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PREFACE

      I have been undertaking the research and practical applications of power 
system optimization since the early 1980s. In the early stage of my career, I 
worked in universities such as Chongqing University (China), Brunel 
University (UK), National University of Singapore, and Howard University 
(USA). Since 2000 I have been working for AREVA T & D Inc (USA). When 
I was a full - time professor at Chongqing University, I wrote a tutorial on power 
system optimal operation, which I used to teach my senior undergraduate 
students and postgraduate students in power engineering until 1996. The topics 
of the tutorial included advanced mathematical and operations research 
methods and their practical applications in power engineering problems. Some 
of these were refi ned to become part of this book. 

 This book comprehensively applies all kinds of optimization methods to 
solve power system operation problems. Some contents are analyzed and 
discussed for the fi rst time in detail in one book, although they have appeared 
in international journals and conferences. These can be found in Chapter  9  
 “ Steady - State Security Regions ” , Chapter  11   “ Optimal Load Shedding ” , 
Chapter  12   “ Optimal Reconfi guration of Electric Distribution Network ” , and 
Chapter  13   “ Uncertainty Analysis in Power Systems. ”  

 This book covers not only traditional methods and implementation in 
power system operation such as Lagrange multipliers, equal incremental 
principle, linear programming, network fl ow programming, quadratic pro-
gramming, nonlinear programming, and dynamic programming to solve the 
economic dispatch, unit commitment, reactive power optimization, load shed-
ding, steady - state security region, and optimal power fl ow problems, but also 
new technologies and their implementation in power system operation in the 
last decade. The new technologies include improved interior point method, 
analytic hierarchical process, neural network, fuzzy set theory, genetic algo-
rithm, evolutionary programming, and particle swarm optimization. Some new 
topics (wheeling model, multiarea wheeling, the total transfer capability com-
putation in multiareas, reactive power pricing calculation, congestion manage-
ment) addressed in recent years in power system operation are also dealt with 
and put in appropriate chapters. 
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 In addition to having the rich analysis and implementation of all kinds of 
approaches, this book contains much hand - on experience for solving power 
system operation problems. I personally wrote my own code and tested the 
presented algorithms and power system applications. Many materials pre-
sented in the book are derived from my research accomplishments and pub-
lications when I worked at Chongqing University, Brunel University, National 
University of Singapore, and Howard University, as well as currently with 
AREVA T & D Inc. I appreciate these organizations for providing me such 
good working environments. Some IEEE papers have been used as primary 
sources and are cited wherever appropriate. The related publications for each 
topic are also listed as references, so that those interested may easily obtain 
overall information. 

 I wish to express my gratitude to IEEE book series editor Professor 
Mohammed El - Hawary of Dalhousie University, Canada, Acquisitions Editor 
Steve Welch, Project Editor Jeanne Audino, and the reviewers of the book for 
their keen interest in the development of this book, especially Professor Kit 
Po Wong of the Hong Kong Polytechnic University, Professor Loi Lei Lai of 
City University, UK, Professor Ruben Romero of Universidad Estadual 
Paulista, Brazil, and Dr. Ali Chowdhury of California Independent System 
Operator, who offered valuable comments and suggestions for the book during 
the preparation stage. 

 Finally, I wish to thank Professor Guoyu Xu, who was my PhD advisor 
twenty years ago at Chongqing University, for his high standards and strict 
requirements for me ever since I was his graduate student. Thanks to everyone, 
including my family, who has shown support during the time - consuming 
process of writing this book.         

 Jizhong Zhu 
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INTRODUCTION

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
Copyright © 2009 Institute of Electrical and Electronics Engineers

     The electric power industry is being relentlessly pressured by governments, 
politicians, large industries, and investors to privatize, restructure, and deregu-
late. Before deregulation, most elements of the power industry, such as power 
generation, bulk power sales, capital expenditures, and investment decisions, 
were heavily regulated. Some of these regulations were at the state level, and 
some at the national level. Thus new deregulation in the power industry meant 
new challenges and huge changes. However, despite changes in different struc-
tures, market rules, and uncertainties, the underlying requirements for power 
system operations to be secure, economical, and reliable remain the same. 

 This book attempts to cover all areas of power systems operation. It also 
introduces some new topics and new applications of the latest new technolo-
gies that have appeared in recent years. This includes the analysis and discus-
sion of new techniques for solving the old problems and the new problems 
that are arising from deregulation. 

 According to the different characteristics and types of the problems as well 
as their complexity, power systems operation is divided into the following 
aspects that are addressed in the book: 

 •      Power fl ow analysis (Chapter  2 )  
 •      Sensitivity analysis (Chapter  3 )  
 •      Classical economic dispatch (Chapter  4 )  
 •      Security - constrained economic dispatch (Chapter  5 )  
 •      Multiarea systems economic dispatch (Chapter  6 )  
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 •      Unit commitment (Chapter  7 )  
 •      Optimal power fl ow (Chapter  8 )  
 •      Steady - state security regions (Chapter  9 )  
 •      Reactive power optimization (Chapter  10 )  
 •      Optimal load shedding (Chapter  11 )  
 •      Optimal reconfi guration of electric distribution network (Chapter  12 )  
 •      Uncertainty analysis in power system (Chapter  13 )    

 From the view of optimization, the various techniques including traditional 
and modern optimization methods, which have been developed to solve these 
power system operation problems, are classifi ed into three groups  [1 – 13] : 

  (1)     Conventional optimization methods including  
 •      Unconstrained optimization approaches  
 •      Nonlinear programming (NLP)  
 •      Linear programming (LP)  
 •      Quadratic programming (QP)  
 •      Generalized reduced gradient method  
 •      Newton method  
 •      Network fl ow programming (NFP)  
 •      Mixed - integer programming (MIP)  
 •      Interior point (IP) methods    

  (2)     Intelligence search methods such as 
 •      Neural network (NN)  
 •      Evolutionary algorithms (EAs)  
 •      Tabu search (TS)    
•      Particle swarm optimization (PSO)  

  (3)     Nonquantity approaches to address uncertainties in objectives and 
constraints
 •      Probabilistic optimization  
 •      Fuzzy set applications  
 •      Analytic hierarchical process (AHP)       

1.1 CONVENTIONAL METHODS 

1.1.1 Unconstrained Optimization Approaches 

 Unconstrained optimization approaches are the basis of the constrained 
optimization algorithms. In particular, most of the constrained optimization 
problems in power system operation can be converted into unconstrained 
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optimization problems. The major unconstrained optimization approaches 
that are used in power system operation are gradient method, line search, 
Lagrange multiplier method, Newton – Raphson optimization, trust - region 
optimization, quasi – Newton method, double dogleg optimization, and conju-
gate gradient optimization, etc. Some of these approaches are used in Chapter 
 2 , Chapter  3 , Chapter  4 , Chapter  7 , and Chapter  9 .  

1.1.2 Linear Programming 

 The linear programming (LP) - based technique is used to linearize the nonlin-
ear power system optimization problem, so that objective function and con-
straints of power system optimization have linear forms. The simplex method 
is known to be quite effective for solving LP problems. The LP approach has 
several advantages. First, it is reliable, especially regarding convergence prop-
erties. Second, it can quickly identify infeasibility. Third, it accommodates a 
large variety of power system operating limits, including the very important 
contingency constraints. The disadvantages of LP - based techniques are inac-
curate evaluation of system losses and insuffi cient ability to fi nd an exact 
solution compared with an accurate nonlinear power system model. However, 
a great deal of practical applications show that LP - based solutions generally 
meet the requirements of engineering precision. Thus LP is widely used to 
solve power system operation problems such as security - constrained economic 
dispatch, optimal power fl ow, steady - state security regions, reactive power 
optimization, etc.  

1.1.3 Nonlinear Programming 

 Power system operation problems are nonlinear. Thus nonlinear programming 
(NLP) based techniques can easily handle power system operation problems 
such as the OPF problems with nonlinear objective and constraint functions. 
To solve a nonlinear programming problem, the fi rst step in this method is to 
choose a search direction in the iterative procedure, which is determined by 
the fi rst partial derivatives of the equations (the reduced gradient). Therefore, 
these methods are referred to as fi rst - order methods, such as the generalized 
reduced gradient (GRG) method. NLP - based methods have higher accuracy 
than LP - based approaches, and also have global convergence, which means 
that the convergence can be guaranteed independent of the starting point, but 
a slow convergent rate may occur because of zigzagging in the search direction. 
NLP methods are used in this book from Chapter  5  to Chapter  10 .  

1.1.4 Quadratic Programming 

 Quadratic programming (QP) is a special form of nonlinear programming. The 
objective function of QP optimization model is quadratic, and the constraints 
are in linear form. Quadratic programming has higher accuracy than LP - based 
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approaches. Especially, the most often - used objective function in power system 
optimization is the generator cost function, which generally is a quadratic. Thus 
there is no simplifi cation for such objective function for a power system opti-
mization problem solved by QP. QP is used in Chapters  5  and  8 .  

1.1.5 Newton’s Method 

 Newton ’ s method requires the computation of the second - order partial deriv-
atives of the power fl ow equations and other constraints (the Hessian) and 
is therefore called a second - order method. The necessary conditions of opti-
mality commonly are the Kuhn – Tucker conditions. Newton ’ s method is 
favored for its quadratic convergence properties, and is used in Chapters 2, 
4, and 8.  

1.1.6 Interior Point Methods 

 The interior point (IP) method is originally used to solve linear programming. 
It is faster and perhaps better than the conventional simplex algorithm in 
linear programming. IP methods were fi rst applied to solve OPF problems in 
the 1990s, and recently, the IP method has been extended and improved to 
solve OPF with QP and NLP forms. The analysis and implement of IP methods 
are discussed in Chapters  8  and  10 .  

1.1.7 Mixed-Integer Programming 

 The power system problem can also be formulated as a mixed - integer pro-
gramming (MIP) optimization problem with integer variables such as trans-
former tap ratio, phase shifter angle, and unit on or off status. MIP is extremely 
demanding of computer resources, and the number of discrete variables is an 
important indicator of how diffi cult an MIP will be to solve. MIP methods that 
are used to solve OPF problems are the recursive mixed - integer programming 
technique using an approximation method and the branch and bound (B & B) 
method, which is a typical method for integer programming. A decomposition 
technique is generally adopted to decompose the MIP problem into a continu-
ous problem and an integer problem. Decomposition methods such as Benders ’  
decomposition method (BDM) can greatly improve effi ciency in solving a 
large - scale network by reducing the dimensions of the individual subproblems. 
The results show a signifi cant reduction of the number of iterations, required 
computation time, and memory space. Also, decomposition allows the applica-
tion of a separate method for the solution of each subproblem, which makes 
the approach very attractive. Mixed - integer programming can be used to solve 
the unit commitment, OPF, as well as the optimal reconfi guration of electric 
distribution network.  
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1.1.8 Network Flow Programming 

 Network fl ow programming (NFP) is special linear programming. NFP was 
fi rst applied to solve optimization problems in power systems in 1980s. The 
early applications of NFP were mainly on a linear model. Recently, nonlinear 
convex network fl ow programming has been used in power systems ’  optimiza-
tion problems. NFP - based algorithms have the features of fast speed and 
simple calculation. These methods are effi cient for solving simplifi ed OPF 
problems such as security - constrained economic dispatch, multiarea systems 
economic dispatch, and optimal reconfi guration of an electric distribution 
network.   

1.2 INTELLIGENT SEARCH METHODS 

1.2.1 Optimization Neural Network 

 Optimization neural network (ONN) was fi rst used to solve linear pro-
gramming problems in 1986. Recently, ONN was extended to solve nonlinear 
programming problems. ONN is completely different from traditional opti-
mization methods. It changes the solution of an optimization problem into 
an equilibrium point (or equilibrium state) of nonlinear dynamic system, and 
changes the optimal criterion into energy functions for dynamic systems. 
Because of its parallel computational structure and the evolution of dynam-
ics, the ONN approach appears superior to traditional optimization methods. 
The ONN approach is applied to solve the classic economic dispatch, 
multiarea systems economic dispatch, and reactive power optimization in 
this book.  

1.2.2 Evolutionary Algorithms 

 Natural evolution is a population - based optimization process. The evolution-
ary algorithms (EAs) are different from the conventional optimization 
methods, and they do not need to differentiate cost function and constraints. 
Theoretically, like simulated annealing, EAs converge to the global optimum 
solution. EAs, including evolutionary programming (EP), evolutionary strat-
egy (ES), and GA are artifi cial intelligence methods for optimization based 
on the mechanics of natural selection, such as mutation, recombination, repro-
duction, crossover, selection, etc. Since EAs require all information to be 
included in the fi tness function, it is very diffi cult to consider all OPF con-
straints. Thus EAs are generally used to solve a simplifi ed OPF problem such 
as the classic economic dispatch, security - constrained economic power dis-
patch, and reactive optimization problem, as well as optimal reconfi guration 
of an electric distribution network.  
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1.2.3 Tabu Search 

 The tabu search (TS) algorithm is mainly used for solving combinatorial opti-
mization problems. It is an iterative search algorithm, characterized by the use 
of a fl exible memory. It is able to eliminate local minima and to search areas 
beyond a local minimum. The TS method is also mainly used to solve simpli-
fi ed OPF problems such as unit commitment and reactive optimization 
problems.  

1.2.4 Particle Swarm Optimization 

 Particle swarm optimization (PSO) is a swarm intelligence algorithm, inspired 
by social dynamics and an emergent behavior that arises in socially organized 
colonies. The PSO algorithm exploits a population of individuals to probe 
promising regions of search space. In this context, the population is called a 
swarm and the individuals are called particles or agents. In recent years, 
various PSO algorithms have been successfully applied in many power engi-
neering problems including OPF. These are analyzed in Chapters  7 ,  8  and  10 .   

1.3 APPLICATION OF FUZZY SET THEORY 

 The data and parameters used in power system operation are usually derived 
from many sources, with a wide variance in their accuracy. For example, 
although the average load is typically applied in power system operation 
problems, the actual load should follow some uncertain variations. In addition, 
generator fuel cost, VAR compensators, and peak power savings may be 
subject to uncertainty to some degree. Therefore, uncertainties due to insuf-
fi cient information may generate an uncertain region of decisions. Consequently, 
the validity of the results from average values cannot represent the uncertainty 
level. To account for the uncertainties in information and goals related to 
multiple and usually confl icting objectives in power system optimization, the 
use of probability theory, fuzzy set theory, and analytic hierarchical process 
may play a signifi cant role in decision - making. 

 The probabilistic methods and their application in power systems operation 
with uncertainty are discussed in Chapter  13 . The fuzzy sets may be assigned 
not only to objective functions, but also to constraints, especially the nonproba-
bilistic uncertainty associated with the reactive power demand in constraints. 
Generally speaking, the satisfaction parameters (fuzzy sets) for objectives and 
constraints represent the degree of closeness to the optimum and the degree 
of enforcement of constraints, respectively. With the maximization of these 
satisfaction parameters, the goal of optimization is achieved and simultane-
ously the uncertainties are considered. The application of fuzzy set theory to 
the OPF problem is also presented in Chapter  13 . The analytic hierarchical 
process (AHP) is a simple and convenient method to analyze a complicated 
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problem (or complex problem). It is especially suitable for problems that are 
very diffi cult to analyze wholly quantitatively, such as OPF with competitive 
objectives, or uncertain factors. The details of the AHP algorithm are given in 
Chapter  7 . AHP is employed to solve unit commitment, multiarea economic 
dispatch, OPF, VAR optimization, optimal load shedding, and uncertainty 
analysis in the power system.  
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POWER FLOW ANALYSIS 

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
Copyright © 2009 Institute of Electrical and Electronics Engineers

     This chapter deals with the power fl ow problem. The power fl ow algorithms 
include the Newton – Raphson method in both polar and rectangle forms, the 
Gauss – Seidel method, the DC power fl ow method, and all kinds of decoupled 
power fl ow methods such as fast decoupled power fl ow, simplifi ed BX and XB 
methods, as well as decoupled power fl ow without major approximation.  

2.1 MATHEMATICAL MODEL OF POWER FLOW 

 Power fl ow is well known as  “ load fl ow. ”  This is the name given to a network 
solution that shows currents, voltages, and real and reactive power fl ows at 
every bus in the system. Since the parameters of the elements such as lines 
and transformers are constant, the power system network is a linear network. 
However, in the power fl ow problem, the relationship between voltage and 
current at each bus is nonlinear, and the same holds for the relationship 
between the real and reactive power consumption at a bus or the generated 
real power and scheduled voltage magnitude at a generator bus. Thus power 
fl ow calculation involves the solution of nonlinear equations. It gives us the 
electrical response of the transmission system to a particular set of loads and 
generator power outputs. Power fl ows are an important part of power system 
operation and planning. 

 Generally, for a network with  n  independent buses, we can write the fol-
lowing n  equations.
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or

    Y V I[ ][ ] =     (2.3)  

where  I  is the bus current injection vector,  V  is the bus voltage vector, and  Y  
is called the bus admittance matrix. Its diagonal element  Y ii   is called the self -
 admittance of bus  i , which equals the sum of all branch admittances connecting 
to bus  i . The off - diagonal element of the bus admittance matrix  Y ij   is the nega-
tive of branch admittance between buses  i  and  j . If there is no line between 
buses  i  and  j , this term is zero. Obviously, the bus admittance matrix is a sparse 
matrix. 

 In addition, the bus current can be represented by bus voltage and power, 
that is,

    �I
S

V

S S

V

P P j Q Q

V
i

i

i

i i

i

i i i i

i

= =
−

=
−( ) − −( )ˆ

ˆ

ˆ ˆ

ˆ ˆ
G D G D G D     (2.4)  

where

   S :    The complex power injection vector  
  P Gi  :    The real power output of the generator connecting to bus  i   
  Q Gi   :    The reactive power output of the generator connecting to bus  i   
  P Di  :    The real power load connecting to bus  i   
  Q Di   :    The reactive power load connecting to bus  i     

 Substituting equation  (2.4)  into equation  (2.1) , we have

    
P P j Q Q

V
Y V Y V Y V i ni i i i

i

i i in n
G D G D−( ) − −( )

= + + + =ˆ , , , , , ,1 1 2 2 1 2� � … � …     (2.5)   
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 In the power fl ow problem, the load demands are known variables. We defi ne 
the following bus power injections as

    P P Pi i i= −G D     (2.6)  

    Q Q Qi i i= −G D     (2.7)   

 Substituting equations  (2.6)  and  (2.7)  into equation  (2.5) , we can get the 
general form of power fl ow equation as

    
P j

V
Y V i ni i

i

ij j
j

n−
= =

=
∑Q

ˆ , , , ,� …
1

1 2     (2.8)  

or

    P jQ V Y V i ni i i ij j
j

n

+ = =
=
∑� …ˆ ˆ , , , ,

1

1 2     (2.9)   

 If we divide equation  (2.9)  into real and imaginary parts, we can get two equa-
tions for each bus with four variables, that is, bus real power  P , reactive power 
 Q , voltage  V , and angle  θ . To solve the power fl ow equations, two of these 
should be known for each bus. According to the practical conditions of the 
power system operation, as well as known variables of the bus, we can have 
three bus types as follows: 

  (1)      PV  bus:     For this type of bus, the bus real power  P  and the magnitude 
of voltage  V  are known and the bus reactive power  Q  and the angle of 
voltage  θ  are unknown. Generally the bus connected to the generator 
is a PV bus.  

  (2)      PQ  bus:     For this type of bus, the bus real power  P  and reactive power 
 Q  are known and the magnitude and the angle of voltage ( V ,  θ ) are 
unknown. Generally the bus connected to load is a PQ bus. However, 
the power output of some generators is constant or cannot be adjusted 
under the particular operation conditions. The corresponding bus will 
also be a PQ bus.  

  (3)     Slack bus:     The slack bus is also called the swing bus, or the reference 
bus. Since power loss of the network is unknown during the power fl ow 
calculation, at least one bus power cannot be given, which will balance 
the system power. In addition, it is necessary to have a bus with a zero 
voltage angle as reference for the calculation of the other voltage 
angles. Generally, the slack bus is a generator - related bus, whose mag-
nitude and the angle of voltage ( V ,  θ ) are unknown. The bus real power 
 P  and reactive power  Q  are unknown variables. Traditionally, there is 
only one slack bus in the power fl ow calculation. In the practical appli-
cation, distributed slack buses are used, so all buses that connect the 
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adjustable generators can be selected as slack buses and used to balance 
the power mismatch through some rules. One of these rules is that the 
system power mismatch is balanced by all slacks based on the unit 
participation factors.    

 Since the voltage of the slack bus is given, only  n     −    1 bus voltages need to 
be calculated. Thus the number of power fl ow equations is 2( n     −    1).  

  2.2   NEWTON – RAPHSON METHOD 

  2.2.1   Principle of Newton – Raphson Method 

 A nonlinear equation with single variable can be expressed as

    f x( ) = 0     (2.10)   

 For solving this equation, select an initial value  x  0 . The difference between the 
initial value and the fi nal solution will be  Δ  x  0 . Then  x    =    x  0    +    Δ  x  0  is the solution 
of nonlinear equation  (2.10) , that is,

    f x x0 0 0+( ) =Δ     (2.11)   

 Expanding the above equation with the Taylor series, we get

    

f x x f x f x x f x
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f x
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0 0 0 0 0 0
0 2
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2
+( ) = ( ) + ′( ) + ′′( ) ( ) +

+ ( ) (

Δ Δ
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, ,
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…

)) + =
n

n!
,… 0

    
(2.12)

  

where  f   ′ ( x  0 ),  … ,  f   (   n   ) ( x  0 ) are the derivatives of the function  f  ( x ). 
 If the difference  Δ  x  0  is very small (meaning that the initial value  x  0  is close 

to the solution of the function), the terms of the second and higher derivatives 
can be neglected. Thus equation  (2.12)  becomes a linear equation as below:

    f x x f x f x x0 0 0 0 0 0+( ) = ( ) + ′( ) =Δ Δ     (2.13)   

 Then we can get

    Δx
f x

f x
0

0

0
= − ( )

′( )     (2.14)   

 The new solution will be

    x x x x
f x

f x
1 0 0 0

0

0
= + = − ( )

′( )Δ     (2.15)   
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 Since equation  (2.13)  is an approximate equation, the value of  Δ  x  0  is also an 
approximation. Thus the solution  x  is not a real solution. Further iterations 
are needed. The iteration equation is

    x x x x
f x

f x
k k k k

k

k
+ += + = − ( )

′( )
1 1Δ     (2.16)   

 The iteration can be stopped if one of the following conditions is met:

    
Δx

or f x

k
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( ) <

ε
ε

1

2

    (2.17)  

where  ε  1 ,  ε  2 , which are the permitted convergence precision, are small positive 
numbers. 

 The Newton method can also be expanded to a nonlinear equation with  n  
variables.
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 For a given set of initial values   x1
0,   x2

0,  … ,   xn
0, we have the corrected values   Δx1

0, 
  Δx2

0,  … ,   Δxn
0. Then equation  (2.18)  becomes
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 Similarly, expanding equation  (2.19)  and neglecting the terms of second and 
higher derivatives, we get
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 Equation  (2.20)  can also be written in matrix form
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 From equation  (2.21)  we can get   Δx1
0,   Δx2

0,  … ,   Δxn
0. Then the new solution can 

be obtained. The iteration equation can be written as follows:
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    x x x i ni
k

i
k

i
k+ = + =1 1 2Δ , , ,…     (2.23)   

 Equations  (2.22)  and  (2.23)  can be expressed as

    F X J Xk k k( ) = − Δ     (2.24)  

    X X Xk k k+ = +1 Δ     (2.25)  

where  J  is an  n     ×     n  matrix and called a Jacobian matrix.  

  2.2.2   Power Flow Solution with Polar Coordinate System 

 If the bus voltage in equation  (2.9)  is expressed with a polar coordinate system, 
the complex voltage and real and reactive powers can be written as

    �V V ji i i i= +( )cos sinθ θ     (2.26)  

    P V V G Bi i j ij ij ij ij
j

n

= +( )
=
∑ cos sinθ θ

1

    (2.27)  

    Q V V G Bi i j ij ij ij ij
j

n

= −( )
=
∑ sin cosθ θ

1

    (2.28)  

where  θ   ij     =    θ   i      −     θ   j  , which is the angle difference between bus  i  and bus  j . 
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 Assuming that buses 1    ∼    m are PQ buses, buses  m    +   1    ∼     n     −    1 are PV buses 
and the  n th bus is the slack bus. The  V n  ,  θ   n   are given, and the magnitude of 
the PV bus  V m   +1     ∼     V n    − 1  are also given. Then,  n     −    1 bus voltage angles are 
unknown, and  m  magnitudes of voltage are unknown. For each PV or PQ bus 
we have the following real power mismatch equation:

    ΔP P P P V V G Bi i i i i j ij ij ij ij
j

n

= − = − +( ) =
=
∑s s cos sinθ θ

1

0     (2.29)   

 For each PQ bus, we also have the following reactive power equation:

    ΔQ Q Q Q V V G Bi i i i i j ij ij ij ij
j

n

s s s= − = − −( ) =
=
∑ sin cosθ θ

1

0     (2.30)  

where  P i   s ,  Q i   s  are the calculated bus real and reactive power injection, 
respectively. 

 According to the Newton method, the power fl ow equations  (2.29)  and 
 (2.30)  can be expanded into Taylor series and the following fi rst - order approxi-
mation can be obtained
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    V

V

V

V

D

m

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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1
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�
    (2.36)   

  H  is a ( n     −    1)    ×    ( n     −    1) matrix, and its element is   H
P

ij
i

j

=
∂
∂
Δ
θ

. 

  N  is a ( n     −    1)    ×     m  matrix, and its element is   N V
P

V
ij j

i

j

=
∂
∂
Δ

. 

  K  is a  m     ×    ( n     −    1) matrix, and its element is   K
Q

ij
i

j

=
∂
∂
Δ
θ

. 

  L  is a  m     ×     m  matrix, and its element is   L V
Q

V
ij j

i

j

=
∂
∂
Δ

. 

 If  i     ≠     j , the expressions of the elements in Jacobian matrix are as follows:

    H V V G Bij i j ij ij ij ij= − −( )sin cosθ θ     (2.37)  

    N V V G Bij i j ij ij ij ij= − −( cos sin )θ θ     (2.38)  

    N V V G Bij i j ij ij ij ij= −( )cos sinθ θ     (2.39)  

    L V V G Bij i j ij ij ij ij= − −( )sin cosθ θ     (2.40)   

 If  i    =    j , the expressions of the elements in Jacobian matrix are as follows:

    H V B Qii i ii i= +2     (2.41)  

    N V G Pii i ii i= − −2     (2.42)  

    K V G Pii i ii i= −2     (2.43)  

    L V B Qii i ii i= −2     (2.44)   

 The calculation steps of the Newton power fl ow solution are as follows  [1, 2] : 

  Step (1):   Given input data.  
  Step (2):   Form bus admittance matrix.  
  Step (3):   Assume the initial values of bus voltage.  
  Step (4):   Compute the power mismatch according to equations  (2.29)  and 

 (2.30) . Check whether the convergence conditions are satisfi ed.

    max ΔPi
k < ε1     (2.45)  

    max ΔQi
k < ε2     (2.46)   

 If equations  (2.45)  and  (2.46)  are met, stop the iteration, and calculate the 
line fl ows and real and reactive power of the slack bus. If not, go to next step.  
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  Step (5):   Compute the elements in Jacobian matrix  (2.37)  –  (2.44) .  
  Step (6):   Compute the corrected values of bus voltage, using equation  (2.31) . 

Then compute the bus voltage:

    V V Vi
k

i
k

i
k+ = +1 Δ     (2.47)  

    θ θ θi
k

i
k

i
k+ = +1 Δ     (2.48)    

  Step (7):   Return to Step (4) with new values of bus voltage.    

   Example 2.1 

 The test example for power fl ow calculation, which is shown in Figure  2.1 , 
is taken from reference  [2] .   

 The parameters of the branches are as follows: 

  z 12    =   0.10   +   j0.40  
  y 120    =   y 210    =   j0.01528  
  z 13    =   j0.30, k   =   1.1  
  z 14    =   0.12   +   j0.50  
  y 140    =   y 410    =   j0.01920  
  z 24    =   0.08   +   j0.40  
  y 240    =   y 420    =   j0.01413    

 Buses 1 and 2 are PQ buses, bus 3 is a PV bus, and bus 4 is a slack bus. 
The given data are: 

1:k

~

~

1

2

3

4

     FIGURE 2.1     Four - bus power system  
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  P 1    +   jQ 1    =    − 0.3    −    j0.18  
  P 2    +   jQ 2    =    − 0.55    −    j0.13  
  P 3    =   0.5; V 3    =   1.1;  
  V 4    =   1.05;  θ  4    =   0    

 First, we form the bus admittance matrix as follows:

    Y

j j j j

=

− − + − +
−
1 0421 8 2429 0 5882 2 3529 3 6666 0 4539 1 8911

0 58

. . . . . . .

. 882 2 3529 1 0690 4 7274 0 0 4808 2 4038

3 6666 0 3 3333 0

+ − − +
−

j j j

j j

. . . . .

. .

−− + − + −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥0 4539 1 8911 0 4808 2 4038 0 0 9346 4 2616. . . . . .j j j

  

 given the initial bus voltage as

    � � �V V V1
0

2
0 0

3
0 01 0 0 1 1 0= = ∠ = ∠. , .   

 Computing the bus power mismatch with equations  (2.29)  and  (2.30) , we get

    ΔP P P1
0

1 1
0 0 30 0 02269 0 27731= − = − − −( ) = −s . . .  

    ΔP P P2
0

2 2
0 0 55 0 02404 0 52596= − = − − −( ) = −s . . .  

    ΔP P P3
0

3 3
0 0 5= − =s .  

    ΔQ Q Q1
0

1 1
0 0 18 0 12903 0 05097= − = − − −( ) = −s . . .  

    ΔQ Q Q2
0

2 2
0 0 13 0 14960 0 0196= − = − − −( ) =s . . .   

 Then compute the bus voltage correction, using equation  (2.31) 

    Δ Δ Δθ θ θ1
0 0

2
0 0

3
0 00 505922 6 177633 6 597038= − = − =. , . , .  

    Δ ΔV V1
0

2
00 00649 0 02366= − = −. , .   

 The new bus voltage will be

    θ θ θ1
1

1
0

1
0 00 505922= + = −Δ .  

    θ θ θ2
1

2
0

2
0 06 177633= + = −Δ .  

    θ θ θ3
1

3
0

3
0 06 597038= + =Δ .  

    V V V1
1

1
0

1
0 0 99351= + =Δ .  

    V V V2
1

2
0

2
0 0 97634= + =Δ .   

 Conduct the second iteration, using new voltage values. If the convergence 
tolerance is  ε    =   10  − 5 , the power fl ow will be converged after three iterations, 
which are shown in Tables  2.1  and  2.2 .   



NEWTON–RAPHSON METHOD 19

 Finally, we compute the power of the slack bus and the power fl ows for 
all branches: 
 For slack bus:

    P jQ j0.26470034 4 0 3678824+ = +.   

 For branches

    P jQ j0.014650512 12 0 2462439+ = −.  

    P jQ j13 13 0 5000002 0 0292640+ = − −. .  

    P jQ j14 14+ = − −0 0462439 0 1360884. .  

    P jQ j21 21+ = − +0 2399902 0 0106270. .  

    P jQ j2424 0 3100099 0 1406267+ = − −. .  

    P jQ j31 31 0 4999998 0 0934093+ = +. .  

    P jQ j41 41 0 0482163 0 1045228+ = +. .  

    P jQ j42 42 0 3196662 0 1601774+ = +. .      

  2.2.3   Power Flow Solution with Rectangular Coordinate System 

  2.2.3.1   Newton Method     If the bus voltage in equation  (2.9)  is expressed 
with a rectangular coordinate system, the complex voltage and real and reac-
tive powers can be written as

 Table 2.1     Bus power mismatch change 

   Iteration  k       Δ  P  1       Δ  P  2       Δ  P  3       Δ  Q  1       Δ  Q  2   

  0     − 0.27731     − 0.52596    0.5     − 0.05097    0.01960  
  1     − 4.0    ×    10  − 3      − 2.047    ×    10  − 2     4.51    ×    10  − 3      − 4.380    ×    10  − 2      − 2.454    ×    10  − 2   
  2    1.0    ×    10  − 4      − 4.2    ×    10  − 4     8.0    ×    10  − 5      − 4.5    ×    10  − 4      − 3.2    ×    10  − 4   
  3     < 10  − 5      < 10  − 5      < 10  − 5      < 10  − 5      < 10  − 5   

 Table 2.2     Bus voltage change 

   Iteration  k       θ  1       θ  2       θ  3       V  1       V  2   

  1     − 0.505922 0      − 6.177633 0     6.597038 0     0.99351    0.97634  
  2     − 0.500765 0      − 6.445204 0     6.729964 0     0.98477    0.96495  
  3     − 0.500192 0      − 6.450361 0     6.732257 0     0.98467    0.96480  
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    �V e jfi i i= +     (2.49)  

    P e G e B f f G f B ei i ij j ij j
j

n

i ij j ij j
j

n

= −( ) + +( )
= =
∑ ∑

1 1

    (2.50)  

    Q f G e B f e G f B ei i ij j ij j
j

n

i ij j ij j
j

n

= −( ) − +( )
= =
∑ ∑

1 1

    (2.51)   

 For each PQ bus, we have the following power mismatch equations:

    ΔP P P P e G e B f f G f B ei i i i i ij j ij j
j

n

i ij j ij j
j

n

= − = − −( ) − +( ) =
= =
∑ ∑s s

1 1

0     (2.52)  

    ΔQ Q Q Q f G e B f e G f B ei i i i i ij j ij j
j

n

i ij j ij j
j

n

= − = − −( ) + +( ) =
= =
∑ ∑s s

1 1

0     (2.53)   

 For each PV bus, we have the following equations:

    ΔP P P P e G e B f f G f B ei i i i i ij j ij j
j

n

i ij j ij j
j

n

= − = − −( ) − +( ) =
= =
∑ ∑s s

1 1

0     (2.54)  

    ΔV V V V e fi is i is i i
2 2 2 2 2 2 0= + = − +( ) =     (2.55)   

 There are 2( n     −    1) equations in equations  (2.52)  − (2.55). According to the 
Newton method, we have the following correction equation:

    Δ ΔF J V= −     (2.56)  

where

    Δ

Δ
Δ

Δ
Δ
Δ
Δ

Δ
Δ

F

P

Q

P

Q

P

V

P

V

m

m

m

m

n
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⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
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⎦
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+
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�
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    (2.57)  
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    (2.59)   

 If  i     ≠     j , the expressions of the elements in the Jacobian matrix are as follows:

    
∂
∂

= −
∂
∂

= − +( )Δ ΔP
e

Q
f

G e B fi

i

i

i
ij i ij i     (2.60)  

    
∂
∂

= −
∂
∂

= − −( )Δ ΔP
f

Q
e

G f B ei

i

i

i
ij i ij i     (2.61)  
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∂
∂

= −
∂
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=
Δ ΔV

e
V
f
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i

i

i

2 2

0     (2.62)   

 If  i    =    j , the expressions of the elements in the Jacobian matrix are as follows:

    
∂
∂

= − −( ) − −
=
∑ΔP

e
G e B f G e B fi

i
ij j ij j

j

n

ii i ii i
1

    (2.63)  

    
∂
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= − +( ) − +
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∑ΔP

f
G f B e G f B ei
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ij j ij j

j

n

ii i ii i
1

    (2.64)  
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ij j ij j
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ii i ii i
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ii i ii i( )
1

    (2.66)  
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2     (2.67)  
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2

2     (2.68)   

 Equation  (2.56)  can be written in matrix form:

    

Δ
Δ

Δ

F

F

F

J J J

J J J

Jn

n

n

n

1

2

1

11 12 1 1

21 22 2 1

…

…
…

� � �

−

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −

,

,

11 1 1 2 1 1

1

2

1, , ,J J

V

V

Vn n n n− − − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥…

�

Δ
Δ

Δ

    (2.69)  

where  Δ  F i  and   Δ  V i   are two - dimensional vectors.  J ij   is a 2    ×    2 matrix.
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    (2.70)   

 For a PQ bus, we have
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 For a PV bus, we have
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 It can be observed from equations  (2.60)  –  (2.68)  that the elements of the 
Jacobian matrix are the function of bus voltage, which will be updated through 
iterations. The element of the submatrix  J ij   of the Jacobian matrix in equation 
 (2.69)  is related to the corresponding element in bus admittance matrix  Y ij  . If 
 Y ij     =   0, then  J ij     =   0. Therefore, the Jacobian matrix in equation  (2.69)  is also a 
sparse matrix that is the same as the bus admittance matrix. 

 The steps of rectangular coordination - based Newton power fl ow solution 
are similar to those in the polar coordination - based algorithm, which was 
described in Section  2.2.2 . 

   Example 2.2 

 For the same system as in Example 2.1, the Newton method with the rec-
tangle coordinate system is used to solve power fl ow. 

 The bus admittance matrix is the same as in Example 2.1. Given the 
initial values of bus voltages:

    e e e1
0

2
0

3
0 1 0= = = . ,  

    f f f1
0

2
0

3
0 0 0= = = . ,  

    e f4
0

4
01 05 0 0= =. , .   

 Computing the bus power mismatch and   ΔVi
2 with equations  (2.52)  and 

 (2.55) , we get

    ΔP P P1
0

1 1
0 0 30 0 02269 0 27731= − = − − −( ) = −s . . .  

    ΔP P P2
0

2 2
0 0 55 0 02404 0 52596= − = − − −( ) = −s . . .  

    ΔP P P3
0

3 3
0 0 5= − =s .  

    ΔQ Q Q1
0

1 1
0 0 18 0 23767 0 41763= − = − − = −s . . .  

    ΔQ Q Q2
0

2 2
0 0 13 0 14960 0 0196= − = − − −( ) =s . . .  

    ΔV V V3
2 0

3
2

3
0 2

0 21( ) = − =s .   

 Computing the elements of the Jacobian matrix with equations  (2.60)  and 
 (2.68) , we get the following correction equation:
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 It can be observed from the above equation that most of the elements 
in the Jacobian matrix that have the maximal absolute values are not on 
the diagonals, which easily cause a calculation error. To avoid this, we switch 
rows 1 and 2, rows 3 and 4, rows 5 and 6; then we get:
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 Solving the above correction equation, we get
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 The new bus voltage will be

    e e e1
1

1
0

1
0 0 99630368= + =Δ .  

    f f f1
1

1
0

1
0 0 00943011= + = −Δ .  

    e e e2
1

2
0

2
0 0 97779365= + =Δ .  

    f f f2
1

2
0

2
0 0 10808215= + = −Δ .  

    e e e3
1

3
0

3
0 1 10500000= + =Δ .  

    f f f3
1

3
0

3
0 0 12693353= + =Δ .   

 We then conduct the second iteration, using new voltage values. If the con-
vergence tolerance is  ε    =   10  − 5 , the power fl ow will be converged after three 
iterations, which are shown in Tables  2.3  and  2.4 .   
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 The fi nal bus voltages are expressed in the polar coordinate system as

    �V1
00 9847 0 500= ∠−. .  

    �V2
00 9648 6 450= ∠−. .  

    �V3
01 1 6 732= ∠. .   

 Finally, we compute the power of the slack bus as

    P jQ j4 4 0 36788 0 26469+ = +. .   

 Compared with Example 2.1, the same power fl ow solution is obtained.    

  2.2.3.2   Second - Order Power Flow Method     It is noted that equations 
 (2.50)  and  (2.51)  are a second - order equation on voltage. They can be expanded 
into Taylor series without approximation  [3] . That is,
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    (2.76)   

 Table 2.3     Change of bus mismatches 

   Iteration 
 k       Δ  P  1       Δ  Q  1       Δ  P  2       Δ  Q  2       Δ  P  3        ΔV3

2
  

  0     − 0.2773     − 0.4176     − 0.5260    0.0196    0.500    0.210  
  1    2.90    ×    10  − 3      − 4.18    ×    10  − 3      − 1.28    ×    10  − 2      − 5.50    ×    10  − 2      − 1.91    ×    10  − 3      − 2.71    ×    10  − 2   
  2     − 1.29    ×    10  − 5      − 6.74    ×    10  − 5      − 2.86    ×    10  − 4      − 1.07    ×    10  − 3     4.58    ×    10  − 5      − 1.60    ×    10  − 4   
  3     < 10  − 5      < 10  − 5      < 10  − 5      < 10  − 5      < 10  − 5      < 10  − 5   

 Table 2.4     Change of bus voltages  

   Iteration  k       e  1    +    jf  1       e  2    +    jf  2       e  3    +    jf  3   

  1    0.9963    −    j0.0094    0.9778    −    j0.1081    1.1050   +   j0.1269  
  2    0.9848    −    j0.0086    0.9590    −    j0.1084    1.0925   +   0.1289  
  3    0.9846    −    j0.0086    0.9587    −    j0.1084    1.0924   +   j0.1290  
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 The matrix form is
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 Where  J  is the Jacobian matrix

    J

P
e

P
f

Q
e

Q
f

i i

i i

=

∂
∂

∂
∂

∂
∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

T T

T T

    (2.78)   

 SP and SQ are the second - order term vectors and can be simplifi ed as  [3] 

    SP s= ( )P e fi Δ Δ,     (2.79)  

    SQ s= ( )Q e fi Δ Δ,     (2.80)   

 There are no third -  or higher - order terms in equation  (2.77) . If we ignore the 
second - order term, it will be similar to the Newton algorithm we just discussed 
in this section. Here, we keep the second - order term, and estimate their values 
based on the previous iteration values of voltage components. Thus equation 
 (2.77)  can be written as
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 From the above, we obtain increment voltage components:

    
Δ
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=
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−1     (2.82)   

 For a PV bus, the voltage magnitude is fi xed; thus the increment voltage com-
ponents must satisfy the following equation:

    e e f f V Vi i i i i iΔ Δ Δ+ =     (2.83)   

 Therefore, the reactive power equation in  (2.77)  for a PV bus will be replaced 
by the above equation. 

 The second - order power fl ow algorithm is summarized below.

   (1)     Given the input data, initialize all the arrays.  
  (2)     Set SP and SQ vectors equal to zero.  



GAUSS–SEIDEL METHOD 27

  (3)     Compute the  P i   s ,  Q i   s  vectors.  
  (4)     Compute the power mismatches  Δ  P and   Δ  Q . Check whether the conver-

gence conditions are satisfi ed.

    max ΔPi
k < ε1     (2.84)  

    max ΔQi
k < ε2     (2.85)   

 If equations  (2.84)  and  (2.85)  are met, stop the iteration, and calculate the 
line fl ows and real and reactive power of the slack bus. If not, go to next 
step.  

  (5)     Compute the Jacobian matrix.  
  (6)     Compute  Δ  e ,  Δ  f , using equation  (2.82) .  
  (7)     Update the voltages

    e e ek k+ = +1 Δ     (2.86)  

    f f fk k+ = +1 Δ     (2.87)    

  (8)     Compute the second - order terms SP and SQ, using  Δ  e ,  Δ  f . Then go back 
to step (3).       

  2.3   GAUSS – SEIDEL METHOD 

 For a nonlinear equation with  n  variables  (2.18) , we can get the solutions as
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 If the values of the variables at the  k th iteration are obtained, substituting 
them into the right side of the above equation we can get the new values of 
these variables as below:
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    (2.89)  
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or

    x g x x x i ni
k

i
k k

n
k+ = ( ) =1

1 2 1 2, , , , , , ,… …     (2.90)   

 The iteration will be stopped if the following convergence conditions are satis-
fi ed for all variables:

    x xi
k

i
k+ − <1 ε     (2.91)   

 The Newton method that is described in Section  2.2  is based on this iteration 
calculation. To speed up the convergence, the formula of the iteration calcula-
tion is modifi ed as below:
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or

    x g x x x x i ni
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1 1 2, , , , , , , ,… …     (2.93)   

 The main idea of the approach is to substitute the new values of variables in 
the calculation of the next variable immediately, rather than waiting until the 
next iteration. This iteration method is called the Gauss – Seidel method. It can 
be also used to solve the power fl ow equations. 

 Assuming the system consists of  n  buses. buses 1    ∼     m  are PQ buses, buses 
 m    +   1    ∼     n     −    1 are PV buses, and the  n th bus is the slack bus. The iteration 
calculation does not include the slack bus. 

 From equation  (2.8) , we get

    � �V
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 According to the Gauss – Seidel method, the iteration formula of equation 
 (2.94)  can be written as:
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 For the PQ bus, the real and reactive powers are known. Thus, if the initial 
bus voltage   �Vi

0  is given, we can use equation  (2.95)  to perform the iteration 
calculation. 
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 For the PV bus, the bus real power and the magnitude of the voltage are 
known. It is necessary to give the initial value for bus reactive power. The bus 
reactive power will then be computed by iteration calculation. That is,
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 After the iteration is over, all bus real and reactive powers, as well as the volt-
ages, are obtained. The power of the slack bus can be obtained by solving the 
following equation:

    P jQ V Y Vn n n nj j
j

n

+ =
=
∑� ˆ ˆ

1

    (2.97)   

 The line power fl ow can also be obtained as below:

    S P jQ V I V y V V V yij ij ij i ij i i i i j ij= + = = + −� � �ˆ ( ˆ ˆ ) ˆ2
0     (2.98)  

where  y ij   is the admittance of the branch  ij  and  y i   0  is the admittance of the 
ground branch at the end  i .  

  2.4    P  -  Q  DECOUPLING METHOD 

  2.4.1   Fast Decoupled Power Flow 

 According to Section  2.2.2 , the updated equation in the Newton power fl ow 
method is as below:
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 The Newton power fl ow is a robust power fl ow algorithm. It is also called 
full AC power fl ow since there is no simplifi cation in the calculation. However, 
the disadvantage of the Newton power fl ow is that the terms in the Jacobian 
matrix must be recalculated in each iteration. Actually, the reactance of the 
branch is generally far greater than the resistance of the branch in a practical 
power system. Thus there exists a strong relationship between the real power 
and the voltage angle, but weak coupling between the real power and the 
magnitude of voltage. That means the real power is little infl uenced by changes 
in voltage magnitude; that is,
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≈
ΔP
V

i

j

0     (2.100)   
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 while the reactive power and the magnitude of voltage have a strong coupling 
relationship and weak coupling for the reactive power and voltage angle. It 
means that the reactive power is little infl uenced by changes in voltage angle; 
that is,

    
∂
∂

≈
ΔQi

jθ
0     (2.101)   

 Therefore, the values of the elements in submatrix  N  and  K  in equation  (2.99)  
are very small; that is,
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 Equation  (2.99)  becomes
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or

    Δ ΔP H= − θ     (2.105)  

    Δ Δ ΔQ LV V L V VD= − = − ( )−1     (2.106)   

 The simplifi ed equations  (2.105)  and  (2.106)  make power fl ow iteration very 
easy. The bus real power mismatch is only used to revise the voltage angle, and 
the bus reactive power mismatch is only used to revise the voltage magnitude. 
These two equations are iteratively calculated, respectively, until the conver-
gence conditions are satisfi ed. This method is called the real and reactive 
power decoupling method. 

 Actually, equations  (2.105)  and  (2.106)  can be further simplifi ed. Since the 
difference of the voltage angles of two ends in the line  ij  is small (generally 
less than 10 0     −    20 0 ), sin( θ   i      −     θ   j  )is also small. Thus we have

    cos cos( )θ θ θij i j= − ≅ 1  

    G Bij ij ijsinθ <<   

 Assuming that

    Q V Bi i ii<< 2   
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 then the elements of the matrices  H  and  L  can be expressed as

    H V V B i j nij i j ij= = −, , , ,1 2 1…     (2.107)  

    L V V B i j mij i j ij= =, , , ,1 2 …     (2.108)  

or we have the following derivatives:
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 Therefore, the matrices  H  and  L  can be written as
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 Substituting equations  (2.111)  and  (2.112)  into equations  (2.105)  and  (2.106) , 
we have

    Δ ΔP VB V= ′ θ     (2.113)  

    Δ ΔQ VB V= ′′     (2.114)   
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 We rewrite equations  (2.113)  and  (2.114)  as below:
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 Equations  (2.113)  and  (2.114)  are the simplifi ed power fl ow adjustment equa-
tions, which can be written in matrix forms:
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 In equations  (2.117)  and  (2.118) , matrices B ′  and B ″  only contain the imagina-
tion part of bus admittance matrix. Thus they are constant symmetrical matri-
ces and need to be triangularized once only at the beginning of the analysis. 
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Thus equations  (2.117)  and  (2.118)  are called the  “ fast decoupled power fl ow 
model ”   [4 – 6] . 

 In practical application, the voltage magnitudes of the right side in equa-
tions  (2.115)  and  (2.117)  are assumed to be 1.0. In this way, the real power 
adjustment equation in the fast decoupled power fl ow model can be further 
simplifi ed as
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 In addition, there are two fast decoupled power fl ow versions according to the 
different handling of the constant matrices  B  ′ ,  B  ″ . These are the BX and XB 
versions. 

 For the XB version, the resistance is ignored during the calculation of  B  ′ . 
The elements of  B  ′ ,  B  ″  are computed as

    ′ =B Bij ij     (2.121)  

    ′ = − ′
≠
∑B Bii ij
j i

    (2.122)  
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B
B G

B
ij

ij ij

ij

2 2

    (2.123)  

    ′′= − − ′′
≠
∑B B Bii i ij
j i

2 0     (2.124)  

where  B i   0  is the shunt reactance to ground. 
 In the practical calculation, the following assumptions are also adopted in 

the XB version fast decoupled power fl ow model.

    •      Assume  r ij      <<     x ij  , which leads to   B
x

ij
ij

= −
1

  

   •      Eliminate all shunt reactance to ground.  
   •      Omit all effects from phase shift transformers    

 The  XB  version fast decoupled power fl ow model can then be expressed as
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where  r ij  ,  x ij   are the resistance and reactance of branch  ij , respectively. 
 For the BX version, the resistance is ignored during the calculation of  B  ″ . 

The elements of  B  ′ ,  B  ″  are computed as
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    ′′=B Bij ij     (2.131)  
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2 0     (2.132)   

 Similarly, the BX version of the fast decoupled power fl ow model can also be 
simplifi ed as
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    ′′= − ′′
≠
∑B Bii ij
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    (2.136)   

 It is noted that the fast decoupled power fl ow algorithm may fail to converge 
when some of the major assumptions such as  r ij      <<     x ij   do not hold. In this situ-
ation, Newton power fl ow or decoupled power fl ow without major approxima-
tion is recommended. 

   Example 2.3 

 In this example we solve the system in Example 2.1 with the decoupled PQ 
method. 

 First form the  B  ′ ,  B  ″  matrices as below:
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B
8 2429 2 3529

2 3539 4 7274
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. .
  

 Conducting triangular decomposition to  B  ′ ,  B  ″ , respectively, we get Tables 
 2.5  and  2.6 .   

 Given the initial bus voltage as

   � � � �V V V V1
0

2
0 0

3
0 0

4
0 01 0 0 1 1 0 1 05 0= = ∠ = ∠ = ∠. , . , .  

 Computing the bus real power mismatch with equation  (2.29) , we get

    ΔP P P1
0

1 1
0 0 30 0 02269 0 27731= − = − − −( ) = −s . . .  

    ΔP P P2
0

2 2
0 0 55 0 02404 0 52596= − = − − −( ) = −s . . .  

    
ΔP P s P3

0
3 3

0 0 5= − =s .
 

    

ΔP
V

1
0

1
0

0 277308= − .
 

    

ΔP
V

2
0

2
0

0 525961= − .
 

    

ΔP
V

3
0

3
0

0 454545= .
  

 Computing the voltage angle by solving correction equation  (2.117) :

    Δ Δ Δθ θ θ1
0 0

2
0 0

3
0 00 737161 6 7415620 6 3656065= − = − =. , . , .  

    θ θ θ1
1

1
0

1
0 00 7371761= + = −Δ .  

    θ θ θ2
1

2
0

2
0 06 7415620= + = −Δ .  

    θ θ θ3
1

3
0

3
0 06 3656065= + =Δ .   

 Table 2.5     Result of triangular decomposition to  B  ′  

   − 0.121317     − 0.285452     − 0.444829  
       − 0.246565     − 0.258069  
           − 0.698234  

 Table 2.6     Result of triangular decomposition to  B  ″  

   − 0.121317     − 0.285452  
       − 0.246565  
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 Then perform the reactive power iteration. Computing the bus real power 
mismatch with equation  (2.30) , we get

    ΔQ Q Q1
0

1 1
0 0 18 0 1404097 0 0395903= − = − − −( ) = −s . . .  

    ΔQ Q Q2
0

2 2
0 0 13 0 0015500 0 1315500= − = − − −( ) = −s . . .  

    
ΔQ
V

1
0

1
0

0 0395904= − .  

    
ΔQ
V

2
0

2
0

0 1315500= − .   

 Compute voltage magnitude by solving correction equation  (2.118) :

    Δ ΔV V1
0

2
00 01486806 0 035223= − = −. , .  

    V V V1
1

1
0

1
0 0 985139= + =Δ .  

    V V V2
1

2
0

2
0 0 964777= + =Δ .   

 Conduct the second iteration, using new voltage values. If the convergence 
tolerance is  ε    =   10  − 5 , the power fl ow will be converged after fi ve iterations, 
which are shown in Tables  2.7  and  2.8 .   

 Compared with the Newton method, the decoupled PQ method obtained 
almost the same results.    

 Table 2.7     Bus power mismatch change 

   Iteration 
 k       Δ  P  1       Δ  P  2       Δ  P  3       Δ  Q  1       Δ  Q  2   

  0     − 0.27731     − 0.52596    0.5     − 3.95903    ×    10  − 2      − 0.13155  
  1    4.051    ×    10  − 3     1.444    ×    10  − 2     8.691    ×    10  − 3      − 2.037    ×    10  − 3     1.568    ×    10  − 3   
  2     − 6.603    ×    10  − 3      − 3.488    ×    10  − 3     6.826    ×    10  − 4      − 1.537    ×    10  − 3      − 1.123    ×    10  − 3   
  3     − 1.227    ×    10  − 3     2.148    ×    10  − 3      − 4.967    ×    10  − 5      − 2.694    ×    10  − 4     7.3477    ×    10  − 4   
  4    9.798    ×    10  − 5      − 1.552    ×    10  − 4      − 1.140    ×    10  − 5     2.513    ×    10  − 5      − 3.277    ×    10  − 5   
  5     < 10  − 5      < 10  − 5      < 10  − 5      < 10  − 5      < 10  − 5   

 Table 2.8     Bus voltage change 

   Iteration  k       θ  1       θ  2       θ  3       V  1       V  2   

  1     − 0.737 0      − 6.742 0     6.366 0     0.9851    0.9648  
  2     − 0.349 0      − 6.356 0     6.871 0     0.9850    0.9650  
  3     − 0.497 0      − 6.475 0     6.737 0     0.9847    0.9646  
  4     − 0.500 0      − 6.448 0     6.732 0     0.9847    0.9648  
  5     − 0.500 0      − 6.450 0     6.732 0     0.9847    0.9648  
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  2.4.2   Decoupled Power Flow Without Major Approximation 

 Assuming the voltage magnitude in the Newton power fl ow model  (2.99)  to 
be 1.0, we have
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 Premultiplying the  Δ  P  equations by  KH   − 1  and adding the resulting equa-
tions to the  Δ  Q  equations leads to the system of equations
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 Premultiplying the  Δ  Q  equations by  NL   − 1  and adding the resulting equa-
tions to the  Δ  P  equations leads to the system of equations

    
Δ Δ

Δ
Δ
Δ

P NL Q

Q

H NL K

K L V

−⎡
⎣⎢

⎤
⎦⎥
= −

−⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

− −1 1 0 θ
    (2.139)   

 By combining the operations performed to obtain equations  (2.138)  and 
 (2.139) , we get
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or
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where the equivalent matrices  H eq   and  L eq   are defi ned as

    H H NL Keq = − −1     (2.142)  

    L L KH Neq = − −1     (2.143)   

 It can be observed that equation  (2.140)  or  (2.141)  is equivalent to the 
original system  (2.137)  but has the decoupled solution structure in which  Δ  θ  
and  Δ  V  are calculated separately. This decoupled procedure is not approxima-
tion way by ignoring the off - diagonal submatrices  N  and  K , which was adopted 
in fast decoupled power fl ow in Section  2.4.1 . Thus the solution will be close 
to the Newton power fl ow solution. However, the solution procedures are 
different from the Newton method, where the different  Δ  θ  and  Δ  V  are not 
computed simultaneously but separately. 
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 The following decoupled algorithm can be used to solve equation  (2.138)  
for  Δ  θ  and  Δ  V   [6] : 

  Step (1):   Compute temporary angle corrections

    Δ Δθ θH H P V= − ( )−1 ,     (2.144)    

  Step (2):   Compute voltage corrections

    Δ Δ ΔV L Q V H= − +( )−
eq
1 , θ θ     (2.145)    

  Step (3):   Compute additional angle corrections

    Δ ΔθN H N V= − −1     (2.146)      

 It can be verifi ed that  Δ  V  and  Δ  θ    =    Δ  θ   H     +    Δ  θ   N   are the solution vectors of equa-
tion  (2.138) . This algorithm considers the coupling effect represented by  K . 

 For equation  (2.139) , we have the dual algorithm: 

  Step (1):   Compute temporary voltage corrections

    Δ ΔV L Q VL = − ( )−1 , θ     (2.147)    

  Step (2):   Compute angle corrections

    Δ Δ Δθ θ= − +( )−H P V VLeq
1 ,     (2.148)    

  Step (3):   Compute additional voltage corrections

    Δ ΔV L KK = − −1 θ     (2.149)     

where    Δ  V        =    Δ  V L     +    Δ  V K      
 Although the above iteration algorithms  (2.144)  –  (2.146)  and  (2.147)  –  (2.149)  

yield the correct solutions for the power fl ow model  (2.137) , they are not suited 
for practical implementation  [6] . The reasons are: 

   •      In the fi rst algorithm angle corrections  Δ  θ  are computed in two steps ( Δ  θ   H   
and  Δ  θ   N  ), while in the second algorithm voltage magnitude corrections 
 Δ  V  are computed in two steps ( Δ  V L   and  Δ  V K  ).  

   •      The matrices  H  eq  and  L  eq  may be full.    

 The following iteration algorithm is suggested because of the above two 
diffi culties. For solving equations  (2.144)  –  (2.146) , the iteration steps for the 
suggested algorithm are described below:
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    Δ Δθ θH
k k kH P V= − ( )−1 ,     (2.150)  

    Δ Δθ θ θtemp
k k

H
k+ = +1     (2.151)  

    Δ ΔV L Q Vk k k= − − +
eq temp
1 1( , )θ     (2.152)  

    Δ ΔV V Vk k k+ = +1     (2.153)  

    Δ ΔθN
k kH N V= − −1     (2.154)  

    θ θ θk k
N
k+ += +1 1Δ Δtemp     (2.155)   

 Then compute the temporary angle vector of the next iteration:

    Δ Δθ θH
k k kH P V+ − + += − ( )1 1 1 1,     (2.156)  

    Δ Δθ θ θtemp
k k

H
k+ + += +2 1 1     (2.157)   

 By adding the two successive angle corrections, we get

    

Δ Δ Δ Δ
Δ

θ θ θ
θ

N
k

H
k k k k

k k

H P V N V

H P V

+ = − −[ ]
≈ −

+ − + +

− + +

1 1 1 1

1 1 1

( , )

( , )temp −− −[ ]
≈ − ( )− + +

H N V

H P V
N
k k

k k

Δ Δ
Δ

θ
θ1 1 1, temp     (2.158)   

 The above combined angle correction can be obtained by a single forward/
backward solution using the active mismatches computed at  V k   +1  and   θtemp

k+1 . 
Similar iteration steps can be obtained for the algorithm  (2.147)  –  (2.149) .   

  2.5    DC  POWER FLOW 

 AC power fl ow algorithms have high calculation precision but do not have fast 
speed. In real power dispatch or power market analysis, the requirement of 
calculation precision is not very high, but the requirement of calculation speed 
is of most concern, especially for a large - scale power system. More simplifi ca-
tion power fl ow algorithms than fast decoupled power fl ow algorithms are 
used. One algorithm is called  “ MW Only. ”  In this method, the Q - V equation 
in the fast decoupled power fl ow model is completely dropped. Only the fol-
lowing  P     −     θ  equation is used to correct the angle according to the real power 
mismatch.
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    (2.159)   
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 In the MW - only power fl ow calculation, the voltage magnitude can be handled 
either as constant or as 1.0 during each  P     −     θ  iteration. For the convergence, 
only real power mismatch is checked no matter what the reactive power mis-
match is. 

 Another most simplifi ed power fl ow algorithm is DC power fl ow. It is also 
an MW - only method but has the following assumptions: 

  (1)     All the voltage magnitudes are equal to 1.0.  
  (2)     Ignore the resistance of the branch; i.e., the susceptance of the 

branch is

    B
x

ij
ij

= −
1

    (2.160)    

  (3)     The angle difference on the two ends of the branch is very small, so 
that we have

    sinθ θ θij i j= −     (2.161)  

    cosθij = 1     (2.162)    

  (4)     Ignore all ground branches; that is,

    B Bi j0 0 0= =     (2.163)      

 Therefore, the DC power fl ow model will be
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    (2.164)  

or

    Δ ΔP B[ ] = ′[ ] [ ]θ     (2.165)  

where the elements of the matrix  B  ′  are the same as those in the  XB  version 
of fast decoupled power fl ow but we ignore the matrix  B  ″ . That is,

    ′ = −B
x

ij
ij

1
    (2.166)  

    ′ = − ′
≠
∑B Bii ij
j i

    (2.167)   
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 The DC power fl ow is a purely linear equation, so only one iteration calcula-
tion is needed to obtain the power fl ow solution. However, it is only good for 
calculating real power fl ows on transmission lines and transformers. The power 
fl owing on each line using the DC power fl ow is then

    P B
x

ij ij i j
i j

ij

= − −( ) = −
θ θ

θ θ
    (2.168)    
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SENSITIVITY CALCULATION 
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     Currently, sensitivity analysis is becoming more and more important in practi-
cal power system operations including in power market operations. This 
chapter analyzes and discusses all kinds of sensitivity factors such as loss sen-
sitivity factor, generator shift factor, pricing node shift factor, constraint shift 
factor, line outage distribution factor (LODF), outage transfer distribution 
factor (OTDF), response factor for the transfer path, and voltage sensitivity 
factor. It also addresses the practical application of these sensitivity factors 
including a practical method to convert the sensitivities with different 
references.  

3.1 INTRODUCTION

 This chapter focuses on the analysis and implementation details of the calcula-
tions of several sensitivities such as loss sensitivity, voltage sensitivity, genera-
tor constraint shift factor, and area - based constraint shift factor in the practical 
transmission network and energy markets. The power operator uses these to 
study and monitor market and system behavior and detect possible problems 
in the operation. These sensitivity calculations are also used to determine 
whether the online capacity as indicated in the resource plan is located in the 
right place in the network to serve the forecasted demand. If congestion or 
violation exists, the generation scheduling based on the sensitivity calculations 
can determine whether or not a different allocation of the available resources 
could resolve the congestion or violation problem. 
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 In the early energy market, transmission losses were neglected for compu-
tational simplicity reasons, but they are addressed in the standard market 
design (SMD)  [1 – 4] . Loss calculation is considered for the dispatch functions 
of SMD such as location - based marginal prices (LMP). Loss allocation 
does not affect generation levels or power fl ows; however, it does modify the 
value of LMP  [5] . The early and classic loss calculation approach is the loss 
formula – B coeffi cient method  [6] , which has been replaced by the more accu-
rate inverse Jacobian transpose method  [7] . Numerous loss calculation methods 
have been proposed in the literature and can be categorized into pro rata  [8] , 
incremental  [9] , proportional sharing  [10] , and Z - bus loss allocation  [11] . 

 Calculation of loss sensitivity is based on the distributed slack buses in the 
energy control center  [6, 11 – 13] . In real - time energy markets, LMP or eco-
nomic dispatch is implemented based on market - based reference, which is an 
arbitrary slack bus, instead of the distributed slack buses in the traditional 
energy management system. Meanwhile, the existing loss calculation methods 
in traditional EMS systems are generally based on the generator slacks or ref-
erences. Since the units with automatic generation control (AGC) are selected 
as the distributed slacks, and the patterns or status of AGC units are variable 
for different time periods in the real - time energy market, the sensitivity values 
will keep changing, which complicates the issue. This chapter presents a fast 
and useful formula to calculate loss sensitivity for any slack bus  [14, 15] . 

 The simultaneous feasibility test (SFT) performs the network sensitivity 
analysis in the base case and in contingency cases in the power system. The 
base case and postcontingency MW fl ows are compared against their respec-
tive limits to generate the set of critical constraints. For each critical constraint, 
SFT calculates constraint coeffi cients (shift factors) that represent linearized 
sensitivity factors between the constrained quantity (e.g., MW branch fl ow) 
and MW injections at network buses. The B - matrix used to calculate the shift 
factors is constructed to refl ect proper network topology  [16 – 18] . 

 The objective of SFT is to identify whether or not network operation is 
feasible for a real power injection scenario. If operational limits are violated, 
generic constraints are generated that can be used to prevent the violation if 
presented with the same network conditions  [16] . 

 In the energy market systems, the trade is often considered between the 
source and the sink (i.e., the point of delivery, POD and point of receipt, POR). 
The source and the sink may be an area or any bus group. Therefore, the area -
 based sensitivities are needed, which can be computed through the constraint 
shift factors within the area. 

 Another type of sensitivity that is frequently used is related to voltage 
stability, especially static voltage stability, which investigates the stability of an 
operating point and applies a linearized model. Static voltage instability is 
mainly associated with reactive power imbalance. This imbalance mainly 
occurs on a local network or a specifi ed bus in a system, which is called 
the weak bus. Therefore, the reactive power supports have to be locally 
adequate. 
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 Voltage sensitivity analysis can detect the weak buses/nodes in the power 
system where the voltage is low. It can be used to select the optimal locations 
of VAR support service  [19 – 25] . According to the sensitivity values voltage 
benefi t factor (VBF) and loss benefi t factor (LBF), a ranking of VAR support 
sites can also be obtained.  

  3.2   LOSS SENSITIVITY CALCULATION 

 This section presents a fast and useful formula to calculate loss sensitivity for 
any slack bus. The formula is based on the loss sensitivity results from the 
distributed slacks without computing a new set of sensitivity factors through 
the traditional power fl ow calculation. In particular, the loads are selected as 
the distributed slacks rather than the usual generator slacks. The loss sensitiv-
ity values will be unchanged for the same network topology no matter how 
the status of the AGC units changes. 

 In the energy market, the formulation of the optimum economic dispatch 
can be represented as follows:

    Min F C P j NGj j
j

= ∈∑     (3.1)   

 Such that

    s t P P P j NGj
j

. . D L G+ = ∈∑ ∑     (3.2)  

    S P P j NG i Kij j
j

i∑ ≤ ∈ ∈max max,     (3.3)  

    P P P j NGj j jG G Gmin max≤ ≤ ∈     (3.4)  

where

   P D  :    The real power load  
  P imax  :    The maximum requirement of power supply at the active constraint  i   
  P Gj  :    The real power output at generator bus  j   
  P Gjmin  :    The minimal real power output at generator  j   
  P Gjmax  :    The maximal real power output at generator  j   
  P L  :    The network losses  
  S ij  :    The sensitivity (shift factor) for resource or unit  j  and active constraint 

 i  with respect to the market - based reference  
  C j  :    The real - time price for the resource (or unit)  j   
  K max  :    The maximum number of active constraints  
  NG :    The number of units    

 The Lagrangian function is obtained from equations  (3.1)  and  (3.2) .
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⎠⎟∑ ∑ ∑λ     (3.5)   

 Traditionally, generation reference (single or distributed slack) is used in 
the calculation of loss allocation. This works, but it may be inconvenient or 
confusing for the users who frequently use the loss factors. The reason is that 
the AGC status or patterns of units are variable in the real - time EMS or 
energy markets. The loss sensitivity values based on the distributed unit refer-
ences will keep changing because of the change of unit AGC status. Thus the 
distributed load slack or reference is used here. 

 The optimality criteria of the Lagrange function  (3.5)  are written as follows:
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where

   λ :    The Lagrangian multiplier  

   
∂
∂

P
P i

L

D

:    The loss sensitivity with respect to load at bus  i   

   ∂
∂

P
P j

L

G

:    The loss sensitivity with respect to unit at bus  j     

 We use   
∂
∂
P
Pi

L , which is the loss sensitivity with respect to an injection at bus 

 i , to stand for both   
∂
∂

P
P i

L

D

 and   
∂
∂

P
P j

L

G

. Since the distributed slack buses are 

used here, all loss sensitivity factors are nonzero. 
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 If an arbitrary slack bus,  k , is selected, then  P k   is the function of the other 
injections, i.e.,

    P f P i n i kk i= ∈ ≠( ) ,     (3.12)  

where  n  is the total number of buses in the system and  P i   is the power injec-
tion at bus  i , which includes the load  P Di   and generation  P Gj  . Actually, the load 
can be treated as a negative generation. Then equations  (3.9)  and  (3.11)  can 
be changed to equation  (3.13) , and equations  (3.8)  and  (3.10)  can be changed 
to equation  (3.14) .

    L
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− ∂
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1 L
    (3.13)  

    
d
d

f
P

L i ni

i
i = ∈λ     (3.14)   

 Equation  (3.2)  will be rewritten as

    P P P i nk i
i k

L = + ∈
≠
∑     (3.15)   

 The new Lagrangian function can be obtained from equations  (3.1)  and  (3.15) .
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 The optimality criteria can be obtained from the Lagrangian function  (3.16) .
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 From equation  (3.15) , we get
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 From equations  (3.17)  and  (3.18) , we get
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 It is noted that  L i   and   Li* are similar, but they have different meanings  [14] . 
The former is based on the distributed slack buses, and the latter is based 
on an arbitrary slack bus  k . Similarly, the loss sensitivity in  L i   is based on 

the distributed slack, i.e.,   ∂
∂
P
Pi

L

DS

 (the subscript DS means the distributed 

slack); the loss sensitivity in   Li* is based on an arbitrary single slack bus  k , i.e., 

  ∂
∂
P
Pi k

L . Note that the  k th loss sensitivity, with bus  k  as the slack bus, is zero. 

 From equations  (3.14)  and  (3.19) , we have the following equation:

    L
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k
k* , *= = 1     (3.21)   

 From equations  (3.13) ,  (3.20) , and  (3.21) , we get
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 Hence, with one set of incremental transmission loss coeffi cients for the 
distributed slack buses, the loss sensitivity for an arbitrary slack bus can be 
calculated from the following formula:
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    (3.24)   

 The formula of loss sensitivity calculation is very simple, but it is 
accurate and effi cient for real - time energy markets. It will avoid computing 
a new set of loss sensitivity factors whenever the slack bus  k  changes. 
Consequently, it means a huge time savings. In addition, the loss factors 
based on the distributed load reference will not be changed no matter how 
the AGC statuses of units vary, as long as the network topology is the same 
as before.  
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  3.3   CALCULATION OF CONSTRAINED SHIFT 
SENSITIVITY FACTORS 

  3.3.1   Definition of Constraint Shift Factors 

 The objective of SFT is to identify whether or not network operation is fea-
sible for a real power injection scenario. If operational limits are violated, 
generic constraints and corresponding sensitivities (the shift factors) are 
generated, which can be used to prevent the violation if presented with the 
same network conditions. Meanwhile, the shift factors can also be used in 
the generation scheduling or economic dispatch to alleviate the overload of 
transmission lines. 

 The SFT calculations include the contingency analysis (CA), in which the 
decoupled power fl ow (DPF) or DC power fl ow is used. The set of component 
changes that can be analyzed include transmission line, transformer, circuit 
breaker, load demand, and generator outages. SFT informs the users about the 
contingencies that could cause conditions violating operating limits. These 
limits include branch overloads, abnormal voltages, and voltage angle differ-
ences across specifi ed parts of the network. SFT reports the sensitivity (shift 
factor) of the constraint with respect to the controls. These controls include 
unit MW control, phase shifter, and load MW control. 

  3.3.1.1   Unit  MW  Control     The unit MW control is the most effi cient and 
cheapest control among the available controls. The formulation of sensitivity 
for a unit can be written as follows:

    S
P
P

k K j PGkj
k

j

=
∂
∂

= =
G

1 1, , , ,max max…… ……     (3.25)  

where

   S kj  :    The sensitivity of the power change on constraint  k  with respect to 
power change on the unit MW control  j   

  P k  :    The MW power on the constraint  k   
  P Gj  :    The MW power on generating unit control  j   
  K max  :    The maximum number of constraints  
  PG max  :    The maximum number of generator unit MW controls    

 According to KCL law, it is impossible that power change on the branch 
constraint will be greater than one MW if the generator control has only 
one MW power change. Thus the maximum value of the sensitivity of the 
branch constraint with respect to the unit MW control is 1.0 (generally, less 
than 1.0).  
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  3.3.1.2   Phase Shifter Control     The phase shifter is another effi cient 
control among the available controls. There are some assumptions for the 
phase shifter in the SFT design. The phase shifter control variable is tap 
number (e.g., phase shifter angle). Normally tap number is an integer, but it 
can be handled as a real number in the practical SFT calculation. In addition, 
all opened phase shifters will be skipped over, that is, the sensitivity for the 
phase shifter that is open at any end will not be calculated. 

 The step on the tap - type is the sensitivity of angle with respect to tap 
number. Thus the sensitivity of the constraint to the phase shifter is about the 
power change on the constraint to the angle change of the phase shifter. The 
angle unit may be degree or radiant. Since the value of sensitivity may be very 
small if the angle unit is degree, radiant is adopted in the practical calculation. 
The formulation of sensitivity for phase shifter can be written as follows:

    S
P

k K jp PSkjp
k

jp
ps=

∂
∂

= =
φ

1 1, , , ,max max…… ……     (3.26)  

where

   S kjp  :    The sensitivity of the constraint  k  to the phase shifter control  jp   
   φ jp

ps:    The phase shifter angle of the phase shifter control  jp   
  K max  :    The maximum number of constraints  
  PS max  :    The maximum number of phase shifter controls    

 It is noted that there is a special  “ branch in constraint ”  logic that must be 
implemented when the phase shifter branch itself is in the constraint. Basically 
the artifi cial fl ow through transformer branch must be subtracted from 
constraint fl ow. 

 In addition, the sensitivity of the constraint to the phase shifter control is 
different from the sensitivity of the constraint to the generator control or other 
bus injection type control. The value of the latter cannot be greater than 1.0, 
but the former does not have this constraint.  

  3.3.1.3   Load  MW  Control     The load MW control should be the last control 
when other controls are not available. The formulation of sensitivity for load 
MW control can be written as follows:

    S
P
P

k K jd LDkjd
k

jd

= −
∂
∂

= =1 1, , , ,max max…… ……     (3.27)  

where

   S kjd  :    The sensitivity of the constraint  k  to the load MW control  jd   
  P jd  :    The MW power on load control  jd   
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  K max  :    The maximum number of constraints  
  LD max  :    The maximum number of load MW controls in the whole system    

 It is noted that the sensitivity sign for load MW control is negative. The 
reason is that increasing load will cause more serious constraint violation 
rather than reducing the constraint violation. According to the sensitivity 
relationship between the constraint and the load MW control, it is needed to 
reduce/shed load for alleviating or deleting the constraint violation. 

 In the market application, the sensitivity of the pricing node is interested. 
The pricing node does not have the generator or load connected to it. Thus 
the above sensitivity calculation of unit/load control can be expanded to any 
bus injection, that is,

    S
P
P

k K bs NBkbs
k

bs

= −
∂
∂

= =1 1, , , ,max max…… ……  

where

   S kbs  :    The sensitivity of the constraint  k  to the bus injection on bus  bs   
  P bs  :    The MW power injection on bus  bs   
  NB max  :    The maximum number of buses in the whole system     

  3.3.1.4   Constraint Value     For each constraint, the constraint value (DC 
value) is computed from the control values multiplied by sensitivities. The 
formulation can be written as follows:

    DCVAL VAL_k j kj
j

U

U S=
=
∑ *
max

1

    (3.28)  

where

   DCVAL k  :    The constraint value for constraint  k   
  VAL_U j  :    The value of control  j . Here, the controls include unit MW control, 

phase shifter, and load MW control.  
  S kj  :    The sensitivity or shift factor of constraint  k  to control  j   
  U max  :    The maximum number of controls      

  3.3.2   Computation of Constraint Shift Factors 

  3.3.2.1   Constraint Shift Factors Without Line Outage     The constraint 
shift factors without line outage are also called as the generation shift 
factor. 

 From DC power fl ow algorithm, we have the following equation:
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 Then the standard matrix calculation of the DC power fl ow can be written as 
below:

    qq = [ ]X P     (3.30)   

 Since the DC power fl ow model is a linear model, we may calculate pertur-
bations about a given set of system conditions by use of the same model. Thus 
we can compute the changes in bus phase angles  Δ  θ  for a given set of changes 
in the bus power injections  Δ  P :

    Δ Δqq = [ ]X P     (3.31)  

where the net perturbation of the reference bus equals the sum of the pertur-
bations on all the other buses. 

 Now we compute the generation shift factors for the generator on bus  i.  To 
do this, we will set the perturbation on bus  i  to +1   pu and the perturbation on 
all the other buses to zero. Then we can solve for the change in bus phase 
angles with the following matrix calculation:

    Δqq = [ ] +
−
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row i

ref row
    (3.32)   

 The vector of bus power injection perturbations in equation represents the 
situation when a 1 - pu power increase is made at bus  i  and is compensated by 
a 1 - pu decrease in power at the reference bus. The  Δ  θ  values in equation are 
thus equal to the derivative of the bus angles with respect to a change in power 
injection at bus  i . 

 Thus the constraint shift factors  S ki   without considering the line outage can 
be derived as follows. 

 Let  p  and  q  be the two ends of constraint  k ; the power fl owing on the con-
straint line  k  using DC power fl ow is:

    P
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 The generation shift factors are defi ned as
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 In the practical application, the generation shift factors of the network can 
be directly obtained from [ B  ′ ] through forward and back calculation. 
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 Suppose a branch  k  that is from  p  to  q  with the reactance  x k  . 
 From [ B  ′ ][ θ ]   =   [ P ], we get
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 Through implying forward and back calculation to the above equation, the 
solution will be the generation shift factors for all bus with respect to the 
constraint line  k . If a constraint consists of multiple lines (branches), the 
superposition theory can be applied. For example, a constraint contains two 
lines  k  (from  p  to  q ) and  t  (from  i  to  j ) with reactance  x k   and  x t  , respectively. 
We get the following relationship:
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 Through implying forward and back calculation to the above equation, the 
solution will be the generation shift factors for all buses with respect to lines 
 k  and  t .  

  3.3.2.2   Line Outage Distribution Factors  [17]      The simulation of line 
outage is shown in Figure  3.1 . Figure  3.1 (a) is a network without line outage. 

     FIGURE 3.1     Network for simulating line outage  

mnP

(a) Network before line l outage 

(b) Network after line l outage 

Bus m Bus n
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line l

Bus m Bus n
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Connect to other 
part of the network

line l

'mnP
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Suppose line  l  from bus  m  to bus  n  were opened by circuit breakers as shown 
in Figure  3.1 (b). A line outage may be modeled by adding two power injections 
to a system, one at each end of the line to be dropped, which is shown in Figure 
 3.1 (c). The line is actually left in the system, and the effects of its being dropped 
are modeled by injections. Note that when the circuit breakers are opened, 
no current fl ows through them and the line is completely isolated from the 
remainder of the network. In Figure  3.1 , the breakers are still closed but injec-
tions  Δ  P m   and  Δ  P n   have been added to bus  m  and bus  n , respectively. If 
 Δ  P m     =    P mn  , and  Δ  P n     =    −  P mn  , where  P mn   is equal to the power fl owing over the 
line, we will still have no current fl owing through the circuit breakers even 
though they are closed. As far as the remainder of the network is concerned, 
the line is disconnected.   

 Using the equation relating to  Δ   θ   and  Δ  P ,

    Δ Δqq = [ ]X P     (3.36)   

 Since only power injections at buses  m  and  n  have been changed after line 
outage by adding two power injections to a system, then
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    (3.37)   

 Thus we can get the incremental changes of the phase angle at buses  m  and 
 n  of the line  l  from the outage

    Δ Δ Δθm mn n mm mX P X P= +     (3.38)  

    Δ Δ Δθn nn n nm mX P X P= +     (3.39)  

where

   θ   m  :    The phase angle at bus  m  of line  l  before the outage  
  θ   n  :    The phase angle at bus  n  of line  l  before the outage  
  P mn  :    The power fl ow on line  l  from bus  m  to bus  n  before the outage  
  Δ  θ   m  :    The incremental changes of the phase angle at bus  m  of line  l  from the 

outage  
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  Δ  θ   n  :    The incremental changes of the phase angle at bus  n  of line  l  from the 
outage  

  Δ  P mn  :    The incremental changes of the power fl ow on line  l  of line  l  from the 
outage  

   ′θm:    The phase angle at bus  m  of line  l  after the outage  
   ′θn:    The phase angle at bus  n  of line  l  after the outage  
   ′Pmn:    The power fl ow on line  l  from bus  m  to bus  n  after the outage    

 The outage modeling criterion requires that the incremental injections  Δ  P n   
and  Δ  P m   equal the power fl owing over the outaged line  after  the injections are 
imposed. Then, if we let the line reactance be  x l  

    ′ = = −P P Pmn m nΔ Δ     (3.40)  

    Δ Δ ΔP
x

mn
l

m n= −( )1
θ θ     (3.41)   

 Since  Δ  P n     =    −  Δ  P m  , equations  (38)  and  (39)  can be written as

    
Δ Δ Δ Δ Δ

Δ
θm mn n mm m mn m mm m

mm mn m

X P X P X P X P

X X P

= + = − +
= −( )

( )
    (3.42)  

    
Δ Δ Δ Δ Δ

Δ
θn nn n nm m nn m nm m

nm nn m

X P X P X P X P

X X P

= + = −( ) +
= −( )     (3.43)  

where

    X Xmn nm=     (3.44)   

 Thus
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1

1

1

θ θ

nn mn mX P−( )2 Δ     (3.45)   

 The power fl ow on line  l  from bus  m  to bus  n  after the outage   ′Pmn is com-
puted as follows:

    

′ = +

= + + −( )

P P P

P
x

X X X P

mn mn mn

mn
l

mm nn mn m

Δ

Δ
1

2     (3.46)   
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 From equations  (3.40)  and  (3.46) , we get

    Δ ΔP P
x

X X X Pm mn
l

mm nn mn m= + + −( )1
2     (3.47)  

that is,

    ΔP
P

x
X X X

m
mn

l
mm nn mn

=
− + −( )1

1
2

    (3.48)   

 Since there are only two nonzero elements at buses  m  and  n  in the power 
injection vector, the incremental change of phase angle at any bus  i  can be 
computed as follows:
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where
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    (3.50)  

which is the sensitivity factor of the change in phase angle of bus  i  with respect 
to power fl ow on line  l  before the outage. 

 For computing the effect of line  l  outage on the other line  k , the line outage 
distribution factor is defi ned as below:
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 From equation  (3.50) ,  S p   ,   l  ,  S q   ,   l   can be written as



58 SENSITIVITY CALCULATION

    S
P
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x X X X
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 Thus
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  3.3.2.3   Outage Transfer Distribution Factors     Because we know that the 
generation shift factors and line outage distribution factors are linear models, 
we can use superposition to extend them to compute the network constraint 
sensitivity factors after a branch has been lost. They are also called the outage 
transfer distribution factors (OTDF). Let us compute the sensitivity factor 
OTDF between line  k  and generator bus  j  when line  l  is opened. This is cal-
culated by fi rst assuming that the change in generation on bus  j ,  Δ  P j  , has a 
direct effect on line  k  and an indirect effect through its infl uence on the power 
fl owing on line  l , which, in turn, infl uences line  k  when line  l  is in outage. Then

    

Δ Δ Δ
Δ Δ

P S P P

S P S P

S S

k kj j k l l

kj j k l lj j
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= +
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,

,

, jj jP( )Δ     (3.55)   

 Therefore, the sensitivity OTDF after line  l  outage can be defi ned as

    OTDF LODFk j
k

j
kj k l lj

P
P

S S, ,= = +( )Δ
Δ

    (3.56)  

where

   OTDF k   ,   j  :    The sensitivity factor between line  k  and generator bus  j  when line 
 l  is opened      
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  3.3.3   Constraint Shift Factors with Different References 

 The shift factor computed in SFT is based on the reference bus in EMS topol-
ogy, but it can be easily converted to any market - based reference. 

 Let  y  be market - based reference unit, and the shift factor of the constraint 
 k  with respect to any unit  j  that is obtained based on the EMS reference bus 
is  S kj  . For unit  y , the shift factor of the constraint  k  is  S ky  . Then, the shift factors 
after converting to market - based reference unit  k  can be computed as follows:

    ′ = =S k Kky 0 1, , max……     (3.57)  

    ′ = − = ≠S S S k K j ykj kj ky 1, , ,max……     (3.58)  

where

   S kj  :    The shift factor of constraint  k  with respect to unit  j  that is based on the 
EMS reference  

  S ky  :    The shift factor of constraint  k  with respect to unit  y  that is based on 
the EMS reference  

   ′Skj :    The shift factor of constraint  k  with respect to unit  j  that is based on the 
market - based reference  y   

   ′Sky:    The shift factor of constraint  k  with respect to unit  y  that is based on 
the market - based reference  y     

 We know that the shift factor of the constraint is related to the selected 
reference, i.e., the value of shift factor will be different if the reference is dif-
ferent even if the system topology and conditions are the same. Sometimes 
system operators would like to have the stable shift factor values without 
caring about the selection of reference bus/unit. Thus the distributed load 
reference will be used to get the unique constraint shift factors if the system 
topology and conditions are unchanged. 

 Let  S kl   dref  be the sensitivity of load distribution reference for the constraint 
 k , and the shift factor of the constraint  k  with respect to any control  j  that is 
obtained based on the EMS reference bus is  S kj  . Then the shift factors based 
on the load distribution reference LDREF can be computed as follows:

    ′ = − =S S S k Kkj kj kldref 1, , max……     (3.59)  

where

   S kl   dref :    The sensitivity of load distribution reference for constraint  k , that is,   

    S

S LD
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k Kkl
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∑

∑
1

1

1
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max
, , max……     (3.60)  
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where

   S kjd  :    The sensitivity of load  jd  with respect to constraint  k   
  LD jd  :    The load demand at load bus  jd     

 In the practical energy markets such as the independent system operator 
(ISO), the system consists of many areas, but one major area in the ISO system 
is called the internal area and others are called external areas. If the internal 
area is a major concern during the price calculation for this market system, 
the load distribution reference can be selected based on the internal area only. 
Similarly, Let LDA max  be the total number of load controls in the internal area 
of the ISO system, which is less than the total number of load controls in the 
whole ISO system, LD max . The shift factors based on the area load distribution 
reference LDAREF can be computed as follows:

    ′ = − =S S S k Kkj kj kldaref 1, , max……     (3.61)  

where

   S k   ldaref :    The sensitivity of load distribution reference in area  A  for the con-
straint  k , that is,   
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, , max……

DDA LDmax max∈     (3.62)  

where

  LDA max :    The maximum number of load MW controls in area  A      

  3.3.4   Sensitivities for the Transfer Path 

 A transfer path is an energy transfer channel between a point of delivery 
(POD) and a point of receipt (POR). The POD is the point of interconnection 
on the transmission provider ’ s transmission system where capacity and/or 
energy transmitted by the transmission provider will be made available to the 
receiving party. The POR is the point of interconnection on the transmission 
provider ’ s transmission system where capacity and/or energy transmitted will 
be made available to the transmission provider by the delivering party. 

 The pair of POD and POR defi nes a path and the direction of fl ow on that 
path. For internal paths, this would be a specifi c location in the area. For an 
external path, this may be an area - to - area interface. Similar to the concept of 
POD/POR, a transfer path can also be defi ned as from the source to the sink. 
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 If POD/POR (or Source/Sink) is a single unit or single injection node, the 
sensitivity of POR or POD is the same as the constrained shift factor, which 
is mentioned in Sections  3.2  and  3.3 . If POD/POR (or Source/Sink) is an area, 
the sensitivity of POR or POD can be computed as follows. 

 Let  PF j   be the participation factor of unit  j , and the shift factor of the con-
straint  k  with respect to any unit  j  is  S kj  . The area - based shift factor of the 
constraint  k  is  S kA  , which can be computed as follows:

    S
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k K j AkA

j kj
j A

j
j A

=
×( )
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∈

∑
∑

1, , ,max……     (3.63)  

where

   S kA  :    The area - based shift factor of constraint  k   
  PF j   :    The participation factor of unit  j     

 Similarly, if considering the effect of the outage, the area - based shift factor 
of constraint  k  can be computed as follows.
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k K j AkA

j kj
j A

j
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=
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∈
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∑

OTDF

1, , ,max……     (3.64)   

 If a transfer path is from area  A  to area  B , the sensitivity of the transfer 
path will be computed as:

    S A B S STP kA kB→( ) = −     (3.65)   

 If a transfer path is from an injection node  i  to another injection node  j , the 
sensitivity of the transfer path will be computed as:

    S I JTP ki kj→( ) = −OTDF OTDF     (3.66)   

 If a transfer path is from injection node  i  to area  A , or from area  A  to 
injection node  i , the corresponding sensitivities of the transfer path will be 
computed as:

    S I A STP ki kA→( ) = −OTDF     (3.67)  

    S A I STP kA ki→( ) = −OTDF     (3.68)     
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  3.4   PERTURBATION METHOD FOR SENSITIVITY ANALYSIS 

 So far, the sensitivity analysis methods described in this chapter are based on 
the matrix (either B ′  matrix or Jacobian matrix). The sensitivity values that 
are computed based on partial differential term will be stable, or will not be 
changed as long as the system topology is the same. 

 Sometimes, the perturbation method is also used in the sensitivity 
calculation. 

  3.4.1   Loss Sensitivity 

 The perturbation method for loss sensitivity calculation is shown as below. 

   (a)     Perform power fl ow calculation, and obtain the initial system power 
loss  P L   0 .  

   (b)     Simulate the calculation of the loss sensitivity with respect to generator 
 i . Increase the power output of the generator  i  for  Δ  P Gi   (if computing 
the loss sensitivity of load  k , reduce the power demand of load  k  for 
 Δ  P Dk  ), and the slack unit will absorb the same amount of  Δ  P Gi  .  

   (c)     Run power fl ow again, and get the new system power loss  P L  .  
   (d)     Compute the loss sensitivity as below:

For unit loss sensitivity:

    LS
P P

P
i NGGi

L L

Gi

=
−

∈0

Δ
    (3.69)   

 For load loss sensitivity:

    LS
P P

P
iDk

Dk

=
−

∈L L ND0

Δ
    (3.70)      

 Where  LS Gi  , and  LS Dk   are the loss sensitivity values with respect to the unit  i  
and load  k , respectively.  

  3.4.2   Generator Shift Factor Sensitivity 

 The perturbation method for generator shift factor sensitivity calculation is 
shown below. 

   (a)     Chose a unit  i  and a branch constraint  j .  
   (b)     Perform power fl ow calculation, and obtain the initial power fl ow  P j   0  

for branch  j .  
   (c)     Simulate the calculation of the generator shift factor sensitivity 

of branch  j  with respect to generator  i . Increase the power output of 
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generator  i  for  Δ  P Gi  , and the slack unit will absorb the same amount of 
 Δ  P Gi  .  

   (d)     Run power fl ow again, and get the new power fl ow  P j   for branch  j .  
   (e)     Compute the generator shift factor sensitivity as below:

    GSF
P P

P
i NGj i

j j

Gi
, =

−
∈0

Δ
    (3.71)      

 Where  GSF j   ,   i   is the generator shift factor sensitivity of branch  j  with respect 
to unit  i . 

 The calculation of the load shift factor sensitivity is similar to that of the 
generator shift factor sensitivity by handling the load as the negative 
generation.  

  3.4.3   Shift Factor Sensitivity for the Phase Shifter 

 The perturbation method for the phase shifter shift factor sensitivity calcula-
tion is shown as below. 

   (a)     Chose a phase shifter  t  and a branch constraint  j .  
   (b)     Perform power fl ow calculation, and obtain the initial power fl ow  P j   0  

for branch  j .  
   (c)     Simulate the calculation of the shift factor sensitivity of branch  j  with 

respect to phase shifter  t . Increase the taps of the phase shifter  i  for  Δ  T t   
(or angle change  Δ  θ   t  ), which can be simulated by change the suseptance 
of the phase shifter.  

   (d)     Run power fl ow again, and get the new power fl ow  P j   for branch  j .  
   (e)     Compute the phase shifter shift factor sensitivity as below.
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=
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=
−

0

0

Δ

Δ
or

θ

    (3.72)  

where  SF j   ,   t   is the shift factor sensitivity of branch  j  with respect to phase shifter  t .     

  3.4.4   Line Outage Distribution Factor 

 The perturbation method for the line outage distribution factor calculation is 
shown below: 

   (a)     Chose a branch  l  that will be simulated as an outage and a branch 
constraint  j .  
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   (b)     Perform power fl ow calculation before branch  l  is open, and obtain the 
initial power fl ow  P j   0  for branch  j  and  P l   0  for branch  l .  

   (c)     Simulate the calculation of the line outage distribution factor (LODF). 
Open branch  l  while the unit power and load power are unchanged.  

   (d)     Run power fl ow again, and get the new power fl ow  P j   for branch  j . The 
power fl ow  P l   for branch  l  will be zero since branch  l  is in outage.  

   (e)     Compute the line outage distribution factor of branch  j  as branch  l  is 
in outage as below:

    LODFj l
j j

l

P P

P
, =

− 0

0

    (3.73)  

where LODF  j   ,   l   is the line outage distribution factor of branch  j  with respect 
to outage branch  l.      

  3.4.5   Outage Transfer Distribution Factor 

 The perturbation method for the outage transfer distribution factor calcula-
tion is shown below. 

   (a)     Choose a unit, a branch  l  that will be simulated as outage, and a branch 
constraint  j .  

   (b)     Perform power fl ow calculation before branch  l  is open, and obtain the 
initial power fl ow  P j   0  for branch  j  and  P l   0  for branch  l .  

   (c)     First of all, simulate the calculation of the generator shift factor sensi-
tivity of branches  j  and  l  with respect to generator  i . Increase the power 
output of generator  i  for  Δ  P Gi  , and the slack generator will absorb the 
same amount of  Δ  P Gi  .  

   (d)     Conduct power fl ow calculation, and get the new power fl ow  P j   for 
branch  j  and  P l   for branch  l .  

   (e)     Compute the generator shift factor sensitivity for the branch  j  and  l .

    GSF
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, =

−
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Δ
    (3.74)  

    GSF
P P

P
i NGl i

l l
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−
∈0

Δ
    (3.75)    

   (f)     Then simulate the calculation of LODF for branch  j  with respect to 
outage branch  l . Open branch  l  while the unit power and load power 
are unchanged.  

   (g)     Once again run power fl ow, and get the new power fl ow   ′Pj  for branch 
 j . The power fl ow   ′Pl  for branch  l  will be zero since branch  l  is in 
outage.  
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   (h)     Compute the line outage distribution factor of branch  j  as branch  l  is 
in outage as below:

    LODFj l
j j

l

P P

P
, =

′−
    (3.76)      

 Finally, the sensitivity OTDF of branch  j  after line  l  outage can be obtained 
as below:

    OTDF GSF LODF GSFj i j i j l l i, , , ,= +     (3.77)  

where OTDF  j   ,   i   is the sensitivity factor between line  j  and generator bus  i  when 
line  l  is opened. 

 It is noted that the perturbation method for sensitivity calculation is very 
straightforward, but there is a drawback. That is, the values of sensitivity 
depend highly on the solution in addition to the topology. Even if the system 
topology is not changed, the values of the sensitivity may be a little different 
for the different initial points. Thus, to obtain accurate sensitivity results, the 
approach based on a matrix is recommended. If the perturbation method is 
used, the amount of the perturbation should be small so that the solution is 
close to the initial operation points.   

  3.5   VOLTAGE SENSITIVITY ANALYSIS 

 Before we do voltage sensitivity analysis, we need to understand the concept 
and importance of voltage stability. Voltage stability is the ability of a power 
system to maintain adequate voltage magnitude so that when the system 
nominal load is increased, the actual power transferred to that load will 
increase. The main cause of voltage instability is the inability of the power 
system to meet the demand for reactive power. The voltage stability problem 
consists of two aspects: a large disturbance aspect and a small disturbance 
aspect. The former is called dynamic stability, and the latter is called static 
stability. The large disturbance involves short circuits and addresses postcon-
tingency system response. The small disturbance investigates the stability of 
an operating point and applies a linearized model. The voltage sensitivity 
analysis herein is used for static voltage stability. 

 Static voltage instability is mainly associated with reactive power imbal-
ance. This imbalance mainly occurs on a local network or a specifi ed bus in a 
system. Therefore, the reactive power supports must be locally adequate. With 
static voltage stability, slowly developing changes in the power system occur 
that eventually lead to a shortage of reactive power and declining voltage. This 
phenomenon can be seen in Figure  3.2 , a plot of power transferred versus 
voltage at the receiving end.   
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 These kinds of plots are generally called  P  -  V  curves or  “ nose ”  curves. As 
power transfer increases, the voltage at the receiving end decreases. Eventually, 
a critical (nose) point, the point at which the system reactive power is out of 
usage, is reached where any further increase in active power transfer will lead 
to very rapid decrease in voltage magnitude. Before reaching the critical point, 
a large voltage drop due to heavy reactive power losses is observed. The only 
way to save the system from voltage collapse is to reduce the reactive power 
load or add additional reactive power before reaching the point of voltage 
collapse. 

 The purpose of the voltage sensitivity analysis is to improve the voltage 
profi le and to minimize system real power losses through the optimal reactive 
power controls (i.e., adding VAR supports). These goals are achieved by 
proper adjustments of VAR variables in power networks through seeking the 
weak buses in the system. Therefore, if the voltage magnitude at generator 
buses, VAR compensation (VAR support), and transformer tap position 
are chosen as the control variables, the optimal VAR control model can be 
represented as:

    min , ,P Q V TL s G( )     (3.78)  

such that

    Q Q V T Vs G D, , ,( ) = 0     (3.79)  

    Q Q Q V T QG G s G Gmin max, ,≤ ( ) ≤     (3.80)  

    V V Q V T VD D s G Dmin max, ,≤ ( ) ≤     (3.81)  

    Q Q Qs ssmin max≤ ≤     (3.82)  

    V V VG G Gmin max≤ ≤     (3.83)  

    T T Tmin max≤ ≤     (3.84)  

     FIGURE 3.2     A plot of power versus voltage  
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where

   P L  :    The system real power loss  
  V G  :    The voltage magnitude at generator buses  
  Q S  :    The VAR support in the system  
  Q G  :    The VAR generation in the system  
  T :    The tap position of the transformer  
  V D  :    The voltage magnitude at load buses    

 The subscripts  “ min ”  and  “ max ”  represent the lower and upper limits of the 
constraint, respectively. 

 Two kinds of sensitivity - related factors can be computed through equations 
 (3.78) – (3.84) . Here they are called voltage benefi t factors (VBF) and loss 
benefi t factors (LBF), which are expressed as follows:

    LBF
L L s

s
i

i
i

i

P P Q

Q
i ND=

− ( )( )
× ∈

∑ 0

100%     (3.85)  

    VBF
s

s
i

i i i
i

i

V Q V

Q
i ND=

( ) −( )
× ∈

∑ 0

100%     (3.86)  

where

   Q  s   i  :    The amount of VAR support at load bus  i   
  LBF i  :    The loss benefi t factors from VAR compensation  Q si    
  VBF i  :    The voltage benefi t factors from VAR compensation  Q si    
  P L   0 :    The power transmission losses in the system without VAR 

compensation  
  P L  ( Q si  ):    The power transmission losses in the system with VAR compensa-

tion  Q si    
  V i   0 :    The voltage magnitude at load bus  i  without VAR compensation  
 V  i  ( Q si  ):    The voltage magnitude at load bus  i  with VAR compensation  Q si    
  ND :    The number of load buses     

  3.6   REAL - TIME APPLICATION OF THE SENSITIVITY FACTORS 

 In the EMS system and energy markets, the loss sensitivity factors and con-
straint shift factors are applied for LMP and/or alleviating overload (AOL) 
calculation. The above - mentioned loss sensitivities and constraint shift factors 
and the corresponding constraint elements (transmission lines or transform-
ers) will be passed to the constraint logger (CLOOGER) and then passed to 
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the LMP calculator. The practical constraints can be divided into the following 
types: 

  (1)     Automatic constraints: All branches (lines, transformers, and inter-
faces) violations from EMS real - time contingency analysis (RTCA) 
calculation

  (2)     Watch list constraints: The branches without violation in EMS RTCA 
calculation but the branch fl ows close to their limits  

  (3)     Active constraints: The constraints from LMP calculator that are needed 
to recompute the constraint shift factors 

  (4)     Flowgate constraints: The constraints from marketing system that are 
needed to compute the shift factors with respect to the fl owgate con-
straint. The term  “ fl owgate ”  refers to a single grid facility or a set of 
facilities.  

  (5)     Quick selection constraints: Any branches (lines, transformers, and 
interfaces) that operators want to know the shift factors and monitor 
their branch fl ows    

 The sensitivity analysis and LMP calculation process is shown in Figure  3.3 . 
The market will require that the LMP be determined on a periodic basis. To 
support this calculation, the network topology and data including loss sensitivi-
ties, network constraints, and their shift factors gathered in real time can be 
transferred to the LMP automatically through the SE (state estimator), RTCA, 
and SFT applications. If the results of the LMP calculator meet the constraints 
described in equations  (3.3)  and  (3.4) , the LMP calculation was successful 
and the LMP results may be recorded and recommended. If the LMP calcula-
tion results in any constraint violation, the violated constraint will be sent 
back to AOL, and the LMP recalculation will be performed until all con-
straints are met.    

3.7 SIMULATION RESULTS 

 The calculation results of the several sensitivities are illustrated with the IEEE 
14 - bus system and AREVA T & D 60 - bus system. The one - line diagram of the 
AREVA T & D 60 - bus system is shown in Figure  3.4 . The 60 - bus system, which 
has three areas, consists of 24 generation units (15 units are available in the 
tests), 32 loads, 43 transmission lines, and 54 transformers.   

3.7.1 Sample Computation for Loss Sensitivity Factors 

 The following test cases are used to analyze the loss sensitivity in this chapter.
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  Case 1:    Calculate loss sensitivities with the distributed generation slack 
and load slack, respectively. All units are AGC units (i.e., the status 
of unit AGC is ON).  

  Case 2:    Calculate loss sensitivities with the distributed generation slack 
and load slack, respectively. All units are AGC units except the 
units under station DOUGLAS in Area 1.  

  Case 3:    Calculate loss sensitivities with the distributed generation slack 
and load slack, respectively. All units are AGC units except the 
units under station HEARN in Area 1.  

  Case 4:    Calculate loss sensitivities with the distributed generation slack 
and load slack, respectively. All units are AGC units except the 
units in Area 2.  

  Case 5:    Calculate loss sensitivities with the distributed generation slack 
and load slack, respectively. All units are AGC units except the 
units under station HOLDEN in Area 3.  

     FIGURE 3.3     Application of the sensitivity factors  
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  Case 6:    Calculate loss sensitivities for the selected single slack based on 
the loss factors under the distributed slack.  

 The simulation results are shown in Tables  3.1 – 3.6 . All loss sensitivity factors 
for units and loads are computed. For the purpose of simplifi cation, only loss 
sensitivities of generators are listed in Tables  3.1 – 3.6 , in which column 1 is the 
name of the station and the units. Column 2 is the area number that the unit 
belongs to. Column 3 is the AGC status of the unit.   

 Tables  3.1 – 3.5  show the test results and comparison of loss sensitivity cal-
culation based on the distributed generation reference and distributed load 
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     FIGURE 3.4     One - line diagram of AREVA T & D system (Area 1 — EAST, Area 2 — WEST, Area 
3 — ECAR)  
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Table 3.1 Test results and comparison of loss sensitivity calculation (Case 1: All units 
on AGC)

   Station, 
Generator

   Area 
No.  

   AGC 
Unit

   Loss Sensitivity 
Distributed

Generation Slack  

   Loss Sensitivity 
Distributed
Load Slack 

  DOUGLAS, G2    1    YES    0.015100    0.017000  
  DOUGLAS, G1    1    YES    0.012100    0.014000  
  DOUGLAS, CT1    1    YES    0.009900    0.011800  
  DOUGLAS, CT2    1    YES    0.009900    0.011800  
  DOUGLAS, ST    1    YES    0.009700    0.011600  
  HEARN, G1    1    YES  − 0.016500     − 0.014600  
  HEARN, G2    1    YES  − 0.016500     − 0.014600  
  LAKEVIEW, G1    1    YES  − 0.018800     − 0.017000  
  BVILLE, 1    2    YES  − 0.001000     − 0.004200  
  WVILLE, 1    2    YES    0.000700  − 0.002500  
  CHENAUX, 1    3    YES  − 0.008900     − 0.008900  
  CHEALLS, 1    3    YES    0.021200    0.021200  
  CHEALLS, 2    3    YES    0.021200    0.021200  
  HOLDEN, 1    3    YES    0.001000    0.001000  
  NANTCOKE, 1    3    YES  − 0.012200     − 0.012200  

Table 3.2 Test results and comparison of loss sensitivity calculation (Case 2: All units 
on AGC except the units under station  DOUGLAS in Area 1) 

   Station, 
Generator

   Area 
No.  

   AGC 
Unit

   Loss Sensitivity 
Distributed

Generation Slack  

   Loss Sensitivity 
Distributed
Lload Slack 

  DOUGLAS, G2    1    NO    0.032800    0.017000  
  DOUGLAS, G1    1    NO    0.029900    0.014000  
  DOUGLAS, CT1    1    NO    0.027800    0.011800  
  DOUGLAS, CT2    1    NO    0.027800    0.011800  
  DOUGLAS, ST    1    NO    0.027600    0.011600  
  HEARN, G1    1    YES    0.001500  − 0.014600  
  HEARN, G2    1    YES    0.001500  − 0.014600  
  LAKEVIEW, G1    1    YES  − 0.000800     − 0.017000  
  BVILLE, 1    2    YES  − 0.001000     − 0.004200  
  WVILLE, 1    2    YES    0.000700  − 0.002500  
  CHENAUX, 1    3    YES  − 0.008900     − 0.008900  
  CHEALLS, 1    3    YES    0.021200    0.021200  
  CHEALLS, 2    3    YES    0.021200    0.021200  
  HOLDEN, 1    3    YES    0.001000    0.001000  
  NANTCOKE, 1    3    YES  − 0.012200     − 0.012200  
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Table 3.3 Test results and comparison of loss sensitivity calculation (Case 3: Only 
units under HEARN in  Area 1 not on  AGC)

   Station, 
Generator

   Area 
No.  

   AGC 
Unit

   Loss Sensitivity 
Distributed

Generation Slack  

   Loss Sensitivity 
Distributed
Load Slack 

  DOUGLAS, G2    1    YES    0.012600    0.017000  
  DOUGLAS, G1    1    YES    0.009600    0.014000  
  DOUGLAS, CT1    1    YES    0.007400    0.011800  
  DOUGLAS, CT2    1    YES    0.007400    0.011800  
  DOUGLAS, ST    1    YES    0.007200    0.011600  
  HEARN, G1    1    NO  − 0.019000     − 0.014600  
  HEARN, G2    1    NO  − 0.019000     − 0.014600  
  LAKEVIEW, G1    1    YES  − 0.021300     − 0.017000  
  BVILLE, 1    2    YES  − 0.001000     − 0.004200  
  WVILLE, 1    2    YES    0.000700  − 0.002500  
  CHENAUX, 1    3    YES  − 0.008900     − 0.008900  
  CHEALLS, 1    3    YES    0.021200    0.021200  
  CHEALLS, 2    3    YES    0.021200    0.021200  
  HOLDEN, 1    3    YES    0.001000    0.001000  
  NANTCOKE, 1    3    YES  − 0.012200     − 0.012200  

Table 3.4 Test results and comparison of loss sensitivity calculation (Case 4: All units 
on AGC except the units in  Area 2) 

   Station, 
Generator

   Area 
No.  

   AGC 
Unit

   Loss Sensitivity 
Distributed

Generation Slack  

   Loss Sensitivity 
Distributed
Load Slack 

  DOUGLAS, G2    1    YES    0.015200    0.017000  
  DOUGLAS, G1    1    YES    0.012200    0.014000  
  DOUGLAS, CT1    1    YES    0.010000    0.011800  
  DOUGLAS, CT2    1    YES    0.010000    0.011800  
  DOUGLAS, ST    1    YES    0.009900    0.011600  
  HEARN, G1    1    YES  − 0.016700     − 0.014600  
  HEARN, G2    1    YES  − 0.016700     − 0.014600  
  LAKEVIEW, G1    1    YES  − 0.019100     − 0.017000  
  BVILLE, 1    2    NO  − 0.021000     − 0.004200  
  WVILLE, 1    2    NO  − 0.019300     − 0.002500  
  CHENAUX, 1    3    YES  − 0.008900     − 0.008900  
  CHEALLS, 1    3    YES    0.021200    0.021200  
  CHEALLS, 2    3    YES    0.021200    0.021200  
  HOLDEN, 1    3    YES    0.001000    0.001000  
  NANTCOKE, 1    3    YES  − 0.012200     − 0.012200  
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Table 3.5 Test results and comparison of loss sensitivity calculation (Case 5: All units 
on AGC except unit 3 under station  HOLDEN in  Area 3) 

   Station, 
Generator

   Area 
No.  

   AGC 
Unit

   Loss Sensitivity 
Distributed

Generation Slack  

   Loss Sensitivity 
Distributed
Load Slack 

  DOUGLAS, G2    1    YES    0.015100    0.017000  
  DOUGLAS, G1    1    YES    0.012100    0.014000  
  DOUGLAS, CT1    1    YES    0.009900    0.011800  
  DOUGLAS, CT2    1    YES    0.009900    0.011800  
  DOUGLAS, ST    1    YES    0.009700    0.011600  
  HEARN, G1    1    YES  − 0.016500     − 0.014600  
  HEARN, G2    1    YES  − 0.016500     − 0.014600  
  LAKEVIEW, G1    1    YES  − 0.018800     − 0.017000  
  BVILLE, 1    2    YES  − 0.001000     − 0.004200  
  WVILLE, 1    2    YES    0.000700  − 0.002500  
  CHENAUX, 1    3    YES  − 0.008500     − 0.008900  
  CHEALLS, 1    3    YES    0.021600    0.021200  
  CHEALLS, 2    3    YES    0.021600    0.021200  
  HOLDEN, 1    3    NO    0.001400    0.001000  
  NANTCOKE, 1    3    YES  − 0.011800     − 0.012200  

reference, respectively. The loss factors computed from the distributed unit 
reference are listed in column 4 of Tables  3.1 – 3.5 . The loss factors computed 
from the distributed load reference are listed in column 5 of Tables  3.1 – 3.5 . 

 Generally, the values of loss sensitivities based on the generation reference 
are different from those based on the load reference, because the distribution 
of the units is not exactly the same as the distribution of loads in the power 
system. The loss factors will be close or equal if the units are close to the load 
locations. This can be observed from Table  3.1 , where all units are on AGC 
status. For the 60 - bus system, each load in Area 3 has at least one unit con-
nected, so the loss factors in Area 3 are the same for both the distributed 
generation slack and the distributed load slack. 

 It is noted from Tables  3.1 – 3.5  that the loss sensitivity factors based on the 
distributed load slack are the same whether the status of the units is changed 
or not. But the loss factors based on the distributed generation references are 
changed since the AGC status of the units are different. 

 Generally, the change of AGC status of the units only affects the loss sen-
sitivities in the same area that these units belong to. 

 It can be seen from Tables  3.2  and  3.3  that, when AGC status of the 
units in Area 1 changes, only the loss factors in Area 1 are affected. The loss 
factors in the other areas are unchanged. For Table  3.5 , when AGC status of 
the units in Area 3 changes, only the loss factors in Area 3 are affected. The 
loss factors in the other areas are unchanged. But for Table  3.4 , there is no 
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AGC unit in Area 2; this means that there is no unit reference in Area 2. Then 
the AGC units in the other areas will pick up the power mismatch (i.e., Area 
1 in this case). Thus the loss factors in Areas 1 and 2 are changed. The loss 
factors in the other areas are unchanged. 

 Through the above comparisons, it can be observed that the method of 
distributed load references for loss sensitivity calculation is superior to the 
method of distributed generation references in the real - time energy markets, 
since the AGC status of the units are changeable in the real - time system. 

 The results of loss sensitivity calculation for a single slack, which are com-
puted from the proposed formula  (3.24) , are shown in Table  3.6 . Column 3 in 
Table  3.6  is the set of the loss sensitivity coeffi cients for the distributed 
slack buses. Column 4 in Table  3.6  is the set of loss sensitivity factors with a 
single slack bus at the location of HOLDEN 1. Column 5 in Table  3.6  is the 
set of loss sensitivity factors with a single slack bus at the location of 
DOUGLAS. 

 It is noted that all the loss sensitivities are nonzero if the distributed slacks 
are selected. If the single slack is selected, the loss sensitivity of the slack equals 
zero. 

 Since the loss sensitivity values based on the distributed slacks from EMS 
are unchanged as long as the system topology is the same, the loss sensitivities 
for any market - based single slack can be easily and quickly acquired by use 
of the loss sensitivity formula  (3.24) . Therefore, a large amount of computation 
is avoided whenever the loss sensitivities for a market - based reference are 
needed in the real - time energy markets. 

Table 3.6 Test results of loss sensitivity calculation (distributed slack vs single slack) 

   Station, 
Generator

   AGC 
Unit

   Loss Sensitivity 
Distributed Slack  

   Loss Sensitivity 
Single Slack, 
HOLDEN 1  

   Loss Sensitivity 
Single Slack, 
Douglas ST  

  DOUGLAS, G2    YES    0.017000    0.016016    0.005463  
  DOUGLAS, G1    YES    0.014000    0.013013    0.002428  
  DOUGLAS, CT1    YES    0.011800    0.010811    0.000202  
  DOUGLAS, CT2    YES    0.011800    0.010811    0.000202  
  DOUGLAS, ST    YES    0.011600    0.010611    0.000000  
  HEARN, G1    YES  − 0.014600     − 0.015616     − 0.026507  
  HEARN, G2    YES  − 0.014600     − 0.015616     − 0.026507  
  LAKEVIEW, G1    YES  − 0.017000     − 0.018018     − 0.028936  
  BVILLE, 1    YES  − 0.004200     − 0.005205     − 0.015985  
  WVILLE, 1    YES  − 0.002500     − 0.003504     − 0.014265  
  CHENAUX, 1    YES  − 0.008900     − 0.009910     − 0.020741  
  CHEALLS, 1    YES    0.021200    0.020220    0.009713  
  CHEALLS, 2    YES    0.021200    0.020220    0.009713  
  HOLDEN, 1    YES    0.001000    0.000000  − 0.010724  
  NANTCOKE, 1    YES  − 0.012200     − 0.013213     − 0.024079  
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 For example, in a practical system with 25,000 buses, the CPU time of com-
puting loss factors is about 60 seconds with the traditional power fl ow calcula-
tion but less than 0.1 second if the proposed method is used. This is a huge 
time saving in the real - time energy markets. 

 To verify the correctness of the loss sensitivity equation  (3.24) , the loss 
factors are computed and compared with the traditional power fl ow calcula-
tion. The results and comparison are shown in Figures  3.5  and  3.6  as well as 
Tables  3.7  and  3.8 , in which column 3 is the set of results from the power fl ow 
calculation and column 4 is the set of results from equation  (3.24) . Table  3.7  
shows the comparison of loss factor results for single slack bus at HOLDEN - 1. 
Table  3.8  shows the comparison of loss factor results for single slack bus at 
DOUGLAS - ST.     

     FIGURE 3.5     Comparison of loss factor results for single slack bus at HOLDEN - 1  
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     FIGURE 3.6     Comparison of loss factor results for single slack bus at DOUGLAS - ST  
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Table 3.7 Comparison of loss sensitivity calculation results for single slack bus at 
HOLDEN-1 (proposed method vs power flow method) 

   Station, 
Generator

   AGC 
Unit

   Loss Sensitivity, 
HOLDEN 1 — 

PF Method 

   Loss Sensitivity, 
HOLDEN 1 — 
Equation  (3.24)      |Error %|  

  DOUGLAS, G2    YES    0.016029    0.016016    0.08110  
  DOUGLAS, G1    YES    0.013053    0.013013    0.30644  
  DOUGLAS, CT1    YES    0.010817    0.010811    0.05547  
  DOUGLAS, CT2    YES    0.010817    0.010811    0.05547  
  DOUGLAS, ST    YES    0.010621    0.010611    0.09415  
  HEARN, G1    YES  − 0.015630     − 0.015616    0.08957  
  HEARN, G2    YES  − 0.015630     − 0.015616    0.08957  
  LAKEVIEW, G1    YES  − 0.018110     − 0.018018    0.50801  
  BVILLE, 1    YES  − 0.005220     − 0.005205    0.23002  
  WVILLE, 1    YES  − 0.003500     − 0.003504    0.02855  
  CHENAUX, 1    YES  − 0.009920     − 0.009910    0.11088  
  CHEALLS, 1    YES    0.020247    0.020220    0.13335  
  CHEALLS, 2    YES    0.020247    0.020220    0.13335  
  HOLDEN, 1    YES    0.000000    0.000000    0.00000  
  NANTCOKE, 1    YES  − 0.013240     − 0.013213    0.20393  

Table 3.8 Comparison of loss sensitivity calculation results for single slack bus at 
Douglas-ST (proposed method vs power flow method) 

   Station, 
Generator

   AGC 
Unit

   Loss Sensitivity, 
Douglas ST — 

PF Method 

   Loss Sensitivity, 
Douglas ST — 

Equation  (3.24)      |Error %|  

  DOUGLAS, G2    YES    0.005467    0.005463    0.07317  
  DOUGLAS, G1    YES    0.002421    0.002428    0.28914  
  DOUGLAS, CT1    YES    0.000202    0.000202    0.14829  
  DOUGLAS, CT2    YES    0.000202    0.000202    0.14829  
  DOUGLAS, ST    YES    0.000000    0.000000    0.00000  
  HEARN, G1    YES  − 0.026530     − 0.026507    0.08669  
  HEARN, G2    YES  − 0.026530     − 0.026507    0.08669  
  LAKEVIEW, G1    YES  − 0.028950     − 0.028936    0.04836  
  BVILLE, 1    YES  − 0.016000     − 0.015985    0.09999  
  WVILLE, 1    YES  − 0.014280     − 0.014265    0.10504  
  CHENAUX, 1    YES  − 0.020770     − 0.020741    0.13962  
  CHEALLS, 1    YES    0.009714    0.009713    0.01029  
  CHEALLS, 2    YES    0.009714    0.009713    0.01029  
  HOLDEN, 1    YES  − 0.010730     − 0.010724    0.07454  
  NANTCOKE, 1    YES  − 0.024090     − 0.024079    0.02491  
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 The difference or error of the results between the proposed method and 
the power fl ow method is obtained from the following equation:

    Error
LF LF

LF
PM PF

PF

%
( ) ( )

( )
%=

−
× ∈

i i
i

i n100     (3.87)  

where

   Error % :    The percentage of the computation error for the proposed formula  
  LF PM  :    The loss factor computed from the proposed method  
  LF PF  :    The loss factor obtained with the traditional power fl ow calculation    

 It can be seen from Tables  3.7  and  3.8  that the loss sensitivity results from 
the two methods are very close. The maximum error is less than 0.6%.  

  3.7.2   Sample Computation for Constrained Shift Factors 

 Tables  3.9 – 3.12  are the results of the detected constraint and the correspond-
ing shift factors. The results for the constraint branch T525 at Station 
CHENAUX are listed in Table  3.9 .   

 In Table  3.10 , column 1 is the name of the station and the units. Column 2 
is the area number that the unit belongs to. Column 3 is the AGC status of 
the unit. Column 4 is the unit participation factors. Column 5 is the set of the 
shift factors of the constraint T525 with respect to the units for the EMS - based 
reference at station DOUGLAS. 

 It is noted that all the shift factors are zero for the units in Area 1 for the 
EMS - based reference since the reference is located in Area 1 and all units in 
Area 1 are close to the reference unit. If the market - based slack is selected, 
the shift factors for the market - based reference can be easily obtained from 
equations  (3.57)  and  (3.58) . 

 Table  3.11  shows the shift factors of the constraint T525 with respect to the 
units for the market - based reference at the location of HOLDEN 1 and 
BVILLE, respectively. The relationships of the shift factors to different refer-
ences are also shown in Figure  3.7 .   

 Table  3.12  shows the area - based shift sensitivity factors of the constraint 
T525, which are computed based on unit shift factors and participation factors 
within the area. If the unit participation factors change, the value of the area -
 based sensitivity will be changed. 

 Table 3.9     Example of the active constraint (branch  T 525 at station  C  henaux ) 

   Constraint Name     Rating (MVA)  
   Actual Flow 

(MVA)  
   Constraint 
Deviation  

   Percent of 
Violation  

  Branch T525    1171.4    1542.7    371.3    131.7  
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Table 3.11 Test results of shift factors for the active constraint T525 at different 
market references 

   Station, 
Generator

   Area 
No.  

   Unit in 
Serve

   Shift Factors on 
Market Reference at 

Station HOLDEN  

   Shift Factors on 
Market Reference 
at Station BVILLE  

  DOUGLAS, G2    1    YES  − 0.304269    0.013650  
  DOUGLAS, G1    1    YES  − 0.304269    0.013650  
  DOUGLAS, CT1    1    YES  − 0.304269    0.013650  
  DOUGLAS, CT2    1    YES  − 0.304269    0.013650  
  DOUGLAS, ST    1    YES  − 0.304269    0.013650  
  HEARN, G1    1    YES  − 0.304269    0.013650  
  HEARN, G2    1    YES  − 0.304269    0.013650  
  LAKEVIEW, G1    1    YES  − 0.304269    0.013650  
  BVILLE, 1    2    YES  − 0.317919    0.000000  
  WVILLE, 1    2    YES  − 0.328605    0.010686  
  CHENAUX, 1    3    YES    0.313618    0.631537  
  CHEALLS, 1    3    YES    0.217526    0.535445  
  CHEALLS, 2    3    YES    0.217526    0.535445  
  HOLDEN, 1    3    YES    0.000000    0.317946  
  NANTCOKE, 1    3    YES  − 0.012454    0.305465  

Table 3.10 Test results of shift factors for the active constraint T525 at EMS reference 
(station DOUGLAS)

   Station, 
Generator

   Area 
No.  

   Unit in 
Serve

   Unit 
Participation

Factor  

   Shift Factors on 
EMS Reference at 

Station DOUGLAS 

  DOUGLAS, G2    1    YES    1.5    0.000000  
  DOUGLAS, G1    1    YES    1.8    0.000000  
  DOUGLAS, CT1    1    YES    1.2    0.000000  
  DOUGLAS, CT2    1    YES    1.6    0.000000  
  DOUGLAS, ST    1    YES    0.9    0.000000  
  HEARN, G1    1    YES    0.5    0.000000  
  HEARN, G2    1    YES    0.8    0.000000  
  LAKEVIEW, G1    1    YES    1.1    0.000000  
  BVILLE, 1    2    YES    1.2  − 0.013650  
  WVILLE, 1    2    YES    1.3  − 0.024336  
  CHENAUX, 1    3    YES    1.7    0.617887  
  CHEALLS, 1    3    YES    0.6    0.521795  
  CHEALLS, 2    3    YES    1.9    0.521795  
  HOLDEN, 1    3    YES    2.2    0.304269  
  NANTCOKE, 1    3    YES    0.7    0.291815  
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 Table 3.12     Test results of area - based sensitivity for the active constraint  T 525 at 
different references 

   Area Name  
   Area 
No.  

   Sensitivities on 
EMS Reference 

at Station 
DOUGLAS  

   Sensitivities on 
Market Reference 

at Station 
HOLDEN  

   Sensitivities on 
Market 

Reference at 
Station BVILLE  

  EAST    1    0.000000     − 0.304269    0.013650  
  WEST    2     − 0.019207     − 0.323499     − 0.005557  
  ECAR    3    0.454726    0.150458    0.468385  

 Table  3.13  shows the sensitivity factors of the transfer path with respect to 
the constraint T525. There are four types of transfer paths: 

  (1)     Transfer type 1 — Area - Area: Both POR and POD (or SOURCE and 
SINK) are areas.  

  (2)     Transfer type 2 — Single point: Both POR and POD (or SOURCE and 
SINK) are single injection nodes.  

  (3)     Transfer type 3 — Point - Area: The POR (SOURCE) is a single injection 
node and POD (SINK) is an area.  

  (4)     Transfer type 4 — Area - Point: The POR (SOURCE) is an area and POD 
(SINK) is a single injection node.      

 It is noted from Table  3.13  that the sensitivity of the transfer path will be 
the same no matter which reference is used.  

     FIGURE 3.7     The shift factors with different references  

-0.4

-0.2

0

0.2

0.4

0.6

0.8

D
o

u
,G

1

D
o

u
,G

2

D
o

u
,C

T
1

D
o

u
,C

T
2

D
o

u
,S

T

H
e

a
rn

,G
1

H
e

a
rn

,G
2

L
a

k
e

v
,G

1

B
v

ille
,1

W
v

ille
,1

C
h

e
n

a
u

x
,1

C
h

e
a

lls
,1

C
h

e
a

lls
,2

H
o

ld
e
n

,1

N
a
n

tc
o

k
e
,1

Douglas Holden Bville



80 SENSITIVITY CALCULATION

3.7.3 Sample Computation for Voltage Sensitivity Analysis 

 The one line diagram of IEEE 14 - bus system is shown in Figure  3.8 . The cor-
responding parameters and data are listed in Tables  3.14  and  3.15 .     

 Table  3.16  and Figure  3.9  show the major VAR support sites as well as the 
corresponding benefi t factors  LBF  and  VBF  for the IEEE 14 - bus system. It 
can be observed from Figure  3.9  that buses 9, 11, 12, and 13 have relatively big 
sensitivity values. The VAR supports at these locations will have bigger ben-
efi ts than other locations in IEEE 14 - bus system.       

3.8 CONCLUSION

 This chapter introduces several approaches to compute the sensitivities in the 
practical transmission network and energy markets. The analysis and imple-
mentation details of load sensitivity, voltage sensitivity, generator constraint 

Table 3.13 Test results of sensitivity for transfer path for the active constraint T525 at 
different references 

   Transfer Path     Path Type  

   Sensitivities on 
EMS Reference 

at Station 
DOUGLAS

   Sensitivities 
on Market 
Reference
at Station 
HOLDEN

   Sensitivities 
on Market 

Reference at 
Station

BVILLE

  ECAR - WEST    Area - Area    0.473933    0.473950    0.473940  
  WEST - EAST    Area - Area  − 0.019207     − 0.019230     − 0.019207  
  ECAR - EAST    Area - Area    0.454726    0.454727    0.454735  
  BV1 - DOUGG1    Single point  − 0.013650     − 0.013650     − 0.013650  
  WV1 - DOUGG1    Single point  − 0.024336     − 0.024336     − 0.024336  
  CX1 - DOUGG1    Single point    0.617887    0.617887    0.617887  
  CS1 - DOUGG1    Single point    0.521795    0.521795    0.521795  
  CS2 - DOUGG1    Single point    0.521795    0.521795    0.521795  
  HD1 - DOUGG1    Single point    0.304269    0.304269    0.304269  
  NK1 - DOUGG1    Single point    0.291815    0.291815    0.291815  
  BV1 - WV1    Single point    0.010686    0.010686    0.010686  
  CX1 - CS1    Single point    0.096092    0.096092    0.096092  
  HD1 - NK1    Single point    0.012454    0.012454    0.012454  
  HD1 - BV1    Single point    0.317919    0.317919    0.317919  
  HD1 - WV1    Single point    0.328605    0.328605    0.328605  
  BV1 - EAST    Point - Area  − 0.013650     − 0.013650     − 0.013650  
  HD1 - EAST    Point - Area    0.304269    0.304269    0.304269  
  HD1 - WEST    Point - Area    0.323476    0.323476    0.323476  
  WV1 - ECAR    Point - Area  − 0.479062     − 0.479062     − 0.479062  
  EAST - WV1    Area - Point    0.024336    0.024336    0.024336  
  ECAR - BV1    Area - Point    0.468376    0.468376    0.468376  
  WEST - DOUGG1    Area - Point  − 0.019207     − 0.019207     − 0.019207  
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     FIGURE 3.9     Voltage sensitivity analysis of 14 - bus system  
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     FIGURE 3.8     One - line diagram of IEEE 14 - bus system  
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shift factor, and area - based constraint shift factor are presented. The chapter 
also comprehensively discusses how to compute the sensitivities under the 
different references, as well as how to convert the sensitivities based on the 
EMS system reference into those based on the market system reference. These 
sensitivity calculations can be used to determine whether the online capacity 
as indicated in the resource plan is located in the right place on the network 
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Table 3.14 IEEE 14 bus network load and generator data 

   Bus     MW Load     MVAr Load     Min Q G      Max Q G

  1    0.00    0.00    0.00    10.00  
  2    21.70    12.70  − 40.00    50.00  
  3    94.20    19.00    0.00    40.00  
  4    47.80    0.00    0.00    0.00  
  5    7.60    1.60    0.00    0.00  
  6    11.2    7.50  − 6.00    24.00  
  7    0.00    0.00    0.00    0.00  
  8    0.00    0.00  − 6.00    24.00  
  9    29.50    16.60    0.00    0.00  

  10    9.00    5.80    0.00    0.00  
  11    3.50    1.80    0.00    0.00  
  12    6.10    1.60    0.00    0.00  
  13    13.50    5.80    0.00    0.00  
  14    14.90    5.00    0.00    0.00  

Table 3.15 IEEE 14 bus network line data 

   From Bus     To Bus  
   Resistance 

(p.u.)  
   Reactance 

(p.u.)  
   Line Charging 

(p.u.)  

  1    2    0.01938    0.05917    0.0528  
  1    5    0.05403    0.22304    0.0492  
  2    3    0.04699    0.19797    0.0438  
  2    4    0.05811    0.17632    0.0374  
  2    5    0.05695    0.17388    0.0340  
  3    4    0.06701    0.17103    0.0346  
  4    5    0.01355    0.04211    0.0128  
  4    7    0.00000    0.20912    0.0000  
  4    9    0.00000    0.55618    0.0000  
  5    6    0.00000    0.25202    0.0000  
  6    11    0.09498    0.19890    0.0000  
  6    12    0.12291    0.25581    0.0000  
  6    13    0.06615    0.13207    0.0000  
  7    8    0.00000    0.17615    0.0000  
  7    9    0.00000    0.11001    0.0000  
  9    10    0.03181    0.08450    0.0000  
  9    14    0.12711    0.27038    0.0000  

  10    11    0.08205    0.19207    0.0000  
  12    13    0.22092    0.19988    0.0000  
  13    14    0.17093    0.34802    0.0000  
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to serve the forecasted demand. This chapter will be especially useful for 
power engineers since sensitivity analysis has already become daily work in 
the power industry. Researchers, students, and power engineers will also have 
the big picture on power system sensitivity analysis.  
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     This chapter fi rst introduces the input - output characteristic of a power - 
generating unit as well as the corresponding practical calculation method, and 
then presents several well - known optimization methods to solve the classic 
economic dispatch problem. Finally, the applications of the latest methods 
such as neural network and genetic algorithms to classic economic dispatch 
(ED) are analyzed in the chapter.  

4.1 INTRODUCTION

 The aim of real power economic dispatch (ED) is to make the generator ’ s fuel 
consumption or the operating cost of the whole system minimal by determin-
ing the power output of each generating unit under the constraint condition 
of the system load demands. This is also called the classic economic dispatch, 
in which the line security constraints are neglected  [1] . The fundamental of the 
economic dispatch problem is the set of input - output characteristic of a power -
 generating unit.  

4.2 INPUT-OUTPUT CHARACTERISTIC OF GENERATOR UNITS 

4.2.1 Input-Output Characteristic of Thermal Units 

 For thermal units, we call the input - output characteristic the generating 
unit fuel consumption function, or operating cost function. The unit of the 
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generator fuel consumption function is Btu per hour heat input to the unit (or 
MBtu/h). The fuel cost rate times Btu/h is the $ per hour ($/h) input to the 
unit for fuel. The output of the generating unit will be designed by  P  G , the 
megawatt net power output of the unit. 

 In addition to the fuel consumption cost, the operating cost of a unit 
includes labor cost, maintenance cost, and fuel transportation cost. It is diffi cult 
to express these costs directly as a function of the output of the unit, so these 
costs are included as a fi xed portion of the operating cost. 

 The thermal unit system generally consists of the boiler, the steam turbine, 
and the generator. The input of the boiler is fuel, and the output is the volume 
of steam. The relationship of the input and output can be expressed as a convex 
curve. The input of the turbine - generator unit is the volume of steam, and the 
output is the electrical power. A typical boiler - turbine - generator unit consists 
of a single boiler that generates steam to drive a single turbine - generator set. 
The input - output characteristic of the whole generating unit system can be 
obtained by combining directly the input - output characteristic of the boiler 
and the input - output characteristic of the turbine - generator unit. It is a convex 
curve, which is shown in Figure  4.1 .   

 It can be observed from the input - output characteristic of the generating 
unit that the power output is limited by the minimal and maximal capacity of 
the generating unit, that is,

    P P PG G Gmin max≤ ≤     (4.1)   

 The minimal power output is determined by technical conditions or other 
factors of the boiler or turbine. Generally, the minimum load at which a unit 
can operate is infl uenced more by the steam generator and the regenerative 
cycle than by the turbine. The only critical parameters for the turbine are shell 
and rotor metal differential temperatures, exhaust hood temperature, and 

     FIGURE 4.1     Input - output characteristic of the generating unit  
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rotor and shell expansion. Minimum load limitations of the boiler are gener-
ally caused by fuel combustion stability, and the values, which will differ 
with different types of boiler and fuel, are about 25 – 70% of design capacity. 
Minimum load limitations of the turbine - generator unit are caused by inherent 
steam generator design constraints, which are generally about 10 – 15%. The 
maximal power output of the generating unit is determined by the design 
capacity or rate capacity of the boiler, turbine, or generator. 

 Generally, the input - output characteristic of the generating unit is non-
linear. The widely used input - output characteristic of the generating unit is a 
quadratic function, i.e.,

    F aP bP c= + +G G
2     (4.2)  

where  a ,  b , and  c  are the coeffi cients of the input - output characteristic. The 
constant  c  is equivalent to the fuel consumption of the generating unit opera-
tion without power output, which is shown in Figure  4.1 .  

  4.2.2   Calculation of Input - Output Characteristic Parameters 

 The parameters of the input - output characteristic of the generating unit may 
be determined by the following approaches  [2] : 

  (1)     Based on the experiments of the generating unit effi ciency  
  (2)     Based on the historic records of the generating unit operation  
  (3)     Based on the design data of the generating unit provided by 

manufacturer    

 In the practical power systems, we can easily obtain the fuel statistic data 
and power output statistic data. Through analyzing and computing a data set 
( F k  ,  P k  ), we can determine the shape of the input - output characteristic and 
the corresponding parameters. For example, if the quadratic curve is the best 
match according to the statistical data, we can use the least squares method 
to compute the parameters. The calculation procedures are below. 

 Let ( F k  ,  P k  ) be obtained from the statistical data, where  k    =   1, 2,  …   n , and 
the fuel curve will be a quadratic function. To determine the coeffi cients  a ,  b , 
and  c , compute the following error for each data pair ( F k  ,  P k  ):

    ΔF aP bP c Fk k k k= + +( ) −2     (4.3)   

 According to the principle of least squares, we form the following objective 
function and make it minimal, i.e.,

    J F aP bP c Fk k k k
k

n

= ( ) = + + −( )
=
∑Δ 2 2 2

1

    (4.4)   
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 We will get the necessary conditions for an extreme value of the objective 
function when we take the fi rst derivative of the above function  J  with respect 
to each of the independent variables  a ,  b , and  c  and set the derivatives equal 
to zero:

    
∂
∂

= + + −( ) =
=
∑J

a
P aP bP c Fk k k k

k

n

2 02 2

1

    (4.5)  

    
∂
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=
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n

2 02

1

    (4.6)  

    
∂
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1

    (4.7)   

 From equations  (4.5) – (4.7) , we get
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 Coeffi cients  a ,  b , and  c  can be obtained by solving equations  (4.8) – (4.10) . 

   Example 4.1 

 We collected some statistical data for a generating unit in one power plant. 
The capacity limits of the generator are

    150 200≤ ≤PG   

 Four data samples of unit fuel consumption are selected, i.e., 0.405, 0.379, 
0.368, and 0.399 (Btu/MW · h), which correspond to power output of 150, 
170, 185, and 200 (MW), respectively. The corresponding fuel consumptions 
are computed and listed in Table  4.1 .     

 From Table  4.1 , we get:

    Pk
k

n

=
∑ = + + + =

1

150 170 185 200 705  

    Pk
k

n
2

1

2 2 2 2 5150 170 185 200 1 256 10
=
∑ = + + + = ×.  

    Pk
k

n
3

1

3 3 3 3 7150 170 185 200 2 2619 10
=
∑ = + + + = ×.  
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Pk

k

n
4

1

4 4 4 4 9150 170 185 200 4 112 10
=
∑ = + + + = ×.

 

    
Fk

k

n

=
∑ = + + + =

1

60 75 64 43 68 08 79 80 273 06. . . . .
 

    
F Pk k

k

n

=
∑ = × + × + × + × = ×

1

460 75 150 64 43 170 68 08 185 79 80 200 4 86 10. . . . .
 

    

F Pk k
k

n
2

1

2 2 2 260 75 150 64 43 170 68 08 185 79 80 200
8 7=

∑ = × + × + × + ×
=

. . . .
. 55 106×

  
 From equations  (4.8) – (4.10) , we get

    1 256 10 705 4 273 065. .× + + =a b c  

    2 2619 10 1 26 10 705 4 86 107 5 4. . .× + × + = ×a b c  

    4 112 10 2 26 10 1 26 10 8 75 109 7 5 6. . . .× + × + × = ×a b c   

 Solving these equations, we get the coeffi cients of the fuel consumption 
function of the generating unit:

     FIGURE 4.2     Four statistic data points  
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 Table 4.1     Four data samples for a generating unit 

   Sample Data     K   =   1     K   =   2     K   =   3     K   =   4  

  Unit consume fuel (Btu/MW.h)    0.405    0.379    0.368    0.399  
  Power output (MW)    150.0    170.0    185.0    200.0  
  Consume fuel (Btu/h)    60.75    64.43    68.08    79.80  
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    a b c= = =0 0009 0 0457 31 9. , . , .   

 The obtained quadratic fuel consumption function is as below:

    F P P= + +0 0009 0 0457 31 92. . .G G   

 The simulated input - output curve is shown in Figure  4.3 . It is noted that 
the accuracy of calculation will be increased if more data samples are used.      

  4.2.3   Input - Output Characteristic of Hydroelectric Units 

 The input - output characteristic of the hydroelectric unit is similar to that of 
the thermal unit, but the input is different, which is expressed in terms of 
volume of water per unit time. The unit of water volume is m 3 /h. The output 
is the same, i.e., electric power. Figure  4.4  shows a typical input - output curve 
of a hydroelectric unit where the net hydraulic head is constant. This charac-
teristic shows an almost linear curve of input water volume requirements per 

     FIGURE 4.3     Simulated input - output curve  
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     FIGURE 4.4     Hydroelectric unit input - output curve  
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unit time as a function of power output as the power output increases from 
minimum to rated load. Above this point corresponding to the rated load, the 
water volume requirements increase as the effi ciency of the unit falls off.   

 Figure  4.5  shows the input - output curve of a hydroelectric plant with vari-
able head. This type of characteristic occurs whenever the variation in the 
storage pond and/or afterbay elevations is a fairly large percentage of the 
overall net hydraulic head.     

  4.3   THERMAL SYSTEM ECONOMIC DISPATCH NEGLECTING 
NETWORK LOSSES 

  4.3.1   Principle of Equal Incremental Rate 

 Given a system that consists of two generators connected to a single bus 
serving a received electrical load  P  D . The input - output characteristics of two 
generating units are  F  1 ( P  G1 ) and  F  2 ( P  G2 ), respectively. The total fuel consump-
tion of the system  F  is the sum of the fuel consumptions of the two generating 
units. Assuming there is no power output limitation for both generators, 
the essential constraint on the operation of this system is that the sum of the 
output powers must equal the load demand. The economic power dispatch 
problem of the system, which is to minimize  F  under the above - mentioned 
constraint, can be expressed as:

    min F F P F P= ( ) + ( )1 1 2 2G G     (4.11)   

 s.t.

    P P PG G D1 2+ =     (4.12)   

     FIGURE 4.5     Hydroelectric unit input - output curve with variable water head  
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 According to the principle of equal incremental rate  [1] , the total fuel con-
sumption  F  will be minimal if the incremental fuel rates of two generators are 
equal, that is,

    
d

d
d

dG G

F
P

F
P

1

1

2

2

= = λ     (4.13)  

where   
d
d G

F
P

i

i

 is the incremental fuel rate of generating unit  i , which corresponds

to the slope of the input - output curve of the generating unit. 
 If two generators operate under the different incremental fuel rate, and

    
d

d
d

dG G

F
P

F
P

1

1

2

2

>   

 the total output powers maintain the same. If generator 1 reduces output 
power  Δ  P , generator 2 will increase output power  Δ  P . Then generator 1

will reduce fuel consumption   
d

d G

F
P

P1

1

Δ , and generator 2 will increase fuel

consumption   
d

d G

F
P

P2

2

Δ . The total savings of fuel consumption will be

    Δ Δ Δ ΔF
F

P
P

F
P

P
F

P
F

P
P= − = −⎛

⎝⎜
⎞
⎠⎟ >

d
d

d
d

d
d

d
dG G G G

1

1

2

2

1

1

2

2

0     (4.14)   

 It can be observed from equation  (4.14)  that  Δ  F  will be zero when 

  
d

d
d

dG G

F
P

F
P

1

1

2

2

= , that is, the incremental fuel rates of two generators are equal. 

   Example 4.2 

 The input - output characteristics of two generating units are as follows:

    F P P1 1
2

10 0008 0 2 5= + +. .G G Btu h  

    F P P2 2
2

20 0005 0 3 4= + +. .G G Btu h   

 We wish to determine the economic operation point for these two units 
when delivering a total of 500   MW power demand. 

 First of all, we can obtain the incremental fuel rate of two generating 
units as follows:

    λ1
1

1
10 0016 0 2= = +

d
d G

G
F

P
P. .  
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    λ2
2

2
20 001 0 3= = +

d
d G

G
F

P
P. .   

 According to the principle of equal incremental rate [equation  (4.13) ], we 
have

    λ λ1 2=   

 That is,

    0 0016 0 2 0 001 0 31 2. . . .P PG G+ = +   

 or

    1 6 1001 2. P PG G− =   

 Given a system load of 500   MW, then

    P PG G1 2 500+ =   

 Solving the above two equations for  P  G1 ,  P  G2 , we get

    PG MW1 230 77= .  

    PG MW2 269 23= .     

   Example 4.3 

 Suppose the input - output characteristics of two generating units are a little 
different from those of Example 4.2, which are as follows:

    F P P1 1
2

10 0008 0 02 5= + +. .G G Btu h  

    F P P2 2
2

20 0005 0 03 4= + +. .G G Btu h   

 We still wish to determine the economic operation point for these two units 
when delivering a total of 500   MW power demand. 

 First of all, we can obtain the incremental fuel rate of two generating 
units as follows:

    λ1
1

1
10 0016 0 02= = +

d
d G

G
F

P
P. .  

    λ2
2

2
20 001 0 03= = +

d
d G

G
F

P
P. .   
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 According to the principle of equal incremental rate [equation  (4.13) ], we 
have

    λ λ1 2=   

 that is,

    0 0016 0 02 0 001 0 031 2. . . .P PG G+ = +   

 or

    1 6 101 2. P PG G− =   

 Given a system load of 500   MW, then

    P PG G1 2 500+ =   

 Solving the above two equations for  P  G1 ,  P  G2 , we get

    PG MW1 196 15= .  

    PG MW2 303 85= .      

  4.3.2   Economic Dispatch without Network Losses 

  4.3.2.1   Neglect the Constraints of Power Output     The equal incre-
mental principle can be used for a system with  N  thermal - generating units. 
Given that the input - output characteristics of  N  generating units are  F  1 ( P  G1 ), 
 F  2 ( P  G2 ),  … ,  F n  ( P  G   n  ), respectively, the total system load is  P  D . The problem is 
to minimize total fuel consumption  F  subject to the constraint that the sum of 
the power generated must equal the received load. That is,

    min F F P F P F P F Pn n i i
i

N

= ( ) + ( ) + + ( ) = ( )
=
∑1 1 2 2

1
G G G G�     (4.15)   

 s.t.

    P Pi
i

N

G D
=
∑ =

1

    (4.16)   

 This is a constrained optimization problem, and it can be solved by the 
Lagrange multiplier method. First of all, the Lagrange function should be 
formed by adding the constraint function to the objective function after the 
constraint function has been multiplied by an undetermined multiplier.

    L F P P i
i

N

= + −⎛
⎝⎜

⎞
⎠⎟=

∑λ D G
1

    (4.17)  
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where  λ  is the Lagrange multiplier. 
 The necessary conditions for the extreme value of the Lagrange function 

are to set the fi rst derivative of the Lagrange function with respect to each of 
the independent variables equal to zero.

    
∂
∂

=
∂
∂

− = =
L

P
F

P
i N

i iG G

λ 0 1 2, , ,…     (4.18)   

 or

    
∂
∂

= =
F

P
i N

iG

λ 1 2, , ,…     (4.19)   

 Since the fuel consumption function of each generating unit is only related 
to its own power output, equation  (4.19)  can be written as:

    
d
d

i

G

F
P

i N
i

= =λ 1 2, , ,…     (4.20)   

 or

    
d

d
d

d
d
dG G G

F
P

F
P

F
P

N

N

1

1

2

2

= = =� λ     (4.21)   

 Equation  (4.20)  is the principle of equal incremental rate of economic power 
operation for multiple generating units. 

   Example 4.4 

 Suppose the input - output characteristics of three generating units are as 
follows:

    F P P1 1
2

10 0006 0 5 6= + +. .G G Btu h  

    F P P2 2
2

20 0005 0 6 5= + +. .G G Btu h  

    F P P3 3
2

30 0007 0 4 3= + +. .G G Btu h   

 We wish to determine the economic operation point for these three units 
when delivering a total of 500   MW and 800   MW power demand, respectively. 

 (A) Total load  P  D    =   500   MW 
 The incremental fuel rates of three generating units are calculated as 
follows:
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    λ1
1

1
10 0012 0 5= = +

d
d G

G
F

P
P. .  

    λ2
2

2
20 001 0 6= = +

d
d G

G
F

P
P. .  

    λ3
3

3
30 0014 0 4= = +

d
d G

G
F

P
P. .   

 According to the principle of equal incremental rate, we have

    λ λ λ1 2 3= =   

 That is,

    0 0012 0 5 0 001 0 6 0 0014 0 41 2 3. . . . . .P P PG G G+ = + = +   

 From the above equation, we get

    1 2 1001 2. P PG G− =  

    1 2 1 4 1001 3. .P PG G− = −   

 Given a system load of 500   MW, then

    P P PG G G1 2 3 500+ + =   

 Solving the above three equations for  P  G1 ,  P  G2 ,  P  G3  we get

    PG  MW1 172 897= .  

    PG MW2 107 477= .  

    PG MW3 219 626= .   

 The corresponding system incremental fuel rate under this load level is

    λ = 0 70748.   

 (B) Total load  P  D    =   800   MW 
 Similar to (A), we get the following equations:

    1 2 1001 2. P PG G− =  

    1 2 1 4 1001 3. .P PG G− = −  

    P P PG G G1 2 3 800+ + =   

 Solving the above three equations for  P  G1 ,  P  G2 ,  P  G3 , we get
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    PG MW1 271 028= .  

    PG MW2 225 234= .  

    PG MW3 303 738= .   

 The corresponding system incremental fuel rate under this load level is

    λ = 0 82523.      

  4.3.2.2   Consider the Constraints of Power Output     We have discussed 
the equal incremental principle of economic operation. Thus we know that the 
necessary condition for thermal power system economic operation is that 
the incremental fuel rates (or incremental cost rates) of all the units are equal. 
However, we have not considered the two inequalities, i.e., the power output 
of each unit must be greater than or equal to the minimum power permitted 
and must also be less than or equal to the maximum power permitted on that 
particular unit. 

 Considering the inequality constraints, the problem of economic dispatch 
can be written as below:

    min F F P F P F P F Pn n i i
i

N

= ( ) + ( ) + + ( ) = ( )
=
∑1 1 2 2

1
G G G G�     (4.22)   

 s.t.

    P Pi
i

N

G D
=
∑ =

1

    (4.23)  

    P P Pi i iG G Gmin max≤ ≤     (4.24)   

 The equal incremental principle can be still applied to equations  (4.22) – (4.24) . 
The calculation process is as below: 

  (1)     Neglect the inequality equation  (4.24) . Distribute the power among the 
units according to the equal incremental principle.  

  (2)     Check the power output limits for each unit according to equation  (4.24) . 
If the power output is out of the limits, set the power output equal to the 
corresponding limit, that is,

    If G G G GP P P Pk k k k≥ =max max,     (4.25)  

    If G G G GP P P Pk k k k≤ =min min,     (4.26)    

  (3)     Handle the violated unit as a negative load, i.e.,

   ′ = − =( )P P k k nkk kD G for violated units 1,…   
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  (4)     Recompute the power balance equation as below:

    P P Pi
i
i nk

N

k
k

nk

G D D
=
∉

=
∑ ∑= + ′

1 1

    (4.27)  

or

    P P Pi
i
i nk

N

k
k

nk

G D G
=
∉

=
∑ ∑= −

1 1

    (4.28)    

  (5)     Go back to step (1) until all inequalities of units are met.    

   Example 4.5 

 Example 4.3 is used here but considering the inequality constraints of two 
units, which are given as below:

    100 2501≤ ≤PG MW  

    150 3002≤ ≤PG MW   

 From Example 4.3, we know the economic operation point for these two 
units without inequalities when delivering a total of 500   MW power demand. 
That is,

    PG MW1 196 15= .  

    PG MW2 303 85= .   

 By checking the inequality constraints of units, we can see that the power 
output of unit 2 violated its upper limit. Thus we set the power output of 
unit 2 to its upper limit.

    P P PG G G MW2 2 2303 85 300 300= ≥ ( ) =. ,max   

 So the power dispatch becomes

    PG MW1 200=  

    PG MW2 300=     

   Example 4.6 

 Example 4.4 is used here but considering the inequality constraints of three 
units, which are given as below.
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    100 2501≤ ≤PG  MW  

    100 2502≤ ≤PG  MW  

    100 3503≤ ≤PG  MW   

 (A) Total load  P  D    =   500   MW 
 When delivering a total of 500   MW power demand, the dispatch from 
Example 4.4 is

    PG MW1 172 897= .  

    PG MW2 107 477= .  

    PG MW3 219 626= .   

 By checking the inequality constraints of units, we know that all the power 
outputs of the units are within the limits. Thus they are the optimum results, 
and there is no violation of the inequality constraints. 

 (B) Total load  P  D    =   800   MW 
 When delivering a total of 800   MW power demand, the dispatch from 
Example 4.4 is

    PG MW1 271 028= .  

    PG MW2 225 234= .  

    PG MW3 303 738= .   

 By checking the inequality constraints of units, we can see that the 
power output of unit 1 violated its upper limit. According to equation  (4.25) , 
we get

    PG MW1 250=   

 According to equation  (4.27) , we have

    ′ = −PD MW1 250   

 From equation  (4.28) , we get the new power balance equation

    P PG G2 3 800 250 550+ = − =   

 Applying the principle of equal incremental rate for units 2 and 3, we have

    λ2
2

2
20 001 0 6= = +

d
d G

G
F

P
P. .  
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    λ3
3

3
30 0014 0 4= = +

d
d G

G
F

P
P. .  

    λ λ2 3=   

 that is,

    0 001 0 6 0 0014 0 42 3. . . .P PG G+ = +   

 Then we can get the following two equations

    P PG G2 31 4 200− = −.  

    P PG G2 3 550+ =   

 Solving the above the equations, the power dispatch becomes

    PG MW1 250 0= .  

    PG MW2 237 5= .  

    PG MW3 312 5= .        

  4.4   CALCULATION OF INCREMENTAL POWER LOSSES 

 Network losses are neglected in the previous sections on economic dispatch. 
It is much more diffi cult to solve the economic dispatch problem with network 
losses than the previous cases with no losses. There have been two general 
approaches to compute the network losses and the corresponding incremental 
power losses. The fi rst is the development of a mathematical expression for 
the losses in the network solely as a function of the power output of each of 
the units. This is called the B - coeffi cient method. The other method is based 
on power fl ow equations. The details on how to compute incremental power 
losses are discussed in Chapter  3 . Here, we just describe the simple B - coeffi cient 
method. 

 Let  S  L  be plural power losses of the network, and the corresponding real 
and reactive power losses will be  P  L  and  Q  L . The plural power losses equal the 
sum of the plural power injections of nodes, which can be expressed as

    S P jQ V IT
L L L= + = �

*
    (4.29)  

    � �V ZI=     (4.30)  

    Z R jX= +     (4.31)  

    �I I jI= +P Q     (4.32)  
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where

   V :    Node voltage  
  I :    Node current  
  I  P :    Node current component corresponding to real power  
  I  Q :    Node current component corresponding to reactive power  
  Z :    Node impedance matrix    

 Substituting equations  (4.30) – (4.32)  into equation  (4.29) , we get the real power 
losses as below:

    P I RI I RIP P Q QL
T T= +     (4.33)   

 The node current can also be expressed as

    � �I
P jQ

V

P jQ
V e

P jQ e
V

i
i i

i

i i

i
j

i i
j

i
i

i

=
+

=
+

=
+( )

− θ

θ

    (4.34)   

 Since

    e jj
i i

iθ θ θ= +cos sin     (4.35)   

 Thus

    �I
P jQ j

V
i

i i i i

i

=
+( ) +( )cos sinθ θ

    (4.36)   

 From equation  (4.36) , we get

    I
P Q

V
Pi

i i i i

i

=
+( )cos sinθ θ

    (4.37)  

    I
P Q

V
qi

i i i i

i

=
−( )sin cosθ θ

    (4.38)   

 Substituting equations  (4.37)  and  (4.38)  into equation  (4.33) , we get

    P P Q
A B

B A

P

Q
L

T T= [ ] −⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

    (4.39)   

 Where the elements of  A  and  B  are
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    A
R

V V
ij

ij i j

i j

=
−( )cos θ θ

    (4.40)  

    B
R

V V
ij

ij i j

i j

=
−( )sin θ θ

    (4.41)   

 Suppose each node power consists of power generation and power demand. 
Then node power and matrices  A  and  B  can be divided into two parts, i.e.,

    P P PT
G
T

D
T= [ ]     (4.42)  

    Q Q QT
G
T

D
T= [ ]     (4.43)  

    A
A A

A A
= ⎡
⎣⎢

⎤
⎦⎥

GG GD

DG DD

    (4.44)  

    B
B B

B B
= ⎡
⎣⎢

⎤
⎦⎥

GG GD

DG DD

    (4.45)   

 Substituting equations  (4.42) – (4.45)  into equation  (4.39) , we get

    P P Q
A B

B A

P

Q
C C

P

Q
L G

T
G
T GG GG

GG GG

G

G
GD
T

DG
T G

G

= [ ] −⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
+ [ ]⎡

⎣⎢
⎤⎤
⎦⎥
+C     (4.46)  

where

    C P Q
A B

B A

P

Q
= [ ] −⎡

⎣⎢
⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

D
T

D
T DD DD

DD DD

D

D

    (4.47)  

    C B Q A PGD GD D GD D= −( )2     (4.48)  

    C B P A QDG DG
T

D DG
T

D= −( )2     (4.49)   

 Assuming the relationship between real and reactive power output of the 
generator is linear, i.e.,

    Q Q D Pi i i iG G G= −0     (4.50)   

 equation  (4.46)  can be written as

    P P B P B P BL G
T

L G L
T

G= + +0 0     (4.51)  

where

    B FA F A FBL GG GG GG= + + 2     (4.52)  
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    B Q A F B C F CL
T

G
T

GG GG DG
T

GD
T

0 02= +( ) + +     (4.53)  

    B Q A Q C Q C0 0 0 0= + +G
T

GG G DG
T

G     (4.54)   

 Equation  (4.51)  is the B - coeffi cient formula of network losses. The incre-
mental power losses can be obtained from equation  (4.51) :

    
∂
∂

= +
P
P

B P BL

G
L G L

T2 0     (4.55)    

  4.5   THERMAL SYSTEM ECONOMIC DISPATCH WITH 
NETWORK LOSSES 

 Considering the network power losses, the problem of thermal system eco-
nomic dispatch can be written as below.

    min F F P F P F P F Pn n i i
i

N

= ( ) + ( ) + + ( ) = ( )
=
∑1 1 2 2

1
G G G G�     (4.56)   

 s.t.

    P P Pi
i

N

G D L
=
∑ = +

1

    (4.57)  

    P P Pi i iG G Gmin max≤ ≤     (4.58)   

 The Lagrange function is written as:

    L F P P P i
i

N

= + + −⎛
⎝⎜

⎞
⎠⎟=

∑λ D L G
1

    (4.59)   

 The necessary conditions for the extreme value of the Lagrange function 
are to set the fi rst derivative of the Lagrange function with respect to each of 
the independent variables equal to zero.

    
∂
∂

= − −
∂
∂

⎛
⎝⎜

⎞
⎠⎟ = =

L
P

F
P

P
P

i N
i

i

i iG G

L

G

d
d

λ 1 0 1 2, , ,…     (4.60)   

 or

    
d
d

d
dG L

G

G

F
P P

P

F
P

a i Ni

i

i

i

i
i×

− ∂
∂

⎛
⎝

⎞
⎠

= = =
1

1
1 2λ , , ,…     (4.61)  
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where

    a
P
P

i

i

=
− ∂
∂

⎛
⎝

⎞
⎠

1

1 L

G

    (4.62)   

 is the correction coeffi cient of network losses. 
 Considering the network losses, the equal incremental principle of classic 

economic dispatch can be written as

    
d
d G

F
P

a i Ni

i
i = =λ 1 2, , ,…     (4.63)   

 or

    
d

d
d

d
d
dG G G

F
P

a
F

P
a

F
P

aN

N
N

1

1
1

2

2
2= = =� λ     (4.64)   

 Equation  (4.64)  is also called the coordination equation of economic power 
operation. 

 The solution procedure of thermal system economic power dispatch is as 
follows.

   (1)     Pick a set of starting values  P  G0   i   that sum to the load.  

  (2)     Calculate the incremental fuel   
d
d G

F
P

i

i

.  

  (3)     Calculate the incremental losses   
∂
∂

P
P i

L

G

 as well as the total losses.  

  (4)     Calculate the value of  λ  and  P  G   i   according to the coordination equation 
 (4.64)  and the power balance equation.  

  (5)     Compare the  P  G   i   from step (4) with the starting points  P  G0   i  . If there is no 
signifi cant change in any one of the values, go to step (6); otherwise go 
back to step 2.  

  (6)     Done.     

  4.6   HYDROTHERMAL SYSTEM ECONOMIC DISPATCH 

  4.6.1   Neglect Network Losses 

 The hydrothermal system economic dispatch is usually more complex than the 
economic operation of an all - thermal generation system. All hydro - systems 
are different. The reasons for the differences are the natural differences in the 
watersheds, the differences in the manmade storage and release elements used 
to control the water fl ows, and the very many different types of natural and 
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manmade constraints imposed on the operation of hydroelectric systems. The 
coordination of the operation of hydroelectric plants involves the scheduling 
of water release. According to the scheduling period, the hydro - system opera-
tion can be divided into long - range hydro - scheduling and short - range hydro -
 scheduling problems. 

 The long - range hydro - scheduling problem involves the long - range forecast-
ing of water availability and the scheduling of reservoir water release for an 
interval of time that depends on the reservoir capacities. Typical long - range 
scheduling goes anywhere from 1 week to 1 year or several years. For hydro 
schemes with a capacity of impounding water over several seasons, the long -
 range problem involves meteorological and statistics analysis. Here we focus 
on the short - range hydro - scheduling problem. 

 Short - range hydro - scheduling refers to time periods from 1 day to 1 week. 
It involves the hour - by - hour scheduling of all generations on a hydrothermal 
system to achieve minimum production cost (or minimum consumption fuel) 
for the given time period. 

 Let  P  T ,  F ( P  T ) be the power output and input - output characteristic of a 
thermal plant, and let  P  H ,  W ( P  H ) be the power output and input - output char-
acteristic of a hydro - electric plant. The hydrothermal system economic dis-
patch problem can be expressed as

    min F F P t tΣ = ( )[ ]∫ T

T
d

0
    (4.65)   

 s.t.

    P t P t P tH T D( ) + ( ) − ( ) = 0     (4.66)  

    W P t t WH

T
d( )[ ] − =∫0

0Σ     (4.67)   

 We divide the operation period  T  into  s  time stages

    T tk
k

s

=
=
∑Δ

1

    (4.68)   

 For any time stage, suppose that the power output of the hydro plant and the 
thermal plant as well as load demand are constant. Then equations  (4.66)  and 
 (4.67)  are changed as

    P P P k sk k kH T D+ − = =0 1 2, , , ,…     (4.69)  

    W P t W W t Wk k
k

s

k k
k

s

H( ) − = − =
= =
∑ ∑Δ ΔΣ Σ

1 1

0     (4.70)   

 The objective function (4.65) is also changed as

    F F P t F tk k
k

s

k k
k

s

Σ Δ Δ= ( ) =
= =
∑ ∑T

1 1

    (4.71)   
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 The Lagrange function is written as:

    L F t P P P t W t Wk k
k

s

k k k k k
k

s

k k
k

s

= − + −( ) + −⎛
⎝⎜

⎞
⎠⎟= = =

∑ ∑ ∑Δ Δ Δ Σ
1 1 1

λ γH T D     (4.72)   

 The necessary conditions for the extreme value of the Lagrange function are

    
∂
∂

= − = =
L

P
W
P

t t k s
k

k

k
k k k

H H

d
d

γ λΔ Δ 0 1 2, , ,…     (4.73)  

    
∂
∂

= − = =
L

P
F
P

t t k s
k

k

k
k k k

T T

d
d

Δ Δλ 0 1 2, , ,…     (4.74)  

    
∂
∂

= − + −( ) = =
L

P P P t k s
k

k k k kλ H T D Δ 0 1 2, , ,…     (4.75)  

    
∂
∂

= − =
=
∑L

W t Wk k
k

s

γ
Δ Σ

1

0     (4.76)   

 From equations  (4.73)  and  (4.74) , we get

    
d
d

d
dT H

F
P

W
P

k sk

k

k

k
k= = =γ λ 1 2, , ,…     (4.77)   

 If the time stage is very short, equation  (4.77)  can be expressed as

    
d
d

d
dT H

F
P

W
P

= =γ λ     (4.78)   

 Equation  (4.78)  is the equal incremental principle of hydrothermal system 
economic dispatch. It means that when the thermal unit increases power 
output  Δ  P , the incremental fuel consumption will be

    Δ ΔF
F
P

P=
d
d T

    (4.79)   

 When the hydro unit increases power output  Δ  P , the incremental water con-
sumption will be

    Δ ΔW
W
P

P=
d
d H

    (4.80)   

 From equations  (4.78) – (4.80) , we obtain
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    γ =
Δ
Δ

F
W

    (4.81)  

where  γ  is the coeffi cient that converts water consumption to fuel. In other 
words, the water consumption of a hydro unit multiplied by  γ  is equivalent to 
the fuel consumption of a thermal unit. Thus the hydro unit is equivalent to a 
thermal unit. 

 Generally, the value of  γ  is related to given water consumption of a hydro 
unit during a time period (e.g., 1 day). If the given water consumption is big, 
the hydro unit can produce more power output to meet the load demand. In 
this case, a smaller value of  γ  will be selected. Otherwise, a bigger value of  γ  
will be selected. The calculation procedures of hydrothermal system economic 
dispatch are as below.

   (1)     Given a initial value  γ (0), set iteration number  k    =   0  
  (2)     Compute power distribution for the hydrothermal system for all time 

stages according to equation  (4.77) .  
  (3)     Check whether the total water consumption  W ( k ) equals the given water 

consumption, i.e., 

     W k W( ) − <Σ ε     (4.82)   

 If this is met, stop calculation; otherwise, go to the next step.  
  (4)     If  W ( k )    >     W   Σ  , it means that the selected  γ  is too small. Make  γ ( k    +   1)    >     γ ( k ). 

If  W ( k )    <     W   Σ  , it means that the selected  γ  is too big. Make  γ ( k    +   1)    <     γ ( k ). 
Go back to step (2).    

   Example 4.7 

 A system has one thermal plant and one hydro plant. The input - output 
characteristic of the thermal plant is

    F P P= + +0 00035 0 4 32. .T T Btu h   

 The input - output characteristic of the hydro plant is

    W P P= + +0 0015 0 8 22 3. .H H m s   

 The daily water consumption of the hydro plant is

    WΣ = ×1 5 107 3. m   

 The daily load demands of the system are as shown in Figure  4.6 .   
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 The power output limit of the thermal plant is

    50 600≤ ≤PT MW   

 The power output limit of the hydro plant is

    50 450≤ ≤PH MW   

 The problem is to determine the economic dispatch for this hydrothermal 
system. 

 According to the input - output characteristics of the thermal plant and 
the hydro plant and equation  (4.78) , we get the coordination equation as 
below:

    0 0007 0 4 0 003 0 8. . . .P PT H+ = +( )γ   

 From the load curve, we know that there are three time stages. The loads 
are the same within each time stage. Thus, for each time stage, we get the 
corresponding power balance equation:

    P P P kk k kH T D+ = = 1 2 3, ,   

 From the above two equations, we get

    P
P

kk
k

H
D=

− +
+

=
0 4 0 8 0 0007

0 003 0 0007
1 2 3

. . .
. .

, ,
γ
γ

 

    P
P

kk
k

T
D=

− + +
+

=
0 4 0 8 0 003

0 003 0 0007
1 2 3

. . .
. .

, ,
γ γ
γ

  

 Select the initial value of  γ  as 0.5. For the fi rst time stage, the load level is 
350   MW; we get

     FIGURE 4.6     Daily load demands for Example 4.7  
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    PH MW1
0 4 0 8 0 5 0 0007 350

0 003 0 5 0 0007
111 36=

− × + ×
× +

=
. . . .

. . .
.  

    PT MW1
0 4 0 8 0 5 0 003 0 5 350

0 003 0 5 0 0007
238 64=

− + × + × ×
× +

=
. . . . .

. . .
.   

 For the second time stage, the load level is 700   MW; we get

    PH MW2
0 4 0 8 0 5 0 0007 700

0 003 0 5 0 0007
222 72=

− × + ×
× +

=
. . . .

. . .
.  

    PT MW2
0 4 0 8 0 5 0 003 0 5 700

0 003 0 5 0 0007
477 28=

− + × + × ×
× +

=
. . . . .

. . .
.   

 For the third time stage, the load level is 500   MW; we get

    PH MW3
0 4 0 8 0 5 0 0007 500

0 003 0 5 0 0007
159 09=

− × + ×
× +

=
. . . .

. . .
.  

    PT MW3
0 4 0 8 0 5 0 003 0 5 500

0 003 0 5 0 0007
340 91=

− + × + × ×
× +

=
. . . . .

. . .
.   

 According to the power output of the hydro plant and the input - output 
characteristic of the hydro plant, we can compute the daily water 
consumption:

    
WΣ = × + × +( ) × × +

× +
0 0015 111 36 0 8 111 36 2 8 3600

0 0015 222 72 0 8

2

2

. . . .

. . . ×× +( ) × × +
× + × +( ) × × =

222 72 2 10 3600

0 0015 159 09 0 8 159 09 2 6 36002

.

. . . . 11 5936858 107 3. × m

  

 The water consumption is greater than the daily given amount. So increase 
the value of  γ , say let  γ    =   0.52, and recompute the power output. For the 
fi rst time stage, the load level is 350   MW; we get

    PH MW1
0 4 0 8 0 52 0 0007 350

0 003 0 52 0 0007
101 33=

− × + ×
× +

=
. . . .

. . .
.  

    PT MW1
0 4 0 8 0 52 0 003 0 52 350

0 003 0 52 0 0007
248 67=

− + × + × ×
× +

=
. . . . .

. . .
.   

 For the second time stage, the load level is 700   MW; we get

    PH MW2
0 4 0 8 0 52 0 0007 700

0 003 0 52 0 0007
209 73=

− × + ×
× +

=
. . . .

. . .
.  
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    PT MW2
0 4 0 8 0 52 0 003 0 52 700

0 003 0 52 0 0007
490 27=

− + × + × ×
× +

=
. . . . .

. . .
.   

 For the third time stage, the load level is 500   MW; we get

    PH MW3
0 4 0 8 0 52 0 0007 500

0 003 0 52 0 0007
147 79=

− × + ×
× +

=
. . . .

. . .
.  

    PT MW3
0 4 0 8 0 52 0 003 0 52 500

0 003 0 52 0 0007
352 21=

− + × + × ×
× +

=
. . . . .

. . .
.   

 Then the daily water consumption can be computed as:

    

WΣ = × + × +( ) × × +
× +

0 0015 101 33 0 8 101 33 2 8 3600

0 0015 209 73 0 8

2

2

. . . .

. . . ×× +( ) × × +
× + × +( ) × × =

209 73 2 10 3600

0 0015 147 79 0 8 147 79 2 6 36002

.

. . . . 11 462809 107 3. × m

  

 The water consumption is less than the daily given amount. So reduce 
the value of  γ  and recompute the power output until the water consumption 
equals the daily given amount, or equation  (4.82)  is satisfi ed. The iteration 
process is listed in Table  4.2 .   

 After the fourth iteration, the water consumption almost equals the daily 
given amount. Stop the calculation.    

  4.6.2   Consider Network Losses 

 Suppose there are  m  hydro plants and  n  thermal plants. The system load is 
given in the time period. The given water consumption of hydro plant  j  is  W   Σ    j  . 
The hydrothermal system economic dispatch with network loss can be 
expressed as below:

    min F F P t ti i
i

n

Σ = ( )[ ]∫∑
=

T

T
d

0
1

    (4.83)   

 s.t.

 Table 4.2     Iteration process of Example 4.7 

   Iteration      γ       P  H1  (MW)      P  H1  (MW)      P  H1  (MW)      W   Σ   (10 7    m 3 )  

  1    0.5000    111.360    222.720    159.090    1.5936858  
  2    0.5200    101.330    209.730    147.790    1.4628090  
  3    0.5140    104.280    213.560    151.110    1.5009708  
  4    0.5145    104.207    213.463    151.031    1.5000051  
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    P t P t P t P tj
j

m

i
i

n

H T L D( ) + ( ) − ( ) − ( ) =
= =
∑ ∑

1 1

0     (4.84)  

    W P t t Wj j jH

T
d( )[ ] − =∫0

0Σ     (4.85)   

 Similar to Section  4.6.1 , we divide the operation period  T  into s time stages

    T tk
k

s

=
=
∑Δ

1

    (4.86)   

 We get

    F F P tik ik k
k

s

i

n

Σ Δ= ( )
==
∑∑ T

11

    (4.87)  

    P P P P k sjk
j

m

ik k k
i

n

H T L D
= =
∑ ∑+ − − = =

1 1

0 1 2, , ,…     (4.88)  

    W P t W j mjk jk k
k

s

jH( ) − = =
=
∑ Δ Σ

1

0 1 2, , , ,…     (4.89)   

 The Lagrange function will be

    

L F P t P P P Pik ik k
k

s

i

n

k jk
j

m

ik k k
i

n

= ( ) − + − −
⎛
⎝⎜

⎞

== = =
∑∑ ∑ ∑T H T L DΔ

11 1 1

λ
⎠⎠⎟

+

( ) −⎛
⎝⎜

⎞
⎠⎟

=

==

∑

∑∑

Δ

Δ Σ

t

W P t W

k
k

s

j jk jk k
k

s

j
j

m

1

11

γ H     (4.90)   

 The necessary conditions for the extreme value of the Lagrange function 
are

    
∂
∂

= − −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= =
L

P

W

P
t

P
P

t j m k
jk

j
jk

jk
k k

k

jk
k

H H

L

H

d

d
γ λΔ Δ1 0 1 2, , , ;… == 1 2, , ,… s  

   (4.91)  

   
∂
∂

= − −
∂
∂

⎛
⎝⎜

⎞
⎠⎟ = = =

L
P

F
P

t
P
P

t i n k
ik

ik

ik
k k

k

ik
k

T T

L

T

d
d

Δ Δλ 1 0 1 2 1, , , ;… ,, , ,2 … s     (4.92)  

     
∂
∂

= − + − −
⎛
⎝⎜

⎞
⎠⎟

= =
= =
∑ ∑L

P P P P t k s
k

jk
j

m

ik k k
i

n

kλ H T L D
1 1

0 1 2Δ , , ,…     (4.93)  

     
∂
∂

= − = =
=
∑L

W t W j m
j

jk k
k

s

jγ
Δ Σ

1

0 1 2, , ,…     (4.94)   
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 From equations  (4.91)  and  (4.92) , we get

    
d
d

d

dT L

T

H L

H

F
P P

P

W

P P
P

kik

ik k

ik

j
jk

jk k

jk

k×
− ∂
∂

= ×
− ∂
∂

= =
1

1

1

1
1 2γ λ , , ,… ss     (4.95)   

 Equation  (4.95)  is true for any time stage, i.e.,

    
d
d

d

dT L

T

H L

H

F
P P

P

W

P P
P

i

i

i

j
j

j

j

×
− ∂
∂

= ×
− ∂
∂

=
1

1

1

1
γ λ     (4.96)   

 Equation  (4.96)  is the coordination equation of hydrothermal system eco-
nomic dispatch considering network losses.   

  4.7   ECONOMIC DISPATCH BY GRADIENT METHOD 

  4.7.1   Introduction 

 We discussed the equal incremental principle for classical economic dispatch 
in the previous sections. Generally, the equal incremental principle is good 
only if the input - output characteristic of a generation unit is a quadratic func-
tion or the incremental input - output characteristic is a piecewise linear func-
tion  [2] . But the input - output characteristic of the generating unit may be a 
cubic function, or more complex. For example,

    F A BP CP DPi i i iG G G G= + + + +2 3 �   

 Thus other methods are needed to get the optimum solution for the above 
function. We discuss the gradient method in this section.  

  4.7.2   Gradient Search in Economic Dispatch 

 The principle of the gradient method is that the minimum of a function,  f ( x ), 
can be found by a series of steps that always go to the downward direction. 
The gradient of the function  f ( x ) can be expressed as below:

    ∇ =

∂
∂
∂
∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

f

f
x
f
x

f
xn

1

2

�
    (4.97)   
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 The gradient  ∇  f  always points to the direction of maximum ascent. If we 
want to move in the direction of maximum descent, we negate the gradient. 
Thus the direction of steepest descent for minimizing a function can be found 
by use of the direction of the negative gradient. Given any starting point  x  0 , 
the new point  x  1  should be obtained as below:

    x x f1 0= − ∇ε     (4.98)  

where  ε  is a scale that is used to process the convergence of the gradient 
method. 

 Applying the gradient method to economic dispatch, the objective function 
will be

    min F f Pi i
i

N

= ( )
=
∑ G

1

    (4.99)   

 The constraint is the real power balance equation, i.e.,

    P Pi
i

N

G D
=
∑ =

1

    (4.100)   

 As mentioned before, to solve this classic economic dispatch problem, the 
Lagrange function should be constructed fi rst, i.e.,

    L F P P f P P Pi
i

N

i i
i

N

i
i

N

= + −⎛
⎝⎜

⎞
⎠⎟
= ( ) + −⎛

⎝⎜
⎞
⎠⎟= = =

∑ ∑ ∑λ λD G G D G
1 1 1

    (4.101)   

 The gradient of the Lagrange function is

    ∇ =
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    (4.102)   

 To use the gradient  ∇  L  to solve the economic dispatch problem, the starting 
values   PG1

0 ,   PG2
0 ,  … ,   P NG

0 , and  λ  0  should be given. Then the new values will be 
computed by the following equation:
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    x x L1 0= − ∇ε     (4.103)  

where the vectors  x  1 ,  x  0  are
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    (4.104)  
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    (4.105)   

 The more general expression of the gradient search is as below:

    x x Ln n= − ∇−1 ε     (4.106)  

where  n  is the iteration number. 
 The calculation steps for applying the gradient method to classic economic 

dispatch are summarized as below.

   Step (1):   Select the starting values   PG1
0 ,   PG2

0 ,  … ,   P NG
0 , where 

  P P P PNG G G D1
0

2
0 0+ + + =, ,…   

  Step (2):   Compute the initial   λ i
0 for each generator. 

  λ i
i i

i P

f P
P

i N
i

0

0

1=
( )
∂

=
d G

G
G

, , ,…   

  Step (3):   Compute the initial average incremental cost  λ  0  

  λ λ0 0

1

1
=

=
∑N

i
i

N

  

  Step (4):   Compute the gradient as below: 
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  ∇ =

( ) −

( ) −

( ) −

−

L

f P

P

f P

dP

f P

P

P P

N N

N

1

1 1
0

1

0

2 2
0

2

0

0
0

d
d

d

d
d

G

G

G

G

G

G

D G

λ

λ

λ

�

ii
i

N
0

1=
∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

  Step (5):   If  ∇  L    =   0, the solution converges. Stop the iteration. Otherwise, go 
to the next step.  

  Step (6):   Select a scale  ε  for handling the convergence.  
  Step (7):   Compute the new values   PG1

1 ,   PG2
1 ,  … ,   P NG

1 ,  λ  1  according to equation 
 (4.106) .  

  Step (8):   Substitute the new values into equation  (4.102)  in Step 4, and 
recompute the gradient.    

   Example 4.8 

 For the same data as in Example 4.4, solve for the economic dispatch with 
a total load of 500   MW. The solution procedures are below. 

 Select the starting values   PG1
0 300= ,   PG2

0 150= ,   P NG
0 250= , and

    P P P NG G G1
0

2
0 0 500+ + =   

 Compute the initial   λ i
0 for each generator:

    λ1
0 1 1

0

1

0 0012 150 0 5 0 68= ( ) = × + =
d

d
G

G

f P

P
. . .  

    λ2
0 2 2

0

2

0 001 100 0 6 0 70= ( ) = × + =
d

d
G

G

f P

P
. . .  

    λ3
0 3 3

0

3

0 0014 250 0 4 0 75= ( ) = × + =
d

d
G

G

f P

P
. . .   

 Compute the initial average incremental cost  λ  0 :

    λ λ0 0

1

31
3

1
3

0 68 0 7 0 75 0 71= = + +( ) =
=
∑ i
i

. . . .   
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 Compute the gradient as below:

    ∇ =

−
−
−
− + +( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥L1

0 68 0 71

0 70 0 71

0 75 0 71

500 150 100 250

. .

. .

. . ⎥⎥
⎥

=

−
−
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 03

0 01

0 04

0 00

.

.

.

.

  

 Select a scale  ε    =   300 for handling the convergence, and compute the 
new values   PG1

1 ,   PG2
1 ,  … ,   P NG

1 ,  λ  1  according to equation  (4.106) .

    

P

P

P

G

G

G

1
1

2
1

3
1

1

150

100

250

0 71

300

0

λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

−

.

..

.

.

. .

03

0 01

0 04

0 0

159

103

238

0 71

−
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  

 Then compute the new gradient as below:

    ∇ =

× +( ) −
× +( ) −
× +

L2

0 0012 159 0 5 0 71

0 0010 103 0 6 0 71

0 0014 238 0

. . .

. . .

. .. .

.

.

.4 0 71

500 159 103 238

0 0192

0 0070

0 02( ) −
− + +( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−
−

332

0 00.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

    

P

P

P

G

G

G

1
2

2
2

3
2

2

159

103

238

0 71

300

0

λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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.

.

.

.

.

0192
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0 0

164 76

105 10

231 04

0 71

−
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
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⎢
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 Once again compute the new gradient.

    ∇ =

× +( ) −
× +( ) −

L3

0 0012 164 76 0 5 0 71

0 0010 105 10 0 6 0 71

0 0014

. . . .

. . . .

. ×× +( ) −
− + +( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−

231 04 0 4 0 71

500 164 76 105 1 231 04

. . .

. . .

00 0123
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0 900

.

.

.

.

−

−

⎡
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⎢
⎢
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⎢

⎤

⎦

⎥
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⎥
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 The gradient  ∇  L  3     ≠    0, so compute new solution.

    

P

P

P

G

G

G

1
3

2
3

3
3

3

164 76

105 10

231 04

0 71λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
.

.

.

.

⎥⎥
⎥
⎥

−

−
−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=300

0 0123

0 0049

0 01346

0 900

168 45

107

.

.

.

.

.

.880

227 00

270 71

.

.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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 The iterations have led to no solution since the element  λ  in the gradient 
had huge jump and cannot be converged. To solve this problem, we present 
three methods as below.  

   4.7.2.1   Gradient Method 1     In the calculation of the gradient, the element 
 λ  will be removed from the gradient, that is,

    ∇ =

∂
∂
∂
∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

( )
−

L

L
P
L

P

L
P

f P
P

N

G

G

G

G

G

d
d

d
1

2

1 1

1

�

λ

ff P
P

f P
P

N N

N

2 2

2

G

G

G

G

d

d
d

( )
−

( )
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

λ

λ

�
    (4.107)   

 We always set the value of  λ  equal to the average of the incremental cost of 
the generators at the iterated generation values, that is,

    λk i i
k

ii

N

N

f P

P
= ( )⎡

⎣⎢
⎤
⎦⎥=

∑1

1

d
d

G

G

    (4.108)   

   Example 4.9 

 Reworking example 4.8 using gradient method 1, the results are shown in 
Table  4.3 .   

 This solution is much more stable and is converging to the optimum 
solution. However, gradient method 1 cannot guarantee that the total 
outputs of the generators meet the total load demand.    

  4.7.2.2   Gradient Method 2     This method is modifi ed from method 1, but 
we need to check the power balance equation each time when we fi nish the 
iteration of gradient calculation. The method is as follows. 

 Table 4.3     Gradient method 1 results ( ε    =   300) 

   Iteration      P  G1       P  G2       P  G3       λ   

  0    150    100    250    0.71  
  1    159    103    238    0.709  
  2    164.46    104.8    230.74    0.708396  
  3    169.7388    105.5388    226.348    0.7086  
  4    171.21    106.4688    223.888    0.7085  
  5    172.11    107.0688    222.418    0.7083  
  6    172.65    107.4288    221.518    0.7082  
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 If   P Pi
k

i

N

G D( ) >
=
∑

1

, select the unit with the maximal incremental generation cost 

to pick up the power difference:

    P P P Pk k
i

k

i

N

GS GS G D′ = − ( ) −⎛
⎝⎜

⎞
⎠⎟=

∑λmax 1

    (4.109)   

 If   P Pi
k

i

N

G D( ) <
=
∑

1

, select the unit with the minimal incremental generation cost 

to pick up the power difference:

    P P P Pk k
i

k

i

N

GS GS D G′ = + − ( )⎛
⎝⎜

⎞
⎠⎟=

∑λmax 1

    (4.110)   

 Then recompute the average incremental generation cost, and conduct a new 
iteration. 

   Example 4.10 

 Reworking Example 4.9 using gradient method 2, the results are shown in 
Table  4.4 .   

 This solution is much more stable and is converging to the optimum 
solution. Obviously, gradient method 2 can guarantee that the total outputs 
of generators meet the total load.    

  4.7.2.3   Gradient Method 3     This method is similar to method 2 but with 
some simplifi cation. One fi xed unit is selected as the slack machine. For 
example, selecting the last unit as the slack generator, we get

    P P PN i
i

N

G D G= − ( )
=

−

∑
1

1

    (4.111)   

 Table 4.4     Gradient method 2 results ( ε    =   300) 

   Iteration      P  G1       P  G2       P  G3       P total        λ   

  0    150    100    250    500    0.71  
  1    159    103    238    500    0.709  
  2    164.46    104.8    230.74    500    0.708396  
  3    169.7388    105.5388    224.7224  *      500    0.70793  
  4    171.0108 *     106.2678    222.7214    500    0.7078  

    * The corresponding unit is selected to balance the total generations and total load.   
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 The objective function becomes

    

F f P f P f P

f P f P f P P

N N

N i

= ( ) + ( )+ ( )

= ( ) + ( )+ − ( )

1 1 2 2

1 1 2 2

G G G

G G D G

, ,

, ,

…

…
ii

N

=

−

∑⎛
⎝⎜

⎞
⎠⎟1

1

    (4.112)   

 The gradient will become

    ∇ =
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 The gradient iteration will be the same as before:

    x x Fn n= − ∇−1 ε     (4.114)   

 and

    x

P

P

P N

=

⎡
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    (4.115)   

   Example 4.11 

 Reworking Example 4.8 using gradient method 3, the results are shown in 
Table  4.5 .   

 This solution is also stable and is converging to the optimum solution, 
which is similar to method 2. Obviously, gradient method 3 can also 
guarantee that the total outputs of generators meet the total load.      

 Table 4.5     Gradient method 5 results ( ε    =   300) 

   Iteration      P  G1       P  G2       P  G3       P total    

  0    150    100    250    500  
  1    171    115    214    500  
  2    169.32    110.38    220.3    500  
  3    170.8908    109.792    219.3172    500  
  4    171.4728    108.937    219.59    500  
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4.8 CLASSIC ECONOMIC DISPATCH BY GENETIC ALGORITHM 

4.8.1 Introduction

 Another type of method that is used to solve the classic economic dispatch 
problem is Genetic Algorithm (GA)  [3 – 5] . The theoretical foundation for GA 
was fi rst described by Holland and was extended by Goldberg. GA provides 
a solution to a problem by working with a population of individuals each 
representing a possible solution. Each possible solution is termed a  “ chromo-
some. ”  New points of the search space are generated through GA operations, 
known as reproduction, crossover, and mutation. These operations consistently 
produce fi tter offspring through successive generations, which rapidly lead the 
search toward global optima. The features of GA are different from other 
search techniques in the following aspects: 

  (1)     The algorithm is a multipath that searches many peaks in parallel, 
hence reducing the possibility of local minimum trapping.  

  (2)     GA works with a bit string encoding instead of the real parameters. The 
coding of parameter will help the genetic operator to evolve the current 
state into the next state with minimum computations.  

  (3)     GA evaluates the fi tness of each string to guide its search instead of 
the optimization function. The genetic algorithm only needs to evaluate 
objective function (fi tness) to guide its search. There is no requirement 
for the operation of derivatives.  

  (4)     GA explores the search space where the probability of fi nding improved 
performance is high.    

 The main operators of GA used are: 

 •       Crossover operator  is applied with a certain probability. The parent gen-
erations are combined (exchange bits) to form two new generations that 
inherit solution characteristics from both parents. Crossover, although 
being the primary search operator, cannot produce information that does 
not already exist within the population.  

 •       Mutation operator  is also applied with a small probability. Randomly 
chosen bits of the offspring genotype fl ip from 0 to 1 and vice versa to 
give characteristics that do not exist in the parent population. Generally, 
mutation is considered as a secondary but not useless operator that gives 
a nonzero probability to every solution to be considered and evaluated.  

 •       Elitism  is implemented so that the best solution of every generation is 
copied to the next so that the possibility of its destruction through a 
genetic operator is eliminated.  

 •       Fitness scaling  is referred to a nonlinear transformation of genotype 
fi tness in order to emphasize small differences between near - optimal 
qualities in a converged population.    
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 The GA - type algorithms are actually unconstrained optimization; all infor-
mation must be expressed in a fi tness function. As mentioned at the beginning 
of this chapter, the classic economic dispatch problem neglects the network 
losses and network constraints. Thus the fi tness function for classic ED can be 
easily formed.  

  4.8.2   GA - Based ED Solution 

 According to Section  4.3 , the classic economic dispatch problem can be stated 
as below:

    min F F Pi i
i

N

= ( )
=
∑ G

1

    (4.116)   

 s.t.

    P Pi
i

N

G D
=
∑ =

1

    (4.117)   

 In the application of GA to economic dispatch, the outputs of the  N     −    1 
 “ free generators ”  can be chosen arbitrarily within limits while the output of 
the  “ reference generator ”  (or slack bus generator) is constrained by the power 
balance. It is assumed that the  N th generator is the reference generator. GAs 
do not work on the real generator outputs themselves, but on bit string encod-
ing of them. The output of the free generators is encoded in string, for example, 
an 8 - bit string (an unsigned 8 - bit integer) that gives a resolution of 2 8  discrete 
power values in the range ( P  Gmin ,  P  Gmax ). These ( N     −    1) strings are concatenated 
to form a consolidated solution bit string of 8    *    ( N     −    1) bits called the genotype. 
A population of  m  genotypes must be initially generated at random. Each 
genotype is decoded to a power output vector. The output of the reference 
unit is

    P P PN i
i

N

G D G= −
=

−

∑
1

1

    (4.118)   

 Adding penalty factors  h  1 ,  h  2  to the violation of power output of the slack bus 
unit, we can combine equations  (4.117)  and  (4.118)  as below:

    F F P h P P h P Pi i
i

N

N N N NA G G G G G= ( ) + −( ) + −( )
=
∑

1
1

2
2

2
max min     (4.119)  

where  P  G   N   min ,  P  G   N   max  are the lower and upper limits of the power output of the 
slack bus unit, respectively. The value of the penalty factors should be large so 
that there is no violation for unit output at the fi nal solution. 

 Since GA is designed for the solution of maximization problems, the GA 
fi tness function is defi ned as the inverse of equation  (4.119) .

    F
F

fitness
A

=
1

    (4.120a)   
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 In the economic dispatch problem, the problem variables correspond to the 
power generations of the units. Each string represents a possible solution and 
is made of substrings, each corresponding to a generating unit. The length of 
each substring is decided based on the maximum/minimum limits on the power 
generation of the corresponding unit and the solution accuracy desired. The 
string length, which depends on the length of each substring, is chosen based 
on a trade - off between solution accuracy and solution time. Longer strings 
may provide better accuracy but result in more solution time. Thus the step 
size of the unit can be computed as follows:

    εi
i i

n

P P
=

−
−

G Gmax min

2 1
    (4.120b)  

where  n  is the length of the substring in binary codes corresponding to a unit. 
 For example, there are six units in a system, and the sixth unit is selected 

as the slack bus unit. The power output limits of the fi ve free units are.

    20 1001≤ ≤ ( )PG MW  

    10 1002≤ ≤ ( )PG MW  

    50 2003≤ ≤ ( )PG MW  

    20 1204≤ ≤ ( )PG MW  

    50 2505≤ ≤ ( )PG MW   

 If the length of the substring in binary codes is selected as 4, the step size 
of each unit will be

    ε1
1 1

42 1
100 20

15
5 33=

−
−

=
−

=
P PG G MWmax min .  

    ε2
2 2

42 1
100 10

15
6 00=

−
−

=
−

=
P PG G MWmax min .  

    ε3
3 3

42 1
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15
10 00=

−
−

=
−

=
P PG G MWmax min .  

    ε4
4 4

42 1
120 20
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6 67=

−
−

=
−

=
P PG G MWmax min .  

    ε5
5 5

42 1
250 50

15
13 33=

−
−

=
−

=
P PG G MWmax min .   

 If the length of the substring in binary codes is selected as 5, the step size 
of each unit will be
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    ε1
1 1

52 1
100 20

31
2 58=

−
−

=
−

=
P PG G MWmax min .  

    ε2
2 2

52 1
100 10

31
2 90=

−
−

=
−

=
P PG G MWmax min .  

    ε3
3 3

52 1
200 50

31
4 84=

−
−

=
−

=
P PG G MWmax min .  

    ε4
4 4

52 1
120 20

31
3 23=

−
−

=
−

=
P PG G MWmax min .  

    ε5
5 5

52 1
250 50

31
6 45=

−
−

=
−

=
P PG G MWmax min .   

 It can be observed that the long string has a smaller step size, which verifi es 
that the length of the substring in binary codes has an effect on the solution 
accuracy and solution speed. 

 In standard GAs, all the strings in the population are reformed during a 
generation. Parents are crossed on the basis of their performance in compari-
son to the average fi tness of the population, and mutation is allowed to occur 
on the offspring. The selective pressure is provided by the fi tness measure; the 
differential need not be great to achieve good results. Both selective pressure 
and initial population sizes may be tuned to match the problem space. The 
type of crossover and rate of mutation need to be selected based on the 
problem type. For a large - scale power system, there are many generators. If 
the standard GA is used to economic dispatch, it appears to increase perfor-
mance. Little improvement on GA operator is needed; that is, we do not 
replace the entire population with each generation. Instead, it probabilistically 
chooses two parents to reform into two offspring. Recombination and muta-
tion occur, and then one of the offspring is discarded randomly. The remaining 
offspring is placed in the population according to its fi tness in relation to the 
rest of the strings. The lowest - valued string is discarded. This keeps high - valued 
strings within the population, directly accumulating high - performance hyper-
planes. It also bases the reproductive opportunity on rank within the popula-
tion, not on a string ’ s fi tness value in comparison with the average of the 
population, reducing the impact of selective pressure fl uctuation. It also 
reduces the importance of choosing a proper evaluation function for fi tness in 
that the difference in the fi tness function between two adjacent strings is 
irrelevant. 

 To use GA programming to solve classic economic dispatch, the following 
parameters are needed for data input.

    •      Number of chromosomes (that comprise a generation)  
   •      Bit resolution per generator  
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   •      Number of cross - points  
   •      Number of generations  
   •      Initial crossover probability (%)  
   •      Initial mutation probability (%)  
   •      Minimal power output of each unit  
   •      Maximal power output of each unit  
   •      Status of the unit  
   •      Coeffi cient of unit cost function  
   •      Total load demand    

   Example 4.12 

 For example 4.6, using genetic algorithm to distribute the 500 - MW load to 
three units. The GA parameters are selected as follows 

   •      Number of chromosomes   =   100  
   •      Bit resolution per generator   =   8  
   •      Number of cross - points   =   2  
   •      Number of generations   =   9000  
   •      Initial crossover probability   =   92%  
   •      Initial mutation probability   =   0.1%    

 The total load is 500   MW; the output results are as below:

    PG MW1 172 897= .  

    PG MW2 107 477= .  

    PG MW3 219 626= .       

  4.9   CLASSIC ECONOMIC DISPATCH BY HOPFIELD 
NEURAL NETWORK 

 Since Hopfi eld introduced the neural network in the early 1980s  [6] , the 
Hopfi eld neural networks (HNNs) have been used in many different applica-
tions. This section presents the application of HNN to the classic economic 
dispatch problem  [7 – 10] . 

  4.9.1   Hopfield Neural Network Model 

 Let  u i   be the  i th input of the neuron and  V i   its output. Suppose there are  N  
neurons that are connected together; the nonlinear differential equations of 
HNN are described as below:
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where

    

1

1R
T

V g u

i
i ij

j

N

i i

= +

= ( )
=
∑θ

    (4.122)   

 are the nonlinear characteristic of the neuron. 
 For a very high gain parameter  λ  of the neuron, the output equation can 

be defi ned as
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where  θ   i   is threshold bias. 
 The energy function of the system (4.121) is defi ned as
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 From equation  (4.124) , we get
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 Substituting equation  (4.126)  into equation  (4.125) , we get
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 Since the weight parameter matrix  T  in equation  (4.121)  is symmetric, we have

    T Tji ij=     (4.128)   

 Substituting equation  (4.128)  into equation  (4.127) , we get
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 Since  g   − 1  is a monotone increasing function, and  C i      >    0, thus

    
d
d

d
d

E
t

C g V
V
t

i i
i== − ( )[ ]′ ⎛⎝
⎞
⎠ ≤−1

2

0     (4.130)   

 This shows that the time evolution of the system is a motion in state space 
that seeks out minima in  E  and comes to a stop at such points.  

  4.9.2   Mapping of Economic Dispatch to HNN 

 As discussed above, the classic economic dispatch problem without line secu-
rity can be written as:

    min F F P F P F P F Pn n i i
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 s.t.
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    P P Pi i iG G Gmin max≤ ≤     (4.133)   

 assuming that the generator cost function is a quadratic function, that is,

    F P a P b P ci i i i i i iG G G( ) = + +2     (4.134)   

 and the network loss can be represented by the  B  - coeffi cient
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 To apply HNN to solve the above classic economic dispatch problem, the fol-
lowing energy function is defi ned by augmenting the objective function (4.131) 
with the constraint (4.132):
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 By comparing equation  (4.136)  with equation  (4.124) , whose threshold is 
assumed to be zero, the weight parameters and external input of neuron  I  in 
the network  [7]  are given by

    T A Bcii i= − −     (4.137)  

    T Aij = −     (4.138)  
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where the diagonal weights are nonzero. 
 The sigmoid function (4.123) can be modifi ed to meet the power limit con-

straint as follows  [7] :
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 To speed up convergence of the ED problem solved by HNN, two adjust-
ment methods can be used  [9] . 

  4.9.2.1   Slope Adjustment Method     Since energy is to be minimized and 
its convergence depends on the gain parameter  u  0 , the gradient descent method 
can be applied to adjust the gain parameters.

    u k u k
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where  η  s  is a learning rate. 
 From equations  (4.136)  and  (4.140) , the gradient of energy with respect to 

the gain parameter can be computed as
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 The update rule of equation  (4.141)  needs a suitable choice of the learning 
rate  η  s . For a small value of  η  s , convergence is guaranteed but the speed is too 
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slow. On the other hand, if the learning rate is too big, the algorithm becomes 
unstable. The suggested learning rate will be
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 Moreover, the optimal convergence is corresponding to
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  4.9.2.2   Bias Adjustment Method     There is a limitation in the slope adjust-
ment method, in which the slopes are small near the saturation region of the 
sigmoid function. If every input can use the same maximum possible slope, 
convergence will be much faster. This can be achieved by changing the bias to 
shift the input near the center of the sigmoid function, that is,
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where  η  b  is a learning rate. 
 The bias can be applied to every neuron as in equation  (4.123) . Thus, from 

equations  (4.136)  and  (4.140) , the derivate of energy with respect to a bias can 
be computed as
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 The suggested learning rate will be
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 Moreover, the optimal convergence is corresponding to

    ηb
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( )
1

g k
    (4.150)     

  4.9.3   Simulation Results 

 The test example and results of applying HNN to ED are taken from reference 
 [9] . The system data are shown in Table  4.6 . Each generator has three types of 
fuels. There are four values of load demand, that is, 2400, 2500, 2600, and 
2700   MW.   

 Table 4.6     Cost coefficients for piecewise quadratic cost function 

   Unit  

   Generation  

   F      c       b       a   
  Min        P1        P2        Max  

        F1          F2          F3       

  1    100        196        250        250    1    .2697e2     − .3975e0    .2176e - 2  
          1        2        2        2    .2113e2     − .3059e0    .1861e - 2  
                                  2    .2113e2     − .3059e0    .1861e - 2  

  2    50        114        157        230    1    .1184e3     − .1269e1    .4194e - 2  
          2        3        1        2    .1865e1     − .3988e - 1    .1138e - 2  
                                  3    .1365e2     − .1980e - 1    .1620e - 2  

  3    200        332        388        500    1    .3979e2     − .3116e0    .1457e - 2  
          1        2        3        2     − .5914e2    .4864e0    .1176e - 4  
                                  3     − .2876e1    .3389e - 1    .8035e - 3  

  4    99        138        200        265    1    .1983e1     − .3114e - 1    .1049e - 2  
          1        2        3        2    .5285e2     − .6348e0    .2758e - 2  
                                  3    .2668e3     − .2338e1    .5935e - 2  

  5    190        338        407        490    1    .1392e2     − .8733e - 1    .1066e - 2  
          1        2        3        2    .9976e2     − .5206e0    .1597e - 2  
                                  3    .5399e2    .4462e0    .1498e - 3  

  6    85        138        200        265    1    .5285e2     − .6348e0    .2758e - 2  
          2        1        3        2    .1983e1     − .3114e - 1    .1049e - 2  
                                  3    .2668e3     − .2338e1    .5935e - 2  

  7    200        331        391        500    1    .1893e2     − .1325e0    .1107e - 2  
          1        2        3        2    .4377e2     − .2267e0    .1165e - 2  
                                  3     − .4335e2    .3559e0    .2454e - 3  

  8    99        138        200        265    1    .1983e1     − .3114e - 1    .1049e - 2  
          1        2        3        2    .5285e2     − .6348e0    .2758e - 2  
                                  3    .2668e3     − .2338e1    .5935e - 2  

  9    130        213        370        440    1    .8853e2     − .5675e0    .1554e - 2  
          3        1        2        2    .1530e2     − .4514e - 1    .7033e - 2  
                                  3    .1423e2     − .1817e - 1    .6121e - 3  

  10    200        362        407        490    1    .1397e2     − .9938e - 1    .1102e - 2  
          1        3        2        2     − .6113e2    .5084e0    .4164e - 4  
                                  3    .4671e2     − .2024e0    .1137e - 2  
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 The ED results based on the slope adjustment method are shown in Table 
 4.7 . Compared with the conventional Hopfi eld network, the number of itera-
tions is reduced to about one - half, and oscillation is drastically reduced from 
about 40,000 to less than 100 iterations. In addition, the degree of freedom of 
the system increases from 1, which is  u0 , to 2. It can be observed that the fi nal 
results of the adaptive learning rate are close to those of the fi xed learning 
rate.   

 The ED results based on the bias adjustment method are shown in Table 
 4.8 , which are similar to those based on the slope adjustment method. For the 
adaptive learning rate, the number of iterations is reduced and the fi nal results 
of the adaptive learning rate are better than those of the fi xed learning rate.     

APPENDIX: OPTIMIZATION METHODS USED IN 
ECONOMIC OPERATION 

 Here we introduce several methods  [10 – 17]  that are used for economic power 
operation of power systems. 

 Although a wide spectrum of methods exists for optimization, methods can 
be broadly categorized in terms of the derivative information that is, or is not, 
used. Search methods that use only function evaluations are most suitable for 
problems that are very nonlinear or have a number of discontinuities. Gradient 

Table 4.7 Results for slope adjustment method with fixed learning rate, 1.0 ( A) and 
adaptive learning rate ( B)

   Unit  

   2400   MW     2500   MW     2600   MW     2700   MW  

   A     B     A     B     A     B     A     B  

  1    196.8    189.9    205.6    205.1    215.7    214.5    223.2    224.6  
  2    202.7    202.9    206.7    206.5    211.1    211.4    216.1    215.7  
  3    251.2    252.1    265.3    266.4    278.9    278.8    292.5    291.9  
  4    232.5    232.9    236.0    235.8    239.2    239.3    242.6    242.6  
  5    240.4    241.7    257.9    256.8    276.1    276.1    294.1    293.6  
  6    232.5    232.9    236.0    235.9    239.2    239.1    242.4    242.5  
  7    252.5    253.4    269.5    269.3    286.0    286.7    303.5    303.0  
  8    232.5    232.9    236.0    235.8    239.2    239.3    242.7    242.6  
  9    320.2    321.0    331.8    334.0    343.4    343.6    355.8    355.7  

  10    238.9    240.4    255.5    254.4    271.2    271.2    287.3    287.8  
  Total P    2400.0    2400.0    2500.0    2500.0    2600.0    2600.0    2700.0    2700.0  
  Cost    481.83    481.71    526.23    526.23    574.36    574.37    626.27    626.24  
  Iters    99,992    84,791    80,156    86,081    72,993    79,495    99,948    99,811  
u0   95.0    110.0    120.0    100.0    130.0    120.0    160.0    120.0  
  n    1.5    1.0E - 04    1.0    1.0E - 04    1.0    1.0E - 04    1.0    1.0E - 04  
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 Table 4.8     Results for the bias adjustment method with fixed learning rate, 1.0 (A) and 
adaptive learning rate (B) 

   Unit  

   2400   MW     2500   MW     2600   MW     2700   MW  

   A     B     A     B     A     B     A     B  

  1    197.6    189.4    208.3    206.7    212.4    217.9    221.4    228.8  
  2    201.6    201.8    206.2    205.8    209.6    210.5    213.8    214.1  
  3    252.3    253.5    265.2    265.6    280.0    278.8    293.3    292.0  
  4    232.7    232.9    235.9    235.8    238.8    239.0    242.1    242.2  
  5    239.9    242.1    257.1    258.2    277.9    275.8    295.4    293.6  
  6    232.7    232.9    235.9    235.8    238.6    239.0    242.0    242.1  
  7    251.5    253.8    268.3    269.4    288.1    285.5    305.3    302.6  
  8    232.7    232.9    235.8    235.8    238.8    239.0    242.1    242.1  
  9    318.8    319.3    330.9    330.1    341.9    342.1    345.2    352.3  

  10    240.3    241.6    256.4    256.9    274.0    272.3    290.4    290.1  
  Total P    2400.0    2400.0    2500.0    2500.0    2600.0    2600.0    2700.0    2700.0  
  Cost    481.83    481.72    526.24    526.23    574.43    574.37    626.32    626.27  
  Iters    99,960    99,904    99,987    88,776    99,981    99,337    99,972    73,250  
   u  0     100.0    100.0    100.0    100.0    100.0    100.0    100.0    100.0  
  theta    0.0    50.0    0.0    50.0    0.0    50.0    0.0    100.0  
  n    1.0    1.0    1.0    5.0    1.0    5.0    1.0    5.0  

methods are generally more effi cient when the function to be minimized is 
continuous in its fi rst derivative. Higher - order methods, such as Newton ’ s 
method, are only really suitable when the second - order information is readily 
and easily calculated, because calculation of second - order information, using 
numerical differentiation, is computationally expensive. 

  Gradient Method 

  Gradient methods  use information about the slope of the function to dictate 
a direction of search where the minimum is thought to lie. The simplest of 
these is the method of steepest descent in which a search is performed in a 
direction.

    S f xk k= −∇ ( )     (4A.1)  

where  ∇  f ( x k  ) is the gradient of the objective function. 
 The optimum search step can be computed as follows:

    ε*k
k T k

k T k k

f x f x

f x H x f x
=

∇ ( )[ ] ∇ ( )
∇ ( )[ ] ( )∇ ( )

    (4A.2)  

where  H ( x k  ) is the Hessian matrix of the objective function. 
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 The gradient method based on equation  (4A.2)  is also called the optimum 
gradient method. However, this method is very ineffi cient when the function 
to be minimized has long, narrow valleys.  

  Line Search 

  Line search  is a search method that is used as part of a larger optimization 
algorithm. At each step of the main algorithm, the line search method searches 
along the line containing the current point,  x k  , parallel to the  search direction , 
which is a vector determined by the main algorithm. That is, the iteration form 
of the method can be expressed as:

    x x dk k k+ = +1 ε     (4A.3)  

where  x k   denotes the current iterate,  d k   is the search direction, and  ε  is a scalar 
step length parameter. 

 The line search method attempts to decrease the objective function along 
the line  x k     +    ε  d k   by repeatedly minimizing polynomial interpolation models of 
the objective function. The line search procedure has two main steps: 

 The  bracketing  phase determines the range of points on the line 
 x k   +1    =    x k     +    ε  d k   to be searched. The  bracket  corresponds to an interval specifying 
the range of values of  ε . 

 The  sectioning  step divides the bracket into subintervals, on which 
the minimum of the objective function is approximated by polynomial 
interpolation. 

 The resulting step length  ε  satisfi es the Wolfe conditions:

    f x d f x f dk k k k T k+( ) ≤ ( ) + ∇( )ε α ε1     (4A.4)  

    ∇ +( ) ≥ ∇( )f x d d f dk k T
k

k T kε α ε2     (4A.5)  

where  α  1  and  α  2  are constants with 0    <     α  1     <     α  2     <    1. 
 The fi rst condition (4A.4) requires that  ε  suffi ciently decreases the objective 

function. The second condition (4A.5) ensures that the step length is not 
too small. Points that satisfy both conditions (4A.4) and (4A.5) are called 
 acceptable points .  

  Newton – Raphson Optimization 

 The  Newton - Raphson optimization  is also called the Newton method or the 
Hessian matrix method. 

 The objective function can be approximately expressed by use of the
 second - order Taylor series expansion at the point  x k  , that is,

    f x f x f x x x H x xk k T T k( ) ≈ ( ) + ∇ ( )[ ] + ( )Δ Δ Δ
1
2

    (4A.6)   
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 The necessary condition that a quadratic function achieves the minimum 
value is that its gradient equals zero.

    ∇ ( ) = ∇ ( ) + ( ) =f x f x H x xk k Δ 0     (4A.7)   

 Thus the general iteration expression is as below:

    x x H x f xk k k k+ −= − ( )[ ] ∇ ( )1 1
    (4A.8)   

 It is noted that the Hessian matrix  H ( x ) will be constant if the original non-
linear objective function is a quadratic function. In this case, the minimum 
value of the function will be obtained through one iteration only. Otherwise, 
the Hessian matrix  H ( x ) will not be constant, and multiple iterations are 
needed to obtain the minimum of the function. The formula of the search 
direction is

    S H x f xk k k= − ( )[ ] ∇ ( )−1
    (4A.9)   

 The advantage of the Hessian matrix method is fast convergence. The disad-
vantage is that it needs to compute the inverse of the Hessian matrix, which 
leads to an expensive memory and calculation burden.  

  Trust - Region Optimization 

 The convergence of the Newton optimization method can be made more 
robust by using  trust regions  (TR)  [11] . TR - based methods generate steps 
based on a quadratic model of the objective function. A region around the 
current solution is defi ned, within which the model is supposed to be an 
adequate representation of the objective function. Then a step is selected to 
minimize this approximate model in the trust region. Both the direction and 
the length of the step are chosen simultaneously. If a step is not acceptable, 
the size of the region is reduced and a new solution is found. In general, the 
step direction changes whenever the size of the trust region is altered  [11] . 

 Since the trust - region method uses the gradient  g ( x k  ) and the Hessian 
matrix  H ( x k  ), it requires that the objective function  f ( x ) have continuous fi rst -  
and second - order derivatives inside the feasible region. The general trust -
 region problem is expressed as

    min f g x x x H x xT k T k= ( ) + ( )Δ Δ Δ
1
2

    (4A.10)   

 s.t.

    Δx ≤ δ     (4A.11)  

where  δ  is the trust region radius. 



134 CLASSIC ECONOMIC DISPATCH

 The general idea of the trust region is to solve the subproblem represented 
by equations  (4A.10)  and  (4A.11)  to obtain a point  y k  . Then the value of the 
true objective function is calculated at  y k   and compared to the value predicted 
by the quadratic model, to verify whether the point located in the trust region 
represents effective progress toward the optimal solution. For this purpose, 
the size of the trust region is critical to the effectiveness of each step. 

 In practice, the size of the region is determined according to the evolution 
of the iterative process. If the model is suffi ciently accurate, the size of the 
trust region is steadily increased to allow bigger steps. Otherwise, the quadratic 
model is inadequate, so that the size of the trust region must be reduced. To 
establish an algorithm to control the trust region radius, defi ne the  reduction 
ratio  evaluated at the  k th iteration

    ρk
k k

k k

J x J x

Q x Q x
= ( ) − ( )

( ) − ( )
+

+

1

1     (4A.12)  

where  J ( x k  ) and  Q ( x k  ) are the values of the summation of the weighted 
squared residuals for the actual objective function and the corresponding 
approximated quadratic model, respectively, evaluated at the  k th iteration.  

  Newton - Raphson Optimization with Line Search 

 This technique uses the gradient  g ( x k  ) and the Hessian matrix  H ( x k  ) and thus 
requires that the objective function have continuous fi rst -  and second - order 
derivatives inside the feasible region. If second - order derivatives are com-
puted effi ciently and precisely, the method may perform well for medium - sized 
to large problems, and it does not need many function, gradient, and Hessian 
calls. 

 This algorithm uses a pure Newton step when the Hessian is positive defi -
nite and when the Newton step reduces the value of the objective function 
successfully. Otherwise, a combination of ridging and line search is done to 
compute successful steps. If the Hessian is not positive defi nite, a multiple of 
the identity matrix is added to the Hessian matrix to make it positive defi nite. 
In each iteration, a line search is done along the search direction to fi nd an 
approximate optimum of the objective function. The default line - search 
method uses quadratic interpolation and cubic extrapolation.  

  Quasi - Newton Optimization 

 The (dual) quasi - Newton method uses the gradient  g ( x k  ) and does not need 
to compute second - order derivatives since they are approximated. It works 
well for medium to moderately large optimization problems where the objec-
tive function and the gradient are much faster to compute than the Hessian. 

 The method builds up curvature information at each iteration to formulate 
a quadratic model problem of the form
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    min f x b c x x HxT T( ) = + +
1
2

    (4A.13)  

where the Hessian matrix,  H , is a positive defi nite symmetric matrix,  c  is a 
constant vector, and  b  is a constant. The optimal solution for this problem 
occurs when the partial derivatives of  x  go to zero, i.e.,

    ∇ ( ) = + =f x Hx c* * 0     (4A.14)   

 The optimal solution point,  x  * , can be written as

    x H c* = − −1     (4A.15)   

 Newton - type methods (as opposed to quasi - Newton methods) calculate  H  
directly and proceed in a direction of descent to locate the minimum after a 
number of iterations. Calculating  H  numerically involves a large amount of 
computation. Quasi - Newton methods avoid this by using the observed behav-
ior of  f ( x ) and  ∇  f ( x ) to build up curvature information to make an approxima-
tion to  H  with an appropriate updating technique. 

 A large number of Hessian updating methods have been developed. 
However, the formula of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 
is thought to be the most effective for use in a general purpose method 
 [12 – 17] . 

 The formula given by BFGS is

    H H
q q

q S

H S S H

S H S
k k

k k T

k T k

k T k T k k

k T k k

+ = + ( )
( )

− ( ) ( )
( )

1     (4A.16)  

where

    S x xk k k= −+1     (4A.17)  

    q f x xk k k= ∇ ( ) −∇( )+1     (4A.18)   

 As a starting point,  H  0  can be set to any symmetric positive defi nite matrix, 
for example, the identity matrix  I . To avoid the inversion of the Hessian  H , we 
can derive an updating method that avoids the direct inversion of  H  by using 
a formula that makes an approximation of the inverse Hessian  H  −    1  at each 
update. A well - known procedure is the DFP formula of Davidon, Fletcher, 
and Powell. This uses the same formula as the BFGS method (4A.16) except 
that  q k   is substituted for  S k  . 

 The gradient information is either supplied through analytically calculated 
gradients or derived by partial derivatives using a numerical differentiation 
method via fi nite differences. This involves perturbing each of the design vari-
ables,  x , in turn and calculating the rate of change in the objective function. 
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 At each major iteration,  k , a line search is performed in the direction

    d H f xk k= −( ) ∇ ( )−1
    (4A.19)    

  Double Dogleg Optimization 

 The double dogleg optimization method combines the ideas of quasi - Newton 
and trust region methods. The double dogleg algorithm computes in each 
iteration the step  S k   as the linear combination of the steepest descent or ascent 
search direction   Sk

1  and a quasi - Newton search direction   Sk
2 ,

    S S Sk k k= +α α1 1 2 2     (4A.20)   

 The step is requested to remain within a prespecifi ed trust region radius. 
The double dogleg optimization technique works well for medium to moder-
ately large optimization problems where the objective function and the gradi-
ent are much faster to compute than the Hessian.  

  Conjugate Gradient Optimization 

 Second - order derivatives are not used by conjugate gradient optimization. As 
we discussed above the method of steepest descent (or gradient method) 
converges slowly. The method of conjugate gradients is an attempt to mend 
this problem.  “ Conjugacy ”  means that two unequal vectors,  S i   and  S j  , are 
orthogonal with respect to any symmetric positive defi nite matrix, for example, 
 Q , i.e.,

    S QSi
T

j = 0     (4A.21)   

 This can be looked upon as a generalization of orthogonality, for which  Q  
is the unity matrix. The idea is to let each search direction  S i   be dependent on 
all the other directions searched to locate the minimum of  f ( x ) through equa-
tion  (4A.21) . A set of such search directions is referred to as a Q - orthogonal, 
or conjugate, set, and it will take a positive defi nite  n  - dimensional quadratic 
function to its minimum point in, at most,  n  exact linear searches. This method 
is often referred to as  conjugate directions , and a short description follows. 

 The conjugate gradients method is a special case of the method of conjugate 
directions in which the conjugate set is generated by the gradient vectors. This 
seems to be a sensible choice since the gradient vectors have proved their 
applicability in the steepest descent method, and they are orthogonal to the 
previous search direction. 

 Subsequently, the mutually conjugate directions are chosen so that

    S f x Sk k k k+ += −∇ ( ) +1 1 β     (4A.22)  
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where the coeffi cient  β   k   is given by, for example, the so called Fletcher – Reeves 
formula:

    βk
k T k

k T k

f x f x

f x f x
=

∇ ( )[ ] ∇ ( )
∇ ( )[ ] ∇ ( )

+ +1 1

    (4A.23)   

 The optimum search step can be computed as follows.

    ε*k
k T k

k T k k

f x S

S H x S
= −

∇ ( )[ ]
( ) ( )

    (4A.24)   

 During  n  successive iterations, uninterrupted by restarts or changes in the 
working set, the conjugate gradient algorithm computes a cycle of  n  conjugate 
search directions. In each iteration, a line search is done along the search 
direction to fi nd an approximate optimum of the objective function. The 
default line - search method uses quadratic interpolation and cubic extrapola-
tion to obtain a step size  ε  satisfying the Goldstein conditions. One of the 
Goldstein conditions can be violated if the feasible region defi nes an upper 
limit for the step size.  

  Lagrange Multipliers Method 

 Suppose there are  M  constraints to be met; then the optimization problem can 
be written as below:

    min , , , ,f x i Ni( ) = 1 2 …     (4A.25)   

 s.t.

    h x i Ni1 0 1 2( ) = =, , , ,…     (4A.26)  

    h x i Ni2 0 1 2( ) = =, , , ,…     (4A.27)   

  …   … 

    h x i NM i( ) = =0 1 2, , , ,…     (4A.28)   

 The optimum point would posses the property that the gradient of  f ( x ) and 
the gradient of  h  1 ,  h  2 , and  h M   are linear dependent, i.e.,

    ∇ + ∇ + ∇ + ∇ =f h h hM Mλ λ λ1 1 2 2 0, ,…     (4A.29)   

 The scaling variable  λ  is called a Lagrange multiplier. 
 In addition, we can write the Lagrange equation according to equations 

 (4A.25) – (4A.28) .
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    L x f x h x h x h x i Ni M i i i M M i, , , , , ,λ λ λ λ( ) = ( ) + ( ) + ( ) + ( ) =1 1 2 2 1 2… …  
   (4A.30)   

 To meet the conditions stated in equation  (4A.29) , we simply require that the 
partial derivate of the Lagrange function with respect to each of the unknown 
variables,  x  1 ,  x  2 ,  … ,  x N  and   λ  1 ,  λ  2 ,  … ,  λ   M  , be equal to zero. That is,
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    (4A.31)    

  Kuhn – Tucker Conditions 

 If inequality constraints are involved in the optimization problem, the optimum 
is reached if the Kuhn – Tucker conditions are met, which can be stated as 
below:

    min , , , ,f x i Ni( ) = 1 2 …     (4A.32)   

 s.t.

    h x j Mj i h( ) = =0 1 2, , , ,…     (4A.33)  

    g x j Mj i g( ) ≤ =0 1 2, , , ,…     (4A.34)   

 The Lagrange function can be formed based on equations  (4A.32) – (4A.34) .

    L x f x h x g xj j
j

M

j j
j

Mh g

, ,λ μ λ μ( ) = ( ) + ( ) + ( )
= =
∑ ∑

1 1

    (4A.35)   

 The Kuhn – Tucker conditions for the optimum for the points  x  * ,  λ  * ,  μ  *  are 
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  1.       
∂
∂

( ) =L
x

x
i

* * *, ,λ μ 0,   i   =   1, 2,  … ,  N   

  2.      h j  ( x  * )   =   0,    j    =   1, 2,  … ,  M h    
  3.      g j  ( x  * )    ≤    0,    j    =   1, 2,  … ,  M g    
  4.       μ j jg x* *( ) = 0,     μ j* ≥ 0,    j    =   1, 2,  … ,  M g      

 The fi rst condition is the set of partial derivatives of the Lagrange function 
that must equal zero at the optimum. The second and third expressions are a 
restatement of the constraint conditions on the problem. The fourth is the 
complementary slackness condition. Since the product   μ j jg x* *( ) equals zero, 
  μ j* equals to zero,  g j  ( x  * ) equals to zero, or both equal to zero. If   μ j* equals to 
zero,  g j  ( x  * ) is free to be nonbinding; if   μ j* is positive,  g j  ( x  * ) must be zero. Thus 
we can know whether the inequality constraint is binding or not by looking at 
the value of   μ j*.   
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SECURITY-CONSTRAINED
ECONOMIC DISPATCH 

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
Copyright © 2009 Institute of Electrical and Electronics Engineers

     The security - constrained economic dispatch (SCED) is one of the simplifi ed 
optimal power fl ow (OPF) problems. It is widely used in power industry. This 
chapter fi rst introduces several major approaches to solve the SCED problem 
such as linear programming, network fl ow programming, and quadratic pro-
gramming. Then, nonlinear convex network fl ow programming and the genetic 
algorithm are added to attack the security - constrained economic dispatch 
problem. The implementation details of these methods and a great number of 
numerical examples are provided in this chapter.  

5.1 INTRODUCTION

 Chapter  4  analyzes the model and algorithm of the classic economic dispatch, 
where the network security constraints are neglected. In practical power 
systems, it is very important to solve the economic dispatch with network 
security constraints. Mathematical optimization methods such as linear pro-
gramming, quadratic programming, and network fl ow programming as well as 
genetic algorithms are applied to solve this problem  [1 – 19] .  

5.2 LINEAR PROGRAMMING METHOD 

5.2.1 Mathematical Model of Economic Dispatch with Security 

 The mathematical model of real power economic dispatch with security con-
straints can be written as follows (model M - 1):
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    Min f GF Pi i
i NG

= ( )
∈
∑     (5.1)   

 Such that

    s.t. G D LP P Pi
i NG

k
k ND∈ ∈

∑ ∑= +     (5.2)  

    P P ij NTij ij≤ ∈max     (5.3)  

    P P P i NGi i iG G Gmin max≤ ≤ ∈     (5.4)   

 Where

   P  D :    The real power load  
  P ij  :    The power fl ow of transmission line  ij   
  P ij   max :    The power limits of transmission line  ij   
  P  G   i  :    The real power output at generator bus  i   
  P  G   i   min :    The minimal real power output at generator  i   
  P  G   i   max :    The maximal real power output at generator  i   
  P  L :    The network losses  
  f i  :    The cost function of the generator  i   
  NT :    The number of transmission lines  
  NG :    The number of generators    

 Since the input - output characteristic of generator units and system power 
losses are nonlinear functions, the real power economic dispatch model is a 
nonlinear model. To use a linear programming method to solve security con-
strained economic dispatch, it needs to linearize the objective function and 
constraints in the model.  

  5.2.2   Linearization of  ED  Model 

  5.2.2.1   Linearization of Objective Function     Let the initial operation 
point of generator  i  be   P iG

0 . The nonlinear objective function can be expressed 
by use of Taylor series expansion, and only the fi rst two terms are considered, 
that is,
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    (5.5)  

where
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    b
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G G
0

    (5.6)  

    c f Pi i= ( )G
0     (5.7)  

are constant and

    ΔP P Pi i iG G G= − 0     (5.8)    

  5.2.2.2   Linearization of Power Balance Equation     Since loads are 
constant for the given time, we can get the following expression through 
linearizing the real power balance equation:

    1 0
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− ∂
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Δ     (5.9)    

  5.2.2.3   Linearization of Branch Flow Constraints     The real power fl ow 
equation of a branch can be written as follows:

    P V g VV g bij i ij i j ij ij ij ij= − +( )2 cos sinθ θ     (5.10)  

where

   P ij  :    The sending end real power on transmission branch  ij   
  V i  :    The node voltage magnitude of node  i   
  θ   ij  :    The difference of node voltage angles between the sending end and 

receiving end of the line  ij   
 b  ij  :    The susceptance of transmission branch  ij   
 g  ij  :    The conductance of transmission branch  ij     

 Through linearizing equation  (5.10) , we get the incremental branch power 
expression as below:

    Δ Δ ΔP V V g bij i j ij ij ij ij ij ij= − − +( )0 0 0 0sin cosθ θ θ θ     (5.11)   

 In a high - voltage power network, the value of  θ   ij   is very small, and the fol-
lowing approximate equations are easily obtained:

    sinθij ≅ 0     (5.12)  

    cosθij ≅ 1     (5.13)   

 In addition, assume that the magnitudes of all bus voltages are the same 
and equal to 1.0 p.u. Furthermore, suppose the reactance of the branch is 
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much bigger than the resistance of the branch, so that we can neglect the 
resistance of the branch. Thus,

    g
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R X
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ij ij
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+

≈
2 2

0     (5.14)  
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ij ij
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≈ − ≈ −
2 2 2

1
    (5.15)   

 Substituting equations  (5.12) – (5.15)  into equation  (5.11) , we get

    Δ Δ Δ Δ
Δ Δ

P b b
X

ij ij ij ij i j
i j

ij

= − = − −( ) = −
θ θ θ

θ θ
    (5.16)   

 The above equation can also be written in matrix form, i.e.,

    Δ ΔP Bb = ′ θ     (5.17)   

 Where the elements of the susceptance matrix B ′  are

    ′ = = −B b
X

ij ij
ij

1
    (5.18)  

    ′ = −
=
≠

∑B bii ij
j
j i

n

1

    (5.19)   

 From chapter  1 , the bus power injection equation can be written as

    P P V V bi i i j ij ij ij ij
j

n

G D g− = +( )
=
∑ cos sinθ θ

1

    (5.20)   

 Since the load demand is constant, the linearization expression of the equa-
tion  (5.20)  can be written as below:
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∑ Δ     (5.21)   

 The above equation can also be written in the following matrix form

    Δ ΔP HG = θ     (5.22)   
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 Equation  (5.22)  stands for the relationship between the incremental gen-
erator output power (except for the generator that is taken as slack unit) and 
the incremental bus voltage angle. Matrix  H  can also be simplifi ed by using 
equations  (5.12) – (5.15) . 

 According to equations  (5.17)  and  (5.22) , we can get the direct linear rela-
tionship between the incremental branch power fl ow and incremental genera-
tor output power, i.e.,

    Δ Δ Δ ΔP B B H P D Pb = ′ = ′ =−θ 1
G G     (5.23)  

where

    D B H= ′ −1     (5.24)   

 is also called as the linear sensitivity of the branch power fl ow with respect to 
the generator power output. 

 Thus the linear expression of the branch power fl ow constraints can be 
written as

    D P PbΔ ΔG ≤ max     (5.25)   

 The element of the matrix  Δ  P b   max  is the incremental power fl ow limit  Δ  P ij   max  
of the branch  ij , i.e.,

    ΔP P Pij ij ijmax max= − 0     (5.26)   

 If the branch outage is considered in the real power economic dispatch, the 
outage transfer distribution factors (OTDF) in Chapter  3  will be used. So the 
sensitivity factor OTDF between branch  ij  and generator bus  i  when line  l  is 
opened is written as

    OTDF LODF
G

ij i
ij

i
ij i ij i l i

P
P

S S, , , ,( )= = +
Δ
Δ

    (5.27)   

 In this case, the branch power fl ow can be written as

    Δ ΔP S S Pij ij i ij i l i i= +( ), , ,LODF G     (5.28)   

 The matrix form of the above equation is

    Δ ΔP D Pb = ′ G     (5.29)   

 The corresponding branch power fl ow constraints are written as

    ′ ≤ ′D P PbΔ ΔG max     (5.30)   
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 Comparing with  D ,  Δ  P   b max  in equation  (5.25) ,  D  ′ ,   Δ ′Pbmax in equation  (5.30)  
consider the effect of the branch outage. In this case, we call the real power 
economic dispatch the  N     −    1 security economic dispatch.  

  5.2.2.4   Generator Output Power Constraint     The incremental form of 
the generator output power constraint is

    P P P P P i NGi i i i iG G G G Gmin max− ≤ ≤ − ∈0 0Δ     (5.31)     

  5.2.3   Linear Programming Model 

 The linearized economic dispatch model can be written as the standard linear 
programming form:

    min Z c x c x c xN N= + + +1 1 2 2 �  

s.t.

    a x a x a x bN N11 1 12 2 1 1+ + + ≥�  

    

a x a x a x bN N21 1 22 2 2 2+ + + ≥�
�  

    a x a x a x bN N NN N N1 1 2 2+ + + ≥�  

    x x xi i imin max≤ ≤   

 The basic algorithm of LP can be found in the Appendix    in Chapter  9 .  

  5.2.4   Implementation 

  5.2.4.1   Solution Steps of  ED  by  LP      The above - mentioned method for 
solving economic dispatch by LP uses an iterative technique to obtain the 
optimal solution, so it is also called a successive linear programming (SLP) 
method. The solution procedures of SLP for economic dispatch are summa-
rized below: 

   Step 1.    Select the set of initial control variables.  
   Step 2.    Solve the power fl ow problem to obtain a feasible solution that satis-

fi es the power balance equality constraint.  
   Step 3.    Linearize the objective function and inequality constraints around the 

power fl ow solution and formulate the LP problem.  
   Step 4.    Solve the LP problem and obtain optimal incremental control varia-

bles  Δ  P  G   i  .  
   Step 5.    Update the control variables:   P P Pi

k
i
k

iG G G
+( ) ( )= +1 Δ .  

   Step 6.    Obtain the power fl ow solution with updated control variables.  
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Step 7.    Check the convergence. If  ΔPGi  in step 4 are below the user - defi ned 
tolerance, the solution converges. Otherwise, go to step 3.     

5.2.4.2 Test Results   The linear programming - based economic dispatch 
method is tested on IEEE 5 - bus and 30 - bus systems. The network topologies 
of the IEEE test systems are shown in Figure  5.1 . The corresponding system 
data and parameters are listed in Tables  5.1 – 5.3 . The data and parameters of 
the 30 - bus system are listed in Tables  5.4 – 5.6 .     

 The calculation results of economic dispatch with  N  security for the IEEE 
5 - bus system are shown in Table  5.7 . The calculation results of economic dis-
patch with N  security for the IEEE 30 - bus system are shown in Table  5.8 , and 
N     −    1 security economic dispatch results are listed in Table  5.9 .     

Table 5.1 Generator data of 5 -bus system 

   Generators     #1     #2  

  P Gimax (p.u.)    1.00    1.00  
  P Gimin (p.u.)    0.20    0.20  
  Q Gimax (p.u.)    0.80    0.80  
  Q Gimin (p.u.)  − 0.20     − 0.20  

  Quadratic cost function          
  a i     50.00    50.00  
  b i     351.00    389.00  
  c i     44.40    40.60  

Table 5.2 Load data of 5 -bus system 

   Load Bus     #3     #4     #5  

  MW load P D (p.u.)    0.60    0.40    0.60  
  MVAR load Q D (p.u.)    0.30    0.10    0.20  

Table 5.3 Line data of 5 -bus system 

   Line No.     From - To Bus     Resistance     Reactance     Line Charge  

  1    1 – 3    0.10    0.40    0.00  
  2    4 – 1    0.15    0.60    0.00  
  3    5 – 1    0.05    0.20    0.00  
  4    3 – 2    0.05    0.20    0.00  
  5    2 – 5    0.05    0.20    0.00  
  6    3 – 4    0.10    0.40    0.00  
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     FIGURE 5.1     IEEE test systems  
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 Table 5.4     Generator data of 30 - bus system 

   Generators     #1     #2     #5     #8     #11     #13  

  P Gimax (p.u.)    2.00    0.80    0.50    0.35    0.30    0.40  
  P Gimin (p.u.)    0.50    0.20    0.15    0.10    0.10    0.12  
  Q Gimax (p.u.)    2.50    1.00    0.80    0.60    0.50    0.60  
  Q Gimin (p.u.)     − 0.20     − 0.20     − 0.15     − 0.15     − 0.10     − 0.15  

  Quadratic cost function                          
  a i     0.00375    0.0175    0.0625    0.0083    0.0250    0.0250  
  b i     2.00000    1.7500    1.0000    3.2500    3.0000    3.0000  
  c i     0.00000    0.0000    0.0000    0.0000    0.0000    0.0000  

 Table 5.5     Load data of 30 - bus system 

   Bus No.     P D (p.u.)     Q D (p.u.)     Bus No.     P D (p.u.)     Q D (p.u.)  

  1    0.000    0.000    16    0.035    0.016  
  2    0.217    0.127    17    0.090    0.058  
  3    0.024    0.012    18    0.032    0.009  
  4    0.076    0.016    19    0.095    0.034  
  5    0.942    0.190    20    0.022    0.007  
  6    0.000    0.000    21    0.175    0.112  
  7    0.228    0.109    22    0.000    0.000  
  8    0.300    0.300    23    0.032    0.016  
  9    0.000    0.000    24    0.087    0.067  

  10    0.058    0.020    25    0.000    0.000  
  11    0.000    0.000    26    0.035    0.023  
  12    0.112    0.075    27    0.000    0.000  
  13    0.000    0.000    28    0.000    0.000  
  14    0.062    0.016    29    0.024    0.009  
  15    0.082    0.025    30    0.106    0.019  

  5.2.5   Piecewise Linear Approach 

 Assuming that the objective function is a quadratic characteristic, the objec-
tive function can also be linearized by a piecewise linear approach. 

 If the objective function is divided into  N  linear segments, the real power 
variable of each generator will also be divided into  N  variables. Figure  5.2  is 
an objective function with three linear segments. The corresponding slopes 
are  b  1 ,  b  2 , and  b  3 , respectively.   

 From Figure  5.2 , the generator power output variables for each segment 
can be presented as below:

    P P Pi iG G Gmin max≤ ≤1 1     (5.32)  

    P P PiG G G1 2 2min max≤ ≤     (5.33)  

    P P Pi iG G G2 3min max≤ ≤     (5.34)   
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Table 5.6 Line data of 30 -bus system 

   Line No.     From - To Bus     Resistance (p.u.)     Reactance (p.u.)     Line Limit (p.u.)  

  1    1 – 2    0.0192    0.0575    1.30  
  2    1 – 3    0.0452    0.1852    1.30  
  3    2 – 4    0.0570    0.1737    0.65  
  4    3 – 4    0.0132    0.0379    1.30  
  5    2 – 5    0.0472    0.1983    1.30  
  6    2 – 6    0.0581    0.1763    0.65  
  7    4 – 6    0.0119    0.0414    0.90  
  8    5 – 7    0.0460    0.1160    0.70  
  9    6 – 7    0.0267    0.0820    1.30  

  10    6 – 8    0.0120    0.0420    0.32  
  11    6 – 9    0.0000    0.2080    0.65  
  12    6 – 10    0.0000    0.5560    0.32  
  13    9 – 10    0.0000    0.2080    0.65  
  14    9 – 11    0.0000    0.1100    0.65  
  15    4 – 12    0.0000    0.2560    0.65  
  16    12 – 13    0.0000    0.1400    0.65  
  17    12 – 14    0.1231    0.2559    0.32  
  18    12 – 15    0.0662    0.1304    0.32  
  19    12 – 16    0.0945    0.1987    0.32  
  20    14 – 15    0.2210    0.1997    0.16  
  21    16 – 17    0.0824    0.1932    0.16  
  22    15 – 18    0.1070    0.2185    0.16  
  23    18 – 19    0.0639    0.1292    0.16  
  24    19 – 20    0.0340    0.0680    0.32  
  25    10 – 20    0.0936    0.2090    0.32  
  26    10 – 17    0.0324    0.0845    0.32  
  27    10 – 21    0.0348    0.0749    0.32  
  28    10 – 22    0.0727    0.1499    0.32  
  29    21 – 22    0.0116    0.0236    0.32  
  30    15 – 23    0.1000    0.2020    0.16  
  31    22 – 24    0.1150    0.1790    0.16  
  32    23 – 24    0.1320    0.2700    0.16  
  33    24 – 25    0.1885    0.3292    0.16  
  34    25 – 26    0.2544    0.3800    0.16  
  35    25 – 27    0.1093    0.2087    0.16  
  36    28 – 27    0.0000    0.3960    0.65  
  37    27 – 29    0.2198    0.4153    0.16  
  38    27 – 30    0.3202    0.6027    0.16  
  39    29 – 30    0.2399    0.4533    0.16  
  40    8 – 28    0.0636    0.2000    0.32  
  41    6 – 28    0.0169    0.0599    0.32  
  42    10 – 10    0.0000  − 5.2600  
  43    24 – 24    0.0000  − 25.0000  
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 Table 5.7     Economic dispatch results for 5 - bus system 

   Method     LP     P imin      P imax   

  P G1 (p.u.)    0.97864    0.2    1.0  
  P G2 (p.u.)    0.66622    0.2    1.0  
  Total Cost ($/hr)    757.74    /    /  
  Total loss (p.u.)    0.04490    /    /  

 Table 5.8       N   security economic dispatch results by  LP  for  IEEE  30 - bus system 

   Generation No.     Economic Dispatch     P Gimin      P Gimax   

  P G1     1.7626    0.50    2.00  
  P G2     0.4884    0.20    0.80  
  P G5     0.2151    0.15    0.50  
  P G8     0.2215    0.10    0.35  
  P G11     0.1214    0.10    0.30  
  P G13     0.1200    0.12    0.40  
  Total generation    2.9290    /    /  
  Total real power losses    0.0948    /    /  
  Total generation cost ($)    802.4000    /    /  

 Table 5.9       N      −    1 security economic dispatch results by  LP  for  IEEE  30 - bus system 

   Generator No.     Economic Dispatch     P Gimin      P Gimax   

  P G1 (p.u.)    1.38540    0.50    2.00  
  P G2 (p.u.)    0.57560    0.20    0.80  
  P G5 (p.u.)    0.24560    0.15    0.50  
  P G8 (p.u.)    0.35000    0.10    0.35  
  P G11 (p.u.)    0.17930    0.10    0.30  
  P G13 (p.u.)    0.16910    0.12    0.40  
  Total generation(p.u.)    2.90500    /    /  
  Total Cost ($/hr)    813.74    /    /  
  Total loss (p.u.)    0.0711    /    /  

PGmin                  PG1max                       PG2max                              PGmax PG

f(PG)

     FIGURE 5.2     Piecewise linear objective function  
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 If  P  G   i   min  is selected as the initial generator output power, the incremental 
generator power outputs for each segment can be expressed as

    ΔP P Pi i iG G G1 1= − min     (5.35)  

    ΔP P Pi i iG G G2 2 1= − min     (5.36)  

    ΔP P Pi i iG G G3 3 2= − min     (5.37)   

 Thus the constraint equations  (5.32) – (5.34)  become

    0 1 1≤ ≤ −ΔP P Pi i iG G Gmax min     (5.38)  

    0 2 2 1≤ ≤ −ΔP P Pi i iG G Gmax max     (5.39)  

    0 3 2≤ ≤ −ΔP P Pi i iG G Gmax max     (5.40)   

 The piecewise linear objective function becomes

    F f P b Pi i
i

NG

k ik
i

NG

k

= ( ) =
= ==
∑ ∑∑G G

1 11

3

Δ     (5.41)   

 Replacing the incremental generator power output  Δ  P  G   i   in constraints 

 (5.9)  and  (5.30)  in Section  5.2.2  by   ΔP ik
k

G
=
∑

1

3

, we can also obtain the linear 

programming model for the economic dispatch problem.   

  5.3   QUADRATIC PROGRAMMING METHOD 

 A quadratic programming (QP) model contains a quadratic objective function 
and linear constraints. As mentioned above in this chapter, the economic 
dispatch problem is a nonlinear mathematical model. We discuss the succes-
sive linear programming method for solving the economic dispatch problem 
in Section  5.2 . The successive linear programming method can also be used in 
the quadratic programming model of economic dispatch. 

  5.3.1    QP  Model of Economic Dispatch 

 Let the initial operation point of generator  i  be   P iG
0 . The nonlinear objective 

function can be expressed by use of Taylor series expansion, and only the fi rst 
three terms are considered, that is,
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or

    f P a P b Pi i i iΔ Δ ΔG G G( ) = +2     (5.43)  

where

    a
f P

P
i i

i P i

= ′( )1
2 0

d
d

G

G G

    (5.44)  

    b f P
f P

P
i i

i i

i P i

= ′( ) = ( )
G

G

G

d
d

G
0

    (5.45)  

    c f Pi i= ( )G
0     (5.46)  

are constant and

    ΔP P Pi i iG G G= − 0     (5.47)   

 Linearizing the constraints using the same approach used in Section  5.2 , 
the quadratic programming model of real power economic dispatch can be 
written as below.

    min f P a P b Pi i i i
i

N

Δ Δ ΔG G G( ) = +( )
=
∑ 2

1

    (5.48)  

s.t.

    1 0
0

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟ =

∈
∑ P

P
P

ii NG P

i

i

L

G
G

G

Δ     (5.49)  

    P P P P P i NGi i i i iG G G G Gmin max− ≤ ≤ − ∈0 0Δ     (5.50)  

    ′ ≤ ′D P PG bΔ Δ max     (5.51)    

  5.3.2    QP  Algorithm 

 The economic dispatch model in equations  (5.48) – (5.51)  can be written as the 
standard quadratic programming model.

    min f X X X X( ) = +C QT     (5.52)  
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s.t.

    A BX ≤     (5.53)  

    X ≥ 0     (5.54)  

where  C  is an  n  - dimensional row vector describing the coeffi cients of the linear 
terms in the objective function, and  Q  is an ( n     ×     n ) symmetric matrix describ-
ing the coeffi cients of the quadratic terms. 

 As in linear programming, the decision variables are denoted by the  n  -
 dimensional column vector  X , and the constraints are defi ned by an ( m     ×     n ) 
 A  matrix and an  m  - dimensional column vector  B  of right - hand - side coeffi -
cients. For the real power economic dispatch problem, we know that a feasible 
solution exists and that the constraint region is bounded. 

 When the objective function  f ( X ) is strictly convex for all feasible points, 
the problem has a unique local minimum, which is also the global minimum. 
A suffi cient condition to guarantee strict convexity is for  Q  to be positive 
defi nite. This is generally true for most of economic dispatch problems. 

 Equation  (5.53)  can be expressed as

    g X X( ) = −( ) ≤A B 0     (5.55)   

 Form the Lagrange function for equations  (5.52)  and  (5.55) , i.e.,

    L X X X X g X, μ μ( ) = + + ( )C QT     (5.56)  

where  μ  is an  m  - dimensional row vector. 
 According to the optimization theory, the Kuhn – Tucker (KT) conditions 

for a local minimum are given as follows:
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    X ≥
≥{ 0

0μ
    (5.61)   

 If we introduce nonnegative surplus variables  y  to the inequalities in equa-
tion  (5.57)  and nonnegative slack variables  v  to the inequalities in equation 
 (5.58) , we get the following equivalent form.

    C Q AT T T+ + − =2 0X yμ     (5.62)  

    A BX v− + = 0     (5.63)   

 Then, the KT conditions can be written as below:

    2Q A CX y+ − = −T T Tμ     (5.64)  

    A BX v+ =     (5.65)  

    X y v≥ ≥ ≥ ≥0 0 0 0, , ,μ     (5.66)  

    y X vT = =0 0, μ     (5.67)   

 The fi rst two expressions are linear equalities, the third restricts all the vari-
ables to be nonnegative, and the fourth is the complementary slackness 
condition. 

 Obviously, the KT conditions in equations  (5.64) – (5.67)  have a linear form 
with the variables  X ,  μ ,  y , and  v . An approach similar to the modifi ed simplex 
can be used to solve equations  (5.64) – (5.67) . The procedures of the algorithm 
are as below: 

  (1)     Let the structural constraints be equations  (5.64)  and  (5.65)  defi ned by 
the KT conditions.  

  (2)     If any of the right - hand - side values are negative, multiply the corre-
sponding equation by  − 1.  

  (3)     Add an artifi cial variable to each equation.  
  (4)     Let the objective function be the sum of the artifi cial variables.  
  (5)     Put the resultant problem into simplex form.    

 The goal is to fi nd the solution to the linear programming problem that 
minimizes the sum of the artifi cial variables with the additional requirement 
that the complementary slackness conditions be satisfi ed at each iteration. If 
the sum is zero, the solution will satisfy equations  (5.64) – (5.67) . To accom-
modate equation  (5.67) , the rule for selecting the entering variable must be 
modifi ed with the following relationships:

    X y j nj j and  are complementary for = 1, ,…  

    μi iv i m and  are complementary for = 1, ,…   
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 The entering variable will be that whose reduced cost is most negative 
provided that its complementary variable is not in the basis or would leave 
the basis on the same iteration. At the conclusion of the algorithm, the vector 
 x  defi nes the optimal solution and the vector   μ   defi nes the optimal dual 
variables. 

 This approach has been shown to work well when the objective function is 
positive defi nite, and requires computational effort comparable to a linear 
programming problem with  m    +    n  constraints, where  m  is the number of con-
straints and  n  is the number of variables in the QP. Fortunately, the objective 
function in economic power dispatch is positive defi nite. Thus this approach 
is very good for solving the QP model of economic dispatch.  

  5.3.3   Implementation 

 The fi rst example is to solve the following QP problem using the mentioned 
algorithm in Section  5.3.2 .

    min f x x x x x( ) = + − −1
2

2
2

1 24 8 16  

subject to

    x x1 2 5+ ≤  

    x1 3≤  

    x x1 20 0≥ ≥,   

  Solution : Convert the problem into the following quadratic programming 
model:

    min f X X X X( ) = +C QT

 

s.t.

    A BX ≤  

    X ≥ 0  

where

    CT = −
−
⎡
⎣⎢

⎤
⎦⎥

8
16

 

    Q = ⎡
⎣⎢

⎤
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1 0

0 4
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    A = ⎡
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 As can be seen, the  Q  matrix is positive defi nite so the KT conditions are 
necessary and suffi cient for a global optimum. 

 Let
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 According to equations  (5.64)  and  (5.65) , we get

    2 81 1 2 1x y+ + − =μ μ  

    8 162 1 2x y+ − =μ  

    x x v1 2 1 5+ + =  

    x v1 2 3+ =   

 To create the appropriate linear programming problem, we add artifi cial 
variables to each constraint and minimize their sum.

    minZ w w w w= + + +1 2 3 4  

s.t.

    2 81 1 2 1 1x y w+ + − + =μ μ  

    8 162 1 2 2x y w+ − + =μ  

    x x v w1 2 1 3 5+ + + =  

    x v w1 2 4 3+ + =  

    x x y y v v1 2 1 2 1 2 1 20 0 0 0 0 0 0 0≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥, , , , , , , ,μ μ   
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 Applying the presented algorithm to this example, the optimal solution to 
the original problem is   ( , ) ,x x1 2 3 2* * = ( ). Table  5.10  shows the iterations of the 
solution.   

 The second example is to apply the presented QP algorithm to solve the 
real power economic dispatch problem. The testing system is the IEEE 30 - bus 
system, the data of which are given in Section  5.2 . The following testing cases 
are conducted.

    Case 1:  IEEE 30 - bus system with the original data  
   Case 2:  IEEE 30 - bus system with the original data, but the limit of line 1 is 

reduced to 1.0 p.u.    

 The security economic dispatch results for two cases are shown in 
Table  5.11 . The results of case 1 are also compared with those obtained 
by using linear programming, which are shown in Table  5.12 . It can be observed 
that the ED results obtained by QP are a little better than those obtained 
by LP.     

 Table 5.10     Iterations for  QP  example 

   Iterations     Basic Variables     Solution  
   Objective 

Values  
   Entering 
Variable  

   Leaving 
Variable  

  1    ( w  1 ,  w  2 ,  w  3 ,  w  4 )    (8,16,5,3)    32     x  2      w  2   
  2    ( w  1 ,  x  2 ,  w  3 ,  w  4 )    (8,2,3,3)    14     x  1      w  3   
  3    ( w  1 ,  x  2 ,  x  1 ,  w  4 )    (2,2,3,0)    2     μ  1      w  4   
  4    ( w  1 ,  x  2 , x 3 ,  μ  1 )    (2,2,3,0)    2     μ  1      w  1   
  5    ( μ  1 ,  x  2 ,  x  3 ,  μ  1 )    (2,2,3,0)    0    /    /  

 Table 5.11     Economic dispatch results by  QP  for  IEEE  30 - bus system 

   Generation No.     Case 1     Case 2  

  P G1     1.7586    1.5174  
  P G2     0.4883    0.5670  
  P G5     0.2151    0.2326  
  P G8     0.2233    0.3045  
  P G11     0.1231    0.1517  
  P G13     0.1200    0.1400  
  Total generation    2.9285    2.9132  
  Total real power losses    0.0945    0.0792  
  Total generation cost ($)    802.3900    807.2400  
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  5.4   NETWORK FLOW PROGRAMMING METHOD 

  5.4.1   Introduction 

 Network fl ow programming (NFP) is a specialized linear programming. It is 
characterized by simple manipulation and rapid convergence. NFP models of 
 N  security economic dispatch have been proposed in recent years. 

 This section fi rst presents a network fl ow model and uses the out - of - kilter 
algorithm (OKA) for solving the online economic power dispatch with  N  and 
 N     −    1 security. A fast  N     −    1 security analysis method solved by OKA is applied 
to seek out all the overconstrained cases for all possible single line outages, 
and then an  “ N    −    1 constrained zone ”  is formed that is coordinated with the 
network fl ow model. Based on the normal operating state a corrective incre-
mental network fl ow model for economic dispatch is established for the over-
constrained cases. Consequently, the calculation burden is reduced signifi cantly 
and the shortcoming of the NFP, imprecision, is mitigated to some extent.  

  5.4.2   Out - of - Kilter Algorithm 

  5.4.2.1    OKA  Model     According to graph theory, a network with  n  nodes 
and  m  arcs (branches) can be shown as in Figure  5.3 (a). The corresponding 
minimum cost fl ow problem can be expressed as follows:

    minC C f ij mij ij
ij

= ∈∑     (5.68)  

such that

    f f r i nij ji
j n

i−( ) = ∈
∈
∑     (5.69)  

    L f U ij mij ij ij≤ ≤ ∈     (5.70)  

 Table 5.12      ED  results and comparison between  QP  and  LP  for  IEEE  30 - bus system 

   Generation No.     QP Method     LP Method  

  P G1     1.7586    1.7626  
  P G2     0.4883    0.4884  
  P G5     0.2151    0.2151  
  P G8     0.2233    0.2215  
  P G11     0.1231    0.1214  
  P G13     0.1200    0.1200  
  Total generation    2.9285    2.9290  
  Total real power losses    0.0945    0.0948  
  Total generation cost ($)    802.3900    802.4000  
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where

   C ij  :    The arc cost per unit fl ow  
  f ij  :    The fl ow on arc  ij  in the network  
  L ij  :    The lower bound of the fl ow on arc  ij  in the network  
  U ij  :    The upper bound of fl ow on arc  ij  in the network  
  n :    The total number of the nodes in the network  
  m :    The total number of the arcs in the network      

 According to the  “ out - of - kilter ”  algorithm (OKA) of network fl ow pro-
gramming, we can transform the original network into an OKA network by 
introducing a  “ return arc ”  from sink node  t  to source node  s , while the internal 
fl ows remain unchanged. The return arc fl ow f ts  equals the original network 
fl ow  r . The OKA network model is shown in Figure  5.3 (b). 

 Similarly, if the original network has multiple sources and multiple sinks, 
which is shown in Figure  5.4 (a), the corresponding OKA model can be formed 
as shown in Figure  5.4 (b), where each source corresponds to a source arc con-
necting to a total source node  s  and each sink forms a sink arc connecting to 
the total sink node  t .   

 The corresponding mathematical model for OKA is given below:

    minC C f ij m ss ttij ij
ij

= ∈ + + +( )∑ 1     (5.71)  

such that

     FIGURE 5.3     OKA network model with one source  s  and one sink  t   
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    f f i nij ji
j n

−( ) = ∈
∈
∑ 0     (5.72)  

    L f U ij m ss ttij ij ij≤ ≤ ∈ + + +( )1     (5.73)  

where  m  is the total number of arcs other than the return arc.  

  5.4.2.2   Complementary Slackness Conditions for Optimality of  OKA     
 The model consisting of equations  (5.71) – (5.73)  is a specialized linear pro-
gramming model. According to the dual theory, the corresponding primary 
problem and dual problem can be expressed as below: 

  Primary Problem 

    max ′ = −∑F C fij ij
ij

    (5.74)  

such that

    f fij ji
j n

−( ) =
∈
∑ 0     (5.75)  

    L f U i n j n ij m ss ttij ij ij≤ ≤ ∈ ∈ ∈ + + +( ), , 1     (5.76)   

  Dual Problem 

    minG U Lij ij
ij

ij ij
ij

= −∑ ∑α β     (5.77)  

     FIGURE 5.4     OKA network model with multiple sources  ss  and multiple sinks  tt   
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such that

    Cij i j ij ij+ − + − ≥π π α β 0     (5.78)  

    α βij ij i n j n ij m ss tt≥ ≥ ∈ ∈ ∈ + + +( )0 0 1, , ,     (5.79)  

where  π  is the dual variable of the variable  f  of the primary problem;  α  and  β  
correspond to the dual variables of the upper and lower limits of the primary 
problem. 

 When all the variables  f ,  π ,  α , and  β  meet the requirements of the con-
straints, there exists the following relationship between the objective functions 
of primary and dual problems:
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 (5.80)   

 It will be true that  G     −     F   ′    =   0 if the solution is optimal. Thus from equation 
 (5.80)  we get

    U fij ij ij−( ) =α 0     (5.81)  

    f Lij ij ij−( ) =β 0     (5.82)  

    C fij i j ij ij ij+ − + −( ) =π π α β 0     (5.83)   

 That is,

    ( )C fij ij ij ij+ − =α β 0     (5.84)   

 From equations  (5.81) – (5.84) , we get:

      Case 1:    Cij > 0  
 If   β αij ij ijC= + ,  f ij      ≠    0 
 Furthermore, if  α   ij      ≥    0,  β   ij      ≠    0, then from equation  (5.82)  we can get

   f Lij ij=    

   Case 2:    Cij < 0  
 If   β αij ij ijC= + , then  f ij      ≠    0, and  α   ij      >     β   ij   
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 Furthermore, if  β   ij      ≥    0,  α   ij      ≠    0, then from equation  (5.81)  we can get

   f Uij ij=    

   Case 3 :   Cij = 0  
 From  (5.84) , we get ( α   ij      −     β   ij  ) f ij     =   0, which can be analyzed as follows: 

 (3a) If  f ij     =   0, then ( α   ij      −     β   ij  )    ≠    0 
 When  α   ij      >     β   ij  , then  α   ij      >    0, in this way, we get the following expression 

from equation  (5.81) :

   f Uij ij= ≠ 0   

 When  β   ij      >     α   ij  , then  β   ij      >    0, in this way, we get the following expression 
from equation  (5.82) :

   f Lij ij= ≠ 0   

 Both situations are confl icted with the assumption  f ij     =   0. So we can be 
sure  f ij      ≠    0 for this case. 

 (3b) Assuming  α   ij     =   0, then  β   ij f ij     =   0 
 Since  f ij      ≠    0 from (3a), we have  β   ij     =   0 
 Therefore, from equation  (5.81)  we get

   f Uij ij≤   

 From equation  (5.82)  we get

   f Lij ij≥  

that is, if   Cij = 0, then  L ij      ≤     f ij      ≤     U ij       

  According to the three cases described above, the complementary slackness 
conditions for optimality of OKA are summarized as follows:

    f L Cij ij ij= >for 0     (5.85)  

    L f U Cij ij ij ij≤ ≤ =for 0     (5.86)  

    f U Cij ij ij= <for 0     (5.87)  

where the relative cost is

    C Cij ij i j= + −π π     (5.88)   

 According to equations  (5.85) – (5.87)  and labeling technique, the arcs have 
nine kinds of states, which are shown in Table  5.13 .   
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 Table 5.13     States of  OKA  arcs 

   Symbol       Cij       f ij       State of Arcs  

  I 1       Cij > 0     f ij     =    L ij      In - kilter  

  I 2       Cij = 0     L ij      <     f ij      <     U ij      In - kilter  

           f ij     =    U ij  ,  f ij     =    L ij      In - kilter  

  I 3   
    Cij < 0     f ij     =    U ij      In - kilter  

  II 1   
    Cij > 0     f ij      <     L ij      Out - of - kilter  

  II 2       Cij = 0     f ij      <     L ij      Out - of - kilter  

  II 3       Cij < 0     f ij      <     U ij      Out - of - kilter  

  III 1   
    Cij > 0  

   f ij      >     L ij      Out - of - kilter  

  III 2       Cij = 0     f ij      >     U ij      Out - of - kilter  

  III 3       Cij < 0     f ij      >     U ij      Out - of - kilter  

 The complementary slackness conditions for optimality of OKA shown in 
equations  (5.85) – (5.87)  correspond to the three  “ in - kilter ”  states of the arcs. 
In addition, there are six  “ out - of - kilter ”  states that do not satisfy conditions 
 (5.85) – (5.87) . If all the arcs are in kilter, then the optimal solution is obtained. 
Otherwise, we must vary the relevant arc fl ows or node potentials (parameter 
 π ) by the labeling technique so that the out - of - kilter states of the arcs come 
into kilter. 

 The states of arcs and labeling rules can be explained with Figure  5.5 .   
 In Figure  5.5 , if the arc is in the in - kilter state, the point ( f ij  ,   Cij ) will be 

located on one of three dark lines  I  1 ,  I  2 , and  I  3 , where the dark line  I  1  corre-
sponds to the lower bound  L ij   of fl ow  f ij  ; the dark line  I  3  corresponds to the 
upper bound  U ij   of fl ow  f ij  ; and the dark line  I  2  corresponds to the fl ow  f ij   that 
is within  L ij      <     f ij      <     U ij  . 

 If the fl ow of the arc is violated at the upper or lower limits, the point 
( f ij  ,   Cij ) will be located out of three dark lines, which correspond to six  “ out -
 of - kilter ”  states in Figure  5.5 . In these situations, the value of fl ow of the arc 
will be either less than its lower limit or higher than its upper limit, that is, 
 f ij      >     U ij   or  f ij      <     L ij  .  

  5.4.2.3   Labeling Rules and Algorithm of  OKA      According to labeling 
technique, the labeling rules of OKA for the forward arc and backward arc 
under nine OKA states in Table  5.13  are listed in Table  5.14 , where symbol 
 “  ↑  ”  stands for increase,  “  ↓  ”  stands for reduce,  “  →  ”  stands for change, and 
 “  f k   ”  indicates that the fl ow is outside of the feasible region.   
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     FIGURE 5.5     States of OKA arcs  
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 Table 5.14     Labeling rules of  OKA  algorithm  

          Forward Arc  f   +     Backward arc  f   −    
   Symbol      f ij       Labeling? Why?     Labeling? Why?  

  I 1      f ij     =    L ij    
  
No,

   
f fk

+ +↑→
  

  No,   f fk
− −↓→   

  I 2      L ij      <     f ij      <     U ij      Yes,  f   +     ↑  →     U     Yes,  f    −      ↓  →     L   

       f ij     =    U ij  f ij     =    L ij      No,   f fk
+ +↑→     No,   f fk

− −↓→   
  I 3      f ij     =    U ij      No,   f fk

+ +↑→     No,   f fk
− −↓→   

  II 1      f ij      <     L ij      Yes,  f   +     ↑  →     U     No,   f fk
− −↓→   

  II 2      f ij      <     L ij      Yes,  f   +     ↑  →     U     No,   f fk
− −↓→   

  II 3      f ij      <     U ij      Yes,  f   +     ↑  →     U     No,   f fk
− −↓→   

  III 1      f ij      >     L ij      No,   f fk
+ +↑→     Yes,  f    −      ↓  →     L   

  III 2      f ij      >     U ij      No,   f fk
+ +↑→     Yes,  f    −      ↓  →     L   

  III 3      f ij      >     U ij      No,   f fk
+ +↑→     Yes,  f    −      ↓  →     U   

 According to the labeling rules mentioned above, the out - of - kilter algo-
rithm is implemented as follows. 

  5.4.2.3.1   With incremental flow Loop     When there exists an incremental 
fl ow loop, correct the values of fl ow for all arcs in the loop. The process is as 
below: 

  (1)     For forward arcs  
  (a)     If   Cij ≥ 0,  f ij      <     L ij  , the node  j  is able to be labeled. The incremental 

fl ow to the node  j  will be computed as
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    q q L fj i ij ij= −[ ]min ,     (5.89)    

  (b)     If   Cij ≤ 0 ,  f ij      <     U ij  , the node  j  is able to be labeled. The incremental 
fl ow to the node  j  will be computed as

    q q U fj i ij ij= −[ ]min ,     (5.90)      

  (2)     For backward arcs  
  (a)     If   Cji ≥ 0,  f ji      >     L ji  , the node  j  is able to be labeled. The incremental 

fl ow to the node  j  will be computed as

    q q f Lj i ji ji= −[ ]min ,     (5.91)    

  (b)     If   Cji ≤ 0,  f ji      >     U ji  , the node  j  is able to be labeled. The incremental 
fl ow to the node  j  will be computed as

    q q f Uj i ji ji= −[ ]min ,     (5.92)          

 5.4.2.3.2   Without Incremental Flow Loop     When there does not exist an 
incremental fl ow loop, correct the values of the relative cost   Cij , or   Cji  by 
increasing the cost of the vertex  π . This is because the change of   Cij, or 
  Cji  causes the change of the path of minimum cost fl ow. Consequently, a new 
incremental fl ow loop will be produced. The process of computing the incre-
mental vertex cost is as below. 

 Let  B  and   B  stand for the set of the labeled vertexes and unlabeled 
vertexes, respectively. Obviously, the super source  s     ∈     B , and super sink   t B∈ . 
In addition, defi ne two sets of arcs  A  1  and  A  2 :

    A ij i B j B C f Uij ij ij1 0= ∈ ∈ > ≤{ }, , , ,     (5.93)  

    A ji i B j B C f Lji ji ij2 0= ∈ ∈ < ≥{ }, , , ,     (5.94)   

 The incremental vertex cost is determined as below

    δ δ δ= { }min ,1 2     (5.95)  

where

    δ1 0= { } >min Cij     (5.96)  

    δ2 0= { } >min Cji     (5.97)   

 If  A  1  is an empty set, make  δ  1    =    ∞ ; If  A  2  is an empty set, make  δ  2    =    ∞ . When 
 δ    =    ∞ , it means there is no feasible fl ow, which is no solution for the given 
NFP problem. When  δ     <     ∞ , update the vertex costs for all unlabeled vertexes, 
that is,
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    ′ = + ∈δ π δj j B     (5.98)   

 In this way, the out - of - kilter arc will be changed into an in - kilter arc. When 
all arcs are in in - kilter states, the optimum solution is obtained. 

 The procedures of the OKA algorithm are as follows: 

  Step 1.   Set the initial values of the arc fl ows. The initial fl ows are requested 
to satisfy constraint  (5.72)  only, but not necessarily constraint  (5.73) .  

  Step 2.   Check the state of the arcs. If all arcs are in kilter, then the optimal 
solution has been found. Terminate the iteration. Otherwise, go to step 3.  

  Step 3.   Revise the state of the arcs. Arbitrarily choose an arc from the set of 
arcs, which is out of kilter, to be revised. Using the labeling technique, when 
a fl ow - augmenting loop exists, vary the values of fl ow  f ij   for all arcs in 
this loop. If no fl ow - augmenting loop is found, adjust the values of  π  
at unlabeled nodes, and hence change the relative cost   Cij , or   Cji . This may 
need some cross - iterations between fl ow and the relative cost so that the 
out - of - kilter arc can be become an in - kilter arc. Once the arc state has been 
revised, go back to step 2.    

 It should be noted that the revision process converges after a fi nite number 
of iterations. 

 In comparison with the general algorithm of the minimum cost fl ow, the 
main features of the OKA are: 

  (1)     The nonzero lower bound of fl ow may be allowable.  
  (2)     The initial fl ow does not have to be feasible or zero fl ow.  
  (3)     Nonnegative constraints,  f ij      ≥    0, are released.  
  (4)     It is easy to imitate a change in network topology by changing the 

specifi ed bound values of the fl ows as the branch outage occurs.       

  5.4.3    N  Security Economic Dispatch Model 

 In the normal operating case, the NFP model of real power economic dispatch 
with  N  security can be written as follows:

    min ( )F a P b P c h R Pi
i NG

i i i i j j
j NT

0 0 2 0 0 2= + + +
∈ ∈
∑ ∑G G T     (5.99)  

such that

    P P P ni
i

j
j

k
k

G T D
0 0 0 0

ω ω ω

ω
( ) ( ) ( )
∑ ∑ ∑+ + = ∈ˆ     (5.100)  

    P P Pi i iG G G≤ ≤0     (5.101)  
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    P P P i NG j NT k NDj j jT T T≤ ≤ ∈ ∈ ∈0 , ,     (5.102)  

where

   a i  ,  b i  , and  c i  :    The cost coeffi cients of the  i th generator.  
   P iG

0 :    The real power fl ow of generation arc  i  in the normal operating case  
   P iT

0 :    The real power fl ow of transmission arc  j  in the normal operating case  
   P kD

0 :    The real power fl ow of load arc  k  in the normal operating case  
  NG :    The total number of generation arcs  
  NT :    The total number of transmission arcs  
  ND :    The total number of load arcs  
  N :    The total number of nodes  
  R j :     The resistance of transmission arc (line)  j   
   P :    The lower bound of the real power fl ow through the arc 
    P :    The upper bound of the real power fl ow through the arc    

 The positive direction of fl ow is specifi ed as the fl ow enters into the node 
and the negative as it leaves the node. The symbol  i ( w ) means that arc  i  is 
adjacent to node  w ; so do  j ( w ) and  k ( w ). 

 The following points should be noted. 
 (1) The second term of the objective,

    h R Pj j
j NT

T
0 2

∈
∑     (5.103)   

 is the penalty on transmission losses with the system marginal cost  h  (in $ per 
MWh). The total transmission loss is represented approximately, but validly, 
as the sum of the products of the line resistance and the square of the trans-
mitted power on the line. This is obtained from the following real power loss 
expression of the transmission line:

    P
P Q

V
Rj

j j

j
jL

T T

T

=
+

×
2 2

2
    (5.104)  

under the assumptions of 1.0 p.u. fl at voltage across the line and local supply 
of the reactive power. 

 (2) The power loss of an individual line is assumed to be distributed equally 
to its ends. Thus the real load   P kD

0  in equation  (5.100)  would involve half the 
transmission losses on all the lines connected to node  k , which are estimated 
preliminarily from the power fl ow calculation of the normal operation and 
kept constant, or modifi ed if necessary, that is,
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    P̂ P R Pk k j j
j k

D D T
0 0 0 21

2
= +

→
∑     (5.105)   

 Another half of the loss of the line that is not related to load will be added 
on the fl ow of the return arc of the OKA network model. 

 (3) The transmitted real power acts as the independent variable, and the 
line security constraints are introduced into the model straight away. The 
secure line limit is based on its SIL and its length, and not on the thermal limit. 

 (4) The topology of the power system is preserved since the penalty factors 
are not calculated in the usual sense. Therefore, the model can be solved easily 
by NFP as well as the OKA. 

 Although this model is different from the traditional economic dispatch 
model, it is verifi ed that they are equivalent  [4, 10] . 

 The objective function of economic power dispatch in equation  (5.99)  is a 
quadratic function. It can be linearized by use of the average cost. From the 
previous section, we know that the OKA network model of economic power 
dispatch consists of three types of arcs. These are the generation arc, the 
transmission arc and the load arc. Obviously, each generation arc corresponds 
to a generator, each transmission arc corresponds to a line or transformer, 
and each load arc corresponds to a real power demand. In addition, there 
is a return arc. The total arcs in a power network will be  m    +   1, where 
 m    =    NG    +    NT    +    ND . 

 Comparing the economic dispatch model shown in equations  (5.99) – (5.102)  
with the OKA model shown in equations  (5.71) – (5.73) , the average cost and 
fl ow limits of each type of arc are 

  (a)     The generation arc:

    C a P bij i i i= +G     (5.106)  

    L Pij i= G     (5.107)  

    U Pij i= G     (5.108)    

  (b)     The transmission arc:

    C hR Pij j j= T     (5.109)  

    L Pij j= T     (5.110)  

    U Pij j= T     (5.111)    

  (c)     The load arc:

    Cij = 0     (5.112)  
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    L Pij k= ˆ
D
0     (5.113)  

    U Pij k= ˆ
D
0     (5.114)    

  (d)     The return arc:

    Cij = 0     (5.115)  

    L P R Pij k
k ND

j j
j NT

= +
∈ ∈
∑ ∑ˆ

D T
0 0 21

2
    (5.116)  

    U P R Pij k
k ND

j j
j NT

= +
∈ ∈
∑ ∑ˆ

D T
0 0 21

2
    (5.117)      

 If the network loss is neglected in the economic dispatch OKA model, 
the cost of transmission arc will be zero; load   P̂ kD  will be replaced by  P  D   k  . 
Meanwhile, the part of power loss in the return arc will be zero, too. 

 It is noted that the fl ow  P  ts  on the return arc contains the total loads and 
network losses, i.e.,

    P P R Pk
k ND

j j
j NT

ts D T= +
∈ ∈
∑ ∑ˆ 0 0 21

2
    (5.118)   

 Substituting equation  (5.105)  into equation  (5.118) , we get
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j j
j NT

k
k N

ts D T T

D

= +
⎛
⎝⎜

⎞
⎠⎟

+

= ( )

→∈ ∈

∈

∑∑ ∑0 0 2 0 2

0

1
2

1
2

DD
j j

j NT
j j

j NT

k
k ND

j j
j NT

R P R P

P R P

∑ ∑ ∑
∑ ∑

+ +

= ( ) +
∈ ∈

∈ ∈

1
2

1
2
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T T

D T

== +P PD L     (5.119)   

 Obviously, the KCL law at the super source node that connects to the 
return arc will be

    P P Pi
i

NG

G D L
=
∑ = +

1

    (5.120)   

 This is exactly the real power balance equation in the traditional real power 
economic dispatch model. Thus it is very easy to compute network losses in 
the economic dispatch OKA model, which becomes to adjust the fl ow in the 
fl ow - augmenting loop that contains the return arc.  
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  5.4.4   Calculation of  N     −    1 Security Constraints 

 In the theoretical sense, the total number of  N     −    1 security constraints is very 
large and equals  n ( n     −    1) for the system with  n  transmission and transformer 
branches. In the practical sense, power transmission systems are usually 
designed well within the capacity of the system load and generation. Only a 
small proportion of lines may be overloaded, even if a single branch outage 
occurs. Therefore, it is neither necessary nor reasonable to incorporate all the 
 N     −    1 security constraints into the calculation model directly. To detect all the 
possible overconstrained cases, which must be considered, a fast contingency 
analysis for a single line outage must be performed  [20, 21] . 

 Based on the normal generation schedule obtained from model M - 1, the 
NFP model M - 2 of  N     −    1 security analysis is presented as

    min ( )F Tl j j
j NT

R P l=
∈
∑ 2     (5.121)  

such that

    P P l P ni
i

j
j

k
k

G T D
0 0 0

ω ω ω

ω
( ) ( ) ( )
∑ ∑ ∑+ ( ) + = ∈     (5.122)  

    P l P l NLj jT T( ) ≤ ∈γ     (5.123)  

    P lT = 0     (5.124)  

where

   P  T   j  ( l ):    The real power transmitted in line  j  while line  l  is in outage  
  NL :    The set of the outage lines  
  γ :    A constant greater than unity (say 1    <     γ     <    1.3)    

 The differences between models M - 1 and M - 2 are the following: 

  (1)     The generation production costs in the objective equation  (5.99)  and 
the inequality constraint equation  (5.100)  vanish, since all the genera-
tions and loads remain unchanged.  

  (2)     Only the transmitted real power  P  T   j  ( l ) acts as a variable to adjust the 
power fl ows. The inequality constraint equation  (5.123)  has replaced 
equation  (5.102) . The constant  γ  is introduced to fi nd the overloaded 
line when line  l  appears as an outage.    

 Once the overconstrained cases have been detected, the maximum value 
of the violation in line  j  can be determined by the following equations:

    ΔP P l P j NTj
l NL

j jT T T= ( ) −{ } ∈
∈

max 1     (5.125)  
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    ΔP P l P j NTj
l NL

j jT T T= ( ) −{ } ∈
∈

min 2     (5.126)  

where  NT 1 and  NT 2 represent the number of lines that violate their upper 
and lower bounds, respectively, as line  l  appears as an outage.  

  5.4.5    N     −    1 Security Economic Dispatch 

 There is no guarantee that the economic schedules with  N  security in normal 
operation will not violate the line limits if a single contingency occurs (or 
multiple contingencies occur). If such a situation does arise, it is necessary to 
reallocate the generations so that the line constraints are satisfi ed. An effi cient 
approach to incorporating  N     −    1 security constraints as a part of economic 
dispatch is therefore desirable. Based on the normal case with consideration 
of  N  security and the fast contingency analysis, the network fl ow model M - 3 
of  N     −    1 security economic power dispatch is presented as follows:

    min Δ Δ ΔF
f

P
P h

P
P
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i P
i
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i j

= ∂
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0 0jj NT∈

∑     (5.127)  

such that

    Δ ΔP P NG NTi
i

j
j

G T
ω ω

ω
( ) ( )
∑ ∑+ = ∈ +( )0     (5.128)  

    P P P P P i NGi i i i iG G G G G− ≤ ≤ − ∈0 0Δ     (5.129)  

    Δ ΔP P i NGi iG Grc≤ ∈     (5.130)  

    Δ ΔP P j NTj jT T= − ∈ 1     (5.131)  

    Δ ΔP P j NTj jT T= − ∈ 2     (5.132)  

    P P P P P j NT NT NTj j j j jT T T T T− ≤ ≤ − ∈ − −( )0 0 1 2Δ     (5.133)  

where  Δ  P  G   i   and  Δ  P  T   j   are the incremental generations and transmissions, 
respectively. The incremental generation and transmission costs are

    
∂

∂
= +f

P
a P bi

i P
i i i

iG
G

G
0

2 0     (5.134)  

    
∂
∂

=
P
P

R Pj

j P

j j

j

L

T
T

T
0

2 0     (5.135)   

  Δ  F  is the objective that is the total incremental product cost. 
 Obviously, M - 3 is an incremental optimization model. The following issues 

should be noted. 
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 (1) The objective equation  (5.127)  and the equality constraint equation 
 (5.128)  are obtained under the assumption that the loads are held constant, 
that is,  Δ  P  D   k     =   0. Exceptionally, if there is no feasible solution for problem 
M - 3 in the preventive control, some loads would be curtailed partially or 
completely, so that the problem becomes solvable. In this case, the incremen-
tal loads may act as the variable introduced into M - 3 without the cost. The 
contents of load shedding can be found in Chapter  11 . 

 (2) To realize the transition from the  N  to the  N     −    1 security schedule 
successfully, the limits of the real power generation regulations (regulating 
speeds),   ΔP iGrc  must be considered. These are determined from the product 
of the relevant regulating speed and the regulating time specifi ed. Thus the 
regulating value of the generation is restricted by the two inequality equations 
 (5.129)  and  (5.130) , which can be combined into one expression:

   max , min ,− −{ } ≤ ≤ −{ } ∈Δ Δ ΔP P P P P P P i NGi i i i i i iGrc G G G Grc G G
0 0     (5.136)   

 (3) If any critical single line outage occurs, then the line security zone will 
be contracted to some extent. Equations  (5.131) – (5.133)  refl ect the changing 
number of line security constraints. Recalling equations  (5.125)  and  (5.126) , 
an  “  N     −    1 constrained zone, ”  which is in fact formed by the intersection of the 
secure zones for all single contingencies, can be determined from these equa-
tions. This means that an  N     −    1 security problem with the same number of 
constraints as in the  N  security problem can be introduced into the network 
fl ow model. 

 Substituting equations  (5.125) ,  (5.126) , and  (5.134)  – (5.136) into model M - 3, 
the incremental network fl ow model of economic dispatch with  N     −    1 security, 
model M - 4, becomes

    min Δ Δ ΔF a P b P h R P Pi i i i
i NG

j j j
j NT

= +( ) + ( )
∈ ∈
∑ ∑2 20 0

G G T T     (5.137)  

such that

    Δ ΔP P NG NTi
i

j
j

G T
ω ω

ω
( ) ( )
∑ ∑+ = ∈ +( )0     (5.138)  

   max , min ,− −{ } ≤ ≤ −{ } ∈Δ Δ ΔP P P P P P P i NGi i i i i i iGrc G G G Grc G G
0 0     (5.139)  

    ΔP P l P j NTj
l NL

j jT T T= − ( ) −{ } ∈
∈
max 1     (5.140)  

    ΔP P l P j NTj
l NL

j jT T T= − ( ) −{ } ∈
∈

min 2     (5.141)  

    P P P P P j NT NT NTj j j j jT T T T T− ≤ ≤ − ∈ − −( )0 0 1 2Δ     (5.142)   

 The linear model M - 4 corresponds to the OKA model and it can be solved 
easily by the out - of - kilter algorithm. 
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 It is noted that model M - 4 can provide the bigeneration schedule, that is, 
the normal generation schedule from model M - 1 is used in the normal opera-
tion state, while the postfault generation schedule from model M - 4 is only 
used in the postcontingency case. Furthermore, it can also be used as a single 
generation schedule, which is applied both in the normal case and in post-
contingency, that is, the unique generation schedule not only guarantees 
secure operation in the normal case but it also avoids the occurrence of an 
overload in a possible single contingency. This scheme is easy to implement 
because no rescheduling is needed. However, because all the  N     −    1 line secu-
rity constraints have to be satisfi ed, the constraint region is very narrow, and 
hence the operating cost increases.  

  5.4.6   Implementation 

  5.4.6.1   Major Procedures of the  OKA      The essence of the OKA is to 
revise the out - of - kilter states of arcs to in - kilter states according to comple-
mentary slackness conditions for optimality equations  (5.85) – (5.87) . It should 
be noted that the correction process converges after a fi nite number of itera-
tions. A numerical example, which is taken from reference  [2]  to illustrate the 
solution procedures, is given below. 

 The problem is to solve a secure economic dispatch of a simple power 
system shown in Figure  5.6 . There are two generators ( PG  1  and  PG  2 ) and 
three transmission lines to supply a load  P  D . The system parameters are as 
follows.

    F P P P1 1 1 1 12G G GC( ) = =  

    F P P P2 2 2 2 25G G GC( ) = =  

    0 2≤ ≤P iG  

    0 22≤ ≤PG  

     FIGURE 5.6     A simple power system ( C ij  ;  U ij  / L ij  )  
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    PD = 3  

    0 11≤ ≤Pl  

    0 42≤ ≤Pl  

    1 21≤ ≤Pl  

where,  l 1 is the line between the two generators  PG  1  and  PG  2 ;  l 2 is the line 
from the generator  PG  1  to load  P  D ; and  l 3 is the line from the generator  PG  2  
to the load  P  D .   

 For simplifi cation, the network loss is neglected. Then the economic dis-
patch model for this example can be written as follows:

    min F P P= +2 51 2G G  

s.t.

    P PG G1 2 3+ =  

    0 2≤ ≤P iG  

    0 22≤ ≤PG  

    0 11≤ ≤Pl  

    0 42≤ ≤Pl  

    1 21≤ ≤Pl   

 This economic dispatch problem can be expressed as the OKA network 
fl ow model as mentioned above. 

 The corresponding network fl ow model for the OKA is depicted in Figure 
 5.7 . The solution process of the OKA is demonstrated below: 

  (1)     Assign the initial values:  f  13    =    f  32    =    f  24    =    f  41    =   2,  f  12    =    f  34    =   0, and 
 π  1    =    π  2    =    π  3    =    π  4    =   0. These values and the relevant parameters are 
given in Figure  5.8 (a). Then calculate the relative cost   Cij .  

     FIGURE 5.7     Network flow model for the OKA corresponding to Figure  5.6   
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     FIGURE 5.8     The solution process of the OKA  
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  (2)     Check the state of the arcs. From Figure  5.8 (a) we know that all the 
arcs are out of kilter except arc 1 - 2 marked with a star.  

  (3)     Choose an out - of - kilter arc, say arc 4 - 1. By the labeling technique, no 
fl ow - augmenting loop exists, since only node 1 can be labeled, but 
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nodes 2 - 4 cannot. Then change the value of  π  at nodes 2 - 4 as shown in 
Figure  5.8 (b). In this case, arc 4 - 1 is still out of kilter, but all the nodes 
can be labeled. Then, a fl ow - augmenting loop 1 - 2 - 3 - 4 - 1 is found and 
the augmenting value is equal to unity. After the fl ows in this loop are 
adjusted, the result is shown in Figure  5.8 (c). Now, arc 4 - 1 comes into 
kilter, and so does arc 3 - 4 at the same time.  

  (4)     Again check the state of the arcs. We can observe that arcs 1 - 3, 3 - 2, 
and 2 - 4 are out of kilter.  

  (5)     Choose arc 1 - 3 to be revised. The fl ow - augmenting loop 1 - 2 - 3 - 1 is 
obtained since nodes 1, 2, and 3 can be labeled. Then modify the 
relevant fl ows; the results are given in Figure  5.8 (d). In this case, arc 
1 - 3 is still out of kilter and the nodes cannot be labeled, except node 1. 
Through changing the values of  π  and   Cij , arc 1 - 3 comes into kilter, as 
shown in Figure  5.8 (e).  

  (6)     Check the state of the arcs once more. Only arc 2 - 4 is in the out - of -
 kilter state.  

  (7)     Revise the state of arc 2 - 4. No fl ow - augmenting loop exists since only 
node 2 can be labeled. After the values of  π  and   Cij  at nodes 1, 3, 
and 4 have been changed, arc 2 - 4 comes into kilter, as shown in 
Figure  5.8 (f).  

  (8)     By checking the state of the arcs, we see that all the arcs are in kilter 
and all conditions for optimality have been satisfi ed. This shows that 
the optimal (minimum cost) power fl ow of the system is obtained. Stop 
the iteration.      

 The optimal results are: 

  (1)     The relevant cost:

    C C C C C C12 13 23 24 34 410 0 4 0 6 5= = = = = =, , , , ,    

  (2)     The vertex cost:

    π π π π1 2 3 43 5 8 8= = = =, , , ,   

  (3)     Flow on the arcs:

    f f f f f f12 13 23 24 34 412 1 0 2 1 3= = = = = =, , , , ,       

  5.4.6.2   Numerical Example of Economic Dispatch with  N  Security     The 
proposed model and algorithm are also tested on IEEE 5 - bus and 30 - bus 
systems. Table  5.15  is the economic dispatch results of the 5 - bus system 
obtained by OKA algorithm, where the total generation costs are 757.50   $/hr, 
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and the total system losses are 0.043 p.u. The results are almost the same as 
those obtained by linear programming.   

 The following simulation cases are conducted for 30 - bus system. 

  Case 1: The original data including the power limit of the line.  
  Case 2: The original data, but the power limit of the lines 2 and 6 are 

reduced to 0.45 and 0.35 p.u., respectively.  
  Case 3: The original data, but the power limit of the line 1 is reduced to 

0.65 p.u.  
  Case 4: The original data, but the power limit of the line 1 is reduced to 

1.00 p.u.    

 The corresponding economic dispatch results are shown in Table  5.16 .   
 To analyze the impact of the weighting  h  to the calculation result, the data 

of case 3 are used and the different values of h  are selected. The results are 
listed in Table  5.17 , which shows that the optimal results are reached when 
the weighting h  equals to 20 – 25.    

Table 5.15 Economic dispatch by OKA (5 -bus system) 

   Generators or Lines     Real Power (p.u.)     Lower Limit (p.u.)     Upper Limit (p.u.)  

PG1   0.9270    0.3000    1.2000  
PG2   0.7160    0.3000    1.2000  
P13   0.2160    0.0000    1.0000  
P41 − 0.4110    0.0000    0.5000  
P51 − 0.3000    0.0000    0.3000  
P32 − 0.4000    0.0000    0.4000  
P25   0.3160    0.0000    1.0000  
P34   0.0000    0.0000    0.5000  

Table 5.16 Economic dispatch by OKA (30 -bus system) 

   Case     Case 1     Case 2     Case 3     Case 4  

PG1 (p.u.)    1.7588    1.75000    1.34665    1.69665  
PG2 (p.u.)    0.4881    0.26236    0.64571    0.33295  
PG5 (p.u.)    0.2151    0.15000    0.15000    0.15000  
PG8 (p.u.)    0.2236    0.31270    0.31270    0.31270  
PG11 (p.u.)    0.1230    0.30000    0.30000    0.30000  
PG13 (p.u.)    0.12000    0.12000    0.12000    0.12000  
  Total cost ($/hr)    802.51    813.75    814.24    809.68  
  Total loss (p.u.)    0.0950    0.0782    0.0793    0.0783  
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5.4.6.3 Numerical Example of Economic Dispatch with N − 1
Security   The same data of the IEEE 30 - bus system are used to compute the 
economic dispatch with N     −    1 security. The results are listed in Tables  5.18  
and  5.19 .   

 From Table  5.18 , through the  N     −    1 security analysis and calculation, the 
N     −    1 security cannot be satisfi ed as four single line outages (line number 1, 
2, 4 and 5) appear. Thus, these violated constraints need to be introduced in 
the N     −    1 security economic dispatch model to readjust the generators output 
until no any violation appears. The fi nal results are shown in Table  5.19 . 

Table 5.17 Economic dispatch with different h by  OKA (30 -bus system) 

h       > 1600     200 – 1600     29 – 200     20 – 25  

PG1 (p.u.)    0.56236    0.84236    1.34665    1.34665  
PG2 (p.u.)    0.80000    0.80000    0.29571    0.64571  
PG5 (p.u.)    0.50000    0.50000    0.15000    0.15000  
PG8 (p.u.)    0.31270    0.31270    0.31270    0.31270  
PG11 (p.u.)    0.30000    0.30000    0.30000    0.30000  
PG13 (p.u.)    0.40000    0.12000    0.12000    0.12000  
  Total cost ($/hr)    964.86    915.21    872.52    814.24  
  Total loss (p.u.)    0.0594    0.0620    0.0691    0.0793  
  Iteration No.    1    1    2    3  

Table 5.18 N − 1 security analysis and calculation results ( IEEE 30 -bus system) 

   Outage Line Number     Overloaded Lines Caused by Outage  

  1    L 1 (1.75662), L 4 (1.73162), L 7 ( − 1.08480)  
  2    L 1 (1.75662), L 10 (0.56510), L 12 ( − 0.39087)  
  4    L 1 (1.73162), L 10 (0.56510), L 12 (0.39087)  
  5    L 1 (1.73162), L 6 (1.30000), L 8 ( − 0.72573), L 10 (0.56508)  

Table 5.19 Results and comparison of economic dispatch with N − 1 security ( IEEE
30-bus system) 

   Generator No.     OKA     LP  

PG1 (p.u.)    1.40625    1.38540  
PG2 (p.u.)    0.60638    0.57560  
PG5 (p.u.)    0.25513    0.24560  
PG8 (p.u.)    0.30771    0.35000  
PG11 (p.u.)    0.17340    0.17930  
PG13 (p.u.)    0.16154    0.16910  
  Total generation(p.u.)    2.91041    2.90500  
  Total cost ($/hr)    813.44    813.74  
  Total loss (p.u.)    0.07641    0.0711  
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 Through comparing with the conventional linear programming method that 
is used to solve economic dispatch, the OKA network fl ow programming can 
achieve almost the same results as LP, although sometimes the precision of 
OKA may be a littler lower than that of the LP method, which can be neglected 
from the view of the engineering. 

 It should be noted that the amount of calculation of the  N     −    1 security 
economic dispatch is greatly reduced with the presented method because of 
the use of the  “  N     −    1 constrained zone ” , which is formed by the fast  N     −    1 
security analysis.    

  5.5   NONLINEAR CONVEX NETWORK FLOW PROGRAMMING 
METHOD 

  5.5.1   Introduction 

 This section presents a new nonlinear convex network fl ow programming 
(NLCNFP) model of EDC, which is solved by a combination approach of 
quadratic programming (QP) and network fl ow programming (NFP). First of 
all, a new NLCNFP model of economic power dispatch with security is deduced, 
based on the load fl ow equations. Then, a new incremental NLCNFP model 
of secure and economic dispatch can be set up. The new EDC model can be 
transformed into a QP model, in which the search direction in the space of the 
fl ow variables is found. The concept of a maximum basis in the network fl ow 
graph is introduced, allowing the constrained QP model to be changed into an 
unconstrained QP model that is then solved with the reduced gradient method.  

  5.5.2    NLCNFP  Model of  EDC  

  5.5.2.1   Mathematical Model     It is well known that the active power fl ow 
equations of a transmission line can be written as follows:

    P V g VV g VV bij i ij i j ij ij i j ij ij= − −2 cos sinθ θ     (5.143)  

    P V g VV g bji j ij i j ij ij ij ij= + − +( )2 cos sinθ θ     (5.144)  

where

   P ij  :    The sending end active power on transmission line  ij   
  P ji  :    The receiving end active power on transmission line  ij   
  V i  :    The node voltage magnitude of node  i   
  θ   ij  :    The difference of node voltage angles between the sending end and 

receiving end of line  ij   
  b ij  :    The susceptance of transmission line  ij   
  g ij  :    The conductance of transmission line  ij     
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 In a high - voltage power network, the value of  θ   ij   is very small, and the fol-
lowing approximate equations are easily obtained

    V ≅ 1 0. p.u.     (5.145)  

    sinθ θij ij≅     (5.146)  

    cosθ θij ij≅ −1 22     (5.147)   

 Substituting equations  (5.145) – (5.147)  into equations  (5.143)  and  (5.144) , 
the active power load fl ow equations of a line can be simplifi ed and deduced 
as follows:

    P P
P

b
gij ij

ij

ij
ij= + −⎛

⎝⎜
⎞
⎠⎟C

C1
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    (5.148)  
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gji ij
ij

ij
ij= + −⎛
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⎠⎟C

C1
2

2

    (5.149)  

where

    P bij ij ijC = − θ     (5.150)  

is called an equivalent power fl ow on transmission line  ij . 
 The active power loss on transmission line  ij  can be obtained according to 

equations  (5.148)  and  (5.149) , i.e.,
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    (5.151)  

where

   R ij  :    The resistance of transmission line  ij   
  X ij  :    The reactance of transmission line  ij     

 Let

    Z
R X

X
Rij

ij ij

ij
ijC =

+( )2 2

2
    (5.152)   

 The active power loss on the transmission line  ij  can be expressed as 
follows:
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    P P Zij ij ijL C
2

C=     (5.153)   

 The traditional NFP model for economic dispatch problem can be written 
as follows, i.e., model M - 5,

    min F a P b P c h Pi i i i i
i NG

ij
ij NT

= + +( ) +
∈ ∈
∑ ∑G

2
G L     (5.154)  

such that

    P P Pi i ij
j i

G D= +
→
∑     (5.155)  

    P P P i NGim i iMG G G≤ ≤ ∈     (5.156)  

    − ≤ ≤ ∈P P P j NTijM ij ijM     (5.157)  

where

   P  G   i  :    The active power of generator  i   
  P  D   i  :    The active power demand at load bus  i   
  P ij  :    The fl ow in the line connected to node  i ; would have a negative value 

for a line in which the fl ow is toward node  i   
 a  i   , b  i   , c  i  :    The cost coeffi cients of the  i th generator  
  NG :    The number of generators in the power network  
  NT :    The number of transmission lines in the power network  
  P ij   M :    The active power fl ow constraint on transmission line  ij   
  P  L   ij  :    The active power loss on transmission line  ij   
  h :    The weighting coeffi cient of the transmission losses    
  j     →     i  represents node  j  connected to node  i  through transmission line  ij . 

 Subscripts  m  and  M  represent the lower and upper bounds of the 
constraint. 

 The second term of the objective function (equation  5.154 ) is a penalty on 
transmission losses based on the system marginal cost  h  (in $ per MWh). 
Equation  (5.157)  is the line security constraint. Equation  (5.156)  defi nes the 
generator power upper and lower limits. Equation  (5.155)  is Kirchhoff ’ s fi rst 
law (i.e., node current law, KCL). 

 Substituting equation  (5.151)  or  (5.153)  into equation  (5.154) , and substitut-
ing equation  (5.148)  into equation  (5.155) , the new NLCNFP model M - 6 can 
be written as follows:

    min F a P b P c h P Zi i i i i
i NG

ij ij
ij NT

= + +( ) +
∈ ∈
∑ ∑G G C

2
C

2     (5.158)  

such that
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⎦⎥→

∑ 2 2     (5.159)  

    P P P i NGim i iMG G G≤ ≤ ∈     (5.156)  

    − ≤ ≤ ∈P P P j NTij ij ijCM C CM     (5.160)  

where  Z ij   C  is called an equivalent impedance of transmission line  ij , as shown 
in equation  (5.152) . 

 Obviously, equation  (5.159)  is equivalent to the general system active 
balance equation in the traditional EDC model, i.e.,

    P P Pi k
k NDi NG

G D L= +
∈∈
∑∑     (5.161)  

where

   ND :    The number of load nodes  
  P  L :    The total system active power losses, which is obtained through 

the computation of equation  (5.162) , rather than usual power fl ow 
calculations   

    P P P Zij ij ij
ij NTij NT

L L C C= =
∈∈
∑∑ 2     (5.162)   

 The limit value of the equivalent line power fl ow  P ij   CM  in equation  (5.160)  can 
be obtained from equation  (5.148) , i.e.,

    P P
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    (5.163)   

 According to equation  (5.163) , we can get the positive limit value of the 
equivalent line power fl ow  P ij   CM  (the negative root of  P ij   CM  is neglected), i.e.,

    P
g P b

g
ij

ij ij ij

ij
CM

M=
+ ( ) −⎡⎣ ⎤⎦1 2 12

    (5.164)    

  5.5.2.2   Consideration of  KVL      It is well known that Kirchhoff ’ s second 
law (i.e., loop voltage law, KVL) has not been considered in the study of 
secure economic power dispatch using general NFP. This is why there always 
exists some modeling error when secure economic power dispatch is solved 
with traditional linear NFP. KVL is considered in this section. 

 The voltage drop on transmission line  ij  can be approximately expressed as

    V P Zij ij ij= C C     (5.165)   
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 In this way, the voltage equation of the  l th loop can be obtained, i.e.,

    P Z l NMij ij ij l
ij

C C( ) = =∑ μ , , , ,0 1 2 …     (5.166)  

where  NM  is the number of loops in the network and  μ   ij   ,   l   is the element in the 
related loop matrix, which takes the value 0 or 1. 

 Introducing the KVL equation into model M - 6, we get the following model 
M - 7, in which the augmented objective function is obtained from KVL equa-
tion  (5.166)  and objective function  (5.158)  in model M - 6.
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h P Z P Z
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λ μμij l
ij

l NM, , , ,∑ = 1 2 …     (5.167)  

subject to constraints in equations  (5.156) ,  (5.159) ,  (5.160)  where  λ   l   is the 
Lagrange multiplier, which can be obtained through minimizing equation 
 (5.167)  with respect to variable  P ij   C , i.e.,

    2 0 1 2hP Z Z l NMij ij l ij ij l
ij

C C C− = =∑λ μ , , , ,…     (5.168)  

    λ μl ij ij l
ij

hP l NM= =∑2 1 2C , , , ,…     (5.169)   

 By solving optimization NLCNFP model M - 7, the generator power output 
 P  G   i   and the equivalent line power fl ow  P ij   C  can be obtained. Therefore, the 
line power  P ij  , angle  θ   ij  , which is the difference of node voltage angles between 
the sending end and the receiving end of the line, and system active power 
losses  P  L  can be computed from equations  (5.148) ,  (5.150)  and  (5.162) , respec-
tively, rather than from the usual power fl ow calculations. 

 Similarly, the method of handling  N     −    1 security constraints in Section  5.4  
is adopted here. Thus the incremental NLCNFP model of economic dispatch 
with  N     −    1 security, model M - 8, becomes

   minΔ Δ ΔF a P b P h Z P P Zi i i i
i NG

ij ij ij
ij NT

l ij= +( ) + ( ) +
∈ ∈
∑ ∑2 20 0

G G C C C λ CCμij l
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,∑     (5.170)  

such that
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    max , min , ,− −{ } ≤ ≤ −{ } ∈Δ Δ ΔP P P P P P P i NGiM im i i iM iM iGRC G G G GRC G G
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 (5.172)  

    ΔP P l P j NTij
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max 1     (5.173)  
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    ΔP P l P j NTij
l NL
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∈
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    − − ≤ ≤ − ∈ − −( )P P P P P j NT NT NTij ij ij ij ijCM C C CM C
0 0 1 2Δ     (5.175)   

 It is noted that the  N     −    1 security region may be very narrow since all con-
straints that are produced by all kinds of single outages are introduced in the 
 N     −    1 security economic dispatch. In other words, the feasible range of the 
generator ’ s power output becomes very small. Consequently,  N     −    1 security 
is met, but the system economy may not be satisfi ed. Thus the idea of multi-
generation plans is used. The method is to solve the economic dispatch model 
by considering one single outage only each time. This means that each effec-
tive single outage corresponds to one generation plan. Generally, there are 
not too many effective single outages in a system. Therefore, it will not have 
many generation plans. The incremental NLCNFP model of multigeneration 
plans can be written as below:

    
minΔ Δ ΔF a P b P l h Z P P li i i i

i NG
ij ij ij

ij NT

= +( ) ( ) + ( ) ( )
∈ ∈
∑ ∑2 20 0

G G C C C ++ ∑λ μl ij ij l
ij

Z C ,

   
 (5.176)  

such that

    Δ ΔP l
P
b

g P li
ij

ij
ij

j i
ijG

C
0

C( ) = +⎛
⎝⎜

⎞
⎠⎟

( )
→
∑ 1

2
    (5.177)  

    max , min , ,− −{ } ≤ ( ) ≤ −{ } ∈Δ Δ ΔP P P P l P P P i NiM im i i iM iM iGRC G G G GRC G G
0 0 GG    

 (5.178)  

    ΔP l P l P j NT l NLij ij ijC C CM( ) = − ( ) −( ) ∈ ∈1,     (5.179)  

    ΔP l P l P j NT l NLij ij ijC C CM( ) = − ( ) + ∈ ∈( ) ,2     (5.180)  

    − − ≤ ≤ − ∈ − −( )P P P P P j NT NT NTij ij ij ij ijCM C C CM C
0 0 1 2Δ     (5.181)     

  5.5.3   Solution Method 

 Because of the special form of model M - 7 or M - 8, we introduce the following 
algorithm for solving it. 

 Model M - 7 or M - 8 is easily changed into a standard model of nonlinear 
convex network fl ow programming, i.e., model M - 9,

    minC c fij
ij

= ( )∑     (5.182)  

such that

    f f r i nij ji
j n

i−( ) = ∈
∈
∑     (5.183)  
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    L f U ij mij ij ij≤ ≤ ∈     (5.184)   

 Equation  (5.183)  can be written as

    Af r=     (5.185)  

where  A  is a matrix with  n     ×    ( n    +    m ), in which every column corresponds 
to an arc in the network and every row corresponds to a node in the 
network. 

 Matrix  A  can be divided into a basic submatrix and a nonbasic submatrix, 
which is similar to the convex simplex method, i.e.,

    A B S N= [ ], ,     (5.186)  

where the columns of  B  form a basis; both  S  and  N  correspond to the nonbasic 
arcs.  S  corresponds to the nonbasic arcs in which the fl ows are within the cor-
responding constraints.  N  corresponds to the nonbasic arcs in which the fl ows 
reach the corresponding bounds. 

 A similar division can be made for the other variables. i.e.,

    f f f fB S N= [ ], ,     (5.187)  

    g f g g gB S N( ) = [ ], ,     (5.188)  

    G f G G GB S N( ) = [ ]diag , ,     (5.189)  

    D D D DB S N= [ ], ,     (5.190)  

where

   g ( f ):    The fi rst - order gradient of the objective function  
  G ( f ):    The Hessian matrix of the objective function  
  D :    The search direction in the space of the fl ow variables    

 To solve model M - 9, Newton ’ s method can fi rst be used to calculate the 
search direction in the space of the fl ow variables. The idea behind Newton ’ s 
method is that the function being minimized is approximated locally by a 
quadratic function, and this approximate function is minimized exactly. 

 Suppose that  f  is a feasible solution and the search step along the search 
direction in the space of fl ow variables  β    =   1. Then the new feasible solution 
can be obtained.

    ′ = +f f D     (5.191)   

 Substituting equation  (5.191)  into the equations in model M - 9, the nonlinear 
convex network fl ow programming model M - 9 can be changed into the 
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following quadratic programming model M - 10, in which the search direction 
in the space of the fl ow variables is to be solved:

    minC D D G f D g f D( ) = ( ) + ( )1
2

T T     (5.192)  

such that

    AD = 0     (5.193)  

    D f Lij ij ij≥ =0, when     (5.194)  

    D f Uij ij ij≤ =0, when     (5.195)   

 Model M - 10 is a special quadratic programming model that has the form of 
network fl ow programming. To enhance the calculation speed, we present a 
new approach, in place of the general quadratic programming algorithm, to 
solve the model M - 10. The main calculation steps are described below. 

  5.5.3.1   Temporarily Neglect Equations  (5.194)  and  (5.195)      This means 
that  L ij      <     f ij      <     U ij   in this case. Thus  D N     =   0 according to the defi nition of the 
corresponding nonbasic arc. 

 From equation  (5.193) , we know that

    AD B S N

D

D
B

S= [ ]
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=, ,

0

0     (5.196)   

 From equation  (5.196) , we can obtain

    D B SDB S= − −1     (5.197)  

    D

B S

D ZDS S=
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−1

0

I     (5.198)   

 Substituting equation  (5.198)  into equation  (5.192) , we get

    min ( )C D ZD G f ZD g f ZDS S S( ) = ( ) ( )( ) + ( )1
2

T T     (5.199)   

 Through minimizing equation  (5.199)  to variable  D S  , the model M - 10 can be 
changed into an unconstrained problem, the optimization solution of which 
can be solved from the following equations:
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    DN = 0     (5.200)  

    BD SDB B= −     (5.201)  

    Z GZ D Z gS
T T( ) = −     (5.202)    

  5.5.3.2   Introduction of Equations  (5.194)  and  (5.195)      According to 
equations  (5.200) – (5.202) ,  D S   can be solved from equation  (5.202) , and then 
 D B   can be solved from equation  (5.201) . If  D B   violates the constraint equations 
 (5.194)  and  (5.195) , a new basis must be sought to calculate the new search 
direction in the space of fl ow variables. This step will not be terminated until 
 D B   satisfi es constraint equations  (5.194)  and  (5.195) .  

  5.5.3.3   Introduction of Maximum Basis in Network     Obviously, the 
general repeated calculation of  D B   and  D S  , which is similar to that of pivoting 
in linear programming, is not only time - consuming but also does not improve 
the value of the objective function. To speed up the calculation, we adopt a 
new method to form a basis in advance so that  D B   and  D S   can satisfy the 
constraints  (5.194)  and  (5.195) . Therefore, the maximum basis in the network, 
which consists of as many free basic arcs as possible, is introduced in this 
chapter. 

 The maximum basis in a network can be obtained by solving the following 
model M - 11:

    max
B

ij ij
ij

d A∑     (5.203)  

where

   d

ij ij

ij =
1, , . .,when arc  is a free one  i e  the flow in arc  iis within its bounds

when arc  is not a free one  i e0, , . .ij ,,  the flow in arc  reaches its 

bounds

ij
⎧
⎨
⎪

⎩⎪
 

   A
ij B

ij
ij =

1

0

,

,

when arc  is in the basis 

when arc  is not in  basis B{   

 Suppose that basis B is the maximum basis from equation  (5.203) , only the 
fl ows on the free arcs in basis B need to be adjusted in order to satisfy equa-
tion  (5.203) , if the fl ow on a free nonbasic arc needs to be adjusted  [22] . 

 The introduction of the maximum base indicates the adjusting direction of 
fl ow, i.e., the change of fl ow is carried out according to the maximum basis. 
Through selecting the maximum basis, equations  (5.194)  and  (5.195)  in model 
M - 10 can always be satisfi ed in the calculation of the search direction in the 
space of the fl ow variables. Therefore, the quadratic programming model 
M - 10 is equivalent to unconstrained problem equations  (5.200) – (5.202) . To 
enhance the calculation speed further, equations  (5.200) – (5.202)  can be solved 
by the reduced gradient method.  
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  5.5.3.4   Reduced Gradient Algorithm with Weight Factor     Equations 
 (5.200) – (5.202)  can be written in compact format as below:

    Z GZ D Z gT T( ) = −     (5.204)   

 If we use a unit matrix to replace the Hessian matrix ( Z  T  GZ ), we get

    V Z g= − T     (5.205)  

    D ZV=     (5.206)  

where

   V :    The negative reduced gradient  
  D :    The direction of the reduced gradient    

 The main advantages of the reduced gradient method are: (1) the calcula-
tion is simple and (2) the required storage space is relatively small. The dis-
advantage is that it is an approximation. Thus the reduced gradient algorithm 
has a linear convergence speed. 

 To improve the convergence speed of the reduced gradient method, select 
a positive matrix that is not a unit matrix but can be easily inversed and use 
it to replace the Hessian matrix ( Z  T  GZ ). In this way, we get a new reduced 
gradient with weight, that is,

    MV Z g= − T     (5.207)  

where

   M :    the weight of the reduced gradient.  

    Select the initial value of  Z  as   

    Z

B S

=
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1

0

I     (5.208)   

 Substituting equation  (5.208)  into equation  (5.207) , we get

    MV Z g S B

g

g

g

S B g g
B

S

N

B S= − = − − ( )⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= ( ) −− −T T T T TI

1 1
0, ,     (5.209)   

 According to equations  (5.182)  and  (5.185) , the following Lagrange func-
tion can be obtained:
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    L C f f r= ( ) − −( )λ A     (5.210)  

where

   λ :    The Lagrange multiplier    

 According to the condition of optimization, we have

    
∂
∂

=L
f

0     (5.211)  

    
∂ ( )
∂

− =
C f

f
ATλ 0     (5.212)   

 That is,

    g f A( ) = Tλ     (5.213)   

 Expanding the above equation, we get

    
B

S

N

g

g

g

B

S

N

T

T

T

λ
λ
λ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    (5.214)  

    B gB
Tλ =     (5.215)   

 Substituting equation  (5.215)  into equation  (5.209) , we get

    MV S B B g S gS S= ( ) − = −−T T T T1 λ λ     (5.216)   

 In summary, the calculation steps of nonlinear convex network fl ow pro-
gramming model, which is solved by reduced gradient algorithm with weight, 
are as follows: 

  (1)     Compute  λ  from equation  (5.215) .  
  (2)     Compute  V  from equation  (5.216) .  
  (3)     Compute  D S   from the following expression:

    D

f L V

f U V

V

S

S ij ij ij

S ij ij ij

ij

=

( ) = <

( ) = >

0 0

0 0

, , .

, , .

when and

when and

,, otherwise

⎧

⎨
⎪

⎩
⎪

    (5.217)    
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  (4)     Compute  D B   from equation  (5.201) .  
  (5)     Compute the new value of fl ow  f ′     =    f    +    D B      

 In the practical calculation, several parameters related to the algorithm 
must be addressed. 

 (1) The convergence criteria 
 The convergence criteria are given as below:

    max S gS j
Tλ σ−( ) ≤     (5.218)  

where  σ  is determined according to the required calculation precision. 
 (2) The selection of weighting matrix  M  
 We can select the diagonal matrix of the Hessian matrix  Z  T  GZ  as the 

weighting matrix  M , i.e.,

    M Z GZ= ( )diag T     (5.219)   

 (3) The selection of the search step 
 We assumed that the search step along the search direction in the space of 

fl ow variables  β    =   1. To speed up the convergence, we can use the following 
approach to compute the optimum search step along the search direction in 
the space of fl ow variables. First of all, compute the initial step as below:

    β0 = − g D
D GD

T

T
    (5.220)   

 Then compute the optimum step according to the following equation:

    
g f D D

g f D

+ ∗( )
( )

≤ < <β ω ω
T

T , 0 1     (5.221)   

 Meanwhile, the  β  *  must meet the following equation:

    C f D C f+ ∗( ) − ( ) ≤ < <β η η, 0 1     (5.222)   

 If the above equation is not satisfi ed, use half of  β  *  to recompute the fl ow 
until the equation is met.   

  5.5.4   Implementation 

 For examining the NLCNFP model and algorithm, the numerical simulations 
have been carried out on IEEE 5 - bus and 30 - bus systems. The results and 
comparison of secure EDC are listed on Tables  5.20 – 5.22 . To further raise the 
precision of EDC and check the operation states of the system, the fast 
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Table 5.20 Economic dispatch results comparison 
(5-bus system) 

   Method     OKA     NLCNFP  

PG1 (p.u.)    0.92700    0.97800  
PG2 (p.u.)    0.71600    0.66670  
  Total cost ($/hr)    757.500    757.673  
  Total loss (p.u.)    0.04300    0.04470  

Table 5.21 ED results and comparison between  NLCNFP and  OKA for  IEEE 30 -bus
system

   Scenario     Scenario 1     Scenario 1     Scenario 2     Scenario 2  

  Method    NLCNFP    OKA    NLCNFP    OKA  
PG1 (p.u.)    1.7595    1.7588    1.5018    1.69665  
PG2 (p.u.)    0.4884    0.4881    0.5645    0.33295  
PG5 (p.u.)    0.2152    0.2151    0.2321    0.15000  
PG8 (p.u.)    0.2229    0.2236    0.3207    0.31270  
PG11 (p.u.)    0.1227    0.1230    0.1518    0.30000  
PG13 (p.u.)    0.1200    0.12000    0.1413    0.12000  
  Total generation    2.9286    2.9290    2.9121    2.9151  
  Total real power losses    0.0946    0.0950    0.0781    0.0783  
  Total generation cost ($)    802.3986    802.51    807.80    809.68  

Table 5.22 ED results and comparison among  NLCNFP, QP, and LP for  IEEE 30 -bus
system

   Generation No.     NLCNFP Method     QP Method     LP Method  

PG1   1.7595    1.7586    1.7626  
PG2   0.4884    0.4883    0.4884  
PG5   0.2152    0.2151    0.2151  
PG8   0.2229    0.2233    0.2215  
PG11   0.1227    0.1231    0.1214  
PG13   0.1200    0.1200    0.1200  
  Total generation    2.9286    2.9285    2.9290  
  Total real power losses    0.0946    0.0945    0.0948  
  Total generation cost ($)    802.3986    802.3900    802.4000  

decoupled power fl ow is also used in the calculation, but only in the fi rst and 
fi nal stages.   

 Table  5.20  shows the economic dispatch results of the 5 - bus system with 
use of nonlinear convex network fl ow programming. The ED results with use 
of out - of - kilter algorithm are also listed in Table  5.20  (column 3). 
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 The simulation results of the 30 - bus system by NLCNFP are also compared 
with those obtained by OKA in Section  5.4 . The following two cases are used 
to do comparison. 

  Scenario 1: The original data  
  Scenario 2: The original data, but the power limit value of the line 1 is 

reduced to 1.00 p.u.    

 The corresponding calculation results and comparison based on two differ-
ent network fl ow techniques (NLCNFP and OKA) for these two scenarios are 
listed in Table  5.21 . Obviously, the ED solved by NLCNFP has higher preci-
sion than the ED solved by OKA. 

 Table  5.22  lists the ED results comparison among the NLCNFP method 
and the conventional linear programming and quadratic programming 
methods. The agreement between the conventional ED method through 
power fl ow calculations and the NLCNFP method can be observed. 

 According the  N     −    1 security analysis in Section  5.4 , there are four single 
outages that cause the line violation for the 30 - bus system. They are outage 
lines 1, 2, 4, and 5. Applying the idea of multigeneration plans to the 30 - bus 
system, there will be fi ve generation plans: one for the normal operation state 
and four for the effective single outages, respectively. The detailed results of 
the multigeneration plans are shown in Table  5.23 .     

Table 5.23 Multigeneration plans for IEEE 30 -bus system 

   Generation No.  
   Normal 

State
   Line 1 
Outage

   Line 2 
Outage

   Line 4 
Outage

   Line 5 
Outage

PG1   1.7595    1.42884    1.40919    1.41584    1.57840  
PG2   0.4884    0.55222    0.57188    0.56521    0.38880  
PG5   0.2152    0.24135    0.24135    0.24135    0.25512  
PG8   0.2229    0.35000    0.35000    0.35000    0.35000  
PG11   0.1227    0.17340    0.17340    0.17340    0.17340  
PG13   0.1200    0.16154    0.16154    0.16154    0.16154  
  Total generation    2.9286    2.90735    2.90736    2.90734    2.90726  
  Total real power 

losses
  0.0946    0.07335    0.07336    0.07334    0.07326  

  Total generation 
cost ($)  

  802.3986    811.36192    812.64862    812.18859    808.30441  

N  security    Satisfi ed    /    /    /    /  
N     −    1 security    Not satisfi ed 

when one 
of lines 
#1,2,3,5 is 
in outage  

  Satisfi ed    Satisfi ed    Satisfi ed    Satisfi ed  
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  5.6   TWO - STAGE ECONOMIC DISPATCH APPROACH 

  5.6.1   Introduction 

 This section presents a two - stage economic dispatch approach according to 
the practical operation situation of power systems. The fi rst stage involves the 
classic economic power dispatch without consideration of network loss. The 
initial generation plans of the generator units are determined according to 
the rank of fuel consumption characteristic of the units or the principle of 
equal incremental rate. The second stage involves economic dispatch with 
consideration of system power loss and network security constraints. Three 
objectives can be used for the second stage. They are (1) minimize the fuel 
consumption, (2) minimize system loss, and (3) minimize the movement of 
generator output from the initial generation plans.  

  5.6.2   Economic Power Dispatch — Stage One 

 The equal incremental principle, which is introduced in Chapter  4 , can be used 
for the fi rst stage of economic power dispatch. Given that the input - output 
characteristic of  NG  generating units are  F  1 ( P  G1 ),  F  2 ( P  G2 ),  … ,  F n  ( P  Gn ), respec-
tively, the total system load is  P  D . The problem is to minimize the total fuel 
consumption of generators  F  subject to the constraint that the sum of the 
power generated must equal the received load. That is,

    min F F P F P F P F Pn n i i
i

NG

= ( ) + ( ) + + ( ) = ( )
=
∑1 1 2 2

1
G G G G�     (5.223)  

s.t.

    P Pi
i

NG

DG
=
∑ =

1

    (5.224)   

 This is a constrained optimization problem, and it can be solved by the 
Lagrange multiplier method. According to Chapter  4 , the principle of equal 
incremental rate of economic power operation for multiple generating units 
can be obtained as

    
d
d G

F
P

i Ni

i

= =λ 1 2, , ,…     (5.225)  
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= = =� λ     (5.226)   
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 The economic operation points   P iG
0  of the fi rst stage can be obtained from 

the above equations  (5.225)  or  (5.226) .  

  5.6.3   Economic Power Dispatch — Stage Two 

 The second stage of the economic power dispatch includes loss correction 
and network security constraints. On one hand, the system loss minimization 
or the fuel consumption minimization can be selected as objective function. 
On the other hand, the operators expect optimal dispatch points close to 
the economic operation points   P iG

0  obtained from the fi rst stage. Thus the fol-
lowing three objectives may be adopted in the second stage of economic 
dispatch. 

 (1) Minimize the fuel consumption

    min F F Pi i
i

NG

1
1

= ( )
=
∑ G     (5.227)   

 (2) Minimize the system loss

    min F P2 = L     (5.228)   

 (3) Minimize the adjustment of generator output

    min F P Pi i
i

NG

3
0 2

1

= −( )
=
∑ G G     (5.229)   

 The constraints include real power balance, generator power output limits, 
and branch power fl ow constraints, that is,

    P P Pi
i NG

k
k ND

G D L
∈ ∈
∑ ∑= +     (5.230)  

    P P P i NGi i iG G Gmin max≤ ≤ ∈     (5.231)  

    P P ij NTij ij≤ ∈max     (5.232)  

where

   P  D :    The real power load.  
  P ij  :    The power fl ow of transmission line  ij   
  P ij    max :    The power limits of transmission line  ij   
  P  G   i  :    The real power output at generator bus  i   
  P  G   i    min :    The minimal real power output at generator  i   
  P  G   i    max :    The maximal real power output at generator  i   
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  P  L :    The network losses  
  F i  :    The fuel consumption function of the generator unit  i   
  NT :    The number of transmission lines  
  NG :    The number of generators    

 It is noted that the two - stage approach for economic dispatch can be used 
for dynamic economic dispatch or daily dispatch in the practical operation of 
the power systems. To actualize the transition from the time point  t  to  t    +   1 
schedule successfully, the real power generation regulations constraint, 
 Δ  P  GRC   i   max , must be considered, i.e.,

    P P P i NGi i iG G GRC− ≤ ∈0 Δ max     (5.233)  

or

    − + ≤ ≤ + ∈Δ ΔP P P P P i NGi i i i iGRC G G GRC Gmax max
0 0     (5.234)   

 Thus the regulating value of the generation is restricted by the two 
inequality equations  (5.231)  and  (5.234) , which can be combined into one 
expression:

    max , min ,max min max max− +{ } ≤ ≤ +{ }Δ ΔP P P P P P P ii i i i i i iGRC G G G GRC G G
0 ∈∈NG    

 (5.235)   

 The economic dispatch model for the second stage can be written as

    min F h F h F h F= + +1 1 2 2 3 3     (5.236)  

s.t.

    P P Pi
i NG

k
k ND

G D L
∈ ∈
∑ ∑= +     (5.237)  

    max , min ,max min max max− +{ } ≤ ≤ +{ }Δ ΔP P P P P P P ii i i i i i iGRC G G G GRC G G
0 ∈∈NG    

 (5.238)  

    P P ij NTij ij≤ ∈max     (5.239)  

where

    h h h1 2 3 1+ + =     (5.240)  

   h  1 :    The weighting factor of the fuel consumption objective function  
  h  2 :    The weighting factor of the loss minimization objective function  
  h  3 :    The weighting factor of the generator output adjustment objective 

function    
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 The weighting factors can be determined according to the practical situa-
tion of the specifi c system. For example, if the network loss is the only concern 
in a system, we can select  h  2    =   1, and  h  1    =    h  3    =   0. If the network loss is not a 
concern, and the economy is primary in a system, we can select  h  1    =   1, and 
 h  2    =    h  3    =   0. 

 The economic dispatch model for the second stage can be solved by any 
algorithm mentioned in previous sections.  

  5.6.4   Evaluation of System Total Fuel Consumption 

 In practical system operation, the system total fuel consumption is mainly 
concerned. Generally, the system total fuel consumption includes two parts: 

  (1)     The total fuel consumption of the generators  
  (2)     The equivalent fuel consumption of the system power losses    

 Generally, the system total fuel consumption before optimization is taken 
as a reference point. It is expected that the system total fuel consumption 
obtained after stage two is less than that in the reference point. 

 For the reference point, the initial system power losses   PL
0 are obtained 

from a power fl ow solution. In addition, since the line constraints are not 
considered before optimization, there may be a branch fl ow violation. Thus 
the penalty term for the power violation should be introduced in the calcula-
tion of the system total fuel consumption in the reference point. The system 
total power violation can be computed as below:

    ΔP P Pij ij
ij

Nl

Viol = −
=
∑( )max

0

1

    (5.241)  

where  Nl  is the set of violated branches. 
 The equivalent fuel consumption for the power violation is computed as

    F Pviol Viol= γ 2Δ     (5.242)   

 Obviously, equivalent fuel consumption for the power violation  F  viol  will be 
zero if there is no branch violation (i.e.,  Nl  is empty set). 

 Thus the system total fuel consumption before optimization will be

    F F P P Pi i
i

NG

T G L Viol
1 0

1
1

0
2= ( ) + +

=
∑ γ γ Δ     (5.243)   

 After stage two, the system power losses  P  L  and the economic operation 
points are computed by solving model equations  (5.236) – (5.239)  and power 
fl ow. That is,
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    F F P Pi i
i

NG

T G L
2

1
1= ( ) +

=
∑ γ     (5.244)  

where

   γ  1 ,  γ  2 :    The coeffi cient ’ s of converting the system power loss and branch 
power violation to the fuel consumption, respectively.    

 The requirement of the two - stage economic dispatch will be

    F FT T
2 1≤     (5.245)  

where

    FT
1:    The initial system total fuel consumption   

  FT
2 :    The fi nal system total fuel consumption    

   Example 5.1 

 The test example is the IEEE 30 - bus system with some data change. The 
modifi ed 30 bus system consists of 5 generation units, 21 loads, 41 transmis-
sion lines and transformers. 

 The fuel consumption functions of the generators are quadratic curves 
and are shown in Table  5.24 . The two - stage economic dispatch results are 
shown in Tables  5.25  and  5.26 .   

 Table 5.24     The fuel consumption function of generators for  IEEE  30 - bus system 

   Gen. No.     a     b     c  

  1    0.00984    0.33500    0.00000  
  2    0.00834    0.22500    0.00000  
  5    0.00850    0.18500    0.00000  

  11    0.00884    0.13500    0.00000  
  13    0.00834    0.22500    0.00000  

   where:   F a P b P ci i i i i1
2= + +G G    

 Table 5.25     The results of generation scheduling for  IEEE  30 - bus system  

   Gen. No.     Initial Point     Stage Two for ED  

  1    54.645    51.305  
  2    59.480    60.330  
  5    60.570    61.440  

  11    57.370    58.190  
  13    59.480    60.190  
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 Table  5.25  shows the generation plans for the two stages, respectively. 
Tables  5.26  shows system total losses and fuel consumption for the two 
stages, respectively. 

 It can be observed from Table  5.26  that the system losses and fuel con-
sumption of the second stage are lower than those before optimization, 
where loss is about 2.18% reduction, and total system fuel consumption is 
about 0.36% reduction.     

  5.7   SECURITY - CONSTRAINED  ED  BY GENETIC ALGORITHMS 

 Genetic algorithms (GAs) are adaptive search techniques that derive their 
models from the genetic processes of biological organisms based on evolution 
theory. In Chapter  4 , GAs are applied to solve the classic economic dispatch 
problem, where the network losses and security constraints are neglected. 

 Considering the network losses  P  L , and selecting unit  N  as the slack bus 
unit, then the real power balance equation can be written as

    P P P PN i
i

N

G D L G= + −
=

−

∑
1

1

    (5.246)   

 The network security constraints can be written as

    P P ij NLij ij≤ =max , , ,1 2 …     (5.247)   

 Adding penalty factors  h  1 ,  h  2  to the violation of power output of the slack bus 
unit and  h  3  to the violation of line power, we get the augmented cost

    
F F P h P P h P P h P Pi i

i

N

N N N N ij ijA G G G G G= ( ) + −( ) + −( ) + −
=
∑

1
1

2
2

2
3max min maax( )

=
∑ 2

1ij

NL

   
 (5.248)   

 GA is designed for the solution of maximization problem, so the fi tness 
function for solving security economic dispatch problem is defi ned as the 
inverse of equation  (5.248) :

    F
F

fitness
A

= 1
    (5.249)   

 Table 5.26     The results of system fuel consumption for  IEEE  30 - bus system 

   Stage     Initial Point     Stage Two for ED  

  Total system loss (MW)    4.120    4.030  
  Total system fuel consumption    216.686    215.906  
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 The GA operations are stated in Chapter  4 . The calculation steps for 
solving GA - based ED with line fl ow constraints are as follows.

   (1)     Select the parameters related to GA such as population size, number 
of generations, substring length, and number of trials.  

  (2)     Generate initially random coded strings as population members in the 
fi rst generation.  

  (3)     Decode the population to get power generations of the units in the 
strings.  

  (4)     Perform power fl ow analysis considering the unit generations in step 
(3), so that GA is able to evaluate system transmission loss, slack bus 
generation, line fl ows, and hence any violation for the slack bus genera-
tion and violation for the line fl ow limits.  

  (5)     Check whether the number of trials reaches the maximal. 
 If the number of trials reaches the maximal, and there is no any gen-

erator power violation or line fl ow violation, stop and output the results. 
 If the number of trials reaches the maximal, but there exists a gen-

erator power violation or line fl ow violation, this means that the given 
trial number is too small. Increase the trial numbers and recompute. 

 If the number of trials does not reach the maximal, go to the next 
step.  

  (6)     Evaluate the fi tness of population members (i.e., strings).  
  (7)     Execute selection of strings based on reproduction considering the 

roulette wheel procedure with embedded elitism followed by crossover 
with embedded mutation to create the new population for the next 
generation. Go to step (2).    

   Example 5.2 

 The method of GAs for solving security economic dispatch problem is 
tested on the IEEE 30 - bus system. The test case is normal operation state 
only. The parameters related to GAs are selected as below: 

 •      Number of chromosomes   =   100  
 •      Bit resolution per generator   =   8  
 •      Number of cross - points   =   2  
 •      Number of generations   =   18,000  
 •      Initial crossover probability   =   92%  
 •      Initial mutation probability   =   0.1%    

 The total load is 283.4   MW; the output results are listed in Table  5.27 . 
The GA - based ED results are also compared with those obtained by tra-
ditional optimization method (quadratic programming and linear program-
ming). The same results are obtained.      
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  APPENDIX: NETWORK FLOW PROGRAMMING 

 Network fl ow programming (NFP) is a special form of linear programming 
(LP). The algorithms for LP including the simplex method can also be used 
for NFP problem. However, since the specialization of NFP, especially when 
NFP is applied to the economic dispatch problem of a power system, some 
simplifi ed algorithms are more effi cient to solve NFP problem. Here we only 
introduce several most important applications of network fl ow problems that 
are used in power system optimal operation  [22 – 27] . 

  The Transportation Problem 

 The transportation problem is to fi nd the amounts of goods to ship from the 
supply site to the demand site to minimize the total transportation cost. As we 
describe in Section  5.4 , in the economic dispatch of a power system, the supply 
sites correspond to the generator sources, the demand sites correspond to load 
demands, and the transportation paths correspond to transmission lines. 

 In the transportation problem, the supply node is called the source and the 
demand node is called the sink. The mathematical representation of the trans-
portation problem is as below:

    minC c xij ij
j

D

i

S

=
==
∑∑

11

    (5A.1)  

such that

    x s i Sij
j D

i
∈
∑ ≤ ∈     (5A.2)  

    x r j Dij
i S

j
∈
∑ ≥ ∈     (5A.3)  

    x i S j Dij ≥ ∈ ∈0 ,     (5A.4)  

 Table 5.27      ED  results by genetic algorithm and comparison for  IEEE  30 - bus system 

   Generation No.     GA Method     QP Method     LP Method  

   P  G1     1.7612    1.7586    1.7626  
   P  G2     0.4884    0.4883    0.4884  
   P  G5     0.2152    0.2151    0.2151  
   P  G8     0.2223    0.2233    0.2215  
   P  G11     0.1221    0.1231    0.1214  
   P  G13     0.1200    0.1200    0.1200  
  Total generation    2.9292    2.9285    2.9290  
  Total real power losses    0.0952    0.0945    0.0948  
  Total generation cost ($)    802.4634    802.3900    802.4000  
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where

   c ij  :    The cost of supply from source  i  to sink  j   
  x ij  :    The supply from source  i  to sink  j . It must be nonnegative.  
  s i      The supply from the source  
  r j      The supply received at the sink  
  S     The total number of source nodes in the network  
  D     The total number of sink nodes in the network    

 Obviously, the transportation problem is not feasible unless supply is at 
least as great as demand

    s ri
i S

j
j D∈ ∈

∑ ∑≥     (5A.5)   

 If this inequality is satisfi ed, then the transportation problem is feasible. 
This is generally true for the economic dispatch problem of power systems, 
in which the total generations equal the total load demands plus the system 
power loss. 

 For simplifi cation of the transportation problem it can be assumed that the 
total demand is equal to the total supply, that is,

    s ri
i S

j
j D∈ ∈

∑ ∑=     (5A.6)   

 Under this assumption, the inequalities in constraints  (5A.2)  and  (5A.3)  must 
be satisfi ed with equalities, that is,

    x s i Sij
j D

i
∈
∑ = ∈     (5A.7)  

    x r j Dij
i S

j
∈
∑ = ∈     (5A.8)   

 This corresponds to the economic dispatch problem neglecting network 
loss. We also can use this assumption even for economic dispatch with trans-
mission loss as we analyze in Section  5.4 . 

 This problem can, of course, be solved by the simplex method described in 
the Appendix   of Chapter  9 . However, the simplex tableau for this problem 
involves an IJ by I   +   J constraint matrix. Instead, we use a more effi cient 
algorithm to solve it. The algorithm consists of four steps. 

  (1)     Form a transportation array or table as in Table  A1 .  
  (2)     Find a basic feasible shipping schedule,  x ij  .  

  (2a)     Choose any available square from the table, say ( i  0 ,  j  0 ), specify  x i   0   j   0  
as large as possible subject to the constraints, and circle this 
variable.  



APPENDIX: NETWORK FLOW PROGRAMMING 203

  (2b)     Delete from consideration whichever row or column has its con-
straint satisfi ed, but not both. If there is a choice, do not delete a 
row (column) if it is the last row (resp. column) undeleted.  

  (2c)     Repeat steps (2a) and (2b) until the last available square is fi lled 
with a circled variable, and then delete from consideration both 
row and column.    

  (3)     Test for optimality. 
 Given a feasible shipping schedule  x ij  , we can use the equilibrium 
theorem to check for optimality. This entails fi nding feasible  u i   and  v j   
that satisfy the equilibrium conditions

    v u c xj i ij ij− = >, for 0     (5A.9)  

where  u i   and  v j   are nonnegative dual variables of the primal problem 
and satisfy the following constraint:

    v u c i jj i ij− < , for all  and     (5A.10)   

 Then, the method for checking the optimality is as below: 
   (3a)     Set one of the  u i   and  v j  , and use equation (A9) for squares con-

taining circled variables to fi nd all the  u i   and  v j  .  
  (3b)     Check feasibility,  v j      −     u i      ≤     c ij  , for the remaining squares. If 

feasible, the solution is optimal for the problem and its dual 
problem.    

  (4)     If the test fails, fi nd an improved basic feasible shipping schedule, and 
repeat step (3). 
   (4a)     Choose any square ( i ,  j ) with  v j      −     u i      >     c ij  , set  x ij     =    θ , but keep the 

constraints satisfi ed by subtracting and adding  θ  to appropriate 
circled variables.  

 Table A1     Transportation array 

     
D1

c11 c1D
s1

s2

sS

c2D

cSD

c12

c21

x11 x12 x1D

x2D

xSD

x21 x22

xS1 xS2

r1 r2 rD

c22

cS1 cS2

P1

P2

PS

D2 DD

…
 

…
 

…
 

… 

… 

… 
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  (4b)     Choose  θ  to be the minimum of the variables in the squares in 
which  θ  is subtracted.  

  (4c)     Determine the new variable and remove from the circled vari-
ables one of the variables from which  θ  was subtracted that is now 
zero.        

   Example A1 

 There is a simplifi ed power system that consists of three generators (G 1    =   6 
p.u., G 2    =   7 p.u., and G 3    =   9 p.u.) and four load demands (D 1    =   3 p.u., D 2    =   9 
p.u., D 3    =   4 p.u., D 4    =   6 p.u.). Each generator connects to all loads, respec-
tively. Assume network loss is neglected. To compute the minimal transmis-
sion cost fl ow  P ij   for this network: 

  1.     We can form the transportation table in Table  A2 , where the number in 
the table is the transmission cost for transfer the power from the genera-
tor to load.  

  2.     Find an initial power fl ow  P ij  . 

 Choose any square, say the upper left corner, (1, 1), and make  P  11  as 
large as possible subject to the constraints. In this case,  P  11  is chosen equal 
to 3 (we delete the unit for simplifi cation). It means that supply load D 1  
receives its demands from  PG  1 . Thus,  P  21    =    P  31    =   0. 

 We choose another square, say (1, 2), and make  P  12  as large as possible 
subject to the constraints. Then  P  12    =   3, since there are only three units left 
at  PG  1 . Hence,  P  13    =    P  14    =   0. Next, choose square (2, 2), say, and put  P  22    =   6, 
so that load  D  2  receives all of its demands, 3 units from  PG  1  and 6 units 
from  PG  2 . Hence,  P  32    =   0. One continues in this way until all the variables 
 P ij   are determined. The results are shown in Table  A3 . 

 It is noted that this method of fi nding an initial feasible solution is simple 
but may not be effi cient. Here we introduce another approach that is called 
the least cost method. 

 Table A2     Transportation array for Example  A 1      

PG1
4 10 12 3

8 5 6 4

1 3

3 9 4 6

6

7

9

4 7

PG2

PG3

D1 D2 D3 D4
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 We choose a different order for selecting the squares in the example 
above. We try to fi nd a good initial solution by choosing the squares with 
the smallest transmission costs fi rst. 

 It can be observed from Table  A3  that the smallest transmission cost is 
in the lower left square, which is  c  31    =   1. Thus it will be most economical 
to supply power from generator 3 to load 1. Since the maximal load is 3 for 
D 1 , the maximal power fl ow  P  31    =   3 is determined and  D  1  is satisfi ed, which 
can be deleted for the other computation. Of the remaining squares, 3 is 
the lowest transmission cost (there are two). We might choose the upper 
right corner next. Thus  P  14    =   6 is determined, and we may delete either  PG  1  
or  D  4 , but not both, according to rule (2b). Say we delete  PG  1 . Next  P  32    =   6 
is determined and  PG  3  is deleted. Of the generators, only  PG  2  remains, so 
we can determine  P  22    =   3,  P  23    =   4 and  P  24    =   0. The results are shown in 
Table  A4   .  

  3.     Check optimality of the results 

 We check the feasible power fl ow in Table  A4  for optimality. First solve 
for  u i   and  v j  . We put  u  2    =   0 because that allows us to solve quickly for  v  2    =   5, 
 v  3    =   6, and  v  4    =   4. [Generally, it is a good idea to start with a  u i     =   0 (or 
 v j     =   0) for which there are many determined variables in the corresponding 

 Table A3     Feasible flow for Example  A 1      

3 9 4 6

6

7

9

4 10 12 3

8 5
3

6 1

3 6

3
6 4

1 3 4 7

PG1

PG2

PG3

D1 D2 D3 D4

 Table A4     Feasible flow using least cost rule for Example  A 1      

PG1
4 10 12 3

8 5 6 4

1 3
3 6

3 4 0

6

3 9 4 6

6

7

9

4 7

PG2

PG3

D1 D2 D3 D4
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row (column).] Knowing  v  4    =   4 allows us to solve for  u  1    =   1. Knowing  v  2    =   5 
allows us to solve for  u  3    =   2, which allows us to solve for  v  1    =   3. We write 
the  v j   variables across the top of the array and  u i   along the left, as shown 
in Table  A5   . 

 Then, check the feasibility of the remaining six squares. The upper left 
square satisfi es the constraint  v j      −     u i      ≤     c ij  , since 3    −    1   =   2    ≤    4. Similarly, all 
the squares may be seen to satisfy the constraints, and hence the above 
gives the solution to both primal and dual problems. The optimal shipping 
schedule is as noted, and the value is 

  Σ  Σ  c ij x ij     =   3    ·    1   +   6    ·    3   +   3    ·    5   +   4    ·    6   +   0    ·    4   +   6    ·    3   =   78. 
 We can check whether the solution is optimal by computing  Σ  v j r j      −     Σ  u i s i  , 

which is the objective function of the dual problem. According to Corollary 
2 of the duality theorem described in Appendix  A , we have

    c x v r u sij ij j j i i∑∑ ∑ ∑= −     (5A.11)   

 If both primal and dual problems have the optimal solution.

    v r u sj j i i∑ ∑− = 78 

  Thus the above solution is optimal.     

  Example A2 

 Example A2 is computed as for example A1 with the transmission cost 
shown in Table  A6   . 

 According to the least cost rule, we get the feasible fl ow table in Table 
 A7   . 

 According to the equilibrium condition, we can compute  u i   and  v j  . The 
corresponding results are shown in Table  A8   . 

 Through checking the optimality in Table  A8 , we fi nd that the block 
(2, 1) in Table  A8  cannot satisfy the constraint  v j      −     u i      ≤     c ij  , since 

 Table A5     Optimality check for Example  A 1      

1

0

2

4

8

1

8

5

3
3 4

3 6

12

6

4

3

4

7

6

0

6

6493

7

9

3 5 6 4
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Table A6 Transportation array for Example A2     

PG1
4 8 13 3

2 5 6 5

1 3

3 9 4 6

6

7

9

4 15

PG2

PG3

D1 D2 D3 D4

Table A7 Least cost flow for Example A2     

PG1
4 8 13 3

2 5 6
6

5

1 3
3 4

63
3 9 4 6

6

7

9

4 15

PG2

PG3

D1 D2 D3 D4

Table A8 Optimality check for Example A2     

2 4 8 13 3

2 5 6
6

6 553

5

1 3
3 4

63
3 9 4 6

6

7

9

4 15

0

2

v1     −     u2    =   3    −    0   =   3    ≥     c12    =   2. Thus the solution in Table  A8  is not optimal. 
We need to fi nd an improved basic feasible shipping schedule and recheck 
the optimality. 

 Choose any square ( i ,  j ) with  vj     −     ui     >     cij , set  xij    =    θ , but keep the con-
straints satisfi ed by subtracting and adding  θ  to appropriate selected vari-
ables. We would like to add  θ  to block (2, 1). This requires subtracting  θ
from squares (3, 1) and (2, 2) and adding  θ  to square (3, 2), which are shown 
in Table  A9   . 



208 SECURITY-CONSTRAINED ECONOMIC DISPATCH

 We choose  θ  to be the minimum of the  x ij   in the squares in which we are 
subtracting  θ . In the example,  θ    =   3. Determine the new variable and 
remove from the selected variables one of the variables from which  θ  was 
subtracted that is now zero. Thus we get Table  A10   . We can check whether 
all the constraints are met, and the optimal solution is 75.    

  Dijkstra Label Setting Algorithm 

 Dijkstra ’ s algorithm is a widely used label method for solving network fl ow 
problems such as the shortest - path problem. The data structures that are 
carried from one iteration to the next are a set  F  of  fi nished  nodes and two 
arrays indexed by the nodes of the graph. The fi rst array,  v j  ,  j     ∈     N , is just the 
array of labels. The second array,  h i  ,  i     ∈     N , indicates the next node to visit 
from node  i  in a shortest path. As the algorithm proceeds, the set  F  contains 
those nodes for which the shortest path has already been found. This set starts 
out empty. Each iteration of the algorithm adds one node to it. This is why 
the algorithm is called a label - setting algorithm, since each iteration sets one 
label to its optimal value. For fi nished nodes, the labels are fi xed at their 
optimal values. For each unfi nished node, the label has a temporary value, 
which represents the length of the shortest path from that node to the root, 
subject to the condition that all intermediate nodes on the path must be fi n-

 Table A9     Optimality check for Example  A 2      

2 4 8 13 3

2 5 6
6

6 553

5

1 3
3 4

63

+θ –θ

+θ–θ
3 9 4 6

6

7

9

4 15

0

2

 Table A10     Optimality check for Example  A 2      

2 4 8 13 3

2 5 6
6

6 552

5

1 3
03 4

90
3 9 4 6

6

7

9

4 15

0

2
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ished nodes. At those nodes for which no such path exists, the temporary label 
is set to infi nity (or, in practice, a large positive number). 

 The algorithm is initialized by setting all the labels to infi nity except for the 
root node (or source node), whose label is set to 0. Also, the set of fi nished 
nodes is initialized to the empty set. Then, as long as there remain unfi nished 
nodes, the algorithm selects an unfi nished node  j  having the smallest tempo-
rary label, adds it to the set of fi nished nodes, and then updates each unfi nished 
 “ upstream ”  neighbor  i  by setting its label to  cij    +    vj  if this value is smaller 
than the current value vi . For each neighbor  i  whose label gets changed,  hi  is 
set to j .   
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Optimization of Power System Operation, by Jizhong Zhu, Ph.D
Copyright © 2009 Institute of Electrical and Electronics Engineers

     This chapter focuses on the operation of the multiarea system. In addition 
to the introduction of the wheeling model, multiarea wheeling, the total 
transfer capability computation in multiareas, this chapter introduces the 
multiarea economic dispatch algorithms based on nonlinear convex network 
fl ow programming, as well as the nonlinear optimization neural network 
approach.  

6.1 INTRODUCTION

 Many countries have more than one major generation - transmission utility 
with local distribution utilities. Because of the recent deregulation of power 
industry, the industry structure is important in discussing the interchange of 
power and energy since the purchase and sale of power and energy is a com-
mercial business in which the parties to any transaction expect to enhance 
their own economic positions under nonemergency situations. The multiarea 
system economic dispatch or interconnected systems economic dispatch is for 
this purpose. 

 At present, many approaches have been considered for multiarea economic 
dispatch (MAED)  [1 – 5] , which is an extension of economic dispatch. All kinds 
of optimization algorithms and heuristic approaches have been used in eco-
nomic dispatch  [6 – 18] , which we also describe in Chapter  5 .  
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  6.2   ECONOMY OF MULTIAREA INTERCONNECTION 

 Electric power systems are interconnected or multiple areas are intercon-
nected to one big system because the interconnected system is more reliable. 
Here we use the term multiarea system to stand for the interconnected system. 
In a multiarea system, generations and loads are coordinated with each other 
through the tie - lines among the areas. A load change in any one of the areas 
is taken care of by all generators in all areas. Similarly, if a generator is lost 
in one control area, governing action from generators in all connected areas 
will increase generation outputs to make up the mismatch. Another advantage 
of a multiarea system is that it may be operated at less cost than if left as sepa-
rate parts. As we describe in Chapter  4 , it will improve the operating econom-
ics if two generators that have different incremental costs are operating 
together. This concept is also suited for the interconnected multiarea system 
since the generator cost functions are different for different areas. 

 For example, the companies that are members of the broker system send 
hourly buy - and - sell offers for energy to the broker, who matches them accord-
ing to certain market rules. Hourly, each member transmits an incremental 
cost and the number of MWh it is willing to sell or its decremental cost and 
the number of MWh it will buy. The broker sets up the transactions by match-
ing the lowest - cost seller with the highest - cost purchaser, proceeding in this 
manner until all offers are processed. A common arrangement set up by the 
broker for the buyers and sellers is to compensate the seller for the incremen-
tal generation costs and split the savings of the buyer equally with the seller. 
The pricing formula for this arrangement is similar to the operation of two 
generators with different incremental cost rates in a system. But we handle 
the two generators like two utilities with one selling and the other buying. 
Then, the transaction ’ s cost rate is computed as below  [19] :

    

λ λ λ λ
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c s b s
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= + −( )

= +( )

1
2

1
2

    (6.1)  

where

   λ  s :    Incremental cost of the selling utility ($/MWh)  
  λ  b :    Decremental cost of the buying utility ($/MWh)  
  λ  c :    Cost rate of the transaction ($/MWh)    

   Example 6.1 

 There are four utilities, with two selling and two buying. The related data 
are listed in Tables  6.1  and  6.2 . The maximum pool savings possible is 
computed as below:   



ECONOMY OF MULTIAREA INTERCONNECTION 213

 Net pool savings   =   (1920   +   6440)    –    (2440   +   2240)   =   3720 ($) 
 The broker sets up transactions as shown below: 

  1.     Transaction: A sells 120   MWh to D
Transaction saving  Δ F A – D    =   120    ×    (46    –    20)   =   3120 ($)  

  2.     Transaction: B sells 20 MWh to D
Transaction saving  Δ F B – D    =   20    ×    (46    –    28)   =   360 ($)  

  3.     Transaction: B sells 60 MWh to C
Transaction saving  Δ F B – C    =   60    ×    (32    –    28)   =   240 ($)    

 The total transaction savings are

    ΔFT = × −( ) = + + = ( )60 32 28 3120 360 240 3720 $   

 Then the rate and payment of each transaction are computed as follows: 

  1.     Transaction: A sells 120 MWh to D
Rate  λ  A – D    =   (46   +   20)/2   =   33 ($/MWh)
Payment: F A – D    =   33    ×    120   =   3960 ($)  

  2.     Transaction: B sells 20   MWh to D
Rate  λ  A – D    =   (46   +   28)/2   =   37 ($/MWh)
Payment: F A – D    =   37    ×    20   =   740 ($)  

  3.     Transaction: B sells 60   MWh to C
Rate  λ  A – D    =   (32   +   28)/2   =   30 ($/MWh)
Payment: F A – D    =   30    ×    60   =   1800 ($)    

 This means that utility A receives payment of $3960 from utility D, and 
utility B receives payment of $2540 from C and D. The each participant 
obtains benefi t.

 Table 6.1     Data of utilities  A  and  B  

   Utilities Selling 
Energy  

   Incremental Cost 
($/MWh)     MWh for Sale  

   Seller ’ s Total 
Increase in Cost ($)  

  A    20    120    2400  
  B    28    80    2240  

 Table 6.2     Data of utilities  C  and  D  

   Utilities Buying 
Energy  

   Decremental Cost 
($/MWh)     MWh for Purchase  

   Buyer ’ s Total 
Decrease in Cost ($)  

  C    32    60    1920  
  D    46    140    6440  
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    ΔFA = − = ( )3960 2400 1560 $  

    ΔFB = − = ( )2540 2240 300 $  

    ΔFC = − = ( )1920 1800 120 $  

    ΔFD = − − = ( )6440 3960 740 1740 $   

 Obviously,  Δ F A    +    Δ F B    +    Δ F C    +    Δ F D    =    Δ F T .   

 Therefore, there exist transactions among areas if the areas belong to dif-
ferent companies. One area may have a surplus of power and energy and may 
wish to sell it to other areas with different companies on a long - term fi rm 
supply basis. If excess this agreed amount, it will be on a  “ when and if avail-
able ”  basis with a different price. Meanwhile, some area may wish to buy 
energy from the other areas in the connected system. It is possible that the 
interconnected system will have interchange power being bought and sold 
simultaneously within several areas. Thus the price for the interchange must 
be set while taking account of the other transactions. For example, if one area 
were to sell interchange power to two different areas in sequence, it would 
probably quote a higher price for the second sale since the fi rst sale would 
have raised its incremental cost. On the other hand, if the selling utility was a 
member of a power pool, the sale price might be set by the power and energy 
pricing portions of the pool agreement to be at a level such that the seller 
receives the cost of the generation for the sale plus one - half the total savings 
of all the purchasers. In this case, it is assumed that a pool control center exists 
and the sale price would be computed by this center and would differ from 
the prices under multiple interchange contracts. In the United States, the 
independent system operator (ISO) plays this kind of role. 

 The power pool or ISO is administered from a central location that has 
responsibility for setting up interchange between members, as well as other 
administrative tasks. The pool members relinquish certain responsibilities 
to the pool operating offi ce in return for greater economy in operation. The 
agreement that the pool members sign is usually very complex. The complex-
ity arises because the members of the pool are attempting to gain greater 
benefi ts from the pool operation and to allocate these benefi ts equitably 
among the members. In addition to maximizing the economic benefi ts of 
interchange between the members, the pool helps member companies by 
coordinating unit commitment and maintenance scheduling, providing a cen-
tralized assessment of system security and reliability, as well as marketing 
rules, and so on. The increased reliability provided by the pool allows the 
members to draw energy from the pool transmission network during emergen-
cies as well as covering each others ’  reserves when generating units are down 
for maintenance or in outage. 

 The agreements among the pool members are very important for the 
operation of a pool system. Obviously, the agreements will become more 
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complicated if the members try to push for maximum economic operation. 
Nevertheless, the savings obtainable are quite signifi cant and have led many 
interconnected utility systems (i.e., multiarea systems) throughout the world 
to form centrally dispatched power pools when feasible. At present, there are 
several organizations similar to the power pool in the United States. These 
are MISO, ISONE, CAISO, PJM, NYISO, ERCOT, SPP, Entergy, etc. These 
ISOs have SCADA and EMS systems, as well as a market system. They use 
real - time data telemetered to central computers that calculate the best eco-
nomic dispatch for the whole organization (within footprint) and provide 
signals to the member companies. 

   Example 6.2 

 For example 6.1, assume that four utilities were scheduled to transact energy 
by a central dispatching scheme and 12% of the gross system savings was 
to be set aside to compensate those systems that provided transmission 
facilities to the pool. The maximum pool savings possible is computed as 
below. 

 The net pool savings without transmission compensation is 3720 ($). Thus 
the transmission compensation F Tcomp    =   3720    ×    12%   =   446.4 ($) 

 The weighted average incremental cost for selling can be computed as 
below:

    λ
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where

    λs :    The weighted average incremental cost for selling utilities ($/MWh)  
  λ  s i  :    The incremental cost for selling utility  i  ($)  
  P  s i  :    The selling power for selling utility  i  (MWh)  
  NS :    The number of selling utilities    

 The weighted average decremental cost for buying can be computed as 
below:
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where

    λb :    The weighted average incremental cost for buying utilities ($/MWh)  
  λ  b j  :    The decremental cost for buying utility  j  ($)  
  P  b j  :    The selling power for buying utility  j  (MWh)  
  NB :    The number of buying utilities    

 For this example, the seller ’ s weighted average incremental cost is

    λs MWh= × + ×
+

= ( )20 120 28 80
120 80

23 2. $   

 The buyer ’ s weighted average decremental cost is

    λb MWh= × + ×
+

= ( )32 60 46 140
60 140

41 8. $   

 Considering the transmission compensation, the transaction savings for 
seller and buyer can be computed as below:
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where

   η %:    The transmission compensation rate    

 For utility A that sells 120   MWh to the pool, the transaction savings are

    ΔF %sA = −( ) − × = ( )1 12
41 8 20

2
120 1151 04

.
. $   

 For utility B that sells 80   MWh to the pool, the transaction savings are

    ΔF %sB = −( ) − × = ( )1 12
41 8 28

2
80 485 76

.
. $   

 For utility C that buys 60   MWh from the pool, the transaction savings are

    ΔF %bC = −( ) − × = ( )1 12
32 23 2

2
60 232 32

.
. $   
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 For utility D that buys 140   MWh from pool, the transaction savings are

    ΔF %bD = −( ) − × = ( )1 12
46 23 2

2
140 1404 48

.
. $   

 The total savings are

    Δ Δ Δ Δ ΔF F F F FT sA sB bC bD= + + +
= + + + =1151 04 485 76 232 32 1404 48 3273. . . . ..6

  

 The practical costs in the transactions for this hour are: 

 For A, it sells 120   MWh and obtains

    FA = × + = ( )120 23 2 1151 04 3935 04. . . $   

 For B, it sells 80   MWh and obtains

    FB = × + = ( )80 23 2 485 76 2341 76. . . $   

 For C, it buys 60   MWh with payment

    FC = × − = ( )60 41 8 232 32 2275 68. . . $   

 For D, it buys 140   MWh with payment

    FD = × − = ( )140 41 8 1404 48 4447 52. . . $   

 The total payments for this transaction are F C    +   F D    =   2275.68   +   4447.52   =   
6723.2. 

 The total costs that sellers obtained are F A    +   F B    =   3935.04   +   2341.76   =   6276.8 

 The difference between the total payments and the costs that sellers 
obtained is 446.4, which equals the transmission charge or compensation.    

  6.3   WHEELING 

  6.3.1   Concept of Wheeling 

 Wheeling is the heart of the operational and economic issues of an open 
access transmission. Let us use the following example to explain what  “ wheel-
ing ”  is. Assume utility A (e.g., in area A) needs to sell 200   MW to another 
utility B (e.g., in area B) through its own transmission (line 1) shown in 
Figure  6.1 (a). For simplifi cation of explanation, the network power loss is 
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neglected. If the available transfer capacity (ATC) of line 1 is greater than 
200   MW, the transaction is simple and there is no  “ wheeling. ”  But if the ATC 
of line 1 is only 100   MW and the same amount of transaction is required, 
utility A cannot complete the transaction through its own transmission lines. 
Utility A has to  “ borrow ”  the path from the third party that owns trans-
mission lines 2 and 3, which connect to utilities A and B (unless utility A 
constructs a new trans mission line, which is an expensive investment). Thus 
the transaction between utilities A and B is completed through the third 
party, which is shown in Figure  6.1 (b). This case involves  “ wheeling. ”  The 
corresponding cost or pricing for this transaction is more complicated than 
that for the case shown in Figure  6.1 (a).   

 Thus we can simply say that  “ wheeling ”  is the use of some party ’ s (or 
parties ’ ) transmission system for the benefi t of other parties. Each wheeling 
utility is termed a wheel. Wheeling occurs on the interconnected areas or 
systems that contain more than two utilities (or parties) whenever a transac-
tion takes place. When the contracted energy fl ow enters and leaves the wheel-
ing utility, the fl ows throughout the wheeling utility ’ s network will change. 
The transmission losses incurred in the wheeling utility will change. Wheeling 
rates are the prices it charges for use of its network, which determine the 

     FIGURE 6.1     Explanation of wheeling  
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payments by the buyers or sellers, or both, to the wheeling utility to compen-
sate it for the generation and network costs incurred. 

 There are four major types of wheeling depending on the relationships 
between the wheeling utility and the buyer - seller parties  [20] . 

 •       Utility to utility:  This is usually a case of area - to - area wheeling.  
 •       Utility to private user or requirements customer:  The former is usually a 

case of area - to - bus wheeling, while the latter is usually a case of area - to -
 area wheeling, unless the requirements customer is small enough to be 
fed only at one bus, and thus it becomes area - to - bus wheeling.  

 •       Private generator to utility:  Bus - to - area wheeling.  
 •       Private generator to private generator:  Bus - to - bus wheeling.    

 Wheeling power may either increase or decrease transmission losses 
depending on whether the power wheeled fl ows in the same direction as, or 
counter to, the native load on the wheeler ’ s lines. Wheeling power on a heavily 
loaded line causes more energy loss. 

 The cost of wheeling is a current high - priority problem throughout the 
power industry for utilities, independent power producers, as well as regula-
tors. The following factors have led to the importance of the cost of the wheel-
ing problem in the United States: 

  (1)     Enormous growth in transmission facilities at 230   KV and above since 
1960s

  (2)     Cost differentials for electric energy between different but intercon-
nected electric utilities  

  (3)     High cost of new plant construction versus long - term, off - system capac-
ity purchase  

  (4)     Dramatic growth in nonutility generation (NUG) capacity, which 
includes independent power producers (IPP) and cogenerators, due to 
the passage: of the Public Utility Regulatory Act in 1978 and the sub-
sequent introduction of competitive bidding for generation capacity 
and energy.    

 Wheeling is necessary and important for any NUG, unless the customer of 
a NUG is the utility itself to which it is directly connected. 

 It is noted that not all of the transaction fl ows over the direct interconnec-
tions between the two systems. The other systems are all wheeling some 
amount of the transaction. These are called  “ parallel path or loop fl ows ”  in 
the United States, where various arrangements have been worked out between 
the utilities in different regions to facilitate interutility transactions that involve 
wheeling. These past agreements would generally ignore fl ows over parallel 
paths where the two systems were contiguous and owned suffi cient trans-
mission capacity to permit the transfer  [19] . In this case, wheeling was not 
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taking place, by mutual agreement. The extension of this agreement to non-
contiguous utilities led to the artifi ce known as the  “ contract path. ”  To make 
arrangements for wheeling, the two utilities would rent the capability needed 
to any path that would interconnect these two utilities.  

  6.3.2   Cost Models of Wheeling 

 We considered energy transaction prices based on the split - savings concept 
earlier in this book. Both the sellers and wheeling systems would want to 
recover their cost and would wish to receive a profi t by splitting the savings 
of the purchaser. The transmission services may be offered on the basis of a 
 “ cost plus ”  price. Other pricing schemes have been used. Most are based 
upon simplifi ed models that allow such fi ctions as the  “ contract path. ”  Some 
are based on an attempt to mimic a power fl ow, in that they would base prices 
on incremental power fl ows determined in some cases by using DC power 
fl ow models. The very simplest rate is a charge per MWh transferred and 
ignores any path considerations. More complex schemes are based on the 
marginal cost of transmission that is based on the use of bus incremental 
costs  [19] . The numerical evaluation of bus incremental costs is straightfor-
ward for a system in economic dispatch. In that case, the bus penalty factor 
times the incremental cost of power at the bus is equal to the system  λ , except 
for the generator buses that are at upper or lower limits. This concept is not 
only for the generator buses, but also for the load buses, even any bus that 
does not have any generator or load connected to it. In the practical market-
ing system, this kind of bus or node is called the pricing bus or pricing node. 
It is noted that this method is only good for a small increment of power at 
a bus, rather than a large increment. If the increment of power is large, the 
optimal power dispatch must be recalculated and the cost is not equal to the 
incremental cost. We treat this case in next sections as well as Chapter  8  on 
optimal power fl ow. 

 In this section, several cost models of wheeling are discussed. 

  6.3.2.1   Short - Run Marginal Cost Model     The short - run marginal costs 
(SRMC) of wheeling are the costs of the last MWh of energy wheeled, which 
can be computed from the difference in the marginal costs of electricity at the 
entry and exit buses, that is, the difference in the spot prices of these buses. 

 Figure  6.2  gives a wheeling example with system A selling  Δ  P  W  MW to 
system C and system B wheeling that amount. As we mentioned above, if the 
operators were to purchase the block of wheeled power at bus  i  at the incre-
mental cost, and sell it to system C at the incremental cost of power at bus  j , 
the wheeling costs, using marginal cost pricing and related computations can 
be obtained as below  [21] :  

    λW
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where

   λ  W :    Short - run marginal costs of wheeling    

 Equation  (6.6)  is simply the equation of the spot prices. The total wheeling 
costs with wheeling power  Δ  P  W  MW will be
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  6.3.2.2   Embedded Cost Model     The embedded cost of wheeling methods, 
used throughout the utility industry, allocates the embedded capital costs and 
the average annual operation (not production) maintenance costs of existing 
facilities to a particular wheel; these facilities include transmission, subtrans-
mission, and substation facilities. Happ has given a detailed treatment of all 
the methods as well as their algorithms. There are four types of embedded 
methods  [22, 23] : 

  (1)     Rolled - in - embedded method
This method assumes that the entire transmission system is used in 
wheeling, regardless of the actual transmission facilities that carry the 
wheel. The cost of wheeling as determined by this method is indepen-
dent of the distance of the wheel, which is the reason that the method 
is also known as the postage stamp method. The embedded capital costs 
correspondingly refl ect the entire transmission system.  

  (2)     Contract path method
This method is based upon the assumption that the wheel is confi ned 
to fl ow along a specifi ed electrically continuous path through the wheel-
ing company ’ s transmission system. Changes in fl ows in facilities that 
are not along the identifi ed path are ignored. Thus this method is 
limited to those facilities that lie along assumed path.  

  (3)     Boundary fl ow method
This method incorporates changes in MW boundary fl ows of the wheel-
ing company due to a wheel, either on a line basis or on a net inter-
change basis, into the cost of wheeling. Two power fl ows, executed 

     FIGURE 6.2     Wheeling example  
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successively for every year with and without each wheel, yield the 
changes in either individual boundary line or net interchange MW 
fl ows. The load level represented in the power fl ows can be at peak load 
or any other appropriate load.  

  (4)     Line - by - line method
This method considers changes in MW fl ows due to the wheel in all 
transmission lines of the wheeling company and the line lengths in 
miles. Two power fl ows executed with and without the wheel yield the 
changes in MW fl ows in all transmission lines.    

 There are two limitations common to all four embedded cost methods: 

  (1)     The methods consider only the costs of existing transmission 
facilities.  

  (2)     The methods do not consider changes in production costs as a result of 
required changes in dispatch and or unit commitment due to the pres-
ence of the wheel.    

 Other cost factors may exist that contribute to the cost of wheeling. In 
particular, the available transfer capacity of the transmission network is not 
considered, for example, the economic purchases or sales of power, which have 
to be curtailed to accommodate the wheel because of transmission limits.  

6.3.2.3 Long-Run Incremental Cost Model   Long - run incremental trans-
mission costs for wheeling account for: 

  (1)     The investment costs for reinforcement to accommodate the wheel, or 
credit for delaying or avoiding reinforcements, and  

  (2)     The charge in operating costs and incremental operation and mainte-
nance costs incurred because of the wheel.    

 There are currently two models for the LRIC methodologies: standard 
long - run incremental cost (SLRIC) methodology and long - run fully incremen-
tal cost (LRFIC) methodology. 

 The standard long - run incremental cost method uses traditional system 
planning approaches to determine reinforcements that are required, and cor-
responding investment schedules with and without each wheel, throughout the 
study period. If more than one wheel is present in the study period, the cost 
of each reinforcement and the change in operating costs have to be accurately 
allocated to each wheel. 

 The long - run fully incremental cost method does not allow excess transmis-
sion capacity to be used by a wheel but forces a reinforcement along the path 
of the wheel to accommodate it; if more than one wheel is present in the study 
period, a reinforcement is required for each separate wheel  [23] .    
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  6.4   MULTIAREA WHEELING 

 Multiarea wheeling is a real - world practical concern, because wheeling from 
a seller to a buyer involves power fl ow through several intermediate networks. 
How much power should be wheeled through each path, what wheeling should 
be applied to each such transaction, and how can these decisions be made 
optimal? 

 Consider an interconnected system with multiple intermediate wheeling 
utilities and multiple seller - buyer couples. An OKA network fl ow model, 
which is described in Chapter  5 , can be used to represent this energy transac-
tion system  [24] , where one seller can be treated as one source and one buyer 
can be treated as a sink. OKA is able to introduce a super source (seller) and 
a super sink (buyer) and make multiple seller - buyer pairs become one simple 
seller - buyer pair. 

 Figure  6.3  is a simple system with four intermediate wheeling utilities W 1 , 
W 2 , W 3 , and W 4  and one buyer and seller pair (S - B). There are 10 interutility 
wheeling paths, given by the directed path  b  1  through  b  10 .   

 Suppose that the energy to be transported through each path is arbitrarily 
set; then the computation of wheeling rates for each path can be obtained 
from the solution of an economic dispatch problem using OKA network fl ow 
programming  [24] . To decide the optimal power fl ow on each path, the power 
fl ows can be set as variables and the wheeling rates can be used to improve 
the initial set values. The total operating costs must be minimized considering 
the topological structure of multiwheeling areas and the feasible region of 
wheeling power fl ow. The topological relation can be refl ected in the following 
matrix equation:

     FIGURE 6.3     Multiarea wheeling topology  
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 The assumptions made for the relation are  [25] : 

  (1)     Power infl ow is given a positive sign and power outfl ow is given a 
negative sign and  

  (2)     We are only concerned with the sale of unit power from S to B.    

 Each row - column multiplication represents one power balance equation for 
a particular utility (there are a total of 6 utilities in this example).  

  6.5    MAED  SOLVED BY NONLINEAR CONVEX NETWORK 
FLOW PROGRAMMING 

  6.5.1   Introduction 

 This section proposes a new nonlinear convex network fl ow programming 
(NLCNFP) to solve the problem of security - constrained interconnected 
MAED. The proposed MAED model considers tie - line security and transfer 
constraints in each area. In addition, a simple analysis of buying and selling 
contract in a MAED is also made. The NLCNFP model of security - 
constrained MAED is set up and solved by using a combined method of 
quadratic programming (QP) and network fl ow programming (NFP). For 
examining the proposed approach, a network model of four interconnected 
areas is constructed. Computation results are given below in the chapter.  

  6.5.2    NLCNFP  Model of  MAED  

 The aim of MAED is to minimize the total production cost of supplying loads 
to all areas within security constraints. Initially, a basic formulation M - 1 is 
formulated
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    P P Pik ik ikG G Gmin max≤ ≤     (6.10)  

    Δ ΔP P k n i NG kik ikG G GRC≤ = = ( )1 1, , ; , ,… …     (6.11)  

    P P k n j NL kijk ijk≤ = = ( )max , , ; , ,1 1… …     (6.12)  

    P P T NTT T≤ =max , ,1…     (6.13)  

where

   f ik  :    The generation cost function of the  i th generator in area  k   
  P  G   ik  :    The active power output of the  i th generator in area  k   
  P  D   ik  :    The active load at node  i  in area  k   
  P ijk  :    The active power on branch  j  in area  k   
  P T  :    The active power on the tie - line  
  P  L :    The active power loss of the system  
  P  L   ijk  :    The active power loss of branch  j  in area  k   
  Δ  P  G   ik   GRC :    The limit of the generation rate constraint (GRC)  
  NT :    The number of tie - lines  
  n :    The number of areas  
  NG ( k ):    The number of generators in area  k   
  ND ( k ):    The number of loads in area  k   
  NL ( k ):    The number of transmission lines in area  k     

 Subscripts  “ min ”  and  “ max ”  stand for the lower and upper bounds of a 
constraint. 

 According to Chapter  5 , we have the following approximate equations:

    V ≅ 1 0. . .p u     (6.14)  

    sinθ θij ij≅     (6.15)  

    cosθ θij ij≅ −1 22     (6.16)   

 Then, the active power loss on branch  ij  can be expressed as follows.
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    P P Zijk ijk ijkL = 2     (6.17a)  

where

    Z
R X

X
Rijk
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ijk
ijk=

+( )2 2

2     (6.18a)  

    P bijk ijk ijk= − θ     (6.19a)   

  R ij  :    The resistance of branch  j  in area  k   
  X ij  :    The reactance of branch  j  in area  k   
   θ  ijk  :    The difference of node voltage angles between the sending end and 

receiving end of branch  j  in area  k   
  b ijk  :    The susceptance of branch  j  in area  k     

 The active power loss on tie - line  T  can also be expressed as follows.

    P P ZT T TL = 2     (6.17b)  

where
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    (6.18b)  

    P bT T T= − θ     (6.19b)   

  R T  :    The resistance of tie - line branch  T   
  X T  :    The reactance of tie - line branch  T   
  θ   T  :    The difference of node voltage angles between the sending end and 

receiving end of tie - line branch  T   
  b T  :    The susceptance of tie - line branch  T     

 Thus the total system power loss can be written as below:
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 Similar to Chapter  5 , we can get the power fl ow limit for each branch in 
area  k , as well as each tie - line.
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where  g ij   and  g T   are the conductance of branch  j  in area  k  and the tie - line, 
respectively. 

 If the KVL law is considered in the NFP model of MAED, the voltage 
equation of the  l th loop can be written as.

    P Z l NMijk ijk ij l
ij

( ) = =∑ μ , , , ,0 1 2 …     (6.23)  

where

   NM :    The number of loops in the network  
  μ   ij,l  :    The element in the related loop matrix, which takes the value 0 or 1.    

 Furthermore, assume that the input - output characteristics of the generators 
in all areas are quadratic functions.

    f P a P b P cik ik ik ik ik ik ikG G G( ) = + +2     (6.24)   

 Therefore, we can obtain the following nonlinear convex network fl ow pro-
gramming model for the MAED problem (M - 2).
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 In the MAED model, equation  (6.26)  defi nes the total power balance of 
multiarea systems. Equation  (6.29)  is the line security constraint in area  k.  
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Equation  (6.30)  is the tie line capacity constraint. Equation  (6.27)  defi nes the 
generator power upper and lower limits. Equation  (6.28)  is the generation rate 
constraint and can be written as

    P P P P Pik ik ik ik ikG G GRC G G G GRC
0 0− ≤ ≤ +Δ Δ     (6.31)  

where   P ikG
0  is the initial power of the  i th generator in area  k . 

 Thus the generation is regulated between two inequality equations  (6.27)  
and  (6.31) , which can be combined into one expression:

   max , min ,min maxP P P P P P Pik ik ik ik ik ik ikG G GRC G G G G GRC G
0 0−{ } ≤ ≤ +Δ Δ{{ }     (6.32)   

 There can be contracts of buying and selling among areas. Suppose area A 
sells electricity to area B, and  P  ABsell  represents the amount of power sold or 
 P  BAbuy  represents the amount of power purchased. The following constraints 
are introduced into the MAED model:

    P P
T

TAB ABsell∑ = +     (6.33)  

    P P
T

TBA BAbuy∑ = −     (6.34)  

or

    1 1−( ) ≤ ≤ +( )∑η η% %ABsell TAB ABsellP P P
T

    (6.35)  

    1 1−( ) ≤ ≤ +( )∑η η% %BAbuy TBA BAbuyP P P
T

    (6.36)  

where

   P  TAB :    The tie - line transfer between areas A and B. Power transfer from the 
area is considered to be positive if it is an export.  

  P  ABsell :    The amount of power sold from area A to area B  
  P  BAbuy :    The amount of power purchased  
  η :    The trading error that is permitted in interconnected power system 

operation    

 In this way, MAED model M - 2 can be written into the following model M - 3 
that contains the contract constraints of buying and selling electricity among 
areas.
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    1 1−( ) ≤ ≤ +( )∑η η% %ABsell TAB ABsellP P P
T

    (6.35)  

    1 1−( ) ≤ ≤ +( )∑η η% %BAbuy TBA BAbuyP P P
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where  β  and  γ  are the penalty factors, which are large positive constants.  

  6.5.3   Solution Method 

 MAED model M - 3 is easily changed into a standard model of nonlinear 
convex network fl ow programming, i.e., model M - 4

    minC fij
ij

= ( )∑ c     (6.38)  

such that

    f f r i nij ji
j n

i−( ) = ∈
∈
∑     (6.39)  

    L f U ij mij ij ij≤ ≤ ∈     (6.40)  

where

  (6.37)
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   f ij  :    The fl ow on arc  ij  in the network  
  L ij  :    The lower bound of the fl ow on arc  ij  in the network  
  U ij  :    The upper bound of fl ow on arc  ij  in the network  
  n :    The total number of nodes in the network  
  m :    The total number of arcs in the network    

 According to Chapter  5  (Section  5.5 ), the nonlinear convex network fl ow 
programming model M - 4 can be changed into the following quadratic pro-
gramming model M - 5, in which the search direction in the space of the fl ow 
variables is to be solved:

    minC D D G f D g f D( ) = ( ) + ( )1
2

T T     (6.41)  

such that

    AD = 0     (6.42)  

    D f Lij ij ij≥ =0, when     (6.43)  

    D f Uij ij ij≤ =0, when     (6.44)   

 Model M - 5 is a special quadratic programming model, which has the form 
of network fl ow. To enhance the calculation speed, we present a new approach, 
in place of the general quadratic programming algorithm, to solve model M - 5. 
The details of the calculation steps are described in Chapter  5 .  

  6.5.4   Test Results 

 For examining the proposed approach, a network of four interconnected areas 
is constructed as shown in Figure  6.4 . Area A1 is an IEEE 30 - bus system. It 
has 6 generators, 21 loads, and 41 transformation branches, in which 1, 2, 5, 
8, 11, and 13 are generators. The generator data of IEEE 30 - bus system are 

     FIGURE 6.4     The network model of four interconnected power systems  
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listed in Table  6.3 . The network parameters, including network constraints of 
the 30 - bus system, are shown in Chapter  5 . Parameters of areas A2, A3, A4 
and tie lines are given as follows.     

 Fuel cost function and power upper and lower limits are:

    F P P PA A A A2 2
2

2 280 175 0 2 1 0= + ≤ ≤. .  

    F P P PA A A A3 3
2

3 390 150 0 2 1 0= + ≤ ≤. .  

    F P P PA A A A4 4
2

4 2600 300 0 2 1 0= + ≤ ≤. .   

 Loads of areas A2, A3, and A4 are  P  DA2    +    jQ  DA2    =   0.44   +    j 0.21; 
 P  DA3    +    jQ  DA3    =   0.312   +    j 0.14; and  P  DA4    +    jQ  DA4    =   0.396   +    j 0.18, respectively. 
Parameters and capacity constraints of the tie line are:

    R X PA A A Tmax2 20 2 20 2 200 0340 0 0680 0 7- - -. ; . ; .= = =  

    R X PA A A Tmax3 17 3 17 3 170 0192 0 0575 0 7- - -. ; . ; .= = =  

    R X PA A A Tmax3 19 3 19 3 190 0192 0 0575 0 7- - -. ; . ; .= = =  

    R X PA A A Tmax4 10 4 10 4 100 0267 0 8200 0 6- - -. ; . ; .= = =  

    R X PA A A Tmax4 7 4 7 4 70 0267 0 8200 0 6- - -. ; . ; .= = =   

 The following test cases for MAED are performed in the study, in which the 
symbol  “ + ”  represents the selling contract and  “  −  ”  represents the purchase 
contract.

   Case 1: Neglecting the buying and selling contract among areas  
  Case 2: Considering the buying and selling contract among areas

    P PA -A sell A -A buy3 1 4 10 5 0 0= + = −. ; .    

  Case 3: Considering the buying and selling among areas

    P PA -A sell A -A buy3 1 4 10 55 0 10= + = −. ; .      

 Table 6.3     Data of generator nodes for  IEEE  30 - bus system (p.u.) 

   Node      a  i       b  i       c  i       P  G i min       P  G i max       Δ  P  G i GRC   

  1    37.5    200    0.0    0.50    2.00    0.35  
  2    175    175    0.0    0.20    0.80    0.25  
  5    625    100    0.0    0.15    0.50    0.15  
  8    83.4    325    0.0    0.10    0.35    0.15  

  11    250    300    0.0    0.10    0.30    0.15  
  13    250    300    0.0    0.12    0.40    0.15  

    Note :   The generation cost function is:   f P P ii i Gi i G ia b c= + +2 .   
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 To evaluate the calculation accuracy, the following performance index ( PI ) 
on trading error is proposed, i.e.,

    PI
P P

P
EAB

TAB ABsell

ABsell

% %= − ×     (6.45)  

or

    PI
P P

P
EAB

TAB ABbuy

ABbuy

% %=
−

×     (6.46)   

 The calculation results of the security - constrained MAED for the above three 
test cases are listed in Table  6.4 . From Table  6.4  we can get: 

  Case 2:

    P P PTA A A A3 1 3 17 3 19 0 4086 0 0914 0 5- - - . . .= + = + =  

    PIEA A %3 1 0 0- .=  

    P P PTA A A A4 1 4 7 4 10 0 2088 0 2083 0 0005- - - . . .= + = − =  

    PIEA A % %4 1 0 05- .=    

 Table 6.4     Test results of security - constrained  MAED  for four interconnected systems 
( NLCNFP  method)  

   Test Cases     Case 1 (p.u)     Case 2 (p.u.)     Case 3 (p.u.)  

  Area A1  
   P  G1     1.1523    1.0718    1.1146  
   P  G2     0.3569    0.3471    0.3539  
   P  G5     0.1792    0.1839    0.1833  
   P  G8     0.1053    0.1163    0.1124  
   P  G11     0.1248    0.1358    0.1319  
   P  G13     0.1253    0.1363    0.1324  
  Area A2  
   P  GA2     0.8832    0.8504    0.8684  
  Area A3  
   P  GA3     0.9297    0.8120    0.8620  
  Area A4  
   P  GA4     0.2053    0.3965    0.2964  
  Total Gen.    4.06176    4.04987    4.05534  
  Power losses    0.07975    0.06787    0.07333  
  Total gen. cost ($)    1041.987    1109.621    1068.4117  
  Tie - line power  P  A2 – 20     0.4432    0.4104    0.4284  
   P  A3 – 17     0.4988    0.4086    0.4487  
   P  A3 – 19     0.1189    0.0914    0.1013  
   P  A4 – 7     0.1364    0.2088    0.1684  
   P  A4 – 10      − 0.3272     − 0.2083     − 0.2680  
  Line security    Satisfi ed    Satisfi ed    Satisfi ed  
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  Case 3:

    P P PTA A A A3 1 3 17 3 19 0 4487 0 1013 0 55- - - . . .= + = + =  

    PIEA A %3 1 0 0- .=  

    P P PTA A A A4 1 4 7 4 10 0 1684 0 2680 0 0996- - - . . .= + = − = −  

    PIEA A % %4 1 0 04- .=        

 The maximum trading error is only 0.05%. Therefore, the proposed MAED 
approach not only satisfi es all security constraints, but also has high 
accuracy.   

  6.6   NONLINEAR OPTIMIZATION NEURAL NETWORK APPROACH 

  6.6.1   Introduction 

 This section presents a new nonlinear optimization neural network approach 
to solve the problem of security - constrained interconnected multiarea eco-
nomic dispatch (MAED). The optimization neural network (ONN) can be 
used to solve mathematical programming problems. It has attracted much 
attention in recent years. In 1986, Tank and Hopfi eld fi rst proposed an opti-
mization neural network — TH model, which was used to solve linear program-
ming problems. ONN is totally different from traditional optimization methods. 
It changes the solution of an optimization problem into an equilibrium point 
(or equilibrium state) of a nonlinear dynamic system, and changes optimal 
criteria into energy functions for dynamic system. Because of its parallel com-
putational structure and the evolution of dynamics, the ONN approach is 
superior to traditional optimization methods.  

  6.6.2   The Problem of  MAED  

 According to the previous section, a basic formulation of MAED is formu-
lated as
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    P P Pik ik ikG G Gmin max≤ ≤     (6.49)  

    Δ ΔP P k n i NG kik ikG G GRC≤ = = ( )1 1, , ; , ,… …     (6.50)  
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    P P k n ij NL kijk ijk≤ = = ( )max , , ; , ,1 1… …     (6.51)  

    P P T NTT T≤ =max , ,1…     (6.52)   

 The generation is regulated between two inequality equations  (6.49)  and 
 (6.50) , which can be combined into one expression:

   max , min ,min maxP P P P P P Pik ik ik ik ik ik ikG G GRC G G G G GRC G
0 0−{ } ≤ ≤ +Δ Δ{{ }     (6.53)   

 There can be contracts of buying and selling among areas. Suppose area A 
sells electricity to area B, and  P  ABsell  represents the amount of power sold or 
 P  BAbuy  represents the amount of power purchased. The following constraints 
are introduced into the MAED model, which are the same as in Section  6.5 .

    P P
T

TAB ABsell∑ = +     (6.54)  

    P P
T

TBA BAbuy∑ = −     (6.55)  

or

    1 1−( ) ≤ ≤ +( )∑η η% %ABsell TAB ABsellP P P
T

    (6.56)  

    1 1−( ) ≤ ≤ +( )∑η η% %BAbuy TBA BAbuyP P P
T

    (6.57)   

 The above MAED model can be written into the following model M - 6, 
which contains the contract constraints of buying and selling electricity among 
areas.
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   max , min ,min maxP P P P P P Pik ik ik ik ik ik ikG G GRC G G G G GRC G
0 0−{ } ≤ ≤ +Δ Δ{{ }

= = ( )k n i NG k1 1, , ; , ,… …
    (6.60)  

    P P k n j NL kjk jkb b≤ = = ( )max , , ; , ,1 1… …     (6.61)  
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    P P T NTT T≤ =max , ,1…     (6.62)  

    1 1−( ) ≤ ≤ +( )∑η η% %ABsell TAB ABsellP P P
T

    (6.63)  

    1 1−( ) ≤ ≤ +( )∑η η% %BAbuy TBA BAbuyP P P
T

    (6.64)  

where  β  and  γ  are the penalty factors. 
 It is noted that there are some differences between the above MAED 

model M - 6 and the model M - 3 described in Section  6.5 , where some approxi-
mations are applied in order to use the nonlinear convex network fl ow pro-
gramming algorithm.  

  6.6.3   Nonlinear Optimization Neural Network Algorithm 

  6.6.3.1   Nonlinear Optimization Neural Network Model of  MAED      The 
above MAED model M - 6 can be solved by a new approach of the nonlinear 
optimization neural network. The neural network approach is a penalty mini-
mizing neural network approach with weights based on optimization theory 
and the neural optimization method. It can be used to solve the nonlinear 
problem with equality and inequality constraints. 

 The MAED model M - 6 can be rewritten into a general form of constrained 
optimization, i.e., model M - 7:

    min f x( )     (6.65)  

such that

    h x j mj( ) = =0 1 , ,…     (6.66)  

    g x i ki( ) ≥ =0 1, ,…     (6.67)   

 To change the inequality constraints of equation  (6.67)  into equality con-
straints, new variables  y  1 ,  … ,  y m   (i.e., relaxation variables) are introduced into 
equation  (6.67) . In this way, model M - 7 can be written as model M - 8, i.e.,

    min f x( )     (6.65)  

such that

    h x j mj( ) = =0 1 , ,…     (6.66)  

    g x y i ki i( ) − = =2 0 1, ,…     (6.68)   
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 The optimization neural network is applied to the solution of M - 8. The 
approach is totally different from traditional optimization methods. It changes 
the solution of optimization problems into an equilibrium point of nonlinear 
dynamic system, and changes optimal criteria into energy functions for 
dynamic system. Therefore, the energy function of NNLONN must be formed 
at the beginning. 

 According to optimization theory as described in Reference  [26] , we can 
construct the following energy function of neural network for model M - 8:

    

E x y S f x h x g x y S h x

S g x y

, , , ,λ μ μ λ( ) = ( ) − ( ) − ( ) −[ ]+ ( ) ( )

+ ( ) ( ) −

T T 2 2

2

2

2
22

    (6.69)  

where  λ  and  μ  are Lagrange multipliers. 
 It is possible to construct a different energy function from the above, e.g., 

in an energy function as used in reference  [27] . It is noted that a different 
energy function will produce a different neural network and distinct charac-
teristics. There are two advantages for the proposed NNLONN approach. One 
is that the fi rst three terms in the energy function of equation  (6.69)  are just 
an expanded Langrage functions as in conventional nonlinear programming. 
Methods to guarantee optimal solution of such functions are well understood. 
Another advantage is due to the quadratic penalties, which are formulated to 
become part of the energy function  (6.69)  and equality constraints  (6.66) –
 (6.68) . These penalties behave very effectively against any violation of 
constraint. 

 Dynamic equations of the neural network can be obtained according to 
equation  (6.69) .

    d d T T
x t f x Sh x h x S g x y g x yx x x= − ∇ ( ) + ( ) −( ) ∇ ( ) + ( ) −( ) −[ ] ∇ ( ) −( ){ }μ λ2 2

   
 (6.70)  

    d d T T
y t f x Sh x h x S g x y g x yy y y= − ∇ ( ) + ( ) −( ) ∇ ( ) + ( ) −( ) −[ ] ∇ ( ) −( ){ }μ λ2 2

   
 (6.71)  

    ∂ ∂ = ( )μ t Sh x     (6.72)  

    ∂ ∂ = ( ) −( )λ t S g x y2     (6.73)   

 From equation  (6.69)  we know that the variables  x  and  y  are separable. So we 
can get

    

min , , , , min min , , , ,

min , , , ,
,x y x y

x

E x y S E x y S

E x y x S

λ μ λ μ

λ μ

( ) = ( )

= ( )* ,, , ,λ μ S( )     (6.74)  
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where,  y  * ( x ,  λ ,  μ ,  S ) satisfi es the following equation:

    min , , , , , , , , , , ,
y

E x y S E x y x S Sλ μ λ μ λ μ( ) = ( )( )*     (6.75)   

 To obtain  y  * ( x ,  λ ,  μ ,  S ), we set d E /d y    =   0. Then, from equation  (6.69)  we get

    2 02y Sy Sg xT λ + − ( )[ ] =     (6.76)   

 Obviously, from equation  (6.76)  we know if  λ     −     Sg ( x )    ≥    0, then  y    =   0; if 
 λ     −     Sg ( x )    <    0, then  y    =   0, or  y  2    =   ( Sg ( x )    −     λ )/ S , i.e.,

    y
Sg x

Sg x S Sg x
2 0 0

0
=

− ( ) ≥
( ) − − ( ) <{ ,

[ ] ,

if

if

λ
λ λ

    (6.77)  

or

    y g x
g x g x S

S g x S
2 − ( ) =

− ( ) − ( ) ≥ −
− − ( ) < −{ ,

,

if

if

λ
λ λ

    (6.78)   

 From equation  (6.78) , we can get the following expressions:

    y g x g x S2 − ( ) = − ( ) −( )max , λ     (6.79)  

    y g x g x S2 − ( ) = − ( )( )min , λ     (6.80)  

    g x y g x S( ) − = ( )( )2 min , λ     (6.81)   

 Substituting equation  (6.79)  into equation  (6.69) , we get
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 (6.82)   



238 MULTIAREA SYSTEM ECONOMIC DISPATCH

 Substituting equation  (6.79)  into equation  (6.80) , we get

   

d d T Tx t f x Sh x h x S g x S g xx x x= − ∇ ( ) + ( ) −[ ] ∇ + − − ( ) −( ) −([ ] ∇ ( )μ λ λ( ) max ,{{ }
= − ∇ ( ) + ( ) −[ ] ∇ ( ) + − − ( ) −( ) −[ ] ∇ ( ){ }
=

x x xf x Sh x h x Sg x g xμ λ λT Tmax ,

−− ∇ ( ) + ( ) −[ ] ∇ ( ) − − ( ) −( ) +[ ] ∇ ( ){ }
= − ∇

x x x

x

f x Sh x h x g x g x

f x

μ λ λT Tmax ,

(( ) + ( ) −[ ] ∇ ( ) − − ( )[ ] ∇ ( ){ }Sh x h x Sg x g xx xμ λT Tmax ,0     (6.83)   

 Substituting equation  (6.81)  into equation  (6.73) , we get

    d dλ λ λt S g x S Sg x= ⋅ ( )( ) = ( )[ ]min , min ,     (6.84)   

 According to equations  (6.82) ,  (6.83) ,  (6.72) , and  (6.84) , we have deduced 
a new nonlinear optimization neural network model M - 9, which can be used 
to solve the optimization problem with equality and inequality constraints. 
The NLONN model M - 9 can be written as

    

E x S f x h x S h x

S Sg x

, , ,

max ,

λ μ μ

λ λ

( ) = ( ) − ( ) + ( ) ( )

+ ( ) − ( )[ ] −{ }
T 2

1 2 0

2

2 2     (6.85)  

   d d T Tx t f x Sh x h x g x Sg xx x x= − ∇ ( ) + ( ) −[ ] ∇ ( ) −∇ ( ) − ( )[ ]{ }μ λmax ,0     (6.86)  

    d dμ t Sh x= ( )     (6.87)  

    d dλ λt Sg x= ( )[ ]min ,     (6.88)   

 The Appendix   to this chapter shows that the energy function equation 
 (6.85)  in NNLONN model M - 9 is a Lyapunov function, and the equilibrium 
point of the neural network corresponds to the optimal solution of the con-
strained optimization problem M - 7.  

  6.6.3.2   Numerical Simulation of  NLONN  Network     The fi rst - order Euler 
method can be used in the numerical analysis of the NLONN network, i.e.,

    d dZ t Z t t Z t t= +( ) − ( )[ ]Δ Δ     (6.89)  

    Z t t Z t Z t t+( ) = ( ) + ( )Δ Δd d     (6.90)   

 So dynamic equations  (6.86) – (6.88)  of the NLONN network can be made 
equivalent to the following equations:

    

x t t x t t f x t Sh x t h x t

g x t

x x

x

+( ) = ( ) − ∇ ( )( ) + ( )( ) −[ ] ∇ ( )( ){
−∇ ( )( )

Δ Δ μ T

mmax , }0 λ − ( )( )[ ]Sg x t T     (6.91)  
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    μ μt t t tSh x t+( ) = ( ) + ( )( )Δ Δ     (6.92)  

    λ λ λt t t t Sg x t t+( ) = ( ) + ( )( ) ( )[ ]Δ Δ min ,     (6.93)   

 The calculation steps of the NLONN method are given below.

   Step 1: Select a set of initial values  x (0) and parameters  λ (0),  μ (0), as well as 
a set of positive ordinal numbers { S ( k )}    ·     S ( k    +   1)   =    ρ  S ( k ).  

  Step 2: Calculate gradients.

    

Φ x E x k k k S k

f x k S k h x k k
x

x

( ) = ∇ ( ) ( ) ( ) ( )[ ]
= ∇ ( )( ) + ( )( ) − ( )

, , ,

( ) ]

λ μ
μ T∇∇ ( )( )[ ]

− ( ) − ( ) ( )( )[ ] ∇ ( )( )
x

x

h x k

k S k g x k g x kmax ,0 λ T     (6.94)    

  Step 3: Compute new state

    x k x k t kx+( ) = ( ) − ( )1 Δ φ     (6.95)    

  Step 4: Perform multiplier iteration

    μ μk k tS k h x k+( ) = ( ) + ( ) +( )( )1 1Δ     (6.96)  

    λ λ λk k t S k g x k k+( ) = ( ) + ( ) +( )( ) ( )[ ]1 1Δ min ,     (6.97)  

    S k S k+( ) = ( )1 ρ     (6.98)    

  Step 5: Perform convergence check, using criteria

    x k x k+( ) − ( ) ≤1 1ε     (6.99)  

    μ μ εk k+( ) − ( ) ≤1 2     (6.100)  

    λ λ εk k+( ) − ( ) ≤1 3     (6.101)      

 Stop if equations  (6.99) – (6.101)  are satisfi ed. Otherwise, let  k    =    k    +   1, go back 
to step 2.   

  6.6.4   Test Results 

 For examining the presented approach, a network of three interconnected 
areas is constructed as shown in Figure  6.5 . Area A1 is an IEEE 30 - bus system. 
The generator and load data of the IEEE 30 - bus system are listed in Tables 
 6.5  and  6.6 . The other data and parameters of the IEEE 30 - bus system are 
listed in Chapter  5 . Parameters of areas A2, A3, and tie - lines are given as 
follows.     



240 MULTIAREA SYSTEM ECONOMIC DISPATCH

     FIGURE 6.5     The network model of three interconnected power systems  

IEEE 30-
bus

A3 A2

A127
221
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32 31

 Table 6.5     Data of generator nodes for  IEEE  30 - bus system (p.u.) 

   Node     a i      b i      c i       P  G   i   min       P  G   i   max       Δ  P  G   i   GRC   

  1    37.5    200    0.0    0.50    2.00    0.50  
  2    175    175    0.0    0.20    0.80    0.30  
  5    625    100    0.0    0.15    0.50    0.25  
  8    83.4    325    0.0    0.10    0.35    0.25  

  11    250    300    0.0    0.10    0.30    0.15  
  13    250    300    0.0    0.12    0.40    0.15  

    Note :   The generation cost function is:   f P Pi i= + +a b cGi i Gi i
2 .   

 Table 6.6     Data of load nodes for  IEEE  30 - bus system (p.u.)  

   Node No.     Real Power  
   Reactive 

Power     Node No.     Real Power  
   Reactive 

Power  

  1    0.000    0.000    16    0.035    0.018  
  2    0.217    0.127    17    0.090    0.058  
  3    0.024    0.012    18    0.032    0.009  
  4    0.076    0.016    19    0.095    0.034  
  5    0.942    0.190    20    0.022    0.007  
  6    0.000    0.000    21    0.175    0.112  
  7    0.228    0.109    22    0.000    0.000  
  8    0.300    0.300    23    0.032    0.016  
  9    0.000    0.000    24    0.087    0.067  

  10    0.058    0.020    25    0.000    0.000  
  11    0.000    0.000    26    0.035    0.023  
  12    0.112    0.075    27    0.000    0.000  
  13    0.000    0.000    28    0.000    0.000  
  14    0.062    0.016    29    0.024    0.009  
  15    0.082    0.025    30    0.106    0.019  
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 Fuel cost function and power upper and lower limits are:

    F P P P31 31
2

31 31650 325 0 1 0 9= + ≤ ≤. .  

    F P P P32 32
2

32 3230 100 0 1 0 9= + ≤ ≤. .   

 Loads of areas A2 and A3 are  P  DA2    +    jQ  DA2    =   0.5   +    j 0.26 and 
 P  DA3    +    jQ  DA3    =   0.4   +    j 0.21, respectively. Parameters and capacity constraints of 
the tie line are:

    R X P2 31 2 31 2 310 0192 0 0575 0 6- - -. ; . ; .= = =Tmax  

    R X P8 32 8 32 8 320 0192 0 0575 0 5- - -. ; . ; .= = =Tmax  

    R X P31 27 31 27 31 270 057 0 1737 0 6- - -. ; . ; .= = =Tmax  

    R X P32 21 32 21 32 210 057 0 1737 0 5- - -. ; . ; .= = =Tmax  

    R X P31 32 31 32 31 320 0192 0 0575 0 5- - -. ; . ; .= = =Tmax   

 The following test cases of security - constrained MAED are performed in 
the study. 

  Case 1: Neglecting the buying and selling among areas  
  Case 2: Considering the buying and selling among areas.  P  A3 – A1sell    =   0.4; 

 P  A1 – A2sell    =   0.3;  P  A3 – A2sell    =   0.0.  
  Case 3: Considering the buying and selling among areas.  P  A3 – A1sell    =   0.32; 

 P  A1 – A2sell    =   0.32;  P  A3 – A2sell    =   0.0.    

 To evaluate the calculation precision, the performance index ( PI ) on trading 
error is used, i.e.,

    PI
P P

P
EAB

TAB ABsell

ABsell

% %= − ×     (6.102)   

 The calculation results of the security - constrained MAED for the above three 
test cases are listed in Table  6.7 . From Table  6.7  we get: 

  Case 2:

    P P PTA A3 1 32 8 32 21 0 172 0 228 0 4- - - . . .= + = + =  

    PIEA A %3 1 0- =  

    P P PTA A1 2 2 31 27 31 0 4584 0 1585 0 2999- - - . . .= + = − =  

    PIEA A % %1 2 0 0333- .=  

    P PTA A3 2 32 31 0 0- - .= =  

    PIEA A %3 2 0- =    
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  Case 3:

    P P PTA A3 1 32 8 32 21 0 1123 0 2077 0 32- - - . . .= + = + =  

    PIEA A %3 1 0- =  

    P P PTA A1 2 2 31 27 31 0 4624 0 1425 0 3199- - - . . .= + = − =  

    PIEA A % %1 2 0 03125- .=  

    P PTA A3 2 32 31 0 0- - .= =  

    PIEA A %3 2 0- =        

 The maximum trading error is only 0.0333%. Therefore, the proposed MAED 
approach not only satisfi es all security constraints but also has high precision.   

  6.7   TOTAL TRANSFER CAPABILITY COMPUTATION IN MULTIAREAS 

 As we analyzed in previous sections that the transfer capability limits affect 
the wheeling. It is useful to compute the total transfer capability (TTC) of the 
multiareas. 

 Table 6.7     Test results of security - constrained  MAED  for three interconnected systems 
( NLONN  method) 

   Test Cases     Case 1 (p.u.)     Case 2 (p.u.)     Case 3 (p.u.)  

  Area A1  
   P  G1     1.5971    1.6588    1.5951  
   P  G2     0.4377    0.4636    0.4304  
   P  G5     0.2096    0.2122    0.2133  
   P  G8     0.2903    0.2252    0.3324  
   P  G11     0.1459    0.1322    0.1748  
   P  G13     0.1366    0.1287    0.1699  
  Area A2  
   P  G31     0.1000    0.2001    0.1801  
  Area A3  
   P  G32     0.9000    0.8000    0.7200  
  Total Gen.    3.81722    3.82081    3.81602  
  Power losses    0.08322    0.08681    0.08202  
  Total gen. cost ($)    923.0356    957.5161    974.6212  
  Tie - line power  
   P  32 – 8     0.1827    0.1720    0.1123  
   P  32 – 21     0.2364    0.2280    0.2077  
   P  2 – 31     0.4687    0.4584    0.4624  
   P  27 – 31      − 0.1422     − 0.1585     − 0.1425  
   P  32 – 31     0.0808    0.0000    0.0000  
  Line security    Satisfi ed    Satisfi ed    Satisfi ed  
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  6.7.1   Continuation Power Flow Method 

 The general method to compute the TTC is the continuation power fl ow 
(CPF) or repeated power fl ow (RPF) method  [28 – 31] . It is sometimes called 
the perturbation method. 

 The net active and reactive power injections at the sink and source buses 
are functions of  λ .

    P P Li = +i Pi0 λ     (6.103)  

    Q Q Li i Qi= +0 λ     (6.104)  

where

   λ :    The parameter controlling the amount of injection  
  P  i0 :    The base case real power injections at the bus  
  Q  i0 :    The base case reactive power injections at the bus  
  L  Pi :    The real power load participation factors  
  L  Qi :    The reactive power load participation factors    

 The traditional power fl ow equations augmented by an extra equation for  λ  
are expressed as

    f Vθ λ, ,( ) = 0     (6.105)  

where

   V :    The vector of bus voltage magnitudes  
  θ :    The vector of bus voltage angles    

 Once a base case (for  λ    =   0) solution is found, the next solution can be 
predicted by taking an appropriately sized step in a direction tangent to the 
solution path. The tangent vector is obtained as below:

    d d d dVf V f f V fθ λ θ λθ λ, ,( )[ ] = + +     (6.106)   

 Since equation  (6.106)  is rank defi cient, an arbitrary value such as 1 can be 
assigned as one of the elements of the tangent vector  t    =   [d θ , d V , d λ ] T    =    ± 1, 
i.e., t k    =    ± 1. Thus

    
f f f
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θ λV
t⎡

⎣⎢
⎤
⎦⎥
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1
    (6.107)   

 Where  e k   is a row vector with all elements zero, except for the  k th entry, which 
is equal to 1. 
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 The new solution after perturbation will then be computed as
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    (6.108)   

 Where  ε  is a scalar used to adjust the step size. 
 The new solution obtained in equation  (6.108)  may violate the limits. Thus 

it is necessary to correct the continuation parameter. The corrector is a slightly 
modifi ed Newton power fl ow algorithm in which the Jacobian matrix is 
augmented by an equation to account for the continuation parameter. 

 Let  x    =   [ θ ,  V ,  λ ] T ,  x k     =    η , then the new set of equations will take the form

    
f x

ek

( )
−

⎡
⎣⎢

⎤
⎦⎥
= [ ]

η
0     (6.109)   

 Therefore, for a specifi c source/sink transfer case, the steps for computing 
the TTC are summarized as below  [28] : 

  (1)     Input power system data.  
  (2)     Select the contingency from the contingency list.  
  (3)     Initialize:  

   (a)    Run power fl ows to ensure that the initial point does not violate 
any limits.  

   (b)    Set the tolerance for the change of transfer power.    
  (4)     Prediction step size of CPF: 

    (a)    Calculate the tangent vector  t    =   [d θ , d V , d λ ] T   
   (b)    Choose the scalar  ε  to design the prediction step size.  
   (c)    Make a step of increase of the transfer power to predict the next 

solution using equation  (6.108) .    
  (5)     Correct step size of CPF with generator Q limits. Solve equation 

 (6.109) .  
  (6)     Check for limit violations: Check the solution of step (5) for violations 

of operational or physical limits — line fl ow limit, voltage magnitude 
limit, and voltage stability limit. If there are violations, reduce the trans-
fer power increment by  ε    =   0.5    ε ; then go back to step (5) until 
the change of the transfer power is smaller than the tolerance. The 
maximum transfer power for the selected contingency is reached. 
Otherwise, go to prediction step (4).  

  (7)     Check whether all contingencies are processed. If they are, compare 
the maximum transfer powers for all the contingencies and choose the 
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smallest one as the TTC for this specifi c source/sink transfer case and 
terminate the procedure. Otherwise, go to step (2).     

6.7.2 Multiarea TTC Computation 

 In a multiarea system, it is assumed that each area operates autonomously by 
its own independent operator. Each area carries out its own CPF calculation 
and maintains its own detailed system model. Furthermore, each area uses 
network equivalents to represent the buses in other areas, except for the 
boundary. One of the equivalent methods is the REI equivalent. The basic 
idea of the REI equivalent is to aggregate the injections of a group of buses 
into a single bus. The aggregated injection is distributed to these buses via a 
radial network called the REI network. After the aggregation, all buses with 
zero injections are eliminated, yielding the equivalent  [32, 33] . For example, 
all PV and PQ buses except for the seller and buyer buses of outer external 
area are grouped into two different REI equivalent networks, which are 
assigned the corresponding bus types (PQ or PV) accordingly  [28] . In this way, 
systemwide TTC can be computed without exchanging information with each 
other. However, the admittances of the REI network are functions of the 
operating point for which the equivalent is constructed. Doing so will also 
introduce errors in the multiarea TTC result. In light of this, the equivalent 
must be properly updated during the TTC computation. 

 In the case of the multiarea CPF implementation, each area carries out its 
own CPF, and the continuation parameter for each area may be different at 
each step. Therefore, a strategy for choosing and updating the continuation 
parameter that ensures synchronized CPF calculation in different areas is 
introduced. 

 Another issue related to updating the equivalents is the generator Q limits. 
As the power transfer increases at a chosen PQ bus, generator buses will 
continue to hit their Q limits in succession. As each limit is reached, the gener-
ated reactive power will be held at the Q limit, bus type will be switched to 
PQ, and the bus voltage will become an unknown increasing the dimension of 
the Jacobian by one. While updating the equivalents, these generator buses 
that are now of type PQ are grouped with other PQ buses in each area. This 
will continue until other limits are reached. 

 A self - adaptive step size control is implemented for the sink area.  λ  is 
chosen as the continuation parameter when starting from the base case. Then 
the continuation parameter is chosen from the voltage increment vector 
[dV ]T. A constant voltage magnitude decrease is used to predict the next 
solution. Usually, the scalar  ε  in equation  (6.118)  is set as 0.02  [28] . Therefore, 
a constant decrease in voltage magnitude will result in a large increase in 
load at the beginning and a small increase in load as the nose point is 
approached. 

 After each correction step, the load change at the sink area will be broad-
cast to all other areas. The continuation parameter continues to be  λ  in all 
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other areas, and the scalar  ε  is set as the load change of the sink area at each 
step. Hence, different areas will have the same load increase at each discrete 
step of CPF calculation. 

 If contingencies are considered in the calculation of multiareas TTC, con-
tingencies associated with the tie lines must be comonitored by all areas. 
However, contingencies caused by topology changes within individual areas 
do not have to be modeled directly by others. Instead, when a contingency 
occurs within one area, only the network model of this area will be changed. 
As a result, the tie - line power fl ows and buyer bus voltages calculated from 
different areas will have very large mismatches during the synchronized 
computation. After updating the equivalents for the area experiencing the 
contingency, the updated equivalent buses will refl ect the effects of the con-
tingency. This way, other areas can account for the effects of the contingency 
indirectly.   

  APPENDIX: COMPARISON OF TWO OPTIMIZATION NEURAL 
NETWORK MODELS 

 Reference  [27]  also presented an optimization neural network model, which 
can be written as M - 10.

    L S x f x g x h x S g x h x,( ) = ( ) + ( ) + ( )( ) ( ) + ( )( +λ μT T 2
2 2     (6A.1)  

    d d Tx t f x h x Sh x g x Sg x= −∇ ( ) −∇ ( ) ( ) +[ ]−∇ ( ) ( ) +( )+μ λ     (6A.2)  

    d dμ εt Sh x= ( )( )     (6A.3)  

    d dλ εt Sg x= ( )( )+     (6A.4)  

where  ε  is a very small positive number and

    g x g x+( ) = ( )[ ]max ,0     (6A.5)   

 It is noted that the proposed NLONN model M - 9 is different from the 
traditional optimization neural network model M - 10. This can be seen by 
analyzing the stability and optimization of two neural networks. 

  For Proposed Neural Network  M  - 9 

 The derivative of energy function in M - 9 to time  t  can be obtained from the 
following calculation:
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  (6A.6)   

 Obviously, from equation  (6A.6)  we can know that d E /d t     ≤    0. When and only 
when

    h x Sg x x t( ) = − − ( )[ ] = =0 0 0; max , ;λ d d     (6A.7)  

then

    d dE t = 0     (6A.8)   

 The meaning of max[ −  λ ,  −  Sg ( x )]   =   0 is that

    Sg x( ) ≥ =0 0when λ     (6A.9)  

    λ ≥ ( ) =0 0when Sg x     (6A.10)   

 Equations  (6A.9)  and  (6A.10)  are just the Kuhn – Tucker conditions in optimi-
zation theory. Thus max[ −  λ ,  −  Sg ( x )]   =   0 is tenable. 

 Certainly, any feasible solutions including the optimal solution satisfy the 
equation  h ( x )   =   0. So from equation  (6.96)  of M - 9 we get the following 
expression:

    d dx t f x h x Sg x g xx x x= − ∇ ( ) − ∇ ( ) − − ( )[ ]∇ ( ){ }μ λmax ,0     (6A.11)   

 According to equations  (6A.9)  and  (6A.10) , we get

    max ,0 λ λ− ( )[ ]∇ ( ) = ∇ ( )Sg x g x g xx x     (6A.12)   

 According to equations  (6A.11)  and  (6A.12) , we get

    d dx t f x h x g xx x x= − ∇ ( ) − ∇ ( ) − ∇ ( ){ }μ λ     (6A.13)   

 If d x /d t    =   0, when and only when

    ∇ ( ) − ∇ ( ) − ∇ ( ) =x x xf x h x g xμ λ 0     (6A.14)   
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 Equation  (6A.14)  is just the optimality conditions of optimization problem 
M - 7. So this condition is tenable. It means that d x /d t    =   0 is also tenable. Now 
we have demonstrated that all conditions in equation  (6A.7)  are satisfi ed. 
Therefore, equation  (6A.8)  is also satisfi ed. This has proved that the energy 
function of the proposed NLONN neural network is a Lyapunov function. The 
corresponding neural network is certainly stable and the equilibrium point of 
neural network corresponds to the optimal solution of the constrained opti-
mization problem M - 7.  

  For Neural Network  M  - 10 in Reference  [27]  

 According to equations  (6A.1) – (6A.5) , the derivative of energy function in 
M - 10 to time  t  can be obtained from the following calculation:
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 Since  ε  is a very small positive number, and  g  + ( x )   =   max[0,  g ( x )], the last two 
terms in the right side of equation  (6A.15)  are not negative. This means that 
d L /d t     ≤    0 is untenable all along. Therefore, there exists a stability problem in 
the neural network M - 10.   
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UNIT COMMITMENT 

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
Copyright © 2009 Institute of Electrical and Electronics Engineers

     This chapter fi rst introduces several major techniques for solving the unit 
commitment problem such as the priority method, dynamic programming, 
and the Lagrange relaxation method. Several new algorithms are then 
added to attack the unit commitment problems. These are the evolutionary 
programming - based Tabu search method, particle swarm optimization, and the 
analytic hierarchy process. A great deal of numerical examples and analysis 
are provided in the chapter.  

7.1 INTRODUCTION

 Since generators cannot instantly turn on and produce power, unit commit-
ment (UC) must be planned in advance so that enough generation is always 
available to handle system demand with an adequate reserve margin in the 
event that generators or transmission lines go out or load demand increases. 
Unit commitment handles the unit generation schedule in a power system for 
minimizing operating cost and satisfying prevailing constraints such as load 
demand and system reserve requirements over a set of time periods  [1 – 20] . 
The classic UC problem is aimed at determining the start - up and shutdown 
schedules of thermal units to meet forecasted demand over certain time 
periods (24   h to 1 week) and belongs to a class of combinatorial optimization 
problems. The methods that have been studied so far fall into roughly three 
categories: heuristic search, mathematical programming, and hybrid methods. 
Optimization techniques such as the priority list, augmented Lagrangian 
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relaxation, dynamic programming, and the branch – and – bound algorithm have 
been used to solve the classic UC problem. Genetic algorithms (GA), simu-
lated annealing (SA), analytic hierarchy process (AHP), and particle swarm 
optimization (PSO) have also been used for UC problem since the beginning 
of the last decade.  

  7.2   PRIORITY METHOD 

 The classic UC problem is to minimize total operational cost and is subject to 
minimum up -  and downtime constraints, crew constraints, unit capability limits, 
generation constraints, and reserve constraints. Thus the objective function of 
UC consists of the generation cost function and start - up cost function of the 
generators. The former is described in Chapter  4 . The latter involves the cost 
of the energy that brings the unit online. 

 There are two types of startup cost model: one is bringing the unit online 
from a cold start and the other is bringing it from bank status, in which the 
unit is turned off but still close to operating temperature. The start - up cost 
model when cooling can be expressed in the exponential function below:

    F t F Ct
fSc e( ) = −( ) × +−1 α     (7.1)  

where

   F  Sc :    The cold start cost for the cooling model  
  C  f :    The fi xed cost of generator operation including crew expense, mainte-

nance expense  
  F :    The fuel cost  
  t :    Time that the unit was cooled  
  α :    Thermal time constant for the unit    

 The start - up cost model when banking can be expressed as a linear function 
as below:

    F t F t CfSb( ) = × +0     (7.2)  

where

   F  Sb :    The start - up cost for banking model  
  F  0 :    The cost of maintaining unit at operating temperature    

 The simplest unit commitment solution is to list all combinations of units 
on and off, as well as the corresponding total cost to create a rank list, and 
then make the decision according to the rank table. This method is called the 



PRIORITY METHOD 253

priority list. The rank is based on the minimum average production cost of the 
unit. The average production cost of the unit is defi ned as

    μ =
( )F P
P

G

G

    (7.3)  

where

   μ :    The average production cost of the unit  
  F ( P  G ):    The generation cost function of the unit  
  P  G :    The generator real power output    

 From Chapter  4 , the incremental rate of the unit is defi ned as

    λ =
( )d

d
G

G

F P
P

    (7.4)   

 When the average production cost of the unit equals the incremental rate 
of the unit, the corresponding average production cost is called the minimum 
average production cost,  μ  min . Generally, the power output is close to rated 
power when the unit is at the minimum average production cost. 

   Example 7.1 

 There are fi ve generator units, and the minimum average production costs 
 μ  min  are computed as shown in Table  7.1 .   

 The priority order for these units based on the minimum average produc-
tion cost is shown in Table  7.2 .   

 The steps of the priority list method are summarized as below: 

  Step (1):     Compute the minimum average production cost of all units, and 
order the units from the smallest value of  μ  min . Form the priority list.  

  Step (2):     If the load is increasing during that hour, determine how many 
units can be started up according to the minimum downtime of the unit. 

 Table 7.1     The minimum average production cost 

   Unit  
   Minimum Average 

Production Cost  μ  min      Min MW     Max MW  

  G1    10.56    100    400  
  G2    9.76    120    500  
  G3    11.95    100    300  
  G4    8.90    50    600  
  G5    12.32    150    250  
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Then select the top units for turning on from the priority list according 
to the amount of load increasing.  

  Step (3):     If the load is dropping during that hour, determine how many 
units can be stopped according to the minimum up time of the unit. Then 
select the last units for stopping from the priority list according to the 
amount of load dropping.  

  Step (4):     Repeat the process for the next hour.      

 There are other priority list methods such as ranking units based on the 
full - load average production cost of each unit  [21]  as well as based on the 
incremental cost rate of each unit  [22] .  

  7.3   DYNAMIC PROGRAMMING METHOD 

 Suppose a system has  n  units. If the enumeration approach is used, there would 
be 2  n      −    1 combinations. The dynamic programming (DP) method consists in 
implicitly enumerating feasible schedule alternatives and comparing them in 
terms of operating costs. Thus DP has many advantages over the enumeration 
method, such as reduction in the dimensionality of the problem. 

 There are two DP algorithms. They are forward dynamic programming and 
backward dynamic programming. The forward approach, which runs forward 
in time from the initial hour to the fi nal hour, is often adopted in the unit 
commitment. The advantages of the forward approach are: 

   •      Generally, the initial state and conditions are known.  
   •      The start - up cost of a unit is a function of the time. Thus the forward 

approach is more suitable since the previous history of the unit can be 
computed at each stage.    

 The recursive algorithm is used to compute the minimum cost in hour  t  with 
feasible state  I , that is

    F t I F t I S t L t I F t I
L

tc c tc, min , , , ,( ) = ( ) + − ⇒( ) + −( )[ ]
{ }

1 1     (7.5)  

 Table 7.2     The priority order for 5 units 

   Priority Order     Unit      μ  min      Min MW     Max MW  

  1    G4    8.90    50    600  
  2    G2    9.76    120    500  
  3    G1    10.56    100    400  
  4    G3    11.95    100    300  
  5    G5    12.32    150    250  
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where

   F  tc ( t ,  I ):    The total cost from initial state to hour  t  state  I   
  S  c ( t     −    1,  L     ⇒     t ,  I ):    The transition cost from state ( t     −    1,  L ) to state ( t ,  I )  
 { L }:    The set of feasible states at hour  t     −    1  
  F ( t ,  I ):    The production cost for state ( t ,  I )    

 The following constraints should be satisfi ed for the UC problem solved by 
dynamic program:
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G min G G max≤ ≤     (7.7)  

where

    Pt
D:    The system load at hour  t   

   P i
t

G min:    The lower limit of the unit power output  
   P i

t
G max:    The upper limit of the unit power output  

   xi
t:    The 0 – 1 variable    

 As we mentioned before, there are 2  n      −    1 combinations or states for  n  
units. The computation amount is large. We can combine the DP algorithm 
and priority list method to discard some infeasible states as well as high - cost 
states. In addition, we add the unit minimum uptime and minimum downtime 
constraints, which can also reduce the states. For example, before we perform 
unit commitment using the forward DP algorithm, we fi rst order the units 
according to the priority list and the unit minimum up - /downtime. The fi rst 
part of the units order is the must - up units, the last part is the must - down 
units, and middle part is the unit ranking based on the minimum average 
production cost of the rest of units. In this way, the computation amount of 
DP will be reduced. 

   Example 7.2 

 We use priority list and dynamic programming to solve the unit commit-
ment for a simple four - unit system  [21] . The data of the units and the load 
pattern are listed in Tables  7.3  and  7.4 , respectively.   

 In Table  7.3 , the symbol  “  −  ”  in the initial state means the unit is offl ine. 
For example,  “ 8 ”  means the unit has been online for 8 hours, and  “  − 6 ”  means 
the unit has been offl ine for 6 hours. 

 The total combinations of four units are 2  n      −    1   =   2 4     −    1   =   15. If we order 
the unit combinations or states by the maximum net capacity of each 
combination, we get Table  7.5 .   
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Table 7.4 The load pattern 

   Hour     Load (MW)  

  1    450  
  2    530  
  3    600  
  4    540  
  5    400  
  6    280  
  7    290  
  8    500  

Table 7.5 The ordering of the unit combinations 

   State     Unit Combination     Max Net Capacity (MW)  

  15    1 1 1 1    690  
  14    1 1 1 0    630  
  13    0 1 1 1    610  
  12    0 1 1 0    550  
  11    1 0 1 1    440  
  10    1 1 0 1    390  
  9    1 0 1 0    380  
  8    0 0 1 1    360  
  7    1 1 0 0    330  
  6    0 1 0 1    310  
  5    0 0 1 0    300  
  4    0 1 0 0    250  
  3    1 0 0 1    140  
  2    1 0 0 0    80  
  1    0 0 0 1    60  
  0    0 0 0 0    0  

  (Unit)    1 2 3 4      

Table 7.3 The data of units 

   Unit  
   Max 

(MW)
   Min 

(MW)
   Cost 
($/h)

   Ave. 
Cost

   Start -
 up Cost  

   Initial 
State

   Min Up 
Times 

(h)

   Min 
Down

Times (h)  

  1    80    25    213.00    23.54    350  − 5    4    2  
  2    250    60    585.62    20.34    400    8    5    3  
  3    300    75    684.74    19.74    1100    8    5    4  
  4    60    20    252.00    28.00    0  − 6    1    1  
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 In the combinations of Table  7.5 ,  “ 1 ”  means committed (unit operating), 
and  “ 0 ”  means uncommitted (unit shut down). For example,  “ 0001 ”  for 
state 1 means unit 4 is committed, and units 1, 2, 3 are uncommitted;  “ 1001 ”  
for state 3 means units 1 and 4 are committed and units 2 and 3 are 
uncommitted. 

  Case 1 : Neglecting the constraints of unit minimum up/down time. Solve 
UC problem using the priority list order. 

 In case 1, units are committed in order until the load is satisfi ed. The total 
cost for the interval is the sum of the eight dispatch costs plus the transi-
tional costs for starting any units. It can be known from the average produc-
tion cost in Table  7.3  that the priority order for the four units is unit 3, unit 
2, unit 1, unit 4. All possible commitments start from state 12 since the load 
at fi rst hour is 450   MW, and maximum net capacity from state 1 to state 11 
is only 440   MW. In addition, state 13 is discarded since it does not satisfy 
the order of the priority list. The UC results for the priority ordered method 
are listed in Table  7.6 .   

  Case 2 : Neglecting the constraints of unit minimum up/down time. Solve 
UC problem using dynamic programming. 

 In case 2, fi rst select the feasible states, using the priority list order. For 
fi rst 4 hours, the feasible states have only 12, 14, and 15 in Table  7.5 . For last 
4 hours, the feasible states have 5, 12, 14, and 15. Thus the total feasible 
states are {5, 12, 14, 15}, and the initial state is 12. According to the recursive 
algorithm of the dynamic programming, we can compute the minimum total 
cost.

    F t I F t I S t L t I F t Itc
L

c tc, min , , , ,( ) = ( ) + − ⇒( ) + −( )[ ]
{ }

1 1  

    For : andt L I= { } = { } { } = { }1 12 12 14 15, , ,  

    F F S F
F S

tc c tc

c

1 12 1 12 0 12 1 12 1 12
1 12 0 12 1

, , , , ,
, ,

( ) = ( ) + ⇒( ) + ( )
= ( ) + ⇒ ,,12 0 9208 0 9208( ) + = + =

 

 Table 7.6      UC  results by priority list 

   Hour     Load (MW)     Units On - Line     Generation Cost  

  1    450    Units 3, and 2    9208  
  2    530    Units 3, and 2    10648.36  
  3    600    Units 3, 2 and 1    12265.36  
  4    540    Units 3, and 2    10828.36  
  5    400    Units 3, and 2    8308.36  
  6    280    Unit 3    5573.54  
  7    290    Unit 3    5748.14  
  8    500    Units 3, and 2    10108.36  
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    F F S Ftc c tc1 14 1 14 0 14 1 14 1 14 9493 350 9843, , , , ,( ) = ( ) + ⇒( ) + ( ) = + =  

    F F S Ftc c tc1 15 1 15 0 15 1 15 1 15 9861 350 10211, , , , ,( ) = ( ) + ⇒( ) + ( ) = + =  

    For : andt L I= { } = { } { } = { }2 12 14 12 14 15, , , ,  

    
F F S L F Ltc c tc2 15 2 15 1 2 15 1

11301

12 14
, min [ , , , , ]

,
( ) = ( ) + ⇒( ) + ( )

= +

{ }

mmin
( )

( )

350 9208

0 9843
20859

+
+

⎡
⎣⎢

⎤
⎦⎥
=

  

 And so on. 
 The UC results are the same as those in case 1.    

  7.4   LAGRANGE RELAXATION METHOD 

 Since the enumeration approach is involved in unit commitment solved by 
dynamic programming, the computation burden is huge for large power 
systems with many generators. The priority list is very simple, and has a fast 
calculation speed, but it may discard the optimum scheme. The Lagrange 
relaxation method can overcome the above - mentioned disadvantages. 

 The mathematical problem of the unit commitment can be expressed as 
below. 

  1.     Objective function

    min ,F P x F t x F P xi i
t

i
t

si i
t

i

n

t

T

i
t

i
t

G G( ) + ( )[ ] = ( )
==
∑∑

11

    (7.8)    

  2.     Constraints  
  1)     Load balance equation

    P x P t Ti
t

i
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i

n
t

G D
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∑ = =

1

1 2, , , ,…     (7.9)    

  2)     Generator power output limits

    x P P x P t Ti
t
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t
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t

G G Gmin max, , , ,≤ ≤ = 1 2 …     (7.10)    

  3)     Power reserve constraint

    P x P P t Ti
i

n

i
t t t

G D Rmax , , , ,
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1 2 …     (7.11)    
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  4)     Minimum up - /downtime

    U T x x t T i nt i i i
t

i
t

−
−−( ) −( ) ≥ = =1

1 0 1 2 1 2, , , , , , , , ,up up … …     (7.12)  

    U T x x t T i nt i i i
t

i
t

−
−−( ) −( ) ≥ = =1

1 0 1 2 1 2, , , , , , , , ,down down … …     (7.13)        

 where

   F  S   i  :    Start - up cost of unit  i  at time period  t   
   Pt

R:    Power reserve at time period  t   
   Ti

up:    Minimum uptime for unit  i  in hours  
   Ti

down:    Minimum downtime for unit  i  in hours  
   Ut i−1,

up :    Number of consecutive uptime periods until time period  t , measured 
in hours  

   Ut i−1,
down:    Number of consecutive downtime periods until time period  t , meas-
ured in hours    

 The UCP has two kinds of constraints: separable and coupling constraints. 
Separable constraints such as capacity and minimum up -  and downtime con-
straints are related to one single unit. On the other hand, coupling constraints 
involve all units. A change in one unit affects the other units. The power 
balance and power reserve constraints are examples of coupling constraints. 
The LR framework relaxes the coupling constraints and incorporates them 
into the objective function by a dual optimization procedure. Thus the objec-
tive function can be separated into independent functions for each unit, subject 
to unit capacity and minimum up and down time constraints. The resulting 
Lagrange function of the UCP is as follows:
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 (7.14)   

 The unit commitment problem becomes the minimization of the Lagrange 
function  (7.14) , subject to constraints  (7.10) ,  (7.12) , and  (7.13) . For the sake of 
simplicity, we have used the symbol  P , without the subscripts G i  and  t , to 
denote any appropriate vector of elements   P i

t
G . The symbols  x ,  λ , and  β  are 

handled the same way. The LR approach requires minimizing the Lagrange 
function given as:

    q L P x
P x

λ β λ β, min , , ,
,

( ) = ( )     (7.15)   

 Since  q ( λ ,  β ) provides a lower bound for the objective function of the original 
problem, the LR method requires us to maximize the objective function over 
the Lagrange multipliers:
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    q q∗( ) = ( )λ β λ β
λ β

, max ,
,

    (7.16)   

 After eliminating constant terms such as   λ t
tPD and   βt

t tP PD R+( )  in equation 
 (7.14) , equation  (7.15)  can be written as
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subject to

    x P P x P t Ti
t

i
t

i
t

i
t

i
t

G G Gmin max, , , ,≤ ≤ = 1 2 …  

    U T x x t T i nt i i i
t

i
t

−
−−( ) −( ) ≥ = =1

1 0 1 2 1 2, , , , , , , , ,up up … …  

    U T x x t T i nt i i i
t

i
t

−
−−( ) −( ) ≥ = =1

1 0 1 2 1 2, , , , , , , , ,down down … …   

 There are two basic steps for the Lagrange procedure to solve the UC 
problem. They are: 

  (1)     Initializing the Lagrange multipliers with values that try to make 
 q ( λ ,  β ) larger.  

  (2)     Assuming the values of the Lagrange multipliers in step (1) are fi xed 
and the Lagrange function ( L ) is minimized by adjusting   P i

t
G  and   xi

t.    

 This minimization is done separately for each unit, and different techniques 
such as LP and dynamic programming can be used. The solutions for the  N  
independent subproblems are used in the master problem to fi nd a new set of 
Lagrange multipliers. This involves dual optimization. As we know for dual 
optimization, the function to be optimized is convex and the variables are 
continuous, then the maximization of the dual function gives the identical 
result as minimizing the primal function. However, for unit commitment 
problem, there are 0 – 1 integer variables that indicate the status of the units, 
which are not continuous, or nonconvex. Thus the dual theory is not exactly 
satisfi ed in UC problem. The application of the dual optimization method to 
the UC problem has been given the name  “ Lagrange relaxation. ”  There exists 
a gap between the results of the maximization of the dual function and mini-
mizing the primal function. The aim of the Lagrange relaxation method is to 
reduce the duality gap by iterations. If a criterion is prespecifi ed, this iterative 
procedure continues until a duality gap criterion is met. The duality gap is also 
used as a measure of convergence. If the relative duality gap between the 
primal and the dual solutions is less than a specifi c tolerance, it is considered 
that the optimum has been reached. The procedure then ends with fi nding a 
feasible UC schedule. 
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 Actually, the multipliers can be updated by using a subgradient method with 
a scaling factor and tuning constants, which are determined heuristically. This 
method is as follows: 

 A vector  g  is called a subgradient of  L ( · ) at  λ  *  if

    L L gλ λ λ λ( ) ≤ ( ) + −( )* * T     (7.18)   

 If the subgradient is unique at a point  λ , then it is the gradient at that point. 
The set of all subgradients at  λ  is called the subdifferential,  ∂  L ( λ ), and is 
a closed convex set. A necessary and suffi cient condition for optimality in 
subgradient optimization is 0    ∈     ∂  L ( λ ). The value of  λ  can be adjusted by the 
subgradient optimization algorithm as below:

    λ λ αt
k

t
k kg+ = +1     (7.19)  

where  g k   is any subgradient of  L ( · ) at   λ t
k . The step size,  α , must be chosen 

carefully to achieve good performance by the algorithm. Here  g k   is calculated 
as follows:

    g
L
L

P x Pk t
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t
k

t
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i
t
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n

=
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= −
=
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λ D G
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    (7.20)   

   Example 7.3 

 The data for the three - unit, four - hour unit commitment problem are as 
below, which is solved with Lagrange relaxation technique  [21] . 

  1.     Units data

    F P P P1 1 1
2

10 002 10 500G G G( ) = + +.  

    F P P P2 2
20 0025 8 300G G2 G2( ) = + +.  

    F P P P3 3
20 005 6 100G G1 G1( ) = + +.  

    100 6001≤ ≤PG  

    100 4002≤ ≤PG  

    50 2003≤ ≤PG    

  2.     Hourly load data shown in Table  7.7       

 For simplifi cation, there are no startup costs, no minimum up -  or 
downtime constraints. The results of several iterations are shown in Tables 
 7.8 – 7.13 , starting from an initial condition where all  λ   t   values are set to 
zero. An economic dispatch is performed for each hour, provided there is 
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Table 7.7 Hourly load data 

   Hour ( t )    Load   Pt
D (MW)  

  1   170
  2   520
  3   1100
  4   330

Table 7.8 Iteration 1 

   Hour      λ      u 1      u 2      u 3       PG1       PG2       PG3       ΔP        PG
ed

1        PG
ed

2       PG
ed

3

  1    0    0    0    0    0    0    0    170    0    0    0  
  2    0    0    0    0    0    0    0    520    0    0    0  
  3    0    0    0    0    0    0    0    1100    0    0    0  
  4    0    0    0    0    0    0    0    330    0    0    0  

    Where   ΔP P P xt
i

t
i
t

i

n

= −
=
∑D G

1

.

Table 7.9 Iteration 2 

   Hour      λ      u 1      u 2      u 3       PG1       PG2       PG3       ΔP        PG
ed

1        PG
ed

2       PG
ed

3

  1    1.7    0    0    0    0    0    0    170    0    0    0  
  2    5.2    0    0    0    0    0    0    520    0    0    0  
  3    11.0    0    1    1    0    400    200    500    0    0    0  
  4    3.3    0    0    0    0    0    0    330    0    0    0  

Table 7.10 Iteration 3 

   Hour      λ      u 1      u 2      u 3       PG1       PG2       PG3       ΔP        PG
ed

1        PG
ed

2       PG
ed

3

  1    3.4    0    0    0    0    0    0    170    0    0    0  
  2    10.4    0    1    1    0    400    200  − 80   0    320    200  
  3    16.0    1    1    1    600    400    200  − 100   500    400    200  
  4    6.6    0    0    0    0    0    0    330    0    0    0  

Table 7.11 Iteration 4 

   Hour      λ      u 1      u 2      u 3       PG1       PG2       PG3       ΔP        PG
ed

1        PG
ed

2       PG
ed

3

  1    5.1    0    0    0    0    0    0    170    0    0    0  
  2    10.24    0    1    1    0    400    200  − 80   0    320    200  
  3    15.8    1    1    1    600    400    200  − 100   500    400    200  
  4    9.9    0    1    1    0    380    200  − 250   0    130    200  
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suffi cient generation committed that hour. The primal value  J  *  represents 
the total generation cost summed over all hours as calculated by economic 
dispatch.  q ( λ ) stands for the dual value. The duality gap will be  J  *     −     q  * , or 

the relative duality gap will be   
J q

q
* *

*
−

.   

 For iteration 1,  q ( λ )   =   0,  j  *    =   40,000, and   
J q

q
* *

*
undefined

− = . In the next 

iteration, the  λ   t   values have been increased as 1.7, 5.2, 11.0, and 3.3. The 
results as well as the relative duality gap for the several iterations are shown 
below. 

 For iteration 2,  q ( λ )   =   14,982,  j  *    =   40,000, and   
J q

q
* *

*
− = 1 67. . 

 For iteration 3,  q ( λ )   =   18,344,  j  *    =   36,024, and   
J q

q
* *

*
− = 0 965. . 

 For iteration 4,  q ( λ )   =   19,214,  j  *    =   28,906, and   
J q

q
* *

*
− = 0 502. . 

 For iteration 5,  q ( λ )   =   19,532,  j  *    =   36,024, and   
J q

q
* *

*
− = 0 844. . 

 For iteration 6,  q ( λ )   =   19,442,  j  *    =   20,170, and   
J q

q
* *

*
− = 0 037. . 

 After 10 iterations,  q ( λ )   =   19,485,  j  *    =   20,017, and   
J q

q
* *

*
− = 0 027. . The 

relative duality gap is still not zero. The solution will not converge to a 
fi nal value. Therefore, a tolerance  ε  for the relative duality gap should be 

 Table 7.12     Iteration 5  

   Hour      λ      u 1      u 2      u 3       P  G1       P  G2       P  G3       Δ  P        PG
ed

1        PG
ed

2       PG
ed

3  

  1    6.8    0    0    0    0    0    0    170    0    0    0  
  2    10.08    0    1    1    0    400    200     − 80    0    320    200  
  3    15.6    1    1    1    600    400    200     − 100    500    400    200  
  4    9.4    0    0    1    0    0    200    130    0    0    200  

 Table 7.13     Iteration 6  

   Hour      λ      u 1      u 2      u 3       P  G1       P  G2       P  G3       Δ  P        PG
ed

1        PG
ed

2       PG
ed

3  

  1    8.5    0    0    1    0    0    200     − 30    0    0    170  
  2    9.92    0    1    1    0    384    200     − 64    0    320    200  
  3    15.4    1    1    1    600    400    200     − 100    500    400    200  
  4    10.7    0    1    1    0    400    200     − 270    0    130    200  
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introduced if the Lagrange relaxation algorithm is used. It means that when 

  
J q

q
* *

*
− ≤ ε the Lagrange relaxation algorithm will be stopped.    

  7.5   EVOLUTIONARY PROGRAMMING - BASED TABU 
SEARCH METHOD 

  7.5.1   Introduction 

 Tabu search (TS) is a powerful optimization procedure that has been success-
fully applied to a number of combinatorial optimization problems. It has the 
ability to avoid entrapment in local minima. The TS method uses a fl exible 
memory system (in contrast to  “ memory - less ”  systems such as simulated 
annealing and genetic algorithm and rigid memory systems such as in branch -
 and - bound). Specifi c attention is given to the short - term memory component 
of TS, which has provided solutions superior to the best obtained with other 
methods for a variety of problems. 

 Research endeavors, therefore, have been focused on effi cient, near - optimal 
UC algorithms, which can be applied to large - scale power systems and have 
reasonable storage and computation time requirements. The major limitations 
of the numerical techniques are the problem dimensions, the large computa-
tional time, and the complexity in programming. 

 The LR approach introduced in the previous section to solve the short - term 
UC problems was found to provide a faster solution but will fail to obtain 
solution feasibility and solution quality problems and becomes complex if the 
number of the units increases. 

 Evolutionary programming (EP) is capable of determining a global or 
near - global solution. It is based on the basic genetic operation of human 
chromosomes. It operates with the stochastic mechanics, which combine off-
spring creation based on the performance of current trial solutions and com-
petition and selection based on the successive generations, from a considerably 
robust scheme for large - scale real - valued combinational optimization. This 
section will introduce the EP - based TS method to solve the unit commitment 
problem.  

  7.5.2   Tabu Search Method 

 The same mathematical model of a UC problem in Section  7.4  is adopted. 
 The UC problem is a combinatorial problem with integer variables and 

continuous variables. It can be decomposed into two subproblems, a combina-
torial problem in integer variables and a nonlinear optimization problem in 
output power variables. The Tabu Search (TS) method is used to solve the 
combinatorial optimization, and the nonlinear optimization is solved via a 
quadratic programming  [14] . The steps of the TS are as follows. 
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  Step (1):     Assume that the fuel costs are fi xed for each hour and all of the 
generators share the loads equally.  

  Step (2):     By optimum allocation, fi nd the initial feasible solution on unit 
status.  

  Step (3):     Demand is taken as the control parameter.  
  Step (4):     Generate the trial solution.  
  Step (5):     Calculate the total operating cost as the summation of running cost 

and startup – shutdown cost.  
  Step (6):     Tabulate the fuel cost for each unit for every hour.    

 About the trial solution, the neighbors should be randomly generated. 
Because of the constraints in the UCP, this is not a simple matter. The most 
diffi cult constraints to satisfy are the minimum up - /downtimes. The TS algo-
rithm requires a starting feasible schedule that satisfi es all of the system and 
units constraints. This schedule is randomly generated. 

 Once a trial solution is obtained, the corresponding total operating cost is 
determined. Since the production cost is a quadratic function, a quadratic 
programming method can be used to solve the subproblem. The startup cost 
is then calculated for the given schedule. The calculation is stopped if the 
following conditions are satisfi ed: 

 •      The load balance constraints are satisfi ed.  
 •      The spinning reserve constraints are satisfi ed.    

 The Tabu list (TL) is controlled by the trial solutions in the order in which 
they are made. Each time a new element is added to the  “ bottom ”  of a list, 
the oldest element on the list is dropped from the  “ top. ”  Empirically, TL sizes, 
which provide good results, often grow with the size of the problem, and 
stronger restrictions are generally coupled with smaller sizes  [14] . The best 
sizes of TL lie in an intermediate range between these extremes. In some 
applications, a simple choice of TL size in a range centered on seven seems to 
be quite effective. 

 Another important criterion of TS arises when the move under consider-
ation has been found to be tabu. Associated with each entry in the TL there 
is a certain value for the evaluation function called the  “ aspiration level. ”  
Normally, the aspiration level criteria are designed to override tabu status if 
a move is  “ good enough ”   [14] .  

7.5.3 Evolutionary Programming 

 Evolutionary programming (EP) is a mutation - based evolutionary algorithm 
applied to discrete search spaces. Real - parameter EP is similar in principle 
to evolution strategy (ES), in which normally distributed mutations are per-
formed in both algorithms. Both algorithms encode mutation strength (or 
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variance of the normal distribution) for each decision variable, and a self -
 adapting rule is used to update the mutation strengths. For the case of evolu-
tionary strategies, Fogel remarks that  “ evolution can be categorized by several 
levels of hierarchy: the gene, the chromosome, the individual, the species, and 
the ecosystem ”   [24 – 26] . Thus, while genetic algorithms stress models of genetic 
operators, ES emphasizes mutational transformation that maintains behav-
ioral linkage between each parent and its offspring at the level of the 
individual. 

 The general EP algorithm is shown below  [15, 24 – 26] . 

  (1)     The initial population is determined by setting

    s S U a b i mi i k k
k= ( ) =~ , , , ,1…     (7.21)  

where

   S  i :    A random vector  
  s  i :    The outcome of the random vector  
  U ( a k  ,  b k  )  k  :    A uniform distribution ranging over [ a k  ,  b k  ] in each of  k  

dimensions  
  m :    The number of parents     

  (2)     Each  s i   is assigned a fi tness score

    ϕ s G F s v i mi i i( ) = ( )( ) =, , , ,1…     (7.22)   

 where  F  maps  s i      →     R  and denotes the true fi tness of  s i  .  v i   represents 
random alteration in the instantiation of  s i  .  G ( F ( s i  ),  v i  ) describes the fi tness 
score to be assigned. In general, the functions  F  and  G  can be as complex 
as required. For example,  F  may be a function not only of a particular 
 s i   but also of other members of the population, conditioned on a 
particular.  

  (3)     Each  s i   is altered and assigned to  s i+m   such that

    s s N s z j ki m i j j i j+ = + ( ) +( ) =, , , , ,0 1β ϕ …     (7.23)   

 where  N (0,  β   j   ϕ ( s i  )   +    z j  ) represents a Gaussian random variable.  β   j   is a 
constant of proportionality of scale  ϕ ( s i  ), and  z j   represents an offset to 
guarantee a minimum amount of variance.  

  (4)     Each  s i   +   m   is assigned a fi tness score

    ϕ s G F s v i mi m i m i m+ + +( ) = ( )( ) =, , , ,1…     (7.24)    

  (5)     For each  s i  ,  i    =   1,  …  , 2 m , a value a value  w i   is assigned according to
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1

0

if

otherwise

ϕ ϕ     (7.26)  

where  c  is the number of competitions.  
  (6)     The solutions  s i  ,  i    =   1,  …  , 2 m  are ranked in descending order of their cor-

responding value  w i  . The fi rst  m  solutions are transcribed along with their 
corresponding values  ϕ ( s i  ) to be the basis of the next generation.  

  (7)     The process proceeds to step (3) unless the available execution time is 
exhausted or an acceptable solution has been discovered.    

 Applying the above mentioned evolutionary programming to unit commit-
ment problem, the calculation steps are shown below. 

  (1)     Initialize the parent vector  p    =   [ p  1 ,  p  2 ,  …  ,  p n  ],  i    =   1, 2,  …  ,  N p   such that 
each element in the vector is determined by  p j      ∼    random( p j   min ,  p j   max ),  j    =   1, 
2,  …  ,  N  with one generator as dependent generator.  

  (2)     Calculate the overall objective function of the UC problem, using the trail 
vector  p i  , and fi nd the minimum of the objective function  F Ti  .  

  (3)     Create the offspring trail solution   ′pi  as follows. 
   (a)     Compute the standard deviation

    σ βj
ij

i
j j

F
F

P P=
( )

⎛
⎝⎜

⎞
⎠⎟ −( )T

Tmin
max min     (7.27)    

  (b)     Add a Gaussian random variable   N j0 2, σ( )  to all of the state variables 
of  p i  , to get   ′pi .    

  (4)     Select the fi rst  N p   individuals from the total 2 N p   individuals of both  p i   
and   ′pi  through evaluating each trail vector by  W pi     =   sum( W x  ), where 
 x    =   1, 2,  …    ,  N p  ,  i    =   1, 2,  …    , 2 N p   such that

    W

F
F Fx

ij

ij ir= +
< ( )⎧

⎨
⎪

⎩⎪

1 0 1

0

, ,

,

if random

otherwise

T

T T     (7.28)    

  (5)     Sort the  W pi   in descending order, and the fi rst  N p   individuals will survive 
and be transcribed along with their elements to form the basis of the next 
generation.  

  (6)     Back to step 2 until a maximum number of generations  N m   is 
reached.     
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7.5.4 EP-Based TS for Unit Commitment 

 In the TS technique for solving the UC problem, the initial operating schedule 
status in terms of maximum real power generation of each unit is given as 
input. As we know that TS is used to improve any given status by avoiding 
entrapment in local minima, the offspring obtained from the EP algorithm is 
given as input to TS, and the refi ned status is obtained. Considering the fea-
tures of EP and TS algorithms, the EP - based TS method is used for solving 
unit commitment problem. 

   (1)     Get the demand for 24 hours and number of iterations to be carried out.  
   (2)     Generate a population of parents ( N ) by adjusting the existing solution 

to the given demand to the form of state variables.  
   (3)     Unit downtime makes a random recommitment.  
   (4)     Check for constraint in the new schedule by TS. If the constraints are not 

met, then repair the schedule. A repair mechanism to restore the feasibil-
ity of the constraints is applied and described as follows:  
 •      Pick at random one of the OFF units at one of the violated hours.  
 •      Apply the rules in Section  7.5.2  to switch the selected unit from OFF 

to ON, keeping the feasibility of the downtime constraints.  
 •      Check for the reserve constraints at this hour. Otherwise, repeat the 

process at the same hour for another unit.    
   (5)     Solve the master problem of UC and calculate total production cost for 

each parent.  
   (6)     Add the Gaussian random variable to each state variable and, hence, 

create an offspring. This will further undergo some repair operations. 
After these, the new schedules are checked in order to verify that all 
constraints are met.  

   (7)     Improve the status of the evolved offspring, and verify the constraints 
by TS.  

   (8)     Formulate the rank for the entire population.  
   (9)     Select the best  N  number of population for next iteration.  
   (10)     Has the iteration count been reached? If yes, go to step 11; otherwise, go 

to step (2).  
   (11)     Select the best population (s) by evolutionary strategy.  
   (12)     Print the optimum schedule.      

7.6 PARTICLE SWARM OPTIMIZATION FOR UNIT COMMITMENT 

7.6.1 Algorithm

 Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart 
in 1995  [23]  as an alternative to GAs. The PSO technique has turned out to 
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be a competitor in the fi eld of numerical optimization ever since. Similar to 
GA, a PSO consists of a population refi ning its knowledge of the given search 
space. PSO is inspired by particles moving around in the search space. The 
individuals in a PSO thus have their own positions and velocities. These indi-
viduals are denoted as particles. Traditionally, PSO has no crossover between 
individuals and has no mutation, and particles are never substituted by other 
individuals during the run. Instead, the PSO refi nes its search by attracting the 
particles to positions with good solutions. Each particle remembers its own 
best position found so far in the exploration. This position is called the per-
sonal best and is denoted by   Pt

bi in equation  (7.29) . Additionally, among these 
  Pt

bi, there is only one particle that has the best fi tness, called the global best, 
which is denoted by   Pt

gbi  in equation  (7.29) . The velocity and position update 
equations of PSO are given by

    V wV C r P X C r P Xi
t

i
t t

i
t t

i
t= + × × −( ) + × × −( )− − − − −1

1 1
1 1

2 2
1 1

bi gbi     (7.29)  

    X X V i Ni
t

i
t

i
t= + =−1 1, ,… D     (7.30)  

where

  w:    The inertia weight  
  C  1 ,  C  2 :    The acceleration coeffi cients  
  N  D :    The dimension of the optimization problem (number of decision 

variables)  
  r  1 ,  r  2 :    Two separately generated uniformly distributed random numbers 

between 0 and 1  
  X :    The position of the particle  
  V i  :    The velocity of the  i th dimension    

 PSO has the following key features compared with the conventional opti-
mization algorithms. 

   •      It only requires a fi tness function to measure the  “ quality ”  of a solution 
instead of complex mathematical operations like gradient, Hessian, or 
matrix inversion. This reduces the computational complexity and relieves 
some of the restrictions that are usually imposed on the objective function 
like differentiability, continuity, or convexity.  

   •      It is less sensitive to a good initial solution since it is a population - based 
method.  

   •      It can be easily incorporated with other optimization tools to form hybrid 
ones.  

   •      It has the ability to escape local minima since it follows probabilistic 
transition rules.    
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 More interesting PSO advantages can be emphasized when compared to 
other members of evolutionary algorithms like the following. 

   •      It can be easily programmed and modifi ed with basic mathematical and 
logic operations.  

   •      It is inexpensive in terms of computation time and memory.  
   •      It requires less parameter tuning.  
   •      It works with direct real - valued numbers, which eliminates the need to 

do binary conversion of a classical canonical genetic algorithm.    

 The simplest version of PSO lets every individual move from a given point 
to a new point that is a weighted combination of the individual ’ s best position 
ever found and of the individual ’ s best position,   Pt

bi. The choice of the PSO 
algorithm ’ s parameters (such as the inertia weight) seems to be of utmost 
importance for the speed and effi ciency of the algorithm. 

 If economic power dispatch (EPD) is also considered in the unit commit-
ment, a hybrid PSO (HPSO) can be used  [20] . The blending real - valued PSO 
(solving EPD) with binary - valued PSO (solving UC) are operated indepen-
dently and simultaneously. The binary PSO (BPSO) is made possible with a 
simple modifi cation to the particle swarm algorithm. This BPSO solves binary 
problems similar to the traditional method. In binary particle swarm  X i   and 
  Pt

bi can take on values of 0 or 1 only. The velocity  V i   will determine a probability 
threshold. If  V i   is higher, the individual is more likely to choose 1, and lower 
values favor the 0 choice. Such a threshold needs to stay in the range [0.0, 1.0]. 
One straightforward function for accomplishing this is common in neural 
networks. The function is called the sigmoid function and is defi ned as follows:

    s V
V

i
i

( ) =
+ −( )

1
1 exp

    (7.31)   

 The function squashes its input into the requisite range and has properties 
that make it agreeable for use as a probability threshold. A random number 
(drawn from a uniform distribution between 0.0 and 1.0) is then generated, 
whereby  X i   is set to 1 if the random number is less than the value from the 
sigmoid function, that is,

    X
r s V

i
i=

< ( ){1

0

,

,

if

otherwise
    (7.32)   

 In the UC problem,  X i   represents the on or off state of generator  i . To 
ensure that there is always some chance of a bit fl ipping (on and off of genera-
tors), a  V  max  constant the start of a trial to limit the range of  V i  . A large  V  max  
results in a low frequency of changing state of generator, whereas a small value 
increases the frequency of on/off of a generator.  



PARTICLE SWARM OPTIMIZATION FOR UNIT COMMITMENT 271

  7.6.2   Implementation 

 The mathematical model of the UC problem, which is described in Section 
 7.4 , can be expressed as the general form:

    min f x( )     (7.33)  

such that

    h x j mj( ) = =0 1, ,…     (7.34)  

    g x i ki( ) ≥ =0 1, ,…     (7.35)   

 To handle the infeasible solutions, the cost function is used to evaluate a 
feasible solution, that is,

    Φ f x f x( ) = ( )     (7.36)   

 The constraint violation measure  Φ   u  ( x ) for the  r    +    m  constraints are usually 
defi ned as

    Φu i
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where

    g xi
+( ) :    The magnitude of the violation of the  i th inequality constraint  

   h xj
+( ) :    The magnitude of the violation of the  j th equality constraint  

  r :    The number of inequality constraints  
  m :    The number of equality constraints    

 Then the total evaluation of an individual  x , which can be interpreted as 
the error (for a minimization problem) of an individual  x , is obtained as

    Φ Φ Φx x xf u( ) = ( ) + ( )γ     (7.39)  

where  γ  is a penalty parameter of a positive (or negative) constant for the 
minimization (or maximization) problem, respectively. By associating a 
penalty with all constraint violations, a constrained problem is transformed 
into an unconstrained problem such that we can deal with candidates that 
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violate the constraints to generate potential solutions without considering the 
constraints. 

 According to equation  (7.39) , we formulate the objective of the UC problem 
as a combination of total production cost as the main objective with power 
balance and spinning reserve as inequality constraints; then we get
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 (7.40)   

 The penalty factor  γ  is computed at the  k th generation defi ned by

    γ γ= + +( )0 1log k     (7.41)   

 The choice of  γ  determines the accuracy and speed of convergence. From 
the experiment, a greater value of  γ  increases its speed and convergence rate. 
For this reason, a value of 100 for  γ  0  is selected. The pressure on the infeasible 
solution can be increased with the number of generations, as discussed in the 
Kuhn – Tucker optimality theorem, and the penalty function theorem provides 
guidelines to choose the penalty term. In equation  (7.40) , C 1  is set to 1 if a 
violation to constraint  (7.9)  occurs and C 1    =   0 whenever equation  (7.9)  is not 
violated. Similarly, C 2  is also set to 1 whenever a violation of equation  (7.11)  
is detected, and it remains 0 otherwise. 

 Substituting equation  (7.8)  into equation  (7.40) , we get

   

Φ x F P x F t x

C P P x

i i
t

i
t

si i
t

i

n

t

T

t
i

t
i
t

i

n

( ) = ( ) + ( )[ ]

+ −

==

=

∑∑ G

D G

11

1
12

γ ∑∑ ∑∑ ⎛
⎝⎜

⎞
⎠⎟
+ + −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

= (

==

2

2
1

2

1

C P P P x

F P

t t
i

t
i
t

i

n

t

T

i i
t

D R G

G

max

)) + ( )[ ]⎧
⎨
⎩

+ −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

== =
∑∑ ∑F t x C P P xi

t

i

n

t

T
t

i
t

i
t

i

n

si D G
11

1
1

2

2
γ

++ + −⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪=
∑C P P P xt t

i
t

i
t

i

n

2
1

2

D R G max     (7.42)   

 Equation  (7.42)  is the fi tness function for evaluating every particle in the 
population of PSO for time period  T . The initial values of power are generated 
randomly within the power limits of a generator. As particles explore the 
searching space, starting from initial values, which are generated randomly 
within the power limit as shown in equation  (7.10) , they do encounter cases 
whereby the power generated exceeds the boundary (minimum or maximum 
capacity) and therefore violate the constraint in equation  (7.10) . To avoid the 
boundary violation, we reinitialize the value whenever it is greater than the 
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maximum capacity or smaller than the minimum capacity of a generator. 
Again, the reinitialization is done within the power limits of a generator. 

 The minimum - up and minimum - down time can be easily handled. As the 
solution is based upon the best particle (  Pt

gbi ) in the history of the entire 
population, constraints are taken care of by forcing the binary value in   Pt

gbi  
to change its state whenever either the minimum up or the minimum down 
constraint is violated. However, this may change the current fi tness, which is 
evaluated with equation  (7.42) . It implies that the current   Pt

gbi  might no longer 
be the best among all the other particles. To avoid this situation, the   Pt

gbi  will 
be revaluated with the same equation. Ramping can be incorporated by adding 
the ramping cost into the total production cost in equation  (7.8) .   

  7.7   ANALYTIC HIERARCHY PROCESS 

 The classical UC problem is aimed at determining the startup and shutdown 
schedules of thermal units to meet forecasted demand over certain time 
periods (24   h to 1 week) and belongs to a class of combinatorial optimization 
problems. The previous sections introduced several methods. 

 Although these techniques are effective for the problem posed, they do not 
handle network constraints and bidding issues. This section addresses future 
UC requirements in a deregulated environment where network constraints, 
reliability, value of generation, and variational changes in demands and other 
costs may be factors. 

 The classical UC Lagrange method cannot solve this problem because of 
combinatorial explosion. Accordingly, as an initial approach to solve this 
complex problem, we attempt to fi nd a method for solving UC considering 
network limitation and generation bids as a daily operational planning problem. 
This approach supports the decision making effectively of ranking units in 
terms of their values by using the analytic hierarchy process (AHP) and the 
analytic network process (ANP) techniques. The scheduled generation over 
time is studied as input into the optimal power fl ow (OPF) problem for 
optimal dispatch within the network and generation constraint. The OPF 
problem is deeply discussed in Chapter  8 . 

  7.7.1   Explanation of Proposed Scheme 

 The basic concept of proposed optimal generation scheduling is as follows. 
 First, it is assumed that the ranking of generating units, and their priority 

as well as demand, is known. As a result, the preferred generators for com-
petitive scheduling and pricing will be known. Therefore, the number of 
generators whose fuel consumption constraints must be considered can be 
reduced considerably. This reduces the diffi culties of unit commitment and 
optimal power fl ow. The proposed scheme addresses adequate ranking and 
prioritizing of units before optimizing the pricing of generation units to meet 
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a given demand. By incorporating the interaction of factors such as load 
demand, generating cost curve, bid/sale price, unit up/down cost, and the 
relative importance of different generation units, the scheme can be imple-
mented to address the technical and nontechnical constraints in the unit com-
mitment problem. This information is easily augmented with the optimization 
scheme for effective optimal decisions. The scheme consists of the three fol-
lowing stages: 

  (1)     Ranking of units in terms of their values by AHP/ANP  
  (2)     Checking the constraints by rule – based method  
  (3)     Solving optimization problem by interior point optimal power fl ow    

 Next, for all generators committed, the network availability for transfer 
power, the constraints on startup and shutdown, and generated output 
and reserve are determined for daily operational planning. In the daily UC 
calculation, a Lagrange method is used without network constraints. Since 
the majority of connected generators include network constraints, and 
other equipment limitation to ensure feasibility, an OPF technique based 
on the modifi ed quadratic interior point (MQIP) method  [27]  is adopted 
for solving the resulting optimal generation scheduling problem. This gives 
the proposed scheme a signifi cant advantage over classical heuristic or 
Lagrange methods. Further work to evaluate this technique is ongoing for 
multiutility areas where reliability and stability constraints on the networks 
are requirements. 

 According to the above discussion, the scheme for optimal generation 
scheduling can be represented as in Figure  7.1 .    

Use AHP/ANP to 
rank generator units 

Use AHP/ANP to 
rank generator units 

Get ranked 
results

Input data 
from files 

Solve the resulting problem 
with the MQIP algorithm 

Schedule units 
for time t∈T

     FIGURE 7.1     Scheme for optimal generation scheduling  
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  7.7.2   Formulation of Optimal Generation Scheduling 

  7.7.2.1   Objective Functions     In general, in UC problems, the objective 
function to be minimized is the sum of the operation and startup costs. First, 
the fuel cost of the generation is a function of its output  P i  . 

 For simplicity, we assume that the generation production cost is a quadratic 
function. Thus the total generation cost can be expressed as

    F P t a P t b P t cg gi i gi i gi i
i

NG

( )( ) = ( ) + ( ) +( )
=
∑ 2

1

    (7.43)  

where  P  gi ( t ) is the real power output of the  i th generator in period  t . 
  P  gi ( t ) is assumed to be within the maintenance schedule, i.e., considered to 

be at an acceptable effi ciency to meet the prescribed load. It should be noted 
that machines being committed are not operating at 100% effi ciency because 
of imperfect operating conditions and aging. 

 The startup cost, on the other hand, increases with shutdown time of gen-
erator. We assume that the boiler and turbine cool down after shutdown and 
the cost of preheating increases with shutdown time and is embedded in  F  Si ( t ) 
(startup cost of generator  i  at time  t ). 

 Therefore, if the number of generators is  NG  and the duration of the period 
under consideration is  T , the objective function is

    min F a P t b P t c F t x ti i i i i i
t

T

i

NG
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    (7.44)    

  7.7.2.2   Constraints     The constraints can be classifi ed as coupling con-
straints and local constraints. The coupling constraints are related to all 
generators (in service) under consideration, regardless of age or effi ciency, 
and the following are considered. 

  7.7.2.2.1   Demand - Supply Balance Constraint     The sum of the generator 
outputs must be equal to the demand  P  D ( t )

    x t P t P ti i
i

NG

( ) ( )( ) = ( )
=
∑ g D

1

    (7.45)   

 Again,  x i  ( t ) is a 0 – 1 variable expressing the state, i.e., (0: shutdown, 1: startup) 
of the  i th generator in period  t .  

  7.7.2.2.2   Reserve Power Constraint     To deal with unpredictable distur-
bances (interruption of generation and transmission lines or unexpected 
increase in demand), the output of generators in operation must increase, and 
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hence the instantaneous reserve power shown in the equation below must be 
required

    X t r t R ti i
i

NG

s s S( ) ( )( ) ≥ ( )
=
∑

1

    (7.46)  

where  r si  ( t ) is the contribution of unit  i  to spinning reserve at hour  t , and  R  s ( t ) 
is the operational reserve requirement at period  t .  

  7.7.2.2.3   Generator Output Constraint     When the generator is in the midst 
of startup, its output must be between the upper limit  P  g   i   max  and the lower limit 
 P  g   i   min .

    x t P P t x t Pi i i i i( ) ≤ ( ) ≤ ( )g g gmin max     (7.47)   

 For unit ramp rate conditions

    P t P t UP ii i ig g g for unit ramp up of unit( ) − −( ) ≤1 ;     (7.48)  

    P t P t DR ii i ig g g for unit ramp down of unit−( ) − ( ) ≤1 ;     (7.49)   

 For each selected generator for bid. 
 The constraint on bid price for unit  i  at period  t  is

    B t BP t i NGi ig g( ) > ( ) ∈min ;     (7.50)  

where  B  g   i  ( t ) is the bid price of unit  i  at time  t .   

  7.7.2.3   Network Limitation     To account for network limitation during UC 
dispatch, the network and operation constraints are specifi ed as additional 
constraints below. 

  Power Flow Equation:  
 The power fl ow equations at bus  i  with losses are given as

    P t P t F V ti i ig d p( ) − ( ) = ( ), ,θ     (7.51)  

    Q t Q t F V ti i ig d q( ) − ( ) = ( ), ,θ     (7.52)  

where
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    (7.53)  

    F t V t V t Yi i j ij i j ij
j
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∑ sin θ θ δ

1
    (7.54)   
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 The transformer taps in the circuit within limits to minimum loss or voltage 
deviation

    T T t Ti i imin max≤ ( ) ≤     (7.55)  

where

   T i   min :    The minimum tap ratio of the transformer  
  T i   max :    The maximum tap ratio of the transformer    

 The minimum operation time and minimum shutdown due to fatigue limit 
of the generator are

    t t tiupmin upmax≤ ≤     (7.56)  

    t t tidownmin downmax≤ ≤     (7.57)   

 The limits on line fl ow are defi ned as
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    (7.58)  

where

   Z  L :    The impedance of the transmission line  
  I  Lmax :    The maximum current limit of the transmission line    

 Also, each generator is also required to maintain one of the following 
generator limits for reactive power constraints:

    x t Q Q t x t Qi i i i i( ) ≤ ( ) ≤ ( )g g gmin max     (7.59)  

    V t V t P ti i ig g gmin max( ) ≤ ( ) ≤ ( )     (7.60)  

and for load buses, we have the following constraint:

    V t V t P ti i id d dmin max( ) ≤ ( ) ≤ ( )     (7.61)   

 The problem posed can be solved by many optimization methods such as 
Lagrange relaxation methods, heuristic rules, and optimal power fl ow with 
decomposition techniques. The Lagrange method utilizes the following primal 
problem: 

 Given

    Min g sF x t P t F ti i i( ) ( ) ( )( ), ,     (7.62)  
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s.t.

   1)     local coupling constraints  (7.45)  to  (7.49) ;  
  2)     power fl ow constraints  (7.51)  and  (7.54) , given as    

  g i  ( x i  ( t ),  P  g   i  ( t ))    ≤    0,  i    =   1;  …  ;  NG . 

 The function  F  expresses the sum of fuel consumption and startup cost. 
Using the Lagrange multiplier, we determine  λ  and  μ , which are introduced 
in the Lagrange function as follows:
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 (7.63)   

 This is usually converted to a dual problem where

    max min , , ,L gx t P t t ti i( ) ( ) ( ) ( )[ ]{ }λ μ     (7.64)  

s.t.

    g gi i ix t P t( ) ( )( ) ≤, 0     (7.65)   

 To include the network constraints and bidding of generators, a new UC –
 based OPF/AHP is proposed  [7] . Namely, we solve for the UC problem over 
time, using OPF to account for the network voltage, transformer, and fl ow 
constraints. Application of the MQIP optimization method solves for the 
optimal operating point at each time period. The second phase of the algo-
rithm uses AHP/ANP to determine the value and merit of each generation 
bid to be submitted for commitment.   

  7.7.3   Application of  AHP  to Unit Commitment 

  7.7.3.1    AHP  Algorithm     The AHP is a decision - making approach  [28 – 30] . 
It presents the alternatives and criteria, evaluates trade - off, and performs a 
synthesis to arrive at a fi nal decision. AHP is especially appropriate for cases 
that involve both qualitative and quantitative analysis. The ANP is the exten-
sion of AHP. It makes decisions when alternatives depend on criteria with 
multiple interactions. 

 The steps of the AHP algorithm may be written as follows: 

  Step 1:     Set up a hierarchy model.  
  Step 2:     Form a judgment matrix. 
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 The value of elements in the judgment matrix refl ects the user ’ s knowledge 
about the relative importance between every pair of factors.  

  Step 3:     Calculate the maximal eigenvalue and the corresponding eigenvector 
of the judgment matrix.  

  Step 4:     Hierarchy ranking and consistency check of results.    

 We can perform the hierarchy ranking according to the value of elements 
in the eigenvector, which represents the relative importance of the corre-
sponding factor. The consistency index of a hierarchy ranking  CI  is defi ned as

    CI
n

n
= −

−
λmax

1
    (7.66)  

where  λ  max  is the maximal eigenvalue of the judgment matrix and  n  is the 
dimension of the judgment matrix. 

 The stochastic consistency ratio is defi ned as:

    CR
CI
RI

=     (7.67)  

where  RI  is a set of given average stochastic consistency indices and  CR  is the 
stochastic consistency ratio. 

 For matrices with 1 – 9 dimension, respectively, the values of  RI  will be as 
below.

   n :    1    2    3    4    5    6    7    8    9  
   RI     0.00    0.00    0.58    0.90    1.12    1.24    1.32    1.41    1.45  

 It is obvious that a matrix with 1 or 2 dimension is not necessary to check 
the stochastic consistency ratio. Generally, the judgment matrix is satisfi ed if 
the stochastic consistency ratio CR    <    0.10. 

 It is possible to precisely calculate the eigenvalue and the corresponding 
eigenvector of a matrix, but this would be time - consuming. Moreover, it is not 
necessary to precisely compute the eigenvalue and the corresponding eigen-
vector of the judgment matrix. The reason is that the judgment matrix, which 
is formed by the subjective judgment of the user, itself has some range of error. 
Therefore, the following two approximate approaches are adopted to compute 
the maximal eigenvalue and the corresponding eigenvector.

  (A) Root Method 

  (1)     Multiply all elements of each row in the judgment matrix

    M X i n j ni i ij= = =Π , , , ; , ,1 1… …     (7.68)  
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where

   n :    The dimension of the judgment matrix  A   
  X ij  :    An element in the judgment matrix  A      

  (2)     Calculate the  n th root of  M i  

    W M i ni i
n* , , ,= = 1…     (7.69)   

 We can obtain the vector

    W W W Wn
T* [ *, *, , *]= 1 2 …     (7.70)    

  (3)     Normalize the vector  W  * 
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    (7.71)   

 In this way, we obtain the eigenvector of the judgment matrix  A , 
that is,

    W W W Wn
T= [ ]1 2, , ,…     (7.72)    

  (4)     Calculate the maximal eigenvalue  λ  max  of the judgment matrix

    λmax , ,=
( )

=
=
∑
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nW
j nj

ii

n

1

1…     (7.73)   

 Where (AW)  i   represents the  i th element in vector AW.    

   Example 7.4 

 Compute the maximal eigenvalue  λ  max  and the corresponding eigenvector 
for the following judgment matrix.

    A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 5 1 3

5 1 3

3 1 3 1

  

 The calculation steps of root method are as follows.
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   (1)     Multiply all elements of each row in the judgment matrix

    M1 1
1
5

1
3

1
15

0 067= × × = = .  

    M2 5 1 3 15= × × =  

    
M3 3

1
3

1 1= × × =
   

  (2)     Calculate the  n th root of  M i  

    W M1 1
3 3 0 067 0 405* . .= = =  

    W M2 2
3 3 15 2 466* .= = =  

    W M3 3
3 3 1 1* = = =   

 We can obtain the vector 

    W W W W* [ *, *, *] . , . ,= = [ ]1 2 3 0 405 2 466 1T T   

  (3)     Normalize the vector  W  * 

    Wj
j

* . . .
=
∑ = + + =

1

3

0 405 2 466 1 3 871  

    W
W

Wj
j

1
1

1

3

0 405
3 871

0 105= = =

=
∑

*

*

.

.
.  

    W
W

Wj
j

2
2

1

3

2 466
3 871

0 637= = =

=
∑

*

*

.

.
.  

    W
W

Wj
j

3
3

1

3

1
3 871

0 258= = =

=
∑

*

*
.

.   

 The eigenvector of the judgment matrix  A  is obtained, that is,

    W W W W= [ ] = [ ]1 2 3 0 105 0 637 0 258, , . , . , .T T    
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  (4)     Calculate the maximal eigenvalue  λ  max  of the judgment matrix

    AW =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 5 1 3

5 1 3

3 1 3 1

0 105

0 637

0 258

.

.

.

 

    
AW1 1 0 105

1
5

0 637
1
3

0 258 0 318= × + × + × =. . . .
 

    AW2 5 0 105 1 0 637 3 0 258 1 936= × + × + × =. . . .  

    
AW3 3 0 105

1
3

0 637 1 0 258 0 785= × + × + × =. . . .
 

    
λmax

.
.

=
( )

=
( )

+
( )

+
( )

=
×

=
∑

AW

nW
AW

W
AW

W

AW

W
j

ii

n

1

1

1

2

2

3

33 3 3

0 318
3 0 105

++
×

+
×

=
1 936

3 0 637
0 785

3 0 258
3 037

.
.

.
.

.

      

  (B) Sum Method 

  (1)     Normalize every column in the judgment matrix

    X
X

X
i j nij

ij

kj
k

n
* , , ,= =

=
∑

1

1…     (7.74)   

 Now the judgment matrix  A  is changed into a new matrix  A  * , in 
which each column has been normalized.  

  (2)     Add the all elements of each row in matrix  A  * 

    W X i ni ij
j

n

* , , ,= =
=
∑

1

1…     (7.75)    

  (3)     Normalizing the vector  W  * , we have

    W
W

W
i ni

i

j
j

n= =

=
∑

*

*
, ,

1

1…     (7.76)   

 Hence, we obtain the eigenvector of the judgment matrix  A ,

    W W W Wn
T= [ ]1 2, , ,…     (7.77)    
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  (4)     Calculate the maximal eigenvalue  λ  max  of the judgment matrix

    λmax , ,=
( )

=
=
∑

AW

nW
j nj

ii

n

1

1…     (7.78)   

 Where ( AW )  i   represents the  i  - th element in vector AW.    

   Example 7.5 

 The judgment matrix  A  is the same as in Example 7.4. Compute the maximal 
eigenvalue  λ  max  and the corresponding eigenvector with the sum method. 
The calculation steps are as follows. 

  (1)     Normalize every column in the judgment matrix.

    Xk
k

1
1

3

1 5 3 9
=
∑ = + + =  

    X
X

Xk
k

11
11

1
1

3

1
9

0 111* .= = =

=
∑

 

    X
X

Xk
k

21
21

1
1

3

5
9

0 556* .= = =

=
∑

 

    X
X

Xk
k

31
31

1
1

3

3
9

0 333* .= = =

=
∑

 

    Xk
k

2
1

3 1
5

1
1
3

1 533
=
∑ = + + = .  

    X
X

Xk
k

12
12

2
1

3

0 2
1 533

0 130* .
.

.= = =

=
∑

 

    X
X

Xk
k

22
22

2
1

3

0 2
1 533

0 652* .
.

.= = =

=
∑

 

    X
X

Xk
k

32
32

2
1

3

0 333
1 533

0 217* .
.

.= = =

=
∑
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    Xk
k

3
1

3 1
3

3 1 4 333
=
∑ = + + = .  

    X
X

Xk
k

13
13

3
1

3

0 333
4 333

0 077* .
.

.= = =

=
∑

 

    X
X

Xk
k

23
23

3
1

3

3
4 333

0 692*
.

.= = =

=
∑

 

    X
X

Xk
k

33
33

3
1

3

1
4 333

0 231*
.

.= = =

=
∑

  

 Now the judgment matrix  A  is changed into a new matrix  A  * , in which 
each column has been normalized.

    A*

. . .

. . .

. . .

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 111 0 130 0 077

0 556 0 652 0 692

0 333 0 217 0 231

   

  (2)     Add the all elements of each row in matrix  A  * 

    W X j
j

1 1
1

3

0 111 0 130 0 077 0 317* * . . . .= = + + =
=
∑  

    W X j
j

2 2
1

3

0 556 0 652 0 692 1 900* * . . . .= = + + =
=
∑  

    W X j
j

3 3
1

3

0 333 0 217 0 231 0 781* * . . . .= = + + =
=
∑    

  (3)     Normalizing the vector  W  * , we have

    Wj
j

* . . . .
=
∑ = + + =

1

3

0 317 1 900 0 781 2 998  

    W
W

Wj
j

1
1

1

3

0 317
2 998

0 106= = =

=
∑

*

*

.

.
.  
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    W
W

Wj
j

2
2

1

3

1 900
2 998

0 634= = =

=
∑

*

*

.

.
.  

    W
W

Wj
j

3
3

1

3

0 781
2 998

0 261= = =

=
∑

*

*

.

.
.   

 The eigenvector of the judgment matrix  A  is obtained as below:

    W W W W= [ ] = [ ]1 2 3 0 106 0 634 0 261, , . , . , .T T    

  (4)     Calculate the maximal eigenvalue  λ  max  of the judgment matrix

    AW =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 5 1 3

5 1 3

3 1 3 1

0 106

0 634

0 261

/ /

/

.

.

.

 

    AW1 1 0 106
1
5

0 634
1
3

0 261 0 320= × + × + × =. . . .  

    AW2 5 0 106 1 0 634 3 0 261 1 941= × + × + × =. . . .  

    
AW3 3 0 106

1
3

0 634 1 0 261 0 785= × + × + × =. . . .
 

    
λmax

.
.

=
( )

=
( )

+
( )

+
( )

=
×

=
∑

AW

nW
AW

W
AW

W

AW

W
j

ii

n

1

1

1

2

2

3

33 3 3

0 320
3 0 106

++
×

+
×

=
1 941

3 0 634
0 785

3 0 261
3 036

.
.

.
.

.

       

 It is noted from examples 7.4 and 7.5 that the root method and the sum 
method can achieve similar results.  

  7.7.3.2    AHP  - Based Unit Commitment     According to the theory of AHP/
ANP, the following AHP/ANP model in Figure  7.2  is devised to handle ranking 
of the generator units.   

 The hierarchical network model of units ranking consists of three 
sections: 

  (1)     The unifi ed ranking of units  
  (2)     The ranking criteria or performance indices, in which the  PI C   refl ects 

the relative importance of units  
  (3)     The generating units G 1 ,  …  , G m     
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 The performance indices PI G , PI S , and PI b  are defi ned as

    PI
F P ti i

G
g g

=
( )( )

1
    (7.79)  

    PI
F ti

S
S

=
( )

1
    (7.80)  

    PI
BP tgi

b =
( )

1
    (7.81)   

 The four ranking criteria  PI  G ,  PI  S ,  PI  b , and  PI  C  are interacted. The basic 
principle of AHP/ANP is to calculate the eigenvector of the alternatives for 
each criterion. For qualitative factors such as the relative importance of units 
and criteria, the corresponding eigenvectors can be obtained by computing the 
judgment matrix. The judgment matrix can be formed based on some scaling 
method such as the 9 - scaling method. For two performance indices A and B, 
their relationship can be expressed as follows if the 9 - scaling method is used. 

 If both performance indices A and B are equally important, then the scaling 
factor will be  “ 1. ”  

 If performance index A is slightly more important compared with perfor-
mance index A B, then the scaling factor of A to B will be  “ 3. ”  

 If performance index A is more important than performance index B, then 
the scaling factor of A to B will be  “ 5. ”  

 If performance index A is far more important than performance index B, 
then the scaling factor of A to B will be  “ 7. ”  

 If performance index A is extremely important compared with performance 
index B, then the scaling factor of A to B will be  “ 9. ”  

Unified Rank

PIG PIC

PIS PIb

Unit G1 Unit G2 Unit Gm…

     FIGURE 7.2     Hierarchical network model of units rank  
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 Naturally,  “ 2, ”   “ 4, ”   “ 6, ”   “ 8 ”  are the median of both neighboring judgments, 
respectively. 

 With the above 9 - scaling, the judgment matrix for representing the relative 
importance of four criteria is given as Table  7.14 .   

 The ranking results of units for each time stage will be obtained from AHP/
ANP calculation. The list of unit ranking shows the priority of units to be 
committed at each time stage. However, it has not considered the constraints 
such as system real power balance and system spinning reserve requirement. 
This chapter adopts the rule - based method to solve this problem. 

 AHP/ANP is used to decide total ranking of all units for each time stage, 
and rule - based system decides the commitment state of units according to the 
system power balance and system spinning reserve requirement. So the fi nal 
unit commitment results are obtained through the communication between 
AHP/ANP ranking and rule – based constraints checking. 

 As mentioned above, the priority ranking of all units for each time stage 
can be obtained by AHP/ANP. This priority rank considers the nontechnical 
constraints and nonquantitative factors, but it does not involve the constraints 
of power balance and reserve requirements in the unit commitment. Therefore, 
the rule - based method is used to coordinate this problem. The implementation 
steps of the rule - based unit commitment are as follows.

   Step 1:     Select the number 1 unit from the priority rank of units at hour  t .  
  Step 2:     Check the constraints of the ramp up/down of the unit.  
  If the constraints are satisfi ed, go to step 4.  
  Step 3:     If the constraints of the ramp up/down of the unit are not satisfi ed, 

discard this unit at hour t . Select the next unit from the priority rank of 
units, and go to step 2.  

  Step 4:     Check the power balance. If system power can be balanced, go to step 
5. Otherwise, add one more unit according to the priority of units, and go 
to step 2.  

  Step 5:     Check the spinning reserve at hour  t . If the system has enough spinning 
reserve, go to the next step. Otherwise, add one more unit according to 
the priority rank of units, and go to step 2.  

  Step 6:     Stop. All units that were not selected as well as those that have been 
discarded in the selection will not be committed at hour t . The other units 
will be committed at hour t .     

Table 7.14 Judgment matrix A–PI

A       PIG       PIS       PIb       PIC

PIG   1    3    1    3  
PIS   1/3    1    1/2    1/2  
PIb   1    1/2    1    2  
PIC   1/3    2    1/2    1  
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  7.7.3.2   Mathematical Demonstration of  AHP      It is noted that the AHP 
method relies highly on the judgment matrix, which is formed according to 
the experiences of the users using the some scaling method. It is possible that 
consistency is not obtained. The higher the order of the judgment matrix, the 
more serious this problem becomes. In this case, a series of problems must be 
answered, as follows: 

   (A)     Does there exist a single maximal eigenvalue of the judgment?  
   (B)     Are all the components of the eigenvector of the judgment matrix 

corresponding to the maximal eigenvalue positive?  
   (C)     Is it necessary to check the consistency of the judgment matrix?    

  7.7.3.2.1   Maximal Eigenvalue and Corresponding Eigenvector of Judgment 
Matrix     To answer these questions, let us calculate the maximal eigenvalue 
and corresponding eigenvector of the judgment matrix. 

 Generally, the judgment matrix  A  has the following characteristics:

    

a

a
a

i j

a i j n

ij

ji
ij

ii

>

= ≠

= =

0

1

1 1 2

,

, , , ,…

    (7.82)  

where

  a  ij  :    The element of the judgment matrix  A   
  n :    The dimension of the judgment matrix    

 Obviously, judgment matrix  A  is positive. Naturally, it is also a nonnegative 
and irreducible matrix  [31, 32] . 

 According to Reference  [33] , we can prove that the judgment matrix is 
primitive  [31] . Therefore, judgment matrix  A  has a largest positive eigenvalue 
 λ  max , which is unique, and the eigenvector  W  of matrix  A  corresponding to 
the maximal eigenvalue  λ  max  has positive components and is essentially 
unique by the theorem of Perron – Frobenius and the properties of the judg-
ment matrix  [31] .  

  7.7.3.2.2   Consistency of Judgment Matrix     We fi rst give the defi nition of 
the consistency matrix. 

  Defi nition : We say matrix  A    =   [ a ij  ] is consistent if there exist   a
a
a

ij
ik

jk

= , for all  i , 
 j  and  k . 

 If a positive matrix  A  is consistent, it has the following properties: 
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   (a)        a
a

a i j n

ij
ji

ii

=

= =

1

1 1 2, , , ,…

    (7.83)    

   (b)     The transposition of  A  is also consistent.  
   (c)     Each row in  A  can be obtained by multiplying any row by a positive 

number.  
   (d)     The maximal eigenvalue of  A  is  λ  max    =   n. The other eigenvalues of A 

are all zero.  
   (e)     If the eigenvector of  A  corresponding to the largest eigenvalue  λ  max  is 

 X    =   [ X  1 ,  X  2 ,  …   X n  ]  T  ,

    a
X
X

i j nij
i

j

= =; , , , ,1 2 …     (7.84)      

 Now, we discuss the case that the elements of the positive consistent matrix 
are perturbed but still satisfy property (a). Obviously, the judgment matrix, 
which we presented in this section, is such a case. 

 Suppose the eigenvector of the judgment matrix  A  corresponding to the 
maximal eigenvalue  λ  max  is  W    =   [ W  1 ,  W  2 ,  …  ,  W n  ] T . Let

    a
W
W

i j nij
i

j
ij= ⎛

⎝⎜
⎞
⎠⎟
× =ε ; , , , ,1 2 …     (7.85)  

where

    
ε

ε
ε

ii

ij
ji

=

=

1
1
,

    (7.86)   

 When  ε   ij     =   1 for all  i  and  j , equation  (7.85)  is converted into equation  (7.84) . 
In this case, the judgment matrix is consistent. When  ε   ij      ≠    1 ( i     ≠     j ,  i ,  j    =   1, 2,    …    , 
 n ), judgment matrix  A  is regarded as a perturbed matrix based on the 
consistency. 

 According to property (d) of the consistent positive matrix and  n  eigenva-
lues of the judgment matrix,  λ  1  (= λ  max ),  λ  2 ,    …    ,  λ   n  , we can obtain

    λ i
i

n i n∑ = =, , , ,1 2 …     (7.87)   

 We defi ne the following equation as a matrix, which refl ects that the judgment 
matrix deviates from the consistent matrix:

    μ λ= −
−( ) = …∑1

1
1 2

n
i ni

i

, , , ,     (7.88)   
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 From equation  (7.87) , we get

    μ λ= −
−

max n
n 1

    (7.89)   

 In fact, we can obtain the following theorem. 

   Theorem 1:     If the positive eigenvector of the judgment matrix  A  

corresponding to the largest eigenvalue  W    =   [ W  1 ,  W  2 ,  …  ,  W  n ] T ,   a
W
W

ij
i

j
ij= ⎛

⎝⎜
⎞
⎠⎟
× ε , 

 ε   ij      >    0, we have

    μ ε
ε

= − +
−( )

⎛
⎝⎜

⎞
⎠⎟ +⎡

⎣⎢
⎤
⎦⎥≤ ≤ ≤

∑1
1

1
1

1n n
ij

iji j n

    (7.90)    

  Proof:     According to Perron – Frobenius ’  theorem, we obtain

    λmax , , , , ,= ⎛
⎝⎜

⎞
⎠⎟ =∑a

W
W

i j nij
j

ij

1 2 …     (7.91)  

    λmax , , , , ,− = ⎛
⎝⎜

⎞
⎠⎟ =

≠
∑1 1 2a

W
W

i j nij
j

ij i

…     (7.92)  

then

    n n a
W
W

a
W
W

ij
j

i
ji

i

ji j n

λmax − = ⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥≤ ≤ ≤

∑
1

    (7.93)   

 Consequently, we get

    μ λ= −
−

= − +
−( )

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥≤

max n
n n n

a
W
W

a
W
W

ij
j

i
ji

i

ji1
1

1
1 1 ≤≤ ≤

∑
j n

    (7.94)   

 Substitute   a
W
W

ij
i

j
ij= ⎛

⎝⎜
⎞
⎠⎟
× ε  into equation  (7.94) , completing the proof of 

 Theorem 1 .  
  We know from  Theorem 1  that the smallest extremum of  μ  is zero under 

the condition of  ε   ij     =   1 for all  i  and  j . 

   Theorem 2:     Let  λ  max  be the maximal eigenvalue of the judgment matrix  A . 
Then

    λmax ≥ n     (7.95)   
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 Let

    
ε δ
δ

ij ij

ij

= +
> −

1
1

    (7.96)   

 Then

    a
W
W

W
W

ij
j

i

i

j
ij= + ⎛

⎝⎜
⎞
⎠⎟
δ     (7.97)   

 Thus  δ   ij   can be regarded as the relative change of the consistency matrix 
disturbed.   

 From equation  (7.94) , we have

    μ
δ
δ

=
−( )

⎛
⎝⎜

⎞
⎠⎟ +

⎡
⎣⎢

⎤
⎦⎥≤ ≤ ≤

∑1
1 1

2

1n n
ij

iji j n

    (7.98)   

 According to equations  (7.89)  and  (7.98) , we can obtain  Theorem 2 . 
 When   δ δ= max

ij
ij ,

    λ δ δ
max − < ≤ −( )

≤ ≤ ≤
∑n

n
n

ij
i j n

1 1
2

2
2

1

    (7.99)   

 From equations  (7.95)  and  (7.99) , we have

    n n
n≤ ≤ + −( )

λ δ
max

1
2

2

    (7.100)   

 Therefore, in order to make the judgment matrix nearly consistent, we always 
hope that  μ  is near to zero, or  λ  max  is near  n . Generally, the smaller  δ   ij   is, 
the nearer  λ  max  is to  n . This is why we check the consistency of the judgment 
matrix when we apply the analytic hierarchy process to power system 
problems. 

   Example 7.6 

 The proposed approach is examined with the IEEE 39 - bus test system, 
which is taken from Reference  [7] . The test system has 10 generators, i.e., 
G30, G31, G32, G33, G34, G35, G36, G37, G38, and G39. The daily load 
demands are given in Table  7.15 . The generating unit data are given in Table 
 7.16 . Table  7.17  shows the bid price of generation power over a set of time 
periods.   

 The calculation results of unit commitment are listed in Tables  7.18  and 
 7.19 . Table  7.18  is the unit commitment schedule obtained from AHP/ANP 
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Table 7.15 Daily load demands in MW

   Hour      PD       RS      Hour      PD       RS      Hour      PD       RS

  1    4878    244    9    6341    317    17    6524    326  
  2    5061    253    10    6585    329    18    6585    329  
  3    5183    259    11    6707    335    19    6402    320  
  4    5486    274    12    6768    338    20    6219    311  
  5    5610    281    13    6707    335    21    5792    290  
  6    5792    290    14    6646    332    22    5486    274  
  7    5853    293    15    6585    329    23    5183    259  
  8    6079    503    16    6463    323    24    4939    247  

Table 7.16 Generating unit data 

   Unit No.      ai       bi       ci       Pimax       Pimin       FSi ( t )  

  30    0.834    2.50    0.00    500.0    0.00    800  
  31    0.650    0.00    0.00    999.0    0.00    900  
  32    0.834    0.00    0.00    700.0    0.00    850  
  33    0.824    0.00    0.00    700.0    0.00    850  
  34    0.814    0.00    0.00    700.0    0.00    850  
  35    0.804    0.00    0.00    700.0    0.00    850  
  36    0.830    0.00    0.00    700.0    0.00    850  
  37    0.800    0.00    0.00    700.0    0.00    850  
  38    0.650    0.00    0.00    900.0    0.00    870  
  39    0.600    0.00    0.00    1200.0    0.00    920  

Table 7.17 Bid price of generation power over a set of time periods in dollars per MW
per hour 

   Unit     0 – 3     4 – 6     7 – 9     10 – 12     13 – 15     16 – 18     19 – 21     22 – 24  

  30    40    42    38    45    42    36    38    44  
  31    26    29    32    28    26    30    32    28  
  32    30    32    33    30    34    36    33    36  
  33    32    34    32    36    34    32    36    38  
  34    42    38    37    34    36    38    40    45  
  35    31    33    35    32    34    36    35    37  
  36    29    31    34    37    35    39    41    43  
  37    35    37    39    35    37    40    37    39  
  38    33    35    37    39    41    37    42    45  
  39    24    26    28    28    30    32    30    28  

and the rule – based method. It has not considered the voltage security and 
transmission security constraints. The corresponding power fl ow solution 
also violates voltage limits and transmission security limits.   

 From Table  7.18 , we fi nd that power fl ows at hours 1, 2, 4, 5, 8, 22, 
and 24 are infeasible. Table  7.19  is the fi nal unit commitment schedule with 
OPF corrections. It satisfi es the voltage security and transmission security 
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Table 7.19 Unit commitment with transmission security 
and voltage constraints 

   Unit No.     Hour (0 – 24)  

  30    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
  31    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  32    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  33    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  34    0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0  
  35    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  36    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0  
  37    0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  38    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  39    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

Table 7.18 Unit commitment without transmission 
security and voltage constraints 

   Unit No.     Hour (0 – 24)  

  30    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
  31    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  32    0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  33    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  34    0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0  
  35    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  36    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0  
  37    0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  
  38    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  39    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

constraints. The total generation cost for unit commitment schedule in Table 
 7.19  is $11, 391.00. If the commitment states of units are taken as the input 
of OPF, the total optimal generation cost will be reduced to $11 159.60.       
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OPTIMAL POWER FLOW 

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
Copyright © 2009 Institute of Electrical and Electronics Engineers

     This chapter selects several classic optimal power fl ow algorithms and gives 
the implementation details. These algorithms include traditional methods such 
as Newton method, gradient method, linear programming as well as latest 
methods such as modifi ed interior point method, analytic hierarchy process, 
and particle swarm optimization method.  

8.1 INTRODUCTION

 The optimal power fl ow (OPF) was fi rst introduced by Carpentier in 1962  [1] . 
The goal of OPF is to fi nd the optimal settings of a given power system 
network that optimize the system objective functions such as total generation 
cost, system loss, bus voltage deviation, emission of generating units, number 
of control actions, and load shedding while satisfying its power fl ow equations, 
system security, and equipment operating limits. Different control variables, 
some of which are generators ’  real power outputs and voltages, transformer 
tap changing settings, phase shifters, switched capacitors, and reactors, are 
manipulated to achieve an optimal network setting based on the problem 
formulation. 

 According to the selected objective functions, and constraints, there are 
different mathematical formulations for the OPF problem. They can be 
broadly classifi ed as follows  [1 – 65] : 
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  (1)     Linear problem in which objectives and constraints are given in linear 
forms with continuous control variables  

  (2)     Nonlinear problem where either objectives or constraints or both com-
bined are nonlinear with continuous control variables  

  (3)     Mixed - integer linear problems when control variables are both discrete 
and continuous    

 Various techniques were developed to solve the OPF problem. The algo-
rithms may be classifi ed into three groups: (1) conventional optimization 
methods, (2) intelligence search methods, and (3) nonquantity approach to 
address uncertainties in objectives and constraints.  

  8.2   NEWTON METHOD 

  8.2.1   Neglect Line Security Constraints 

 If the line security constraints are neglected, the optimal power fl ow problem 
with real and reactive power variables can be represented as below:

    min F Pi i
i

NG

= ( )
=
∑ f G

1

    (8.1)  

such that

    P V P Pi i i, θ( ) = −G D     (8.2)  

    Q V Q Qi i i, θ( ) = −G D     (8.3)  

    P P V Pi i iG G Gmin max,≤ ( ) ≤θ     (8.4)  

    Q Q V Qi i iG G Gmin max,≤ ( ) ≤θ     (8.5)  

    V V Vi i imin max≤ ≤     (8.6)  

where

   P  G   i  :    The real power output of the generator connecting to bus  i   
  Q  G   i  :    The reactive power output of the generator connecting to bus  i   
  P  D   i  :    The real power load connecting to bus  i   
  Q  D   i  :    The reactive power load connecting to bus  i   
  P i  :    The real power injection at bus  i   
  Q i  :    The reactive power injection at bus  i   
  V i  :    The voltage magnitude at bus  i   
  f i  :    The generator fuel cost function    
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 The subscripts  “ min ”  and  “ max ”  in the equations represent the lower and 
upper limits of the constraint, respectively. 

 Equations  (8.2)  and  (8.3)  are power fl ow equations, and can be written as 
follows:

    P V V V G Bi i j ij ij ij ij
j

N

, cos sinθ θ θ( ) = +( )
=
∑

1

    (8.7)  

    Q V V V G Bi i j ij ij ij ij
j

N

, sin cosθ θ θ( ) = −( )
=
∑

1

    (8.8)   

 Substituting equations  (8.7)  and  (8.8)  into equations  (8.2) – (8.6) , we get

    Min F V, θ( )     (8.9)  

s.t.

    W V V G B P PPi i j ij ij ij ij
j

N

i i= +( ) − + =
=
∑ cos sinθ θ

1

0G D     (8.10)  

    W V V G B Q QQi i j ij ij ij ij
j

N

i i= −( ) − + =
=
∑ sin cosθ θ

1

0G D     (8.11)  

    W V V G B Pi i j ij ij ij ij
j

N

iPM G= +( ) − ≤
=
∑ cos sin maxθ θ

1

0     (8.12)  

    W V V G B Pi i j ij ij ij ij
j

N

iPN G= +( ) − ≥
=
∑ cos sin minθ θ

1

0     (8.13)  

    W V V G B Qi i j ij ij ij ij
j

N

iQM G= −( ) − ≤
=
∑ sin cos maxθ θ

1

0     (8.14)  

    W V V G B Qi i j ij ij ij ij
j

N

iQN G= −( ) − ≥
=
∑ sin cos minθ θ

1

0     (8.15)  

    W V Vi i iVM = − ≤max 0     (8.16)  

    W V Vi i iVN = − ≥min 0     (8.17)   

 We construct the new augmented objective function by introducing con-
straints  (8.10) – (8.17)  into the original objective function  (8.9)  with penalty 
factors.

    L X F X r W X r W X r W Xi
i

N

i i
i

N

i Vi
i

N

Vi( ) = ( ) + ( ) + ( ) + ( )
= = =
∑ ∑ ∑P P Q Q

1

2

1

2

1

2     (8.18)  
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where

   X :    The vector that consists of  V  and  θ   
  W  P   i  :    Includes all constraints related to real power variables such as equa-

tions  (8.10) ,  (8.12) , and  (8.13)   
  W  Q   i  :    Includes all constraints related to reactive power variables such as 

equations  (8.11) ,  (8.14) , and  (8.15)   
  W  V   i  :    Includes all constraints related to voltage variables such as equations 

 (8.16)  and  (8.17)   
  r Pi  :    The penalty factor for violated constraints related to real power varia-

ble. If there is no constraint violation,  r Pi     =   0.  
  r  Q   i  :    The penalty factor for violated constraints related to reactive power 

variable. If there is no constraint violation,  r  Q   i     =   0.  
  r Vi  :    The penalty factor for violated constraints related to voltage variable. 

If there is no constraint violation,  r Vi     =   0.  
  N :    The total number of buses    

 In this way, the OPF problem represented in equations  (8.1) – (8.6)  becomes 
an unconstrained optimization problem  (8.18) . It is noted that only violated 
constraints are introduced in equation  (8.18)  since the penalty factor will be 
zero if the constraint is not violated. The unconstrained optimization problem 
can be solved by the Newton method or the Hessian matrix method (see 
Appendix   in Chapter  4 ). 

  8.2.1.1   Calculation of Hessian Matrix and Gradient     From equation 
 (8.18)  as well as equations  (8.10) – (8.17) , we can get the gradient and Hessian 
matrix of the augmented objective function as below: 

  Gradient: 
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  Hessian Matrix: 
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where the derivatives of the bus power injection with respect to variables  V  
and  θ  can be obtained from the power fl ow equations, that is,
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  8.2.1.2   Computation of Search Direction     The formula of the search 
direction of the Newton method or the Hessian matrix method is

    S H X g Xk k k= − ( )[ ] ( )−1     (8.43)  

where

   g :    The gradient of the augmented function  
  H :    The Hessian matrix of the augmented function  
  S :    The search direction    
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 The advantage of the Hessian matrix method is fast convergence. The dis-
advantage is that it requires computation of the inverse of the Hessian matrix, 
which leads to an expensive memory and calculation burden. Thus we rewrite 
equation  (8.43)  as below.

    H X S g Xk k k( ) = − ( )     (8.44)   

 For a given gradient and Hessian matrix of the objective function at the  X k  , 
the search direction  S k   can be obtained by solving equation  (8.44)  with the 
Gauss elimination method. Since the Hessian matrix of the augmented func-
tion is a sparse matrix in the OPF problem, the sparsity programming tech-
nique can be used. 

 The iteration calculation based on the search direction is as follows:

    X X Sk k k k+ = +1 β     (8.45)  

where  β  is a scalar step length. 
 The iteration calculation will be stopped if the following convergence con-

dition is satisfi ed:

    X Xk k+ − ≤1
1ε     (8.46)  

or

    
L X L X

L X

k k

k

+( ) − ( )
( ) ≤
1

2ε     (8.47)  

where  ε  1 ,  ε  2  are the permitted tolerances.  

  8.2.1.3   Steps of the Newton method     The calculation steps of the Newton 
method are summarized as below. 

  (1)     Given the initial values for the penalty factors  
  (2)     Given the permitted calculation tolerances  
  (3)     Solve the initial power fl ow to get the values of the state variables  X  0 , 

and set the iteration number  k    =   0.  
  (4)     Compute the augmented objective function  L ( X k  ) and its gradient  g k   

and Hessian matrix  H k  .  
  (5)     Compute the search direction  S k   according to equation  (8.43) .  
  (6)     Compute the step length  β , using quadratic interpolation.  
  (7)     Compute the new state variable  X k   +1  according to equation  (8.45) .  
  (8)     Compute the augmented objective function  L ( X k   +1 ) and its gradient 

 g k   +1  and Hessian matrix  H k   +1 , and check the convergence conditions. If 
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either equation  (8.46)  or  (8.47)  is met, go to next step. Otherwise, set 
 k    =    k    +   1, go back to step (5).  

  (9)     Check whether all constraints are met. If yes, stop the calculation. 
Otherwise, double the penalty factor for the violated constraint, and 
reset  k    =   0. Go back to step (4).      

  8.2.2   Consider Line Security Constraints 

 The line power constraints can be expressed as

    P P Pl l lmin max≤ ≤     (8.48)   

 Where  P l   is the power fl ow at the line  l  from bus  j  to bus  k . 
 Similarly, the above constraint can be written as

    W P Pl l lPM = − ≤max 0     (8.49)  

    W P Pl l lPN = − ≥min 0     (8.50)   

 We use  W   Pl   to express the above line power constraints and introduce it 
into the augmented objective function  (8.18) . The new objective function will 
be

    L X L X r W XPl
l

Nl

Pl*( ) = ( ) + ( )
=
∑

1

2     (8.51)  

where

   r Pl  :    The penalty factor for violated line security constraints. If there is no 
line power fl ow constraint violation,  r Pl     =   0.  

  Nl :    The total number of lines    

 Since the augmented objective function includes a new penalty term on line 
power fl ow violation, the gradient and Hessian matrix equations  (8.19) – (8.26)  
will be updated to add the corresponding term, that is,
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 Letting the branch admittance of line  l  be  g jk     +    jb jk  , and neglecting the line 
charging, the line power fl ow can be expressed as

    P P V g V V g bl jk j jk j k jk jk jk jk= = − +( )2 cos sinθ θ     (8.60)   

 The derivatives of the line power with respect to variables  V  and  θ  in equa-
tions  (8.52) – (8.59)  can be obtained from equation  (8.60) .
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 The same calculation steps given in the previous section can be used when 
line power fl ow constraints are considered. 

   Example 8.1

  The test example is a 5 - bus system, which is taken from reference  [17] . The 
data of generators are shown in Table  8.1 . The generator fuel cost is a quad-
ratic function, that is,   f a P b P ci i i i i i= + +G

2
G . The other data and parameters 

are shown in Figure  8.1 , where the p.u. is used. Table  8.2  shows the initial 
power fl ow results with the initial system cost of 4518.04. The OPF results 
solved by the Newton method are shown in Table  8.3 . The system minimum 
cost is 4236.5.         

 Table 8.1     Data of generators for 5 - bus system 

   Unit No.      c i        b i        a i        P  G   i   min       P  G   i   max       Q  G   i   max       Q  G   i   max   

  1    44.4    351    50    2.0    3.5    1.5    2.5  
  2    40.0    389    50    4.0    5.5    1.0    2.0  

 Table 8.2     Initial power flow results for 5 - bus system 

   Bus No.      P i        Q i        V i        θ   i    

  1    2.5794    2.2993    1.05    0  
  2    5.0    1.8130    1.05    21.84  
  3     − 1.6     − 0.8    0.8621     − 4.38  
  4     − 2.0     − 1.0    1.0779    17.85  
  5     − 3.7     − 1.3    1.0364     − 4.28  
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     FIGURE 8.1  A 5 -bus system 

SD4 =2.0+j1.0 SD5 =3.7+j1.3 

  4            0.08+j0.3            5 
1.05:1      j0.03          1 

- j2.0 - j4.0

       3

- j4.0
SD3 =1.6+j0.8 

0.1+j0.350.04+j0.25

2      j0.015        1:1.05 

Table 8.3   OPF  results by Newton method for 5 -bus system 

   Bus No.  Pi       Qi       Vi θi Vimax       Vimin

  1    3.4351    2.0707    1.0999    0    1.1    0.9  
  2    3.9997    1.2000    1.0634    8.67    1.1    0.9  
  3 − 1.6     − 0.8   0.9324 − 10.96   1.1    0.9  
  4 − 2.0     − 1.0   1.1003    5.59    1.1    0.9  
  5 − 3.7     − 1.3   1.1000 − 5.13   1.1    0.9  

  8.3 GRADIENT METHOD 

  8.3.1  OPF  Problem without Inequality Constraints 

 The optimal power fl ow problem without inequality constraints can be repre-
sented as below:

    min F f Pi i
i

NG

= ( )
=
∑ G

1

such that

    
P V P P

Q V Q Q
i i i

i i i

,

,

θ
θ
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G D

G D
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 Before we solve the above OPF problem, we fi rst defi ne the state variables 
 X  as

    X V
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    (8.74)   

 And all specifi ed variables  Y  as
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    (8.75)   

 For the parameters in the  Y  vector, some are adjustable, such as generator 
power output and generator bus voltage, and some are fi xed, such as  P  and  Q  
at each load bus. Thus vector  Y  can be partitioned into a vector  U  of control 
parameters and a vector  W  of fi xed parameters,

    Y
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W
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⎤
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    (8.76)   

 Then power fl ow equations can be expressed as
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    (8.77)   

 Thus the OPF problem without inequality constraints can be expressed as

    Min f X U,( )     (8.78)  

s.t.

    g X U W, ,( ) = 0     (8.79)   

 The unconstrained Lagrange function for the OPF problem is obtained.

    L X U W f X U g X U W, , , , ,( ) = ( ) + ( )λT     (8.80)  
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or
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where
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i i
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 The number of Lagrange multipliers is  m  since there are  m  power fl ow equa-
tions. According to the necessary conditions for a minimum, we get
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 Since the objective function itself is not a function of the state variable except 
for the reference bus, the derivatives of the objective function with respect to 
the state variables become
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    (8.85)   

 The   ∂
∂

g
X

 in equation  (8.82)  is the Jacobian matrix for the Newton power 

fl ow, which was discussed in Chapter  2 . That is,
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    (8.86)   

 Equation  (8.83)  is the gradient of the Lagrange function with respect to the 

control variables, in which the vector   
∂
∂

f
U

 is a vector of derivatives of the 

objective function with respect to the control variables.
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 The other term in equation  (8.83) ,   ∂
∂

g
U

, consists of a matrix of all zeros with 

some  − 1 terms on the diagonals, which correspond to equations in  g ( X ,  U ,  W ) 
where a control variables is present. 

 The solution steps of the gradient method of OPF are as follows  [2, 13] . 

  (1)     Given a set of fi xed parameters  W , assume a starting set of control 
variables  U .  

  (2)     Solve a power fl ow. This makes sure that equation  (8.84)  is satisfi ed.  
  (3)     Solve equation  (8.82)  for  λ :
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  (4)     Substitute  λ  into equation  (8.83) , and compute the gradient of the 
Lagrange function with respect to the control variables.
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(8.89)
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 The gradient will give the direction of maximum increase in the cost 
function as a function of the adjustments in each of the control vari-
ables. Since the objective is minimization of cost function, it needs to 
move in the negative direction of the gradient.  

  (5)     If  |  ∇  L U   |  is suffi ciently small, the minimum has been reached. Otherwise, 
go to next step.  

  (6)     Find a new set of control parameters from

    U U U U Lk k k
U

+ = + Δ = − ∇1 β  

where  β  is the step length. Go back to step 2 with new values of control 
variables.     

  8.3.2   Consider Inequality Constraints 

  8.3.2.1   Inequality Constraints on Control Parameters     The inequality 
constraints on control parameters such as generator bus voltage limits can be 
expressed as follows.

    U U Umin max≤ ≤     (8.90)   

 These constraints can be easily handled during the calculation of the new 
control parameters in equation  (8.89) . If the control variable  i  exceeds one of 
its limit, it will be set to the corresponding limit, that is,
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    (8.92)   

 The Kuhn – Tucker theorem proves that the conditions of equation 
 (8.92)  are necessary for a minimum, provided the functions involved are 
convex.  
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  8.3.2.2   Functional Inequality Constraints     The upper and lower limits 
on the state variables such as bus voltages on PQ buses can also be functional 
inequality constraints, which can be expressed as

    h X U,( ) ≤ 0     (8.93)   

 Compared with the inequality constraints on control variables, the functional 
inequality constraints are diffi cult to handle; the method can become very time 
consuming or practically impossible at some situations. Basically, a new direc-
tion, different from the negative gradient, must be found when confronting a 
functional inequality constraint. The method often used is the penalty method, 
in which the objective function is augmented by penalties for functional con-
straint violations. This forces the solution back suffi ciently close to the con-
straint. The reasons that the penalty method is selected are as below.

   (1)     Generally, the functional constraints are seldom rigid limits in the strict 
mathematical sense but are, rather, soft limits. For example,  V     ≤    1.0 on 
a PQ bus means  V  should not exceed 1.0 by too much, and  V    =   1.01 
may still be permissible. The penalty method produces just such soft 
limits.  

  (2)     The penalty method adds very little to the algorithm, as it simply 

amounts to adding terms to   
∂
∂

f
X

, and also to   ∂
∂

f
U

 if the functional 

constraint is also a function of  U .  
  (3)     It produces feasible power fl ow solutions, with the penalties signaling 

the trouble spots, where poorly chosen rigid limits would exclude 
solutions.    

   Example 8.2 

 The test example is a 5 - bus system, which was shown in Figure  8.1  in 
Example 8.1. The data and parameters of the system are the same as 
Example 8.1. The OPF results solved by the gradient method are shown in 
Table  8.4 . The system minimum cost is 4235.7        

 Table 8.4      OPF  results by gradient method for 5 - bus system 

   Bus No.      P i        Q i        V i        θ   i        V i   max       V i   min   

  1    3.4351    2.0359    1.0938    0    1.1    0.9  
  2    3.9987    1.2487    1.0650    8.53    1.1    0.9  
  3     − 1.6     − 0.8    0.9300     − 11.10    1.1    0.9  
  4     − 2.0     − 1.0    1.1014    5.45    1.1    0.9  
  5     − 3.7     − 1.3    1.0944     − 5.18    1.1    0.9  
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8.4 LINEAR PROGRAMMING OPF

 The early LP - based OPF method was limited to network constrained eco-
nomic power dispatch, which we introduced in Chapter  5 . The earliest versions 
used the fi xed constraint approximations, based on the purely DC power fl ow. 
Later on, incremental formulations were introduced, whereby constraint lin-
earization is iterated with AC power fl ow, to model and enforce the con-
straints exactly  [18] . The advantages of the LP based OPF are: 

  (1)     Reliability of the optimization  
  (2)     Ability to recognize problem infeasibility quickly, so that appropriate 

strategies can be put into effect  
  (3)     The range of operating limits can be easily accommodated and handled, 

including contingency constraints  
  (4)     Convergence to engineering accuracy is rapid, and also accepted when 

the changes in the controls have become very small.    

 The large - scale application of LP - based methods has traditionally been 
limited to network constrained real and reactive dispatch calculations whose 
objectives are separable, comprising the sum of convex cost curves. The accu-
racy of calculation may be lost if the oversimplifi ed approximation is adopted 
in LP - based OPF. The piecewise linear segmentation of the generator fuel 
cost curve should be good for avoiding this problem. The piecewise approach 
can fi t an arbitrary curve convexly to any desired accuracy with a suffi cient 
number of segments. Originally, a separable LP variable had to be used for 
each segment, with the resulting large problems with multisegments cost curve 
modeling were prohibitively time and storage consuming. The diffi culty was 
alleviated considerably by a separable programming procedure that uses a 
single variable per cost curve, regardless of the number of the segments. 
However, the number of segments still affects the solution speed and preci-
sion. If the segment sizes are large, the following issues may be appeared. 

  (1)     Even a very small change in an OPF problem can cause some optimized 
controls to jump to adjacent segment breakpoints.  

  (2)     Discrete jumps between segment breakpoints occasionally produce 
solution oscillations when iterating with AC power fl ow.    

 The technique of successive segment refi nement can be used to overcome the 
above problems. The idea is that the nonlinear cost curves are approximated 
with relatively large segments at the beginning. Then, at each subsequent 
iteration, each cost curve is modeled with a smaller segment size, until the 
fi nal degree of refi nement has been reached. 

 For LP - based OPF, in addition to the linearization of the objective 
function, the constraints also need to be linearized. Generally, the linearized 
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power fl ow equations are used in LP - based OPF either based on a linear 
sensitivity matrix or the fast decoupled power fl ow model. The latter can be 
written as

    ′[ ]Δ = ΔB Pθ     (8.94)  

    ′′[ ]Δ = ΔB V Q     (8.95)   

 These provide accurate enforcement of the network constraints in the real or 
reactive subproblems through the iterative process. The real power subprob-
lem in OPF based on equation  (8.94)  is restricted to the  “ real power ”  con-
straints that are strong functions of angle  “  θ , ”  and the reactive power 
subproblem in OPF based on equation  (8.95)  is restricted to the  “ reactive 
power ”  constraints that are strong functions of the magnitude of voltage  “  V . ”  
Tests on a large power system have demonstrated that successive constrained 
P and Q subproblems for OPF are effective in achieving practical overall 
optimization. If only a real power subproblem is considered in OPF, it becomes 
the security - constrained economic power dispatch, which was introduced in 
Chapter  5 . 

 For inequality constraints in LP - based OPF, the sensitivity approach is used 
to express each selected constraint in terms of the control variables. Let  U ,  X , 
and  P  be the control, state variables, and bus power injections, respectively. 
 Y  is the constraint whose sensitivities are to be computed. The incremental 
relationships between these variables are:

    Δ = Δ + ΔY C X D U     (8.96)  

    Δ = [ ]ΔP B U     (8.97)  

    Δ = [ ] Δ−X A P1     (8.98)   

 From the above equations, we get the following sensitivity vector:

    
Δ
Δ

= [ ] [ ]Δ +−Y
U

C A B U D1     (8.99)   

 The row vectors  C  and  D  are usually extremely sparse, and are specifi c to the 
particular constraint  Y . The power fl ow Jacobian matrix [ A ] and matrix [ B ] 
are constant throughout the OPF iteration. The main work in calculating 
the sensitivity vector from equation  (8.99)  is the repeat solution  C [ A ]  − 1  using 
fast - forward substitution. 

 After the above handlings on OPF objective function and constraints, the 
linear OPF model can be constructed and, consequently, solved by linear 
programming algorithm.  
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8.5 MODIFIED INTERIOR POINT OPF

8.5.1 Introduction

 Optimal power fl ow (OPF) calculations determine optimal control variables 
and system quantities for effi cient power system planning and operation. OPF 
has now become a useful tool in power system operation as well as in planning. 
Over the years, different objective functions have emerged, and the con-
straints and size of systems to be solved have increased. An effi cient OPF tool 
is required to solve both the operations problem and the planning problem. 
The operational OPF problem, considering a time duration from one - half 
hour to a day, consists of many objective functions such as economic dispatch 
and loss minimization. For VAR planning, the time duration can be up to 5 
years. VAR planning can also consider the operational cost of losses, thus 
forming a hybrid planning/operation problem. 

 An OPF package must handle large, interconnected power systems. In 
some instances, the area to be optimized needs to be identifi ed and the type 
of optimization needs to be established before optimization. Generally the 
available OPF packages do not determine the type of problem, recommend 
the type of objective, or identify the area to be optimized. Also, in most OPF 
packages, the model is predetermined and cannot be modifi ed by the user 
without access to the source code  [27] . An OPF package that allows the user 
to pick certain constraints from a specifi ed list is useful for adapting the 
package to the user ’ s needs. 

 To implement the above requirements, a more versatile OPF package is 
necessary. Obviously, the conventional OPF algorithms are limited and too 
slow for this purpose. The increasing burden being imposed on the optimiza-
tion is handled by rapidly advancing computer technology as well as through 
the development of more effi cient algorithms exploiting the sparse nature of 
the power system structure. The interior point (IP) method is one of the most 
effi cient algorithms, as evidenced by the list of references  [27 – 45] . The IP 
method classifi cation is a relatively new optimization approach that was 
applied to solve power system optimization problems in the late 1980s and 
early 1990s. This method is essentially a linear programming method, and, as 
expected, linear programming problems dominate the IP classifi cation. When 
compared with other well - known linear programming techniques, IP methods 
maintain their accuracy while achieving great advantages in speed of conver-
gence of as much as 12:l in some cases. However, the IP methods, in general, 
suffer from bad initial, termination, and optimality criteria and, in most cases, 
are unable to solve nonlinear and quadratic objective functions. The extended 
quadratic interior point (EQIP) method described here can handle quadratic 
objective functions subject to linear and nonlinear constraints. 

 The optimization technique used in this section is an improved quadratic 
interior point (IQIP) method. The IQIP method features a general starting 
point (rather than a good point as in the former EQIP as well as general IP 
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methods) and is even faster than the EQIP optimization scheme. Consequently, 
the OPF approach described in this section offers great improvements in 
speed, accuracy, and convergence in solving multiobjective and multi-
constraint optimization problems. It is also capable of solving the global opti-
mization of an interconnected system and a partitioned system for local 
optimization. The scheduled generation, transformer taps, bus voltages, and 
reactors are used to achieve a feasible and optimized power fl ow solution.  

  8.5.2    OPF  Formulation 

  8.5.2.1   Objective Functions     Three objective functions are considered. 
They are fuel cost minimization, VAR planning, and loss minimization. 

  (1)     Fuel cost minimization

    Min Fg aiPgi biPgi ci
i

NG
= + +( )

=
∑ 2

1
    (8.100)    

  (2)     VAR planning
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c
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= −( )

=
∑ − −( )

=1 1

rr
S PL∑ + ω     (8.101)    

  (3)     Loss minimization

    min PL F P= ( )gslack     (8.102)    

 where

   P  g   i  :    The real power generation at generator  i   
  P  L :    The system real power loss  
  P  gslack :    The real power of slack generator  
  S  c :    The cost of unit capacitive VAR  
  S  r :    The cost of unit inductive VAR  
  q  c :    The capacitive VAR support  
  q  r :    The inductive VAR support  
  l :    The contingency case,  l    =   0, means the intact case or base case  
  S  w :    The coupling coeffi cient between the VAR and loss portions in the 

VAR planning objective function     

  8.5.2.2   Constraints     The linear and nonlinear constraints that include 
voltage, fl ows, real generation, reactive sources and transformer taps are con-
sidered as follows:
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    Q Q Q i NGi i ig g gmin max ,≤ ≤ ∈     (8.108)  
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c
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    q q ii ir
tot

r
exist VAR sites− ≥ ∈0,     (8.112)  

    V V V i NGi i ig g gmin max ,≤ ≤ ∈     (8.113)  

    V i V i V i i NDd d ,min d max≤ ≤ ∈     (8.114)  

    Ti Ti Ti i NTmin max ,≤ ≤ ∈     (8.115)  

    P F V Tslack slack= ,( ), θ     (8.116)  

where

   P  d   k  :    The real power load at load bus  k   
  Q  d   i  :    The reactive power load at load bus  i   
  V  g   i  :    The voltage magnitude at generator bus  i   
  V  d   i  :    The voltage magnitude at load bus  i   
  Q  g   i  :    The VAR generation of generator  i   
  Z L  :    The impedance of transmission line  L   
  I L   max :    The maximal current limit through transmission line  L   
  T :    The transformer tap position  
  θ :    The bus voltage angle  
  P  L :    The system real power loss  
  NG :    The set of generation buses  
  NT :    The set of transformer branches  
  ND :    The set of load buses  
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  N  bus :    The set of total network buses  
  φ   i  :    The angle of phase shifter transformer  i   
  NM  φ :    The adjustment numbers of the phase shifter  
  Nl :    The set of the outage line ( l    =   0 means no line outage)    

 The subscripts  “ min ”  and  “ max ”  stand for the lower and upper bounds of 
a constraint, respectively. 

 We can pick certain constraints from equations  (8.103) – (8.116)  according 
to the particular needs of the practical system. Generally, the constraints in 
equations  (8.103) – (8.108)  and  (8.113) – (8.115)  are considered for economic 
dispatch. The constraints in equations  (8.104) – (8.116)  are considered for VAR 
planning. For loss minimization, the constraints in equations  (8. 104) – (8.108)  
and  (8.113) – (8.116)  are considered.   

  8.5.3    IP   OPF  Algorithms 

  8.5.3.1   General Interior Point Algorithm     The OPF problem can be 
expressed as general form as below:

    Min f x( )     (8.117)  

s.t.

    d x( ) ≥ 0     (8.118)  

    x ≥ 0   

 There are several primal – dual interior point (IP) methods. Here we introduce 
the logarithmic barrier function - based IP method. For the above problem, the 
logarithmic barrier function is given by

    b x f x d x xj
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    (8.119)  

where

   μ :    A positive parameter  
  m :    The number of constraints  
  n :    The number of variables    

 The barrier gradient and Hessian are

    ∇ ( ) = − − ( )− −b x g B D I X IT, μ μ μ1 1     (8.120)  
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where

   I :    A column vector of ones  
  D :    Diagonal matrix diag{d( x )}  
  X :    Diagonal matrix diag{ x }    

 The solution to the above problem can be obtained via a sequence of solu-
tions to the unconstrained subproblem.

    Minimize b x, μ( )     (8.122)   

 According to KT conditions, we have

    ∇ ( ) =b x, μ 0     (8.123)  

    ∇ ( ) =2 0b x, μ is positive definite     (8.124)  
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where   sj* and   zj* are the Lagrange multipliers. The points ( x   μ  ) defi ne a barrier 
trajectory, or a local central path for equation  (8.125) . If we introduce the 
slack variable

    v d x vμ μ μ= ( ) ≥, 0     (8.126)  

and defi ne

    z D x I zμ μ μμ= ( ) ≥−1 0,     (8.127)  

    s X I sμ μμ
μ

= ≥−1 0,     (8.128)  

then the central path is equivalent to

    g B z sμ μ μ μ− − =T 0     (8.129)  

    d vμ μ− = 0     (8.130)  
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    V z I v zμ μ μ μμ= ≥, , 0     (8.132)  

    X s I x sμ μ μ μμ= ≥, , 0     (8.133)   

 The above nonlinear equations can be expressed as below, which hold at ( x   μ  , 
 v   μ  ,  z   μ  ,  s   μ  ):
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 Applying Newton ’ s method to the above, we obtain
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    (8.135)  

and

    V z Z v I ZvΔ Δ+ = −μ     (8.136)  

    S x X s I XsΔ Δ+ = −μ     (8.137)   

 The solution of the above linear systems can be obtained as follows. 

 First, compute  Δ  s  and  Δ  v .

    Δ Δv v Z V z Z I= − − +− −1 1μ     (8.138)  

    Δ Δs s X S x X I= − − +− −1 1μ     (8.139)   

 Then substitute the above two equations into equation  (8.135)  to get the 
augmented system
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where

    D W X Sx = + −1     (8.141)   

 Solving the above equation, we get  Δ  z  as below:

    Δ Δz V ZB x V I Zd= − + −( )− −1 1 μ     (8.142)   
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 The solution  Δ  x  can be obtained by solving the following normal system:

    − =K x hΔ     (8.143)  

where

    K D B V ZBx= + −T 1     (8.144)  

    h g B z B V Zd I X IT T= − + −( ) −− −1 1μ μ     (8.145)    

 8.5.3.1.1   Calculation of the Step Length     It should be noted that if started 
far from a solution (or start point is not good), the primal – dual IP methods 
may fail to converge to a solution  [31 – 39] . For this reason, primal – dual 
methods usually use a merit function in order to induce convergence. There 
are, however, problems associated with the merit function, particularly with 
the choice of the penalty parameter  [66] . The fi lter technique  [42]  may be used 
to handle convergence issue. 

 There are two competing aims in the primal – dual solution of equation 
 (8.117) . The fi rst aim is to minimize the objective, and the second is the satis-
faction of the constraints. These two confl icting aims can be written as

    Min f x( )     (8.146)  

s.t.

    Min δ = −( )d v 2     (8.147)   

 A merit function usually combines equations  (8.146)  and  (8.147)  into a single 
objective. Instead, we see equations  (8.146)  and  (8.147)  as two separate objec-
tives, similar to multiobjective optimization. However, the situation here is 
different since it is essential to fi nd a point where  d    =    v  if possible. In this 
sense, the second objective has priority. Nevertheless, we will make use of the 
principle of domination from multiobjective programming in order to intro-
duce the concept of the fi lter. 

   Defi nition 1   [66]  :     A pair ( f k  ,  δ   k  ) is said to dominate another pair (  f  j  ,  δ    j  ) if and 
only if  f  k      ≤     f  j   and  δ    k      ≤     δ    j  .   

 In the context of the primal – dual method, this implies that the  k th iterate 
is at least as good as the  j th iterate with respect to equations  (8.146)  and 
 (8.147) . Next, we defi ne the fi lter which will be used in the line search to accept 
or reject a step. 

   Defi nition 2   [66]  :     A fi lter is a list of pairs ( f  j  ,  δ    j  ) such that no pair dominates 
any other. A point ( f  k  ,  δ    k  ) is said to be accepted for inclusion in the fi lter if it 
is not dominated by any point in the fi lter.  
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  The fi lter therefore accepts any point that either improves optimality or 
infeasibility. 

 In most primal – dual methods, the separate step lengths are used for the 
primal and dual variables  [67] . A standard ratio test is used to ensure that 
nonnegative variables remain nonnegative

    α α αP x v= { }min ,     (8.148)  

    α α αD z s= { }min ,     (8.149)  
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 The step lengths in the above are successively halved until the following 
iteration becomes acceptable to the fi lter:

    ′ = +x x xαPΔ     (8.151)  

    ′ = +v v vαPΔ     (8.152)  

    ′ = +z z zαDΔ     (8.153)  

    ′ = +s s sαDΔ     (8.154)    

  8.5.3.1.2   Selection of the Barrier Parameter     Another important issue in 
the primal – dual method is the choice of the barrier parameter. Many methods 
are based on approximate complementarity where the centering parameter is 
fi xed a priori  [68] . Mehrotra  [69]  suggested a scheme for linear programming 
in which the barrier parameter is estimated dynamically during the iteration. 
The heuristic originally proposed in may be used. First, the Newton equations 
system is solved with the barrier  μ  set to zero. The direction obtained in this 
case ( Δ  x   α  ,  Δ  v   α  ,  Δ  z   α  ,  Δ  s   α  ) is called the  affi ne - scaling direction . The barrier 
parameter is estimated dynamically from the estimated reduction in the com-
plementarity gap along the affi ne - scaling direction
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where

    g z z v v s s x xα α α α α α α α αα α α α= +( ) +( ) + +( ) +( )D
T

P D
T

PΔ Δ Δ Δ     (8.156)   

 The step lengths in the affi ne - scaling direction are obtained by using equa-
tions  (8.155)  and  (8.156) . To avoid numerical instability, the above equation 
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is used to compute  μ  when the absolute complementarity gap  z  T  v    +    s  T  x     ≥    1. 
But if  z  T  v    +    s  T  x     ≤    1, we use following equation to compute  μ , that is,
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    (8.157)     

  8.5.3.2   The Improved Quadratic Interior Point Method     The OPF model 
discussed in this section is a nonlinear mathematical programming problem. 
It can be reduced by an elimination procedure. The reduction of the OPF 
model is based on the linearized load fl ow around base load fl ow solution for 
small perturbation. The reduced OPF model can be expressed as

    min F X QX G X C= + +
1
2

T T     (8.158)  

such that

    AX B=     (8.159)  

    X ≥ 0   

 Equation  (8.158)  is a scalar objective function, which corresponds to the objec-
tive functions of OPF. Equation  (8.159)  corresponds to constraints  (8.103) –
 (8.116)  with linearization handling.  X  in  (8.158)  and  (8.159)  is a vector of 
controllable variables, which is defi ned as   X V T P= [ ]g

T T
g
T T

, ,  in economic dis-
patch, or   X T q q Pg c r= [ ]VT T T T

L
T T

, , , ,  in VAR planning, or   X V T Pg= [ ]T T
L
T T

, ,  in 
loss minimization. 

 The model  (8.158) – (8.159)  has a quadratic objective function subject to the 
linear constraints that satisfy the basic requirements of quadratic interior point 
(QIP) scheme. The barrier - like IP methods discussed in the previous section 
and the enhanced projection method used in quadratic interior point have the 
enough speed and accuracy to solve optimal power fl ow problems such as 
economic dispatch, loss minimization, and VAR optimization. However, the 
effectiveness of these IP methods depends on a good starting point  [27] . The 
improved quadratic interior point (IQIP) is presented in this section. It fea-
tures the general starting point (rather than a good point) and faster conver-
gence. The calculation steps of IQIP are as follows.

  S1    Given a starting point  X  1 ,  

  S2     X  1    :=    AX  1   

  S3     Δ    :=    B     −     AX  1   

  S4     Δ max   :=   max| Δ  i |  

  S5    if  Δ max    <     ε  0 , go to S10. Otherwise, go to next step.  
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  S6  
    
U A A A:= ( )⎢⎣ ⎥⎦Δ

−
1 1 1

1T

  

  S7     R    :=   min{ Ui }  

  S8    if  R    +   1    ≥    0,  X  1    :=    X  1     ×    (1   +    U ), go to S3. Otherwise, go to next step.  

  S9     QB    :=    − 1/ R ,  X  1    :=    X  1     *    (1   +    QB     *     U ), go to S3.  

  S10     D k     :=   diag[ x  1 ,  x  2 ,  … ,  x n  ]  

  S11     B k     :=    AD k    

  S12  
    
dp B B B B D QX Gk

k k k k k
k:= ( ) −⎢⎣ ⎥⎦ +[ ]−T T 1

1
  

  S13      β
γ1
1

:= − ,  γ     <    0;  β  1    :=   10 6 ,  γ     >    0 where   γ = [ ]min dpj
k   

  S14  
    β2 := ( ) ( )dp dp

W

k kT

 if  W     >    0;  β  2    :=   10 6  if  W     ≤    0 where  W    =   ( D k dp k  )  T Q ( D k dp k  )  

  S15     X k   +1    :=    X k     +    α ( β  D k dp k  ), where  β    =   min[ β  1 ,  β  2 ];  α ( < 0) is a variable step. 
 Set  k    :=    k    +   1, and go to S11. End when  dp k      <     m , where  k  is the iteration 
counter.  

 The partitioning scheme and optimization modules are adopted here. The 
partitioning scheme provides the objective function and the optimizable area. 
The optimization module selects the default constraints for the selected objec-
tive unless otherwise specifi ed. The user can add or remove constraints from 
the default constraint set equations  (8.103) – (8.116) . The optimization is carried 
out with the improved quadratic interior point (IQIP) method described 
above. The nonlinear constraints are handled via successive linearization in 
conjunction with an area power fl ow. 

 IQIP handles the initial value of the state variables before the optimization 
so that it can solve the bad initial conditions encountered in other interior 
point methods. Consequently, IQIP has a faster convergence speed than other 
IP methods. IQIP achieves an optimum in the linearized space while the power 
fl ow adjusts for the approximation caused by the linearization. The check of 
the power fl ow mismatch should be performed in the optimization area fi rst. 
In this way, the optimization calculation accuracy will be increased. This 
ensures local optimization with all violations removed. Then the check of the 
power fl ow mismatch will be performed in the whole system including the 
external areas, which adjusts the changes in the boundary injections caused 
by the local optimization. The overall scheme ensures a local optimum, with 
no violation in the optimized area, while satisfying a global power fl ow. The 
local optimum will be the global optimum if there is only one area in the 
system. 

 If the region formed by the constraints is very narrow, the solution may be 
declared infeasible. Three options are available for infeasibility handling. 
They are: 
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  (1)     The bounds option, which allows the program to widen the bounds on 
violating soft constraints. The new limits or a percent increase/decrease 
from the current limits can be prespecifi ed by the user for all objective 
functions.  

  (2)     VAR option I, which allows the program to add new VAR sites at 
buses with big contributions to improving system performance (only 
for VAR optimization).  

  (3)     VAR option II, which allows the program to add new VAR sites at 
buses with severe voltage violations (only for VAR optimization).    

 For economic dispatch or loss minimization, if infeasibility is detected the 
bounds option is selected. The bounds on violating constraints are widened 
accordingly. For VAR optimization, or planning, if infeasibility is detected 
VAR option I is fi rst selected, and the new VAR sites are added at buses with 
big contributions to improve system performance such as reducing system loss 
or voltage violations. If further infeasibilities occur, VAR option II is selected, 
and other new VAR sites are added at buses with severe voltage violations.  

8.5.3.3 Simulation Calculations   The simulation examples are taken 
from reference  [27] . The two interior point - based OPF methods are tested on 
IEEE 14 - bus systems and modifi ed IEEE 30 - bus systems. One is the extended 
quadratic interior point (EQIP); another is improved quadratic interior point 
(IQIP). For comparison, the solution method of MINOS is also used to solve 
the OPF problem with the same data and same conditions. MINOS is a 
Fortran - based optimization package developed by Stanford University, which 
is designed to solve large - scale optimization problems. The solution method 
in the MINOS program is a reduced gradient algorithm or a projected aug-
mented Lagrange algorithm. 

 The data and parameters of the 14 - bus system are shown in Chapter  3 . The 
optimization data used for simulating the IEEE 14 - bus system using the three 
objective functions are given in Tables  8.5 – 8.7 .   

 Table  8.5  represents the generator data used for the IEEE 14 - bus system. 
Tables  8.6  and  8.7  represent the capacitor and inductor VAR allocation data 
of the IEEE 14 - bus system, respectively. 

 In the following calculations, optimization iteration will be stopped when 
the difference of objective value ΔF  is less than  ε ( ε    =   10 − 6 ). 

Table 8.5 Generator data for 14 -bus system (p.u.) 

   Unit No.  a       b       c       Pgimin       Pgimax

  1    0.0784    0.1350    0.0000    0.0000    3.0000  
  2    0.0834    0.2250    0.0000    0.0000    1.3000  
  6    0.0875    0.1850    0.0000    0.2000    2.0000  
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8.5.3.3.1 Sample set of Results with IQIP/EQIP/MINOS Options (minimiza-
tion of the total generation cost as objective function)   Three test cases are 
given here for the 14 - bus system for OPF with minimization of generation cost 
as objective function (i.e., objective 1 in OPF model, Section  8.5.2 ). The initial 
values of real power for the three cases are different as shown in Table  8.8 . 
The comparisons of results for three test cases using IQIP/EQIP/MINOS 
methods are listed in Tables  8.9 – 8.11 .   

 It can be observed from Tables  8.9 – 8.11  that the MINOS method cannot 
converge for these test cases, while the other two methods evaluated the 
optimization solutions. The improved IQIP method has high accuracy, fewer 
iteration numbers, and fast calculation speed compared with OPF based on 
the EQIP method. The maximum speed ratio between IQIP and EQIP can 
reach 1   :   8 (see Table  8.9  and Table  8.10 ). If the initial starting point is good 
(as in case 3), the OPF based on the EQIP method has a fast convergence 
speed but the convergence speed is still slower than that of IQIP based OPF. 
Meanwhile, for the same iteration number, the objective value obtained by 
IQIP is less than that by EQIP. Therefore, the improved IQIP method is 

Table 8.6 Capacitive VAR data for 14 -bus system (p.u.) 

   VAR Site 
Bus

   Fixed Unit 
Cost

   Variable Unit 
Cost

   Max. Capacitive 
VAR  

   Max. Inductive 
VAR  

  5    2.3500    0.1500    0.8000    0.0000  
  9    3.4500    0.2000    0.8000    0.0000  

  13    3.4500    0.2000    0.8000    0.0000  

Table 8.7 Inductive VAR data for 14 -bus system (p.u.) 

   VAR Site 
Bus

   Fixed Unit 
Cost

   Variable Unit 
Cost

   Max. Capacitive 
VAR  

   Max. Inductive 
VAR  

  5    6.0000    0.2500    0.4000    0.0000  
  9    6.0000    0.2500    0.4000    0.0000  

  13    6.0000    0.2500    0.4000    0.0000  

Table 8.8 Three test cases for OPF objective 1 

   Initial Value     Case 1     Case 2     Case 3  

  PG1    0.0000    0.0000    0.0000  
  PG2    0.4000    0.3500    0.0000  
  PG6    0.7000    0.7000    0.7000  
  VG1    1.0500    1.0500    1.0500  
  VG2    1.0450    1.0450    1.0450  
  VG6    1.0500    1.0500    1.0500  
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Table 8.9 Optimization results and comparison for case 1 (p.u.) 

   Control Option     IQIP     EQIP     MINOS  

  PG1    1.53414    2.18319    /  
  PG2    0.93357    0.34326    /  
  PG6    0.38141    0.35392    /  
  VG1    1.05000    1.05000    /  
  VG2    1.04997    1.04683    /  
  VG6    1.05000    1.05000    /  
  T4 - 7    0.98454    0.97513    /  
  T4 - 9    1.01278    0.98307    /  
  T5 - 6    0.98454    0.94992    /  
  Total PG    2.84912    2.88037    /  
  Power loss    0.10912    0.14037    /  
  Total PG cost    0.7578562    0.8272073    /  
  Objective value    0.7578562    0.8272073    /  
  PF mismatch    0.1402E - 6    0.4370E - 4    /  
  Iteration no.    12    26    /  
  CPU time (s)    30.0    252.9    No convergence  

Table 8.10 Optimization results and comparison for case 2 (p.u.) 

   Control Option     IQIP     EQIP     MINOS  

  PG1    1.65313    2.21476    /  
  PG2    0.84114    0.31538    /  
  PG6    0.35920    0.35192    /  
  VG1    1.05000    1.05000    /  
  VG2    1.04997    1.04588    /  
  VG6    1.04996    1.05000    /  
  T4 - 7    0.98208    0.97525    /  
  T4 - 9    1.01269    0.98293    /  
  T5 - 6    0.98853    0.94962    /  
  Total PG    2.85347    2.88206    /  
  Power loss    0.11347    0.14206    /  
  Total PG cost    0.7632329    0.8340057    /  
  Objective value    0.7632329    0.8340057    /  
  PF mismatch    0.1866E - 4    0.4357E - 4    /  
  Iteration no.    12    26    /  
  CPU time (s)    30.2    253.8    No convergence  

superior to the EQIP method. It features a general starting point and fast 
convergence. 

 Since the MINOS program cannot converge under specifi c operating condi-
tions and constraints, the other test case, the 30 - bus system, is used to further 
demonstrate the effectiveness of the IQIP method. The data and parameters 
of the 30 - bus system are taken from reference  [3] . The optimization results 
and comparison for IQIP/EQIP/MINOS methods are listed in Table  8.12 . It 
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Table 8.11 Optimization results and comparison for case 3 (p.u.) 

   Control Option     IQIP     EQIP     MINOS  

  PG1    1.55607    1.58973    /  
  PG2    0.93372    0.88235    /  
  PG6    0.36034    0.37895    /  
  VG1    1.05000    1.05000    /  
  VG2    1.04993    1.05000    /  
  VG6    1.04956    1.04987    /  
  T4 - 7    1.00047    0.99398    /  
  T4 - 9    1.00715    1.01298    /  
  T5 - 6    0.99392    0.97887    /  
  Total PG    2.85319    2.85100    /  
  Power loss    0.11319    0.11100    /  
  Total PG cost    0.7609503    0.7583547    /  
  Objective value    0.7609503    0.7583547    /  
  PF mismatch    0.9630E - 6    0.1622E - 4    /  
  Iteration no.    3    11    /  
  CPU time (s)    21.3    35.9    No convergence  

Table 8.12 Optimization results and comparison for IEEE 30 -bus system (p.u.) 

   Control Option     IQIP     EQIP     MINOS  

  PG1    0.73357    0.73921    0.75985  
  PG2    0.59838    0.59999    0.38772  
  PG5    0.61117    0.61412    0.66590  
  PG11    0.58787    0.57562    0.60000  
  PG13    0.34092    0.34321    0.40355  
  VG1    1.05000    1.05000    1.05000  
  VG2    1.04999    1.05000    1.03984  
  VG5    1.04998    1.05000    1.01709  
  VG11    1.04867    1.04915    1.05000  
  VG13    1.05000    1.05000    1.05000  
  T6 - 9    1.05160    1.08149    1.05461  
  T6 - 10    1.07615    1.01465    0.92151  
  T4 - 12    1.06768    1.09528    1.03377  
  T28 - 27    0.97443    0.94345    0.97217  
  Total PG    2.87190    2.87215    2.87120  
  Power loss    0.03790    0.03815    0.03720  
  Total PG cost    0.6575824    0.6581953    0.6572583  
  Objective value    0.6575824    0.6581953    0.6572583  
  PF mismatch    0.9447E - 6    0.3988E - 4    0.5734E - 7  
  Iteration no.    7    12    9  
  CPU time (s)    147.0    267.4    567.9  
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Table 8.13 Initial voltages on load bus for 14 -bus system (p.u.) 

   Bus No.     Initial  V       Vmin       Vmax

  3    0.94410    0.95000    1.05000  
  5    0.99220    0.95000    1.05000  
  7    0.94250    0.95000    1.05000  
  8    0.93270    0.95000    1.05000  
  9    0.93330    0.95000    1.05000  

  10    0.93910    0.95000    1.05000  
  13    0.98720    0.95000    1.05000  
  14    0.93530    0.95000    1.05000  

Table 8.14 Optimization results and comparison for objective 2 (p.u.) 

   Control Option     IQIP     EQIP     MINOS  

  VG1    1.05000    1.05000    1.05000  
  VG2    1.05000    1.05000    1.04248  
  VG6    1.05000    1.05000    1.04430  
  T4 - 7    0.97001    0.97000    0.97000  
  T4 - 9    0.96001    0.96001    0.96000  
  T5 - 6    1.03000    1.03000    0.93000  
  VD3    0.98340    0.98340    0.97610  
  VD5    1.02600    1.02600    1.02030  
  VD7    1.00200    1.00200    0.99530  
  VD8    0.99270    0.99280    0.98600  
  VD9    0.98970    0.98970    0.98300  
  VD10    0.99130    0.99130    0.98470  
  VD13    1.02180    1.02180    1.01580  
  VD14    0.98320    0.98320    0.97670  
  Power loss    0.110866    0.110868    0.110459  
  Objective value    0.110866    0.110868    0.110459  
  PF mismatch    0.1596E - 6    0.4634E - 8    0.4225E - 6  
  Iteration no.    4    4    8  
  CPU time (s)    115.9    150.4    184.4  

can be observed that the proposed IQIP method has the fastest convergence 
speed, followed by the EQIP method. The MINOS method has the slowest 
convergence speed.    

8.5.3.3.2 Sample Set of Results with IQIP/EQIP/MINOS Options ( VAR
optimal placement as objective function)   The test case given here is for the 
14 - bus system for OPF with VAR optimal placement as objective function 
(i.e., objective 2 in OPF model, Section  8.5.2 ). The initial voltages on load 
buses are shown in Table  8.13 . The optimization results and comparisons for 
the IQIP/EQIP/MINOS methods are listed in Table  8.14 .   
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 It is observed from Table  8.14  that IQIP and EQIP have almost the same 
optimization results, which are better than those obtained from the MINOS 
method. The comparison of the results shows that three methods alleviate the 
voltage violations satisfactorily. The convergence speed of the IQIP method 
ranks fi rst, followed by the EQIP method. The MINOS method ranks last.  

8.5.3.3.3 Sample Set of Results with IQIP/EQIP/MINOS Options (loss 
minimization as objective function)   The test case given here is for the 14 - bus 
system for OPF with loss minimization as objective function (i.e., objective 3 
in OPF model, Section  8.5.2 ). The optimization results and comparison for 
loss minimization with IQIP/EQIP/MINOS methods are listed in Table  8.15 .   

 From Table  8.15 , IQIP and EQIP have almost the same optimization results 
for loss minimization objective. In view of loss reduction, load voltage modi-
fi cation, and convergence speed, both IQIP and EQIP methods appear 
superior to the MINOS method. Similarly, the IQIP method has the fastest 
convergence speed for loss minimization.     

8.6 OPF WITH PHASE SHIFTER 

 The problem of power system security has obtained much attention in the 
deregulated power industry. To meet the load demand in a power system and 
satisfy the stability and reliability criteria, either the existing transmission lines 
must be utilized more effi ciently or new line(s) should be added to the system. 
The latter is often impractical. The reason is that building a new power trans-
mission line is in many countries a very time - consuming process and some-

Table 8.15 Optimization results and comparison for loss minimization (p.u.) 

   Control Option     IQIP     EQIP     MINOS  

  VG1    1.05000    1.05000    1.05000  
  VG2    1.05000    1.05000    1.02837  
  VG6    1.05000    1.05000    1.03330  
  T4 - 7    0.97001    0.97001    0.97000  
  T4 - 9    0.96001    0.96001    0.96000  
  T5 - 6    1.03000    1.02999    1.03000  
  VD5    1.02600    1.02600    1.00930  
  VD9    0.98970    0.98970    0.97040  
  VD13    1.02180    1.02180    1.00430  
  Initial loss    0.1164598    0.1164598    0.1164598  
  Final loss    0.1108663    0.1108664    0.1118670  
  Objective value    0.1108663    0.1108664    0.1118670  
  PF mismatch    0.4132E - 6    0.4634E - 8    0.4339E - 6  
  Iteration no.    3    3    8  
  CPU time (s)    22.2    27.0    70.7  
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times an impossible task, because of environmental problems. Therefore, the 
fi rst alternative provides an economically and technically attractive solution 
to power system security problem by use of some effi cient controls, such as 
controllable series capacitors, phase shifters, and load shedding, etc. This 
chapter introduces power system security enhancement through optimal 
power fl ow with phase shifter. The objective functions of OPF include minimum 
line overloads and minimum adjustment of numbers of phase shifters. It is 
noted that general OPF calculations are hourly based and the control variables 
of OPF are continuous. However, the calculations of phase shifter are daily 
based. The control variables associated with the phase shifter transformers are 
discrete. To solve this problem, a rule - based OPF with a phase shifter scheme 
can be adopted for practical system operation  [25] . 

  8.6.1   Phase Shifter Model 

 A phase shifter model can be represented by an equivalent circuit, which is 
shown in Figure  8.2 (a). It consists of an admittance in series with an ideal 
transformer having a complex turns ratio  k     ∠     φ .   

 The mathematical model of the phase shifter can be derived from Figure 
 8.2 (a), i.e.,
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     FIGURE 8.2     Phase shifter model  
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 It can be known from equation  (8.160)  that the mathematical model of the 
phase shifter makes the  Y  bus unsymmetrical. To make the  Y  bus symmetrical, 
the phase shifter can be simulated by installing the additional injections at the 
buses. The additional injections can be simplifi ed as follows.
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where

   I i  ,  P i  :    Current and real power fl ow at bus  i   
  I j  ,  P j  :    Current and real power fl ow at bus  j   
  Q i  :    Reactive power at bus  i   
  Q j  :    Reactive power at bus  j   
  V i      ∠     θ   i  :    Complex voltage at bus  i   
  V j      ∠     θ   j  :    Complex voltage at bus  j   
  k     ∠     φ :    Complex turn ratio of the phase shifter  
   ′ = ′ + ′Y G jBij ij ij :    Series admittance of line  ij     

 Therefore, the phase shifter model can be simulated by increasing the injec-
tions at the terminal buses as shown in Figure  8.2 (b).  

  8.6.2   Rule - Based  OPF  with Phase Shifter Scheme 

  8.6.2.1    OPF  Formulation with Phase Shifter 

  8.6.2.1.1   Objective Functions     Because of the installation of the phase 
shifter, the system will have lots of benefi ts such as overload release, system 
loss reduction, generation cost reduction, and generation adjustment reduc-
tion. All these benefi ts may be selected as objective functions for OPF with 
phase shifter. However, the primary purpose of installing the phase shifter is 
to remove the line overload. Thus the minimal line overload is selected as the 
primary objective function. In addition, since the adjustment numbers of the 
phase shifter are limited in the practical system, the minimal adjustment 
number of phase shifters is also selected as the objective function. Two objec-
tive functions are given as follows. 
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  (1)     Minimal line overloads

    Min oF Pij t Pijij
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= −( )

=
∑ ( ) max

2

1
    (8.163)  

where

   F  o :    The overload objective function  
  P ij  ( t ):    The overload fl ow on transmission line  ij  at time stage  t   
  P ij   max :    The transmission limit of line  ij   
  NB :    The set of overload lines     

  (2)     Minimal adjustment number of phase shifters

    Min F Wi i
i

NS
φ φ=

=
∑

1
    (8.164)  

where

   F   φ  :    The phase shifter adjustment objective function  
  φ   i  :    The angle of phase shifter transformer  
 W  i  :    The priority coeffi cient of phase shifter transformers  
  NS :    The set of phase shifter transformers  
  NG :    The set of generators        

  8.6.2.1.2   Constraints     In addition to the general linear/nonlinear con-
straints, the constraints relating to phase shifter variables such as phase 
shifter angle and maximal adjustment numbers should be included in the 
OPF formulation with phase shifter. The candidate constraints are as 
follows: 

  Constraint 1: Real power fl ow equation  
  Constraint 2: Reactive power fl ow equation  
  Constraint 3: Upper and lower limits of real power output of the generators  
  Constraint 4: Upper and lower limits of reactive power output of the 

generators  
  Constraint 5: Upper and lower limits of node voltages  
  Constraint 6: Available transfer capacity of the transmission lines  
  Constraint 7: Upper and lower limits of transformer taps  
  Constraint 8: Upper and lower limits of phase shifter taps  
  Constraint 9: Maximal adjustment times of phase shifters per day    



334 OPTIMAL POWER FLOW

 It is noted that constraints 8 and 9 are the phase shifter constraints that were 
used in the rule - based search technique, and the limits of all control and state 
variables are determined for the specifi c system under study. 

 The above - mentioned OPF model with phase shifter is a nonlinear 
mathematical programming problem. It can be reduced by an elimination 
procedure and solved by improved quadratic interior point method, which was 
introduced in the previous section.   

  8.6.2.2   Rule - Based Scheme     To determine the best location for installing 
the phase shifter, sensitivity analysis is adopted. The formulation of sensitivity 
analysis of objective function with respect to phase shifter variable can be 
expressed as follows:

    S
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where

   F  o (0):    The total line overload before phase shifter  i  is installed  
  F  o ( φ   i  ):    The total line overload after phase shifter  i  is installed    

 In equation  (8.165) , the value of sensitivity  S F −  φ    will be greater than zero if 
a power violation is reduced by the use of a phase shifter, i.e.,  F  o (( φ   i  )    <     F  o (0). 
Obviously, if phase shifter  i  is not helpful in alleviating line overload 
 F  o ( φ   i  )    ≥     F  o (0). In this case, we defi ne the value of the sensitivity  S F    −  φ     =   0. 

 In the rule - based system, the following rules are defi ned. 

   Rule 1:    If the system operates in the normal state without load change, then 
none of the existing phase shifters will change tap.  

   Rule 2:    If the system load increases, or the system operates in contingency 
state, then judge: 
 If no line overload appeared, then none of the existing phase shifters will 
change tap. 
 If line overload occurred in system, then go to rule 3 to adjust the tap of 
some phase shifters.  

   Rule 3:    If the phase shifter leads to maximal overload reduce at time stage  t , 
then this phase shifter will be recommended at this time.  

   Rule 4:    If phase shifters  i  and  j  lead to same overload reduce at time stage  t , 
then check the other benefi ts: 
 If phase shifter  i  makes less generation cost benefi t than phase shifter  j , 
then phase shifter  j  will be recommended at this time. 
 If phase shifter  i  makes less system loss benefi t than phase shifter  j , then 
phase shifter  j  will be recommended at this time.  

   Rule 5:    Phase shifter I is recommended and the line overloads are still exist, 
then the next priority phase shifter in the rank will be joined to remove the 
violations until there is no more available phase shifter.  
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Rule 6:    If OPF suggests a solution, and RBS confi rms that phase shifter con-
straints are met, then the problem at this time stage is solved.  

Rule 7:    If RBS checks OPF solution and OPF solution violates phase shifter 
constraints, then freeze the corresponding tap of phase shifter.  

Rule 8:    If RBS checks state of phase shifters and phase shifter  k  has a frozen 
tap, then phase shifter  k  will be out of service in the subsequent time stages.    

 A phase shifter tap will be frozen when the tap number of the phase shifter 
at the time reaches its maximum. The IQIP algorithm then uses that which 
was fi xed or scheduled by the rule - based engine. The solution steps of the 
integrated algorithm for OPF with phase shifter are as follows. 

  Step 1:     Assume several contingencies.  
  Step 2:     OPF calculation without phase shifter for each given contingency from 

time stage t  ( t    =   1, fi rst time stage).  
  Step 3:     Judge whether OPF is solvable. If the answer is  “ Yes, ”  there is no 

need to use phase shifter. If  “ No, ”  go to step 4.  
  Step 4:     Contingency analysis through power fl ow calculation. Check the over-

load state of lines.  
  Step 5:     Conduct sensitivity analysis for obtaining a list of phase shifter ranking 

according to the amount of releasing the line overload for each phase 
shifter. Then decide the corresponding weighting factor.  

  Step 6:     OPF calculation with the available phase shifter.  
  Step 7:     Use the rule - based method to check the operation limitation of the 

phase shifter. Calculate the operation times,  NMφi    =     NMφi    +   1, if phase 
shifter i  is operated in this time stage.  

  Step 8:     If  NMαi ( t )   =    NMφimax , freeze the corresponding taps of the phase 
shifter. That is, this phase shifter will be out of service in subsequent times.  

  Step 9:     Check time stages. If  t    =    tmax  (e.g., 24   h), stop. Otherwise,  t    =    t    +   1, go 
to step 2.    

 Finally, in the search technique, the phase shifters are adjusted sequentially 
and their direction of adjustments is governed by the impact on the primary 
objective function of minimal line overload. The engineering rules are such 
that the least number of phase shifters are adjusted at a time, provided that 
they have the greatest impact in reducing the line fl ow overloads. The phase 
shifter constraints, which are handled by the rule - based search technique, are 
adjusted to produce discrete settings and in turn pass on to the IQIP module 
of the algorithm. 

   Example 8.3 

 The integrated scheme of OPF with phase shifter is tested on the IEEE 
30 - bus system. The data and parameters of the 30 - bus system are the same 
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as in the previous section, and the limits of the installed phase shifters were 
taken as  ± 10 0   [25] . 

 The total system load of the IEEE 30 - bus system is 283.4   MW. The 
corresponding load scaling factor (LSF) is 1.0. The daily load demands 
of the IEEE 30 - bus system are shown in Table  8.16 . To determine the 
degree of line violations at the line  L i    −    j  , the following performance index is 
defi ned  [25] :

    PI
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where

   PI ij  :    The performance index of line overloads  
  P ij  :    The overload fl ow on transmission line  
  NOL :    The set of overloaded lines     

    Through power fl ow analysis for each time stage, line overloads only 
appeared at hours 8, 15, 16, 17, 18, and 19, which are peak load periods. The 
violation amounts of line fl ow for each time stage are summarized in Table 
 8.17 .   

 The line overloads will become more serious if system contingency sce-
narios are considered. Therefore, OPF with phase shifter adjustment should 
be employed for enhancing power system security. 

 For the purpose of simulation, the following line contingency scenarios are 
given, that is,  L  12 – 14 ,  L  10 − 21 ,  L  22 − 25 ,  L  24 − 27 , and  L  29 − 30 . 

 Table  8.18  is the summary of contingency analysis, and the total power 
violations for all time stages are shown. It can be observed from Table  8.18  
that the line  L  10 − 21  outage is the most serious contingency case, where the total 
line violation is 107.26   MW.   

 Table  8.19  gives the details of contingency calculation under the peak load 
(at hour 18). The calculation results show that although the contingency ranks 

 Table 8.16     Daily load curve for  IEEE  30 - bus system 

   Time (hour)     Load (LSF)     Time Stage     Load (LSF)     Time Stage     Load (LSF)  

  1    0.90    9    1.30    17    1.50  
  2    0.96    10    1.15    18    1.55  
  3    1.00    11    1.10    19    1.40  
  4    1.05    12    1.05    20    1.20  
  5    1.10    13    1.16    21    1.12  
  6    1.15    14    1.30    22    1.03  
  7    1.30    15    1.40    23    0.96  
  8    1.40    16    1.45    24    0.90  
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Table 8.17 Total power flow violation without contingency 

   Time 
(hour)

   Overload 
(MW)

   Time 
(hour)

   Overload 
(MW)

   Time 
(hour)

   Overload 
(MW)

  1 – 7    0.00    15    5.12    18    13.08  
  8    5.12    16    6.78    19    5.12  
  9 – 14    0.00    17    9.62    20 – 24    0.00  

Table 8.18 Summary of contingency analysis 

   Outage line     L 12 – 14      L 10 – 21      L 22 – 25      L 24 – 27      L 29 – 30

  Overloaded 
lines

  L 1 – 2     L 1 – 2     L 1 – 2     L 1 – 2     L 1 – 2

  L 6 – 8     L 6 – 8     L 6 – 8     L 6 – 8     L 6 – 8

  L 9 – 10     L 9 – 11     L 9 – 11     L 9 – 10     L 9 – 10

  L 9 – 11     L 10 – 20     L 10 – 20     L 9 – 11     L 9 – 11

              L 10 – 21     L 27 – 30

  Overloaded 
time stage  

  T8, T15 – T19    T7 – 9, T14 – T20    T8, T15 – T19    T8, T15 – T19    T8, T15 – T19  

  Total line 
MW
violation

  50.68    102.76    52.73    57.18    50.53  

Table 8.19 Contingency analysis results at peak load time stage 18 

   Outage 
Line

   Overload 
Line (MW)  

   Line Flow 
Limit (MW) 

   Overload 
Index (PI) 

   Power 
Violation  

   Contingency 
Ranking

  L 12 – 14     L 1 – 2     130    0.144    33.63    4  
  L 6 – 8     55    0.167  
  L 9 – 10     65    0.042  
  L 9 – 11     65    0.046  

  L 10 – 21     L 1 – 2     130    0.144    43.38    1  
  L 6 – 8     55    0.176  
  L 9 – 11     65    0.034  
  L 10 – 20     32    0.390  

  L 22 – 25     L 1 – 2     130    0.144    31.665    5  
  L 6 – 8     55    0.187  
  L 9 – 11     65    0.021  
  L 10 – 20     16    0.096  

  L 24 – 27     L 1 – 2     130    0.139    38.53    2  
  L 6 – 8     55    0.135  
  L 9 – 10     65    0.045  
  L 9 – 11     65    0.063  
  L 10 – 21     32    0.188  

  L 29 – 30     L 1 – 2     130    0.144    33.86    3  
  L 6 – 8     55    0.167  
  L 9 – 10     65    0.037  
  L 9 – 11     65    0.027  
  L 27 – 30     19    0.108  
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Table 8.20 Ranking of phase shifter locations based on sensitivity analysis 
(LSF = 1.55, outage line L10–21)

   Phase 
Shifter
Location
(Lij )  

   Phase 
Shifter
Angle
(deg.) 

   Over -
 Loaded 
Lines
(Lij )  

   Line Flow 
Limit
(MW)

   Performance 
Indices
(PIij )  

   Sensitivity 
Values  Sij

(MW/deg.)  

   Phase 
Shifter

Ranking
(Rkij )  

  L 1 – 3     +5    L 6 – 8     55    0.172    1.87    7  
  L 9 – 11     65    0.026  
  L 10 – 22     32    0.382  

  L 6 – 8     +1    L 1 – 2     130    0.145    2.30    5  
  L 9 – 11     65    0.033  
  L 10 – 22     32    0.383  

  L 15 – 18 − 3    L 6 – 8     55    0.147    4.45    3  
  L 9 – 11     65    0.007  
  L 10 – 22     32    0.257  

  L 2 – 4     +1    L 1 – 2     130    0.125    1.99    6  
  L 6 – 8     55    0.178  
  L 9 – 11     65    0.039  
  L 10 – 22     32    0.393  

  L 10 – 22     +1    L 6 – 8     55    0.160    15.5    1  
  L 9 – 11     65    0.009  
  L 10 – 20     16    0.055  
  L 10 – 21     32    0.094  

  L 2 – 6     +3    L 6 – 8     55    0.169    3.15    4  
  L 9 – 11     65    0.019  
  L 10 – 22     32    0.383  

  L 24 – 25     +3    L 9 – 11     65    0.003    7.87    2  
  L 24 – 27     32    0.040  

for different time stages are not totally the same, the selected worst con-
tingency case is the same, i.e., the line  L10− 21  outage. The worst scenario 
for this example is that the line L10− 21  outage happens under the peak load 
(at hour 18).   

 To determine the priority of phase shifters, the sensitivity analysis of phase 
shifters is conducted under the peak load and the worst contingency case. 
Simulation results show that system security will be greatly enhanced if the 
phase shifter is installed at locations L1− 3 ,  L2− 4 ,  L2− 6 ,  L6− 8 ,  L10− 22 ,  L15− 18 ,  L24− 25 , 
respectively. 

 For the specifi ed worst contingency, it can be seen from Table  8.20  that the 
best three locations for installing phase shifter are L10− 22 ,  L15− 18 ,  L24− 25 .   

 Table  8.21  lists the results of phase shifter adjustments during the operation 
period (24   h) based on optimal power fl ow. Simulation results show that all 
the line overloads are removed because of the use of the phase shifters.      
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8.7 MULTIPLE-OBJECTIVES OPF

 The optimal power fl ow problem may have all kinds of objectives, which 
create the complication in the implementation since these objectives do not 
have a consistent goal to produce the optimum solution. This section intro-
duces the OPF problem that is a fully coupled active and reactive dispatch or 
a combined active and reactive dispatch (CARD). The purpose of this OPF 
is to achieve the overall objective of minimum generation cost and to improve 
the distribution of reactive power and voltage, subject to constraints that 
ensure system security. Security is defi ned as the maintenance of individual 
circuit fl ows, generator real and reactive power output, and system voltages 
within limits under normal system conditions and contingency cases. Five 
different objective functions are considered  [11] . They are minimization of 
generator fuel cost, maximization of reactive power reserve margins, voltage 
maximization, avoidance of voltage collapse, and improvement in the ability 
of the system to maintain a higher system load level. The analytic hierarchical 
process (AHP) is sued to handle these objectives during the implementation 
of combined active and reactive dispatch (CARD). 

8.7.1 Formulation of Combined Active and Reactive Dispatch 

8.7.1.1 Objective Functions   Five objective functions that are used in 
combined active and reactive dispatch (CARD) are as follows  [11, 12] . 

Table 8.21 Results of phase shifter adjustments 

   Time (hour)  
   Phase Shifter Site 

(located at line L ij )  
   Phase shifter angle 

(degree)
   Overload 

(MW)

  1 – 6    None    /    /  
  7    L 10 – 22     +1    0.00  
  8    L 10 – 22     +1    0.00  
  9    L 10 – 22     +1    0.00  
  10 – 13    None    /    /  
  14    L 10 – 22     +1    0.00  
  15    L 10 – 22     +1    0.00  
  16    L 10 – 22     +1    0.00  
  17    L 24 – 25     +1    0.00  
  18    L 10 – 22     +1    0.00  

  L 24 – 25     +1    0.00  
  L 15 – 18 − 2    0.00  

  19    L 10 – 22     +1    0.00  
  20    L 10 – 22     +1    0.00  
  21 – 24    None    None    /  
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  8.7.1.1.1   Minimization of Generator Fuel Costs     Generally, the generator 
fuel cost can be expressed as a quadratic function:

    F a P b P ci ij i ij i j
i NGj NSTEP

1
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∈∈
∑∑ τ     (8.167)  

where

   NG :    The number of generators  
  NSTEP :    The number of time steps  
  τ   j  :    The approximate integration coeffi cients    

 Linearizing equation  (8.167) , we get

    Δ ΔF a P b Pi ij i ij j
i NGj NSTEP

1 2= +( )
∈∈
∑∑ τ     (8.168)   

 If the generator fuel costs are modeled by linear functions relating monetary 
units to energy supplied, the following expression can be used:
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 The time factors  τ   j   correspond to the integration of the fuel costs over the 
operation period by means of the trapezoidal rule.   

 8.7.1.1.2   Maximization of Reactive Power Reserve Margins     This objec-
tive aims to maximize the reactive power reserve margins and seeks to dis-
tribute the reserve among the generators and SVCs in proportion to ratings. 
It can be expressed as
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 Linearizing the above equation, we get
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 8.7.1.1.3   Maximization of Load Voltage     This objective aims to optimize 
the voltage profi le by maximizing the sum of the load voltage.

    Δ ΔF Vij
i NDj NSTEP

3 =
∈∈
∑∑     (8.172)  

where  ND  is the number of loads.    

8.7.1.1.4   Avoidance of Voltage Collapse     This objective aims to optimize 
the voltage profi le by maximizing the voltage collapse proximity indicator for 
the whole system. It can be expressed as

    Δ ΔF kj
k NCTGj NSTEP

4 =
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∑∑ λ     (8.173)  

where  λ   kj   is a scalar (to be maximized) less than any bus voltage collapse 
proximity indicator at time stage  j , contingency  k  ( k    =   0, refer to base case).   

 8.7.1.1.5   Ability to Maintain Higher System Load Level     This objective 
aims to allow the generators to respond effi ciently to system load changes by 
optimizing the ability of the system to maintain a higher system load level, 
while constraining generators within their reactive limits. It can be expressed 
as.

    Δ ΔF kj
k NCTGj NSTEP

5 =
∈∈
∑∑ α     (8.174)  

where  α    kj   is a system load increment (to be maximized) at time stage  j , con-
tingency  k . 

 The objective function of CARD can be written as

    Δ Δ Δ Δ Δ ΔF w F w F w F w F w F= + + + +1 1 2 2 3 3 4 4 5 5     (8.175)  

where  w i   is the weighting coeffi cient of the  i th objective function. The calcula-
tion of  w i   is discussed later.   

  8.7.1.2   Constraints     At each time step, the following constraints are taken 
into account: 

  (a)      Active Power Constraints   

   •      The active power balance equation  
   •      The generator active power upper and lower limits  
   •      The generator active power reserve upper and lower limits group import 

and export constraints  
   •      The active power - reserve relationship constraints  
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   •      The system active power reserve constraint  
   •      The line active power fl ow upper and lower limits.    

  (b)      Reactive Power Constraints  

    •      The reactive power balance equation  
   •      The generator reactive power upper and lower limits network voltage 

limits  
   •      The transformer tap changer ranges  
   •       Q  -   V  characteristics of SVCs  
   •      The additional constraints aimed at avoiding voltage collapse  
   •      The additional constraints aimed at improving the ability of the system 

to maintain higher system load.    

  (c)      Constraints That Are a Combined Function of Active and Reactive 
Power  

    •      The generator capability chart limits (other than simple MW or MVAr 
limits)  

   •      The branch current fl ow limits, modeled at midpoint of the branch.  
   •      The additional constraints aimed at improving the ability of the system 

to maintain higher system load taking into account generator capability 
chart limits.      

 Some of the constraints are straightforward constraints (constraints regard-
ing system variables) and others are functional constraints that are stated as 
follows. 

  8.7.1.2.1   Group Limits     Station limits and approximate network security 
limits may be expressed by a number of group import and export constraints:
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 Write the above equations in incremental form, that is,
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where  P  D   j   local  is the local load demand within the group at time stage  j .   
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 8.7.1.2.2   Spinning Reserve Constraints     The reserve available from a 
generator may be modeled as a trapezoidal function of generation  [11, 12] . 
The allocation of the corresponding independent variable  Δ  R ij   is then 
subject to

    R R R R Ri ij ij i ijmin max− ≤ ≤ −0 0Δ     (8.180)  

    Δ ΔR P P P Rij ij i ij ij+ ≤ − −max 0 0     (8.181)  

    ΔR S Rij ij
gen

total
gen

∑ ∑≥ − 0     (8.182)     

 8.7.1.2.3   Operating Chart Limits for Generators     The ability of generators 
to absorb reactive power is generally limited by the machine minimum excita-
tion limit. A further limit is determined so as to provide an adequate margin 
of safety for the machine thermal limit. A simplifi ed generator capability chart 
can be defi ned in which the leading and lagging limits of machine reactive 
output are expressed as a function of the real power output. Using a trapezoi-
dal approximation, this can be represented as:
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 Linearizing the above equations around the current operating point, we 
obtain
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where  α   i   1 ,  α   i   2  are the intersections with the  Q  - axis, and  β   i   1 ,  β   i   2  are the intersec-
tion with the  P  - axis.   

 8.7.1.2.4   Maintaining Higher System Load Constraints     Every generator  i  
should contribute its share of reactive power output to meet a prospective 
increase in system demand in such a way that the generator output does not 
exceed its reactive limits
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 When considering generators with active power control, the operating chart 
limits for the generators are taken into account. 

 Linearizing equation  (8.186)  around the current operating point, we obtain
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where   δ
δα
Qij

j

 represents the change in the reactive power output of generator 

 i  as a fraction of the change in load demand at time stage  j  evaluated with a 
load fl ow algorithm.  α   j   represents the increase in system demand.  

  8.7.1.2.5   Avoidance of Voltage Collapse Constraints     For a network with 
 n  buses, Thevenin ’ s equivalent impedance looking into the port between bus 
 i  and ground is  Z ii      ∠     θ   i  , which equals the  i th diagonal element of [ Z ]   =   [ Y ]  − 1 . 
Therefore, for permissible power transfer to the load at bus  i  we must have 
 Z i  / Z ii      >    1, where  Z i      ∠     γ   i   is the impedance for load   i Z V Pi i i i=( )2 cos γ . 

 The idea is to constrain the voltage collapse proximity indicators at the load 
nodes in order to maintain an acceptable system voltage profi le. This has been 
done by fi nding a parameter greater than 1, at each time interval, such that 
the voltage collapse proximity indicators at the load nodes specifi ed by the 
user are greater than this parameter. These parameters  λ   j   form part of the 
objective function. The corresponding constraints can be written as:

    Z Zi ii ≥ λ2     (8.188)  

    V Z Pi ii i i≥ λ γcos     (8.189)   

 Linearizing equation  (8.189)  around the current operating point, we obtain

    Δ Δ ΔV Z P V Z Pij j ii i i ij j ii i i− ≥ − +λ γ λ γcos cos0 0     (8.190)    

  8.7.1.2.6   Static  VAR  Compensators     SVCs are high - speed variable reac-
tive power sources and sinks connected to the system. Their electrical charac-
teristic is such that MVAR output (or absorption) is related to voltage in a 
linear manner; normally for a small change in voltage the compensator will 
go from zero to full output. This is known as the slope. Thus the constraint of 
SVCs can be modeled as:

    V V a Q Vij ij i ij ijmin max≤ − ≤     (8.191)  

    Q Q Qij ij ijmin max≤ ≤     (8.192)   

 The linearized incremental model is
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    V V a Q V a Q V V a Qij ij i ij ij i ij ij ij i ijmin max− + ≤ − ≤ − +0 0 0 0Δ Δ     (8.193)  

where  a i   is the slope.  

  8.7.1.2.7   Dynamic Constraints     In the dynamic dispatch case additional 
generation rate limit constraints can be considered:

    − ≤ − ≤−P T P P P Ti j ij i j i jrd ru( )1     (8.194)   

 The linearized incremental form of the above equation is

    − ≤ + − + ≤− −P T P P P P P Ti j ij ij i j i j i jrd ru0 1 0 1Δ Δ( ) ( )     (8.195)  

where  P  rd   i  ,  P  ru   i   are the vector limits for decreasing and increasing output, 
respectively, and  T j   is the length of the time step. 

 For every contingency at every time step, the constraints regarding the slack 
bus will be included in addition to the constraints for the normal case.    

  8.7.2   Solution Algorithm 

  8.7.2.1    AHP  Model of  CARD      Obviously, the mathematical model of com-
bined active and reactive dispatch mentioned in Section  8.7.1  is a linear model 
based on multiobjective functions. It is not appropriate to use an equal weight-
ing coeffi cient for the various kinds of objectives in  (8.175)  because the impor-
tance of these objectives is different in a practical power system. Therefore, 
the weighting coeffi cients of the various objective functions in the CARD 
model must be determined before CARD can be executed. However, it is very 
diffi cult to decide precisely the weighting coeffi cient of each objective in the 
CARD model unless only one or two objectives are considered. There are two 
reasons for this. One is that the objectives are interrelated and interact with 
each other. The other is that the relative importance of these objectives is not 
the same, not only for different power systems but also within the same power 
system in different circumstances. An analytic hierarchical process was recom-
mended to solve this challenging problem  [11] . 

 The principle and method of the analytic hierarchy process (AHP) are 
introduced in Chapter  7 . AHP transforms the complex problem into rank 
calculation within the hierarchy structure. In the ranking computation, the 
ranking in each hierarchy can also be converted into the judgment and com-
parison of a series of pairs of factors. The judgment matrix can be formed 
according to the quantifi ed judgment of pairs of factors by some ratio scale 
method. Consequently, the value of the weighting coeffi cients of all factors 
can be obtained through calculating the maximal eigenvalue and the corre-
sponding eigenvector of the judgment matrix. The judgment matrix  A  of the 
CARD hierarchy model can be written as follows:
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    (8.196)  

where  W i   is the weighting coeffi cient of the  i th subobjective in the hierarchy 
model of CARD. 

 The AHP algorithm and the selection of the judgment matrix can be found 
in Chapter  7 .  

  8.7.2.2   Solution Algorithm     The solution algorithm adopted for the 
AHP - based combined active and reactive dispatch may be described as 
follows: 

  (a)     Either perform a merit order dispatch or use an existing active power 
generation pattern provided by the user to satisfy active power demand. 
The same active generation pattern applies for contingency cases.  

  (b)     Perform a Newton – Raphson power fl ow for normal and defi ned 
contingency cases at every time step. If power fl ow analysis only is 
requested, then stop; otherwise proceed to step (c).  

  (c)     For every contingency case, at every time step, include a new set of 
variables and constraints relating that case to the variables and con-
straints of the intact case.  

  (d)     Set up a hierarchy model for CARD.  
  (e)     Form a judgment matrix according to the experiences and needs of the 

user.  
  (f)     Perform the AHP calculation to obtain the optimum weighting coef-

fi cients of the various objective functions.  
  (g)     Linearize the objective function and constraints around the operating 

point.  
  (h)     Execute the LP algorithm (sparse dual revised simplex method with 

relaxation) to obtain the optimum state of the linearized system.  
  (i)     Apply constraint limit squeezing automatically, or as necessary depend-

ing on the option to be selected.  
  (j)     Iterate between LP and power fl ow until the system converges.    
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 The AHP - based CARD algorithm is designed to satisfy the following con-
vergence criteria simultaneously: 

   •      The consistency of the weighting coeffi cients is satisfactory.  
   •      No violation of constraint limit occurs.  
   •      Changes in control variables over two consecutive iterations are within 

specifi ed tolerances.  
   •      Changes in objective function value over two consecutive iterations are 

within specifi ed tolerance.       

  8.8   PARTICLE SWARM OPTIMIZATION FOR  OPF  

 As we discussed above, various traditional optimization techniques were 
developed to solve the OPF problem. Some of these techniques have excellent 
convergence characteristics, and some are widely used in the industry. It is 
noted that each technique may be tailored to suit a specifi c OPF optimization 
problem based on the mathematical nature of the objectives and/or con-
straints. In addition, some of these techniques might converge to local solu-
tions instead of global ones if the initial guess happens to be in the neighborhood 
of a local solution. This occurs as a result of using Kuhn – Tucker conditions 
as termination criteria to detect stationary points. This practice is commonly 
used in most commercial nonlinear optimization programs  [70] . 

 In recent years, a new optimization method, particle swarm optimization 
(PSO), has been applied to solve the OPF problem  [59 – 64] . This section intro-
duces several major PSO methods that are used in OPF. 

  8.8.1   Mathematical Model 

 Generally, the following OPF model is used in various particle swarm optimi-
zation approaches. The objective function may be one of the following 

  (1)     Fuel cost minimization

    Min F a P b P cg i gi i gi i
i

NG

= + +( )
=
∑ 2

1

    (8.197)    

  (2)     Fuel emission minimization

    Min g g gE a P Pi i i i i
i

NG

= + +( )
=
∑ 2

1

β γ     (8.198)    

  (3)     Loss minimization

    Min LP Pl
i

NL

=
=
∑

1

    (8.199)    
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  (4)     Voltage deviation minimization at load buses

    Min spVD V Vi i
i

ND

= −( )
=
∑ 2

1

    (8.200)    

 where

    Vi
sp:    The pre - specifi ed reference value at load bus  i   

  P  g   i  :    The real power generation at generator  i   
  P  L :    System real power loss  
  P l  :    Real power loss on line  l   
  P  gslack :    The real power of slack generator  
  a i  ,  b i  ,  c i  :    The coeffi cients of generator fuel cost  
  α   i  ,  β   i  ,  γ   i  :    The coeffi cients of generator emission function  
  VD :    The total voltage deviation at load buses  
  NG :    The number of generating units  
  ND :    The number of load buses  
  NL :    The number of lines    

 The constraints are as follows.

    P P f V Ti i Pig d− − ( ) =, ,θ 0     (8.201)  

    Q Q f V Ti i Qig d− − ( ) =, ,θ 0     (8.202)  

    P P P i NGi i ig g gmin max ,≤ ≤ ∈     (8.203)  

    Q Q Q i NGi i ig g gmin max ,≤ ≤ ∈     (8.204)  

    Q Q Q i NCi i ic c cmin max ,≤ ≤ ∈     (8.205)  

    V V V i NGi i ig g gmin max ,≤ ≤ ∈     (8.206)  

    V V V i NDi i id d ,min d max≤ ≤ ∈     (8.207)  

    T T T i NTi i imin max ,≤ ≤ ∈     (8.208)  

    S S j NLj JL L≤ ∈max ,     (8.209)  

where

   S  L   j  :    The transmission line loadings  
  S lj   max :    The limit of transmission line loadings  
  Q  d   i  :    Switchable VAR compensations at bus  i   
  NC :    The number of switchable VAR sources  
  V  g   i  :    The voltage magnitude at generator bus  i     
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 The subscripts  “ min ”  and  “ max ”  stand for the lower and upper bounds of 
a constraint, respectively. 

 Several PSO methods can be used to solve the above - mentioned OPF 
problem, which are introduced in the next section.  

  8.8.2    PSO  Methods 

 The PSO has been used to solve the unit commitment, which is introduced in 
Chapter  7 . Here, we focus on applying PSO methods to solve OPF problem 
 [59, 71 – 75] . 

  8.8.2.1   Conventional Particle Swarm Optimization     In PSO algorithms, 
each particle moves with an adaptable velocity within the regions of decision 
space and retains a memory of the best position it ever encountered. The best 
position ever attained by each particle of the swarm is communicated to all 
other particles. The conventional PSO assumes an  n  - dimensional search space 
 S     ⊂     R n  , where  n  is the number of decision variables in the optimization 
problem, and a swarm consisting of  N  particles. 

 In PSO, a number of particles form a swarm that evolves or fl ies throughout 
the problem hyperspace to search for optimal or near - optimal solution. The 
coordinates of each particle represent a possible solution with two vectors 
associated with it, the position  X  and velocity  V  vectors. During their search, 
particles interact with each others in a certain way to optimize their search 
experience. There are different variants of the particle swarm paradigms, but 
the most general one is the  P  gb  model, where the whole population is consid-
ered as a single neighborhood throughout the optimization process. In each 
iteration, the particle with the best solution shares its position coordinates 
( P  gb ) information with the rest of the swarm. 

 Thus the variables are defi ned as follows. 
 The position of the  i th particle at time  t  is an  n  - dimensional vector 

denoted by

    X t x x x Si i i i n( ) = ( ) ∈, , ,, , ,1 2 …     (8.210)   

 The velocity of this particle at time  t  is also an  n  - dimensional vector 
denoted by

    V t v v v Si i i i n( ) = ( ) ∈, , ,, , ,1 2 …     (8.211)   

 The best previous position of the  i th particle at time  t  is a point in  S , which 
is denoted by

    P p p p Si i i i n= ( ) ∈, , ,, , ,1 2 …     (8.212)   

 The global best position ever attained among all particles is a point in  S , 
which is denoted by
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    P p p p Sngb gb gb gb= ( ) ∈, , ,, , ,1 2 …     (8.213)   

 Then, each particle updates its coordinates based on its own best search 
experience ( P i  ) and  P  gb  according to the following velocity and position update 
equations:

    V wV C r P X C r P Xi
t

i
t

i i
t

i
t+ = + × × −( ) + × × −( )1

1 1 2 2 gb     (8.214)  

    X X Vi
t

i
t

i
t+ += +1 1     (8.215)  

where

   w :    Inertia weight  
  C  1 ,  C  2 :    Acceleration coeffi cients  
  r  1 ,  r  2 :    Two separately generated uniformly distributed random numbers in 

the range [0,1] added in the model to introduce stochastic nature.    

 The inertia weighting factor for the velocity of particle is defi ned by the 
inertial weight approach

    w w
w w

t
tt = −

−
×max

max min

max

    (8.216)  

where  t  max  is the maximum number of iterations and  t  is the current number 
of iterations.  w  max  and  w  min  are the upper and lower limits of the inertia weight-
ing factor, respectively. 

 Moreover, in order to guarantee the convergence of the PSO algorithm, 
the constriction factor  k  is defi ned as.

    k =
− − −

2

2 42ϕ ϕ ϕ
    (8.217)  

where  ϕ    =    C  1    +    C  2 ,  ϕ     ≥    4. 
 In this constriction factor approach (CFA), the basic system equations of 

the PSO,  (8.214)  and  (8.215) , can be considered as difference equations. 
Therefore, the system dynamics, namely, the search procedure, can be ana-
lyzed by the eigenvalue analysis and can be controlled so that the system 
behavior has the following features.

   (1)     The system converges.  
  (2)     The system can search different regions effi ciently.    

 In the CFA, the  ϕ  must be greater than 4.0 to guarantee stability. However, 
as  ϕ  increases, the factor  k  decreases and diversifi cation is reduced, yielding 



PARTICLE SWARM OPTIMIZATION FOR OPF 351

slower response. Therefore, we choose 4.1 as the smallest  ϕ  that guarantees 
stability but yields the fastest response. It has been observed that 4.1    ≤     ϕ     ≤    4.2 
leads to good solutions  [59] .  

  8.8.2.2   Passive Congregation - Based  PSO      According to the local -
 neighborhood variant of the PSO algorithm (L - PSO)  [75] , each particle moves 
toward its best previous position and toward the best particle in its restricted 
neighborhood. As the local - neighborhood leader of a particle, its nearest 
particle (in terms of distance in the decision space) with the better evaluation 
is considered. Since the constriction factor approach generates higher - quality 
solutions in the basic PSO, some enhancements are presented. Specifi cally, 
Parrish and Hammer  [76]  have proposed mathematical models to show how 
these forces organize the swarms. These can be classifi ed in two categories: 
the  aggregation  and the  congregation  forces. 

 Aggregation refers to the swarming of particles by nonsocial, external 
physical forces. There are two types of aggregation: passive aggregation and 
active aggregation. Passive aggregation is a swarming by physical forces, as 
the water currents in the open sea group the plankton  [76] . 

 Congregation, on the other hand, is a swarming by social forces, which is 
the source of attraction of a particle to others and is classifi ed in two types: 
social and passive. Social congregation usually happens when the swarm ’ s 
fi delity is high, such as genetic relation. Social congregation necessitates active 
information transfer, e.g., ants that have high genetic relation use antennal 
contacts to transfer information about location of resources. 

 According to references  [59, 75, 76] , passive congregation is an attraction 
of a particle to other swarm members, where there is no display of social 
behavior since particles need to monitor both environment and their immedi-
ate surroundings such as the position and the speed of neighbors. Such infor-
mation transfer can be employed in the passive congregation. A hybrid L - PSO 
with passive congregation operator (PAC) is called LPAC PSO  [59] . Moreover, 
the global variant - based passive congregation PSO (GPAC) can also be 
enhanced with the constriction factor approach. 

 The swarms of the enhanced GPAC and LPAC are manipulated by the 
following velocity update:

   
V k w V C r P X C r P X C r P Xi

t t
i
t

i i
t

k i
t

r i
t+ = + × × −( ) + × × −( ) + × × −( )[1

1 1 2 2 3 3 ]]
=i N1 2, , ,…

   
 (8.218)  

where

   C  1 ,  C  2 ,  C  3 :    The cognitive, social, and passive congregation parameters, 
respectively  

  P i  :    The best previous position of the  i th particle;  
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  P k  :    Either the global best position ever attained among all particles in the 
case of enhanced GPAC or the local best position of particle  i , namely, 
the position of its nearest particle  k  with better evaluation in the case of 
LPAC  

  P i  :    The position of passive congregator (position of a randomly chosen 
particle  r )    

 The positions are updated with the same equation  (8.215) . The positions of 
the  i th particle in the  n  - dimensional decision space are limited by the minimum 
and maximum positions expressed by vectors

    X X Xi i imin max≤ ≤     (8.219)   

 The velocities of the  i th particle in the  n  - dimensional decision space are 
limited by

    V V Vi i imax max≤ ≤     (8.220)  

where the maximum velocity in the  m th dimension of the search space is 
computed as

    V
s s

Nr
m ni

m i
m

i
m

max
max min , , , ... ,=

−
= 1 2     (8.221)  

where   si
m
max,  and    si

m
min are the limits in the  m  - dimension of the search space. 

The maximum velocities are constricted in small intervals in the search space 
for better balance between exploration and exploitation.  Nr  is a chosen 
number of search intervals for the particles. It is an important parameter in 
the enhanced GPAC and LPAC PSO algorithms. A small  Nr  facilitates global 
exploration (searching new areas), while a large  Nr  tends to facilitate local 
exploration. A suitable value for the  Nr  usually provides balance between 
global and local exploration abilities and consequently results in a reduction 
of the number of iterations required to locate the optimum solution. The basic 
steps of the enhanced GPAC and LPAC are listed below  [59] .

   Step (1)     Generate a swarm of  N  particles with uniform probability distribu-
tion, initial positions  X i  (0), and velocities  V i  (0), ( i    =   1,2,  … ,  N ), and initialize 
the random parameters. Evaluate each particle  i , using objective function 
 f  (e.g., to be minimized).  

  Step (2)     For each particle  i , calculate the distance  d ij   between its position and 
the position of all other particles:

    d X X i N i jij i j= − = ≠( )1 2, , , ,…  

where  X i   and  X j   are the position vectors of particle  i  and particle  j , 
respectively.  
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  Step (3)     For each particle  i , determine the nearest particle, particle  k , with 
better evaluation than its own, i.e.,  dik    =   min j  ( dij ),  fk     ≤     fj  and set it as the 
leader of particle i . 

 In the case of enhanced GPAC, particle  k  is considered the global best.  
  Step (4)     For each particle  i , randomly select a particle  r  and set it as the 

passive congregator of particle i .  
  Step (5)     Update the velocities and positions of particles, using  (8.218)  and 

 (8.215) , respectively.  
  Step (6)     Check whether the limits of positions in equation  (8.219)  and veloci-

ties in equations  (8.220)  and  (8.221)  are enforced. If the limits are violated, 
then they are replaced by the respective limits.  

  Step (7)     Evaluate each particle, using the objective function  f . The objective 
function f  is calculated by running a power fl ow. In the case where for a 
particle no power fl ow solution exists, an error is returned and the particle 
retains its previous achievement.  

  Step (8)     If the stopping criteria are not satisfi ed, go to Step (2).    

 The enhanced GPAC and LPAC PSO algorithms will be terminated if one 
of the following criteria is satisfi ed: (1) no improvement of the global best in 
the last 30 generations is observed, or (2) the maximum number of allowed 
iterations is achieved. 

 Finally, we can indicate that the last term of equation  (8.218) , added in the 
conventional PSO velocity update equation  (8.214) , displays the information 
transferred via passive congregation of particle i  with a randomly selected 
particle r . This passive congregation operator can be regarded as a stochastic 
variable that introduces perturbations to the search process. For each particle 
i , the perturbation is proportional to the distance between itself and a ran-
domly selected particle r  rather than an external random number, namely, 
the turbulence factor introduced in reference  [77] . The constriction factor 
approach helps the convergence of algorithm more than the turbulence factor 
because (1) in the early stages of the process, where distance between particles 
is large, the turbulence factor should be large, avoiding premature conver-
gence; and (2) in the last stages of process, as the distance between particles 
becomes smaller, the turbulence factor should be smaller, too, enabling the 
swarm to converge in the global optimum  [77]  Therefore, LPAC is more 
capable of probing the decision space, avoiding suboptimums and improving 
information propagation in the swarm, than other conventional PSO 
algorithms.  

8.8.2.3 Coordinated Aggregation -Based PSO   The coordinated aggre-
gation is a completely new operator introduced in the swarm, where each 
particle moves considering only the positions of particles with better achieve-
ments than its own, with the exception of the best particle, which moves 
randomly. The coordinated aggregation can be considered as a type of 
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active aggregation where particles are attracted only by places with the most 
food. 

 Let  X i  ( t ) and  X j  ( t ) be the positions of particle  i  and particle  j  at iterative 
cycle  t , respectively. The differences between the position of particles  i  and 
the position of particle  j ,  X i  ( t )    −     X j  ( t ), are defi ned as  coordinators  of particle 
 i  velocity. The ratios of differences between the achievement of particle  i , 
 A ( X i  ) and the better achievements by particles  j ,  A ( X j  ) to the sum of all these 
differences are called achievement ’ s weighting factors   ωij

t

    ωij
j i

l i
l

i

A X A X

A X A X
j l=

( ) − ( )
( ) − ( )

∈
∑

, , Ω     (8.222)  

where  Ω   i   represents the set of particles  j  with better achievement than 
particle  i . 

 The velocity of particle  i  is adapted by means of coordinators multiplied by 
weighting factors. 

 The steps of the coordinated aggregation – based PSO (CAPSO) algorithm 
are listed below  [59] .

   Step (1)      Initialization : Generate  N  particles. For each particle  i , choose initial 
position  X i  (0) randomly. Calculate its initial achievement  A ( X i  (0)), using 
the objective function  f  and fi nd the maximum  A  g (0)   =   max i  A ( X i  (0)), called 
the global best achievement. Then, particles update their positions in 
accordance with the following steps.  

  Step (2)      Swarm ’ s manipulation : The particles, except the best of them, regu-
late their velocities in accordance with the equation

    V w V r X X j i Ni
t t

i
t

j ij
t

j
t

i
t

j
i

+ = + −( ) ∈ =∑1 1 2ω Ω , , , ... ,     (8.223)  

where   ωij
t  are achievement ’ s weighting factors and the inertia weighting 

factor  w t   is defi ned by equation  (8.216) . The role of the inertia weighting 
factor is considered critical for the CAPSO convergence behavior. It is 
employed to control the infl uence of the previous history of the velocities 
on the current one. Accordingly, the inertia weighting function regulates 
the trade - off between the global and local exploration abilities of the 
swarms.  

  Step (3)      Best particle ’ s manipulation (craziness) : The best particle in the 
swarm updates its velocity with a  random coordinator  calculated between 
its position and the position of a randomly chosen particle in the swarm. 
The manipulation of the best particle seems like the crazy agents or the 
turbulence factor introduced in reference  [77]  and helps the swarm escape 
from the local minima.  



PARTICLE SWARM OPTIMIZATION FOR OPF 355

  Step (4)     Check whether the limits of velocities in equations  (8.220)  and  (8.221)  
are enforced. If the limits are violated, then they are replaced by the respec-
tive limits.  

  Step (5)      Position update : The positions of particles are updated with equation 
 (8.215) . Check whether the limits of positions in equation  (8.219)  are 
enforced.  

  Step (6)      Evaluation : Calculate the achievement  A ( X i  ( t )) of each particle  i , 
using the objective function  f . The achievement is calculated by running a 
power fl ow. In the case where for a particle no power fl ow solution exists, 
an error is returned and the particle retains its previous achievement.  

  Step (7)     If the stopping criteria are not satisfi ed, go to Step 2. The CAPSO 
algorithm will be terminated if no more improvement of the global best 
achievement in the last 30 generations is observed or the maximum number 
of allowed iterations is achieved.  

  Step (8)      Global optimal solution : Choose the optimal solution as the global 
best achievement.      

  8.8.3    OPF  Considering Valve Loading Effects 

 Generally, the generator fuel cost function in the OPF model ignores the valve 
point loading that introduces rippling effects to the actual input – output curve. 
The overall fuel cost function for a number of thermal generating units is 
modeled by a quadratic function, which is shown in equation  (8.197) . The 
valve effects can be expressed as a sine function  [49]  and added into equation 
 (8.197) , that is,

    Min g g g g gF a P b P c e f P Pi i i i i i i i i
i

NG

= + + + −( )( )[ ]
=
∑ 2

1

sin min     (8.224)   

 This more accurate modeling adds more challenges to most derivative - based 
optimization algorithms in fi nding the global solution since the objective is no 
longer convex or differentiable everywhere. 

 A hybrid PSO (HPSO) approach can be used to solve this problem  [64] . 
This approach combines PSO technique with a Newton – Raphson - based 
power fl ow program in which the former technique is used as a global opti-
mizer to fi nd the best combinations of the mixed - type control variables while 
the latter serves as a minimizer to reduce the nonlinear power fl ow equation 
mismatch. The Newton – Raphson method used in this implementation is the 
one with the full Jacobian evaluated and updated at each iteration. The HPSO 
utilizes a population of particles or possible solutions to explore the feasible 
solution hyperspace in its search for an optimal solution. Each particle ’ s 
position is used as a feasible initial guess for the power fl ow subroutine. This 
mechanism of multiple initial solutions can provide a better probability of 
detecting an optimal solution to the power fl ow equations that would globally 
minimize a given objective function. The importance of such hybridization is 
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signifi ed by realizing the fact that in a transmission system the solution to the 
power fl ow equation is not unique, i.e., multiple solutions within the stability 
margins may exist and only one can globally optimize a certain objective. 

 The same OPF constraints in equations  (8.201) – (8.209)  are used here. 
Within the context of PSO applications to the OPF, inequality constraints that 
represent the permissible operating range of each optimization variable are 
typically handled in the following two ways  [59 – 64] : 

  (1)     Set to limit approach (SLA): If any optimization variable exceeds its 
upper or lower bound, the value of the variable is set to the violated 
limit. This resembles the idea found in operating all generating units at 
equal incremental principle to reach economic dispatch, which is 
described in Chapter  4 . It is important to note that PSO has some ran-
domness in the update equation that might cause several variables to 
exceed their limits during the optimization process. Thus this approach 
may fi x multiple optimization variables to their operating limits for 
which global solution may not be reached. Also, this approach fails to 
utilize the memory element that each particle has once it exceeds its 
boundaries.  

  (2)     Penalty factor: The other approach is to use penalty factors to 
in corporate the inequality constraints with the objective, which we used 
in Section  8.2 . The main problem with this approach is introducing new 
parameters that need to be properly selected in order to reach accept-
able PSO performance. Values of the penalty factors are problem 
dependent; thus this approach requires proper adjustments of the 
penalty factors in addition to tuning the PSO parameters.    

 Another approach is combining these two methods to handle the inequality 
constraints  [64] . This combines the ideas of preserving feasible solution and 
infeasible solution rejection methods to retain only feasible solutions through-
out the optimization process without the need to introduce penalty factors in 
the objective function. In most of the evolutionary computation optimization 
methods that employ the infeasible solution rejection method to handle con-
straints, any solution candidate among the population is randomly reinitialized 
once it crosses the boundaries of the feasible region. The majority of methods 
do not have memory elements associated with each candidate in the popula-
tion. However, in the case of HPSO, each particle has a memory element ( Pi ) 
that recalls the best visited location through its own fl ying experience to search 
for the optimal solution and may use this information once it violates the 
problem boundaries. Thus this hybridization makes use of the memory element 
that each particle has to maintain its feasibility status. This restoration opera-
tion keeps the infeasible particle alive  as a possible candidate that could locate 
the optimal solution instead of a complete rejection that eliminates its poten-
tial in the swarm. 

 For the control variables in equations  (8.201) – (8.209) , there are two types: 
continuous and discrete. The continuous variables are initialized with uni-
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formly distributed pseudorandom numbers that take the range of these vari-
ables, e.g.,

    P P P V V Vi i i i i ig g grandom and random= [ ] = [ ]min max min max, , ,   

 However, in the case of the discrete variables, an additional operator was 
needed to account for the distinct nature of these variables. A rounding opera-
tor was included to ensure that each discrete variable is rounded to its nearest 
decimal integer value that represents the physical operating constraint of a 
given variable. Each transformer tap setting was rounded to its nearest decimal 
integer value of 0.01 by utilizing the rounding operator as: round (random 
[ T i   min ,  T i   max ], 0.01). The same principle applies to the discrete reactive injection 
due capacitor banks with the difference being the step size, i.e., round (random 
[ Q  c   i   min ,  Q  c   i   max ], 1). This ensures that the fi tness of each solution is measured 
only when all elements of the solution vector are properly represented to 
refl ect the real - world nature of each variable. Since the particle update 
equation has some uniformly distributed random operators built into it and 
because of the addition of two different types of vectors, the rounding opera-
tor is called again after each update to act only on the discrete variables as: 
round ( T i  , 0.01) and round ( Q  c   i  , 1). Once the rounding process is over, all 
solution elements go through a feasibility check. This simple rounding method 
guarantees that power fl ow calculations and fi tness measurements are obtained 
only when all problem variables are properly addressed and their nature types 
are accounted for. 

   Example 8.4 

 The example is extracted from reference  [64] . The test system is a IEEE 
30 - bus system with modifi ed unit data and bus data, which are shown in 
Tables  8.22  and  8.23 . The line data are the same as Table  5.6  in Chapter  5 . 
There are two capacitor banks installed at buses 5 and 24 with ratings of 
19 and 4 MVAR, respectively. A series of experiments were conducted to 
properly tune the HPSO parameters to suit the targeted OPF problem. The 
most noticeable observation from this groundwork is that the optimal set-
tings for  C  1  and  C  2  are found to be 1.0. These values are relatively small 
since most of the values reported in the previously related work are in the 
range of 1.4 – 2  [59 – 63] . The best settings for number of particles and parti-
cle ’ s maximum velocity ( V  max ) are 20 and 0.1, respectively. The inertia 
weight is kept fi xed throughout the simulation process between the upper 
and lower bounds of 0.9 and 0.4, respectively.   

 The following three cases are conducted. 
  Case 1:  Considering only the continuous control variables. The objective 

is to minimize the generator fuel costs, which are the quadratic fuel cost 
functions. The OPF results solved by HPSO are listed in Table  8.24 . For 
comparison, the OPF results solved by sequential quadratic programming 
(SQP) are also listed in Table  8.24 . Comparison of the results shows that 
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Table 8.22 Data of the generator for IEEE 30 -bus system 

   Unit     1     2     3     4     5     6  

  Bus no.    1    2    22    27    23    13  
  A    0.02    0.0175    0.0625    0.00834    0.025    0.025  
  B    2    1.75    1    3.25    3    3  
  C    0    0    0    0    0    0  
  E    300    200    150    100    200    200  
  F    0.2    0.22    0.42    0.3    0.35    0.35  
Pmin (MW)    0    0    0    0    0    0  
Pmax (MW)    80    80    50    55    30    40  
Qmin (Mvar)  − 20     − 20     − 15     − 15     − 10     − 15  
Qmax (Mvar)    150    60    62.5    48.7    40    44.7  

Table 8.23 Bus data for IEEE 30 -bus system (p.u.) 

   Bus No.  PD       QD       Vmin       Vmax    Bus No.  PD       QD       Vmin       Vmax

  1    0.000    0.000    0.95    1.1    16    0.035    0.016    0.90    1.05  
  2    0.217    0.127    0.95    1.1    17    0.090    0.058    0.90    1.05  
  3    0.024    0.012    0.90    1.05    18    0.032    0.009    0.90    1.05  
  4    0.076    0.016    0.90    1.05    19    0.095    0.034    0.90    1.05  
  5    0.942    0.190    0.90    1.05    20    0.022    0.007    0.90    1.05  
  6    0.000    0.000    0.90    1.05    21    0.175    0.112    0.90    1.05  
  7    0.228    0.109    0.90    1.05    22    0.000    0.000    0.95    1.1  
  8    0.300    0.300    0.90    1.05    23    0.032    0.016    0.95    1.1  
  9    0.000    0.000    0.90    1.05    24    0.087    0.067    0.90    1.05  

  10    0.058    0.020    0.90    1.05    25    0.000    0.000    0.90    1.05  
  11    0.000    0.000    0.90    1.05    26    0.035    0.023    0.90    1.05  
  12    0.112    0.075    0.90    1.05    27    0.000    0.000    0.95    1.1  
  13    0.000    0.000    0.95    1.1    28    0.000    0.000    0.90    1.05  
  14    0.062    0.016    0.90    1.05    29    0.024    0.009    0.90    1.05  
  15    0.082    0.025    0.90    1.05    30    0.106    0.019    0.90    1.05  

HPSO achieves a better solution when only continuous optimization vari-
ables are used.   

Case 2:  Considering both the continuous and discrete control variables. 
The test system is modifi ed by introducing four tap - changing transformers 
between buses 6 – 9, 6 – 10, 4 – 12, and 27 – 28. The operating range of all trans-
formers is set between 0.9 and 1.05, with a discrete step size of 0.01. The 
capacitor banks at buses 5 and 24 are also considered as new discrete 
control variables with a range of 0 – 40 MVAR and a step size of 1. With 
this modifi cation, the problem now has both continuous and discrete control 
variables that can be troublesome to most conventional optimization 
methods. The results are shown in the last column in Table  8.24 . 

Case 3:  Considering the valve loading effects. The fuel cost function is 
augmented with an additional sine term as in equation  (8.224) . HPSO is 
applied to solve this kind of optimization problem. Table  8.25  lists the 
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Table 8.24 OPF results of  IEEE 30 -bus system for cases 1 and 2 

   Case     Case 1     Case 1     Case 2  
  Method    SQP    PSO    PSO  

  P g1     41.51    43.611    42.180  
  P g2     55.4    58.060    57.013  
  P g13     16.2    17.555    17.305  
  P g22     22.74    22.998    22.025  
  P g23     16.27    17.056    17.872  
  P g27     39.91    32.567    35.060  
  V g1     0.982    1.000    1.000  
  V g2     0.979    1.000    0.999  
  V g13     1.064    1.059    1.061  
  V g22     1.016    1.012    1.071  
  V g23     1.026    1.021    1.076  
  V g27     1.069    1.037    1.10  
  Q c5     /    /    4.000  
  Q c24     /    /    8.000  
  T 6 – 9     /    /    0.900  
  T 6 – 10     /    /    0.950  
  T 4 – 12     /    /    0.930  
  T 27 – 28     /    /    0.950  
  Total cost ($/hr)    576.892    575.411    574.143  
  Total losses (MW)    2.860    2.647    2.255  

Table 8.25 OPF results of  IEEE 30 -bus system for case 3 

   Swarm ’ s Size     20     30     100  
  Method    PSO    PSO    PSO  

  P g1     47.068    47.059    47.126  
  P g2     42.911    42.359    71.366  
  P g13     8.790    35.902    8.972  
  P g22     44.728    37.359    37.391  
  P g23     8.983    8.826    8.993  
  P g27     42.044    20.959    20.777  
  V g1     1.000    1.000    1.000  
  V g2     1.099    1.009    1.097  
  V g13     1.091    1.017    1.037  
  V g22     1.087    1.082    0.982  
  V g23     1.048    1.057    1.048  
  V g27     1.029    1.080    1.088  
  Q c5     33.000    16.000    29.000  
  Q c24     35.000    15.000    12.000  
  T 6 – 9     1.040    1.010    1.020  
  T 6 – 10     1.010    1.000    0.950  
  T 4 – 12     1.040    0.990    1.020  
  T 27 – 28     0.990    1.030    1.040  
  Total cost ($/hr)    658.416    645.333    615.250  
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results obtained with different swarm sizes. Increasing the swarm ’ s size 
improved the HPSO performance in achieving better results at the expense 
of computational time.       
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SECURITY REGIONS 

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
Copyright © 2009 Institute of Electrical and Electronics Engineers

     Steady state security region analysis is important in power system operation. 
This chapter presents the concept and defi nition of the security region and 
introduces several major methods used in steady - state security region analysis: 
the security corridor, the traditional expansion method, the enhanced expan-
sion method, linear programming, and the fuzzy set theory.  

9.1 INTRODUCTION

 In the steady state, a power system is designed by the so - called power fl ow 
equations or the steady - state network relationships. Given a set of power 
injections (generators, loads), the power fl ow equations may be solved to 
obtain the operation point (voltages, angles). Therefore, a lot of power fl ow 
calculations are needed in the traditional steady - state security analysis, and 
the corresponding amount of computations is very huge. A method of steady -
 state security analysis,  “ steady - state security regions, ”  has caused more atten-
tion over the last decades  [1 – 14] . The main idea of security regions is to obtain 
a set of security injections explicitly so that for security assessment one need 
only check whether a given injection vector lies within the security region. By 
doing so, the solution of power fl ow equations can be avoided. 

 The approach for steady - state security regions of power systems was fi rst 
proposed by Hnyilicza et al. in 1975  [1] . Fischl et al. developed methods to 
identify steady - state security regions  [2, 3] . The idea of steady - state security 
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regions was expanded by Banakar and Galiana, who suggest a method to 
construct the so - called  “ security corridors ”  for security assessment  [5] . The 
previous security region, which was formed by using the active constraints, was 
implicit and was diffi cult to use in power system security analysis and security 
operation. Wu and Kumagai deduced a hyperbox to approximately express the 
steady - state security regions, so that the disadvantage of the former methods 
for security regions could be overcome  [6] . However, such steady - state security 
regions were very conservative. To avoid being conservative, Liu proposed an 
expanding method to obtain the hyperbox, which tended to achieve maximal 
security regions  [7] . The expanding speed, however, was very slow because of 
the adoption of fi xed expanding steps. Moreover, the fuzzy branch power 
constraints and  N   −  1 security constraints have not been considered in these 
investigations of steady - state security regions. 

 Zhu proposed a new expanding method of the steady - state security regions 
of power system based on the fast decoupled load fl ow model  [8, 9] . For the 
fi rst time, the fuzzy branch power constraints and the  N   −  1 security constraints 
are introduced into the study of the steady - state security regions  [10 – 12] . 
Recently, Zhu also applied the optimization method to compute the steady -
 state security regions  [13, 14] .  

  9.2   SECURITY CORRIDORS 

  9.2.1   Concept of Security Corridor   [4, 5]   

 In terms of  x , the rectangular coordinate components of the complex bus volt-
ages, the load fl ow equations can be expressed by

    z L x x= ( )[ ]     (9.1)  

where  L ( x ) is a real matrix equal to half the Jacobian of the load fl ow equa-
tions and  z  is the vector of specifi ed nodal injections. Without loss of generality, 
one can assume that there is no mixed (hybrid) bus in the system, which 
implies that

    z
u

d
=

−
⎡
⎣⎢

⎤
⎦⎥

    (9.2)  

where  u  is the vector of control variables (voltage levels at the generation 
buses and real power generations at the PV buses) and  d  is the demand vector 
(real and reactive loads at PQ buses). 

 In terms of  x , a load fl ow - dependent variable can be expressed in the 
general form

    y x Y x= [ ]T     (9.3)  
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where  Y  represents the functional dependence of  y  on the network parame-
ters, which is the sparse, constant, symmetric matrix. In the conventional load 
fl ow formulation, the line power fl ows, reactive power generations, the square 
of voltage levels at the load buses, and the real power injection at the slack 
bus are among the dependent variables. 

 Considering the network constraints, equation  (9.3)  will be restricted as 
below:

    y y y j Nj j jmin max, , ,≤ ≤ = 1… dp     (9.4)  

where  y j   min ,  y j   max are the lower and upper bounds of the constraint, respectively. 
 N  dp  is the total number of such dependent variables in the system. 

 Since each point in the  x  - space can be mapped into the  z  - space through 
equation  (9.1) , one can defi ne the set of all injections,  z , that satisfy a specifi c 
operating constraint. For instance, the set  z j   defi ned by

    z z z L x x x xj j= = ( )[ ] ∈{ };     (9.5)  

represents the map of the following set

    x x y x y x yj
j j j= ≤ [ ] ≤{ }min max

T     (9.6)   

 This is into the  z  - space. Let  S z   be the set of the collection of all the injections 
satisfying the various operating constraints on the intact system. It can be 
defi ned as below:

    S H zz z
j

j

N

= ∩
⎛
⎝⎜

⎞
⎠⎟=1

2 dp

∩     (9.7)   

 The hyperbox  H  is defi ned by the known limitations on the control variables 
and conservative bounds on the load variables, namely,

    H z z z zz = ≤ ≤{ }min max     (9.8)   

 If we select an expansion point, the constraints  (9.4)  can be explicitly expressed 
through a Taylor series expansion of  y . 

 A more demanding security set is the invulnerability set. This set contains 
all the injection vectors that do not violate any of the system ’ s operating limits, 
while it is intact or subjected to a list of probable outages. 

 Since the variations of the loads, d( t ), can be predicted with a bus - load 
forecast, and a control vector,  u ( t ), can be computed that satisfi es the security 
requirements, a predicted trajectory of the injection vector,  z ( t ), can be estab-
lished. Therefore, one can introduce the concept of a security corridor. Such a 
corridor can be thought of as a  “ tube of varying width ”  in  z  - space surrounding 
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the predicted trajectory and lying entirely within the security region,  S z  . The 
security corridor,   ES

c, has two important properties: 

  (1)     It is characterized by a very small number of inequalities compared 
to  S z  .  

  (2)     Since the security corridor,   ES
c, is a subset of  S z   with some  “ width ”  in 

al1 directions, the actual trajectory can deviate from the predicted one 
while still remaining inside   ES

c and hence in  S z  .    

 The security corridor then permits the monitoring of security by the very 
simple task of verifying that the actual injection vector,  z , belongs to   ES

c. If  z  
is inside the corridor, then it becomes unnecessary to test all other security 
inequalities or to run repeated load fl ows. In the infrequent cases when the 
actual trajectory deviates beyond the limits of the corridor, a conventional 
security analysis based on load fl ow computations would have to be carried 
out. The advantage gained is that most of the time quite wide excursions in 
the trajectory are needed to go outside the security corridor. The typical peri-
odic and stochastic load behavior will normally not violate the security cor-
ridor limits. Finally, the security corridor greatly facilitates the computation, 
as well as verifi cation, of the effectiveness of control actions such as emergency 
or preventive rescheduling. 

 The corridor can be characterized via a small number of overlapping ellip-
soids whose centers lie on the predicted trajectory  [5] . A pictorial illustration 
of such an arrangement is given in Figure  9.1 .   

 Since the ellipsoids are expressible by simple, explicit functions and they 
can be oriented to lie along the trajectory, they seem to be the logical choice 
for this purpose. The  N  ellipsoids forming the corridor are defi ned by

     FIGURE 9.1     A pictorial representation of a nominal daily trajectory and its associated security 
corridor (shaded) inside the security set  

d

u

 trajectory 
Sz
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    E z z z A z z c i Ni
i i i i= −( ) [ ] −( ) ≤{ } =T 1, ,…     (9.9)  

where  A  is a constant, symmetric, positive defi nite matrix representing 
the orientation of  E i  . The vector  z i   represents the center of  E i  , while the con-
stant  c i   controls its size. The union of the ellipsoids denoted by  E c   forms the 
corridor, i.e,

    E Ei

i

N
c =

=1
∪     (9.10)   

 The secure part of  E c   is then referred to as the  “ security corridor, ”  and is 
defi ned by

    E S E Es z s
i

i

N
c c= ∩ =

=1
∪     (9.11)  

where   Es
i  is the secure part of  E i  .  

  9.2.2   Construction of Security Corridor   [5]   

 It can be known from equations  (9.9)  and  (9.10)  that the key to constructing 
a security corridor is to select  z i   and  A . To have the predicted trajectory sur-
rounded by the corridor, the center of the ellipsoids  z i  ,  i    =    I ,  … ,  N , must be on 
the trajectory. These points should be selected inside  S z   so that  E  is not empty. 

 The number of ellipsoids,  N , needed to cover a trajectory is small when the 
ellipsoids are oriented properly along the trajectory. Let the unit tangent to 
the trajectory at  z i   be represented by  a i  . The ellipsoid  E i   is laid along the tra-
jectory by making sure that its major axis lies along  a i  . This can be accom-
plished by defi ning  A i   as below:

    A I a ai i i i i i i i[ ] = [ ]− −( )[ ] > >λ λ λ λ λmax max min max min,T 0     (9.12)   

 One can easily show that the eigenvalues of  A i   are all  λ   i   max  except one, which 
is  λ   i   min , and that the engenvector corresponding to  λ   i   min  is  a i  . In addition, the 
storage requirements of  A i   are very low; its inverse can be analytically obtained 
as follows:

    A
I a a

i

i

i
i i

i

[ ] =
[ ]+ −⎛

⎝
⎞
⎠ [ ]

−1
1

λ
λ
λ

max

min

max

T

    (9.13)   

 According to the expression of the security corridor in equation  (9.11)  and 
the expression of the security sets in equation  (9.7) , we get
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    E S E H z Es
i

z
i

z
j

j

N
i= ∩ = ∩

⎛
⎝⎜

⎞
⎠⎟
∩

=1

2 dp

∩     (9.14)  

or

    E H z Es
i

z
j i

j

N

= ∩ ∩
⎧
⎨
⎩

⎫
⎬
⎭=1

2 dp

∩     (9.15)   

 For a relatively small  E i  , (i.e., small  c i  ) the majority of the sets  z i   contain the 
entire set  E i  . For such sets one can write

    z E z E Ej i j i i⊃ ⇒ ∩ =     (9.16)   

 Those few that intersect  E i   must be identifi ed and characterized explicitly. This 
can be accomplished by solving the following optimization problem:

    min , , ,c z z A z z z z j Nij i i i
j= −( ) [ ] −( ) ∈ ( ) =T

dpExt for 1 2…     (9.17)   

 Since  z i      ∈     S z  , the intersection  z i      ∩     E i   is always nonempty. In terms of  x , the 
above problem can be written as

    min c L x x z A L x x zij i i i= ( )[ ] −{ } [ ] ( )[ ] −{ }T     (9.18)  

s.t.

    y x y x yj j jmin max≤ [ ] ≤T     (9.19)   

 To simplify the above optimization problem,  z i   can be approximated as below:

    ˆ limz z D x z yj
j j j it= ( ) ≤{ }T     (9.20)   

 The solution to equation  (9.17)  with  z     ∈     Ext (  ẑ  j  ) is simply

    ˆ limc y D x zij j it j j i ij* T= − ( )[ ]2 δ     (9.21)   

 where  x i   is the load fl ow solution to  z i   and

    δij j i i j iD x A D x= ( )[ ] ( )−T 1     (9.22)   

 Thus the corresponding approximated security corridor   Ei
s  is expressed explic-

itly as follows:

    ˆ ,limE H E z D x z y j Is
i

z
j

j i j it
i= ( ) ≤ ∀ ∈{ }∩ ∩ T     (9.23)  
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where  I i   is an integer set and its elements are defi ned as below:

    j I c ci
ij i∈ <if *ˆ   

 It is noted that this approximation requires that the solution point is rela-
tively close to  z i  . 

 A relatively simple but suffi ciently indicative measure of the size of  E i   is 
 Δ  P d   max %, the maximum percent change that the total real demand,  P d  , can 
have inside  E i   with respect to  P di  , the total demand at  z i  . To compute this 
quantity, we need to solve the following problem:

    Max d
TP z= −α     (9.24)  

s.t.

    z z A z z ci i i i−( ) [ ] −( ) =T     (9.25)   

 The entries of the vector  α  are either zero or 1, with ones appearing at loca-
tions that correspond to real power demands  z . 

 In summary, the steps of constructing a security corridor are as follows.  

 (1)     Choose  z i   from the trajectory and run a load fl ow to make sure that 
 z i      ∈     S z  .  

  (2)     Compute  a i   and defi ne the matrix  A i  .  
  (3)     Compute values of   ĉij*,  j    =   1,2,  … ,  N  dp  using equation  (9.21) , and tabulate 

them in ascending order.  
  (4)     Decide on  N i   max , the maximum number of elements that  I i   can have.  
  (5)     Assign to  c i   the fi rst  N i   max    +   1 values of   ĉij* in the list, one at a time. For 

each value, compute and tabulate  Δ  P d   max %, as well as the times when the 
trajectory enters and leaves the resulting  E i  .  

  (6)     Compare the results to establish what value of  c i   chosen from those exam-
ined could offer a reasonable  Δ  P d   max % and suffi cient overlapping with  E i    − 1  
while the number of elements in  I i   is small ( ≤  N i   max ). If such a  c i   cannot be 
found, then either change the eigenvalues of  A i   or choose  z i   closer to  z i    − 1  
and repeat the relevant steps.    

 Note that in the last step it is assumed that the value of  c i    − 1  is already fi xed, 
and the time when the trajectory enters and leaves  E i    − 1  as well as its associated 
 Δ  P d   max % are known. Suffi cient overlapping is achieved between  E i   and  E i    − 1  
when a signifi cant portion (normally 25%) of the time spent by the trajectory 
inside  E i    − 1  is also part of the time that it spends inside  E i  . Since the trajectory 
is usually available in a piecewise linear form, the computation of the trajec-
tory ’ s  “ arrival ”  and  “ departure ”  times for a given ellipsoid is quite simple to 
calculate. 
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 The number of elements in  I i   is limited here by  N i   max , mainly because of the 
nonsparsity of the vectors  D j  ( x i  ),  j     ∈     I i  f: ..; ( ∼  i ),  i    =   1,  … ,  N , which have to be 
computed and stored. The vectors  D j  ( x i  ) can be obtained by performing one 
constant Jacobian Newton power fl ow iteration. That is,

    L x D x Y xj j0 0 0( )[ ] ( ) = [ ]T     (9.26)     

  9.3   TRADITIONAL EXPANSION METHOD 

  9.3.1   Power Flow Model 

 Given a power system, suppose the total number of branches is  m;  the total 
number of buses is  n . Bus  n  is the slack bus, buses 1 to  n d   are load buses and 
buses  n d     +   1 to  n     −    1 are PV buses (the number of PV buses is  NG ). According 
to fast decoupled power fl ow, the active power fl ow equations can be written 
as follows:

    P B[ ] = ′[ ][ ]θ     (9.27)  

    θ θL
T[ ] = [ ] [ ]A     (9.28)  

where  P  is the vector of active power injections,  θ  is the vector of node voltage 
angle,  θ  L  is the vector of node voltage angle differences across lines, and  A  is 
the relation matrix between nodes and branches. 

 From equations  (9.27)  and  (9.28)  we can obtain

    θL
T[ ] = [ ] ′[ ] [ ]−A B P1     (9.29)  

where

    ′ = −B Xij ij1     (9.30)  

    ′ = ⎛
⎝⎜

⎞
⎠⎟=

≠

∑B
X

ii
ijj

j i

n 1

1

    (9.31)   

  X ij   and  B ij   are the reactance and susceptance of branch  ij , respectively. 
 If we use reactive injection current to replace the reactive injection power, 

the reactive power fl ow equations can be written as follows:

    I B V[ ] = ′′[ ][ ]     (9.32)  

    V B I[ ] = ′′[ ] [ ]−1     (9.33)  

where
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    I
Q
V

i
i

i

≈     (9.34)  

    ′′ = −
+

B
X

R X
ij

ij

ij ij
2 2

    (9.35)  

    ′′ = −( )
=
≠

∑B Bii ij
j
j i

n

1

    (9.36)    

  9.3.2   Security Constraints 

 The following security constraints will be considered in the study of steady -
 state security regions: 

  (1)     Generator power output constraints

    P P Pi i iG G Gmin max≤ ≤     (9.37)  

    
Q

V
I

Q
V

i

i
Gi

i

i

G Gmin max≤ ≤     (9.38)   

 For the slack bus unit, the power output constraints are

    P P Pn i
i

n

nG Gmin max≤ − ≤
=

−

∑
1

1

    (9.39)  

    
Q

V
I

Q
V

n

n
i

i

n
n

n

G Gmin max≤ − ≤
=

−

∑
1

1

    (9.40)  

where subscripts  “  min  ”  and  “  max  ”  represent the lower and upper 
bounds of the constraints, respectively. nth bus is the slack bus.  

  (2)     Branch power fl ow constraints

    − ≤ ≤θ θ θij ij ijmax max     (9.41)      

 In the normal operation status of power systems, the branch reactive 
power constraints can be neglected.  

  9.3.3   Definition of Steady - State Security Regions 

 The aim of steady - state security analysis is to analyze and check whether all 
elements in the system would operate within constraints as defi ned by a given 
set of input data and information. Therefore, the steady - state security regions 
can be represented by a set of power injections, which satisfy the power fl ow 
equations and security constraints.
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    R P R f P RP Pand= ∃ ∈ ( ) =( ) ∈{ }θ θ,     (9.42)  

    R I V R f V I RQ Qand= ∃ ∈ ( ) =( ) ∈{ },     (9.43)  

where  R P   and  R Q   are the active and reactive power steady - state security 
regions,  R  is the set of security constraints, and  f  is the set of load fl ows. 

 One hand, the calculation methods of active and reactive power steady -
 state security regions are the same. On the other hand, the active power secu-
rity is relatively more important since the reactive power problem is generally 
a local issue. Thus we focus on active security regions in this chapter. 

 Practically, it is desired to obtain each security region to cover as many 
operating points as possible. Hence, the idea of maximal security region was 
proposed.   ΩP P*∈R  is said to be a maximal security region if there exists no 
hyperbox  Ω  P  in  R  P , such that  Ω  P  strictly contains   ΩP* , i.e.,   Ω ΩP P*⊄ . In other 
words, a hyperbox   ΩP* is maximal if it is impossible to extend it in any dimen-
sion with  R  P .  

  9.3.4   Illustration of Calculation of Steady - State Security Region 

 Generally, the expanding method is used to compute the maximal security 
region. The idea is to select the initial operation point fi rst, and then expand 
the initial point by adding the fi xed step until we reach any limit of 
constraints. 

 For example, there is a simple system with two generators. The feasible 
region is shown in Figure  9.2 . The steady - state security region obtained by the 
expanding method is shown in Figure  9.3 .    

     FIGURE 9.2     Feasible region of illustrating system  
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 PG2 

PG2max
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 Branch 
Constraints
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  9.3.5   Numerical Examples 

 The expanding method for computing power steady - state security region is 
further illustrated by IEEE 6 - bus and 30 - bus systems. The parameters of 
systems are taken from references  [6, 8, 11] . The obtained security regions for 
two systems are shown in Tables  9.1  and  9.2 , respectively.     

  9.4   ENHANCED EXPANSION METHOD 

  9.4.1   Introduction 

 Since computing speed is very slow in the previous expanding methods, a new 
expanding method is presented in this section. In this expanding method, 

     FIGURE 9.3     Security region obtained by the expanding method  

 PG1min PG1max P1min PG1P2max     

 PG2

PG2max 

PG2min

 Branch 
Constraints

 P2max  

 P2min

 Table 9.1     Security region results for  IEEE  6 - Bus 
System (p.u.) 

   Regions      P  G4       P  G5       P  G6   

   P  imax     3.7500    2.6490    2.5510  
   P  imin     2.4490    1.4000    0.0000  

 Table 9.2     Security region results for  IEEE  30 - Bus System (p.u.) 

   Regions      P  G2       P  G5       P  G8       P  G11       P  G13   

   P  imax     0.7120    0.4020    0.3500    0.3000    0.4000  
   P  imin     0.4280    0.1500    0.1480    0.1000    0.1770  
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security constraints are divided into two groups and the expanding calcula-
tions are fi rst carried out in the fi rst group of constraints with small constraint 
margins. In addition, the failure probability of branch temporary overload and 
the capability of tapping the potentialities for branch power capacity are con-
sidered based on fuzzy sets. Furthermore, an idea of the  “  N   −  1 constraint 
zone ”  is also adopted to calculate all  N   −  1 security constraints so as to reduce 
the computation burden.  

  9.4.2   Extended Steady - State Security Region 

  9.4.2.1   Security Constraints     The same power fl ow model as in Section 
 9.3  is used here. The following security constraints will be taken in the study 
of steady - state security regions: 

  (1)     Generator active power output constraints

    P P Pi i iG G Gmin max≤ ≤     (9.44)  

    P P Pn i
i

n

nG Gmin max≤ − ≤
=

−

∑
1

1

    (9.45)    

  (2)     Fuzzy branch load fl ow constraints

    − ≤ ≤θ θ θij ij ijmax max     (9.46)  

or

    − ≤ ≤P b P bij ij ij ij ijmax maxθ     (9.47)      

 When the limits of branch power fl ow are not determined beforehand, 
equations  (9.46)  and  (9.47)  cannot be directly adopted. During the stage of 
planning and system design, values of branch power fl ow limits are given to 
allow for some margin of security and reliability. In fact, it is possible to tap 
extra potentialities of branch power fl ow capacity in some cases, so as to allow 
some margins to be expanded. However, overtapping of potentialities for 
branch power fl ow capacity will lead to some problems such as high power 
losses and unreliability. Hence, it is conceptually sound to replace equation 
 (9.46)  or  (9.47)  by fuzzy constraints. By changing each bilateral inequality 
constraint into two single inequality constraints, the branch active power con-
straints can be expressed as follows:

    μ θ
θ θ

θ θ θ θ θθij ij L
ij ij

ij ij ij ij ij( ) =
≤

′( ) ≤
1,

, ; ,
max

max max max

if

if ≤≤ ′
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where  L  is a droop function in which  θ   ij   M ,   ′θijM are its parameters and  L    =   1 
when  θ   ij     =    θ   ij   M  ; L    =   0 when   θ θij ij= ′M. The fuzzy branch power constraint is as 
shown in Figure  9.4 , in which   ′θijM represents the tapping limit of potentialities 
for the branch power capacity.   

 Substituting equation  (9.29)  into equations  (9.46)  and  (9.47) , and simi-
larly changing each bilateral inequality constraint into two single inequality 
constraints, the fuzzy branch active power constraints can be expressed as 
follows:

    A P1[ ][ ] ≤ [ ]θ     (9.49)  

where

    A A B1
1[ ] = [ ] ′[ ]−T     (9.50)   

 Dividing the matrix  A  1  into the generator node submatrix and the load node 
submatrix, i.e.,  A  G  and  A  d , equation  (9.49)  can be written as follows.

    A PG G G[ ][ ] ≤ [ ]θ     (9.51)  

where

    θ θG d d[ ] = [ ]− [ ][ ]A P     (9.52)   

 According to Figure  9.4 , equation  (9.52)  can be implemented with fuzzy 
operation under the  λ  - cut of fuzzy set (see below).  

  9.4.2.2   Definition of Steady - State Security Regions     As defi ned in 
Section  9.3 , the active power steady - state security regions can be represented 
by a set of active power injections, which satisfy the load fl ow equations and 
security constraints.

    R P R f P RP Pand= ∃ ∈ ( ) =( ) ∈{ }θ θ,     (9.53)  

where  R  includes the set of fuzzy security constraints. 

     FIGURE 9.4     Fuzzy branch power flow constraint  
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 In addition, from the economic point of view, the operating regions expressed 
in terms of power injections may still be conservative. This is because load 
variations are allowed in constructing the regions, which can be known from 
the defi nition of power injection  P i     =    P  G   i      −     P  D   i  . The bigger the range of the 
load positive variations (i.e., increase), the smaller the obtained region is (i.e., 
more conservative). If the load demands are fi xed at, say, the base values, a 
security region in terms of the generators, which is equivalent to the region of 
power injections under the load determination, can be considered.   

  9.4.3   Steady - State Security Regions with   N      −    1 Security 

  N   −  1 security means that the line fl ows will not exceed the settings of protec-
tive devices for the intact lines when any branch has an outage. Many works 
have been done pertaining to  N   −  1 security in the study of power system 
economic dispatch  [15 – 19] , but less in the study of steady - state security regions. 

 The  N   −  1 steady - state security region is defi ned as a set of node power 
injections that satisfi es not only the load fl ow equations and  N  security con-
straints, but also  N   −  1 security constraints.

    R P R f P RPN N P Nand= ∃ ∈ ( ) =( ) ∈{ }θ θ,     (9.54)  

where R PN  is the active power steady - state security regions with  N   −  1 security. 
R N  is the set of  N  and  N   −  1 security constraints. 

 Obviously, the crux of the  N   −  1 steady - state security regions is to perform 
the  N   −  1 security analysis (i.e., the calculation of  N   −  1 security constraints). 
The  “  N   −  1 constrained zone, ”  which is discussed in Chapter  5 , will be coordi-
nated with the steady - state security regions.  

  9.4.4   Consideration of Failure Probability of Branch 
Temporary Overload 

 In Section  9.4.2 , we discussed the problem of tapping the potentialities of 
branch power fl ow capacity. In fact, it corresponds to the problem of whether 
the branch may temporarily overload in a practical power system under some 
case. Therefore, the value of   ′θijM, which is the limit of the capability of tapping 
the potentialities for branch power capacity, will be determined according to 
the particular case of a practical power system. 

 Suppose the average overloading time of a branch is AOT. The average 
overloading ratio of the branch can be written as follows:

    ηij
ij

ij NL=
( )

∈1
AOT

    (9.55)   

 It is assumed that the failure probability of branch temporary overloading 
is Poisson distributed. It can be expressed as
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    p eij
Tij= − −1 η     (9.56)  

where  p ij   is the failure probability of branch  ij  overload;  T  is system operation 
time. 

 Obviously, the average overloading time AOT of the branch is random and 
uncertain. It is dealt with a fuzzy number in this case. If AOT is a trapezoidal 
fuzzy number, as shown in Figure  9.5 , the fuzzy number  η   ij   from equation 
 (9.55)  is also trapezoidal. Moreover, the fuzzy failure probability of branch 
temporary overload  p ij   computed from equation  (9.56)  is also dealt with a 
trapezoidal fuzzy number.   

 The all - branches failure probability  p ij  ( ij    =   1, 2,  …  …   NL ) under any  λ  - cut 
of fuzzy set  μ  can be obtained from the equation  (9.56) . A ranking list, which 
refl ects the relative capability of tapping potentialities for different branches, 
is acquired according to the value of  p ij  . So the limit of the capability of tapping 
the potentialities for branch power capacity   ′θijM  can be determined easily 
according to the ranking list. 

 To acquire the higher security and reliability when fuzzy steady - state secu-
rity regions are used in the practical operation of power systems, the branches 
with big failure probability will not be allowed to be temporarily overloaded. 
This it means that the branch power capacity of these branches cannot be 
changed, i.e.,   ′ =θ θij ijM M  in this case. Therefore, we give a performance index 
 PI . If the failure probability of branch overload under the  λ  - cut of fuzzy set  μ  
is bigger than  PI , i.e.,

    μpij PI>     (9.57)  

then the corresponding branches will not be allowed to be temporarily 
overloaded.  

  9.4.5   Implementation 

 In the enhanced expanding method, security constraints are divided into two 
groups and the expanding calculations are fi rst carried out in the fi rst group 
of constraints with small constraint margins. If the maximal region has not 
obtained after the calculation is fi nished in the fi rst group, the expanding 

     FIGURE 9.5     Trapezoidal fuzzy number  
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computation will be continued in the second group until the security regions 
cannot be further expanded. 

  9.4.5.1   Method of Step - Size Calculation     Assuming that there are  m  
inequalities in equation  (9.47) , in which the  i th inequality constraint (under 
 λ  - cut of fuzzy set) is as follows:

    a P i NGij ij ij ijG G∑ < ( ) =μ θθ 1, . . ,…     (9.58)   

 Suppose  Ω  is a hyperbox, in which the generator power outputs are control 
variables. If not all summits of  Ω  have reached the boundary of  R ,  Ω  can still 
be expanded by solving the following  m  equations.

    a P j mij ii ij ijG G*∑ = ( ) =μ θθ 1, ,……     (9.59)  

where,
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    (9.60)  

  P iG*  and  ε  can be obtained from equation  (9.60) . Let  ε  min    =   min{ ε   j  ,  j    =   1, 
2,  …  … ,  m }, which is taken as the calculation step; the new expanding security 
region can be obtained as follows:

    Ω = ≤ ≤ ={ } , ,min maxP P P P i NGi i iG G/ * * 1 2 …     (9.61)  

    P Pi imin min min* = − ε     (9.62)  

    P Pi imax max min* = + ε     (9.63)    

  9.4.5.2   Steps of New Expanding Method     The calculation steps of the 
new expanding method are given as follows  [8] . 

  Step (1):   Select the generators operating point   P iG
0  as the initial expanding 

point. Then the initial security regions can be expressed as

    Ω0 0 0 1= ≤ ≤ ={ }P P P P i NGi i iG Gmin max, , ,…     (9.64)  

    P P Pi i imin max
0 0 0= = G     (9.65)   

 Let iteration number  K    =   0, and mark the variables (or indices)   V Vi i
M m= = 1, 

 i    =   1,  … ,  NG .  
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  Step (2):   obtain  ε   j  ( j    =   1,  …  … ,  m ) according to the method of step calculation 
(section  9.4.5.1 ). Then  ε  min  can be found. A threshold value is defi ned as 
follows:

    ε ε
βh = min     (9.66)  

where  β  is a constant. 
 Then the  m  constraints will be divided into two groups based on the 

threshold value  ε  h . Suppose that the number of constraints with  ε     ≤     ε  h  is  m  1 , 
which is called group one, and the number of constraints with  ε     >     ε  h  is  m  2 , 
which is called group two.  

  Step (3):   Calculate  ε  min  in  m  1  constraints as Section  9.4.5.1 . i.e.,
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    (9.67)  

then  ε  min    =   min{ ε   j  } ( j    =   1, 2,  …  … ,  m  1 ),  
  Step (4).   Let  K    =    k ; then the security regions can be obtained, i.e.,

    Ωk
i
k

i i
kP P P P i NG= ≤ ≤ ={ }G Gmin max, , ,1……     (9.68)  

    P P Vi
k

i
k

imax max min= +−1 ε M     (9.69)  

    P P Vi
k

i
k

imin min min= −−1 ε m     (9.70)    

  Step (5):   Find the inequality constraint with  ε   j     =    ε  min  and let the corresponding 
  V Vi i

M m= = 0.  
  Step (6):   Stop if   V Vi i

M m= = 0  for all  i    =   1, 2,  …  … ,  NG . Otherwise, let  k    =    k    +   1, 
go back to step 3.  

  Step (7):   If  k    =    m  1  but some   Vi
M and   Vi

m  are still not zero, steps 3 – 6 will be 
repeated in the second group of constraints, i.e.,  m  2  until   V Vi i

M m= = 0  for 
all  i    =   1,  …  … ,  NG . 

 In this way, the maximal security regions are obtained as follows:

    Ω = ≤ ≤ ={ }P P P P i NGi i iG G Maxmin , , ,1……     (9.71)        

  9.4.6   Test Results and Analysis 

 The enhanced steady - state security region technique including the model and 
its algorithm are tested with the IEEE 6 - bus and 30 - bus systems. Suppose the 
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system operation time is 150 hours. The performance index of branch failure 
probability  PI  is 0.085. 

 To enhance the calculation speed, the following two measures are adopted 
in the new expanding method. The fi rst is the adoption of the calculation step 
(not fi xed step), and the second is that the constraints are divided into two 
groups based on the threshold value shown in equation  (9.54) . Obviously, the 
value of  β  will produce some effects to expanding speed. We found from a 
great deal of numerical examples and calculations that satisfactory results can 
be obtained when  β  is selected as a gold separation constant, i.e.,  β    =   0.618. 

 The IEEE 6 - bus system contains 8 branches. The average overloading time 
(ACTs) of the branches are assumed as in Table  9.3 . The failure probability of 
branch temporary overloading for the IEEE 6 - bus system can be computed 
and shown in Table  9.4 . It can be known from Table  9.4  that the values of 
failure probability for all branches are less than  PI . It means that the power 
capacity for all branches in the IEEE 6 - bus system can be tapped the poten-
tialities. The fuzzy line power capacities are given as  P ij   max    =   1.0, 3.0, 3.0, 1.6, 
1.6, 0.95, 3.0, 0.25, respectively; and   ′ =Pij max .1 08, respectively.   

 Table 9.3     Average overloading time for  IEEE  6 - bus system 

   Branch No.  

   AOT (h)  

   a     m 1      m 2      b  

  1    1834    1868    1898    1922  
  2    1888    1922    1959    2027  
  3    1845    1882    1907    1949  
  4    2081    2127    2150    2190  
  5    1992    2048    2081    2123  
  6    2108    2152    2196    2240  
  7    1888    1922    1959    2027  
  8    1854    1896    1919    1961  

 Table 9.4     Branch failure probability for  IEEE  6 - bus system 

   Branch No.  

    p ij    

   a     m 1      m 2      b  

  1    0.075    0.076    0.077    0.079  
  2    0.071    0.074    0.075    0.076  
  3    0.074    0.076    0.077    0.078  
  4    0.066    0.067    0.067    0.070  
  5    0.068    0.070    0.070    0.072  
  6    0.065    0.066    0.067    0.069  
  7    0.071    0.074    0.075    0.076  
  8    0.074    0.075    0.076    0.078  
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 The IEEE 30 - bus system contains 41 branches. The corresponding average 
overloading time (AOTs) of the branches are assumed as in Table  9.5 . The 
failure probability of branch temporary overloading for the IEEE 30 - bus 
system can be computed and shown in Table  9.6 .   

 It can be observed from Table  9.6  that the values of failure probability for 
branches 1, 2, 4, and 5 are bigger than  PI . This means that the power capacity 
for these branches cannot be tapped the potentialities. The fuzzy line power 
capacities of the 30 - bus test system are listed in Table  9.7 .   

 The calculating results are shown in Tables  9.8 – 9.13 . Tables  9.8  and  9.11  
provide the calculation results of security regions for the IEEE 6 - bus and 30 -
 bus systems when the  λ  - cuts of fuzzy branch power capacity set  μ ( θij ) equal 
0.0, 0.5, 0.6, and 1, respectively.   

 It can be found from Tables  9.8  and  9.11  that the bigger the value of  λ  - cut 
of fuzzy set μ ( θij ), the higher will be the system reliability requirements and 

Table 9.5 Average overloading time for IEEE 30 -bus system 

   Branch No.  

   AOT (h)  

   a     m 1      m 2      b  

  1    1600    1640    1685    1725  
  2    1622    1655    1690    1750  
  3    1992    2048    2081    2123  
  4    1606    1640    1685    1725  
  5    1655    1690    1730    1780  
  6    1888    1922    1959    2027  
  7    1725    1750    1790    1834  
  8    2300    2365    2410    2470  
  9    1750    1800    1855    1888  
  Others    2300    2365      2410        2470    

Table 9.6 Branch failure probability for IEEE 30 -bus system 

   Branch No.  

pij

   a     m 1      m 2      b  

  1    0.0833    0.0852    0.0874    0.0895  
  2    0.0821    0.0849    0.0866    0.0883  
  3    0.0680    0.0700    0.0700    0.0720  
  4    0.0833    0.0852    0.0874    0.0892  
  5    0.0808    0.0831    0.0849    0.0866  
  6    0.0710    0.0740    0.0750    0.0760  
  7    0.0790    0.0804    0.0821    0.0833  
  8    0.0589    0.0603    0.0615    0.0631  
  9    0.0760    0.0777    0.0800    0.0821  
  Others    0.0589    0.0603    0.0615    0.0631  



384 STEADY-STATE SECURITY REGIONS

 Table 9.7     Fuzzy line power capacities for  IEEE  
30 - bus system 

   Branch No.      P ij   max  (p.u.)       ′Pij max (p.u.)  

  1    1.30    1.30  
  2    1.30    1.30  
  3    0.65    0.80  
  4    1.30    1.30  
  5    1.30    1.30  
  6    0.60    0.80  
  7    0.90    1.20  
  8    0.70    1.00  
  9    1.30    1.50  
  Others #A    0.65    0.80  
  Others #B    0.32    0.50  
  Others #C    0.16    0.25  

    #A — the power capacities of these lines are 0.65.  
  #B — the power capacities of these lines are 0.32.  
  #C — the power capacities of these lines are 0.16.   

 Table 9.8     Results for security regions on  IEEE  6 - bus system (p.u.) 

    λ  - Cut     Regions     PG4     PG5     PG6  

  1     P i   max     3.9760    2.4240    3.8990  
   P i   min     2.0250    0.4740    0.0000  

  0.6     P i   max     3.9755    2.4245    4.5480  
   P i   min     1.7010    0.1500    0.0000  

  0.5     P i   max     3.9755    2.4245    4.7100  
   P i   min     1.6200    0.0693    0.0000  

  0     P i   max     3.9755    2.4245    5.1849  
   P i   min     1.2151    0.000    0.0000  

 Table 9.9     Comparison of security region results for  IEEE  6 - bus system (p.u.) 

   Method     Regions     PG4     PG5     PG6  

  Method 1     P i   max     3.9760    2.4240    3.8990  
   P i   min     2.0250    0.4740    0.0000  

  Method 2     P i   max     3.7500    2.6490    2.5510  
   P i   min     2.4490    1.4000    0.0000  

   Method 1: enhanced expanding method.  
  Method 2: traditional expanding method.   
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 Table 9.10     Results for   N      −    1 security regions on  IEEE  
6 - bus system 

  Gen.    Base    Security    Regions  
   Node     Value  P  0       P i   min       P i   max   

  PG4    2.514    2.378    3.301  
  PG5    1.523    1.369    1.654  
  PG6    2.363    1.400    2.645  

 Table 9.11     Results for security regions on  IEEE  30 - bus system (p.u.) 

    λ  - Cut     1     0.6     0.5     0.0  

   P  G2   P i   max     0.7350    0.7550    0.7600    0.7710  
   P i   min     0.3712    0.3700    0.3656    0.3513  

   P  G5   P i   max     0.4622    0.4733    0.4744    0.4895  
   P i   min     0.1500    0.1500    0.1500    0.1500  

   P  G8   P i   max     0.3500    0.3500    0.3500    0.3500  
   P i   min     0.1110    0.1080    0.1000    0.1000  

   P  G11   P i   max     0.3000    0.3000    0.3000    0.3000  
   P i   min     0.1000    0.1000    0.1000    0.1000  

   P  G13   P i   max     0.4000    0.4000    0.4000    0.4000  
   P i   min     0.1200    0.1200    0.1200    0.1200  

 Table 9.12     Comparison of security region results for  IEEE  30 - bus system (p.u.) 

   Method      Method 1      Method 2  

  Regions     P  max      P  min      P  max      P  min   

   P  G2     0.7350    0.3712    0.7120    0.4280  
   P  G5     0.4622    0.1500    0.4020    0.1500  
   P  G8     0.3500    0.1110    0.3500    0.1480  
   P  G11     0.3000    0.1000    0.3000    0.1000  
   P  G13     0.4000    0.1200    0.4000    0.1770  

   Method 1: enhanced expanding method.  
  Method 2: traditional expanding method.   

 Table 9.13     Results for   N      −    1 security regions on  IEEE  30 - bus system (p.u.) 

   Gen. Node     Base Value   PGi
0   

   Lower Bound of 
Regions  P i   min   

   Upper Bound of 
Regions  P i   max   

   P  G2     0.566    0.2000    0.7350  
   P  G5     0.293    0.1500    0.3500  
   P  G8     0.306    0.1000    0.3500  
   P  G11     0.154    0.1540    0.1600  
   P  G13     0.295    0.2950    0.3000  
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the smaller will be the acquired security regions. On the contrary, the smaller 
the value of λ  - cut of fuzzy set  μ ( θij ), the lower will be the system reliability 
requirements and the larger will be the acquired security regions. Therefore, 
it is very convenient to select the corresponding security regions to judge 
whether the power system operation is secure according to the given reliability 
requirements. 

 Tables  9.9  and  9.12  are the comparisons of results for the IEEE 6 - bus and 
30 - bus systems with previous work. It can be observed from Tables  9.9  and 
 9.12  that steady - state security regions without the fuzzy line power fl ow capac-
ity constraints (i.e., the value of  λ  - cut of fuzzy set  μ ( θij )   =   1) computed by 
enhanced method are bigger than those computed by the general expanding 
method. Therefore, power security regions in this section are relatively less 
conservative than those of the previous work. 

 Tables  9.10  and  9.13  provide the calculation results of  N   −  1 security regions 
for the IEEE 6 - bus and 30 - bus systems when the  λ  - cut of fuzzy branch power 
capacity set μ ( θij ) equals 1. It can be observed that the  N   −  1 security regions 
for both 6 - bus and 30 - bus systems are far smaller than  N  security regions. 
Especially for the IEEE 30 - bus system, the range of expanding for generators 
11 and 13 is almost zero in the calculation of N   −  1 security regions. The reason 
is that the feasible region became narrow because of the introduction of N   −  1 
security constraints. 

 The results show that it is very important to calculate security regions with 
fuzzy line power fl ow constraints. It can provide more information for real -
 time security analysis and security operation in power system compared with 
the previous methods. This is because different reliability requirements cor-
respond to different security regions with fuzzy constraint, while only one 
reliability requirement corresponds to one security region in the previous 
method. Because of the adoption of the new expanding method, the computing 
time is also shorter than that of the traditional expansion method.   

9.5 FUZZY SET AND LINEAR PROGRAMMING 

9.5.1 Introduction

 This section presents a new approach to constructing the steady - state security 
regions of power systems, i.e., the maximal security regions are directly com-
puted with optimization method  [13, 14] . First of all, the security regions model 
is converted into a linear programming (LP) optimization model, in which the 
upper and lower limits of each component forming hyperbox are taken as 
unknown variables, and the objective is to maximize the sum of generator ’  
power adjustment ranges. The fuzzy branch power constraints and the  N   −  1 
security constraints are also introduced into the optimization model of the 
steady - state security regions. The IEEE 6 - bus and 30 - bus systems are used as 
test examples.  
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  9.5.2   Steady - State Security Regions Solved by  LP  

  9.5.2.1   Objective Function     In the practical operation of power systems, 
it is desired to obtain each security region to cover as many points of opera-
tion as possible. This means that it is desired to make the volume of the hyper-
box as big as possible. However, it will be very complicated if the volume of 
the hyperbox is directly taken as an objective function. In fact, there exists 
some approximately corresponding relation between the size of the hyper-
box ’ s volume and the sum of all sides of the hyperbox. Especially for the 
practical operation of power systems, operators are mainly concerned about 
the secure and adjustable range of generator power output, rather than the 
size of   ′ΩPs  volume. Therefore, in the optimization model for  Ω  P , we do not 
directly select the volume of  Ω  P  as an objective function. The objective for 
optimization calculation  Ω  P  is to maximize the sum of generators ’  power 
adjustment ranges, i.e.,
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where  W i   is the weighting coeffi cient of the  i th generator. 
   P Pi iG

M
G
m−( )  is the secure and adjustable range of the  i th generator power 

output. It is also the length of the  i th side of hyperbox. Obviously, it must 
satisfy the rated adjustable range of the  i th generator power output 
( P  G   i   max     −     P  G   i   min ), i.e.,
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  9.5.2.2   Security Constraints     In the optimization calculation of hyperbox 
 Ω  P , the unknown variables are upper and lower limits of each component in 
hyperbox  Ω  P . This is different from the ordinary expanding method. Therefore, 
the constraints for constructing  Ω  P  must be changed in the optimization 
method. 

  (1)     Generation constraints 
 According to the defi nition of security regions, we get

    P P P i n ni i iG G
m

G d≥ ≥ = + −min , ,1 1……     (9.74)  

    P P P i n ni i iG G
M

G d≤ ≤ = + −max , ,1 1……     (9.75)  

where buses 1    ∼     n  d  are PQ buses, buses  n  d    +   1    ∼     n     −    1 are PV buses, and 
the nth bus is the slack bus. 

 For the slack generator, we have the following equations:
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where P Gnm  and P GnM  are the lower and upper limits of the slack genera-
tor, respectively.  

  (2)     Branch constraints 
 According to equation  (9.39) , the security constraints of branch  ij  can 
be written as

    θ θij ik jk
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k ijA A Pmin max≤ −( ) ≤
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G
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    (9.78)      

 For equation  (9.78) , the power injection of the  k th generator  P  G   k   can be 
replaced by   P kG

m  and   P kG
M under the following conditions:

    P
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    (9.79)   

 In this way, the unknown variables in security constraints are all changed 
into   P kG

m  and   P k n nkG
M

d= + −( )1 1, ,…… .  

  9.5.2.3   Linear Programming Model and Implementation    

  9.5.2.3.1    LP  Model for Computing  Ω  P      According to equations  (9.72)  –
  (9.79) , the optimization model for computing  Ω  P  is set up, i.e., model M - 1,

    Max G
M

G
m

nd

Z W P Pk k k
k

n

= −( )
= +

−

∑
1

1

    (9.80)  

subject to constraints in equations  (9.73)  –  (9.79)  
 Obviously, M - 1 is a linear programming model. It can be expressed by the 

standard form of linear programming, i.e., model M - 2

    MaxZ CX=     (9.81)  

such that

    AX B≤     (9.82)  

    X ≥ 0     (9.83)   
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 Model M - 2 can be solved by simplex method. The details of the LP algorithm 
are shown in the Appendix to this chapter.   

 9.5.2.3.2   Calculation of Security Regions Wthout Basic Operation Point    
 The steady - state security regions can be obtained directly through solving 
model M - 1 without a basic operation point. With this method, it is very con-
venient to judge whether there a security region exists under the given opera-
tion state. Meanwhile, it is easy to fi nd the  “ security center point ”  of power 
system operation when security region  Ω  P  is obtained. Therefore, this method 
can provide useful information for system operation.  

  9.5.2.3.3   Calculation of Security Regions Considering Basic Operation 
Point     As described in the previous paragraph, the biggest hyperbox  Ω  P  can 
be acquired when the basic operation point has not been considered in the 
calculation of security regions. However, in some cases, it is possible that the 
obtained hyperbox  Ω  P  has not covered the basic operation point. Thus this  Ω  P  
is not practical. For this reason, we introduce the following constraints into 
model M - 1, i.e.,

    P PG
M

G[ ] ≥ [ ]0     (9.84)  

    P PG
m

G[ ] ≤ [ ]0     (9.85)  

where [ P  G0 ] is the basic operation point. 
 Then we can obtain optimization model M - 3, which considers the basic 

operation point [ P  G0 ], i.e.,

    Max G
M

G
m

nd

Z W P Pk k k
k

n

= −( )
= +

−

∑
1

1

    (9.86)  

sbject to constraints in equations  (9.73)  –  (9.79) ,  (9.84) , and  (9.85)  
 In this way, the hyperbox  Ω  P  obtained from model M - 3 certainly covers 

[ P  G0 ]. If there a solution does not exist in M - 3, then we can judge that the given 
operation point [ P  G0 ] is not secure. 

 It is noted that the optimal solution of LP is certainly located at the summit 
on the feasible region. So, at some cases, it is possible that [ P  G0 ] will be 
located at some boundary of the hyperbox  Ω  P , although  Ω  P  contains the [ P  G0 ]. 
This means that the security adjustable amount of the generator at some 
direction in  Ω  P  is zero in this situation. In other cases, although [ P  G0 ] is in  Ω  P  
and is also not at the boundary of  Ω  P , it is possible that the security adjustable 
amount of the generator at some direction in  Ω  P  is very small. Under the 
above - mentioned cases, it is very diffi cult to judge whether the operation 
point is still secure when some perturbation occurs in the power system oper-
ation. For this reason, we adopt the following constraints to remedy this 
disadvantage.
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    P P PG
M

G G[ ] ≥ [ ]+ [ ]0 0Δ     (9.87)  

    P P PG
m

G G[ ] ≤ [ ]+ [ ]0 0Δ     (9.88)  

where [ Δ  P  G0 ] is the vector of generation power deviation from basic operation 
point [ P  G0 ]. This is an estimate value and can be determined according to the 
requirements of system operation and experiences of operators. 

 Introducing constraints  (9.87)  and  (9.88)  into M - 1, the new optimization 
model M - 4 for computing  Ω  P  can be expressed as follows.
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such that
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    P P PG
M

G G[ ] ≥ [ ]+ [ ]0 0Δ     (9.97)  

    P P PG
m

G G[ ] ≤ [ ]+ [ ]0 0Δ     (9.98)   

 The above model is a linear model, which can be solved by a linear pro-
gramming algorithm.    

  9.5.3   Numerical Examples 

  9.5.3.1   Comparison of  LP  and Expanding Method for  Ω  P      The calcula-
tion of the maximal security region, hyperbox  Ω  P , by the optimization method 
is examined with the IEEE 6 - bus and 30 - bus systems. 

 To assess or compare the size of  Ω  P  for different means, the following per-
formance index is introduced:
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 The calculation results for a steady - state security region are given in Tables 
 9.14  and  9.15 , where the optimization approach for constructing the maximal 
security region is identifi ed as method 1 and the expanding method is identi-
fi ed as method 2. Table  9.14  represents the results for security regions on the 
IEEE 6 - bus system. Table  9.15  represents the results for security regions on 
the IEEE 30 - bus system. For comparison, we also use the traditional expand-
ing method to calculate the maximal security region for the IEEE 30 - bus 

 Table 9.14     Comparison of security region results for  IEEE  6 - bus system 

   Methods     Security Regions     Generator PG4     Generator PG5     Total PI%  

  Method 1      PGi
M    4.200    2.200    71%  

    PGi
m     0.184    1.378  

   P I  i  %    96%    31%  

  Method 2      PGi
M    3.750    2.649    37%  

    PGi
m     2.449    1.400  

   P I  i  %    31%    47%  

    Method 1: optimization method.  
  Method 2: the expanding method.   

 Table 9.15     Comparison of security region results for  IEEE  30 - bus system 

   Methods  
   Security 
Regions  

   Gen. 
PG2  

   Gen. 
PG5  

   Gen. 
PG8  

   Gen. 
PG11  

   Gen. 
PG13  

   Total 
PI%  

  Method 1      PGi
M

    0.800    0.500    0.350    0.300    0.384    85%  

    PGi
m

    0.439    0.150    0.100    0.100    0.120  
   PI i  %    80%    100%    100%    100%    94%  

  Method 2      PGi
M

    0.712    0.402    0.350    0.300    0.400    70%  

    PGi
m

    0.428    0.150    0.148    0.100    0.177  
   PI i  %    47%    72%    81%    100%    80%  

    Method 1 is optimization method.  
  Method 2 is the expanding method.   
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system under the same system parameters and conditions. The results are listed 
in Table  9.15 .   

 From Tables  9.14  and  9.15 , we know that the security region  Ω  P  obtained 
by the optimization method in this section is far bigger than that obtained by 
the traditional expanding method described in Section  9.3 . Therefore, the 
conservation of the maximal security regions computed based on the optimiza-
tion approach is relatively small. The computation time needed in this approach 
is also very short (only 1.1 second for IEEE 6 - bus system, and 4.37 seconds 
for IEEE 30 - bus system). 

 The calculation results and comparison show that the linear programming 
method is superior to the expanding method for computing security regions.  

  9.5.3.2   Applying  LP  for  Ω  P  Considering Fuzzy Constraints     The opti-
mization computation of steady - state security region with fuzzy constraints is 
examined with the IEEE 6 - bus system. The parameters of systems including 
the fuzzy branch power capacities, the branch average contingency time 
(ACTs), probability of branch temporary overload are the same as those in 
Section  9.3 . Suppose the system operation time is 150 hours. The performance 
index of branch failure probability  PI  is 0.085. 

 Table  9.16  provides the calculation results of security regions for the IEEE 
6 - bus system when the  λ  - cut of fuzzy branch power capacity set  μ ( θ  ij ) equals 
0.0, 0.5, 0.6, and 1, respectively.   

 It can be observed from Table  9.16  that the bigger the value of the  λ  - cut of 
fuzzy set  μ ( θ  ij ), the higher will be the system reliability requirements and the 
smaller will be the acquired security regions. On the contrary, the smaller the 
value of the  λ  - cut of fuzzy set  μ ( θ  ij ), the lower will be the system reliability 
requirements and the larger will be the acquired security regions. Therefore, 
it is very convenient to select the corresponding security regions to judge 
whether the power system operation is secure according to the given reliability 
requirements. 

 Calculation of security regions with fuzzy line power fl ow constraints 
can provide more information for real - time security analysis and security 

 Table 9.16     Results for security regions on  IEEE  6 - bus system (p.u.) 

    λ  - Cut     Regions     PG4     PG5     PG6  

  1      P iG
M

    4.2000    2.2240    3.8990  
    P iG

m    0.1840    1.3700    0.0000  

  0.6      P iG
M    4.0050    2.2245    4.5480  

    P iG
m    0.1701    1.1500    0.0000  

  0.5      P iG
M    4.0050    2.2245    4.7100  

    P iG
m    0.1620    1.0693    0.0000  

  0      P iG
M    3.9755    2.4245    5.1849  

    P iG
m    0.1215    1.000    0.0000  
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operation in power system compared with existing methods. Because of the 
adoption of the optimization method, the computing time of security regions 
is also shorter than that of the expanding methods.    

  APPENDIX: LINEAR PROGRAMMING 

 Linear programming (LP) is widely used in power systems problem. Hence, 
we briefl y describe the basic algorithm of LP  [22 – 28] . 

  Standard Form of  LP  

 Not all linear programming problems are so easily solved. There may be many 
variables and many constraints. Some variables may be constrained to be non-
negative and others unconstrained. Some of the main constraints may be 
equalities and others inequalities. However, two classes of problems, called 
here the standard maximum problem and the standard minimum problem, 
play a special role. In these problems, all variables are constrained to be non-
negative, and all main constraints are inequalities. 

 Given an  m  - vector,  b    =   ( b  1 ,  …  … ,  b m  ) T , an  n  - vector,  c    =   ( c  1 ,  …  … ,  c n  ) T , and 
an  m     ×     n  matrix,

    A
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 The standard maximum problem of the linear programming can be formu-
lated as follows:

    maximize c x c x c xn n1 1 2 2+ + +�  

    subject to a x a x a x bn n11 1 12 2 1 1+ + + ≤�  

    a x a x a x bn n21 1 22 2 2 2+ + + ≤�  

    �  

    a x a x a x bm m mn n m1 1 2 2+ + + ≤�  

    x x xn1 2 0, ,… ≥  

or

    Max Tc x  

    s t. . Ax b≤  

    x ≥ 0   
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 We shall always use  m  to denote the number of constraints and  n  to denote 
the number of decision variables. 

 The standard minimum problem of the linear programming can be formu-
lated as follows:

    minimize y b y b y bm m1 1 2 2+ + +�  

    subject to y a y a y a cm m1 11 2 12 1 1+ + + ≥�  

    y a y a y a cm m1 12 2 22 2 2+ + + ≥�  

    �  

    y a y a y a cn n m mn n1 1 2 2+ + + ≥�  

    y y ym1 2 0, ,… ≥  

or

    Min Ty b  

    s t T. . y A c≥  

    y ≥ 0   

 The following terminologies are used in LP: 

   •      The function to be maximized or minimized is called the objective 
function.  

   •      A vector,  x  for the standard maximum problem or  y  for the standard 
minimum problem, is said to be feasible if it satisfi es the corresponding 
constraints.  

   •      The set of feasible vectors is called the constraint set.  
   •      A linear programming problem is said to be feasible if the constraint set 

is not empty; otherwise it is said to be infeasible.  
   •      A feasible maximum (resp. minimum) problem is said to be unbounded 

if the objective function can assume arbitrarily large positive (resp. 
negative) values at feasible vectors; otherwise, it is said to be bounded. 
Thus there are three possibilities for a linear programming problem. It 
may be bounded feasible, it may be unbounded feasible, and it may be 
infeasible.  

   •      The value of a bounded feasible maximum (resp, minimum) problem is 
the maximum (resp. minimum) value of the objective function as the 
variables range over the constraint set.  

   •      A feasible vector at which the objective function achieves the value is 
called optimal.    
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   Example A1 

 The following linear programming problem:

    maximize 7 51 2x x+  

    subject to x x1 2 1+ ≤  

    − − ≤ −3 3 151 2x x  

    x x1 2 0, ≥   

 Indeed, the second constraint implies that  x  1    +    x  2     ≥    5.0, which contradicts 
the fi rst constraint. If a problem has no feasible solution, then the problem 
itself is called  infeasible . 

 At the other extreme from infeasible problems, one fi nds unbounded 
problems. A problem is  unbounded  if it has feasible solutions with arbitrar-
ily large objective values. For example, consider

    maximize 3 41 2x x−  

    subject to − + ≤ −2 3 11 2x x  

    − − ≤ −x x1 22 5  

    x x1 2 0, ≥   

 Here, we could set  x  2  to zero and let  x  1  be arbitrarily large. As long as  x  1  is 
greater than 5 the solution will be feasible, and as it gets larger the objective 
function does, too. Hence, the problem is unbounded. In addition to fi nding 
optimal solutions to linear programming problems, we shall also be inter-
ested in detecting when a problem is infeasible or unbounded. 

 A linear programming problem was defi ned as maximizing or minimizing 
a linear function subject to linear constraints. All such problems can be 
converted into the form of a standard maximum problem by the following 
techniques. 

 A minimum problem can be changed to a maximum problem by 
multiplying the objective function by  − 1. Similarly, constraints of the form 

  a x bij j
j

n

i
=
∑ ≥

1

 can be changed into the form   −( ) ≤ −
=
∑ a x bij j
j

n

i
1

. Two other 

problems arise.

   (1)     Some constraints may be equalities. An equality constraint  

 a x bij j
j

n

i
=
∑ =

1

 may be removed by solving this constraint for some  x j   

for which  a ij      ≠    0 and substituting this solution into the other con-
straints and into the objective function wherever  x j   appears. This 
removes one constraint and one variable from the problem.  
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  (2)     Some variables may not be restricted to be nonnegative. An unre-
stricted variable,  x j  , may be replaced by the difference of two non-
negative variables,  x j     =    u j      −     v j  , where  u j      ≥    0 and  v j      ≥    0. This adds one 
variable and two nonnegativity constraints to the problem.    

 Any theory derived for problems in standard form is therefore applicable 
to general problems. However, from a computational point of view, the 
enlargement of the number of variables and constraints in (2) is undesirable 
and, as will be seen later, can be avoided.    

  Duality 

 For every linear program there is a dual linear program with which it is inti-
mately connected. We fi rst state this duality for the standard programs. 

   Defi nition:     The dual of the standard maximum problem

    maximize Tc x     (9A.1)  

    subject to the constraints Ax b≥  

    and x ≥ 0  

is defi ned to be the standard minimum problem

    minimize Ty b     (9A.2)  

    subject to the constraints T Ty A c≤  

    and y ≥ 0    

  Example A2 

 Find  x  1  and  x  2  to maximize 2 x  1    +    x  2  subject to the constraints  x  1     ≥    0, 
 x  2     ≥    0, and

    3 2 91 2x x+ ≤  

    4 3 181 2x x+ ≤  

    − + ≤x x1 2 2   

 The dual of this standard maximum problem is therefore the standard 
minimum problem: Find  y  1 ,  y  2 , and  y  3  to minimize 9 y  1    +   18 y  2    +   2 y  3  subject 
to the constraints  y  1     ≥    0,  y  2     ≥    0,  y  3     ≥    0, and

    3 4 21 2 3y y y+ − ≥  
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    2 3 11 2 3y y y+ + ≥   

 If the standard minimum problem (A2) is transformed into a standard 
maximum problem (by multiplying  A ,  b , and  c  by  − 1), its dual by the defi ni-
tion above is a standard minimum problem that, when transformed to a 
standard maximum problem (again by changing the signs of all coeffi cients) 
becomes exactly (A1). Therefore, the dual of the standard minimum problem 
(A2) is the standard maximum problem (A1). The problems (A1) and (A2) 
are said to be duals.   

 The general standard maximum problem and the dual standard minimum 
problem may be simultaneously exhibited in the display:

    

x x x

y a a a b

y a a a b

y a a a b

n

n

n

m m m mn m

1 2

1 11 12 1 1

2 21 22 2 2

1 2

�
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≥≥ ≥ ≥c c cn1 2 �

    (9A.3)   

 The relation between a standard problem and its dual is seen in the follow-
ing theorem and its corollaries. 

   Theorem 1:     If  x  is feasible for the standard maximum problem  (9A.1)  and if 
 y  is feasible for its dual (A2), then

    c x y bT T≤     (9A.4)    

  Proof:  

    c x y Ax y bT T T= ≤   

 The fi rst inequality follows from  x     ≥    0 and  c  T     ≤     y  T  A . The second inequality 
follows from  y     ≥    0 and  Ax     ≤     b .  

  Corollary 1:     If a standard problem and its dual are both feasible, then both 
are bounded feasible.  

  Proof:     If  y  is feasible for the minimum problem, then  (9A.4)  shows that  y  T  b  
is an upper bound for the values of  c  T  x  for  x  feasible for the maximum 
problem, and similarly for the converse.  

  Corollary 2:     If there exists feasible  x  *  and  y  *  for a standard maximum problem 
 (9A.1)  and its dual  (9A.2)  such that  c  T  x  *    =    y  *  T  b , then both are optimal for 
their respective problems.  
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  Proof:     If  x  is any feasible vector for  (9A.1) , then  c  T  x     ≤     y  *  T  b    =    c  T  x  * , which 
shows that  x  *  is optimal. A symmetric argument works for  y  * . 

 The following fundamental theorem completes the relationship between a 
standard problem and its dual. It states that the hypotheses of Corollary 2 are 
always satisfi ed if one of the problems is bounded feasible.  

  The Duality Theorem:     If a standard linear programming problem is bounded 
feasible, then so is its dual; their values are equal, and there exist optimal 
vectors for both problems. 

 As a corollary of the Duality Theorem we have the  Equilibrium Theorem . 
Let  x  *  and  y  *  be feasible vectors for a standard maximum problem  (9A.1)  and 
its dual  (9A.2) , respectively. Then  x  *  and  y  *  are optimal if and only if

    y i a x bi ij j
j

n

i* for all for which *= <
=
∑0

1

    (9A.5)  

and

    x j y a cj i ij
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m
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1

    (9A.6)    

  Proof:     For fi rst part  “ If  ”  
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 Similarly from equation  (9A.6) , we have
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    (9A.8)   

 According to Corollary 2, the  x  *  and  y  *  are optimal. 
 For second part  “ Only If ”  

 As in the fi rst line of the proof of Theorem 1

    c x y a x y bj j
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i ij j
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i i
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    (9A.9)   



APPENDIX: LINEAR PROGRAMMING 399

 By the duality theorem, if  x  *  and  y  *  are optimal, the left side is equal to 
the right side so we get equality throughout. The equality of the fi rst and 
second terms may be written as

    c y a xj i ij
i

m

j
j

n

−⎛
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==
∑∑ * *

11

0     (9A.10)   

 Since  x  *  and  y  *  are feasible, each term in this sum is nonnegative. The sum 

can be zero only if each term is zero. Thus if   y a ci ij
i

m

j*
=
∑ >

1

, then   xj* = 0. A 

symmetric argument shows that if   a x bij j
j

n

i*
=
∑ <

1

, then   yi* = 0 .   

 Equations  (9A.5)  and  (9A.6)  are sometimes called the complementary 
slackness conditions. They require that a strict inequality (a slackness) in a 
constraint in a standard problem implies that the complementary constraint 
in the dual be satisfi ed with equality.  

  The Simplex Method 

 Before we present the simplex method for solving a linear programming 
problem, we look at the following example fi rst to illustrate how the simplex 
method works. 

   Example A3  

    maximize 5 4 31 2 3x x x+ +  

    subject to 2 3 51 2 3x x x+ + ≤  

    4 2 111 2 3x x x+ + ≤  

    3 4 2 81 2 3x x x+ + ≤  

    x x x1 2 3 0, , ≥   

 We start by adding so - called  slack variables . For each of the less - than ine-
qualities in the above problem we introduce a new variable that represents 
the difference between the right - hand side and the left - hand side. For 
example, for the fi rst inequality,

    2 3 51 2 3x x x+ + ≤  

we introduce the slack variable  w  1  defi ned by

    w x x x1 1 2 35 2 3= − − −  
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so that the inequality becomes equality, that is,

    2 3 51 2 3 1x x x w+ + + =   

 It is clear then that this defi nition of  w  1 , together with the stipulation that 
 w  1  be nonnegative, is equivalent to the original constraint. We carry out this 
procedure for each of the less - than constraints to get an equivalent repre-
sentation of the problem:

    maximize y x x x= + +5 4 31 2 3     (9A.11)  

    subject to w x x x1 1 2 35 2 3= − − −  

    w x x x2 1 2 311 4 2= − − −  

    w x x x3 1 2 38 3 4 2= − − −  

    x x x w w w1 2 3 1 2 3 0, , , , , ≥   

 Note that we have included a notation,  y , for the value of the objective 
function, 5 x  1    +   4 x  2    +   3 x  3 .   

 The simplex method is an iterative process in which we start with a solution 
 x  1 ,  x  2 ,  x  3 ,  w  1 ,  w  2 ,  w  3  that satisfi es the equations and nonnegativities in the above 
equivalent problem and then look for a new solution   ′x1,   ′x2 ,   ′x3,   ′w1,   ′w2,   ′w3 , 
which is better in the sense that it has a larger objective function value

    5 4 3 5 4 31 2 3 1 2 3′ + ′ + ′ > + +x x x x x x   

 We continue this process until we arrive at a solution that cannot be improved. 
This fi nal solution is then an optimal solution. 

 To start the iterative process, we need an initial feasible solution  x  1 ,  x  2 ,  x  3 , 
 w  1 ,  w  2 ,  w  3 . For our example, this is easy. We simply set all the original variables 
to zero and use the defi ning equations to determine the slack variables

    x x x w w w1 2 3 1 2 30 0 0 5 11 8= = = = = =, , , , ,   

 The objective function value associated with this solution is  y    =   0. 
 We now ask whether this solution can be improved. Since the coeffi cient of 

 x  1  is positive, if we increase the value of  x  1  from zero to some positive value, 
we will increase  y . But as we change its value, the values of the slack variables 
will also change. We must make sure that we do not let any of them go nega-
tive. Since  x  2    =    x  3    =   0, we see that  w  1    =   5    −    2 x  1 , and so keeping  w  1  nonnegative 
imposes the restriction that  x  1  must not exceed 5/2. Similarly, the nonnegativity 
of  w  2  imposes the bound that  x  1     ≤    11/4, and the nonnegativity of  w  3  introduces 
the bound that  x  1     ≤    8/3. Since all of these conditions must be met, we see that 
 x  1  cannot be made larger than the smallest of these bounds:  x  1     ≤    5/2. Our new, 
improved solution then is
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    x x x w w w1 2 3 1 2 35 2 0 0 0 1 1 2= = = = = =, , , , ,   

 This fi rst step was straightforward. It is less obvious how to proceed. What 
made the fi rst step easy was the fact that we had one group of variables that 
were initially zero and we had the rest explicitly expressed in terms of these. 
This property can be arranged even for our new solution. Indeed, we simply 
must rewrite the equations in  (9A.11)  in such a way that  x  1 ,  w  2 ,  w  3 , and  y  are 
expressed as functions of  w  1 ,  x  2 , and  x  3 . That is, the roles of  x  1 and  w  1  must be 
swapped. To this end, we use the equation for  w  1  in  (9A.11)  to solve for  x  1 

    x w x x1 1 2 3
5
2

1
2

3
2

1
2

= − − −   

 The equations for  w  2 ,  w  3 , and  y  must also be doctored so that  x  1  does not 
appear on the right. The easiest way to accomplish this is to do so - called  row 
operations  on the equations in the equivalent problem. For example, if we take 
the equation for  w  2  and subtract two times the equation for  w  1  and then bring 
the  w  1  term to the right - hand side, we get

    w w x2 1 21 2 5= + +   

 Performing analogous row operations for  w  3  and  ζ , we can rewrite the equa-
tions in  (9A.11)  as

    y w x x= − − +12 5 2 5 3 5 0 51 2 3. . . .  

    x w x x1 1 2 32 5 0 5 1 5 0 5= − − −. . . .   
  (9A.12)  

    w w x2 1 21 2 5= + +  

    w w x x3 1 2 30 5 1 5 0 5 0 5= + + −. . . .   

 Note that we can recover our current solution by setting the  “ independent ”  
variables to zero and using the equations to read off the values for the  “ depen-
dent ”  variables. 

 Now we see that increasing  w  1  or  x  2  will bring about a  decrease  in the objec-
tive function value, and so  x  3 , being the only variable with a positive coeffi cient, 
is the only independent variable that we can increase to obtain a further 
increase in the objective function. Again, we need to determine how much this 
variable can be increased without violating the requirement that all the depen-
dent variables remain nonnegative. This time we see that the equation for  w  2  
is not affected by changes in  x  3 , but the equations for  x  1  and  w  3  do impose 
bounds, namely,  x  3     ≤    5 and  x  3     ≤    1, respectively. The latter is the tighter bound, 
and so the new solution is

    x x x w w w1 2 3 1 2 32 0 1 0 1 0= = = = = =, , , , , .  
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 The corresponding objective function value is  y    =   13. 
 Once again, we must determine whether it is possible to increase the objec-

tive function further and, if so, how. Therefore, we need to write our equations 
with  y ,  x  1 ,  w  2 , and  x  3  written as functions of  w  1 ,  x  2 , and  w  3 . Solving the last 
equation in  (9A.12)  for  x  3 , we get

    x w x w3 1 2 31 3 2= + + − .  

 Also, performing the appropriate row operations, we can eliminate  x  3  from the 
other equations. The result of these operations is

    ζ = − − −13 31 2 3w x w  

    x w x w1 1 2 32 2 2= − − +   
  (9A.13)

  

    w w x2 1 21 2 5= + +  

    x w x w3 1 2 31 3 2= + + −   

 We are now ready to begin the third iteration. The fi rst step is to identify an 
independent variable for which an increase in its value would produce a cor-
responding increase in  y . But this time there is no such variable, since all the 
variables have negative coeffi cients in the expression for  ζ . This fact not only 
brings the simplex method to a standstill but also proves that the current solu-
tion is optimal. The reason is quite simple. Since the equations in  (9A.13)  are 
completely equivalent to those in  (9A.11)  and since all the variables must be 
nonnegative, it follows that  y     ≤    13 for every feasible solution. Since our current 
solution attains the value of 13, we see that it is indeed optimal. 

 Now for the standard maximum problem, the simplex method is presented 
as below. First of all, we add the slack variables  w    =    b     −     Ax . The problem 
becomes: Find  x  and  w  to maximize  c  T  x  subject to  x     ≥    0,  u     ≥    0, and  u    =    b     −     Ax . 

 We may use the following tableau to solve this problem if we write the 
constraint  w    =    b     −     Ax  as  −  w    =    Ax     −     b .

    

x x x

w a a a b

w a a a b

w a a a

n

n

n

m m m mn

1 2

1 11 12 1 1

2 21 22 2 2

1 2

1�
…
…

� � � � � �
…

−
−
−

− bb

c c c
m

n− − −1 2 0�

    (9A.14)   

 We note as before that if  −  c     ≥    0 and  b     ≥    0, then the solution is obvious: 
 x    =   0,  w    =    b , and value equal to zero (since the problem is equivalent to mini-
mizing  −  c  T  x ). 
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 Suppose we want to pivot to interchange  w  1  and  x  1  and suppose  a  11    =   0. The 
equations

    − = + + + −w a x a x a x bn n1 11 1 12 2 1 1�  

    − = + + + −w a x a x a x bn n2 21 1 22 2 2 2�  

    �  

    − = + + + −w a x a x a x bm m m mn n m1 1 2 2 �  

become

    − = + + −x
a

w
a
a

x
a
a

x
b
a

n
n1

11
1

12

11
2

1

11

1

11

1
 

    − = − + −⎛
⎝

⎞
⎠ +w

a
a

w a
a a

a
x2

21

11
1 22

21 12

11
2 �etc.   

 In other words, the same pivot rule applies

    
p r

c q

p r p

c p q rc p
⎛
⎝⎜

⎞
⎠⎟ ⇒

− − ( )
⎛
⎝⎜

⎞
⎠⎟

1
  

 If you pivot until the last row and column (exclusive of the corner) are 
nonnegative, you can fi nd the solution to the dual problem and the primal 
problem at the same time. 

 Let  x n   +   i     =    w i  , then we have  n    +    m  variables  x . Initially, we have  n  nonbasic 
variables  N    =   {1, 2,  … ,  n } (i.e.,  x  1 ,  … ,  x n  ) and  m  basic variables  B    =   { n    +   1, 
 n    +   2,  … ,  n    +    m } (i.e.,  x n   =1 ,  … ,  x n   +   m  ). 

 Within each iteration of the simplex method, exactly one variable goes from 
nonbasic to basic and exactly one variable goes from basic to nonbasic. The 
variable that goes from nonbasic to basic is called the  entering variable . It is 
chosen with the aim of increasing  y , that is, one whose coeffi cient is positive: 
pick  k  from {  j N cj∈ ′ >: 0 }, where  N  is the set of nonbasic variables. Note that 
if this set is empty, then the current solution is optimal. If the set consists of 
more than one element (as is normally the case), then we have a choice of 
which element to pick. There are several possible selection criteria. Generally, 
we pick an index  k  having the largest coeffi cient (which again could leave us 
with a choice). 

 The variable that goes from basic to nonbasic is called the  leaving variable . 
It is chosen to preserve nonnegativity of the current basic variables. Once we 
have decided that  x k   will be the entering variable, its value will be increased 
from zero to a positive value. This increase will change the values of the basic 
variables.
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    x b a x i Bi i ik k= ′− ′ ∈,   

 We must ensure that each of these variables remains nonnegative. Hence, 
we require that

    ′ − ′ ≥ ∈b a x i Bi ik k 0,   

 Of these expressions, the only ones that can go negative as  x k   increases are 
those for which   ′aik is positive; the rest remain fi xed or increase. Hence, we can 
restrict our attention to those  i  ’ s for which   ′aik is positive. And for such an  i , 
the value of  x k   at which the expression becomes zero is

    x
b
a

k
i

ik

= ′
′

  

 Since we do not want any of these to go negative, we must raise  x k   only to 
the smallest of all of these values

    x
b
a

i B ak
i

i

ik
ik= ′

′
⎛
⎝⎜

⎞
⎠⎟ ∈ ′ >min , , 0   

 Therefore, with a certain amount of latitude remaining, the rule for selecting 
the leaving variable is pick l from {  i B a b aik i ik∈ ′ > ′ ′: and is minimal0 }. 

 The rule just given for selecting a leaving variable describes exactly the 
process by which we use the rule in practice. That is, we look only at those 
variables for which   ′aik is positive and among those we select one with the 
smallest value of the ratio   ′ ′b ai ik. 

 This same  “ method ”  may be used to solve the dual problem — the standard 
minimum problem: Find  y  to minimize  y  T  b  subject to  y     ≥    0 and  y  T  A     ≥     c  T . 

 Similarly, we convert the inequalities into equalities by adding slack vari-
ables  s  T    =    y  T  A     −     c  T     ≥    0. The problem can be restated: Find  y  and  s  to minimize 
 y  T  b  subject to  y     ≥    0,  s     ≥    0 and  s  T    =    y  T  A     −     c  T . 

 We write this problem in a tableau to represent the linear equations 
 s  T    =    y  T  A     −     c  T .

    

s s s

y a a a b

y a a a b

y a a a b

c

n

n

n

m m m mn m

1 2

1 11 12 1 1

2 21 22 2 2

1 2

1

�
…
…

� � � � � �
…

− 11 2 0− −c cn�

    (9A.15)   

 The last column represents the vector whose inner product with  y  we are 
trying to minimize. 



REFERENCES 405

 If  −  c     ≥    0 and  b     ≥    0, there is an obvious solution to the problem: namely, the 
minimum occurs at  y    =   0 and  s    =    −  c , and the minimum value is  y  T  b    =   0. This 
is feasible since  y     ≥    0,  s     ≥    0, and  s  T    =    y  T  A     −     c , and yet  Σ  y i b i   cannot be made 
any smaller than 0, since  y     ≥    0, and  b     ≥    0. 

 Suppose then we cannot solve this problem so easily because there is at 
least one negative entry in the last column or last row. (exclusive of the corner). 
Let us pivot about  a  11  (suppose  a  11     ≠    0), including the last column and last row 
in our pivot operations, we get:

    

y s s
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y a a a b

y a a
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m m m
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    (9A.16)   

 Let  r    =   ( r  1 ,  … ,  r n  )   =   ( y  1 ,  s  2 ,  … ,  s n  ) denote the variables on top, and let  t    =   
( t  1 ,  … ,  t m  )   =   ( s  1 ,  y  2 ,  … ,  y m  ) T  denote the variables on the left. The set of equations 
are represented by the new tableau. Moreover, the objective function  y  T  b  may 
be written (replacing  y  1  by its value in terms of  s  1 )
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 This is represented by the last column in the new tableau. We have trans-
formed our problem into the following: Find vectors  y  and  s , to minimize 
 t  T  b  ′  subject to  y     ≥    0,  s     ≥    0, and  r    =    t  T  A  ′     −     c  ′  (where  t  T  represents the vector 
 s  1 ,  y  2 ,  … ,  y  m , and  r  represents the vector  y  1 ,  s  2 ,  … ,  s n  ). 

 Again, if  −  c  ′     ≥    0 and  b  ′     ≥    0, we have the obvious solution:  t    =   0 and  r    =    −  c  ′  
with value  v  ′ . 

 Similar to the standard maximum problem solved by the simplex method, 
this process will be continued until the optimal solution is obtained.   
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     This chapter fi rst introduces the concept of reactive power optimization and 
the classic method for reactive power dispatch. Then it addresses improved 
interior points, optimization neural network, evolutionary algorithm, and par-
ticle swarm optimization and their practical application in reactive power 
optimization. The analysis and calculation of reactive power pricing are also 
introduced in this chapter.  

10.1 INTRODUCTION

 The objectives of reactive power (VAR) optimization are to improve the 
voltage profi le, to minimize system active power losses, and to determine 
optimal VAR compensation placement under various operating conditions. To 
achieve these objectives, power system operators utilize control options such 
as adjusting generator excitation, transformer tap changing, shunt capacitors, 
and SVC. However, the size of power systems and prevailing constraints 
produce strenuous circumstances for system operators to correct voltage prob-
lems at any given time. In such cases, there is certainly a need for decision -
 making tools in predominantly fl uctuating and uncertain computational 
environments. There has been a growing interest in VAR optimization prob-
lems over the last decade  [1 – 31] . Most conventional methods used in VAR 
optimization are based on linear programming and nonlinear programming. 
Some simplifi ed treatments in these methods may induce local minima. 
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Recently, new methods based on artifi cial intelligence have been used in VAR 
optimization and VAR planning  [17 – 29]  such as an artifi cial neural network 
(ANN), expert system, genetic algorithms (GAs), and evolutionary program-
ming (EP). EP and GAs are good methods to obtain global optimal optimiza-
tions. However, the excessive time consumption of EP and GAs will limit their 
applications in power systems, especially during real - time operation.  

  10.2   CLASSIC METHOD FOR REACTIVE POWER DISPATCH 

  10.2.1   Reactive Power Balance 

 The voltage profi le of power system operation is determined by reactive power 
balance in the system. That is,

    Q Q Q Qi
i

NG

j
j

NC

k
k

ND

G C d L
= = =
∑ ∑ ∑+ = +

1 1 1

    (10.1)  

where

   Q  G   i  :    The reactive power generation of generator  i   
  Q  C   j  :    The reactive power generation of the VAR compensation device  j  such 

as capacitor, SVC, etc.  
  Q  d   k  :    The reactive power load at load bus  k   
  Q  L :    System reactive power loss. It includes the reactive power loss of trans-

former and transmission lines.    

 According to the experience of practical operations, the reactive power 
loss of transformer can be computed with the following approximated 
formula  [30] .
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    (10.2)  

where

   Q  LT :    The reactive power loss of the transformer  
  S  N :    The rated MVA power of the transformer  
  V  N :    The rated voltage of the transformer  
  V  S %:    The short - circuit voltage of the transformer  
  I  0 %:    The no - load current of the transformer  
  V :    The operation voltage of the transformer    
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 The reactive power loss of transmission line  ij  can be computed as below:

    Q
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i j
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2
    (10.3)  

where

   Q  Ll :    The reactive power loss of the transmission line  
  P i  :    The real power at end  i  of the line  
  Q i  :    The reactive power at end  i  of the line  
  V i  :    The voltage at end  i  of transmission line  ij   
  V j  :    The voltage at end  j  of transmission line  ij   
  X :    The reactance of the line  
  B :    The equivalent susceptance of the line (to ground)     

  10.2.2   Reactive Power Economic Dispatch 

 The purpose of the reactive power economic dispatch is to make the system 
real power loss minimal through determining the reactive power output of 
each reactive power source under the constraint condition of the system load 
demands. 

 The system real power loss can be represented as below:

    P P P P P Q Q Qn nL L= ( )1 2 1 2, , , , , , ,… …     (10.4)   

 For the classic reactive power dispatch problem, the real power outputs of 
the generators are already known, and the constraint is reactive power balance 
equation, that is,

    Q Q Qi
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    (10.5)   

 For simplifi cation,  Q  G  in equation  (10.5)  includes all reactive power sources 
such as generator, capacitor, SVC, etc. 

 Construct the Lagrange function for equations  (10.4)  and  (10.5) :
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    (10.6)   

 The necessary conditions for the extreme value of the Lagrange function 
are to set the fi rst derivative of the Lagrange function with respect to each of 
the independent variables ( Q  G  and  λ ) equal to zero.
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 From equation  (10.7) , we get
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where

    
∂
∂

P
Q i

L

G

:    The incremental rate of the system real power loss with respect to 

the reactive power source  i   

   
∂
∂

Q
Q i

L

G

:    The incremental rate of the system reactive power loss with respect 

to the reactive power source  i     

 Equation  (10.8)  is the formula of reactive power economic dispatch. It has 
the same form as equation  (4.61)  in Chapter  4 . 

 The incremental loss rate   
∂
∂

P
Q i

L

G

 and   
∂
∂

Q
Q i

L

G

 can be computed by the 

impedance matrix method, which is shown below. 
 The system loss can be expressed as:

    P jQ V I ZI I I Z IL L
T T T T+ = = ( ) =ˆ ˆ ˆ     (10.9)  

    I I jI= +P Q     (10.10)  

    Z R jX= +     (10.11)  

where

   I :    The current vector  
   Î  :    The conjugate current vector  
  V :    The voltage vector  
  Z :    The impedance matrix    
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 Substituting equations  (10.10)  and  (10.11)  into equation  (10.9) , we get

    P R I I I Ijk j k j k
k

n

i

n

L P P Q Q= +( )
==
∑∑

11

    (10.12)  

    Q X I I I Ijk j k j k
k

n

i

n

L P P Q Q= +( )
==
∑∑

11

    (10.13)   

 The relationship between injection power and current is

    P jQ V jV I jIi i i i i i i i+ = +( ) −( )cos sinθ θ P Q     (10.14)   

 Then we get

    I P jQ Vi i i i i iP = +( )cos sinθ θ     (10.15)  

    I P jQ Vi i i i i iQ = −( )sin cosθ θ     (10.16)   

 Substituting equations  (10.15)  and  (10.16)  into equations  (10.12)  and  (10.13) , 
we get

    P P P Q Q Q P PQjk j k j k jk j k j k
k

n

i

n

L = +( ) + −( )[ ]
==
∑∑ α β

11

    (10.17)  

    Q P P Q Q Q P PQjk j k j k jk j k j k
k

n

i

n

L = +( ) + −( )[ ]
==
∑∑ δ γ

11

    (10.18)  

where

    α θ θjk
jk

j k
j k

R
V V

= −( )cos     (10.19)  

    β θ θjk
jk

j k
j k

R
V V

= −( )sin     (10.20)  

    δ θ θjk
jk

j k
j k

X
V V

= −( )cos     (10.21)  

    δ θ θjk
jk

j k
j k

X
V V

= −( )sin     (10.22)   

 From equation  (10.17) , we get
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(10.23)   

 The second term in equation  (10.23)  is very small, so it can be neglected. 
We get

    
∂
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≈ −( )
=
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P Q
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k ik k ik
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n
L 2

1

α β     (10.24)   

 In the high - voltage network, the angle difference of  θ   j      −     θ   k   is very small. This 
means that sin( θ   j      −     θ   k  )    ≈    0. Thus  β   jk   can be neglected. Then we have
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 Similarly, we get
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 Considering real power load and reactive power load are constant, we have

    d d dG D GP P P Pi i i i= −( ) =     (10.29)  

    d d dG D GQ Q Q Qi i i i= −( ) =     (10.30)   

 Thus equations  (10.25) – (10.28)  can be written as
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1

δ     (10.34)   

 If the system has enough reactive power sources, the steps of reactive power 
economic dispatch are  [30] : 

  (1)     Perform the calculation of power fl ow, using the results of real power 
economic dispatch. Thus the real power outputs of generators are fi xed 
except for the reference unit.  

  (2)     Compute  λ  for each reactive power source, using the above results as well 
as equations  (10.32)  and  (10.34) . If  λ     <    0, it means that system loss can be 
reduced by increasing this reactive power source. If  λ     >    0, it means that 
system loss will be increased if increasing this reactive power source. Thus, 
in order to reduce the system loss, we must increase the reactive power 
outputs for the reactive power resources with  λ     <    0 and reduce the reactive 
power outputs for the reactive power resources with  λ     >    0. Each time, 
select a source with minimum  λ  to increase output if  λ     <    0, and select a 
source with maximum  λ  to reduce the output if  λ     <    0, and then recompute 
power fl ow.  

  (3)     Through the calculation of power fl ow, we get system loss. According to 
step (1), the change of real power loss is refl ected in the power change of 
the reference unit. The reactive power dispatch will be continued until the 
power of the reference unit cannot be reduced.    

 It is noted that the following reactive power generation limits are not con-
sidered in the above calculation:

    Q Q Qi i iG G Gmin max≤ ≤     (10.35)   

 If they are considered, we need to check the constraints in equation  (10.9) . 
If the reactive power source has violation, set the reactive power output of 
this source to its corresponding limit. Then this source will not be considered 
in the rest of reactive power dispatch. 

 This is just a simple method for reactive power economic dispatch. A more 
complex reactive power optimization problem that contains network con-
straints is introduced in the following sections.   

  10.3   LINEAR PROGRAMMING METHOD OF  VAR  OPTIMIZATION 

 Reactive power optimization is a nonlinear optimization problem. If we con-
sider network security constraints and bus voltage constraints, VAR optimi-
zation becomes a complex optimization problem. The linearization of the VAR 
optimization model is frequently adopted in conventional methods. 
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  10.3.1    VAR  Optimization Model 

 From Chapter  3 , the optimal VAR control model M - 1 that is to determine the 
optimum VAR support or compensation can be represented as:

    min , ,P Q V TL S G( )     (10.36)  

such that

    Q Q V T VS G D, , ,( ) = 0     (10.37)  

    Q Q Q V T QG G S G Gmin max, ,≤ ( ) ≤     (10.38)  

    V V Q V T VD D S G Dmin max, ,≤ ( ) ≤     (10.39)  

    Q Q QS S Smin max≤ ≤     (10.40)  

    V V VG G Gmin max≤ ≤     (10.41)  

    T T Tmin max≤ ≤     (10.42)  

where

   P  L :    The system real power loss  
  V  G :    The voltage magnitude at generator buses  
  Q  S :    The VAR support in the system  
  Q  G :    The VAR generation in the system  
  T :    The tap position of the transformer  
  V  D :    The voltage magnitude at load buses    

 The subscripts  “ min ”  and  “ max ”  in model M - 1 represent the lower and upper 
limits of the constraint, respectively. 

 As in the classical reactive power dispatch method in Section  10.2 , it is 
assumed that the real power dispatch (economic dispatch) is performed sepa-
rately and real power generation (except at the slack bus) is regarded as 
constant in optimal VAR control. So the decoupled optimal constraints are 
considered in the above model M - 1, in which equation  (10.37)  is the reactive 
power fl ow balance equation and equations  (10.38)  and  (10.39)  are the con-
straints of state variables  Q  G  and  V  D . Equations  (10.40) – (10.42)  are the con-
straints of control variables. 

 The nonlinear VAR control problem M - 1 can be successively linearized and 
rewritten as the following incremental model M - 2, which is represented by a 
sensitivity matrix:

    minΔ Δ Δ ΔP S Q S V S TL LQ
T

S LV
T

G LT
T= + +     (10.43)  



LINEAR PROGRAMMING METHOD OF VAR OPTIMIZATION 417

such that

    Q Q V T VΔ Δ Δ ΔS G D, , ,( ) = 0     (10.44)  

    Δ Δ Δ ΔQ S Q S V S T QG QQ S QV G QT Gmin max≤ + + ≤     (10.45)  

    Δ Δ Δ Δ ΔV S Q S V S T VD VQ S VV G VT Dmin max≤ + + ≤     (10.46)  

    Δ ΔQ Q QS S Smin max≤ ≤     (10.47)  

    Δ Δ ΔV V VG G Gmin max≤ ≤     (10.48)  

    Δ Δ ΔT T Tmin max≤ ≤     (10.49)  

where  S  LQ ,  S  LV ,  S  LT  are the sensitivity matrices of real transmission losses to 
VAR compensation, voltage magnitude at generator buses, and transformer 
tap position, respectively.  S  QQ ,  S  QV ,  S  QT  are the sensitivity matrices of reactive 
power at generator buses to VAR compensation, voltage magnitude at gen-
erator buses, and transformer tap position, respectively.  S  VQ ,  S  VV ,  S  VT  are 
the sensitivity matrices of voltage magnitude at load buses to VAR compen-
sation, voltage magnitude at generator buses, and transformer tap position, 
respectively. 

 The incremental variables in equations  (10.43) – (10.49)  can be obtained by 
iterative calculation as below:

    ΔQ Q Qk k
S S S= −+1     (10.50)  

    ΔV V Vk k
G G G= −+1     (10.51)  

    ΔT T Tk k= −+1     (10.52)  

    ΔQ Q Qk
G G Gmax max= −     (10.53)  

    ΔQ Q Qk
G G Gmin min= −     (10.54)  

    ΔQ Q Qk
S S Smax max= −     (10.55)  

    ΔQ Q Qk
S S Smin min= −     (10.56)  

    ΔV V V k
G G Gmax max= −     (10.57)  

    ΔV V V k
G G Gmin min= −     (10.58)  

    ΔV V V k
D D Dmax max= −     (10.59)  

    ΔV V V k
D D Dmin min= −     (10.60)  

    ΔT T T k
max max= −     (10.61)  

    ΔT T T k
min min= −     (10.62)    
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  10.3.2   Linear Programming Method Based on Sensitivity 

 We fi rst compute the sensitivity matrix mentioned in Section  10.3.1  before we 
solve VAR optimization model M - 2. Reactive power generation and load can 
be represented as functions of bus voltage and transformer tap, respectively. 
That is.

    Q Q V V TG G D G= ( ) =, , 0     (10.63)  

    Q Q V V TD D D G= ( ) =, , 0     (10.64)   

 From the above two equations, we get the following sensitivity matrices:
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 Linear VAR optimization model M - 2 can be solved by linear programming 
(LP). The details of LP algorithm can be found in the Appendix   of Chapter  9 . 
The solution steps of VAR optimization solved by LP are summarized as 
below.

   (1)     Select the initial feasible points.  
  (2)     Compute incremental variables and the limits based on the operation 

points according to equations  (10.50) – (10.62) .  
  (3)     Compute the sensitivity matrices based on equations  (10.65) – (10.70) .  
  (4)     Form the successive linear programming model based on the operation 

points and sensitivity matrices.  
  (5)     Solve the linear programming problem, using the LP algorithm. Obtain 

the incremental control variables  Δ  Q  S ,  Δ  V  G ,  Δ  T .  
  (6)     Compute the new control variables with equations  (10.50) – (10.52)  and 

perform P - Q decoupled power fl ow calculation to get the new state 
variables.  
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  (7)     Check the convergence:

    P Pk k
L L

+ − <1 ξ     (10.71)      

 Stop iteration if equation  (10.71)  is satisfi ed. Otherwise, go back to step (2). 

   Example 10.1 

 The above - mentioned approach is used to solve the VAR optimization 
problem of a 6 - bus system. The data of generation and load are listed in 
Table  10.1 , and the data of lines are listed in Table  10.2 . The results are 
shown in Table  10.3 .       

 Table 10.1     The data of generation and load of 6 - bus system 

   Bus Number     Bus Type      P i   (p.u.)      Q i   (p.u.)  

  1    Slack bus    /    /  
  2    PV    0.5    /  
  3    PQ     − 0.55     − 0.13  
  4    PQ    /    /  
  5    PQ     − 0.30     − 0.18  
  6    PQ     − 0.50     − 0.05  

   The symbol  “  −  ”  in the Table stands for load.   

 Table 10.2     The data of lines of 6 - bus system 

   Line Number     Bus Pair      R  (p.u.)      X  (p.u.)  
   Ratio for 

Transformer  

  1    1 - 6    0.123    0.518    /  
  2    1 - 4    0.080    0.370    /  
  3    4 - 6    0.097    0.407    /  
  4    6 - 5    0.000    0.300    1.025  
  5    5 - 2    0.282    0.640    /  
  6    2 - 3    0.723    1.050    /  
  7    4 - 3    0.000    0.133    1.100  

 Table 10.3      VAR  optimization results for 6 - bus system 

        Variables  
   Initial 
Value     Optimum  

   Upper 
Limit  

   Lower 
Limit  

  VAR support     Q  S4  
  Q  S6   

  0.000 
 0.000  

  0.050 
 0.055  

  0.050 
 0.055  

  0.000 
 0.000  

  Generator voltage     V  G1  
  V  G2   

  1.050 
 1.100  

  1.100 
 1.150  

  1.100 
 1.150  

  1.000 
 1.100  

  Transformer ratio     T  56  
  T  43   

  1.025 
 1.100  

  0.973 
 0.986  

  1.100 
 1.100  

  0.900 
 0.900  
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  10.4   INTERIOR POINT METHOD FOR  VAR  OPTIMIZATION PROBLEM 

  10.4.1   Introduction 

 This section presents the analytic hierarchical process (AHP) and sensitivity 
analysis methods to select the optimal locations of VAR support service. The 
method is based on the observation that VAR support is important for weak 
buses/nodes where the voltage is low. We analyze the sensitivity values —
 voltage benefi t factor (VBF) and loss benefi t factor (LBF) — in Chapter  3 . The 
AHP provides a useful means to consider these factors comprehensively in 
the selection and ranking of VAR support locations. 

 On the basis of the optimal selection of VAR support sites, the model of 
optimal VAR control is constructed, in which the objective is to minimize 
system real power losses and voltage variations at generator buses. Transformer 
tap positions and VAR compensation are chosen as control variables. The 
solution algorithm of the optimal VAR control model is the interior point 
method.  

  10.4.2   Optimal  VAR  Control Model 

 According to the previous section, the nonlinear VAR control problem can be 
linearized. If we introduce the penalty to the VAR support in model M - 2 in 
Section  10.3 , the incremental VAR optimization model M - 3 can be repre-
sented as below.

    minΔ Δ Δ ΔP MS H Q S V S TL LQ
T

S S LV
T

G LT
T= ( ) + +     (10.72)  

subject to constraints in equations  (10.44) – (10.49)  
  M  is the corresponding penalty coeffi cient in the objective function, which 

should be greater than the other coeffi cients in the objective function by 10 –
 100.  H  S  is the weight of VAR support or compensation, which can be obtained 
according to the unifi ed ranking weight coeffi cients in the next section, i.e.,

    H WiS = 1     (10.73)   

 This means that a bus with the smallest  H  S  is fi rstly selected to as the optimal 
VAR support site. Equation  (10.72)  means that the number of VAR support 
sites and total compensation amount are required to be as small as possible.  

  10.4.3   Calculation of Weighting Factors by  AHP  

 From Chapter  3 , the voltage benefi t factors (VBF) and loss benefi t factors 
(LBF) are expressed as follows:

    LBF
L L s

s
i

i
i

i

P P Q

Q
i ND=
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∑ 0

100%     (10.74)  
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 To obtain a unifi ed rank of VAR support locations, the AHP method is used, 
which is described in Chapter  7 . Here, the hierarchy model consists of three 
sections. The fi rst section is the unifi ed ranking of VAR support locations. The 
second section is the performance indices, in which the  PI  S  refl ects the relative 
importance of the load buses.  PI  P  and  PI  V  are defi ned as follows:

    PI iL LBF=     (10.76)  

    PI iV VBF=     (10.77)   

 Obviously, eigenvectors of  PI  L  and  PI  V  can be obtained through normaliza-
tion. However, it is very diffi culty to obtain exactly  PI  S  and the corresponding 
eigenvector. But we can obtain them through forming and computing the 
judgment matrix of  PI  S , according to the position of load buses in the power 
network. In addition, the judgment matrix  A - PI , which is shown in Table  10.4  
as an example, can also be obtained according to the 9 - scale method for practi-
cal operating cases in power systems. Therefore, the unifi ed ranking weight 
coeffi cients  W i   can be computed as follows:

    
W W A PI W PI S W A PI W PI S

W A PI W PI S
i i i

i

= −( )∗ −( ) + −( )∗ −( )
+ −( )∗ −(

L L V V

S S ))     (10.78)      

  10.4.4   Homogeneous Self - Dual Interior Point Method 

 The above - mentioned optimal VAR control model has the format of linear 
programming. We use the homogeneous self - dual interior point method to 
solve it. 

 A linear programming problem is given in standard form

    
max c x

Ax b

x

T

subject to ≤
≥ 0

 

and its dual

 Table 10.4     Judgment matrix   A   -   PI   

    A       PI  L       PI  V       PI  S   

   PI  L     1    2    3  
   PI  V     1/2    1    3  
   PI  S     1/3    1/3    1  
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minb y

A y c

y

T

Tsubject to ≥
≥ 0

  

 These two problems can be solved by solving the following problem, which 
essentially combines the primal and dual problems into one problem:

    

MAX
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c x b y
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 Note that, beyond combining the primal and dual into one big problem, one 
new variable ( ϕ ) and one new constraint have been added. Hence, the total 
number of variables in primal - dual problem is  n    +    m    +   1 and the total number 
of constraints is  n    +    m    +   1. Furthermore, the objective function vanishes. 
Problems with such right - hand sides are called  homogeneous . Also, the con-
straint matrix for the primal - dual problem is skew symmetric. That is, it is equal 
to the negative of its transpose. Homogeneous linear programming problems 
having a skew symmetric constraint matrix are called  self - dual . 

 Let  z ,  w , and  ψ  denote the slack variables for the constraints in primal - dual 
problem:
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 If we introduce the error vector  ε ,  ρ ,  γ , the above constraints can be written in 
matrix form as below:
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 The reduced KKT system for the primal - dual problem is given by  [33 – 35] 



INTERIOR POINT METHOD FOR VAR OPTIMIZATION PROBLEM 423

    
− −

− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

′
′
′

⎡

⎣

X Z A c

A Y W b

c b

x

y

T T

T

T T ϕ φ φ

ε
ρ
γ

Δ
Δ
Δ

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    (10.80)  

where
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  μ  is a positive real parameter. For each  μ     >    0, we defi ne the associated central 
path in primal - dual space as the unique point that simultaneously satisfi es the 
conditions of primal feasibility, dual feasibility, and  μ  - complementarity. In 
addition, 0    ≤     δ     ≤    1. 

 The system in equation  (10.80)  is not symmetric. One could use a general -
 purpose equation solver to solve it, but its special structure would be mostly 
ignored by such a solver. To exploit the structure, we solve this system in two 
stages. We start by using the fi rst two equations to solve simultaneously for  Δ  x  
and  Δ  y  in terms of  Δ  ϕ :
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where  f  and  g  can be obtained by solving the following two equations:
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 Then we use equation  (10.82)  to eliminate  Δ  x  and  Δ  y  from the last equation 
in equation  (10.80) 
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 From equation  (10.86) , we get
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 Substituting equation  (10.87)  into equation  (10.82) , we get  Δ  x  and  Δ  y . Therefore, 
both optimal solutions of primal and dual are obtained. 

   Example 10.2 

 The IEEE 14 - bus system is used to test the presented approach. The IEEE 
14 - bus system has 5 generators, 8 loads, and 20 branches, in which 4 - 14, 4 - 18, 
5 - 6 and 7 - 14 are transformation branches. The value of penalty coeffi cient 
 M  in equation  (10.72)  is taken arbitrarily in the range 10 – 100. The judgment 
matrix  PI  S  -  S  for the IEEE 14 - bus system is given in Table  10.5 , whose values 
refl ect the relative importance in the power system between every pair of 
VAR support sites. These values were selected according to the engineer ’ s 
knowledge and experience, using the 9 - ratio scale method. For example, the 
element is chosen to be  “ 2 ”  if the users think the importance of site bus S8 
is slightly higher than that of site S4. If both VAR sites are thought to be 
equally important (such as bus S8 and S10), the corresponding elements are 
set to be  “ 1. ”    

 Single - hierarchy ranking is defi ned as that ranking is obtained by using 
only one index for all elements in one hierarchical structure. Table  10.6  

 Table 10.5     Judgment matrix   PI    S   -   S   for  IEEE  14 - bus system 

    PI  S      S4     S5     S8     S9     S10     S11     S12     S13  

  S4    1    1    1/2    1/7    1/3    1/5    1/3    1/5  
  S5    1    1    1/2    1/7    1/3    1/4    1/3    1/5  
  S8    2    2    1    1/6    1    1/3    1/2    1/4  
  S9    7    7    6    1    6    3    5    3  
  S10    3    3    1    1/6    1    1/4    1/2    1/5  
  S11    5    4    3    1/3    4    1    2    1/2  
  S12    3    3    2    1/5    2    1/2    1    1/3  
  S13    5    5    4    1/3    5    2    3    1  

 Table 10.6     Single hierarchy ranking of  VAR  support sites for  IEEE  14 - bus system 

   Bus     LBF  i       Rank     VBF  i       Rank  

  4    0.000376    7    0.000855    8  
  5    0.000337    8    0.000884    7  
  8    0.002309    6    0.001775    6  
  9    0.007674    2    0.001989    5  

  10    0.002618    5    0.002097    4  
  11    0.007407    3    0.002175    2  
  12    0.006757    4    0.002268    1  
  13    0.008840    1    0.002122    3  
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shows the single - hierarchy rank of VAR support sites of the IEEE 14 - bus 
system. It can be observed from Table  10.6  that the major VAR support 
sites selected by the benefi t factors LBF and VBF are the same, but differ-
ent in ranking.   

 Table  10.7  provides the unifi ed ranking results of VAR support sites, 
which coordinates PIL ,  PIV , and  PIS  indices by use of AHP. The weighting 
coeffi cients  Wi  in Table  10.7  are computed through the calculation of equa-
tion  (10.78) . Obviously, the unifi ed ranking list in Table  10.7  has considered 
the relative importance of VAR support sites in the power system.   

 With the use of the top three sites in the IEEE 14 - bus system (buses S9, 
S13, and S11 in Table  10.7 ) for placing the VAR compensation or support, 
the corresponding VAR support values are obtained through the optimal 
VAR control model, which is solved by the interior point (IP) method. Table 
 10.8  provides the optimal VAR control results. The effectiveness of the IP 

Table 10.7 Unified VAR compensation buses ranking list for  IEEE 14 -bus system 

   Bus No.      PIL  0.528      PIV  0.333      PIS   0.140 
   Weighting 

Coeffi cient  Wi      Rank No.  

  S4    0.01036    0.06033    0.03231    0.03008    8  
  S5    0.00928    0.06242    0.03322    0.03034    7  
  S8    0.06359    0.12529    0.05491    0.08321    6  
  S9    0.21135    0.14043    0.36790    0.20986    1  
  S10    0.07210    0.14803    0.06002    0.09577    5  
  S11    0.20400    0.15354    0.15165    0.18007    3  
  S12    0.18610    0.16012    0.08870    0.16400    4  
  S13    0.24347    0.14984    0.21128    0.20803    2  

Table 10.8 Optimal VAR control results and comparison for  IEEE 14 -bus system ( p.u.)

        Variable  Xmin      Variable  Xmax      Results by IP     Results by LP  

T4 – 14   0.900    1.100    0.975    0.975  
T4 – 18   0.900    1.100    1.100    1.100  
T5 – 6   0.900    1.100    1.100    1.100  
T7 – 14   0.900    1.100    0.950    0.950  
QS9   0.000    0.200    0.200    0.200  
QS11   0.000    0.200    0.050    0.059  
QS13   0.000    0.200    0.161    0.170  
VG1   1.000    1.1000    1.100    1.100  
VG2   1.000    1.1000    1.091    1.092  
VG3   1.000    1.1000    1.086    1.084  
VG6   1.000    1.1000    1.071    1.068  
VG7   1.000    1.1000    1.100    1.100  
  Initial Loss    /    /    0.11646    0.11646  
  Final Loss    /    /    0.11004    0.11108  
  Loss Reduction (%)    /    /    5.513%    4.619%  
  CPU (s)    /    /    18.2    61.5  
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method is also evaluated by comparing it against the LP method. In view 
of loss reduction, load voltage modifi cation, and convergence speed, the IP 
method appears superior to the LP method.       

  10.5    NLONN  APPROACH 

 Chapter  6  presents a new nonlinear optimization neural network (NLONN) 
to solve the security - constrained economic dispatch problem. Since reactive 
power optimization is also a nonlinear optimization problem, we apply 
NLONN to the reactive power optimization problem in this section. 

  10.5.1   Placement of  VAR  Compensation 

  10.5.1.1   Sensitivity Method     For simplifi cation, we use the perturbation 
method to compute the sensitivity of the bus voltage. The magnitude of the 
bus voltage sensitivity can be expressed by the total incremental bus voltage 
 ∑  Δ  V i  , which is obtained by increasing a small reactive power demand at a 
given load bus. The total incremental bus voltage may only include the voltage 
changes on several monitored buses. The bigger the value of  ∑  Δ  V i  , the more 
sensitive will be the voltage at a given bus to a change of reactive demand. 
This means that a load bus with the large value of  ∑  Δ  V i   is a good candidate 
to be selected as a VAR compensation bus. If the maximal number of VAR 
compensation sites is  m , we can obtain  m  VAR compensation sites according 
to the values of  ∑  Δ  V i .  Thus the corresponding sensitivity index can be 
expressed as

    S
V

Q
k NDk i NM

i

k
VQ = =∈

∑ Δ

Δ
, , ,1…     (10.88)  

where

   NM :    The set of the monitored buses  
  ND :    The total number of load buses     

  10.5.1.2   Voltage Stability Margin Method     The method is demonstrated 
with a simple system as shown in Figure  10.1 .   

 In Figure  10.1 ,   V   1    =    V  1  ∠ 0 is the voltage at the slack bus, which is the voltage 
source.  P  2  and  Q  2  are the active and reactive load demands, respectively. The 
load power factor is cos    φ . The load - bus voltage is   V   2    =    V  2  ∠  α . The line imped-
ance is   Z   l    =    Z  l  ∠  θ . 

 From Figure  10.1 , we can obtain the following equations:
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 According to equations  (10.89)  and  (10.90) , we get
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 The roots of equation  (10.91)  are
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 When  Δ    =   0, the two roots of equation  (10.92)  are the same, i.e.,
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2 2 1
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where  V  cr  is the critical voltage of the load bus. 
 Since  Δ    =   0, from equation  (10.93)  we get
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 According to equations  (10.94)  and  (10.95) , we have

    V Z P Qcr l= +2
2

2
2     (10.96)  

due to

     FIGURE 10.1     A simple system diagram  
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     Zl
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    Q P tg2 2= φ     (10.97)   

 Substituting equation  (10.97)  into equation  (10.96) , we have

    V Z Pcr l= 2 secφ     (10.98)   

 Substituting equation  (10.97)  into equation  (10.93)  with  Δ    =   0, we have
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2 2
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2
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 Substituting equation  (10.100)  into equation  (10.98) , we get

    V
V

cr =
+ −( )[ ]

1

2 1 cos θ φ
    (10.101)   

 According to equations  (10.100)  and  (10.101) , we get the critical power of load 
 P  cr , i.e.,
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 From equations  (10.101)  and  (10.102) , we obtain the static voltage stability 
deposit coeffi cients, i.e., the real power margin index  K ( P ) and the voltage 
margin index  K ( V ).
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where  P i   0  is the initial real power value of load bus  i ,  V i   0  is the initial voltage 
at load bus  i , and  ND  is the number of load buses. 

 The real power margin index, which adequately refl ects the stability deposit 
degree of system operation state, is used to represent the static stability degree 
of system voltage. Obviously, the load bus with a smaller value of  K ( P ) should 
be selected as a VAR compensation bus. Similarly, if the maximal number of 
VAR compensation sites is  m , we can obtain  m  VAR compensation sites 
according to the values of  K ( P ). 

 To obtain a unifi ed VAR compensation location ranking, a similar hierarchy 
model is set up as in Section  10.4 , but two difference performance indices are 
used here.  PI  P  and  PI  V  are defi ned as follows.
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    PI S i NDi
V VQ= ∈     (10.105)  

    PI K P i NDiP = ( ) ∈1     (10.106)   

 Thus the unifi ed ranking weight coeffi cients  W i   for the VAR support sites 
can be computed by AHP. The details of AHP algorithm can be found in 
Chapter  7  and reference  [32] .   

  10.5.2    VAR  Control Optimization 

 After VAR support locations are determined, VAR variables are optimized 
to improve voltage profi les and to minimize system real power losses as in 
model M - 4:

    min maxF V Vi i
i N

= −( )
∈
∑     (10.107)  

such that

    Q D V T i Ni i i− = ( ) ∈ϕ θ, ,     (10.108)  

    Q Q Q i NG NCi i imin max≤ ≤ ∈ ∪     (10.109)  

    V V V i Ni i imin max≤ ≤ ∈     (10.110)  

    T T T l NTl l lmin max≤ ≤ ∈     (10.111)  

where

   V i  :    The voltage magnitude at bus  i   
  θ :    The voltage angle at bus  i   
  Q i  :    The VAR compensation or VAR generation in the system  
  T:     The transformer tap position  
  N :    The set of buses in the system  
  NG :    The set of generation buses  
  NC :    The set of VAR compensation buses  
  NT:     The set of transformer branches    

 In the above model M - 4, equation  (10.108)  is a VAR power fl ow equation. 
 In contrast to most formulations that minimize real power losses, model 

M - 4 aims to achieve VAR optimization by dealing with voltage profi les. 
Obviously, good voltage profi les lead to small real power losses. The advantage 
of model M - 4 is that it also ensures sound system stability by controlling volt-
ages. We may also consider both loss minimization and voltage modifi cation 
as objective functions, which are discussed in the next section. 
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 In addition to optimal placement of VAR compensation (Section  10.5.1 ), 
an additional term is added into model M - 4 to penalize any further commit-
ment of VAR compensation. As a result, model M - 5 is formed to contribute 
further to the overall objective of VAR optimization:

    min maxF V V M Ci i
i N

i i
i NC

= −( ) + ( )
∈ ∈
∑ ∑ β     (10.112)  

such that

    Q C D V T i Ni i i i+ − − ( ) = ∈ϕ δ, , 0     (10.113)  

    − + ≥ ∈C C i NCi imax 0     (10.114)  

    C C i NCi i− ≥ ∈min 0     (10.115)  

    − + ≥ ∈ ∪Q Q i NG NCi imax 0     (10.116)  

    Q Q i NG NCi i− ≥ ∈ ∪min 0     (10.117)  

    − + ≥ ∈V V i Ni imax 0     (10.118)  

    V V i Ni i− ≥ ∈min 0     (10.119)  

    − + ≥ ∈T T l NTl l max 0     (10.120)  

    T TC i NTl l− ≥ ∈min 0     (10.121)  

where  C  is the new increased VAR compensation.  M  is the corresponding 
penalty coeffi cient in the objective function, which should be greater than the 
other coeffi cients in the objective function by a factor of 10 – 100.  β   i   is the 
weight on VAR compensation, which can be obtained according to the unifi ed 
ranking weight coeffi cients as in Section  10.5.1 :

    βi iW= 1     (10.122)   

 A large  W i   corresponds to a small  β   i  . This means that VAR compensation at 
a bus with the smallest  β   i   is preferred to the others as the optimal VAR com-
pensation site.  

  10.5.3   Solution Method 

 The VAR optimization model in equations  (10.112) – (10.121)  can be rewritten 
into a general form as constrained optimization problem.

    min f x( )     (10.123)  

such that
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    h x j mj( ) = =0 1, ,…     (10.124)  

    g x i ki( ) ≥ =0 1, ,…     (10.125)   

 To change inequality constraints of equation  (10.125)  into equality 
constraints, new variables  y  1 ,  …   …  ,  y m   (i.e., relaxation variables) are intro-
duced into equation  (10.125) , In this way, equations  (10.123) – (10.125)  can be 
written as.

    min f x( )     (10.126)  

such that

    h x j mj( ) = =0 1, ,…     (10.127)  

    g x y i ki i( ) − = =2 0 1, ,…     (10.128)   

 The optimization neural network is applied to solve equations  (10.126) –
 (10.128) . The NLONN approach is described in Chapter  6 .  

  10.5.4   Numerical Simulations 

 The characteristics of the proposed approach are examined with the IEEE 
30 - bus system. Data and parameters of the system are shown in Chapter  5 . 
The IEEE 30 - bus system has 6 generators, 21 loads, and 41 branches, in which 
6 - 9, 6 - 10, 9 - 10, 4 - 12, 12 - 13, and 27 - 28 are branches with under - load - tap - setting 
transformers. 

 The judgment matrix PI C  - C for the IEEE 30 - bus system is given in Table 
 10.9 , whose values refl ect the relative importance in the power system between 
every pair of VAR compensation buses.   

 Table 10.9     Judgment matrix   PI    C   -  C  for  IEEE  30 - bus system 

    PI  C      C10     C18     C19     C20     C21     C23     C24     C26     C29     C30  

  C10    1    1/2    1/2    1    1/2    1/7    1/2    1/3    1/7    1/3  
  C18    2    1    2    3    1    1/7    1/2    1/3    1/7    1/3  
  C19    2    1/2    1    2    1/2    1/7    1/3    1/3    1/7    1/3  
  C20    1    1/3    1/2    1    1    1/5    1/2    1/4    1/6    1/4  
  C21    2    1    2    1    1    1/7    1    1/3    1/5    1/3  
  C23    7    7    7    5    7    1    5    4    1    4  
  C24    2    2    3    2    1    1/5    1    1/2    1/5    1/2  
  C26    3    3    3    4    3    1/4    2    1    1/4    2  
  C29    7    7    7    6    5    1    5    4    1    4  
  C30    3    3    3    4    3    1/4    2    1/2    1/4    1  
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 Single - hierarchy ranking is defi ned as that ranking as obtained by using 
only one method for all elements in one hierarchical structure. Table  10.10  
shows the single - hierarchy VAR compensation sites ranking of the IEEE 30 -
 bus system.   

 Two parallel methods, namely: the sensitivity method (SM) and the voltage 
stability margin method (VSMM), have been used to determine optimal place-
ment of VAR compensation. Table  10.11  provides the unifi ed VAR compensa-
tion ranking results, which coordinates SM and VSMM methods by using AHP 
for the IEEE 30 - bus system.   

 Using the top four sites in the IEEE 30 - bus system (buses C23, C26, C29, 
C30 in Table  10.11 ) for placing the VAR compensation, the corresponding 
VAR compensation utilization or settings are obtained with VAR optimization 
model M - 5. Table  10.12  provides the VAR optimization results for the IEEE 
30 - bus system. Corresponding limits of the variables in Table  10.12  are 
Tmax    =   1.1,  Tmin    =   0.9;  Cmax    =   0.3,  Cmin    =   0.0;  VGmax    =   1.1,  VGmin    =   1.0;  VDmax    =   1.0, 

Table 10.10 Single hierarchy ranking of VAR compensation buses for 
IEEE 30 -bus system 

   Bus      KP       PIP      Rank      PIV      Rank  

  10    3.101    0.322    7    /    /  
  18    2.000    0.500    5    1.610    8  
  19    /    /    /    1.660    5  
  20    /    /    /    1.640    7  
  21    2.46    0.407    6    /    /  
  23    1.910    0.524    4    1.642    6  
  24    3.430    0.292    8    1.855    4  
  26    0.882    1.134    1    1.882    3  
  29    1.090    0.917    2    2.011    1  
  30    1.531    0.653    3    1.984    2  

Table 10.11 Unified VAR compensation buses ranking list for  IEEE 30 -bus system 

   Bus No.      PIP  0.528      PIV  0.333      PIC  0.140     Total Rank     Rank No.  

  C10    0.06780    0.00000    0.02857    0.03980    10  
  C18    0.10529    0.11271    0.04650    0.09964    5  
  C19    0.00000    0.11621    0.03492    0.04359    8  
  C20    0.00000    0.11481    0.03049    0.04250    9  
  C21    0.08570    0.0000    0.04505    0.05156    7  
  C23    0.11034    0.11495    0.27770    0.13542    3  
  C24    0.06147    0.12987    0.06050    0.08417    6  
  C26    0.23879    0.13176    0.10930    0.16113    2  
  C29    0.19309    0.14079    0.27196    0.17291    1  
  C30    0.13750    0.13890    0.09504    0.13216    4  
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 V  Dmin    =   0.9 (where  T  is the tap transformer position,  C  is the VAR compensa-
tion capacity,  V  G  is the voltage magnitude at generator buses, and  V  D  is the 
voltage magnitude at load buses).   

 Linear programming, which is the most conventional method used in reac-
tive power optimization, is used to validate the results from the NLONN 
method. Results from both methods are given in Table  10.13  for the IEEE 
30 - bus system. If the same initial conditions are adopted for both methods, the 
NLONN method produce results with higher voltage profi le with less VAR 
compensation capacity than its counterpart.     

  10.6    VAR  OPTIMIZATION BY EVOLUTIONARY ALGORITHM 

  10.6.1   Mathematical Model 

 In the previous section, we deduced the voltage margin index  K ( V ), that is,

    K V
V V

Vi
i

i

( ) = − ⋅cr 0

0

100%    (10.129)   

 This means that voltage stability enhancement can be achieved through 
minimizing the voltage margin index values at every bus of the system and 
consequently the global power system  K  - index. Let

 Table 10.12     Results of optimal  VAR  control for  IEEE  30 - bus system 

  Branch    6 - 9    6 - 10    10 - 9    4 - 12    12 - 13    28 - 27          
  T    1.00    1.05    0.90    1.075    1.10    1.05          
  Bus    C23    C26    C29    C30                  
   Q  C     0.043    0.031    0.059    0.019                  
  Bus    NG1    NG2    NG5    NG8    NG11    NG13          
   V  G     1.068    1.049    1.030    1.006    1.052    1.100          
  Bus    C3    C4    C6    C7    C9    C10    C12    C14  
   V  D     1.000    0.991    0.996    1.000    1.000    1.000    1.000    0.978  
  Bus    C15    C16    C17    C18    C19    C20    C21    C22  
   V  D     0.967    0.992    0.992    0.942    0.951    0.963    0.984    0.983  
  Bus    C23    C24    C25    C26    C27    C28    C29    C30  
   V  D     0.947    0.958    0.972    0.930    1.000    0.987    0.967    0.962  

 Table 10.13     Comparison of results for  IEEE  30 - bus system 

   Method  
   Number of Var 
Compensations  

   Amount of Var 
Compensation  

   Lowest Load 
Voltage  

   Average Load 
Voltage  

  LP    4    0.1950    0.92178    0.97013  
  NNLONN    4    0.1520    0.93000    0.97758  
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    K K V i Nimax max , , ,= ( ){ } = 1…     (10.130)  

where  N  is the total number of buses of the system. 
 The objective is to minimize the  K  max , that is,

    min min maxF K1 =     (10.131a)   

 Another objective for VAR optimization is system loss minimization, that is,

    min minF P2 = L     (10.131b)   

 The constraints of VAR optimization are described in previous sections. Thus 
the problem can be mathematically formulated as a nonlinear constrained 
multiobjective optimization problem as follows:

    Minimize F F1 2,[ ]     (10.132)   

 Subject to

    g x u,( ) = 0     (10.133)  

    h x u,( ) ≤ 0     (10.134)  

where

   x :    The vector of dependent variables consisting of load bus voltages  V  L , 
generator reactive power outputs  Q  G , and transmission line loadings. 
Hence,  x  can be expressed as

    x V V Q QND NG
T

L L G G= [ ]1 1, , ,… …     (10.135)    

  u :    The vector of control variables consisting of generator voltages  V  G , trans-
former tap settings  T , and VAR compensations  Q  c . Hence,  u  can be 
expressed as

    u V V T T Q QNG NT NC
T

G G C C= [ ]1 1 1, , , , ,… … …     (10.136)    

  g :    The equality constraints  
  h :    The inequality constraints     

  10.6.2   Evolutionary Algorithm of Multiobjective Optimization 

 Generally, the two functions, loss minimization and voltage stability index, are 
noncommensurable and often competing objectives. Multiobjective optimiza-
tion with such objective functions gives rise to a set of optimal solutions, 
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instead of one optimal solution. The reason for the optimality of many solu-
tions is that no one can be considered to be better than any other with respect 
to all objective functions. These optimal solutions are known as  Pareto - optimal  
solutions. 

 A general multiobjective optimization problem consists of a number of 
objectives to be optimized simultaneously and is associated with a number of 
equality and inequality constraints. It can be formulated as follows:

    Minimize objf x i Ni( ) = 1, ,…     (10.137)  

subject to

    g x u j Mj , , ,( ) = =0 1…     (10.138)  

    h x u k Kk , , ,( ) ≤ =0 1…     (10.139)  

where  f i   is the  i th objective function,  x  is a decision vector that represents a 
solution, and  N  obj  is the number of objectives. 

 For a multiobjective optimization problem, any two solutions  x  1  and  x  2  can 
have one of two possibilities: One covers or dominates the other, or none 
dominates the other. In a minimization problem, without loss of generality, a 
solution  x  1  dominates  x  2  if the following two conditions are satisfi ed  [23] : 

  1.      ∀  i     ∈    {1, 2,  …  ,  N  obj }:  f i  ( x  1 )    ≤     f i  ( x  2 )  
  2.      ∃  j     ∈    {1, 2,  …  ,  N  obj }:  f j  ( x  1 )    ≤     f j  ( x  2 )    

 If any of the above conditions is violated, solution  x  1  does not dominate solu-
tion  x  2 . The solutions that are nondominated within the entire search space 
are denoted as Pareto - optimal and constitute the  Pareto - optimal set  or  Pareto -
 optimal front . 

 There are some diffi culties for the classic methods to solve such multiobjec-
tives optimization problems: 

   •      An algorithm has to be applied many times to fi nd multiple Pareto -
 optimal solutions.  

   •      Most algorithms demand some knowledge about the problem being 
solved.  

   •      Some algorithms are sensitive to the shape of the Pareto - optimal front.  
   •      The spread of Pareto - optimal solutions depends on effi ciency of the single 

objective optimizer.    

 As we have analyzed in this book, AHP can be used to solve the mentioned 
multiobjective optimization problem. Here, we use another method, the 
strength Pareto evolutionary algorithm (SPEA), to solve it. 
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 The SPEA - based approach has the following features  [36] : 

 •      It stores externally those individuals that represent a nondominated front 
among all solutions considered so far.  

 •      It uses the concept of Pareto dominance in order to assign scalar fi tness 
values to individuals.  

 •      It performs clustering to reduce the number of individuals externally 
stored without destroying the characteristics of the trade - off front.    

 Generally, the algorithm can be described in the following steps. 

  Step (1) (Initialization):     Generate an initial population and create an empty 
external Pareto - optimal set.  

  Step (2) (External set updating):     The external Pareto - optimal set is updated 
as follows.  
   (a)     Search the population for the nondominated individuals and copy them 

to the external Pareto set.  
   (b)     Search the external Pareto set for the nondominated individuals and 

remove all dominated solutions from the set.  
   (c)     If the number of the individuals externally stored in the Pareto set 

exceeds the prespecifi ed maximum size, reduce the set by clustering.    
  Step (3) (Fitness assignment):     Calculate the fi tness values of individuals in 

both external Pareto set and the population as follows. 
    (a)     Assign a real value  r     ∈    [0, 1) called strength for each individual in the 

Pareto optimal set. The strength of an individual is proportional to the 
number of individuals covered by it. The strength of a Pareto solution 
is at the same time its fi tness.  

   (b)     The fi tness of each individual in the population is the sum of the 
strengths of all external Pareto solutions by which it is covered. To 
guarantee that Pareto solutions are most likely to be produced, a small 
positive number is added to the resulting value.    

  Step (4) (Selection):     Combine the population and the external set individuals. 
Select two individuals at random and compare their fi tness. Select the better 
one and copy it to the mating pool.  

  Step (5) (Crossover and Mutation):     Perform the crossover and mutation oper-
ations according to their probabilities to generate the new population.  

  Step (6) (Termination):     Check for stopping criteria. If any one is satisfi ed, then 
stop; otherwise copy new population to old population and go to Step 2. In 
this study, the search will be stopped if the generation counter exceeds its 
maximum number.    

 In some problems, the Pareto optimal set can be extremely large. In this 
case, reducing the set of nondominated solutions without destroying the char-
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acteristics of the trade - off front is desirable from the decision maker ’ s point 
of view. An average linkage - based hierarchical clustering algorithm  [37]  is 
employed to reduce the Pareto set to manageable size. It works iteratively by 
joining the adjacent clusters until the required number of groups is obtained. 
It can be described as: given a set  P  in which its size exceeds the maximum 
allowable size  N , it is required to form a subset  P  *  with the size  N . The algo-
rithm is illustrated in the following steps. 

  Step (1):     Initialize cluster set  C ; each individual  i     ∈     P  constitutes a distinct 
cluster.  

  Step (2):     If number of clusters  ≤   N , then go to Step 5, else go to Step 3.  
  Step (3):     Calculate the distance of all possible pairs of clusters. 

 The distance  d  c  of two clusters  c  1  and  c  2     ∈     C  is given as the average distance 
between pairs of individuals across the two clusters

    d
n n

d i i
i c i c

c = ( )
∈ ∈
∑1

1 2
1 2

1 1 2 2

,
,

    (10.140)  

where  n  1  and  n  2  are the number of individuals in clusters  c  1  and  c  2 , respec-
tively. The function  d  refl ects the distance in the objective space between 
individuals  i  1  and  i  2 .  

  Step (4):     Determine two clusters with minimal distance  d  c . Combine them into 
a larger one. Go to Step 2.  

  Step (5):     Find the centroid of each cluster. Select the nearest individual in this 
cluster to the centroid as a representative individual and remove all other 
individuals from the cluster.  

  Step (6):     Compute the reduced nondominated set  P  *  by uniting the repre-
sentatives of the clusters.    

 Upon having the Pareto - optimal set of nondominated solution, we can 
obtain one solution for the decision maker as the best compromise solution. 
Because of the imprecise nature of the decision maker ’ s judgment, the  i th 
objective function  F i   is represented by a membership function  μ   i   defi ned as
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where   Fi
min  and   Fi

max  are the minimum and maximum value of the  i th objec-
tive function among all nondominated solutions, respectively. 

 For each nondominated solution  k , the normalized membership function  μ   k   
is calculated as
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where  M  is the number of nondominated solutions. The best compromise solu-
tion is that having the maximum value of  μ   k  . 

 The following modifi cations have been incorporated in the basic SPEA 
algorithm  [23] .

    (a)     A procedure is imposed to check the feasibility of the initial population 
individuals and the generated children through GA operations. This 
ensures the feasibility of Pareto - optimal nondominated solutions.  

  (b)     In every generation, the nondominated solutions in the fi rst front are 
combined with the existing Pareto - optimal set. The augmented set is 
processed to extract its nondominated solutions that represent the 
updated Pareto - optimal set.  

   (c)     A fuzzy - based mechanism is employed to extract the best compromise 
solution over the trade - off curve and assist the decision maker to adjust 
the VAR sources effi ciently.      

  10.7    VAR  OPTIMIZATION BY PARTICLE SWARM 
OPTIMIZATION ALGORITHM 

 Similar to Section  10.6 , two objectives, loss minimization and voltage modifi ca-
tion, are used for VAR optimization problem. They are:

    min F V V i NDi ii1 0
2

= −( ) ∈∑     (10.143)  

    min , ,F P Q V T2 = ( )L S G     (10.144)  

where  V i   0  is the feasible value of voltage on a load bus in the normal state. 
 The constraints of VAR optimization were described in previous sections. 

In this section, we use particle swarm optimization (PSO) to solve the VAR 
optimization problem. 

 According to Chapter  8 , the velocity and position update equations of PSO 
are given by

    V wV C r P X C r P Xij
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gb     (10.145)  

    X X V i N j Nij
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t

ij
t= + = =−1 1 1, , , , ,… …D par     (10.146)  

where
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   w :    The inertia weight  
  C  1 ,  C  2 :    The acceleration coeffi cients  
  N  D :    The dimension of the optimization problem (number of decision 

variables)  
  N  par :    The number of particles in the swarm  
  r  1 ,  r  2 :    Two separately generated uniformly distributed random numbers in 

the range [0, 1].    

 The inertia weighting factor for the velocity of particle is defi ned by the 
inertial weight approach

    w t w
w w

t
t( ) = − − ×max

max min

max
    (10.147)  

where  t  max  is the maximum number of iterations and  t  is the current number 
of iterations.  w  max  and  w  min  are the upper and lower limits of the inertia weight-
ing factor, respectively. 

 Here, we use a modifi ed PSO to solve the VAR optimization problem. The 
method is a variation of the classical PSO by splitting the cognitive component 
of the classical PSO into two different components. The fi rst component can 
be called the good experience component. That is, the bird has a memory about 
its previously visited best position. This component is exactly the same as the 
cognitive component of the basic PSO. The second component is given the 
name of bad experience component. The bad experience component helps 
the particle to remember its previously visited worst position. To calculate the 
new velocity, the bad experience of the particle is also taken into consideration. 
This gives the new model of the PSO as below. 

 The new velocity update equation is given by  [38] 
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where

   C  1g :    The acceleration coeffi cients, which accelerate the particle toward its 
best position  

  C  1b :    The acceleration coeffi cients  
  P  wi  :    The worst position of the particle, which accelerates the particle away 

from its worst position    

 The positions are updated with the same equation  (10.146) . The inclusion 
of the worst experience component in the behavior of the particle gives 
additional exploration capacity to the swarm. By using the bad experience 
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component, the bird (particle) can bypass its previous worst position and 
always try to occupy a better position. 

   Example 10.3 

 The VAR optimization solved by the MPSO (modifi ed PSO) algorithm is 
tested on the IEEE 30 - bus system. The system consists of 6 generators, 41 
lines, 4 transformers, and 2 capacitor banks. In the transformer tests, tap 
settings are considered within the interval [0.9, 1.1]. The available reactive 
powers of capacitor banks are within the interval [0, 30] MVAr, and they 
are connected to buses 10 and 24. Voltages are considered within the range 
of [0.95, 1.1]. In this case, the decision space has 12 dimensions, namely, the 
6 generator voltages, 4 transformer taps, and 2 capacitor banks. The values 
of the parameters of MPSO are determined as below. 

 The upper and lower limits of the inertia weight  wmax  and  wmin  are selected 
as 0.92 and 0.4, respectively.  C2  is selected as 2.  C1g  is increased from 1.0 to 
1.9 in steps 0.05, and  C1b  is decreased from 1.0 to 0.1 in steps 0.05. 

 The test results are listed in Table  10.14 . For the purpose of comparison, 
the several different results given by conventional PSO  [25, 26] , coordinated 
aggregation PSO  [29] , and interior point - based OPF algorithm  [27]  are also 
listed in Table  10.14 . All PSO algorithms have similar results.    

10.8 REACTIVE POWER PRICING CALCULATION 

10.8.1 Introduction

 In the power system, generation investments and fuel costs are the main 
system costs. However, these costs are expensive. There are other less expen-

Table 10.14 VAR optimization results and comparison for 30 -bus system 

        Conventional PSO     MPSO     CAPSO     IP - OPF  

VG1   1.10755    1.02367    1.02282    1.10000  
VG2   1.02458    0.99985    1.09093    1.05414  
VG5   1.02466    1.00202    1.03008    1.10000  
VG8   1.01421    1.01253    0.95000    1.03348  
VG11   1.01717    1.02636    1.04289    1.10000  
VG13   0.99613    1.03602    1.03291    1.01497  
T6 - 9   1.09699    1.04352    1.07894    0.99334  
T6 - 10   0.92509    0.99419    0.94376    1.05938  
T4 - 12   1.00048    1.00063    1.00064    1.00879  
T27 - 28   1.00714    1.00694    1.00693    0.99712  
Q10   0.15365    0.17739    0.15232    0.15253  
Q24   0.06220    0.06178    0.06249    0.08926  
PL  (p.u.)    0.050922    0.050921    0.050921    0.051009  
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sive generation services that should be provided in order to maintain system 
reliability and to meet the required security levels. Among these ancillary 
services are those associated with reactive power support and voltage control 
in the transmission network  [39 – 43] . Especially in the competitive power 
markets, there is a need for procedures to incentivize the participants in the 
market to provide reactive services and ensure an adequate payment that 
guarantees the economic feasibility of this business. In addition, reactive power 
pricing addresses the important issue of providing information to the utilities, 
generating plants, and consumers about the true burden on the system. It 
can also refl ect the embedded costs incurred by the utilities for wholesale 
transactions. 

 In Chapter  6 , we discuss the real power pricing issue. There are some dif-
ferences between the reactive power market and the real power market: 

   (a)     The local geographic character of the reactive power market versus the 
systemwide character of the active power market  

   (b)     The relatively smaller investments in new equipment needed to supply 
reactive power as compared to those associated with active power 
generation.    

 Investments in the reactive power market ease competition, as more agents 
can participate in the market (for instance, investing in SVCs). On the other 
hand, the local character of the reactive fl ows can mean that, in some moments, 
just one (or a few) generator can provide the required reactive energy, leading 
to monopolistic behavior. One way to avoid this possibility is by requiring 
longer - term bids than in active power markets. In this way, generators cannot 
bid, in any case, their reactive energy higher than the cost of alternative reac-
tive power generation means. Actually, the market size grows because it is 
 “ enlarged ”  in the temporal direction, trying to compensate for the loss of 
competition among agents through the space. 

 The reactive energy market would be based on long - term bids provided by 
generators and other control elements to the system operator. The bid format 
includes the margin of the reactive power variation (generation and absorp-
tion) and the loss curve, which relates the internal equipment losses to the 
reactive power produced or absorbed by the control element. These loss curves 
will be priced at the marginal price of the hourly active energy market. The 
system operator should dispatch the system including the loss as an additional 
cost to be minimized. Both generator injections and reactive power demands 
would be remunerated or charged by multiplying the reactive power amount 
by the corresponding loss minimization spot price. Distribution utilities or 
large customers would adjust their reactive power demands, taking into 
account the current reactive power spot prices. 

 The reactive capacity market would be also based on long - term capacity 
bids provided by generators and SVCs to the system operator to ensure system 
voltage security. For selected bids there is a long - term obligation for voltage 
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regulation in their connection buses. The control element will receive a capac-
ity payment for this service. To avoid the undesirable effects of the high volatil-
ity of security reactive spot prices, this regulating service would be remunerated 
by a capacity payment. The total equipment remuneration should be propor-
tional to the impact of the equipment on the expected nonsupplied energy, 
and it should take into account the amount of the reactive power capacity 
provided and its type of control.  

  10.8.2   Reactive Power Pricing 

 Assume that the power system is working in its steady - state optimal operation 
point. This operation point is found by solving the VAR optimization prob-
lems, which are analyzed in the previous sections. If a load increases its reactive 
power demand in a small amount, the rest of the system will change in order 
to supply the additional demand keeping optimality conditions. It can be 
shown that the increase of the profi t of the load must be equal to the increase 
of the cost of the rest of the system. This incremental cost is known as the 
reactive power spot price  [40] . 

 Two kind of incremental system costs can be separated: One is related to 
system losses and another is related to voltage security. Thus the reactive 
spot price can be also decomposed into two components: a losses component 
and a security component. The reactive spot pricing can be computed as 
below  [39] . 

  10.8.2.1   Computation of Reactive Spot Prices at Generator Buses   
  Consider fi rst a bus in which is connected a reactive power source, generator, 
or SVC with enough reactive margin. Usually, any reactive load increment at 
that bus will be almost totally provided by the reactive source equipment con-
nected to the same bus, and therefore the reactive spot price is the derivative 
of the equipment operating cost curve. In general, the operating reactive costs 
are due to the internal losses associated with the generation or absorption of 
reactive power. For a given injected power, these costs can be written as  c j  ( Q j  , 
 V j  ). The reactive marginal price is:

    σ j
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where

   σ   j  :    The reactive power price at generator bus  j   

   ∂
∂

V
Q

j

j

:    The variation in the generator voltage when the injected reactive 

power changes    

 Generally, the second term in equation  (10.149)  is smaller than the fi rst one.  
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  10.8.2.2   Computation of Reactive Spot Prices at Load Buses     Consider 
now a load bus  i  where no reactive generation equipment is connected. Then, 
when increasing the reactive power load, assuming that the rest of the loads 
remain constant, the system cost is going to increase. The reasons are: 

   (a)     The increment of reactive power generation  
   (b)     The increment of the system active power losses produced for the incre-

ment of reactive power fl ows  
   (c)     The possible redispatch caused by some system constraints    

 The reactive power spot price at the load bus can be decomposed as:
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where

   W ij  :    The weight factors that indicate in which amount each reactive power 
generation equipment responds to the assumed reactive demand incre-
ment in the absence of system constraints  

   ∂
∂
P
Qi

L :    The network active power losses increment caused by the assumed 

reactive load increment  
  λ :    The system marginal active power price (This price is assumed to be 

almost equal to the active power spot price.)  
  σ  Nk,i :    Represents the marginal contribution of the system constraint  Nk  to 

the system operation costs.    

 In equation  (10.150) , the reactive power spot price consists of a losses com-
ponent and a security component. Therefore, the reactive price losses compo-
nent  σ  L   i   and the security component  σ  S   i   can be expressed as
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 The security component of the reactive spot price can be obtained from the 
solution of the optimal reactive dispatch problem. The dual variable of the 
constraint obtained through the solution of the dispatch optimization problem 
will be used to compute the value of the security component. 

 According to the reactive spot price, the practical remuneration and 
charging procedures for reactive supply and voltage control services are 
summarized as below: 
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   (a)     Remuneration for the reactive energy provision, which is paid to 
generators and other voltage control equipment. The amount of the 
remuneration is set by the losses component of the reactive spot prices 
($/MVAr - h) times the injected reactive power. The spot prices are 
computed by using the internal losses curves declared by the reactive 
sources in their long - term bids and the marginal price of the active 
energy hourly market.  

   (b)     Remuneration for the regulating reactive power capacity, which is 
paid to generators and other voltage control equipment. The amount 
of the remuneration is associated with the available reactive capacity 
(in MVAR) and the control (time constant, integration in a secondary 
voltage control, etc.). Local or regional capacity payments should be 
calculated. To receive this capacity payment a long - term obligation to 
provide the regulating service should be agreed upon by the supplier 
agents and the system operator.  

   (c)     The payments made by large customers and distribution utilities 
shall be associated with their reactive energy consumption times the 
corresponding losses component of the reactive spot prices. Usually 
distribution utilities can infl uence the required level of service by 
making contracts with embedded generators, by capacitor bank 
switching, etc.  

   (d)     The difference between the total remuneration (a and b) and the reac-
tive energy payments made by large customers and distribution utilities 
(c) is the bundled part of the service. This part could be dealt as a charge 
to all pool participants proportional to the sold or bought active energy 
amount, or included as an uplift in the pool market price.      

10.8.3 Multiarea VAR Pricing Problem 

 The VAR pricing in the previous section concentrates on the single - area 
system. Since the multiarea power system is connected via inter - ties typically 
overburdened with local and global demands in the presence of uncertainty 
and violation, the presence of local area VAR provides control source to 
prevent voltage instability and power fl ow infeasible. Therefore, the values and 
benefi t of VAR support service in the multiarea environment are very useful 
to the restructured power system  [43, 44] . 

 This section focuses on the multiarea system and computes the VAR opti-
mization and pricing in a multiarea environment based on cost - benefi t analysis 
(CBA) and nonlinear convex network fl ow programming (NLCNFP). The cost 
of reactive power support service is determined based on capability and con-
tribution to improvement of system performance including factors such as 
security, reliability, and economics. CBA is used to select and rank the sites of 
VAR support. Only the selected optimal VAR support sites are considered in 
the calculation of VAR optimization. 
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  10.8.3.1   Optimal Model in Multiareas     Generally, the most economical 
arrangement of the pool is that the power transfers among areas are free to 
vary until the total generating cost within the pool is minimized. However, 
sometimes this practice is not adopted because utilities may want to retain 
some of their autonomy. A possible arrangement is that each area submits buy/
sell quotations hourly to the central dispatcher or independent system opera-
tor (ISO) based on its marginal cost curve. The quotations are based on each 
potential seller ’ s incremental cost of generating power and each potential 
buyer ’ s decremental cost. As soon as an area has cheap generating cost, it 
always wants to sell (or deliver) MW power to other systems (or areas) as 
much as possible depending on the transfer capacity of tie - lines. In this case, 
reactive power support service in the area has two important roles: 

  (i)     It can reduce costs and system loss and modify voltage profi le.  
  (ii)     It can increase the transfer capacity and thus increase the MW power 

delivery of tie lines.    

 Therefore, the following optimal model, in which the reactive power support 
service is provided in the selected area, is proposed for the multiarea power 
system  [43] .

  Objective function: 

   (a)     Power delivery maximization

    Max for optimization aTie Tie K c Tie KF P q Pa i a
K

NTK

= ( ) − ( )( )− −
=
∑ 0

1

rrea     (10.153)    

   (b)     Loss minimization

    Min for optimization areaL LF P a NAa= ∈     (10.154)     

  Constraints: 
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    P P Pia ia iag g gmin max≤ ≤     (10.157)  

    − ≤ ≤ =P P P ij NLij ij ijmax max , ,1…     (10.158)  

    − ≤ ( ) ≤ ∈ ∈− − −P P q P k NTK a NAiTie KaM Tie Ka c Tie KaM, ,     (10.159)  
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    Q q V T Vc g d, , ,( ) = 0     (10.160)  

    Q Q Qi i ig g gmin max≤ ≤     (10.161)  

    V V V i NG ai i ig g gmin max,≤ ≤ ∈ ( )     (10.162)  

    V V V i ND ai i id d dmin max,≤ ≤ ∈ ( )     (10.163)  

    T T T i NT ai i imin max,≤ ≤ ∈ ( )     (10.164)  

    q q q i NC ai i ic c cmin max,≤ ≤ ∈ ( )     (10.165)  

where

   F  tie :    The net increase of MW power of tie lines related to area  a  after VAR 
support is provided  

  P  tie - ka ( q  c   i  ):    The MW power of tie - line related to area  a  after VAR support 
is provided  

  P  tie - ka (0):    The real power of tie - line related to area  a  before VAR support 
is provided  

  P  tie - kaM :    The limit of real power of tie - line related to area  a   
  q  c   i  :    The reactive power of capacitor at bus  i   
  P  d   i  :    The real power load at load bus  i   
  Q  d   i  :    The reactive power load at load bus  i   
  V  g   i  :    The voltage magnitude at generator bus  i   
  V  d   i  :    The voltage magnitude at load bus  i   
  P  g   i  :    The real generation of generator  i   
  Q  g   i  :    The VAR generation of generator  i   
  T :    The transformer tap position  
  P  g   a  :    The real power generation in area  a   
  P  d   a  :    The real power load in area  a   
  P  L   a  :    The real power loss in area  a   
  NG ( a ):    The number of generation buses in area  a   
  NT ( a ):    The number of transformer branches in area  a   
  ND ( a ):    The number of the load buses in area  a   
  NA :    The number of areas  
  NC ( a ):    The number of VAR support sites in area  a   
  NTK :    The total number of tie - lines related to area  a   
  P   ij  :    The real power fl ow through transmission line  ij   
  NL :    The number of transmission lines       

 Equation  (10.155)  is the real power balance for area  a . For MW power of 
the tie - lines, a positive direction is taken when the power fl ow leaves the area 
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and a negative direction when the power fl ow enters the area. Equation 
 (10.156)  is the real power balance for overall system. 

 Two steps are used to solve the problem of VAR optimization and pricing. 
Step one is to solve the objective in equation  (10.153)  and satisfy the con-
straints. In this step, the increases of the power delivery on the tie - lines from 
the VAR support are computed. The loss and voltage benefi t indices are also 
calculated based on cost - benefi t analysis (CBA), which are used to select the 
optimal locations of VAR supports. Step two is to solve the objective in equa-
tion  (10.154)  and the constraints, where only the selected optimal VAR sup-
ports obtained in step one are considered. 

 The solution method of the above - mentioned optimization model is the 
nonlinear convex network fl ow programming (NLCNFP). The details of 
NLCNFP are described in Chapter  5 .  

  10.8.3.2   Calculation of  VAR  Pricing in Multiareas     The reactive power 
pricing of each VAR support bus is generally divided into two parts  [41] . One 
is the fi xed part, and another is the variable part, i.e.,

    C t C t C ti i iP f V( ) ( ) ( )( ) = ( ) + ( )     (10.166)   

 The investment cost (including installation cost) of the VAR source is the 
fi xed part of VAR pricing at this VAR source bus, i.e.,

    C C qi i if c c( ) =     (10.167)  

where

   C  f(   i   ) :    The fi xed part of reactive power pricing at VAR source bus  i   
  C  c   i  :    The unit investment cost due to allocation of capacitors at load bus  i  

($/MVAR)    

 The variable cost of reactive power support service is determined based on 
capability and contribution to improvement of system performance for the 
given area, including factors such as security, reliability, and economics. In the 
single - area system, the contribution of VAR support is mainly evaluated by 
the reduction of system power loss, or the saving of generation cost. For the 
multiarea system, however, these benefi ts (loss reduction and generation cost 
saving) are smaller than the benefi t of increasing power delivery on tie - lines. 
Therefore, the contribution or value of VAR support to the system in the 
multiareas is evaluated by calculating sensitivity of the objective function (net 
increase of power delivery on tie - lines) with respect to VAR support service 
in the optimization area. This sensitivity refl ects dollar benefi ts from applying 
VAR support service. Therefore, the variable part of reactive power pricing at 
this VAR source bus can be written as follows:
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    C t
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where

   C  V(   i   ) ( t ):    The variable part of reactive power pricing at VAR source bus  i  at 
time  t   

  q  c   i  :    The reactive power of capacitor at bus  i  at time  t   
  λ :    The pricing of electricity ($/MWhr)  
  ∂  F  Tie /  ∂  Q i  :    The sensitivity of the objective function of increasing tie - line 

power delivery with respect to reactive power support (capacitor)     

  10.8.3.3   Cost - Benefit Analysis     In theory, all buses (locations) in a system 
can be selected as the VAR support sources. However, this is not a good 
approach. One hand, some locations are not effective and/or effi cient as the 
VAR support sources, and on the other hand, it is expensive and time - 
consuming to consider all locations as the VAR sources. Thus we apply the 
CBA method to compute the benefi t indices for each VAR source. Three 
benefi t - to - cost ratio (BCR) indices are introduced. They are loss BCR, voltage 
BCR, and power delivery BCR.
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    C q
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where

    P a
t

L 0( ):    The real power loss in area  a  at time  t  before VAR source (e.g. 
capacitor) at bus  i  is provided  

   P qa
t

iL c( ):    The real power loss in area  a  at time  t  after VAR source at bus  i  
is provided  

   Pt
Tie K− ( )0 :    The tie - line power related to the optimization area at time  t  
before capacitor at bus  i  is provided  

   P qt
iTie K c− ( ):    The tie - line power related to the optimization area at time  t  

after capacitor at bus  i  is provided  
   Vk

t 0( ):    The voltage magnitude at bus  k  at time  t  before VAR source at bus 
 i  is provided  

   V qk
t

ic( ):    The voltage magnitude at bus  k  at time  t  after VAR source at bus 
 i  is provided  

  C ( q  C   i  ):    The equivalent daily investment cost of capacitor at load bus  i  
($/day)  

 BCR  t  :    hourly based benefi t - to - cost ratio  
  α :    The capital recovery factor (CRF), which is an important factor in eco-

nomic analysis    

 A unifi ed weighting coeffi cient that combines three BCR indices is pre-
sented as follows. It affects the comprehensive benefi ts from the each VAR 
support source. Thus it can be used to select the best VAR support sites.
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where   Wi
t  is the comprehensive benefi t index for VAR support  i . 

 It is noted that we assume that three benefi t indices are equal important in 
the above. If the relative importance of three benefi t indices is uncertain, and 
some other nontechnical factors are also considered, the AHP method intro-
duced earlier should be adopted. 

 The presented VAR pricing and optimization scheme is tested with the 
IEEE 118 - bus system. The 118 - bus system consists of three areas, as shown in 
Figure  10.2 . The system partition is shown in Table  10.15 . Area 2 is selected as 
the optimization area. The tie - lines relating to area 2 are: L33 - 15, L34 - 19, L38 -
 30, L68 - 81, L69 - 70, L69 - 75, L69 - 77. The direction of power on the tie - line is 
positive if the power is delivered from area 2 to the other areas; otherwise, it 
is negative if the power is transmitted from an other area to area 2.     
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 It is assumed that the pricing of electricity  λ  is $30/MWhr, and the invest-
ment cost of the VAR source - capacitor is $100.0/kVAR. The capital recovery 
factor is 0.149. The total increase of power delivery on tie - lines in area 2 from 
VAR support service is given as column 2 in Table  10.16 . The variable cost of 
VAR pricing for each reactive power support bus is computed and listed in 
column 3 in Table  10.16 .   

 Because of network topology, VAR support at different load sites may 
produce different benefi ts. Cost - benefi t analysis is used to calculate and 
compare these benefi ts. The results are shown in Table  10.17 . Set the threshold 
of the unifi ed weighting coeffi cient to 0.20 for selecting the best VAR support 
sites. Then the optimal VAR support sites will be B - 39, B - 45, B - 52, and B - 34. 
Based on these selected VAR support sources, the VAR optimal control results 
in area 2 are obtained and shown in Table  10.18 .      

     FIGURE 10.2     118 - bus network with three areas  
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 Table 10.15     The partitioned 118 - bus system 

   Area     Area 1     Area 2     Area 3  

  Gen. buses    1, 4, 8, 10, 12, 20, 25, 
26, 27, 31, 113  

  36, 40, 42, 43, 46, 
49, 54, 59, 61, 65, 
66, 69, 116  

  24, 72 – 74, 80, 87, 
89 – 92, 97, 99, 100, 
103, 107, 111, 112  

  Load buses    2, 3, 5 – 7, 9 11, 
13 – 19, 21 – 23, 28 – 30, 
32, 114, 115, 117  

  33 – 35, 37 – 39, 41, 
44, 45, 47, 48, 
50 – 53, 55 – 58, 60, 
62 – 64, 67, 68  

  70, 71, 75, 76, 77, 79, 
81 – 86, 88, 93 – 96, 98, 
101, 102, 104 – 106, 
108 – 110  
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 Table 10.16     Results of  VAR  pricing for area 2 in  IEEE  118 - bus system 

   VAR Support Site     Power Delivery Increase (MW)     VAR Pricing ($/MVAr hr)  

  B - 33    0.64100    3.84600  
  B - 34    2.12000    12.7200  
  B - 35    1.09000    6.54000  
  B - 39    3.81000    22.8600  
  B - 41    1.19000    7.14000  
  B - 44    1.52000    9.12000  
  B - 45    2.25000    13.5000  
  B - 48    1.09000    6.54000  
  B - 50    1.10000    6.60000  
  B - 51    1.58000    9.48000  
  B - 52    2.27000    13.6200  
  B - 53    1.17000    7.02000  
  B - 55    0.91000    5.46000  
  B - 56    1.15000    6.90000  
  B - 57    1.85000    11.1000  
  B - 58    1.16000    6.96000  
  B - 60    1.01000    6.06000  
  B - 62    1.07000    6.42000  
  B - 67    1.18000    7.08000  

 Table 10.17     Optimal ranking of  VAR  support sites in area 2 

   VAR Sites       BCRLi
t        BCRPi

t        BCRVi
t        Wi

t     Rank  

  B - 33    0.8660    2.2680    0.7980    0.10634    19  
  B - 34    1.7700    7.6670    0.9600    0.21011    4  
  B - 35    0.7900    3.8580    0.8360    0.12098    16  
  B - 39    2.1200    13.487    1.5600    0.31774    1  
  B - 41    0.9600    4.2120    0.9100    0.13631    10  
  B - 44    0.8500    5.3810    0.8800    0.14139    8  
  B - 45    1.8900    7.9650    1.1530    0.22930    2  
  B - 48    0.8200    3.8580    0.7900    0.11975    17  
  B - 50    0.8800    3.8940    0.8200    0.12449    13  
  B - 51    1.0900    5.5930    0.9100    0.15600    6  
  B - 52    1.6200    8.0350    1.2200    0.22162    3  
  B - 53    1.0500    4.1420    0.8900    0.13850    9  
  B - 55    0.9100    3.2210    0.8230    0.11926    18  
  B - 56    0.9500    4.0710    0.8710    0.13226    12  
  B - 57    1.5700    6.5490    1.0600    0.19553    5  
  B - 58    1.3600    4.1060    0.9100    0.15322    7  
  B - 60    0.9100    3.5750    0.8320    0.12331    14  
  B - 62    0.8700    3.7880    0.7900    0.12129    15  
  B - 67    0.9800    4.1770    0.8340    0.13260    11  
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OPTIMAL LOAD SHEDDING 

Optimization of Power System Operation, by Jizhong Zhu, Ph.D
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     When all available controls are unable to maintain the security of system 
operation during a disturbance or contingency, optimal load shedding will be 
used as the last resort to make the loss of blackout minimum. This chapter 
fi rst introduces the traditional load - shedding methods such as underfrequency 
or undervoltage load shedding and then studies optimal power system load -
 shedding methods. These include intelligent load shedding, distributed inter-
ruptible load shedding, Everett optimization, analytic hierarchical process 
(AHP), and network fl ow programming (NFP). The related topic of congestion 
management is also introduced in this chapter.  

11.1 INTRODUCTION

 The security and stability of electrical power systems have always been one of 
the central and fundamental issues of concern in network planning and opera-
tion. Serving users of electricity is the duty of power systems that generate, 
transmit, and distribute electrical energy. Therefore, system operation, network 
growth and expansion are highly user dependent and the system should be 
able to satisfy their needs and requirements. Central requirements include 
reliability, quality of energy, and continued load capacity. Network designers 
and operation managers should continuously pay attention to these require-
ments and take the necessary steps to fulfi ll them and maintain the desired 
qualities. Especially, the US electric marketplace is in the midst of major 
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changes designed to promote competition. There is no longer vertical integra-
tion with guaranteed customers and suppliers. Electric generators and dis-
tributors will have to compete to sell and buy electricity. The stable utilities of 
the past will fi nd themselves in a highly competitive environment  [1 – 3] . In this 
new competitive power environment, buy/sell decision support systems are 
needed to fi nd economical ways to serve critical loads with limited sources 
under various uncertainties. Decision - making is signifi cantly affected by 
limited energy sources, generation cost, and network available transfer capac-
ity. Generally, a congested system or system overloading can be reduced 
through some control strategy such as a generation rescheduling scheme, 
obtaining power support from a neighboring utility as well as optimal load 
shedding. In the particular case of power shortage, load shedding cannot be 
avoided. This, in turn, requires that the load demand be as determinate as 
possible so that each watt can be allocated. 

 In general, load shedding can be defi ned as the amount of load that must 
almost instantly be removed from a power system to keep the remaining 
portion of the system operational. This load reduction is in response to a 
system disturbance (and consequent possible additional disturbances) that 
results in a generation defi ciency condition or network overloading situation. 
Common disturbances that can cause these conditions to occur include trans-
mission line or transformer faults, loss of generation, switching errors, and 
lightning strikes. When a power system is exposed to a disturbance, its dynam-
ics and transient responses are mainly controlled through two major dynamic 
loops. One is the excitation (including AVR) loop that will control the genera-
tor reactive power and system voltage. Another is the prime - mover loop, which 
will control the generator active power and system frequency.  

11.2 CONVENTIONAL LOAD SHEDDING 

 Load shedding by frequency relays is the most commonly used method for 
controlling the frequency of power networks within set limits and maintaining 
network stability under critical conditions. In the conventional load - shedding 
methods, when frequency drops below the operational plan ’ s set point, the 
frequency relays of the system issue commands to disconnect parts of the 
electrical power load in a stepwise manner, thereby preventing further fre-
quency drop and its consequential effects  [8] . 

 The reason that frequency is the main criterion of system quality and secu-
rity is as follows: 

 •      A global variable of interconnected networks that has the same value in 
all parts of the network  

 •      An indicator of the balance between supply and demand  
 •      A critically important factor for the smooth operation of all users and 

particularly manufacturing and industries    
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 One of the main problems of all interconnected networks is a total blackout 
because of frequency drop as a consequence of some power station failure or 
transmission line breakage. Presently, in the power generation and transmis-
sion systems of the world, the most appropriate way of preventing a total or 
partial blackout that is triggered by frequency drop is quick and automatic 
load shedding. 

 To study situations of imbalance between power supply and demand, and 
the resulting frequency variations under the circumstances of severe and major 
disorders, a simplifi ed model of the steady state for systems that consist mainly 
of thermal units is used  [8 – 10] , which is shown in Figure  11.1 .   

 The expression of the model is as follows:

    Δω = −⎛
⎝⎜

⎞
⎠⎟

−P
D

e
D
H

ta 1 2     (11.1)  

where

   H :    System ’ s inertial constant  
  D :    Load damping coeffi cient  
  K  m :    Frequency control loop gain  
  F  H :    High - pressure re - warmed turbines ’  power portion  
  T  R :    Rewarming time constant  
  P  m :    Mechanical power of the turbine (per unit)  
  P  a :    Accelerator ’ s power  
  Δ  ω :    Speed change (per unit)    

 Equation  (11.1)  models the system at the initial conditions of major disor-
ders when the governor ’ s effect is lifted off because during the fi rst seconds 
of the disorder, due to governor ’ s response delay and its operating time con-
stant, it cannot play a role in prevention of the frequency drop  [9] . 

 According to equation  (11.1) , the main factors and parameters that control 
the behavior of frequency and overloading are the amount of overloading 
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     FIGURE 11.1     Steady - state frequency - response model  



458 OPTIMAL LOAD SHEDDING

and the  D  and  H  parameters. The effect of these two parameters should be 
defi nitely considered in any load - shedding scheme. 

 The load damping coeffi cient ( D ) is an effective parameter that represents 
the relation between the load and the frequency. It cannot be ignored in plan-
ning for load - shedding schemes. In planning for load shedding, the load 
damping coeffi cient is normally expressed per unit as shown in the following 
formula:

    D
F
P

P
F

=
Δ
Δ

    (11.2)   

 The value of  D  varies from 0 to 7 and is to be determined once for each 
system and used in all cases of planning. The latest studies have shown  D    =   3.3 
for the sample network  [8] . 

 The effect of  D  on the frequency drop gradient is quite visible as an increase 
in  D  causes a decrease in the frequency drop gradient. For any specifi ed over-
loading, systems with a higher value of  D  will have a higher stability and the 
fi nal system frequency will be stabilized at a higher level. Figure  11.2  clearly 
shows the effect of  D  on the frequency drop curve.   

 In commonly used stepwise methods, the load - shedding scheme has little 
relation to the degree of overload. Any overload triggers the same strategy of 
load shedding, as the degree of overload does not determine the number or 
quantity of the load shedding. 

 This kind of scheme greatly simplifi es the task of harmonizing the relays 
and the steps of load shedding, as simple calculations and a process of trial 
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and error would suffi ce. It is one of the obvious advantages of this kind of 
scheme. Once the steps of load shedding are specifi ed, if at any step the 
frequency continues to drop (with regard to the specifi ed delay times), then 
the next step will be automatically activated until the frequency stops drop-
ping. In such strategies, increasing the number of steps can increase the costs 
and allow a more precise harmony and a minimized blackout area. Nevertheless, 
in almost all countries, only three to fi ve steps are planned, with rare cases of 
more steps. 

 In such strategies or plans, the fi rst step of load shedding is regulated in 
such a way that with any frequency drop below the set point, this step is acti-
vated to operate within its specifi c time delay. The time duration for frequency 
to drop from normal to below the set point is not taken into consideration, 
despite the fact that we know that the gradient of frequency drop is directly 
proportional to the amount of overload and severity of the case; therefore, it 
can be a basis to decide on whether only one step is adequate.  

11.3 INTELLIGENT LOAD SHEDDING 

11.3.1 Description of Intelligent Load Shedding 

 Conventional load shedding systems that rely solely on frequency measuring 
systems cannot be programmed with the knowledge gained by the power 
system designers. The system engineer must perform numerous system studies 
that include all of the conceivable system operating conditions and confi gura-
tions to correctly design the power system. Unfortunately, the engineer ’ s 
knowledge of the system that is gained through the studies is not utilized fully. 
Additionally, most data and study results are simply lost. This unavailability 
of information for future changes and enhancement of the system will signifi -
cantly reduce the protection system performance. 

 The state - of - the - art load - shedding system uses real - time systemwide data 
acquisition that continually updates a computer - based real - time system model. 
This system produces the optimum solution for system preservation by shed-
ding only the necessary amount of load and is called intelligent load shedding 
(ILS)  [11] . 

 This system must have the following capabilities: 

 •      Able to map a very complex and nonlinear power system with a limited 
number of data collection points to a fi nite space.  

 •      Automatically remember the system confi guration, operation conditions 
as load is added or removed, and the system response to disturbances with 
all of the system confi gurations.  

 •      Recognize different system patterns in order to predict system response 
for different disturbances.  
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 •      Utilize a built - in knowledge base trainable by user - defi ned cases.  
 •      Adaptive self - learning and automatic training of system knowledge base 

due to system changes.  
 •      Make fast, correct, and reliable decisions on load shedding priority based 

on the actual loading status of each breaker.  
 •      Shed the minimum amount of load to maintain system stability and 

nominal frequency.  
 •      Shed the optimal combinations of load breakers with complete knowl-

edge of system dependencies.    

 In addition to having the above list of capabilities, the ILS system must 
have a dynamic knowledge base. For the knowledge base to be effective, it 
must be able to capture the key system parameters that have a direct impact 
on the system frequency response following disturbances. These parameters 
include: 

 •      Power exchanged between the system and the grid both before and after 
disturbance

 •      Generation available before and after disturbances  
 •      On - site generator dynamics  
 •      Updated status and actual loading of each sheddable load  
 •      The dynamic characteristics of the system loads. This includes rotating 

machines, constant impedance loads, constant current loads, constant 
power loads, frequency - dependent loads, or other types of loads.    

 Some additional requirements must be met during the designing and tuning 
of an ILS scheme: 

 •      Carefully selected and confi gured knowledge base cases  
 •      Ability to prepare and generate suffi cient training cases for the system 

knowledge base to ensure accuracy and completeness  
 •      Ability to ensure that the system knowledge base is complete, correct, and 

tested
 •      Ability to add user - defi ned logics  
 •      Ability to add system dependencies  
 •      To have an online monitoring system that is able to coherently acquire 

real - time system data  
 •      The ability to run in a preventive and predictive mode so that it can gen-

erate a dynamic load shedding table that corresponds to the system con-
fi guration changes and prespecifi ed disturbances (triggering)  

 •      A centralized distributed local control system for the power system that 
the ILS system supervises     
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  11.3.2   Function Block Diagram of the  ILS  

 In Figure  11.3 , the system knowledge base is pretrained by using carefully 
selected input and output databases from offl ine system studies and simula-
tions. System dynamic responses, including frequency variation, are among the 
outputs of the knowledge base.   

 The trained knowledge base runs in the background of an advanced moni-
toring system, which constantly monitors all of the system operating condi-
tions. The network models and the knowledge base provide power system 
topology, connection information, and electric properties of the system com-
ponent for ILS. The disturbance list is prepared for all prespecifi ed system 
disturbances (triggers). Based on the input data and system updates, the 
knowledge base periodically sends requests to the ILS computation engine to 
update the load shedding tables, thus ensuring that the optimum load will be 
shed when a disturbance occur. The load shedding tables in turn are down-
loaded to the distributed controls that are located close to each sheddable 
load. When a disturbance occurs, fast load - shedding action can be taken.   

  11.4   FORMULATION OF OPTIMAL LOAD SHEDDING 

 In a competitive resource allocation environment, buy/sell decision support 
systems are needed to fi nd economical ways to serve critical loads with limited 
sources under different uncertainties. Therefore, a value - driven load - shedding 
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     FIGURE 11.3     Function block diagram of the ILS scheme  
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approach is proposed for this purpose. The mathematical model of load shed-
ding is expressed as follows. 

  11.4.1   Objective Function — Maximization of Benefit Function  

    
Max

Min

H w v x

or H

i ij ij ij
j

ND K

i

=

−( )
=

( )

∑
1     (11.3)  

where

   x ij  :    Decision variable (it equals 0 or 1) on load bus  j  at the  i th time stage  
  ND ( k ):    Total number of load sites in load center  k   
  w ij  :    Load priority to indicate the importance of the  j th load site of the  i th 

time stage  
  v ij  :    Independent load values (or costs) in a specifi c load bus  j  at the  i th time 

stage ($/kW or $/MW)  
  H :    Benefi t function    

 In objective function (11.3), decision variable  x ij   equals 1 if load demand  P ij   
is satisfi ed; otherwise, it equals 0 if the load demand is not satisfi ed, i.e., load 
shed appeared on the  j th load site at the  i th time stage. There are several dif-
ferent kinds of loads in a power system, such as critical load, important load 
and unimportant load, etc., and  w ij   can refl ect the relative importance of the 
different kind of loads. The more important the load site is (e.g., fi rst important 
load), the larger the  w ij   of the load site will be. In addition, each specifi c load 
has its independent load value (cost)  v ij  , which is the value / cost per kW load 
at this location. Therefore, the unit of  v ij   is $/kW.  

  11.4.2   Constraints of Load Curtailment 

 The constraints of load curtailment refl ect the system congestion case. These 
constraints include limited capacity in each load center and the whole system, 
as well as available transfer capacity of the key line (e.g., tie - line connecting 
different load center or source), which can be expressed as follows:

    P x Pij ij
j K
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1
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where

   P ij  :    Load demand of the  j th load site of the  i th time stage  
  P  iK :    Total amount of load center  k  available at the  i th time stage  
  P  D :    Total amount of system load available at the  i th time stage  
  P  SK :    Transmission power on the line connecting load center  k   
  P  SKATC :    Available transfer capacity of the line connecting load center  k     

 It is noted that the power fl ow equation or Kirchhoff ’ s current law must be 
satisfi ed during the load shedding, i.e.,

    P P x P n
G T

ij ij
j

iG iT
→ → →
∑ ∑ ∑+ + = ∈

ω ω ω

ω0     (11.7)  

    − ≤ ≤P P PiT iT iTmax max     (11.8)  

where  n  is the total node number in the system;  G     →     ω  represents that genera-
tor  G  is adjacent to node  ω ;  T     →     ω  represents that transmission line  T  is 
adjacent to node  ω ; and  j     →     ω  represents that load  j  is adjacent to node  ω . 

 The direction of power fl ow is specifi ed when the power enters into the 
node, while the negative when it leaves from the node. Equation  (11.8)  gives 
the system network security constraints.   

  11.5   OPTIMAL LOAD SHEDDING WITH NETWORK CONSTRAINTS 

  11.5.1   Calculation of Weighting Factors by  AHP  

 It is very diffi cult to compute exactly the weighting factor of each load in 
(11.3). The reason is that the relative importance of these loads is not the 
same, which is related to the power market operation conditions. According 
to the principle of AHP described in Chapter  7 , the weighting factors of the 
loads can be determined through the ranking computation of a judgment 
matrix, which refl ects the judgment and comparison of a series of pair of 
factors. The hierarchical model for computing the load weighting factors is 
shown in Figure  11.4 , in which  PI  is the performance index of load center  k .   

 The judgment matrix  A  -  LD  of the load shedding problem can be written 
as follows:

    A LD
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where,  w  D   i  , which is just what we need, is unknown.  w  D   i  / w  D   j  , which is the 
element of the judgment matrix  A  -  LD , represents the relative importance of 
the  i th load compared with the  j th load. The value of  w  D   i  / w  D   j   can be obtained 
according to the experience of electrical engineers or system operators using 
some ratio scale methods. For example, a  “ 1 – 9 ”  scale method from Chapter  7  
can be used. 

 Similarly, the judgment matrix  A  -  PI  can be written as follows:

    A PI
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where  w  K   i   is unknown.  w  K   i  / w  K   j  , which is the element of judgment matrix  A  -  PI , 
represents the relative importance of the  i th load center compared with the 
 j th load center. The value of  w  K   i  / w  K   j   can also be obtained according to the 
experience of electrical engineers or system operators using some ratio scale 
methods. 

 Therefore, the unifi ed weighting factor of the load w  I   can be obtained from 
the following equation:

    w w w i ji j i= × ∈K D D K     (11.11)  

where D i     ∈    K j  means load D i  is located in load center K j .  

  11.5.2   Network Flow Model 

 After the weighting factors are computed by AHP, the above optimization 
model of load shedding corresponds to a network fl ow problem and can be 
solved by network fl ow programming (NFP). According to Chapter  5 , the 
general NFP model can be written as

Unified rank for 
load factor wi

PI1 PI2 PIk

load node 1 load node 2 load node n

PI

LD.…..

……

     FIGURE 11.4     Hierarchy model of load weighting factor rank  



OPTIMAL LOAD SHEDDING WITH NETWORK CONSTRAINTS 465

    Min F C fij ij= ∑     (11.12)   

 such that

    f f rij ji−( ) =∑     (11.13)  

    0 ≤ ≤f Uij ij     (11.14)   

 However, there exist three disadvantages in the general NFP algorithm 
 [14] , i.e.,

    (a)     The initial arc fl ows must be feasible.  
   (b)     The lower bound of fl ows should be zero.  
   (c)     All fl ow variables must be nonnegative.    

 Because of these disadvantages, it is diffi cult to solve the optimal load shed-
ding problem effectively by using the general NFP algorithm. A special NFP 
algorithm,  “ the out - of - kilter algorithm ”  (OKA), which is analyzed in Chapter 
 5 , is adopted. The mathematical representation of the OKA network can be 
written as follows:

    Min F C fij ij= ∑     (11.15)   

 such that

    f fij ji−( ) =∑ 0     (11.16)  

    L f Uij ij ij≤ ≤     (11.17)   

 Obviously, the optimal load - shedding model that is mentioned in Section 
 11.4  can be transformed into the OKA model shown in equations  (11.15)  –
  (11.17)  and solved by the OKA. The details on the OKA model and algorithm 
can be found in Chapter  5 .  

  11.5.3   Implementation and Simulation 

 The simulation system for load shedding is the IEEE 30 - bus system. The 
capacity of the generator is given in Table  11.1 . The daily load data including 
the independent load value/cost at each load site are listed in Table  11.2 , in 
which the loads are divided into three load centers. Suppose generator G1 is 
out of service. The total source power is only 225.0   MW. This, in turn, leads to 
a power shortage for IEEE 30 - bus system, i.e., the power supply is limited at 
some time stages. The total system generation resources and load demands are 
shown in Figure  11.5 .     
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Table 11.1 Capacity of generators for IEEE 30 -bus system 

   Gen.     PG1     PG2     PG5     PG8     PG11     PG13  

PGmax  (MW)    200.00    80.00    50.00    35.00    30.00    30.00  
PGmin  (MW    50.00    12.00    10.00    10.00    10.00    10.00  

Table 11.2 Load data for IEEE 30 -bus system 

   Load 
Center

   Load 
Node

vij

 ($/kW)  

   Load t1 
0.00 – 4.00 

 (MW)  

   Load t2 
4.01 –
 8.00 

 (MW)  

   Load t3 
8.01 –
 12.00 
 (MW)  

   Load t4 
12.01 –
 16.00 
 (MW)  

   Load t5 
16.01 –
 20.00 
 (MW)  

   Load t6 
20.01 –
 24.00 
 (MW)  

  CK1    PD2    300.0    15.15    19.53    21.7    19.62    19.53    17.36  
  CK1    PD3    300.0    1.89    2.43    2.7    2.57    2.43    2.16  
  CK1    PD4    300.0    5.46    6.86    7.8    7.41    6.86    6.24  
  CK1    PD6    280.0    65.94    84.78    94.2    85.49    84.78    75.36  
  CK1    PD7    280.0    15.96    20.52    22.8    21.66    20.52    18.24  
  CK1    PD8    300.0    21.00    27.00    30.0    27.50    27.00    24.00  
  CK1    PD10    300.0    4.06    5.22    5.8    5.51    5.22    4.64  
  CK1    PD12    280.0    7.84    10.08    11.2    10.64    10.08    8.96  
  CK1    PD14    280.0    4.34    5.58    6.2    5.89    5.58    4.96  
  CK2    PD15    245.0    5.74    7.38    8.2    7.79    7.38    6.56  
  CK2    PD16    220.0    2.45    3.15    3.5    3.33    3.15    2.80  
  CK2    PD17    280.0    6.30    8.10    9.0    8.55    8.10    7.20  
  CK2    PD18    220.0    2.24    2.82    3.2    3.04    2.82    2.56  
  CK2    PD19    245.0    6.65    8.65    9.5    9.03    8.65    7.60  
  CK3    PD20    280.0    1.54    1.98    2.2    2.09    1.98    1.76  
  CK3    PD21    280.0    12.25    15.75    17.5    16.63    15.75    14.00  
  CK3    PD23    220.0    2.24    2.82    3.2    3.04    2.82    2.56  
  CK3    PD24    220.0    6.09    7.83    8.7    8.27    7.83    6.96  
  CK3    PD26    300.0    2.45    3.15    3.5    3.33    3.15    2.80  
  CK3    PD29    220.0    1.68    2.16    2.4    2.28    2.16    1.92  
  CK3    PD30    245.0    7.42    9.54    10.6    10.07    9.54    8.48  

 The judgment matrices  A  -  LD  and  A  -  PI  are provided in Tables  11.3  and 
 11.4 , respectively. The weighting factors that refl ect the relative importance of 
each load or each load center are computed by AHP. The results of the weight-
ing factors are listed in Table  11.5 . The optimal load shedding schemes are 
computed and obtained by the proposed approach. The calculation results are 
shown in Tables  11.6  and  11.7 .   

 In Table  11.6 , the decision variable  x    =   1 means that this load is committed, 
and x    =   0 means that this load is curtailed. It can be known from Tables  11.6  
and  11.7  that load curtailment appeared at time stage t2    ∼    t6. Loads 15, 16, 18, 
19, 29, and 30 are curtailed at time stage t2    ∼    t5. Load 24 is curtailed at time 
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 Table 11.3     Judgment matrix   A   -   PI   

  PI    CK1    CK2    CK3  

  CK1    1    2    5  
  CK2    1/2    1    1/2  
  CK3    1/5    2    1  

 Table 11.4     Judgment matrix  A  -  LD  (1) 

  LD    2    3    4    6    7    8    10    12    14    15  

  2    1    2    2    1/3    1/5    2    1/2    2    2    3  
  3    1/2    1    1/2    1/4    2    1/2    1    2    2    3  
  4    1/2    2    1    1/2    2    1/3    2    2    3    2  
  6    3    4    2    1    4    2    3    3    3    3  
  7    5    1/2    1/2    1/4    1    1/2    2    2    2    3  
  8    1/2    2    3    1/2    2    1    3    2    2    4  

  10    2    1    1/2    1/3    1/2    1/3    1    2    3    3  
  12    1/2    1/2    1/2    1/3    1/2    1/2    1/2    1    1    2  
  14    1/2    1/2    1/3    1/3    1/2    1/2    1/3    1    1    2  
  15    1/3    1/3    1/2    1/3    1/3    1/4    1/3    1/2    1/2    1  
  16    1/3    1/2    1/3    1/4    1/3    1/4    1/3    1/2    1/3    1/2  
  17    1/2    2    1/2    1/2    1/3    1/2    2    1/2    1/2    3  
  18    1/3    1    1/2    1/3    1/3    1/3    1/2    1/2    1/3    1/2  
  19    1/3    1/2    1/2    1/3    1/3    1/3    1/3    1/2    1/3    1/2  
  20    1/3    1/2    1/3    1/3    1/3    1/3    1/2    1/3    1/2    5  
  21    1/3    1/3    1/2    1/3    1/4    1/4    1/3    1/3    1/2    5  
  23    2    3    1/2    1/2    1/2    1/2    1/2    1/2    1/3    3  
  24    1/3    1/3    1/2    1/3    1/3    1/2    1/3    1/3    1/3    1/3  
  26    1/3    1/3    1/2    1/3    1/2    1/3    1/3    1/2    1/2    3  
  29    1/3    1/3    1/3    1/3    1/3    1/2    1/3    1/3    1/3    1/2  
  30    1/3    1/3    1/2    1/3    1/3    1/3    1/2    1/3    1/3    2  



468 OPTIMAL LOAD SHEDDING

Table 11.4 Judgment matrix A-LD (2) 

  LD    16    17    18    19    20    21    23    24    26    29    30  

  2    3    2    3    3    3    3    1/2    3    3    3    3  
  3    2    1/2    1    2    2    3    1/3    3    3    3    3  
  4    3    2    2    2    3    2    2    2    2    3    2  
  6    4    2    3    3    3    3    2    3    3    3    3  
  7    3    3    3    3    3    4    2    3    2    3    3  
  8    4    2    3    3    3    4    2    2    3    2    3  

  10    3    1/2    2    3    2    3    2    3    3    3    2  
  12    2    2    2    2    3    3    2    3    2    3    3  
  14    3    2    3    3    2    2    3    3    2    3    3  
  15    2    1/3    2    2    1/5    1/5    1/3    3    1/3    2    1/2  
  16    1    1/3    2    3    1/2    1/2    1/3    3    1/2    2    1/2  
  17    3    1    2    2    3    3    2    2    2    3    3  
  18    1/2    1/2    1    1/2    2    2    1/2    3    1/3    2    1/2  
  19    1/3    1/2    2    1    2    3    1/3    2    1/2    3    1/2  
  20    2    1/3    1/2    1/2    1    3    1/2    2    1/3    2    4  
  21    2    1/3    1/2    1/3    1/3    1    1/3    2    1/2    3    4  
  23    3    1/2    2    3    2    3    1    3    2    3    3  
  24    1/3    1/2    1/3    1/2    1/2    1/2    1/3    1    1/2    1/2    1/3  
  26    2    1/2    3    2    3    2    1/2    2    1    4    3  
  29    1/2    1/3    1/2    1/3    1/2    1/3    1/3    2    1/4    1    1/2  
  30    2    1/3    2    2    1/4    1/4    1/3    3    1/3    2    1  

Table 11.5 Weighting factors computed by AHP

   Load Center  
   Weighting 
Factor  wK  j       Load Node  

vij

 ($/kW)  
   Weighting 
Factor  wDi

   Unifi ed 
Weighting 
Factor  wi

  CK1    0.61185    PD2    300.0    0.07007    0.042872  
  CK1    0.61185    PD3    300.0    0.05425    0.033193  
  CK1    0.61185    PD4    300.0    0.06824    0.041753  
  CK1    0.61185    PD6    280.0    0.11115    0.068007  
  CK1    0.61185    PD7    280.0    0.08006    0.048985  
  CK1    0.61185    PD8    300.0    0.08616    0.052717  
  CK1    0.61185    PD10    300.0    0.06148    0.037617  
  CK1    0.61185    PD12    280.0    0.04999    0.030586  
  CK1    0.61185    PD14    280.0    0.05201    0.031822  
  CK2    0.17891    PD15    245.0    0.02356    0.004215  
  CK2    0.17891    PD16    220.0    0.02340    0.004186  
  CK2    0.17891    PD17    280.0    0.05430    0.009715  
  CK2    0.17891    PD18    220.0    0.02601    0.004653  
  CK2    0.17891    PD19    245.0    0.02701    0.004832  
  CK3    0.20925    PD20    280.0    0.03219    0.006736  
  CK3    0.20925    PD21    280.0    0.02843    0.005949  
  CK3    0.20925    PD23    220.0    0.05438    0.011379  
  CK3    0.20925    PD24    220.0    0.01677    0.003509  
  CK3    0.20925    PD26    300.0    0.03848    0.008052  
  CK3    0.20925    PD29    220.0    0.01686    0.003528  
  CK3    0.20925    PD30    245.0    0.02521    0.005275  
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Table 11.6 Optimal load shedding schemes and comparison for IEEE 30 -bus system 

   Methods     AHP     LP     AHP     LP     AHP     LP     AHP     LP     AHP     LP     AHP     LP  

  Time 
stage    t1    t1    t2    t2    t3    t3    t4    t4    t5    t5    t6    t6  

  X2    1    1    1    1    1    1    1    1    1    1    1    1  
  X3    1    1    1    1    1    1    1    1    1    1    1    1  
  X4    1    1    1    1    1    1    1    1    1    1    1    1  
  X6    1    1    1    1    1    1    1    1    1    1    1    1  
  X7    1    1    1    1    1    1    1    1    1    1    1    1  
  X8    1    1    1    1    1    1    1    1    1    1    1    1  
  X10    1    1    1    1    1    1    1    1    1    1    1    1  
  X12    1    1    1    1    1    1    1    1    1    1    1    1  
  X14    1    1    1    1    1    0    1    1    1    1    1    1  
  X15    1    1    0    0    0    0    0    0    0    0    1    1  
  X16    1    1    0    0    0    0    0    0    0    0    1    1  
  X17    1    1    1    1    1    0    1    1    1    1    1    1  
  X18    1    1    0    0    0    0    0    0    0    0    1    0  
  X19    1    1    0    0    0    0    0    0    0    0    1    1  
  X20    1    1    1    1    0    0    1    0    1    1    1    1  
  X21    1    1    1    1    0    1    1    1    1    1    1    1  
  X23    1    1    1    0    1    0    1    0    1    0    1    0  
  X24    1    1    0    0    0    0    0    0    0    0    0    1  
  X26    1    1    1    1    1    1    1    1    1    1    1    1  
  X29    1    1    0    0    0    0    0    0    0    0    1    0  
  X30    1    1    0    0    0    0    0    0    0    0    1    1  

stage t2    ∼    t6. Load 21 is curtailed at time stages t3 and t4, and Load 20 is 
curtailed at time stage t3. The total load curtailments at each time stage are 
summarized in Table  11.7 . It is noted that network security constraints are 
satisfi ed at any time period through the use of the proposed approach. 

 To further verify the AHP - based NFP approach, linear programming (LP) 
is used to solve the same load shedding problem without load priority factor 
wij  that is determined by AHP. The corresponding results are compared with 
those obtained by the AHP - based NFP method and also listed in Tables  11.6  
and  11.7  (Figs.  11.6  and  11.7 ). In the LP method, the loads with small MW 
demands and small costs are fi rst considered for curtailment. The LP method 
also cannot handle or consider the relative importance of the load locations. 
The result comparison shows that the AHP - based NFP approach is truly 
optimal. It not only has maximal load benefi ts but also considers the relative 
importance of the load sites. For example, load site 23, which is always curtailed 
in the LP method when system generation is limited, is not curtailed in the 
AHP - based NFP method although it has a minimal load cost (220$/kW) and 
small MW load demands.     
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  11.6   OPTIMAL LOAD SHEDDING WITHOUT 
NETWORK CONSTRAINTS 

  11.6.1   Everett Method 

 If the network constraints are neglected, the load shedding problem in equa-
tions  (11.3)  –  (11.6)  can be easily solved by the Everett optimization technique, 
a generalized Lagrange multiplier  [15 – 17] . The problem of load shedding can 
be represented as follows:

    Max H H x x si i i
i

m

i= ( ) ∈
=
∑

1

    (11.18)   

 such that
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     FIGURE 11.6     Comparison of optimal load shedding results  
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     FIGURE 11.7     Comparison of the benefits from load shedding  
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    C x c ki
k

i
i

m
k( ) ≤

=
∑

1

for all     (11.19)  

where

   x i  :    A zero - one integer variable  
  S :    Set that is interpreted as the set of possible strategies or actions  
  H ( x ):    Benefi t that accrues from employing the strategies  x     ∈     S   
  C k  :    resource function    

 This load shedding model is a zero - one integer optimization problem. It is 
possible to solve problem (11.18) – (11.19) with integer - based optimization 
techniques. But this will have variable dimension problems in the large - scale 
power systems. Everett  [14]  showed that the Lagrange multiplier can be used 
to solve the maximization problem with many variables without any restric-
tions on continue or differentiability of the function being maximized. The aim 
of the generalized Lagrange multiplier is maximization rather than the loca-
tion of stationary points as with the traditional Lagrange multipliers. This 
technique is discussed below. 

 The main theorem of the generalized Lagrange multiplier is as follows. 

   Theorem 1   [15]  : 

 If (1)  λ   k   ( k    =   1, 2,  … ,  n ) are nonnegative real numbers, 
 (2)  x  *     ∈     S  maximizes the function

    H x C x x Sk k

k

n

( ) − ( ) ∈
=
∑λ

1

    (11.20)   

 Then (3)  x  *  maximizes  H ( x ) over all of those  x     ∈     S  such that  C k      ≤     C k  ( x  * ) for 
all  k .  

  Proof: 

 By assumptions 1 and 2 of Theorem 1,  λ   k   ( k    =   1, 2,  … ,  n ) are nonnegative real 
numbers, and  x  *     ∈     S  maximizes

    H x C xk k

k

n

( ) − ( )
=
∑λ

1

    (11.21)   

 Over all  x     ∈     S . This means that, for all  x     ∈     S ,

    H x C x H x C xk k

k

n
k k

k

n

* *( ) − ( ) ≥ ( ) − ( )
= =
∑ ∑λ λ

1 1

    (11.22)  
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and hence that

    H x H x C x C xk k k

k

n

* *( ) ≥ ( ) + ( ) − ( )[ ]
=
∑λ

1

    (11.23)  

for all  x     ∈     S . However, if the latter inequality is true for all  x     ∈     S , it is neces-
sarily true for any subset of  S  and hence true on that subset  S  *  of  S  for which 
the resources never exceed the resources  C k  ( x  * ), that is,  C k      ≤     C k  ( x  * ),  x     ∈     S  *  
for all  k . Thus on the subset  S  *  the term

    λk k k

k

n

C x C x*( ) − ( )[ ]
=
∑

1

    (11.24)  

is nonnegative by defi nition of the subset and the nonnegative of  λ   k  . Conse-
quently, the inequality equation  (11.23)  reduces to

    H x H x*( ) ≥ ( )     (11.25)  

for all  x     ∈     S  * , and the theorem is proved.   
 In accordance with Theorem 1, for any choice of nonnegative  λ   k   ( k    =   1, 

2,  … ,  n ), if an unconstrained maximum of the new Lagrange function 
[eq.  (11.20) ] can be found (where  x  * , for example, is a strategy that produces 
the maximization), then this solution is a solution to that constrained maxi-
mization problem whose constraints are, in fact, the amount of each resource 
expended in achieving the unconstrained solution. Therefore, if  x  *  produces 
the unconstrained maximum and the required resources  C k  ( x  * ), then  x  *  itself 
produces the greatest benefi t that can be achieved without using additional 
resource allocation. 

 With the Everett method, the problem of load shedding is changed into an 
unconstrained maximization. The key to solving this problem is choosing the 
Lagrange multipliers that correspond to the trial prices in the new competitive 
power market. In general, different choices of the trial prices  λ   k   lead to differ-
ent schemes to resources provided and demands of customers to achieve the 
maximal benefi t.  

  11.6.2   Calculation of Independent Load Values 

 Suppose  v i   is the independent load value in a specifi c load bus. It refl ects the 
value of supplement unit capacity generator for eliminating the load curtail-
ment at node  i  ($/kW). However, load shedding is time dependent. A different 
time stage corresponds to a different level. Thus the load shedding study 
should be performed based on hourly load and the corresponding independent 
load values converted into hourly values. 
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 The annual equipment value method, which is a dynamic assessment method, 
converts the cost of the operational lifetime to an annual cost. According to 
this method, the value   vi

t  per hour can be calculated as follows:

    v
v

i
t i=

×
×

( )β 10
365 24

3

$ MW hr     (11.26)  

    β =
+( )

+( ) −
r r

r

n

n

1

1 1
    (11.27)  

where

   v i  :    The independent load value in a specifi c load bus ($/kW)  
   vi

t:    The per hour independent load value in a specifi c load bus ($/MW/hr)  
  r :    The interest rate  
  n :    The capital recovery years  
  β :    The capital recovery factor (CRF), which is an important factor in eco-

nomic analysis    

 It was assumed that 1 year   =   365 days in equation  (11.26) . 

   Example 

 The testing system is shown in Figure  11.8 , which is taken from reference 
 [16] , but with modifi ed data. It consists of two generators and fi ve loads at 
buses 3, 4, 5, 8, and 9, where loads 3, 4, and 5 are located in load center 1, 
and the others are located in load center 2. The weight factors refl ecting the 
relative values of load centers are  w  1    =   0.58, and  w  2    =   0.42. The independent 
load values  v  in a specifi c load bus, the absolute load priority  α  to indicate 
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5

     FIGURE 11.8     A simple network  
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 Table 11.8     The values of load buses 

   Values     Load 3     Load 4     Load 5     Load 8     Load 9  

   v i   (S/kW)    150    200    180    190    220  
   α   i      1.14    1.25    1.30    1.10    1.22  
  Demand  P D   (p.u.)    .270    .280    .260    .305    .310  

 Table 11.9     The hourly independent values of load buses 

   Values     Load 3     Load 4     Load 5     Load 8     Load 9  

   v i   (S/kW)    150    200    180    190    220  
   v i   (S/MW/hr)    23.26    31.02    27.92    29.47    34.12  
   v i   (S/p.u.MW/hr)    2326    3102    2792    2947    3412  

the importance of each load bus, and the load demand for each load bus 
are given in Table  11.8 . The capacity of generator 1 and generator 2 is 
 P G   1    =   0.90 and  P G   2    =   0.6 p.u., respectively. The available transfer capacity 
of key lines is  P  1 − 6max    =   0.60 p.u.,  P  2 − 7max    =   0.58 p.u.,  P  1 − 7max    =   0.5 p.u., 
respectively.     

 There are two test cases: 

  Case 1: Two generators are in operation, tie - line 1 – 7 is in outage.  
  Case 2: Generator 2 is in outage. No line outage.    

 First of all, we assume that the capital recovery years of investing genera-
tor  n  is 10 years, and that the interest rate is 6%. According to equation 
 (11.27) , we get the capital recovery factor (CRF)  β    =   1.3587. Then according 
to equation  (11.26) , we get the hourly independent load values, which are 
shown in Table  11.9 .   

 For case 1, we can get the following objective function and constraints:

    H v xi i i
i

= ∑α  

and constraints

    P x P x P x PD D D G3 3 4 4 5 5 1+ + ≤  

    P x P x P x PD D D3 3 4 4 5 5 1 6+ + ≤ − max  

    P x P x PD D G8 8 9 9 2+ ≤  

    P x P x PD D8 8 9 9 2 7+ ≤ − max   

 Since tie - line 1 – 7 is in outage, the system becomes two subsystems, each of 
them has one generator. Thus we can solve two subproblems separately. 
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 For subproblem 1: 
 Objective

    

H v x v x v x v x

x x

i i i
i

1 3 3 3 4 4 4 5 5 5

3 41 14 2326 1 25 3120 1

= = + +

= × + × +

∑α α α α

. . ..

. .

30 2792

2651 64 3900 3629 6
5

3 4 5

×
= + +

x

x x x   

 Subject to

    P x P x P x P PD D D G3 3 4 4 5 5 1 1 6+ + ≤ { }−min , max  

i.e., 0.27 x  3     +    0.28 x  4     +    0.26 x  5     ≤    min{0.90, 0.60}   =   0.60 
 Compared with equations  (11.18)  and  (11.19) , the above load shedding 

problem is a linear model, i.e.,

    max H x H xi i
i

( ) = ∑     (11.28)   

 Such that

    P x Ci i
i
∑ ≤     (11.29)   

 According to the generalized Lagrange multiplier technique, the Everett 
model for the load shedding problem can be written as follows.

    

Max L H x C x

H x P x C x C

k k

k

n

i i i i i i
ii

= ( ) − ( )

= − −[ ]{ } = +
=
∑

∑∑

λ

λ δ λ
1

    (11.30)  

where

    δ λi i iH P= −     (11.31)   

 Thus, we have

    

L x x x x x x= + + − + + −( )
=

2651 64 3900 3629 6 0 20 0 22 0 28 0 60

2
3 4 5 3 4 5. . . . . .λ

6651 64 0 27 3900 0 28 3629 6 0 26 0 603 4 5. . . . . .−( ) + −( ) + −( ) +λ λ λ λx x x   

 If all  x i     =   1,   P x Ci i
i
∑ = >0 81. , which equals 0.60. Thus some load should be 

curtailed. 



OPTIMAL LOAD SHEDDING WITHOUT NETWORK CONSTRAINTS  477

 It can be observed from the above Lagrange function that shedding load 
3 will have the maximum benefi t no matter what the value of the trial price 
 λ  is. 

 For subproblem 2: 
 Objective

    

H v x v x v x

x x

x

i i i
i

2 8 8 8 9 9 9

8 9

8

1 1 2947 1 22 3412

3241 7

= = +

= × + ×
= +

∑α α α

. .

. 44162 64 9. x

 

subject to

    P x P x P PD D G8 8 9 9 2 2 7+ ≤ { }−min , max  

i.e., 0.305 x  8     +    0.310 x  9     ≤    min {0.70, 0.58}   =   0.58 

 Then we have

    

L x x x x= + − + −( )
= −

3241 7 4162 64 0 305 0 310 0 58

3241 7 0 305
8 9 8 9. . . . .

. .

λ
λ(( ) + −( ) +x x8 94162 64 0 310 0 58. . .λ λ   

 If all  x i     =   1,   P x Ci i
i
∑ = >0 61. , which equals 0.58. Thus some load should be 

curtailed. 
 It can be observed from the above Lagrange function that shedding 

load 8 will have the maximum benefi t no matter what the value of the trial 
price  λ  is. 

 For case 2, one generator will supply two load centers since generator 2 
is in outage. We have the following objective function and constraints. 

 Objective

    

h w H w H w v x v x v x w v x v x= + = + +( ) + +( )
=

1 1 2 2 1 3 3 3 4 4 4 5 5 5 2 8 8 8 9 9 9

0 5

α α α α α
. 88 1 14 2326 1 25 3120 1 30 2792

0 42 1 1 2947 1 2
3 4 5

8

. . .

. . .

× + × + ×( )
+ × +

x x x

x 22 3412

1537 95 2262 2105 17 1361 51 1748 31
9

3 4 5 8 9

×( )
= + + + +

x

x x x x x. . . .  

subject to 

  (1)     0.27 x  3     +    0.28 x  4     +    0.26 x  5     ≤     P  1 − 6max    =   0.60  
  (2)     0.305 x  8     +    0.31 x  9     ≤     P  1 − 7max    =   0.50  
  (3)     0.27 x  3     +    0.28 x  4     +    0.26 x  5     +    0.305 x  8     +    0.31 x  9     ≤     P G   1    =   0.90    

 Then we have the following Lagrange function for case 2:
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L x x x x x

x

= + + + +
− +
1537 95 2262 2105 17 1361 51 1748 31

0 27
3 4 5 8 9

1 3

. . . .

.λ 00 28 0 26 0 60 0 305 0 310 0 50

0 27 0
4 5 2 8 9

3 3

. . . . . .

. .

x x x x

x

+ −( ) − + −( )
− +

λ
λ 228 0 26 0 305 0 310 0 90

1537 95 0 27 0 27
4 5 8 9

1 3

x x x x+ + + −( )
= − −(

. . . .

. . .λ λ )) + − −( )
+ − −( ) +

x x

x
3 1 3 4

1 3 5

2262 0 28 0 28

2105 17 0 26 0 26 1361

. .

. . .

λ λ
λ λ .. . .

. . . .

51 0 305 0 305

1748 31 0 31 0 31 0 60
2 3 8

2 3 9 1

− −( )
+ − −( ) + +

λ λ
λ λ λ

x

x 00 50 0 902 3. .λ λ+     

 If  λ  1    =    λ  2    =    λ  3    =   2000 $/p.u.MW/hr, and we assume there is no load shedding, 
we get the following results according to equations  (11.28)  –  (11.31) :

   Load  i       δ   i        x i        H i x i        P i x i        δ   i x i        Rank  ( x i  )  

  Load 3    457.50    1    1537.95    0.27    457.50    4  
  Load 4    1142.00    1    2262.00    0.26    1142.00    1  
  Load 5    1065.70    1    2105.17    0.28    1065.70    2  
  Load 8    141.51    1    1361.51    0.305    141.51    5  
  Load 9    508.31    1    1748.31    0.31    508.31    3  

 However, constraints (1) – (3) are not satisfi ed. According to the above table, 
the optimal load shedding scheme is that load 8 and load 3 are curtailed, and 
the maximum benefi t for this case is  H    =   6115.27. 

 If  λ  1    =    λ  2    =    λ  3    =   2500 $/p.u.MW/hr, we get the following results:

   Load  i       δ   i        x i        H i x i        P i x i        δ   i x i        Rank  ( x i  )  

  Load 3    187.95    1    1537.95    0.27    187.95    4  
  Load 4    862.00    1    2262.00    0.26    862.00    1  
  Load 5    805.70    1    2105.17    0.28    805.70    2  
  Load 8     − 138.49    1    1361.51    0.305     − 138.49    5  
  Load 9    198.31    1    1748.31    0.31    198.31    3  

 According to the above table, the same optimal load shedding scheme is 
obtained, that is, load 8 and load 3 are curtailed, and the maximum benefi t for 
this case is  H    =   6115.27. 

 However, if  λ  1    =    λ  2    =    λ  3    =   2700 $/p.u.MW/hr, we get the following results:

   Load  i       δ   i        x i        H i x i        P i x i        δ   i x i        Rank  ( x i  )  

  Load 3    79.95    1    1537.95    0.27    79.95    3  
  Load 4    750.00    1    2262.00    0.26    750.00    1  
  Load 5    701.17    1    2105.17    0.28    701.17    2  
  Load 8     − 285.49    1    1361.51    0.305     − 285.49    5  
  Load 9    74.31    1    1748.31    0.31    74.31    4  

 According to the above table, a different load shedding scheme is obtained, 
that is, load 8 and load 9 are curtailed, and the maximum benefi t for this case 
is  H    =   5905.12. 
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 Obviously, the trial price  λi  affects the results of load shedding. Further 
calculations show that the optimal load - shedding scheme will be that load 8 
and 3 are curtailed if λ1    =    λ2    =    λ3     ≤    2629.52700 $/p.u.MW/hr, and the optimal 
load shedding scheme will be that load 8 and 9 are curtailed if 
λ1    =    λ2    =    λ3     >    2629.52700 $/p.u.MW/hr.   

11.7 DISTRIBUTED INTERRUPTIBLE LOAD SHEDDING 

11.7.1 Introduction

 Blackouts are becoming more frequent in industrial countries because of 
network defi ciencies and continuous load growing. One possible solution to 
prevent blackouts is load curtailment. Both  demand side management  ( DSM ) 
and load shedding  ( LS ) have been used to provide reliable power system 
operation under normal and emergency conditions.  DSM  is specifi cally devoted 
to peak demand shaving  [18]  and to encouraging effi cient use of energy.  LS  is 
still a methodology used worldwide to prevent power system degradation to 
blackouts  [19 – 21] , and it acts in a repressive way. 

 To perform the  LS  program, it could be necessary to increase the number 
of interruptible customers and distribute them over all the system. Considering 
such small percentage values of load shedding, if the number of interruptible 
customers increased the impact on users would be negligible. Instead of 
detaching all the interruptible loads, only a part of the load could be discon-
nected from the network, in particular the part that can be interrupted or 
controlled (such as the lighting system, air conditioning, devices under UPS, 
pumps dedicated to tanks fi lling, etc.). This method is called a  distributed 
interruptible load shedding  ( DILS ) program  [18] . 

 Generally speaking, at least the following three levels of action should be 
assumed so that a customer can participate in the DILS , allowing the network 
manager to control the peak power withdrawal or to act during periods of 
network dysfunction: 

 •      The fi nancing of technologies that enable the implementation of  DILS
(electronic power meters, domestic and similar appliances, etc.)  

 •      Incentives aimed at changing the behavior of some categories of end users  
 •      Defi nition of  ad hoc  instruments for particular classes of consumers such 

as Public Administration, Data Centers, etc.    

 In addition, the customers could fi nd it convenient to participate in the 
day - ahead market. Users with reducible power above a minimal threshold 
could present offers in the previous day market that, if accepted because 
competitive, could take part in the dispatch services market. 

 This way, the load curtailment would be paid according to the actual 
recorded interruption. Moreover, there would be more market effi ciency, 
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created by the competition both between the interruptible services themselves 
and between these and the generation.  

  11.7.2    DILS  Methods 

 To participate in the  DILS  program with interest, a user must have an eco-
nomic profi t and/or be less sensitive to dysfunctions. There are two different 
 DILS  techniques that can be adopted in automation sceneries only, for obtain-
ing the desired load relief during criticalities  [18] : 

  1.     The fi rst technique increases the cost of electric energy for all the users 
 [8] . One can assume to know the response of the users statistically, in 
particular as to the way they change the subdivision between interrupt-
ible loads (which would become disconnectable) and uninterruptible 
loads depending on the cost of energy. In this case, the transmission of a 
price signal via the electronic power meter could be suffi cient to avoid 
the loss.  

  2.     The second technique is based on the transmission of an interruptible 
load percentage reduction signal  p  to every customer participating in the 
 DILS  program. The duration of the reduction might be contractually 
determined. Because of the uncertainty of how much power each single 
interruptible customer is actually drawing, the value of  p  will be larger 
than the fraction of the expected interruptible load, giving the wanted 
load relief.    

 Since it is more easily adoptable in practice by the distributor and the end 
user, the second  DILS  technique is analyzed here. 

  11.7.2.1   Analysis of Interruptible Load     The interruptible load of a cus-
tomer can be considered as an essentially continuous random variable. This 
ensures that every percentage  p  of load reduction is actually achievable (pos-
sibly with low probability for some values of  p ). We denote by  Y  I,   k  ( t ) the 
random value of the interruptible load power of the single customer  k  of a 
given sector at time  t  and build its probability distribution at a fi xed time, so 
that we omit the time argument temporarily and write  Y  I,   k   only. 

 The load  Y  I,   k   is composed of various combinations of continuous - adjustable 
and step - adjustable interruptible loads, which we write as

    Y Y Yk k kI CAI SAI, , ,= +     (11.32)  

where

   Y  CAI,   k  :    The interruptible continuous - adjustable loads  
  Y  SAI,   k  :    The interruptible step - adjustable loads    
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 The combinations of step - adjustable loads give rise to, say,  m  possible well -
 separated load levels of  Y  SAI,   k  , denoted by  l  1 ,  … ,  l m  . Each level is taken with a 
different probability, so we introduce the probabilities  w (1),  …  ,  w ( m ), which 
sum up to one, giving the probability distribution  w ( • ) of  Y  SAI,   k  . On the other 
hand,  Y  CAI,   k   has an absolutely continuous probability distribution with density 
 f  CAI  ( • ) on the range (0,  L  CAI ), where  L  CAI  is the maximum power of the inter-
ruptible continuous adjustable load. 

 Assuming  Y  SAI,   k   and  Y  CAI,   k   are independent, the distribution of  Y  I,   k   is the 
mixture density resulting from the convolution of  w ( • ) and  f  CAI  ( • ), that is,

    f y f y l w iY i
i

m

( ) = −( ) ( )
=
∑ CAI

1

i     (11.33)  

where

   Y :    A random variable  
  y :    A particular value that  Y  can take with ranging in (0,  l m      +     L  CAI )    

 Since  f  CAI ( • ) is a density, the mixture density  f Y  ( • ) is never zero in 
(0,  l m      +     L  CAI ) provided  L  CAI  is greater than the largest difference between 
consecutive step - adjustable load levels. This makes every load level within this 
interval actually achievable. 

 The argument we are making here ensures a smooth transition to lower 
load levels following reduction signals sent to customers. This is important if 
DILS is applied to few customers, but it becomes less and less important as 
the number of customers increases. Suppose a load point has  N  users con-
nected to it. We now analyze the effect of a load shedding signal  p  sent to a 
given number of customers at time  t  to be carried out at time ( t     +     u ). Let  n , 
the number of customers participating in the DILS program, be less than  N . 
If we know the probabilistic characterization of the load of a typical customer 
at any time  t , and its subdivision into interruptible and uninterruptible, which 
will be the tool to assess the probability of reaching the desired load relief. 
For expository purposes, we take all  N  users belonging to the same class (e.g., 
all residential). 

 The total load of a single user can be written as

    Y t Y t Y tk k k( ) = ( ) + ( )I U, ,     (11.34)   

 Where  Y  I,   k  ( t ) and  Y  U,   k  ( t ) are the interruptible and uninterruptible parts of the 
load respectively. Obviously  Y  I,   k  ( t ) is zero for uninterruptible customers. Let 
us consider NA appliances (such as refrigerators, washing machines, dishwash-
ers, etc.), and let the percentages of customers who possess each appliance be 
given by  P  1 ,  … ,  P  NA . Finally, the indicator function  I  ( i  has  j ), takes a value of 
1 if customer has the appliance  j  and zero otherwise. Then we can write
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    Y t I i j w tk
j

NA

j( ) = ( ) ( )
=
∑ has

1

i     (11.35)  

where  w j  ( t ) is the (random) power absorbed by appliance  j  at time  t .  I  ( • ) is 
the indicator function of a statement. 

 Let

    μ j jt E w t( ) = ( )( )     (11.36)  

    σ j jt w t2 ( ) = ( )( )Var     (11.37)   

 We can derive the expected value and the variance of the load absorbed by a 
customer picked at random, under the hypothesis that the appliances are used 
independently of each other:

    μ μT t p tj j
j

NA

( ) = ( )
=
∑

1

    (11.38)  

    σ σ μT
2 2 2

1

1t p t p tj j j j
j

NA

( ) = ( ) + − ( )( )[ ]
=
∑     (11.39)   

 If the appliances are not independent, equation  (11.38)  is unchanged, 
whereas equation  (11.39)  is modifi ed by adding twice the sum of all the covari-
ances between pairs of products of random variables  I  ( i  has  j )  w j  ( t ) and  I  
( i  has  j  ′ )  w j    ′  ( t ). 

 The mean and variance in equations  (11.38)  and  (11.39)  are suffi cient to 
approximate the probability distribution of the load with a Gaussian by the 
central limit theorem, provided the total number  N  of customers connected 
to a given load point is large enough, so that we can state that the total power 
 S ( t ) absorbed at time  t  has a Gaussian distribution, with mean  N  μ   T  ( t ) and 
variance   N tσT

2 ( ) , as follows.

    

S t S t S t Y t Y t

Y t N N

I U I k
k

N

U k
k

N

k
k

N

( ) = ( ) + ( ) = ( ) + ( )

= ( )

= =

=

∑ ∑

∑

, ,
1 1

1

∼ μT tt N t( ) ( )( ), σT
2     (11.40)   

 By indexing from 1 to  n  those customers who take part in the  DILS  
program, we can write the share of the total load actually available for curtail-
ment as

    S t Y tI n I k
k

n

, ,( ) = ( )
=
∑

1

    (11.41)   
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 Suppose now that we possess a load forecasting method, which is precise 
enough to consider  s ( t    +    u ) as known when data are available up to time  t . 
Certainly,  S I   ,   n  ( t ) remains unobserved (we can only measure the total power 
taken by all the  N  customers), but the precisely forecasted  s ( t    +    u ) gives us 
some information about  S I   ,   n  ( t    +    u ). This information is summarized by the 
conditional distribution  P ( S I   ,   n   ( t    +    u ) |  S ( t    +    u )   =    s ( t    +    u )). Let  μ  I  ( t ) and   σI

2 t( )  
be the mean and variance of the load drawn by the interruptible appliances 
of a customer picked at random. By normal approximation, this conditional 
distribution is still Gaussian with mean

    n t u
N

t u
t u

s t u N t u nI
Iμ

σ
σ

μ μ+( ) + +( )
+( )

+( ) − +( )[ ]⎧
⎨
⎩

⎫
⎬
⎭
=

1 2

2
T

T     (11.42)   

 And variance

    n t u
n
N

t u
t u

nI
Iσ

σ
σ

σ2
2

2
21+( ) −

+( )
+( )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
=

T

    (11.43)   

 This conditional Gaussian distribution will be the main ingredient for the 
determination of the optimal value of  p . 

 If the customers connected to the same load point are not homogeneous, 
they can be split into homogeneous groups. If these groups are large enough, 
then the Gaussian approximation still applies for each group so that  S ( t ) will 
be Gaussian distributed and the conditional distribution of the interruptible 
load can be found in a similar way as above. 

 The effectiveness of the central limit theorem depends on both the shape 
of the individual load probability distribution and the degree of statistical 
correlation among customers ’  loads. A recent study  [22]  on the probability 
distribution of the aggregated residential load for extra - urban areas, based on 
a bottom - up approach, shows that the Gamma distribution exhibits the best 
goodness of fi t among a set of candidate distributions, but that the Gaussian 
approximation still passes the test for a reasonably large number of users. If 
strong stochastic dependence among customers persists, due for example to 
spatial autocorrelation (the means  μ   T   ( t ) depend on time only), the Gaussian 
distribution could be inappropriate, and further study would be necessary to 
model the specifi c situation correctly.  

  11.7.2.2   Load Shedding Via the Probability of Failure     A load shedding 
request  p , sent to customer  k , implies a load relief of  pY  I,   k  kW . The customer 
can attain the new load level (1    −     p ) Y  I,   k     +    Y  U,   k  . Overall, the load relief obtained 
when  p  is applied to  n  customers is

    p Y pSk
k

n

nI I, ,
=
∑ =

1

    (11.44)   
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 Then we must set up a decision criterion to set  p  in such a way that we are 
confi dent that the requested load relief of  r  kW is achieved. We can formalize 
this by stating that  p  must be such that:

    P pS rnI, <( ) ≤ α     (11.45)  

where  α  is an acceptable probability that the desired load relief is not attained. 
In principle  α  can be zero, if the interruptible load is greater than ( r / p ) with 
probability one for some  p . In some situations, when the absorbed load is very 
high and a small load relief is requested, this condition can be met. 

 Let  F  denote the cumulative conditional distribution function of  S  I,   n  . Then 
the decision criterion for  p  is written as:

    F
r
p

⎛
⎝⎜

⎞
⎠⎟ ≤ α     (11.46)   

 and is satisfi ed if

    r
p

F q p
r

q
= ( ) = ⇒ =−1 α α

α

    (11.47)   

 The condition  r     <     q   α   is required for this to have an admissible solution. 
 In general there will be no closed - form expression for  F . But we may 

employ the central limit theorem approximation introduced above with the 
appropriate conditional mean and variance of the single customer ’ s load indi-
cated by  μ  and  σ  2 . Then

    F
r
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r
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n

⎛
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⎞
⎠⎟ ≅

−⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Φ
μ

σ
    (11.48)  

where  Φ  is the standard Gaussian cumulative density function, and the solu-
tion to equation  (11.46)  is

    p

r
n

z
n

=
+μ σ

α

    (11.49)  

where  z   α   is the  α  - level percentage of the standard Gaussian distribution. 
 The probability level  α  can be chosen if a measure of the cost of not achiev-

ing the desired load relief is available, say  c  0 . Then the expected cost of not 
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attaining the load relief is given by  α  c  0  and  α  can be increased from zero up 
to a value of  c A   /  c  0 , where  c A   is the maximum acceptable cost (which would 
be lower than  c  0 ).  

  11.7.2.3   Load Shedding Via the General Cost Function     A more sophis-
ticated decision criterion of load shedding can be based on a cost function that 
increases with the actual load relief distance from the target, such as

    c p S c pS I pS r c S I pS rn n n n n, , , , , ,I I I I I( ) = >( ) + <( )1 2     (11.50)   

 As mentioned before,  I  ( • ) is the indicator function of a statement and  s  is 
the total load at the time of the shedding. The two addenda account for the 
cost of an overshooting and an undershooting, respectively. The cost con-
stants  c  1  and  c  2  can include per - kWh costs on the distributor ’ s (energy not 
sold) and on the customer ’ s (energy not available) side, because of a blackout 
or an excessive curtailment (since we are talking about energy and the cost 
function depends on power, we are implying a fi xed duration of the shed-
ding intervention). One should note that for the network operator, which 
manages the shedding action, it will be diffi cult to give a fair assessment of 
costs not incurred by itself. Considering the costs of the energy not sold 
only, given  c  2 , the order of magnitude of  c  1  should be  c  2 , one possible choice 
being  c  1    =    c  2 . 

 The load shedding problem becomes a search for the minimization of the 
expected value of the following cost function:

    c p E c p S c p s f s ds c sF
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where  f  is the density function associated to  F . 
 By using the Gaussian approximation, we get
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where  ϕ  is the standard Gaussian density function. 
 This decision criterion based on the conditional Gaussian is an instance of 

Bayesian expected loss minimization  [23] . The loss is represented by  c ( p ,  S  I,   n  ) 
and the expectation is taken with respect to the posterior distribution of an 
unobservable quantity ( S  I,   n  ) conditionally on another observed quantity ( s ), 
through which the prior information on the former is updated.    
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  11.8   UNDERVOLTAGE LOAD SHEDDING 

  11.8.1   Introduction 

 We discuss the load shedding problem from the view of voltage stability in 
this section. Load shedding is the ultimate countermeasure to save a voltage -
 unstable system, when there is no other alternative to stop an approaching 
collapse  [24 – 29] . This countermeasure is cost effective in the sense that it can 
stop voltage instability triggered by large disturbances, against which preven-
tive actions would not be economically justifi ed (if at all possible) in view of 
the low probability of occurrence  [26] . Load shedding is also needed when the 
system undergoes an initial voltage drop that is too pronounced to be cor-
rected by generators (because of their limited range of allowed voltages) or 
load tap changers (because of their relatively slow movements and also limited 
control range). 

 In the practical system, this kind of load shedding belongs to the family of 
system protection schemes (also referred to as special protections scheme) 
(SPS) against long - term voltage instability. An SPS is a protection designed to 
detect abnormal system conditions and take predetermined corrective actions 
(other than the isolation of the faulted elements) to preserve as far as possible 
system integrity and regain acceptable performances  [27] . 

 The following SPS design has been chosen  [29] : 

   •       Response - based : Load shedding will rely on voltage measurements that 
refl ect the initiating disturbance (without identifying it) and the actions 
taken so far by the SPS and by other controllers. On the contrary, an 
event - based SPS would react to the occurrence of specifi c events  [28] ;  

   •       Rule - based : Load shedding will rely on a combination of rules of the 
type:

    If  during  seconds shed  MWthresholdV V t P< , Δ     (11.53)  

where  V  is measured voltage and  V threshold   is the corresponding threshold 
value.  

   •       Closed - loop operation : An essential feature of the scheme considered 
here is the ability to activate the rule equation  (11.53)  several times, based 
on the measured result of the previous activations. This closed - loop 
feature allows the load shedding controllers to adapt their actions to the 
severity of the disturbance. Furthermore, it increases the robustness with 
respect to operation failures as well as system behavior uncertainties  [30] . 
This is particularly important in voltage instability, where load plays a 
central role but its composition varies with time and its behavior under 
large voltage drops may not be known accurately;  

   •      A  distributed  scheme is proposed for its ability to adjust to the distur-
bance location.    
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 It is well known that time, location, and amount are three important and 
closely related aspects of load shedding against voltage instability  [31] . The 
time available for shedding is limited by the necessity to avoid  [25] :

 •      Reaching the collapse point corresponding to generator loss of synchro-
nism or motor stalling 

 •      Further system degradation due to undervoltage tripping of fi eld current -
 limited generators, or line tripping by protections;  

 •      The nuisance for customers of sustained low voltages. This requires fast, 
action even in the case of long - term voltage instability, if the disturbance 
has a strong initial impact  [30] .    

 As far as long - term voltage instability is concerned, if none of the above 
factors is limiting, one can show that there is a maximum delay beyond which 
shedding later requires shedding more  [25] . On the other hand, it may be 
appropriate to activate other emergency controls fi rst so that the amount of 
load shedding is reduced  [30] . 

 The shedding location matters a lot when dealing with voltage instability: 
Shedding at a less appropriate place requires shedding more. In practice, the 
region prone to voltage instability is well known beforehand. However, within 
this region, the best location for load shedding may vary signifi cantly with the 
disturbance and system topology.  

11.8.2 Undervoltage Load Shedding using Distributed Controllers 

 This undervoltage load shedding scheme relies on a set of controllers distrib-
uted over the region prone to voltage instability  [30] . Each controller monitors 
the voltage V  at a transmission bus and acts on a set of loads located at dis-
tribution level and having infl uence on  V . Each controller operates as follows: 

 •      It acts when its monitored voltage  V  falls below some threshold  V threshold .
 •      It can act repeatedly, until  V  recovers above  V threshold . This yields the 

already mentioned closed - loop behavior.  
 •      It waits in between two sheddings, in order to assess the effect of the 

actions taken both by itself and by the other controllers.  
 •      The delay between successive sheddings varies with the severity of the 

situation.  
 •      The same holds true for the amount shed.    

11.8.2.1 Individual Controller Design   As long as  V  remains above the 
specifi ed threshold the controller is idle, while it is started as soon as a (severe) 
disturbance causes V  to drop below  V threshold . Let  t0  be the time when this 
change takes place. The controller remains started until either the voltage 
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recovers, or a time  τ  is elapsed since  t  0 . In the latter case, the controller sheds 
a power  Δ  P  sh  and returns to either idle (if  V  recovers above  V  threshold ) or started 
state (if  V  remains smaller than  V  threshold ). In the second case, the current time 
 t  is taken as the new value and the controller is ready to act again (provided 
of course that there remains load to shed). 

 The delay  τ  depends on the time evolution of  τ  as follows. A block of load 
is shed at a time such that:

    V V t dt C
t

t

threshold − ( )( ) =
+

∫
0

0 τ

    (11.54)  

where  C  is a constant to be adjusted. This control law yields an inverse - time 
characteristic: The deeper the voltage drops, the less time it takes to reach the 
value  C  and, hence, the faster the shedding. The larger  C , the more time it 
takes for the integral to reach this value and hence, the slower the action. 

 Furthermore, the delay  τ  is lower bounded:

    τ τmin ≤     (11.55)   

 to prevent the controller from reacting on a nearby fault. Indeed, in normal 
situations time must be left for the protections to clear the fault and the 
voltage to recover to normal values. 

 The amount of load shedding depends on the voltage drop at the time 
period, that is,

    Δ ΔP K Vsh d=     (11.56)  

where  K  is another constant to be adjusted and  Δ  V d   is the average voltage 
drop over the time period  τ , that is,

    ΔV V V t dt
t

t
d

threshold= − ( )( )
+

∫
1

0

0

τ

τ

    (11.57)   

 The controller acts by opening distribution circuit breakers and may discon-
nect interruptible loads only. Hence, the minimum load shedding corresponds 
to the smallest load whose breaker can be opened, while the maximum shed-
ding corresponds to opening all the maneuverable breakers. Furthermore, to 
prevent unacceptable transients, it may be appropriate to limit the power 
disconnected in a single step to some value   ΔPtr

sh, which can be written as.

    min max
k

kP P P≤ ≤Δ Δsh sh     (11.58)   

 with
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    ΔP P Pk
k

max min ,sh
tr
sh= ⎛

⎝⎜
⎞
⎠⎟∑     (11.59)  

where  P k   denotes the individual load power behind the  k th circuit breaker 
under control, and the minimum in equation  (11.58)  and the sum in equation 
 (11.59)  extend over all maneuverable breakers. 

 The control logic focuses on active power, but load reactive power is obvi-
ously reduced together with active power. In the absence of more detailed 
information, we assume that both powers vary in the same proportion.  

  11.8.2.2   Cooperation Between Controllers     In this section we discuss the 
interaction of the various controllers used in load shedding. 

 Let us consider two close controllers:  C i   monitoring bus  i  and  C j   monitoring 
bus  j . Let us assume that both controllers are started by a disturbance. When 
 C i   sheds some load, it causes the voltages to increase not only at bus  i  but also 
at neighboring buses including the monitoring bus,  j . Since  V i   increases, the 
integral  ∫ ( V  threshold     −     V j  ( t )) dt  decreases. It can be observed from equations 
 (11.56)  and  (11.57)  that the  Δ  V  d  decreases; consequently, the amount of load 
shedding will be reduced for the controller  j . If the  V i   is increased and larger 
than the  V  threshold , the controller  j  will return to idle. Thus, when one controller 
sheds load, it slows down or inhibits the other controllers to restore voltages 
in the same area. This cooperation avoids excessive load shedding. 

 Obviously, the whole system will tend to automatically trigger the controller 
to shed the load fi rst where voltages drop the most at the location of the con-
troller. This means operating the controllers in a fully distributed way, each 
controller using local information and taking local actions, as underfrequency 
load shedding controllers do, which we discussed in Section  11.2 . 

 Another way to implement the load shedding scheme in a centralized way 
is by collecting all voltage measurements at a central point, running the com-
putations involved in equations  (11.54)  –  (11.59)  in a single processor, and 
sending back load shedding orders (with some communication delays to be 
taken into account). In this case, additional information exchanges and interac-
tions between controllers may be envisaged without further penalizing the 
scheme. To protect the SPS against erroneous measurements, it is desirable for 
each controller to rely on several voltage measurements, taken at closely 
located buses. Some fi ltering can remove outliers from the measurements, and 
the average value of the valid ones can be used as  V  in equations  (11.54)  and 
 (11.57) . If all data are dubious, the controller should not be started; other 
controllers will take over.  

  11.8.2.3   Tuning the Parameters of the Controller     Obviously, the param-
eters of the controller affect the response of the controller as well as the 
scheme of load shedding. The tuning of the controllers should rely on a set of 
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scenarios combining different operating conditions and disturbances, as typi-
cally considered when planning SPS  [30, 31] . 

 The basic requirements are: 

  (1)     Protection security: The SPS does not act in a scenario with acceptable 
postdisturbance system response. This is normally the case after any 
contingency.  

  (2)     Protection dependability: All unacceptable postdisturbance system 
responses are saved by the SPS, possibly in conjunction with other 
available controls.  

  (3)     Protection selectivity: In the latter case, as little load power as possible 
is interrupted.    

 The tuning mainly consists of choosing the best values for  V  threshold ,  C ,  K , 
  ΔPtr

sh, and  τ  min . It is noted that the voltage threshold should be set high enough 
to avoid excessive shedding delays, which in turn would require shedding more 
and/or cause low load voltages. On the other hand, it should be low enough 
to obey requirement (1) above. It should thus be set a little below the lowest 
voltage value reached during any of the acceptable postdisturbance 
evolutions. 

 As for  C  and  K , they should be selected so that, for all scenarios: 

   •      The protection sheds as little load as possible and  
   •      Some security margin is left with respect to values causing protection 

failure    

 Certainly, using the same  C  and  K  values for all controllers makes the 
design defi nitely simpler.   

  11.8.3   Optimal Location of Installing Controller 

 We know that the location of the controller affects not only the improvement 
of the voltage profi le but also the economy of the system operation. Thus the 
location of installing the controller or SPS is very important. The optimal loca-
tion of installing controller should be where: 

  (1)     Voltage at that location has high improvement.  
  (2)     Probability of the outage at that location is high.  
  (3)     System loss has big reduction.  
  (4)     Load at that location is less important.  
  (5)     Load center where the load is located is less important.    

 For item (1), the performance index to evaluate the voltage improvement 
by load shedding can be computed as below:
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    PI
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sh
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( ) − ( )Δ
Δ

0
    (11.60)  

where

   V j   (0):    The voltage at bus  j  before the load shedding  
   V Pj jΔ sh( ) :    The voltage at bus  j  after the load shedding  
   ΔPj

sh :    The amount of the load shedding at bus  j   
   PI j

LSV:    The performance index to assess the voltage improvement at bus  j     

 The probability of the outage for each location can be obtained according 
to analysis of the historical outage or disturbance data in the system. 

 For item (3), the performance index to evaluate the loss reduction by load 
shedding can be computed as below:

    PI
P P P

P
j j

j
LSPL

L
sh

L

sh
=

( ) − ( )Δ
Δ

0
    (11.61)  

where

   P L   (0):    The system loss before the load shedding at bus  j   
   P PjL

shΔ( ) :    The system loss after the load shedding at bus  j   
   PI j

LSPL:    The performance index to assess the loss reduction at bus  j     

 Actually, the performance index to evaluate the loss reduction by load 
shedding can also be obtained using loss sensitivity of load, which is discussed 
in Chapter  3 . 

 Items (4) and (5) are related to the less important of the loads; we can use 
one performance   PI j

LSKEY to express them. In Section  11.5 , we computed the 
unifi ed weighting factors  w i   of the loads that are based on the important loads. 
Obviously, the less important performance index   PI j

LSKEY will be

    PI
w

j

i
LSKEY =

1
    (11.62)   

 Therefore, the hierarchical model for computing the optimal location of 
installing controller can be constructed as in Figure  11.9 .   

 For the lower layers in the hierarchy model (Fig.  11.9 ), the performance 
indices for evaluating the individual load location can be computed based on 
equations  (11.60)  –  (11.62) . But for the upper layer in the hierarchy model, the 
relationship among all kinds of performance indices cannot be computed 
exactly. It can be only obtained based on system operation cases and the judg-
ment of the engineer or operators. According to AHP, the judgment matrix 
 A  -  PI  can be written as follows.
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where,  w  PI   i   is unknown.  w  PIi / w  PIj , which is the element of judgment matrix  A  -  PI , 
represents the relative importance of the  i th performance index compared 
with the  j th performance index. Here, there are only four performance indices 
for selecting the location of the controller. Thus,  n    =   4 in equation  (11.63) . 

 According to the hierarchy model in Figure  11.9  and the AHP approach, 
we can get the unifi ed rank for all the locations of installing the LS controller. 
The number one in the rank list of locations will be fi rst selected to install the 
LS controller. If there are  K  controllers, they will be installed in the system 
where the locations are the top  K  in the rank list.   

  11.9   CONGESTION MANAGEMENT 

    11.9.1   Introduction 

 Transmission congestion occurs when there is insuffi cient transmission capac-
ity to meet the demands of all customers. 

 Congestion can be reduced by the following methods  [32] : 

  (1)     Generation redispatch  
  (2)     Load shedding  
  (3)     Using VAR support  
  (4)     Expansion of transmission lines    

 Obviously, expansion of transmission lines involves lots of factors such as 
fi nances, time, environment, etc., and it is not realistic to solve the current 
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     FIGURE 11.9     Hierarchy model of optimal location for installing LS controller  
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congestion problem. VAR support is discussed in Chapter  10 . Several previ-
ous chapters analyzed the generation dispatch and redispatch issues. 
Congestion may be reduced by modifi cation of generating schedules, but not 
for every situation. In heavily congested conditions, transmission congestion 
can only be relieved by curtailing a portion of nonfi rm transactions. Thus we 
focus on the load shedding method for analyzing congestion management in 
this section.  

11.9.2 Congestion Management in U.S. Power Industry 

 In the United States, congestion management is implemented in the various 
ISOs such as Pennsylvania - New Jersey - Maryland Interconnection (PJM), 
Electric Reliability Council of Texas (ERCOT), and NewYork Independent 
System Operator (NYISO). 

11.9.2.1 PJM   PJM Interconnection is a regional transmission organization 
that ensures the reliability of the electric power supply system in 13 states. 
PJM operates the wholesale electricity market and manages regional electric 
transmission planning to maintain the reliability of the power system. 

 The different methods to mitigate transmission emergencies due to 
overloads and excess transfers in transmission lines are adopted in PJM  [33] . 
They are: 

 •      Generator active power adjustment — raise/lower MW  
 •      Phase angle regulator adjustment — increase/decrease phase angle  
 •      Interchange schedule adjustment — import/export MW  
 •      Transmission line switching — selected line switching  
 •      Circuit breaker switching — change network topology  
 •      Customer load shedding — internal procedure and NERC transmission 

loading relief procedure    

 Load shedding is the last option when the congestion cannot be alleviated 
through the remaining transmission emergency methods. Flow limits are 
further distinguished into normal limits, short - term emergency (STE) limits, 
and load dump (115% of STE). Violations may occur under actual (precon-
tingency) or contingency (postcontingency) conditions. 

 PJM curtails loads that contribute to the overload before redispatching the 
generators if the transmission customers have indicated that they are not 
willing to pay transmission congestion charges. If overload persists even after 
redispatching the system, PJM will implement the NERC Transmission 
Loading Relief Procedure (TLR)  [34] . The steps of TLR are: 

  (1)     Notifi cation of reliability coordinator  
  (2)     Hold interchange transactions  
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  (3)     Reallocate fi rm transmission service  
  (4)     Reallocate nonfi rm transmission service  
  (5)     Curtail nonfi rm  
  (6)     Redispatch generation  
  (7)     Curtail fi rm  
  (8)     Implement emergency procedures     

11.9.2.2 ERCOT   ERCOT directs and ensures the reliable and cost - 
effective operation of its electric grid and enables fair and effi cient market -
 driven solutions to meet customers ’  electric needs  [35] . The following issues 
are addressed: 

  (1)     Ensures the grid can accommodate the scheduled energy transfers.  
  (2)     Ensures grid reliability.  
  (3)     Oversees retail transactions.    

 ERCOT develops four types of action plans to respond to electric system 
congestions. 

 •      Precontingency action plan — used ahead of the contingency because not 
feasible once the contingency occurs  

 •      Remedial action plan — used after contingency occurs  
 •      Mitigation plan — similar to remedial action plan but only used after all 

available generation redispatch is exhausted. After the precontingency 
and remedial action plans are executed if relief is still needed, this method 
is appropriate  

 •      Special protection plan — automatic actions using special protection 
systems    

 The Emergency Electric Curtailment Plan (EECP)  [36, 37]  was developed 
to respond to short supply situations and restore responsive reserve to required 
levels. This procedure will direct the system operator to declare an emergency 
notice for frequency restoration purposes.  

11.9.2.3 NYISO   The NYISO manages New York ’ s electricity transmission 
grid, a network of high - voltage lines that carries electricity throughout the 
state, and oversees the wholesale electricity market. NYISO addresses the 
following issues: 

  (1)     Maintains and enhances regional reliabilit.  
  (2)     Promotes and operates a fair and competitive electric wholesale market.  
  (3)     Provides quality customer service.  
  (4)     Tries to achieve these objectives in a cost - effective manner.    
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 Severe system disturbances generally result in critically loaded transmission 
facilities, critical frequency deviations, high -  or low - voltage conditions, or sta-
bility problems. The following operating states are defi ned for the state of New 
York  [38] : 

  (1)     Warning  
  (2)     Alert  
  (3)     Major emergency  
  (4)     Restoration    

 The NYISO schedule coordinator, or the NYISO shift supervisor, forecasts 
the likelihood of the occurrence of states other than the Normal State in 
advance. If it is predicted that load relief either by voltage reduction or load 
shedding may be necessary during a future period, then the NYISO shift 
supervisor notifi es all transmission owners and arranges corrective measures 
including: 

 •      Curtailment of interruptible load  
 •      Manual voltage reduction  
 •      Curtailment of nonessential market participant load  
 •      Voluntary curtailment of large load serving entities (LSE)  
 •      Public appeals    

 NYISO reduces transmission fl ows that may cause thermal, voltage, and 
stability violations to properly allocate the reduction of transmission fl ows to 
relieve violations. When there are security violations that require reductions 
in transmission fl ow, NYISO takes action in the following sequence and to the 
extent possible, when system conditions and time permit: 

  1.     Implement all routine actions using phase angle regulator tap positions, 
where possible.  

  2.     Request all overgeneration suppliers that are contributing to the problem 
to adjust their generation to match their schedules.  

  3.     Request voluntary shifts on generation either below minimum dispatchable 
levels or above normal maximum levels to help relieve the violation.  

  4.     Request reduction or cancellation of all transactions that contribute to the 
violation. Applicable transactions shall be curtailed in accordance with 
curtailment procedures described in the New York ISO Transmission and 
Dispatching Operations Manual   [39] .      

11.9.3 Congestion Management Method 

 The previous sections presented several approaches for optimal load shedding, 
which can be used for congestion management. Here, we present simple load 
shedding or load management methods for congestion management. They are: 
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   •      TLR Sensitivities - Based Load Curtailment  
   •      Economic Load Management for Congestion Relief    

  11.9.3.1    TLR  Sensitivities - Based Load Curtailment     We discuss power 
transfer distribution Factors (PTDF) in Chapter  3 . The transmission line relief 
(TLR) sensitivities can be considered as the inverse of the PTDF. Both TLR 
and PTDF can measure the sensitivity of the fl ow on a line to load curtailment. 
PTDFs determine the sensitivity of the fl ow on an element such as transmis-
sion line to a single power transfer. TLR sensitivities determine the sensitivity 
of the fl ow on the single monitored element such as a transmission line to 
many different transactions in the system. In other words, TLR sensitivities 
gauge the sensitivity of a single monitored element to many different power 
transfers. 

 The TLR sensitivity values at all the load buses for the most overloaded 
line are considered and used for calculating the necessary load curtailment for 
alleviation of transmission congestion. The TLR sensitivity at a bus  k  for a 
congested line  ij  is   Sij

k , and is calculated by  [32] 

    S
P

P
ij
k ij

K

=
Δ
Δ

    (11.64)   

 The excess power fl ow on transmission line  ij  is given by

    ΔP P Pij ij ij= − max     (11.65)  

where

   P ij  :    Actual power fl ow through transmission line  ij   
  P ij   max :    Flow limit of transmission line  ij     

 The new load   Pk
new at bus  k  can be calculated by

    P P
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=
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1

Δ     (11.66)  

where

    Pk
new :    Load after curtailment at bus  k   

  P k  :    Load before curtailment at bus  k   
   Sij

l :    Sensitivity of power fl ow on line  ij  due to load change at bus  k   
  ND :    Total number of load buses    

 The higher the TLR sensitivity, the more the effect of a single MW power 
transfer at any bus. So, based on the TLR sensitivity values the loads are 
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curtailed in required amounts at the load buses in order to eliminate the 
transmission congestion on the congested line  ij . 

 This method can be implemented for systems where load curtailment is a 
necessary option for obtaining ( N     −    1) secure confi gurations. 

 It is noted that the sensitivity computed here is based on the perturbation, 
which is discussed in Chapter  3  — Sensitivity Analysis. A limitation exists for 
this approach, that is, the sensitivity results are not stable. They are affected 
by power fl ow solution, including the selection of initial operation points. The 
more precise method for sensitivity calculation is based on matrix operation, 
which is purely related to network topology and will not be affected by the 
solution of power fl ow. The details are described in Chapter  3 .  

  11.9.3.2   Economic Load Management for Congestion Relief     Another 
possible solution for congestion management is to fi nd customers who will 
volunteer to lower their consumption when transmission congestion occurs. 
By lowering the consumption, the congestion will  “ disappear, ”  resulting in a 
signifi cant reduction in bus marginal costs. A strategy to decide how much load 
should be curtailed for what customer is discussed here. 

 The anticipated effect of this congestion relief solution is to encourage 
consumers to be elastic against high prices of electricity. Hence, this congestion 
relief procedure could eventually protect all customers from high electricity 
prices in a deregulated environment  [40] . 

 The following three factors can be considered for the analysis of load 
management: 

  (1)     Power fl ow effect through sensitivity index  
  (2)     Economic factor for LMP index  
  (3)     Load reduction preference for customer load curtailment index    

 The possible methods for these load management factors are presented 
below. 

  11.9.3.2.1   Sensitivity Index     In Chapter  3 , we discuss the load distributed 
sensitivity, which can be used to rank load sensitivity. The sensitivity of the 
congested line  ij  with respect to load bus  k  is   Sij

k. We can convert it to the new 
sensitivity with load distribution reference

    S S S k NDij
k

ij
k knew

ldref= − = 1, ,…     (11.67)  

where

    Sk
ldref:    The sensitivity of load distribution reference for the constraint  ij , 

that is,   
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 Load shedding can be performed based on the ranking of the distributed 
load reference based sensitivity   Sij

knew . The load with a high   Sij
knew  value will 

be curtailed fi rst since it is more effi cient to relieve the congestion than the 
load with low   Sij

knew  value.  

  11.9.3.2.2    LMP  Index     High electricity price (LMP) is an incentive to 
reduce load. The following index measures the level of customer incentive to 
cut down on electricity consumption:

    LMP LMP LMPnew
ldref

k k k k ND= − = 1, ,……     (11.69)  

where

  LMP  k  :    The electricity price of load bus  k  without considering load factor  
 LMP  knew  :    The electricity price of load bus  k  considering load factor  
   LMPldref

k :    The electricity price of load bus  k  based on load distribution refer-
ence, that is,   
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 Load shedding can be performed based on the ranking of the distributed 
load reference based electricity price LMP  k   new . The load with a high LMP  k   new  
value will be curtailed fi rst since it is more of an incentive for customer to cut 
down on electricity consumption than the load with low LMP  k   new  value. This 
is especially for the customer with a big load amount.  

  11.9.3.2.3   Customer Load Curtailment Index     If the required reduction of 
the power fl ow on the congested branch is given by  Δ  P ij   c , the required amount 
of adjustment  Δ  P k   at bus  k  will be given by

    Δ
Δ

P
P

S
K

ij

ij
k

= c     (11.71)   

 Generally, the higher the sensitivity, the smaller the amount of curtailment 
needed. The customer is supposed to express the acceptable range of curtail-
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ment by  Δ  P  max  and  Δ  P  min  at bus  k , and the curtailment acceptance level is 
measured by

    μLk
kP P

P P
=

−
−

Δ Δ
Δ Δ

max

max min
    (11.72)   

 If the index  μ  L   k   is between 0 and 1, then the required amount of load reduction 
is in the acceptable range of the customer, and if  μ  L   k   is less than 0 or greater 
than 1, then the required amount of load curtailment is more than the accept-
able range. 

   11.9.3.2.4   Comprehensive Index for Congestion Relief     We can compre-
hensively consider the three indices mentioned above. First of all, we normal-
ize each of them as follows:
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where

    CRSI
k :    The normalized sensitivity index  

   CRLMP
k :    The normalized LMP index  

   CRLCI
k :    The normalized customer load curtailment index    

 Then we compute the comprehensive index for congestion relief (CICR), 
using the following expression:

    CICR CR CR CRSI SI LMP LMP LCI LCI
k k k kW W W k ND= + + =, , ,1…     (11.76)  

where

   W  SI :    The weight for the normalized sensitivity index  
  W  LMP :    The weight for the normalized LMP index  
  W  LCI :    The weight for the normalized customer load curtailment index  
  CICR k  :    The comprehensive index for congestion relief.    
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 The weight factors can be determined according to the practical system 
operation status. If they cannot be easily obtained, the AHP method can be 
used. The sum of the factors should be 1.0. That is,

    W W WSI LMP LCI+ + = 1    (11.77)       
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     The reconfi guration of the distribution network is also part of power system 
operation. This chapter sums up several major methods used to date in optimal 
reconfi guration of an electric distribution network. These are the simple 
branch exchange method, the optimal fl ow pattern, the rule - based compre-
hensive approach, mixed - integer linear programming, the genetic algorithm 
(GA) with matroid theory, and multiobjective evolution programming.  

12.1 INTRODUCTION

 The distribution networks are the most extensive part of the electrical power 
system. They produce a large number of power losses because of the low 
voltage level of the distribution system. The goal of reconfi guration of the 
distribution network is to fi nd a radial operating structure that minimizes the 
power losses of the distribution system under the normal operation conditions. 
Generally, distribution networks are built as interconnected networks, while 
in operation they are arranged into a radial tree structure. This means that 
distribution systems are divided into subsystems of radial feeders, which 
contain a number of normally closed switches and a number of normally open 
switches. According to the graph theory, a distribution network can be repre-
sented with a graph of G  ( N ,  B ) that contains a set of nodes  N  and a set of 
branches B . Every node represents either a source node (supply transformer) 
or a sink node (customer load point), while a branch represents a feeder 



504 OPTIMAL RECONFIGURATION OF ELECTRICAL DISTRIBUTION NETWORK

section that can either be loaded (switch closed) or unloaded (switch open). 
The network is radial, so that the feeder sections form a set of trees where 
each sink node is supplied from exactly one source node. Therefore, the dis-
tribution network reconfi guration (DNRC) problem is to fi nd a radial operat-
ing structure that minimizes the system power loss while satisfying operating 
constraints  [1] . In fact, the distribution network reconfi guration can be viewed 
as a problem of determining an optimal tree of the given graph. Many algo-
rithms have been used to solve the reconfi guration problem: heuristic methods 
 [2 – 10] , expert system, combinatorial optimization with discrete branch and 
bound methods  [11 – 17] , and evolution programming or genetic algorithm  [1, 
18 – 21] . 

 Merlin and Back fi rst proposed the discrete branch and bound method to 
reduce losses in a distribution network  [3] . Because of the combinatorial 
nature of the problem, it requires checking a great number of confi gurations 
for a real - sized system. Shirmohammadi and Hong  [8]  used the same heuristic 
procedure mentioned by Merlin and Back  [3] . Castro et al.  [4]  proposed search 
heuristic techniques to restore the service and load balance of the feeders. 
Castro and Franca  [6]  proposed modifi ed heuristic algorithms to restore the 
service and load balance. The operation constraints are checked through a 
load fl ow solved by means of modifi ed fast decoupled Newton – Raphson. 
Baran and Wu  [5]  presented a heuristic reconfi guration methodology based 
on the method of branch exchange to reduce losses and balance loads in the 
feeders. To assist in the search, two approximated load fl ows for radial net-
works with different degrees of accuracy are used. Also, they propose an 
algebraic expression that allows estimation of the loss reduction for a given 
topological change. Liu et al.  [14]  proposed an expert system to solve the 
problem of restoration and loss reduction in distribution systems. The model 
for the reconfi guration problem is a combinatorial nonlinear optimization 
problem. To fi nd the optimal solution, it is necessary to consider all the pos-
sible trees generated due to the opening and closing of the switches existing 
in the network. 

 Nahman and Strbac presented another heuristic approach in reference  [10] . 
The algorithm starts from a completely empty network, with all switches open 
and all loads disconnected. Load points are connected one by one by switching 
branches onto the current subtree. The search technique also does not neces-
sarily guarantee global optima. 

 Zhu et al.  [22]  proposed a rule - based comprehensive approach to study 
distribution network reconfi guration (DNRC). The DNRC model with line 
power constraints is set up, in which the objective is to minimize the system 
power loss. Unlike the traditional branch exchange - based heuristic method, 
the switching branches are divided into three types. The rules that are used 
to select the optimal reconfi guration of the distribution network are formed 
based on system operation experiences and the types of the switching branches 
 [23] . 
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 Recently, new methods based on genetic algorithm (GA) have been used 
in DNRC  [1, 18 – 20] . GA - based methods are better than traditional heuristic 
algorithms in obtaining the global optima.  

  12.2   MATHEMATICAL MODEL OF  DNRC  

 The mathematical model of DNRC can be expressed by either branch current 
or branch power. 

 (1) Use Current Variable

    Min f k R I l NLl l l
l

NL

= ∈
=
∑ 2

1

    (12.1)  

such that

    k I I l NLl l l≤ ∈max     (12.2)  

    V V V i Ni i imin max≤ ≤ ∈     (12.3)  

    g I ki ,( ) = 0     (12.4)  

    g V ki ,( ) = 0     (12.5)  

    ϕ k( ) = 0     (12.6)  

where

   I l  :    The plural current in branch  l   
  R l  :    The resistance of branch  l   
  V i  :    The node voltage at node  i   
  K l  :    Represents the topological status of the branches.  k l     =   1 if branch  l  is 

closed, and  k l     =   0 if branch  l  is open.  
  N :    The set of nodes  
  NL :    The set of branches    

 In the above model, equation  (12.2)  stands for the branch current con-
straints. Equation  (12.3)  stands for the node voltage constraints. Equation 
 (12.4)  represents Kirchhoff ’ s fi rst law (KCL), and equation  (12.5)  represents 
Kirchhoff ’ s second law (KVL). Equation  (12.6)  stands for topological con-
straints that ensure radial structure of each candidate topology. It consists of 
two structural constraints: 

  (a)     Feasibility: All nodes in the network must be connected by some 
branches, i.e., there is no isolated node.  
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  (b)     Radiality: The number of branches in the network must be smaller than 
the number of nodes by one unit ( k l    *  NL    =    N     −    1)    

 Therefore, the fi nal network confi guration must be radial and all loads must 
remain connected. 

 (2) Use Power Variable
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such that

    k P P l NLl l l≤ ∈max     (12.8)  

    k Q Q l NLl l l≤ ∈max     (12.9)  

    V V V i Ni i imin max≤ ≤ ∈     (12.3)  

    g P ki ,( ) = 0     (12.10)  

    g Q ki ,( ) = 0     (12.11)  

    g V ki ,( ) = 0     (12.5)  

    ϕ k( ) = 0     (12.6)  

where,

   P l  :    the real power in branch  l   
  Q l  :    the reactive power in branch  l     

 The objective function in equation  (12.7)  is power losses. If voltage magni-
tudes are assumed to be 1.0   p.u. and reactive power losses are ignored in the 
objective function, equation  (12.7)  may be simplifi ed as

    Min f k R P l NLl l l
l

NL
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=
∑ 2

1

    (12.12)   

 In the above model, equations  (12.8)  and  (12.9)  stand for the branch real 
power and reactive power constraints. Equations  (12.10)  and  (12.11)  represent 
Kirchhoff ’ s fi rst law. 

 Obviously, both DNRC models, whether with branch current expression 
or power expression, have the same function.  
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12.3 HEURISTIC METHODS 

12.3.1 Simple Branch Exchange Method 

 The basic idea of the heuristic branch exchange method is to compute 
the change of power losses by operating a pair of switches (close one and 
open another one at the same time). The goal is to reduce power losses. The 
advantage of this method is simple and easily understood. The disadvantages 
are: 

  (1)     The fi nal confi guration depends on the initial network confi guration.  
  (2)     The solution is a local optima, rather than global optima.  
  (3)     It is time consuming for selecting and operating each pair of switches 

as well as computing the corresponding radial network load fl ow.     

12.3.2 Optimal Flow Pattern 

 If the impedances of all branches in the loop network are replaced by the 
corresponding branch resistances, the load fl ow distribution that satisfi es the 
KCL and KVL is called an optimal fl ow pattern. When the load fl ow distribu-
tion in a loop is an optimal fl ow, the corresponding network power losses will 
be minimal. Thus the basic idea of the optimal fl ow pattern is to open the 
switch of the branch that has a minimal current value in the loop  [8] . The steps 
of the heuristic algorithm based an optimal fl ow pattern are: 

  (1)     Compute load fl ow of initial radial network.  
  (2)     Close all normal open switches to produce loop networks.  
  (3)     Compute the equivalent injection current at all nodes in loops through 

injecting current method.  
  (4)     Replace branch impedance by the corresponding branch resistance in 

the loop and then compute the optimal fl ow.  
  (5)     Open a switch of the branch that has a minimal current value in the 

loop. Recompute the load fl ow for the remained network.  
  (6)     Open next branch switch, and repeat step (5) until the network becomes 

a radial.    

 The advantages of this method are that (a) the fi nal network confi guration 
will not depend on the initial network topology; (b) the computing speed is 
much quicker than that in the simple branch exchange method; and (c) the 
complicated combination problem of switch operation becomes a heuristic 
problem by opening one switch each time. 

 However, there are some disadvantages since all normal open switches are 
closed in the initial network, i.e., 
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  (1)     If there are many normal open switches in a network, it means 
that the calculation of optimal fl ow involves lots of loops. The fi nal 
solution may not be optimal because of the mutual effects among the 
loops.  

  (2)     When load fl ow is solved by the equivalent injection current 
method, it needs to compute the impedance matrix of Thevenin 
equivalent network with multiports. This will increase the calculation 
burden.  

  (3)     It needs to compute loop network load fl ow twice for each single switch 
operation (before and after opening one switch).     

12.3.3 Enhanced Optimal Flow Pattern 

 The enhanced optimal fl ow pattern combines the advantages of two heuristic 
algorithms mentioned in Sections  12.3.1  and  12.3.2 , that is, the approach is 
based on optimal fl ow pattern but it does not close all normal open switches 
(only closing one switch and opening one other switch each time). In addition, 
this method does not care about the accuracy of network losses. It only focuses 
on the change of losses that are caused by switch operation. The calculation 
steps of the enhanced optimal fl ow pattern are as below: 

  (1)     Open all normal open switches in a network so that the initial network 
is a tree structure.  

  (2)     Close any one switch. In this way, there is only one loop in 
network.  

  (3)     Compute the load fl ow for the single - loop network and get the equiva-
lent injection current for all nodes in the loop.  

  (4)     Change the single - loop network into a pure resistance network, and 
compute the optimal fl ow to fi nd the branch that with the minimal 
current value. Open the switch on this branch.  

  (5)     Compute the load fl ow for this new radial network, and proceed the 
calculation of next switch operation as steps (2) – (4).  

  (6)     The algorithm will be stopped after going through all open switches.    

 The enhanced optimal fl ow pattern has eliminated the effect among mul-
tiple loops. Although the convergence process is related to the initial network, 
the fi nal solution is stable and not related to the order of the switch operation 
 [9] . The disadvantages of this method are: 

  (a)     It needs twice the load fl ow calculations for operation of each pair of 
switches.  

  (b)     The convergence process and speed are affected by the order of the 
switch operation.      
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  12.4   RULE - BASED COMPREHENSIVE APPROACH 

 This section uses a rule - based comprehensive approach to study distribution 
network reconfi guration. The algorithm consists of a modifi ed heuristic solu-
tion methodology and the rules base. It determines the switching actions based 
on a search by branch exchange to reduce the network ’ s losses as well as to 
balance the load of the system. 

  12.4.1   Radial Distribution Network Load Flow 

 To get the precise expression of system power loss, the branch power will be 
computed through a radial distribution network load fl ow (RDNLF) method 
in the study. It is well known that in the distribution network the ratio of  R / X  
(resistance/reactance) is relatively big, even bigger than 1.0 for some transmis-
sion lines. In this case, P - Q decoupled load fl ow is invalid for distribution 
network load fl ow calculation. It will also be complicated and time - consuming 
to use the Newton – Raphson load fl ow because the distribution network is only 
a simple radial tree structure. Therefore, the power summation - based radial 
distribution network load fl ow method (PSRDNLF) is presented in this 
section. The PSRDNLF calculation consists of three parts: 

  (1)     Conduct optimal node order calculation for the whole radial network 
based on graph theory. Consequently, the branches are divided into 
different layers according to the distance between the ordered node 
and the  “ root of a tree ”  node. Figure  12.1  is an example of how to make 
an optimal node order. 
 The rules of node order are:  
  (a)     Start from the root node.  
  (b)     The nodes that connect to the root belong to the fi rst layer.  

     FIGURE 12.1     Example of optimal node order  
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  (c)     The nodes that connect to the nodes in the fi rst layer become the 
second layer, and so on.  

  (d)     The node number in layer  n  must be greater than the node number 
in layer ( n     −    1). The node numbers in the same layer may be 
arbitrary.  

  (e)     For the branch number, for example, connecting to layer  n  and 
layer n     −    1, the start node of the branch is the node in layer  n     −    1 
and the end node is the node in layer n .    

  (2)     Calculate the branch real power and reactive power from the  “ top of 
a tree ”  node to the  “ root of a tree ”  node, i.e., from last layer to fi rst 
layer.  

  (3)     Compute the node voltage from the  “ root of a tree ”  node to the  “ top 
of a tree node, ”  i.e., from fi rst layer to last layer.    

 The initial conditions are the given voltage vectors at root nodes as well as 
real and reactive power at load nodes. In fi nal, the deviation of injection power 
at all nodes can be computed. The iteration calculation will be stopped if the 
deviation is less than the given permissive error. 

 If there are multiple generation sources in the distribution network, one 
source will be selected as a reference/slack source and others can be handled 
as negative loads.  

12.4.2 Description of Rule -Based Comprehensive Method 

 Unlike the traditional branch exchange - based heuristic method, the rule -
 based comprehensive method combines the traditional branch exchange 
approach and a set of rules. The rules that are used to select the optimal 
reconfi guration of the distribution network are formed based on system opera-
tion experience. 

 In the rule - based comprehensive method, the switching branches are 
divided into three types. 

  (1)     Type I:     The switching branches are planned for maintenance in a short 
period according to the equipment maintenance schedule.  

  (2)     Type II:     The power fl ows of the switching branches almost reach their 
maximal power limits (e.g., 90%).  

  (3)     Type III:     The other switching branches that have enough available 
transfer capacity under the system operation conditions.    

 Thus the following rules will be used for the modifi ed heuristic approach 
according to the practical system operation experience of the engineers. 

  (a)     If the switching branches lead to system power losses increase, do not 
switch them.  



RULE-BASED COMPREHENSIVE APPROACH 511

   (b)     If the switching branches lead to system power losses reduce but cause 
the system to be overloaded, do not switch them.  

   (c)     If the switching branches belong to type I mentioned above and also 
can lead to reduction of system power losses, select one that makes 
maximal power loss reduction,  Δ  PL  I .  

   (d)     If the switching branches belong to type II mentioned above, and also 
can lead to reduction of system power losses, select one that makes 
maximal power loss reduction,  Δ  PL  II .  

   (e)     If the switching branches belong to type III mentioned above, and also 
can lead to reduction of system power losses, select one that makes 
maximal power loss reduction,  Δ  PL  III .  

   (f)     From (c) to (e), use the following formula to determine the branch that 
will be switched:   

    PI
W PL

W PL W PL W PL
ii

i i
SW

I I II II III III

I II III=
+ +

=Δ
Δ Δ Δ

, ,     (12.13)  

where

   Δ  PL i  :    The change of system power losses before and after the branch switch.  
  W :    The weighting coeffi cient of the different type of switching branches. 

According to the experiences of the engineers, the weighting factors 
of the three types of switches may be 1.0, 0.6, and 0.3, respectively. 
They may also be adjusted according to practical system operation 
situations.  

  PI  SW   i  :    The performance index of the switching branch  i . The largest  PI  SW   i   of 
each switching loop will be switched.     

  12.4.3   Numerical Examples 

 The rule - based comprehensive approach for distribution network reconfi gura-
tion is tested on 14 - bus and 33 - bus distribution systems as shown in Figures 
 12.2  and  12.3 , respectively. The system data and parameters of the 14 - bus 
system are listed in Tables  12.1  and  12.2 . 

 The 14 - bus test system contains 2 source transformers and 12 load nodes. 
The 3 initially open switches are  “ 4    −    9, ”   “ 14    −    11, ”  and  “ 6    −    3. ”  The initial 
system power loss is 0.0086463   MW. 

 The results of the optimal confi guration for the 14 - bus distribution network 
are shown in Tables  12.3 – 12.5 . Table  12.3  is the node voltage results compari-
son between the initial network and fi nal confi guration. Table  12.4  is the load 
fl ow results of the optimal confi guration for the 14 - bus system. Table  12.5  is 
the optimal open switches of the fi nal network and the corresponding system 
losses, from which we know that the system losses reduction is 0.0003765   MW, 
i.e., 4.354%. 
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     FIGURE 12.2     A 14 - bus distribution system  
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 The system data and parameters of the 33 - bus system are listed in Tables 
 12.6  and  12.7 . The 33 - bus test system consists of 1 source transformer and 32 
load nodes. The 5 initially open switches are  “ 33, ”   “ 34, ”   “ 35, ”   “ 36, ”  and  “ 37. ”  
The total system load is 3.715   MW, while the initial system power loss is 
0.202674   MW. The system base is  V    =   12.66   kV and  S    =   10   MVA. 

 The calculation results of the fi nal confi guration of the 33 - bus system are 
shown in Table  12.8 . It can be observed that the same results are obtained as 
in reference  [8] .   

 Table 12.1     System load demand for 14 - bus system 

   Node     Load P(MW)     Load Q(MVAR)  

  1    0.0000    0.0000  
  2    0.9000    0.7000  
  3    0.7000    0.5500  
  4    0.0000    0.0000  
  5    0.9000    0.7600  
  6    0.4000    0.3000  
  7    0.0000    0.0000  
  8     − 2.2000     − 1.0800  
  9    0.3000    0.2000  

  10    0.6000    0.4500  
  11    0.9000    0.7500  
  12    0.0000    0.0000  
  13    0.8000    0.6500  
  14    0.3000    0.2200  
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  12.5   MIXED - INTEGER LINEAR PROGRAMMING APPROACH 

 Because of the magnitude of the DNRC problem and its non linearnature, the 
use of a blend of optimization and heuristic techniques is one choice as in 
Section  12.4 . The linearization of DNRC is another choice. Through perform-
ing a linearization of both the objective function and constraints, the DNRC 
is changed to a mixed - integer linear optimization problem  [17] . 

     FIGURE 12.3     A 33 - bus distribution system  
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Table 12.2 System branch parameters for 14 -bus distribution network 

   Line 
 No.  

   From 
 Node  i

   To 
 Node  j

   Resistance 
R  ( Ω )  

   Reactance 
X ( Ω )  

  1    7    1    0.00575    0.00893  
  2    1    2    0.02076    0.03567  
  3    2    3    0.01284    0.01663  
  4    1    4    0.01023    0.01567  
  5    9    12    0.01023    0.01976  
  6    4    5    0.09385    0.11457  
  7    5    6    0.03220    0.04985  
  8    8    9    0.00575    0.00793  
  9    9    10    0.03076    0.04567  

  10    10    11    0.02284    0.03163  
  11    12    13    0.09385    0.11457  
  12    13    14    0.02810    0.04085  
  13    7    8    0.02420    0.42985  
  14    14    11    0.02500    0.04885  
  15    4    9    0.02300    0.04158  
  16    6    3    0.02105    0.04885  

Table 12.3 Initial and final node voltages for 14 -bus distribution network 

   Node  
   Initial 
V (p.u.)  

   Initial 
θ

   Final 
V (p.u.)  

   Final 
θ

  1    1.04964  − 0.00656    1.04951  − 0.00625  
  2    1.04890  − 0.02275    1.04858  − 0.02664  
  3    1.04873  − 0.02514    1.04831  − 0.03048  
  4    1.04936  − 0.01157    1.04906  − 0.00899  
  5    1.04704  − 0.03738    1.04742  − 0.02557  
  6    1.04678  − 0.04275    1.04809  − 0.03738  
  7    1.05000    0.00000    1.05000    0.00000  
  8    1.04927  − 0.00317    1.04863  − 0.00405  
  9    1.04894  − 0.00834    1.04843  − 0.00990  

  10    1.04798  − 0.02480    1.04729  − 0.02999  
  11    1.04756  − 0.03072    1.04673  − 0.03824  
  12    1.04867  − 0.01503    1.04823  − 0.01467  
  13    1.04674  − 0.03819    1.04681  − 0.03067  
  14    1.04657  − 0.04136    1.04656  − 0.04302  

12.5.1 Selection of Candidate Subnetworks 

 The simplest way of modeling the topology of an electrical network is by 
means of the branch - to - node incidence matrix  A , in which as many rows as 
connected components are omitted to ensure linear independence of the 
remaining rows. Given a single - component meshed network with  N    +   1 buses, 
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 Table 12.4     Load flow of optimal configuration for 14 - bus distribution network 

   Line 
 No.  

   From 
 Node  i   

   To 
 Node  j   

   Real Power 
 P (MW)  

   Reactive Power 
 Q(MVAR)  

  1    7    1    4.30930    1.92709  
  2    1    2    3.10318    1.40266  
  3    1    4    1.20496    0.52344  
  4    2    3    2.20100    1.00101  
  5    4    5    0.90083    0.40074  
  6    4    9    0.30398    0.12245  
  7    3    6    1.00032    0.30039  
  8    9    12    0.80069    0.30062  
  9    9    8     − 3.19940     − 1.07969  

  10    9    10    2.40266    0.80148  
  11    12    13    0.80062    0.30056  
  12    10    11    1.80087    0.60057  
  13    11    14    0.70013    0.20020  

a well - known theorem states that a set of  N  branches is a spanning tree if and 
only if the respective columns of constitute a full rank submatrix  [27] . Thus 
graph - based algorithms are usually adopted to select the candidate subnet-
works. Given the undirected graph of a single - component network, determin-
ing whether a candidate set of  N  branches constitutes a spanning tree reduces 
to checking whether they form a single connected component. Alternatively, 
instead of checking for radiality, on a posteriori, straightforward algorithm is 
available to generate radial subnetworks, either from scratch or by performing 
branch exchanges on existing radial networks. 

 For a meshed network, there are in general several alternative paths con-
necting a given bus to the substation, whereas in a radial network each bus is 
connected to the substation by a single unique path. Furthermore, the union 
of all node paths gives rise to the entire system. The connectivity of a meshed 
network, as well as that of its radial subnetworks, can then be represented by 
means of paths. Let   πn

i  be the set of paths associated to bus  i 

    Πn
i

l
i

p
i

n
i= { }π π π, , , ,… …     (12.14)  

where each path is a set of branches connecting bus to the substation. As noted 
above, any radial network is characterized by only one of those paths being 

 Table 12.5     Optimal configuration results for 14 - bus distribution network 

   Radial network     Initial network     Optimal confi guration  

  Open switches    switch 4    −    9    switch 7    −    8  
  switch 14    −    11    switch 13    −    14  
  switch 6    −    3    switch 5    −    6  

  Power loss (MW)    0.0086463    0.0082699  



516 OPTIMAL RECONFIGURATION OF ELECTRICAL DISTRIBUTION NETWORK

 Table 12.6     System data and parameters for 33 - bus distribution network 

   Line 
 No.  

   Node 
  i   

   Node 
  j   

   Resistance 
  R  ( Ω )  

   Reactance 
  X  ( Ω )  

  1    1    2    0.0922    0.0470  
  2    2    3    0.4930    0.2512  
  3    3    4    0.3661    0.1864  
  4    4    5    0.3811    0.1941  
  5    5    6    0.8190    0.7070  
  6    6    7    0.1872    0.6188  
  7    7    8    0.7115    0.2351  
  8    8    9    1.0299    0.7400  
  9    9    10    1.0440    0.7400  

  10    10    11    0.1967    0.0651  
  11    11    12    0.3744    0.1298  
  12    12    13    1.4680    1.1549  
  13    13    14    0.5416    0.7129  
  14    14    15    0.5909    0.5260  
  15    15    16    0.7462    0.5449  
  16    16    17    1.2889    1.7210  
  17    17    18    0.7320    0.5739  
  18    2    19    0.1640    0.1565  
  19    19    20    1.5042    1.3555  
  20    20    21    0.4095    0.4784  
  21    21    22    0.7089    0.9373  
  22    3    23    0.4512    0.3084  
  23    23    24    0.8980    0.7091  
  24    24    25    0.8959    0.7071  
  25    6    26    0.2031    0.1034  
  26    26    27    0.2842    0.1447  
  27    27    28    1.0589    0.9338  
  28    28    29    0.8043    0.7006  
  29    29    30    0.5074    0.2585  
  30    30    31    0.9745    0.9629  
  31    31    32    0.3105    0.3619  
  32    32    33    0.3411    0.5302  
  34    8    21    2.0000    2.0000  
  36    9    15    2.0000    2.0000  
  35    12    22    2.0000    2.0000  
  37    18    33    0.5000    0.5000  
  33    25    29    0.5000    0.5000  

active for each bus. Therefore, there is a need to represent the status of each 
path, for which the following binary variable is defi ned:

    K
i

p
i p

i

= ⎧
⎨
⎩
1

0

,

,

if  is the active path for bus 

otherwise

π
    (12.15)   
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 Table 12.7     System load demand for 33 - bus 
distribution network 

   Node 
 No.  

   Real Power 
 Load  P  (MW)  

   Reactive Power 
 Load  Q  (MVAr)  

  2    100.0    60.0  
  3    90.0    40.0  
  4    120.0    80.0  
  5    60.0    30.0  
  6    60.0    20.0  
  7    200.0    100.0  
  8    200.0    100.0  
  9    60.0    20.0  

  10    60.0    20.0  
  11    45.0    30.0  
  12    60.0    35.0  
  13    60.0    35.0  
  14    120.0    80.0  
  15    60.0    10.0  
  16    60.0    20.0  
  17    60.0    20.0  
  18    90.0    40.0  
  19    90.0    40.0  
  20    90.0    40.0  
  21    90.0    40.0  
  22    90.0    40.0  
  23    90.0    50.0  
  24    420.0    200.0  
  25    420.0    200.0  
  26    60.0    25.0  
  27    60.0    25.0  
  28    60.0    20.0  
  29    120.0    70.0  
  30    200.0    100.0  
  31    150.0    70.0  
  32    210.0    100.0  
  33    60.0    40.0  

 A candidate subnetwork is both connected and radial if the following con-
straints are satisfi ed: 

  (1)     Every node has at most one active path, i.e.,

    K ip
i

p n
i∈

∑ = ∀
Π

1, node     (12.16)    

  (2)     If   πp
i  is active, then any path contained in   πp

i  must be also active, which 
can be written as follows:
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    K Kp
i

l
i

l
i

p
i≤ ∀ ⊂, π π     (12.17)      

 Figure  12.4  is a simple electrical network with one source node and three 
load nodes. Table  12.9  presents all possible paths for this network  [17] . 

 It is worth noting that, for computational effi ciency, not all of the possible 
paths shown in Table  12.9  should be considered in practice. For example, 

 Table 12.8     Optimal configuration results for 33 - bus distribution network 

   Radial network     Initial network     Final confi guration     Results in Ref.  [8]   

  Open switches    switch 33    switch 7    switch 7  
  switch 34    switch 10    switch 10  
  switch 35    switch 14    switch 14  
  switch 36    switch 33    switch 33  
  switch 37    switch 37    switch 37  

  Power loss (MW)    0.202674    0.141541    0.141541  

     FIGURE 12.4     Simple electrical network with one source  
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 Table 12.9     Node paths for the example of Figure  12.4  

   Node     Path     Path Branches  

  A      π1
A

    1  
    π2

A     2, 3  
    π3

A     2, 4, 5  
  B      π1

B     2  
    π2

B     1, 3  
    π3

B     1, 4, 5  
  C      π1

C     1, 4  
    π2

C     2, 5  

    π3
C

    1, 3, 5  

    π4
C     2, 3, 4  
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assuming the branch lengths represented in Figure  12.4  are proportional to 
their resistance, it is clear that paths   π3

A and   π3
B can be discarded, as they 

involve much more electrical distance than that of alternative paths for nodes 
 A  and  B , respectively. Hence, for each node, only those paths whose total 
resistance does not exceed a previously defi ned threshold times the lowest 
node path resistance are considered. This signifi cantly reduces the number of 
relevant candidate paths for realistic networks. 

 The inequality constraint in equation  (12.17)  can be better understood with 
the help of this example. We can easily check that the following inequalities 
hold (paths   π3

A,   π3
B are discarded).

    

W W W

W W

W W W

W W

C B A

C A

C A B

C B

3 2 1

1 1

4 2 1

2 1

≤ ≤

≤
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≤

⎫

⎬

⎪
⎪

⎭

⎪
⎪

  

 Although the concepts and variables presented above suffi ce for modeling 
the network radial structure, in order to handle other branch - related electrical 
constraints a second set of paths is introduced:

    Πb
j j= { }set of node paths sharing branch   

 Table  12.10  shows the set   Πb
j  for every branch in the sample system of 

Figure  12.4 . A graph - based effective procedure is as below. 
 Before describing the graph - based procedure, we assume that the meshed 

network connectivity is conveniently represented by a sparse structure allow-
ing fast access to the set of buses adjacent to a given bus. The main idea 
consists of building an auxiliary tree, named the  mother tree , by a breadth - fi rst 
search, which contains all the feasible paths for the network under study. The 
system shown in Figure  12.4 , whose mother tree is presented in Figure  12.5 , 
will be used to illustrate this concept. 

 Table 12.10     Sets   5b
j  for the example of Figure  12.4   

   Branch  j        Πb
j   

  1      Πb
1

1 2 3 1 3= { }π π π π πA B B C C, , , ,   
  2      Πb

2
2 3 1 2 4= { }π π π π πA A B C C, , , ,   

  3      Πb
3

2 2 3 4= { }π π π πA B C C, , ,   
  4      Πb

4
3 3 1 4= { }π π π πA B C C, , ,   

  5      Πb
5

3 3 2 3= { }π π π πA B C C, , ,   
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 Every node  N L   in the mother tree corresponds to a possible path for the 
related bus  L . In this case, according to Table  12.9 , the four - bus system will be 
translated into a mother tree with 8 nodes, assuming paths   π3

A and   π3
B are 

discarded. For example, bus  A  is associated to nodes  I A   and 5  A   in the mother 
tree, corresponding to paths   π1

A and   π2
A (see Table  12.9 ). 

 When building the mother tree the following rules are taken into account: 

  (A)     Before a new node  N L   is added to the mother tree, two conditions are 
checked:  
  (1)     A node  N L  , associated to the same bus  L , is not located upstream 

in the tree. Returning to the example, a new node, say 9  A  , is not 
appended to node 7  C   through branch (4) because bus  A  already 
appears upstream in the tree (node 1  A  ). These dead ends are 
shown in Figure  12.5  by dashed lines.  

  (2)     The impedance of the total path from the substation to the new 
node  N L   does not exceed a threshold times the impedance of the 
electrically shortest path for bus  L . In Figure  12.5 , paths   π3

A and 

     FIGURE 12.5     Mother tree for the example of Fig.  12.4   
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  π3
B of Table  12.9  are not considered for this reason. These cases are 

represented in Figure  12.5  by dashed arrows.    
  (B)     The mother tree is only swept two times, fi rst downstream and then 

upstream. During the downstream sweep, both the mother tree and 
associated paths are obtained simultaneously. When the two rules 
described above preclude the addition of new nodes, the resulting 
mother tree is swept upstream in order to defi ne the inequality con-
straints among paths, represented by (2), as well as the minimum and 
maximum power fl ows through every branch in the system.    

 For the radiality and electrical constraints to be easily expressed in the 
standard matrix - vector form, sets   Πn

i  and   Πb
j  are stored as sparse linked lists.  

  12.5.2   Simplified Mathematical Model 

 The mathematical model of DNRC can be written as below:

    Min f R
P Q

V
l NLl

l l

ll

NL

= +⎛
⎝⎜

⎞
⎠⎟ ∈

=
∑

2 2

2
1

    (12.18)  

s.t.
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G D
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    Q Q Qj

j i
l

l i
k

k i
G D

→ → →
∑ ∑ ∑+ + = 0     (12.20)  

    P Q Sl l l
2 2 2+ ≤ max     (12.21)  

    Δ ΔV Vl l≤ max     (12.22)  

    K ip
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∑ = ∀
Π

1, node     (12.23)  

    K Kp
i

l
i

l
i

p
i≤ ∀ ⊂, π π     (12.24)   

 If voltage magnitudes are assumed to be 1.0   p.u. the objective function 
becomes

    Min f R P Q l NLl l l
l

NL

= +( ) ∈
=
∑ 2 2

1

    (12.25)   

 The power fl ow  P l   and  Q l   comprise the total real and reactive load demanded 
downstream from node  j  plus the real and reactive losses of the respective 
branches. For simplifi cation, the latter components of  P l   and  Q l   are omitted 
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as system losses are much smaller than power loads. Therefore, the real and 
reactive power fl ows equal to the sum of real and reactive power loads located 
downstream from node, that is,

    P K Pl p
i

i

p NL
l

=
∈
∑ D

Π

    (12.26)  

    Q K Ql p
i

i

p NL
l

=
∈
∑ D

Π

    (12.27)   

 These are equivalent to the node real and reactive balance equations 
without considering the branch loss. 

 Substituting them into the objective function, we get
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 The network connectivity is incorporated through the binary variables   Kp
i . 

Since the simplifi cation above, the computed power losses will be smaller than 
the actual losses. 

 Substituting equations  (12.26)  and  (12.27)  into equation  (12.21) , we get
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 According to  [5, 20] , the voltage drop without considering power losses can 
be expressed as

    V V R P X Qi l l l l l
2 2 2− ≈ +( )     (12.30)   

 Then the total quadratic voltage drop through a path   πp
i  reaching bus  i  is 

approximated by

    V V R P X Qs i l l l l
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    (12.31)   

 The voltage constraint can be expressed as
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  12.5.3   Mixed - Integer Linear Model 

 In Section  12.5.2 , the DNRC model is simplifi ed, in which the branch losses 
are ignored and bus complex voltages are removed from the model. Thus load 
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fl ow calculation is not required during the solution process. However, the 
resulting optimization problem is still quadratic in the binary variables   Kp

i  
(path statuses). A piecewise linear function is used to replace approximately 
the quadratic branch power fl ows. In this way, the DNRC model is converted 
into a standard mixed - integer linear model:
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 To reduce the problem size and to speed up the calculation, some additional 
features are considered.

    •      As noted above, those paths whose electrical length exceeds a certain 
threshold times the shortest distance to the substation for that node are 
discarded.  

   •      If the set of paths   Πb
j  associated with branch  j  comprises a single element 

  πl
i ; then the respective fl ow  P j   is constant and equal to  P Li  , provided 

  Wl
i = 1 .  

   •      If the set of paths   Πn
j  associated with bus  i  comprises a single element   πl

i, 
then   Wl

i = 1.    
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 After the fi nal reconfi guration is obtained by solving the mixed - integer 
linear model of DNRC, the exact losses as well as node voltage and branch 
fl ow may be computed by solving the radial load fl ow.   

  12.6   APPLICATION OF  GA  TO  DNRC  

  12.6.1   Introduction 

 Chapter  4  discusses the application of genetic algorithms (GAs) to economic 
dispatch problem. GAs are considered when conventional techniques have 
not achieved the desired speed, accuracy, or effi ciency  [24 – 26] . 

 The basic steps of general GA are as follows. 

  (1)     Initialization: For the given control variables  X , randomly select a vari-
able population   X X X p

0
1

0
2

0, , ,…{ }, where each individual   X i
0  is repre-

sented by a binary code string. Each string consists of some binary 
codes, and each code is either 0 or 1. Then each individual corresponds 
to a fi tness   f X i

0( ), and the population corresponds to a set of fi tness 
  f X f X f X p

0
1

0
2

0( ) ( ) ( ){ }, , ,… . Let generation be  k    =   0, go to next step.  
  (2)     Selection: Select a pair of individuals from the population as a parent. 

Generally, the individual with bigger fi tness has a bigger probability to 
be selected.  

  (3)     Crossover: Crossover is an important operation in genetic algorithm. 
The purpose of the crossover is to exchange information fully among 
individuals. There are many crossover methods such as one - point cross-
over and multipoints crossover.  
  (a)     One - point crossover. Select randomly a truncation point in the 

parent strings and divide them into two parts. Then exchange the 
tail parts of the parent strings. An example of one - point crossover 
is below.

    01101111011

10000100110

10000111011

01101100110 int crossover⎯⎯⎯⎯⎯⎯→poOne-

Parent generation Child generation

   

  (b)     Multipoints crossover. Select randomly several truncation points in 
the parent strings and divide them into several parts. Then exchange 
some parts of the parent strings. Examples of two and three points 
crossovers are below:
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00011001111

01110 101100

00001110111

11001 101100 ints crossover
⎯⎯⎯⎯⎯⎯⎯→

poTwo-

Parent generation Child generation

 

    
⎯⎯⎯⎯⎯⎯⎯→

10110110111
01011 000100

00010
01

011111
110 101100 ints crossoverpoThree-

Parent generation Child generation

     

  (4)     Mutation: Mutation is another important operation in genetic algo-
rithm. The good mutation will be kept, and the bad mutation will be 
discarded. Generally, the individual with smaller fi tness has a bigger 
mutation probability. Similar to crossover, there are one - point muta-
tion and multipoints mutation. 
   (a)     One - point mutation. Select randomly a binary code in the parent 

string and reverse the value of the binary code. An example of one 
point mutation is below:

    11010010011101000001
int mutation

⎯⎯⎯⎯⎯⎯→
poOne-

Parent generation Child generation 

   

  (b)     Multipoints mutation. Select randomly several truncation points in 
the parent strings and divide them into several parts. Then reverse 
the value of the binary code in some parts. Examples of two -  and 
three - points mutations are below:

    
10001 00011101110 000111

ints mutation⎯⎯⎯⎯⎯⎯→poTwo-

Parent generation Child generation

 

    
11010 11111111001 000111 ints mutation⎯⎯⎯⎯⎯⎯→poThree-

Parent generation Child generation
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  (5)     Through steps (2) – (4), a new generation population is produced. 
Replace the parent generation with the new population and discard 
some bad individuals. In this way, a new parent population is formed. 
The calculation will be stopped if the convergence condition is satisfi ed. 
Otherwise, go back to step (2).     

  12.6.2   Refined  GA  Approach to  DNRC  Problem 

 GAs has shown to be an effective and useful approach for the DNRC problem 
 [1, 18] . Some refi nements of the approach are described in this section. 

  12.6.2.1   Genetic String     In the early application of GA to DNRC, the 
string structure is expressed by  “ Arc No.( i ) ”  and  “ SW. No.( i ) ”  for each switch 
 i .  “ Arc No.( i ) ”  identifi es the arc (branch) number that contains the  i th open 
switch, and  “ SW. No.( i ) ”  identifi es the switch that is normally open on Arc 
No.( i ). For large distribution networks, it is not effi cient to represent every 
arc in the string, since its length will be very long. In fact, the number of open 
switch positions is identical to keep the system radial once the topology of the 
distribution networks is fi xed, even if the open switch positions are changed. 
Therefore, to memorize the radial confi guration, it is enough to number only 
the open switch positions. Figure  12.6  shows a simple distribution network 
with 5 switches that are normally open. 

     FIGURE 12.6     A simple distribution network  
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 In Figure  12.6  (a), positions of 5 initially open switches 5, 8, 10, 13, and 14 
determine a radial topology. In Figure  12.6  (b), positions of 5 initially open 
switches 1, 4, 7, 9, and 10 determine another radial topology. Therefore, to 
represent a network topology, only positions of the open switches in the dis-
tribution network need to be known. Suppose the number of normally open 
switches is  N  o ; the length of a genetic string depends on the number of open 
switches  N  o . Genetic strings for Figure  12.6  (a) and (b) are represented as 
follows, respectively.

 

0 1 0 1 1 0 0 0  1 0 1 0  1 1 0 1  1 1 1 0 

0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0

 switch1;  switch 4;  switch 7;  switch 9;  switch 10

switch 5; switch 8; switch 10; switch 13; switch 14 

Genetic string for Figure 12.6 (a)

Genetic string for Figure 12.6 (b)     

  12.6.2.2   Fitness Function     GAs are essentially unconstrained search pro-
cedures within a given represented space. Therefore, it is very important to 
construct an accurate fi tness function as its value is the only information avail-
able to guide the search. In this section, the fi tness function is formed by 
combining the object function and the penalty function, i.e.,

    Max f L= 1     (12.39)  

where

    

L I k R I I

V V

i i i i i i

i i

= + −( ){ }
+ −( ){ }
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Σ 2
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2

2
2
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0

0

β

β
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max ,

max ,

ma

max

min

xx , max0 2V Vi i−( ){ }     (12.40)  

where   β  i   ( i    =   1, 2, 3) is a large constant. 
 Suppose  m  is the population size; the values of the maximum fi tness, the 

minimum fi tness, sum of fi tness, and average fi tness of a generation are cal-
culated as follows.

    f f f f f j mi i j jmax , , ,= ≥ ∀ ={ }1……     (12.41)  

    f f f f f j mi i j jmin , , ,= ≤ ∀ ={ }1……     (12.42)  
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    f f i mi iΣ Σ= =, , ,1……     (12.43)  

    f f mav = Σ     (12.44)   

 The strings are sorted according to their fi tness and are then ranked 
accordingly.  

  12.6.2.3   Selection     To obtain and maintain good performance of the fi ttest 
individuals, it is important to keep the selection competitive enough. There is 
no doubt that the fi ttest individuals have higher chances to be selected. In this 
chapter, the  “ roulette wheel selection ”  scheme is used, in which each string 
occupies an area of the wheel that is equal to the string ’ s share of the total 
fi tness, i.e.,  f i  / f   Σ  .  

  12.6.2.4   Crossover and Mutation     Crossover takes random pairs from 
the mating pool and produces two new strings, each being made of one part 
of the parent string. Mutation provides a way to introduce new information 
into the knowledge base. With this operator, individual genetic representa-
tions are changed according to some probabilistic rules. In general, the GA 
mutation probability is fi xed throughout the whole search process. However, 
in practical application of DNRC, a small fi xed mutation probability can only 
result in a premature convergence. Here, an adaptive mutation process is used 
to change the mutation probability, i.e.,

    p k

p k p if f k

p k p if f k+( ) =
( ) − ( )
( ) − ( )1

step

step

unchanged

de

,

,
min

min ccreased

final step finalp if p k p p, ( ) − <

⎧
⎨
⎪

⎩⎪
    (12.45)  

    p p0 1 0( ) = =init .     (12.46)  

    pstep = 0 001.     (12.47)  

    pfinal = 0 05.     (12.48)  

where  k  is the generation number and  p  is the mutation probability. 
 The mutation scale will decrease as the process continues. The minimum 

mutation probability in this study is given as 0.05. This adaptive mutation 
not only prevents premature convergence, but also leads to a smooth 
convergence.   

  12.6.3   Numerical Examples 

 The modifi ed GA approach for distribution network reconfi guration is tested 
on the 16 - bus and 33 - bus distribution systems. System data and parameters of 
the 16 - bus system are listed in Table  12.11 . The 16 - bus test system, which is 
shown in Figure  12.7 , contains 3 source transformers and 13 load nodes. The 
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3 initially open switches are  “ 4, ”   “ 11, ”  and  “ 13. ”  The total system load is 
23.7   MW, while the initial system power loss is 0.5114   MW. The 33 - bus test 
system consists of 1 source transformer and 32 load points. The 5 initially open 
switches are  “ 33, ”   “ 34, ”   “ 35, ”   “ 36, ”  and  “ 37. ”  The total system load is 
3.715   MW, while the initial system power loss is 0.202674   MW. The system 
base is  V    =   12.66   kV and  S    =   10   MVA. 

 Table 12.11     System data and parameters for 16 - bus distribution network  

   Line 
 No.  

   Node 
  i   

   Node 
  j   

   Resistance 
  R  ( Ω )  

   Reactance 
  X  ( Ω )  

   Receiving Node  j      Receiving 
Node  j  

 Voltage (p.u.)      P  (MW)      Q  (MVAr)  

  1    1    4    0.0750    0.1000    2.0    1.6    0.9907    ∠     − .3968  
  3    4    5    0.0800    0.1100    3.0    0.4    0.9878    ∠     − .5443  
  2    4    6    0.0900    0.1800    2.0     − 0.4    0.9860    ∠     − .6972  
  5    6    7    0.0400    0.0400    1.5    1.2    0.9849    ∠     − .7043  
  7    2    8    0.1100    0.1100    4.0    2.7    0.9791    ∠     − .7635  
  8    8    9    0.0800    0.1100    5.0    1.8    0.9711    ∠     − 1.452  
  9    8    10    0.1100    0.1100    1.0    0.9    0.9769    ∠     − .7701  
  6    9    11    0.1100    0.1100    0.6     − 0.5    0.9710    ∠     − 1.526  

  10    9    12    0.0800    0.1100    4.5     − 1.7    0.9693    ∠     − 1.837  
  15    3    13    0.1100    0.1100    1.0    0.9    0.9944    ∠     − .3293  
  14    13    14    0.0900    0.1200    1.0     − 1.1    0.9948    ∠     − .4562  
  16    13    15    0.0800    0.1100    1.0    0.9    0.9918    ∠     − .5228  
  12    15    16    0.0400    0.0400    2.1     − 0.8    0.9913    ∠     − .5904  

  4    5    11    0.0400    0.0400              
  13    10    14    0.0400    0.0400              
  11    7    16    0.0900    0.1200              

     FIGURE 12.7     A 16 - bus distribution system  
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 Results on the two systems are listed in Tables  12.12  and  12.13 . By compar-
ing the results with reference  [8] , it can be seen that global optima have been 
found by the refi ned genetic algorithm.   

  12.7   MULTIOBJECTIVE EVOLUTION PROGRAMMING TO  DNRC  

 Reducing the real power loss is the primary aim of network reconfi guration. 
Thus power loss is generally selected as the objective function of DNRC. If 
we handle some power and voltage constraints as objective functions, the 
DNRC will become a constrained multiobjective optimization problem. 

  12.7.1   Multiobjective Optimization Model 

 Three objective functions are considered here, they are minimization of power 
losses, minimizing the deviation of node voltage, and maximizing the branch 
capacity margin, which are expressed as follows. 

  (1)     Minimization of power losses

    Min f k R
P Q

V
l NLl l

l l

ll

NL

1

2 2

2
1

= +⎛
⎝⎜

⎞
⎠⎟ ∈

=
∑     (12.49)    

  (2)     Minimizing the deviation of node voltages

    Min ratef V V i Ni i2 = − ∈max     (12.50)  

 Table 12.12      DNRC  results for 16 - bus test system 

   Radial network     Initial network     Refi ned GA method  

  Open Switches    Switch 4    Switch 6  
  Switch 11    Switch 9  
  Switch 13    Switch 11  

  Power loss (MW)    0.5114    0.4661  

 Table 12.13     Comparison of  DNRC  results for 33 - bus test system 

   Radial network     Initial network     Method in ref.  [8]      Refi ned GA method  

  Open switches    Switch 33    Switch 7    Switch 7  
  Switch 34    Switch 10    Switch 9  
  Switch 35    Switch 14    Switch 14  
  Switch 36    Switch 33    Switch 32  
  Switch 37    Switch 37    Switch 33  

  Power loss (MW)    0.202674    0.141541    0.139532  
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where

   V i   rate :    The rated voltage at node  i   
  f  2 :    The maximal deviation of node voltage in the network   

Obviously, lower  f  2  values indicate a higher - quality voltage profi le and 
better security of the considered network confi guration.  

  (3)     Branch capacity margin

    Min f
S S

S
l NL

l

l l

l
3 1= − −⎡

⎣⎢
⎤
⎦⎥

∈min max

max
    (12.51)     

where

   S l   max :    The megavolt amperes (MVA) capacity of the branch  l   
  S l  :    The actual megavolt amperes (MVA) loading of the branch  l   
  f  3 :    The relative value of the margin between the capacity and the actual 

megavolt amperes (MVA) loading of the branch    

 Obviously, a lower  f  3  indicates a greater MVA reserve in the branches, 
implying that the considered network confi guration is more secure. 

 Since the node voltages and branch fl ows are refl ected in the objective 
functions, the corresponding constraints are omitted. The remaining con-
straints will be KCL and KVL laws, as well as network topological constraints 
equation  (12.6) .  

  12.7.2    EP  - Based Multiobjective Optimization Approach 

  12.7.2.1   Multiobjective Optimization Algorithm   [28 – 29]       The above -
 mentioned multiobjective DNRC problem can be expressed in the following 
form:

    Min of x i Nl ( ) ∈,     (12.52)  

subject to

    g x( ) = 0     (12.53)  

    h x( ) ≤ 0     (12.54)  

where  N  o  is number of objective functions, and  x  is the decision vector. 
 These three objective functions are competing with each other; no point  X  

simultaneously minimizes all of the objective functions. This multiobjective 
optimization problem can be solved by using the concept of noninferiority. 
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   Defi nition     The  feasible region of the constraints ,  Ω , in the decision vector 
space  X  is the set of all decision vectors  x  that satisfy the constraints, such that

    Ω = ( ) = ≤ ( ) ={ }x g x h x0 0,     (12.55)   

 The  feasible region of objective functions ,  ψ , in the objective function space 
 F  is the image of  f  of the feasible region  Ω  in the decision vector space

    Ψ Ω= = ( ) ∈{ }f f f x x,     (12.56)   

 A point   x̂      ∈     Ω  is a  local noninferior point  if and only if for some neighborhood 
of   x̂  , there does not exist a  Δ  x  such that

    x̂ x+ ∈Δ Ω     (12.57)  

and

    f x x f x i Ni i+( ) ≤ ( ) =Δ ˆ , , , ,1 2… o     (12.58)  

    f x x f x j Nj j+( ) < ( ) ∈Δ ˆ , for some o     (12.59)   

 A point   x̂      ∈     Ω  is a  global noninferior point  if and only if no other point  x     ∈     Ω  
exists there such that

    f x f x i Ni i( ) ≤ ( ) =ˆ , , , ,1 2… o     (12.60)  

    f x f x j Nj j( ) < ( ) ∈ˆ , for some o     (12.61)    

  Thus a global noninferior solution of the multiobjective problem is one in 
which any improvement of one objective function can be achieved only at the 
expense of at least one of the other objectives. Typically, an infi nite number 
of noninferior points exist in a given multiobjective problem. A noninferior 
point is the same as the intuitive notion of an optimum trade - off solution, since 
a design is noninferior if improving an objective requires degradation in at 
least one of the other objectives. Clearly, if a decision - maker were able, he or 
she would not want to choose an inferior design. Thus the decision - maker 
attempts to generate noninferior solutions to a multiobjective problem when 
trying to obtain a fi nal design. 

 The decision - maker combines subjective judgment with quantitative analy-
sis, since the noninferior optimal solutions generally consist of an infi nite 
number of points. This section introduces the interactive fuzzy satisfying algo-
rithm based on evolution programming (EP) to determine the optimal nonin-
ferior solution for the decision - maker.  
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  12.7.2.2    EP  Algorithm with Fuzzy Objective Functions 

  12.7.2.2.1   Fuzzy Objective Function     A fuzzy set is typically represented 
by a membership function. A higher membership function implies greater 
satisfaction with the solution. One of the typical membership functions is the 
triangle, which is shown in Figure  12.8 . 

 Here, we use the triangle model for representing fuzzy objective functions. 
The triangle membership function consists of lower and upper boundaries, 
together with a strictly monotonically decreasing membership function, which 
can be expressed as below.

    μ f x
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    (12.62)    

  12.7.2.2.2   Evolution Programming   [21]       The state variable   X
−

   represents a 
chromosome of which each gene represents an opened switch to the network 
reconfi guration problem. The fi tness function of   X

−
   can be defi ned as

    C X
F X

( ) =
+ ( )

1
1

    (12.63)  

where

    F X
x i N

f f X
o

i i( ) = −⎡⎣ ⎤⎦{ }∈ = ( )Min Max
Ω 1 2, , ,…

μ μ     (12.64)  

where

    μ fi  :   The expected values of the objective function  
   μ f Xi ( ) :   The actual values of the objective function 
   C (  X

–
  ) :   The fi tness function    

     FIGURE 12.8     Fuzzy membership model  
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 The function  F (  X
–

  ) is to minimize the objective with a maximum distance 
away from its expected value among the multiple objectives function. 
For a given   μ fi , the solution reaches the optimum as the fi tness value increases. 

 The steps of EP are detailed as follows.

   Step (1):     Input parameters. 
 Input the parameters of EP, such as the length of the individual and the 
population size  N P  .  

  Step (2):     Initialization. 
 The initial population is determined by selecting  P j   from the set of the 
original switches and their derivatives according to the mutation rules.  P j   is 
an individual,  j    =   1, 2,  … ,  N  P , with  N  S  dimensions, where  N  S  is the total 
number of switches.  

  Step (3):     Scoring 
 Calculate the fi tness value of an individual by equations  (12.63)  and  (12.64) .  

  Step (4):     Mutation 
 In the network reconfi guration problem, the radial structure must be 
retained for each new structure and power must be supplied to each loading 
demand. Consequently, each  P j   is mutated and assigned to   Pj N+ P

. The 
number of offspring  n j   for each individual  P j   is given by

    n G N
C

C
j

j

j
j

N= ×

⎛

⎝

⎜
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⎞

⎠

⎟
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⎟

=
∑

P

1

    (12.65)  

where  G ( x ) is a function that rounds the element of  x  to the nearest integer 
number. More offspring are generated from the individual with a greater 
fi tness. A combined population is formed from the old generation, and the 
new generation is mutated from the old generation.  

  Step (5):     Competition. 
 Each individual  P j   in the combined population has to compete with some 
other individuals to have the opportunity to be transcribed to the next 
generation. All individuals of the combined population are ranked in 
descending order of their corresponding fi tness values. Then the fi rst  N P   
individuals are transcribed to the next generation.  

  Step (6):     Stop criterion. 
 Convergence is achieved when either the number of generations reaches 
the maximum number of generations or the sampled mean fi tness function 
values do not change noticeably throughout several consecutive genera-
tions. The process will stop if one of these conditions is met; otherwise, it 
returns to the mutation step.      
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  12.7.2.3   Optimization Approach     For using the fuzzy objective function, 
the values of expected membership functions will be selected to generate a 
candidate solution of the multiobjective problem. The expected value is a real 
number in [0, 1] and represents the importance of each objective function. The 
above - mentioned min - max problem is solved to generate the optimal solution. 
The optimization technique can now be described as follows. 

  Step (1):     Input the data and set the interactive pointer  p    =   0  
  Step (2):     Determine the upper and lower bounds for every objective function 

 f i   max  and  f i   min , as well as fuzzy membership   μ f Xi ( ).  
  Step (3):     Set the initial expected value of each objective function   μ fi 0( )  for 

 i    =   1, 2,  … ,  N  o   
  Step (4):     Apply EP to solve the min - max problem (64).  
  Step (5):     Calculate the values of   X

−
  ,  f i  (  X

−
  ), and   μ f Xi ( ). Go to the next step if 

they are satisfactory. Otherwise, set the interactive pointer  p    =    p    +   1 and 
choose a new expected value   μ f pi ( ) ,  i    =   1, 2,  … ,  N  o . Then go to step (4).  

  Step (6):     Output the most satisfactory feasible solution  X  * ,  f i  ( X  * ), and   μ f Xi *( )        

  12.8   GENETIC ALGORITHM BASED ON MATROID THEORY 

 Section  12.5  analyzed the application of GAs to solve the DNRC problem in 
equations  (12.1) – (12.6) . To accelerate the GA convergence, a GA based on 
network matroid theory  [30]  is used to solve the same DNRC problem in this 
section. 

  12.8.1   Network Topology Coding Method 

 The distribution network topology coding method is fundamental for the GA 
convergence. On the one hand, a complex strategy could increase considerably 
the convergence time. On the other hand, a simple strategy does not allow an 
effective exploration of the research fi eld. Various coding strategies are 
detailed in this section, and the GA operator ’ s mechanisms are explained. 
Finally, their advantages and drawbacks are discussed. 

  12.8.1.1   Different Topology Coding Strategies     The most simple topol-
ogy representation for the GA is to consider a topology string formed by the 
binary status (closed/open) of each network branch  [31]  or at least each 
network switch. In  [18]  the arc (a branch or a series of branches) number and 
the switch position in each branch are considered for the radial topology rep-
resentation. In  [1, 32] , only the opened switches positions are stored in the 
topology string. 

 Reference  [17]  proposes an effi cient modeling method for distribution 
network connectivity. The path (a set of branches to the source) is determined 
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for each node of the network. For a radial confi guration, only a path to the 
source  S  is considered for each node. This method is discussed in Section  12.5 . 
For example, in the simple topology in Figure  12.9 , paths from each node to 
the source  S  are

    a a a a: , , , , , , , ,π π π1 2 31 10 2 3 4 10 7 8 9= [ ] = [ ] = [ ]  

    π π π4 5 62 3 5 6 8 9 2 3 5 6 7 10 2 3 4 7 8 9a a a= [ ] = [ ] = [ ], , , , , , , , , , , , , , , , ,  

    b b b b: , , , , , , , , , ,π π π1 2 33 4 10 2 1 10 3 4 6 8 9= [ ] = [ ] = [ ]  

    π π π4 5 63 5 6 7 10 2 1 7 8 9 3 4 7 8 9b b b= [ ] = [ ] = [ ], , , , , , , , , , , , , ,  

    g g g g g: , , , , , , , , , , , , , , ,π π π π1 2 3 48 7 10 9 8 6 5 4 10 8 6 5 3 2 1 10= [ ] = [ ] = [ ] = [[ ]  

 As mentioned in Section  12.5 ,   πi
j  is the path number  i  between node  j  and 

source  S . 
 The general structure of the topology string for the simple topology in 

Figure  12.9  can be handled like this: For node  a , only one of four paths is 
represented by bit 1, the rest are represented by bit 0. The same procedure is 
used for the other nodes.  

  12.8.1.2   The  GA  Operators     As we discussed above, the GA operators are 
mutation, selection, and crossover. The crossover is the most important opera-
tor of the GA. The traditional crossover process randomly selects two parents 
(chromosomes) for a gene exchange with a given crossover rate. This operator 
aims at mixing up genetic information coming from the two parents, to create 
new individuals. 

 The coding diagram is very important for the success of the crossover 
operation. A binary coding method cannot allow a high effi ciency of the cross-

     FIGURE 12.9     A simple meshed topology  
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over process. Furthermore,  mesh checks  must be performed in order to vali-
date each resulting topology (to detect any loop in the network or any not 
energized node). 

 The mutation operator can allow GA to avoid local optima. This operator 
randomly changes one gene in the string, and is applied with a probability that 
has been set in the initial phase. As in the crossover process, the topology 
coding strategy is very important for a fast and effective mutation 
operation.   

  12.8.2    GA  with Matroid Theory 

 The reconfi guration problem tries to fi nd out the optimal spanning tree among 
all the spanning trees of the DN graph for a given objective. In the fi rst part 
of this section, an interesting property of the graph spanning trees is discussed. 
In the second part, it is shown that this can be generalized by using some 
properties proved for the matroid theory. The GA operators are then explained 
based on this new theoretical approach. 

  12.8.2.1   The Kruskal Lemma for the Graph Spanning Trees     For the 
graphs, the spanning trees exchange property has been proved by Kruskal  [33] :

  Let  U  and  T  be two spanning trees of the graph  G , let  a     ∈     U ,  a     ∉     T ; then there 
exists  b     ∈     T , such that  U     −     a    +    b  is also a spanning tree in the graph  G .   

 For the graph represented in Figure  12.9 , two spanning trees are drawn in 
Figure  12.10 . Consider  a    =   6( a     ∉     T ), edge in the  U  spanning tree. One edge  b  
that replaces  a    =   6 in  T  in order to form another spanning tree can be found. 
Edge  b  can be selected in the loop formed by  T     ∪     a (=6). In Figure  12.10 , this 
loop is formed by branches 4, 5, 6, and 7 (dotted arrow). Only edges 5 and 7 
can replace edge 6 in  U . Finally, edge 5 is chosen to replace edge 6 in  U , and 
a new spanning tree is obtained (see the resulting tree in Fig.  12.10 ). 

 The matroid theory abstracts the important characteristics of matrix theory 
and graph theory. A matroid is defi ned by axioms of independent sets  [34] . 

 A pair ( S ,  T ) is called a matroid if  S  is a fi nite set and  T  is a nonempty col-
lection of subsets of  S :

    if and  thenI T J I J T∈ ⊆ ∈,  

    if and then for some I J T I J I z T z J I, , \∈ ≤ + ∈ ∈   

 The  “  base  ”  concept has to be introduced. For  U     ⊆     S , a subset  B  of  U  is 
called a base of  U  if  B  is an inclusionwise maximal independent subset of  U  
 [34] . That is,  B     ∈     T , and there is no  Z     ∈     T  with  B     ⊂     Z     ⊆     U . A subset of  S  is 
called  spanning  if it contains a base like a subset, so bases are just the inclu-
sionwise minimal and independent spanning sets. 
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 One of the matroid classes is the  graphic matroids . Let  G    =   ( V ,  E ) be a 
graph (with  V  the vertices set and  E  the edges set). Let  T  be the collection of 
all subsets of  E  that form a  forest  (a graph in which any 2 vertices are con-
nected by only 1 path); then  M    =   ( E ,  T ) is a matroid. The matroid  M  is called 
the  cycle matroid  of graph  G , denoted  M  ( G ). The bases of  M ( G ) are exactly 
the inclusionwise maximal forests of  G . So if graph  G  is connected, the bases 
are spanning trees (the forest equivalent for a connected graph or radial con-
fi gurations for a DN). 

 To link these theoretical aspects with the problem of spanning trees 
(radial topologies), the exchange property of bases, given in reference  [34] , is 
considered. 

 Let  M    =   ( S ,  T  ) be a matroid. Let  B  1  and  B  2  be bases and let  x     ∈     B  1 \ B  2 . 
Then there exists an element  y     ∈     B  2 \ B  1  such that both  B  1     −     x    +    y  and  B  2     −     y    +    x  
are bases.  

  12.8.2.2   Application to the  DN  Topology Modeling for  GA      According 
to graph theory, the group (the set of graph edges, the collection of all span-
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     FIGURE 12.10     Branch exchange between 2 spanning trees  
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ning trees) is a matroid. The spanning tree of a graph is a base. A branch 
exchange between two spanning trees of the same graph is always possible. 
New spanning trees for the same graph are obtained. 

 Furthermore, based on the matroid theory approach, not only one spanning 
tree is obtained (as shown in Fig.  12.10 ), but two spanning trees are obtained. 
Moreover, in order to fi nd easily which edge in a spanning tree can replace 
another in the other spanning tree, the loop formed by adding the edge the 
other spanning tree must be determined. 

 From an electrical point of view, the branch exchange between two span-
ning trees can be seen as a load transfer between two supply points or between 
two paths to the same supply point. 

 The matroid approach allows the use of GA operators without checking 
the DN graph planarity. Besides, based on this approach, the GA operator 
success is always guaranteed, without a supplementary mesh check and extra 
computation time. An example is given in the next subsection.  

12.8.2.3 GA Operators Based on the Matroid Approach   Examples for 
the mutation and crossover operators and initial population are given using 
the matroid approach  [30]  and applied to the graph illustrated in Figure  12.9 . 

12.8.2.3.1 Crossover   The crossover operator represents a gene exchange 
between two chromosomes. One or multiple crossover points can be randomly 
chosen. For the reconfi guration problem, this operation means one or several 
edges are exchanged between two spanning trees for a given DN graph. 

 In Figure  12.11 , the fi rst step for a crossover operation is shown between 
two chromosomes. Each chromosome represents two spanning trees for the 
graph illustrated in Figure  12.9 . Only the open branches are considered here. 
In the graph theory this is called the co- tree  concept (the branches missing 
from the tree). The theoretical approach given in the previous paragraph can 
be reformulated for the co - trees: A bidirectional branch exchange can be 
performed in order to obtain new co - trees. A crossover point is randomly 
chosen between the fi rst and the second gene of the upper co - tree (see Fig. 
 12.11 ). In the corresponding co - tree represented by  [30] , the genes (branches) 
7 and 5 have to be exchanged with branches in the second co - tree. 

 First, branch 7 is replaced. To identify rapidly what branches of the second 
co - tree could replace branch 7, the loop formed by closing branch 7 in the 
upper tree is determined (see the dotted arrow in Fig.  12.11 ). For this purpose, 
a depth - fi rst graph search  algorithm was used  [34] . This loop is formed by 
branches 7, 8, 9, and 10. Only branch 8 is in the lower co - tree; it can then 
replace branch 7. The same procedure is employed in the second step.  

12.8.2.3.2 Mutation   The mutation process is shown in Figure  12.12 . After 
random selection of one (or multiple) branches in the chosen co - tree to be 
mutated, the corresponding loop is determined with a depth - fi rst graph search 
algorithm (see the interrupted arrow in Fig.  12.12 ). 
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     FIGURE 12.11     Crossover process based on the matroid approach (step 1)  
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     FIGURE 12.12     Mutation process based on the matroid approach  
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 A new branch is randomly chosen in this loop, in order to replace the fi rst 
selected. Any other test is not necessary to validate the new radial 
confi guration.  

12.8.2.3.3 Initial Population Generation   Even if this step is performed 
once in the GA process, the randomly creation of the initial population can 
be time consuming. The initial population is generated by using the mutation 
process shown in Fig.  12.12 . An initial feasible chromosome (co - tree) is ran-
domly generated. The mutation process is used to randomly change each 
initial co - tree branch. The new chromosome feasibility is also implicitly guar-
anteed. The process is progressively repeated in order to create the initial 
population. 

 The same 33 - bus system used in Section  12.4  is adopted for the DNRC test. 
The results and comparison are listed in Table  12.14 , where the results based 
on refi ned GA and matroid theory - based GA are better than those based on 
the branch exchange method.     
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     In most cases for the fi rst 12 chapters, the variables and parameters have been 
deterministic. Actual power systems exhibit numerous parameters and phe-
nomena that are either nondeterministic or so complex and dependent on so 
many diverse process that they may readily be regarded as nondeterministic 
or uncertain. This chapter comprehensively deals with various uncertain prob-
lems in power system operation such as uncertainty load analysis, probabilistic 
power fl ow, fuzzy power fl ow, economic dispatch with uncertainties, fuzzy 
economic dispatch, hydrothermal system operation with uncertainty, unit 
commitment with uncertainties, VAR optimization with uncertain reactive 
load, and probabilistic optimal power fl ow.  

13.1 INTRODUCTION

 The planning process of the regulated utilities does not capture the uncertain-
ties in the operation and planning of power systems. In particular, the factors 
of uncertainty are increasing as the utility industry undergoes restructuring. 
Because of the restructuring under the pressure of various driving forces, we 
can foresee that those changes will become even wider in the near future. This 
is mainly because of the impact of many uncertainty factors and external 
factors related to the environment of this industry. Therefore, modern power 
systems are facing many new challenges, owing to environment and market 
pressures, as well as more uncertainties and/or inaccuracies  [1 – 11] . 
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Environmental pressure implies more loaded networks, market pressure 
increases competition, while uncertainty and inaccuracy increase the complex-
ity of operation and planning. Consequently, these new challenges have huge, 
direct impacts on the operation and planning of modern power systems. They 
also raise some high requirements for modern power systems operation, i.e., 

   (a)     A stronger expectation from customers for higher reliability and quality 
of supply owing to the uncertainty factors as well as the increase of the 
share of electrical power in their overall energy consumption  

   (b)     More electricity exchanges across large geographical areas resulting 
from a greater cooperation in the electricity market and greater com-
petition in the energy market. There also exist lots of uncertainties in 
both the electricity market and the energy markets.  

   (c)     Low production fuel cost and low price of electricity are needed in 
order to achieve the competitive strength in the energy market.    

 Furthermore, we can guarantee or say only one thing with absolute cer-
tainty in the modern electrical power industry: We are living and working with 
many unknowns  [2] . Especially in modern power system operation, several 
inaccuracies and uncertainties will lead to deviation from operation and plan-
ning. These are mainly on the one hand the inaccuracies and uncertainties in 
input information, which is needed by operation and planning, and on the 
other hand modeling and solution inaccuracies. Therefore, it is very important 
to analyze the uncertainty in modern power system operation and to use the 
available controls to ensure the security and reliability of power systems.  

13.2 DEFINITION OF UNCERTAINTY 

 Generally speaking, there are two kinds of uncertainties in power systems 
operation and planning  [4] : 

  (1)     Uncertainty in a mathematical sense, which means difference between 
measured, estimated values and true values; includes errors in observa-
tion or calculation  

  (2)     Sources of uncertainty, including transmission capacity, generation 
availability, load requirements, unplanned outages, market rules, fuel 
price, energy price, market forces, weather and other interruptions, etc.    

 These uncertainties will affect power systems planning and operation in the 
following aspects: 

 •      Entry of new energy producing/trading participants  
 •      Increases in regional and intraregional power transactions  
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   •      Increasingly sensitive loads  
   •      New types and numbers of generation resources     

  13.3   UNCERTAINTY LOAD ANALYSIS 

 Power loads, especially residential loads, are variable and uncertainty data. For 
example, the variability of the electricity consumption of a single residential 
customer generally depends on the presence at home of the family members 
and on the time of use of a few high - power appliances with relatively short dura-
tion of use during the day, and is subject to very high uncertainty. Probabilistic 
analysis and fuzzy theory can be used to analyze the uncertainty load. 

  13.3.1   Probability Representation of Uncertainty Load 

 Different probability distribution functions may be selected for the different 
kinds of uncertainty load. The following probability distribution functions are 
often used  [12] . 

  13.3.1.1   Normal Distribution     The general formula for the probability 
density function of the normal distribution for uncertain load  P  D  is
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where

   P  D :    The uncertain load  
  μ :    The mean value of the uncertain load. It is also called the location 

parameter.  
  σ :    The standard deviation of the uncertain load. It is also called the scale 

parameter.    

 The shape of the plot of the normal probability density function is shown 
in Figure  13.1 .    

  13.3.1.2   Lognormal Distribution     Many probability distributions are not 
a single distribution, but are in fact a family of distributions. This is due to the 
distribution having one or more shape parameters. 

 Shape parameters allow a distribution to take on a variety of shapes, 
depending on the value of the shape parameter. These distributions are 
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particularly useful in modeling applications since they are fl exible enough to 
model a variety of uncertainty load data sets. The following is the equation of 
the lognormal distribution for uncertain load  P  D .

    f P
e
P

P m

a

D
D

D

( ) =
−( )

− −( )( )( )ln μ

σ μ π

2

2 2

2
    (13.3)  

    PD ≥
>

μ
σ 0

    (13.4)  

where

   m :    The scale parameter  
 ln:    The natural logarithm    

 Figure  13.2  is an example of the shape for the plot of the lognormal prob-
ability density function for four values of   σ  .    

  13.3.1.3   Exponential Distribution     The formula for the probability density 
function of the exponential distribution for uncertain load  P  D  is

    f P
e

b

P
b

D

D

( ) =
− −μ

    (13.5)  

    P
b

D ≥
>

μ
0

    (13.6)  

     FIGURE 13.1     The plot of the normal probability density function  
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where

   b :    The scale parameter    

 Figure  13.3  is an example of the shape for the plot of the exponential prob-
ability density function.    

  13.3.1.4   Beta Distribution     The general formula for the probability density 
function of the beta distribution for uncertain load  P  D  is

    f P
P d c P

B a b c d

a b P d ca b

a b

a

D
D D D( ) =

−( ) −( )
( ) −( )

=
+( ) −( ) −− −

+ −

−1 1

1

1

,

Γ PP

a b c d

b

a b
D( )

( ) ( ) −( )

−

+ −

1

1Γ Γ
    (13.7)  

    

d P c

a

b

≤ ≤
>
>

D

0

0

    (13.8)  

     FIGURE 13.2     The plot of the lognormal probability density function  
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where

   a ,  b :    The shape parameters  
  c :    The upper bound  
  d :    The lower bound  
  B ( a , b ):    The beta function    

 Typically we defi ne the general form of a distribution in terms of location 
and scale parameters. The beta is different in that we defi ne the general dis-
tribution in terms of the lower and upper bounds. However, the location and 
scale parameters can be defi ned in terms of the lower and upper limits as 
follows: 

  location   =    d   
  scale   =    c     −     d     

 Figure  13.4  is an example of the shape for the plot of the beta probability 
density function for four different values of the shape parameters.    

  13.3.1.5   Gamma Distribution     The general formula for the probability 
density function of the gamma distribution for uncertain load  P  D  is

    f P
P
b a

e
a

a

P
b

D
D

D

( ) = −( )
( )

−
−( )−μ μ1

Γ
    (13.9)  

     FIGURE 13.3     The plot of the exponential probability density function  
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P

a

b

D ≥
>
>

μ
0

0

    (13.10)  

where a is the shape parameter,  μ  is the location parameter,  b  is the scale 
parameter, and  Γ  is the gamma function, which has the formula

    Γ a t e dta l( ) = − −∞

∫ 1

0
    (13.11)   

 Figure  13.5  is an example of the shape for the plot of the gamma probability 
density function.    

     FIGURE 13.4     The plot of the beta probability density function  
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  13.3.1.6    G umbel Distribution     The Gumbel distribution is also referred 
to as the extreme value type I distribution. The extreme value type I distribu-
tion has two forms. One is based on the smallest extreme, and the other is 
based on the largest extreme. We call these the minimum and maximum cases, 
respectively. Formulas and plots for both cases are given. 

 The general formula for the probability density function of the Gumbel 
(maximum) distribution for uncertain load  P  D  is

    f P
b

e e
P
b

P
be

D

D D

( ) =
− −( )( ) −1 μ μ

    (13.12)  

    −∞ ≤ ≤ ∞
>

P
b

D

0
    (13.13)  

where  μ  is the location parameter and  b  is the scale parameter. 
 Figure  13.6  is an example of the shape for the plot of the Gumbel probabil-

ity density function for the maximum case.    

     FIGURE 13.5     The plot of the gamma probability density function  
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  13.3.1.7   Chi - Square Distribution     The chi - square distribution results 
when  v  independent variables with standard normal distributions are squared 
and summed. The formula for the probability density function of the chi -
 square distribution for uncertain load  P  D  is

    f P
P

v
e

v

v

P

D
D D

( ) = ( )
−

−( )2

2

2

1

2
2

Γ
    (13.14)  

    PD ≥ 0     (13.15)  

where  v  is the shape parameter and  Γ  is the gamma function. 
 Figure  13.7  is an example of the shape for the plot of the chi - square prob-

ability density function for four different values of the shape parameter.    

  13.3.1.8    W eibull Distribution     The formula for the probability density 
function of the Weibull distribution for uncertain load  P  D  is

    f P
a P

b
e

a

a

P
b

a

D
D

D

( ) = −( ) −
−( )−μ μ1

    (13.16)  

    

P

a

b

D ≥
>
>

μ
0

0

    (13.17)  

where  a  is the shape parameter,  μ  is the location parameter, and  b  is the scale 
parameter. 

     FIGURE 13.6     The plot of the Gumbel probability density function  
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 Figure  13.8  is an example of the shape for the plot of the Weibull probabil-
ity density function.     

  13.3.2   Fuzzy Set Representation of Uncertainty Load 

 The uncertainty load  P  D  can also be represented by fuzzy sets, which are 
defi ned in the numbers set  R  and satisfy the normality and boundary condi-
tions that are designed by fuzzy numbers. The membership function of a fuzzy 
number for the uncertainty load  P  D  corresponds to:

    μP x RD( ) ∈[ ]: ,0 1     (13.18)   

 The easiest way to express the fuzzy number is the LR fuzzy number. The 
uncertainty load  P  D  is said to be an LR type fuzzy number if

    μP x

L
m x

a
x m a

R
m x

b
x m b

D ( ) =

−⎛
⎝

⎞
⎠ ≤ >

−⎛
⎝

⎞
⎠ ≥ >

⎧

⎨
⎪⎪

⎩
⎪
⎪

, ,

, ,

0

0
    (13.19)  

     FIGURE 13.7     The plot of the chi - square probability density function  
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where  m  is the mean value of load  P  D . 
 The LR type fuzzy number of the uncertainty load  P  D  can be written as

    P m a bD LR= ( ), ,     (13.20)   

 One of the common LR fuzzy numbers is the triangular fuzzy number, 
which is shown in Figure  13.9 .   

 The membership function of the fuzzy load in Figure  13.9  can be expressed 
as:

    μ

α
α

α

β
β

βP x

x d
x d d

d x
x d dD

if

if

other

( ) =

− −( )
∈ −( )[ ]

+( ) −
∈ +( )[ ]

, ,

, ,

,0 wwise

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

    (13.21)  

where

     FIGURE 13.8     The plot of the Weibull probability density function  

0 1 2 5

0

2

5

X

Weibull PDF (gamma = 0.5)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

4

3

1

3 4 0 1 4 5

0

0.1

0.75

X

Weibull PDF (gamma = 1)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0.5

32

0.25

0 1 4 5

0

0.2

0.8

0.9

0.5

X

Weibull PDF (gamma = 2)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0.4

0.6

0.7

0.1

0.3

2 3 0 2 4 5

0

1

2

1.5

X

Weibull PDF (gamma = 5)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0.5

1 3



556 UNCERTAINTY ANALYSIS IN POWER SYSTEMS

   d :    The model value of uncertainty load  
  α :    The inferior dispersion of uncertainty load  
  β :    The superior dispersion of uncertainty load    

 The principle of fuzzy number can be used to handle the uncertainty load. 
For example, for getting the sum of two uncertainty loads with positive trian-
gular fuzzy number, the following fuzzy operation is used: 

 Let uncertainty load 1 be

    P dD LR1 1 1 1= ( ), ,α β     (13.22)  

and uncertainty load 2

    P dD LR2 2 2 2= ( ), ,α β     (13.23)   

 The sum of the two uncertainty loads will be

    d d d d1 1 1 2 2 2 1 2 1 2 1 2, , , , , ,α β α β α α β β( ) ⊕ ( ) = + + +( )LR LR LR     (13.24)   

 Sometimes, a simple way to represent the uncertainty load is by using an 
interval format of fuzzy numbers, which is based on  γ  - cuts of fuzzy numbers. 
The values of  γ  are within between 0 and 1. Applying the  γ  - cuts, the uncer-
tainty load  P  D  can be represented as:

    P d dD
γ γα α β γβ= + −( ) +( ) −[ ],     (13.25)  

or

    P P PD D D
γ γ γ= [ ]min max,     (13.26)  

    P dDmin
γ γα α= + −( )     (13.27)  

    P dDmax
γ β γβ= +( ) −     (13.28)   

 For two different  γ  - cuts ( γ  1    <     γ  2), the relationship of two interval values of 
uncertainty load  P  D  is:

     FIGURE 13.9     Uncertainty load with triangular fuzzy number  
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    P P P PD D D Dmin max min max, ,γ γ γ γ2 2 1 1[ ] ⊂ [ ]     (13.29)   

 If there are two uncertainty loads  P  D1  and  P  D2 ,

    P P PD D D1 1 1= [ ]min max,     (13.30)  

    P P PD D D2 2 2= [ ]min max,     (13.31)   

 Addition, subtraction, multiplication, and division of two uncertainty loads 
are defi ned as

    

P P P P P P

P P P
D D D D D D

D D D

1 2 1 1 2 2

1 2 1

+ = [ ] + [ ]
= +

min max min max

min min m

, ,

, aax max+[ ]PD2     (13.32)  

    

P P P P P P

P P P
D D D D D D

D D D

1 2 1 1 2 2

1 2 1

− = [ ] − [ ]
= −

min max min max

min max m

, ,

, aax min−[ ]PD2     (13.33)  

   

P P P P P P

P P P
D D D D D D

D D

1 2 1 1 2 2

1 2

× = [ ] × [ ]
= ×

min max min max

min min

, ,

min , DD D D D D D

D D

1 2 1 2 1 2

1 2

min min max min max max

min

, , ,
max

× × ×( )[
×

P P P P P
P P mmin min min max min max max, , ,P P P P P PD D D D D D1 2 1 2 1 2× × ×( )]

   (13.34)  

   

P P P P P P

P P P
D D D D D D

D D D

1 2 1 1 2 2

1 1 21

= [ ] [ ]
= [ ]

min max min max

min max m

, ,

, aax max min max, ,1 02 2 2P P PD D Dif[ ] ∉[ ]     (13.35)   

 Some of the algebraic laws valid for real numbers remain valid for intervals 
of fuzzy numbers. Interval addition and multiplication are associative and 
commutative: 

   (a)     Commutative:

    P P P PD D D D1 2 2 1+ = +     (13.36)  

    P P P PD D D D1 2 2 1× = ×     (13.37)    

   (b)     Associative:

    P P P P P PD D D D D D1 2 3 1 2 3+( ) ± = + +( )     (13.38)  

    P P P P P PD D D D D D1 2 3 1 2 3×( ) = ×( )     (13.39)    

   (c)     Neutral element:

    P P PD D D1 1 10 0+ = + =     (13.40)  

    1 11 1 1× = × =P P PD D D     (13.41)      
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   Example 13.1 

 There are two uncertainty loads,  P  D1    =   (20,3,5) LR  and  P  D2    =   (23,8,5) LR , which 
are shown in Figure  13.10 .   

 The corresponding fuzzy membership functions can be presented as 
below:

    μP x
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otherwise
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 The sum of two uncertainty loads will be

   20 3 5 23 8 5 43 11 10, , , , , ,( ) ⊕ ( ) = ( )LR LR LR   

 If we represent two uncertainty loads by using an interval format of fuzzy 
numbers and a 0.7 - cut of fuzzy numbers, the uncertainty loads  P  D1  and  P  D2  
can be represented as:

   PD1
0 7 0 7 3 20 3 20 5 0 7 5 19 1 21 5. . , . . , .= × + −( ) +( ) − ×[ ] = [ ]  

   PD2
0 7 0 7 8 23 8 23 5 0 7 5 20 6 24 5. . , . . , .= × + −( ) +( ) − ×[ ] = [ ]   

     FIGURE 13.10     Two uncertainty loads with triangular fuzzy number  
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 The sum of two uncertainty loads with interval format is computed as:

   P P P P P PD D D D D D1
0 7

2
0 7

1
0 7

1
0 7

2
0 7

2
0 7. .

min
.

max
.

min
.

max
., ,+ = [ ] + [ ]

= PP P P PDD D D1
0 7

2
0 7

1
0 7

2
0 7

19 1 20 6 21 5
min

.
min

.
max

.
max

.,

. . , .

+ +[ ]
= + + 224 5

39 7 46

.

. ,

[ ]
= [ ]

  

 The same result can be obtained by using the sum of two uncertainty 
loads  P  Dsum    =   (43,11,10) LR  and a 0.7 - cut of fuzzy numbers, that is,

   PDsum
0 7 0 7 11 43 11 43 10 0 7 10 39 7 46. . , . . ,= × + −( ) +( ) − ×[ ] = [ ]       

  13.4   UNCERTAINTY POWER FLOW ANALYSIS 

 In the general power fl ow analysis, the input variables to the power fl ow 
problem are assumed to be deterministically known. The practical operation 
conditions with uncertainty factors are not considered. Consequently, the 
power fl ow results may not refl ect the real status of system operation. This 
limitation will be overcome if a probabilistic approach or a fuzzy approach is 
applied. 

  13.4.1   Probabilistic Power Flow 

 From Chapter  2 , the standard form of the load fl ow equations in rectangular 
form is:

    P P P Y VVi i i ij i j i j ij
j

= − = − −( )∑G D cos θ θ δ     (13.42)  

    Q Q Q Y VVi i i ij i j i j ij
j

= − = − −( )∑G D sin θ θ δ     (13.43)  

where

   i ,  j :    The bus number  
  P i  :    The net real power injection  
  Q i  :    The net reactive power injection  
  V :    The magnitude of the bus voltage  
  θ :    The phase angle of the bus voltage  
  Y ij  :    The magnitude of the  i  -  j th element of the admittance matrix  
  δ   ij  :    The angle of the  i  -  j th element of the admittance matrix    
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 The power fl ow problem can be expressed as two sets of nonlinear equa-
tions as below:

    Y X= ( )g     (13.44)  

    Z X= ( )h     (13.45)  

where  X  is the vector of unknown state variables (voltage magnitudes and 
angles at  PQ  buses and voltage angles and reactive power outputs at  PV  
buses);  Y  is the vector of predefi ned input variables (real and reactive power 
at  PQ  buses and voltage magnitudes and real power at  PV  buses);  Z  is the 
vector of unknown output variables (real and reactive fl ows in the network 
elements); and  g  and  h  are the power fl ow functions. 

 As we mentioned in Section  13.3 , the input variables such as power loads 
are uncertain and can be expressed with probabilistic distributions. Probabilistic 
power fl ow models input data (generation and loads) in a probabilistic way 
and calculate the probability distribution functions of line fl ows. 

 We assume that the input data have the nature of normal distribution, and 
the mean values and variances of input variables  Y  are   Y

−
   and   σY

2 , respectively. 
With the mean values   Y

−
  , the mean values of the state variables and output 

variables can be computed with conventional power fl ow methods. Then the 
variances of state variables and branch power fl ows can be computed with the 
following formulas.

    σX
tJ J2 1 1= ( )− −

diag Λ     (13.46)  

    σZ
t tD J J D2 1 1= ( )( )− −

diag Λ     (13.47)  

where

    σX
2 :    The variances of state variables  X   

   σZ
2 :    The variances of branch power fl ows  Z   

  J :    The Jacobian matrix of the power fl ow equations  
  Λ :    The diagonal matrix of variances of the injected power   σY

2   
  D :    The fi rst - order matrix from the Taylor series expansion of  g ( x )    

 With mean values and variances of the state variables and output variables, 
the probabilistic distribution of power fl ow is obtained. 

 Probabilistic power fl ow provides the complete spectrum of all probable 
values of output variables, like bus voltages and fl ows, with their respective 
probabilities, taking into account generation unit unavailability, load uncer-
tainty, dispatching criteria effects, and topological variations.  

  13.4.2   Fuzzy Power Flow 

 Fuzzy power fl ow analysis is needed if the input data such as load and genera-
tion power are given as fuzzy numbers. 
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 Section  13.3.2  analyzes the uncertain load by using fuzzy numbers. The 
other input data with uncertainty in power fl ow calculation can be handled as 
the same way. If we use an interval format of fuzzy numbers to deal with the 
uncertain input data, the fuzzy power fl ow can be computed with the interval 
arithmetic method. 

 Power fl ow problems are nonlinear equations  F ( x ). One of the iteration 
operators for the solution of interval nonlinear equations is the Newton 
operator  [13 – 16] :

    N x x x F x F x, :� � �( ) = − ′( ) ( )−1     (13.48)   

 Where

   F  ′ ( x ):    The interval Jacobian matrix  
  N ( x ,   x̃  ):    The Newton operator  
   x̃  :    The midpoint of the interval [ x  min ,  x  max ], defi ned as:   

    �x
x x

: min max= +( )
2

    (13.49)   

 For each iteration, we need to solve the following interval linear equations 
for  Δ  x :

    ′( ) = ( )F x x F xΔ �     (13.50)   

 Therefore, the solution of interval nonlinear equations reduces to the solu-
tions of linear equation, but using interval arithmetic. It is noted that the 
solution of interval linear equations, which is at the heart of the nonlinear 
iterative solution, is a different proposition from the solution of ordinary 
linear equations. The solution set of the interval linear equations has a very 
complex nonconvex structure. The hull of the solution set is used, which is 
defi ned as the smallest interval vector that contains the solution set. Generally, 
the hull contains, in addition to the entire solution set, many nonsolutions. In 
this way, solving interval linear equations means obtaining the hull of the 
solution set. There are several methods to solve interval linear equations, 
such as: 

  (1)     Krawczyk ’ s method  [11]   
  (2)     Interval Gauss – Seidel iteration  [14]   
  (3)     LDU decomposition    

 The most widely used method to solve interval linear equations is the 
Gauss – Seidel iteration. The purpose of Gauss – Seidel iterations here is not to 
solve the power fl ow problems, but to solve the linear equations that result 
from Newton ’ s method. 
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 In a word, the fuzzy power fl ow problem can be solved by using interval 
arithmetic through linearizing the problem. However, the resulting linear 
equations must be solved by a Gauss – Seidel iterative process instead of by 
direct LDU factorization. The solution obtained is conservative, in that it 
contains all solution points and may also contain many nonsolutions.   

  13.5   ECONOMIC DISPATCH WITH UNCERTAINTIES 

  13.5.1   Min - Max Optimal Method 

 Chapters  4  and  5  discuss the economic dispatch problem, where the uncertain 
factors are not included. However, the economy of short - term operation of 
thermal power systems is infl uenced by approximations in operation planning 
methods and by the inaccuracies and uncertainties of input data. There are 
two major uncertain factors in economic dispatch, as discussed below. 

  13.5.1.1   Uncertain Loads     The forecast loads are important input infor-
mation, which is characterized by uncertainty and inaccuracy because of the 
stochastic nature of the load, which is discussed in Section  13.3 . 

 Let the load duration curve  P  D ( t ) be given in the form of intervals

    P t P t P t t TD D Dmin max ,( ) ≤ ( ) ≤ ( ) ≤ ≤0     (13.51)  

where  T  is time period.  

  13.5.1.2   Inaccuracy Fuel Cost Function    

     •      Inaccuracy in the process of measuring or forecasting of input data  
   •      Change of unit performance during the period between measuring and 

operation    

 The inaccuracies in the cost functions for steady - state operation are caused 
by the limited accuracy of the determination of the thermal dynamic perfor-
mance, changing cooling water temperatures, changing calorifi c values and 
contamination, erosion, and attrition in boiler and turbine. These deviations 
lead to inaccurate values for heat inputs and fuel prices. 

 Similar to the uncertain load, the cost functions of generating units are also 
expressed in the form of intervals.

    F P F P F P i NGi i imin max ,G G G( ) ≤ ( ) ≤ ( ) ∈     (13.52)  

where

    P P P i NGi i iG G Gmin max,≤ ≤ ∈     (13.53)   
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 The most well - founded criterion for optimal scheduling of real power in 
power system under uncertainty is the criterion of min - max risk  [17, 18]  or 
possible losses caused by uncertainty of information. The risk function can be 
written as

    R P t U t F FiG ( ) ( )( ) = −, min
�

Σ Σ     (13.54)  

where

   F   Σ  :    The actual total fuel cost of the generators, which is expressed as   

    F F P t U ti i
i

NG

Σ = ( ) ( )( )
=
∑ G , �

1

    (13.55)  

   F   Σ min :    The minimal total fuel cost of the generators if we could obtain the 
deterministic information about the uncertainty factors, which is 
expressed as   

    F F P t U ti i
i

NG

Σ min min ,= ( ) ( )( )
=
∑ G

�
1

    (13.56)  

    Ũ   ( t ):    The uncertain factors  
   P
−
   G   i  ( t ):    The planned or expected power duration curve of units for the time 

period  T     

 Operator min max  R  means the minimization of maximum risk caused by 
uncertainty factors, that is,

    min max ,
P t U t

i

T

i
R P t U t t

G
G d

( ) ( )
( ) ( )( )∫�
�

0
    (13.57)   

 The optimality conditions of the min - max problem arise from the main 
theorem of the game theory and can be expressed as follows: 

 If the   P tiG
0 ( ) is the optimal plan for the min max  R  criterion, then

    R P t U t R P t U ti iG G
0 0( ) ( )( ) = ( ) ( )( )− +, ,     (13.58)   

 Let  E  be the expected value of risk  R  and  Ω  be a set of mixed strategy of 
uncertain factors. The minimal - maximal problem can be expressed as below.

    min max ,
P t

i

T

i
E R P t U t t

G
G d

( )
( ) ( )( )( )∫Ω
�

0
    (13.59)   
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 It is possible to compose the deterministic equivalent of the min - max 
problem on the base of given above conditions. This requires the fi nding of 
the min - max load demand curves and cost functions of generating units. If we 
replace the deterministic curves by the min - max curves, we can use the initial 
deterministic model for calculating the min - max optimal results.   

  13.5.2   Stochastic Model Method 

 In this section, we present another approach to handle the uncertainty of the 
fuel cost of the generator units by use of the stochastic model. 

 A method of obtaining a stochastic model is to take a deterministic model 
and transform it into a stochastic model by (1) introducing random variables 
as inputs, as coeffi cients, or as both; and (2) introducing equation errors as 
disturbances. Since this type of model is only an approximation, it is important 
in this approach to make the randomness refl ect a real situation. 

 From Chapter  4 , the economic dispatch model can be expressed as 
below:

    min F F Pi i
i

N

= ( )
=
∑ G

1

    (13.60)  

s.t.

    P P Pi
i

N

G D L
=
∑ = +

1

    (13.61)  

    P P Pi i iG G Gmin max≤ ≤     (13.62)   

 Suppose the fuel cost is a quadratic function, i.e.,

    F a P b P ci i i i i i= + +G G
2     (13.63)   

 A stochastic model of function  F  is formulated by taking the deterministic fuel 
cost coeffi cients  a ,  b ,  c  and the generator real power  P  G   i   as random variables. 
Any possible deviation of operating cost coeffi cient from their expected values 
is manipulated through the randomness of generator power output  P  G   i  . The 
randomness of  P  G   i   implies that power balance equation  (13.61)  is not a rigid 
constraint to be satisfi ed. 

 A simple way of converting a stochastic model to a deterministic model is 
to take its expected value  [19] ; therefore, the expected value of operating cost 
becomes
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where   ν   is the coeffi cient of variation random variable  P  G   i  . It is the ratio of 
standard deviation to the mean and is a measure of relative dispersion or 
uncertainty in the random variable. If   ν     =   0, it implies no randomness or, in 
other words, complete certainty about the value of random variable. 

 If we use the  B  coeffi cient to compute the system network losses, we get

    P P B Pi ij j
ji

L G G= ∑∑     (13.65)   

 Then the expected value of the network power losses is
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ji

i ij j
ji

ii i
i

i ij

L G G G G G

G G

=
⎡

⎣
⎢

⎤

⎦
⎥ = +

≈

∑∑ ∑∑ ∑ var

jj
ji

∑∑     (13.66)  

where the variance of network loss has been neglected, since it is usually small. 
 In addition, the expected value of the load can be expressed as

    P E P PD D D= [ ] =     (13.67)   

 The stochastic model of economic dispatch can be written as below:

    min F a P v b P ci i i i i
i

N

= +( ) + +[ ]
=
∑ G G

2

1

1     (13.68)  

s.t.
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    P P Pi
i

N

G D L
=
∑ = +

1

    (13.69)  

    P P Pi i iG G Gmin max≤ ≤     (13.70)   

 Since there is the stochastic error for the stochastic model, the expected value 
associated with defi cit or surplus of generation can be treated as deviation 
proportional to the expectation of the square of power mismatch.

    δ = + −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = −[ ] =

= = =
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i i
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2

1 1

var∑∑     (13.71)   

 Using the Lagrange multiplier method to solve the above model, we get

   L a P v b P c P P P Pi i i i i
i

N

i
i

N

= +( ) + +[ ] + + −⎛
⎝⎜

⎞
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+
= =
∑ ∑G G D L G G
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1 1

1 λ μ var ii
i

N
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1

    (13.72)   

 According to optimality condition

    
∂

∂
=

L
P iG

0  

we have

    2 2 2 0a P b B P a vPi i i ij j
j

i iG G G+ +
⎛
⎝⎜

⎞
⎠⎟

+ +( ) =∑λ μ     (13.73)   

 Solving the above equation, the stochastic optimal results of the economic 
dispatch can be obtained.  

  13.5.3   Fuzzy  ED  Algorithm 

  13.5.3.1   Fuzzy  ED  Model     Section  13.3  discusses how the real load can be 
modeled as fuzzy. Assume the load is a trapezoidal possibility distribution, 
which is shown in Figure  13.11 . There are four break points:   PD

1( ),   PD
2( ),   PD

3( ) and 
  PD

4( ). The possibility distribution of each load refers to the mapping of a fuzzy 
variable on the [0, 1] interval, which is expected to be between  p    PD

1( ) and   PD
4( ); 

however, it is more likely to be between   PD
2( ) and   PD

3( ).   
 Similarly, the corresponding real power generation can also be modeled as 

fuzzy. Therefore, the economic dispatch with fuzzy loads can be expressed as 
follows:
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    min F F Pi i
i

NG

= ( )
=
∑ �
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1

    (13.74)  

s.t.

    � � �P P Pi
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NG
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ND

G D L
= =
∑ ∑= +

1 1

    (13.75)  

    P P Pi i iG G Gmin max≤ ≤�     (13.76)  

where

    P̃   G   i  :    The fuzzy real power generation  
   P̃   D   j  :    The fuzzy real power load demand  
   P̃   L :    The fuzzy real power losses    

 For simplifying the fuzzy economic dispatch problem, neglecting the 
network losses, and assuming the fuel cost is a linear function, i.e.,

    F c Pi i i= �
G     (13.77)   

 Then the minimization of cost function is equivalent to the minimization of 
fuzzy variable   P̃   G   i  , which can be translated to the minimization of its distance 
from the  γ  ( P  G ) axis. 

 According to Figure  13.12 , the distance of fuzzy variable   P̃   G   i   is given as 
 [20, 21] :

    d
A A A= + +( )1 1 2

2
    (13.78)  

where  A  1  and  A  2  are areas shown in Figure  13.12 . They can be computed as 
below:

     FIGURE 13.11     Uncertain load with trapezoidal possibility distribution  
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G G     (13.79)  
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G G G G     (13.80)     

 Substituting equations  (13.80)  and  (13.81)  into equation  (13.79) , we get

    d
P P P P Pi i i i i

k

k

= + + + =
( ) ( ) ( ) ( ) ( )

=
∑G G G G G

1 2 3 4

1

4

4 4
    (13.81)   

 Thus the above - mentioned fuzzy economic dispatch problem can be written 
as follows:

    min F c
P

i
i
k
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NG
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( )

==
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41
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1

    (13.82)  

s.t.
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1 4, , ,…     (13.83)  

    P P P P P P i NGi i i i i iG G G G G Gmin max , ,≤ ≤ ≤ ≤ ≤ =( ) ( ) ( ) ( )1 2 3 4 1……     (13.84)    

  13.5.3.2   Fuzzy Line Constraint     The above fuzzy representation of real 
loads will result in fuzzy line fl ows with trapezoidal possibility distributions. 
Since DC fl ow is considered in fuzzy ED analysis, the fuzzy line fl ow can be 
expressed as below:

    � � …P S P l NLl lm m
m

NB

= =
=

∑
1

1, , ,     (13.85)  

     FIGURE 13.12     Uncertain generation with trapezoidal possibility distribution  
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where

    P̃  m  :    The fuzzy bus real power injection  
   P̃  l  :    The fuzzy line real power fl ow  
  S :    The DC - based sensitivity matrix    

 A contingency analysis is used to detect most severe outages, and contin-
gency constraints are augmented to the base case to ensure a preventive 
control. According to Chapter  5 , the contingency constraints are represented 
similar to equation  (13.85)  except that the sensitivity coeffi cients are adjusted 
for the contingency under consideration, i.e.,

    � � …′= ′ =
=
∑P S P l NLl lm m
m

NB

1

1, , ,     (13.86)  

where

    �Pl′:    The fuzzy line real power fl ow under the contingency situation  
  S  ′ :    The DC - based sensitivity matrix under the contingency situation    

 If the phase shifter is considered, we represent phase shifters in terms of 
equivalent injected power. If a phase shifter is located on line  t  that connects 
buses  i  and  j , the equivalent injected power at buses  i  and  j  and phase shifter 
angle can be simplifi ed as

    P b
x

i t t
t

t
φ φ

φ
= = −     (13.87)  

    P b
x

j t t
t

t
φ φ

φ
= − =     (13.88)  

where

   P   φ    i  :    The bus real power injection due to a phase shifter  
  φ   t  :    The phase shifter angle located on line  t   
  x t  :    The reactance of line  t   
  b t  :    The susceptance of line  t     

 Thus the constraint related to the phase shifter angle in the fuzzy case can 
be written as

    φ φφi t ix P imin max≤ ≤�     (13.89)   

 The fuzzy line fl ow with phase shifter can be expressed as below:
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 Therefore, the fuzzy economic dispatch model with the line constraints is 
written as
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where

   NP :    The number of phase shifters  
  NB :    The number of buses  
  NL :    The number of lines    

 Since we use four sets of variables each describing one break point of the 
possibility distributions, Dantzig – Wolf decomposition (DWD) is applied to 
decompose the problem into four subproblems coupled by the constraints in 
equations  (13.96)  and  (13.97) . The dimension of the master problem is equal 
to the number of coupling constraints plus the number of subproblems, while 
each subproblem has a dimension equal to the number of constraints corre-
sponding to each break point. The solution of the master problem generates 
new simplex multipliers (dual solution) that will adjust the cost function of the 
subproblems. The solution of the subproblems with the adjusted objective 
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function will provide the master problem with new columns to enter the 
master basis matrix. 

   Example 13.2 

 The simulation example used here is from reference  [20] . The fuzzy eco-
nomic dispatch method is tested on the modifi ed IEEE 30 - bus system. The 
system has 6 generators, 41 lines, and 3 phase shifters. All phase shifters 
have turns ratios equal to 1. Trapezoidal possibility distributions are used 
to represent the system fuzzy real power loads. The break points of the load 
possibility distribution are given in Table  13.1 . The generator data are given 
in Table  13.2 , in which each generator cost function is approximated by 
piecewise linear approximation.   

  Test Case 1  
 In this case, no line fl ow constraints are introduced in the problem and the 
optimal power generation that corresponds to the system fuzzy load is 
found. The break points of the generation possibility distributions are given 
in Table  13.3 . For the sake of comparison, in Table  13.3  we have included 
the power generation corresponding to the fi xed range of load values   PD

1( ) 
and   PD

4( ) . This extreme range of loads provides a wider range of line fl ows 
than that of the proposed fuzzy model, indicating that the fi xed load interval 
leads to an overestimate of the system behavior in an uncertain 
environment.   

 Table 13.1     Possibility distributions for loads ( p . u .) 

   Load Bus       PD
1( )       PD

2( )       PD
3( )       PD

4( )  

  3    0.000    0.020    0.030    0.050  
  4    0.020    0.040    0.070    0.100  
  7    0.100    0.150    0.220    0.270  

  10    0.020    0.030    0.060    0.080  
  12    0.050    0.080    0.110    0.150  
  14    0.030    0.050    0.080    0.100  
  15    0.040    0.070    0.100    0.130  
  16    0.010    0.030    0.050    0.060  
  17    0.030    0.070    0.100    0.140  
  18    0.000    0.020    0.040    0.070  
  19    0.040    0.060    0.090    0.130  
  20    0.000    0.010    0.020    0.040  
  21    0.100    0.150    0.200    0.230  
  23    0.000    0.020    0.030    0.050  
  24    0.050    0.070    0.100    0.120  
  26    0.010    0.030    0.050    0.060  
  29    0.000    0.010    0.020    0.030  
  30    0.060    0.090    0.110    0.140  
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  Test Case 2  
 The fuzzy power generations, given in Table  13.3 , are used to compute the 
corresponding line fl ow possibility distributions. The break points of line 
2 – 6 are 0.2252, 0.2808, 0.4333, and 0.5238   p.u. as compared to 0.2248 and 
0.5430   p.u. for the fi xed load interval, which indicates once again the over-
estimated results by the fi xed interval. Line 2 – 6 has an overfl ow, as its fl ow 
limit is 0.5   p.u. Therefore, the optimal power generation is computed again 
by considering line 2 – 6 fl ow limit. In this case, the phase shifter on line 4 – 6 
alleviates the overfl ow without any adjustment to the optimal power gen-
eration given in Table  13.2 . The corresponding break points for the 
phase shifter on line 4 – 6 are 0.0, 0.0, 0.0, 0.56    ° , whereas the phase shifter 
range for the fi xed load interval is between 0.00 and 1.02    ° . Thus a smaller 
range for the phase shifter angle is obtained by utilizing a possibility distri-
bution for loads.      

 Table 13.2     Generator data ( p . u .)  

   Gen. Bus  
   Piecewise 
Section      P  Gmin       P  Gmax   

   Cost Coeffi cient 
($/MWh)  

  G1    1 
 2 
 3  

  0.30 
 0.00 
 0.00  

  0.90 
 0.35 
 0.75  

  25.0 
 37.5 
 42.0  

  G2    1 
 2  

  0.20 
 0.00  

  0.50 
 0.30  

  28.0 
 37.0  

  G5    1 
 2  

  0.15 
 0.00  

  0.25 
 0.25  

  30.0 
 36.5  

  G8    1 
 2  

  0.10 
 0.00  

  0.15 
 0.20  

  27.0 
 38.0  

  G11    1 
 2  

  0.10 
 0.00  

  0.20 
 0.10  

  27.5 
 37.0  

  G13    1 
 2  

  0.12 
 0.00  

  0.20 
 0.20  

  36.0 
 39.0  

 Table 13.3     Results of fuzzy economic dispatch 

   Gen. Bus       PG
1( )       PG

2( )       PG
3( )       PG

4( )  

    Power Gen. 
Range for 
Min and 

Max Load  

  G1    0.900    0.900    0.968    1.217    0.900    1.250  
  G2    0.478    0.500    0.800    0.800    0.466    0.800  
  G5    0.150    0.488    0.500    0.500    0.150    0.500  
  G8    0.150    0.150    0.150    0.150    0.150    0.272  
  G11    0.200    0.200    0.300    0.300    0.200    0.300  
  G13    0.120    0.200    0.200    0.200    0.120    0.200  
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13.6 HYDROTHERMAL SYSTEM OPERATION WITH UNCERTAINTY 

 There are several complex and interrelated problems associated with the 
optimization of hydrothermal systems. 

 •      Long - term regulation problem (1 -  to 2 - year optimization period)  
 •      Intermediate - term hydrothermal control (1 -  to 6 - month planning period)  
 •      Short - term hydrothermal dispatch (optimization period is from 1 day to 

1 week)    

 For the short - term optimization problem, the applications of deterministic 
methods to hydrothermal system operation have been established, in which 
the water infl ows and loads were considered to be deterministic. For the long -
 term regulation problem, it is necessary to use a stochastic representation for 
the load and river infl ow  [22, 23] . Since there are uncertainty factors in the 
short - term hydrothermal dispatch, the existing methods do not provide the 
system operators with a convincing answer on how to use the water in each 
separate reservoir. The following uncertainties should be taken into account 
in a large hydrothermal system operation: 

 •      Uncertainty of the load  
 •      Uncertainty of the unit availability  
 •      Uncertainty of the river infl ow    

 The uncertainty of the river infl ows, loads, and unit availability can be dealt 
with in a stochastic representation. The methods to solve ED with uncertainty 
in the previous section can also be used to solve the uncertainty problem for 
the hydrothermal system operation.  

13.7 UNIT COMMITMENT WITH UNCERTAINTIES 

13.7.1 Introduction

 The economy of unit commitment of power systems is infl uenced by approxi-
mations in the operation planning methods and by the inaccuracies and uncer-
tainties of input data. However, most of the early work on the unit commitment 
problem uses a deterministic formulation neglecting the uncertainties, which 
are discussed in Chapter  7 . 

 As we analyzed before, the uncertain load can be expressed as normal 
distribution with a specifi c correlation structure. Thus we use a chance - 
constrained optimization (CCO) formulation for the UCP assuming that the 
hourly loads follow a multivariate normal distribution  [24] . The CCO formula-
tion falls into a class of optimization procedures known as stochastic program-
ming in which the solution methods take into consideration the randomness 



574 UNCERTAINTY ANALYSIS IN POWER SYSTEMS

in input parameters. The advantages of using stochastic programming over the 
corresponding expected value solution have been demonstrated over a wide 
spectrum of applications. In chance - constrained programming, the constraints 
can be violated with a preassigned (usually very small) level of probability. 
These probabilistic constraints can often be converted to certain deterministic 
equivalents, and the resulting program can be solved with general 
deterministic techniques. 

 In the stochastic model of UC, the equal constraint of real power balance 
is expressed by a  “ chance constraint, ”  which requires that this condition be 
satisfi ed at a predetermined level of probability. The reserve constraint is 
considered in the UC because utilities are required to carry a reserve for many 
different contingencies such as load peaks, generator failures, scheduled 
outages, regulation, and local area protection. The reserve is usually referred 
to as operating reserve, which consists of two parts: spinning reserve (SR) and 
nonspinning reserve. The additional electricity available (synchronized) to 
serve load immediately is defi ned as the SR. In other words, the difference 
between the total amount of electricity ready to serve the customers and the 
current demand for electricity is the SR. Generally, the magnitude of the 
required amount of SR is predetermined and used as an operating constraint 
in the UC calculation. For example, it is taken to be 1.5 to 2 times the capacity 
of the largest generator or a percentage of the peak load. Instead of using the 
SR as a predetermined constraint, the stochastic method yields as an output 
the sets of generating units that need to be turned on such that the load is met 
with a high probability over the entire time horizon. The level of SR can be 
determined by fuzzy methods, which are similar to SR handling in the chance -
 constrained optimization.  

  13.7.2   Chance - Constrained Optimization Model 

  13.7.2.1   Deterministic  UC  Model     The mathematical model for the unit 
commitment is a mixed - integer nonlinear program. The basic deterministic 
formulation can be written as below:

    min , ,, , , , , ,F F P x S P xi t i t i t i t i t i t
t

T

i

N

= ( ) + ( )[ ]
==
∑∑

11

    (13.98)  

s.t.

    x P P t Ti t i t
i

N

t, , , , ,
=
∑ = =

1

1 2D …     (13.99)  

    P x P Pi i t i t imin , , max≤ ≤     (13.100)  
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    x P P t Ti t i
i

N

t, max , , ,
=
∑ ≥ +( ) =

1

1 1 2α D …     (13.101)  

    x x x t t t T i N t Ti t i t i, , , , ,min , , , , , , , , ,− ≤ = + + −{ } = =−1 1 1 1 2 1 2γ γ … … …up    
 (13.102)  

   x x x t t t T i N ti t i t i, , , , ,min , , , , , , ,− − ≤ − = + + −{ } = =1 1 1 1 1 2 1 2β β … …down ,, ,… T    
 (13.103)  

    x t T i Ni t, , , , , , , , ,∈{ } = =0 1 1 2 1 2… …     (13.104)  

where

   F i   ,   t  :    The fuel cost of the generator unit  i  at time  t   
  S i   ,   t  :    The cost of starting up unit  i  at time  t   
  P  Dt :    The load demand at time  t   
  P i   ,   t  :    The power output of unit  i  at time  t   
  T :    The time period  
  x i   ,   t  :    The 0 – 1 variable; 1 if the unit  i  on at time  t , 0 otherwise  
 1    −     α :    The prescribed probability level for meeting load over the entire time 

horizon  
  t  up :    The minimum number of hours required for a generator to stay up once 

it is on  
  t  down :    The minimum number of hours required for a generator to stay down 

once it is off    

 The objective function consists of the total fuel cost and the starting up cost 
of the generators. Constraints in equations  (13.102)  and  (13.103)  are the 
uptime/downtime constraints that force the generators to stay up for at least 
a specifi ed amount of time,  t  up , once they are turned on and stay down for at 
least a specifi ed time period,  t  down , once they are shut down. Constraint  (13.100)  
ensures that the power generated matches the minimum and maximum capac-
ity requirements of the corresponding generators for all time periods. The 
spinning reserve constraint  (13.101)  attempts to ensure that there is enough 
power available to meet the demand in the event of an unusual contingency. 
The power balance constraint  (13.99)  is the linking constraints that link the 
decision variables of different generators and time periods. These constraints 
ensure that the estimated load is satisfi ed in all time periods. They cause dif-
fi culties in solving the problem because adding them to the constraint set 
makes the problem inseparable, thus requiring sophisticated techniques for 
fi nding a solution.  
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  13.7.2.2   Stochastic Model     Let  P  D , a random variable, denote the load at 
hour  t . It can be expressed as a multivariate normal distribution with a specifi c 
correlation structure:  P  D     ∼     N ( μ ,  Σ ) with mean vector  μ  and covariance matrix 
 Σ  where  μ   t   and  σ   t   are the corresponding mean and standard deviation for time 
period  t . Changing the equal constraint of the real power balance equation 
into an inequality constraint, and replacing it by the following probabilistic 
constraint for each hour, gives a probability level for satisfying the linking 
constraint over all time periods.

    P x P P t Ti t i t
i

N

, , , , ,
=
∑ ≥ =⎡

⎣⎢
⎤
⎦⎥
≥ −

1

1 2 1D … α     (13.105)   

 We replace the probability constraint  (13.105)  by a set of  T  separate probabil-
ity constraints each of which could be inverted to obtain a set of  T  equivalent 
deterministic linear inequalities. Initially we chose the  T  constraints in a 
manner such that together they were more stringent than constraint  (13.105) . 
The initial set of  T  individual linear constraints  (13.110)  replacing equation 
 (13.105)  were obtained by the following argument. 

 First we denote the event   x P Pi t i t
i

N

, ,
=
∑ ≥

1
D by  A t   and its complement event 
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, ,
=
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1
D by   At

c . From Boole ’ s inequality of probability theory, it is well 

known that:
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 Because  P  D  is normally distributed with mean  μ   t   and standard deviation  σ   t  , 

  P A
T

t
c[ ] ≤ α

 is equivalent to
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which is equivalent to

    x P z T t Ti t i t
i

N

t t, , , , ... ,
=
∑ ≥ + ( ) =

1

1 2μ σα     (13.110)  

where ( z   α  / T ) is the 100(1    −     α / T )th percentile of the standard normal distribu-
tion. Setting the initial value of  z  be  z    =    z   α  / T , we get

    x P z t Ti t i t
i

N

t t, , , , ... ,
=
∑ ≥ + =

1

1 2μ σ     (13.111)     

  13.7.3   Chance - Constrained Optimization Algorithm 

 The deterministic form of the stochastic constraint is used in solving the UCP 
iteratively by using a different value for at each iteration. The steps of the 
CCO algorithm are below. 

  Step (1): Choose an initial value in equation  (13.111) .  
  Step (2): Choose a starting set of  λ  multipliers.  
  Step (3): For each unit  i  solve a dynamic program with 4 T  states and  T  stages; 

obtain  q  * ( λ   k  ), which is the objective function value of the optimal solution 
to the Lagrange dual problem.  

  Step (4): Solve the economic dispatch problem for each hour, using the sched-
uled units, and obtain  J  * , which is the objective function value of the 
optimal solution to the primal problem.  

  Step (5): Check the relative duality gap.  
  Step (6): Update  λ , using

    λ λk k k ks g+ = +1     (13.112)  

where

    s
J q

g
k

k k

k
=

− ( )( )η λ* *
2     (13.113)  

    ηk m
k m

= +
+

1     (13.114)  

and  g k   is the subgradient and  m  is a constant. If the gap is not small enough, 
then go back to step (3). Otherwise, continue.  
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  Step (7): If the fi nal solution is feasible, go to step (8). Otherwise, use the 
heuristic algorithm to derive a feasible solution.  

  Step (8): Evaluate the multivariate normal probability, using model  (13.105) ; 
if it differs from the prescribed probability level by more than a preassigned 
small quantity (see Table  13.4 ) then update  z  and go back to step (2); oth-
erwise, STOP.      

 The algorithm starts by choosing a high value for the initial  z  value as in 
equation  (13.110) , which makes the corresponding solution satisfy the load 
with a probability level higher than ptarget    =   1    −     α . At step (2), all  λ  multipliers 
are set to 0.0. Then at step (3) the dual problem is solved with dynamic pro-
gramming and q  * ( λk ), the objective function value for the solution to the 
Lagrange dual problem, is obtained. At this step the scheduling problem for 
each generator is solved separately to decide which generators should be 
turned on at each time period. 

 At step (4) an economic dispatch problem is solved for each time period 
separately. In solving the economic dispatch problem the algorithm obtains 
the operating levels for all of the scheduled generators determined at step (3); 
J  * , the objective function value of the solution to the primal problem, is cal-
culated with the operating levels for the scheduled units at this step. At step 
(5) the duality gap is checked, and if it is less than  δ  then the algorithm pro-
ceeds to step (7); otherwise, the  λ  multipliers are updated with a subgradient 
method that determines the improving direction at step (6). The  δ  may be 
selected as 0.05%. Before proceeding to evaluate the multivariate normal 
probability one needs to check whether the fi nal UC schedule is feasible, 
because Lagrange relaxation techniques frequently provide infeasible solu-
tions. If the result is feasible, the algorithm continues to step (8); otherwise, 
a heuristic is used to derive a feasible solution and the algorithm proceeds to 
step (8) after this. The heuristic applied here is simply to turn on the cheapest 
generator available for the time periods that have a shortage of power. After 
modifying the schedule, the heuristic checks whether the duality gap is still 
less than δ . 

 At step (8) of the CCO algorithm one needs to calculate the multivariate 
normal probability. This is needed to ensure that the probabilistic constraint, 
equation  (13.105) , is satisfi ed with the prescribed joint probability over the 
entire time horizon. This calculation can become time consuming, especially 
when the dimension of the time horizon is large. A subregion adaptive algo-
rithm for carrying out multivariate integration makes this calculation feasible. 
If the calculated probability level is in the ε  neighborhood of  ptarget  the algo-
rithm terminates, since the goal of fi nding a schedule that satisfi es the load 

Table 13.4 Values Used in Checking Convergence of z-Update Algorithm 

ptarget   0.8    0.9    0.95    0.99    0.999    0.9999  
ε   0.005    0.005    0.005    0.005    0.0005    0.00005  
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with a probability of  p  target  is accomplished; otherwise, the  z  - value is updated 
and the previous steps are repeated to obtain another schedule. 

 To update the  z  - value the following algorithm is used. The goal is to fi nd 
a  z  - value in equation  (13.111)  that provides a schedule such that the load can 
be satisfi ed with a probability of  p  target    =   1    −     α  over the entire time horizon. 
This  z  - value needs to be obtained iteratively. The following iterative scheme 
may be used. First, start with two values that are known to be upper and lower 
bounds to the needed  z  - value. Then, run steps (2) – (7) of the CCO algorithm 
and then fi nd the actual probabilities of meeting the load for these assumed 
 z  - values. They also indicate the direction and the magnitude by which we 
should change these  z  - values so that the probability target can be reached 
through successive iterations using interpolation. The correct  z  - value could be 
obtained in a few iterations. 

 The algorithm proceeds as follows. First we choose  z    =    z   α   in equation 
 (13.111) . Obviously, it yields a lower bound for the correct  z  - value; we call 
this  z  lower . We now run steps (2) – (7) of the CCO algorithm for this lower bound 
and obtain an estimate of the probability with which the load is being met. 
We call this probability  p  lower . Next we choose an arbitrary large value for  z . 
We denote it by  z  upper . In the next step we obtain the upper percentiles of the 
standard normal distribution for these probabilities  p  upper  and  p  lower  and denote 
them by  z  1  and  z  2 , respectively. We also denote the corresponding percentile 
for the  p  target  value by  z  target . Based on these values the updated  z  - value is 
obtained with the following linear interpolation formula:

    z z
z z

z z
z znew lower

target
upper lower= +

−
−

−( )1

2 1

    (13.115)   

 If the  z  new  value is lower than  z  2  and higher than  z  target , then replace  z  2  by 
 z  new . If it is lower than  z  target  and higher than  z  1 , replace  z  1  by  z  new . Repeat this 
process, using equation  (13.115)  until  p  target  is reached.   

  13.8   VAR OPTIMIZATION WITH UNCERTAIN REACTIVE LOAD 

  13.8.1   Linearized  VAR  Optimization Model 

 As discussed in Chapter  10 , the VAR optimization problem is concerned with 
minimizing real power transmission losses and improving the system voltage 
profi le by dispatching available reactive power sources in the system. For the 
purpose of the simplifi cation, the hypersurface of the nonlinear power loss 
function is approximated by its tangent hyperplane at the current operating 
point, and linear programming (LP) is adopted for the VAR control problem. 
This linear approximation is found to be valid over a small region that is for-
mulated by imposing limits on the deviations of the control variables from 
their current values. Assume that the voltage phase angles will be fi xed in each 
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optimization iteration to disregard the coupling between phase angles and 
reactive variables. Real power injections at various buses will be fi xed except 
at the slack bus, which compensates for power losses. The deterministic oper-
ating points are found by executing an ac power fl ow after each LP iteration, 
which results in revised system voltage magnitudes and angles. The objective 
function and constraints are linearized around this new operating point assum-
ing fi xed active power - related variables. 

 The linearized objective function of VAR optimization can be written as 
 [25, 26] :

    min , , , ,Δ
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or

    minΔ ΔP M VL =     (13.117)  

where  M  is the row vector relating to real power loss increments to bus voltage 
increments. 

 There are  m    +    l    +    n  constraints. The fi rst  m  constraints are for reactive 
power sources and tap changing transformer terminals. We will refer to the 
matrix of reactive power injections at these buses as  Q  l . The  l  equality con-
straints are for loads and junction buses that are not connected to transformer 
terminals, and we will refer to the matrix of reactive power injections at these 
buses as  Q  2 . The last  n  constraints are the limits on bus voltages. Therefore, 
the linearized form of the constraints is given as

    Δ Δ Δ ΔQ Q J V Q1 1 1 1min max*≤ = ≤     (13.118)  

    Δ ΔQ J V2 2 0= =*     (13.119)  

    Δ Δ ΔV V Vmin max≤ ≤     (13.120)  

where   J1*  and   J2*  are submatrices of  J  * , which is the modifi ed Jacobian matrix. 
 Similar to Section  13.5 , the trapezoidal distribution is used to model the 

uncertainty of reactive power load. The possibility distribution will have a 
value of 1 for load values that are highly possible, and will drop for low pos-
sible loads. A zero possibility is assigned to load values that are rather impos-
sible to occur. 

 As load changes, the magnitude of voltages at different buses will change 
accordingly. If the injected power at load bus  i  is changed by  Δ  Q  c   i   due to 
capacitor switching or load change, the corresponding change in load bus volt-
ages is given as,
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    Δ ΔV D Qi iD c=     (13.121)  

where  D  is a nonnegative matrix, suggesting that if each  Δ  Q  c   i   is positive 
because of a load reduction, then  Δ  V  L   i   will be positive. On the other hand, if 
the injected power is decreased because of a load increase, then the load bus 
voltages will decrease. 

 For generator buses, it is obvious that an increase in the injected load power 
will cause the generator voltages to decrease and vice versa.  

  13.8.2   Formulation of Fuzzy  VAR  Optimization Problem 

 The minimization in the VAR optimization problem is subject to inequality 
and equality constraints, which are referred to as the operating constraints. 
The operating constraints will be a set of linking constraints imposed on bus 
voltages and four independent sets of constraints corresponding to the break 
points of the trapezoidal possibility distribution. With the same approach 
described in Section  13.5 , the formulation of the fuzzy VAR optimization 
problem for determining the possibility distribution of transmission losses for 
a given possibility distribution of loads can be expressed as below:

    minΔ Δ
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M Vi
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==
∑∑ 41
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    (13.122)  

s.t.

    Δ Δ Δ ΔQ Q J V Qk k k
1 1 1 1min max*≤ = ≤( ) ( ) ( )     (13.123)  

    Δ ΔQ J Vk k k
2 2 0( ) ( ) ( )= =*     (13.124)  

   V V V V V V V V V Vmin max≤ + ≤ + ≤ + ≤ + ≤( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4Δ Δ Δ Δ     (13.125)  

where,  k    =   1, 2, 3, 4 and equation  (13.122)  represents the minimization of fuzzy 
variables  Δ  P  L . The   J k

1*
( ) and   J k

2*
( ) are submatrices of matrices of  J  *  (   k   ) , which is 

the modifi ed Jacobian matrix of the  k th break point of the possibility distribu-
tion. The dimension of the problem is very large, which will be reduced through 
the application of the DWD  [27] .   

  13.9   PROBABILISTIC OPTIMAL POWER FLOW 

  13.9.1   Introduction 

 We discuss the deterministic optimal power fl ow (OPF) problem in Chapter 
 8 . If uncertain factors such as loads are considered as in the previous sections, 
we can transform the OPF problem into the  probabilistic optimal power 
fl ow (P - OPF)  problem  [28, 29] . Probabilistic programming, or probabilistic 
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optimization, is concerned with the introduction of probabilistic randomness 
or uncertainty into conventional linear and nonlinear programs. However, the 
randomness introduced tends to have some structure to it, and this structure 
is generally represented with a  probability density function (PDF) . The goal 
of the P - OPF problem is to determine the PDFs for all variables in the 
problem. These PDFs are the distributions of the optimal solutions. This 
section will introduce several P - OPF methods.  

  13.9.2   Two - Point Estimate Method for  OPF  

 Generally, the OPF can be seen as a multivariate nonlinear function

    Y h X= ( )     (13.126)  

where  X  is the input vector and  Y  is the output vector. 
 It must be noted that an uncertain input vector renders all output variables 

uncertain as well. To account for uncertainties in the P - OPF, a two - point 
estimate method (TPEM)  [30] , which is basically a variation of the original 
point estimate method (PEM), is used to decompose the problem  (13.126)  
into several subproblems by taking only two deterministic values of each 
uncertain variable placed on both sides of the corresponding mean. The deter-
ministic OPF is then run twice for each uncertain variable, once for the value 
below the mean, and once for the value above the mean, with other variables 
kept at their means. This method is described in detail below. 

 Suppose that  Y    =    h ( X ) is a general nonlinear multivariate function. The 
goal is to fi nd the PDF  f Y  ( y ) of  Y  when the PDF  f X  ( x ) is known, where  x     ∈     X  
and  y     ∈     Y . There are several approximate methods to address this problem. 
The PEM is a simple - to - use numerical method for calculating the moments of 
the underlying nonlinear function. The method was developed by Rosenblueth 
in the 1970s  [31]  and is used to calculate the moments of a random quantity 
that is a function of one or several random variables. Although the moments 
of the output variables are calculated, one has no information on the associ-
ated probability distribution (PD). Generally speaking, this PD can be any 
PD with the same fi rst three moments; however, when the PD of the input 
variables is known, the output variables tend to have the same PD, as shown 
in the OPF problem, where both input and output variables are normally 
distributed. However, in some cases, the discrete behavior of the OPF results 
in PD of the output variables that is not normal anymore. 

 Let  X  denote a random variable with PDF  f X  ( x ); for  Y    =    h ( X ), the PEM 
uses two probability concentrations to replace  h ( X ) by matching the fi rst three 
moments of  h ( X ). When  Y  is a function of  n  random variables, the PEM uses 
2  n   probability concentrations located at 2  n   points to replace the original joint 
PDF of the random variables by matching up to the second -  and third - order 
noncrossed moments. The moment of  Y , i.e.,  E ( y k  ),  k    =   1,2, where  E  is the 
exception, is then calculated by weighting the values of  Y  to the power of  k  
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evaluated at each of the 2  n   points. When  n  becomes large, the use of 2  n   prob-
ability concentrations is not economical. Hence, a simplifi ed method that 
makes use of only 2 n  estimates, which is referred to as a TPEM, is used in an 
OPF problem with uncertainty. 

  13.9.2.1   Function of One Variable     First, a fi ctitious distribution of  X  is 
chosen in such a way that the fi rst three moments exactly match the fi rst three 
moments of the given PDF of  X . To estimate the fi rst three moments of  Y , one 
can choose a distribution of  X  having only two concentrations placed unsym-
metrically around the  X  ’ s expectation. If that is the case, one has enough 
parameters to take into account the fi rst three moments of  Y  and to obtain a 
third - order approximation to the fi rst three moments of  Y . A particularly 
simple function satisfying these requirements consists in two concentrations, 
 P  1  and  P  2 , of the probability density function  f X  ( x ), respectively, at  X    =    x  1  
and  x  2 

    f x P x x P x xX ( ) = −( ) + −( )1 1 2 2δ δ     (13.127)  

where the lower case letters denote specifi c values of a random variable, and 
 δ ( • ) is Dirac ’ s delta function. 

 Choosing

    η
μ

σi
i X

X

x
i= − =, ,1 2     (13.128)  

where  μ   X   and  σ   X   are the mean and the standard deviation of  X , respectively, 
one can calculate the fi rst three moments of  f X  ( x ). Thus, the  j th moment is 
defi ned as

    M X x f x dx jj
j

X( ) = ( ) =
−∞

∞

∫ 1 2, ,…     (13.129)   

 The central moments are

    ′( ) = −( ) ( ) =
−∞

∞

∫M X x f x dx jj X
j

Xμ 1 2, ,…     (13.130)   

 The zeroth and the fi rst moment always equal 1 and 0, respectively. The zeroth 
and the fi rst three central moments of equation  (13.127)  are then

    ′ = = +M P P0 1 21     (13.131)  
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    ′ = = −M P P1 1 1 2 20 η η     (13.132)  
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where  v X   is the skewness of  X . 
 Using the Taylor series expansion of  h ( X ) about  μ   X   yields

    h X h
j

g xX
j

X X
j

j

( ) = ( ) + ( ) −( )( )

=

∞

∑μ μ μ1

1 !
    (13.135)  

where  g  (   j   ) ,  j    =   1,2,  …  , stands for the  j th derivative of  h  with respect to  x . The 
mean value of  Y  can be calculated by taking the expectation of the above 
equation, resulting in

   μ μ μY X X
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 Let

    x ii X i X= + =μ η σ , ,1 2     (13.137)  

and  P i   be the probability concentrations at location  x i  ,  i    =   1,2. Multiplying 
equation  (13.135)  by  P i  , and summing them up, we get

   P h x P h x h P P
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g P PX
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j j
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j
1 1 2 2 1 2 1 1 2 2
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∑     (13.138)   

 From the fi rst four terms of equations  (13.136)  and  (13.138) , we get

    P P M X1 2 0 1+ = ′( ) =     (13.139)  

    η η σ λ1 1 2 2 1 1P P M X X X+ = ′( ) = ,     (13.140)  

    η η σ λ1
2

1 2
2

2 2
2

2P P M X X X+ = ′( ) = ,     (13.141)  

    η η σ λ1
3

1 2
3

2 3
3

3P P M X X X+ = ′( ) = ,     (13.142)   

 The above four equations have four unknowns, i.e.,  P  1 ,  P  2 ,  η  1  and  η  2 . Their 
solutions are

    η λ λ1 3 3
22 1 2= + + ( )X X, ,     (13.143)  

    η λ λ2 3 3
22 1 2= − + ( )X X, ,     (13.144)  
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    P1 2= −η ε     (13.145)  

    P2 1= η ε     (13.146)  

where

    ε η η λ= − = + ( )1 2 3
22 1 2X ,     (13.147)   

 For a normal distribution,  λ   X   ,3    =   0; then equations  (13.143) – (13.146)  can be 
simplifi ed as

    η1 1=     (13.148)  

    η2 1= −     (13.149)  

    P P1 2 1 2= =     (13.150)   

 From equations  (13.138) – (13.142)  and equations  (13.148) – (13.150) , we get

   

h
j

g P h x P h x

j
g P

X
j

X X j X
j

j

j
X

μ μ λ η

μ

( ) + ( ) = ( ) + ( )

− ( )

( )

=

( )

∑ 1

1
1

3

1 1 2 2
!

!

,

11 1 2 2
4

η η σj j
X
j

j

P+( )
=

∞

∑     (13.151)   

 Substituting equation  (13.151)  into equation  (13.136) 

   μ μ λ η η σY
j

X X j
j j

X
j

j

P h x P h x
j

g P P= ( ) + ( ) + ( ) − −( )( )

=

∞

∑1 1 2 2 1 1 2 2
4

1
!

,     (13.152)  

and neglecting the third term in equation  (13.152) , we get

    μY P h x P h x≈ ( ) + ( )1 1 2 2     (13.153)   

 This is a third - order approximation if  h ( X ) is a third - order polynomial, 
meaning the derivatives of the order higher than three are zero. In this case, 
TPEM gives the exact solution to  μ   Y  . 

 Similarly, the second -  and the third - order moment of  Y  can be approxi-
mated by

    E Y P h x P h x2
1 1

2
2 2

2( ) ≈ ( ) + ( )     (13.154)  

    E Y P h x P h x3
1 1

3
2 2

3( ) ≈ ( ) + ( )     (13.155)    

  13.9.2.2   Function of Several Variables     Let  Y  be a random quantity that 
is a function of  n  random variables, i.e.,
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    Y h X h x x xn= ( ) = ( )1 2, , ,…     (13.156)   

 Let  μ   X   ,   k  ,  σ   X   ,   k  ,  v X   ,   k   stand for the mean, standard deviation, and skewness of  X k  , 
respectively. Let  P k   ,   i   stand for the concentrations (or weights) located at

    X X X X n= [ ]μ μ μ, , ,, , ,1 2 …     (13.157)  

and

    x i nk i X k k i X k, , , , , , , ,= + =μ η σ 1 2 …     (13.158)   

 Expand equation  (13.156)  in a multivariable Taylor series about the mean 
value of  X . Similar to the case of a function of one variable, the following three 
equations can be obtained by matching the fi rst three moments of the prob-
ability density function of  X k  .

    P Pk k
k

n

, ,1 2
1

1+( ) =
=
∑     (13.159)  

    η η σ λk k k k k X k X kP P M X, , , , , , ,1 1 2 2 1 1+ = ′( ) =     (13.160)  

    η η σ λk k k k k X k X kP P M X, , , , , , ,1
2

1 2
2

2 2
2

2+ = ′( ) =     (13.161)  

    η η σ λk k k k k X k X kP P M X, , , , , , ,1
3

1 2
3

2 3
3

3+ = ′( ) =     (13.162)   

 Equation  (13.159)  can also be expressed as

    P P nk k, ,1 2 1+ =     (13.163)   

 We also can get the solution for the random variable  X k  .

    η λ λk k kn, , ,1 3 3
22 2= + + ( )     (13.164)  

    η λ λk k kn, , ,2 3 3
22 2= − + ( )     (13.165)  

    P nk k k, ,1 2= − ( )η ε     (13.166)  

    P nk k k, ,2 1= ( )η ε     (13.167)  

where

    ε η η λk k k kn k n= − = + ( ) =, , , , , , ,1 2 3
22 2 1 2 …     (13.168)   

 For symmetric probability distributions,  λ   k   ,3    =   0; then equations  (13.164) –
 (13.167)  can be simplifi ed as below:

    ηk n,1 =     (13.169)  
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    ηk n,2 = −     (13.170)  

    P P nk k, ,1 2 1 2= = ( )     (13.171)   

 Thus the fi rst three moments can then be approximated by

    E Y P hk i X k i X n
ik

n

( ) ≈ [ ]( )( )
==
∑∑ , , , ,, , , ,μ μ μ1

1

2

1

… …     (13.172)  

    E Y P hk i X k i X n
ik

n
2

1
2

1

2

1

( ) ≈ [ ]( )( )
==
∑∑ , , , ,, , , ,μ μ μ… …     (13.173)  

    E Y P hk i X k i X n
ik

n
3

1
3

1

2

1

( ) ≈ [ ]( )( )
==
∑∑ , , , ,, , , ,μ μ μ… …     (13.174)    

  13.9.2.3   Computational Procedure     The procedure for computing the 
moments of the output variables for the OPF problem can be summarized in 
the following steps  [29] . 

  (1)     Determine the number of uncertain variables.  
  (2)     Set  E ( Y )   =   0 and  E ( Y  2 )   =   0.  
  (3)     Set  k    =   1.  
  (4)     Determine the locations of concentrations  η   k   ,1 ,  η   k   ,2  and the probabilities 

of concentrations  P k   ,1 ,  P k   ,2  from equations  (13.169) – (13.171) .  
  (5)     Determine the two concentrations  x k   ,1 ,  x k   ,2 

    xk X k k X k, , , ,1 1= +μ η σ     (13.175)  

    xk X k k X k, , , ,2 2= +μ η σ     (13.176)  

where  μ   X   ,   k  ,  σ   X   ,   k   are the mean and standard derivation of  X k  , 
respectively.  

  (6)     Run the deterministic OPF for both concentrations  x k   ,   j  , using

   X X X X n= [ ]μ μ μ, , ,, , ... ,1 2    

  (7)     Update  E ( Y ) and  E ( Y  2 ), using equations  (13.172)  and  (13.173) .  
  (8)     Calculate the mean and the standard deviation

    μY E Y= ( )     (13.177)  

    σ μY YE Y= ( ) −2 2     (13.178)    

  (9)     Repeat steps (4) to (8) for  k    =    k    +   1 until the list of uncertain variables is 
exhausted.     
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  13.9.2.4   Comparison  TPEM  with  MCS      Since OPF is a deterministic tool, 
it would have to be run many times to encompass all, or at least the majority 
of, possible operating conditions. More accurate Monte Carlo simulations 
(MCS), which are able to handle  “ complex ”  random variables, are an option 
but are computationally more demanding and, as such, of limited use for 
online types of applications. Here, the mean and the standard deviation of the 
TPEM are compared with the corresponding values obtained with the MCS, 
which are calculated as

    μMCS =
=
∑1

1N
xi

i

N

    (13.179)  

    σ μMCS MCS= −( )
=
∑1 2

1N
xi

i

N

    (13.180)  

where  N  is number of Monte Carlo samples, and  x  is the variable for which 
the mean  μ  MCS  and the standard deviation  σ  MCS  are calculated. The errors for 
the mean and standard deviation, respectively, are therefore defi ned as

    ε μ μ
μμ = − ×MCS TPEM

MCS

100%    (13.181)  

    ε σ σ
σσ = − ×MCS TPEM

MCS

100%     (13.182)   

 The investigation and tests show that the output variables tend to have the 
same PD as the input variables, which is a normal distribution. Thus the cor-
responding mean and standard deviation of the TPEM and MCS work reason-
ably well in most cases, given the fact that output variables tend to be normally 
distributed. 

 It is noted that the TPEM approach is accurate provided that the OPF is 
 “ well behaved ”  and that the number of uncertain parameters is not  “ too 
large. ”  In larger systems, the TPEM does not perform well if the number of 
uncertain variables is too large. With lower numbers of uncertain variables, 
the performance is adequate. The TPEM method is computationally signifi -
cantly faster than using an MCS approach. This is especially true when the 
number of uncertain parameters is low, since the computational time is directly 
proportional to the number of uncertain variables. When the number of 
random variables is large, MCS is a better alternative, given its accuracy.   

  13.9.3   Cumulant - Based Probabilistic Optimal Power Flow   [32]   

  13.9.3.1    G ram –  C harlier  A   S eries     The Gram – Charlier A Series allows 
many PDFs, including Gaussian and gamma distributions, to be expressed as 
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a series composed of a standard normal distribution and its derivatives. As a 
part of the proposed P - OPF method, distributions are reconstructed with the 
use of the Gram – Charlier A Series. The series can be stated as follows:

    f x c He x xj j
j

( ) = ( ) ( )
=

∞

∑ α
0

    (13.183)  

where  f ( x ) is the PDF for the random variable  X ,  c j   is the  j th series coeffi cient, 
He  j  ( x ) is the  j th Tchebycheff – Hermite, or Hermite, polynomial, and  α ( x ) is 
the standard normal distribution function. 

 The Gram – Charlier form uses moments to compute series coeffi cients, 
while the Edgeworth form uses cumulants, which is discussed here. 

 Since the PDF for a normal distribution is an exponential term, taking 
derivatives successively returns the original function with a polynomial coef-
fi cient multiplier. These coeffi cients are referred to as Tchebycheff – Hermite, 
or Hermite, polynomials. 

 To illustrate how the Hermite polynomials are generated, the fi rst four 
derivatives of the standard unit normal distribution are taken as follows:

    D x D e ex x0 0 1
2

2 1
2

2

α( ) = =− −     (13.184)  

    D x D e xex x1 1 1
2

2 1
2

2

α( ) = = −− −     (13.185)  

    D x D e x ex x2 2 21
2

2 1
2

2

1α( ) = = −( )− −     (13.186)  

    D x D e x x ex x3 3 31
2

2 1
2

2

3α( ) = = −( )− −     (13.187)  

    D x D e x x ex x4 4 4 21
2

2 1
2

2

6 3α( ) = = − +( )− −     (13.188)  

where  D n   is the  n th derivative. 
 The Tchebycheff – Hermite polynomials are the polynomial coeffi cients in 

the derivatives. Using the results of the fi rst four derivatives in equations 
 (13.184) – (13.188) , the fi rst fi ve Tchebycheff – Hermite polynomials are written 
as follows:

    He x0 1( ) =     (13.189)  

    He x x1( ) =     (13.190)  

    He x x2
2 1( ) = −     (13.191)  

    He x x x3
3 3( ) = −     (13.192)  

    He x x x4
4 26 3( ) = − +     (13.193)   

 Because of the structure of equations  (13.184) – (13.188) , the highest - power 
coeffi cients of the odd derivatives, i.e., the third, fi fth, seventh, etc., are nega-
tive. Equations  (13.189) – (13.193)  have been formed following the convention 



590 UNCERTAINTY ANALYSIS IN POWER SYSTEMS

that the equations relating to the odd derivatives are multiplied by negative 
one, such that the coeffi cient of the highest power is positive  [33] . 

 Therefore, the  n th Tchebycheff – Hermite polynomial can be symbolically 
written as

    He x x D xn
n( ) ( ) = −( ) ( )α α     (13.194)   

 In addition, a recursive relationship is available to determine third - order 
and higher polynomials

    He x xHe x n Hen n n( ) = ( ) − −( )− −1 21     (13.195)    

  13.9.3.2    E dgeworth  A  Series Coefficients     Given the cumulants for a 
distribution in standard form, i.e., zero mean and unit variance, the coeffi cients 
for the Edgeworth form of the A series can be computed. To fi nd the equa-
tions for the A series coeffi cients, an exponential representation of the PDF 
is broken into its series representation and equated with the Gram – Charlier 
A series in equation  (13.183) . 

 The PDF, as an exponential, is written in the following form using cumu-
lants  [9] :

    f x e x
K

D
K

D
K

D
( ) = ( )

− + − +⎛
⎝⎜ )3 3 4 4 5 5

3 4 5! ! !
�

α     (13.196)  

where  D n   is the  n th derivative of the unit normal distribution,  K n   is the  n th 
cumulant, and  α ( x ) is the standard unit normal PDF. 

 Expanding equation  (13.196)  as an exponential series yields
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 If each of the terms is expanded individually and grouped based on powers 
of  D , the following result is obtained:
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 Returning to the defi nition for the Gram – Charlier A series in equation 
 (13.183)  and expanding the summation yields

    f x c He x x c He x x c He x x( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) +0 0 1 1 2 2α α α �     (13.198)   

 Comparing equations  (13.197)  and  (13.198) , the values for the coeffi cients 
can be determined. Based on the equations presented, the fi rst seven terms of 
the Edgeworth form of the A series are presented in Table  13.5 .    

  13.9.3.3   Adaptation of the Cumulant Method to the  P  -  OPF  Problem     The 
cumulant method relies on the behavior of random variables and their associ-
ated cumulants when they are combined in a linear fashion. This section dis-
cusses the formation of random variables from a linear combination of others 
and the role cumulants play in this combination. 

 Given a new random variable  z , which is the linear combination of inde-
pendent random variables,  c  1 ,  c  1 ,  …  ,  c n  

    z a c a c a cn n= + + +1 1 2 2 �     (13.199)  

the moment generating function  Φ   z  ( s ) for the random variable  z  can be 
written as

 Table 13.5     A Series Coefficient Equation 

   Coeffi cient     Equation  

  0    1  
  1    0  
  2    0  

  3  
    
K3

6   

  4  
    
K4

24   

  5  
    
K5

120   

  6  
    

1
720

106 3
2K K+( )

  

  7  
    

1
5040

357 3 4K K K+( )
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Φz

sz s a c a c a c

s a c s a c s
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1 1 2 2

1 1 2 2

�

�� aa cn n( )[ ]     (13.200a)   

 Since  c  1 ,  c  2 ,  …  ,  c n   are independent, the above equation can be written as

    
Φ

Φ Φ
z

s a c s a c s a c

c c

s E e E e E e
a s a s

n n( ) = [ ] [ ] [ ]
= ( ) ( )
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1 21 2

……
………Φc nn a s( )     (13.200b)   

 The cumulants for the variable  z  can be computed with the cumulant gen-
erating function, in terms of the component variables as follows:

    

Ψ Φ Φ Φ Φ
Φ

z z c c c n

c

s s a s a s a s
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= ( )(

ln ln
ln

1 2

1

1 2

1

��
)) + ( )( ) + + ( )( )

= ( ) + ( ) + +
ln lnΦ Φ

Ψ Ψ Ψ
c c n

c c c n

a s a s
a s a s a

n

n

2

1 2

2

1 2

��
�� ss( )     (13.201)   

 To compute the second - order cumulant, the fi rst -  and second - order deriva-
tives of the cumulant generating function for the random variable  z  are com-
puted as

    ′ ( ) = ′ ( ) + ′ ( ) + + ′ ( )Ψ Ψ Ψ Ψz c c n c ns a a s a a s a a sn1 1 2 21 2 ��     (13.202)  

    ′′( ) = ′′ ( ) + ′′ ( ) + + ′′ ( )Ψ Ψ Ψ Ψz c c c ns a a s a a s a a s
n n1 1 2 2

2
1

2
2

2��     (13.203)   

 Evaluating equation  (13.203)  at  s    =   0 gives

    ′′( ) = ′′ ( ) + ′′ ( ) + + ′′ ( )Ψ Ψ Ψ Ψz c c ca a a
n n0 0 0 0

1 1 2 2
2 2 2��     (13.204)   

 Similarly, the  n th - order cumulant for  z , a linear combination of independent 
random variables, can be determined with the following equation:

    λn
n n n n n n n

z c c n cn
a a a= ( ) = ( ) + ( ) + + ( )( ) ( ) ( ) ( )Ψ Ψ Ψ Ψ0 0 0 0

1 1 2 2
��     (13.205)  

where the exponent ( n ) denotes the  n th derivative with respect to  s . 
 The cumulant method is adapted from the basic derivation above to accom-

modate the P - OPF problem when a logarithmic barrier interior point method 
(LBIPM) - type solution is used. The Hessian of the Lagrange function is neces-
sary for the computation of the Newton step in the LBIPM. The inverse of 
the Hessian, however, can be used as the coeffi cients for the linear combina-
tion of random bus loading variables. The pure Newton step is computed at 
iteration  k  of the LBIPM with the following equation:

    y y H y G yk k k k+
−= − ( ) ( )1

1     (13.206)  

where  y  is the vector of variables.  G ( y k  ) is the gradient of the Lagrange func-
tion.  H   − 1 ( y k  ) is the inverse Hessian matrix, which contains the multipliers for 
a linear combination of PDFs for random bus loads. 
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 It is necessary to introduce the cumulants related to the random loads into 
the system in such a way that the cumulants for all other system variables can 
be computed. Some characteristics of the gradient of the Lagrangian are used 
to accomplish this. When the gradient of the Lagrangian is taken, the power 
fl ow equations appear unmodifi ed in this vector. Therefore, cumulant models 
in the bus loads map directly into the gradient of the Lagrangian. For the 
purposes of mapping, the mismatch vector, in equation  (13.206) , is replaced 
by a new vector containing the cumulants of the random loads in the rows 
corresponding to their associated power fl ow equations. 

 The linear mapping information contained in the inverse Hessian can be 
used to determine cumulants for other variables when bus loading is treated 
as a random variable. If  −  H   − 1 ( y k  ) is written in the following form

    − =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−H

a a a
a a a

a a a

n

n

n n n n

1
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    (13.207)  

then the  n th cumulant for the  i th variables in  y  is computed with the following 
equation:

    λ λ λ λyi n i
n

x n i
n

x n i n
n

xn na a a, , , , , , ,, ,= + + +1 1 2 2 …     (13.208)  

where  y i   is the  i th element in  y , and  λ   xj   ,   n   is the  n th cumulant for the  j th com-
ponent variable. 

 For the cumulant method used for P - OPF, the cumulants for unknown 
random variables are computed from known random variables, and PDFs are 
reconstructed with the Gram – Charlier/Edgeworth expansion theory.    

  13.10   COMPARISON OF DETERMINISTIC AND 
PROBABILISTIC METHODS 

 As we have analyzed in this chapter, it is impossible to obtain all available 
data in the real - time operation because of the above - mentioned uncertainties 
of power systems and competitive environment. Nevertheless, it is important 
to select an appropriate technique to handle these uncertainties. The existing 
deterministic methods and tools are not adequate to handle them. The pro-
babilistic methods, gray mathematics, fuzzy theory, and analytic hierarchy 
process (AHP)  [34 – 37]  are very useful to compute the unavailable or uncer-
tain data; so that power system operation problems such as the economic 
dispatch, optimal power fl ow, and state estimation can be solvable even some 
data are not available. 

 A comparison of the deterministic method and the probabilistic method is 
shown in Table  13.6 .   
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 Through comparing the various approaches, the following methods to 
handle uncertainties are recommended: 

 •      Characterization and probabilistic methods  
 •      Probabilistic methods/tools for evaluating the contingencies  
 •      Fuzzy/ANN/AHP methods to handle uncertainties (e.g., contingency 

ranking)
 •      Risk management tools to optimize energy utilization while maintaining 

the required levels of reliability  
 •      Cost - benefi t analysis (CBA) for quantifying the impact of uncertainty     
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