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ABSTRACT

As open access market principles are applied to power systems, significant changes in
their operation and control are occurring. In the new marketplace, power systems are
operating under higher loading conditions as market influences demand greater attention
to operating cost versus stability margins. Since stability continues to be a basic require-
ment in the operation of any power system, new tools are being considered to analyze
the effect of stability on the operating cost of the system, so that system stability can be
incorporated into the costs of operating the system.

In this thesis, new optimal power flow (OPF) formulations are proposed based on
multi-objective methodologies to optimize active and reactive power dispatch while max-
imizing voltage security in power systems. The effects of minimizing operating costs,
minimizing reactive power generation and/or maximizing voltage stability margins are
analyzed. Results obtained using the proposed Voltage Stability Constrained OPF for-
mulations are compared and analyzed to suggest possible ways of costing voltage security
in power systems.

When considering voltage stability margins, the importance of system modeling be-
comes critical, since it has been demonstrated, based on bifurcation analysis, that model-
ing can have a significant effect of the behavior of power systems, especially at high loading
levels. Therefore, this thesis also examines the effects of detailed generator models and
several exponential load models. Furthermore, because of its influence on voltage stability,
a Static Var Compensator model is also incorporated into the optimization problems.
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CHAPTER 1

Introduction




1.1 Background

As open access market principles are applied to power systems, significant changes in
their operation and control are occurring. In the new marketplace, power systems are
operating under higher loading conditions as market influences demand greater attention
to operating cost versus stability margin. Since stability continues to be a basic require-
ment in the operation of any power system, new tools are being considered to analyze
the effect of stability on the operating cost of the system, so that system stability can be

incorporated into the costs of operating the system.

1.1.1 Optimization Techniques

As systems are being operated with reduced stability margins [1, 2], there has been several
new voltage collapse events throughout the world [1, 2]. Thus, the incorporation of voltage
stability criteria in the operation of power systems has become essential [3]. In recent
years, the application of optimization techniques to voltage stability problems has been
gaining interest. It is possible to restate many voltage collapse problems as optimization
problems. Although bifurcation methods are very well developed, the use of optimization
based techniques has many advantages, including the ability to incorporate limits and
determine control actions on certain system variables to improve the stability margin [4,
5, 6]. New voltage stability analysis techniques have been introduced using optimization

methods in voltage collapse analysis (e.g., [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]).



Possible applications of optimization techniques to voltage collapse analysis are dis-
cussed in [4]. In [5], an Interior Point (IP) optimization technique is used to determine the
optimal generator settings that maximize the distance to voltage collapse. In [6], applica-
tions of optimization techniques to voltage collapse studies are presented with theoretical
and some numerical analysis. Furthermore, [6] includes a technique to incorporate voltage
stability into traditional optimal power flow (OPF) formulations. In [10], optimal shunt
and series compensation parameter settings are calculated to maximize the distance to
a saddle-node bifurcation which can be associated, in some cases, with voltage collapse.
In [11], a voltage-collapse point computation problem is formulated as an optimization
problem, allowing the use of optimization techniques and tools. In [12], the reactive power
margin from the point of view of voltage collapse is determined using Interior Point (IP)
methods; the authors used a barrier function to incorporate limits. In [13], the authors
determine the closest bifurcation to the current operating point on the hyperspace of
bifurcation points. A similar approach is taken in [14] where the direct method which
traditionally has been used to determine bifurcation points [18], is reformulated as an
optimization problem. In [15], the maximum loadability of a power system is examined

using Interior Point methods.

Voltage stability has long been accepted as an important aspect of power system anal-
ysis. With open-market principles being applied to many systems, the value of security is
now receiving more attention. In [19], a Monte-Carlo assessment of the value of system
security is presented, primarily considering security issues due to unplanned outages. In
[20], a procedure for VAR planning is given that incorporates stability analysis. In [8, 9],
a two stage approach is taken to determine candidate buses for reactive power support
based on a proposed optimization technique to determine the voltage stability limit con-
sidering some constraints at the current operating point and the point of collapse. A
formulation to incorporate transient stability into an OPF formulation is given in [16].
Finally, in [7], several Voltage Stability Constrained Optimal Power Flow (VSC-OPF)
formulations are proposed considering both the current loading point and the maximum

loading point into the formulation, so that voltage stability margins can be considered in



the OPF problem.

1.1.2 Modeling

In voltage stability and bifurcation analysis of power systems, detailed system models have
been shown to have a significant effect on the equilibrium points and their characteristics
[21, 22]. The differences among equilibrium points become more apparent when a system is
heavily loaded and the devices approach their operating limits. Traditional models, where
generators are modeled using limits on reactive power, real power, and voltage magnitudes,
may fail to provide an accurate representation of the power system in certain conditions.
In [22], reactive power limits are shown to play a significant role in discrepancies between
detailed and non-detailed generator models. Generator ratings and limits in non-detailed
models are incorporated using limits on their voltage and power levels, whereas detailed
models tend to place limits on the armature current and field voltage, as these accurately
reflect the actual operating limits of the machine. In [17], generator excitation limits are

incorporated into an optimization based maximum distance to collapse formulation.

In [21], the effects of various loading models on the occurrence of saddle-node bifur-
cations are presented. In [8], the effects of load modeling in optimization based voltage

stability studies are discussed.

The application of Flexible AC Transmission Systems (FACTS) controllers, which are
based on power electronic switches, in power systems has been increasing [23]. These con-
trollers provide reactive power compensation, which can increase the maximum transfer
capability of a power network [24, 25]. Steady-state models for the Static Var Compen-
sator (SVC) FACTS controller, presented in [24], allows for their incorporation into both

load flow analysis and optimization.



1.2 Research Motivation and Objectives

As loading levels in a power system increase, the stability margin, i.e., the distance to col-
lapse, generally decreases. Control actions can be taken to increase the available transfer
capability of the system, but this may result in increased operating costs. These increased

costs may be considered as the costs of enforcing voltage stability constraints.

The main motivation of the thesis is to examine how to incorporate voltage stability
criteria into a traditional OPF problem to account for the stability “level” of the system
while considering operating costs. Most optimization based voltage stability analysis
methods (e.g., [15, 26]) consider only the stability margin. Incorporating operating costs
and voltage stability criteria into one integrated formulation allows one to account for

stability into the overall operating costs.

When considering voltage stability margins the importance of system modeling be-
comes critical, since it has been demonstrated, based on bifurcation analysis, that model-
ing can have a significant effect on the behavior of power systems [21, 22, 27], especially
at high loading levels. Therefore, in this research, a detailed generator model and several
static load models are incorporated into OPF formulations. Furthermore, because of its
influence in voltage stability, a Static Var Compensator (SVC) model is also incorporated

into the OPF formulations.

From the above discussions, the main objectives of the thesis research are as follows:

e Extending the mazimum distance to collapse algorithm (e.g., [15, 26]) to consider
feasibility and limits at both the current operating point and the collapse (maxi-
mum) loading point. This allows for the examination of voltage collapse through

both saddle-node bifurcations [18, 28, 29] and limit-induced bifurcations [30].

e Development of Voltage Stability Constrained Optimal Power Flow (VSC-OPF)
formulations that incorporate voltage stability margins to consider the influence of

stability on the traditional OPF problem.



e Incorporation of detailed generator models in the OPF and VSC-OPF formulations
to improve the accuracy of the system’s model. Since equilibrium points are effected
by modeling differences, especially when systems become heavily loaded and gener-
ator limits are approached, the accurate representation of these limits, particularly
armature current and field voltage limits, in the OPF and VSC-OPF formulations

is considered and analyzed.

e Incorporation of exponential load models into both the OPF and VSC-OPF formu-
lations to study the effect of load modeling on the characteristics of the solutions

obtained from these problems.

e Incorporation of a load-flow model of the Static Var Compensator (SVC), a Flexible
AC Transmission System controller, into the OPF and VSC-OPF formulations to

analyze its effect on these problems.

e Implementation of the proposed formulations by testing them using several systems

to gain insight into their characteristics and how limits effect the solutions.

1.3 Implementation Methods

The OPF and VSC-OPF problems are solved using a Predictor-Corrector Primal-Dual
Logarithmic Barrier Interior Point (IP) method. This method has been successfully ap-

plied to optimal power flow problems and has been shown to be very efficient [31, 32].

The Predictor-Corrector IP method was implemented using a combination of MAPLE
[33] and MATLAB [34] programming. System models are constructed symbolically in
MAPLE, then differentiation tools in MAPLE are used to calculate the vectors and ma-
trices required for the optimization method. The set of equations describing the models
are exported to text files using an export tool in MAPLE [33], and are then modified into
MATLAB format using a script file written in MATLAB to form data files. MATLAB rou-

tines were written to access the data files to generate the required vectors and matrices



for numerical analysis; sparse matrix routines are used to manipulate and store the data.

Although, this method of implementing the proposed algorithms and models has limita-

tions when dealing with a large system, it is extremely well suited to investigate different

models since derivatives, partial derivatives, and Jacobians can all be symbolically formed

in MAPLE .

1.4 QOutline of the Thesis

The remaining chapters of the thesis are organized as follows:

Chapter 2

Chapter 3

Chapter 4

provides a generic formulation of the Optimal Power Flow (OPF') problem.
This is followed by an introduction to the nonlinear Interior Point method

used to solve the problems considered in this thesis.

gives some of the basic components of Voltage Stability, presented with
illustrative examples, focusing first on saddle-node and then on limit-
induced bifurcations. Two traditional bifurcation analysis methods, con-
tinuation and direct methods, are reviewed. Finally, the chapter includes
an examination of some existing optimization based approaches used for

voltage stability analysis.

presents several of the main research contributions of the thesis. First, a
modification of the Maximum Distance to Collapse problem is presented
along with a generic non-linear optimization formulation to incorporate
voltage stability into a traditional OPF problem. Second, an analysis to
determine when the maximum loading point of the system will correspond
to a saddle-node bifurcation, based on the application of the maximum
distance to collapse problem and the KKT optimality conditions [35] is
given. Third, five novel VSC-OPF formulations are presented together



Chapter 5

Chapter 6

with a discussion of the advantages and disadvantages of each formula-
tion. The results obtained from applying the Modified Maximum Distance
to Collapse problem and the various VSC-OPF problems to several test

systems are presented and discussed.

presents the remaining research contributions of the thesis. A detailed
generator model, different static load models and a Static Var Compen-
sator (SVC) model are proposed for inclusion into the OPF and VSC-OPF
formulations. A discussion on the results obtained from solving the OPF
and VSC-OPF problems for several test systems that include the different

models is presented.

summarizes the work presented in the thesis. The main contributions of
the thesis are highlighted, and a list of potential research directions to
study further the issue of the incorporation of stability criteria into OPF

problems is given.



CHAPTER 2

Optimal Power Flow and

Optimization Techniques




2.1 Introduction

The OPF problem introduced in the early 1960’s by Carpentier has grown into a powerful
tool for power system operation and planning. In general, the OPF problem is a nonlinear
programming (NLP) problem that is used to determine the “optimal” control parameter
settings to minimize a desired objective function, subject to certain system constraints
(36, 37, 38]. Because of the restructuring of power system utilities [39], different OPF
problems are now being considered. Furthermore, there has been great interest in voltage
stability issues and their possible relationship with optimization methods [4, 5, 10, 11, 12,
13, 15].

The development of numerical analysis techniques and algorithms, particularly Interior
Point (IP) methods, allows large and difficult problems to be solved with reasonable
computational effort [37, 40]. Power systems are one of the areas where IP methods have

been successfully applied (e.g., [37, 41, 42, 43, 44]).

The objective of this chapter is to briefly introduce the OPF problem and provide a
description of the Interior Point (IP) method used for solving the NLP problems presented

in this thesis.

The remainder of the chapter is structured as follows: First, the OPF problem is
briefly introduced. Then, a Primal-Dual Interior-Point (PD-IP) method is presented and
is extended to a Predictor-Corrector Interior Point (PC-IP) method. Since the main

contribution of this thesis focuses on voltage stability constrained optimal power flow



formulations, the TP methods used here are briefly described, giving the appropriate
references where details of the optimization problems and solution techniques can be

found.

2.2 Optimal Power Flow

With the introduction of diverse objective functions, the OPF problem represents a variety
of optimization problems [38], which includes, for example, active power cost optimization
and active power loss minimization [37]. OPF problems are generally formulated as

nonlinear programming problems (NLP) as follows:

min G(x) (2.2)
st.:  F(x)=0
H<H(x)<H
X<X<X

where generally F(x) : ®7 — R™ represents the load flow equations, H(x) : R — R?
usually stands for transmission line limits, with lower and upper limits represented by H
and H, respectively. The vector of system variables, denoted by x € R, typically includes
voltage magnitudes and angles, generator power levels and transformer tap settings; Lower
and upper limits of the system variables, x, are given by x and X, respectively. The map-
ping G(x) : ®? — R is the function that is being minimized and can include, for example,
total losses in the system and generator costs. Once formulated, the problem can be
solved using Interior Point (IP) methods [32, 45|, Sequential Linear Programming (SLP)
or Sequential Quadratic Programming (SQP) [44, 46, 47]. SLP and SQP formulations
can be solved using well developed Linear and Quadratic Interior Point methods [44, 46].
When applying SLP and SQP methods, convergence has been shown to be dependent
on a number of factors, such as good initial conditions and step size control [47]. For

the problems considered in this thesis, a direct nonlinear Interior Point method is used.



The algorithm presented and used for solving the NLP is based primarily on the method
presented in [31, 32, 41].

2.3 Logarithmic-Barrier Interior Point Method

NLP has experienced major developments over the past decade, largely due to the ad-
vancements in Interior Point methods [35]. In this section, a formulation for the Logarithmic-
barrier IP method for a NLP with equality and inequality constraints is presented. A
detailed analysis of the method can be found in many references including [31, 41]. For
simplicity, the bounds x < x < X in (2.2) are assumed to have been incorporated in

H<H(x) <H

2.3.1 Associated Problem and Optimality Conditions

The first step in solving (2.2) using the Logarithmic-Barrier IP method (which will then
be extended to the Predictor Corrector approach) is to transform the existing inequality
constraints into equality constraints by introducing strictly positive slack variables s|, sy €

RP. Thus, the original problem can be re-written as

min G(x) (2.3)
s.t. : Fx) = 0

H(x)-ss = H

H(x)+s: = H

S1,82 > 0

From (2.3) an associated problem is formed by introducing a logarithmic barrier term

to the objective function to enforce the strict positivity constraints on s; and s,.



min G(x) — ¥ ‘ ( logsi(i) +logsa(i) ) (2.4)

s.t. : Fix) = 0

m
=
|
I
[as

=
=
+
o
I
asf

s1,89 > 0

where pF represents the positive barrier parameter at the k™ iteration. This parameter
is monotonically decreased to zero as the iteration number, k, increases. Equation (2.4)

can then be re-written to reduce the number of nonlinear terms as follows:

min G(x) — p* i ( logs; + logsy ) (2.5)
s.t. : - Fix) = 0
—s,—s,—H+H = 0

~—H(x)—s;+H = 0

0

S1, 89 >

In order to optimally solve (2.5) for a fixed p*, the Lagrangian function L,(v) is first
defined as

p

Ly(v)= G(x)—p*> (logs, +logsy) (2.6)

=1

—"F(x) —v{(—s1 —so —H+ H)

—v; (~H(x) — s, + H)

where v := [x;S1;82;7;V1; V2] is introduced for ease of presentation, and ¢y € R™ and

v1,vy € RP are Lagrangian multipliers vectors, often called the dual variables [41].



The first-order Karush-Kuhn-Tucker (KKT) optimality conditions [35] define the min-

imum of (2.6) with the following necessary conditions [32, 35]:

D, G(x) — Jr(X)™y + Ju(x)"v:
—pFST' 4 vy
—pFS;M + (v +vy)
—F(x)

Sl+SQ+H_H

H(X) +s;—H

where 1 := (1,1, 1,...1)" is a vector of ones of appropriate size, and S; = diag(s;) and Sy =
diag(sz). The function diag(s) : RP — RP*? forms a diagonal matrix with the i diagonal
term equal to the 7" element in the vector s, and Jr(x) € R™*? and Jg(x) € RP*? are the
Jacobians of F(x) and H(x), respectively, i.e, Jp(x) = DyF(x) and Ju(x) = D,H(x).
To reduce the number of nonlinear components, the second term is scaled by S; and the

third by S,, yielding

Dy G(x) = Ir ()" + Ju(x)"v:
— k1 + Sy
—p* 1+ So(vy + vy)
—F(x)

Sl+SQ+H_ﬁ

H(x)+s,—H

This system has the following interpretation: The first term, along with (v1,¥; +v2) > 0,
ensures dual feasibility; the second and third terms are the y-complementarity conditions;

and the fourth through sixth terms, along with (s, s2) > 0, ensure primal feasibility.

The steps to solve the nonlinear system defined by (2.8) are as follows: For a set of 1,

one step of the Newton direction is taken, then the step length in the Newton direction is



calculated and the variables are updated. The algorithm terminates when the primal, dual
and the complementarity conditions [32] fall below predetermined tolerances; otherwise,
k is incremented, the barrier parameter u* is decreased, and a new Newton direction is
determined. Different schemes exist for reducing p and scaling the Newton step depending
on the type of problem. In the implementation written, the barrier parameter was reduced

based on an estimate of the decrease in the complementarity gap [31].

2.4 Higher Order Primal-Dual Interior Point

Algorithms

Although the Interior Point method reviewed in the previous section can solve large
problems [31], numerical difficulties due to nonlinearities and long running times [5] led

to the implementation of a Predictor-Corrector Interior Point method.

The main concept behind the Predictor-Corrector method is to incorporate higher
order information to improve the accuracy that the Newton Step takes to solve the KKT
conditions. A brief overview of the Predictor-Corrector method developed to solve the
nonlinear optimization problems proposed in this thesis follows. More details can be found

in [31, 32].

2.4.1 Predictor-Corrector Interior Point Methods

The derivation of the Predictor-Corrector method follows the same steps as the Primal-
Dual method up to the KKT conditions written in equation (2.8). Instead of applying
one Newton step to (2.8) to estimate an approximate solution from the current point

v = [X; S1;S2;7; ¥1; V2], a new point

v+ Av = [x + Ax; s + Asy; s + Ase;y + Ay vy + Avy vy + Avy) (2.9)



is defined as being on the central path, i.e., the exact solution to equation (2.8) for p*. The
equations defining this point on the central path, determined by substituting (v + Aw)

in place of v in (2.8), is written as

Ju(x)"Avs + Vi L, (x)Ax — Ir(x)" Ay
TlAsl =+ SlAlll
SQ(AI/l =+ Al/g) =+ (Tl =+ TQ)ASQ

—Jr(x)Ax
As; + Asy
] Asy + Ju(x)Ax
Vi Lu(x) 0 —Jp(Ax)TAy + Ju(Ax)" Av,
Sllll ,U,k]]_ AS]_AI/l
S,(vi +v k1 ASy(Avy + Av
_ 2(V1 2) 4 M _ 2(Avy 2) (2.10)
—F(x) 0 —F*(Ax)
S1 + So + H — ﬁ 0 0
_H(x)—l—sz—ﬁ_ | 0 | ] HL(Ax) |

where V, L,(x) = DyG(x) — Jr(x)Ty + Ju(x)Tve; Y1 := diag(v:), and Ty := diag(v,)
and FL(-) € R™ and HY(-) € RP represent the quadratic terms of F(-) and H(-), respec-
tively. Finally, VZL,(x) € R? represents the Hessian of L,(v) with respect to x. The
second order terms F*(Ax), Jr(x), H*(Ax), and Jy(x) are only included if F(x) and
H(x) are quadratic [31].

The full step Av obtained from (2.10) consists of three components, generally ex-
pressed as [31]
Av = Avgsr + AUgepn + AUor. (2.11)

where the Avgrr, Aveep, and Avg,, are defined by the first, second, and third right-
hand side vectors of (2.10), respectively. The first component, the affine-scaling direction,
Awvgyy, is a pure Newton direction (for y; = 0), and is responsible for reduction in the

objective function. The second component, Av,.,, is a centering direction and is used



to keep the solution away from the boundary of the feasible region. Finally, the third
component, Av,,., is a corrector direction that it used to compensate for some of the

nonlinear terms in the affine-scaling direction.

A good approximate solution to (2.10) is obtained by first calculating the predictor
step when dropping the p terms and the A terms from the right-hand side of (2.10),
ie., Av = Avgps. The full step, Av = Avgsp + Avgen, + AV, is then approximately
solved using the target value for the barrier parameter and the solution obtained from
the predictor step to approximate the nonlinear A terms in the right-hand side of (2.10).

The variables are then updated and the solution is tested for convergence.

2.5 Summary

In this chapter, an introduction to the OPF problem is presented. This is followed by a
derivation of two IP methods used to solve non-linear problems like the OPF problem.
Both IP methods use a logarithmic function to move the solution obtained at each iteration
towards the optimal solution while enforcing inequality constraints. The second method,
the Predictor-Corrector IP method, incorporates higher order information to improve
the accuracy of the method. Since, the OPF formulations proposed in this thesis are
highly non-linear, the Predictor-Corrector method was implemented to solve all OPF
problems in this thesis. The implementation uses a combination of MAPLE and MATLAB

programming.
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CHAPTER 3

Voltage Stability




3.1 Introduction

Several voltage collapse events throughout the world show that power systems are being
operated close to their stability limits (e.g., [1]). This problem can only be exacerbated by
the application of open market principles to the operation of power systems, as stability
margins are being reduced even further to respond to market pressures. Since the overall
stability limit can be closely associated with the voltage stability of the network, this

chapter presents an overview of voltage stability and some analysis techniques.

A review of bifurcation analysis is presented first, focusing on some of the basic con-
cepts and terminology. Characteristics of saddle-node bifurcations are then presented,
along with an overview of limit induced bifurcations and their effect on system stabil-
ity. Two traditional tools used to analyze and determine the location of bifurcations are
discussed, and a review of some of the existing work in the application of optimization

techniques to voltage stability analysis is presented.

3.2 Bifurcation Analysis

Nonlinear phenomena, especially bifurcations, have been shown to be responsible for a
variety of stability problems in power systems (e.g., [48]). In particular, the lack of post
contingency equilibrium points, typically associated with saddle-node and limit-induced

bifurcations, have been shown to be one of the main reasons for voltage collapse problems



in power systems [3].

In general, bifurcation points can be basically defined as equilibrium points where
changes in the “quantity” and/or “quality” of the equilibria associated with a nonlinear
set, of dynamic equations occur with respect to slow varying parameters in the system
[18]. Since power systems are modeled by sets of nonlinear differential equations, various

types of bifurcations are generically encountered as certain system parameters vary.

A typical power system model used for stability studies can be represented by a set
of differential-algebraic equations (DAEs). These models are linearized at equilibrium
points to determine their steady state stability using eigenvalue analysis. Of interest is
where the system goes from being stable to unstable, from being unstable to stable, or
where the number of equilibrium points change with respect to a bifurcation parameter.
These bifurcations are mathematically characterized by one of the system eigenvalues
becoming zero (saddle-node, transcritical and pitchfork bifurcation), by a pair of complex
conjugate eigenvalues crossing the imaginary axis (Hopf bifurcation) or by eigenvalues

changing when control limits are reached (limit-induced bifurcation).

The differential-algebraic equations used to model the power system are typically of

the form:

Z :fd(Z,y,)\) (32)
0 =1.(z,y,)) (3.3)

where z € RY is a vector of the differential variables, y € R™ is a vector of algebraic
variables, and A € RT is any parameter in the system that changes slowly, moving the
system from one equilibrium point to another. Equilibrium points are the values zg, y,

and )y where the rate of change of each state variable is zero, i.e.,

0= fd(ZOa Yo, )‘0) (34)

0 = f,(2o, Yo, \o)



Equilibrium implies the system is at “rest” but does not imply stability.

When the Jacobian Dyf,(:) of the algebraic constraints in (3.3) is non-singular along

system trajectories, the system model can be reformulated as [29]:

y =h(z, ) (3.5)
s(z,\) = f4(z,h(z, \), \) (3.6)
z =s(z,\) (3.7)

where h(-) may be formed symbolically or numerically from f,(-). If the Jacobian of
the algebraic constraints becomes singular, then the model used to describe the system
becomes invalid. In this case, the original model can be modified to consider dynamics
ignored in the original model, resulting in the transformation of some algebraic constraints

into differential equations [29, 49].

Two paths to instability are considered in this research. The first, saddle-node bi-
furcations, is characterized by local equilibrium disappearing for further increases in the
bifurcation parameter. The second, limit-induced bifurcations, is characterized by equi-
libria disappearing due to changing system models when system limits are encountered.

Both forms of bifurcations are described below, with illustrative examples.

3.3 Saddle-node Bifurcations

Saddle-node bifurcations are characterized by two equilibrium points, typically one stable
and one unstable, merging for a parameter value A = ),; the resulting equilibrium point
has a simple and unique zero eigenvalue of D,s|y [18, 29, 50]. If the two merging equilibria
co-exist for A < \,, the two equilibrium points locally disappear for A > \,, or vice
versa; hence, these are local bifurcations. The following conditions hold for saddle-node

bifurcations [18]:



Voo £0
Figure 3.1: Generator-infinite bus system.
1. The point is an equilibrium point, i.e., s(z, A\) = 0.

2. The Jacobian of the function s(z,A) with respect to z at the bifurcation point

(z4,A«), has a unique zero eigenvalue.

3. At the saddle-node point, two branches of equilibria intersect and “disappear” be-

yond the saddle-node.

Saddle-node bifurcations are mathematically defined using transversality conditions
[18, 28, 29, 48]. If the transversality conditions are met, then the system is at a saddle-

node bifurcation. These conditions for a saddle-node bifurcation are

D,s|,v =DIs|,w =0 (3.8)
w! Dys|, #0 (3.9)
w’ [DZs|,v]v #0 (3.10)

where w and v € R are normalized right and left eigenvectors of the Jacobian of s(z, \),
D,s|.. The subscript * is used to denote a bifurcation point. The first condition, implies
the Jacobian matrix is singular, the second and third conditions ensure that there is no
equilibria near (z,,A;) for A > A, or A < JA,, depending on their sign, and a “quadratic”

shape.

Example:

The two-bus lossless system shown in Figure 3.1 is used here to illustrate saddle-node

bifurcations. Using the classical second order dynamic model for the generator [25], the



system equations are

b = w (3.11)

1
o o= Pm - Pe ec — D
“ Mz’nertia( l w)

where M;pertiq 1S the machine inertia, D is the machine damping, w is the angular frequency
of the generator, and ¢ is the generator bus voltage angle with respect to the infinite bus.
By definition, the infinite bus will have a constant voltage regardless of the power delivered
to it, or absorbed from it. The mechanical power P, is used as the bifurcation parameter,
i.e., A = P, and the electrical power transmitted through the transmission line P, is

V en Voo .

Letting 21 = 9, 20 = w, Mipertia = 0.1, D = 0.1, Xjine = 0.5, |Vgen| = 1, and |Vo| = 1,

5 (3.12)

then equations (3.11) can be re-written as

Al e ] 519

[Z'QJ a [10 A—20 sinz; — ZQJ
The Jacobian of (3.13) with respect to z = [2; 2o]7 is

0 1
D,s = (3.14)
—20 cosz; —1

Figure 3.2 illustrates equilibrium values of § for different values of A\. As can be seen for
A = 2.0, the lower and upper curves of equilibrium points merge, and no equilibrium exist
for values of A > 2.0. The upper branch of equilibrium corresponds to stable equilibria
and the bottom branch corresponds to unstable equilibria. The point § = 7/2 corresponds
to a singular system Jacobian (3.14). The normalized right and left eigenvectors at this

point are given by

Elat o
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Figure 3.2: Bifurcation diagram for generator-infinite bus example.

The three transversality conditions for a saddle-node bifurcation (3.8-3.10) are met, i.e.,

1
0 1| [tf _fo o |F| _|o 6510
0 —1{ |0 1 -1 |5 0
1 1 —
= &), | =5v220 (317)
10
0 of |1
1 1 —
[ﬁ %] —10V2#£0 (3.18)

20 0] |1

Saddle-node bifurcations are generally considered generic, that is, they are “expected”
to occur in nonlinear systems that do not present a “special” structure [28, 48]. For exam-
ple, if loading changes of a power system are used to represent the bifurcation parameter

A, saddle-node bifurcations would be expected for certain values of .

In the following section, the effect of limits restricting the space of feasible solutions

and hence leading to limit-induced bifurcations is considered.



3.4 Limit-Induced Bifurcations

Although saddle-node bifurcations can be shown to be generic in power systems, limits,
especially generator reactive power limits, may restrict the space of feasible solutions and
thereby voltage collapse may be induced by limits as opposed to a saddle-node bifurcation
[51, 52]. This has a major effect on “measuring” the distance to voltage collapse since the
voltage collapse may occur not by a saddle-node but rather by reactive power limits, i.e.,

limit-induced bifurcations.

Limit induced bifurcations as analyzed in [51], occur in power flow equations when
generator models are changed from constant voltage and active power models, to constant
active and reactive power models on encountering reactive power limits. The change in
models corresponds to a different set of equations; and it is found, in some cases, that the
new equations are unstable at the current operating point. Both the original model and
the “limit induced” model have the same equilibrium point when the limit is encountered
but have different bifurcation diagrams. In the case where the system becomes unstable
at the limit, the equilibrium point is on the unstable portion of the “limit induced”
bifurcation diagram. It is also possible that the system remains stable when the limit
is encountered since the equilibrium point may be on the stable portion of the “limit

induced” model’s bifurcation diagram. Figure 3.3 illustrates these two possibilities.

When the generator voltage control used in practice, which is the reason for this
“switching”, is considered fully, only the equilibrium branches in bold in Figure 3.3 exist.
The higher voltage conditions on the limited system branch in Figure 3.3(a) are not fea-
sible since the control would recover from its reactive power limits and would therefore
“switch” back to the original system model. If the condition in Figure 3.3(b) is encoun-
tered, the system looses voltage control and collapses. The latter is very similar to a
saddle-node bifurcation condition, although the system Jacobian is not singular in this

case. This phenomena is not considered in [51].
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Figure 3.3: Illustration of limit induced instability.
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Figure 3.4: Bifurcation diagram for generator-infinite bus example.

Example:

The two-bus lossless system shown in Figure 3.1 is used to illustrate limit-induced bifur-
cations by adding a reactive power limit. In Figure 3.4, two bifurcation diagrams have
been drawn. The “unlimited system” diagram is the same as in Figure 3.2 and corre-
sponds to the original system with the generator modeled as a constant voltage source.
The “limited system” diagram corresponds to the set of equilibrium points obtained when
the generator is modeled as a constant reactive power source, i.e., the generator terminal

voltage is “free” to change.
The “limited system” model is formed by combining the differential equations (3.11)
and the load flow equation describing the reactive power supplied by the generator:

Q — |‘/;]en|2 - |%en||vm|
ger Xline Xline

cos & (3.19)

where Qgen = Qiimit 15 set to 1.4 p.u. Equilibrium points of the “limited system” are
defined using (3.11), with § and & equal to zero, and the algebraic equation (3.19). The

system has two differential variables (6 and w) and one algebraic variable (Vjep).



With the reactive power limit, the maximum loading point of the system corresponds

to a limit-induced bifurcation of the kind depicted in Figure 3.3(b).

3.5 Bifurcation Analysis Methods

Two traditional methods to analyze bifurcations are the continuation and direct methods
[18, 52]. Continuation methods systematically increase the loading level or bifurcation
parameter, until a bifurcation is detected. Therefore, not only is the bifurcation or point
of collapse determined, but also the set of equilibrium points the system goes through
to arrive at the bifurcation point. The continuation method can be used to detect any
type of bifurcation without great difficulties [48, 52, 53, 54]. Direct methods, on the other
hand, solve the set of algebraic equations used to define the bifurcation point, directly
solving for the point at which the system collapses. Direct methods have been successfully
applied to determine the exact location of saddle-node in power systems [52, 55]. However,
these methods present serious difficulties when used to locate other types of bifurcations
[48]. For both methods, it is assumed that the bifurcation parameter is a scalar, which

typically corresponds to a given direction of load increases in power system models.

3.5.1 Continuation Methods

Continuation methods are iterative numerical techniques used to detect bifurcations by
tracing the bifurcation diagram and indirectly detecting any bifurcations. Since these
methods have been extensively studied (e.g., [18, 52, 53, 54, 56]), only a brief review is

presented here.

In power systems, continuation methods typically trace the voltage profile of the sys-
tem up to the maximum loading point of the system. These methods have the advantage
that more information is obtained about the system behavior, but they may be compu-

tationally expensive, especially in large systems [3].



ZA

20 Predictor Step Az

21

+ Corrector Step
Z2

Ao A A
Figure 3.5: Illustration of continuation algorithm.

Continuation methods are generally composed of two or three steps. The first part is
a predictor step, the second is a corrector step and the third is a parameterization step.
The last step can be omitted in some algorithms. The predictor and corrector steps are
illustrated in Figure 3.5. From an initial solution (zg, A¢), a step Az, and change A\ of the
parameter are first determined. From the new point, z; = zy + Az, the new equilibrium
point, z,, is calculated. A parameterization is used to ensure that the Jacobian used in

the continuation method does not become singular at a saddle-node bifurcation.

There are several techniques to implement the predictor, corrector and parameteriza-
tion steps (e.g., [18, 26, 56]). A brief description of one implementation of the three steps,
based on [18, 56], follows:



Predictor and Parameterization

Given an initial operating point, the predictor step can be determined by computing the

tangent vector to the bifurcation manifold at this point, as follows:

dz Os
D,s(zp, \) 2| = - & 2
s(zg /\)d/\ 0 B3 0 (3.20)
l
A= — 3.21
T dz/dx s (3:21)
dz
Az = AA—= (3.22)
d\ .

where % o is the partial derivative of the system equations with respect to the parameter
A, and D,s(zg, \g) is the system Jacobian calculated at the initial point. The constant [ is
used to control the step “size”. The new vector z; and parameter value A\; are calculated

as

z, = 7o+ Az (3.23)
AL = Ao+ AX (3.24)

The tangent predictor method has the disadvantage that near the collapse point, the
Jacobian D,s(zg, \g) becomes ill-conditioned. To avoid this problem, a parameterization
step can be applied, where the parameter A is exchanged with the variable in z that

presents the largest value in Az.

Because of the highly nonlinear behavior of the Jacobian’s eigenvalues in power system
problems, parameterization is not generally required to obtain good results, when step
cutting is incorporated into the corrector step [52, 56]. Observe that once the continua-
tion algorithm moves past a saddle-node or limit-induced bifurcation, the sign of AX in

equation (3.21) must be changed to trace to lower portion of the bifurcation diagram.

Alternative predictor steps include the arc-length method and the secant methods
(3, 18, 54]. The arc-length method is based on representing z and A at the equilibrium

points as a function of the arc-length of the bifurcation manifold. The secant method,



on the other hand, approximates the tangent vector dz/d\ using two or more previously

determined points on the bifurcation manifold.

Corrector Step

Using the new vector and parameter value found in the previous step, a corrector step is
used to find a new point that is on the bifurcation manifold. This is found by solving the

following set of equations:

s(z,A) = 0 (3.25)
c(z,\) = 0

where c¢(z,\) is a scalar equation. The first equation in (3.25) insures that the new
solution is an equilibrium point. Since s(z, A) has a singular Jacobian at a saddle-node
bifurcation, the second scalar equation represents a phase condition that guarantees a
non-singular Jacobian of the corrector equations [3]. One possible condition is to define

a perpendicular vector to Az as follows [52, 57]:
c(z,\) = AN — Ao — AN) + Az" (z — 7y — Az) (3.26)

where AX and Az are the solutions of the predictor step. Initial guesses for z and A are

z; and A, respectively, which usually result in good convergence characteristics [56].

3.5.2 Direct Methods

Since saddle-node bifurcations are considered generic, it is possible to consider only a sub-
set of the transversality conditions to compute them. Therefore, saddle-node bifurcations

can be directly determined using the following set of equations [52, 55]:
$(Ze, As) = 0 (3.27)
DIs|,w = 0

[Wlloo =1



where w is a normalized right eigenvector. Since these methods are formulated to deter-
mine saddle-node bifurcations, they cannot be used to determine a limit-induced bifurca-

tion, as the singularity condition is not met in this case.

3.6 Optimization Based Voltage Stability Analysis

Recently, optimization-based techniques have been introduced to analyze voltage stability
and determine system settings to maximize the distance to voltage collapse. These tech-

niques are based on traditional bifurcation analysis methods and optimization techniques.

In this section, a review of previously proposed optimization techniques for voltage
stability studies is presented. First, a generic explanation of the system model used in
optimization based analysis is provided, followed by a discussion on how independent vari-
ables (control variables) effect bifurcation diagrams (stability limits). The optimization
formulation corresponding to the Direct Method is given with an extension for maximum
loadability analysis. Finally, the Maximum Distance to Saddle-node Bifurcation problem

is discussed.

3.6.1 System Model

For this thesis, a static model for the power system of the form
0=F(x,p, ) (3.28)

is used, where the vector x € R"™ represents the system’s dependent variables, normally
non-generator bus voltage magnitudes and angles, reactive power levels of generators
when using PV generator models, and real and reactive power levels of the slack bus
generator. The vector p € R™ represents the independent variables in the system; in a
simple model, this would include generator active power settings and terminal voltage

levels. The parameter A\ € RT represents the loading factor in the system, generally
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Figure 3.6: Bifurcation diagram for the IEEE 14-bus system. Bus 11 voltage level versus

loading level, ()), for two settings of the independent variables.

referred to as the bifurcation parameter [48]. Typically, the loading factor is used to

model the direction of load increase in the system.

In Section 3.3, saddle-node bifurcations are defined using differential and algebraic
equations used to model a system. Equation (3.28) is assumed to correspond to the

steady state equations of this model.

3.6.2 Effects of Control Parameters on Bifurcation

Diagrams

In this section, the effect of changing independent variables (control variables) on the
operation of power systems from the point of view of voltage stability is presented. As
independent variables are varied, the system effectively moves from one bifurcation dia-
gram to another. This is shown in Figure 3.6 using the 14-bus system whose corresponding

single line diagram shown in Figure 3.7.
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In Figure 3.6, the per unit voltage level at Bus 11 is plotted versus the loading level
A for two different settings of the independent variables. The maximum loading point of
the system is increased by changing the power output of the non-slack bus generators and
raising generator voltage settings, resulting in a different bifurcation diagram. Figure 3.6
also shows that setting independent variables to maximize the distance to collapse results
in different operating points for all loading levels (i.e., all other values of ),). Therefore,
when applying techniques to maximize the distance to collapse, the effect of the control

variables at the current operating point should be considered.

Bifurcation diagrams can also be varied by changing other parameters in the system,

such as shunt capacitance levels and transformer tap settings.

3.6.3 Optimization Based Direct Method

Similar equations and solutions for bifurcation studies can be obtained as the traditional
Direct Method (3.27) by using an optimization formulation [11, 15, 58]. For example, by

stating the problem as:

min -\ (3.29)

stt: F(x.,p,A) =0
where ), is the value of the loading parameter (bifurcation parameter) at the maximum

loading point. For a given value of p, the solution can be found using the Lagrangian of

(3.29):

L(x., Ay ) = =M\ + 7 F(x,, p, \)) (3.30)

where v corresponds to the Lagrangian multipliers, called the dual variables. The local
optimal solution of (3.29) is found by satisfying the first order necessary KKT optimality

conditions [35]:



D,L = F(x.,p,\) =0 (3.31)

D,L = DIF(x,,p, )y =0

oL 0 _
3—)\_7 a—)\F(X*,p,)\*)—l—O

where the above equations have the same form as the Direct Method equations (3.27).
Therefore, well defined optimization routines can be utilized to obtain the bifurcation

point, by stating the problem as an optimization problem.

3.6.4 Maximum Distance to Collapse Problem

The optimization-based Direct Method can be modified to determine the values of the
independent variables (control variables) that maximize the distance to voltage collapse.

Thus, let us consider the maximum distance to collapse problem:
min -\ (3.32)
st: F(x,p, M) =0
pP<p=<p
Limits on x, have been excluded to simplify the problem, and lower and upper limits on
the independent variables p are given by the vectors p and p, respectively. The inequality

constraints may be incorporated into the objective function using a logarithmic barrier

term as follows:

min =\ — p 3" log (p — ps) — pd 200, log (B — ps) (3.33)
s.t. : F(x.,p, A) =0

The solution can then be determined using the related Lagrangian function



Figure 3.8: Generator-infinite bus single line diagram.

L(x,,p, M) =M —p Y log(p—p)—p Y log(p—p) +7"F(x,p,\)  (3.34)

i=1 i=1
where v corresponds to the Lagrangian multipliers, called the dual variables. The optimal

solution is defined by the KKT first-order optimality conditions [35]:

DL = DIF(x,,p, \)y =0 (3.35)

D,L =D, F(x.,p, \.)y — pdiag(p — p)~'1 — pdiag(p — p)~'1 =0

oL 7 0
== —F(x,pA) —1=0
N T i Fxnp )
D,L = F(x.,p,\) =0
where 1 = [1, 1, 1,..., 1]7 of appropriate size. These equations are very similar to the

equations used in the Direct Method as outlined in Section 3.5. Specifically, the fourth
equation in (3.35) guarantees an equilibrium point, whereas the first equation guarantees
a singular Jacobian of the power system model. Therefore, the proposed variation will
determine a point of collapse and the value of independent variables that will maximize

s

Example:

The difference between the original Direct Method and the optimization-based method is

illustrated with the following example: Consider a single generator connected through a



lossless transmission line to a network modeled as an infinite bus as shown in Figure 3.8.
The generator terminal voltage Vi, is the only independent variable (control variable)
p, and is initially set to unity. It is assumed in this example that the generator terminal
voltage will be constant for all loading conditions. The value of Xj;,. is set to 0.1 p.u.,
and the value of V., can be set to 1.0 £ 0.1 p.u. Finally, the generator power output
Py, is used as the bifurcation parameter A, with the dependent variables of the system
being the generator voltage angle and reactive power (0, Qger). The system of equations

governing the operation of this system are:

|% en Voo .

Py, = % sin § (3.36)
Vgenl”  [Vgen Vol

Qgen )é}line a gXline oo8 6

where Xj;,. is the transmission line impedance, and V,, is the voltage magnitude of the
infinite bus. Since the first equation is independent of ()¢, and no limits are considered

for Qgen, only the first equation in (3.36) is needed to find the maximum loading point.

Using the Direct Method, discussed in Section 3.5, the maximum value of P, is
found to be 10 p.u., with the original terminal voltage setting of Vg, = 1.0 p.u. Using
the optimization formulation given by (3.32), the maximum value of P, is found to be
11 p.u., with a corresponding terminal voltage setting of 1.1 p.u. Both problems found a
point of collapse, but formulation (3.32) is such that it also maximizes the value of the

loading parameter at the bifurcation.

3.6.5 Maximum Distance to Saddle-node Bifurcation

Based on bifurcation theory and optimization techniques, two formulations are presented
in this section that determine the optimal control to maximize the distance to a saddle-
node bifurcation. Several different algorithms have been proposed in the literature based

on the saddle-node bifurcation transversality conditions (e.g., [4, 5, 10]). The objective of



the problem is to increase the value of the loading parameter )\, at the bifurcation, thus,

increasing the distance from the current operating point to this critical value.

One form of the Maximum Distance to Saddle-node Bifurcation problem can be stated

as an optimization problem as follows:

min —3(Ap — A)? (3.37)
s.t. : F(x.,p,A\s) =0

DIF(x,,p, \\)w =0

where w is the left eigenvector and is assumed to be a properly normalized nonzero vec-
tor. The current value of the bifurcation parameter is given by A, and its value at the
saddle-node bifurcation is denoted as \,. The second equality constraint is used to explic-
itly define the maximum loading point as a saddle-node bifurcation. This formulation,

including the quadratic objective function, was used in [5, 10].

The next step is to incorporate feasibility of the current operating point. This has
the advantage that, as independent variables (control variables) are changed to maximize
the distance to collapse, bounds can be incorporated into the present operating point.
Therefore, the modified Maximum Distance to Saddle-node Bifurcation problem may be

written as:

min LA = A2 (3.38)
s.t. : F(x,,p,\p) =0
F(x.,ps, M) =0
DIF(x,,p., \)w =0
X, <X <Xp
X, <X <X,

P<p=<p



Figure 3.9: 3-bus system single line diagram.

where p, D p is used to map the control variables p, at the current operating point, into
the collapse point to account for certain system changes (e.g., generation changes modeled
using a distributed slack bus), and the subscripts p denotes the present or current loading
level. Since x, is now introduced in the nonlinear programming problem, minimum and
maximum constraints can be placed on all system variables. Observe that this formulation

fails if the system collapses due to a limit-induced bifurcation.

Example:

The above two problems are applied to the three bus system shown in Figure 3.9. Applying
the maximum distance to saddle-node bifurcation formulation, a maximum loading A, =
8.5 is found. Adding constraints on the current operating point (modified maximum
distance to saddle-node bifurcation formulation) results in an optimal A\, = 7.4. The
difference in the two results is attributed to the fact that incorporating constraints on
the current operating point reduces the space of feasible solutions. In both cases, the

maximum loading point corresponded to a saddle-node bifurcation.

3.7 Summary

In this chapter, an introduction to voltage stability and bifurcation analysis is presented.

Traditional methods used to determine bifurcations are given and extended to optimiza-



tion based approaches. The problems are then reformulated, from finding the maximum
loading point for a given set of control variables, to maximizing the distance to collapse.
Finally, the concept of considering both the current loading point and the collapse point

in the problem is briefly introduced.
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4.1 Introduction

Voltage stability problems in power systems may occur for a variety of reasons, from
voltage control problems with Automatic Voltage Regulators (AVR) and Under-Load Tap-
Changer (ULTC) transformers, to instabilities created by different types of bifurcations.
Several conference proceedings (e.g., [59, 60, 61]) summarize many of the voltage stability
problems, and discuss techniques and models proposed by researchers relating to the area
of bifurcation theory. Asloading levels in a system increase, the stability margin decreases.
Generally, control actions can be taken to increase the available transfer capability of the
system, but this may result in increased costs. These increased costs may be considered

as the operational cost of enforcing a voltage stability constraint.

This chapter presents a numerical analysis of applying optimization techniques to
proposed voltage stability constrained Optimal Power Flow problems. Numerical analysis
using the IEEE 57-bus and 118-bus systems are presented to highlight the characteristics
of these problems. The single line diagrams for the 57-bus and 118-bus system are shown
in Figures 4.1 and 4.2, respectively; the data for these systems was based on data provided
in [62]. Emphasis is given to change in generator cost when including voltage stability

criteria in the OPF.

This chapter is structured as follows: First, a general formulation to combine OPF and
voltage stability is given. A modification to the Maximum Distance to Collapse problem

that includes constraints and feasibility of the current operating point is presented. In
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Figure 4.1: Single line diagram of the 57-bus system.

addition, several Voltage Stability Constrained-Optimal Power Flow (VSC-OPF) formu-
lations are presented, followed by an analysis of the results obtained from applying the
formulations to the two test systems. Finally, a summary of the main results presented

in this chapter is given.
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Figure 4.2: Single line diagram of the 118-bus system.

O 12

O



4.1.1 OPF and Voltage Stability Criteria

A general OPF problem that incorporates voltage stability criteria can be written as
min G(xp, Py Aps As) (4.2)
st.: F(xp,p,0p) =0

F(X*;p*a )\*

where the subscripts p and * indicate the current and collapse points, respectively. The
function G(x,,p, Ap, A«), is the objective function to be minimized, which includes an
OPF component, such as production costs or losses, and a voltage stability component.
The OPF component may be dependent on (x,,p,A,), whereas the voltage stability com-
ponent is generally a function of A, and possibly of A,. It is assumed that the inequality
constraints can be separated into constraints at the current and collapse points. The
lower and upper limits on the power system independent or control variables p are given
by p and p, respectively. Finally, p. D p is used to map the control variables at the cur-
rent operating point, defined by p, into the collapse point to account for certain system

changes (e.g., generation changes modeled using a distributed slack bus).

It is important to highlight the fact that in (4.2), A stands for only one parameter
instead of several, contrary to what is proposed in [13], i.e., the optimization is done in
a particular direction of load change. This is not a problem, given that the optimization
would be typically done several times a day during the operation of the system, as in
the case of any other OPF procedure. This assumption simplifies the numerical solution
process of the optimization problem, which is already a difficult numerical problem, given

the highly nonlinear behavior of the system constraints and the effect of limits associated



with the inclusion of the collapse conditions.

Depending on the definition of the objective function G(-) in (4.2), one can pursue
different optimization strategies and hence obtain solutions to a variety of distinct prob-

lems.

4.1.2 Limit-induced Versus Saddle-node Bifurcations

Using a Logarithmic Barrier approach [32], the first order KKT optimality conditions to
problem (4.2) is given to demonstrate when the maximum loading point is defined by
a limit-induced bifurcation or a saddle-node bifurcation. Using slack variables, problem

(4.2) can be rewritten as

min G(Xpapa )\P’ )\*) (43)
s.t. : F(xp,p, ) =0
F(xi,ps, ) =0

o

(Xp)—&—slz()

»— H(x,) —s2=0

o

s

(x:) —H, —s3=0

H, -H(x,) —s,=0

S1, 82,83, 84, 55, S 2 0

where s1, S9, 83,84 € 1P and s5, 86 € R™ are the primal non-negative slack variables used

to transform the inequality constraints to equalities. The non-negativity constraints are



incorporated into the objective function using a logarithmic barrier terms as follows:

m

min G(xp, p, Ap, M) — 11 Y _ (log ss[i] + log sei])
) =t (4.4)
— 10y _(log s1]i] + log so[i] + log ss[i] + log sali])
=1
s.t. : F(x,,p,A) = 0

F(x.,p; A) = 0

s

(Xp)_&_sl =0

p—H(Xp)—SQ =0

T

s

(X*) - & —s3 = 0
E - H(X*) —S4 = 0
p—p—ss = 0
p—p—ss = 0
where y is the barrier parameter and s[i] represents the i element of the vector s. The

Lagrangian function of the modified barrier problem (4.4) is then defined as

m

L = G(xp,p A\p, Ai) — uZ(log s1]1] + log ss[i]) (4.5)

=1

— 1 Z(log s3li] + log s4[i] + log ss[i] + log sg]i])

—71 (F(Xp,p, p) = 72 (F(x:, p1, M)
—vy (H(x,) — Hy — 1) — v, (H, — H(x;) — 52)
—vy (H(x,) — H, —s3) — v (F, — H(x,) — s4)

—l(p—p—ss) — Cg(ﬁ —p — S6)

where 71,772 € R, v1,v9,v3,¥, € R? and (1,(> € R™ are the Lagrange multipliers. The
vector y = (Xu, Xp, Ax, P, 1, 52, 83, 84, S5, 56, V1,72, Y1, V2, V3,V4,{1,(2) is introduced to simplify

the expression. The Karush-Kuhn-Tucker (KKT) first-order necessary conditions are used



to define the local minimum of equation (4.4),

where S; through Sg are diagonal matrices with elements of the corresponding vector s;

V. L
Vi, L
VL
V,L
—pl + Syvy
—ul + Sovy
—pl + Ssvs
—pul + Syvy
—pl + S5¢y
—pl + SeC2
F(xp,p, Ap)
F (X, s As)
(xp) —Hp — 51

P—P—5s5

pP—pP—Se

through sg on the diagonal; 1 € R? is a vectors of ones; and

Vol = 73D, F(%.,p0,A) — (V3 +v])D, H(x,)
Vi, L = DxpG(XpaP:)‘pa)‘*)‘*"YlTDpr(Xp’pa)‘p)

—(v] +v,)Dy,H(xy)

VL = D)\*G(Xp:pa)‘p’)‘*)_7gDA*F(X*7p*?)‘*)

*

VoL = G(xp, 0, Ap, Ai) — 'YlTDpF(Xpapa Ap)

_'YgDpF(X*a P> )\*) - Cl + 42



The issue of collapse due to limit-induced bifurcation versus saddle-node bifurcation
can now be explained as follows: The first condition in (4.6), Vy, L, includes the Jaco-
bian of the system model at the maximum loading point multiplied by 7s, which can be
considered to be equivalent to an eigenvector of a Jacobian. Therefore, the first condition
corresponds to a singular Jacobian if (¥ + vT)D, H(x.) = 0; this would imply that,
if one assumes that D, H(x,) is non-singular (which is typically the case when limits
directly on x are being enforced, i.e. D, H(x,) is an identity matrix), the dependent
variables are not at their limits, since v3 and v, are zero when their corresponding limits
are not active. If dependent variables of the critical point are at their limits, then v3 and
v, may become non-negative, i.e., the load flow Jacobian may be non-singular. If 3 and
v, are non-negative, which implies that locally the objective function could be improved
if the limits are not enforced, the system has reached a limit-induced bifurcation point. If
limits are reached and v3 and v, remain zero, this implies that the limits are not locally
limiting an improvement to the objective function and hence the system has reached a

saddle-node bifurcation point.

The above derivation demonstrates when the inequality constraints can be separated
based on the dependent and independent variables of the load flow model, the maximum
loading point may be a limit-induced point only when constraints based on the dependent
variables become active. The independent variables p being at their limits, do not directly
affect the type of bifurcation. Furthermore, if the system collapses through a saddle-node
bifurcation and limits on dependent variables are active, (4.6) implies that the Lagrangian
multipliers associated with this limit are zero. Therefore, for the particular bifurcation,

removing the limit that is active will not affect the bifurcation.

4.1.3 Modified Maximum Distance to Collapse

The Maximum Distance to Collapse problem with constraints incorporated on the current

and critical loading point [5, 6] is a particular example using optimization techniques to



enhance voltage stability. This problem can be written as

min —(A = Ap) (4.7)

This OPF maximizes the distance to a saddle-node or limit-induced bifurcation. Including
the current loading point into the constraints ensures that, when independent variables
are calculated to maximize the distance to voltage collapse, feasibility and inequality
constraints at the current loading point are met [6]. For example, increasing generator
voltage magnitude settings generally increases the distance to collapse but, under lighter
loading conditions, the increased levels may lead to over-voltages. Incorporating the cur-
rent operating point into the optimization problem can eliminate this problem; however,

it also reduces the space of feasible solutions.

Example:

Reactive Power limits are added to the two-bus example from Section 3.6.4, illustrated in
Figure 3.8, and modeled with equations (3.36) to demonstrate the ability of the maximum
distance to bifurcation algorithm to converge to limit induced bifurcations. Again, the
generator terminal voltage (independent variable) is restricted to 1.0 £ 0.1 per unit but
(Qgen is now limited to the range —4.0 < Qe < 4.0 per unit. The dependent variables
for the system are the generator voltage angle and reactive power (6, Qgen). Using the
maximum distance to collapse formulation, with limits on (g, the maximum loading
point is found to be 8.06 per unit which is lower than the value of 11 per unit found when

no reactive power limits where included. At the critical point, @y, is at the upper limit.



4.2 VSC-OPF Formulations

With the current loading point included into the optimization problem, it is possible to
incorporate voltage stability criteria into an OPF formulation at the “current” operating
point x,. As the operating point moves closer to a voltage collapse or bifurcation point,
i.e., as x, approaches x,, more emphasis must be placed on maximizing voltage stability

as opposed to minimizing operating costs.

An initial approach to this problem consisted of introducing voltage stability indices
in the objective function as indicators of the proximity to voltage collapse, as explained
in [5]; However, since voltage stability indices present rather nonlinear characteristics,

especially when limits are considered, this technique did not produce adequate results.

In order to incorporate voltage stability constraints into a traditional OPF formulation,

the following five formulations are proposed:

Hybrid VSC-OPF Formulation

Linear Combination VSC-OPF Formulation

Fixed Stability Margin VSC-OPF Formulation

Goal Programming VSC-OPF Formulation

VSC-OPF with Reactive Power Pricing Formulation

In each of the above formulations, the difference between A, and A, is used as an
“exact” measure of the distance to collapse. For the first formulation, the (A, — A,) mea-
sure is used to automatically shift the weighting between cost minimization and voltage
stability security depending on the current system conditions p. This formulation tends
to emphasize voltage stability when the system is closer to a collapse point, but there is
no direct control on the relative weighting assigned to stability versus costs, so there is

no way to guarantee that this will actually occur.



The second formulation uses a Linear Combination [35] approach to incorporate volt-
age stability criteria into a traditional OPF objective. This requires that all the objective
functions be defined using some common unit; thus, since the original objective is to min-
imize the cost of the system, a “value” must be added to account for the level of stability
of the system. At higher loading levels, more weight or value can be given to the stability
portion, emphasizing the importance of stability. The disadvantage of this technique is

in determining the “weights” of stability versus costs.

The motivation behind the third formulation, the Fixed Stability Margin formulation,
is to introduce a fixed inequality constraint that prevents the stability margin of the
system to be below a given value. The disadvantage of this approach is that at higher
loading levels, the desired stability margin may be more than what the system can provide,

yielding convergence problems.

In the fourth formulation, concepts from goal programming are used [35]. In tradi-
tional goal programming, a goal or value is assigned to each component in the objective
function. The problem is then formulated to minimize the difference between the values
of each of the components in the objective function and their goal or desired value. This
technique works well for incorporating the voltage stability criteria, but does not incor-
porate minimization of cost appropriately. Therefore, the goal programming approach is
only applied to the voltage stability component of the problem and the economic cost

component is incorporated using a linear combination approach.

The final formulation incorporates a reactive power cost. Reactive power limits are
often associated with voltage collapse and their inclusion into the OPF can be used to

assign a value to reactive power support.

In the following sections, the above five formulations are discussed in greater detail.



4.2.1 Hybrid VSC-OPF Formulation

Since the maximum loading point of the system is a variable in the optimization problem,
it is possible to accurately use a measure of the distance to collapse as an automatic way
of shifting the weighting between cost minimization and the voltage collapse margin. The
motivation behind this formulation is illustrated with the following example. Consider a
problem with the objective function

. K(

min: % (4.8)

where both K(-) and L(-) are strictly positive functions. The objective function can be
minimized both by minimizing K(-) or maximizing L(-). Therefore, if K(-) is replaced by
generator operating costs and L(-) is replaced by the stability margin, the solution to the
problem would try to maximize the distance to collapse and minimize costs. The amount
of emphasis placed on minimizing cost versus increasing the stability margin is automatic

and problem dependent. Thus, the following formulation is proposed:

min g(x,, p, A\p)® (4.9)

s.t. : F(xp,p,\p) = 0
F(xs,ps, ) = 0
(N —)) = 1

z, < Xp < T

where g(-) represents a traditional OPF objective function. The scalar ® is introduced to

reduce some numerical problems as the function "E\’i”f”i\’:) tends to infinity as A\, approaches

A« Nevertheless, if the current loading point A, is at the bifurcation point A, the algo-

rithm will fail since the inverse of A, — A, is infinity. Although, it is unlikely that A, = A,,



some numerical problems may occur if they are “close”. If the system is effectively at A,,

then a strict maximum distance to voltage collapse algorithm should be utilized.

4.2.2 Linear Combination VSC-OPF Formulation

In this formulation, the distance to collapse is directly incorporated into the objective

function, i.e.,

min wi g(xp, p, Ap) — wa (A — Ap) (4.10)

s.t. : w1 + wo =1
F(x,0,A) =0
F(xs, ps, As)
H, <H(x) <H,

0

H, <H(x,)

IN

H,

P<p=<p

Observe that this requires the introduction of two weighting factors w; and w, to balance
the emphasis placed on maximizing stability, i.e., (A —\,), versus minimizing costs, which
are represented by g(x,,p, A,) in (4.10). Generally, wy, must be significantly larger than
w1, as the relative difference in the magnitudes of each term in the objective function
is large, with w; + ws = 1 to normalize their values. Values obtained from previous
OPF and Maximum Distance to Collapse analysis can be used to determine reasonable
values of w; and ws at different loading conditions. A disadvantage of this formulation
is that at higher loading levels, the stability margin (A, — A,) decreases, resulting in less
emphasis being placed on stability in the objective function. Furthermore, in the Linear

Combination formulation, it is not possible to set a value for the voltage stability margin.



4.2.3 Fixed Stability Margin VSC-OPF

An alternative approach to assigning a cost to voltage stability is to include a voltage

stability inequality constraint as follows:

min g(x,, p, Ap) (4.11)

s.t. : A — Ap 2> Adpin,
F(xp,p, %) =0
F(x., ps, As)
H, <H(x,) <H,

0

H. <H(x) <H,

P<p=<p

where A\,,;, represents the minimum acceptable margin of stability for the system and is
defined by the system operator. An advantage of the Fixed Stability Margin formulation
versus the Linear Combination formulation is that choosing a value for A\,,;, may be
easier for the system operator than choosing appropriate weighting factors. This is because

a minimum acceptable margin of stability has a more physical meaning.

A disadvantage of the Fixed Stability Margin formulation is that it may be possible
to define a stability margin for which there is no solution to the optimization problem, as

the stability margin may be greater than what the system can provide.

4.2.4 Goal Programming VSC-OPF Formulation

The limitations of the Linear Combination and Fixed Stability Margin formulations can
be overcome using Goal Programming, where a desired “goal”, A),, can be explicitly

declared for the voltage stability margin. In this case, the formulation is defined as:



min w; g(Xp, p, Ap) + ws B1 + w3 Bo (4.12)

s.t. : (A = Ap) = AN, =1 — B
F(x,,p,\,) =0
F(X*ap*a)‘*

where the relative weights w;, wy and w3 are used to vary the emphasis put on the desired
stability margin, and the new variables 3, B2 > 0, which are minimized, depend on the
stability margin. If 8, and [y are equal to zero, then the stability margin equals the

desired value A\,.

In the above formulation, the stability margin (A, — A,) can be less or greater than
the desired margin A),, depending on the proximity of the system to collapse and the
relative weights. A disadvantage of the Goal Programming formulation is determining

appropriate values for the relative weights.

4.2.5 VSC-OPF with Reactive Power Pricing Formulation

The final formulation consists of modifying (4.12) to add reactive power pricing to the
previous formulation based on a possible market environment (e.g., [63]). Here, it is
assumed that generator companies are asked to operate at a given power factor, and if
they deviate from it due to system conditions, additional costs must be paid by either the

company or the Market Operator; this is based on how some markets currently operate



(e.g., Italy). Hence, goal programming is used to minimize the difference between the

actual power factor of each generator and its desired power factor as follows:

s.t. :

min wy g(%p, P, A\p) + ws B1 + w3 B2 + Z(wzlﬂsi + wsfB4;) (4.13)
i=1
(A = Ap) = ANy =1 = o

Qgen; — tan(arccos(pf)) Py, = f3, — P, Vi=1,...,n,4

F(xp,p, ) =0
F(x.,ps, ) =0

where the desired power factor is represented by pf; n, represents the number of generators

in the system; w; o 3 4 are weights used for varying the relative emphasis on operating costs,

stability margin and power factor (reactive power costs); and B3 and B, are vectors used

for measuring the difference between the actual and the desired power factors for each

generator. The formulation is such that generators would try to operate close to the

desired power factor; otherwise, a penalty cost is automatically assigned. A disadvantage

of this formulation is determining appropriate values for the relative weights, especially

for the reactive power support.



4.3 Numerical Analysis

The Maximum Distance to Collapse and Voltage Stability Constrained OPF (VSC-OPF)
formulations presented in Section 4.2 are tested on two sample systems, the first based
on the IEEE 57-bus system and the second based on the 118-bus test system [62, 64]. A
number of simulations are performed to analyze how the current loading point and system
limits influence the optimal solution. Based on the algorithm presented in Chapter 2,
a nonlinear Predictor-Corrector Interior Point method written in MATLAB is used to
perform the numerical analysis. Simulations are performed considering various operational

limits at both the current operating point p and the collapse point .

4.3.1 Modified Maximum Distance to Collapse Formulation

Including constraints on the current loading point p in the Maximum Distance to Collapse
formulation resulted in different “optimum” solutions depending on the value of A,. The
results of solving this optimization problem for the 57-bus and 118-bus system are depicted
in Figures 4.3 and 4.4, respectively, where changes in A, versus )\, are depicted. Observe
that, as expected, the presence of operational limits reduces the maximum loading margin
of the system (x versus ¢ in Figures 4.3 and 4.4), and that the generator limits dominate
over voltage limits (¢ versus X in Figures 4.3 and 4.4). Figure 4.4 illustrates one of
the principle disadvantages of considering both the current and critical loading point in
one formulation (notice some points missing on the plots). For some loading points, no
solution to the optimization problem could be found. This is attributed to the highly
non-linear nature of the problem, especially when limits are considered at the critical

loading point.

Enforcing operational limits at the collapse point * results in a lower \,, as one would
expect, since generator limits, particularly reactive power limits, are the main limiting
factor (¢ versus * in Figure 4.3); this is consistent with the type of results that one

would typically obtain in voltage stability studies. At low values of \,, upper limits on
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Figure 4.3: Maximum loading versus current operating point using the Maximum Distance
to Collapse problem for the 57-bus test system. The symbols %, ¢, and X correspond to
solutions for the system with no limits, generator P and Q limits, and both bus voltage
limits and generator P and Q limits, respectively, at the maximum loading point; operational

limits are always enforced at the current operating point.
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Figure 4.4: Maximum loading versus current operating point using the Maximum Distance
to Collapse problem for the 118-bus test system. The symbols %, ¢, and X correspond to
solutions for the system with no limits, generator P and Q limits, and both bus voltage
limits and generator P and Q limits, respectively, at the maximum loading point; operational

limits are always enforced at the current operating point.
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Figure 4.5: Change in voltage magnitude at Bus 30 versus ), for the 57-bus test system.

bus voltages become active, resulting in lower values of \,, with the opposite happening
at higher values of A,. This phenomena is clearly illustrated on Figure 4.5, where the
p.u. voltage magnitude at different loading levels is given for a non-generator bus (Bus
30) of the 57-bus system. At lower loading levels, the voltage tends to go to the upper
limit, limiting the set points of generators nearby; at higher loading values, generator set

points are raised, as upper voltage limits are not a problem.

If the reactive power limits on the generators become active the problem calculates
maximum loading points that correspond to limit-induced bifurcations; the power flow
Jacobian is not singular in this case, confirming the analysis presented in Section 4.1.2.
For active and non-active reactive power limits, a comparison of generator reactive power
levels is given in Table 4.1 (where A, = 0.95). In the case where no reactive power

limits are enforced at the maximum loading point, the system collapses via a saddle-node



Table 4.1: Results of reactive power limits on various system variables for the 57-bus system

(at Ax for A\, =0.95)

Parameter | Without Reactive With Reactive
Power Limits (p.u.) | Power Limits (p.u.)
Qgens 1.2649 1.5975
Qgens 0.8993 0.5000*
Qgens 1.4826 0.6000*
Qgens 0.4298 0.2500*
Qgens 0.6528 2.0000*
Qgens 1.5783 0.0900*
Qgens 3.0348 —0.2828

*

indicates the parameter is at its limit

bifurcation, on the other hand, when reactive power limits are enforced, several generators
reach reactive power limits at the maximum loading point, and in this case, the maximum

loading point corresponds to a limit-induced bifurcation.

4.3.2 Hybrid VSC-OPF Formulation

The Hybrid formulation was applied to both test systems. A plot of the generation costs
versus the current loading point for the 57-bus system is shown in Figure 4.6. Furthermore,
Figure 4.7 is a plot of the maximum loading point versus the current loading point for
the 57-bus system. The solution for the Hybrid VSC-OPF problem when applied to the
57-bus system shows some similar characteristics as the Modified Maximum Distance to
Collapse problem. Upper limits, on non-generator bus voltages, at the current loading
point limit the maximum distance to collapse, but these limits are relaxed as the current

loading point increases, allowing for an increased stability margin.

To get a better idea of how the added voltage security criteria affects the generation

costs, and thus be able to give a “dollar value” to voltage security, the costs obtained
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Figure 4.6: Generation costs versus current operating point applying the Hybrid VSC-OPF
problem for the 57-bus test system. The symbols %, ¢, and X correspond to solutions for the
system with no limits, generator P and Q limits, and both bus voltage limits and generator
P and Q limits, respectively, on the maximum loading point; operational limits are always

active on the current operating point.
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and generator P and Q limits, respectively, on the maximum loading point; operational

limits are always active on the current operating point.



with the Hybrid VSC-OPF formulation are compared to those obtained by using the
Maximum Distance to Collapse procedure and the standard OPF for the 57-bus system
in Figure 4.8. The Maximum Distance to Collapse problem resulted in the highest costs
at each loading level, followed by the OPF with Voltage Stability, with the traditional
OPF giving the lowest operating costs, as one would expect. Observe that the proposed
OPF with Voltage Stability tends to automatically shift the optimization importance from
costs to maximum distance to collapse as the loading level increases. Hence, the “cost” of
voltage security would be simply given by the difference between the minimum OPF costs
and those produced by the proposed optimization technique. At higher loading levels, the
difference between the three sets of solutions decreases as the feasible space of solutions

is also decreased due to system and stability limits.

To better understand how the automatic shift on the proposed OPF with Voltage
Stability technique affects the system security, a comparison of the values of )\, at different
loading levels for all optimization problems considered is plotted in Figure 4.9 for the 57-
bus system. The Maximum Distance to Collapse formulation consistently calculated a
larger A, for all cases. The “small” differences in A, are due to the fact that active
power limits of generators basically define this value, as discussed in the previous section;
furthermore, the corresponding “large” differences in costs indicate that this system is
rather sensitive to its generation patterns. The maximum loading point for the solutions
obtained using the traditional OPF formulation were calculated using the continuation

method in the software package UWPFLOW [65].

One disadvantage of the Hybrid VSC-OPF problem, is that there is no direct way to
control the amount of emphasis placed on stability versus cost minimization. The “lack” of
direct control on the emphasis placed on stability enhancement versus cost minimization is
illustrated by examining the maximum loading point versus the current loading point for
the 57-bus system when applying the Modified Maximum Distance to Collapse problem
and the Hybrid VSC-OPF problem shown in Figure 4.9. For most loading levels there is

little difference in the maximum loading point for the two methods. But this difference



7000

X
< X
*

6000

5000

cost
T XI
<
* <
*
*

4000

3000

* <>
%

O

2000 £ ' ' ' '
0.9 1 1.1 1.2 1.3
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Figure 4.10: Operating costs versus weighting factor w; for the Linear Combination formu-

lation applied to the 57-bus test system for A\, = 0.9.

does result in significant cost differences. If the system operator wanted a solution with
more emphasis on cost minimization, the Hybrid VSC-OPF would not be the appropriate

tool.

4.3.3 Linear Combinations VSC-OPF

The multi-objective Linear Combination formulation was applied to both test systems.
The effect on cost and stability margin for different values of one of the weighting factors
at a given value of )\, for the 57-bus system are shown in Figures 4.10 and 4.11. As the
factor w; is increased, more emphasis is placed on operating costs and less on stability

margin, as expected.
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Figure 4.12: Operating costs versus current operating point for the Linear Combinations

formulation, Maximum Distance to Collapse and traditional OPF for the 57-bus test system.

Figures 4.12 and 4.13 depict the results obtained from applying the Linear Combi-
nation formulation, the Maximum Distance to Collapse and the traditional OPF to the
57-bus system. As expected, the solutions obtained from the Linear Combinations formu-
lation are bounded by the solutions obtained from the Maximum Distance to Collapse and
normal OPF. At lower values of w;, the Linear Combination solutions tend to go to the
Maximum Distance to Collapse solutions, whereas at higher values of w; these solutions
approach the OPF solutions. As illustrated in Figure 4.14, the 118-bus system exhibited

similar characteristics as the 57-bus system.

The disadvantage of the Linear Combinations formulation is illustrated in Figure 4.13.
Observe that there is a loading point, which varies with the values of the weighting factors,

where the algorithm solution basically switches over from maximizing stability margins
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Figure 4.13: Maximum loading point versus current operating point for the Linear Combi-

nations and Maximum Distance to Collapse formulations for the 57-bus test system.
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Figure 4.15: Cost versus current operating point for the Fixed Stability Margin and tradi-
tional OPF formulations for the 118-bus test system.

to minimizing costs. This is partly related to the difference between A, and )\, becoming
smaller at higher loading levels; therefore, the emphasis of this term in the objective

function decreases.

4.3.4 Fixed Stability Margin VSC-OPF

The third set of numerical analysis involves applying the Fixed Stability Margin formula-
tion to both test systems. Recall that this method is basically an OPF where a minimum

stability margin is ensured.

For both test systems, a minimum stability margin A\,,;, = 0.1 p.u. is used. In

general, the algorithm found a solution that ensured this constraint; however, this resulted



in higher operating costs. A comparison of the operating costs of the 118-bus system versus
current loading point for the Fixed Stability Margin and traditional OPF formulations is
shown in Figure 4.15. Observe that the difference in the total operating costs increases as
the loading increases, due to the fact that a minimum stability margin is being enforced,

which becomes a dominant constraint as the system gets closer to collapse.

4.3.5 Goal Programming VSC-OPF

The next set of numerical analysis involves applying the Goal Programming formulation to
both test systems. Recall that the idea is to define a stability margin that is not a binding
constraint, but that if violated, increases the objective function cost. As illustrated in
Figure 4.16, the Goal Programming formulation shifted the importance of cost as w;
increased. As the loading level is increased, the cost of maintaining the desired minimum
stability margin increases, and, eventually, for constant values of all weighting factors w
the minimum stability margin is reduced to zero. When less weight is placed on cost and
greater weight is placed on stability, i.e., for smaller values of w;, the minimum stability
margin is maintained, as shown in Figure 4.17. It is found in the numerical analysis that
w- does not greatly effect the solution of the problem, which is to be expected, since there
is no benefit in having a stability margin greater than the desired value (this tends to also

result in greater operating costs).

Similar results were obtained for the 118-bus system.

4.3.6 VSC-OPF with Reactive Power Pricing

The final set of numerical analysis involves applying the Goal Programming formulation,
which is probably the best compromise for a VSC-OPF, considering reactive power costs
to both test systems. In this case, the idea is to add a penalty to the objective function
if generators are not operated at the desired power factor. Figures 4.18 and 4.19 depict

the results obtained for operating cost and maximum loading point, and are somewhat
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Figure 4.16: Cost versus current operating point for the Goal Programming (w» = 0.001,

w3 =1 —w;) and traditional OPF formulations for the 57-bus test system.
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similar to the results obtained when applying the Goal Programming formulation without
including reactive power costs. Thus, costs increase with loading and larger weighting on
the stability margin, and as the system is loaded, the formulation puts more emphasis on
cost minimization than on maintaining a given stability margin, as enforcing this margin
becomes more expensive. However, observe that when the reactive power costs become
dominant with respect to the other two terms in the objective function, i.e., for smaller

values of wy, it leads to higher operating costs.

4.4 Cost of Voltage Stability

From the results presented in the previous section, a dollar value can be assigned to
the cost of incorporating voltage stability. For example, Figure 4.20 shows the change
in operating cost for the 57-bus system when solving the Modified Maximum Distance
to Collapse formulation versus the tradition OPF problem when enforcing full operating

limits at the maximum loading point.

In this case, the cost of considering only stability is highest at lower loading levels,
since the “space” of feasible solutions is larger in this case, allowing for the greatest
difference between the two solutions. Figure 4.21 illustrates the percentage difference in
operating costs and stability margin, for the same two formulations. From Figure 4.21, it
can be seen that the large percentage increase in cost at lower loading points versus higher
loading levels does not correspond to a significantly larger increase in stability margin.
This is attributed to the sensitivity of the cost to changes in the active power settings of

the generators.

A more appropriate approach to incorporating voltage stability would be to use one of
the proposed VSC-OPF formulations. Figures 4.22 and 4.23 show the change in operating
cost and percent change in operating cost when using the Fixed Stability Margin VSC-
OPF formulation versus the traditional OPF. In this case, a fixed stability margin of

0.1 p.u. was used. As shown in the figures, the “cost” of incorporating this stability
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Figure 4.20: Difference in operating cost (solid line) when applying the Maximum Distance

to Collapse formulation (x) versus a traditional OPF (x) formulation for the 57-bus system.
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system.

margin, is significantly less than the case where no economic cost was incorporated into

the formulation.

4.5 Numerical Implementation

Several disadvantages were encountered with the implementation used in performing the
numerical analysis presented in the previous section. The use of MAPLE to symbolically
form the vectors and matrices required for the optimization method proved to be relatively
slow. The execution of the “data files” was also slow because of the size of the matrices

to be formed. But the implementation allowed for a flexible analysis of different models
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Figure 4.23: Percent change in operating costs when applying the Fixed Stability Margin
VSC-OPF formulation versus a traditional OPF formulation for the 57-bus system.



and formulations. In order to improve the running time, the problems could be solved

directly using sparse matrix methods with no symbolic calculations.

A second numerical problem encountered was the stability of the I[P method. Because
of the highly nonlinear coupling between the current point and maximum point, some
convergence problems occurred, which were reflected in missing points in some of the
figures presented in the chapter. Dynamically varying some of the parameters in the

interior point method may leading to improvements in the convergence.

4.6 Summary of Results

This chapter demonstrates that voltage stability and OPF studies can be performed con-
currently, proposing and comparing a variety of methodologies to allow operators to carry
out this task in an electricity market environment. It is shown that incorporating voltage
stability into a traditional OPF problem can result in higher operating costs, and hence
the proposed OPF formulations can be used for “pricing” voltage security. The results
show the importance of including the current loading point in optimization procedures
used for voltage stability analysis, as limits on this point significantly influence these types
of studies. Finally, the chapter proposes a feasible way to include reactive power costs
in an OPF formulation, which could be a very useful tool in the operation of electricity

markets.

As the proposed OPF formulations include stability constraints, a possible enhance-
ment to these techniques would be to improve the steady state system models used, so
that accuracy can be improved at higher loading conditions. Furthermore, since the pro-
posed tools may have a direct application in the operation of electricity markets, other

representations of active and reactive power “costs” could be analyzed.
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5.1 Introduction

As open access market principles are applied to power systems, an increased emphasis
on using accurate OPF algorithms arises. Power systems will have to be operated under
higher loading conditions as market influences demand greater attention to operating
cost versus stability margin. It is shown in [21, 22, 66] that traditional power flow models
may fail to accurately represent power systems in voltage stability studies. Hence, this
chapter examines the effects of detailed generator models, exponential load models and
Static-Var Compensators (SVC) in Voltage Stability Constrained Optimal Power Flow
(VSC-OPF) problems. The various VSC-OPF problems considered are based on the
problems presented in Chapter 4.

This chapter is structured as follows: In Sections 5.2, 5.3 and 5.4 the detailed generator,
exponential load and SVC models are given. Numerical results of applying an Interior
Point method to the several VSC-OPF problems are given in Section 5.5. The problems
are the applied to the 57-bus, and 118-bus systems. Finally, Section 5.6 summarizes the

main results presented in this chapter.

5.2 Generator Model

As loading levels in power systems increase, the effect of generator modeling in the results

obtained in systems analysis increases. Simplified models seldom incorporate nonlinear



characteristics and device limits properly. The usual treatment of generators using con-
stant power and fixed voltage (PV) buses with reactive power limits may lead to unreliable
results in voltage stability analysis. Since limits on the armature current and field voltage
accurately reflect the true limits of generators, their inclusion in the standard power flow

equations will enhance the system model used in voltage stability studies.

The model of the synchronous generator used in this section is based on the detailed
model presented in [67, 68]. It is assumed that the field current is proportional to the
magnitude of the induced voltage and that saturation can be neglected. The following
equations are used to describe the dg-azis generator model written in a reference frame

using the rotor’s angular velocity [67].

E;—V, = Rul,— Xl (5.2)

—Vy = Rly+ X,I,

Vyew = /V2+ V2
L = B+
Pyer, = Voly+ Valy
Qoen = Volqg — V4l

where E; is the field voltage, I; and I, are the direct and quadrature components of the
armature current I,, V; and V, are the direct and quadrature components of the terminal
voltage Vg, and R,, X4 and X, are the armature resistance and direct and quadrature
synchronous reactances, respectively. The real and imaginary power injected into the

transmission system by the generator is given by P, and Q)g., respectively.

5.2.1 Generator Limits

In this section, the relationship between traditional PV generator models and the proposed

model for optimal power flow studies is considered. This is best done by examining the



limits of generators and how these limits affect the two models.

There are several basic limits of a synchronous generator that are expressed as ratings
of the machine. Typical ratings include voltage magnitude, field current, apparent power,
power factor, frequency, and speed. The frequency and speed ratings are not discussed
here, since the models considered are steady state phasor models and assume that the
machine is operating at synchronous frequency and speed. The relationship between
the other ratings is briefly reviewed below to demonstrate the relationship between the
proposed and traditional models and how limits for these models are selected. A more
detailed explanation of the characteristics and ratings of generators can be found in several

text books (e.g., [25, 69, 70]).

The terminal voltage rating of a machine is dependent on the system to which it is
connected, and its winding insulation. Typically, the terminal voltage magnitude is set

between 0.9 p.u. and 1.1 p.u.

The two main windings in the machine, the armature and field windings must be
protected from overheating. The heating of the armature winding, which is mainly due
to copper losses, is given in p.u. by Pheating = |Ia\2Ra, where R, is the armature winding
resistance. Therefore, the protection of the armature winding results in a limit on the
armature current magnitude |[,|. If the terminal voltage is considered constant, the

armature current effectively sets the apparent power rating of the generator, i.e., S = Vil o

in p.u.

In the same manner, the maximum allowable heating of the field winding sets the
maximum field current. Since the field voltage E; is directly proportional to the field

current, the field winding limit can be expressed as a limit on E;.

Synchronous generator capability curves [25, 26, 69] can be used to graphically illus-
trate the limits and their relationship. These curves depict the reactive power versus the
real power of the generator, assuming an unsaturated, round-rotor machine characterized

by X4 = X, = X. Figure 5.1 illustrates a capability curve, including various limits. A
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Figure 5.1: Capability curve for synchronous generator.

detailed discussion of the formulation of capability curves can be found in [25, 26].

The maximum and the minimum armature current and field voltage are defined ac-

cording to
ameel | [ 2V P |
aminl | _ 0.0 653
Ermasl| |/ Quman + Bpse)2 + P2,
_|Ef mm|_ I 0.0 |

where the above limits are based on the modified capability curve shown in Figure 5.2.
The terminal voltage V; was set to the minimum voltage limit, for the generator bus, to
insure that when the detailed model was used, both the maximum active and reactive
power limit could be reached for all acceptable voltage settings. Since there is no one-to-
one mapping between the limits for the proposed model and the traditional model for all
loading levels, this approximation is adequate to demonstrate the differences in the two

models.
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Figure 5.2: Implemented capability curve for synchronous generator.

5.3 Load Models

Because of the use of “aggregating” methods to determine load models, standard PQ
(constant real and reactive power) models may not accurately reflect the characteristic of
the system in all cases. In this section, different static load models that express the active
and reactive powers of loads as a function of the voltage magnitude at the load bus are

considered.

Several voltage dependent load models have been analyzed in voltage stability studies
(e.g., [21, 26]). In this section, the exponential load model is presented for use in an OPF
formulation. The exponential load model represents the power demand of the load to its

terminal voltage using exponential equations, generally expressed as:



where P, , (g are the reference real and reactive powers consumed at a reference voltage
Vo. The exponents p; and g, depend on the type of load that is being represented. The
following standard static load representations are derived directly from equation (5.4)

with the proper choices of p; and g,.

e Constant impedance load model: The power varies directly with the square of the

voltage magnitude (91 = 0o = 2).

e Constant current load model: The power varies directly with the voltage magnitude

(91 = 02 = 1)-

e Constant power load model: The power does not vary with changes in the voltage

magnitude (g; = g2 = 0).

5.4 Static Var Compensator (SVC)

Since the early eighties, advances in Flexible AC Transmission Systems (FACTS) con-
trollers in power systems have led to their application in improving stability of power
networks [23]. Several studies analyzing the application of FACTS controllers for voltage
and angle stability have been reported in the literature (e.g., [24, 71]).

The effect of the Static Var Compensator (SVC) FACTS controller on the economic
operation and voltage stability of the network is the principle motivation behind incor-
porating the SVC into the proposed OPF formulations. The fast response of SVCs make
them ideal for not just voltage stability improvements but also for cost reduction. The

steady state model proposed in [24] is used for incorporating the SVC into the various

VSC-OPF problems, and is briefly reviewed here.

The basic steady state model of the SVC presented in this section is based on rep-
resenting the controller as a variable impedance [24]. The Fixed Capacitor (FC) with a

Thyristor Controlled Reactor (TCR) configuration of the SVC is used in this analysis.
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Figure 5.3: Common structure for SVC.

The structure of this configuration is illustrated in Figure 5.3. The controller is composed
of a fixed capacitor, fixed reactor and a bi-directional thyristor valve, composed of two

thyristors.

If it is assumed that the SVC bus voltage is sinusoidal, a Fourier analysis on the
inductor current waveform can be used to demonstrate that the fixed reactor and bi-
directional valve can be modeled as an equivalent variable inductance X, [24]. The value
of this impedance is a function of the thyristor firing angle of the TCR and is then given

as

™

X, =X -
L9(r — @) + sin 20

(5.5)

where X is the fundamental frequency reactance of the inductor without thyristor control
and « is the firing angle of the valves with respect to the positive zero crossing of the

controller voltage. The total equivalent impedance of the controller X, is given as

X, = 7TXL

‘< sin2a—2a+7r(2—§—g)

(5.6)

where X is the impedance of the fixed capacitor. Equation (5.6) is found by taking the
parallel combination of X, and Xs. The model incorporated in this section is written
in terms of the equivalent susceptance, B, = —1/X,, rather than the corresponding

reactance equations, based on numerical performance as discussed in [24, 71].



Figure 5.4: SVC steady state circuit representation.

The SVC is usually connected to the transmission system through a step-down trans-
former, which can be treated as other transformers in the system. A steady state circuit
representation of the connection of the SVC through a step-down transformer is illustrated
in Figure 5.4, where V; is the magnitude of the voltage at the bus which the SVC controls,
Vsve is the voltage across the controller, X7y is the impedance of the step-down trans-
former, and Qsyc is the reactive power that the SVC injects into the power network.
The magnitude of Qsy¢c can be determined using the SVC voltage and the equivalent

impedance,

Qsve = ViyoBe (5.7)

The typical steady state control of the SVC is depicted in Figure 5.5. This control law

can be represented as

Vsve = Veer + Xsitlsve (5.8)

where Vgpr is a reference voltage for the controller, Xg;, is the SVC control slope and
Qmin and Qe Tepresent the lower and upper limits on the firing angle. The SVC current,

Isyc, can be expressed as

Isyc = VsycBe (5.9)
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Figure 5.5: Typical steady state V-I characteristics of a SVC.

Based on the model reviewed in this section, the SVC can be modeled in a power flow

environment as

Vsve — Verer — Xstlsve

Isyc — VsyeBe
F(Vepr, Isve, Qsve, o, Be) = =0 (5.10)

Qsve — ViyoBe

7B X +sin2a — 2a 4+ 7(2 — ))g—é)

In terms of Optimal Power Flow formulation, the set of equations (5.10) introduces
four new dependent variables and one additional independent variable. The dependent
variables are the current Igyc, the reactive power QQgsyc, the firing angle «, and the

equivalent conductance B.. The independent variable is the voltage reference Vizgp.

5.5 Numerical Analysis

The effect of incorporating the detailed generator model, static load models, and the
SVC model into the VSC-OPF problems from Chapters 3 and 4 is analyzed by applying
these problems to the 57-bus and 118-bus test systems. To determine both the general



characteristics of the models and the effect of limits and loading conditions on the models,
the analysis is done at several loading points, with and without limits on generation and

bus voltage magnitudes.

The nonlinear Predictor-Corrector Interior Point method, presented in Chapter 2, is

used to perform the numerical analysis.

5.5.1 Detailed Generator Model

The difference between the detailed generator model and the traditional (PV) model is
first compared for a traditional OPF problem. A plot of the cost versus loading level when
using the two models for the 57-bus system is shown in Figure 5.6. For all loading levels
the costs for the two models are similar, but at higher loading levels, as reactive power
limits for the PV generator model become active, the detailed generator model has a lower
cost. This characteristic is shown in Figure 5.7, which is a plot of the percentage difference
in operating costs when using the two generator models. This behavior corresponds to
a better incorporation of machine limits directly into the system model. It is noted that
the traditional model does provide a conservative estimate and that, in most cases, the
generator set-points were similar. However, the difference in cost is very small when

compared to the total operating costs.

The detailed generator model was incorporated into the formulations presented in
Chapters 3 and 4. A summary showing the maximum loading value found by solving the
Maximum Distance to Collapse formulation for the 57-bus system is given in Table 5.1.
In each case, using the detailed generator model gave a higher maximum loading level,
however, as generator active power limits tend to become active before voltage limits,
including voltage limits in the problem did not affect the maximum loading point. The
higher loading point for the detailed model is attributed to the relaxation of reactive limits
due to limits on the armature current and field voltage. The maximum loading point for

both models was limited by active power limits, which explains why both models have



9000 [
8000 | o
7000} $

6000 &

cost

5000 | ®
4000} $
3000} R 4

20004 ¢

%

1000 ' ' ' !
0.8 1 1.2 1.4 1.6

Figure 5.6: Cost versus current loading point for the 57-bus system when minimizing cost.
The * and ¢ symbols indicate the use of the PV model and the detailed generator model

respectively.
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Figure 5.7: Difference in operating costs between the detailed generator model and the

traditional PV generator model for the 57-bus system.



Table 5.1: Maximum Loading (\.) for the 57-bus system found by applying the Maximum

Distance to Collapse formulation using the detailed generator model

Detailed Constant
Parameter Generator || PV Generator
Model Model
Only Generator
Limits 1.5371 1.5360
Operational
Limits 1.5371 1.5360

similar values of \,.

A plot of the maximum loading level (\,) versus the current operating point (A,)
when applying the Modified Maximum Distance to Collapse formulation is shown in
Figure 5.8. The Modified Maximum Distance to Collapse formulation (equation (4.7))
considers both the maximum and the current operating point, whereas the Maximum
Distance to Collapse formulation only considers the maximum loading point. In general,
for all loading levels, the PV and detailed generator model have similar characteristics, but
using the detailed generator model resulted in a higher maximum loading level until a fixed
upper limit of A\, = 1.537. For both models, at lower loading levels, upper voltage limits for
some non-generator buses at the current operating point limited raising generator voltage
settings, which in turn reduced the maximum loading level. As the current loading level
is increased, these bus voltages decrease, allowing the generator voltage settings to be
increased which in turn results in a higher maximum loading level. For the PV generator
models, reactive power limits also limit the maximum loading level. For both models,
limits on active power eventually define a fixed upper limit on the maximum loading

level, resulting in approximately the same maximum loading level (\,).

The effect of solving the other VSC-OPF formulations proposed in Chapter 4 using the

detailed generator model, resulted in similar characteristics as was observed in Section 4.3,
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Figure 5.8: Maximum loading versus current loading point for the 57-bus system when
solving the maximum distance to collapse formulation. The symbols x and ¢ indicate the

use of PV and the detailed generator models, respectively.



except that using the detailed generator model results, in general, in higher maximum

loading levels, as expected.

5.5.2 Exponential Load Models

In traditional voltage stability analysis, constant impedance and current load models tend
to have larger stability margins than constant power or current models. This is attributed
to the fact that the actual power consumption of the load decreases as the bus voltage
decreases for both constant current and impedance models, resulting in a less stressed
system. For the analysis presented in this section, load increases for all loading models,

are given as:

P = APuu (5.11)

Q = /\Qload

where A is the bifurcation or loading parameter and P,y and Qg are defined from

equations (5.4).

The different load models are first incorporated into a traditional OPF problem, i.e.,
voltage stability is not considered in this case. A plot of the cost versus loading level
using the three load models for the 57-bus system is shown in Figure 5.9. For all loading
levels the constant impedance model results in the lowest cost, followed by the constant
current model, and finally the constant power model. Generator voltage settings for the
constant current/impedance models tend to be set low, to reduce the amount of power
absorbed by the loads. With the constant power load model, the generator voltage levels
tend to be set higher to reduce losses in the lines. The relative costs for the three models

do not change greatly with increased loading.

As shown in Figure 5.10, incorporating the three load models into the traditional OPF

problem for the 118-bus system results in similar characteristics as for the 57-bus system.
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The different load models are then incorporated into the Voltage Stability Constrained
OPF formulations presented in Chapters 3 and 4. A summary showing the maximum
loading values obtained by solving the Maximum Distance to Collapse formulation for
both the 57-bus and 118-bus systems is given in Tables 5.2 and 5.3. For both systems,
when considering only generator limits at the critical point, using a constant impedance
model gave the highest maximum loading level followed by the constant current model,

then the constant power model, as expected.

An interesting result observed from these tables is the effect of voltage limits on the
value of the maximum loading level. For example, for the 118-bus system, the difference
between the results obtained for the three load models is greatly reduced when bus voltage
limits are also placed on the maximum loading point. Furthermore, for the 57-bus system,
when voltage limits are included in the problem, the maximum loading point A, for the
constant power loads is slightly greater than when using constant current load model. This
behavior can be explained as follows: When the load is modeled using voltage dependent
models, the solution to the problem tends to lower terminal voltages, due to the fact
that lower bus voltages result in less power consumption. However, when lower limits are
placed on the magnitude of bus voltages, some generator voltage settings must be raised,
resulting in increased real and reactive power demand, which leads to generator power
limits becoming active, limiting .. Therefore, a “balance” condition is reached for the
voltage dependent loads, between the increases in )\, from reduced power consumption
with reduced voltages, and decreases in A\, when voltages have to be increased to maintain

minimum values.

Next, the Modified Maximum Distance to Collapse formulation is used for the two
test systems. Figures 5.11 and 5.12 are plots of the maximum loading level A\, versus the
current operating point A, for the 57-bus and 118-bus systems when applying the Modified
Maximum Distance to Collapse formulation with full operating limits at the maximum
loading point. For all three load models, the maximum loading level A, increases as

the current operating point )\, is increased, a characteristic observed and explained in



Table 5.2: Maximum Loading )\, for the 57-bus system found for the Maximum Distance

to Collapse formulation.

Constant || Constant || Constant
Impedance || Current Power
load load load
Ounly Generator
Limits at A 3.8923 2.1285 1.5361
Operational
Limits at A 1.5403 1.5295 1.5361

Table 5.3: Maximum Loading A, for the 118-bus system found for the Maximum Distance

to Collapse formulation.

Constant Constant || Constant

Impedance || Current Power
load load load

Only Generator
Limits at A, 6.6854 3.2442 2.1606

Operational

Limits at A 1.9245 1.8738 1.8253
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Figure 5.11: Maximum loading versus current loading point for the 57-bus system when
maximizing the distance to collapse. The symbols +, o, and [ indicate the use of constant

power, current and impedance models, respectively.

Chapter 4 for constant power loads. The behavior of the voltage dependent loads (constant
current and impedance loads) is due to the interaction between limits becoming active
and the voltage dependency of the loads. When using these load models, the solution to
the problem tends to lower voltage levels to reduce the power levels of the loads. However,
bus voltages reaching lower limits, at the maximum loading point ), force increases in
voltage settings at the current operating point, resulting in some non-generator buses at
the current operating point reaching upper voltage limits, similar to the behavior observed

when using constant power load models.

The effect of limits on the behavior of the Modified Maximum Distance to Collapse

formulation is further illustrated by modifying the limits of the 57-bus system. The
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modified limits are based on the limits used in [31]. Generally, the modified 57-bus system
has higher maximum voltage limits and reduced lower voltage limits. Furthermore, some
of the reactive power limits are higher, but the reactive power limit for the generator at

Bus 1 is substantially reduced. No changes were applied to the active power limits.

Figure 5.13 illustrates the results obtained by applying the Modified Maximum Dis-
tance to Collapse formulation to the modified 57-bus system with only generator real and
reactive power limits at the maximum loading point. For lower loading levels, all three
load models, exhibit similar behavior as the original system. However, as the current
loading point is increased, the maximum distance to collapse starts to decrease for the
constant current and constant impedance models. This behavior can be explained as fol-
lows: When using constant current and impedance models, lower limits on the voltage at
the current loading level tend to limit the maximum distance to collapse. As the loading
level increases, generator voltage levels have to be increased to prevent voltage levels at
non-generator buses from becoming too low at the current point. But increased generator
voltage levels result in increased reactive power output from the generators (especially at
the maximum loading point). The increased reactive power demand results in a lower sta-
bility margin as reactive power limits are reached (generator at Bus 1). For the constant
current and constant impedance models, all the solutions obtained without voltage limits
on the maximum loading point had one load bus voltage at a minimum setting. For any
increases in load, this bus voltage would drop below an acceptable operating level. When
using the constant power load model, power limits at the maximum operating point are

reached at A\, = 0.9 per unit limiting any further increases in the maximum loading point.

The effect of incorporating operational limits on the maximum loading point A, is
shown in Figure 5.14 (for the modified 57-bus system) when solving the Modified Max-
imum Distance to Collapse formulation. For all three load models, incorporating lower
voltage limits at the maximum loading point results in lower values of A,, but ensures that
all loading points between the current and the maximum operating level are acceptable

operating points. When using constant impedance load models, at low loading levels, sim-
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ilar characteristics as before are observed. A limit on a generator’s reactive power output
at the maximum loading point is reached at A, = 0.85, and no further improvements can
be made to optimize the maximum loading point, with the maximum distance to collapse
remaining constant for larger values of \,. For the constant current model, all generator
reactive power upper limits are reached with the generator settings at the initial loading
point, causing the value of A, to remain constant for all remaining values of A\,. The
negative slope of A, versus A, does not appear, because no voltages at the current loading
point are at lower limits, as that would imply that those bus voltages would be below

their operating limit at the critical loading point.

5.5.3 Static Var Compensator

Finally, the power flow SVC model is incorporated into both the traditional OPF and the
VSC-OPF formulations. A SVC model was placed at Bus 31 of the 57-bus system using
the SVC data presented in [71]. The single line diagram of the 57-bus system is given
in Figure 4.1. The SVC was placed based on an analysis of the eigenvectors associated
with the zero eigenvalue (saddle-node bifurcation) the system experiences at high loading

levels [71].

Figure 5.15 shows the difference in total operating costs for the 57-bus system with the
SVC controller in the system versus no SVC when solving the traditional OPF problem.
As expected, the effect of the SVC on reducing operating costs is more significant at

higher loading levels.

The effect of the SVC controller on the maximum loading level of the system when
solving the Modified Maximum Distance to Collapse formulation with no limits being
enforced at the maximum loading point is illustrated in Figure 5.16. As depicted, the SVC
significantly increases the loadability of the system. Figure 5.17 shows the results obtained
when enforcing limits at the maximum loading point for the Modified Maximum Distance

to Collapse formulation. For all loading points the SVC enhances the stability margin,
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Figure 5.16: Difference in maximum loading point with a SVC placed at Bus 31 of the
57-bus system versus no SVC when solving the Modified Maximum Distance to Collapse

formulation with no limits at the maximum loading point.

but the amount of improvement decreases because of limits. This further illustrates the

significant effect of limits on these types of problems.

Incorporating the SVC controller into the various VSC-OPF problems resulted in
similar characteristics as observed in Section 4.1.3, except that using the SVC model
results in higher maximum loading levels and reduced costs, as expected. Figure 5.18 is a
plot of the reduction in the total operating costs by incorporating the SVC into the Fixed
Stability Margin VSC-OPF formulation. The difference in the total operating costs when
solving the traditional OPF problem is included in Figure 5.18 to demonstrate that when,
considering both stability and operating costs, the benefits of incorporating the SVC are



1.6

¢
1.5} @ *
¢
I ¢
1.4 %
¢
1.3 $
< $
1.2t {
0
1.1} @
@
1k @
¢ * No SVC
¢$ SVC atBus 31
0.9 ' ' ' '
0.8 1 ]).\.2 1.4 1.6
0]

Figure 5.17: Difference in maximum loading point with a SVC placed at Bus 31 of the
57-bus system versus no SVC when solving the Modified Maximum Distance to Collapse

formulation with operating limits at the maximum loading point.



0.16

0.14 /

percent change in cost

1.6

Figure 5.18: Difference in total operating costs with a SVC placed at Bus 31 of the 57-
bus system versus no SVC when solving the Fixed Stability Margin VSC-OPF formulation
(dashed line) and the traditional OPF problem (solid line) with operating limits at the

maximum loading point.

greater.

5.6 Summary of Results

In this chapter, a detailed generator model is incorporated into various voltage stability
constrained optimal power flow problems. The results are compared to those obtained by
using a traditional OPF formulation. The use of a detailed generator model resulted in

higher stability margins.

Three static load models are analyzed when applied to OPF and VSC-OPF problems.



The characteristics of the load models are analyzed using various examples in order to
demonstrate the effects of limits. The lowering of generator voltage settings to reduce
generator power output when using constant impedance and constant current load models,
indicates the need to include full operating limits on the current and the maximum loading

point.

Finally, a load flow SVC model, is incorporated into both the traditional OPF problem
and the VSC-OPF formulations. It was shown that incorporating the SVC resulted in
lower operating costs, especially at higher loading levels. As expected, the SVC improved
the maximum loading point, but limits at the maximum loading point reduced these

stability “gains”.
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6.1 Summary and Contributions

This thesis proposes a variety of formulations to perform voltage stability and optimal

power flow studies concurrently.

In Chapter 2, the Optimal Power Flow problem is presented. Both a Primal-Dual
Interior-Point and a Predictor-Corrector Interior Point method for non-linear optimization
problems are presented to solve the OPF and Voltage Stability Constrained OPF problems

presented in this thesis.

In Chapter 3, concepts and terminology of bifurcation analysis are described. Two
traditional techniques for bifurcation analysis are presented. Issues related to optimization
based approaches to voltage stability analysis, including the system model and the effect
of control parameters are discussed. Finally, an optimization based approach is extended
to formulate the Maximum Distance to Collapse and Maximum Distance to Saddle-node

Bifurcation problems.

In Chapter 4, several methods for “pricing” voltage security in OPF formulations are
proposed by incorporating voltage stability into traditional OPF problems, demonstrating
its effect on operating costs. The results show the importance of including the current and
maximum loading points in optimization procedures used for voltage stability analysis,
as limits on these points significantly influence these types of studies. Furthermore, a
method to include reactive power costs in an OPF problem is proposed. This formulation

can be a very useful tool in the operation of electricity markets.



Finally, in Chapter 5, a detailed generator model is incorporated into various stability
constrained optimal power flow problems. The results are compared to those obtained
using a traditional OPF formulation. Furthermore, three load models are analyzed when
applied to OPF and VSC-OPF problems. The characteristics of the load models are

analyzed to demonstrate the effects of limits.

The main contributions of the thesis can be summarized as:

e Development of Voltage Stability Constrained Optimal Power Flow (VSC-OPF)
formulations to incorporate voltage stability margins. The following VSC-OPF for-

mulations are proposed:

1. Hybrid VSC-OPF Formulation
2. Linear Combination VSC-OPF Formulation
3. Fixed Stability Margin VSC-OPF Formulation

4. Goal VSC-OPF Formulation

It was demonstrated that incorporating voltage stability into a traditional OPF

problem results in higher operating costs.

e Development and implementation of a technique to incorporate reactive power pric-
ing in electricity systems. This formulation and the Goal VSC-OPF formulation
demonstrate methods to incorporate voltage stability and reactive power pricing in

the operation of power systems.

e The inclusion of the current and maximum loading levels in optimization formula-
tions for voltage stability analysis. The importance of this formulation is demon-
strated by showing the influence of limits at the current and maximum loading

points on these types of studies.

e Incorporation and analysis of detailed generator models, voltage dependent load
models, and a Static Var Compensator model into the OPF and VSC-OPF formu-

lations.



6.2 Directions for Future Work

Interesting directions for future work focus around the incorporation of the proposed
VSC-OPF formulations in an electricity market environment. This would involve the
determination of the stability costs in the operation of a power system, which is of great

interest in these markets.

The non-linear interior point method written for the current research can be modified
to allow for the investigation of the use of the Lagrangian Multipliers as indicators of the
“cost” of stability with regards to some parameter limits. The use of Lagrangian Multi-
pliers and the VSC-OPF formulations may also be used to determine placement locations
for reactive support and FACTS controllers. Furthermore, since the proposed tools may
have a direct application in the operation of electricity markets, other formulations of

active and reactive power “costs” could be analyzed.
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