are connected. Also,
SO (2,R) is homeomorphic to the circle S1 and SO (3,R) is homeomor-
phic to real projective 3-space RP3, and SU (2,C) is homeomorphic to the
3-sphere S3.

The Lie algebra of SL (n,K) is

sl (n,K) =
{
X ∈ K

n×n | tr (X) = 0
}
,

endowed with the matrix Lie bracket product structure [X,Y ] = XY −Y X.
The Lie algebra of SO (n,R) coincides with the Lie algebra skew (n,R) of
O (n,R). The Lie algebra of SU (n,C) is the subspace of the Lie algebra of
U (n,C) defined by {X ∈ Cn×n | X∗ = −X, tr (X) = 0}.
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Example 7.3 The real symplectic group

Sp (n,R) = {T ∈ GL (2n,R) | T ′JT = J}
where

J =

[
0 −In
In 0

]
.

A maximal compact subgroup of Sp (n,R) is

Sp (n) = Sp (n,R) ∩O (2n,R) .

The Lie algebra of Sp (n,R) is the vector space of 2n× 2n Hamiltonian
matrices

Ham (n) =
{
X ∈ R

2n×2n | JX +X ′J = 0
}
.

The Lie bracket operation is [X,Y ] = XY − Y X.

Example 7.4 The Lie group O (p, q) = {T ∈ GL (n,R) | T ′IpqT = Ipq}
where

Ipq =

[
Ip 0
0 −Iq

]

and p, q ≥ 0, p + q = n. A maximal compact subgroup of O (p, q) is the
direct product O (p) ×O (q) of orthogonal groups O (p) and O (q). The Lie
algebra of O (p, q) is the vector space of signature skew-symmetric matrices

o (p, q) =
{
X ∈ R

n×n | (XIpq)
′ = −XIpq

}
.

The exponential map is a local diffeomorphism exp : G → G, which maps
the Lie algebra of G into the connected component of e ∈ G. In the above
cases of matrix Lie groups the exponential map is given by the classical
matrix exponential

exp (X) = eX =
∞∑
i=0

1
i!
X i.

Thus if X is a skew-symmetric, skew-Hermitian, or Hamiltonian matrix,
then eX is an orthogonal, unitary, or symplectic matrix.

For A ∈ R
n×n let adA : R

n×n → R
n×n be defined by adA (X) = AX −

XA. The map adA is called the adjoint transformation. Let adiA (B) =
adA

(
adi−1

A B
)
, ad0

AB = B for i ∈ N. Then the Baker-Campbell-Hausdorff
formula holds

etABe−tA =B + t [A,B] +
t2

2!
[A, [A,B]] + · · ·

=
∞∑
k=0

tk

k!
adkAB
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for t ∈ R and A,B ∈ Rn×n arbitrary.

C.8 Homogeneous Spaces

A Lie group action of a Lie group G on a smooth manifold M is a smooth
map

δ : G×M →M, (g, x) �→ g · x
satisfying for all g, h ∈ G and x ∈M

g · (h · x) = (gh) · x, e · x = x.

A group action δ : G×M →M is called transitive if there exists an element
x ∈ M such that every y ∈ M satisfies y = g · x for some g ∈ G. A space
M is called homogeneous if there exists a transitive G-action on M .

The orbit of x ∈M is defined by

O (x) = {g · x | g ∈ G} .

Thus the homogeneous spaces are the orbits of a group action.
Any Lie group action δ : G×M →M induces an equivalence relation ∼

on M defined by

x ∼ y ⇐⇒ there exists g ∈ G with y = g · x

for x, y ∈M . Thus the equivalence classes of ∼ are the orbits of δ : G×M →
M . The quotient space of this equivalence relation is called the orbit space
and is denoted by M/G or by M/ ∼. Thus

M/G = {O (x) | x ∈M} .

M/G is endowed with the quotient topology, i.e. with the finest topology
on M/G such that the quotient map

π : M →M/G, π (x) = O (x)

is continuous. Also, M/G is Hausdorff if and only if the graph of the G-
action, defined by

Γ = {(x, g · x) ∈M ×M | x ∈M, g ∈ G}

is a closed subset of M ×M . Moreover, M/G is a smooth manifold if and
only if Γ is a closed submanifold of M ×M .
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Given a Lie group action δ : G × M → M and a point x ∈ M , the
stabilizer subgroup of x is defined by

Stab (x) = {g ∈ G | g · x = x} .
Stab (x) is a closed Lie subgroup of G.

For any Lie subgroupH ⊂ G the orbit space of the H-action α : H×G→
G, (h, g) �→ gh−1, is the set of coset classes

G/H = {g ·H | g ∈ G} .
G/H is an homogeneous space for the G-action α : G × G·/H → G/H ,
(f, g ·H) → fg · H . If H is a closed Lie subgroup of G then G/H is a
smooth manifold. In particular, G/ Stab (x), x ∈M , is a smooth manifold
for any Lie group action δ : G×M →M .

A group action δ : G ×M → M of a complex Lie group on a complex
manifold M is called holomorphic, if δ : G×M →M is a holomorphic map.
If δ : G ×M → M is a holomorphic group action then the homogeneous
spaces G/ Stab (x), x ∈M , are complex manifolds.

Let G be a complex algebraic group acting algebraically on a complex
variety M . The closed orbit lemma states that every orbit is then a smooth
locally closed subset of M whose boundary is a union of orbits of strictly
lower dimension. This is wrong for arbitrary holomorphic Lie group actions.
However, it is true for real algebraic and even semialgebraic group actions
(see below).

For a point x ∈M consider the smooth map

δx : G→M, g �→ g · x.
Thus the image

δx (G) = O (x)

coincides with the G-orbit of x and δx induces a smooth injective immersion

δ̄x : G/ Stab (x) →M

of G/ Stab (x) onto O (x). Thus O (x) is always an immersed submanifold
of M . It is an imbedded submanifold in any of the following two cases

(a) G is compact.

(b) G ⊂ GL (n,R) is a semialgebraic Lie subgroup and δ : G × RN →
R
N is a smooth semialgebraic action. This means that the graph{
(x, g · x) ∈ RN × RN | g ∈ G, x ∈ RN

}
is a semialgebraic subset of

RN × RN . This condition is, for example, satisfied for real algebraic
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subgroups G ⊂ GL (n,R) and δ : G × RN → RN a real algebraic
action. Examples of such actions are the similarity action

(S,A) �→ SAS−1

of GL (n,R) on Rn×n and more generally, the similarity action

(S, (A,B,C)) �→ (
SAS−1, SB,CS−1

)

of GL (n,R) on matrix triples

(A,B,C) ∈ R
n×n × R

n×m × R
p×n.

In these two cases (a) or (b) the map δ̄x is a diffeomorphism ofG/ Stab (x)
onto O (x). For a proof of the following proposition we refer to Gibson
(1979).

Proposition 8.1 Let G ⊂ GL (n,R) be a semialgebraic Lie subgroup and
let δ : G × RN → RN be a smooth semialgebraic action. Then each orbit
O (x), x ∈ RN , is a smooth submanifold of RN and

δ̄x : G/ Stab (x) → O (x)

is a diffeomorphism.

C.9 Tangent Bundle

Let M be a smooth manifold. A vector bundle E on M is a family of real
vector spaces Ex, x ∈ M , such that Ex varies continuously with x ∈ M .
In more precise terms, a smooth vector bundle of rank k on M is a smooth
manifold E together with a smooth surjective map π : E →M satisfying

(a) For any x ∈ M the fiber Ex = π−1 (x) is a real vector space of
dimension k.

(b) Local Triviality: Every point x ∈M possesses an open neighborhood
U ⊂M such that there exists a diffeomorphism

θ : π−1 (U) → U × R
k

which maps Ey linearly isomorphically onto {y} × Rk for all y ∈ U .
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The smooth map π : E → M is called the bundle projection. As a set, a
vector bundle E =

⋃
x∈M Ex is a disjoint union of vector spaces Ex, x ∈M .

A section of a vector bundle E is a smooth map s : M → E such that
π ◦ s = idM . Thus a section is just a smooth right inverse of π : E → M .
A smooth vector bundle E of rank k on M is called trivial if there exists a
diffeomorphism

θ : E →M × R
k

which maps Ex linearly isomorphically onto {x} × Rk for all x ∈ M . A
rank k vector bundle E is trivial if and only if there exist k (smooth)
sections s1, . . . , sk : M → E such that s1 (x) , . . . , sk (x) ∈ Ex are linearly
independent for all x ∈M .

The tangent bundle TM of a manifold M is defined as

TM =
⋃
x∈M

TxM.

Thus TM is the disjoint union of all tangent spaces TxM of M . It is a
smooth vector bundle on M with bundle projection

π : TM →M,π (ξ) = x for ξ ∈ TxM.

Also, TM is a smooth manifold of dimension dimTM = 2 dimM .
Let f : M → N be a smooth map between manifolds. The tangent map

of f is the map

Tf : TM → TN, ξ �→ Tπ(ξ)f (ξ) .

Thus Tf : TM → TN maps a fiber TxM = π−1
M (x) into the fiber Tf(x)N =

π−1
N (f (x)) via the tangent map Txf : TxM → Tf(x)N . If f : M → N is

smooth, so is the tangent map Tf : TM → TN .
One has a chain rule for the tangent map

T (g ◦ f) = Tg ◦ Tf, T (idM ) = idTM

for arbitrary smooth maps f : M → N , g : N → P .
A smooth vector field on M is a (smooth) section X : M → TM of the

tangent bundle. The tangent bundle TS1 of the circle is trivial, as is the
tangent bundle of any Lie group. The tangent bundle T (Rn) = Rn×Rn is
trivial. The tangent bundle of the 2-sphere S2 is not trivial.

The cotangent bundle T ∗M of M is defined as

T ∗M =
⋃
x∈M

T ∗
xM
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where T ∗
xM = Hom (TxM,R) denotes the dual (cotangent) vector space of

TxM . Thus T ∗M is the disjoint union of all cotangent spaces T ∗
xM of M .

Also, T ∗M is a smooth vector bundle on M with bundle projection

π : T ∗M →M, π (λ) = x for λ ∈ T ∗
xM

and T ∗M is a smooth manifold of dimension dim T ∗M = 2 dimM . While
the tangent bundle provides the right setting for studying differential equa-
tions on manifolds, the cotangent bundle is the proper setting for the de-
velopment of Hamiltonian mechanics.

A smooth section α : M → T ∗M of the cotangent bundle is called a 1-
form. Examples of 1-forms are the derivatives DΦ : M → T ∗M of smooth
functions Φ : M → R. However, not every 1-form α : M → T ∗M is
necessarily of this form (i.e. α need not be exact).

The bilinear bundle Bil (M) of M is defined as the disjoint union

Bil (M) =
⋃
x∈M

Bil (TxM) ,

where Bil (TxM) denotes the real vector space consisting of all symmetric
bilinear maps β : TxM × TxM → R. Also, Bil (M) is a smooth vector
bundle on M with bundle projection

π : Bil (M) →M, π (β) = x for β ∈ Bil (TxM)

and Bil (M) is a smooth manifold of dimension dim Bil(M) = n+ 1
2n(n+ 1),

where n = dimM .
A Riemannian metric on M is a smooth section s : M → Bil (M) of the

bilinear bundle Bil (M) such that s (x) is a positive definite inner product on
TxM for all x ∈M . Riemannian metrics are usually denoted by 〈 , 〉x where
x indicates the dependence of the inner product of x ∈M . A Riemannian
manifold is a smooth manifold, endowed with a Riemannian metric. If M
is a Riemannian manifold, then the tangent bundle TM and the cotangent
bundle T ∗M are isomorphic.

Let M be a Riemannian manifold with Riemannian metric 〈 , 〉 and let
A ⊂M be a submanifold. The normal bundle of A in M is defined by

T⊥A =
⋃
x∈A

(TxA)⊥

where (TxA)⊥ ⊂ TxM denotes the orthogonal complement of TxA in TxM
with respect to the positive definite inner product 〈 , 〉x: TxM× TxM → R

on TxM . Thus

(TxA)⊥ = {ξ ∈ TxM | 〈ξ, η〉x = 0 for all η ∈ TxA}
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and T⊥A is a smooth vector bundle on Awith bundle projection π : T⊥A→
A, π (ξ) = x for ξ ∈ (TxA)⊥. Also, T⊥A is a smooth manifold of dimension
dimT⊥A = dimM .

C.10 Riemannian Metrics and Gradient Flows

Let M be a smooth manifold and let TM and T ∗M denote its tangent
bundle and cotangent bundle, respectively, see Section C.9.

A Riemannian metric on M is a family of nondegenerate inner prod-
ucts 〈 , 〉x, defined on each tangent space TxM , such that 〈 , 〉x depends
smoothly on x ∈ M . Thus a Riemannian metric is a smooth section in
the bundle of bilinear forms defined on TM , such that the value at each
point x ∈ M is a positive definite inner product 〈 , 〉x on TxM . Rieman-
nian metrics exist on every smooth manifold. Once a Riemannian metric
is specified, M is called a Riemannian manifold. A Riemannian metric on
Rn is a smooth map Q : Rn → Rn×n such that for each x ∈ Rn, Q (x) is a
real symmetric positive definite n×n matrix. Every positive definite inner
product on Rn defines a (constant) Riemannian metric.

If f : M → N is an immersion, any Riemannian metric on N pulls back
to a Riemannian metric on M by defining

〈ξ, η〉x := 〈Txf (ξ) , Txf (η)〉f(x)

for all ξ, η ∈ TxM . In particular, if f : M → N is the inclusion map of a
submanifold M of N , any Riemannian metric on N defines by restriction
of TN to TM a Riemannian metric on M . We refer to this as the induced
Riemannian metric on M .

Let Φ : M → R be a smooth function defined on a manifold M and let
DΦ : M → T ∗M denote the differential, i.e. the section of the cotangent
bundle T ∗M defined by

DΦ (x) : TxM → R, ξ �→ DΦ (x) · ξ,

where DΦ (x) is the derivative of Φ at x. We also use the notation

DΦ|x (ξ) = DΦ (x) · ξ

to denote the derivative of Φ at x. To define the gradient vector field of Φ
we have to specify a Riemannian metric 〈 , 〉 on M . The gradient vector
field gradΦ of Φ with respect to this choice of a Riemannian metric on M
is then uniquely characterized by the following two properties.
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(a) Tangency Condition

gradΦ (x) ∈ TxM for all x ∈M.

(b) Compatibility Condition

DΦ (x) · ξ = 〈gradΦ (x) , ξ〉 for all ξ ∈ TxM.

There exists a uniquely determined smooth vector field gradΦ : M →
TM on M such that (a) and (b) hold. It is called the gradient vector field
of Φ.

If M = R
n is endowed with its standard constant Riemannian metric

defined by
〈ξ, η〉 = ξ′η for ξ, η ∈ R

n,

the associated gradient vector field is the column vector

∇Φ (x) =
(
∂Φ
∂x1

(x) , . . . ,
∂Φ
∂xn

(x)
)′

If Q : Rn → Rn×n is a smooth map with Q (x) = Q (x)′ > 0 for all x ∈ Rn,
the gradient vector field with respect to the general Riemannian metric on
Rn defined by

〈ξ, η〉x = ξ′Q (x) η, ξ, η ∈ Tx (Rn) = R
n

is
gradΦ (x) = Q (x)−1 ∇Φ (x) .

The linearization of the gradient flow

ẋ (t) = gradΦ (x (t))

at an equilibrium point x0 ∈ Rn, ∇Φ (x0) = 0, is the linear differential
equation

ξ̇ = Aξ

with A = Q (x0)
−1HΦ (x0) where HΦ (x0) is the Hessian at x0. Thus A

is similar to Q (x0)
−1/2

HΦ (x0)Q (x0)
−1/2 and has only real eigenvalues.

The numbers of positive and negative eigenvalues of A coincides with the
numbers of positive and negative eigenvalues of the Hessian HΦ (x0).

Let Φ : M → R be a smooth function on a Riemannian manifold and let
V ⊂ M be a submanifold, endowed with the Riemannian metric induced
from M . If x ∈ V , then the gradient grad (Φ | V ) (x) of the restriction
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Φ : V → R is the image of gradΦ (x) ∈ TxM under the orthogonal projec-
tion map TxM → TxV .

Let M = Rn be endowed with the standard, constant Riemannian metric
and let V ⊂ Rn be a submanifold endowed with the induced Riemannian
metric. Let Φ : R

n → R be a smooth function. The gradient grad (Φ | V ) (x)
of the restriction Φ : V → R is thus the image of the orthogonal projection
of ∇Φ (x) ∈ Rn onto TxV under Rn → TxV .

C.11 Stable Manifolds

Let a ∈M be an equilibrium point of a smooth vector field X : M → TM .

(a) The stable manifold of a (or the inset of a) is

W s (a) = {x ∈M | Lω (x) = {a}} .

(b) The unstable manifold of a (or the outset of a) is

Wu (a) = {x ∈M | Lα (x) = {a}} .

The stable and unstable manifolds of a are invariant subsets of M . In
spite of their names, they are in general not submanifolds of M .

Let a ∈ M be an equilibrium point of a smooth vector field X : M →
TM . Let Ẋ (a) : TaM → TaM be the linearization of the vector field at a.
The equilibrium point a ∈M is called hyperbolic if Ẋ (a) has only nonzero
eigenvalues.

Let E+ ⊂ TaM and E− ⊂ TaM denote the direct sums of the generalized
eigenspaces of Ẋ (a) corresponding to eigenvalues of Ẋ (a) having positive
or negative real part respectively. Let

n+ = dimE+, n− = dimE−.

If a ∈M is hyperbolic, then E+ ⊕ E− = TaM and n+ + n− = dimM .
A local stable manifold is a locally invariant smooth submanifold W s

loc (a)
of M with a ∈W s

loc (a) such that TaW s
loc (a) = E−. Similarly a local unsta-

ble manifold is a locally invariant smooth submanifold Wu
loc (a) of M with

a ∈Wu
loc (a) such that TaWu

loc (a) = E+.

Theorem 11.1 (Stable/Unstable Manifold Theorem) Let a ∈M be
a hyperbolic equilibrium point of a smooth vector field X : M → TM , with
integers n+ and n− as defined above.
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(a) There exists local stable and local unstable manifolds W s
loc (a) and

Wu
loc (a). They satisfy W s

loc (a) ⊂ W s (a) and Wu
loc (a) ⊂ Wu (a).

Every solution starting in W s
loc (a) converges exponentially fast to a.

(b) There are smooth injective immersions

ϕ+ : R
n+ →M,ϕ+ (0) = a,

ϕ− : R
n− →M,ϕ+ (0) = a,

such that W s (a) = ϕ−
(
Rn

−
)

and Wu (a) = ϕ+
(

Rn
+
)
. The deriva-

tives

T0ϕ
+ : T0

(
R
n+

)
→ TaM, T0

(
ϕ−)

: T0

(
R
n−)

→ TaM

map both T0

(
Rn

+
) ∼= Rn

+
and T0

(
Rn

−
) ∼= Rn

−
isomorphically onto

the eigenspaces E+ and E−.

Thus, in the case of a hyperbolic equilibrium point a, the stable and
unstable manifolds are immersed submanifolds, tangent to the generalized
eigenspaces E− and E+ of the linearization Ẋ (a) : TaM → TaM .

Let f : M → R be a smooth Morse function on a compact manifold M .
SupposeM has a C∞ Riemannian metric which is induced by Morse charts,
defined by the Morse lemma, around the critical point. Consider the gradi-
ent flow of gradf for this metric. Then the stable and unstable manifolds
W s (a) and Wu (a) are connected C∞ submanifolds of dimensions n− and
n+ respectively, where n− and n+ are the numbers of negative and positive
eigenvalues of the Hessian of f at a. Moreover W s (a) is diffeomorphic to
Rn

−
and Wu (a) is diffeomorphic to Rn

+
.

The following concept becomes important in understanding the be-
haviour of a flow around a continuum of equilibrium points; see Hirsch,
Pugh and Shub (1977). Let f : M → M be a diffeomorphism of a smooth
Riemannian manifold M . A compact invariant submanifold V ⊂ M , i.e.
f (V ) = V , is called normally hyperbolic if the tangent bundle of M re-
stricted to V , denoted as TVM splits into three continuous subbundles

TVM = Nu ⊕ TV ⊕Ns,

invariant by the tangent map Tf of f , such that

(a) Tf expands Nu more sharply than TV .

(b) Tf contracts Ns more sharply than TV .
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Thus the normal behaviour (to V ) of Tf is hyperbolic and dominate the
tangent behaviour.

A vector field X : M → TM is said to be normally hyperbolic with
respect to a compact invariant submanifold V ⊂ M if V is normally hy-
perbolic for the time-one map φ1 : M →M of the flow of X .

The stable manifold theorem for hyperbolic equilibrium points has the
following extension to normally hyperbolic invariant submanifolds.

Theorem 11.2 (Fundamental Theorem of Normally Hyperbolic
Invariant Manifolds) Let X : M → TM be a complete smooth vector field
on a Riemannian manifold and let V be a compact invariant submanifold,
which is normally hyperbolic with respect to X.

Through V pass stable and unstable C1 manifolds, invariant under the
flow and tangent at V to TV ⊕ Ns, Nu ⊕ TV . The stable manifold is
invariantly fibered by C1 submanifolds tangent at V to the subspaces Ns.
Similarly, for the unstable manifold and Nu.

Let a ∈M be an equilibrium point of the smooth vector field X : M →
TM . Let E0 denote the direct sum of the generalised eigenspaces of the
linearization Ẋ (a) : TaM → TaM corresponding to eigenvalues of Ẋ (a)
with real part zero. A submanifold W c ⊂M is said to be a center manifold
if a ∈W c, TaW c = Eo and W c is locally invariant under the flow of X .

Theorem 11.3 (Center Manifold Theorem) Let a ∈M be an equilib-
rium point of a smooth vector field X : M → TM . Then for any k ∈ N

there exists a Ck-center manifold for X at a.

Note that the above theorem asserts only the existence of center man-
ifolds which are Ck submanifolds of M for any finite k ∈ N. Smooth, i.e.
C∞ center manifolds do not exist, in general.

A center manifold W c (a) captures the main recurrence behaviour of a
vector field near an equilibrium point.

Theorem 11.4 (Reduction Principle) Let a ∈ M be an equilibrium
point of a smooth vector field X : M → TM and let n◦, n+ and n− denote
the numbers of eigenvalues λ of the linearization Ẋ (a) : TaM → TaM with
Re (λ) = 0, Re (λ) > 0 and Re (λ) < 0, respectively (counted with multi-
plicities). Thus n◦ + n+ + n− = n the dimension of M . Then there exists
a homeomorphism ϕ : U → Rn from a neighborhood U ⊂ M of a onto a
neighborhood of 0 ∈ Rn such that ϕ maps integral curves of X to integral
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curves of

ẋ1 = X1 (x1) , x1 ∈ R
n◦
,

ẏ = y, y ∈ R
n+
,

ż = −z, z ∈ R
n−
.

Here the flow of ẋ1 = X1 (x1) is equivalent to the flow of X on a center
manifold W c (a).

C.12 Convergence of Gradient Flows

Let M be a Riemannian manifold and let Φ : M → R be smooth function.
Let gradΦ denote the gradient vector field with respect to the Riemannian
metric on M . The critical points of Φ : M → R coincide with the equilibria
of the gradient flow on M .

ẋ (t) = − gradΦ (x (t)) . (12.1)

For any solution x (t) of the gradient flow

d

dt
Φ (x (t)) = 〈gradΦ (x (t)) , ẋ (t)〉

= − ‖gradΦ (x (t))‖2 ≤ 0

and therefore Φ (x (t)) is a monotonically decreasing function of t.

Proposition 12.1 Let Φ : M → R be a smooth function on a Rieman-
nian manifold with compact sublevel sets, i.e. for all c ∈ R the sublevel set
{x ∈M | Φ (x) ≤ c} is a (possibly empty) compact subset of M . Then every
solution x (t) ∈ M of the gradient flow (12.1) on M exists for all t ≥ 0.
Furthermore, x (t) converges to a connected component of the set of critical
points of Φ as t→ +∞.

Note that the condition of the proposition is automatically satisfied if M
is compact. Solutions of a gradient flow (12.1) have a particularly simple
convergence behaviour. There are no periodic solutions or strange attrac-
tors, and there is no chaotic behaviour. Every solution converges to a con-
nected component of the set of equilibria points. This does not necessarily
mean that every solution actually converges to an equilibrium point rather
than to a whole subset of equilibria.

Let C (Φ) ⊂ M denote the set of critical points of Φ : M → R. Recall
that the ω-limit set Lω (x) of a point x ∈ M for a vector field X on M is



366 Appendix C. Global Analysis

the set of points of the form limn→∞ φtn (x), where (φt) is the flow of X
and tn → +∞.

Proposition 12.2 Let Φ : M → R be a smooth function on a Riemannian
manifold with compact sublevel sets. Then

(a) The ω-limit set Lω (x), x ∈ M , of the gradient flow (12.1) is a
nonempty, compact and connected subset of the set C (Φ) of criti-
cal points of Φ : M → R. Moreover, for any x ∈ M there exists
c ∈ R such that Lω (x) is a nonempty compact and connected subset
of C (Φ) ∩ {x ∈M | Φ (x) = c}.

(b) Suppose Φ : M → R has isolated critical points in any level set
{x ∈M | Φ (x) = c}, c ∈ R. Then Lω (x), x ∈ M , consists of a sin-
gle critical point. Therefore every solution of the gradient flow (12.1)
converges for t→ +∞ to a critical point of Φ.

In particular, the convergence of a gradient flow to a set of equilibria
rather than to single equilibrium points occurs only in nongeneric situa-
tions.

Let Φ : M → R be a smooth function on a manifoldM and let C (Φ) ⊂M
denote the set of critical points of Φ. We say Φ is a Morse-Bott function,
provided the following three conditions are satisfied.

(a) Φ : M → R has compact sublevel sets.

(b) C (Φ) =
⋃k
j=1Nj with Nj disjoint, closed and connected submani-

folds of M such that Φ is constant on Nj , j = 1, . . . , k.

(c) ker (HΦ (x)) = TxNj , for all x ∈ Nj, j = 1, . . . , k.

The original definition of a Morse-Bott function also includes a global
topological condition on the negative eigenspace bundle defined by the
Hessian. This further condition is omitted here as it is not relevant to
the subsequent result. Condition (b) implies that the tangent space TxNj
is always contained in the kernel of the Hessian HΦ (x) at each x ∈ Nj .
Condition (c) then asserts that the Hessian of Φ is full rank in the directions
normal to Nj at x.

Proposition 12.3 Let Φ : M → R be a Morse-Bott function on a Rieman-
nian manifold M . Then the ω-limit set Lω (x), x ∈M , for the gradient flow
(12.1) is a single critical point of Φ. Every solution of (12.1) converges as
t→ +∞ to an equilibrium point.
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Fischer, E. (1905). Über quadratische Formen mit reellen Koeffizienten,
Monatsh. Math. u. Physik 16: 234–249.

Flanders, H. (1975). An extremal problem on the space of positive definite
matrices, Linear and Multilinear Algebra 3: 33–39.

Flaschka, H. (1974). The Toda lattice, I, Phys. Rev. B 9: 1924–1925.

Flaschka, H. (1975). Discrete and periodic illustrations of some aspects of
the inverse methods, in J. Moser (ed.), Dynamical system, theory and
applications, number 38 in Lecture Notes in Physics, Springer-Verlag,
Berlin, London, New York.

Fletcher, R. (1985). Semi-definite matrix constraints in optimization,
SIAM J. Control Optim. 23: 493–513.

Frankel, T. (1965). Critical submanifolds of the classical groups and Stiefel
manifolds, in S. S. Cairns (ed.), Differential and Combinatorial Topol-
ogy, Princeton University Press, Princeton.

Gamst, J. (1975). Calculus on manifolds, Technical report, Department of
Mathematics, University of Bremen. Unpublished lecture notes.

Ge-Zhong and Marsden, J. E. (1988). Lie-Poisson Hamilton-Jacobi theory
and Lie-Poisson integration, Phys. Lett. A-133: 134–139.

Gelfand, I. M. and Serganova, V. V. (1987). Combinatorial geometries
and torus strata on homogeneous compact manifolds, Russian Math.
Surveys 42: 133–168.



References 375

Gevers, M. R. and Li, G. (1993). Parametrizations in Control, Estimation
and Filtering Problems: Accuracy Aspects, Communications and Con-
trol Engineering Series, Springer-Verlag, Berlin, London, New York.

Ghosh, B. K. (1988). An approach to simultaneous system design. Part II:
Nonswitching gain and dynamic feedback compensation by algebraic
geometric methods, SIAM J. Control Optim. 26: 919–963.

Gibson, C. G. (1979). Singular points of smooth mappings, Research Notes
in Mathematics, Pitman, Boston.

Glover, K. (1984). All optimal Hankel-norm approximations of linear mul-
tivariable systems and their L∞-error bounds, International Journal
of Control 39: 1115–1193.

Godbout, L. F. and Jordan, D. (1980). Gradient matrices for output feed-
back systems, International Journal of Control 32: 411–433.

Gohberg, I. C. and Krein, M. G. (1969). Introduction to the Theory of
Linear Nonselfadjoint operators, Vol. 18 of Transl. Math. Monographs,
American Mathematical Society, Providence, RI.

Golub, G. H., Hoffman, A. and Stewart, G. W. (1987). A generalization
of the Eckart-Young-Mirsky matrix approximation theorem, Linear
Algebra Appl. 88/89: 317–327.

Golub, G. H. and Kahan, W. (1965). Calculating the singular values and
pseudo-inverse of a matrix, SIAM Journal of Numerical Analysis Se-
ries B2: 205–224.

Golub, G. H. and Reinsch, C. (1970). Singular value decomposition and
least squares solutions, Num. Math 14: 403–420.

Golub, G. H. and Van Loan, C. F. (1980). An analysis of the total least
squares problem, SIAM Journal of Numerical Analysis 17: 883–843.

Golub, G. H. and Van Loan, C. F. (1989). Matrix Computations, second
edn, Johns Hopkins Press, Baltimore.

Gray, W. S. and Verriest, E. I. (1987). Optimality properties of balanced re-
alizations: minimum sensitivity, Proc. IEEE Conf. Decision and Con-
trol, Los Angeles, pp. 124–128.

Gray, W. S. and Verriest, E. I. (1989). On the sensitivity of generalized
state-space systems, Proc. IEEE Conf. Decision and Control, Tampa,
pp. 1337–1342.



376 References

Grötschel, M., Lovász, L. and Schrijver, A. (1988). Geometric algorithms
and combinatorial optimization, Springer-Verlag, Berlin, London, New
York.

Guillemin, V. and Sternberg, S. (1984). Symplectic Techniques in Physics,
Cambridge University Press, Cambridge, U.K.

Halmos, P. (1972). Positive approximants of operators, Indiana Univ.
Math. J. 21: 951–960.

Hangan, T. (1968). A Morse function on Grassmann manifolds, J. Diff.
Geom. 2: 363–367.

Hansen, P. C. (1990). Truncated singular value decomposition solutions to
discrete ill-posed problems with ill-determined numerical rank, SIAM
J. Sci. Stat. Comp. 11: 503–518.

Hardy, G. H., Littlewood, J. E. and Polya, G. (1952). Inequalities.

Helmke, U. (1991). Isospectral flows on symmetric matrices and the Riccati
equation, Systems and Control Letters 16: 159–166.

Helmke, U. (1992). A several complex variables approach to sensitivity
analysis and structured singular values, J. Math. Systems, Estimation
and Control 2: 1–13.

Helmke, U. (1993a). Balanced realizations for linear systems: a variational
approach, SIAM J. Control Optim. 31: 1–15.

Helmke, U. (1993b). Isospectral flows and linear programming, J. Aus-
tralian Math. Soc. Series B, 34: 495–510.

Helmke, U. and Moore, J. B. (1992). Singular value decomposition via
gradient and self equivalent flows, Linear Algebra Appl. 69: 223–248.

Helmke, U. and Moore, J. B. (1993). L2-sensitivity minimization of linear
system representations via gradient flows, J. Math. Systems, Estima-
tion and Control 5(1): 79–98.

Helmke, U., Prechtel, M. and Shayman, M. A. (1993). Riccati-like flows
and matrix approximations, Kybernetik 29: 563–582.

Helmke, U. and Shayman, M. A. (1995). Critical points of matrix least
squares distance functions, Linear Algebra Appl. 215: 1–19.

Henniart, G. (1983). Les inegalities de Morse, Seminaire Bourbaki 617: 1–
17.



References 377

Hermann, R. (1962). Geometric aspects of potential theory in the bounded
symmetric domains, Math. Ann. 148: 349–366.

Hermann, R. (1963). Geometric aspects of potential theory in the symmet-
ric bounded domains II, Math. Ann. 151: 143–149.

Hermann, R. (1964). Geometric aspects of potential theory in symmetric
spaces III, Math. Ann. 153: 384–394.

Hermann, R. (1979). Cartanian geometry, nonlinear waves, and control
theory, Part A, Vol. 20 of Interdisciplinary Mathematics, Math. Sci.
Press, Brookline MA 02146.

Hermann, R. and Martin, C. F. (1977). Applications of algebraic geometry
to system theory, Part I, IEEE Trans. Automatic Control AC-22: 19–
25.

Hermann, R. and Martin, C. F. (1982). Lie and Morse theory of periodic
orbits of vector fields and matrix Riccati equations I: General Lie-
theoretic methods, Math. Systems Theory 15: 277–284.

Herzel, S., Recchioni, M. C. and Zirilli, F. (1991). A quadratically conver-
gent method for linear programming, Linear Algebra Appl. 151: 255–
290.

Higham, N. J. (1986). Computing the polar decomposition—with applica-
tions, SIAM J. Sci. Stat. Comp. 7: 1160–1174.

Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite
matrix, Linear Algebra Appl. 103: 103–118.

Hirsch, M. W. (1976). Differential Topology, number 33 in Graduate Text
in Mathematics, Springer-Verlag, Berlin, London, New York.

Hirsch, M. W., Pugh, C. C. and Shub, M. (1977). Invariant Manifolds,
number 583 in Lecture Notes in Mathematics, Springer-Verlag, Berlin,
London, New York.

Hirsch, M. W. and Smale, S. (1974). Differential Equations, Dynamical
Systems, and Linear Algebra, Academic Press, New York.

Hitz, K. L. and Anderson, B. D. O. (1972). Iterative method of computing
the limiting solution of the matrix Riccati differential equation, Proc.
IEEE 119: 1402–1406.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities, Proc. Nat. Acad. Sci. USA 79: 2554.



378 References

Hopfield, J. J. (1984). Neurons with graded response have collective com-
putational properties like those of two-state neurons, Proc. Nat. Acad.
Sci. USA 81: 3088–3092.

Hopfield, J. J. and Tank, D. W. (1985). Neural computation of decisions
in optimization problems, Biological Cybernetics 52: 1–25.

Horn, R. A. (1953). Doubly stochastic matrices and the diagonal of a
rotation matrix, Amer. J. Math. 76: 620–630.

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis, Cambridge Uni-
versity Press, Cambridge, U.K.

Hotelling, H. (1933). Analysis of a complex of statistical variables into
principal components, J. Educ. Psych. 24: 417–441, 498–520.

Hotelling, H. (1935). Simplified calculation of principal components, Psy-
chometrika 1: 27–35.

Humphreys, J. E. (1972). Introduction to Lie Algebras and Representation
Theory, Springer-Verlag, Berlin, London, New York.

Hung, Y. S. and MacFarlane, A. G. J. (1982). Multivariable Feedback:
A Quasi-Classical Approach, Vol. 40 of Lecture Notes in Control and
Information Sciences, Springer-Verlag, Berlin, London, New York.

Hwang, S. Y. (1977). Minimum uncorrelated unit noise in state space digi-
tal filtering, IEEE Trans. Acoust., Speech, and Signal Process. ASSP-
25: 273–281.

Irwin, M. C. (1980). Smooth Dynamical Systems, Academic Press, New
York.

Isidori, A. (1985). Nonlinear Control Systems: An Introduction, Springer-
Verlag, Berlin, London, New York.

Jiang, D. and Moore, J. B. (1996). Least squares pole assignment by
memory-less output feedback. Submitted.

Jonckheere, E. and Silverman, L. M. (1983). A new set of invariants for lin-
ear systems: Applications to reduced order compensator design, IEEE
Trans. Automatic Control 28: 953–964.

Kailath, T. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs, N.J.

Karmarkar, N. (1984). A new polynomial time algorithm for linear pro-
gramming, Combinatorica 4: 373–395.



References 379

Karmarkar, N. (1990). Riemannian geometry underlying interior point
methods for linear programming, in Lagarias and Todd (1990), pp. 51–
76.

Kempf, G. and Ness, L. (1979). The length of vectors in representation
spaces, in K. Lonsted (ed.), Algebraic Geometry, number 732 in Lecture
Notes in Mathematics, Springer-Verlag, Berlin, London, New York,
pp. 233–244.

Khachian, L. G. (1979). A polynomial algorithm in linear programming,
Soviet Math. Dokl. 201: 191–194.

Khachian, L. G. (n.d.). A polynomial algorithm in linear programming,
Dokladi Akad. Nauk SSSR 244S: 1093–1096. Translated in (Khachian,
1979).

Kimura, H. (1975). Pole assignment by gain output feedback, IEEE Trans.
Automatic Control AC-20: 509–516.

Klema, V. C. and Laub, A. J. (1980). The singular value decomposition: Its
computation and some applications, IEEE Trans. Automatic Control
AC-25: 164–176.

Knuth, D. E. (1973). Sorting and Searching, Vol. 3 of The art of computer
programming, Addison-Wesley, Reading, MA, USA.

Kostant, B. (1973). On convexity, the Weyl group and the Iwasawa de-
composition, Ann. Sci. Ecole Norm. Sup. 6: 413–455.

Kostant, B. (1979). The solution to a generalized Toda lattice and repre-
sentation theory, Adv. Math 34: 195–338.

Kraft, H. (1984). Geometrische Methoden in der Invariantentheorie, num-
ber D1 in Aspects of Mathematics, Vieweg Verlag, Braunschweig.

Krantz, S. G. (1982). Function Theory of Several Complex Variables, John
Wiley & Sons, New York, London, Sydney.

Krishnaprasad, P. S. (1979). Symplectic mechanics and rational functions,
Richerche Automat. 10: 107–135.

Kung, S. Y. and Lin, D. W. (1981). Optimal Hankel-norm model reduc-
tions: multivariable systems, IEEE Trans. Automatic Control AC-
26: 832–852.



380 References

Lagarias, J. C. (1991). Monotonicity properties of the Toda flow, the QR
flow and subspace iteration, SIAM J. Matrix Anal. and Appl. 12: 449–
462.

Lagarias, J. C. and Todd, M. J. (eds) (1990). Mathematical Development
Arising from Linear Programming, Vol. 114 of AMS Contemp. Math.,
American Mathematical Society, Providence, RI.

Laub, A. J., Heath, M. T., Paige, C. C. and Ward, R. C. (1987). Com-
putation of system balancing transformations and other applicaitons
of simultaneous diagonalization algorithms, IEEE Trans. Automatic
Control AC-32: 115–121.

Lawson, C. L. and Hanson, R. J. (1974). Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, N.J.

Li, G., Anderson, B. D. O. and Gevers, M. R. (1992). Optimal FWL design
of state-space digital systems with weighted sensitivity minimization
and sparseness consideration, IEEE Trans. Circuits and Systems I:
Fundamental Theory and Applications 39: 365–377.

Luenberger, D. G. (1969). Optimization by Vector Space Methods, John
Wiley & Sons, New York, London, Sydney.

Luenberger, D. G. (1973). Introduction to linear and nonlinear program-
ming, Addison-Wesley, Reading, MA, USA.

Madievski, A. G., Anderson, B. D. O. and Gevers, M. R. (1993). Optimum
FWL design of sampled data controllers, Automatica 31: 367–379.

Mahony, R. E. and Helmke, U. (1995). System assignment and pole place-
ment for symmetric realizations, J. Math. Systems, Estimation and
Control 5(2): 267–272.

Mahony, R. E., Helmke, U. and Moore, J. B. (1996). Gradient algorithms
for principal component analysis, J. Australian Math. Soc. Series B
5(5): 1–21.

Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization
and its Applications, Academic Press, New York.

Martin, C. F. (1981). Finite escape time for Riccati differential equations,
Systems and Control Letters 1: 127–131.

Meggido, N. and Shub, M. (1989). Boundary behaviour of interior-point
algorithms in linear programming, Methods of Operations Research
14: 97–146.



References 381

Middleton, R. H. and Goodwin, G. C. (1990). Digital Control and Estima-
tion: A Unified Approach, Prentice-Hall, Englewood Cliffs, N.J.

Milnor, J. (1963). Morse Theory, number 51 in Ann. of Math. Studies,
Princeton University Press, Princeton.

Mirsky, L. (1960). Symmetric gauge functions and unitarily invariant
norms, Quarterly J. of Math. Oxford 11: 50–59.

Moonen, M., van Dooren, P. and Vandewalle, J. (1990). SVD updating for
tracking slowly time-varying systems. a parallel implementation, in
M. A. Kaashoek, J. H. van Schuppen and A. C. M. Ran (eds), Signal
Processing, Scattering and Operator Theory, and Numerical Methods,
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46: 219–227.

Pearson, K. (1901). On lines and planes of closest fit to points in space,
Phil. Mag. pp. 559–572.

Peixoto, M. M. (1962). Structural stability on two-dimensional manifolds,
Topology 1: 101–120.

Pernebo, L. and Silverman, L. M. (1982). Model reduction via balanced
state space representations, IEEE Trans. Automatic Control 27: 282–
287.

Peterson, C. and Soederberg, B. (1989). A new method for mapping opti-
mization problems onto neural networks, Int. J. Neural Syst. 1: 3–22.

Pressley, A. N. (1982). The energy flow on the loop space of a compact Lie
group, J. London Math. Soc. 26: 557–566.

Pressley, A. N. and Segal, G. (1986). Loop Groups, Oxford Mathematical
Monographs, Oxford.



References 383

Pyne, I. B. (1956). Linear programming on an analogue computer,, Trans.
AIEE 75: 139–143. Part I.

Reid, W. T. (1972). Riccati Differential Equations, Academic Press, New
York.

Roberts, R. A. and Mullis, C. T. (1987). Digital Signal Processing, Addi-
son-Wesley, Reading, MA, USA.

Rosenthal, J. (1992). New results in pole assignment by real output feed-
back, SIAM J. Control Optim. 30: 203–211.

Rutishauser, H. (1954). Ein Infinitesimales Analogon zum Quotienten-
Differenzen-Algorithmus, Arch. Math. (Basel) 5: 132–137.

Rutishauser, H. (1958). Solution of eigenvalue problems with the
LR-transformation, Nat. Bureau of Standards Applied Math. Series
49: 47–81.

Safonov, M. G. and Chiang, R. Y. (1989). A Schur method for balanced-
truncation model reduction, IEEE Trans. Automatic Control pp. 729–
733.

Schneider, C. R. (1973). Global aspects of the matrix Riccati equation,
Math. Systems Theory 1: 281–286.
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