
 1

Stochastic Modeling of a Power-Managed System: Construction and
Optimization

Qinru Qiu, Qing Wu, and Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

Abstract -- The goal of a dynamic power management policy is to reduce the power consumption of an electronic
system by putting system components into different states, each representing a certain performance and power
consumption level. The policy determines the type and timing of these transitions based on the system history,
workload, and performance constraints. In this paper, we propose a new abstract model of a power-managed
electronic system. We formulate the problem of system-level power management as a controlled optimization
problem based on the theories of continuous-time Markov decision processes and stochastic networks. This
problem is solved exactly using linear programming or heuristically using “policy iteration.” Our method is
compared with existing heuristic methods for different workload statistics. Experimental results show that the
power management method based on a Markov decision process outperforms heuristic methods by as much as
44% in terms of power dissipation savings for a given level of system performance.

I. Introduction

With the rapid progress in semiconductor technology, chip density and operation frequency have increased,
making the power consumption in battery-operated portable devices a major concern. High power consumption
reduces the battery service life. The goal of low-power design for battery-powered devices is thus to extend the
battery service life while meeting performance requirements. Reducing power dissipation is a design goal even for
non-portable devices since excessive power dissipation results in increased packaging and cooling costs as well as
potential reliability problems. The focus of this paper is, however, on portable electronic systems.

Portable electronic devices tend to be much more complex than a single VLSI chip. They contain many
components, ranging from digital and analog to electro-mechanical and electro-chemical. Much of the power
dissipation in a portable electronic device comes from non-digital components. Dynamic power management –
which refers to a selective shut-off or slow-down of system components that are idle or underutilized – has proven
to be a particularly effective technique for reducing power dissipation in such systems. Incorporating a dynamic
power management scheme in the design of an already-complex system is a difficult process that may require
many design iterations and careful debugging and validation.

To simplify the design and validation of complex power-managed systems, a number of standardization attempts
have been initiated. Best known among them is the Advanced Configuration and Power Interface (ACPI) [6] that
specifies an abstract and flexible interface between the power-managed hardware components (VLSI chips, hard
disk drivers, display drivers, modems, etc.) and the power manager (the system component that controls the turn-
on and turn-off of the system components). The functional areas covered by the ACPI specification are:

• System power management – ACPI defines mechanisms for putting the computer as a whole in and out of
system sleeping states. It also provides a general mechanism for any device to wake the computer.

• Device power management – ACPI tables describe motherboard devices, their power states, the power
planes the devices are connected to, and controls for putting devices into different power states. This
enables the OS to put devices into low-power states based on application usage.

• Processor power management – While the OS is idle but not sleeping it will use commands described by
ACPI to put processors in low-power states.

 2

ACPI does not, however, specify the power management policy. It is the objective of the proposed research to
provide a framework and supporting tools for constructing optimal power management policies based on
modeling the power-managed system as a continuous-time Markov decision process.

The problem of finding a power management scheme (or policy) that minimizes power dissipation under
performance constraints is of great interest to system designers. A simple power management system includes
four components: Service Provider (SP), Service Requestor (SR), Service Queue (SQ), and Power Manager (PM).
Figure 1 shows the information/command flow in a power-managed system. The SR generates service requests
for the SP. The SQ buffers the service requests. The SP provides service to the requests in a top-down manner.
The PM monitors the states of the SR, SQ, and SP and issues state-transition commands to the SP. A simple and
well-known heuristic policy is the “time-out” policy, which is widely used in today’s portable computers. In the
“time-out” policy, the SP is shut down after it has been idle for a certain amount of time. The predictive system
shutdown approach proposed in [7][8] tries to achieve better power-delay trade-off by predicting the “on” and
“off” time of each component. This prediction approach uses a regression equation based on the component’s
previous “on” and “off” times to estimate the next “turn-on” time, such that the SP can be turned on just before
the request comes. Therefore, the system performance can be improved. This method is only applicable to the
special cases where the requests are highly correlated.

Figure 1 A power-managed system.

In general, heuristic policies cannot achieve the best power-delay trade-off for the system, cannot deal with
complex components that have more than two (on and off) operating modes such as defined in ACPI, and cannot
deal with a complex system with multiple interactive components.

A power management approach based on a Markov decision process has been proposed in [8]. The system is
modeled as a discrete-time Markov decision process by combining the stochastic models of each component.
Once the model and its parameters are determined, an optimal power management policy for achieving the best
power-delay trade-off in the system is generated. This approach offers significant improvements over previous
power management techniques in terms of its theoretical framework for modeling and optimizing the system.
There are, however, some shortcomings. First, because the system is modeled in the discrete-time domain, some
assumptions about the system components may not hold for real applications, such as the assumption that each
event comes at the beginning of a time slice, the assumption that the transition of the SQ is independent of the
transition of the SP, etc. Second, the state transition probability of the system model cannot be obtained
accurately. For example, the discrete-time model cannot distinguish the busy state and the idle state because the
transitions between these two states are instantaneous. However, the transition probabilities of the SP when it is in
these two states are different. Moreover, the power management program needs to send control signals to the
components in every time-slice, which results in heavy signal traffic and a heavy load on the system resources
(and therefore more power).

In this work, we overcome these shortcomings by introducing a new system model based on continuous-time
Markov decision processes. More precisely:

1. The new model is based on continuous-time Markov decision processes, which are more suitable for
modeling real systems.

2. The resulting power management policy is asynchronous, which is more appropriate for implementation as
part of the operating system.

Power Manager

SP SQ SR

 3

3. The new model explicitly distinguishes the busy state and the idle state of SP so that the system
characterization becomes more accurate.

4. The new model considers the correlation between the state of the SQ and the state of the SP, which is the real-
life scenario.

5. The model for the service queue consists of a normal queue and a high priority queue. This is important since
some service requests are "urgent" and need immediate response from the server.

6. The service requester model is capable of capturing complex workload characteristics.

7. The overall system model is constructed exactly and efficiently from the component models. We use an
analytical base approach to calculate the generator matrix for the joint process of SP-SQ and a tensor sum
based calculation to calculate the generator matrix of the joint process of SP-SQ and SR.

8. Both (exact) linear programming and (heuristic) policy iteration algorithms are used to solve the policy
optimization problem.

Parts of this work were published in [10] and [11]. This paper is organized as follows: Section II gives a
theoretical background of continuous-time controllable Markov processes. Sections III and IV describe the
models for the components and the system. Section V describes the solution technique for the optimal policy.
Sections VI and VII present the experimental results and conclusions.

II. Background

This section provides a theoretical background on continuous-time Markov decision processes.

We first give the notation that will be used throughout the paper:

Pi⇒j(t): transition probability from state i (directly or indirectly) to state j during time 0 to t

pi(t): probability that the system is in state i at time t

X(t): value of the stochastic process X at time t

S, T: state space and parameter space of a stochastic process

G: the generator matrix of a continuous-time Markov process

Ai: set of available actions when a system is in state i

ai(t): the action that the system takes when it is in state i at time t, ai(t)∈Ai

)(tp ia
i : the probability that action ai(t) is taken when the system is in state i at time t

)(ti
i
Ap : the vector of)(tp ia

i , for all ai∈Ai

π: the power management policy

σi,j: transition rate from state i to state j

)(
,

ta
ji
iσ : transition rate from state i to state j at time t when action ai(t) is taken

)(
,

t
ji

i
i
Apσ : transition rate from state i to state j at time t when actions are taken with probability)(ti

i
Ap

ri,i: reward rate (per unit time) of the system when it is in state i

ri,j: transition reward of the system during the time when it makes a transition from state i to state j

 4

ri: earning rate of the system during the time it is in state i

)(ta
i

ir : reward rate of the system when it is in state i and action ai(t) is taken at time t

)(t
i

i
ir
Ap

: reward rate of the system when it is in state i and actions are taken with probability)(ti
i
Ap at time t

vi(t): the total expected reward of the system from time 0 to time t with initial state i

)(tvi
π : the total expected reward of the system from time 0 to time t with initial state i and policy π

π
avgiv , : the limiting average reward of the system with the initial state i and policy π,)(

1
lim, tv

t
v i

t
avgi

ππ
∞→

=

ji ss ,χ : the inverse of the average switching time of the SP from state si to state sj

ji rr ,τ : the inverse of the average switching time of the SR from state ri to rj

λl (λh): SR request generating rate of a low (high) priority request

μl (μh): SP service rate of a low (high) priority request

A. Stochastic process

Definition 2.1 A stochastic process is a family of random variables {X(t), t≥0}, one for each t. t denotes the time
parameter. For a specific t, X(t) is a random variable with distribution F(x, t) = P[X(t) ≤ x]. The values assumed by
the process are called the states, and the set of possible values is called the state space.

Definition 2.2 A stochastic process X(t) is called a Markov process if for any set of time instances t0<t1< …<tn<t
its conditional distribution has the property:

])(|)([])(,,)(,)(|)([0011 nnnnnn xtXxtXPxtXxtXxtXxtXP =≤====≤ −− …

where t0, t1,…, tn, t ∈ T and x0, x1,…, xn ∈ S. When T is a continuous space and S is a discrete space, the Markov
process is called the continuous-time Markov process.

Given a continuous-time Markov process with n states, its generator matrix G is defined as an n×n matrix as
shown in Eqn. (2.1). An entry σi,j in G is called the transition rate from state i to state j. All entries are defined in
Eqn. (2.2) and Eqn. (2.3). Eqn. (2.4) gives the relationship between σi,i and σi,j.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

%#
"

##

"
"

2,21,20,2

2,1

2,0

1,10,1

1,00,0

σσσ
σ
σ

σσ
σσ

G (2.1)

)0(
)(1

lim
0

, ii
ii

t
ii p

t

tp
⇒

⇒
→

′−=−=σ i=1, 2, …, n (2.2)

)0(
)(

lim
0

, ji
ji

t
ji p

t

tp
⇒

⇒

→
′==σ i, j = 1, 2, …, n; i ≠ j (2.3)

∑ =
≠ij

iiji ,, σσ i, j = 1, 2, …, n; i ≠ j (2.4)

where)(tp ji⇒′ is the derivative of pi⇒,j(t). Obviously, pi⇒,j(t) ≥ 0 and ∑ =
∈

⇒
Sj

ji tp 1)(.

 5

The generator matrix in the continuous-time Markov process is the analogue of the transition probability matrix in
the discrete-time Markov process. We can calculate the limiting distribution (steady) state probabilities of the
continuous-time Markov process from its generator matrix. Theorem 2.1 shows the relation between this matrix
and the limiting distribution probabilities [7]. Before stating the theorem, we give some definitions.

Definition 2.3 Let Tij be the first time instance at which that the Markov process visits state j starting from state i.
A state i is called recurrent if P(Tii < ∞) = 1. A state i is called transient if P(Tii < ∞) < 1. A recurrent state is said
to be positive recurrent if E(Tii) < ∞, where E(Tii) is the expectation of Tii.

Definition 2.4 A recurrent state i is said to be periodic with period d if d > 1 is the greatest common divisor of all
tn, which is the nth time instance at which the Markov process returns state i if it starts from state i in time 0. If
there is no such d, the state is called aperiodic.

Definition 2.5 State j is said to be accessible from state i if j can be reached from i within finite time, which is
denoted as i→j. If i→j and j→i, they are said to be communicate, which is denoted as i↔j. The set of all states of
a Markov process that communicate with each other forms a communicating class. If the set of all states of a
stochastic process X form a single communicating class, then X is irreducible.

Definition 2.6 A Markov chain is called ergodic if it is irreducible, positive recurrent, and aperiodic.

Theorem 2.1 ([12]) If the Markov process is irreducible, then the limiting distribution limt→∞pi(t) = pi, i∈S, exists
and is independent of the initial conditions of the process. The limits {pn | n ∈ S) are such that they either vanish
identically (i.e., pi = 0 for all i ∈ S) or are all positive and form a probability distribution (i.e., pi > 0 for all i ∈ S,
Σi∈Spi = 1). Furthermore, the limiting distribution {pi, i ∈ S} of an irreducible positive recurrent Markov process is
given by the unique solution of the equation: pG = 0 and Σj∈S pj = 1, where p = (p0, p1, p2, …).

B. Continuous-time Markov decision processes

We now give a brief introduction to continuous-time Markov decision processes. For the discussions in the rest of
this paper, we will omit the term “continuous-time” for a briefer description. Unless otherwise stated, all
processes are assumed to be continuous-time.

First, we describe a Markov process with reward. Assume the system earns a reward at rate ri,i (per unit time)
during the time that it occupies state i. When it makes a transition from state i to state j (i≠j), it receives a reward
of ri,j. Note that ri,i and ri,j have different dimensions. It is not necessary that the system earns according to both
reward rates and transition rewards, but these definitions give us generality. We define the “earning rate” of state i
as:

 ∑+=
≠ij

jijiiii rrr ,,, σ (2.5)

Let vi(t) be the expected total reward that the system will earn during a time period of t if it starts in state i. The
total expected reward during a time period of t+dt, that is vi(t+dt), can be written as:

 ∑ +++∑−=+
≠≠ ij

jjijiiii
ij

jii tvrdttvdtrdtdttv)]([)]()[1()(,,,, σσ (2.6)

Eqn. (2.6) may be interpreted as follows. During the time interval dt the system may remain in state i or make a
transition to some other state j. If it remains in state i for a time dt, it will earn a rate ri,idt plus the expected reward
that it will earn in the remaining t units of time, vi(t). The probability that it remains in state i for a time dt is
(∑−

≠ij
ji dt,1 σ). On the other hand, the system may make a transition to some state j≠i during the time interval dt

with probability σi,jdt. In this case the system would receive the reward ri,j plus the expected reward to be made if
it starts in state j with time t remaining, vj(t). The product of probability and reward must then be summed over all
states j≠i to obtain the total contribution to the expected values.

With dt→0 and using the definition of earning rate ri, we have:

 6

 ∑+=
=

n

j
jjiii tvrtv

dt

d

1
,)()(σ i = 1, 2, …, n (2.7)

where n is the total number of states of the process. Eqn. (2.7) gives a set of linear, constant coefficient
differential equations that relate the total reward in time t from a starting state i to the values of ri and σi,j.

Second, a controllable Markov process is a Markov process whose state transition rates can be controlled by
controlling commands (defined as actions). When the system is in state i, an action ai is chosen from a finite set
Ai, which includes all possible actions in state i. We denote this state-action relation by <i,ai>. If the chosen action
changes as the time changes, we denote the action as a time-dependent variable ai(t). Hence the state-action pair is
written as <i,ai(t)>.

Definition 2.7 A policy π is the set of state-action pairs for all the states of a controllable Markov process.

A policy can be either deterministic or randomized. If the policy is deterministic, then when the system is in state
i at time t, an action ai(t) is chosen with probability 1. We denote a deterministic policy as: π={ <i,ai(t)> | ai(t)∈Ai,
1≤i≤n}. If the policy is randomized, then when the system is in state i at time t, an action ai is chosen with

probability)(tp ia
i , such that 1)(=∑

∈ ii

i

Aa

a
i tp . We denote a randomized policy as: π={ <i,)(ti

ipA > | 1≤i≤n}, where

)(ti
i
Ap is a vector of)(tp ia

i for all ai∈Ai. Notice that the deterministic policy is a special case of randomized

policy with one of the)(tp ia
i equals 1.

In a controllable Markov process, the state transition rates σi,j have different values when different actions are

taken. In a deterministic policy, we denote it as)(
,

ta
ji
iσ . In a randomized policy, we denote it as)(

,
tp

ji

i
i
A

σ , and

∑=
∈ ii

ii
i

i

a

a
i

a
i,j

tp
ji tpσ

A

A

)(
)(

,σ . As a result, the generator matrix of a controllable Markov process is a parameterized

matrix (action is the parameter). A Markov decision process is a controllable Markov process with rewards. In a

Markov decision process, since ji,σ is action-dependent, the reward rate ri also becomes action-dependent and

will thus be denoted as)(ta
i

ir for a deterministic policy and)(t
i

i
ir
Ap for a randomized policy, ai(t)∈Ai. The

expected total reward vi(t) depends on the chosen action in each state, i.e., it becomes policy-dependent and will

be denoted as)(tvi
π . An example of a Markov decision process is given in Example 2.1.

Figure 2 Example of a controllable Markov process.

Example 2.1 Consider a controllable Markov process that consists of only two states i and j (see Figure 2). When
the system is in state i, the set of available actions is denoted as Ai; we assume that Ai={a, b}. The transition rate

from state i to state j equals a
ji,σ when action a is taken and b

ji,σ when action b is taken. Similarly, we define

Aj={x, y}, y
ij

x
ij ,, ,σσ . If we always take action a when the system is in state i and always take action x when the

system is in state j, we can write the resulting policy as: π={<i, a>, <j, x>}. The system generator matrix using

i j

b
ji

a
ji ,, ,σσ

y
ij

x
ij ,, ,σσ

Ai = {a, b} Aj = {x, y}

 7

policy π can be written as
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
= x

ij
x

ij

a
ji

a
ji

,,

,,

σσ
σσ

G . Now consider a randomized policy π′={<i, (0.5, 0.5)>, <j, (0.4,

0.6)>}. This means that when the system is in state i, action a is taken with probability 0.5 and action b is taken
with probability 0.5; when the system is in state j, action x is taken with probability 0.4 and action y is taken with

probability 0.6. Therefore b
ji

a
jiji

i
i

,,, 5.05.0 σσσ +=
Ap and y

ij
x

ijij

j
j

,,, 6.04.0 σσσ +=
A

p . The system generator matrix is

constructed based on these two values.

 ٱ

For the remainder of this paper, we will only use the notation for a deterministic policy.

Let)(tp ji
π
⇒ denote the probability of being in state j at time t when the initial state at time 0 is i and the state

transition rates are determined by policy π. Similarly, let
)(ta

j
jr denote the earning rate in state j at time t and

action aj is taken. The total expected reward that the process can earn for a time period of t using policy π can be
written as ([14]):

 ∫ ∑=
=

⇒
t n

j

a
jjii drptv j

0
1

)(
)()(ττ τππ (2.8)

Given two policies π1 and π2, if we can find a time ξ, such that)()(21 tvtv ii
ππ ≥ , for all t>ξ, i = 1, 2, …, n, then we

say that policy π1 is superior to π2, denoted as π1 ≥ π2. A policy π is optimal, if it is superior to all other policies
for the Markov decision process.

Let)(lim tvv i
t

i
ππ

∞→
= . The goal of a Markov decision process is to find the optimal policy that maximizes π

iv for all

i. However, in practice, we cannot use π
iv directly for calculating the optimal policy since)(tvi

π approaches
infinity when t approaches infinity. A commonly used alternative quantity is the limiting average reward:

 ∫ ∑=
=

⇒
∞→

t n

j

a
jji

t
avgi drp

t
v j

0 1

)(
,)(

1
lim ττ τππ (2.9)

Obviously, maximizing the limiting average reward for any fixed t is the same as maximizing π
iv .

Definition 2.8 A policy π is stationary if the action is only a function of the state and independent of time, that is,

π={ <i,ai> | ai∈Ai, 1≤i≤n} for a deterministic policy or π={ <i, i
i
Ap > | 1≤i≤n} for a randomized policy.

Definition 2.9 A policy π is piecewise stationary if for any τ, interval [0, τ) can be divided into a finite number of
intervals [0, t1), [t1, t2), …, [tm-1, τ) such that the policy is stationary inside each interval.

Theorem 2.2 [14] There exists a stationary policy that maximizes π
avgiv , over the class of piecewise-stationary

policies.

Based on this theorem, we conclude that we do not lose generality if our search for the optimum policy is
restricted to the set of stationary policies. Therefore, actions and policies that we will discuss from now on are all

time-independent and we will reduce the notation aj(t) and)(tp i
i
A to ai and i

ipA .

The goal of a Markov decision process is to find a policy that maximizes the expected reward. In our case, we
want to find a policy that minimizes our cost function (i.e., power dissipation). These two problems become
equivalent if we use the negative of cost as the reward. In the remainder of the paper, we will use the term cost
instead of reward and use ci,i and ci,j instead of ri,i and ri,j, ci,avg instead of vi,avg. In our work, we actually used a

 8

constraint Markov decision process to model the power-managed system. In the constraint Markov decision
process, for each state, there is an object cost c_obj and several constraint costs c_con. The goal of the constraint
Markov decision process is to find a policy that minimizes the expected value of objective cost while meeting the
given constraint. That is:

)_(Minimize ,
π

π avgiobjc , s.t. Constraintconc avgi ≤π
,_

The value of π
avgiobjC ,_ and π

avgiconC ,_ can be calculated based on c_obj and c_con using Eqn. (2.9). We will

introduce how we define and calculate the objective cost and the constraint cost in our system model in Section V.

III. Component modeling

In this section, we describe the mathematical models of the components in a power-managed system.

A. Assumptions

The power-managed system consists of four components: a server that processes requests with different power
modes (SP), a generator that generates the service request (SR), a queue which stores the requests that cannot be
immediately serviced upon arrival (SQ), and a power manager (PM) that issues mode-switching commands to the
SP. The SR is independent of the rest of the system. Requests generated by the SR can be divided into two
categories: low-priority requests and high-priority requests, which are generated independently of each other.

Both the request arrival events and the request service completion events are stochastic processes and follow the
Poisson distribution. When we state that the request arrival event is a Poisson process, it means that during time
(0, t] the number of the events follows a Poisson distribution with mean λt. Consequently, the request inter-arrival
time follows an exponential distribution with mean 1/λ. Notice a request that arrives when the SQ is full will be
rejected. We also assume that the time that is needed for the SP to switch from one state to another follows an
exponential distribution. In reality, the switching time for the SP is usually a small fixed value. We know that if
the expected value of an exponentially distributed random variable is a then its variance is a2. If a is very small,
then the variance will be negligible. Therefore, if the switching time of the SP is much shorter than the service
time or input generation time then it can be modeled by an exponential distribution without introducing much
error.

In the remainder of this paper, we will use upper case bold letters (e.g., M) to denote matrices, lowercase bold
letters (e.g., v) to denote vectors, italicized Arial-Font letters (e.g., S) to denote sets, uppercase italicized letters
(e.g., S) to denote scalar constants, and lower case italicized letters (e.g., x) to denote scalar variables.

B. Model of the Service Provider

The Service Provider (SP) is modeled as a stationary, continuous-time Markov decision process with state
(operation mode) set S={si s.t. i=1, 2, …, S}, action set A, and parameterized generator matrix)(aSPG , a∈A. It

can be described by a quadruple (χ, μ(s), pow(s), ene(si, sj)) where (i) χ is an S×S matrix; (ii) μl(s) and μh(s) are
functions, μl,μh: S→R; (iii) pow(s) is a function, pow: S→R; (iv) ene(si, sj) is a function, ene: S× S→ R.

We call χ the switching speed matrix of the SP. The (i,j)th entry of χ is denoted by
ji ss ,χ and represents the

switching speed from state si to state sj. The average switching time from state si to state sj is then 1/
ji ss ,χ . We set

ii ss ,χ to be ∞ because the switch from state si to itself is instantaneous.

The entries of the parameterized generator matrix)(aSPG can be calculated as:

jiji

ssjss asa ,,),()(χδσ ⋅= , si≠sj; (3.1)

 9

 ∑−=
≠ ij

jiii ss
ssss aa)()(,, σσ (3.2)

where
⎩
⎨
⎧

=
otherwise 0

 action of state ndestinatio theis if 1
),(

as
asδ (3.3)

The service rates μl(s) and μh(s) represent the service speed of the SP for low-priority requests and high-priority
requests in state s, respectively. Therefore, 1/μl(s) (1/μh(s)) gives the average time that is needed by the SP to
complete the service for a low (high) priority request when it is in state s.

A power consumption value pow(s) is associated with each state s∈ S. It represents the power consumption of the
SP during the time it occupies state s. The cost rate cs,s of state s is equal to pow(s).

A switching energy value ene(si, sj) is associated with each state pair (si, sj), si,sj∈S, si≠sj. It represents the energy
needed for the SP to switch from state si to state sj. The cost

ji ssc , is equal to ene(si, sj).

From Eqn. (2.5), we know that the expected power consumption (cost rate) of the SP when it is in state s and
action as is chosen can be calculated as:

 ∑ ′+=
≠′

′
ss

ssss sseneaspowc),()()(,σ .

In reality, states (i.e., working modes) of the SP can be divided into three groups: busy, idle, and power-down. In
busy states, the SP is fully powered and working on the first request in the SQ. We assume that each request
service is atomic so that the SP cannot switch to any other state when it is working on some request. In other
words, the switch from the busy state to another state is not controllable. It only occurs when the SP finishes one
service. For each busy state, there exists a corresponding idle state. In the idle states, the SP is fully powered, but
it is not working on any request. An idle state is the only state that connects to its corresponding busy state. When
the SP finishes a service, it will automatically switch from the busy state to its corresponding idle state. When SP
wants to switch from some other state to a busy state, it first switches to the corresponding idle state then goes to
the busy state. Notice that the idle states are not physical states of SP. When the SP is in an idle state, it is in the
same power mode as when it is in the corresponding busy state. We only use the idle state to make our modeling
convenient. In power-down states the SP is partially or completely shut down, i.e., it is not operational. The SP
may have multiple power-down states (e.g., standby, soft off, or hard off).

Not all actions in A are valid in all SP states. Constraints on a valid action can be stated as follows:

1. When the SP is in a busy state, its transition is not controllable, Abusy=Φ.

2. The action cannot make a transition from a power-down state to a busy state.

3. The action cannot make a transition from an idle state to a busy state other than its corresponding busy state.

Definition 3.1 Power-down state s1 is more vigilant than inactive state s2 if the SP in state s1 wakes up (switches
to an active state) faster than the same SP does in state s2.

Different busy states may be used to model a component working under different supply voltages. We associate
power and delay (service rate) values to each of these states to model the server performance under different
supply voltages. Therefore, our policy optimization approach (cf. Section V) can also find the best policy for
dynamic voltage scaling as it finds the optimal policy for power management.

Example 3.1 Consider a SP with six states, S={busy1, busy2, idle1, idle2, wait, sleep}. When the SP is in state
busy1, it services the requests at a low speed. Assume that the average time needed for each service (for both low-
priority requests and high-priority requests) is 5 ms. Therefore, μl(busy1) and μh(busy1) are 0.2. Also assume that
in state busy2, the SP services the request at a higher speed, e.g., μl(busy2)=μh(busy2)=0.4. μl(idle1), μh(idle1),
μl(idle2), μh(idle2), μl(wait), μh(wait), μl(sleep), and μh(sleep) are all 0. Let the command set be defined as

 10

A={go_busy1, go_busy2, go_idle1, go_idle2, go_wait, go_sleep}. Notice that not all four commands are valid (or
available) in all states. The switching speed matrix χ is given by:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞
∞

∞∞
∞∞

∞
∞

=

5.1166.0166.000

5.1454.0454.000

5.01100

5.01100

004.000

0002.00

χ

By default, the order of the states in the rows and columns of this matrix are the same as the left-to-right order of
the states in S.

ii ss ,χ =∞ means that the SP can transfer from state si to sj immediately.
ji ss ,χ =0 means that the

SP can never transfer from state si to sj. In this example, the transfer from any state to itself needs no time. The SP
can transfer from the busy state to the idle state with the transition rate equal to the service rate because it
autonomously goes to the idle state immediately after it finishes a request. The SP cannot switch between the busy
state and the wait state (or sleep state) directly (it must go through the idle state). Therefore the corresponding
entries in the matrix are 0.

The power consumption is: pow(busy1)=2.3W, pow(busy2)=6.5W, pow(idle1)=2.3W, pow(idle2)=6.5W,
pow(wait)=0.8W, and pow(sleep)=0.1W.

The switching energy ene(si, sj) matrix is:

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞∞
∞∞

∞
∞

∞∞∞∞
∞∞∞∞

=

093030

66.004.44.4

2103.00

213.000

00

00

),(

mJmJmJ

mJmJmJ

mJmJmJ

mJmJmJ
ssene ji

ene(si, sj)=∞ means that the SP cannot switch between the corresponding states. Note that the energy cost of the
autonomous state change (busy to idle) is zero.

A graphical illustration of the SP is shown in Figure 3. The transition rates associated with the edges have not
been shown in the figure. They can be extracted from)(aSPG for specific actions. The self-transitions of each state
are not shown in the figure.

 ٱ

busy1 busy2

idle1 idle2

sleep wait

 11

Figure 3 Markov process model of the SP.

C. Model of the Service Requester

The Service Requester (SR) is modeled as a stationary, continuous-time Markov process with state set R={ri s.t.
i=0, 1, 2, …, R} and generator matrix GSR. It can be characterized by a pair (τ, λ(r)), where (i) τ is an R×R
matrix and (ii) λl(r) and λh(r) are functions λ: R→ R.

We call τ the switching speed matrix of the SR. The (i,j)th entry of τ is denoted as
ji rr ,τ . We assume that the time

needed for the SR to switch from one operation state to another is a random variable with exponential distribution.
The average switch time from state ri to state rj is given by 1/

ji rr ,τ . We set
ii rr ,τ to be ∞ because the switch from

state ri to ri is instantaneous. The SR model is a continuous-time Markov process with the generator matrix GSR.
The value of

ji rr ,σ (the transition rate from state ri to state rj) can be calculated as:

jiji rrrr ,, τσ = , ri≠rj; ∑−=

≠ ij
jiii

rr
rrrr ,, σσ (3.4)

The request rates λl(r) and λh(r) are associated with state r∈R. When the SR is in state r, the generation of the
low-priority requests follows the Poisson process with mean value 1/λl(r), whereas the generation of the high-
priority requests follows the Poisson process with mean value 1/λh(r).

Example 3.2 Consider an SR with two states, r1 and r2. When it is in state r1, it generates a low priority request
every 30 ms on the average and a high priority request every 50 ms on the average. When it is in state r2, it
generates a low priority request every 60 ms and a high priority request every 90 ms. So the request rates in each
state are defined as follows: λl(r1)=1/30, λh(r1)=1/50, λl(r2)=1/60, and λh(r2)=1/90. The switch matrix τ is a 2×2
matrix with one entry for each state pair. For instance:

⎥
⎦

⎤
⎢
⎣

⎡
∞

∞
=

400/1

200/1
τ .

This means that when the SR is in state r2 the expected time that it will switch to state r1 is 200 ms, and when the
SR is in state r1 the expected time that it will switch to state r2 is 400 ms. Therefore, the generator matrix of SR is:

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

400/1400/1

200/1200/1
GSR .

Figure 4 gives the illustration of the Markov process model of this SR. The self-transitions of the states are not
shown.

 ٱ

Figure 4 Markov process model of the SR.

r1

1/200

1/400

r2

λl(r1)=1/30
λh(r1)=1/50

λl(r1)=1/60
λh(r1)=1/90

 12

D. Model of the Service Queue

A Single Service Queue (SSQ) is modeled as a stationary, continuous-time Markov process, with state set
QSSQ={qi , i=0, 1, 2, …, Q} and the generator matrix GSSQ(s, r), where Q is the maximum length of the queue, s is
the state of SP, and r is the state of SR..

The number of waiting requests in the queue decides the state of the SSQ. If there are i requests waiting in the
queue, then the queue is in the state of qi. The entries of the parameterized generator matrix GSSQ(s, r) can be
calculated as:

)(
1, r

ii qq λσ =
+

,)(,1
s

ii qq μσ =
+

, ∑−=
≠ ij

jiii
qq

qqqq ,, σσ , 0 ≤ i ≤ Q−1

0, =
ji qqσ , for other state pairs

λ(r) and μ(s) are the request input rate and service rate of the queue. The shortcoming of using SSQ as the
stochastic model of the service queue is that we can assign only one delay constraint (i.e., the constraint on the
average waiting time of the requests) during the policy optimization. In a power-managed system, the SP, under
control of the PM, may thus not service an incoming request immediately in order to achieve better power-delay
trade-off. However, there may exist high-priority requests that need immediate service by the SP. In this case, if
we use a loose delay constraint (which means the power management policy may not service the request
immediately) the consequent long latency is not acceptable for high-priority requests. If we instead use a tight
delay constraint to ensure that the high-priority requests are serviced immediately, then there will be undesirable
power dissipation related to an unnecessarily tight delay constraint on low-priority requests.

We henceforth model the service queue as a combination of two SSQs: one (denoted as HSQ) for the high-
priority requests and the other (denoted as LSQ) for the low-priority requests. The relationships between these
two queues are:

1. Two different delay constraints are assigned to the HSQ and the LSQ separately such that the requests in the
HSQ have a smaller waiting time than those in the LSQ.

2. The SP will not start serving the requests in the LSQ until it finishes all the requests in the HSQ. Therefore,
we define the service rate of the LSQ as a function that relates to both the state of the SP and the state of the
HSQ: μ′l(s, hqi), where s is the SP state and hqi is the HSQ state. If i=0 then μ′l(s, hq0)=μl(s), otherwise, μ′l(s,
hqi)=0.

Although we have introduced two queues in our stochastic model of the service queue, we are actually modeling a
single priority queue. The SQ model can be used to model the commonly used priority queue in an operating
system where two different priorities are assigned to tasks, and high-priority tasks, when they come, are inserted
into the front of the queue. Moreover, obviously, the SQ model can be extended to model a queue of requests that
have more than two priority levels.

The formal definition of the SQ model is as follows.

The Service Queue (SQ) is modeled as a stationary, continuous-time Markov process, which is the combination of
two SSQs: LSQ and HSQ. The state set of the SQ is given by Q= QLSQ× QHSQ, and the generator matrix is given
by GSQ(s, r)= GLSQ(s, r)⊕GHSQ(s, r, hq), where s is the state of SP, r is the state of SR state, and the “⊕” operation
is the tensor sum defined in Definition 4.1.

The number of waiting requests in the HSQ and LSQ decides the state of the SQ. If there are i requests waiting in
the LSQ and j requests waiting in the LSQ, then the queue is in the state of (lqi, hqj). The entries of both the
parameterized generator matrix GHSQ(s, r) and GLSQ(s, r, hq) are calculated in the same way as GSSQ(s, r) except
that they use λl(r), μ′l(s, hq) and λh(r), μh(s) as the input rate and service rate, respectively.

Example 3.3 Consider an HSQ and an LSQ. Assume that the maximum length of the HSQ is 1, the maximum
length of the LSQ is 2. The generator matrices of the HSQ and LSQ are:

 13

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

)()(

)()(
),(

ss

rr
rsG

hh

hh
HSQ μμ

λλ
,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′−′
−′−′

−
=

),(),(0

)()(),(),(

0)()(

),,(

hqshqs

rrhqshqs

rr

hqrsG

ll

llll

ll

LSQ

μμ
λλμμ

λλ
.

The generator matrix of the SQ is:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

5,5

4,4

3,3

2,2

1,1

0,0

)(0000

)(0)(00

)(0)(00

0)()(0)(

00)(0)(

000)()(

),(

σμ
λσμ
λσμ

λλσμ
λσμ

λλσ

s

rs

rs

rrs

rs

rr

rsG

h

hl

lh

lhl

lh

lh

SQ

To save space, we did not write out the value of the diagonal entries.

 ٱ

Request starvation may occur when high priority requests keep coming while there are some low priority requests
waiting. However, this problem can be solved by the OS. If a low priority request has been waiting in the queue
for too long, the OS will change its priority to high so that it will get serviced. Most of the existing operating
system codes have a similar mechanism to prevent starvation. As a result, the power manager need not be
concerned with this problem.

IV. System modeling

We first show how to construct the model of the entire system by combining the component models. Then we
explain how the power-managed system model is applied to practical applications.

A. Model of the Power-Managed System

The Power-Managed System (SYS) can be modeled as a controllable continuous-time Markov process, which is
the composition of the models of the SP, the SR, and the SQ. The state set is given by: X=S×Q×R−{invalid states
where SP is busy and SQ is empty}. A set of all possible actions, which is the same as A in the SP model, is given.
A parameterized generator matrix GSYS(a) gives the state transition rates under action a. The SYS state can be
represented as (s, r, (lq, hq)), where s∈S, r∈R, lq∈QLSQ and hq∈QHSQ.

Similar to the case of the SP model, not all actions are valid for any system state. The action constraints (which
are described in Section III.A) for the SP model still apply to the SYS model. In addition, we add the following
constraints related to the SYS model.

(1) When both the LSQ and HSQ are full and the SP is in an inactive state, the SP cannot make a transition to
another inactive state that is less vigilant (c.f. Definition 4.1) than the current one. This constraint is
reasonable because the SP must go to a fully functional state as soon as possible in this situation.

(2) When both the LSQ and HSQ are full and the SP is in an idle state, the SP cannot make a transition to a
power-down state or another idle state whose corresponding busy state has a slower service rate. This
constraint is also reasonable because when the SP and SQ are in the above states, it means that the service
speed is not enough to match the incoming speed of the requests. Therefore, we need to increase the service
rate, not decrease it.

Proposition 4.1 If the SYS satisfies the above two constraints, there is only one ergodic chain in the system, and
the states outside the ergodic chain are all transient states.

 14

B. Calculating the generator matrix

We next introduce an efficient method for calculating the generator matrix GSYS(a) of the system from the
generator matrices of the system components: GSP(a), GSR, and GSQ(s, r).

First, we show how to calculate the generator matrix of a joint process of two independent continuous-time
Markov processes. Proposition 4.2 gives a method to obtain the joint transition rate of two independent
continuous-time Markov processes. Proposition 4.3 gives the method for generating the generator matrix of the
joint system using matrix operations.

Proposition 4.2 Given two independent stochastic processes X and Y, let σ(x,y),(x’y’) denote the transition rate of the
joint process from the joint state (x,y) to joint state (x′,y′), where x and x′∈ state space of X and y and y′ ∈ state
space of Y. Let σx,x′ denote the transition rate of process X from state x to state x′ and σy,y′ denote the transition
rate of process Y from state y to state y′. Then σ(x,y),(x,y′) = σy,y′, σ(x,y),(x′,y) = σx,x′, σ(x,y),(x′,y′) = 0, and
σ(x,y),(x,y)=σx,x+σy,y.

Let matrices A and B be defined as:

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa

aa
A and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

bbb

bbb

bbb

B

Definition 4.1 The tensor product C=A⊗B is given by ⎥
⎦

⎤
⎢
⎣

⎡
=

BB

BB
C

2221

1211

aa

aa
. The tensor sum C=A⊕B is given

by: BIIAC ⊗+⊗=
12 nn , where n1 is the order of A, n2 is the order of B, and

inI is the identity matrix of order ni.

Proposition 4.3 Given two independent continuous-time Markov processes with generator matrices A and B, the
generator matrix of the joint process is given by A⊕B.

We have mentioned in Section III.A that the SR is independent from the rest of the system. Therefore, GSYS(a)
can be calculated as:

 GSYS(a)=GSP-SQ(a, r)⊕GSR (4.1)

 where GSP-SQ(a, r) is the generator matrix of the joint process of SP and SQ. Notice that GSYS(a) generator matrix
is also a parameterized matrix of action a.

The transition of the SP from a busy state to its corresponding idle state is correlated with the transition of the SQ
from state (lqi, hqi) to state (lqi, hqi-1) or the transition of the SQ from state (lqi, 0) to state (lqi-1, 0). This is because
whenever the SP makes a transition from a busy state to an idle state (finishes the service for a request), the SQ
makes a transition from state (lq, hq) to state (lq′, hq′) where lq+hq=lq′+hq′+1. The other transitions of the SP and
SQ are independent. Therefore, we can calculate each entry of GSP-SQ as this:

Let σx,x′ denote the transition rate for the transition from state x=(s, (lq, hq)) to state x′=(s′, (lq′, hq′)).

If s is a busy state, s′ is the idle state corresponding to s, and (lq+hq)−(lq′+hq′)=1, then σx,x′ equals σ(lq, hq),(lq′, hq′),
which is the transition rate of the SQ from state (lq, hq) to state (lq′, hq′).

If s is a busy state and s′ is the corresponding idle state, but (lq+hq) − (lq′+hq′)≠1, then σx,x′ equals 0.

If s is a busy state and (lq+hq)−(lq′+hq′)=1 but s′ is not the corresponding idle state of s, then σx,x′ equals 0.

For all the other σx,x′, we can use the value of the corresponding entry of matrix GSP(a)⊕GSQ(s, r). Notice that,
after the operation, parameter s in GSQ(s, r) has been removed by substituting the real state of the SP. Therefore,
the generator matrix of GSP-SQ is parameterized matrix which depends on variables a and r.

 15

The values of the diagonal entries of GSP-SQ need to be recalculated using Eqn. (2.4).

Example 4.1 Consider the SP and SQ models given in Examples 3.1 and 3.3. The generator matrix of their joint
process can be calculated like this:

)()(11)0,0(),1,0())0,0(,()),1,0(,(11
busybusy hidlebusy μσσ == ,

)()0 ,(11))0,1(,()),0,2(,())0,0(,()),0,1(,(1111
busybusy llidlebusyidlebusy μμσσ =′== ,

0)1 ,(1))1,1(,()),1,2(,())0,0(,()),1,1(,(1111
=′== busylidlebusyidlebusy μσσ ,

0))0,1()),1,2(,())1,1(,()),0,0(,())0,1(,()),0,0(,())1,0(,()),0,0(,(1111111
===== busyidlebusyidlebusyidlebusy σσσσ " ,

0),(),,(1
=′′ qsqbusyσ , where s′≠idle1, q, q′∈Q.

The value of),(),,(2 qsqbusy ′′σ can be calculated in the same way as),(),,(1 qsqbusy ′′σ . The values of the other σx,x′

entries equal the values of the corresponding entries of matrix GSP(a)⊕GSQ(s, r). ٱ

C. Application issues

Using the SYS model, a power-managed system in real application can work in the following way. When the SP
of the system changes states, it sends an interrupt signal SWITCH_DONE to the PM. The PM then reads the
states of all the components in the power-managed system (and hence obtains the joint system state) and issues a
command according to the chosen policy. The SP receives the command and immediately starts to switch to a
state that is dictated by the command. Notice that the command may ask the SP to switch to its current state;
therefore the SP state does not change. We assume that after the SP finishes a service, it stays in the idle state for
a period of time long enough for it to accept the command from the PM and to switch to another state.

V. Solution techniques

A. Problem formulation

The power management problem is to find the optimal policy (set of state-action pairs) for the PM such that the
average system power dissipation is minimized subject to the performance constraints. The performance of a
system is usually measured by the average delay of each request. We have the following theorem:

Theorem 5.1 In a power-managed system, if the loss rate of the request is small enough, then D = Q ⋅ λ, where D
is the average request delay, Q is the average number of waiting requests in the queue, and λ is the average
request inter-arrival time. Furthermore, during any time period of length T, ET(d) = ET(q) ⋅ T / X, where ET(d) and
ET(q) denote the average request delay and the average number of waiting requests in the queue during time T,
and X is the number of incoming requests of this system during time period T.

We define the objective cost of the constraint Markov decision problem),(__ x
a
x axpowcobjc x = , where

c_pow(x, ax) denotes the power consumption of the system when it is in state x and action ax is used. In this work,
we only consider the power consumption of the SP. We will explain how to calculate the objective cost in

different solution approaches later in this section. We define two constraint cost)(__1 xlsqcconc xa
x = ,

)(__2 xhsqcconc xa
x = , c_lsq(x), and c_hsq(x) denotes the number of waiting requests in the low priority queue

and high priority queue, respectively, when the system is in state x. Notice that, although the constraint cost for
each state is policy independent, since the state probability for each state is policy dependent, the total expected
constraint cost is policy dependent.

 16

The problem can be formally described as:

Find a policy π to minimize: ∫ ∑ ′⋅
∈

′⇒∞→
t

x
xxt

daxpowcp
t 0

'
),(_)(

1
lim

X
ττ ππ ,

 s.t. ∫ ∑ ≤′⋅
∈

′⇒∞→
t

x
Lxxt

Ddxlsqcp
t 0

'
)(_)(

1
lim

X
ττπ

 and ∫ ∑ ≤′⋅
∈

′⇒∞→
t

x
Hxxt

Ddxhsqcp
t 0

'
)(_)(

1
lim

X
ττπ , ∀x∈X

where)(τπ
xxp ′⇒ is the state transition (direct or indirect) probability from state x to x’ in a time period of τ under

policy π. DH and DL are performance constraints for the high priority queue and low priority queue.

B. The linear programming approach

If the delay constraint for the power management system is an active constraint [19], generally, the optimal power
management policy will be a randomized policy [15]. The randomized optimal policy can be obtained by solving
a linear programming problem. In this section, we first introduce how to solve the unconstraint continuous-time
Markov decision process using a linear programming approach and then show how to apply this linear
programming approach to our constraint power-management problem.

First we introduce the definition of some variables that are used to measure the Markov process. Let tij denote the
time that the system needs to switch from state i to state j. Qij(t) denotes the probability of the event that the next
observed state is state j and that state j is observed no later than time T+t, given that state i is observed at time T.
We know that Qij(t) is the probability that tij is the smallest among all til and tij is less than t, where l is the possible

next state of state i. We use ia
ijt and)(tQ ia

ij to denote the values of tij and Qij(t) when action ai is taken.

Proposition 5.1 If tij follows exponential distribution
t

ijij
ijetf

σσ −⋅=)(, j∈J, (J is the set of all possible next

states of state i), then ∑−=
∈

∑−
∈

J

J

l
il

t

ijij
l

il
etQ σσ

σ
/)1()(.

Let ia
iτ denote the expectation of the time that the system will be in state i if action ai is chosen in this state; then

∑ ∫=
∈

∞

Jj

a
ij

a
i ttdQ ii

0)(τ , and J is the set of all possible next states of i. It is easy to show that, in a Markov process,

∑=
∈Jj

a
ij

a
i

ii στ /1 . Let ia
ijp denote the probability that the next system state is j if the system is currently in state i

and action k is taken; thus)(∞= ii a
ij

a
ij Qp . In a Markov process we have ∑=

∈Jl

a
il

a
ij

a
ij

iiip σσ / . Let ia
iγ denote the

expected cost of the system during the time it stays in state i and action ai is taken; thus

 ∑+=
∈Jj

a
ijij

a
iii

a
i

iii pcτcγ (5.1)

Let ia
ix denote the frequency that the next state of the system will be i and action ai will be taken if we take a

random observation of the system. Then ii a
i

a
ix τ is the probability that the system is in state i and action ai is taken

in a random observation, which is also called state-action probability. We know from the definition that

 17

∑=
∈ ii

iiiii

a

a
i

a
i

a
i

a
i

a
i xxp

A
ττ / , ∑=

∈ iAi

ii

a

a
i

a
ii xp τπ , and 1=∑ ∑

∈ ∈S Ai a

a
i

a
i

ii

iix τ . We also know that if a Markov process is

stationary, the input rate to each state needs to be equal to the output rate from that state [15]. That means

∑ ∑ ∑ =−
i i

iii
a j a

a
ji

a
j

a
i pxx 0 .

For a given policy, if we know that the resulting Markov process is irreducible, Theorem 5.2 shows that we can
use the variables x and γ to calculate the limiting average cost.

Lemma 5.1 Given a Markov process, ∑=∑ ∑
∈∈ ∈ SS A

A

i
ii

i a

a
i

a
i

i
i

ii

ii cpx
pπγ .

Lemma 5.2 If the Markov process is irreducible, there exists a πππ
avgavgiavg CCC =, , ∀i∈S. Furthermore,

ππ
avg

i
ii Ccp

i
i =∑

∈S

Ap .

Theorem 5.2 If a Markov process is irreducible, then π
avgi

i a

a
i

a
i Cx

ii

ii
,=∑ ∑

∈ ∈S A
γ ∀i∈S.

With the above-mentioned variables and their characteristics, we can write the linear programming as [15]:

LP1:)(Minimize
}{ ∑∑i a

a
i

a
ix i

ii
ia

i

x γ , ai∈Ai (5.2)

 subject to ∑ ∑ ∑ =−
i j

jji

a j a

a
ji

a
j

a
i pxx 0 i∈S (5.3)

 ∑ ∑ =i a
a
i

a
ii

iix 1τ (5.4)

 0≥ia
ix all i, ai (5.5)

Since the action in each state is unknown in the Markov decision process, in general cases, we cannot guarantee
that for every possible policy the resulting Markov process is irreducible. For those resulting Markov processes,
expression (5.2) may not be equal to their average cost because Theorem 5.2 is no longer applicable. However we
have the following theorem:

Lemma 5.3 [15] Let }{ ia
ix be a basic feasible solution to LP1. Then set ∑ >=

i
i

a
a
ixiE }0,{ .

}0:),{(>= ia
ii xaiF identifies a unique ergodic chain, and expression (5.2) is the cost rate for this chain.

Theorem 5.3 [15] LP1 is feasible and bounded. The positive variables in its optimal solution identify the states of
an ergodic chain whose cost rate is minimized over all chains.

In our power management system, we set constraints on the action sets so that the Markov process model of the
resulting power management system contains only one ergodic chain. Therefore, expression (5.2) gives the cost
rate for the entire system, and the solution of LP1 identifies an optimal policy.

In our case, we add the delay constraint to the linear program, and formulate it as:

LP2:)_(Minimize
}{ ∑ ∑i a

a
i

a
ix i

ii
ia

i

powcx (5.6)

 subject to ∑ ∑ ∑ =−
i

jji

a j k

a
ji

a
j

a
i pxx 0 i∈X (5.7)

 18

 ∑ ∑ =i a
a
i

a
ii

iix 1τ (5.8)

 0≥ia
ix all i, ai (5.9)

 ∑ ∑ <i a H
a
i

a
ii

ii Dhsqcx _ (5.10)

 ∑ ∑ <i a L
a
i

a
ii

ii Dlsqcx _ (5.11)

In LP2, ia
ipowc _ , ia

ihsqc _ , and ia
ilsqc _ denote the power consumption of the system, the high priority request

waiting cost, and the low priority request waiting cost during the time it stays in state i and action ai is taken. They

can be calculated based on (5.1): ∑ ⋅+⋅= j
a
ijij

a
ii

a
i

iii penepowpowc τ_ , ii a
ii

a
i hqhsqc τ⋅=_ , and

ii a
ii

a
i lqlsqc τ⋅=_ . DH and DL are performance constraints for the high priority queue and the low priority queue.

If constraints (5.10) and (5.11) are implied in constraints (5.7), (5.8), and (5.9), (i.e., they are inactive constraints),
the resulting optimal policy must be a deterministic policy. Otherwise, the resulting optimal policy will be a
randomized policy.

C. The nonlinear programming approach

Because a randomized policy may be undesirable in some applications, we are interested in finding the optimal
deterministic policy instead of the optimal randomized policy. In a deterministic policy, for each state i, there is

one and only one ia
ix , ai∈Ai, which is non-zero. Therefore, we can formulate the problem of searching for an

optimal deterministic policy into a nonlinear program NLP1, which has a polynomial objective function and a set
of linear constraints. In NLP1 λ is an arbitrary large number.

NLP1:)_(Minimize
,,}{ ∑ ∑∑ ∑ +⋅

∈≠ i a

a
i

a
ii lala

l
i

a
ix i

ii

iii

i
ia

i

powcxxx
A

λ

 subject to ∑ ∑ ∑ =−
i i

jji

a j a

a
ji

a
j

a
i pxx 0 i∈X

 ∑∑ =
i a

a
i

a
i

i

iix 1τ

 0≥ia
ix all i, ai

 ∑∑ <
i a H

a
i

a
i

i

ii Dhsqcx _ , ∑∑ <
i a L

a
i

a
i

i

ii Dlsqcx _

There are specific algorithms to solve this kind of nonlinear programming problem. A classical algorithm is the
feasible direction algorithm, which can be found in [16].

D. The branch-bound approach

Another way to find the optimal deterministic policy is to use a branch and bound approach. In a power
management system, making different decisions in one system state has a significant effect on the power and
performance of the system. For example, given two policies, the first one chooses action “Go_busy” when the
server is idle and there is 1 waiting request. However, the second one chooses action “Go_sleeping” when the
system is in the same state. No matter how the actions are chosen in the other state, the best performance of the
system using the second policy will be worse than that of the system using the first policy, because there is always
at least one request waiting in the queue. This observation is the root cause of the efficiency of the branch and
bound algorithm.

 19

The optimal deterministic power-management policy decision tree is a full tree with X levels, where X is the
number of states in the controllable Markov process. Each node in level x has Ax child nodes, where Ax is number
of available actions in state x. Therefore for each leaf in the decision tree there is a corresponding deterministic
power-management policy. We will search for the power-optimal performance-constrained policy based on this
decision tree by using a branch and bound algorithm.

For each internal node in the decision tree, there is a partial-decision problem with the same constraints and
objective as the original problem. We call it a partial-decision problem because its variables are a subset of those
of the original problem. We can find an optimal randomized policy for this partial-decision problem using a linear
programming approach. The power consumption of this policy is a lower bound on the power consumption of all
policies in this branch. We define the lower bound operator as finding the optimal randomized policy for the
partial decision problem; similarly, we define the prune operator as comparing the power consumption of that
randomized policy with that of the best deterministic policy we already have. If the lower bound operator yields a
solution that consumes lower power then the best deterministic solution found so far in any branch, then we
continue with this branch; otherwise, we prune the branch. Furthermore, if we cannot find a policy that satisfies
the performance constraint for the partial-decision problem, then we also prune the branch.

E. The policy iteration approach

The policy iteration algorithm is widely used in searching for an optimal policy without constraint [17]. It starts
from a set of randomly selected actions for each state that is called the “initial policy.” It then calculates the
expected cost of the system under this policy, which is called the “reference cost.” Using this reference cost, by
some calculation we can find a new policy that has a lower cost than the initial policy. The process is iterated until
the resulting policy cannot be improved further. Because of the mathematical nature of the policy optimization
problem, this simple greedy algorithm yields the provably optimal solution. Experiments show that the “policy
iteration” technique is a fast technique. For a system with 23 states and assuming that three commands are
available for each state, the “policy iteration” algorithm can find out the optimal solution within 4 iterations.
However, the policy iteration approach cannot be directly applied to the problem of constrained optimization. We
make some modification to this approach.

We first consider the power-managed system with only single priority SQ. We define a joint cost as a weighted
summation of the power and delay costs:

 x
a
x

a
x sqcwpowcjoint_cost xx __ ⋅+= (5.12)

where xa
xpowc _ denotes the average power consumption when the system is in state x and action ax is chosen,

c_sqx is the number of waiting requests in the SQ when the system is in state x. Let x be denoted by (s, qi), where
s∈S, qi∈Q. Using Eqn. (2.5) the power cost can be calculated as:

∑+=
≠∈

′
ssSs

xss
a
x sseneaspowpowc x

','
,)',()()(_ σ . The delay cost is: c_sqx=i. We start from a randomly selected

weight w. Then we find a policy that has optimal joint_cost using the policy iteration algorithm. If the delay of
this policy is approximately same as the given constraint, then we report this policy; otherwise, we increase or
decrease the weight and continue searching using the new weight value.

This modified policy iteration algorithm is a heuristic algorithm. For a certain performance constraint, it may not
find the policy that consumes the minimum power. However, we show later that its output policy is one that
consumes minimum power among a class of convex policies that satisfy the performance constraint. We first give
the definition of an effective policy and a convex policy:

Definition 5.1 An effective policy is a policy that consumes the minimum power compared to other policies that
have the same or better performance.

Definition 5.2 We sort all the policies in the increasing order of their resulting power consumption and denote the
power and delay of each policy pi by powi and delayi. A policy pi is a convex policy if it is an effective policy and
(delayi−delayj)/(powj−powi)<(delayl−delayj)/(powerj−powl), ∀j, j>i and ∀l, l<i.

 20

Compared to the policies that consume less power, a convex policy has a better power-delay tradeoff (smaller
ratio of increasing delay to the decreasing power). Figure 5 gives an illustration of a convex policy and an
effective policy. In that figure, policies a, b, c, d, e are all effective policies. However, policy c is not a convex
policy.

Figure 5 Example to describe policy types.

Theorem 5.4 The output of the modified policy iteration algorithm is a policy that consumes the minimum power
among the class of convex policies that satisfy the performance constraint.

In a power management system model with multiple priority queues, the following cost function is used:

xx
a
x

a
x hsqcwlsqcwpowccost xx ___ 21 ⋅+⋅+= . By adjusting both of the weight coefficients w1, w2, we can

find the convex policy.

The policy iteration algorithm can be used as a fast algorithm to perform on-line policy optimization when system
parameters change at runtime because it finds the optimal policy based on the previous optimal policy. It is more
efficient than the branch and bound algorithm as well as the NLP approach which starts solving from the very
beginning.

VI. Experimental results

Experiments have been designed to examine the performance of our system model and optimization method.

A. A power-managed system with a single service queue

In this experimental setup, the service requestor (SR) is implemented as an input trace file that stores the time
instances when the disk drive read/write requests arrive. The service queue (SQ) and service provider (SP) are
implemented in the event-driven simulator. The power manager (PM) is also implemented in the simulator that
controls the state transition of the SP based on the policy it reads from the user-specified input file. Q, the
capacity of the SQ, is set to 20.

We will use two abstract models of the SP for the Fujitsu disk drive [24] in the experiments, which are shown in
Figure 6.

When the SP is in the “sleep” and “standby” states, it is inactive, and therefore no request can be serviced. When
the SP is in the “idle” state, the SP is active; however, it is not working on any requests, which means that the SQ
is empty. The SP makes a transition automatically from “idle” to “busy” whenever a request arrives for service.
Similarly, the SP makes a transition automatically from “busy” to “idle” whenever it finishes the service for a
request. The transitions between the “sleep,” “standby,” and “idle” states are controlled by the PM, i.e., the DPM
policy.

Delay

Power

a

b c

d e

 21

Figure 6 Three-state and four-state SP models.

The average power consumption and service time (time to finish a read/write operation) for each state of the SP is
shown in Table 1. The average energy consumption values for the SP to make transitions among the various states
are shown in Table 2. The average transition times for the SP to make transitions among the various states are
shown in Table 3. The data is obtained from [24] and [21].

Table 1 Average power consumption values and service times of the SP.

State “sleep” “standby” “idle” “busy”

Ave. power (W) 0.13 0.35 0.95 2.15

Ave. service time (s) 0 0 0 0.008

Table 2 Average energy consumption values for state transition of the SP.

Ave. energy (J) “sleep” “standby” “idle” “busy”

“sleep” 0 5.1 7.0 -

“standby” 0.006 0 2 -

“idle” 0.067 0.001 0 0

“busy” - - 0 0

Table 3 Average transition times for state transition of the SP.

Ave. transition time (s) “sleep” “standby” “idle” “busy”

“sleep” 0 0.6 1.6 -

“standby” 0.3 0 1.2 -

“idle” 0.67 0.4 0 0

“busy” - - 0 0

(a)

sleep

idle

busy

sleep standby

idle

busy

(b)

 22

We have used five different distributions for the request inter-arrival time. They are:

1. Exponential distribution. This is the key assumption made by the continuous-timed Markov decision process
(CTMDP) approach. For the CTMDP policy to be optimal, the request inter-arrival time must follow
exponential distribution. In many research works related to hard drive performance, it is found that the request
inter-arrival time follows the exponential distribution

2. Combination of the exponential and Pareto distribution. This combination is tried because of the observation
made in [21]. The Pareto distribution has a density function: f(t)=1-at-b. Compared with exponential
distribution, it models an input sequence that shows more bursts.

3. Combination of two exponential distributions. We are using this distribution to approximate distribution 2.

4. Uniform distribution.

5. Normal distribution.

We have used two different distributions for the state transition time of the SP. They are:

1. Exponential distribution. This is another assumption made by the CTMDP approach. For the CTMDP policy
to be optimal, the SP transition time must follow exponential distribution.

2. Uniform distribution. This distribution is proposed and used by the authors of [21] in their work.

The mean values we used for these distributions are shown in Table 3. The deviation for the uniform distribution
is set to 0.1s, which is again observed in [21].

The policies we have used in this work are as follows:

1) The “time-out” policy

The “time-out” policy has a single parameter Tout. This policy can only be used for the three-state system model
shown in Figure 6 (a). Under the “time-out” policy, the PM switches the SP from “idle” to “sleep” after the SP
has been in the idle state and the SQ has been empty for a time period of Tout; the PM switches the SP from
“sleep” to “idle” immediately after a request has arrived.

In our experimental setup, we have used different values of Tout to study the performance and power
characteristics of the “time-out” policy.

2) The N-Policy

The N-policy has a single parameter N, which must be smaller than the capacity of the SQ, Q. Similar to the
“time-out” policy; this policy is only applicable to the three-state system model. Under the N-policy, the PM
switches the SP from “idle” to “sleep” immediately after the SQ is empty; the PM switches SP from “sleep” to
“idle” only after there are more than N requests waiting in the SQ.

In our experimental setup, we have used different values of N to study the performance and power trade-offs of
the N-policy.

3) The “always on” and “greedy” policies

The “always on” policy can be regarded as a special case of either the “time-out” policy when Tout is infinity, or
the N-policy when N is zero. As indicated by its name, the “always on” policy never turns off the SP.

The “greedy” policy can be regarded as a special case of either the “time-out” policy when Tout is zero, or the N-
policy when N is one.

4) The CTMDP policy

 23

The CTMDP policy is applied to both the three-state model and the four-state model in Figure 6. Given any
performance constraint, the power-optimal CTMDP policy can be calculated by solving a linear program.

In our experiments, a series of CTMDP polices were generated for different performance constraints. The
CTMDP policies were applied using both the three-state SP model and the four-state SP model. Then the
simulator and real traces were used to evaluate this policy in real applications.

5) The 3CTMDP-Poll Policy

Because the CTMDP policy is a randomized policy, at times it may not turn off the SP even when there is no
request in the SQ. If our stochastic model exactly represents the system behavior, then this policy is optimal.
However, in practice, because the stochastic model is not accurate enough, the CTMDP policy may cause
unnecessary energy dissipation by not turning off the SP. For example, the real requests pattern on the SP may be
quite different from what has been assumed in theory, and the SP idle time may be much longer than we expected
based on the assumption of exponential input inter-arrival time. In this case keeping the SP on while it is idle
wastes much power. We need to put some mechanism in place that will prevent such a case in real applications.

Based on the original description of the CTMDP policy, we have designed a modified CTMDP policy by adding a
polling state. The functionality of the polling state is very simple. After adding this state, if the CTMDP policy
allows the SQ to stay on when the SQ is empty, the policy will re-evaluate this decision after some random-length
period of time. For example, if the SQ is empty and the PM has made a decision (with probability of 0.1) of
letting the SQ stay on, then after 2s, if there is no change in the SQ, we enter the polling state, and the PM has to
re-evaluate its decision. At this time, the probability for it to still let SQ remain on is again 0.1. So as the time
goes on, the total probability of the SQ remaining on reduces in a geometric manner. In this way, we can make
sure that the SP will not be idle for too long, resulting in less wasteful energy dissipation. We name this modified
policy the 3CTMDP with Polling (3CTMDP-Poll) policy and implement it in our experiments based on the
3CTMDP policy.

We use the average number (#) of waiting requests in the SQ as the performance metric and the average power
consumption (W) as the power metric.

The comparisons of performance-power trade-off curves for the DPM policies for all the combinations of SP state
transition distribution (TD) and request inter-arrival time distribution (RD) are shown in the following figures. In
the legends of the figures, “3CTMDP” means CTMDP policy using a three-state SP model and “4CTMDP”
means CTMDP policy using a four-state SP model. The X-axis gives the performance value, which is represented
by the average number of waiting requests in queue. In all the figures, the X-axis is given in logarithmic scale.
The Y-axis gives the system power consumption.

 24

Figure 7 Performance-power trade-off curves for Exp. TD and Exp. RD.

0

0.5

1

1.5

2

2.5

3

0.01 0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time Out

3CTMDP

4CTMDP

3CTMDP-POLL

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10

Performance

P
o

w
er

Always On Greedy
N-Policy Time Out
3CTMDP 4CTMDP
3CTMDP-POLL

 25

Figure 8 Performance-power trade-off curves for Exp. TD and Exp. & Par. RD.

Figure 9 Performance-power trade-off curves for Exp. TD and Uni. RD.

Figure 10 Performance-power trade-off curves for Uni. TD and Nor. RD.

0

0.5

1

1.5

2

2.5

3

3.5

0.01 0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time-out

3CTMDP

4CTMDP

3CTMDP-POLL

0

0.5

1

1.5

2

2.5

3

0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time-out

3CTMDP

4CTMDP

3CTMDP-POLL

 26

From above figures we can see that:

1. In most situations, the stochastic policies out-perform the heuristic policies.

2. The stochastic policies provide a good power-delay trade-off. We can always trade performance to reduce
power. However, the heuristic policies such as the time-out policy cannot provide a valid power-delay trade-
off. In all experiments, decreasing the time-out threshold increases the average latency for the request.
However, decreasing the time-out threshold does not necessarily decrease the average power consumption.
With the decrease of the time-out threshold and the increase of the average request latency, the system power
consumption first decreases then increases. In these experiments, there is an optimal time-out threshold under
which both the average request latency and system power consumption are minimized. However, there is no
formal way to find out this optimal threshold.

3. The Three-state CTMDP policy is not efficient with input sequence with Exp. & Pareto inter-arrival time
because our stochastic model does not give as accurate a representation of the real system. However, the
3CTMDP-poll policy solves the above problem. The 3CTMDP-poll policy works almost as well as the four-
state CTMDP.

4. Four-state CTMDP is robust in different TD and RD distributions. This means that if the device can provide
us with more operation modes of different performance and power consumptions, the CTMDP policy can
explore these modes to make itself an always-robust DPM policy independent of the distribution of request
inter-arrival time or the distribution of SP transition time.

B. A power-managed system with a priority queue

In this setup, we call our algorithm CTMDP policy.

B.1 Comparison of the CTMDP policy with heuristic policy

In this experiment, we will present the comparison of the CTMDP policy and the heuristic policies including
greedy policy and time-out policy and show that our policy consumes less power than the heuristic policies.

The system model used in this part includes:

An SP model that is the same as in Example 3.1 except that it has only one busy state, busy1, and one idle state,
idle1.

An SR model with two states r1 and r2, GSR(r1,r2)=1/200, GSR(r2,r1)=1/400, λl(r1)= 1/30, λh(r1)=1/50, λl(r2)= 1/60,
λh(r2)=1/90.

An SQ model with an LSQ of length 3 and an HSQ of length 2.

We compare the CTMDP policy with the “greedy” and “time-out” policies.

Two different traces of requests are used for simulation:

1. Requests are generated to exactly follow the SR model.

2. Requests are generated to follow the SR state transition rate between r1 and r2. However, in state r1, the inter-
arrival time of low-priority requests follows the uniform distribution (compared with the exponential distribution
in trace 1) with mean value 1/λl(r1)=30, the inter-arrival time of high-priority requests follows the uniform
distribution with mean value 1/λh(r1)=50. In state r2, the inter-arrival time of low-priority requests follows the
uniform distribution with mean value 1/λl(r2)=60, the inter-arrival time of high-priority requests follows the
uniform distribution with mean value 1/λh(r2)=90.

In both cases, we simulated the heuristic policies to get the average delay of the low priority and high priority
requests. We then use these delay values as the delay constraint and searched for a randomized CTMDP policy

 27

using linear programming. Finally, we simulated the CTMDP policies and compared the power and delay value
with that of the heuristic policies.

Table 4 Comparison with heuristic policy with input trace 1.

Heuristic Policy LP-based CTMDP policy

Name of policy P (w) Dl Dh P ΔP (%)

Time-out policy tout=20 1.665 0.399 0.143 0.942 43.43

Time-out policy tout=40 2.080 0.232 0.118 1.156 44.42%

Time-out policy tout=60 2.244 0.183 0.104 1.865 16.89

Greedy policy 1.303 0.151 0.255 1.067 18.11

Table 5 Comparison with heuristic policy with input trace 2.

Heuristic Policy LP-based CTMDP Policy

Name of Policy P(w) Dl Dh P(w) ΔP
(%)

Dl ΔDl
(%)

Dh ΔDh
(%)

Time-out policy tout=20 1.515 0.439 0.121 1.121 26.0 0.406 7.51 0.119 1.7

Time-out policy tout=40 2.071 0.243 0.097 1.674 19.2 0.227 6.6 0.094 3.1

Time-out policy tout=60 2.242 0.151 0.085 2.142 4.5 0.149 1.3 0.083 2.4

Greedy policy 1.655 0.227 0.137 1.522 8.0 0.169 25.6 0.107 21.9

Table 4 and Table 5 present the comparison results by simulation. Columns P, Dl, and Dh give the power, low
priority request delay, and high priority request delay for each power management policy respectively. Columns
ΔP, ΔDl, and ΔDh give the CTMDP policy’s improvement in power, low priority request delay, and high priority
request delay. The values are simulated using a commercial stochastic activity network analysis tool: UltraSAN
[20]. The conclusions we have from these experiments are as follows.

If the inter-arrival time of the input requests follows exponential distribution, the CTMDP policy saves more than
30% power on average over heuristic methods while keeping the same delay for both the high priority and low
priority requests.

If the inter-arrival time of the input requests follows uniform distribution, the CTMDP policy cannot exactly meet
the delay constraint. It saves about 14% power on average, and at the same time it reduces the delay of low
priority requests by about 10% and reduces the delay of high priority requests by about 7%.

Further reductions can be achieved using the CTMDP method if we increase the delay constraint. In other words,
the CTMDP method can make different power-delay trade-offs by changing the delay constraints. Little can be
done by the heuristic method.

The CTMDP method can perform optimal management for a complex system, while the heuristic methods can
only perform simple management such as turn-on and turn-off.

The CTMDP method can adjust the optimal policy when workload characteristics change, while the “greedy” and
“time-out” methods are not adjustable to workload change.

We did not compare the DPM method with the predictive method, because in our experiments the inter-arrival
time of each requests are assumed to be independent. Therefore, the predictive method is not applicable.

 28

B.2 Comparison of the CTMDP policy with the N-policy

In this section we will show that the CTMDP method is powerful in finding power and delay trade-offs. When the
server has only two states, active and sleeping, it can easily be shown that the N-policy gives the minimum power
compared to other stationary policies with the same performance constraint. Our experiments show that, however,
for a system with more than two server states, the N-policy does not give the optimal power-delay trade-off. In the
experimental results, we will present the comparison of our policy and the N-policy and show that our policy is
more efficient in finding power and performance trade-offs than the N-policy.

In this experiment, the system model includes:

An SP model that is the same as that in the previous experiment.

An SR model with only one state r, λ(r)= 1/20, and the inter-arrival time of each request follows exponential
distribution.

An SQ model with an SSQ of length 5

Table 6 gives the result of the comparison of our policy with the N-policy, where N varies from 0 to 5. The result
shows that there is always a randomized policy that has the exact delay as the N-policy and consumes less power
than the N-policy. The deterministic policy consumes more power than a randomized policy; however, it is still
more efficient than the N-policy. Furthermore, the N-policy in this experiment only gives five different policies.
However, a randomized policy can find power optimal policy under any delay constraint, which is achievable.
Therefore, our algorithm is more flexible and effective.

Table 6 Comparison of our policy with the N-policy.

N-policy Randomized-policy Deterministic-policy

N Power Delay Power ΔP(%) Delay ΔD(%) Power ΔP(%) Delay ΔD(%)

5 0.860 2.346 0.754 12.3 2.304 1.8 0.754 12.3 2.304 1.8

4 0.944 1.933 0.802 15.0 1.933 0 0.8107 14.1 1.869 3.3

3 1.045 1.483 0.861 38.7 1.483 0 0.869 16.8 1.425 3.9

2 1.216 1.027 0.952 20.9 1.027 0 0.966 20.6 1.005 2.1

1 1.623 0.608 1.160 28.5 0.607 0.2 1.213 25.3 0.606 0.3

0 2.3 0.332 2.3 0 0.332 0 2.3 0 0.32 0

VII. Conclusions

We have proposed a new system model and method for dynamic power management at the system-level. The
problem of system-level power management was formulated as an optimal policy selection problem based on the
theories of continuous-time Markov decision processes and stochastic networks. Compared to previous works, we
introduced a new and more complete model of the system components as well as a model of the whole system.
The proposed mathematical framework captures the characteristics of the real applications more accurately
compared to the models proposed by previous researchers. This is mainly because we solve the problem in a
continuous-time domain while previous authors solve the problem in a discrete-time domain. We have also
proposed CTMDP-Poll techniques, which are better than the DTMDP-based techniques and the simple CTMDP-
based techniques in all cases. Furthermore, we have used a priority queue model, which is more general and
adaptable to real applications.

 29

In the examples and the experimental results included in this paper, we have assumed that the system contains a
single SP. Therefore, all the requests in the SQ are targeted for that SP (which means that they have an identical
type). However, please note that this does not mean that all the requests pose the same amount of work load to the
SP. The difference in the request work loads is captured by the exponentially distributed service time in the
model. More generally, our mathematical framework can handle systems with more than one SP, and therefore,
service requests of different types can be handled. In this case, we have to create multiple SQs, one for each type
(or class) of service requests. There will also be a compatibility relation describing what type of requests can be
serviced by which SPs. This adds complexity to the problem but is quite manageable within our proposed
mathematical framework.

A shortcoming of our CTMDP-based technique is that it is very difficult to use the model when attempting to
represent complex systems that consist of multiple closely interacting SPs and must cope with complicated
synchronization schemes. In this case, we need to use the modeling techniques based on the theory of generalized
stochastic Petri Nets (GSPN). Finally, in real applications, the inter-arrival time of service requests may not
follow an exponential distribution. Although our experimental results demonstrate that, in practice, our method
remains effective for a wide range of distributions, it is still desireable from a theoretical point of view to develop
a new mathemnatical framework where arbitrary distributions can be easily handled. Again this problem can be
solved by using the “stage method” (a series-parallel connection of exponentially distributed sources) based on
the GSPN framework. However, GSPN is not in the scope of this manuscript.

REFERENCES

[1] A. Chandrakasan and R. Brodersen, Low Power Digital CMOS Design. Kluwer Academic Publishers, July 1995.

[2] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital design.” IEEE Symposium on Low Power
Electronics, pp.8-11, 1994.

[3] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven signal processing: an approach for energy efficient
computing,” 1996 International Symposium on Low Power Electronics and Design”, pp.347-352, Aug. 1996.

[4] J. Rabaey and M. Pedram, Low Power Design Methodologies. Kluwer Academic Publishers, 1996

[5] L. Benini and G. De Micheli, Dynamic Power Management: Design Techniques and CAD Tools. Kluwer Academic
Publishers, 1997.

[6] Intel, Microsoft and Toshiba, “Advanced configuration and power interface specification.” URL:
http://www.intel.com/ial/powermgm/specs.html, 1996.

[7] M. Srivastava, A. Chandrakasan. R. Brodersen, “Predictive system shutdown and other architectural techniques for
energy effcient programmable computation," IEEE Transactions on VLSI Systems, Vol. 4, No. 1, pp.42-55, 1996.

[8] C.-H. Hwang and A. Wu, “A predictive system shutdown method for energy saving of event-driven computation,”
Proceedings of the International Conference on Computer Aided Design, pp. 28-32, Nov. 1997.

[9] G. A. Paleologo, L. Benini, et.al, “Policy optimization for dynamic power management,” Proceedings of the Design
Automation Conference, pp.182-187, June 1998.

[10] Q. Qiu and M. Pedram, “Dynamic power management based on continuous-time Markov decision processes,”
Proceedings of the Design Automation Conference, pp. 555-561, June 1999.

[11] Q. Qiu, Q. Wu, and M. Pedram, “Stochastic modeling of a power-managed system: construction and optimization,”
Proceedings of the International Symposium on Low Power Electronics and Design, 1999.

[12] U. Narayan Bhat, Elements of Applied Stochastic Processes. John Wiley & Sons, Inc., 1984.

[13] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven signal processing: an approach for energy efficient
computing,” Proceedings of International Symposium on Low Power Electronics and Design, pp. 347-352, Aug.
1996.

[14] B. Miller, “Finite state continuous time Markov decision processes with an infinite planning horizon,” J. Of
Mathematical Analysis and Applications, No. 22, pp. 552-569, 1968.

[15] E. V. Denardo, “On linear programming in a Markov decision problem,” Management Sience, Vol. 16, No. 5, pp.
281-288, Jan. 1970.

[16] J. F. Shapiro, Mathematical Programming: Structures and Algorithms. John Wiley & Sons, Inc., 1979.

 30

[17] R. A. Howard, Dynamic Programming and Markov Processes. New York: Wiley, 1960.

[18] D. P. Heyman and M. J. Sobel, Stochastic Models in Operations Research. McGraw-Hill Book Company, 1982.

[19] L. E. Scales, Introduction to Non-Linear Optimization. New York: Springer-Verlag New York Inc., 1985.

[20] UIUC, Performability Engineering Research Group, “The UltraSAN Software”,
http://www.crhc.uiuc.edu/UltraSAN/, 1997.

[21] T. Simunic, L. Benini, and G. De Micheli, "Dynamic power management of portable systems," MOBICOM, 2000.

[22] T. Simunic, L. Benini, and G. De Micheli, "Dynamic power management of laptop hard disk," DATE, 2000.

[23] Y. Lu, E. Chung, T. Simunic, L. Benini, and G. De Micheli, "Quantitative comparison of power management
algorithms," DATE, 2000.

[24] “MHE2064AT, MHE2043AT, MHF2043AT, MHF2021AT Disk Drive Product Manual”, Fujitsu Limited, 1998.

