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PREFACE

Designing software for control systems is difficult. Experienced controls engineers
have learned many techniques that allow them to solve problems. This book was written to
present methods for designing controls software using Programmable Logic Controllers
(PLCs). It is my personal hope that by employing the knowledge in the book that you will
be able to quickly write controls programs that work as expected (and avoid having to
learn by costly mistakes.)

This book has been designed for students with some knowledge of technology,
including limited electricity, who wish to learn the discipline of practical control system
design on commonly used hardware. To this end the book will use the Allen Bradley Con-
trolLogix processors to allow depth. Although the chapters will focus on specific hard-
ware, the techniques are portable to other PLCs. Whenever possible the IEC 61131
programming standards will be used to help in the use of other PLCs.

In some cases the material will build upon the content found in a linear controls
course. But, a heavy emphasis is placed on discrete control systems. Figure 1.1 crudely
shows some of the basic categories of control system problems.

CONTROL
CONTINUOUS DISCRETE
LINEAR NON LINEAR CONDITIONAL SEQUENTIAL
\ / RAC EVENT BASED
e.g. M TEMPORAL
e.g. PID BOOLEAN \
e.g. FUZZY LOGIC e.g. COUNTERS

EXPERT SYSTEMS ¢-& TIMERS

Figure 1.1 Control Dichotomy

* Continuous - The values to be controlled change smoothly. e.g. the speed of a car.
* Logical/Discrete - The value to be controlled are easily described as on-off. e.g.
the car motor is on-off. NOTE: all systems are continuous but they can be
treated as logical for simplicity.
e.g. “When I do this, that always happens!” For example, when the power
is turned on, the press closes!
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* Linear - Can be described with a simple differential equation. This is the pre-
ferred starting point for simplicity, and a common approximation for real world
problems.

e.g. A car can be driving around a track and can pass same the same spot at
a constant velocity. But, the longer the car runs, the mass decreases, and
it travels faster, but requires less gas, etc. Basically, the math gets
tougher, and the problem becomes non-linear.

e.g. We are driving the perfect car with no friction, with no drag, and can
predict how it will work perfectly.

* Non-Linear - Not Linear. This is how the world works and the mathematics
become much more complex.

e.g. As rocket approaches sun, gravity increases, so control must change.

* Sequential - A logical controller that will keep track of time and previous events.

The difference between these control systems can be emphasized by considering a
simple elevator. An elevator is a car that travels between floors, stopping at precise
heights. There are certain logical constraints used for safety and convenience. The points
below emphasize different types of control problems in the elevator.

Logical:
1. The elevator must move towards a floor when a button is pushed.
2. The elevator must open a door when it is at a floor.
3. It must have the door closed before it moves.
etc.
Linear:
1. If the desired position changes to a new value, accelerate quickly
towards the new position.
2. As the elevator approaches the correct position, slow down.
Non-linear:
1 Accelerate slowly to start.
2. Decelerate as you approach the final position.
3. Allow faster motion while moving.
4. Compensate for cable stretch, and changing spring constant, etc.

Logical and sequential control is preferred for system design. These systems are
more stable, and often lower cost. Most continuous systems can be controlled logically.
But, some times we will encounter a system that must be controlled continuously. When
this occurs the control system design becomes more demanding. When improperly con-
trolled, continuous systems may be unstable and become dangerous.

When a system is well behaved we say it is self regulating. These systems don’t
need to be closely monitored, and we use open loop control. An open loop controller will
set a desired position for a system, but no sensors are used to verify the position. When a
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system must be constantly monitored and the control output adjusted we say it is closed
loop. A cruise control in a car is an excellent example. This will monitor the actual speed
of a car, and adjust the speed to meet a set target speed.

Many control technologies are available for control. Early control systems relied
upon mechanisms and electronics to build controlled. Most modern controllers use a com-
puter to achieve control. The most flexible of these controllers is the PLC (Programmable
Logic Controller).

The book has been set up to aid the reader, as outlined below.

Sections labeled A4side: are for topics that would be of interest to one disci-
pline, such as electrical or mechanical.

Sections labeled Note. are for clarification, to provide hints, or to add
explanation.

Each chapter supports about 1-4 lecture hours depending upon students
background and level in the curriculum.

Topics are organized to allow students to start laboratory work earlier in the
semester.

Sections begin with a topic list to help set thoughts.

Objective given at the beginning of each chapter.

Summary at the end of each chapter to give big picture.

Significant use of figures to emphasize physical implementations.

Worked examples and case studies.

Problems at ends of chapters with solutions.

Glossary.

1.1 TODO LIST

- Finish writing chapters
- fuzzy logic chapter
* - internet chapter
- hmi chapter
- modify chapters
* - electrical wiring chapter
- fix wiring and other issues in the implementation chapter
- software chapter - improve P&ID section
- appendices - complete list of instruction data types in appendix
- small items
- update serial 10 slides
- all chapters
* - grammar and spelling check
* - add a resources web page with links
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- links to software/hardware vendors, iec1131, etc.
- pictures of hardware and controls cabinet
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2. PROGRAMMABLE LOGIC CONTROLLERS

Topics:
* PLC History
* Ladder Logic and Relays
* PLC Programming
* PLC Operation
* An Example

Objectives:
* Know general PLC issues
* To be able to write simple ladder logic programs
* Understand the operation of a PLC

2.1 INTRODUCTION

Control engineering has evolved over time. In the past humans were the main
method for controlling a system. More recently electricity has been used for control and
early electrical control was based on relays. These relays allow power to be switched on
and off without a mechanical switch. It is common to use relays to make simple logical
control decisions. The development of low cost computer has brought the most recent rev-
olution, the Programmable Logic Controller (PLC). The advent of the PLC began in the
1970s, and has become the most common choice for manufacturing controls.

PLCs have been gaining popularity on the factory floor and will probably remain
predominant for some time to come. Most of this is because of the advantages they offer.

* Cost effective for controlling complex systems.

* Flexible and can be reapplied to control other systems quickly and easily.
» Computational abilities allow more sophisticated control.

* Trouble shooting aids make programming easier and reduce downtime.

* Reliable components make these likely to operate for years before failure.

2.1.1 Ladder Logic

Ladder logic is the main programming method used for PLCs. As mentioned
before, ladder logic has been developed to mimic relay logic. The decision to use the relay
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logic diagrams was a strategic one. By selecting ladder logic as the main programming
method, the amount of retraining needed for engineers and tradespeople was greatly
reduced.

Modern control systems still include relays, but these are rarely used for logic. A
relay is a simple device that uses a magnetic field to control a switch, as pictured in Figure
2.1. When a voltage is applied to the input coil, the resulting current creates a magnetic
field. The magnetic field pulls a metal switch (or reed) towards it and the contacts touch,
closing the switch. The contact that closes when the coil is energized is called normally
open. The normally closed contacts touch when the input coil is not energized. Relays are
normally drawn in schematic form using a circle to represent the input coil. The output
contacts are shown with two parallel lines. Normally open contacts are shown as two
lines, and will be open (non-conducting) when the input is not energized. Normally closed
contacts are shown with two lines with a diagonal line through them. When the input coil
is not energized the normally closed contacts will be closed (conducting).
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Figure 2.1 Simple Relay Layouts and Schematics

Relays are used to let one power source close a switch for another (often high cur-
rent) power source, while keeping them isolated. An example of a relay in a simple control
application is shown in Figure 2.2. In this system the first relay on the left is used as nor-
mally closed, and will allow current to flow until a voltage is applied to the input A. The
second relay is normally open and will not allow current to flow until a voltage is applied
to the input B. If current is flowing through the first two relays then current will flow
through the coil in the third relay, and close the switch for output C. This circuit would
normally be drawn in the ladder logic form. This can be read logically as C will be on if A
is off and B is on.



plc wiring - 2.4

( H1I5VAC

(o)
ﬁ_wall plug )

r——n r—I— —n
I I .
| — | I | relay logic
'E:_‘—I—'—:
! — |
LH -I T
: output C
input A input B
(nI())Imally closed) (normally open) (normally open)

A B
% ladder logic

7

Figure 2.2 A Simple Relay Controller
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The example in Figure 2.2 does not show the entire control system, but only the
logic. When we consider a PLC there are inputs, outputs, and the logic. Figure 2.3 shows a
more complete representation of the PLC. Here there are two inputs from push buttons.
We can imagine the inputs as activating 24V DC relay coils in the PLC. This in turn drives
an output relay that switches 115V AC, that will turn on a light. Note, in actual PLCs
inputs are never relays, but outputs are often relays. The ladder logic in the PLC is actually
a computer program that the user can enter and change. Notice that both of the input push
buttons are normally open, but the ladder logic inside the PLC has one normally open con-
tact, and one normally closed contact. Do not think that the ladder logic in the PLC needs
to match the inputs or outputs. Many beginners will get caught trying to make the ladder
logic match the input types.
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Figure 2.3 A PLC Illustrated With Relays

Many relays also have multiple outputs (throws) and this allows an output relay to
also be an input simultaneously. The circuit shown in Figure 2.4 is an example of this, it is
called a seal in circuit. In this circuit the current can flow through either branch of the cir-
cuit, through the contacts labelled A or B. The input B will only be on when the output B
is on. If B is off, and A is energized, then B will turn on. If B turns on then the input B will
turn on, and keep output B on even if input A goes off. After B is turned on the output B
will not turn off.
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A B

O

Note: When A is pushed, the output B will turn on, and
the input B will also turn on and keep B on perma-
nently - until power is removed.

Note: The line on the right is being left off intentionally
and is implied in these diagrams.

Figure 2.4 A Seal-in Circuit

2.1.2 Programming

The first PLCs were programmed with a technique that was based on relay logic
wiring schematics. This eliminated the need to teach the electricians, technicians and engi-
neers how to program a computer - but, this method has stuck and it is the most common
technique for programming PLCs today. An example of ladder logic can be seen in Figure
2.5. To interpret this diagram imagine that the power is on the vertical line on the left hand
side, we call this the hot rail. On the right hand side is the neutral rail. In the figure there
are two rungs, and on each rung there are combinations of inputs (two vertical lines) and
outputs (circles). If the inputs are opened or closed in the right combination the power can
flow from the hot rail, through the inputs, to power the outputs, and finally to the neutral
rail. An input can come from a sensor, switch, or any other type of sensor. An output will
be some device outside the PLC that is switched on or off, such as lights or motors. In the
top rung the contacts are normally open and normally closed. Which means if input 4 is on
and input B is off, then power will flow through the output and activate it. Any other com-
bination of input values will result in the output X being off.
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Note: Power needs to flow through some combination of the inputs
(A,B,C,D,E,F,GH) to turn on outputs (X,Y).

Figure 2.5 A Simple Ladder Logic Diagram

The second rung of Figure 2.5 is more complex, there are actually multiple combi-
nations of inputs that will result in the output Y turning on. On the left most part of the
rung, power could flow through the top if C is off and D is on. Power could also (and
simultaneously) flow through the bottom if both £ and F are true. This would get power
half way across the rung, and then if G or H is true the power will be delivered to output Y.
In later chapters we will examine how to interpret and construct these diagrams.

There are other methods for programming PLCs. One of the earliest techniques
involved mnemonic instructions. These instructions can be derived directly from the lad-
der logic diagrams and entered into the PLC through a simple programming terminal. An
example of mnemonics is shown in Figure 2.6. In this example the instructions are read
one line at a time from top to bottom. The first line 00000 has the instruction LDN (input
load and not) for input 4. This will examine the input to the PLC and if it is off it will
remember a / (or true), if it is on it will remember a 0 (or false). The next line uses an LD
(input load) statement to look at the input. If the input is off it remembers a 0, if the input
is on it remembers a / (note: this is the reverse of the LD). The AND statement recalls the
last two numbers remembered and if the are both true the result is a 7, otherwise the result
is a 0. This result now replaces the two numbers that were recalled, and there is only one
number remembered. The process is repeated for lines 00003 and 00004, but when these
are done there are now three numbers remembered. The oldest number is from the AND,
the newer numbers are from the two LD instructions. The AND in line 00005 combines the
results from the last LD instructions and now there are two numbers remembered. The OR
instruction takes the two numbers now remaining and if either one is a / the resultis a /,
otherwise the result is a (. This result replaces the two numbers, and there is now a single
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number there. The last instruction is the ST (store output) that will look at the last value
stored and if it is /, the output will be turned on, if it is 0 the output will be turned off.

00000 LDN
00001 LD

00002 AND
00003 LD

00004 LD

00005 AND
00006 OR

00007 ST X

00008 END A B <

@

the mnemonic code is equivalent to
the ladder logic below

oo w»

END

Note: The notation shown aboveis ~ SOR
not standard Allen-Bradley BST
notation. The program to the XIC A
right would be the A-B equiva- XIO B
lent. NXB

XIO C
XIOD
BND
OTE X
EOR
END

Figure 2.6 An Example of a Mnemonic Program and Equivalent Ladder Logic

The ladder logic program in Figure 2.6, is equivalent to the mnemonic program.
Even if you have programmed a PLC with ladder logic, it will be converted to mnemonic
form before being used by the PLC. In the past mnemonic programming was the most
common, but now it is uncommon for users to even see mnemonic programs.
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Sequential Function Charts (SFCs) have been developed to accommodate the pro-
gramming of more advanced systems. These are similar to flowcharts, but much more
powerful. The example seen in Figure 2.7 is doing two different things. To read the chart,
start at the top where is says start. Below this there is the double horizontal line that says
follow both paths. As a result the PLC will start to follow the branch on the left and right
hand sides separately and simultaneously. On the left there are two functions the first one
is the power up function. This function will run until it decides it is done, and the power
down function will come after. On the right hand side is the flash function, this will run
until it is done. These functions look unexplained, but each function, such as power up
will be a small ladder logic program. This method is much different from flowcharts
because it does not have to follow a single path through the flowchart.

’-' @ o

power up Execution follows

multiple paths

flash

- oam s mm

1
1
1
1
\

powerdown| ¥ _ ——-

A

End

Figure 2.7  An Example of a Sequential Function Chart

Structured Text programming has been developed as a more modern programming
language. It is quite similar to languages such as BASIC. A simple example is shown in
Figure 2.8. This example uses a PLC memory location i. This memory location is for an
integer, as will be explained later in the book. The first line of the program sets the value
to 0. The next line begins a loop, and will be where the loop returns to. The next line
recalls the value in location i, adds 1 to it and returns it to the same location. The next line
checks to see if the loop should quit. If i is greater than or equal to 10, then the loop will
quit, otherwise the computer will go back up to the REPEAT statement continue from
there. Each time the program goes through this loop i will increase by 1 until the value
reaches /0.
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1:=0;

REPEAT
1:=1+1;
UNTIL 1>=10
END REPEAT;

Figure 2.8 An Example of a Structured Text Program

2.1.3 PLC Connections

When a process is controlled by a PLC it uses inputs from sensors to make deci-
sions and update outputs to drive actuators, as shown in Figure 2.9. The process is a real
process that will change over time. Actuators will drive the system to new states (or modes
of operation). This means that the controller is limited by the sensors available, if an input
is not available, the controller will have no way to detect a condition.

PROCESS

Feedbackl from Connections to
sensors/switches actuators

PLC

Figure 2.9  The Separation of Controller and Process

The control loop is a continuous cycle of the PLC reading inputs, solving the lad-
der logic, and then changing the outputs. Like any computer this does not happen
instantly. Figure 2.10 shows the basic operation cycle of a PLC. When power is turned on
initially the PLC does a quick sanity check to ensure that the hardware is working prop-
erly. If there is a problem the PLC will halt and indicate there is an error. For example, if
the PLC power is dropping and about to go off this will result in one type of fault. If the
PLC passes the sanity check it will then scan (read) all the inputs. After the inputs values
are stored in memory the ladder logic will be scanned (solved) using the stored values -
not the current values. This is done to prevent logic problems when inputs change during
the ladder logic scan. When the ladder logic scan is complete the outputs will be scanned
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(the output values will be changed). After this the system goes back to do a sanity check,
and the loop continues indefinitely. Unlike normal computers, the entire program will be
run every scan. Typical times for each of the stages is in the order of milliseconds.

PLC program changes output
by examining inputs

Set new outputs

THE
CONTROL
LOOP

Power turned on

Process changes and PLC pauses

Read inputs while it checks its own operation

Figure 2.10  The Scan Cycle of a PLC

2.1.4 Ladder Logic Inputs

PLC inputs are easily represented in ladder logic. In Figure 2.11 there are three
types of inputs shown. The first two are normally open and normally closed inputs, dis-
cussed previously. The /IT (Immediate InpuT) function allows inputs to be read after the
input scan, while the ladder logic is being scanned. This allows ladder logic to examine
input values more often than once every cycle. (Note: This instruction is not available on
the ControlLogix processors, but is still available on older models.)
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all

| | Normally open, an active input x will close the contact
and allow power to flow.

X
/‘/}/ Normally closed, power flows when the input x is not open.

X
IIT

immediate inputs will take current values, not those from
the previous input scan. (Note: this instruction is actually
an output that will update the input table with the current
input values. Other input contacts can now be used to
examine the new values.)

Figure 2.11  Ladder Logic Inputs

2.1.5 Ladder Logic Outputs

In ladder logic there are multiple types of outputs, but these are not consistently
available on all PLCs. Some of the outputs will be externally connected to devices outside
the PLC, but it is also possible to use internal memory locations in the PLC. Six types of
outputs are shown in Figure 2.12. The first is a normal output, when energized the output
will turn on, and energize an output. The circle with a diagonal line through is a normally
on output. When energized the output will turn off. This type of output is not available on
all PLC types. When initially energized the OSR (One Shot Relay) instruction will turn on
for one scan, but then be off for all scans after, until it is turned off. The L (latch) and U
(unlatch) instructions can be used to lock outputs on. When an L output is energized the
output will turn on indefinitely, even when the output coil is deenergized. The output can
only be turned off using a U output. The last instruction is the /OT (Immediate OutpuT)
that will allow outputs to be updated without having to wait for the ladder logic scan to be
completed.
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When power is applied (on) the output x is activated for the left output, but turned
off for the output on the right.

C X S X
An input transition on will cause the output x to go on for one scan
(this is also known as a one shot relay)

When the L coil is energized, x will be toggled on, it will stay on until the U coil
is energized. This is like a flip-flop and stays set even when the PLC is turned off.

—O- —OF
Some PLCs will allow immediate outputs that do not wait for the program scan to

end before setting an output. (Note: This instruction will only update the outputs using
the output table, other instruction must change the individual outputs.)

—(°

Note: Outputs are also commonly shown using parentheses -(')- instead of
the circle. This is because many of the programming systems are text
based and circles cannot be drawn.

Figure 2.12  Ladder Logic Outputs

2.2 A CASE STUDY

Problem: Try to develop (without looking at the solution) a relay based controller
that will allow three switches in a room to control a single light.
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Solution: There are two possible approaches to this problem. The first assumes that any
one of the switches on will turn on the light, but all three switches must be off for the
light to be off.

switch 1 .
Q light

switch 2

switch 3

The second solution assumes that each switch can turn the light on or off, regardless of
the states of the other switches. This method is more complex and involves thinking
through all of the possible combinations of switch positions. You might recognize
this problem as an exclusive or problem.

switch 1 switch 2 switch 3
b gt Q light

svx@c h 1 swi}c h 2 svx@c h 3
|

svatm 1 S\RQIZCI 2 switch 3

switch 1 swi}m 2 switch 3

Note: It is important to get a clear understanding of how the controls are expected to
work. In this example two radically different solutions were obtained based upon a
simple difference in the operation.

2.3 SUMMARY

* Normally open and closed contacts.

* Relays and their relationship to ladder logic.

* PLC outputs can be inputs, as shown by the seal in circuit.

* Programming can be done with ladder logic, mnemonics, SFCs, and structured
text.

* There are multiple ways to write a PLC program.



plc wiring - 2.15

2.4 PRACTICE PROBLEMS

1. Give an example of where a PLC could be used.
2. Why would relays be used in place of PLCs?

3. Give a concise description of a PLC.

4. List the advantages of a PLC over relays.

5. A PLC can effectively replace a number of components. Give examples and discuss some good
and bad applications of PLCs.

6. Explain why ladder logic outputs are coils?

7. In the figure below, will the power for the output on the first rung normally be on or off? Would
the output on the second rung normally be on or off?

8. Write the mnemonic program for the Ladder Logic below.
A

( —
( —
QY_

2.5 PRACTICE PROBLEM SOLUTIONS

1. To control a conveyor system
2. For simple designs

3. A PLC is a computer based controller that uses inputs to monitor a process, and uses outputs to
control a process using a program.



plc wiring - 2.16

4. Less expensive for complex processes, debugging tools, reliable, flexible, easy to expand, etc.
5. A PLC could replace a few relays. In this case the relays might be easier to install and less
expensive. To control a more complex system the controller might need timing, counting and

other mathematical calculations. In this case a PLC would be a better choice.

6. The ladder logic outputs were modelled on relay logic diagrams. The output in a relay ladder
diagram is a relay coil that switches a set of output contacts.

7. off, on

8. Generic: LD A, LD B, OR, ST Y, END; Allen Bradley: SOR, BST, XIO A, NXB, XIO B,
BND, OTE Y, EOR, END

2.6 ASSIGNMENT PROBLEMS

1. Explain the trade-offs between relays and PLCs for control applications.

2. Develop a simple ladder logic program that will turn on an output X if inputs A and B, or input
Cis on.
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3. PLC HARDWARE

Topics:
* PLC hardware configurations
* Input and outputs types
* Electrical wiring for inputs and outputs
* Relays
* Electrical Ladder Diagrams and JIC wiring symbols

Objectives:
* Be able to understand and design basic input and output wiring.
* Be able to produce industrial wiring diagrams.

3.1 INTRODUCTION

Many PLC configurations are available, even from a single vendor. But, in each of
these there are common components and concepts. The most essential components are:

Power Supply - This can be built into the PLC or be an external unit. Common
voltage levels required by the PLC (with and without the power supply) are
24Vdc, 120Vac, 220Vac.

CPU (Central Processing Unit) - This is a computer where ladder logic is stored
and processed.

I/O (Input/Output) - A number of input/output terminals must be provided so that
the PLC can monitor the process and initiate actions.

Indicator lights - These indicate the status of the PLC including power on, program
running, and a fault. These are essential when diagnosing problems.

The configuration of the PLC refers to the packaging of the components. Typical
configurations are listed below from largest to smallest as shown in Figure 3.1.

Rack - A rack is often large (up to 18 by 30” by 10”) and can hold multiple cards.
When necessary, multiple racks can be connected together. These tend to be the
highest cost, but also the most flexible and easy to maintain.

Mini - These are smaller than full sized PLC racks, but can have the same 10
capacity.

Micro - These units can be as small as a deck of cards. They tend to have fixed
quantities of I/O and limited abilities, but costs will be the lowest.

Software - A software based PLC requires a computer with an interface card, but
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allows the PLC to be connected to sensors and other PLCs across a network.

Figure 3.1 Typical Configurations for PLC

3.2 INPUTS AND OUTPUTS

Inputs to, and outputs from, a PLC are necessary to monitor and control a process.
Both inputs and outputs can be categorized into two basic types: logical or continuous.
Consider the example of a light bulb. If it can only be turned on or off; it is logical control.
If the light can be dimmed to different levels, it is continuous. Continuous values seem
more intuitive, but logical values are preferred because they allow more certainty, and
simplify control. As a result most controls applications (and PLCs) use logical inputs and
outputs for most applications. Hence, we will discuss logical I/O and leave continuous I/O
for later.

Outputs to actuators allow a PLC to cause something to happen in a process. A
short list of popular actuators is given below in order of relative popularity.

Solenoid Valves - logical outputs that can switch a hydraulic or pneumatic flow.

Lights - logical outputs that can often be powered directly from PLC output
boards.

Motor Starters - motors often draw a large amount of current when started, so they
require motor starters, which are basically large relays.

Servo Motors - a continuous output from the PLC can command a variable speed
or position.
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Outputs from PLCs are often relays, but they can also be solid state electronics
such as transistors for DC outputs or Triacs for AC outputs. Continuous outputs require
special output cards with digital to analog converters.

Inputs come from sensors that translate physical phenomena into electrical signals.
Typical examples of sensors are listed below in relative order of popularity.

Proximity Switches - use inductance, capacitance or light to detect an object logi-
cally.

Switches - mechanical mechanisms will open or close electrical contacts for a log-
ical signal.

Potentiometer - measures angular positions continuously, using resistance.

LVDT (linear variable differential transformer) - measures linear displacement
continuously using magnetic coupling.

Inputs for a PLC come in a few basic varieties, the simplest are AC and DC inputs.
Sourcing and sinking inputs are also popular. This output method dictates that a device
does not supply any power. Instead, the device only switches current on or off, like a sim-
ple switch.

Sinking - When active the output allows current to flow to a common ground. This
is best selected when different voltages are supplied.

Sourcing - When active, current flows from a supply, through the output device
and to ground. This method is best used when all devices use a single supply
voltage.

This is also referred to as NPN (sinking) and PNP (sourcing). PNP is more popu-
lar. This will be covered in detail in the chapter on sensors.

3.2.1 Inputs

In smaller PLCs the inputs are normally built in and are specified when purchasing
the PLC. For larger PLCs the inputs are purchased as modules, or cards, with 8 or 16
inputs of the same type on each card. For discussion purposes we will discuss all inputs as
if they have been purchased as cards. The list below shows typical ranges for input volt-
ages, and is roughly in order of popularity.

12-24 Vdc
100-120 Vac
10-60 Vdc
12-24 Vac/dc
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5 Vdc (TTL)
200-240 Vac
48 Vdc
24 Vac

PLC input cards rarely supply power, this means that an external power supply is
needed to supply power for the inputs and sensors. The example in Figure 3.2 shows how
to connect an AC input card.

PLC Input Card
24V AC
normally open push-button O
00
24V AC Hot O 01
Power
Supply O 02
Neut.
O 03
O 04
normally open O 05
temperature switch O 06
O 07
O COM
Pushbutton (bob:3:1.Data.1) itis in rack "bob"
slot 3

Tempsensor (bob:3:1.Data.3)

Note: inputs are normally high impedance. This means that they will
use very little current.

Figure 3.2 An AC Input Card and Ladder Logic
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In the example there are two inputs, one is a normally open push button, and the
second is a temperature switch, or thermal relay. (NOTE: These symbols are standard and
will be discussed later in this chapter.) Both of the switches are powered by the positive/
hot output of the 24 Vac power supply - this is like the positive terminal on a DC supply.
Power is supplied to the left side of both of the switches. When the switches are open there
is no voltage passed to the input card. If either of the switches are closed power will be
supplied to the input card. In this case inputs 1 and 3 are used - notice that the inputs start
at 0. The input card compares these voltages to the common. If the input voltage is within
a given tolerance range the inputs will switch on. Ladder logic is shown in the figure for
the inputs. Here it uses Allen Bradley notation for ControlLogix. At the top is the tag
(variable name) for the rack. The input card (’I’) is in slot 3, so the address for the card is
bob:3.1.Data.x, where ’x’ is the input bit number. These addresses can also be given alias
tags to make the ladder logic less confusing.

NOTE: The design process will be much easier if the inputs and outputs are planned first,

and the tags are entered before the ladder logic. Then the program is entered using the
much simpler tag names.

Many beginners become confused about where connections are needed in the cir-
cuit above. The key word to remember is circuit, which means that there is a full loop that
the voltage must be able to follow. In Figure 3.2 we can start following the circuit (loop) at
the power supply. The path goes through the switches, through the input card, and back to
the power supply where it flows back through to the start. In a full PLC implementation
there will be many circuits that must each be complete.

A second important concept is the common. Here the neutral on the power supply
is the common, or reference voltage. In effect we have chosen this to be our 0V reference,
and all other voltages are measured relative to it. If we had a second power supply, we
would also need to connect the neutral so that both neutrals would be connected to the
same common. Often common and ground will be confused. The common is a reference,
or datum voltage that is used for 0V, but the ground is used to prevent shocks and damage
to equipment. The ground is connected under a building to a metal pipe or grid in the
ground. This is connected to the electrical system of a building, to the power outlets,
where the metal cases of electrical equipment are connected. When power flows through
the ground it is bad. Unfortunately many engineers, and manufacturers mix up ground and
common. It is very common to find a power supply with the ground and common misla-
beled.
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Remember - Don’t mix up the ground and common. Don’t connect them together if the
common of your device is connected to a common on another device.

One final concept that tends to trap beginners is that each input card is isolated.
This means that if you have connected a common to only one card, then the other cards are
not connected. When this happens the other cards will not work properly. You must con-
nect a common for each of the output cards.

There are many trade-offs when deciding which type of input cards to use.

* DC voltages are usually lower, and therefore safer (i.e., 12-24V).

* DC inputs are very fast, AC inputs require a longer on-time. For example, a 60Hz
wave may require up to 1/60sec for reasonable recognition.

* DC voltages can be connected to larger variety of electrical systems.

* AC signals are more immune to noise than DC, so they are suited to long dis-
tances, and noisy (magnetic) environments.

* AC power is easier and less expensive to supply to equipment.

» AC signals are very common in many existing automation devices.
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ASIDE: PLC inputs must convert a variety of logic levels to the 5Vdc logic levels
used on the data bus. This can be done with circuits similar to those shown below.
Basically the circuits condition the input to drive an optocoupler. This electrically
isolates the external electrical circuitry from the internal circuitry. Other circuit
components are used to guard against excess or reversed voltage polarity.

+5V
optocoupler
:__ " TTL
1nput AN T \\.
|
COM ° L+ — — =
hot
AN /& o
AC optocoupler
input = — — _ [
gy N
N/
neut. W :
L 4+~ — — — 4

Figure 3.3 Aside: PLC Input Circuits

3.2.2 Output Modules

WARNING - ALWAYS CHECK RATED VOLTAGES AND CURRENTS FOR PLC’s

AND NEVER EXCEED!
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As with input modules, output modules rarely supply any power, but instead act as
switches. External power supplies are connected to the output card and the card will
switch the power on or off for each output. Typical output voltages are listed below, and
roughly ordered by popularity.

120 Vac

24 Vdc
12-48 Vac
12-48 Vdc
5Vdc (TTL)
230 Vac

These cards typically have 8 to 16 outputs of the same type and can be purchased
with different current ratings. A common choice when purchasing output cards is relays,
transistors or triacs. Relays are the most flexible output devices. They are capable of
switching both AC and DC outputs. But, they are slower (about 10ms switching is typi-
cal), they are bulkier, they cost more, and they will wear out after millions of cycles. Relay
outputs are often called dry contacts. Transistors are limited to DC outputs, and Triacs are
limited to AC outputs. Transistor and triac outputs are called switched outputs.

Dry contacts - a separate relay is dedicated to each output. This allows mixed volt-
ages (AC or DC and voltage levels up to the maximum), as well as isolated out-
puts to protect other outputs and the PLC. Response times are often greater than
10ms. This method is the least sensitive to voltage variations and spikes.

Switched outputs - a voltage is supplied to the PLC card, and the card switches it to
different outputs using solid state circuitry (transistors, triacs, etc.) Triacs are
well suited to AC devices requiring less than 1A. Transistor outputs use NPN or
PNP transistors up to 1A typically. Their response time is well under 1ms.
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ASIDE: PLC outputs must convert the 5Vdc logic levels on the PLC data bus to exter-
nal voltage levels. This can be done with circuits similar to those shown below.
Basically the circuits use an optocoupler to switch external circuitry. This electri-
cally isolates the external electrical circuitry from the internal circuitry. Other cir-
cuit components are used to guard against excess or reversed voltage polarity.

O +v
optocoupler
TTL | | A
| 7 Sourcing DC output
| AR N O g p
|
L 4+~ — — — 4
optocoupler % I
TTL , | A - AC
| | output
Vs S
| I
L 4+~ — — — 4 . O

Note: Some AC outputs will
also use zero voltage detec-
tion. This allows the output
to be switched on when the
voltage and current are
effectively off, thus prevent-
ing surges.

Figure 3.4  Aside: PLC Output Circuits

Caution is required when building a system with both AC and DC outputs. If AC is
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accidentally connected to a DC transistor output it will only be on for the positive half of
the cycle, and appear to be working with a diminished voltage. If DC is connected to an
AC triac output it will turn on and appear to work, but you will not be able to turn it off
without turning off the entire PLC.

ASIDE: A transistor is a semiconductor based device that can act as an adjustable valve.
When switched oft it will block current flow in both directions. While switched on it
will allow current flow in one direction only. There is normally a loss of a couple of
volts across the transistor. A triac is like two SCRs (or imagine transistors) connected
together so that current can flow in both directions, which is good for AC current.
One major difference for a triac is that if it has been switched on so that current flows,
and then switched off, it will not turn off until the current stops flowing. This is fine
with AC current because the current stops and reverses every 1/2 cycle, but this does
not happen with DC current, and so the triac will remain on.

A major issue with outputs is mixed power sources. It is good practice to isolate all
power supplies and keep their commons separate, but this is not always feasible. Some
output modules, such as relays, allow each output to have its own common. Other output
cards require that multiple, or all, outputs on each card share the same common. Each out-
put card will be isolated from the rest, so each common will have to be connected. It is
common for beginners to only connect the common to one card, and forget the other cards
- then only one card seems to work!

The output card shown in Figure 3.5 is an example of a 24Vdc output card that has
a shared common. This type of output card would typically use transistors for the outputs.
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24V DC 120 V AC
Output Card

Power

Suppl
00 O PPy
Neut.

01 O Relay

02 O

03 O

04 O I

05O 24 V Lamp

06 O

07 O +24 V DC
Power

comMO Supply

COM

rack "sue"
slot 2

Motor (sue:2.0.Data.3)
O

Lamp (sue:2.0.Data.3)

)
N

Figure 3.5  An Example of a 24Vdc Output Card (Sinking)

In this example the outputs are connected to a low current light bulb (lamp) and a
relay coil. Consider the circuit through the lamp, starting at the 24Vdc supply. When the
output 07 is on, current can flow in 07 to the COM, thus completing the circuit, and allow-
ing the light to turn on. If the output is off the current cannot flow, and the light will not
turn on. The output 03 for the relay is connected in a similar way. When the output 03 is
on, current will flow through the relay coil to close the contacts and supply 120Vac to the
motor. Ladder logic for the outputs is shown in the bottom right of the figure. The notation
is for an Allen Bradley ControlLogix. The output card (’O’) is in a rack labelled ’sue’ in
slot 2. As indicated for the input card, it is good practice to define and use an alias tag for
an output (e.g. Motor) instead of using the full description (e.g. sue:2.0.Data.3). This card
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could have many different voltages applied from different sources, but all the power sup-
plies would need a single shared common.

The circuits in Figure 3.6 had the sequence of power supply, then device, then PLC
card, then power supply. This requires that the output card have a common. Some output
schemes reverse the device and PLC card, thereby replacing the common with a voltage
input. The example in Figure 3.5 is repeated in Figure 3.6 for a voltage supply card.

24V DC

Output Card
Power

Supply
v+ O 24VDC  COM

00 O

01 O Relay

02 O 120 V AC
03 O Power

Supply
04 O Iml Neut.
05 O

24 V lamp

06 O

07 O |

Figure 3.6 An Example of a 24Vdc Output Card With a Voltage Input (Sourcing)

In this example the positive terminal of the 24Vdc supply is connected to the out-
put card directly. When an output is on power will be supplied to that output. For example,
if output 07 is on then the supply voltage will be output to the lamp. Current will flow
through the lamp and back to the common on the power supply. The operation is very sim-
ilar for the relay switching the motor. Notice that the ladder logic (shown in the bottom
right of the figure) is identical to that in Figure 3.5. With this type of output card only one
power supply can be used.

We can also use relay outputs to switch the outputs. The example shown in Figure
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3.5 and Figure 3.6 is repeated yet again in Figure 3.7 for relay output.

120 V AC/DC
Output Card

24V DC

00

01

02

03

Power
Supply

04

05

06

07

éééééébééTéééééé

in rack 01
I/O group 2

Figure 3.7  An Example of a Relay Output Card

In this example the 24Vdc supply is connected directly to both relays (note that
this requires 2 connections now, whereas the previous example only required one.) When
an output is activated the output switches on and power is delivered to the output devices.
This layout is more similar to Figure 3.6 with the outputs supplying voltage, but the relays
could also be used to connect outputs to grounds, as in Figure 3.5. When using relay out-
puts it is possible to have each output isolated from the next. A relay output card could

Relay

24 V lamp

120 V AC
Power

Supply

have AC and DC outputs beside each other.

3.3 RELAYS

Although relays are rarely used for control logic, they are still essential for switch-
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ing large power loads. Some important terminology for relays is given below.

Contactor - Special relays for switching large current loads.

Motor Starter - Basically a contactor in series with an overload relay to cut off
when too much current is drawn.

Arc Suppression - when any relay is opened or closed an arc will jump. This
becomes a major problem with large relays. On relays switching AC this prob-
lem can be overcome by opening the relay when the voltage goes to zero (while
crossing between negative and positive). When switching DC loads this prob-
lem can be minimized by blowing pressurized gas across during opening to sup-
press the arc formation.

AC coils - If a normal coil is driven by AC power the contacts will vibrate open
and closed at the frequency of the AC power. This problem is overcome by
relay manufacturers by adding a shading pole to the internal construction of the
relay.

The most important consideration when selecting relays, or relay outputs on a
PLC, is the rated current and voltage. If the rated voltage is exceeded, the contacts will
wear out prematurely, or if the voltage is too high fire is possible. The rated current is the
maximum current that should be used. When this is exceeded the device will become too
hot, and it will fail sooner. The rated values are typically given for both AC and DC,
although DC ratings are lower than AC. If the actual loads used are below the rated values
the relays should work well indefinitely. If the values are exceeded a small amount the life
of the relay will be shortened accordingly. Exceeding the values significantly may lead to
immediate failure and permanent damage. Please note that relays may also include mini-
mum ratings that should also be observed to ensure proper operation and long life.

* Rated Voltage - The suggested operation voltage for the coil. Lower levels can
result in failure to operate, voltages above shorten life.

* Rated Current - The maximum current before contact damage occurs (welding or
melting).

3.4 A CASE STUDY

(Try the following case without looking at the solution in Figure 3.8.) An electrical
layout is needed for a hydraulic press. The press uses a 24Vdc double actuated solenoid
valve to advance and retract the press. This device has a single common and two input
wires. Putting 24Vdc on one wire will cause the press to advance, putting 24Vdc on the
second wire will cause it to retract. The press is driven by a large hydraulic pump that
requires 220Vac rated at 20A, this should be running as long as the press is on. The press
is outfitted with three push buttons, one is a NC stop button, the other is a NO manual
retract button, and the third is a NO start automatic cycle button. There are limit switches
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at the top and bottom of the press travels that must also be connected.

SOLUTION
24VDC 24VDC
output card input card
solenoid
Na — o o—1/0
o o o I/l
S
oo o |12
advance
O/
oo o113
retract —
e o o o 1/4
relay for
hydraulic N
pump -
24VDC com

Figure 3.8 Case Study for Press Wiring

The input and output cards were both selected to be 24Vdc so that they may share
a single 24Vdc power supply. In this case the solenoid valve was wired directly to the out-
put card, while the hydraulic pump was connected indirectly using a relay (only the coil is
shown for simplicity). This decision was primarily made because the hydraulic pump
requires more current than any PLC can handle, but a relay would be relatively easy to
purchase and install for that load. All of the input switches are connected to the same sup-
ply and to the inputs.

3.5 ELECTRICAL WIRING DIAGRAMS

When a controls cabinet is designed and constructed ladder diagrams are used to
document the wiring. A basic wiring diagram is shown in Figure 3.9. In this example the
system would be supplied with AC power (120Vac or 220Vac) on the left and right rails.
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The lines of these diagrams are numbered, and these numbers are typically used to number
wires when building the electrical system. The switch before line 010 is a master discon-
nect for the power to the entire system. A fuse is used after the disconnect to limit the
maximum current drawn by the system. Line 020 of the diagram is used to control power
to the outputs of the system. The stop button is normally closed, while the start button is
normally open. The branch, and output of the rung are CR1, which is a master control
relay. The PLC receives power on line 30 of the diagram.

The inputs to the PLC are all AC, and are shown on lines 040 to 070. Notice that
Input I:0/0 is a set of contacts on the MCR CRI. The three other inputs are a normally
open push button (line 050), a limit switch (060) and a normally closed push button (070).
After line 080 the MCR CRI can apply power to the outputs. These power the relay out-
puts of the PLC to control a red indicator light (040), a green indicator light (050), a sole-
noid (060), and another relay (080). The relay on line 080 switches a relay that turn on
another device drill station.
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020

030

040

050

060

070

080

090

100

110

120

130

L1 N
stop _I_start CR
e o o MC
| |CRl
|
L1 PLC N
90-1 090
i L0 0:0/0 ) WL
(5B
100-1 Ve AN
PBIJ_= L0/1 0:0/1 100> ()
(S
LSI
. 1:0/2 110-1 AN
~? 0:0/2 1o o
PB2 1:0/3 .
-1
0:0/3 120 )
ac com ™ /\CRZ
N
—L_CRI1
=035 )
e 0%0)
——050)
120-1 < ?/? >
CR2 Drill Station
| | L1 N
Figure 3.9 A Ladder Wiring Diagram
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In the wiring diagram the choice of a normally close stop button and a normally
open start button are intentional. Consider line 020 in the wiring diagram. If the stop but-
ton is pushed it will open the switch, and power will not be able to flow to the control
relay and output power will shut off. If the stop button is damaged, say by a wire falling
off, the power will also be lost and the system will shut down - safely. If the stop button
used was normally open and this happened the system would continue to operate while the
stop button was unable to shut down the power. Now consider the start button. If the but-
ton was damaged, say a wire was disconnected, it would be unable to start the system, thus
leaving the system unstarted and safe. In summary, all buttons that stop a system should be
normally closed, while all buttons that start a system should be normally open.

3.5.1 JIC Wiring Symbols

To standardize electrical schematics, the Joint International Committee (JIC) sym-
bols were developed, these are shown in Figure 3.10, Figure 3.11 and Figure 3.12.
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564, o\ o\ ©
I

disconnect circuit interrupter
(3 phase AC) (3 phase AC)
O——T70

O\o
normally open
limit switch

L
O O

normally open
push-button

normally closed
limit switch

Quble pole

push-button

normally closed
push-button

T

=
thermal é}
overload relay fuse motor (3 phase AC)
liquid level liquid level

normally open normally closed

Figure 3.10  JIC Schematic Symbols

O O O
O O O
O O O
breaker (3 phase AC)
TN

Q1 O

mushroom head
push-button

O

vacuum pressure
normally closed

vacuum pressure
normally open
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O
O
:

temperature

normally open temperature

normally closed

normally open

flow
normally closed

- e —O— —CF

relay contact relay contact relay coil

normally open  normally closed

o O O—C

A

relay time delay on

relay time delay on normally closed

normally open

@)

relay time delay off
normally open

horn buzzer bell
2-H
solenoid 2-position

hydraulic solenoid

<>

normally open normally closed
proximity switch proximity switch

Figure 3.11  JIC Schematic Symbols

indicator lamp

O—C0

\2

relay time delay off
normally closed

HI H3 H2 H4
LU
X1 X2

control transformer

—

Male connector

—

Female connector
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— A —

i \

Resistor Tapped Resistor Variable Resistor
(potentiometer)
—\p— I al
| |
Rheostat Capacitor Polarized Capacitor
(potentiometer)
T K ol

Variable Capacitor

- [ Y

Capacitor Battery

Crystal Thermocouple Antenna
= 77 =
\ -~ _\J D
Shielded Conductor Shielded Grounded
_Jrrrrw
_Jrrroru
Coil or Inductor o ]
Common Coil with magnetic core
JTVL o U
_Jrrrru —
. _JTTTTO
Tapped Coil Transformer

Transformer magnetic core

Figure 3.12  JIC Schematic Symbols
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3.6 SUMMARY

* PLC inputs condition AC or DC inputs to be detected by the logic of the PLC.

* Outputs are transistors (DC), triacs (AC) or relays (AC and DC).

* Input and output addresses are a function of the card location/tag name and input
bit number.

* Electrical system schematics are documented with diagrams that look like ladder
logic.

3.7 PRACTICE PROBLEMS

1. Can a PLC input switch a relay coil to control a motor?

[\S}

. How do input and output cards act as an interface between the PLC and external devices?
3. What is the difference between wiring a sourcing and sinking output?

4. What is the difference between a motor starter and a contactor?

N

. Is AC or DC easier to interrupt?

o)

. What can happen if the rated voltage on a device is exceeded?

~

. What are the benefits of input/output modules?

8. (for electrical engineers) Explain the operation of AC input and output conditioning circuits.
9. What will happen if a DC output is switched by an AC output.

10. Explain why a stop button must be normally closed and a start button must be normally open.

11. For the circuit shown in the figure below, list the input and output addresses for the PLC. If
switch A controls the light, switch B the motor, and C the solenoid, write a simple ladder logic
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200

201

202

W
- 0

203
204 solenpid

valve,
205
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+

207 24VD(C
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100

101

102

103

104

105

106

107

com

12VDC

12. We have a PLC rack with a 24 VDC input card in slot 3, and a 120VAC output card in slot 2.
The inputs are to be connected to 4 push buttons. The outputs are to drive a 120VAC light bulb,
a 240VAC motor, and a 24VDC operated hydraulic valve. Draw the electrical connections for
the inputs and outputs. Show all other power supplies and other equipment/components

required.

13. You are planning a project that will be controlled by a PLC. Before ordering parts you decide
to plan the basic wiring and select appropriate input and output cards. The devices that we will
use for inputs are 2 limit switches, a push button and a thermal switch. The output will be for a
24Vdc solenoid valve, a 110Vac light bulb, and a 220Vac SOHP motor. Sketch the basic wiring
below including PLC cards.

14. Add three push buttons as inputs to the figure below. You must also select a power supply, and
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show all necessary wiring.

com

com

com

com

com

15. Three 120Vac outputs are to be connected to the output card below. Show the 120Vac source,
and all wiring.

\Y

00
01
02
03

04

05

06

07

16. Sketch the wiring for PLC outputs that are listed below.
- a double acting hydraulic solenoid valve (with two coils)
- a24Vdc lamp
- a 120 Vac high current lamp
- a low current 12Vdc motor
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8 PRACTICE PROBLEM SOLUTIONS

.1no - a plc OUTPUT can switch a relay

. input cards are connected to sensors to determine the state of the system. Output cards are con-

nected to actuators that can drive the process.

. sourcing outputs supply current that will pass through an electrical load to ground. Sinking

inputs allow current to flow from the electrical load, to the common.

. a motor starter typically has three phases
. AC is easier, it has a zero crossing
. it will lead to premature failure

. by using separate modules, a PLC can be customized for different applications. If a single mod-

ule fails, it can be replaced quickly, without having to replace the entire controller.

. AC input conditioning circuits will rectify an AC input to a DC waveform with a ripple. This

will be smoothed, and reduced to a reasonable voltage level to drive an optocoupler. An AC
output circuit will switch an AC output with a triac, or a relay.

.an AC output is a triac. When a triac output is turned off, it will not actually turn off until the

AC voltage goes to 0V. Because DC voltages don’t go to 0V, it will never turn off.

10. If a NC stop button is damaged, the machine will act as if the stop button was pushed and shut

down safely. If a NO start button is damaged the machine will not be able to start.

I1.

outputs:

200 - light || 100 200
202 - motor ‘ ‘

204 - solenoid

inputs: 102 202

100 - switch A
102 - switch B
104 - switch C

104 Q 210
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N
0 * o 0
1
1 LI 1
N
2 ° o 2
1
3 ° o 3
4 4
5 5
6 6
7 + 7
24VDC
com - com
1 | o L
- 0 o O N +
L 24Vdc
I Y -
o 1 1 ()
o 2 7 | }7
L hot
'g‘ 3 3 220Vac
4 4 [ @ neut.
5 5 -
| hot
6 6 L[ 120Vac
neut.
+ 7 7 O
24VDC
- com Note: relays are used to reduce the total

number of output cards
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I
S e o 1
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I
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4
com
5
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04
05
06
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16.

relay output card

o + power
00 supply
m 24Vdc
s -
01 %
02

hot  power

— supply
03 Q e 120Vac
neut.
power

04 supply
12Vdc

3.9 ASSIGNMENT PROBLEMS

1. Describe what could happen if a normally closed start button was used on a system, and the
wires to the button were cut.

2. Describe what could happen if a normally open stop button was used on a system and the wires
to the button were cut.

3. a) For the input (’in”) and output ("out’) cards below, add three output lights and three normally
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open push button inputs. b) Redraw the outputs so that it uses a relay output card.

in:0.I.Data.x out:1.0.Data.x
0 \Y% +|
1 0
2 1
3 2
4 3
5 4
T 6 5
- 7 6
com 7

4. Draw an electrical wiring (ladder) diagram for PLC outputs that are listed below.
- a solenoid controlled hydraulic valve
- a24Vdc lamp
- a 120 Vac high current lamp
- a low current 12Vdc motor

5. Draw an electrical ladder diagram for a PLC that has a PNP and an NPN sensor for inputs. The
outputs are two small indicator lights. You should use proper symbols for all components. You
must also include all safety devices including fuses, disconnects, MCRs, etc...

6. Draw an electrical wiring diagram for a PLC controlling a system with an NPN and PNP input
sensor. The outputs include an indicator light and a relay to control a 20A motor load. Include
ALL safety circuitry.

7. Develop a wiring diagram for a system that has the following elements. Include all safety cir-
cuitry.

2 NPN proximity sensors

2 N.O. pushbuttons

3 solenoid outputs

A 440Vac 3ph. 20HP (i.e., large) motor
8. Draw a ladder wiring diagram for a system that has 2 PNP inputs, and 2 solenoid outputs. All
inputs and outputs are 24Vdc. Include ALL safety circuitry.

9. Develop a ladder wiring diagram, including all safety circuitry that uses an PNP and an NPN



plc wiring - 3.30

input sensors. The outputs is a relay controlled AC light.

10. Draw a complete ladder wiring diagram for a PLC based control system with the following
components. Include all necessary safety circuitry.
1 large 3 phase (AC) motor
2 PNP sensors
1 NO pushbutton
1 NC pushbutton
1 solenoid output
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4. LOGICAL SENSORS

Topics:
* Sensor wiring; switches, TTL, sourcing, sinking

* Proximity detection; contact switches, photo-optics, capacitive, inductive and
ultrasonic

Objectives:
* Understand the different types of sensor outputs.
» Know the basic sensor types and understand application issues.

4.1 INTRODUCTION

Sensors allow a PLC to detect the state of a process. Logical sensors can only
detect a state that is either true or false. Examples of physical phenomena that are typically
detected are listed below.

* inductive proximity - is a metal object nearby?

* capacitive proximity - is a dielectric object nearby?

* optical presence - is an object breaking a light beam or reflecting light?
» mechanical contact - is an object touching a switch?

Recently, the cost of sensors has dropped and they have become commodity items,
typically between $50 and $100. They are available in many forms from multiple vendors
such as Allen Bradley, Omron, Hyde Park and Turck. In applications sensors are inter-
changeable between PLC vendors, but each sensor will have specific interface require-
ments.

This chapter will begin by examining the various electrical wiring techniques for
sensors, and conclude with an examination of many popular sensor types.

4.2 SENSOR WIRING

When a sensor detects a logical change it must signal that change to the PLC. This
is typically done by switching a voltage or current on or off. In some cases the output of
the sensor is used to switch a load directly, completely eliminating the PLC. Typical out-
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puts from sensors (and inputs to PLCs) are listed below in relative popularity.

Sinking/Sourcing - Switches current on or off.
Plain Switches - Switches voltage on or off.

Solid State Relays - These switch AC outputs.
TTL (Transistor Transistor Logic) - Uses OV and 5V to indicate logic levels.

4.2.1 Switches

The simplest example of sensor outputs are switches and relays. A simple example

is shown in Figure 4.1.

normally open push-button

24 Vdc
Power

Supply

_|_

PLC Input Card
24V DC

00

R

Figure 4.1

sensor
relay
output

01
02
03
04
05
06

V-

O O O OO0 00 00 O0

07

An Example of Switched Sensors

O COM

In the figure a NO contact switch is connected to input 0. A sensor with a relay
output is also shown. The sensor must be powered separately, therefore the V+ and V- ter-
minals are connected to the power supply. The output of the sensor will become active
when a phenomenon has been detected. This means the internal switch (probably a relay)
will be closed allowing current to flow and the positive voltage will be applied to input 06.
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4.2.2 Transistor Transistor Logic (TTL)

Transistor-Transistor Logic (TTL) is based on two voltage levels, OV for false and
5V for true. The voltages can actually be slightly larger than OV, or lower than 5V and still
be detected correctly. This method is very susceptible to electrical noise on the factory
floor, and should only be used when necessary. TTL outputs are common on electronic
devices and computers, and will be necessary sometimes. When connecting to other
devices simple circuits can be used to improve the signal, such as the Schmitt trigger in
Figure 4.2.

) Vi
Vi Vo T /_/w-\=—

VOT

Figure 4.2 A Schmitt Trigger

A Schmitt trigger will receive an input voltage between 0-5V and convert it to 0V
or 5V. If the voltage is in an ambiguous range, about 1.5-3.5V it will be ignored.

If a sensor has a TTL output the PLC must use a TTL input card to read the values.
If the TTL sensor is being used for other applications it should be noted that the maximum
current output is normally about 20mA.

4.2.3 Sinking/Sourcing

Sinking sensors allow current to flow into the sensor to the voltage common, while
sourcing sensors allow current to flow out of the sensor from a positive source. For both of
these methods the emphasis is on current flow, not voltage. By using current flow, instead
of voltage, many of the electrical noise problems are reduced.

When discussing sourcing and sinking we are referring to the output of the sensor
that is acting like a switch. In fact the output of the sensor is normally a transistor, that will
act like a switch (with some voltage loss). A PNP transistor is used for the sourcing out-
put, and an NPN transistor is used for the sinking input. When discussing these sensors the
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term sourcing is often interchanged with PNP, and sinking with NPN. A simplified exam-
ple of a sinking output sensor is shown in Figure 4.3. The sensor will have some part that
deals with detection, this is on the left. The sensor needs a voltage supply to operate, so a
voltage supply is needed for the sensor. If the sensor has detected some phenomenon then
it will trigger the active line. The active line is directly connected to an NPN transistor.
(Note: for an NPN transistor the arrow always points away from the center.) If the voltage
to the transistor on the active line is 0V, then the transistor will not allow current to flow
into the sensor. If the voltage on the active line becomes larger (say 12V) then the transis-
tor will switch on and allow current to flow into the sensor to the common.

' +
Vil M
i |
physical
phenomenonf | sensor
| output
R < /\ Sensor | current flows in
| NPN when switched on
S and | — - = —---
Detector |
Active |
Line |
|
vl V-

Aside: The sensor responds to a physical phenomenon. If the sensor is inactive (nothing
detected) then the active line is low and the transistor is off, this is like an open
switch. That means the NPN output will have no current in/out. When the sensor is
active, it will make the active line high. This will turn on the transistor, and effec-
tively close the switch. This will allow current to flow into the sensor to ground
(hence sinking). The voltage on the NPN output will be pulled down to V-. Note: the
voltage will always be 1-2V higher because of the transistor. When the sensor is off,
the NPN output will float, and any digital circuitry needs to contain a pull-up resistor.

Figure 4.3 A Simplified NPN/Sinking Sensor

Sourcing sensors are the complement to sinking sensors. The sourcing sensors use
a PNP transistor, as shown in Figure 4.4. (Note: PNP transistors are always drawn with the
arrow pointing to the center.) When the sensor is inactive the active line stays at the V+
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value, and the transistor stays switched off. When the sensor becomes active the active
line will be made 0V, and the transistor will allow current to flow out of the sensor.

V+
VH_|
physical |
phenomenon| |
R Active |
N Line | |
N | current flows out
censor | when switched on
and | R EELE 2
Detector PNP
" sensor
: output
V- : V-

Aside: The sensor responds to the physical phenomenon. If the sensor is inactive (nothing
detected) then the active line is high and the transistor is off, this is like an open switch.
That means the PNP output will have no current in/out. When the sensor is active, it
will make the active line high. This will turn on the transistor, and effectively close the
switch. This will allow current to flow from V+ through the sensor to the output (hence
sourcing). The voltage on the PNP output will be pulled up to V+. Note: the voltage
will always be 1-2V lower because of the transistor. When off, the PNP output will
float, if used with digital circuitry a pull-down resistor will be needed.

Figure 4.4 A Simplified Sourcing/PNP Sensor

Most NPN/PNP sensors are capable of handling currents up to a few amps, and
they can be used to switch loads directly. (Note: always check the documentation for rated
voltages and currents.) An example using sourcing and sinking sensors to control lights is
shown in Figure 4.5. (Note: This example could be for a motion detector that turns on
lights in dark hallways.)
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sensor v+ I v+
power sinking
NPN m supply
V- V- (common)
sensor & &
power sourcing
PNP m supply
V- l V- (common)

Note: remember to check the current and voltage ratings for the sensors.

Note: When marking power terminals, there will sometimes be two sets of
markings. The more standard is V+ and COM, but sometimes you will see
devices and power supplies without a COM (common), in this case assume
the V- is the common.

Figure 4.5 Direct Control Using NPN/PNP Sensors

In the sinking system in Figure 4.5 the light has V+ applied to one side. The other
side is connected to the NPN output of the sensor. When the sensor turns on the current
will be able to flow through the light, into the output to V- common. (Note: Yes, the cur-
rent will be allowed to flow into the output for an NPN sensor.) In the sourcing arrange-
ment the light will turn on when the output becomes active, allowing current to flow from
the V+, thought the sensor, the light and to V- (the common).

At this point it is worth stating the obvious - The output of a sensor will be an input
for a PLC. And, as we saw with the NPN sensor, this does not necessarily indicate where
current is flowing. There are two viable approaches for connecting sensors to PLCs. The
first is to always use PNP sensors and normal voltage input cards. The second option is to
purchase input cards specifically designed for sourcing or sinking sensors. An example of
a PLC card for sinking sensors is shown in Figure 4.6.
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PLC Input Card for Sinking Sensors
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Note: When a PLC input card does not have a
common but it has a V+ instead, it can be
used for NPN sensors. In this case the cur-
rent will flow out of the card (sourcing) and
we must switch it to ground.

and currents.

ASIDE: This card is shown with 2 optocouplers (one for each output). Inside these
devices the is an LED and a phototransistor, but no electrical connection. These
devices are used to isolate two different electrical systems. In this case they pro-
tect the 5V digital levels of the PLC computer from the various external voltages

Figure 4.6 A PLC Input Card for Sinking Sensors

The dashed line in the figure represents the circuit, or current flow path when the
sensor is active. This path enters the PLC input card first at a V+ terminal (Note: there is
no common on this card) and flows through an optocoupler. This current will use light to
turn on a phototransistor to tell the computer in the PLC the input current is flowing. The
current then leaves the card at input 00 and passes through the sensor to V-. When the sen-

sor is inactive the current will not flow, and the light in the optocoupler will be off. The
optocoupler is used to help protect the PLC from electrical problems outside the PLC.

The input cards for PNP sensors are similar to the NPN cards, as shown in Figure

4.7.
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Note: When we have a PLC input card that has
a common then we can use PNP sensors. In
this case the current will flow into the card
and then out the common to the power sup-

ply.

Figure 4.7  PLC Input Card for Sourcing Sensors

The current flow loop for an active sensor is shown with a dashed line. Following
the path of the current we see that it begins at the V'+, passes through the sensor, in the
input 00, through the optocoupler, out the common and to the V-.

Wiring is a major concern with PLC applications, so to reduce the total number of
wires, two wire sensors have become popular. But, by integrating three wires worth of
function into two, we now couple the power supply and sensing functions into one. Two
wire sensors are shown in Figure 4.8.
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Note: These sensors require a certain leakage
current to power the electronics.
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Figure 4.8 Two Wire Sensors

A two wire sensor can be used as either a sourcing or sinking input. In both of
these arrangements the sensor will require a small amount of current to power the sensor,
but when active it will allow more current to flow. This requires input cards that will allow
a small amount of current to flow (called the leakage current), but also be able to detect
when the current has exceeded a given value.
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When purchasing sensors and input cards there are some important considerations.
Most modern sensors have both PNP and NPN outputs, although if the choice is not avail-
able, PNP is the more popular choice. PLC cards can be confusing to buy, as each vendor
refers to the cards differently. To avoid problems, look to see if the card is specifically for
sinking or sourcing sensors, or look for a V+ (sinking) or COM (sourcing). Some vendors
also sell cards that will allow you to have NPN and PNP inputs mixed on the same card.

When drawing wiring diagrams the symbols in Figure 4.9 are used for sinking and
sourcing proximity sensors. Notice that in the sinking sensor when the switch closes
(moves up to the terminal) it contacts the common. Closing the switch in the sourcing sen-
sor connects the output to the V+. On the physical sensor the wires are color coded as indi-
cated in the diagram. The brown wire is positive, the blue wire is negative and the output
is white for sinking and black for sourcing. The outside shape of the sensor may change
for other devices, such as photo sensors which are often shown as round circles.

V+ brown

NPN (sinking)
NPN white blue V-
. PNP
PNP (sourcing)
V-

Figure 4.9  Sourcing and Sinking Schematic Symbols

4.2.4 Solid State Relays

Solid state relays switch AC currents. These are relatively inexpensive and are
available for large loads. Some sensors and devices are available with these as outputs.
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4.3 PRESENCE DETECTION

There are two basic ways to detect object presence; contact and proximity. Contact
implies that there is mechanical contact and a resulting force between the sensor and the
object. Proximity indicates that the object is near, but contact is not required. The follow-
ing sections examine different types of sensors for detecting object presence. These sen-
sors account for a majority of the sensors used in applications.

4.3.1 Contact Switches

Contact switches are available as normally open and normally closed. Their hous-
ings are reinforced so that they can take repeated mechanical forces. These often have roll-
ers and wear pads for the point of contact. Lightweight contact switches can be purchased
for less than a dollar, but heavy duty contact switches will have much higher costs. Exam-
ples of applications include motion limit switches and part present detectors.

4.3.2 Reed Switches

Reed switches are very similar to relays, except a permanent magnet is used
instead of a wire coil. When the magnet is far away the switch is open, but when the mag-
net is brought near the switch is closed as shown in Figure 4.10. These are very inexpen-
sive an can be purchased for a few dollars. They are commonly used for safety screens and
doors because they are harder to trick than other sensors.

2230

N %

C_ - _") ~ &
~ 3 £~
L'\____/

4 5 7

Note: With this device the magnet is moved towards the reed switch. As it gets
closer the switch will close. This allows proximity detection without contact, but
requires that a separate magnet be attached to a moving part.

Figure 4.10  Reed Switch
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4.3.3 Optical (Photoelectric) Sensors

Light sensors have been used for almost a century - originally photocells were
used for applications such as reading audio tracks on motion pictures. But modern optical
sensors are much more sophisticated.

Optical sensors require both a light source (emitter) and detector. Emitters will
produce light beams in the visible and invisible spectrums using LEDs and laser diodes.
Detectors are typically built with photodiodes or phototransistors. The emitter and detec-
tor are positioned so that an object will block or reflect a beam when present. A basic opti-
cal sensor is shown in Figure 4.11.

Squar€ wave

J'LI'LI'LI'LI- smaller signal
+V ™ ™ ™ +V

L ]
’ lens lens

light amplifier
. e AL demodulator
oscillator N/ } S UUUY | A detector and
switching circuits|
LED b 4
e
L phofotransistor

Figure 4.11 A Basic Optical Sensor

In the figure the light beam is generated on the left, focused through a lens. At the
detector side the beam is focused on the detector with a second lens. If the beam is broken
the detector will indicate an object is present. The oscillating light wave is used so that the
sensor can filter out normal light in the room. The light from the emitter is turned on and
off at a set frequency. When the detector receives the light it checks to make sure that it is
at the same frequency. If light is being received at the right frequency then the beam is not
broken. The frequency of oscillation is in the KHz range, and too fast to be noticed. A side
effect of the frequency method is that the sensors can be used with lower power at longer
distances.

An emitter can be set up to point directly at a detector, this is known as opposed
mode. When the beam is broken the part will be detected. This sensor needs two separate



components, as shown in Figure 4.12. This arrangement works well with opaque and
reflective objects with the emitter and detector separated by distances of up to hundreds of

feet.

discrete sensors -

emitter

4.13

_______ 1 object

Figure 4.12  Opposed Mode Optical Sensor

Having the emitter and detector separate increases maintenance problems, and
alignment is required. A preferred solution is to house the emitter and detector in one unit.
But, this requires that light be reflected back as shown in Figure 4.13. These sensors are

well suited to larger objects up to a few feet away.

emitter
detector
\ \
|
emitter - \
M
- — P -7 /
detector /Y

detector

object

reflector

reflector

Note: the reflector is constructed with polarizing screens oriented at 90 deg. angles. If
the light is reflected back directly the light does not pass through the screen in front
of the detector. The reflector is designed to rotate the phase of the light by 90 deg.,

so it will now pass through the screen in front of the detector.

Figure 4.13

Retroreflective Optical Sensor
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In the figure, the emitter sends out a beam of light. If the light is returned from the
reflector most of the light beam is returned to the detector. When an object interrupts the
beam between the emitter and the reflector the beam is no longer reflected back to the
detector, and the sensor becomes active. A potential problem with this sensor is that
reflective objects could return a good beam. This problem is overcome by polarizing the
light at the emitter (with a filter), and then using a polarized filter at the detector. The
reflector uses small cubic reflectors and when the light is reflected the polarity is rotated
by 90 degrees. If the light is reflected off the object the light will not be rotated by 90
degrees. So the polarizing filters on the emitter and detector are rotated by 90 degrees, as
shown in Figure 4.14. The reflector is very similar to reflectors used on bicycles.

emitter
reflector
have filters for detector light reflected with
emitted light same polarity
rotated by 90 deg.
emitter light rotated by 90 deg.
reflector
detector

Figure 4.14  Polarized Light in Retroreflective Sensors

For retroreflectors the reflectors are quite easy to align, but this method still
requires two mounted components. A diffuse sensors is a single unit that does not use a
reflector, but uses focused light as shown in Figure 4.15.
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Note: with diffuse reflection the light is scattered. This reduces the quantity of light
returned. As a result the light needs to be amplified using lenses.

Figure 4.15  Diffuse Optical Sensor

Diffuse sensors use light focused over a given range, and a sensitivity adjustment
is used to select a distance. These sensors are the easiest to set up, but they require well
controlled conditions. For example if it is to pick up light and dark colored objects prob-
lems would result.

When using opposed mode sensors the emitter and detector must be aligned so that
the emitter beam and detector window overlap, as shown in Figure 4.16. Emitter beams
normally have a cone shape with a small angle of divergence (a few degrees of less).
Detectors also have a cone shaped volume of detection. Therefore when aligning opposed
mode sensor care is required not just to point the emitter at the detector, but also the detec-
tor at the emitter. Another factor that must be considered with this and other sensors is that
the light intensity decreases over distance, so the sensors will have a limit to separation
distance.



discrete sensors - 4.16

,effective beam

effective

detector detector

angle

emitter / ) .
effective alignment
“i is required
- I >
intensity oc 5
r

Figure 4.16  Beam Divergence and Alignment

If an object is smaller than the width of the light beam it will not be able to block
the beam entirely when it is in front as shown in Figure 4.17. This will create difficulties
in detection, or possibly stop detection altogether. Solutions to this problem are to use nar-
rower beams, or wider objects. Fiber optic cables may be used with an opposed mode opti-
cal sensor to solve this problem, however the maximum effective distance is reduced to a
couple feet.

B

emitter detector

m———

the smaller beam width is good (but harder to align

Figure 4.17  The Relationship Between Beam Width and Object Size

Separated sensors can detect reflective parts using reflection as shown in Figure
4.18. The emitter and detector are positioned so that when a reflective surface is in posi-
tion the light is returned to the detector. When the surface is not present the light does not
return.
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reflective surface

Figure 4.18 Detecting Reflecting Parts

Other types of optical sensors can also focus on a single point using beams that
converge instead of diverge. The emitter beam is focused at a distance so that the light
intensity is greatest at the focal distance. The detector can look at the point from another
angle so that the two centerlines of the emitter and detector intersect at the point of inter-
est. If an object is present before or after the focal point the detector will not see the
reflected light. This technique can also be used to detect multiple points and ranges, as
shown in Figure 4.20 where the net angle of refraction by the lens determines which detec-
tor is used. This type of approach, with many more detectors, is used for range sensing
systems.

focal point

emitter

detector

Figure 4.19  Point Detection Using Focused Optics
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Figure 4.20  Multiple Point Detection Using Optics

Some applications do not permit full sized photooptic sensors to be used. Fiber
optics can be used to separate the emitters and detectors from the application. Some ven-
dors also sell photosensors that have the phototransistors and LEDs separated from the
electronics.

Light curtains are an array of beams, set up as shown in Figure 4.21. If any of the
beams are broken it indicates that somebody has entered a workcell and the machine needs
to be shut down. This is an inexpensive replacement for some mechanical cages and barri-
ers.

y

Figure 4.21 A Light Curtain

The optical reflectivity of objects varies from material to material as shown in Fig-



discrete sensors - 4.19

ure 4.22. These values show the percentage of incident light on a surface that is reflected.
These values can be used for relative comparisons of materials and estimating changes in
sensitivity settings for sensors.

Reflectivity
nonshiny materials Kodak white test card 90%
white paper 80%
kraft paper, cardboard 70%
lumber (pine, dry, clean) 75%
rough wood pallet 20%
beer foam 70%
opaque black nylon 14%
black neoprene 4%
black rubber tire wall 1.5%
shiny/transparent materials  jear plastic bottle 40%
translucent brown plastic bottle 60%
opaque white plastic 87%
unfinished aluminum 140%
straightened aluminum 105%
unfinished black anodized aluminum 115%
stainless steel microfinished 400%
stainless steel brushed 120%

Note: For shiny and transparent materials the reflectivity can be higher
than 100% because of the return of ambient light.

Figure 4.22  Table of Reflectivity Values for Different Materials [Banner Handbook of
Photoelectric Sensing]

4.3.4 Capacitive Sensors

Capacitive sensors are able to detect most materials at distances up to a few centi-
meters. Recall the basic relationship for capacitance.
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=%

where, C = capacitance (Farads)
k = dielectric constant
A = area of plates
d = distance between plates (electrodes)

In the sensor the area of the plates and distance between them is fixed. But, the
dielectric constant of the space around them will vary as different materials are brought
near the sensor. An illustration of a capacitive sensor is shown in Figure 4.23. an oscillat-
ing field is used to determine the capacitance of the plates. When this changes beyond a
selected sensitivity the sensor output is activated.

) Y
electric
field
T
; — — 1 clectrode oscillator | load
oblect - switching
~ e T T T T 8
AN - |
. — — - electrode detector |
|

NOTE: For this sensor the proximity of any material near the electrodes will
increase the capacitance. This will vary the magnitude of the oscillating signal
and the detector will decide when this is great enough to determine proximity.

Figure 4.23 A Capacitive Sensor

These sensors work well for insulators (such as plastics) that tend to have high
dielectric coefficients, thus increasing the capacitance. But, they also work well for metals
because the conductive materials in the target appear as larger electrodes, thus increasing
the capacitance as shown in Figure 4.24. In total the capacitance changes are normally in
the order of pF.
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Figure 4.24  Dielectrics and Metals Increase the Capacitance

The sensors are normally made with rings (not plates) in the configuration shown
in Figure 4.25. In the figure the two inner metal rings are the capacitor electrodes, but a
third outer ring is added to compensate for variations. Without the compensator ring the
sensor would be very sensitive to dirt, oil and other contaminants that might stick to the

SENSor.

electrode

compensating Note: the. compensating electrode is used for
electrode negative feedback to make the sensor
more resistant to variations, such as con-
taminations on the face of the sensor.

Figure 4.25  Electrode Arrangement for Capacitive Sensors

A table of dielectric properties is given in Figure 4.26. This table can be used for
estimating the relative size and sensitivity of sensors. Also, consider a case where a pipe
would carry different fluids. If their dielectric constants are not very close, a second sensor
may be desired for the second fluid.



Material

ABS resin pellet
acetone

acetyl bromide
acrylic resin

air

alcohol, industrial
alcohol, isopropyl
ammonia

aniline

aqueous solutions
ash (fly)

bakelite

barley powder
benzene

benzyl acetate
butane

cable sealing compound
calcium carbonate
carbon tetrachloride
celluloid

cellulose

cement

cement powder
cereal

charcoal

chlorine, liquid
coke

corn

ebonite

epoxy resin
ethanol

ethyl bromide
ethylene glycol
flour

FreonTM R22,R502 liq.
gasoline

glass

glass, raw material
glycerine

Constant

1.5-2.5
19.5
16.5
2.7-4.5
1.0
16-31
18.3
15-25
5.5-7.8
50-80
1.7
3.6
3.0-4.0
23

5

1.4

2.5

9.1

2.2

3.0
3.2-7.5
1.5-2.1
5-10
3-5
1.2-1.8
2.0
1.1-2.2
5-10
2.7-2.9
2.5-6
24

4.9
38.7
2.5-3.0
6.1

2.2
3.1-10
2.0-2.5
47
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Material

hexane

hydrogen cyanide
hydrogen peroxide
isobutylamine
lime, shell

marble

melamine resin
methane liquid
methanol

mica, white

milk, powdered
nitrobenzene
neoprene

nylon

oil, for transformer
oil, paraftin

oil, peanut

oil, petroleum

oil, soybean

oil, turpentine
paint

paraffin

paper

paper, hard

paper, oil saturated
perspex

petroleum

phenol

phenol resin
polyacetal (Delrin TM)
polyamide (nylon)
polycarbonate
polyester resin
polyethylene
polypropylene
polystyrene
polyvinyl chloride resin
porcelain

press board

Constant

1.9
95.4
84.2
4.5

1.2
8.0-8.5
4.7-10.2
1.7
33.6
4.5-9.6
3.5-4
36

6-9

4-5
2.2-24
2.2-4.8
3.0

2.1
2.9-3.5
2.2

5-8
1.9-2.5
1.6-2.6
4.5

4.0
3.2-3.5
2.0-2.2
9.9-15
4.9

3.6

2.5

2.9
2.8-8.1
23
2.0-2.3
3.0
2.8-3.1
4.4-7
2-5
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Material Constant Material Constant
quartz glass 3.7 Teflon (TM), PCTFE 2.3-2.8
rubber 2.5-35 Teflon (TM), PTFE 2.0
salt 6.0 toluene 2.3
sand 3-5 trichloroethylene 3.4
shellac 2.0-3.8 urea resin 6.2-9.5
silicon dioxide 4.5 urethane 3.2
silicone rubber 3.2-9.8 vaseline 2.2-2.9
silicone varnish 2.8-3.3 water 48-88
styrene resin 2.3-34 wax 2.4-6.5
sugar 3.0 wood, dry 2-7
sugar, granulated 1.5-2.2 wood, pressed board 2.0-2.6
sulfur 34 wood, wet 10-30
sulfuric acid 84 xylene 2.4

Figure 4.26  Dielectric Constants of Various Materials [Turck Proximity Sensors Guide]

The range and accuracy of these sensors are determined mainly by their size.
Larger sensors can have diameters of a few centimeters. Smaller ones can be less than a
centimeter across, and have smaller ranges, but more accuracy.

4.3.5 Inductive Sensors

Inductive sensors use currents induced by magnetic fields to detect nearby metal
objects. The inductive sensor uses a coil (an inductor) to generate a high frequency mag-
netic field as shown in Figure 4.27. If there is a metal object near the changing magnetic
field, current will flow in the object. This resulting current flow sets up a new magnetic
field that opposes the original magnetic field. The net effect is that it changes the induc-
tance of the coil in the inductive sensor. By measuring the inductance the sensor can deter-
mine when a metal have been brought nearby.

These sensors will detect any metals, when detecting multiple types of metal mul-
tiple sensors are often used.
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inductive coil
metal

CE +V
\\ oscillator output

and level switching
detector

Note: these work by setting up a high frequency field. If a target nears the field will
induce eddy currents. These currents consume power because of resistance, so
energy is in the field is lost, and the signal amplitude decreases. The detector exam-
ines filed magnitude to determine when it has decreased enough to switch.

Figure 4.27  Inductive Proximity Sensor

The sensors can detect objects a few centimeters away from the end. But, the
direction to the object can be arbitrary as shown in Figure 4.28. The magnetic field of the
unshielded sensor covers a larger volume around the head of the coil. By adding a shield
(a metal jacket around the sides of the coil) the magnetic field becomes smaller, but also
more directed. Shields will often be available for inductive sensors to improve their direc-
tionality and accuracy.
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Figure 4.28  Shielded and Unshielded Sensors

4.3.6 Ultrasonic

An ultrasonic sensor emits a sound above the normal hearing threshold of 16KHz.
The time that is required for the sound to travel to the target and reflect back is propor-
tional to the distance to the target. The two common types of sensors are;

electrostatic - uses capacitive effects. It has longer ranges and wider bandwidth,
but is more sensitive to factors such as humidity.

piezoelectric - based on charge displacement during strain in crystal lattices. These
are rugged and inexpensive.

These sensors can be very effective for applications such as fluid levels in tanks
and crude distance measurement.

4.3.7 Hall Effect

Hall effect switches are basically transistors that can be switched by magnetic
fields. Their applications are very similar to reed switches, but because they are solid state
they tend to be more rugged and resist vibration. Automated machines often use these to
do initial calibration and detect end stops.
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4.3.8 Fluid Flow

We can also build more complex sensors out of simpler sensors. The example in
Figure 4.29 shows a metal float in a tapered channel. As the fluid flow rate increases the
pressure forces the float upwards. The tapered shape of the float ensures an equilibrium
position proportional to flowrate. An inductive proximity sensor can be positioned so that
it will detect when the float has reached a certain height, and the system has reached a
given flowrate.

—p-fluid flow out

metal |:Imductwe proximity sensor

float

fluid flow in

-

As the fluid flow increases the float is forced higher. A proximity sensor
can be used to detect when the float reaches a certain height.

Figure 4.29  Flow Rate Detection With an Inductive Proximity Switch

4.4 SUMMARY

* Sourcing sensors allow current to flow out from the V+ supply.

» Sinking sensors allow current to flow in to the V- supply.

* Photo-optical sensors can use reflected beams (retroreflective), an emitter and
detector (opposed mode) and reflected light (diffuse) to detect a part.

» Capacitive sensors can detect metals and other materials.

* Inductive sensors can detect metals.

» Hall effect and reed switches can detect magnets.

» Ultrasonic sensors use sound waves to detect parts up to meters away.
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4.5 PRACTICE PROBLEMS

1. Given a clear plastic bottle, list 3 different types of sensors that could be used to detect it.

2. List 3 significant trade-offs between inductive, capacitive and photooptic sensors.

3. Why is a sinking output on a sensor not like a normal switch?

4. a) Sketch the connections needed for the PLC inputs and outputs below. The outputs include a

24Vdc light and a 120Vac light. The inputs are from 2 NO push buttons, and also from an opti-
cal sensor that has both PNP and NPN outputs.

24Vdc 24Vdc
tput i t
outputs N inputs
V+ 24VDC 0
0 1
1 2
2 3
; =< :
4 OR 5
5 © 6
C— O
6 7
7 com

b) State why you used either the NPN or PNP output on the sensor.

5. Select a sensor to pick up a transparent plastic bottle from a manufacturer. Copy or print the
specifications, and then draw a wiring diagram that shows how it will be wired to an appropri-
ate PLC input card.

6. Sketch the wiring to connect a power supply and PNP sensor to the PLC input card shown
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below.

00

01

02

+ G\\O 03

24VDC 04

05

06

07

COM

7. Sketch the wiring for inputs that include the following items.
3 normally open push buttons
1 thermal relay
3 sinking sensors
1 sourcing sensor

8. A PLC has eight 10-60Vdc inputs, and four relay outputs. It is to be connected to the following
devices. Draw the required wiring.
* Two inductive proximity sensors with sourcing and sinking outputs.
* A NO run button and NC stop button.
* A 120Vac light.
* A 24Vdc solenoid.
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in:2.I.Data.x out:4.0.Data.x

0 0

1

2 1

3

4 2

5

6 3

7

com

9. Draw a ladder wiring diagram (as done in the lab) for a system that has two push-buttons and a
sourcing/sinking proximity sensors for 10-60Vdc inputs and two 120Vac output lights. Don’t
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forget to include hard-wired start and stop buttons with an MCR.

L1 N
L1 PLC N
.0 — — Vac
0.0
I.1
0.1
1.2
0.2
1.3
com — — 03

4.6 PRACTICE PROBLEM SOLUTIONS

1. capacitive proximity, contact switch, photo-optic retroreflective/diffuse, ultrasonic
2. materials that can be sensed, environmental factors such as dirt, distance to object

3. the sinking output will pass only DC in a single direction, whereas a switch can pass AC and
DC.
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24Vdc 24Vdc
outputs inputs

V+

0

PO &

) 1
1
hot 1
|
4 neut. |
1
5 1
|
6 \ 4
~~-____.___.__l',
7 com

b) the PNP output was selected. because it will supply current, while the input card
requires it. The dashed line indicates the current flow through the sensor and input card.
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A transparent bottle can be picked up with a capacitive, ultrasonic, diffuse optical sen-
sor. A particular model can be selected at a manufacturers web site (eg., www.ban-
ner.com, www.hydepark.com, www.ab.com, etc.) The figure below shows the
sensor connected to a sourcing PLC input card - therefore the sensor must be sink-
ing, NPN.

+ V+
24VDC_ 0
1
2

c
L
w




24VDC
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00

01

02

03

04

05

06

07

COM
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o F T

+
power

24Vde supply

+

00
01
02
03
04
05
06
07
COM

V+

00

01

02

03

6.0

6.0

power
24Vde supply

L o -
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power
supply]

O

in:2.1.Data.x out:4.0.Data.x
.—
power
supply 1
- 2 1
V+ 3
PNP | |
V- 4 2
‘—
5
V+
PNP 6 3
V-
o | 7

com

120Vac
power

neuuPPLy
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stop start Cl
1
P . / MCR
ci N
L1 PLC N
i
o o O — — Vac
L1
PB2 | 0.0 n Y.
e o L1 ) ) AN
L2«
PRI 0.1 3 O
- B o AL
0.2
1.3
Cl
com — — 03
| |
_J _J
V+ V-
L1 N

4.7 ASSIGNMENT PROBLEMS

1. What type of sensor should be used if it is to detect small cosmetic case mirrors as they pass
along a belt. Explain your choice.

2. Summarize the tradeoffs between capacitive, inductive and optical sensors in a table.

3. Clearly and concisely explain the difference between wiring PNP and NPN sensors.
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4. a) Show the wiring for the following sensor, and circle the output that you are using, NPN or
PNP. Redraw the sensor using the correct symbol for the sourcing or sinking sensor chosen.

24Vdc
i t
N inputs
24VDC V+
0
1
2
00
o) 3
4
5
O
O 6
7

5. A PLC has three NPN and two PNP sensors as inputs, and outputs to control a 24Vdc solenoid
and a small 115Vac motor. Develop the required wiring for the inputs and outputs.
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5. LOGICAL ACTUATORS

Topics:
* Solenoids, valves and cylinders

* Hydraulics and pneumatics
* Other actuators

Objectives:
» Be aware of various actuators available.

5.1 INTRODUCTION

Actuators Drive motions in mechanical systems. Most often this is by converting
electrical energy into some form of mechanical motion.

5.2 SOLENOIDS

Solenoids are the most common actuator components. The basic principle of oper-
ation is there is a moving ferrous core (a piston) that will move inside wire coil as shown
in Figure 5.1. Normally the piston is held outside the coil by a spring. When a voltage is
applied to the coil and current flows, the coil builds up a magnetic field that attracts the
piston and pulls it into the center of the coil. The piston can be used to supply a linear
force. Well known applications of these include pneumatic values and car door openers.

M WWW
7 U U u 7

current off current on

Figure 5.1 A Solenoid
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As mentioned before, inductive devices can create voltage spikes and may need
snubbers, although most industrial applications have low enough voltage and current rat-
ings they can be connected directly to the PLC outputs. Most industrial solenoids will be
powered by 24Vdc and draw a few hundred mA.

5.3 VALVES

The flow of fluids and air can be controlled with solenoid controlled valves. An
example of a solenoid controlled valve is shown in Figure 5.2. The solenoid is mounted on
the side. When actuated it will drive the central spool left. The top of the valve body has
two ports that will be connected to a device such as a hydraulic cylinder. The bottom of the
valve body has a single pressure line in the center with two exhausts to the side. In the top
drawing the power flows in through the center to the right hand cylinder port. The left
hand cylinder port is allowed to exit through an exhaust port. In the bottom drawing the
solenoid is in a new position and the pressure is now applied to the left hand port on the
top, and the right hand port can exhaust. The symbols to the left of the figure show the
schematic equivalent of the actual valve positions. Valves are also available that allow the
valves to be blocked when unused.

solenoid

=Nyl f
Cg exhaust out  p8wer in

The solenoid has two positions and when
actuated will change the direction that
fluid flows to the device. The symbols
shown here are commonly used to ‘ .
represent this type of valve.

SRty
6

solenoid

..
power 1n exhaust out

Figure 5.2 A Solenoid Controlled 5 Ported, 4 Way 2 Position Valve
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Valve types are listed below. In the standard terminology, the 'n-way’ designates
the number of connections for inlets and outlets. In some cases there are redundant ports
for exhausts. The normally open/closed designation indicates the valve condition when

power is off. All of the valves listed are two position valve, but three position valves are
also available.

2-way normally closed - these have one inlet, and one outlet. When unenergized,
the valve is closed. When energized, the valve will open, allowing flow. These
are used to permit flows.

2-way normally open - these have one inlet, and one outlet. When unenergized, the
valve is open, allowing flow. When energized, the valve will close. These are
used to stop flows. When system power is off, flow will be allowed.

3-way normally closed - these have inlet, outlet, and exhaust ports. When unener-
gized, the outlet port is connected to the exhaust port. When energized, the inlet
is connected to the outlet port. These are used for single acting cylinders.

3-way normally open - these have inlet, outlet and exhaust ports. When unener-
gized, the inlet is connected to the outlet. Energizing the valve connects the out-
let to the exhaust. These are used for single acting cylinders

3-way universal - these have three ports. One of the ports acts as an inlet or outlet,
and is connected to one of the other two, when energized/unenergized. These
can be used to divert flows, or select alternating sources.

4-way - These valves have four ports, two inlets and two outlets. Energizing the
valve causes connection between the inlets and outlets to be reversed. These are
used for double acting cylinders.

Some of the ISO symbols for valves are shown in Figure 5.3. When using the sym-
bols in drawings the connections are shown for the unenergized state. The arrows show
the flow paths in different positions. The small triangles indicate an exhaust port.
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normally closed normally open

Two way, two position L
I T

normally closed normally open

Three way, two position T \ \ T
L TIT T T
® ®

Four way, two position T ¢ ><

él) T

Figure 5.3 ISO Valve Symbols

When selecting valves there are a number of details that should be considered, as
listed below.

pipe size - inlets and outlets are typically threaded to accept NPT (national pipe
thread).
flow rate - the maximum flow rate is often provided to hydraulic valves.
operating pressure - a maximum operating pressure will be indicated. Some valves
will also require a minimum pressure to operate.
electrical - the solenoid coil will have a fixed supply voltage (AC or DC) and cur-
rent.
response time - this is the time for the valve to fully open/close. Typical times for
valves range from 5ms to 150ms.
enclosure - the housing for the valve will be rated as,
type 1 or 2 - for indoor use, requires protection against splashes
type 3 - for outdoor use, will resists some dirt and weathering
type 3R or 3S or 4 - water and dirt tight
type 4X - water and dirt tight, corrosion resistant

5.4 CYLINDERS

A cylinder uses pressurized fluid or air to create a linear force/motion as shown in
Figure 5.4. In the figure a fluid is pumped into one side of the cylinder under pressure,
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causing that side of the cylinder to expand, and advancing the piston. The fluid on the
other side of the piston must be allowed to escape freely - if the incompressible fluid was
trapped the cylinder could not advance. The force the cylinder can exert is proportional to
the cross sectional area of the cylinder.

F
q
B B advancing
Fluid pumped in Fluid flows out
at pressure P at low pressure
F
h
retracting
| |

v

Fluid flows out Fluid pumped in
at low pressure at pressure P
For Force:
p=-= F = PA
A
where,

P = the pressure of the hydraulic fluid
A = the area of the piston
F = the force available from the piston rod

Figure 5.4 A Cross Section of a Hydraulic Cylinder

Single acting cylinders apply force when extending and typically use a spring to
retract the cylinder. Double acting cylinders apply force in both direction.
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single acting spring return cylinder

AN
VYV Y

double acting cylinder

Figure 5.5 Schematic Symbols for Cylinders

Magnetic cylinders are often used that have a magnet on the piston head. When it
moves to the limits of motion, reed switches will detect it.

5.5 HYDRAULICS

Hydraulics use incompressible fluids to supply very large forces at slower speeds
and limited ranges of motion. If the fluid flow rate is kept low enough, many of the effects
predicted by Bernoulli’s equation can be avoided. The system uses hydraulic fluid (nor-
mally an oil) pressurized by a pump and passed through hoses and valves to drive cylin-
ders. At the heart of the system is a pump that will give pressures up to hundreds or
thousands of psi. These are delivered to a cylinder that converts it to a linear force and dis-
placement.
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Hydraulic systems normally contain the following components;

1. Hydraulic Fluid

2. An Oil Reservoir

3. A Pump to Move Oil, and Apply Pressure

4. Pressure Lines

5. Control Valves - to regulate fluid flow

6. Piston and Cylinder - to actuate external mechanisms

The hydraulic fluid is often a noncorrosive oil chosen so that it lubricates the com-
ponents. This is normally stored in a reservoir as shown in Figure 5.6. Fluid is drawn from
the reservoir to a pump where it is pressurized. This is normally a geared pump so that it
may deliver fluid at a high pressure at a constant flow rate. A flow regulator is normally
placed at the high pressure outlet from the pump. If fluid is not flowing in other parts of
the system this will allow fluid to recirculate back to the reservoir to reduce wear on the
pump. The high pressure fluid is delivered to solenoid controlled vales that can switch
fluid flow on or off. From the vales fluid will be delivered to the hydraulics at high pres-
sure, or exhausted back to the reservoir.

air filter

| fluid return outlet tube
( D | 1) ﬁ
VA
|
| I : | ; 7 /: | |
| | I m— - access hatch
| o ! 0, o o for cleaning
refill oil filter — ¢ | Lo
- | (I -
y——— —— e+ — - =
/ [ s/
/ L level
7 I 17 7 auge
Y [/ y gaug
/ | Va4 \/

\bafﬂe - isolates the

outlet fluid from
turbulence in the inlet
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Figure 5.6 A Hydraulic Fluid Reservoir

Hydraulic systems can be very effective for high power applications, but the use of
fluids, and high pressures can make this method awkward, messy, and noisy for other
applications.

5.6 PNEUMATICS

Pneumatic systems are very common, and have much in common with hydraulic
systems with a few key differences. The reservoir is eliminated as there is no need to col-
lect and store the air between uses in the system. Also because air is a gas it is compress-
ible and regulators are not needed to recirculate flow. But, the compressibility also means
that the systems are not as stiff or strong. Pneumatic systems respond very quickly, and are
commonly used for low force applications in many locations on the factory floor.

Some basic characteristics of pneumatic systems are,

- stroke from a few millimeters to meters in length (longer strokes have more
springiness

- the actuators will give a bit - they are springy

- pressures are typically up to 85psi above normal atmosphere

- the weight of cylinders can be quite low

- additional equipment is required for a pressurized air supply- linear and rotatory
actuators are available.

- dampers can be used to cushion impact at ends of cylinder travel.

When designing pneumatic systems care must be taken to verify the operating
location. In particular the elevation above sea level will result in a dramatically different
air pressure. For example, at sea level the air pressure is about 14.7 psi, but at a height of
7,800 ft (Mexico City) the air pressure is 11.1 psi. Other operating environments, such as
in submersibles, the air pressure might be higher than at sea level.

Some symbols for pneumatic systems are shown in Figure 5.7. The flow control
valve is used to restrict the flow, typically to slow motions. The shuttle valve allows flow
in one direction, but blocks it in the other. The receiver tank allows pressurized air to be
accumulated. The dryer and filter help remove dust and moisture from the air, prolonging
the life of the valves and cylinders.
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Flow control valve

Shuttle valve

Receiver tank

Dryer

Pump

— £ —

O
—C
%_
4®7

Pressure regulator S

Figure 5.7 Pneumatics Components

5.7 MOTORS

Motors are common actuators, but for logical control applications their properties
are not that important. Typically logical control of motors consists of switching low cur-
rent motors directly with a PLC, or for more powerful motors using a relay or motor
starter. Motors will be discussed in greater detail in the chapter on continuous actuators.
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5.8 OTHERS

There are many other types of actuators including those on the brief list below.

Heaters - The are often controlled with a relay and turned on and off to maintain a
temperature within a range.

Lights - Lights are used on almost all machines to indicate the machine state and
provide feedback to the operator. most lights are low current and are connected
directly to the PLC.

Sirens/Horns - Sirens or horns can be useful for unattended or dangerous machines
to make conditions well known. These can often be connected directly to the
PLC.

Computers - some computer based devices may use TTL 0/5V logic levels to trig-
ger actions. Generally these are prone to electrical noise and should be avoided
if possible.

5.9 SUMMARY

* Solenoids can be used to convert an electric current to a limited linear motion.

* Hydraulics and pneumatics use cylinders to convert fluid and gas flows to limited
linear motions.

* Solenoid valves can be used to redirect fluid and gas flows.

* Pneumatics provides smaller forces at higher speeds, but is not stiff. Hydraulics
provides large forces and is rigid, but at lower speeds.

* Many other types of actuators can be used.

5.10 PRACTICE PROBLEMS

1. A piston is to be designed to exert an actuation force of 120 Ibs on its extension stroke. The
inside diameter of the cylinder is 2.0 and the ram diameter is 0.375”. What shop air pressure
will be required to provide this actuation force? Use a safety factor of 1.3.

2. Draw a simple hydraulic system that will advance and retract a cylinder using PLC outputs.
Sketches should include details from the PLC output card to the hydraulic cylinder.

3. Develop an electrical ladder diagram and pneumatic diagram for a PLC controlled system. The
system includes the components listed below. The system should include all required safety
and wiring considerations.

a 3 phase 50 HP motor
1 NPN sensor
1 NO push button
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1 NC limit switch
1 indicator light
a doubly acting pneumatic cylinder
4. What are the trade-offs between 3-phase and single-phase AC power.

5.11 PRACTICE PROBLEM SOLUTIONS

1. A =pi*r"2 =3.14159n"2, P=FS*(F/A)=1.3(120/3.14159)=49.7psi. Note, if the cylinder were
retracting we would need to subtract the rod area from the piston area. Note: this air pressure is
much higher than normally found in a shop, so it would not be practical, and a redesign would
be needed.

cylinder

\4 -
24Vdc

00 /il ]
01 S |
02 = >< y
03 pressure
regulator
4 Tefease |
sump pump
>
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ADD SOLUTION

4. 3-phase power is ideal for large loads such as motors. Single phase power is suited to small
loads, and the power usage on each phase must be balanced someplace on the electrical grid.

5.12 ASSIGNMENT PROBLEMS

1. Draw a schematic symbol for a solenoid controlled pneumatic valve and explain how the valve
operates.

2. A PLC based system has 3 proximity sensors, a start button, and an E-stop as inputs. The sys-
tem controls a pneumatic system with a solenoid controlled valve. It also controls a robot with
a TTL output. Develop a complete wiring diagram including all safety elements.

3. A system contains a pneumatic cylinder with two inductive proximity sensors that will detect
when the cylinder is fully advanced or retracted. The cylinder is controlled by a solenoid con-
trolled valve. Draw electrical and pneumatic schematics for a system.

4. Draw an electrical ladder wiring diagram for a PLC controlled system that contains 2 PNP sen-
sors, a NO push button, a NC limit switch, a contactor controlled AC motor and an indicator
light. Include all safety circuitry.

5. We are to connect a PLC to detect boxes moving down an assembly line and divert larger
boxes. The line is 12 inches wide and slanted so the boxes fall to one side as they travel by.
One sensor will be mounted on the lower side of the conveyor to detect when a box is present.
A second sensor will be mounted on the upper side of the conveyor to determine when a larger
box is present. If the box is present, an output to a pneumatic solenoid will be actuated to divert
the box. Your job is to select a specific PLC, sensors, and solenoid valve. Details (the absolute
minimum being model numbers) are expected with a ladder wiring diagram. (Note: take
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advantage of manufacturers web sites.)

6. Develop a wiring diagram for a system that has the following elements. Include all safety cir-
cuitry.
2 NPN proximity sensors
2 N.O. pushbuttons
3 solenoid outputs
A 440Vac 3ph. 20HP (i.e., large) motor
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6. BOOLEAN LOGIC DESIGN

Topics:
* Boolean algebra
* Converting between Boolean algebra and logic gates and ladder logic
* Logic examples

Objectives:
* Be able to simplify designs with Boolean algebra

6.1 INTRODUCTION

The process of converting control objectives into a ladder logic program requires
structured thought. Boolean algebra provides the tools needed to analyze and design these
systems.

6.2 BOOLEAN ALGEBRA

Boolean algebra was developed in the 1800’s by James Bool, an Irish mathemati-
cian. It was found to be extremely useful for designing digital circuits, and it is still
heavily used by electrical engineers and computer scientists. The techniques can model a
logical system with a single equation. The equation can then be simplified and/or manipu-
lated into new forms. The same techniques developed for circuit designers adapt very well
to ladder logic programming.

Boolean equations consist of variables and operations and look very similar to nor-
mal algebraic equations. The three basic operators are AND, OR and NOT; more complex
operators include exclusive or (EOR), not and (NAND), not or (NOR). Small truth tables
for these functions are shown in Figure 6.1. Each operator is shown in a simple equation
with the variables A and B being used to calculate a value for X. Truth tables are a simple
(but bulky) method for showing all of the possible combinations that will turn an output
on or off.
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Note: By convention a false state is also called off or 0 (zero). A true state is also
called on or 1.

AND OR NOT
A A A

S X
B )X B) X e
X=A4-B X=A+B X=4
A B X A B X A X
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1
NAND NOR EOR
A A A

X=A4-B X=A4+8B X=A®B

A B X A B X A B X
0 O 1 0 O 1 0 O 0
0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 0

Note: The symbols used in these equations, such as + for OR are not universal stan-
dards and some authors will use different notations.

Note: The EOR function is available in gate form, but it is more often converted to
its equivalent, as shown below.

X=A®B=A-B+A4-B

Figure 6.1 Boolean Operations with Truth Tables and Gates

In a Boolean equation the operators will be put in a more complex form as shown
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in Figure 6.2. The variable for these equations can only have a value of 0 for false, or 1 for
true. The solution of the equation follows rules similar to normal algebra. Parts of the
equation inside parenthesis are to be solved first. Operations are to be done in the
sequence NOT, AND, OR. In the example the NOT function for C is done first, but the
NOT over the first set of parentheses must wait until a single value is available. When
there is a choice the AND operations are done before the OR operations. For the given set
of variable values the result of the calculation is false.

given _
X=(A+B-C)+4-(B+C)

assuming A=1, B=0, C=1
X=(1+0-1)+1-(0+1)
X=(1+0)+1-(0+0)

Figure 6.2 A Boolean Equation

The equations can be manipulated using the basic axioms of Boolean shown in
Figure 6.3. A few of the axioms (associative, distributive, commutative) behave like nor-
mal algebra, but the other axioms have subtle differences that must not be ignored.
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Idempotent

A+4 =4 A-A=4
Associative

(A+B)+C =A4+(B+C) (A4-B)-C=4-(B-0)
Commutative

A+B =B+4 A-B=B-4
Distributive

A+(B-C)=(A4+B)-(4+0C) A-(B+C)=(4-B)+(4-0)
Identity

A+0 =4 A+1 =1

A-0=0 A-1 =4
Complement

A+d =1 (A) = 4

A-4=0 1=0
DeMorgan’s

(A+B) =A4-B (A-B) = A+B
Duality

interchange AND and OR operators, as well as all Universal, and Null
sets. The resulting equation is equivalent to the original.

Figure 6.3 The Basic Axioms of Boolean Algebra

An example of equation manipulation is shown in Figure 6.4. The distributive
axiom is applied to get equation (1). The idempotent axiom is used to get equation (2).
Equation (3) is obtained by using the distributive axiom to move C outside the parenthe-
ses, but the identity axiom is used to deal with the lone C. The identity axiom is then used
to simplify the contents of the parentheses to get equation (4). Finally the Identity axiom is
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used to get the final, simplified equation. Notice that using Boolean algebra has shown
that 3 of the variables are entirely unneeded.

A=B-(C.(D+E+C)+F-C)

A=B-(D-C+E-C+C-C+F-C) (1)
A=B-(D-C+E-C+C+F-C) 2)
A=B-C-(D+E+1+F) 3)
4=B-C-(1) (4)
A=B-C (5)

Figure 6.4 Simplification of a Boolean Equation

Note: When simplifying Boolean algebra, OR operators have a lower priority, so they
should be manipulated first. NOT operators have the highest priority, so they should be
simplified last. Consider the example from before.

X=(A+B-C)+4-(B+0O) The higher priority operators are

Y- (AJJr—(BC) FA-(B+ 6) put in parentheses

_ ) - DeMorgan’s theorem is applied

=) B-O)+4-(B+C
_ DeMorgan’s theorem is applied again
+4-(B+C) -

The equation is expanded

I
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+
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|
ov]]
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Terms with common terms are
collected, here it is only NOT C

- - The redundant term is eliminated
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6.3 LOGIC DESIGN

Design ideas can be converted to Boolean equations directly, or with other tech-
niques discussed later. The Boolean equation form can then be simplified or rearranges,
and then converted into ladder logic, or a circuit.

Aside: The logic for a seal-in circuit can be analyzed using a Boolean equation as shown
below. Recall that the START is NO and the STOP is NC.

START STOP

ON' = (START+ ON) - STOP

o
z

STOP START ON’

stop pushed, not active

stop pushed, not active

not active

start pushed, becomes active
stop pushed, not active

stop pushed, not active

active, start no longer pushed
becomes active and start pushed

—_— = — OO OO
—_—— O O == OO
— O —m O = O~ O
_——_0 O == O O O

If we can describe how a controller should work in words, we can often convert it
directly to a Boolean equation, as shown in Figure 6.5. In the example a process descrip-
tion is given first. In actual applications this is obtained by talking to the designer of the
mechanical part of the system. In many cases the system does not exist yet, making this a
challenging task. The next step is to determine how the controller should work. In this
case it is written out in a sentence first, and then converted to a Boolean expression. The
Boolean expression may then be converted to a desired form. The first equation contains
an EOR, which is not available in ladder logic, so the next line converts this to an equiva-
lent expression (2) using ANDs, ORs and NOTs. The ladder logic developed is for the sec-
ond equation. In the conversion the terms that are ANDed are in series. The terms that are
ORed are in parallel branches, and terms that are NOTed use normally closed contacts.
The last equation (3) is fully expanded and ladder logic for it is shown in Figure 6.6. This
illustrates the same logical control function can be achieved with different, yet equivalent,
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ladder logic.

Process Description:

A heating oven with two bays can heat one ingot in each bay. When the
heater is on it provides enough heat for two ingots. But, if only one
ingot is present the oven may become too hot, so a fan is used to
cool the oven when it passes a set temperature.

Control Description:
If the temperature is too high and there is an ingot in only one bay then
turn on fan.

Define Inputs and Outputs:
B1 =bay 1 ingot present
B2 = bay 2 ingot present
F =fan
T = temperature overheat sensor

Boolean Equation:

F=T-(B-By+B, B,) )
F=B,-By,-T+B,-B,-T 3)
Ladder Logic for Equation (2):
BI B2 T F ‘
|| ()
| N |
Bl B2
Note: the result for conditional logic
is a single step in the ladder

Warning: in spoken and written english OR and EOR are often not clearly defined. Con-
sider the traffic directions "Go to main street then turn left or right." Does this or mean
that you can drive either way, or that the person isn’t sure which way to go? Consider
the expression "The cars are red or blue.", Does this mean that the cars can be either red
or blue, or all of the cars are red, or all of the cars are blue. A good literal way to
describe this condition is "one or the other, but not both".

Figure 6.5  Boolean Algebra Based Design of Ladder Logic
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Ladder Logic for Equation (3):
B1 B2 T F ‘

O

B1 B2 T

Figure 6.6 Alternate Ladder Logic

Boolean algebra is often used in the design of digital circuits. Consider the exam-
ple in Figure 6.7. In this case we are presented with a circuit that is built with inverters,
nand, nor and, and gates. This figure can be converted into a boolean equation by starting
at the left hand side and working right. Gates on the left hand side are solved first, so they
are put inside parentheses to indicate priority. Inverters are represented by putting a NOT
operator on a variable in the equation. This circuit can’t be directly converted to ladder
logic because there are no equivalents to NAND and NOR gates. After the circuit is con-
verted to a Boolean equation it is simplified, and then converted back into a (much sim-
pler) circuit diagram and ladder logic.
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o

L
—

O »w O W @

o)

The circuit is converted to a Boolean equation and simplified. The most nested terms
in the equation are on the left hand side of the diagram.

_ (m).B.(A+6)
(

A+B+C+B)-B-(4-C)

=A-B-A-C+B-B-A-C+C-B-A-C+B-B-4-C
B-A-C+B-A-C+0+B-4-C

X=B-4-C

This simplified equation is converted back into a circuit and equivalent ladder logic.

I_j X
=

1% )

Figure 6.7  Reverse Engineering of a Digital Circuit

To summarize, we will obtain Boolean equations from a verbal description or
existing circuit or ladder diagram. The equation can be manipulated using the axioms of
Boolean algebra. after simplification the equation can be converted back into ladder logic
or a circuit diagram. Ladder logic (and circuits) can behave the same even though they are
in different forms. When simplifying Boolean equations that are to be implemented in lad-
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der logic there are a few basic rules.

1. Eliminate NOTs that are for more than one variable. This normally includes
replacing NAND and NOR functions with simpler ones using DeMorgan’s the-
orem.

2. Eliminate complex functions such as EORs with their equivalent.

These principles are reinforced with another design that begins in Figure 6.8.
Assume that the Boolean equation that describes the controller is already known. This
equation can be converted into both a circuit diagram and ladder logic. The circuit dia-
gram contains about two dollars worth of integrated circuits. If the design was mass pro-
duced the final cost for the entire controller would be under $50. The prototype of the
controller would cost thousands of dollars. If implemented in ladder logic the cost for each
controller would be approximately $500. Therefore a large number of circuit based con-
trollers need to be produced before the break even occurs. This number is normally in the
range of hundreds of units. There are some particular advantages of a PLC over digital cir-
cuits for the factory and some other applications.

» the PLC will be more rugged,
* the program can be changed easily
* less skill is needed to maintain the equipment
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Given the controller equation;

A=B-(C-(D+E+C)+F-C)

The circuit is given below, and equivalent ladder logic is shown.

A —

c L

F%D jiA
=0

The gates can be purchased for
about $0.25 each in bulk.

D C X Inputs and outputs are
I I Q typically 5V

E

C

An inexpensive PLC is worth
X B QA at least a few hundred dollars

|| Consider the cost trade-off!

Figure 6.8 A Boolean Equation and Derived Circuit and Ladder Logic

The initial equation is not the simplest. It is possible to simplify the equation to the
form seen in Figure 6.8. If you are a visual learner you may want to notice that some sim-
plifications are obvious with ladder logic - consider the C on both branches of the ladder
logic in Figure 6.9.
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A=B-C-(D+E+F)

e >
5 ~—o |

D C B
] | A
| | W
E
F

Figure 6.9 The Simplified Form of the Example

The equation can also be manipulated to other forms that are more routine but less
efficient as shown in Figure 6.10. The equation shown is in disjunctive normal form - in
simpler words this is ANDed terms ORed together. This is also an example of a canonical
form - in simpler terms this means a standard form. This form is more important for digital
logic, but it can also make some PLC programming issues easier. For example, when an
equation is simplified, it may not look like the original design intention, and therefore
becomes harder to rework without starting from the beginning.
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A=(B-C-D)+(B-C-E)+(B-C-F)
B

C [ \
p— 0 /

— HO

=

o1
-
NG

A

Figure 6.10 A Canonical Logic Form

6.3.1 Boolean Algebra Techniques

There are some common Boolean algebra techniques that are used when simplify-
ing equations. Recognizing these forms are important to simplifying Boolean Algebra
with ease. These are itemized, with proofs in Figure 6.11.
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A+C4 =A4+C proof: A+C4
(A+C)A+4)
(4+C)(1)
A+C

AB+A = 4 proof: AB+4
AB+ A1
AB+1)
A(1)
4

|
oo
al

A+B+C = proof: A+B+C
(A+B)+C
(4+B)C
(AB)C
ABC

Figure 6.11  Common Boolean Algebra Techniques

6.4 COMMON LOGIC FORMS

Knowing a simple set of logic forms will support a designer when categorizing
control problems. The following forms are provided to be used directly, or provide ideas
when designing.

6.4.1 Complex Gate Forms

In total there are 16 different possible types of 2-input logic gates. The simplest are
AND and OR, the other gates we will refer to as complex to differentiate. The three popu-
lar complex gates that have been discussed before are NAND, NOR and EOR. All of these
can be reduced to simpler forms with only ANDs and ORs that are suitable for ladder
logic, as shown in Figure 6.12.
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NAND NOR EOR

I
N
&Y

S
I
N

: -
LY
S
I
M
@
XY

>
Il
|
_l’_
ov]]

O 5o O

X |

Figure 6.12  Conversion of Complex Logic Functions

6.4.2 Multiplexers

Multiplexers allow multiple devices to be connected to a single device. These are
very popular for telephone systems. A telephone switch is used to determine which tele-
phone will be connected to a limited number of lines to other telephone switches. This
allows telephone calls to be made to somebody far away without a dedicated wire to the
other telephone. In older telephone switch boards, operators physically connected wires
by plugging them in. In modern computerized telephone switches the same thing is done,
but to digital voice signals.

In Figure 6.13 a multiplexer is shown that will take one of four inputs bits D1, D2,

D3 or D4 and make it the output X, depending upon the values of the address bits, A1 and
A2.
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— Al A2 | X
D1 multiplexer
0 0 X=DlI
=
D2 7 X 0 1 X=D2
L 1 0 X=D3
1 1 X=D4
—>
D3
—>
D4

Al A2

Figure 6.13 A Multiplexer

Ladder logic form the multiplexer can be seen in Figure 6.14.

Al A2 D2
\l\lr\ | | | |
I || ||
Al A2 D3
|| I ||
I \t\?\ I
Al A2 D4
| | | | | |

Figure 6.14 A Multiplexer in Ladder Logic
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6.5 SIMPLE DESIGN CASES

The following cases are presented to illustrate various combinatorial logic prob-
lems, and possible solutions. It is recommended that you try to satisfy the description
before looking at the solution.

6.5.1 Basic Logic Functions

Problem: Develop a program that will cause output D to go true when switch A
and switch B are closed or when switch C is closed.

Solution:
D=(A4-B)+C
A B
|| D
[ 1
C

Figure 6.15  Sample Solution for Logic Case Study A

Problem: Develop a program that will cause output D to be on when push button A
is on, or either B or C are on.
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Solution:

D=4+(B®C)

\ %

Figure 6.16  Sample Solution for Logic Case Study B

6.5.2 Car Safety System

Problem: Develop Ladder Logic for a car door/seat belt safety system. When the
car door is open, and the seatbelt is not done up, the ignition power must not be applied. If
all is safe then the key will start the engine.

Solution:

Door Open Seat Belt Key .
| [p [ [ ] Ignition Q
|1 |1 I

Figure 6.17  Solution to Car Safety System Case

6.5.3 Motor Forward/Reverse

Problem: Design a motor controller that has a forward and a reverse button. The
motor forward and reverse outputs will only be on when one of the buttons is pushed.
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When both buttons are pushed the motor will not work.

Solution:

BF - BR where,

L F = motor forward
R = BF - BR R = motor reverse
BF = forward button
BR = reverse button

BF BR

Figure 6.18 Motor Forward, Reverse Case Study

6.5.4 A Burglar Alarm

Consider the design of a burglar alarm for a house. When activated an alarm and
lights will be activated to encourage the unwanted guest to leave. This alarm be activated
if an unauthorized intruder is detected by window sensor and a motion detector. The win-
dow sensor is effectively a loop of wire that is a piece of thin metal foil that encircles the
window. If the window is broken, the foil breaks breaking the conductor. This behaves like
a normally closed switch. The motion sensor is designed so that when a person is detected
the output will go on. As with any alarm an activate/deactivate switch is also needed. The
basic operation of the alarm system, and the inputs and outputs of the controller are item-
ized in Figure 6.19.
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The inputs and outputs are chosen to be;

A = Alarm and lights switch (1 = on)
W = Window/Door sensor (1 = OK)
M = Motion Sensor (0 = OK)

S = Alarm Active switch (1 = on)

The basic operation of the alarm can be described with rules.
1. If alarm is on, check sensors.

2. If window/door sensor is broken (turns off), sound alarm and turn on
lights

Note: As the engineer, it is your responsibility to define these items before starting
the work. If you do not do this first you are guaranteed to produce a poor
design. It is important to develop a good list of inputs and outputs, and give
them simple names so that they are easy to refer to. Most companies will use
wire numbering schemes on their diagrams.

Figure 6.19  Controller Requirements List for Alarm

The next step is to define the controller equation. In this case the controller has 3
different inputs, and a single output, so a truth table is a reasonable approach to formaliz-
ing the system. A Boolean equation can then be written using the truth table in Figure
6.20. Of the eight possible combinations of alarm inputs, only three lead to alarm condi-
tions.
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Inputs Output

>

alarm off
i ;alarm on/no thief
alarm on/thief detected

note the binary sequence

—_— == O O OO W
—_—_O O == OO z

—_O = O = OO g
—_——O = O O OO

Figure 6.20  Truth Table for the Alarm

The Boolean equation in Figure 6.21 is written by examining the truth table in Fig-
ure 6.20. There are three possible alarm conditions that can be represented by the condi-
tions of all three inputs. For example take the last line in the truth table where when all
three inputs are on the alarm should be one. This leads to the last term in the equation. The

other two terms are developed the same way. After the equation has been written, it is sim-
plified.
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A= -M-W)y+(S-M-W)+(S-M-W)
A=S-(M-W+M-W+M-W)

cA=S8S-(M-W+M-Wy+(M-W+M-W))

A= (S-W)+(S-M) =S-(W+M)
AW D ~ W (S*W)
— (S*W)+(S*M)
: — ) >—
A
y N
(S*M)

Figure 6.21 A Boolean Equation and Implementation for the Alarm

The equation and circuits shown in Figure can also be further simplified, as shown
in Figure 6.22.
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= (S*W)+(S*M)

s P

Figure 6.22  The Simplest Circuit and Ladder Diagram

Aside: The alarm could also be implemented in programming languages. The pro-
gram below is for a Basic Stamp II chip. (www.parallaxinc.com)

w=1;s=2;m=3;a=4

input m; input w; input s

output a

loop:

if (in2 = 1) and (inl =0 or in3 = 1) then on
low a; goto loop ‘alarm off

on:

high a; goto loop ‘alarm on

Figure 6.23  Alarm Implementation Using A High Level Programming Language

6.6 SUMMARY

* Logic can be represented with Boolean equations.

* Boolean equations can be converted to (and from) ladder logic or digital circuits.
* Boolean equations can be simplified.

* Different controllers can behave the same way.

» Common logic forms exist and can be used to understand logic.
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» Truth tables can represent all of the possible state of a system.

6.7 PRACTICE PROBLEMS

1. Is the ladder logic in the figure below for an AND or an OR gate?

2. Draw a ladder diagram that will cause output D to go true when switch A and switch B are
closed or when switch C is closed.

3. Draw a ladder diagram that will cause output D to be on when push button A is on, or either B
or C are on.

4. Design ladder logic for a car that considers the variables below to control the motor M. Also
add a second output that uses any outputs not used for motor control.

- doors opened/closed (D)
- keys in ignition (K)

- motor running (M)

- transmission in park (P)
- ignition start (I)

5. a) Explain why a stop button must be normally closed and a start button must be normally open.

b) Consider a case where an input to a PLC is a normally closed stop button. The contact used in
the ladder logic is normally open, as shown below. Why are they both not the same? (i.e., NC

or NO)
start stop
i I Q motor

motor

6. Make a simple ladder logic program that will turn on the outputs with the binary patterns when
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the corresponding buttons are pushed.

OUTPUTS
INPUTS
HG FE DC BA
I 1 0 1 0 1 0 1 Input X on
1 0 1 0 0 0 1 Input Y on
1 0 0 1 0 1 1 1 Input Z on

7. Convert the following Boolean equation to the simplest possible ladder logic.

X=4-(A+4-B)
8. Simplify the following boolean equations.

ay  A(B+A4B) b)  A(B+4B)
¢) A(B+ AB) dy  A(B+A4B)

9. Simplify the following Boolean equations,
a) (A+B)-(4+B)

b) ABCD + ABCD + ABCD + ABCD

10. Simplify the Boolean expression below.

((4-B)+(B+4))-C+(B-C+B-0C)

11. Given the Boolean expression a) draw a digital circuit and b) a ladder diagram (do not sim-
plify), ¢) simplify the expression.

X=4-B-C+(C+B)

12. Simplify the following Boolean equation and write corresponding ladder logic.

Y = (ABCD + ABCD + ABCD + ABCD)+ D

13. For the following Boolean equation,
X=A4A+B(A+CB+DAC)+ABCD

a) Write out the logic for the unsimplified equation.
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b) Simplify the equation.
c¢) Write out the ladder logic for the simplified equation.

14. a) Write a Boolean equation for the following truth table. (Hint: do this by writing an expres-
sion for each line with a true output, and then ORing them together.)

A B C D Result

e e el = N = = N e e N e N o )

et e et ek O O O O == = = O OO O
—— O O = = OO = = OO === OO0
— O P ORPR O, O, O, O~,O—O
—_—— O O R OO R = OO —=OO —

b) Write the results in a) in a Boolean equation.
¢) Simplify the Boolean equation in b)

15. Simplify the following Boolean equation, and create the simplest ladder logic.

16. Simplify the following boolean equation with Boolean algebra and write the corresponding
ladder logic.

X=(A+B-A)+(C+D+EC)

17. Convert the following ladder logic to a Boolean equation. Then simplify it, and convert it back
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to simpler ladder logic.

A B D D
Y
| | | | | | | |
|| || || ||
B A
\l\1|\ | |
I ||
A C D
| | | | |
|| || \‘\1\

18. a) Develop the Boolean expression for the circuit below.
b) Simplify the Boolean expression.
c¢) Draw a simpler circuit for the equation in b).

o

aQ W >

L
o

-

>

D

19. Given a system that is described with the following equation,
X=A4+B-(A+C)+C)+A4-B-(D+E)

a) Simplify the equation using Boolean Algebra.
b) Implement the original and then the simplified equation with a digital circuit.
c¢) Implement the original and then the simplified equation in ladder logic.

20. Simplify the following and implement the original and simplified equations with gates and
ladder logic.

A+(B+C+D)- (B+C)+A4-B-(C+D)

21. Convert the following ladder logic to a Boolean equation. Simplify the equation and convert it
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back to ladder logic.
A B C D
O X
A B C D
A B C D
A B C D
A B C D
A B C D

22. Use Boolean equations to develop simplified ladder logic for the following truth table where
A, B, C and D are inputs, and X and Y are outputs.

>
vs]
@)
o
>
=

e e e el = = N e N e e e N e e
e = ==l R N o B e S e )
—_——_ 0O OoOPRPr )OO, P, OO~ —,OO
= N = e R R e R N = =)
—_, O =) O R O, OO0 —=O —O
——_, e, O OO OO0 R, PR =, OO0 OoO0o

6.8 PRACTICE PROBLEM SOLUTIONS

1. AND
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2.
A BH D
l O
C
3.
B C
)
B C
A
4.
I P
) O™
M
K D
| OB
where,

B = the alarm that goes "Bing" to warn that the keys are still in the car.

5. a) If a NC stop button is damaged, the machine will act as if the stop button was pushed and
shut down safely. If a NO start button is damaged the machine will not be able to start.)

b) For the actual estop which is NC, when all is ok the power to the input is on, when there is a
problem the power to the input is off. In the ladder logic an input that is on (indicating all is ok)
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will allow the rung to turn on the motor, otherwise an input that is off (indicating a stop) will
break the rung and cut the power.)

X -O
Y

Z

X O
Y -O
X -O
Z

ETC....

a) AB b) A+B c) AB d A+B



b)

10.C

I1.

12.

plc boolean - 6.31

(A+B)-(A+B) = (AB)(4B) = 0

ABCD+ ABCD+ ABCD+ ABCD = BCD+ ABD = B(CD + AD)

X=B-(4-C+C)

Y = (ABCD+ ABCD + ABCD + ABCD) + D
Y = (ABCD + ABCD+ ABCD + ABCD)D
Y = (0+ABCD+0+0)D

Y = ABCD

Y N N

O
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13,
A
a) | |
| ]
B A,
B,
A C
A C D
by A+DCB
J il
D N B




14.
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B, B
§
D
C A B
[
R
D

ABCD+ABCD +ABCD + ABCD + ABCD+ ABCD + ABCD + ABCD

BCD+ ACD+BCD+ ABD+ BCD+ ACD + ABC
BCD+ CD(A+A)+CD(B+B)+ABD+ ABC

BCD+ D(C+AB)+ABC



15.

16.
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y = 6{‘ + (;1 +(Be(a+ BCDH

v =+ (3 eano)

Y = CZ+(Z+(EC’(A+E+C)))}

v=c(a+dvo)

Y = C(m) |
Y = C(A+(1))
Y = C(4+0)

Y = CA

Y=C+4

X=(4+B 1)+(C DD

X = (A+B-Z[)(C+D+E6)
X = (A)(B-4)(C+D+EC)

X = (A)(B-A)(C+D+EC)
X = AB(C+D+EC)

X = AB(C+D+E)

OR

X = (A+B.;1)+(CT+E6)

X=A4+B-A+CD(E+C)
X = A+B+CDE

X = AB(CDE)

X = AB(C+D+E)



17.

18.
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CAB

R

B I—J
C
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19.

a) X=A4+B-(A+C)+C)+4-B-(D+E)
X=A4+B-A+B-C+C)+A4-B-D+A-B-E
X=A4-(1+B-D+B-E)+B-A+C-(B+1)
X=A4+B-A+C
ABCDE

b) 1“ D&DLJIE}

L




20.
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: O
B A
C
C
A| | B D
|
E
i O
B A|
o
C

A+(B+C+D)-(B+C)+A4-B-(C+D)
A-(1+B-(C+D)+(B+C+D)-B+(B+C+D)-C
A+(C+D)-B+C

A+C-B+D-B+C

A+D-B+C
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A+D-B+C

21.
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22.
(The equations.....) X = D(B+A) Y =B(D+C)

6.9 ASSIGNMENT PROBLEMS

1. Simplify the following Boolean equation and implement it in ladder logic.

X=A+BA+BC+D+C

2. Simplify the following Boolean equation and write a ladder logic program to implement it.

X = (ABC+ABC+ ABC + ABC + ABC)

3. Convert the following ladder logic to a Boolean equation. Simplify the equation using Boolean
algebra, and then convert the simplified equation back to ladder logic.

e ] ()
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4. Convert the truth table below to a Boolean equation, and then simplify it. The output is X and
the inputs are A, B, C and D.

A B C D X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

5. Simplify the following Boolean equation. Convert both the unsimplified and simplified equa-
tions to ladder logic.

X = (ABC)(4+BC)

6. Convert the following ladder logic to a Boolean equation. Simplify the equation and convert it
back to ladder logic.

A B C D
O %
A B C D
A B C D
A B C D
A B C D
A B C D
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7. KARNAUGH MAPS

Topics:
* Truth tables and Karnaugh maps

Objectives:
* Be able to simplify designs with Boolean algebra and Karnaugh maps

7.1 INTRODUCTION

Karnaugh maps allow us to convert a truth table to a simplified Boolean expres-
sion without using Boolean Algebra. The truth table in Figure 7.1 is an extension of the
previous burglar alarm example, an alarm quiet input has been added.

Given

A, W, M, S as before
Q = Alarm Quiet (0 = quiet)

Stepl: Draw the truth table

e e e e e = N = N e e e N Nl o N ]
=l =l e lelelole el =22 =

— e = = O O OO === = OO OO

—t m O O = = O O = = OO = OO0
— O, O, O, OR,ROR,RO~,O~O
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Figure 7.1 Truth Table for a Burglar Alarm

Instead of converting this directly to a Boolean equation, it is put into a tabular
form as shown in Figure 7.2. The rows and columns are chosen from the input variables.
The decision of which variables to use for rows or columns can be arbitrary - the table will
look different, but you will still get a similar solution. For both the rows and columns the
variables are ordered to show the values of the bits using NOTs. The sequence is not
binary, but it is organized so that only one of the bits changes at a time, so the sequence of
bits is 00, 01, 11, 10 - this step is very important. Next the values from the truth table that
are true are entered into the Karnaugh map. Zeros can also be entered, but are not neces-
sary. In the example the three true values from the truth table have been entered in the
table.

Step 2: Divide the input variables up. I choose SQ and MW

Step 3: Draw a Karnaugh map based on the input variables

M W (=00)| MW (=01) | MW (=11) | MW (=10)
S Q (=00)
SQ|(=01)
SQ|(=11) 1 1 1
SQ\(=10)

Added for clarity

Note: The inputs are arranged so that only one bit changes at a time for the Karnaugh
map. In the example above notice that any adjacent location, even the top/bottom
and left/right extremes follow this rule. This is done so that changes are visually

grouped. If this pattern is not used then it is much more difficult to group the bits.

Figure 7.2 The Karnaugh Map

When bits have been entered into the Karnaugh map there should be some obvious
patterns. These patterns typically have some sort of symmetry. In Figure 7.3 there are two
patterns that have been circled. In this case one of the patterns is because there are two bits
beside each other. The second pattern is harder to see because the bits in the left and right
hand side columns are beside each other. (Note: Even though the table has a left and right
hand column, the sides and top/bottom wrap around.) Some of the bits are used more than
once, this will lead to some redundancy in the final equation, but it will also give a simpler
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The patterns can then be converted into a Boolean equation. This is done by first
observing that all of the patterns sit in the third row, therefore the expression will be
ANDed with SQ. There are two patterns in the third row, one has M as the common term,
the second has W as the common term. These can now be combined into the equation.
Finally the equation is converted to ladder logic.

Step 4: Look for patterns in the map
M is the common term
MW (MW | MW |MW

S
SQ 4 .
SQ rﬂ - :l ] )/ all are in row SQ

sQll
\_/ W is the common term

Step 5: Write the equation using the patterns

A=S8-0-(M+W)
Step 6: Convert the equation into ladder logic
M S Q
I N .
| | | \J
\W%

Figure 7.3 Recognition of the Boolean Equation from the Karnaugh Map

Karnaugh maps are an alternative method to simplifying equations with Boolean
algebra. It is well suited to visual learners, and is an excellent way to verify Boolean alge-
bra calculations. The example shown was for four variables, thus giving two variables for
the rows and two variables for the columns. More variables can also be used. If there were
five input variables there could be three variables used for the rows or columns with the
pattern 000, 001, 011, 010, 110, 111, 101, 100. If there is more than one output, a Kar-
naugh map is needed for each output.
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Aside: A method developed by David Luque Sacaluga uses a circular format for the table.
A brief example is shown below for comparison.

A B C D | X

Convert the truth table to a circle using the Gray code
0 0 0 0 0 for sequence. Bits that are true in the truth table are
0 0 0 1 0 shaded in the circle.
0 0 1 0 0
0 0 1 1 0 1000 0000
0 1 0 1 0 1011
0 1 1 0 1 0011
0 1 1 1 1
1 0 0 0|0 1010 0010
1 0 0 1 0
1 0 1 1 0
1 1 0 0 0
) ) 0 1 0 1111 0111
1 1 1 0 1
1 1 1 1 1 1100

Look for large groups of repeated patterns.

1. In this case ’B’ is true in the bottom half of the circle, so the equation becomes,
X=B-(..)

2. There is left-right symmetry, with *’C’ as the common term, so the equation becomes
X=B-C-(...)

3. The equation covers all four values, so the final equation is,
X=8B-C

Figure 7.4  Aside: An Alternate Approach

7.2 SUMMARY

 Karnaugh maps can be used to convert a truth table to a simplified Boolean equa-
tion.
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7.3 PRACTICE PROBLEMS

1. Setup the Karnaugh map for the truth table below.

Result

S OO — —

—_ e OO — OO —

S — O — O

— O I OO —~O — O —

SO —— O

O el O O e = O O v v

S OO O —

_—e e (O O O O v

SO OO O

OO O ™ e —

2. Use a Karnaugh map to simplify the following truth table, and implement it in ladder logic.
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3. Write the simplest Boolean equation for the Karnaugh map below,

CD | CD | CD | CD

AB 1 0 0 1

4. Given the truth table below find the most efficient ladder logic to implement it. Use a structured
technique such as Boolean algebra or Karnaugh maps.

A B CD| XY
0 00 0 1]0O
0 0 0 1 0 1
0 01 000
0 0 1 1 0 0
01 0 0 0O
0 1 0 1 0 0
011 0 |01
0 1 1 1 0 1
1 0 0 O 1 0
1 0 0 1 11
1 01 0 |0 O
1 0 1 1 0 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 1 0 01
1 1 1 1 0 1
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5. Examine the truth table below and design the simplest ladder logic using a Karnaugh map.

o
es!

F G Y

e e e e el = = N e N e M e M as R as Bl an
—_—— = = O O OO === = O O OO

—t m O O = = OO == OO = OO
—_OoO RO, O, O, OO =0 =0
—, O, O, O, OO —OOo 0o oo

6. Find the simplest Boolean equation for the Karnaugh map below without using Boolean alge-
bra to simplify it. Draw the ladder logic.

ABC ABC ABC ABC ABC ABC ABC ABC

DE | 1 |1 0 1 0| 0 0 0
DE| 1 |1 0 0 0| 0 0 0
pE | 1 |1 0 0 0| 0 0 0
pE | 1 | 1 0 1 0| 0 0 0

7. Given the following truth table for inputs A, B, C and D and output X. Convert it to simplified
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ladder logic using a Karnaugh map.

A B C D X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

8. Consider the following truth table. Convert it to a Karnaugh map and develop a simplified
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Boolean equation (without Boolean algebra). Draw the corresponding ladder logic.

output

inputs
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9. Given the truth table below

e e R R R R = = O OO OO OO O >
et et = O O OO = = = OO OO o
ekt et QO = = OO = OO — OO O
—_ o OoO—=O—RO—O—RO—=O—O T
—_,eE O OO O =R OOOOO | N

a) find a Boolean algebra expression using a Karnaugh map.
b) draw a ladder diagram using the truth table (not the Boolean expression).

10. Convert the following ladder logic to a Karnaugh map.

| A C A X@
|

B D

11. a) Construct a truth table for the following problem.
1) there are three buttons A, B, C.
i1) the output is on if any two buttons are pushed.
ii1) if C is pressed the output will always turn on.
b) Develop a Boolean expression.
c) Develop a Boolean expression using a Karnaugh map.

12. Develop the simplest Boolean expression for the Karnaugh map below,

a) graphically.
b) by Boolean Algebra
AB| AB| AB| AB
CD 1 1
CD 1 1
CD
CD 1 1
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13. Consider the following boolean equation.

X = (A+BA)A+(CD+CD+ CD)

a) Can this Boolean equation be converted directly ladder logic. Explain your
answer, and if necessary, make any changes required so that it may be converted
to ladder logic.

b) Write out ladder logic, based on the result in step a).

¢) Simplify the equation using Boolean algebra and write out new ladder logic.

d) Write a Karnaugh map for the Boolean equation, and show how it can be used to
obtain a simplified Boolean equation.

7.4 PRACTICE PROBLEM SOLUTIONS

AB

CD | 1 1
B 11 o |1
cg o0 |0 |1
e 0 |0 [0 |1
CD
00 01 11 10

00 |0

ol | o0 X = BC

1| o

10 | o0

B
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5 CD CD CD CD -For all, B is true
\ / H
AB 1 0 1
AB 0 0 0 0 __
- B(AD + AD)
AB 0 0 0 0
AB 0 ‘ 1 1 > 0
FOR X FORY
CD CD
00 o01 11 10 00 o01 11 10
00 0 0 0 0 00
AB 01 0 0 0 0 AB 01
11 1 1 0 0 11
10 1 1 0 0 10
X=4-C Y =
A C
B C D| |
||
B C
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Y = G(E+D)

G | E v
||
D
ABLARC ABC, ABC, ABC ABC ABC ABC
DE 1 1 0 \31/ 0 0 0 0
DE 1 1 0 0 0 0 0 0
DE 1 1 0 0 0 0 0 0
DE 1 1 0 1 0 0 0 0
__ ABCE o
AB output = AB+ ABCE
A B
O output
A B | %
NN
B

Qx



DE
DE

DE
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ABC ABC ABC ABC ABC ABC ABC ABC
0| o o | )| o 0
0 0 0 1 0 0
ﬁA B Y
0 1 qﬁ 1 1, 0
0 ll l 0 1 0 0

X = ABC+ D(ABC+ABC +EC)

B C
A B
A B
E

Qx
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O

AB AB AB AB

Dl 1 | o | o 1

cb 1 |0 0 1 Z=B*(C+D)+*ABCD

cp O 0 0 0

cpl |1 1 0 1
A C D
A C D
A C D
A C D
A C D
A C D
A C D
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10.

cb CD CD CD

AB

I1.

out

C+4-B
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12.
DA+ ACD
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
ACD+ ACD+ ACD
AD+ ACD
13.

a) X = AB+ A4+ (C+D)(C+D)(C+D)

c) X=A+B+CD
CDh CD CD CD

AB| 1 1 1 1

AB| 1 0 0 0

AB 1 1 1 1

7.5 ASSIGNMENT PROBLEMS

1. Use the Karnaugh map below to create a simplified Boolean equation. Then use the equation to
create ladder logic.

AB AB AB AB

Chl | | 4 1 1
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2. Use a Karnaugh map to develop simplified ladder logic for the following truth table where A,
B, C and D are inputs, and X and Y are outputs.

A B C D X Y
o o0 o0 O 0 O
o 0 0 1 1 0
0 O 1 0 0 O
0 0 1 1 1 0
0 1 0 0 0 O
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 0 1
1 0 0 O 0 O
1 0 O 1 1 0
1 0 1 0 0 O
1 0 1 1 1 0
1 1 0 0 0 O
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 1 1 1

3. You are planning the basic layout for a control system with the criteria provided below. You
need to plan the wiring for the input and output cards, and then write the ladder logic for the
controller. You decide to use a Boolean logic design technique to design the ladder logic.
AND, your design will be laid out on the design sheets found later in this book.

* There are two inputs from PNP photoelectric sensors part and busy.

* There is a NO cycle button, and NC stop button.

* There are two outputs to indicator lights, the running light and the stopped light.

* There is an output to a conveyor, that will drive a high current 120Vac motor.

* The conveyor is to run when the part sensor is on and while the cycle button is
pushed, but the busy sensor is off. If the sfop button is pushed the conveyor will
stop.

» While the conveyor is running the running light will be on, otherwise the stopped
light will be on.
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4. Convert the following truth table to simplified ladder logic using a Karnaugh map AND Bool-
ean equations. The inputs are A, B, C and D and the output is X.

A

w
9!
=)
s

— e e e e e e —m O O O OO OO O
—_— = = O O OO == =0 OO0 O
—_—_ O O R, P, OO = =) OO == OO0
—_— O, O, O, O, O —=O—=O =0
O ORP OO, OO —=—=)O0O —rM—
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8. PLC OPERATION

Topics:
* The computer structure of a PLC

* The sanity check, input, output and logic scans
« Status and memory types

Objectives:
* Understand the operation of a PLC.

8.1 INTRODUCTION

For simple programming the relay model of the PLC is sufficient. As more com-
plex functions are used the more complex vonNeumann model of the PLC must be used.
A vonNeumann computer processes one instruction at a time. Most computers operate this
way, although they appear to be doing many things at once. Consider the computer com-
ponents shown in Figure 8.1.

Keyboard
(Input) \

' x86 p SVGA Screen
Serial CPU (Output)
Mouse
(Input) | 5

1GB Memory 30 GB Disk
(Storage) (Storage)

Figure 8.1 Simplified Personal Computer Architecture

Input is obtained from the keyboard and mouse, output is sent to the screen, and
the disk and memory are used for both input and output for storage. (Note: the directions
of these arrows are very important to engineers, always pay attention to indicate where
information is flowing.) This figure can be redrawn as in Figure 8.2 to clarify the role of
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inputs and outputs.

|
. : o o
inputs input circuits | computer output circuits outputs
|
|

Keyboard

Input Uart [
|

|
|
|
|
|
|
\L Monitot
+ Graphics /I/'J '

—_ |
—_

/'ﬂ x86 CPU onrd
|
|
| \
~
/

|
|
|
Digital output $ LED display
|
|
|
|
|
|
|

y —
/ Disk Controlleq ™
y N
N
/ ~
/ AN
/ Memory ICs Disk b

|
I
I
I
>
I
I
I
Mouse _I‘ Serial Input Uart
I
I
I
I
I
I
I
|

~

storage

Figure 8.2 An Input-Output Oriented Architecture

In this figure the data enters the left side through the inputs. (Note: most engineer-
ing diagrams have inputs on the left and outputs on the right.) It travels through buffering
circuits before it enters the CPU. The CPU outputs data through other circuits. Memory
and disks are used for storage of data that is not destined for output. If we look at a per-
sonal computer as a controller, it is controlling the user by outputting stimuli on the
screen, and inputting responses from the mouse and the keyboard.

A PLC is also a computer controlling a process. When fully integrated into an
application the analogies become;

inputs - the keyboard is analogous to a proximity switch

input circuits - the serial input uart is like a 24Vdc input card

computer - the x86 CPU is like a PLC CPU unit

output circuits - a graphics card is like a triac output card

outputs - a monitor is like a light

storage - memory in PLCs is similar to memories in personal computers
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It is also possible to implement a PLC using a normal Personal Computer,
although this is not advisable. In the case of a PLC the inputs and outputs are designed to
be more reliable and rugged for harsh production environments.

8.2 OPERATION SEQUENCE

All PLCs have four basic stages of operations that are repeated many times per
second. Initially when turned on the first time it will check it’s own hardware and software
for faults. If there are no problems it will copy all the input and copy their values into
memory, this is called the input scan. Using only the memory copy of the inputs the ladder
logic program will be solved once, this is called the logic scan. While solving the ladder
logic the output values are only changed in temporary memory. When the ladder scan is
done the outputs will updated using the temporary values in memory, this is called the out-
put scan. The PLC now restarts the process by starting a self check for faults. This process
typically repeats 10 to 100 times per second as is shown in Figure 8.3.

Selff input| logic| output | Self input| logic| output | Self input| logic
test| scan | solve| scan test| scan | solve| scan test| scan | solve
| —
0 ranges from <1 to 100 ms are possible time
A N
PLC turns on

SELF TEST - Checks to see if all cards error free, reset watch-dog timer, etc. (A watchdog
timer will cause an error, and shut down the PLC if not reset within a short period of
time - this would indicate that the ladder logic is not being scanned normally).

INPUT SCAN - Reads input values from the input cards, and copies their values to mem-
ory. This makes the PLC operation faster, and avoids cases where an input changes
from the start to the end of the program (e.g., an emergency stop). There are special
PLC functions that read the inputs directly, and avoid the input tables.

LOGIC SOLVE/SCAN - Based on the input table in memory, the program is executed 1
step at a time, and outputs are updated. This is the focus of the later sections.

OUTPUT SCAN - The output table is copied from memory to the outputs. These then
drive the output devices.

Figure 8.3 PLC Scan Cycle

The input and output scans often confuse the beginner, but they are important. The
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input scan takes a snapshot of the inputs, and solves the logic. This prevents potential
problems that might occur if an input that is used in multiple places in the ladder logic pro-
gram changed while half way through a ladder scan. Thus changing the behaviors of half
of the ladder logic program. This problem could have severe effects on complex programs
that are developed later in the book. One side effect of the input scan is that if a change in
input is too short in duration, it might fall between input scans and be missed.

When the PLC is initially turned on the normal outputs will be turned off. This
does not affect the values of the inputs.

8.2.1 The Input and Output Scans

When the inputs to the PLC are scanned the physical input values are copied into
memory. When the outputs to a PLC are scanned they are copied from memory to the
physical outputs. When the ladder logic is scanned it uses the values in memory, not the
actual input or output values. The primary reason for doing this is so that if a program uses
an input value in multiple places, a change in the input value will not invalidate the logic.
Also, if output bits were changed as each bit was changed, instead of all at once at the end
of the scan the PLC would operate much slower.

8.2.2 The Logic Scan

Ladder logic programs are modelled after relay logic. In relay logic each element
in the ladder will switch as quickly as possible. But in a program elements can only be
examines one at a time in a fixed sequence. Consider the ladder logic in Figure 8.4, the
ladder logic will be interpreted left-to-right, top-to-bottom. In the figure the ladder logic
scan begins at the top rung. At the end of the rung it interprets the top output first, then the
output branched below it. On the second rung it solves branches, before moving along the
ladder logic rung.
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Figure 8.4 Ladder Logic Execution Sequence

The logic scan sequence become important when solving ladder logic programs
which use outputs as inputs, as we will see in Chapter 8. It also becomes important when
considering output usage. Consider Figure 8.5, the first line of ladder logic will examine
input 4 and set output X to have the same value. The second line will examine input B and
set the output X to have the opposite value. So the value of X was only equal to 4 until the
second line of ladder logic was scanned. Recall that during the logic scan the outputs are
only changed in memory, the actual outputs are only updated when the ladder logic scan is
complete. Therefore the output scan would update the real outputs based upon the second
line of ladder logic, and the first line of ladder logic would be ineffective.

A QXi

B QXi

Note: It is a common mistake for beginners to unintentionally repeat
the same ladder logic output more than once. This will basically

invalidate the first output, in this case the first line will never do
anything.

Figure 8.5 A Duplicated Output Error
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8.3 PLC STATUS

The lack of keyboard, and other input-output devices is very noticeable on a PLC.
On the front of the PLC there are normally limited status lights. Common lights indicate;

power on - this will be on whenever the PLC has power

program running - this will often indicate if a program is running, or if no program
is running

fault - this will indicate when the PLC has experienced a major hardware or soft-
ware problem

These lights are normally used for debugging. Limited buttons will also be pro-
vided for PLC hardware. The most common will be a run/program switch that will be
switched to program when maintenance is being conducted, and back to run when in pro-
duction. This switch normally requires a key to keep unauthorized personnel from altering
the PLC program or stopping execution. A PLC will almost never have an on-off switch or
reset button on the front. This needs to be designed into the remainder of the system.

The status of the PLC can be detected by ladder logic also. It is common for pro-

grams to check to see if they are being executed for the first time, as shown in Figure 8.6.
The ’first scan’ or ’first pass’ input will be true the very first time the ladder logic is
scanned, but false on every other scan. In this case the address for *first pass’ in Control-
Logix is ’S:FS’. With the logic in the example the first scan will seal on ’light’, until
“clear’ is turned on. So the light will turn on after the PLC has been turned on, but it will
turn off and stay off after "clear’ is turned on. The ’first scan’ bit is also referred to at the
“first pass’ bit.

first scan
S:FS clear

\}\lN Q light
light

Figure 8.6 ~ An program that checks for the first scan of the PLC

8.4 MEMORY TYPES

There are a few basic types of computer memory that are in use today.
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RAM (Random Access Memory) - this memory is fast, but it will lose its contents
when power is lost, this is known as volatile memory. Every PLC uses this
memory for the central CPU when running the PLC.

ROM (Read Only Memory) - this memory is permanent and cannot be erased. It is
often used for storing the operating system for the PLC.

EPROM (Erasable Programmable Read Only Memory) - this is memory that can
be programmed to behave like ROM, but it can be erased with ultraviolet light
and reprogrammed.

EEPROM (Electronically Erasable Programmable Read Only Memory) - This
memory can store programs like ROM. It can be programmed and erased using
a voltage, so it is becoming more popular than EPROMs.

Hard Disk - Software based PLCs run on top of another operating system (such as
Windows) that will read and save values to a hard drive, in case power is lost.

All PLCs use RAM for the CPU and ROM to store the basic operating system for
the PLC. When the power is on the contents of the RAM will be kept, but the issue is what
happens when power to the memory is lost. Originally PLC vendors used RAM with a bat-
tery so that the memory contents would not be lost if the power was lost. This method is
still in use, but is losing favor. EPROMs have also been a popular choice for programming
PLCs. The EPROM is programmed out of the PLC, and then placed in the PLC. When the
PLC is turned on the ladder logic program on the EPROM is loaded into the PLC and run.
This method can be very reliable, but the erasing and programming technique can be time
consuming. EEPROM memories are a permanent part of the PLC, and programs can be
stored in them like EPROM. Memory costs continue to drop, and newer types (such as
flash memory) are becoming available, and these changes will continue to impact PLCs.

8.5 SOFTWARE BASED PLCS

The dropping cost of personal computers is increasing their use in control, includ-
ing the replacement of PLCs. Software is installed that allows the personal computer to
solve ladder logic, read inputs from sensors and update outputs to actuators. These are
important to mention here because they don’t obey the previous timing model. For exam-
ple, if the computer is running a game it may slow or halt the computer. This issue and
others are currently being investigated and good solutions should be expected soon.

8.6 SUMMARY

* A PLC and computer are similar with inputs, outputs, memory, etc.

» The PLC continuously goes through a cycle including a sanity check, input scan,
logic scan, and output scan.

» While the logic is being scanned, changes in the inputs are not detected, and the



plc operation - 8.8

outputs are not updated.
* PLCs use RAM, and sometime EPROMs are used for permanent programs.

8.7 PRACTICE PROBLEMS

1. Does a PLC normally contain RAM, ROM, EPROM and/or batteries.
2. What are the indicator lights on a PLC used for?
3. A PLC can only go through the ladder logic a few times per second. Why?

4. What will happen if the scan time for a PLC is greater than the time for an input pulse? Why?

N

. What is the difference between a PLC and a desktop computer?

)

. Why do PLCs do a self check every scan?

~

. Will the test time for a PLC be long compared to the time required for a simple program.

8. What is wrong with the following ladder logic? What will happen if it is used?

<X <X

L

9. What is the address for a memory location that indicates when a PLC has just been turned on?

8.8 PRACTICE PROBLEM SOLUTIONS

1. Every PLC contains RAM and ROM, but they may also contain EPROM or batteries.
2. Diagnostic and maintenance

3. Even if the program was empty the PLC would still need to scan inputs and outputs, and do a
self check.

4. The pulse may be missed if it occurs between the input scans
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5. Some key differences include inputs, outputs, and uses. A PLC has been designed for the fac-
tory floor, so it does not have inputs such as keyboards and mice (although some newer types
can). They also do not have outputs such as a screen or sound. Instead they have inputs and
outputs for voltages and current. The PLC runs user designed programs for specialized tasks,
whereas on a personal computer it is uncommon for a user to program their system.

6. This helps detect faulty hardware or software. If an error were to occur, and the PLC continued
operating, the controller might behave in an unpredictable way and become dangerous to peo-
ple and equipment. The self check helps detect these types of faults, and shut the system down
safely.

7. Yes, the self check is equivalent to about Ims in many PLCs, but a single program instruction is
about 1 micro second.

8. The normal output Y is repeated twice. In this example the value of Y would always match B,
and the earlier rung with 4 would have no effect on Y.

9. S2:1/14 for micrologix, S2:1/15 for PLC-5, S:FS for ControlLogix processor

8.9 ASSIGNMENT PROBLEMS

1. Describe the basic steps of operation for a PLC after it is turned on.
2. Repeating a normal output in ladder logic should not be done normally. Discuss why.

3. Why does removing a battery from some older PLCs clear the memory?
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9. LATCHES, TIMERS, COUNTERS AND MORE

Topics:
* Latches, timers, counters and MCRs

* Design examples
* Internal memory locations are available, and act like outputs

Objectives:
» Understand latches, timers, counters and MCRs.
* To be able to select simple internal memory bits.

9.1 INTRODUCTION

More complex systems cannot be controlled with combinatorial logic alone. The
main reason for this is that we cannot, or choose not to add sensors to detect all conditions.
In these cases we can use events to estimate the condition of the system. Typical events

used by a PLC include;

first scan of the PLC - indicating the PLC has just been turned on
time since an input turned on/off - a delay

count of events - to wait until set number of events have occurred
latch on or unlatch - to lock something on or turn it off

The common theme for all of these events is that they are based upon one of two
questions "How many?" or "How long?". An example of an event based device is shown
in Figure 9.1. The input to the device is a push button. When the push button is pushed the
input to the device turns on. If the push button is then released and the device turns off, it
is a logical device. If when the push button is release the device stays on, is will be one
type of event based device. To reiterate, the device is event based if it can respond to one
or more things that have happened before. If the device responds only one way to the

immediate set of inputs, it is logical.
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e.g. A Start Push Button

Push Button
+V S
© Device
On/Off
A

Push Button BE—

Device (Logical Response)
Device | (Event Response)

» time

Figure 9.1 An Event Driven Device

9.2 LATCHES

A latch is like a sticky switch - when pushed it will turn on, but stick in place, it
must be pulled to release it and turn it off. A latch in ladder logic uses one instruction to
latch, and a second instruction to unlatch, as shown in Figure 9.2. The output with an L
inside will turn the output D on when the input 4 becomes true. D will stay on even if 4
turns off. Output D will turn off if input B becomes true and the output with a U inside
becomes true (Note: this will seem a little backwards at first). If an output has been latched
on, it will keep its value, even if the power has been turned off.

FTT

Figure 9.2 A Ladder Logic Latch



plc timers - 9.3

The operation of the ladder logic in Figure 9.2 is illustrated with a timing diagram
in Figure 9.3. A timing diagram shows values of inputs and outputs over time. For exam-
ple the value of input A starts low (false) and becomes high (true) for a short while, and
then goes low again. Here when input 4 turns on both the outputs turn on. There is a slight
delay between the change in inputs and the resulting changes in outputs, due to the pro-
gram scan time. Here the dashed lines represent the output scan, sanity check and input
scan (assuming they are very short.) The space between the dashed lines is the ladder logic
scan. Consider that when 4 turns on initially it is not detected until the first dashed line.
There is then a delay to the next dashed line while the ladder is scanned, and then the out-
put at the next dashed line. When 4 eventually turns off, the normal output C turns off, but
the latched output D stays on. Input B will unlatch the output D. Input B turns on twice,
but the first time it is on is not long enough to be detected by an input scan, so it is ignored.
The second time it is on it unlatches output D and output D turns off.

event too short to be noticed (aliasing)

Timing Diagram

These lines indicate PLC input/output refresh times. At this time
all of the outputs are updated, and all of the inputs are read.
Notice that some inputs can be ignored if at the wrong time,

and there can be a delay between a change in input, and a change
in output.

The space between the lines is the scan time for the ladder logic.
The spaces may vary if different parts of the ladder diagram are
executed each time through the ladder (as with state space code).
The space is a function of the speed of the PLC, and the number of
Ladder logic elements in the program.

Figure 9.3 A Timing Diagram for the Ladder Logic in Figure 9.2
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The timing diagram shown in Figure 9.3 has more details than are normal in a tim-
ing diagram as shown in Figure 9.4. The brief pulse would not normally be wanted, and
would be designed out of a system either by extending the length of the pulse, or decreas-
ing the scan time. An ideal system would run so fast that aliasing would not be possible.

s

Figure 9.4 A Typical Timing Diagram

A more elaborate example of latches is shown in Figure 9.5. In this example the
addresses are for an older Allen-Bradley Micrologix controller. The inputs begin with 7/,
followed by an input number. The outputs begin with O/, followed by an output number.
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1/0 0/0
1/0 O/L .
/1 /1
U >7
1/0 012
/1 0/2
A
o | [ M - 1
1 [1
o/0—L I 1 [ e e

o/1—— L | | [

072

[
T

Figure 9.5 A Latch Example

A normal output should only appear once in ladder logic, but latch and unlatch
instructions may appear multiple times. In Figure 9.5 a normal output O/2 is repeated
twice. When the program runs it will examine the fourth line and change the value of O/2
in memory (remember the output scan does not occur until the ladder scan is done.) The
last line is then interpreted and it overwrites the value of O/2. Basically, only the last line
will change O/2.

Latches are not used universally by all PLC vendors, others such as Siemens use



plc timers - 9.6

flip-flops. These have a similar behavior to latches, but a different notation as illustrated in
Figure 9.6. Here the flip-flop is an output block that is connected to two different logic
rungs. The first rung shown has an input 4 connected to the S setting terminal. When 4
goes true the output value Q will go true. The second rung has an input B connected to the
R resetting terminal. When B goes true the output value O will be turned off. The output O
will always be the inverse of Q. Notice that the S and R values are equivalent to the L and
U values from earlier examples.

A
S Q
B —
R Q
A
AT 1 1 M
B | 1 1 1
Ql— 1 I |
Q1 1 |
>

Figure 9.6 Flip-Flops for Latching Values

9.3 TIMERS

There are four fundamental types of timers shown in Figure 9.7. An on-delay timer
will wait for a set time after a line of ladder logic has been true before turning on, but it
will turn off immediately. An off-delay timer will turn on immediately when a line of lad-
der logic is true, but it will delay before turning off. Consider the example of an old car. If
you turn the key in the ignition and the car does not start immediately, that is an on-delay.
If you turn the key to stop the engine but the engine doesn’t stop for a few seconds, that is
an off delay. An on-delay timer can be used to allow an oven to reach temperature before
starting production. An off delay timer can keep cooling fans on for a set time after the
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oven has been turned off.

on-delay off-delay
retentive RTO RTF
nonretentive TON TOF

TON - Timer ON
TOF - Timer OFf
RTO - Retentive Timer On
RTF - Retentive Timer oFf

Figure 9.7 The Four Basic Timer Types

A retentive timer will sum all of the on or off time for a timer, even if the timer
never finished. A nonretentive timer will start timing the delay from zero each time. Typi-
cal applications for retentive timers include tracking the time before maintenance is
needed. A non retentive timer can be used for a start button to give a short delay before a
conveyor begins moving.

An example of an Allen-Bradley TON timer is shown in Figure 9.8. The rung has a
single input 4 and a function block for the TON. (Note: This timer block will look differ-
ent for different PLCs, but it will contain the same information.) The information inside
the timer block describes the timing parameters. The first item is the timer ’example’. This
is a location in the PLC memory that will store the timer information. The preset is the
millisecond delay for the timer, in this case it is 4s (4000ms). The accumulator value gives
the current value of the timer as (. While the timer is running the accumulated value will
increase until it reaches the preset value. Whenever the input A4 is true the EN output will
be true. The DN output will be false until the accumulator has reached the preset value.
The EN and DN outputs cannot be changed when programming, but these are important
when debugging a ladder logic program. The second line of ladder logic uses the timer DN
output to control another output B.
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TON

A] | Timer example

|| Preset 4000 [ (EN)

Accumulator 0

—(DN)

example.DN

Al

example.

example.

example.

B

example.]

0 3 6 9 13 14 17 19

Note: For the older Allen-Bradley equipment the notations are similar, although the
tag names are replaced with a more strict naming convention. The timers are kept
in ’files’ with names starting with *T4:’, followed by a timer number. The exam-
ples below show the older (PLC-5 and micrologix notations compared to the new
RS-Logix (5000) notations. In the older PLCs the timer is given a unique number,
in the RSLogix 5000 processors it is given a tag name (in this case ’t’) and type

"TIMER’.
Older Newer
T4:0/DN t.DN
T4:0/EN t.EN
T4:0.PRE t.PRE
T4:0.ACC t.ACC
T4:0/TT t.TT

Figure 9.8  An Allen-Bradley TON Timer
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The timing diagram in Figure 9.8 illustrates the operation of the TON timer with a
4 second on-delay. 4 is the input to the timer, and whenever the timer input is true the EN
enabled bit for the timer will also be true. If the accumulator value is equal to the preset
value the DN bit will be set. Otherwise, the 77 bit will be set and the accumulator value
will begin increasing. The first time 4 is true, it is only true for 3 seconds before turning
off, after this the value resets to zero. (Note: in a retentive time the value would remain at
3 seconds.) The second time 4 is true, it is on more than 4 seconds. After 4 seconds the 77T
bit turns off, and the DN bit turns on. But, when A4 is released the accumulator resets to
zero, and the DN bit is turned off.

A value can be entered for the accumulator while programming. When the pro-
gram is downloaded this value will be in the timer for the first scan. If the TON timer is
not enabled the value will be set back to zero. Normally zero will be entered for the preset
value.

The timer in Figure 9.9 is identical to that in Figure 9.8, except that it is retentive.
The most significant difference is that when the input A4 is turned off the accumulator
value does not reset to zero. As a result the timer turns on much sooner, and the timer does
not turn off after it turns on. A reset instruction will be shown later that will allow the
accumulator to be reset to zero.

RTO
AI | Timer example ——(EN)
I Preset 4000
Accum. 0 —(DN)

AL
example.EN y—|

example.DN

g

example. Ll—\

]

Xﬁ.---

example., ACC 0
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Figure 9.9  An Allen Bradley Retentive On-Delay Timer

An off delay timer is shown in Figure 9.10. This timer has a time base of 0.01s,
with a preset value of 3500, giving a total delay of 3.5s. As before the EN enable for the
timer matches the input. When the input 4 is true the DN bit is on. Is is also on when the
input 4 has turned off and the accumulator is counting. The DN bit only turns off when the
input 4 has been off long enough so that the accumulator value reaches the preset. This
type of timer is not retentive, so when the input 4 becomes true, the accumulator resets.

TOF
| A| | Timer example ——(EN)
| || Preset 3500

Accum. 0 —(DN)

A ! | N ; ! :
example. EN |—|: | |' |_'—|_
example. PN |_|
example. |—|_|7
example.

0 . ’ B ‘ I—/ .

0 3 6 9.5 10 16 18 20

Figure 9.10  An Allen Bradley Off-Delay Timer

Retentive off-delay (RTF) timers have few applications and are rarely used, there-
fore many PLC vendors do not include them.

An example program is shown in Figure 9.11. In total there are four timers used in
this example,t 1,t 2,t 3,andt 4. The timer instructions are shown with the accumulator
values omitted, assuming that they start with a value of zero. All four different types of
counters have the input ‘go’. Output 'done’ will turn on when the TON counter ¢ [ is
done. All four of the timers can be reset with input reset’.
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g? TON t 1
| I delay 4 sec
RTO t 2
gT I delay 4 sec
g? TOF 3
| I delay 4 sec
RTF ¢ 4
gT I delay 4 sec
t I.DN /done
| N >
reset RES 1
t
reset RES 5
t
reset RES 3
t
reset RES 7
t

Figure 9.11 A Timer Example

A timing diagram for this example is shown in Figure 9.12. As input go is turned
on the TON and RTO timers begin to count and reach 4s and turn on. When reset becomes
true it resets both timers and they start to count for another second before go is turned off.
After the input is turned off the TOF and RTF both start to count, but neither reaches the
4s preset. The input go is turned on again and the TON and RTO both start counting. The
RTO turns on one second sooner because it had 1s stored from the 7-8s time period. After
go turns off again both the off delay timers count down, and reach the 4 second delay, and
turn on. These patterns continue across the diagram.
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A
11 T | [
£0 N | o I
| N | N N
resetl | LI L] [ 11 | L[
| [ [ [ ] | [
| I N ||
t 1.DN H||| T T
| N | N N
t 2.DNI L] [T 1 L1 | L
B | [ [ [ ] | [
Ll L L L1
t 3.DN R o L L
| N | N N
t 4.DNI rrr ] L1 | |1
o | [ [ [ ] | [
| B N ||
donel L L1 ! ]
[TT1 |||||||||il|||I||||i|||||||||i|||||||||itﬁne
0 5 10 15 20 25 30 35 40 (sec)

Figure 9.12 A Timing Diagram for Figure 9.11

Consider the short ladder logic program in Figure 9.13 for control of a heating
oven. The system is started with a Start button that seals in the Auto mode. This can be
stopped if the Stop button is pushed. (Remember: Stop buttons are normally closed.)
When the Auto goes on initially the TON timer is used to sound the horn for the first 10
seconds to warn that the oven will start, and after that the horn stops and the heating coils
start. When the oven is turned off the fan continues to blow for 300s or 5 minutes after.
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Start Sto
| ﬁ) Auto
|
Auto
Auto TON
Timer heat
Delay 10s
TOF
Timer cooling
Delay 300s
heat. TT
Q Horn
heat. DN . .
Q Heating Coils
cooling. DN
Q Fan

Note: For the remainder of the text I will use the shortened notation for timers
shown above. This will save space and reduce confusion.

Figure 9.13 A Timer Example

A program is shown in Figure 9.14 that will flash a light once every second. When
the PLC starts, the second timer will be off and the ¢ on. DN bit will be off, therefore the
normally closed input to the first timer will be on. #_off will start timing until it reaches
0.5s, when it is done the second timer will start timing, until it reaches 0.5s. At that point
t on.DN will become true, and the input to the first time will become false. ¢ off'is then set
back to zero, and then ¢ on is set back to zero. And, the process starts again from the
beginning. In this example the first timer is used to drive the second timer. This type of
arrangement is normally called cascading, and can use more that two timers.
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\—i\;\ Timer t_off
Delay 0.5s
|| Timer t _on
Delay 0.5s
t on.TT
‘{ I Q Light

Figure 9.14  Another Timer Example

9.4 COUNTERS

There are two basic counter types: count-up and count-down. When the input to a
count-up counter goes true the accumulator value will increase by 1 (no matter how long
the input is true.) If the accumulator value reaches the preset value the counter DN bit will
be set. A count-down counter will decrease the accumulator value until the preset value is
reached.

An Allen Bradley count-up (CTU) instruction is shown in Figure 9.15. The
instruction requires memory in the PLC to store values and status, in this case is example.
The preset value is 4 and the value in the accumulator is 2. If the input 4 were to go from
false to true the value in the accumulator would increase to 3. If 4 were to go off, then on
again the accumulator value would increase to 4, and the DN bit would go on. The count
can continue above the preset value. If input B becomes true the value in the counter accu-
mulator will become zero.
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CTU
A| I Counter example (CU)
] Preset 4
Accum. 2 (DN)
example.DN

R RES [example

& O

Note: The notations for older Allen-Bradley equipment are very similar to the newer
notations. The examples below show the older (PLC-5 and micrologix notations
compared to the new RS-Logix (5000) notations. In the older PLCs the counter is
given a unique name, in the RSLogix 5000 processors it is given a name (in this
case ’c’) and the type 'TCOUNTER’.

Older Newer
C5:0/DN c¢.DN
C5:0/CU c.CU
C5:0.PRE c.PRE
C5:0.ACC c.ACC
C5:0/CD c.CD

Figure 9.15  An Allen Bradley Counter

Count-down counters are very similar to count-up counters. And, they can actually
both be used on the same counter memory location. Consider the example in Figure 9.16,
the example input cnt_up drives the count-up instruction for counter example. Input
cnt_down drives the count-down instruction for the same counter location. The preset
value for a counter is stored in memory location example so both the count-up and count-
down instruction must have the same preset. Input reset will reset the counter.
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cnt_ up CTU  example
preset 3
cnt, down CTD  example
preset 3

reset
RES  example

example.DN output_thingy
A
ent up | [T LI LI LI LI LT Mo
cnt_down puplply
reset M M
example.DN M ] —
output thingy
>

Figure 9.16 A Counter Example

The timing diagram in Figure 9.16 illustrates the operation of the counter. If we
assume that the value in the accumulator starts at 0, then the positive edges on the cnt_up
input will cause it to count up to 3 where it turns the counter example done bit on. It is then
reset by input reset and the accumulator value goes to zero. Input cnt_up then pulses again
and causes the accumulator value to increase again, until it reaches a maximum of 5. Input
cnt_down then causes the accumulator value to decrease down below 3, and the counter
turns off again. Input cnt_up then causes it to increase, but input reset resets the accumula-
tor back to zero again, and the pulses continue until 3 is reached near the end.
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The program in Figure 9.17 is used to remove 5 out of every 10 parts from a con-
veyor with a pneumatic cylinder. When the part is detected both counters will increase
their values by 1. When the sixth part arrives the first counter will then be done, thereby
allowing the pneumatic cylinder to actuate for any part after the fifth. The second counter
will continue until the eleventh part is detected and then both of the counters will be reset.

part T;Tresent CTU
||

Counter parts_cnt
Preset 6

CTU
Counter parts _max|
Preset 11

parts_max.DN
| T

B RES) parts cnt

RES ) parts max

par1|:sTcnt.DN part|p|resent
| |

pneumatic
cylinder

@G

Figure 9.17 A Counter Example

9.5 MASTER CONTROL RELAYS (MCRys)

In an electrical control system a Master Control Relay (MCR) is used to shut down
a section of an electrical system, as shown earlier in the electrical wiring chapter. This
concept has been implemented in ladder logic also. A section of ladder logic can be put
between two lines containing MCR’s. When the first MCR coil is active, all of the inter-
mediate ladder logic is executed up to the second line with an MCR coil. When the first
MCR coil in inactive, the ladder logic is still examined, but all of the outputs are forced
off.

Consider the example in Figure 9.18. If 4 is true, then the ladder logic after will be
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executed as normal. If 4 is false the following ladder logic will be examined, but all of the
outputs will be forced off. The second MCR function appears on a line by itself and marks
the end of the MCR block. After the second MCR the program execution returns to nor-
mal. While 4 is true, X will equal B, and Y can be turned on by C, and off by D. But, if 4
becomes false X will be forced off, and Y will be left in its last state. Using MCR blocks to
remove sections of programs will not increase the speed of program execution signifi-
cantly because the logic is still examined.

M

i

<

DOOOE

Note: If a normal input is used inside an MCR block it will be forced off. If the
output is also used in other MCR blocks the last one will be forced off. The
MCR is designed to fully stop an entire section of ladder logic, and is best
used this way in ladder logic designs.

Figure 9.18 MCR Instructions

If the MCR block contained another function, such as a TON timer, turning off the

MCR block would force the timer off. As a general rule normal outputs should be outside
MCR blocks, unless they must be forced off when the MCR block is off.
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9.6 INTERNAL BITS

Simple programs can use inputs to set outputs. More complex programs also use
internal memory locations that are not inputs or outputs. These Boolean memory locations
are sometimes referred to as ’internal relays’ or ’control relays’. Knowledgeable program-
mers will often refer to these as "bit memory’. In the newer Allen Bradley PLCs these can
be defined as variables with the type "SBOOL’. The programmer is free to use these mem-
ory locations however they see fit.

NOTE: In the older Allen Brad- bit memory bit memory
ley PLCs these addresses number | location number | location
begin with ’B3’ by default.

The first bit in memory is 0 B3:0/0 18 B3:1/2
’B3:0/0°, where the first zero 1 B3:0/1 19 B3:1/3
represents the first 16 bit 2 B3:0/2 20 B3:1/4
word, and the second zero 3 B3:0/3 21 B3:1/5
represents the first bit in the 4 B3:0/4 22 B3:1/6
word. The sequence of bits 5 B3:0/5 23 B3:1/7
is shown to the right. 6 B3:0/6 24 B3:1/8
7 B3:0/7 25 B3:1/9
8 B3:0/8 26 B3:1/10
9 B3:0/9 27 B3:1/11
10 B3:0/10 28 B3:1/12
11 B3:0/11 29 B3:1/13
12 B3:0/12 30 B3:1/14
13 B3:0/13 31 B3:1/15
14 B3:0/14 32 B3:2/0
15 B3:0/15 33 B3:2/1
16 B3:1/0 34 B3:2/2
17 B3:1/1 etc... etc...

An example of bit memory usage is shown in Figure 9.19. The first ladder logic
rung will turn on the internal memory bit ’A_pushed’ (e.g., B3:0/0) when input "hand A’
is activated, and input ’clear’ is off. (Notice that the Boolean memory is being used as
both an input and output.) The second line of ladder logic similar. In this case when both
inputs have been activated, the output ’press on’ is active.
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hand A clear
(1:0/0) (1:0/2) A pushed
M Q (B3:0/0)
A pushed
(B3:0/0)
hand B clear
(1;0/1) (I:O( 2) B pushed
\t\?\ (B3:0/1)
B _pushed
(B3:0/1)
A_pushed B_pushed
(B3:0/0) (B3:0/1)
|| | | press_on
| | (0:0/0)

Figure 9.19  An example using bit memory (older notations are in parentheses)

Bit memory was presented briefly here because it is important for design tech-
niques in the following chapters, but it will be presented in greater depth after that.

9.7 DESIGN CASES

The following design cases are presented to help emphasize the principles pre-
sented in this chapter. I suggest that you try to develop the ladder logic before looking at
the provided solutions.

9.7.1 Basic Counters And Timers

Problem: Develop the ladder logic that will turn on an output light, 15 seconds
after switch 4 has been turned on.
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Solution:

TON delay

Preset 15s

delay.DN _
I I Light Q

Figure 9.20 A Simple Timer Example

>

Problem: Develop the ladder logic that will turn on a light, after switch 4 has been
closed 10 times. Push button B will reset the counters.

Solution:

A CTU count

Preset 10

Accum. 0
count.DN .

Light Q

B count
I I RES

Figure 9.21 A Simple Counter Example

9.7.2 More Timers And Counters

Problem: Develop a program that will latch on an output B 20 seconds after input
A has been turned on. After 4 is pushed, there will be a 10 second delay until 4 can have
any effect again. After 4 has been pushed 3 times, B will be turned off.
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Solution:

>
©)
=
@

On TON t 0
Time base: 1.0
Preset 20

t 0.DN Light @

t 0.DN TON t 1
Time base: 1.0
Preset 10

t 1.DN On @

On CTU count
Preset 3
Accum. 0

count. DN Light @

Figure 9.22 A More Complex Timer Counter Example

9.7.3 Deadman Switch

Problem: A motor will be controlled by two switches. The Go switch will start the
motor and the Stop switch will stop it. If the Stop switch was used to stop the motor, the
Go switch must be thrown twice to start the motor. When the motor is active a light should
be turned on. The Stop switch will be wired as normally closed.
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Solution:
Motor Stop
I I \H C5:0 ( rEs
Go Motor CTU count
| | \I\!\
| | | Preset 2
Accum. 1
count.DN Stop
[ ] [ Motor
I I Q
Motor .
[ 1 Light Q
I

Consider:
What will happen if stop is pushed and the motor is not running?

Figure 9.23 A Motor Starter Example

9.7.4 Conveyor

Problem: A conveyor is run by switching on or off a motor. We are positioning
parts on the conveyor with an optical detector. When the optical sensor goes on, we want
to wait 1.5 seconds, and then stop the conveyor. After a delay of 2 seconds the conveyor
will start again. We need to use a start and stop button - a light should be on when the sys-
tem is active.
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Solution:
Go Sto .
| F Light
[ 1
Light
Part Detect TON incoming
Preset 1.5s
Iir}coming.DN TON stopped
[ Preset 2s

incoming. DN ILlight Mot
otor

stopped. DN {ncoming
RES

stopped.DN topped
RES

Consider: What is assumed about part arrival and departure?

O

Figure 9.24 A Conveyor Controller Example

9.7.5 Accept/Reject Sorting

Problem: For the conveyor in the last case we will add a sorting system. Gages
have been attached that indicate good or bad. If the part is good, it continues on. If the part
is bad, we do not want to delay for 2 seconds, but instead actuate a pneumatic cylinder.



plc timers - 9.25

Solution:
Go Stop Light
I
Light
Part Detect TON incoming
Preset 1.5s
Iinlcoming.DN IPlart_Good TON stopped
I I
Preset 2s
Iinlcoming.DN IPar‘[_Good TON rejected
I I
Preset 0.5s
stopped.EN Light
PP | |g Motor
I
rejected. EN .
Cylind¢r
stopped.DN . .
incoming [ RES
‘ rejectied.DN
stopped. DN
stopped (' RES
rejected. DN .
rejected RES

Figure 9.25 A Conveyor Sorting Example
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9.7.6 Shear Press

Problem: The basic requirements are,

1. A toggle start switch (TS1) and a limit switch on a safety gate (LS1) must both
be on before a solenoid (SOL1) can be energized to extend a stamping cylinder
to the top of a part.

2. While the stamping solenoid is energized, it must remain energized until a limit
switch (LS2) is activated. This second limit switch indicates the end of a stroke.
At this point the solenoid should be de-energized, thus retracting the cylinder.

3. When the cylinder is fully retracted a limit switch (LS3) is activated. The cycle
may not begin again until this limit switch is active.

4. A cycle counter should also be included to allow counts of parts produced.
When this value exceeds 5000 the machine should shut down and a light lit up.

5. A safety check should be included. If the cylinder solenoid has been on for more
than 5 seconds, it suggests that the cylinder is jammed or the machine has a
fault. If this is the case, the machine should be shut down and a maintenance
light turned on.
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Solution:
TSI LS1 LS3 part cnt. DN
W || L SOL1 /7
[ 1 [ 1 |
LS2
SOLI @
extend.DN
SOL1 CTU part_cnt
Preset 5000
Accum. 0
ISIOL 1 RTO extend
[
Preset 5s
extend.DN
LIGHT@
part_cnt.DN

RESET
extend @

- what do we need to do when the machine is reset?

Figure 9.26 A Shear Press Controller Example

9.8 SUMMARY

* Latch and unlatch instructions will hold outputs on, even when the power is
turned off.

* Timers can delay turning on or off. Retentive timers will keep values, even when
inactive. Resets are needed for retentive timers.

* Counters can count up or down.

* When timers and counters reach a preset limit the DN bit is set.
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* MCRs can force off a section of ladder logic.

9.9 PRACTICE PROBLEMS

1. What does edge triggered mean? What is the difference between positive and negative edge
triggered?

2. Are reset instructions necessary for all timers and counters?
3. What are the numerical limits for typical timers and counters?
4. If a counter goes below the bottom limit which counter bit will turn on?

5. a) Write ladder logic for a motor starter that has a start and stop button that uses latches. b)
Write the same ladder logic without latches.

6. Use a timing diagram to explain how an on delay and off delay timer are different.

7. For the retentive off timer below, draw out the status bits.

RTF
A )
Timer t
‘ | | (
‘ | Preset 3.5s EN)
Accum. 0
—(DN)
A ; ; :
A ! ! 5
t.EN
t.DN
t.TT
t.ACC -
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8. Complete the timing diagrams for the two timers below.

RTO
EN
| A|| Timer t (EN)
‘ || Preset 10s (DN)
Accum. 1
A ! ! ;
A ! ! !
t.EN
tTT
tDN
t.ACC e
0 3 6 9 14 17 19 20
TOF
A )
Timer t
| | | (
| || Preset 0.05s EN)
Accum. 0
—(DN)
A ! ; ;
: 1 1
A ! ! !
t.EN
t.TT
t.DN
t.ACC . ’ . -
0 15 45 150 200 ' 225
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9. Given the following timing diagram, draw the done bits for all four fundamental timer types.
Assume all start with an accumulated value of zero, and have a preset of 1.5 seconds.

A

T T
| | | | | | |
TON | | | | | | |
S | | | | | | |
| | | | | | |
| | | | | | |
RTO| | | | | | | |
| | | | | | |
| | | | | | |
TOF| | | | | | | |
| | | | | | |
| | | | | | |
RTF| | | | | | | |
| | | | | | |
R T
0 1 2 3 4 5 6 7

10. Design ladder logic that allows an RTO to behave like a TON.
11. Design ladder logic that uses a timer and counter to measure a time of 50.0 days.

12. Develop the ladder logic that will turn on an output (light), 15 seconds after switch (A) has
been turned on.

13. Develop the ladder logic that will turn on a output (light), after a switch (A) has been closed
10 times. Push button (B) will reset the counters.

14. Develop a program that will latch on an output (B), 20 seconds after input (A) has been turned
on. The timer will continue to cycle up to 20 seconds, and reset itself, until A has been turned
off. After the third time the timer has timed to 20 seconds, B will be unlatched.

15. A motor will be connected to a PLC and controlled by two switches. The GO switch will start
the motor, and the STOP switch will stop it. If the motor is going, and the GO switch is thrown,
this will also stop the motor. If the STOP switch was used to stop the motor, the GO switch
must be thrown twice to start the motor. When the motor is running, a light should be turned on
(a small lamp will be provided).

16. In dangerous processes it is common to use two palm buttons that require a operator to use
both hands to start a process (this keeps hands out of presses, etc.). To develop this there are
two inputs that must be turned on within 0.25s of each other before a machine cycle may begin.
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17. Design a conveyor control system that follows the design guidelines below.

- The conveyor has an optical sensor S/ that detects boxes entering a workcell

- There is also an optical sensor S2 that detects boxes leaving the workcell

- The boxes enter the workcell on a conveyor controlled by output C/

- The boxes exit the workcell on a conveyor controlled by output C2

- The controller must keep a running count of boxes using the entry and exit sen-
sors

- If there are more than five boxes in the workcell the entry conveyor will stop

- If there are no boxes in the workcell the exit conveyor will be turned off

- If the entry conveyor has been stopped for more than 30 seconds the count will be
reset to zero, assuming that the boxes in the workcell were scrapped.

18. Write a ladder logic program that does what is described below.
- When button 4 is pushed, a light will flash for 5 seconds.
- The flashing light will be on for 0.25 sec and off for 0.75 sec.
- If button A4 has been pushed 5 times the light will not flash until the system is
reset.
- The system can be reset by pressing button B

19. Write a program that will turn on a flashing light for the first 15 seconds after a PLC is turned
on. The light should flash for half a second on and half a second off.

20. A buffer can hold up to 10 parts. Parts enter the buffer on a conveyor controller by output con-
veyor. As parts arrive they trigger an input sensor enter. When a part is removed from the
buffer they trigger the exit sensor. Write a program to stop the conveyor when the buffer is full,
and restart it when there are fewer than 10 parts in the buffer. As normal the system should also
include a start and stop button.

21. What is wrong with the following ladder logic? What will happen if it is used?

L@L@

22. We are using a pneumatic cylinder in a process. The cylinder can become stuck, and we need
to detect this. Proximity sensors are added to both endpoints of the cylinder’s travel to indicate
when it has reached the end of motion. If the cylinder takes more than 2 seconds to complete a
motion this will indicate a problem. When this occurs the machine should be shut down and a
light turned on. Develop ladder logic that will cycle the cylinder in and out repeatedly, and
watch for failure.



plc timers - 9.32

9.10 PRACTICE PROBLEM SOLUTIONS

1. edge triggered means the event when a logic signal goes from false to true (positive edge) or
from true to false (negative edge).

2. no, but they are essential for retentive timers, and very important for counters.

3. Timers on PLC-5s and Micrologix are 16 bit, so they are limited to a range of -32768 to
+32767. ControlLogix timers are 32 bit and have a range of -2,147,483,648 to 2,147,483,647.

4. the un underflow bit. This may result in a fault in some PLCs.

5.
first pass
@ motor
stop
start
@ motor
start stop
] Q motor
motor
6.
A . .
input
I
TON delays turning on =3B
! |
TOF J,-» delays turning off
|
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A
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| ‘ | delay 20 s
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19.
First scan
TON
T4:0
delay 15s
T4:.0/TT
T4:2/DN
\¢\’|\ TON
! T4:1
delay 0.5s
T4:1/DN
| | TON
I T4:2
delay 0.5s
T42|2/ iTT llght
|
20.
start stop
I I O active
active
enter CTU
counter C5:0
preset 10
le?jit CTD
|| counter C5:0
preset 10
active C5:0/DN
] K O wive

21. The normal output ‘Y’ is repeated twice. In this example the value of Y’ would always match
‘B’, and the earlier rung with ‘A’ would have no effect on ‘Y.
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22.

GIVE SOLUTION

9.11 ASSIGNMENT PROBLEMS

1. Draw the timer and counter done bits for the ladder logic below. Assume that the accumulators
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of all the timers and counters are reset to begin with.

TON
1] Timer T_0

Preset 2s

RTO
Timer T 1

Preset 2s

TOF
Timer T 2

Preset 2s

CTU
Counter C 0
Preset 2
Acc. 0

CTD
Counter C 1
Preset 2
Acc. 0

T 0/DN
T 1/DN
T 2/DN
C_0/DN

C_1/DN
p-f(s€C)

_— -

0 5 0 15 20

2. Write a ladder logic program that will count the number of parts in a buffer. As parts arrive they
activate input 4. As parts leave they will activate input B. If the number of parts is less than 8
then a conveyor motor, output C, will be turned on.
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3. Explain what would happen in the following program when A is on or off.

] (e

TON

t
5s
@

4. Write a simple program that will use one timer to flash a light. The light should be on for 1.0
seconds and off for 0.5 seconds. Do not include start or stop buttons.

5. We are developing a safety system (using a PLC-5) for a large industrial press. The press is
activated by turning on the compressor power relay (R, connected to O:013/05). After R has
been on for 30 seconds the press can be activated to move (P connected to O:013/06). The
delay is needed for pressure to build up. After the press has been activated (with P) the system
must be shut down (R and P off), and then the cycle may begin again. For safety, there is a sen-
sor that detects when a worker is inside the press (S, connected to 1:011/02), which must be off
before the press can be activated. There is also a button that must be pushed 5 times (B, con-
nected to 1:011/01) before the press cycle can begin. If at any time the worker enters the press
(and S becomes active) the press will be shut down (P and R turned off). Develop the ladder
logic. State all assumptions, and show all work.

6. Write a program that only uses one timer. When an input A is turned on a light will be on for 10
seconds. After that it will be off for two seconds, and then again on for 5 seconds. After that
the light will not turn on again until the input A is turned off.

7. A new printing station will add a logo to parts as they travel along an assembly line. When a
part arrives a ‘part’ sensor will detect it. After this the ‘clamp’ output is turned on for 10 sec-
onds to hold the part during the operation. For the first 2 seconds the part is being held a
‘spray’ output will be turned on to apply the thermoset ink. For the last 8 seconds a ‘heat’ out-
put will be turned on to cure the ink. After this the part is released and allowed to continue
along the line. Write the ladder logic for this process.

8. Write a ladder logic program. that will turn on an output Q five seconds after an input A is

turned on. If input B is on the delay will be eight seconds. YOU MAY ONLY USE ONE
TIMER.
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10. STRUCTURED LOGIC DESIGN

Topics:
* Timing diagrams
* Design examples
* Designing ladder logic with process sequence bits and timing diagrams

Objectives:
» Know examples of applications to industrial problems.
* Know how to design time base control programs.

10.1 INTRODUCTION

Traditionally ladder logic programs have been written by thinking about the pro-
cess and then beginning to write the program. This always leads to programs that require
debugging. And, the final program is always the subject of some doubt. Structured design
techniques, such as Boolean algebra, lead to programs that are predictable and reliable.
The structured design techniques in this and the following chapters are provided to make
ladder logic design routine and predictable for simple sequential systems.

Note: Structured design is very important in engineering, but many engineers will write
software without taking the time or effort to design it. This often comes from previous
experience with programming where a program was written, and then debugged. This
approach is not acceptable for mission critical systems such as industrial controls. The
time required for a poorly designed program is 10% on design, 30% on writing, 40%
debugging and testing, 10% documentation. The time required for a high quality pro-
gram design is 30% design, 10% writing software, 10% debugging and testing, 10%
documentation. Yes, a well designed program requires less time! Most beginners per-
ceive the writing and debugging as more challenging and productive, and so they will
rush through the design stage. If you are spending time debugging ladder logic pro-
grams you are doing something wrong. Structured design also allows others to verify
and modify your programs.

Axiom: Spend as much time on the design of the program as possible. Resist the tempta-
tion to implement an incomplete design.
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Most control systems are sequential in nature. Sequential systems are often
described with words such as mode and behavior. During normal operation these systems
will have multiple steps or states of operation. In each operational state the system will
behave differently. Typical states include start-up, shut-down, and normal operation. Con-
sider a set of traffic lights - each light pattern constitutes a state. Lights may be green or
yellow in one direction and red in the other. The lights change in a predictable sequence.
Sometimes traffic lights are equipped with special features such as cross walk buttons that
alter the behavior of the lights to give pedestrians time to cross busy roads.

Sequential systems are complex and difficult to design. In the previous chapter
timing charts and process sequence bits were discussed as basic design techniques. But,
more complex systems require more mature techniques, such as those shown in Figure
10.1. For simpler controllers we can use limited design techniques such as process
sequence bits and flow charts. More complex processes, such as traffic lights, will have
many states of operation and controllers can be designed using state diagrams. If the con-
trol problem involves multiple states of operation, such as one controller for two indepen-
dent traffic lights, then Petri net or SFC based designs are preferred.

sequential
problem

buffered (waiting)
iggers

steps vith L SEQUENCE BITS

som¢ deviations

PETRINET

shorter

no waiting with
FLOW CHART develo

singlg states

BLOCK LOGIC EQUATIONS SFC/GRAFSET

Figure 10.1  Sequential Design Techniques

10.2 PROCESS SEQUENCE BITS

A typical machine will use a sequence of repetitive steps that can be clearly identi-
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fied. Ladder logic can be written that follows this sequence. The steps for this design
method are;

1. Understand the process.

2. Write the steps of operation in sequence and give each step a number.

3. For each step assign a bit.

4. Write the ladder logic to turn the bits on/off as the process moves through its
states.

5. Write the ladder logic to perform machine functions for each step.

6. If the process is repetitive, have the last step go back to the first.

Consider the example of a flag raising controller in Figure 10.2 and Figure 10.3.
The problem begins with a written description of the process. This is then turned into a set
of numbered steps. Each of the numbered steps is then converted to ladder logic.
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Description:

A flag raiser that will go up when an up button is pushed, and down when a
down button is pushed, both push buttons are momentary. There are
limit switches at the top and bottom to stop the flag pole. When turned
on at first the flag should be lowered until it is at the bottom of the pole.

Steps:
1. The flag is moving down the pole waiting for the bottom limit switch.
2. The flag is idle at the bottom of the pole waiting for the up button.
3. The flag moves up, waiting for the top limit switch.
4. The flag is idle at the top of the pole waiting for the down button.

Ladder Logic:

first scan

step 1

step 2

This section of ladder logic forces the flag raiser
to start with only one state on, in this case it

should be the first one, step 1. step 3

CACICIC

step 4

step 1
down
motor

O

step 1 bottom lifnit switch
L (D s

The ladder logic for step 1 turns on the motor to lower the flag @ step 1
and when the bottom limit switch is hit it goes to step 2.

Note: recall that [imit switches should be normally
closed for safety when they stop motion.

step 2 flag up button
|| | |
N ] (D) step3

The ladder logic for step 2 only waits for the @ step 2
push button to raise the flag.

Figure 10.2 A Process Sequence Bit Design Example
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step 3
(O w
motor
step 3 top limit |switch
SN (D s
The ladder logic for step 3 turns on the motor to @ step 3

raise the flag and when the top limit switch is
hit it goes to step 4.

step 4 flag down button
I I || step 1

The ladder logic for step 4 only waits for the
push button to lower the flag.

step 4

@ @

Figure 10.3 A Process Sequence Bit Design Example (continued)

The previous method uses latched bits, but the use of latches is sometimes discour-
aged. A more common method of implementation, without latches, is shown in Figure
10.4.
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step4 ﬂ?g| down button | step2
stepl
| Ne () step
stepl
FS
stepl bo}:tom LS | step3
step2
== N () step
step2
step2  flag up button step4
| | | step3
| N () step
step3
step3 tolT LS | stepl
step4
== N () step
step4
step 1 O
down
motor
step 3
up
O motor

Figure 10.4  Process Sequence Bits Without Latches

Similar methods are explored in further detail in the book Cascading Logic
(Kirckof, 2003).

10.3 TIMING DIAGRAMS

Timing diagrams can be valuable when designing ladder logic for processes that
are only dependant on time. The timing diagram is drawn with clear start and stop times.
Ladder logic is constructed with timers that are used to turn outputs on and off at appropri-
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ate times. The basic method is;

1. Understand the process.

2. Identify the outputs that are time dependant.

3. Draw a timing diagram for the outputs.

4. Assign a timer for each time when an output turns on or off.

5. Write the ladder logic to examine the timer values and turn outputs on or off.

Consider the handicap door opener design in Figure 10.5 that begins with a verbal
description. The verbal description is converted to a timing diagram, with t=0 being when
the door open button is pushed. On the timing diagram the critical times are 2s, 10s, 14s.
The ladder logic is constructed in a careful order. The first item is the latch to seal-in the
open button, but shut off after the last door closes. auto is used to turn on the three timers
for the critical times. The logic for opening the doors is then written to use the timers.
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Description: A handicap door opener has a button that will open two doors. When the but-
ton is pushed (momentarily) the first door will start to open immediately, the second
door will start to open 2 seconds later. The first door power will stay open for a total of
10 seconds, and the second door power will stay on for 14 seconds. Use a timing dia-
gram to design the ladder logic.

Timing Diagram: A
| | |
door 1 ! ! '
| | |
AOOT 2 el | i
! — -~
2s 10s  14s
Ladder Logic:
open button t 1|4.DN
BAN () auto
auto
auto
TON
Timer t 2
Delay 2s
TON
Timert 10
Delay 10s
TON
Timert 14
Delay 14s
t 10.TT
Q door 1
t 2.TT thiDN
R O door 2

Figure 10.5 Design With a Timing Diagram
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10.4 DESIGN CASES

10.5 SUMMARY

* Timing diagrams can show how a system changes over time.
* Process sequence bits can be used to design a process that changes over time.
* Timing diagrams can be used for systems with a time driven performance.

10.6 PRACTICE PROBLEMS

1. Write ladder logic that will give the following timing diagram for B after input 4 is pushed.
After A is pushed any changes in the state of 4 will be ignored.

A

true

false t(sec)

2. Design ladder logic for the timing diagram below. When an input 4 becomes active the
sequence should start.

A
X ] —

Y. LI LI 1

>
t (ms)
100 300 500 700 900 1100 1900

3. A wrapping process is to be controlled with a PLC. The general sequence of operations is
described below. Develop the ladder logic using process sequence bits.
1. The folder is idle until a part arrives.
2. When a part arrives it triggers the part sensor and the part is held in place by
actuating the hold actuator.
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3. The first wrap is done by turning on output paper for 1 second.

4. The paper is then folded by turning on the crease output for 0.5 seconds.

5. An adhesive is applied by turning on output tape for 0.75 seconds.

6. The part is release by turning off output 4old.

7. The process pauses until the part sensors goes off, and then the machine returns
to idle.

4. Draw a timing diagram for the following ladder logic.
start t 20.DN

K O

TON

TON
t 10
10s

TON
t 15
15s
TON
t 20
t3EN  t9DN 20s

t 10.DN t 15.DN

t 3DN 91T

t 20EN  t 15.TT




plc design - 10.11

10.7 PRACTICE PROBLEM SOLUTIONS
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t 1.TT
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(without latches
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(with latches
first pass
‘I P Dstepl
stepl step2
step3
stop step4
stepS
part
I L step2
L (pystepl
step2 TON
paper_delay
delay 1's
paper_delay.DN
1 )step3
L ( 1)step2
step3 TON
crease_delay
delay 0.5 s
crease delay.DN
1 )step4
L ( 1ystep3
step4 TON
tape delay
delay 0.75 s
tape delay.DN
1 )stepS
L ( 1)step4
step5 part
\H\ L)stepl
L ( 1ystepS

10.8 ASSIGNMENT PROBLEMS

1. Convert the following timing diagram to ladder logic. It should begin when input ‘A’ becomes
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true.
X A
. ) ) t(SeC)
|
0 0.2 0.5 1213 14 1.6 20

2. Use the timing diagram below to design ladder logic. The sequence should start when input X

turns on. X may only be on momentarily, but the sequence should continue to execute until it
ends at 26 seconds.

A
. [ | L
B |
| .
0 305 11 2 26 t (sec)

3. Use the timing diagram below to design ladder logic. The sequence should start when input X
turns on. X may only be on momentarily, but the sequence should execute anyway.

A

A1

—
B | | [
| | ]

| | >
23 5 7 11 16 2 26 t (sec)

4. Write a program that will execute the following steps. When in steps b) or d), output C will be
true. Output X will be true when in step c).
a) Start in an idle state. If input G becomes true go to b)
b) Wait until P becomes true before going to step c).
c¢) Wait for 3 seconds then go to step d).
d) Wait for P to become false, and then go to step b).

5. Write a program that will execute the following steps. When in steps b) or d), output C will be
true. Output X will be true when in step c).



plc design - 10.17

a) Start in an idle state. If input G becomes true go to b)

b) Wait until P becomes true before going to step c). If input S becomes true then go to step a).
c¢) Wait for 3 seconds then go to step d).

d) Wait for P to become false, and then go to step b).

6. A PLC is to control an amusement park water ride. The ride will fill a tank of water and splash
a tour group. 10 seconds later a water jet will be ejected at another point. Develop ladder logic
for the process that follows the steps listed below.

1. The process starts in ‘idle’.

2. The ‘cart_detect’ opens the ‘filling’ valve.

3. After a delay of 30 seconds from the start of the filling of the tank the tank ‘out-
let’ valve opens. When the tank is ‘full’ the ‘filling” valve closes.

4. When the tank is empty the ‘outlet’ valve is closed.

5. After a 10 second delay, from the tank outlet valve opening, a water ‘jet’ is
opened.

6. After ‘2’ seconds the water ‘jet’ is closed and the process returns to the ‘idle
state.

7. Write a ladder logic program to extend and retract a cylinder after a start button is pushed.
There are limit switches at the ends of travel. If the cylinder is extending if more than 5 sec-
onds the machine should shut down and turn on a fault light. If it is retracting for more than 3
seconds it should also shut down and turn on the fault light. It can be reset with a reset button.

8. Design a program with sequence bits for a hydraulic press that will advance when two palm
buttons are pushed. Top and bottom limit switches are used to reverse the advance and stop
after a retract. At any time the hands removed from the palm button will stop an advance and
retract the press. Include start and stop buttons to put the press in and out of an active mode.

9. A machine has been built for filling barrels. Use process sequence bits to design ladder logic
for the sequential process as described below.
1. The process begins in an idle state.
2. If the ‘fluid pressure’ and ‘barrel present’ inputs are on, the system will open a flow valve
for 2 seconds with output ‘flow’.
3. The ‘flow’ valve will then be turned off for 10 seconds.
4. The ‘flow’ valve will then be turned on until the ‘full” sensor indicates the barrel is full.
5. The system will wait until the ‘barrel present’ sensor goes off before going to the idle state.

10. Design ladder logic for an oven using process sequence bits. (Note: the solution will only be

graded if the process sequence bit method is used.) The operations are as listed below.

1. The oven begins in an IDLE state.

2. An operator presses a start button and an ALARM output is turned on for 1 minute.

3. The ALARM output is turned off and the HEAT is turned on for 3 minutes to allow the tem-
perature to rise to the acceptable range.

4. The CONVEYOR output is turned on.

5. If the STOP input is activated (turned off) the HEAT will be turned off, but the CON-
VEYOR output will be kept on for two minutes. After this the oven returns to IDLE.
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11. We are developing a safety system (using a PLC-5) for a large industrial press. The press is
activated by turning on the compressor power relay (R, connected to O:013/05). After R has
been on for 30 seconds the press can be activated to move (P connected to O:013/06). The
delay is needed for pressure to build up. After the press has been activated (with P for 1.0 sec-
onds) the system must be shut down (R and P off), and then the cycle may begin again. For
safety, there is a sensor that detects when a worker is inside the press (S, connected to 1:011/
02), which must be off before the press can be activated. There is also a button that must be
pushed 5 times (B, connected to 1:011/01) before the press cycle can begin. If at any time the
worker enters the press (and S becomes active) the press will be shut down (P and R turned
off). Develop the process sequence and sequence bits, and then ladder logic for the states. State
all assumptions, and show all work.

12. A machine is being designed to wrap boxes of chocolate. The boxes arrive at the machine on a
conveyor belt. The list below shows the process steps in sequence.
1. The box arrives and is detected by an optical sensor (P), after this the
conveyor is stopped (C) and the box is clamped in place (H).
2. A wrapping mechanism (W) is turned on for 2 seconds.
3. A sticker cylinder (S) is turned on for 1 second to put consumer labelling
on the box.
4. The clamp (H) is turned off and the conveyor (C) is turned on.
5. After the box leaves the system returns to an idle state.
Develop ladder logic programs for the system using the following methods. Don’t
forget to include regular start and stop inputs.
1) a timing diagram
ii) process sequence bits
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11. FLOWCHART BASED DESIGN

Topics:
* Describing process control using flowcharts
* Conversion of flowcharts to ladder logic
Objectives:
* Ba able to describe a process with a flowchart.
* Be able to convert a flowchart to ladder logic.

11.1 INTRODUCTION

A flowchart is ideal for a process that has sequential process steps. The steps will
be executed in a simple order that may change as the result of some simple decisions. The
symbols used for flowcharts are shown in Figure 11.1. These blocks are connected using
arrows to indicate the sequence of the steps. The different blocks imply different types of
program actions. Programs always need a start block, but PLC programs rarely stop so the
stop block is rarely used. Other important blocks include operations and decisions. The
other functions may be used but are not necessary for most PLC applications.

Start/Stop

Operation

Decision

/O

Disk/Storage

Subroutine

DO

Figure 11.1  Flowchart Symbols
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A flowchart is shown in Figure 11.2 for a control system for a large water tank.
When a start button is pushed the tank will start to fill, and the flow out will be stopped.
When full, or the stop button is pushed the outlet will open up, and the flow in will be
stopped. In the flowchart the general flow of execution starts at the top. The first operation
is to open the outlet valve and close the inlet valve. Next, a single decision block is used to
wait for a button to be pushed. when the button is pushed the yes branch is followed and
the inlet valve is opened, and the outlet valve is closed. Then the flow chart goes into a
loop that uses two decision blocks to wait until the tank is full, or the stop button is
pushed. If either case occurs the inlet valve is closed and the outlet valve is opened. The
system then goes back to wait for the start button to be pushed again. When the controller
is on the program should always be running, so only a start block is needed. Many begin-
ners will neglect to put in checks for stop buttons.
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START

Open outlet valve
Close inlet valve

start button pushed?

Open inlet valve
Close outlet valve

Open outlet valve
Close inlet valve

stop button pushed?
yes

Figure 11.2 A Flowchart for a Tank Filler

The general method for constructing flowcharts is:

1. Understand the process.
2. Determine the major actions, these are drawn as blocks.
3. Determine the sequences of operations, these are drawn with arrows.
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4. When the sequence may change use decision blocks for branching,.

Once a flowchart has been created ladder logic can be written. There are two basic
techniques that can be used, the first presented uses blocks of ladder logic code. The sec-
ond uses normal ladder logic.

11.2 BLOCK LOGIC

The first step is to name each block in the flowchart, as shown in Figure 11.3. Each
of the numbered steps will then be converted to ladder logic
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STEP 1: Add labels to each block in the flowchart

START

F1

Open outlet valve
Close inlet valve

start button pushed?

Open inlet valve
Close outlet valve

F6

Open outlet valve
Close inlet valve

stop button pushed?
yes

Figure 11.3  Labeling Blocks in the Flowchart

Each block in the flowchart will be converted to a block of ladder logic. To do this
we will use the MCR (Master Control Relay) instruction (it will be discussed in more
detail later.) The instruction is shown in Figure 11.4, and will appear as a matched pair of
outputs labelled MCR. If the first MCR line is true then the ladder logic on the following
lines will be scanned as normal to the second MCR. If the first line is false the lines to the
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next MCR block will all be forced off. If a normal output is used inside an MCR block, it
may be forced off. Therefore latches will be used in this method.

Note: We will use MCR instructions to implement some of the state based programs.
This allows us to switch off part of the ladder logic. The one significant note to
remember is that any normal outputs (not latches and timers) will be FORCED
OFF. Unless this is what you want, put the normal outputs outside MCR blocks.

| MCR

If A is true then the MCR will cause the ladder in between
to be executed. If A is false the outputs are forced off.

MCR

Figure 11.4  The MCR Function

The first part of the ladder logic required will reset the logic to an initial condition,
as shown in Figure 11.5. The line will only be true for the first scan of the PLC, and at that
time it will turn on the flowchart block F/ which is the reset all values off operation. All
other operations will be turned off.



plc flowchart - 11.7

STEP 2: Write ladder logic to force the PLC into the first state

first scan

F3

F4

F5

F6

AOAOAC

Figure 11.5 Initial Reset of States

The ladder logic for the first state is shown in Figure 11.6. When F is true the
logic between the MCR lines will be scanned, if '/ is false the logic will be ignored. This
logic turns on the outlet valve and turns off the inlet valve. It then turns off operation £/,
and turns on the next operation F2.
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STEP 3: Write ladder logic for each function in the flowchart

|| C

outlet

inlet

F1

F2

MC

HOAOOE

Figure 11.6  Ladder Logic for the Operation F'/

The ladder logic for operation F2 is simple, and when the start button is pushed, it
will turn off /2 and turn on F3. The ladder logic for operation '3 opens the inlet valve and
moves to operation F4.
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F2
C
start
F2
F3
MC
F3

@

outlet

inlet

1
W

1
N

<
a

Figure 11.7  Ladder Logic for Flowchart Operations F2 and F3

The ladder logic for operation F4 turns off F4, and if the tank is full it turns on F6,
otherwise F5 is turned on. The ladder logic for operation F5 is very similar.
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F4
u S
@ F4
tank full F6
)
tank full Fs
)
S
F5
| S
@ F5
stop
@ F6
stop
@ F4
@

Figure 11.8  Ladder Logic for Operations F4 and F'5

The ladder logic for operation F6 turns the outlet valve on and turns off the inlet
valve. It then ends operation F6 and returns to operation F2.
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| | C

outlet

inlet

F6

F2

C

HOAOOE

Figure 11.9  Ladder Logic for Operation F'6

11.3 SEQUENCE BITS

In general there is a preference for methods that do not use MCR statements or
latches. The flowchart used in the previous example can be implemented without these
instructions using the following method. The first step to this process is shown in Figure
11.10. As before each of the blocks in the flowchart are labelled, but now the connecting
arrows (transitions) in the diagram must also be labelled. These transitions indicate when
another function block will be activated.
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START

F1 T1

Open outlet valve
Close inlet valve

is the NO
start button pushed?

no

Open inlet valve
Close outlet valve

Fé6

Open outlet valve
Close inlet valve

is the NC
stop button pushed?

Figure 11.10 Label the Flowchart Blocks and Arrows

The first section of ladder logic is shown in Figure 11.11. This indicates when the
transitions between functions should occur. All of the logic for the transitions should be
kept together, and appear before the state logic that follows in Figure 11.12.
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FS

Om
F1

ok
F6
F2 start
F2 start

O
F3

Q T4
F5 stop
F4 full

O
F4 full

ok
F5 stop

Figure 11.11 The Transition Logic

The logic shown in Figure 11.12 will keep a function on, or switch to the next
function. Consider the first ladder rung for £/, it will be turned on by transition 7'/ and
once function F/ is on it will keep itself on, unless 72 occurs shutting it off. If 72 has
occurred the next line of ladder logic will turn on 2. The function logic is followed by
output logic that relates output values to the active functions.
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S on
o
2y o
1;1 T5 \H\T6 oL
O
T o
ik () outlet
F2
F6
i () inlet
F4
F5

Figure 11.12 The Function Logic and Outputs
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11.4 SUMMARY

* Flowcharts are suited to processes with a single flow of execution.
* Flowcharts are suited to processes with clear sequences of operation.

11.5 PRACTICE PROBLEMS

1. Convert the following flow chart to ladder logic.

A on

* es
<Lr?

no

A off

e

yes

2. Draw a flow chart for cutting the grass, then develop ladder logic for three of the actions/deci-
sions.

3. Design a garage door controller using a flowchart. The behavior of the garage door controller is
as follows,

- there is a single button in the garage, and a single button remote control.

- when the button is pushed the door will move up or down.

- if the button is pushed once while moving, the door will stop, a second push will
start motion again in the opposite direction.

- there are top/bottom limit switches to stop the motion of the door.

- there is a light beam across the bottom of the door. If the beam is cut while the
door is closing the door will stop and reverse.

- there is a garage light that will be on for 5 minutes after the door opens or closes.
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11.6 PRACTICE PROBLEM SOLUTIONS

1.

first scan

]
p—

]
[\)

iyes

1
N

F1

A on

F1
| MR -
A
@ F3 A off
4@ Fl
‘@ F2 . F4
F2 @ yes
. B
@ F2
— F4
| MR
Ch c
F3

1
N

56

¢
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Get mower and
gas can

F1

F3

get gas

Fill mower
F5 | A E—
Pull cord
Fé6
no
e
F7 Y
Push Mower
F8 no

€S
F9 4

Stop mower

F10 y

Put gas and
mower away
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]
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3
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o0

eyl
O

F10

5600000k

2

mower

gas can

]
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1
(O8]

gas can empty
|

gas,can empty

oy
N

[0

g3
\S}

2



F3||

plc flowchart - 11.19

|
ga\i\j\an full
|

e

O fill gas tank

®F4
4@F3

e

ey

TON

t_o.|D|g\1

Timert 0
Delay 5s

t O.DN

@Fs
4@F4

O pour gas

F5||

e

|
c d|pulled

ey

Q pull cord

|
cord pulled
1

Fé6

mower on

mowcer on




plc flowchart - 11.20

is

ST1 remote or
button pushed?
ST2 | turn on door close
ST3
limit pushed?
ST5
turn off door close
ST6 is
remote or
button pushed?
ST7
turn on door open
ST femote or
button or top
limit pushed?
ST9

turn off door open

no
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ST2

w
=

ST2

ST3

ST4

STS

ST6

ST7

ST8

ST9

door open

door close

OOOOOOOOOOC

TOF

t st2
preset 300s

garage light

O
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ST1
C
button
ST1
remote ST2
MC
ST2

@

ST3

door close

<
o

iyangiins!
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ST3
@
button
@ ST3
remote : : ST5
bottom limit
ST3
@ ST3
: : ST4
@
ST4
@
light beam
@ ST4
i : ST7
light beam
| | @ ST4
i : ST3
@
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ST5
] (3
@ ST5
: : ST6
:: : door close
®
ST6
e
button
@ ST6
remote : : ST7
G
ST7
u e
@ ST7
:: : ST
i: : door open

<
a

—
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ST8
C
button
ST8
remote ST9
top limit
MC
ST9

Q

ST1

door open

@)

LT L
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11.7 ASSIGNMENT PROBLEMS

1. Develop ladder logic for the flowchart below.

Turn A on
no
yes
Turn A off
yes
no

2. Use a flow chart to design a parking gate controller.

keycard entry

cars enter/leave

-

light

s

N/
/Q\
gatg

car detector

- the gate will be raised by one output

and lowered by another. If the gate
gets stuck an over current detector
will make a PLC input true. If this
is the case the gate should reverse
and the light should be turned on
indefinitely.

- if a valid keycard is entered a PLC

input will be true. The gate is to
rise and stay open for 10 seconds.

- when a car is over the car detector a

PLC input will go true. The gate is
to open while this detector is
active. If it is active for more that
30 seconds the light should also
turn on until the gate closes.
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3. A welding station is controlled by a PLC. On the outside is a safety cage that must be closed
while the cell is active. A belt moves the parts into the welding station and back out. An induc-
tive proximity sensor detects when a part is in place for welding, and the belt is stopped. To
weld, an actuator is turned on for 3 seconds. As normal the cell has start and stop push buttons.

a) Draw a flow chart

b) Implement the chart in ladder logic

Inputs Outputs

DOOR OPEN (NC) CONVEYOR ON
START (NO) WELD

STOP (NC)

PART PRESENT

4. Convert the following flowchart to ladder logic.

Turn off motor

Turn on motor

5. A machine is being designed to wrap boxes of chocolate. The boxes arrive at the machine on a
conveyor belt. The list below shows the process steps in sequence.
1. The box arrives and is detected by an optical sensor (P), after this the
conveyor is stopped (C) and the box is clamped in place (H).
2. A wrapping mechanism (W) is turned on for 2 seconds.
3. A sticker cylinder (S) is turned on for 1 second to put consumer labelling
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on the box.
4. The clamp (H) is turned off and the conveyor (C) is turned on.
5. After the box leaves the system returns to an idle state.
Develop ladder logic for the system using a flowchart. Don’t forget to include reg-
ular start and stop inputs.
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12. STATE BASED DESIGN

Topics:
* Describing process control using state diagrams

* Conversion of state diagrams to ladder logic
* MCR blocks

Objectives:
* Be able to construct state diagrams for a process.
* Be able to convert a state diagram to ladder logic directly.
* Be able to convert state diagrams to ladder logic using equations.

12.1 INTRODUCTION

A system state is a mode of operation. Consider a bank machine that will go
through very carefully selected states. The general sequence of states might be idle, scan
card, get secret number, select transaction type, ask for amount of cash, count cash, deliver
cash/return card, then idle.

A State based system can be described with system states, and the transitions
between those states. A state diagram is shown in Figure 12.1. The diagram has two states,
State I and State 2. If the system is in state 1 and 4 happens the system will then go into
state 2, otherwise it will remain in State 1. Likewise if the system is in state 2, and B hap-
pens the system will return to state 1. As shown in the figure this state diagram could be
used for an automatic light controller. When the power is turned on the system will go into
the lights off state. If motion is detected or an on push button is pushed the system will go
to the lights on state. If the system is in the lights on state and 1 hour has passed, or an off
push button is pushed then the system will go to the lights off state. The else statements
are omitted on the second diagram, but they are implied.



plc states - 12.2

else else

This diagram could describe the operation of energy efficient lights in a room operated
by two push buttons. State 1 might be lights off and state 2 might be lights on. The
arrows between the states are called transitions and will be followed when the condi-
tions are true. In this case if we were in state 1 and A occurred we would move to
state 2. The else loop indicate that a state will stay active if a transition are is not fol-
lowed. These are so obvious they are often omitted from state diagrams.

off pushbutton OR 1 hour timer

powem

Figure 12.1 A State Diagram

on_pushbutton
OR motion detector

The most essential part of creating state diagrams is identifying states. Some key
questions to ask are,

1. Consider the system,
What does the system do normally?
Does the system behavior change?
Can something change how the system behaves?
Is there a sequence to actions?
2. List modes of operation where the system is doing one identifiable activity that
will start and stop. Keep in mind that some activities may just be to wait.

Consider the design of a coffee vending machine. The first step requires the identi-
fication of vending machine states as shown in Figure 12.2. The main state is the idle state.
There is an inserting coins state where the total can be displayed. When enough coins have
been inserted the user may select their drink of choice. After this the make coffee state will
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be active while coffee is being brewed. If an error is detected the service needed state will
be activated.

STATES

idle - the machine has no coins and is doing nothing

inserting coins - coins have been entered and the total is displayed

user choose - enough money has been entered and the user is making coffee selection
make coffee - the selected type is being made

service needed - the machine is out of coffee, cups, or another error has occurred

Notes:

1. These states can be subjective, and different designers might pick others.
2. The states are highly specific to the machine.

3. The previous/next states are not part of the states.

4. There is a clean difference between states.

Figure 12.2  Definition of Vending Machine States

The states are then drawn in a state diagram as shown in Figure 12.3. Transitions
are added as needed between the states. Here we can see that when powered up the
machine will start in an idle state. The transitions here are based on the inputs and sensors
in the vending machine. The state diagram is quite subjective, and complex diagrams will
differ from design to design. These diagrams also expose the controller behavior. Consider
that if the machine needs maintenance, and it is unplugged and plugged back in, the ser-
vice needed statement would not be reentered until the next customer paid for but did not
receive their coffee. In a commercial design we would want to fix this oversight.
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power up

inserting
coins

reset button coin inserted

L

service

coin return

no cups .
right amount

OR jam sensor entered

coffee choose

button pushed

Figure 12.3  State Diagram for a Coffee Machine

12.1.1 State Diagram Example

Consider the traffic lights in Figure 12.4. The normal sequences for traffic lights
are a green light in one direction for a long period of time, typically 10 or more seconds.
This is followed by a brief yellow light, typically 4 seconds. This is then followed by a
similar light pattern in the other direction. It is understood that a green or yellow light in
one direction implies a red light in the other direction. Pedestrian buttons are provided so
that when pedestrians are present a cross walk light can be turned on and the duration of

the green light increased.
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Figure 12.4  Traffic Lights

The first step for developing a controller is to define the inputs and outputs of the
system as shown in Figure 12.5. First we will describe the system variables. These will
vary as the system moves from state to state. Please note that some of these together can
define a state (alone they are not the states). The inputs are used when defining the transi-
tions. The outputs can be used to define the system state.

We have eight items that are ON or OFF

L1
L2 Note that each state will lead
L3 UTPUTS to a different set of out-
L4 puts. The inputs are often
L5 part, or all of the transi-
% tions.

oO.O.EoEE: o INPUT S

A simple diagram can be drawn to show sequences for the lights

Figure 12.5  Inputs and Outputs for Traffic Light Controller
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Previously state diagrams were used to define the system, it is possible to use a
state table as shown in Figure 12.6. Here the light sequences are listed in order. Each state
is given a name to ease interpretation, but the corresponding output pattern is also given.
The system state is defined as the bit pattern of the 6 lights. Note that there are only 4 pat-
terns, but 6 binary bits could give as many as 64.

Step 1: Define the System States and put them (roughly) in sequence

System State
L1L2L3L4L5L6 A binary number

0 = light off
1 = light on
State Table
State Description | 4 | L1 L2 L3 L4 L5 L6
Green East/West 1 1 0 o0 o0 o0 1
Yellow East/West Here the four states
cliow Last/Wesh 2 1 0 0 0 1 0 determine how the 6
Green North/South 3 0 0 1 1 0 0 outputs are switched
Yellow North/South! 4 o 1 0o 1 0 0 on/off.

Figure 12.6  System State Table for Traffic Lights

Transitions can be added to the state table to clarify the operation, as shown in Fig-
ure 12.7. Here the transition from Green E/W to Yellow E/W is S1. What this means is
that a cross walk button must be pushed to end the green light. This is not normal, nor-
mally the lights would use a delay. The transition from Yellow E/W to Green N/S is
caused by a 4 second delay (this is normal.) The next transition is also abnormal, requiring
that the cross walk button be pushed to end the Green N/S state. The last state has a 4 sec-
ond delay before returning to the first state in the table. In this state table the sequence will
always be the same, but the times will vary for the green lights.
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Step 2: Define State Transition Triggers, and add them to the list of states

Description # | L1 L2 L3 L4 L5 L6 | transition
Green East/Westf | 1 O 0 0 0 1 1
Yellow East/Westf 2 1 0 0O 0 1 0 delay delay 4 sec
Green North/South 3 0 0 1 1 0 0 ‘:260
Yellow North/South! 4 0 1 0 1 0 0

Figure 12.7  State Table with Transitions

A state diagram for the system is shown in Figure 12.8. This diagram is equivalent
to the state table in Figure 12.7, but it can be valuable for doing visual inspection.

Step 3: Draw the State Transition Diagram

@ pushbutton NS (i.e., $1,S2 = 10)

delay 4sec

first scan
delay 4se

Figure 12.8 A Traffic Light State Diagram

pushbutton EW (i.e. 01)

12.1.2 Conversion to Ladder Logic

12.1.2.1 - Block Logic Conversion
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State diagrams can be converted directly to ladder logic using block logic. This
technique will produce larger programs, but it is a simple method to understand, and easy
to debug. The previous traffic light example is to be implemented in ladder logic. The
inputs and outputs are defined in Figure 12.9, assuming it will be implemented on an
Allen Bradley Micrologix. first scan is the address of the first scan in the PLC. The loca-
tions state 1 to state 4 are internal memory locations that will be used to track which
states are on. The behave like outputs, but are not available for connection outside the
PLC. The input and output values are determined by the PLC layout.

STATES OUTPUTS INPUTS
state_1 - green E/W L1 -red N/S S1 - cross
state_2 - yellow E/W L2 - yellow N/S S2 - cross
state 3 - green N/S L3 - green N/S S:FS - first scan
state 4 - yellow N/S L4 - red E/W

L5 - yellow E/'W
L6 - green E/W

Figure 12.9  Inputs and Outputs for Traffic Light Controller

The initial ladder logic block shown in Figure 12.10 will initialize the states of the
PLC, so that only state 1 is on. The first scan indicator first scan will execute the MCR
block when the PLC is first turned on, and the latches will turn on the value for state 1 and
turn off the others.
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RESET THE STATES

S:FS MCR

| | -
|| AN

L—
LoH—
LH—
LH—
O—

Figure 12.10 Ladder Logic to Initialize Traffic Light Controller

Note: We will use MCR instructions to implement some of the state based programs.
This allows us to switch off part of the ladder logic. The one significant note to
remember is that any normal outputs (not latches and timers) will be FORCED
OFF. Unless this is what you want, put the normal outputs outside MCR blocks.

| MCR

If A is true then the MCR will cause the ladder in between
to be executed. If A is false the outputs are forced off.

MCR

The next section of ladder logic only deals with outputs. For example the output O/
1 1s the N/S red light, which will be on for states 1 and 2, or B3/ and B3/2 respectively.
Putting normal outputs outside the MCR blocks is important. If they were inside the
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blocks they could only be on when the MCR block was active, otherwise they would be
forced off. Note: Many beginners will make the careless mistake of repeating outputs in
this section of the program.

TURN ON LIGHTS AS REQUIRED

state 1 L1 >—
state 2

state 4 L2 >—
state 3 L3 >—
state 3 L4 >—
state 4

state 2 L5 >—
state 1 L6 >—

Figure 12.11 General Output Control Logic

The first state is implemented in Figure 12.10. If state 1 is active this will be
active. The transition is S1 which will end state 1 and start state 2.
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FIRST STATE WAIT FOR TRANSITIONS

state 1 MCR

L1

CD—

L2

S1

S1

MCR

-
AN

Figure 12.12 Ladder Logic for First State

The second state is more complex because it involves a time delay, as shown in
Figure 12.13. When the state is active the TON timer will be timing. When the timer is
done state 2 will be unlatched, and state 3 will be latched on. The timer is nonretentive, so
if state 2 if off the MCR block will force all of the outputs off, including the timer, caus-
ing it to reset.
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SECOND STATE WAIT FOR TRANSITIONS

statle_[Z M;R
[ AN >

TON

t st2

delay 4 s

t st2.DN state 2
U

t st2.DN state 3

CH—
MCR
< >—

Figure 12.13 Ladder Logic for Second State

The third and fourth states are shown in Figure 12.14 and Figure 12.15. Their lay-
out is very similar to that of the first two states.

THIRD STATE WAIT FOR TRANSITIONS

state 3 MCR

O

AN
S state 3

C U>Hy——
2 state 4

O >

C L

MCR

>_

Figure 12.14 Ladder Logic for State Three
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FOURTH STATE WAIT FOR TRANSITIONS

statle_[4 M;R
[ AN >

t st4
RT

delay 4s

t st4. DN state 4
U

t st4.DN stzﬁe_l
CD>—
t st4.DN t_st4

RST>_

MCR

>_

Figure 12.15 Ladder Logic for State Four

The previous example only had one path through the state tables, so there was
never a choice between states. The state diagram in Figure 12.16 could potentially have
problems if two transitions occur simultaneously. For example if state S7B is active and A
and C occur simultaneously, the system could go to either S74 or STC (or both in a poorly
written program.) To resolve this problem we should choose one of the two transitions as
having a higher priority, meaning that it should be chosen over the other transition. This
decision will normally be clear, but if not an arbitrary decision is still needed.
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first scan

Figure 12.16 A State Diagram with Priority Problems

The state diagram in Figure 12.16 is implemented with ladder logic in Figure
12.17 and Figure 12.18. The implementation is the same as described before, but for state
STB additional ladder logic is added to disable transition 4 if transition C is active, there-
fore giving priority to C.
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<
Q

first scan
| | @ STB
@ STA
@ STC
STA
I MC
B
| @ STA
@ STB
@
STB
MC
C
@ STB
Note: if A and C are true at the same time then C
will have priority. PRIORITIZATION is impor- STC
tant when simultaneous branches are possible.
A C
| | |
Nk @ STB
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Figure 12.17 State Diagram for Prioritization Problem

STC
MC
D
@ sTC
@ STB
<

Figure 12.18 State Diagram for Prioritization Problem

The Block Logic technique described does not require any special knowledge and
the programs can be written directly from the state diagram. The final programs can be
easily modified, and finding problems is easier. But, these programs are much larger and
less efficient.

12.1.2.2 - State Equations

State diagrams can be converted to Boolean equations and then to Ladder Logic.
The first technique that will be described is state equations. These equations contain three
main parts, as shown below in Figure 12.19. To describe them simply - a state will be on if
it is already on, or if it has been turned on by a transition from another state, but it will be
turned off if there was a transition to another state. An equation is required for each state
in the state diagram.
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Informally,

State X = (State X + just arrived from another state) and has not left for another state

Formally,

n m
STATE, = (STATEZ.+ 3 (Tj’l.oSTATEj)] o [ (T STATE))
j=1 k=1

where, STATE,; = A variable that will reflect if state 1 is on
n = the number of transitions to state i

m = the number of transitions out of state i

Tj ; = The logical condition of a transition from state j to i

T; , = The logical condition of a transition out of state i to k

Figure 12.19 State Equations

The state equation method can be applied to the traffic light example in Figure
12.8. The first step in the process is to define variable names (or PLC memory locations)
to keep track of which states are on or off. Next, the state diagram is examined, one state at
a time. The first equation if for ST1, or state 1 - green NS. The start of the equation can be
read as ST1 will be on if it is on, or if ST4 is on, and it has been on for 4s, or if it is the first
scan of the PLC. The end of the equation can be read as ST1 will be turned off if it is on,
but S1 has been pushed and S2 is off. As discussed before, the first half of the equation
will turn the state on, but the second half will turn it off. The first scan is also used to turn
on ST1 when the PLC starts. It is put outside the terms to force ST1 on, even if the exit
conditions are true.
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Defined state variables:
ST1 = state 1 - green NS

ST2 = state 2 - yellow NS
ST3 = state 3 - green EW
ST4 = state 4 - yellow EW

The state entrance and exit condition equations:

ST1 = (ST1+ST4 - TON,(ST4, 4s)) - ST1 - S1- 82+ FS

ST2 = (ST2+ST1-S1-52)-ST2- TON,(ST2, 4s)

ST3 = (ST3+ST2 - TON,(ST2, 4s)) - ST3 - §1 - 52

ST4 = (ST4+ST3 - S1-S2) - ST4- TON,(ST4, 4s)

Note: Timers are represented in these equations in the form TONi(4, delay). TON indi-
cates that it is an on-delay timer, 4 is the input to the timer, and delay is the timer
delay value. The subscript i is used to differentiate timers.

Figure 12.20 State Equations for the Traffic Light Example

The equations in Figure 12.20 cannot be implemented in ladder logic because of
the NOT over the last terms. The equations are simplified in Figure 12.21 so that all NOT
operators are only over a single variable.
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Now, simplify these for implementation in ladder logic.

ST1 = (ST1+ST4- TON,(ST4,4)) - (ST1 +S1+S2) + FS

ST2 = (ST2+ST1-51-52) - (ST2 + TON, (ST2, 4))

ST3 = (ST3+ST2- TON,(ST2,4)) - (ST3 +S1+S2)

ST4 = (ST4+ ST3 - S1-82)- (ST4+ TON,(ST4, 4))

Figure 12.2]1 Simplified Boolean Equations

These equations are then converted to the ladder logic shown in Figure 12.22 and
Figure 12.23. At the top of the program the two timers are defined. (Note: it is tempting to
combine the timers, but it is better to keep them separate.) Next, the Boolean state equa-
tions are implemented in ladder logic. After this we use the states to turn specific lights on.
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Figure 12.22 Ladder Logic for the State Equations

DEFINE THE TIMERS
ST4 timer on
t st4
delay 4 sec
ST2 timer on
t st2
delay 4 sec
THE STATE EQUATIONS
ST1 ST}
O ST1X
ST4 t st2.DN
ol SL
|
S2
first scan
ST2 ST2 <>Ssz
S1 S2 t st4.DN
ST1 B \4\;\ 3
|| |
ST3 ST3
() smx
ST2 t St4.DN Sl
1|
|
2,
ST4 ST4 ST4X
2 S1 S2 t st2.DN
| A
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OUTPUT LOGIC FOR THE LIGHTS

ST1 L1
O

ST2

ST4 L2
O

ST3 L3
O

ST3 L4
O

ST4

ST2 L5
O

ST1 L6
O

Figure 12.23 Ladder Logic for the State Equations

This method will provide the most compact code of all techniques, but there are
potential problems. Consider the example in Figure 12.23. If push button S/ has been
pushed the line for ST1 should turn off, and the line for ST2 should turn on. But, the line
for ST2 depends upon the value for S77 that has just been turned off. This will cause a
problem if the value of ST1 goes off immediately after the line of ladder logic has been
scanned. In effect the PLC will get /ost and none of the states will be on. This problem
arises because the equations are normally calculated in parallel, and then all values are
updated simultaneously. To overcome this problem the ladder logic could be modified to
the form shown in Figure 12.24. Here some temporary variables are used to hold the new
state values. After all the equations are solved the states are updated to their new values.
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THE STATE EQUATIONS

ST1 ST}
O ST1X
ST4 t st4.DN
ol S
| |
S2
first scan
ST2 ST2 <>Ssz
S1 S2 t st2.DN
ST g \lr\ St
| | |
ST3 ST3
() smx
ST2 t st2.DN Sl
1
||
S2,
ST4 ST4 ST4X
A S1 S2 t st4.DN
LN T ~
| ||
STIX
- ;F Q ST1
- ;f Q ST2
srek s
| Q ST4

Figure 12.24 Delayed State Updating

When multiple transitions out of a state exist we must take care to add priorities.
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Each of the alternate transitions out of a state should be give a priority, from highest to
lowest. The state equations can then be written to suppress transitions of lower priority
when one or more occur simultaneously. The state diagram in Figure 12.25 has two transi-
tions 4 and C that could occur simultaneously. The equations have been written to give A
a higher priority. When 4 occurs, it will block C in the equation for S7TC. These equations
have been converted to ladder logic in Figure 12.26.

first scan

STA = (STA+STB-A)-STA-B

STB = (STB+STA-B+STC-D)-STB-A-STB-C+FS

STC = (STC+STB-C-A)-STC-D

Figure 12.25 State Equations with Prioritization
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STA STA

STB STH.

STA B

/ >

STC D

STC

STC

STB C A

STAX

STBX

STCX

Figure 12.26 Ladder Logic with Prioritization

12.1.2.3 - State-Transition Equations
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A state diagram may be converted to equations by writing an equation for each
state and each transition. A sample set of equations is seen in Figure 12.27 for the traffic
light example of Figure 12.8. Each state and transition needs to be assigned a unique vari-
able name. (Note: It is a good idea to note these on the diagram) These are then used to
write the equations for the diagram. The transition equations are written by looking at the
each state, and then determining which transitions will end that state. For example, if ST1
is true, and crosswalk button S/ is pushed, and S2 is not, then transition 7/ will be true.
The state equations are similar to the state equations in the previous State Equation
method, except they now only refer to the transitions. Recall, the basic form of these equa-
tions is that the state will be on if it is already on, or it has been turned on by a transition.
The state will be turned off if an exiting transition occurs. In this example the first scan
was given it’s own transition, but it could have also been put into the equation for T4.

defined state and transition variables:

ST1 = state 1 - green NS T1 = transition from ST1 to ST2
ST2 = state 2 - yellow NS T2 = transition from ST2 to ST3
ST3 = state 3 - green EW T3 = transition from ST3 to ST4
ST4 = state 4 - yellow EW T4 = transition from ST4 to ST1

T5 = transition to ST1 for first scan

state and transition equations:

T4 = ST4 - TON,(ST4, 4) ST1 = (ST1 + T4 +T5)-T1
Tl = ST1-S1-82 ST2 = (ST2+T1)-T2

T2 = ST2 - TON,(ST2,4) ST3 = (ST3+T2)- T3

T3 = ST3-51-82 ST4 = (ST4+T3)- T4

T5 = FS

Figure 12.27 State-Transition Equations

These equations can be converted directly to the ladder logic in Figure 12.28, Fig-
ure 12.29 and Figure 12.30. It is very important that the transition equations all occur
before the state equations. By updating the transition equations first and then updating the
state equations the problem of state variable values changing is negated - recall this prob-
lem was discussed in the State Equations section.
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UPDATE TIMERS
ST4 timer on
I | t st4
delay 4 sec
ST2 timer on
I I t st2
delay 4 sec
CALCULATE TRANSITION EQUATIONS
ST4 t st4.DN
N OT4
S1 S2 Tl
% O
|
ST2 t st2.DN
O"
3 S1 S2 T3
| O
|
FS TS5

Figure 12.28 Ladder Logic for the State-Transition Equations

O
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CALCULATE STATE EQUATIONS

ST1

ST2

ST3

ST4

ST1 |T1
N
T4
TS
ST2 sz
N
Tl
ST3 |T3
|
T2
ST4 |T4
|
T3

Figure 12.29 Ladder Logic for the State-Transition Equations
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UPDATE OUTPUTS

ST1 L1
O

ST2

ST4 L2
O

ST3 L3
O

ST3 L4
O

ST4

ST2 L5
O

ST1 L6
O

Figure 12.30 Ladder Logic for the State-Transition Equations

The problem of prioritization also occurs with the State-Transition equations.
Equations were written for the State Diagram in Figure 12.31. The problem will occur if
transitions 4 and C occur simultaneously. In the example transition 72 is given a higher
priority, and if it is true, then the transition 73 will be suppressed when calculating STC. In
this example the transitions have been considered in the state update equations, but they
can also be used in the transition equations.
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T1
first scan (FS)
T1 = FS§ STA = (STA+T2)-T5
I2 = STB-4 STB = (STB+T5+T4+T1)-T2-T3
T3 = STB-C STC = (STC+T3-T2)- T4
T4 = STC-D
T5 = STA-B

Figure 12.31 Prioritization for State Transition Equations

12.2 SUMMARY

» State diagrams are suited to processes with a single flow of execution.

» State diagrams are suited to problems that has clearly defines modes of execu-
tion.

* Controller diagrams can be converted to ladder logic using MCR blocks

» State diagrams can also be converted to ladder logic using equations

* The sequence of operations is important when converting state diagrams to lad-
der logic.

12.3 PRACTICE PROBLEMS

1. Draw a state diagram for a microwave oven.
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2. Convert the following state diagram to equations.

Inputs Outputs A(C+D)
A P

B Q

C R

D

E

F

state | P Q R
SO |0 1 1
S1 1 0 1
S2 1 1 0

3. Implement the following state diagram with equations.
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4. Given the following state diagram, use equations to implement ladder logic.

A
4 C*B

C+B

5. Convert the following state diagram to logic using equations.

6. You have been asked to program a PLC that is controlling a handicapped access door opener.
The client has provided the electrical wiring diagram below to show how the PLC inputs and
outputs have been wired. Button A is located inside and button B is located outside. When
either button is pushed the motor will be turned on to open the door. The motor is to be kept on
for a total of 15 seconds to allow the person to enter. After the motor is turned off the door will
fall closed. In the event that somebody gets caught in the door the thermal relay will go off, and
the motor should be turned off. After 20,000 cycles the door should stop working and the light
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should go on to indicate that maintenance is required.

24V DC 120 V AC
Output Card

Power
Suppl

00 O PPYY

COM.

01 O Relay

02 O

03 O

04 O I

050 24 V lamp

06 O

07 O +24 V DC
Power
comMO Supply

GND

rack machine’
slot 0
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PLC Input Card
24V AC
O
00
24V AC button A O o1
Power — button B
Supply O 02
O 03
thermal relay O o4
1 O 05
- O 06
O 07
O com

rack 'machine’
e — slot 1
a) Develop a state diagram for the control of the door.
b) Convert the state diagram to ladder logic. (list the input and the output addresses
first)
c) Convert the state diagram to Boolean equations.

7. Design a garage door controller using a) block logic, and b) state-transition equations. The
behavior of the garage door controller is as follows,

- there is a single button in the garage, and a single button remote control.

- when the button is pushed the door will move up or down.

- if the button is pushed once while moving, the door will stop, a second push will
start motion again in the opposite direction.

- there are top/bottom limit switches to stop the motion of the door.

- there is a light beam across the bottom of the door. If the beam is cut while the
door is closing the door will stop and reverse.

- there is a garage light that will be on for 5 minutes after the door opens or closes.
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8. Convert the following ladder logic to Boolean equations and then draw the state diagram for the
system. Is something missing from the system?

STA| B| STAX
| “Ne O
™0
| | | |FS
|
ST]|3 A| ¢ STBX
| “Ne O
STA B
STC B
ST(f B| STCX
| “Ne O
S|TB |C|
| | |
STAX
O STA
STBX
O STB
STCX
O STC

9. A program is to perform the following actions for a self-service security check. The device will
allow bags to be inserted to the test chamber through an entrance door. If the bag passes the
check it can be removed through an exit door, otherwise an alarm is sounded. Create a state
diagram using the steps below.

1. The machine starts in an ‘idle’ state. The ‘open_entry’ output is activated to open the input
door. The ‘open_exit’ output is deactivated to close the output door.

2. When a bag is inserted the ‘bag_detected’ input goes high. The ‘open_entry’ output should
be deactivated to close the door.

3. When the ‘entry door closed’ and ‘exit_door closed’ inputs are active then a ‘test’ output
will be set high to start a scan of the bags.

4. When the scan of the bags is complete a ‘scan_done’ input is set. The ‘test’ output should
be turned off.
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5. The scan results in two real values ‘nitrates’ and ‘mass’. The calculation below is per-
formed. If the ‘risk’ is below 0.3, or above 23.5, then the machine enters an alarm state (step
8), otherwise it continues to step 6.

. jtrat .
risk = 4" + sqgrt(mass)nitrates

6. The ‘open_exit’ output is activated to open the exit door. The machine waits until the
‘bag_detected’ input goes low.

7. The ‘open_exit’ output is deactivated to close the door. The machine waits until the
‘exit_door closed’ input is high before returning to the ‘idle state.

8. In the alarm state an operator input ‘key’ must be active to open the exit door. After this
input is released the door will close and return to the ‘idle’ state.

12.4 PRACTICE PROBLEM SOLUTIONS

Time Button
Timer Done + Cancel Button + Poor Open

Time Button

Cancel Button

Power Button

Start Button
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T1 = FS
T2 = S1(BA) Sl = (S1+T1+T3+75)7274 £ = S1+52
— 0 =50+82
73 = S2(E(C+D+F)) S2 =(82+712)T3
R = SO+ S1

T4 = SI(F+E) S0 = (SO + T4T2)T5

T5 = SO(A(C+ D))
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T1 = STleAd ST1 = (ST1+T2+T4+T6)-T1-T3-T5
12 = 5728 ST2 = (ST2+T1-T3-T5)- T2

T3 = STleC _

T4 = ST3 e D ST3 = (ST3+T73-T75)-T4

T5 = STl o E ST4 = (ST4+T5+FS)-T6

76 = ST4 e F
ST1 A

-

—
\9]

ST2

ool

ST1

—
w

o_1O
—
~

ST3

ST1

es]
—
w

ST F

—
N

ST1

OOO00O0O0O

ST1 T]\H\ T3\H\ TS\H\

T2

T4

T6

ST2

ST2 T2*¢\
!

Tl , T3, , T4,

O

ST3

ST3 T4*4\
!

O

T3, , TS,

ST4 TQ*W\ ST4
|
| O

TS5

FS
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FS = first scan

Tl = ST2- 4
-4 C*B T2 = ST1-B
T - T3 = ST3-(C- B)
T4 = ST2 - (C+ B)
B\ T2 T4 ST1 = (ST1+T1)-T2+FS
ST2 = (ST2+T2+T3)-TI - T4
+ JR— JR—
C+B ST3 = (ST3+T4-T1)- T3
ST2 A
STI B Q -
ST3 C B
N T3
ST2
C Q T4
B
T2
e T Ok
T1
first scan
T1 T4
\4\1|\ ST2 ST2
|
T2
T3
T3
SN 8 Ok

T4 \H\Tl
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TA = ST2- A ST1 = (ST1+TA+TC)-TB-TD
TB = ST1-B ST2 = (ST2+TB+TF)-TA-TE
TC = ST3-C ST3 = (ST3+TD+TE)-TC-TF
TD = ST1-D-B
TE = ST2-E-4
TF = ST3-F-C

Sle A

sJ{l B

SJP C

sJ{l D B

stz E A

lers FI C

ST B TD

TA

TC

ST2 TTx TF

TN

TF

ST3 T|C TF

I

TE
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%) button A + button B
. motor on
door idle door opening
counter > 20,000
thermal relay + 15 sec delay
service mode
reset button - assumed
b) Legend '

button A Machine:0.1.Data.1

button B Machine:0.1.Data.2

motor Machine:1.0.Data.3

thermal relay Machine:0.1.Data.3

reset button Machine:0.I.Data.4 - assumed

state 1

state 2

state 3

lamp Machine:1.0.Data.7
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} % first scan @
@ state 1
i: : state 2
i: : state 3
@
state 2 Q motor
state 3 Q light
} state 1 @
button A Q state 2
L
button B —® state 1
@
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} I state 2 @
TON
t st2
preset 15s
t st2.DN @ state 1
thermal relay i: : state 2
CTU
maintain
preset 20000
| ‘ maintain.DN state 3
state 2
state 1

C

booc
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‘ state 3 C

‘ reset button ?? state 1

state 3

counter

C

S0 = (S0 + S1(delay(15) + thermal))SO0(buttonA + buttonB)

S1 = (S1+S0(buttonA + buttonB))S1(delay(15) + thermal)S3(counter)
S3 = (83 +S2(counter))S3(reset)

motor = S1

light = 83
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a) block logic method
remote OR button

remote OR button

door
opening
(state 4)

door light sensor
closing

(state 2)

remote OR button remote OR button OR top limit
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C

B FS L state 1
|
4@ state_2
4@ state 3
4@ state 4
state 2 Q close doo
state 4 Q open_dooi
state 2 TOF
light on
preset 300s
state 4
light on.DN .
B Q garage light
state 1
@
remote @ state 1
button 4@ state 2
@



state 2
| |
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<

remote

button

bottom_limit

light beam

<
Q

state 3
]

<
Q

remote

button

Q

OO PROG OOC

state 2

state 3

state 2

state 4

state 3

state 4
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state 4
il MC
|
remote @ state 4
button 4@ state 1
top_limit
@
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b) state-transition equations
remote OR button

remote OR button OK bottom lim

door
opening
(state 4)

door light sensor
closing

(state 2)

remote OR button remote OR button OR top limit

using the previous state diagram.

ST1 = state 1 T1 = state 1 to state 2
ST2 = state 2 T2 = state 2 to state 3
ST3 = state 3 T3 = state 2 to state 4
ST4 = state 4 T4 = state 3 to state 4
FS = first scan TS5 = state 4 to state 1
ST1 = (ST1+T5)-T1 Tl = ST1 - (remote + button)

ST2 = (ST2+T1)- .73 T2 = ST2 - (remote + button + bottomlimit)
T3 = ST2 - (remote + button)

T4 = ST3 -(lighbeam)

ST4 = (ST4+T3+T4)-T5 75 = §T4. (remote + button + toplimit) + FS

ST3 = (ST3+T2)- T4
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STl| | remote
||
button
ST2| | remote
|
button
bottom limit
ST?I | remote
|
button
ST3 lig]Q_beam
ST4 remote
button
top_limit

first_scan
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T1 | ST1 ST1
N
T5
T2 | T3 | ST2 ST2
M
T1
T4 | ST3 ST3
N
T2
T5 | ST4 ST4
B
T3
T4
ST2 Q close do
ST4 Q open do«
ST2 TOF
light on
preset 300s
ST4
light on.DN
11

Q garage light
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FS

priority is missing

FS

Bag Detected )
Idle p\ Closing Door

Entry Door Closed e Exit\Door Closed
Key Scan_Done o ((Risk < 0.3) e (Risk > 23.5))
-

Chamber
Closed

Exit Dogr Closed

Closing Exit )«g— | Bag Cleared

Bag Detected

Scan_Done o ((Risk > 0.3) e (Risk <23.5))

12.5 ASSIGNMENT PROBLEMS

1. Describe the difference between the block logic, delayed update, and transition equation meth-
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ods for converting state diagrams to ladder logic.

2. Write the ladder logic for the state diagram below using the block logic method.
A

— T—a

B

FS — p

3. Convert the following state diagram to ladder logic using the block logic method. Give the stop
button higher priority.

D + STOP
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4. Convert the following state diagram to ladder logic using the delayed update method.

part

FS

par
RN -

jam
reset

5. Use equations to develop ladder logic for the state diagram below using the delayed update
method. Be sure to deal with the priority problems.

FS
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6. Implement the State-Transition equations.in the figure below with ladder logic.

T1
first scan (FS)
T1 = FS§ STA = (STA+T2)-T5
I2 = STB-4 STB = (STB+T5+T4+T1)-T2-T3
T3 = STB-C STC = (STC+T3-T2)- T4
T4 = STC-D
T5 = STA-B

7. Write ladder logic to implement the state diagram below using state transition equations.

8. Convert the following state diagram to ladder logic using a) an equation based method, b) a
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method that is not based on equations.

FS START

5s delay
STOP
FAULT

9. The state diagram below is for a simple elevator controller. a) Develop a ladder logic program
that implements it with Boolean equations. b) Develop the ladder logic using the block logic
technique. c) Develop the ladder logic using the delayed update method.

up_reques

FS -
up_request

down_request

down_request

10. Write ladder logic for the state diagram below a) using an equation based method. b) without



plc states - 12.56

using an equation based method.

OFFHOOK OFFHOOK

OFFHOOK

OFFHOOK

ANSWERED

DIALED

11. For the state diagram for the traffic light example, add a 15 second green light timer and speed
up signal for an emergency vehicle. A strobe light mounted on fire trucks will cause the lights
to change so that the truck doesn’t need to stop. Modify the state diagram to include this
option. Implement the new state diagram with ladder logic.

12. Design a program with a state diagram for a hydraulic press that will advance when two palm
buttons are pushed. Top and bottom limit switches are used to reverse the advance and stop
after a retract. At any time the hands removed from the palm button will stop an advance and
retract the press. Include start and stop buttons to put the press in and out of an active mode.

13. In dangerous processes it is common to use two palm buttons that require a operator to use
both hands to start a process (this keeps hands out of presses, etc.). To develop this there are
two inputs (P1 and P2) that must both be turned on within 0.25s of each other before a machine
cycle may begin.

Develop ladder logic with a state diagram to control a process that has a start
(START) and stop (STOP) button for the power. After the power is on the palm
buttons (P1 and P2) may be used as described above to start a cycle. The cycle
will consist of turning on an output (MOVE) for 2 seconds. After the press has
been cycled 1000 times the press power should turn off and an output (LIGHT)
should go on.
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14. Use a state diagram to design a parking gate controller.

i - the gate will be raised by one output
keycard entry \O/ fight and lowered by another. If the gate
/N gets stuck an over current detector

will make a PLC input true. If this
is the case the gate should reverse
and the light should be turned on
indefinitely.
- if a valid keycard is entered a PLC
input will be true. The gate is to
cars enter/leave car detector rise and stay open for 10 seconds.
- - - when a car is over the car detector a
PLC input will go true. The gate is
to open while this detector is
active. If it is active for more that
30 seconds the light should also
- turn on until the gate closes.

gatg

15. This morning you received a call from Mr. lan M. Daasprate at the Old Fashioned Widget
Company. In the past when they built a new machine they would used punched paper cards for
control, but their supplier of punched paper readers went out of business in 1972 and they have
decided to try using PLCs this time. He explains that the machine will dip wooden parts in var-
nish for 2 seconds, and then apply heat for 5 minutes to dry the coat, after this they are manu-
ally removed from the machine, and a new part is put in. They are also considering a premium
line of parts that would call for a dip time of 30 seconds, and a drying time of 10 minutes. He
then refers you to the project manager, Ann Nooyed.

You call Ann and she explains how the machine should operate. There should be start and stop
buttons. The start button will be pressed when the new part has been loaded, and is ready to be
coated. A light should be mounted to indicate when the machine is in operation. The part is
mounted on a wheel that is rotated by a motor. To dip the part, the motor is turned on until a
switch is closed. To remove the part from the dipping bath the motor is turned on until a second
switch is closed. If the motor to rotate the wheel is on for more that 10 seconds before hitting a
switch, the machine should be turned off, and a fault light turned on. The fault condition will
be cleared by manually setting the machine back to its initial state, and hitting the start button
twice. If the part has been dipped and dried properly, then a done light should be lit. To select a
premium product you will use an input switch that needs to be pushed before the start button is
pushed. She closes by saying she will be going on vacation and you need to have it done before
she returns.

You hang up the phone and, after a bit of thought, decide to use the following outputs and inputs,
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INPUTS OUTPUTS
I/1 - start push button O/1 - start button
/2 - stop button O/2 - in operation
I/3 - premium part push button O/3 - fault light
1/4 - switch - part is in bath on wheel O/4 - part done light
I/5 - switch - part is out of bath on wheel O/5 - motor on

O/6 - heater power supply

a) Draw a state diagram for the process.

b) List the variables needed to indicate when each state is on, and list any timers
and counters used.

c¢) Write a Boolean expression for each transition in the state diagram.

d) Do a simple wiring diagram for the PLC.

e) Write the ladder logic for the state that involves moving the part into the dipping
bath.

16. Design ladder logic with a state diagram for the following process description.

a) A toggle start switch (TS1) and a limit switch on a safety gate (LS1) must both
be on before a solenoid (SOL1) can be energized to extend a stamping cylinder
to the top of a part. Should a part detect sensor (PS1) also be considered?
Explain your answer.

b) While the stamping solenoid is energized, it must remain energized until a limit
switch (LS2) is activated. This second limit switch indicates the end of a stroke.
At this point the solenoid should be de-energized, thus retracting the cylinder.

c) When the cylinder is fully retracted a limit switch (LS3) is activated. The cycle
may not begin again until this limit switch is active. This is one way to ensure
that a new part is present, is there another?

d) A cycle counter should also be included to allow counts of parts produced.
When this value exceeds some variable amount (from 1 to 5000) the machine
should shut down, and a job done light lit up.

e) A safety check should be included. If the cylinder solenoid has been on for more
than 5 seconds, it suggests that the cylinder is jammed, or the machine has a
fault. If this is the case the machine should be shut down, and a maintenance
light turned on.

f) Implement the ladder diagram on a PLC in the laboratory.

g) Fully document the ladder logic and prepare a short report - This should be of
use to another engineer that will be maintaining the system.
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13. NUMBERS AND DATA

Topics:
* Number bases; binary, octal, decimal, hexadecimal
* Binary calculations; 2s compliments, addition, subtraction and Boolean opera-
tions
* Encoded values; BCD and ASCII
* Error detection; parity, gray code and checksums

Objectives:

* To be familiar with binary, octal and hexadecimal numbering systems.
* To be able to convert between different numbering systems.

* To understand 2s compliment negative numbers.

* To be able to convert ASCII and BCD values.

* To be aware of basic error detection techniques.

13.1 INTRODUCTION

Base 10 (decimal) numbers developed naturally because the original developers
(probably) had ten fingers, or 10 digits. Now consider logical systems that only have wires
that can be on or off. When counting with a wire the only digits are 0 and 1, giving a base
2 numbering system. Numbering systems for computers are often based on base 2 num-
bers, but base 4, 8, 16 and 32 are commonly used. A list of numbering systems is give in
Figure 13.1. An example of counting in these different numbering systems is shown in
Figure 13.2.

Base Name Data Unit
2 Binary Bit

8 Octal Nibble

10 Decimal Digit

16 Hexadecimal Byte

Figure 13.1  Numbering Systems
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decimal binary octal hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7 Note: As with all numbering systems
8 1000 10 8
9 1001 11 9 most significant digits are at left,
10 1010 12 a least significant digits are at right.
11 1011 13 b
12 1100 14 C
13 1101 15 d
14 1110 16 e
15 1111 17 f
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14

Figure 13.2  Numbers in Decimal, Binary, Octal and Hexadecimal

The effect of changing the base of a number does not change the actual value, only
how it is written. The basic rules of mathematics still apply, but many beginners will feel
disoriented. This chapter will cover basic topics that are needed to use more complex pro-
gramming instructions later in the book. These will include the basic number systems,
conversion between different number bases, and some data oriented topics.

13.2 NUMERICAL VALUES

13.2.1 Binary

Binary numbers are the most fundamental numbering system in all computers. A
single binary digit (a bit) corresponds to the condition of a single wire. If the voltage on
the wire is true the bit value is /. If the voltage is off the bit value is 0. If two or more wires
are used then each new wire adds another significant digit. Each binary number will have
an equivalent digital value. Figure 13.3 shows how to convert a binary number to a deci-
mal equivalent. Consider the digits, starting at the right. The least significant digit is /, and
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is in the Oth position. To convert this to a decimal equivalent the number base (2) is raised
to the position of the digit, and multiplied by the digit. In this case the least significant
digit is a trivial conversion. Consider the most significant digit, with a value of / in the 6th
position. This is converted by the number base to the exponent 6 and multiplying by the
digit value of 1. This method can also be used for converting the other number system to
decimal.

20=64 2°=32 2*=16 P’= =1

\\e\l}l‘

1(26)— 64
1(2)— 32
1(2)— 16
02 = 0
0(22)— 0
0(2)— 0
12% = 1
113

Figure 13.3  Conversion of a Binary Number to a Decimal Number

Decimal numbers can be converted to binary numbers using division, as shown in
Figure 13.4. This technique begins by dividing the decimal number by the base of the new
number. The fraction after the decimal gives the least significant digit of the new number
when it is multiplied by the number base. The whole part of the number is now divided
again. This process continues until the whole number is zero. This method will also work
for conversion to other number bases.
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start with decimal number 932

\

232 _ 466 2(0.0)=0
for binary~ -~ 2 /
(base:2) ‘%;/233 2(0.0) =0
2373;/1 16 2(0.5)=1
116

=2 — 58 2(0.0)=0

o
28 _ 19
2

2—9:/14
2

e
v
1-3

»

2(0.0)=0

2(0.5)=1

2(0.0)=0 1110100100

2(0.5)=1

2(0.5)=1

1

AN

—

2(0.5)=1

|
=)

&

done ) . o
multiply places after decimal by division

base, in this case it is 2 because of the binary.

* This method works for other number bases also, the divisor and multipliers
should be changed to the new number bases.

Figure 13.4  Conversion from Decimal to Binary

Most scientific calculators will convert between number bases. But, it is important
to understand the conversions between number bases. And, when used frequently enough
the conversions can be done in your head.

Binary numbers come in three basic forms - a bit, a byte and a word. A bit is a sin-
gle binary digit, a byte is eight binary digits, and a word is 16 digits. Words and bytes are
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shown in Figure 13.5. Notice that on both numbers the least significant digit is on the right
hand side of the numbers. And, in the word there are two bytes, and the right hand one is
the least significant byte.

BYTE WORD
MSB LS\B MSB LSB
0110 1011 0110 1011 0100 0010
most least
significant  significant
byte byte

Figure 13.5 Bytes and Words

Binary numbers can also represent fractions, as shown in Figure 13.6. The conver-
sion to and from binary is identical to the previous techniques, except that for values to the
right of the decimal the equivalents are fractions.

binary: 101.011

P

12 =4 o02)=0 12%=1 o2 =0 129 127 =

0=

=44+0+1+0+=+= = 5375 decimal

=
o

Figure 13.6 A Binary Decimal Number

13.2.1.1 - Boolean Operations

In the next chapter you will learn that entire blocks of inputs and outputs can be
used as a single binary number (typically a word). Each bit of the number would corre-
spond to an output or input as shown in Figure 13.7.
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There are three motors M, M, and M5 represented with three bits in a binary
number. When any bit is on the corresponding motor is on.

100 = Motor 1 is the only one on
111 = All three motors are on

in total there are 2" or 2° possible combinations of motors on.

Figure 13.7  Motor Outputs Represented with a Binary Number

We can then manipulate the inputs or outputs using Boolean operations. Boolean
algebra has been discussed before for variables with single values, but it is the same for
multiple bits. Common operations that use multiple bits in numbers are shown in Figure
13.8. These operations compare only one bit at a time in the number, except the shift
instructions that move all the bits one place left or right.

Name Example Result

AND 0010 * 1010 0010

OR 0010 + 1010 1010

NOT 0010 1101

EOR 0010 eor 1010 1000

NAND 0010 * 1010 1101

shift left 111000 110001  (other results are possible)
shift right 111000 011100  (other results are possible)
etc.

Figure 13.8  Boolean Operations on Binary Numbers

13.2.1.2 - Binary Mathematics

Negative numbers are a particular problem with binary numbers. As a result there
are three common numbering systems used as shown in Figure 13.9. Unsigned binary
numbers are common, but they can only be used for positive values. Both signed and 2s
compliment numbers allow positive and negative values, but the maximum positive values
is reduced by half. 2s compliment numbers are very popular because the hardware and
software to add and subtract is simpler and faster. All three types of numbers will be found
in PLCs.
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Type Description Range for Byte
unsigned binary numbers can only have positive values. 0 to 255
signed the most significant bit (MSB) of the binary number| -127 to 127

is used to indicate positive/negative.
2s compliment | negative numbers are represented by complimenting| -128 to 127

the binary number and then adding 1.

Figure 13.9  Binary (Integer) Number Types

Examples of signed binary numbers are shown in Figure 13.10. These numbers use

the most significant bit to indicate when a number is negative.

decimal binary byte
2 00000010
1 00000001
0 00000000
-0 10000000 k Note: there are two zeros
-1 10000001
-2 10000010

Figure 13.10 Signed Binary Numbers

An example of 2s compliment numbers are shown in Figure 13.11. Basically, if the
number is positive, it will be a regular binary number. If the number is to be negative, we
start the positive number, compliment it (reverse all the bits), then add 1. Basically when
these numbers are negative, then the most significant bit is set. To convert from a negative

2s compliment number, subtract 1, and then invert the number.
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decimal binary byte METHOD FOR MAKING A NEGATIVE NUMBER
2 00000010 1. write the binary number for the positive
1 00000001 . _
0 00000000 for -30 we write 30 = 00011110
-1 11111111 2. Invert (compliment) the number
-2 11111110

00011110 becomes 11100001

3.Add 1
11100001 + 00000001 = 11100010

Figure 13.11 2s Compliment Numbers

Using 2s compliments for negative numbers eliminates the redundant zeros of
signed binaries, and makes the hardware and software easier to implement. As a result
most of the integer operations in a PLC will do addition and subtraction using 2s compli-
ment numbers. When adding 2s compliment numbers, we don’t need to pay special atten-
tion to negative values. And, if we want to subtract one number from another, we apply
the twos compliment to the value to be subtracted, and then apply it to the other value.

Figure 13.12 shows the addition of numbers using 2s compliment numbers. The
three operations result in zero, positive and negative values. Notice that in all three opera-
tion the top number is positive, while the bottom operation is negative (this is easy to see
because the MSB of the numbers is set). All three of the additions are using bytes, this is
important for considering the results of the calculations. In the left and right hand calcula-
tions the additions result in a 9th bit - when dealing with 8 bit numbers we call this bit the
carry C. If the calculation started with a positive and negative value, and ended up with a
carry bit, there is no problem, and the carry bit should be ignored. If doing the calculation
on a calculator you will see the carry bit, but when using a PLC you must look elsewhere
to find it.
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00000001 =1 00000001 =1 00000010 =2

+ 11111111 =-1 4+ 11111110 =-2 + 1111111 =-1

C+00000000 =0 LTI =-1 C+00000001 =1
ignore the carry bits Note: Normally the carry bit is ignored during the oper-

ation, but some additional logic is required to make
sure that the number has not overflowed and moved
outside of the range of the numbers. Here the 2s com-
pliment byte can have values from -128 to 127.

Figure 13.12 Adding 2s Compliment Numbers

The integers have limited value ranges, for example a 16 bit word ranges from -
32,768 to 32,767 whereas a 32 bit word ranges from -2,147,483,648 to 2,147,483,647. In
some cases calculations will give results outside this range, and the Overflow O bit will be
set. (Note: an overflow condition is a major error, and the PLC will probably halt when
this happens.) For an addition operation the Overflow bit will be set when the sign of both
numbers is the same, but the sign of the result is opposite. When the signs of the numbers
are opposite an overflow cannot occur. This can be seen in Figure 13.13 where the num-
bers two of the three calculations are outside the range. When this happens the result goes
from positive to negative, or the other way.

01111111 =127 10000001 = -127 10000001 = -127
4+ 00000011 =3 4+ 11111111 =-1 L 11111110 =-2

10000010 =-126 10000000 = -128 01111111 = 127

C=0 C=1 C=1

O =1 (error) O = 0 (no error) O =1 (error)

Note: If an overflow bit is set this indicates that a calculation is outside and
acceptable range. When this error occurs the PLC will halt. Do not ignore the
limitations of the numbers.

Figure 13.13 Carry and Overflow Bits

These bits also apply to multiplication and division operations. In addition the PLC
will also have bits to indicate when the result of an operation is zero Z and negative N.
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13.2.2 Other Base Number Systems

Other number bases are typically converted to and from binary for storage and
mathematical operations. Hexadecimal numbers are popular for representing binary val-
ues because they are quite compact compared to binary. (Note: large binary numbers with
a long string of 1s and Os are next to impossible to read.) Octal numbers are also popular
for inputs and outputs because they work in counts of eight; inputs and outputs are in
counts of eight.

An example of conversion to, and from, hexadecimal is shown in Figure 13.14 and
Figure 13.15. Note that both of these conversions are identical to the methods used for
binary numbers, and the same techniques extend to octal numbers also.

163 = 4096 =256 =16 16°=1

\ké/

f8a

15(163) = 61440
8(162) = 2048

10(16 )= 160
3(16%) = 3
63651

Figure 13.14 Conversion of a Hexadecimal Number to a Decimal Number

%‘ = 35775 —® 16(0.75)=12"¢
357 — =
== = 223125 16(0.3125)=5

f—é — 1375 —® 16(0.375)=6 165¢

% = 00625 —® 16(0.0625)=1

Figure 13.15 Conversion from Decimal to Hexadecimal
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13.2.3 BCD (Binary Coded Decimal)

Binary Coded Decimal (BCD) numbers use four binary bits (a nibble) for each
digit. (Note: this is not a base number system, but it only represents decimal digits.) This
means that one byte can hold two digits from 00 to 99, whereas in binary it could hold
from 0 to 255. A separate bit must be assigned for negative numbers. This method is very
popular when numbers are to be output or input to the computer. An example of a BCD
number is shown in Figure 13.16. In the example there are four digits, therefore 16 bits are
required. Note that the most significant digit and bits are both on the left hand side. The
BCD number is the binary equivalent of each digit.

decimal

1263 Note: this example shows four digits
/ /\\ in two bytes. The hex values

0001 0010 0110 0011  BCD would also be 1263.

Figure 13.16 A BCD Encoded Number

Most PLCs store BCD numbers in words, allowing values between 0000 and 9999.
They also provide functions to convert to and from BCD. It is also possible to calculations
with BCD numbers, but this is uncommon, and when necessary most PLCs have functions
to do the calculations. But, when doing calculations you should probably avoid BCD and
use integer mathematics instead. Try to be aware when your numbers are BCD values and
convert them to integer or binary value before doing any calculations.

13.3 DATA CHARACTERIZATION

13.3.1 ASCII (American Standard Code for Information Interchange)

When dealing with non-numerical values or data we can use plain text characters
and strings. Each character is given a unique identifier and we can use these to store and
interpret data. The ASCII (American Standard Code for Information Interchange) is a very
common character encryption system is shown in Figure 13.17 and Figure 13.18. The
table includes the basic written characters, as well as some special characters, and some
control codes. Each one is given a unique number. Consider the letter 4, it is readily recog-
nized by most computers world-wide when they see the number 65.
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Figure 13.17 ASCII Character Table

binary

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111

00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111

00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111

00011000
00011001
00011010
00011011
00011100
00011101

00011110
00011111

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

decimal

32

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
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binary

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111

00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111

00111000
00111001
00111010
00111011
00111100
00111101

00111110
00111111

+ %~

O 0NN P WLWND—O ™~

VLA
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= =

E E

'§ ' = Té fé 2 =
§ < Q ‘5 § < Q
o .E 2 O o .5 A
<= 5 < o = © <
40 01000000 @ 96 60 01100000 °
41 01000001 A 97 61 01100001 a
42 01000010 B 98 62 01100010 b
43 01000011 C 99 63 01100011 ¢
44 01000100 D 100 64 01100100 d
45 01000101 E 101 65 01100101 e
46 01000110 F 102 66 01100110 f
47 01000111 G 103 67 01100111 g
48 01001000 H 104 68 01101000 h
49 01001001 1 105 69 01101001 1
4A 01001010 J 106 6A 01101010 j
4B 01001011 K 107 6B 01101011 k
4C 01001100 L 108 6C 01101100 1
4D 01001101 M 109 6D 01101101 m
4E 01001110 N 110  6E 01101110 n
4F 01001111 O 111 6F 01101111 o
50 01010000 P 112 70 01110000 p
51 01010001 Q 113 71 01110001 ¢
52 01010010 R 114 72 01110010 r
53 01010011 S 115 73 01110011 s
54 01010100 T 116 74 01110100 t
55 01010101 U 117 75 01110101 u
56 01010110 V 118 76 01110110 v
57 01010111 W 119 77 01110111 w
58 01011000 X 120 78 01111000 x
59 01011001 Y 121 79 01111001 'y
5A 01011010 Z 122 7A 01111010 z
5B 01011011 [ 123 7B 01111011 {
5C 01011100 yen 124 7C 01111100 |
5D 01011101 ] 125 7D 01111101 }
5E 01011110 A~ 126 7E 01111110 r arr.
S5F 01011111 127 7F 01111111 | arr.

Figure 13.18 ASCII Character Table

This table has the codes from 0 to 127, but there are more extensive tables that
contain special graphics symbols, international characters, etc. It is best to use the basic
codes, as they are supported widely, and should suffice for all controls tasks.
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An example of a string of characters encoded in ASCII is shown in Figure 13.19.

e.g. The sequence of numbers below will convert to

A W e e T e s t
A 65
space 32
w 87
e 101
e 101
space 32
T 84
e 101
S 115
t 116

Figure 13.19 A String of Characters Encoded in ASCII

When the characters are organized into a string to be transmitted and LF and/or CR
code are often put at the end to indicate the end of a line. When stored in a computer an
ASCII value of zero is used to end the string.

13.3.2 Parity

Errors often occur when data is transmitted or stored. This is very important when
transmitting data in noisy factories, over phone lines, etc. Parity bits can be added to data
as a simple check of transmitted data for errors. If the data contains error it can be retrans-
mitted, or ignored.

A parity bit is normally a 9th bit added onto an 8 bit byte. When the data is
encoded the number of true bits are counted. The parity bit is then set to indicate if there
are an even or odd number of true bits. When the byte is decoded the parity bit is checked
to make sure it that there are an even or odd number of data bits true. If the parity bit is not
satisfied, then the byte is judged to be in error. There are two types of parity, even or odd.
These are both based upon an even or odd number of data bits being true. The odd parity
bit is true if there are an odd number of bits on in a binary number. On the other hand the

Even parity is set if there are an even number of true bits. This is illustrated in Figure
13.20.
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data parity
bits bit
Odd Parity 10101110 1
10111000 0
Even Parity 00101010 0
10111101 1

Figure 13.20 Parity Bits on a Byte

Parity bits are normally suitable for single bytes, but are not reliable for data with a
number of bits.

Note: Control systems perform important tasks that can be dangerous in certain circum-
stances. If an error occurs there could be serious consequences. As a result error
detection methods are very important for control system. When error detection occurs
the system should either be robust enough to recover from the error, or the system
should fail-safe. If you ignore these design concepts you will eventually cause an
accident.

13.3.3 Checksums

Parity bits are suitable for a few bits of data, but checksums are better for larger
data transmissions. These are simply an algebraic sum of all of the data transmitted.
Before data is transmitted the numeric values of all of the bytes are added. This sum is
then transmitted with the data. At the receiving end the data values are summed again, and
the total is compared to the checksum. If they match the data is accepted as good. An
example of this method is shown in Figure 13.21.
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DATA
124

43
255
9
27
47

CHECKSUM
505

Figure 13.21 A Simplistic Checksum

Checksums are very common in data transmission, but these are also hidden from
the average user. If you plan to transmit data to or from a PLC you will need to consider
parity and checksum values to verify the data. Small errors in data can have major conse-
quences in received data. Consider an oven temperature transmitted as a binary integer
(1023d = 0000 0100 0000 0000Db). If a single bit were to be changed, and was not detected
the temperature might become (0000 0110 0000 0000b = 1535d) This small change would
dramatically change the process.

13.3.4 Gray Code

Parity bits and checksums are for checking data that may have any value. Gray
code is used for checking data that must follow a binary sequence. This is common for
devices such as angular encoders. The concept is that as the binary number counts up or
down, only one bit changes at a time. Thus making it easier to detect erroneous bit
changes. An example of a gray code sequence is shown in Figure 13.22. Notice that only
one bit changes from one number to the next. If more than a single bit changes between
numbers, then an error can be detected.

ASIDE: When the signal level in a wire rises or drops, it induces a magnetic pulse that
excites a signal in other nearby lines. This phenomenon is known as cross-talk. This
signal is often too small to be noticed, but several simultaneous changes, coupled with
background noise could result in erroneous values.
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decimal gray code

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

OO0 IN NI WN—O

et
npbhwWwNh—O

Figure 13.22 Gray Code for a Nibble

13.4 SUMMARY

* Binary, octal, decimal and hexadecimal numbers were all discussed.

* 2s compliments allow negative binary numbers.

* BCD numbers encode digits in nibbles.

* ASCII values are numerical equivalents for common alphanumeric characters.
* Gray code, parity bits and checksums can be used for error detection.

13.5 PRACTICE PROBLEMS

1. Why are binary, octal and hexadecimal used for computer applications?
2. Is a word is 3 nibbles?
3. What are the specific purpose for Gray code and parity?

4. Convert the following numbers to/from binary
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a) from base 10: 54,321 b) from base 2: 110000101101

5. Convert the BCD number below to a decimal number,

01100010 0111 1001

6. Convert the following binary number to a BCD number,

0100 1011

7. Convert the following binary number to a Hexadecimal value,

0100 1011

8. Convert the following binary number to a octal,

0100 1011

9. Convert the decimal value below to a binary byte, and then determine the odd parity bit,
97

10. Convert the following from binary to decimal, hexadecimal, BCD and octal.

a) 101101 C) 10000000001
b) 11011011 d) 0010110110101



I1.

12.

13.

14.

15.

16.
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Convert the following from decimal to binary, hexadecimal, BCD and octal.
a) 1 c) 20456
b) 17 d) -10
Convert the following from hexadecimal to binary, decimal, BCD and octal.
a) 1 C) ABC
b) 17 d) -A
Convert the following from BCD to binary, decimal, hexadecimal and octal.
a) 1001 c) 0011 0110 0001
b) 1001 0011 d) 0000 0101 0111 0100
Convert the following from octal to binary, decimal, hexadecimal and BCD.
a) 7 c) 777
b) 17 d 32634

a) Represent the decimal value thumb wheel input, 3532, as a Binary Coded Deci-
mal (BCD) and a Hexadecimal Value (without using a calculator).
i) BCD
i1) Hexadecimal
b) What is the corresponding decimal value of the BCD value,
1001111010011011?

Add/subtract/multiply/divide the following numbers.

a) binary 101101101 + 01010101111011 1) octal 123 - 777

b) hexadecimal 101 + ABC J) 2s complement bytes 10111011 + 00000011
c) octal 123 + 777 k) 2s complement bytes 00111011 + 00000011
d) binary 110110111 - 0101111 1) binary 101101101 * 10101

e) hexadecimal ABC - 123 m) octal 123 * 777

f) octal 777 - 123 n) octal 777/ 123

g) binary 0101111 - 110110111 0) binary 101101101 / 10101

h) hexadecimal 123-ABC p) hexadecimal ABC /123
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17. Do the following operations with 8 bit bytes, and indicate the condition of the overflow and
carry bits.

a) 10111011 + 00000011 d) 110110111 - 01011111
b) 00111011 + 00000011 e) 01101011 + 01111011
¢) 11011011 + 11011111 f) 10110110 - 11101110

18. Consider the three BCD numbers listed below.

1001 0110 0101 0001
0010 0100 0011 1000
0100 0011 0101 0001

a) Convert these numbers to their decimal values.

b) Convert the decimal values to binary.

c) Calculate a checksum for all three binary numbers.

d) What would the even parity bits be for the binary words found in b).
19. Is the 2nd bit set in the hexadecimal value F49?

20. Explain where grey code occurs when creating Karnaugh maps.

21. Convert the decimal number 1000 to a binary number, and then to hexadecimal.

13.6 PRACTICE PROBLEM SOLUTIONS

1. base 2, 4, 8, and 16 numbers translate more naturally to the numbers stored in the computer.

2. no, it is four nibbles

3. Both of these are coding schemes designed to increase immunity to noise. A parity bit can be
used to check for a changed bit in a byte. Gray code can be used to check for a value error in a
stream of continuous values.

4.a) 1101 0100 0011 0001, b) 3117

5.6279

6.0111 0101

7.4B

8. 113



9. 1100001 odd parity bit =1

10.

I1.

12.

13.
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binary 101101 11011011 10000000001 0010110110101
BCD 01000101 00100001 1001 0001 000000100101 0001 010001100001
decimal 45 219 1025 1461

hex 2D DB 401 5B5

octal 55 333 2001 2665

decimal 1 17 20456 -10

BCD 0001 00010111 0010 0000 0100 0101 0110 -0001 0000

binary 1 10001 0100 1111 1110 1000 1111 1111 1111 0110
hex 1 11 4FE8 FFF6

octal 1 21 47750 177766

hex 1 17 ABC -A

BCD 0001 00100011 00100111 0100 1000 -0001 0000

binary 1 10111 0000 1010 1011 1100 1111 1111 1111 0110
decimal 1 23 2748 -10

octal 1 27 5274 177766

BCD 1001 1001 0011 0011 0110 0001 0000 0101 0111 0100
binary 1001 101 1101 10110 1001 100011 1110

decimal 9 93 361 0574

hex 9 5D 169 23E

octal 11 135 551 1076
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14.
octal 7 17 777 32634
binary 111 1111 11111 1111 0011 0101 1001 1100
decimal 7 15 511 13724
hex 7 F 1FF 359C
BCD 0111 0001 0101 0101 0001 0001 0001 0011 0111 0010 0100

15.2)3532=0011 0101 0011 0010 = DCC, b0 the number is not a valid BCD

16.
a) 0001 0110 1110 1000 i) -654
b) BBD j) 0000 0001 0111 1010
c) 1122 k) 0000 0000 0011 1110
d) 0000 0001 1000 1000 1) 0001 1101 1111 0001
e) 999 m) 122655
f) 654 n) 6
g) 1111 1110 0111 1000 0) 0000 0000 0001 0001
h) -999 p) 9
17.
a) 10111011 +00000011=1011 1110 d) 110110111 - 01011111=0101 1000+C+O
b) 00111011 + 00000011=0011 1110 e) 01101011 +01111011=1110 0110

c) 11011011 + 11011111=1011 1010+C+O f) 10110110 - 11101110=1100 1000

18.2) 9651, 2438, 4351, ) 0010 0101 1011 0011, 0000 1001 1000 0110, 0001 0000 1111 1111, ¢)
16440, d) 1, 0, 0

19. The binary value is 1111 0100 1001, so the second bit is 0
20. when selecting the sequence of bit changes for Karnaugh maps, only one bit is changed at a

time. This is the same method used for grey code number sequences. By using the code the bits
in the map are naturally grouped.
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21.
1000,, = 1111101000, = 38,

13.7 ASSIGNMENT PROBLEMS

1. Why are hexadecimal numbers useful when working with PLCs?
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14. PLC MEMORY

Topics:
* ControlLogix memory types; program and data
* Data types; output, input, status, bit, timer, counter, integer, floating point, etc.
» Memory addresses; words, bits, data files, expressions, literal values and indirect.

Objectives:
* To know the basic memory types available
* To be able to use addresses for locations in memory

14.1 INTRODUCTION

Advanced ladder logic functions such as timers and counters allow controllers to
perform calculations, make decisions and do other complex tasks. They are more complex
than basic input contacts and output coils and they rely upon data stored in the memory of
the PLC. The memory of the PLC is organized to hold different types of programs and
data. This chapter will discuss these memory types. Functions that use them will be dis-
cussed in following chapters.

14.2 PROGRAM VS VARIABLE MEMORY

The memory in a PLC is divided into program and variable memory. The program
memory contains the instructions to be executed and cannot be changed while the PLC is
running. (Note: some PLCs allow on-line editing to make minor program changes while a
program is running.) The variable memory is changed while the PLC is running. In Con-
trolLogix the memory is defined using variable names (also called tags and aliases).
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ASIDE: In older Allen Bradley PLCs the memory was often organized as files. There
are two fundamental types of memory used in Allen-Bradley PLCs - Program and
Data memory. Memory is organized into blocks of up to 1000 elements in an array
called a file. The Program file holds programs, such as ladder logic. There are eight
Data files defined by default, but additional data files can be added if they are needed,

Program Files Data Files
2 00
Outputs
O ’
I Inputs
3
— }—O Sz Status
. B3 Bits
|
: T4 Timers
|
' CS Counters

999

}H —O) R6 Control

N7 Integer

These are a collection of up to 1000
slots to store up to 1000 pro- F8 Float
grams. The main program will
be stored in program file 2. SFC
programs must be in file 1’ and This is where the variable data is
file 0 is used for program and stored that the PLC programs
password information. All other operate on. This is quite compli-
program files from 3 to 999 can cated, so a detailed explanation

be used for subroutines. follows.
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14.3 PROGRAMS

The PLC has a list of ’Main Tasks’ that contain the main program(s) run each scan
of the PLC. Additional programs can be created that are called as subroutines. Valid pro-
gram types include Ladder Logic, Structured Text, Sequential Function Charts, and Func-
tion Block Diagrams.

Program files can also be created for ’Power-Up Handling’ and ’Controller
Faults’. The power-up programs are used to initialize the controller on the first scan. In
previous chapters this was done in the main program using the ’S:FS’ bit. Fault programs
are used to respond to specific failures or issues that may lead to failure of the control sys-
tem. Normally these programs are used to recover from minor failures, or shut down a sys-
tem safely.

14.4 VARIABLES (TAGS)

Allen Bradley uses the terminology ’tags’ to describe variables, status, and input/
output (I/O) values for the controller. ’Controller Tags’ include status values and I/O defi-
nitions. These are scoped, meaning that they can be global and used by all programs on the
PLC. These can also be local, limiting their use to a program that owns it.

Variable tags can be an alias for another tags, or be given a data type. Some of the
common tag types are listed below.

Type Description
BOOL Holds TRUE or FALSE values
CONTROL General purpose memory for complex instructions
COUNTER Counter memory
DINT 32 bit 2s compliment integer -2,147,483,648 to 2,147,483,647
INT 16 bit 2s compliment integer -32,768 to 32,767
MESSAGE Used for communication with remote devices
PID Used for PID control functions
REAL 32 bit floating point value +/-1.1754944¢-38 to +/-3.4028237¢38
SINT 8 bit 2s compliment integer -128 to 127
STRING An ASCII string
TIMER Timer memory
Figure 14.1  Selected ControlLogic Data Types
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Interface to 0:000
outside world I:nnn
S2:nnn
B3:nnn
T4:nnn
C5:nnn
R6:nnn
N7:nnn

F8:nnn
]

Fixed types of
Data files

Rack

1/O slot number in rack

For older Allen Bradley PLCs data files are used for storing different informa-
tion types, as shown below. These locations are numbered from 0 to 999.
The letter in front of the number indicates the data type. For example, F8§: is
read as floating point numbers in data file 8. Numbers are not given for O:
and /., but they are implied to be O0: and /1/:. The number that follows the :
is the location number. Each file may contain from 0 to 999 locations that
may store values. For the input /: and output O: files the locations are con-
verted to physical locations on the PLC using rack and slot numbers. The
addresses that can be used will depend upon the hardware configuration.
The status S2: file is more complex and is discussed later. The other mem-
ory locations are simply slots to store data in. For example, /'§:35 would
indicate the 36th value in the 8th data file which is floating point numbers.

outputs

inputs

processor status

bits in words

timers

counters

control words

integer numbers
floating point numbers

I  Other files 9-999 can be created and used.
I The user defined data files can have different

v data types.

Data values do not always need to be stored in memory, they can be define liter-
ally. Figure 14.2 shows an example of two different data values. The first is an integer, the
second is a real number. Hexadecimal numbers can be indicated by following the number
with H, a leading zero is also needed when the first digit is 4, B, C, D, E or F. A binary

number is indicated by adding a B to the end of the number.
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8 - an integer

8.5 - a floating point number

O8FH - a hexadecimal value 8F
01101101B - a binary number 01101101

Figure 14.2  Literal Data Values

Data types can be created in variable size 1D, 2D, or 3D arrays.

Sometimes we will want to refer to an array of values, as shown in Figure 14.3.
This data type is indicated by beginning the number with a pound or hash sign ’#’. The
first example describes an array of floating point numbers staring in file § at location 5.
The second example is for an array of integers in file 7 starting at location 0. The length of
the array is determined elsewhere.

test[1, 4] - returns the value in the 2nd row and 5th column of array test

Figure 14.3  Arrays

Expressions allow addresses and functions to be typed in and interpreted when the
program is run. The example in Figure 14.4 will get a floating point number from ’test’,
perform a sine transformation, and then add 1.3. The text string is not interpreted until the
PLC is running, and if there is an error, it may not occur until the program is running - so
use this function cautiously.

expression - a text string that describes a complex operation.

“sin(test) + 1.3” - a simple calculation

Figure 14.4  Expressions

These data types and addressing modes will be discussed more as applicable func-
tions are presented later in this chapter and book.
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Figure 14.5 shows a simple example ladder logic with functions. The basic opera-
tion is such that while input 4 is true the functions will be performed. The first statement
will move (MOV) the literal value of /30 into integer memory X. The next move function
will copy the value from X to Y. The third statement will add integers value in X and Y and
store the results in Z.

A MOV
|| source 130
destination X

MOV
source X
destination Y

ADD
sourceA X
sourceB Y
destination Z

Figure 14.5 An Example of Ladder Logic Functions

14.4.1 Timer and Counter Memory

Previous chapters have discussed the basic operation of timers and counters. The
ability to address their memory directly allows some powerful tools. The bits and words
for timers are;

EN - timer enabled bit

TT - timer timing bit

DN - timer done bit

FS - timer first scan

LS - timer last scan

OV - timer value overflowed
ER - timer error

PRE - preset word

ACC - accumulated time word

Counter have the following bits and words.
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CU - count up bit

CD - count down bit

DN - counter done bit

OV - overflow bit

UN - underflow bit

PRE - preset word

ACC - accumulated count word

As discussed before we can access timer and counter bits and words. Examples of
these are shown in Figure 14.6. The bit values can only be read, and should not be
changed. The presets and accumulators can be read and overwritten.

Words

timer.PRE - the preset value for timer T4:0

timer.ACC - the accumulated value for timer T4:0
counter.PRE - the preset value for counter C5:0
counter. ACC - the accumulated value for counter C5:0

Bits
timer.EN - indicates when the input to timer T4:0 is true
timer. TT - indicates when the timer T4:0 is counting
timer.DN - indicates when timer T4:0 has reached the maximum
counter.CU - indicates when the count up instruction is true for C5:0
counter.CD - indicates when the count down instruction is true for C5:0
counter.DN - indicates when the counter C5:0 has reached the preset

counter.OV - indicates when the counter C5:0 passes the maximum value (2,147,483,647)
counter.UN - indicates when the counter C5:0 passes the minimum value (-2,147,483,648)

Figure 14.6 ~ Examples of Timer and Counter Addresses

Consider the simple ladder logic example in Figure 14.7. It shows the use of a
timer timing 77 bit to seal on the timer when a door input has gone true. While the timer is
counting, the bit will stay true and keep the timer counting. When it reaches the 10 second
delay the 77 bit will turn off. The next line of ladder logic will turn on a light while the
timer is counting for the first 10 seconds.
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DOOR

K TON

|| example

delay 10s

example. TT

| |

|
example. TT

» Q LIGHT
||

Figure 14.7 Door Light Example

14.4.2 PLC Status Bits

Status memory allows a program to check the PLC operation, and also make some
changes. A selected list of status bits is shown in Figure 14.8 for Allen-Bradley Control-
Logix PLCs. More complete lists are available in the manuals. The first six bits are com-
monly used and are given simple designations for use with simple ladder logic. More
advanced instructions require the use of Get System Value (GSV) and Set System Value
(SSV) functions. These functions can get/set different values depending upon the type of
data object is being used. In the sample list given one data object is the "'WALLCLOCK-
TIME’. One of the attributes of the class is the DateTime that contains the current time. It
is also possible to use the ’'PROGRAM’ object instance MainProgram’ attribute
’LastScanTime’ to determine how long the program took to run in the previous scan.
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Immediately accessible status values

S:FS - First Scan Flag

S:N - The last calculation resulted in a negative value

S:Z - The last calculation resulted in a zero

S:V - The last calculation resulted in an overflow

S:C - The last calculation resulted in a carry

S:MINOR - A minor (non-critical/recoverable) error has occurred

Examples of SOME values available using the GSV and SSV functions

CONTROLLERDEVICE - information about the PLC
PROGRAM - information about the program running
LastScanTime
MaxScanTime
TASK
EnableTimeout
LastScanTime
MaxScanTime
Priority
StartTime
Watchdog
WALLCLOCKTIME - the current time
DateTime
DINTI[O] - year
DINT([1] - month 1=january
DINT([2] - day 1 to 31
DINT][3] - hour 0 to 24
DINT[4] - minute 0 to 59
DINT][5] - second 0 to 59
DINT[6] - microseconds 0 to 999,999

Figure 14.8  Status Bits and Words for ControlLogix

An example of getting and setting system status values is shown in Figure 14.9.
The first line of ladder logic will get the current time from the class "'WALLCLOCK-
TIME". In this case the class does not have an instance so it is blank. The attribute being
recalled is the DateTime that will be written to the DINT array time[0..6]. For example
"time[3]” should give the current hour. In the second line the Watchdog time for the Main-
Program is set to 200 ms. If the program MainProgram takes longer than 200ms to execute
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a fault will be generated.

GSV

Class Name: WALLCLOCKTIME
Instance Name:

Attribute Name: DateTime

Dest: time[0]

SSV

Class Name: TASK

Instance Name: MainProgram
Attribute Name: Watchdog
Source: 200

Figure 14.9  Reading and Setting Status bits with GSV and SSV

As always, additional classes and attributes for the status values can be found in
the manuals for the processors and instructions being used.
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A selected list of status bits is shown below for Allen-Bradley Micrologic and PLC-
5 PLCs. More complete lists are available in the manuals. For example the first
four bits S2:0/x indicate the results of calculations, including carry, overflow, zero
and negative/sign. The S2:1/15 will be true once when the PLC is turned on - this
is the first scan bit. The time for the last scan will be stored in S2:8. The date and
clock can be stored and read from locations S2:7/8 to S2:23.

S2:0/0 carry in math operation

S2:0/1 overflow in math operation

S2:0/2 zero in math operation

S2:0/3 sign in math operation

S2:1/15 first scan of program file

S2:8 the scan time (ms)

S2:18 year

S2:19 month

S2:20 day

S2:21 hour

S2:22 minute

S2:23 second

S2:28 watchdog setpoint

S2:29 fault routine file number

S2:30 STI (selectable timed interrupt) setpoint
S2:31 STI file number
S2:46-S2:54,52:55-S2:56 PII (Programmable Input Interrupt) settings
S2:55 STI last scan time (ms)

S2:77 communication scan time (ms)

14.4.3 User Function Control Memory

Simple ladder logic functions can complete operations in a single scan of ladder
logic. Other functions such as timers and counters will require multiple ladder logic scans
to finish. While timers and counters have their own memory for control, a generic type of
control memory is defined for other function. This memory contains the bits and words in
Figure 14.10. Any given function will only use some of the values. The meaning of partic-
ular bits and words will be described later when discussing specific functions.
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EN - enable bit

EU - enable unload
DN - done bit

EM - empty bit

ER - error bit

UL - unload bit

IN - inhibit bit

FD - found bit

LEN - length word
POS - position word

Figure 14.10 Bits and Words for Control Memory

14.5 SUMMARY

* Program are given unique names and can be for power-up, regular scans, and
faults.

* Tags and aliases are used for naming variables and I/O.

* Files are like arrays and are indicated with [].

* Expressions allow equations to be typed in.

» Literal values for binary and hexadecimal values are followed by B and H.

14.6 PRACTICE PROBLEMS

1. How are timer and counter memory similar?
2. What types of memory cannot be changed?

3. Develop Ladder Logic for a car door/seat belt safety system. When the car door is open, or the
seatbelt is not done up, a buzzer will sound for 5 seconds if the key has been switched on. A
cabin light will be switched on when the door is open and stay on for 10 seconds after it is
closed, unless a key has started the ignition power.

4. Write ladder logic for the following problem description. When button 4 is pressed a value of
1001 will be stored in X. When button B is pressed a value of -345 will be stored in ¥, when it
is not pressed a value of 99 will be stored in ¥. When button C is pressed X and Y will be added,
and the result will be stored in Z.

5. Using the status memory locations, write a program that will flash a light for the first 15 sec-
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onds after it has been turned on. The light should flash once a second.
6. How many words are required for timer and counter memory?
7. A machine is being designed for a foreign parts supplier. As part of the contractual agreement

the logic will run until February 26, 2008. However, after that date the machine will enable a
‘contract_expired’ value and no longer run. Write the ladder logic.

14.7 PRACTICE PROBLEM SOLUTIONS

1. both are similar. The timer and counter memories both use double words for the accumulator
and presets, and they use bits to track the status of the functions. These bits are somewhat dif-
ferent, but parallel in function.

2. Inputs cannot be changed by the program, and some of the status bits/words cannot be changed
by the user.

3.

Inputs | Outputs

door open buzzer

seat belt connected | light

key on

door open key on
| TON
; Timer t_remind
seat belt connected Delay 5s

t remind. TT
Q buzzer

door open

TOF
Timer t_light
Delay 10s

t light DN ke?r on
| () e




plc memory - 14.14

MOV
Source 1001
Dest X

MOV
Source -345
DestY

MOV
Source 99
DestY

ADD
Source A X
Source BY
Dest Z
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RTF
t_initial
delay 15s

first scan

t initial. DN RTO
— t off

delay 0.5 s

t off. DN RTO
t on

d_elay 0.5s

t on.DN t of] RES

t on.DN

L OV RES

®

t initjal. DNt joff.DN

0/1
|

6. three long words (3 * 32 bits) are used for a timer or a counter.
7.

GSV

Class Name: WALLCLOCKTIME
Instance Name:

Attribute Name: DateTime

Dest: time[0] --> time:DINT[7]

GEQ GEQ GEQ L \contract expired
time[0] time[0] time[0]
2008 2 26




plc memory - 14.16

14.8 ASSIGNMENT PROBLEMS

1. Could timer ‘T’ and counter ‘C’ memory types be replaced with control ‘R’ memory types?
Explain your answer.
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15. LADDER LOGIC FUNCTIONS

Topics:
* Functions for data handling, mathematics, conversions, array operations, statis-

tics, comparison and Boolean operations.
* Design examples

Objectives:
* To understand basic functions that allow calculations and comparisons
* To understand array functions using memory files

15.1 INTRODUCTION

Ladder logic input contacts and output coils allow simple logical decisions. Func-
tions extend basic ladder logic to allow other types of control. For example, the addition of
timers and counters allowed event based control. A longer list of functions is shown in
Figure 15.1. Combinatorial Logic and Event functions have already been covered. This
chapter will discuss Data Handling and Numerical Logic. The next chapter will cover
Lists and Program Control and some of the Input and Output functions. Remaining func-
tions will be discussed in later chapters.
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Combinatorial Logic

- relay contacts and coils
Events

- timer instructions

- counter instructions
Data Handling

- moves

- mathematics

- conversions
Numerical Logic

- boolean operations

- comparisons
Lists

- shift registers/stacks

- sequencers
Program Control

- branching/looping

- immediate inputs/outputs

- fault/interrupt detection
Input and Output

- PID

- communications

- high speed counters

- ASCII string functions

Figure 15.1  Basic PLC Function Categories

Most of the functions will use PLC memory locations to get values, store values
and track function status. Most function will normally become active when the input is
true. But, some functions, such as TOF timers, can remain active when the input is off.
Other functions will only operate when the input goes from false to true, this is known as
positive edge triggered. Consider a counter that only counts when the input goes from
false to true, the length of time the input is true does not change the function behavior. A
negative edge triggered function would be triggered when the input goes from true to
false. Most functions are not edge triggered: unless stated assume functions are not edge
triggered.
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NOTE: I do not draw functions exactly as they appear in manuals and programming soft-
ware. This helps save space and makes the instructions somewhat easier to read. All of
the necessary information is given.

15.2 DATA HANDLING

15.2.1 Move Functions

There are two basic types of move functions;

MOV (value,destination) - moves a value to a memory location
MVM(value,mask,destination) - moves a value to a memory location, but with a
mask to select specific bits.

The simple MOV will take a value from one location in memory and place it in
another memory location. Examples of the basic MOV are given in Figure 15.2. When 4
is true the MOV function moves a floating point number from the source to the destination
address. The data in the source address is left unchanged. When B is true the floating point
number in the source will be converted to an integer and stored in the destination address
in integer memory. The floating point number will be rounded up or down to the nearest
integer. When C is true the integer value of 123 will be placed in the integer file test int.
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A MOV
|| Source test real 1
Destination test_real 2

B MOV
| | Source test real 1
Destination test_int

C MOV
| | Source 123
Destination test_int

NOTE: when a function changes a value, except for inputs and outputs, the value is
changed immediately. Consider Figure 15.2, if 4, B and C are all true, then the
value in test _real 2 will change before the next instruction starts. This is different
than the input and output scans that only happen before and after the logic scan.

Figure 15.2  Examples of the MOV Function

A more complex example of move functions is given in Figure 15.3. When 4
becomes true the first move statement will move the value of 130 into in¢ (. And, the sec-
ond move statement will move the value of -9385 from int I to int 2. (Note: The number
is shown as negative because we are using 2s compliment.) For the simple MOVs the
binary values are not needed, but for the MVM statement the binary values are essential.
The statement moves the binary bits from int_3 to int_5, but only those bits that are also
on in the mask int 4, other bits in the destination will be left untouched. Notice that the
first bit int 5.0 is true in the destination address before and after, but it is not true in the
mask. The MVM function is very useful for applications where individual binary bits are
to be manipulated, but they are less useful when dealing with actual number values.
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MOV
| source 130
dest int 0

MOV
source int_1
dest int_2

MVM
source int_3
mask int 4
destint 5

MVM
source int 3
mask int 4
dest int 6

‘ before , , after .
binary decimal binary decimal
int 0 0000000000000000 0 0000000010000010 130
int 1 1101101101010111 -9385 1101101101010111  -9385
int 2= 1000000000000000 -32768 e 1101101101010111 -9385
int 3 0101100010111011 22715 0101100010111011 22715

becomes
int 4 0010101010101010 10922 0010101010101010 10922
int 5 0000000000000001 1 0000100010101011 2219
int 6 1101110111111111 1101110111111111

NOTE: the concept of a mask is very useful, and it will be used in other functions.
Masks allow instructions to change a couple of bits in a binary number without hav-
ing to change the entire number. You might want to do this when you are using bits in
a number to represent states, modes, status, etc.

Figure 15.3  Example of the MOV and MVM Statement with Binary Values

15.2.2 Mathematical Functions

Mathematical functions will retrieve one or more values, perform an operation and
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store the result in memory. Figure 15.4 shows an ADD function that will retrieve values
from int I and real 1, convert them both to the type of the destination address, add the
floating point numbers, and store the result in real_ 2. The function has two sources
labelled source A and source B. In the case of ADD functions the sequence can change,
but this is not true for other operations such as subtraction and division. A list of other
simple arithmetic function follows. Some of the functions, such as the negative function
are unary, so there is only one source.

ADD

| source A int 1
source B real 1
destination real 2

ADD(value,value,destination) - add two values
SUB(value,value,destination) - subtract
MUL(value,value,destination) - multiply

DIV (value,value,destination) - divide
NEG(value,destination) - reverse sign from positive/negative
CLR(value) - clear the memory location

NOTE: To save space the function types are shown in the shortened notation above.
For example the function ADD(value, value, destination) requires two source val-
ues and will store it in a destination. It will use this notation in a few places to
reduce the bulk of the function descriptions.

Figure 15.4  Arithmetic Functions

An application of the arithmetic function is shown in Figure 15.5. Most of the
operations provide the results we would expect. The second ADD function retrieves a
value from in¢ 3, adds 1 and overwrites the source - this is normally known as an incre-
ment operation. The first DIV statement divides the integer 25 by 10, the result is rounded
to the nearest integer, in this case 3, and the result is stored in in¢t 6. The NEG instruction
takes the new value of -/0, not the original value of 0, from int 4 inverts the sign and
stores it in int_7.
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ADD
source A int 0
source B int 1
dest. int 2
ADD addr. before after
source A 1
source B int 3 int 0 10 10
dest. int 3 int_1 25 25
— int2 0 35
SUB int3 0 1
source A }nt_l int 4 0 -10
source Bint 2 int 5 0 250
dest. int 4 int6 0 3
MULT int 7 0 10
source A int_0 int 8 100 0
source B int_1
dest. int 5 flit 0 10.0 10.0
— flt 1 250  25.0
biv. ft2 0 2.5
source A }nt_l flt 3 0 25
source B int 0
dest. int 6
NEG
source A int_4 Note: recall, integer
dest. int 7 values are limited
to ranges between -
CLR 32768 and 32767,
dest. int 8 and there are no
DIV fractions.
source A flt 1
source B flt 0
dest. flt 2
DIV
source A int 1
source B int 0
dest. flt 3

Figure 15.5  Arithmetic Function Example

A list of more advanced functions are given in Figure 15.6. This list includes basic
trigonometry functions, exponents, logarithms and a square root function. The last func-
tion CPT will accept an expression and perform a complex calculation.
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ACS(value,destination) - inverse cosine
COS(value,destination) - cosine
ASN(value,destination) - inverse sine
SIN(value,destination) - sine
ATN(value,destination) - inverse tangent
TAN(value,destination) - tangent

XPY (value,value,destination) - X to the power of Y
LN(value,destination) - natural log
LOG(value,destination) - base 10 log
SQR(value,destination) - square root
CPT(destination,expression) - does a calculation

Figure 15.6 ~ Advanced Mathematical Functions

Figure 15.7 shows an example where an equation has been converted to ladder
logic. The first step in the conversion is to convert the variables in the equation to unused
memory locations in the PLC. The equation can then be converted using the most nested
calculations in the equation, such as the LN function. In this case the results of the LN
function are stored in another memory location, to be recalled later. The other operations
are implemented in a similar manner. (Note: This equation could have been implemented
in other forms, using fewer memory locations.)
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given

A= JlnB + eCacos(D)

LN
Source B
Dest. temp 1

XPY

SourceA 2.718
SourceB C
Dest temp 2

ACS
SourceA D
Dest. temp 3

MUL

SourceA temp 2
SourceB temp 3
Dest temp 4

ADD

SourceA temp 1
SourceB temp 4
Dest temp_5

SQR
SourceA temp 5
Dest. A

Figure 15.7  An Equation in Ladder Logic

The same equation in Figure 15.7 could have been implemented with a CPT func-
tion as shown in Figure 15.8. The equation uses the same memory locations chosen in Fig-
ure 15.7. The expression is typed directly into the PLC programming software.
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&0 CPT

|| Dest. A
Expression
SQR(LN(B)+XPY(2.718,C)*ACS(D))

Figure 15.8  Calculations with a Compute Function

Math functions can result in status flags such as overflow, carry, etc. care must be
taken to avoid problems such as overflows. These problems are less common when using
floating point numbers. Integers are more prone to these problems because they are lim-
ited to the range.

15.2.3 Conversions

Ladder logic conversion functions are listed in Figure 15.9. The example function
will retrieve a BCD number from the D type (BCD) memory and convert it to a floating
point number that will be stored in F§:2. The other function will convert from 2s compli-
ment binary to BCD, and between radians and degrees.

| A FRD
| Source A D10:5
‘ Dest. F&:2

TOD(value,destination) - convert from BCD to 2s compliment
FRD(value,destination) - convert from 2s compliment to BCD
DEG(value,destination) - convert from radians to degrees
RAD(value,destination) - convert from degrees to radians

Figure 15.9  Conversion Functions

Examples of the conversion functions are given in Figure 15.10. The functions
load in a source value, do the conversion, and store the results. The TOD conversion to
BCD could result in an overflow error.
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FRD

Source bed 1
Dest. int_ 0

TOD

Source int 1
Dest. bed 0

DEG
Source real 0

Dest. real 2

RAD
Source real 1

Addr. Before

mt0 O
int 1 548
real 0 3.141
real 1 45
real 2 0
real 3 0

Dest. real 3

after

1793
548
3.141
45
180
0.785

bed 0 0000 0000 0000 0000 0000 0101 0100 1000
bed 1 0001 0111 1001 0011 0001 0111 1001 0011

Figure 15.10 Conversion Example

15.2.4 Array Data Functions

these are shown in
binary BCD form

Arrays allow us to store multiple data values. In a PLC this will be a sequential
series of numbers in integer, floating point, or other memory. For example, assume we are
measuring and storing the weight of a bag of chips in floating point memory starting at
weight[0]. We could read a weight value every 10 minutes, and once every hour find the
average of the six weights. This section will focus on techniques that manipulate groups of
data organized in arrays, also called blocks in the manuals.
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15.2.4.1 - Statistics

Functions are available that allow statistical calculations. These functions are
listed in Figure 15.11. When 4 becomes true the average (AVE) conversion will start at
memory location weight/()] and average a total of 4 values. The control word
weight control is used to keep track of the progress of the operation, and to determine
when the operation is complete. This operation, and the others, are edge triggered. The
operation may require multiple scans to be completed. When the operation is done the
average will be stored in weight avg and the weight control. DN bit will be turned on.

A AVE

B File weight[0]

Dest weight_avg
Control weight control
length 4

position 0

AVE(start value,destination,control,length) - average of values
STD(start value,destination,control,length) - standard deviation of values
SRT(start value,control,length) - sort a list of values

Figure 15.11 Statistic Functions

Examples of the statistical functions are given in Figure 15.12 for an array of data
that starts at weight/(0] and is 4 values long. When done the average will be stored in
weight _avg, and the standard deviation will be stored in weight std. The set of values will
also be sorted in ascending order from weight[0] to weight[3]. Each of the function should
have their own control memory to prevent overlap. It is not a good idea to activate the sort
and the other calculations at the same time, as the sort may move values during the calcu-
lation, resulting in incorrect calculations.
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A AVE

| File weight[0]
Dest weight_avg
Control ¢ 1
length 4

position 0

B STD

| File weight[0]
Dest weight _std
Control ¢ 2
length 4
position 0

C SRT
| File weight[0]
Control ¢ 3

Addr. before | after A| after B| after C 1eﬂgth 4
position 0

weight[0] 3
weight[ 1] 1
weight[2] 2
weight[3] 4
0
0

N — W
W N =

weight _avg
weight std

ON BN~ W
N
AN

1.29 1.29

Figure 15.12 Statistical Calculations

ASIDE: These function will allow a real-time calculation of SPC data for con-
trol limits, etc. The only PLC function missing is a random function that
would allow random sample times.

15.2.4.2 - Block Operations

A basic block function is shown in Figure 15.13. This COP (copy) function will
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copy an array of 10 values starting at n/50] to n/40]. The FAL function will perform math-
ematical operations using an expression string, and the FSC function will allow two arrays
to be compared using an expression. The FLL function will fill a block of memory with a

single value.

COP
‘ B Source n[50]

Dest n[40]
Length 10

COP(start value,destination,length) - copies a block of values

FAL(control,length,mode,destination,expression) - will perform basic math
operations to multiple values.

FSC(control,length,mode,expression) - will do a comparison to multiple values

FLL(value,destination,length) - copies a single value to a block of memory

Figure 15.13 Block Operation Functions

Figure 15.14 shows an example of the FAL function with different addressing
modes. The first FAL function will do the following calculations n/5/=n/0]+35,
n[6]=n[1]+5, n[7]=n[2]+5, n[7]=n[3]+5, n[9]=n[4]+5. The second FAL statement will
be n/5]=n[0]+5, n[6]=n[0]+5, n[7]=n[0]+5, n[7]=n[0]+5, n[9]=n[0]+5. With a mode
of 2 the instruction will do two of the calculations when there is a positive edge from B
(i.e., a transition from false to true). The result of the last FAL statement will be
n[5]=n[0]+5, n[5]=n[1]+5, n[5]=n[2]+5, n[5]=n[3]+5, n[5]=n[4]+5. The last opera-
tion would seem to be useless, but notice that the mode is incremental. This mode will do
one calculation for each positive transition of C. The a/l mode will perform all five calcu-
lations in a single scan whenever there is a positive edge on the input. It is also possible to
put in a number that will indicate the number of calculations per scan. The calculation
time can be long for large arrays and trying to do all of the calculations in one scan may
lead to a watchdog time-out fault.
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FAL

A Controlc 0
| | length 5 array to array
I position 0

Mode all

Destination n[c_0.POS + 5]

Expression n[c_0.POS] + 5

FAL
B Control c_1
I I length 5 element to array
position 0 array to element
Mode 2

Destination n[c_1.POS + 5]
Expression n[0] + 5

FAL
C Control ¢ 2
| | length 5
3 position 0 array to element
Mode incremental
Destination n[5]
Expression n[c_2.POS] + 5

Figure 15.14 File Algebra Example

15.3 LOGICAL FUNCTIONS

15.3.1 Comparison of Values

Comparison functions are shown in Figure 15.15. Previous function blocks were
outputs, these replace input contacts. The example shows an EQU (equal) function that
compares two floating point numbers. If the numbers are equal, the output bit /ight is true,
otherwise it is false. Other types of equality functions are also listed.
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ligh
v ol
N>

B

EQU(value,value) - equal

NEQ(value,value) - not equal

LES(value,value) - less than

LEQ(value,value) - less than or equal

GRT(value,value) - greater than

GEQ(value,value) - greater than or equal

CMP(expression) - compares two values for equality
MEQ(value,mask,threshold) - compare for equality using a mask
LIM(low limit,value,high limit) - check for a value between limits

Figure 15.15 Comparison Functions

The example in Figure 15.16 shows the six basic comparison functions. To the
right of the figure are examples of the comparison operations.
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00 O_0=0
EQU . 0 _1=1
A int_3 Q int 3=5 0_2=0
Bint 2 int 2=3 O_3=0
NEQ 01 0 4=1
0 5=1
Aint 3 O -
Bint 2
02
LES /\— 0 0=1
Aint 3 O_1=0
- N
Bint 2 int 3=3 0_2=0
0 3 int_2=3 0_3:1
LEQ ~ 0 _4=0
Bint 2
GRT 0.4
Aint 3 O 8—?2(1)
Bint 2 . —
- o s int 3=1 O_2=1
_ int 2=3 O 3=1
GEQ 11’1t_2 3 -
Aint 3 O 0_4=0
Bint 2 0_5=0

Figure 15.16 Comparison Function Examples

The ladder logic in Figure 15.16 is recreated in Figure 15.17 with the CMP func-
tion that allows text expressions.
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CMP 0
expression

int 3=1int 2

CMP !
expression

int 3<>int 2

[\S}

CMP
expression
int 3 <int 2

(O8]

CMP
expression
int 3 <=int 2

A

CMP
expression
int 3>int 2

N

CMP
expression
int 3>=int 2

o (o e s (s (e

Figure 15.17 Equivalent Statements Using CMP Statements

Expressions can also be used to do more complex comparisons, as shown in Figure
15.18. The expression will determine if B is between 4 and C.

expression
B>A)& (B<O)

CMP Xf\ ‘
N

Figure 15.18 A More Complex Comparison Expression

The LIM and MEQ functions are shown in Figure 15.19. The first three functions
will compare a test value to high and low limits. If the high limit is above the low limit and
the test value is between or equal to one limit, then it will be true. If the low limit is above
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the high limit then the function is only true for test values outside the range. The masked
equal will compare the bits of two numbers, but only those bits that are true in the mask.

LIM
low limit 1pt_0 int 5.0
test value int_1 -
high limit int_2
LIM
low limit ipt_2 int 5.1
test value int 1 -
high limit int 0
LIM
low limit ipt_2 int 5.2
test value int 3 -
high limit int 0
MEQ
source int 0 int 5.3
mask int 1 -
compare int_2
MEQ
source int 0 int 5.4
mask int 1 -
compare int 4
Addr. | before (decimal) before (binary) after (binary)
int 0 | 1 0000000000000001 | 0000000000000001
int 1 |5 0000000000000101 | 0000000000000101
int 2 | 11 0000000000001011 | 0000000000001011
int 3 15 0000000000001111 | 0000000000001111
int 4 0000000000001000| 0000000000001000
int5 0 0000000000000000  0000000000001101

Figure 15.19 Complex Comparison Functions
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Figure 15.20 shows a numberline that helps determine when the LIM function will
be true.

® high limit i low limit

high limit

® low limit $

Figure 15.20 A Number Line for the LIM Function

File to file comparisons are also permitted using the FSC instruction shown in Fig-
ure 15.21. The instruction uses the control word c¢_0. It will interpret the expression 10
times, doing two comparisons per logic scan (the Mode is 2). The comparisons will be
JI10]<f[0]. fI11]<f[0] then f[12]<f]0], f[13]<f[0] then f[14]<f[0], f[15]<f[0] then
f116]<f]0], fT17]<f[0] then f]18]<f[0], f]19]<f[0]. The function will continue until a
false statement is found, or the comparison completes. If the comparison completes with
no false statements the output 4 will then be true. The mode could have also been A/l to
execute all the comparisons in one scan, or Increment to update when the input to the
function is true - in this case the input is a plain wire, so it will always be true.

FSC A
Control ¢ 0

Length 10

Position 0

Mode 2

Expression f{10+c_0.POS] < {]0]

Figure 15.21 File Comparison Using Expressions
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15.3.2 Boolean Functions

Figure 15.22 shows Boolean algebra functions. The function shown will obtain
data words from bit memory, perform an and operation, and store the results in a new loca-
tion in bit memory. These functions are all oriented to word level operations. The ability to
perform Boolean operations allows logical operations on more than a single bit.

‘ A AND
| | source int_ A
| source int B
dest. int X

AND(value,value,destination) - Binary and function
OR(value,value,destination) - Binary or function
XOR(value,value,destination) - Binary exclusive or function
NOT(value,destination) - Binary not function

Figure 15.22 Boolean Functions

The use of the Boolean functions is shown in Figure 15.23. The first three func-
tions require two arguments, while the last function only requires one. The AND function
will only turn on bits in the result that are true in both of the source words. The OR func-
tion will turn on a bit in the result word if either of the source word bits is on. The XOR
function will only turn on a bit in the result word if the bit is on in only one of the source
words. The NOT function reverses all of the bits in the source word.
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AND
source A n[0]

source B n[1]
dest. n[2]

OR

source A n[0]
source B n[1]
dest. n[3]

XOR
source A n[0]

source B n[1]
dest. n[4]

NOT
source A n[0]
dest. n[5]

addr. data (binary)
n[0] 0011010111011011

n[1]  1010010011101010
afte$ n[2]  0010010011001010
n[3]  1011010111111011
n[4]  1001000100110001
n[5]  1100101000100100

Figure 15.23 Boolean Function Example

15.4 DESIGN CASES

15.4.1 Simple Calculation

Problem: A switch will increment a counter on when engaged. This counter can be
reset by a second switch. The value in the counter should be multiplied by 2, and then dis-
played as a BCD output using (0:0.0/0 - O:0.0/7)
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Solution:

SW1 CTU
| | Counter cnt
I Preset 0

MUL

SourceA cnt. ACC
SourceB 2

Dest. dbl

MVM

Source dbl

Mask 00FFh

Dest. output_word

SW2
| @ cnt

Figure 15.24 A Simple Calculation Example

15.4.2 For-Next

Problem: Design a for-next loop that is similar to ones found in traditional pro-
gramming languages. When 4 is true the ladder logic should be active for 10 scans, and
the scan number from 1 to 10 should be stored in n0.

Solution:
A
GRT MOV
I SourceA n0 Source 0
SourceB 10 Dest n0
LEQ ADD
SourceA n0 SourceA n0
SourceB 10 SourceB 1
Dest. n0

Figure 15.25 A Simple Comparison Example
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As designed the program differs from traditional loops because it will only com-
plete one ’loop’ each time the logic is scanned.

15.4.3 Series Calculation

Problem: Create a ladder logic program that will start when input 4 is turned on
and calculate the series below. The value of » will start at 1 and with each scan of the lad-
der logic n will increase until n=100. While the sequence is being incremented, any
change in 4 will be ignored.

x =2(n-1)

Solution:

MOV

i I \H\ Source A 1

Dest. n

g0
LEQ
Source A n

g0 Source B 100

CPT

Dest. x
Expression
2*¥(-1)

ADD

| ] Source A 1
Source Bn
Dest. n

Figure 15.26 A Series Calculation Example
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15.4.4 Flashing Lights

Problem: We are designing a movie theater marquee, and they want the traditional
flashing lights. The lights have been connected to the outputs of the PLC from O[0] to
O[17] - an INT. When the PLC is turned, every second light should be on. Every half sec-
ond the lights should reverse. The result will be that in one second two lights side-by-side
will be on half a second each.

Solution:
t b.DN TON
\H\ timert a
Delay 0.5s
t a.DN TON
I i timer t b
Delay 0.5s
t aTT MOV
| [ = S
B ource pattern
Dest O
t aTT NOT
\H\ Source pattern
Dest O

pattern =0101 0101 0101 0101

Figure 15.27 A Flashing Light Example

15.5 SUMMARY

* Functions can get values from memory, do simple operations, and return the
results to memory.

* Scientific and statistics math functions are available.

» Masked function allow operations that only change a few bits.

* Expressions can be used to perform more complex operations.

* Conversions are available for angles and BCD numbers.

* Array oriented file commands allow multiple operations in one scan.
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* Values can be compared to make decisions.
* Boolean functions allow bit level operations.
* Function change value in data memory immediately.

15.6 PRACTICE PROBLEMS

1. Do the calculation below with ladder logic,

n2=-(5-n0/n1)

2. Implement the following function,

X = atan(y@%))

3. A switch will increment a counter on when engaged. This counter can be reset by a second
switch. The value in the counter should be multiplied by 5, and then displayed as a binary out-
put using output integer *O_lights’.

4. Create a ladder logic program that will start when input 4 is turned on and calculate the series
below. The value of n will start at 0 and with each scan of the ladder logic n will increase by 2
until n=20. While the sequence is being incremented, any change in 4 will be ignored.

x = 2(log(n)—1)

5. The following program uses indirect addressing. Indicate what the new values in memory will
be when button A is pushed after the first and second instructions.

A
N ADD
| Source A 1
Source B n[0]
Dest. n[n[1]]
A
| ADD
| Source A n[n[0]]
Source B n[n[1]]
addr before after 1st after 2nd Dest. n[n[0]]
n[0] 1
n[1] 2
n[2] 3

6. A thumbwheel input card acquires a four digit BCD count. A sensor detects parts dropping
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down a chute. When the count matches the BCD value the chute is closed, and a light is turned
on until a reset button is pushed. A start button must be pushed to start the part feeding.
Develop the ladder logic for this controller. Use a structured design technique such as a state
diagram.

Inputs Outputs
bed in - BCD input card chute_open
part_detect light

start_button
reset_button

7. Describe the difference between incremental, all and a number for file oriented instruction,
such as FAL.

8. What is the maximum number of elements that moved with a file instruction? What might hap-
pen if too many are transferred in one scan?

9. Write a ladder logic program to do the following calculation. If the result is greater than 20.0,
then the output ’solenoid’ will be turned on.

T

A=D-Be©

10. Write ladder logic to reset an RTO counter (timer) without using the RES instruction.

11. Write a program that will use Boolean operations and comparison functions to determine if
bits 9, 4 and 2 are set in the input word input card. 1f they are set, turn on output bit match.

12. Explain how the mask works in the following MVM function. Develop a Boolean equation.

\ MVM
‘ Source S

Mask M
Dest D

13. A machine is being designed for a foreign parts supplier. As part of the contractual agreement
the logic will run until February 26, 2008. However, after that date the machine will enable a
‘contract_expired’ value and no longer run. Write the ladder logic.

14. Use an FAL instruction to average the values in n[0] to n[20] and store them in 'n_avg’.
15. The input bits from ’input card A’ are to be read and XORed with the inputs from

input_card B’. The result is to be written to the output card ’output _card’. If the binary pat-
tern of the least 16 output bits is 1010 0101 0111 0110 then the output *'match_bell” will be set.
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Write the ladder logic.

16. Write some simple ladder logic to change the preset value of a counter *cnt’. When the input
‘A’ is active the preset should be 13, otherwise it will be 9.

17. A machine ejects parts into three chutes. Three optical sensors (A, B and C) are positioned in
each of the slots to count the parts. The count should start when the reset (R) button is pushed.
The count will stop, and an indicator light (L) turned on when the average number of parts
counted is 100 or greater.

18. a) Write ladder logic to calculate and store the binary (geometric) sequence in 32 bit integer

(DINT) memory starting at n[0] up to n[200] so that n[0] = 1, n[1] =2, n[2] =4, n[3] = 16, n[4]
= 64, etc. b) Will the program operate as expected?

15.7 PRACTICE PROBLEM SOLUTIONS

DIV

|| Source An_0
Source Bn 1
Dest N7:2

SUB

Source A 5
Source Bn 2
Dest N7:2

NEG
Sourcen 2
Destn 2
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LOG
Source y
Dest temp 1

ADD

Source Ay
Source B temp 1
Dest temp 2

ADD
Source Ay
Source B 1
Dest temp 3

DIV

Source A temp_2
Source B temp 3
Dest temp 4

MUL

Source Ay
Source B temp 4
Dest temp_5

ATN
Source temp_5
Dest x

CTuU

Counter cnt
Preset 1234

@ cnt

MUL

Source A 5
Source B cnt. ACC
Dest O_lights
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EQ MOV

I I \H\ Source A 20 Source -2
Source B n Destn

A LEQ

Source A n active
Source B 20

active

active

ADD

Source A n
Source B 2
Dest n

LOG
Source n
Dest x

SUB
Source A x
Source B 1
Dest x

MUL
Source A x
Source B 2
Dest x

addr | before ‘ after 1st | after 2nd
n[0] 1 1 1
n[1] 2 2 4
n[2] 3 2 2
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first scan

S1 + start S2

parts
counting
(chute open)

count
exceeded

bin
full
(light on)

reset
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first scan
] (1)
( :> S2
( :> S3
S2
Q chute
S3
Q light
S1
G
start
( :> S1

FRD
Source A bed in
Dest. cnt. ACC

MC

@
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S2

C
part detect

@

CTD
counter cnt

preset 0
C5:0/DN

w2
(98]

w2
[\S)

<
o

S3

reset

5]
—_

02
(U]

@

@g@@©g®

7. an incremental mode will do one calculation when the input to the function is a positive edge -
goes from false to true. The all mode will attempt to complete the calculation in a single scan.
If a number is used, the function will do that many calculations per scan while the input is true

8. The maximum number is 1000. If the instruction takes too long the instruction may be paused
and continued the next scan, or it may lead to a PLC fault because the scan takes too long.



10.
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re|seit

NEG
Source T
Dest A

DIV
Source A
Source C
Dest A

XPY

Source A 2.718
Source A

Dest A

MUL

Source B
Source A
Dest A

SUB

Source D
Source A
Dest A

GRT
Source A
Source 20.0

@ solenoid

MOV

Source 0
Dest timer. ACC
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12.

13.

14.
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AND

Dest temp

Source A input_card
Source B 0000 0010 0001 0100 (binary)

EQU
Source A 0000 0010 0001 0100 (binary)
Source B temp

4© match

The data in the source location will be moved bit by bit to the destination for every bit

that is set in the mask. Every other bit in the destination will be retain the pre-
vious value. The source address is not changed.

D=(S& M)+ (D & M)

GSV

Instance Name:

Class Name: WALLCLOCKTIME

Attribute Name: DateTime
Dest: time[0] --> time:DINT[7]

GEQ
time[0]
2008

GEQ GEQ

time[0] time[0]
2 26

@contract_expired

CLR n_avg

FAL

Control control
Len 21

Pos 0

Mode All
Destn_avg

Expression "n_avg + n[control.pos] / 21"




15.
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XOR

16.

A input_card A
B input_card B
dest. output_card

EQU

output card
"1010 0101 0111 O110"

match_bell

O

MOV
13

cnt.pre

MOV
9

cnt.pre




17.

18.

plc basic functions - 15.37

R
I I res cnt A
res cnt B
res cnt C
A L
CTU
cnt A
L
B CTU
cnt B
L
c CTU
cnt C
CMP
"(ent_A.acc + cnt_B.acc + cnt_C.acc) >= 300" L

MOV

| | 1
n[0]

FAL
control R
len 200

pos 0

mode ALL

dest. "n[R.pos + 1]"
expression "n[R.pos] * 2"

b) No, after n[31] the value will overflow the positive limit of the 32 bit 2’s com-
pliment integer and take on a large negative value.
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15.8 ASSIGNMENT PROBLEMS

1. Write a ladder logic program that will implement the function below, and if the result is greater
than 100.5 then the output ’too_hot’ will be turned on.

X = 6+4e”cos(C+5)

2. Write ladder logic to calculate the average of the values from thickness[0] to thickness[99]. The
operation should start after a momentary contact push button 4 is pushed. The result should be
stored in ’thickness_avg’. If button B is pushed, all operations should be complete in a single
scan. Otherwise, only ten values will be calculated each scan. (Note: this means that it will take
10 scans to complete the calculation if A is pushed.)

3. Write a ladder logic program that will calculate the standard deviation of numbers in the loca-
tions fJ0] to fJ29] without using the STD function.

4. A program is to perform the following actions for a self-service security check. The device will
allow bags to be inserted to the test chamber through an entrance door. If the bag passes the
check it can be removed through an exit door, otherwise an alarm is sounded. Create a state
diagram using the steps below.

1. The machine starts in an ‘idle’ state. The ‘open_entry’ output is activated to
open the input door. The ‘open_exit’ output is deactivated to close the output
door.

2. When a bag is inserted the ‘bag_detected’ input goes high. The ‘open_entry’
input should be deactivated to close the door.

3. When the ‘entry _door closed’ and ‘exit door closed’ inputs are active then a
‘test” output will be set high to start a scan of the bags.

4. When the scan of the bags is complete a ‘scan_done’ input is set. The ‘test’ out-
put should be turned off.

5. The scan results in two real values ‘nitrates’ and ‘mass’. The calculation below
is performed. If the ‘risk’ is below 0.3, or above 23.5, then the machine enters
an alarm state (step 8), otherwise it continues to step 6.

risk = 4nitrales

6. The ‘open_exit’ output is activated to open the exit door. The machine waits
until the ‘bag_detected’ input goes low.

7. The ‘open_exit’ output is deactivated to close the door. The machine waits until
the ‘exit_door closed’ input is high before returning to the ‘idle state.

8. In the alarm state an operator input ‘key’ must be active to open the exit door.
After this input is released the door will close and return to the ‘idle’ state.

+ sqrt(mass)nitrates
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16. ADVANCED LADDER LOGIC FUNCTIONS

Topics:
« Shift registers, stacks and sequencers
* Program control; branching, looping, subroutines, temporary ends and one shots
* Interrupts; timed, fault and input driven
» Immediate inputs and outputs
* Block transfer
* Conversion of State diagrams using program subroutines
* Design examples

Objectives:
» To understand shift registers, stacks and sequencers.
* To understand program control statements.
* To understand the use of interrupts.
* To understand the operation of immediate input and output instructions.
* To be prepared to use the block transfer instruction later.
* Be able to apply the advanced function in ladder logic design.

16.1 INTRODUCTION

This chapter covers advanced functions, but this definition is somewhat arbitrary.
The array functions in the last chapter could be classified as advanced functions. The func-
tions in this section tend to do things that are not oriented to simple data values. The list
functions will allow storage and recovery of bits and words. These functions are useful
when implementing buffered and queued systems. The program control functions will do
things that don’t follow the simple model of ladder logic execution - these functions rec-
ognize the program is executed left-to-right top-to-bottom. Finally, the input output func-
tions will be discussed, and how they allow us to work around the normal input and output
scans.

16.2 LIST FUNCTIONS

16.2.1 Shift Registers

Shift registers are oriented to single data bits. A shift register can only hold so
many bits, so when a new bit is put in, one must be removed. An example of a shift regis-
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ter is given in Figure 16.1. The shift register is the word ’example’, and it is 5 bits long.
When 4 becomes true the bits all shift right to the least significant bit. When they shift a
new bit is needed, and it is taken from new_bit. The bit that is shifted out, on the right
hand side, is moved to the control word UL (unload) bit ¢. UL. This function will not com-
plete in a single ladder logic scan, so the control word c is used. The function is edge trig-
gered, so 4 would have to turn on 5 more times before the bit just loaded from new_bit
would emerge to the unload bit. When 4 has a positive edge the 5 bits in example will be
shifted in memory. In this case it is taking the value of bit example.( and putting it in the
control word bit c. UL. It then shifts the bits once to the right, example.0 = example. 1 then
example.l = example.2 then example.2 = example.3 then example.3 = example.4. Then
the input bit is put into the most significant bit example.4 = new_bit. The bits in the shift
register would be shifted to the left with the BSR function.

bits shift right
—

olojlo|-——~|o|o]lolo|o|o|0|0O|0O|O|0O|O|0O|LSB

" / |—,\02

new_bit 5 c.UL

example

A BSR
B File example
Control ¢

Bit address new_bit
Length 5

BSL - shifts left from the LSB to the MSB. The LSB must be supplied
BSR - similar to the BSL, except the bit is input to the MSB and shifted to the LSB

Figure 16.1  Shift Register Functions

There are other types of shift registers not implemented in the ControlLogix pro-
cessors. These are shown in Figure 16.2. The primary difference is that the arithmetic
shifts will put a zero into the shift register, instead of allowing an arbitrary bit. The rotate
functions shift bits around in an endless circle. These functions can also be implemented
using the BSR and BSL instructions when needed.
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Arithmetic Shift Left (ASL)
carry msb
0 0] 0] 0] 0] 0] 0] O

> 7

Arithmetic Shift Right (ASR)

O\Loooooooq

Rotate Left (ROL)
0] 0| 0] 0] 0] O] O] O
carry
0

Rotate Right (ROR)

© |z
c

carry

J U

Figure 16.2  Shift Register Variations

16.2.2 Stacks

Stacks store integer words in a two ended buffer. There are two basic types of
stacks; first-on-first-out (FIFO) and last-in-first-out (LIFO). As words are pushed on the
stack it gets larger, when words are pulled off it gets smaller. When you retrieve a word
from a LIFO stack you get the word that is the entry end of the stack. But, when you get a
word from a FIFO stack you get the word from the exit end of the stack (it has also been
there the longest). A useful analogy is a pile of work on your desk. As new work arrives
you drop it on the top of the stack. If your stack is LIFO, you pick your next job from the
top of the pile. If your stack is FIFO, you pick your work from the bottom of the pile.
Stacks are very helpful when dealing with practical situations such as buffers in produc-
tion lines. If the buffer is only a delay then a FIFO stack will keep the data in order. If
product is buffered by piling it up then a LIFO stack works better, as shown in Figure 16.3.
In a FIFO stack the parts pass through an entry gate, but are stopped by the exit gate. In the
LIFO stack the parts enter the stack and lower the plate, when more parts are needed the
plate is raised. In this arrangement the order of the parts in the stack will be reversed.
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entry gate exit gate
- —
FIFO
o O O O o O O O o O O
>
LIFO H
o O O O O O O o O O O O

Figure 16.3  Buffers and Stack Types

The ladder logic functions are FFL to load the stack, and FFU to unload it. The
example in Figure 16.4 shows two instructions to load and unload a FIFO stack. The first
time this FFL is activated (edge triggered) it will grab the word (16 bits) from the input
card word_in and store them on the stack, at stack/0]. The next value would be stored at
stack[1], and so on until the stack length is reached at stack/4]. When the FFU is activated
the word at stack/0] will be moved to the output card word_out. The values on the stack
will be shifted up so that the value previously in stack/1] moves to stack[0], stack[2]
moves to stack/1], etc. If the stack is full or empty, an a load or unload occurs the error bit
will be set c.ER.
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FFL

| source word_in
FIFO stack[0]
Control ¢
length 5
position 0

FFU

I I FIFO stack[0]
destination word out
Control ¢

length 5

position 0

Figure 16.4  FIFO Stack Instructions

The LIFO stack commands are shown in Figure 16.5. As values are loaded on the
stack the will be added sequentially stack[0], stack[1], stack[2], stack[3] then stack[4].
When values are unloaded they will be taken from the last loaded position, so if the stack
is full the value of stack[4] will be removed first.

LFL

|| source word_in
LIFO stack[0]
Control ¢
length 5
position 0

LFU

| LIFO stack[0]
destination word_out
Control ¢

length 5

position 0

Figure 16.5 LIFO Stack Commands
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16.2.3 Sequencers

A mechanical music box is a simple example of a sequencer. As the drum in the
music box turns it has small pins that will sound different notes. The song sequence is
fixed, and it always follows the same pattern. Traffic light controllers are now controlled
with electronics, but previously they used sequencers that were based on a rotating drum
with cams that would open and close relay terminals. One of these cams is shown in Fig-
ure 16.6. The cam rotates slowly, and the surfaces under the contacts will rise and fall to
open and close contacts. For a traffic light controllers the speed of rotation would set the
total cycle time for the traffic lights. Each cam will control one light, and by adjusting the
circumferential length of rises and drops the on and off times can be adjusted.

As the cam rotates it makes contact
with none, one, or two terminals, as
determined by the depressions and

m rises in the rotating cam.

Figure 16.6 A Single Cam in a Drum Sequencer

A PLC sequencer uses a list of words in memory. It recalls the words one at a time
and moves the words to another memory location or to outputs. When the end of the list is
reached the sequencer will return to the first word and the process begins again. A
sequencer is shown in Figure 16.7. The SQO instruction will retrieve words from bit
memory starting at sequence/0]. The length is 4 so the end of the list will be at
sequence[0]+4 or sequence[4] (the total length of ’sequence’ is actually 5). The sequencer
is edge triggered, and each time 4 becomes true the retrieve a word from the list and move
it to output lights. When the sequencer reaches the end of the list the sequencer will return
to the second position in the list sequence/1]. The first item in the list is sequence/0], and
it will only be sent to the output if the SQO instruction is active on the first scan of the
PLC, otherwise the first word sent to the output is sequence/1]. The mask value is 000Fh,
or 0000000000001111b so only the four least significant bits will be transferred to the out-
put, the other output bits will not be changed. The other instructions allow words to be
added or removed from the sequencer list.
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|| SQO

File sequence[0]

Mask 000F

Destination output_lights
Control ¢

Length 4

Position 0

SQO(start,mask,destination,control,length) - sequencer output from table to memory
SQI(start,mask,source,control,length) - sequencer input from memory address to table
SQL(start,source,control,length) - sequencer load to set up the sequencer parameters

Figure 16.7  The Basic Sequencer Instruction

An example of a sequencer is given in Figure 16.8 for traffic light control. The
light patterns are stored in memory (entered manually by the programmer). These are then
moved out to the output card as the function is activated. The mask (003Fh =
0000000000111111b) is used so that only the 6 least significant bits are changed.
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advance
| | SQO
N File light pattern
Mask 003Fh
Destination lights output
Control ¢
Length 4
Position 0
light_pattern[0] {0 0| 0[0|0|0|0|0|0|0|0]|O]1[0|0|1
0/{0/0/0|0|0|0O|O|O|O|0O|O|1]1]0]0
0/{0/0/0|0|0|0O|O|O|O|O|O|1]0|1]0
0/{0/0|0|0|0|0O|O|0O|O|1]0|0]0O|0]1
light pattern[1] 0/{0/0|0|0|0|0O|0O|0O|O|0O]|1]0]0|0]1
222757
e A
(@] o'_' = o
5 g b

Figure 16.8 A Sequencer For Traffic Light Control

Figure 16.9 shows examples of the other sequencer functions. When 4 goes from
false to true, the SQL function will move to the next position in the sequencer list, for
example sequence_rem/[1], and load a value from input word. If A then remains true the
value in sequence rem[1] will be overwritten each scan. When the end of the sequencer
list is encountered, the position will reset to 1.

The sequencer input (SQI) function will compare values in the sequence list to the
source compare_word while B is true. If the two values match match_output will stay on
while B remains true. The mask value is 0005k or 0000000000000101b, so only the first
and third bits will be compared. This instruction does not automatically change the posi-
tion, so logic is shown that will increment the position every scan while C is true.
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A
| soL
File sequence rem[0]
Source input_ word
Control ¢ 1
Length 9
Position 0
B
|| SQI match_output
I File sequence rem[0] @
Mask 0005
Source compare word
Control ¢_2
Length 9
Position 0
1 © ADD
|| SourceA ¢ 2.POS
SourceB 1
Dest ¢ 2.POS
GT MOV
SourceA ¢ 2.POS Source 1
SourceB 9 Dest ¢ 2.POS

Figure 16.9  Sequencer Instruction Examples

These instructions are well suited to processes with a single flow of execution,
such as traffic lights.

16.3 PROGRAM CONTROL

16.3.1 Branching and Looping

These functions allow parts of ladder logic programs to be included or excluded
from each program scan. These functions are similar to functions in other programming
languages such as C, C++, Java, Pascal, etc.

Entire sections of programs can be bypassed using the JMP instruction in Figure
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16.10. If A4 is true the program will jump over the next three lines to the line with the LBL
Label 01.1f A is false the JMP statement will be ignored, and the program scan will con-
tinue normally. If 4 is false X will have the same value as B, and Y can be turned on by C
and off by D. If A4 is true then X and Y will keep their previous values, unlike the MCR
statement. Any instructions that follow the LBL statement will not be affected by the JMP
so Z will always be equal to E. If a jump statement is true the program will run faster.

A
| |
| JMP If A is true, the program
Label 01 will jump to LBL:01.
B If A is false the pro-

X gram goes to the next
line.

=

=<

Label 01 E

N

LBL ||

OOOO

Figure 16.10 A JMP Instruction

Subroutines jump to other programs, as is shown in Figure 16.11. When 4 is true
the JSR function will jump to the subroutine program in file 3. The JSR instruction two
arguments are passed, 4 and B. The subroutine (SBR) function receives these two argu-
ments and puts them in X and ¥. When B is true the subroutine will end and return to pro-
gram file 2 where it was called (Note: a subroutine can have multiple returns). The RET
function returns the value Z to the calling program where it is put in location C. By passing
arguments (instead of having the subroutine use global memory locations) the subroutine
can be used for more than one operation. For example, a subroutine could be given an
angle in degrees and return a value in radians. A subroutine can be called more than once
in a program, but if not called, it will be ignored.
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A JSR (Jump subroutine)
MainProgram || Routine Name: TestSubroutine
| Input par A

Input par B

Return par C

A separate ladder logic program is stored in program file 3. This fea-
ture allows users to create their own functions. In this case if A is
true, then the program below will be executed and then when done
the ladder scan will continue after the subroutine instruction. The
number of data values passed and returned is variable.

SBR (subroutine arguments)

Input par X —2

Input par Y

If ’test’ is true the subroutine will return and the values listed will
TestSubroutine be returned to the return par. For this example the value that is in
’Z’ will be placed in ’C”.

test RET
|| Return par Z

Figure 16.11 Subroutines

The ’FOR’ function in Figure 16.12 will (within the same logic scan) call a sub-
routine 5 times (from 0 to 9 in steps of 2) when 4 is true. In this example the subroutine
contains an ADD function that will add 1 to the value of i. So when this ’FOR’ statement
is complete the value of j will 5 larger. For-next loops can be put inside other for-next
loops, this is called nesting. If A was false the program not call the subroutine. When A is
true, all 5 loops will be completed in a single program scan. If B is true the NXT statement
will return to the FOR instruction, and stop looping, even if the loop is not complete. Care
must be used for this instruction so that the ladder logic does not get caught in an infinite,
or long loop - if this happens the PLC will experience a fault and halt.
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A FOR
B Routine Name: LoopRoutine
index 1
initial value 0
terminal value 9
step size 2

LoopRoutine

SBR

ADD
Source 1
Source 1
Dest j

B

Note: if A is true then the loop will repeat 10 times, and the value of i will be increased
by 10. If A is not true, then the subroutine will never be called.

Figure 16.12 A For-Next Loop

Ladder logic programs always have an end statement, as shown in Figure 16.13.
Most modern software automatically inserts this. PLCs will experience faults if this is not
present. The temporary end (TND) statement will skip the remaining portion of a pro-
gram. If C is true then the program will end, and the next line with D and Y will be
ignored. If C is false then the TND will have no effect and Y will be equal to D.
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A ||B X
|
C
TND
D
@)

When the end (or End Of File) is encountered the PLC will stop scanning the
ladder, and start updating the outputs. This will not be true if it is a subroutine
or a step in an SFC.

Figure 16.13 End Statements

The one shot contact in Figure 16.14 can be used to turn on a ladder run for a sin-
gle scan. When 4 has a positive edge the oneshot will turn on the run for a single scan. Bit
last_bit _value is used here to track to rung status.

‘ A last_bit value

‘ H ONS Q B

N [ L1 [ LI

Figure 16.14 One Shot Instruction
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16.3.2 Fault Handling

A fault condition can stop a PLC. If the PLC is controlling a dangerous process
this could lead to significant damage to personnel and equipment. There are two types of
faults that occur; terminal (major) and warnings (minor). A minor fault will normally set
an error bit, but not stop the PLC. A major failure will normally stop the PLC, but an inter-
rupt can be used to run a program that can reset the fault bit in memory and continue oper-
ation (or shut down safely). Not all major faults are recoverable. A complete list of these
faults is available in PLC processor manuals.

The PLC can be set up to run a program when a fault occurs, such as a divide by
zero. These routines are program files under ’Control Fault Handler’. These routines will
be called when a fault occurs. Values are set in status memory to indicate the source of the
faults.

Figure 16.15 shows two example programs. The default program *MainProgram’
will generate a fault, and the interrupt program called *Recover’ will detect the fault and
fix it. When 4 is true a compute function will interpret the expression, using indirect
addressing. If B becomes true then the value in n/0] will become negative. If 4 becomes
true after this then the expression will become n/10] +10. The negative value for the
address will cause a fault, and program file "Recover’ will be run.

In the fault program the fault values are read with an GSV function and the fault
code is checked. In this case the error will result in a status error of 0x2104. When this is
the case the n[0] is set back to zero, and the fault code in fault data/2] is cleared. This
value is then written back to the status memory using an SSV function. If the fault was not
cleared the PLC would enter a fault state and stop (the fault light on the front of the PLC
will turn on).
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MainProgram I I CPT
Dest n[1]

Expression
n[n[0]] + 10

| | MOV
] Source -10
Dest n[0]

GSV

Object: PROGRAM

Instance: THIS

Recover Attribute: MAJORFAULTRECORD
Dest: fault _data (Note: DINT[11])

MOV

EQU Source 0
SourceA fault data[2] Dest N7:0

SourceB 0x2104

CLR
Dest. fault data[2]

SSV

Object: PROGRAM

Instance: THIS

Attribute: MAJORFAULTRECORD
Dest: fault data

Figure 16.15 A Fault Recovery Program

16.3.3 Interrupts

The PLC can be set up to run programs automatically using interrupts. This is rou-
tinely done for a few reasons;

* to run a program at a regular timed interval (e.g. SPC calculations)
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* to respond when a long instruction is complete (e.g. analog input)
» when a certain input changed (e.g. panic button)

Allen Bradley allows interrupts, but they are called periodic/event tasks. By
default the main program is defined as a ’continuous’ task, meaning that it runs as often as
possible, typically 10-100 times per second. Only one continuos task is allowed. A *peri-
odic’ task can be created that has a given update time. ’Event’ tasks can be triggered by a
variety of actions, including input changes, tag changes, EVENT instructions, and servo
control changes.

A timed interrupt will run a program at regular intervals. To set a timed interrupt
the program in file number should be put in S2:31. The program will be run every S2:30
times 1 milliseconds. In Figure 16.16 program 2 will set up an interrupt that will run pro-
gram 3 every 5 seconds. Program 3 will add the value of 7:000 to N7:10. This type of
timed interrupt is very useful when controlling processes where a constant time interval is
important. The timed interrupts are enabled by setting bit S2:2/1 in PLC-5s.

When activated, interrupt routines will stop the PLC, and the ladder logic is inter-
preted immediately. If multiple interrupts occur at the same time the ones with the higher
priority will occur first. If the PLC is in the middle of a program scan when interrupted
this can cause problems. To overcome this a program can disable interrupts temporarily
using the UID and UIE functions. Figure 16.16 shows an example where the interrupts are
disabled for a FAL instruction. Only the ladder logic between the UID and UIE will be
disabled, the first line of ladder logic could be interrupted. This would be important if an
interrupt routine could change a value between n/0] and n/4]. For example, an interrupt
could occur while the FAL instruction was at n/7/=n/2]+5. The interrupt could change
the values of n/1] and n/4], and then end. The FAL instruction would then complete the
calculations. But, the results would be based on the old value for /7] and the new value
for nf4].
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It ()

UID

FAL

| Control ¢

| length 5

position 0

Mode all

Destination n[5 + ¢.POS]
Expression n[c.POS] + 5

UIE

Figure 16.16 Disabling Interrupts

16.4 INPUT AND OUTPUT FUNCTIONS

16.4.1 Immediate I/0O Instructions

The input scan normally records the inputs before the program scan, and the output
scan normally updates the outputs after the program scan, as shown in Figure 16.17.
Immediate input and output instructions can be used to update some of the inputs or out-
puts during the program scan.
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* The normal operation of the PLC is

fast [input scan
[inp ] Input values scanned

v

Outputs are updated in
memory only, as the
ladder logic is scanned

v

Output values are
updated to match
values in memory

slow [ladder logic is checked]

fast [outputs updated]

Figure 16.17 Input, Program and Output Scan

Figure 16.18 shows a segment within a program that will update the input word
input value, determine a new value for output value. I, and update the output word
output_value immediately. The process can be repeated many times during the program
scan allowing faster than normal response times. These instructions are less useful on
newer PLCs with networked hardware and software, so Allen Bradley does not support
IIN for newer PLCs such as ControlLogix, even though the IOT is supported.
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e.g. Check for nuclear reactor overheat input_value.03 overheat sensor

output value.01 reactor shutdown

[IN \input_value

input_value.3

output value.l

Q@

output value

10T

These added statements can allow the ladder logic to examine a critical
input, and adjust a critical output many times during the execution of
ladder logic that might take too long for safety.

Note: When these instructions are used the normal assumption that all inputs and
outputs are updated before and after the program scan is no longer valid.

Figure 16.18 Immediate Inputs and Outputs

16.5 DESIGN TECHNIQUES

16.5.1 State Diagrams

The block logic method was introduced in chapter 8 to implement state diagrams
using MCR blocks. A better implementation of this method is possible using subroutines
in program files. The ladder logic for each state will be put in separate subroutines.

Consider the state diagram in Figure 16.19. This state diagram shows three states
with four transitions. There is a potential conflict between transitions 4 and C.
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light 0=STA
light 1 =STB
light 2 =STC

first scan

Figure 16.19 A State Diagram

The main program for the state diagram is shown in Figure 16.20. This program is
stored in the MainProgram so that it is run by default. The first rung in the program resets
the states so that the first scan state is on, while the other states are turned off. The follow-
ing logic will call the subroutine for each state. The logic that uses the current state is
placed in the main program. It is also possible to put this logic in the state subroutines.
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S:FS
| @ STB
@ STA
@ STC
STA
I I JSR
sta_transitions
STB
I I JSR
stb_transitions
STC
JSR
stc_transitions
STA
@ light 0
STB
@ light 1
STC
@ light 2

Figure 16.20 The Main Program for the State Diagram (Program File 2)

The ladder logic for each of the state subroutines is shown in Figure 16.21. These
blocks of logic examine the transitions and change states as required. Note that state STB
includes logic to give state C higher priority, by blocking 4 when C is active.
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sta_transitions

B
! @ STA
@ STB
stb_transitions
C
) () sm
A C
|| |
N @ STB
stc_transitions
D
| | @ STC
@ STB

Figure 16.21 Subroutines for the States

The arrangement of the subroutines in Figure 16.20 and Figure 16.21 could experi-
ence problems with racing conditions. For example, if STA is active, and both B and C are
true at the same time the main program would jump to subroutine 3 where STB would be
turned on. then the main program would jump to subroutine 4 where STC would be turned
on. For the output logic STB would never have been on. If this problem might occur, the
state diagram can be modified to slow down these race conditions. Figure 16.22 shows a
technique that blocks race conditions by blocking a transition out of a state until the transi-
tion into a state is finished. The solution may not always be appropriate.
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first scan

Figure 16.22 A Modified State Diagram to Prevent Racing

Another solution is to force the transition to wait for one scan as shown in Figure
16.23 for state STA. A wait bit is used to indicate when a delay of at least one scan has
occurred since the transition out of the state B became true. The wait bit is set by having
the exit transition B true. The B3/0-STA will turn off the wait B3/10-wait when the transi-
tion to state B3/1-STB has occurred. If the wait was not turned off, it would still be on the
next time we return to this state.

Program 3 for STA

sta wait
H @ STA
@ STB
B STA
|| Y Q sta wait

Figure 16.23 Subroutines for State STA to Prevent Racing
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16.6 DESIGN CASES

16.6.1 If-Then

Problem: Convert the following C/Java program to ladder logic.

void main(){
int A;
for(A=1; A<10; A++){
if (A >=5) then A = add(A);

}
¥
int add(int x){
X=x+1;
return Xx;
¥
Solution:
MainProgram |
SES) FOR
| function name: increment
index A
initial value 1
terminal value 10
step size 2
SBR
Increment
GEQ ADD
A A
5 1
Dest A
RET

Figure 16.24 C Program Implementation
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16.6.2 Traffic Light

Problem: Design and write ladder logic for a simple traffic light controller that has
a single fixed sequence of 16 seconds for both green lights and 4 second for both yellow

lights. Use either stacks or sequencers.

Solution: The sequencer is the best solution to this problem.

TON

t
preset 4.0 sec

SQO

File n[0]
mask 0x003F
Dest. O
Control ¢
Length 10

OUTPUTS
0.0 NSG -
O.1 NSY -
O.2 NSR -
O3 EWG
04 EWY

north south green
north south yellow
north south red

- east west green
- east west yellow

0.5 EWR - east west red

Addr. Contents (in binary)
n[0] 0000000000001001
n[1] 0000000000100001
n[2] 0000000000100001
n[3] 0000000000100001
n[4] 0000000000100001
n[5] 0000000000100010
n[6] 0000000000001100
n[7] 0000000000001100
n[8] 0000000000001100
n[9] 0000000000001100
n[10] 0000000000010100

Figure 16.25 An Example Traffic Light Controller

16.7 SUMMARY

« Shift registers move bits through a queue.

» Stacks will create a variable length list of words.
* Sequencers allow a list of words to be stepped through.

* Parts of programs can be skipped with jump and MCR statements, but MCR

statements shut off outputs.
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* Subroutines can be called in other program files, and arguments can be passed.

* For-next loops allow parts of the ladder logic to be repeated.

* Interrupts allow parts to run automatically at fixed times, or when some event
happens.

» Immediate inputs and outputs update I/O without waiting for the normal scans.

16.8 PRACTICE PROBLEMS

1. Design and write ladder logic for a simple traffic light controller that has a single fixed
sequence of 16 seconds for both green lights and 4 seconds for both yellow lights. Use shift
registers to implement it.

2. A PLC is to be used to control a carillon (a bell tower). Each bell corresponds to a musical note
and each has a pneumatic actuator that will ring it. The table below defines the tune to be pro-
grammed. Write a program that will run the tune once each time a start button is pushed. A
stop button will stop the song.

time sequence in seconds

-
0:000/00 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 1516
0:000/00 0 0000 O0OOT1TO0OO0OO0OO0OTO0OUO0OO0OO01
0:000/01 1 0 0000 O0OOOOOOOT1O0O0DO0
0:000/02 1 001 0000 OT1T1UO0OO0OO0OTO0O0
0:000/03 0o 0001 0O0O0OO0OO0O1O0OT1TUO0O0T1TPO0
0:000/04 o 1100 0O0O0OOO0OOOOOOTGO0OO0
0:000/05 0 0 000OT1TTO0OOO0OUOOOOOTU 0O
0:000/06 0o 00001 T1TO0O0OO0OO0OO0OT1TUO0OO0OTO0ODO
0:000/07 0o 0000 O0OOO0OT1 O0O0OOO0OO0OO0OTUO0OO

3. Consider a conveyor where parts enter on one end. they will be checked to be in a left or right
orientation with a vision system. If neither left nor right is found, the part will be placed in a
reject bin. The conveyor layout is shown below.

vision

left right reject

part movement
along conveyor

Dl Pl Ol Pl |

I part sensor
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4. Why are MCR blocks different than JMP statements?

5. What is a suitable reason to use interrupts?

6. When would immediate inputs and outputs be used?

7. Explain the significant differences between shift registers, stacks and sequencers.

8. Design a ladder logic program that will run once every 30 seconds using interrupts. It will
check to see if a water tank is full with input tank full. If it is full, then a shutdown value
(’shutdown’) will be latched on.

9. At MOdern Manufacturing (MOMs), pancakes are made by multiple machines in three flavors;
chocolate, blueberry and plain. When the pancakes are complete they travel along a single belt,
in no specific order. They are buffered by putting them on the top of a stack. When they arrive
at the stack the input *detected’ becomes true, and the stack is loaded by making output ’stack’
high for one second. As the pancakes are put on the stack, a color detector is used to determine
the pancakes type. A value is put in ’color_stack’ (1=chocolate, 2=blueberry, 3=plain) and bit
‘unload’ is made true. A pancake can be requested by pushing a button (’chocolate’, *blue-
berry’, ’plain’). Pancakes are then unloaded from the stack, by making *unload’ high for 1 sec-
ond, until the desired flavor is removed. Any pancakes removed aren’t returned to the stack.
Design a ladder logic program to control this stack.

10. a) What are the two fundamental types of interrupts?
b) What are the advantages of interrupts in control programs?
c) What potential problems can they create?
d) Which instructions can prevent this problem?

11. Write a ladder logic program to drive a set of flashing lights. In total there are 10 lights con-
nected to ’lights[0]’ to ’lights[9]’. At any time every one out of three lights should be on. Every
second the pattern on the lights should shift towards ’lights[9]’.

12. Implement the following state diagram using subroutines.

Fsﬁ
YD
\_/

C D

13. A SQO control word ‘c’ has a value of c.LEN = 5, but the array of values is 6 long. Why?
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16.9 PRACTICE PROBLEM SOLUTIONS

t.DN

TON
Timer t

N

t.DN

Delay 4s

N

BSR

File b[0]

Control cO

Bit address c0.UL
Length 10

BSR

File b[ 1]

Control cl

Bit address ¢c1.UL
Length 10

BSR

File b[2]

Control c2

Bit address ¢2.UL
Length 10

b[0] = 0000 0000 0000 1111 (grn EW)
b[1] = 0000 0000 0001 0000 (yel EW)

BSR

File b[3]

Control c¢3

Bit address ¢3.UL
Length 10

b[2] = 0000 0011 1110 0000 (red EW)
b[3] = 0000 0011 1100 0000 (grn NS)
b[4] = 0000 0000 0010 0000 (yel NS)
b[5] = 0000 0000 0001 1111 (red NS)

BSR

File b[4]

Control c4

Bit address c4.UL
Length 10

BSR

File b[5]

Control ¢5

Bit address ¢5.UL
Length 10




b[0].0
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b[1].0

b[2].0

b[3].0

b[4].0

b[5].0

OO0 0000

grn EW

yel EW

red EW

grn NS

yel NS

red NS
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n[0] = 0000 0000 0000 0000
n[1] = 0000 0000 0000 0110
n[2] = 0000 0000 0001 0000
n[3] = 0000 0000 0001 0000
n[4] = 0000 0000 0000 0100
n[5] = 0000 0000 0000 1000
n[6] = 0000 0000 0100 0000
n[7] = 0000 0000 0110 0000
n[8] = 0000 0000 0000 0001

start

stop

n[9] = 0000 0000 1000 0000

n[10] = 0000 0000 0000 0100
n[11] = 0000 0000 0000 1100
n[12] = 0000 0000 0000 0000
n[13] = 0000 0000 0100 1000
n[14] = 0000 0000 0000 0010
n[15] = 0000 0000 0000 0100
n[16] = 0000 0000 0000 1000

n[17] = 0000 0000 0000 0001

play NEQ

Source A ¢c.POS
Source B 17

() play
TON

t.DN

Timer t
Delay 4s

NS

SQO
File n[0]

Mask 0x00FF
Destination lights
Control ¢

Length 17
Position 0
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assume: . .
sensors.0 = left orientation

sensors. 1 = right orientation

sensors.2 = reject

sensors.3 = part sensor BSR

File b[0]

| Control c0

Bit address sensors.0
Length 4

sensors.3

BSR

File b[1]

Control c1

Bit address sensors. 1
Length 4

BSR

File b[2]

Control c2

Bit address sensors.2
Length 4

O left
O right
O reject

4. In MCR blocks the outputs will all be forced off. This is not a problem for outputs such as
retentive timers and latches, but it will force off normal outputs. IMP statements will skip over
logic and not examine it or force it off.

5. Timed interrupts are useful for processes that must happen at regular time intervals. Polled
interrupts are useful to monitor inputs that must be checked more frequently than the ladder
scan time will permit. Fault interrupts are important for processes where the complete failure
of the PLC could be dangerous.

6. These can be used to update inputs and outputs more frequently than the normal scan time per-
mits.

7. The main differences are: Shift registers focus on bits, stacks and sequencers on words Shift
registers and sequencers are fixed length, stacks are variable lengths
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tank full
Checker } rﬂlf @shutdown

configuration
periodic task
update 30000ms
S1 pancake arrives
pancake o
waiting
requested
(B3/1)

Wait for
type detect

Unloading

pancakes Test Done (B3/0)

pancakes

1 second
delay (T4:1)

T1 = S1eB3/1 Sl = (S1+T2+T5+FS)e Tl eT6
T2 = S2 e B3/2 S2 = (S2+T1eT6+T4)eT2eT3
T3 = S2 e B3/2 S3 = (S3+73)eT4
T4 = S3 e T4:0/DN S4 = (S4+T6)eT7
T5 = S5 e T4:1/DN S5 = (S5+T7)eT5

76 = S1 1:000/3
77 = S4B3/0
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TON

timer t_s3
delay 1s

40 0:001/0

TON

timer t_s5
delay 1s

40 stack

LFL

source color detect
LIFO n[0]

Control ¢

length 10

position 0

LFU

LIFO n[0]

destination waiting_color
Control ¢

length 10

position 0

EQU
SourceA waiting_color
SourceB req_color

40 pancakes match

chocolate

blueberry,

plain

chocolate

O pancake requested

MOV

b]]ueberry

Source 1
Dest req_color

MOV

Source 2
Dest req_color

MOV

|r‘p]]ain

Source 3
Dest req_color
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QTI

©T2

©T3

©T4

QTS

©T6

©T7

OSI

QSZ

©S3

() 4

S f pancake requested

|
S2 pancakes match
S2 pancakes match
S3 t s3.DN
S35 t s5.DN
S f detected

|
Séll unload

|
S T T

| Sk
T2
TS
FS
S2 T T

Sk
Tl \Ef\
T4 |
S3 \4144\
T3 |
S4 \41;7\
|
T6
S5 \E’F\
|

T7

QSS
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10. a) Timed, polled and fault, b) They remove the need to check for times or scan for memory
changes, and they allow events to occur more often than the ladder logic is scanned. ¢) A few
rungs of ladder logic might count on a value remaining constant, but an interrupt might change
the memory, thereby corrupting the logic. d) The UID and UIE

I1.

MOV
source 1001001001 B
dest. B

t-% TON
| t

1s

| | BSR

N File B
Control ¢
Bit c.UL
Length 10

MVM

source B
mask 0x03FF
dest lights
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12.
FS
| |
R (D sto
file 2
(Y st
(U sm
STO
JSR
File 3
ST1
JSR
File 4
ST2
JSR
File 5
A
file 3 @ ST1

@ STO
ET

R

file 4 @ STO
B c @ ST1
M @ ST2
@ ST1
ET

R

file 5 | | @ STI1
@ ST2
ET

R

13. The first element of the array is loaded if the input to the SQO is true on the first scan, but
after that it is never used again. So in this example the array[0] value will be used the first time,
and the array[1] to array[5] values will be used for the normal sequence.
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16.10 ASSIGNMENT PROBLEMS

1. Using 3 different methods write a program that will continuously cycle a pattern of 12 lights
connected to a PLC output card. The pattern should have one out of every three lights set. The
light patterns should appear to move endlessly in one direction.

2. Look at the manuals for the status memory in your PLC.
a) Describe how to run program ’GetBetter’ when a divide by zero error occurs.
b) Write the ladder logic needed to clear a PLC fault.
c¢) Describe how to set up a timed interrupt to run ’Slowly’ every 2 seconds.

3. Write an interrupt driven program that will run once every 5 seconds and calculate the average
of the numbers from *f[0]” to *f[19]’, and store the result in ’f avg’. It will also determine the
median and store it in ’f med’.

4. Write a program for SPC (Statistical Process Control) that will run once every 20 minutes using
timed interrupts. When the program runs it will calculate the average of the data values in
memory locations *fJ0]” to *f[39]” (Note: these values are written into the PLC memory by
another PLC using networking). The program will also find the range of the values by subtract-
ing the maximum from the minimum value. The average will be compared to upper (f ucl x)
and lower (f Icl x) limits. The range will also be compared to upper (f ucl r) and lower
(f_Icl_r) limits. If the average, or range values are outside the limits, the process will stop, and
an ‘out of control’ light will be turned on. The process will use start and stop buttons, and
when running it will set memory bit ’in_control’.

5. Develop a ladder logic program to control a light display outside a theater. The display consists
of a row of 8 lights. When a patron walks past an optical sensor the lights will turn on in
sequence, moving in the same direction. Initially all lights are off. Once triggered the lights
turn on sequentially until all eight lights are on 1.6 seconds latter. After a delay of another 0.4
seconds the lights start to turn off until all are off, again moving in the same direction as the
patron. The effect is a moving light pattern that follows the patron as they walk into the theater.

6. Write the ladder logic diagram that would be required to execute the following data manipula-
tion for a preventative maintenance program.

1) Keep track of the number of times a motor was started with toggle switch #1.

i1) After 2000 motor starts turn on an indicator light on the operator panel.

iii) Provide the capability to change the number of motor starts being tracked, prior
to triggering of the indicator light. HINT: This capability will only require the
change of a value in a compare statement rather than the addition of new lines
of logic.

iv) Keep track of the number of minutes that the motor has run.

v) After 9000 minutes of operation turn the motor off automatically and also turn
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on an indicator light on the operator panel.

7. Parts arrive at an oven on a conveyor belt and pass a barcode scanner. When the barcode scan-
ner reads a valid barcode it outputs the numeric code as 32 bits to ’scanner value’ and sets
input ’scanner value valid’. The PLC must store this code until the parts pass through the
oven. When the parts leave the oven they are detected by a proximity sensor connected to
‘part_leaving’. The barcode value read before must be output to ’barcode output’. Write the
ladder logic for the process. There can be up to ten parts inside the oven at any time.

8. Write the ladder logic for the state diagram below using subroutines for the states.
A

— T—a

B

FS —p»

9. Convert the following state diagram to ladder logic using subroutines.

10. Implement the following state diagram using JMP statements.
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17. OPEN CONTROLLERS

Topics:
* Open systems
* [EC 61131 standards
* Open architecture controllers

Objectives:
* To understand the decision between choosing proprietary and public standards.
* To understand the basic concepts behind the IEC 61131 standards.

17.1 INTRODUCTION

In previous decades (and now) PLC manufacturers favored “proprietary” or
“closed” designs. This gave them control over the technology and customers. Essentially,
a proprietary architecture kept some of the details of a system secret. This tended to limit
customer choices and options. It was quite common to spend great sums of money to
install a control system, and then be unable to perform some simple task because the man-
ufacturer did not sell that type of solution. In these situations customers often had two
choices; wait for the next release of the hardware/software and hope for a solution, or pay
exorbitant fees to have custom work done by the manufacturer.

“Open” systems have been around for decades, but only recently has their value
been recognized. The most significant step occurred in 1981 when IBM broke from it’s
corporate tradition and released a personal computer that could use hardware and software
from other companies. Since that time IBM lost control of it’s child, but it has now
adopted the open system philosophy as a core business strategy. All of the details of an
open system are available for users and developers to use and modify. This has produced
very stable, flexible and inexpensive solutions. Controls manufacturers are also moving
toward open systems. One such effort involves Devicenet, which is discussed in a later
chapter.

A troubling trend that you should be aware of is that many manufacturers are mis-
labeling closed and semi-closed systems as open. An easy acid test for this type of system
is the question “does the system allow me to choose alternate suppliers for all of the com-
ponents?” If even one component can only be purchased from a single source, the system
is not open. When you have a choice you should avoid “not-so-open” solutions.
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17.2 IEC 61131

The IEC 1131 standards were developed to be a common and open framework for
PLC architecture, agreed to by many standards groups and manufacturers. They were ini-
tially approved in 1992, and since then they have been reviewed as the IEC-61131 stan-
dards. The main components of the standard are;

IEC 61131-1 Overview

IEC 61131-2 Requirements and Test Procedures
IEC 61131-3 Data types and programming

IEC 61131-4 User Guidelines

IEC 61131-5 Communications

IEC 61131-7 Fuzzy control

This standard is defined loosely enough so that each manufacturer will be able to
keep their own look-and-feel, but the core data representations should become similar.
The programming models (IEC 61131-3) have the greatest impact on the user.

IL (Instruction List) - This is effectively mnemonic programming

ST (Structured Text) - A BASIC like programming language

LD (Ladder Diagram) - Relay logic diagram based programming

FBD (Function Block Diagram) - A graphical dataflow programming method
SFC (Sequential Function Charts) - A graphical method for structuring programs

Most manufacturers already support most of these models, except Function Block
programming. The programming model also describes standard functions and models.
Most of the functions in the models are similar to the functions described in this book. The
standard data types are shown in Figure 17.1.
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Name Type Bits Range
BOOL boolean 1 Oto1
SINT short integer 8 -128 to 127
INT integer 16 -32768 to 32767
DINT double integer 32 -2.1e-9to 2.1e9
LINT long integer 64 -9.2e19 t0 9.2¢19
USINT unsigned short integer | 8 0 to 255
UINT unsigned integer 16 0 to 65536
UDINT unsigned double integer| 32 0 to 4.3e9
ULINT unsigned long integer 64 0 to 1.8e20
REAL real numbers 32
LREAL long reals 64
TIME duration not fixed| not fixed
DATE date not fixed| not fixed
TIME OF DAY, TOD time not fixed| not fixed
DATE _AND TIME, DT | date and time not fixed| not fixed
STRING string variable | variable
BYTE 8 bits 8 NA
WORD 16 bits 16 NA
DWORD 32 bits 32 NA
LWORD 64 bits 64 NA

Figure 17.1 1EC 61131-3 Data Types

Previous chapters have described Ladder Logic (LD) programming in detail, and
Sequential Function Chart (SFC) programming briefly. Following chapters will discuss
Instruction List (IL), Structured Test (ST) and Function Block Diagram (FBD) program-
ming in greater detail.

17.3 OPEN ARCHITECTURE CONTROLLERS

Personal computers have been driving the open architecture revolution. A personal
computer is capable of replacing a PLC, given the right input and output components. As a
result there have been many companies developing products to do control using the per-
sonal computer architecture. Most of these devices use two basic variations;

* a standard personal computer with a normal operating system, such as Windows
NT, runs a virtual PLC.
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- the computer is connected to a normal PLC rack
- I/O cards are used in the computer to control input/output functions
- the computer is networked to various sensors
* a miniaturized personal computer is put into a PLC rack running a virtual PLC.

In all cases the system is running a standard operating system, with some connec-
tion to rugged input and output cards. The PLC functions are performed by a virtual PLC
that interprets the ladder logic and simulates a PLC. These can be fast, and more capable
than a stand alone PLC, but also prone to the reliability problems of normal computers.
For example, if an employee installs and runs a game on the control computer, the control-
ler may act erratically, or stop working completely. Solutions to these problems are being
developed, and the stability problem should be solved in the near future.

17.4 SUMMARY

* Open systems can be replaced with software or hardware from a third party.
» Some companies call products open incorrectly.

» The IEC 61131 standard encourages interchangeable systems.

* Open architecture controllers replace a PLC with a computer.

17.5 PRACTICE PROBLEMS

1. Describe why traditional PLC racks are not *open’.

2. Discuss why the IEC 61131 standards should lead to open architecture control systems.

17.6 PRACTICE PROBLEM SOLUTIONS

1. The hardware and software are only sold by Allen Bradley, and users are not given details to
modify or change the hardware and software.

2. The IEC standards are a first step to make programming methods between PLCs the same. The
standard does not make programming uniform across all programming platforms, so it is not
yet ready to develop completely portable controller programs and hardware.

17.7 ASSIGNMENT PROBLEMS

1. Write a ladder logic program to perform the function outlined below. (Hint: use a structured
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technique.)
1) when the input ‘part’ turns on, the value ‘weight’ should be added to an array in

memory.

ii) if any ‘weight’ value is greater than 15, and output ‘halt’ should be turned on,
and the process should stop. A ‘reset’ input will be turned on to clear the array
and start the process again.

iil) when ‘part’ has been activated 10 times the median of the part weights should
be found. If it is greater that 14 the process should be stopped as described in
step ii).

iv) if the median is less than or equal to 14, then a ‘dump’ output should be turned
on for 2 seconds. After that the matrix should be reset and the process should

begin again.
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18. INSTRUCTION LIST PROGRAMMING

Topics:
* Instruction list (IL) opcodes and operations
* Converting from ladder logic to IL
» Stack oriented instruction delay
* The Allen Bradley version of IL

Objectives:
* To learn the fundamentals of IL programming.
* To understand the relationship between ladder logic and IL programs

Note: Allen Bradley does not offer IL programming as a standard option so this
chapter may be considered optional.

18.1 INTRODUCTION

Instruction list (IL) programming is defined as part of the IEC 61131 standard. It
uses very simple instructions similar to the original mnemonic programming languages
developed for PLCs. (Note: some readers will recognize the similarity to assembly lan-
guage programming.) It is the most fundamental level of programming language - all other
programming languages can be converted to IL programs. Most programmers do not use
IL programming on a daily basis, unless they are using hand held programmers.

18.2 THE IEC 61131 VERSION

To ease understanding, this chapter will focus on the process of converting ladder
logic to IL programs. A simple example is shown in Figure 18.1 using the definitions
found in the IEC standard. The rung of ladder logic contains four inputs, and one output. It
can be expressed in a Boolean equation using parentheses. The equation can then be
directly converted to instructions. The beginning of the program begins at the START:
label. At this point the first value is loaded, and the rest of the expression is broken up into
small segments. The only significant change is that AND NOT becomes ANDN.
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1:000/00 1:000/01
| | Q 0:001/00

1:000/02 I:|000/03
I

read as 0:001/00 =1:000/00 AND ( 1:000/01 OR ( 1:000/02 AND NOT 1:000/03) )

Label Opcode Operand Comment
START: LD %I:000/00 (* Load input bit 00 *)
AND( %I1:000/01 (* Start a branch and load input bit 01 *)
OR( %1:000/02 (* Load input bit 02 *)
ANDN %I1:000/03 (* Load input bit 03 and invert *)
)
)
ST %0:001/00 (* SET the output bit 00 *)

Figure 18.1  An Instruction List Example

An important concept in this programming language is the stack. (Note: if you use
a calculator with RPN you are already familiar with this.) You can think of it as a do later
list. With the equation in Figure 18.1 the first term in the expression is LD 1:000/00, but
the first calculation should be ( 1:000/02 AND NOT I:000/03). The instruction values are
pushed on the stack until the most deeply nested term is found. Figure 18.2 illustrates how
the expression is pushed on the stack. The LD instruction pushes the first value on the
stack. The next instruction is an AND, but it is followed by a ’(’ so the stack must drop
down. The OR( that follows also has the same effect. The ANDN instruction does not need
to wait, so the calculation is done immediately and a result I remains. The next two )’
instructions remove the blocking ’(’ instruction from the stack, and allow the remaining
OR 1:000/1 and AND 1:000/0 instructions to be done. The final result should be a single bit
result 3. Two examples follow given different input conditions. If the final result in the
stack is 0, then the output S7 O:001/0 will set the output, otherwise it will turn it off.
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LD 1:000/0f AND( 1:000/1 | OR( 1:000/2 ANDN 1:000/3 ) )
1:000/0 1:000/1 1:000/2 result 1 result 2 result 3
( ( ( (
AND I:.000/0 | ORTI:000/1 OR 1:000/1 AND 1:000/0
( (
AND 1:000/0 | AND I1:000/0
Given:
1:000/0=1 1 0 1 1 1 1 1
1:000/1=0 ( ( ( ( AND 1
1:000/2 =1 AND 1 OR O OR 0 AND 1
1:000/3=0 ( (
AND 1 AND 1
Given:
1:000/0=0 0 1 0 0 0 0 0
1:000/1 =1 ( ( ( ( AND 1
1:000/2=0 ANDO OR1 OR 1 AND 1
1:000/3 =1 ( (
ANDO ANDO

Figure 18.2  Using a Stack for Instruction Lists

A list of operations is given in Figure 18.3. The modifiers are;

N - negates an input or output
( - nests an operation and puts it on a stack to be pulled off by °)’
C - forces a check for the currently evaluated results at the top of the stack

These operators can use multiple data types, as indicated in the data types column.
This list should be supported by all vendors, but additional functions can be called using
the CAL function.
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Operator| Modifiers | Data Types | Description

LD N many set current result to value

ST N many store current result to location
S,R BOOL set or reset a value (latches or flip-flops)
AND, & | N, ( BOOL boolean and

OR N, ( BOOL boolean or

XOR N, ( BOOL boolean exclusive or

ADD ( many mathematical add

SUB ( many mathematical subtraction

MUL ( many mathematical multiplication

DIV ( many mathematical division

GT ( many comparison greater than >

GE ( many comparison greater than or equal >=
EQ ( many comparison equals =

NE ( many comparison not equal <>

LE ( many comparison less than or equals <=
LT ( many comparison less than <

JMP C,N LABEL jump to LABEL

CAL C,N NAME call subroutine NAME

RET C,N return from subroutine call

) get value from stack

Figure 18.3  IL Operations

18.3 THE ALLEN-BRADLEY VERSION

Allen Bradley only supports IL programming on the Micrologix 1000, and does
not plan to support it in the future. Examples of the equivalent ladder logic and IL pro-
grams are shown in Figure 18.4 and Figure 18.5. The programs in Figure 18.4 show differ-
ent variations when there is only a single output. Multiple IL programs are given where
available. When looking at these examples recall the stack concept. When a LD or LDN
instruction is encountered it will put a value on the top of the stack. The ANB and ORB
instructions will remove the top two values from the stack, and replace them with a single
value that is the result of an Boolean operation. The AND and OR functions take one value
off the top of the stack, perform a Boolean operation and put the result on the top of the
stack. The equivalent programs (to the right) are shorter and will run faster.
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Ladder Instruction List (IL)
A X LD A
Q ST X
A X LDN A
O ST X
A | |B X LD A LD A
| O LDB AND B
ANB ST X
ST X
| |A |B X LD A LD A
e O LDNB  ANDNB
ANB ST X
ST X
A | |C X LD A LD A
| Q LDB OR B
B ORB AND C
LD C ST X
ANB
ST X
A B X LD A LD A
| O LDB LDB
c LD C OR C
ORB ANB
ANB ST X
ST X
A C X LD A LD A
Q LD B OR B
B D ORB LD C
LD C OR D
LD D ANB
ORB ST X
ANB
ST X

Figure 18.4 1L Equivalents for Ladder Logic

Figure 18.5 shows the IL programs that are generated when there are multiple out-
puts. This often requires that the stack be used to preserve values that would be lost nor-
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mally using the MPS, MPP and MRD functions. The MPS instruction will store the current
value of the top of the stack. Consider the first example with two outputs, the value of 4 is
loaded on the stack with LD A. The instruction S7' X examines the top of the stack, but
does not remove the value, so it is still available for ST Y. In the third example the value of
the top of the stack would not be correct when the second output rung was examined. So,
when the output branch occurs the value at the top of the stack is copied using MPS, and
pushed on the top of the stack. The copy is then ANDed with B and used to set X. After
this the value at the top is pulled off with the MPP instruction, leaving the value at the top
what is was before the first output rung. The last example shows multiple output rungs.
Before the first rung the value is copied on the stack using MPS. Before the last rung the
value at the top of the stack is discarded with the MPP instruction. But, the two center
instructions use MRD to copy the right value to the top of the stack - it could be replaced
with MPP then MPS.



plcil - 18.7

Ladder Instruction List (IL)
A
] QX LD A
I ST X
4©Y STY
B <>X LD A LD A
] ST X ST X
B OY LD B AND B
] ANB STY
STY
B B QX LD A LD A
] MPS MPS
C v LD B AND B
O ANB ST X
ST X MPP
MPP AND C
LD C STY
ANB
STY
B B W LD A LD A
] O MPS MPS
C X LD B AND B
Q ANB STW
OY STW MRD
MRD AND C
 E (7 LD C ST X
|1 ANB MRD
ST X STY
MRD MPP
STY AND E
MPP STZ
LDE
ANB
STZ

Figure 18.5  IL Programs for Multiple Outputs

Complex instructions can be represented in IL, as shown in Figure 18.6. Here the
function are listed by their mnemonics, and this is followed by the arguments for the func-
tions. The second line does not have any input contacts, so the stack is loaded with a true
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value.

1:001/0
|| TON

I Timer T4:0
Delay 5s

ADD

SourceA 3

SourceB T4:0.ACC
Dest N7:0

START:LD 1:001/0
TON(T4:0, 1.0, 5, 0)
LD 1
ADD (3, T4:0.ACC, N7:0)
END

Figure 18.6 A Complex Ladder Rung and Equivalent IL

An example of an instruction language subroutine is shown in Figure 18.7. This
program will examine a BCD input on card 1:000, and if it becomes higher than 100 then 2
seconds later output O:001/00 will turn on.
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Program File 2:

Label Opcode Operand Comment

START: CAL 3 (* Jump to program file 3 *)

Program File 3:

Label Opcode Operand Comment

TEST: LD %I1:000 (* Load the word from input card 000 *)
BCD_TO INT (* Convert the BCD value to an integer *)
ST %N7:0 (* Store the value in N7:0 *)
GT 100 (* Check for the stored value (N7:0) > 100 *)
JMPC ON (* If true jump to ON *)
CAL RES(C5:0) | (* Reset the timer *)

ON: LD 2 (* Load a value of 2 - for the preset *)
ST %C5:0.PR  (* Store 2 in the preset value *)
CAL TON(C5:0)  (* Update the timer *)
LD %C5:0.DN  (* Get the timer done condition bit *)
ST %0:001/00  (* Set the output bit *)
RET (* Return from the subroutine *)

Figure 18.7  An Example of an IL Program
18.4 SUMMARY

* Ladder logic can be converted to IL programs, but IL programs cannot always be
converted to ladder logic.
* IL programs use a stack to delay operations indicated by parentheses.
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* The Allen Bradley version is similar, but not identical to the IEC 61131 version
of IL.

18.5 PRACTICE PROBLEMS

18.6 PRACTICE PROBLEM SOLUTIONS

18.7 ASSIGNMENT PROBLEMS

1. Explain the operation of the stack.

2. Convert the following ladder logic to IL programs.
A C

O
=

3. Write the ladder diagram programs that correspond to the following Boolean programs.

LD 001 LD NOT 001
(L)Iﬁ ggé AND 002 AND 002
o8 o0 LD 004 LD 004
D00 AND 005 OR 007
DY OR LD AND 005
Ao OR 007 OR LD
on 007 LD 003 LD 003
DG OR NOT 006 OR NOT 006
AND LD AND LD
OR LD OR NOT 008
OUT 204
OUT 204
AND 009
OUT 206
AND NOT 010

OUT 201



plcst-19.1

19. STRUCTURED TEXT PROGRAMMING

Topics:
* Basic language structure and syntax
* Variables, functions, values
* Program flow commands and structures
* Function names
* Program Example

Objectives:
* To be able to write functions in Structured Text programs
* To understand the parallels between Ladder Logic and Structured Text
* To understand differences between Allen Bradley and the standard

19.1 INTRODUCTION

If you know how to program in any high level language, such as Basic or C, you
will be comfortable with Structured Text (ST) programming. ST programming is part of
the IEC 61131 standard. An example program is shown in Figure 19.1. The program is
called main and is defined between the statements PROGRAM and END _PROGRAM.
Every program begins with statements the define the variables. In this case the variable i is
defined to be an integer. The program follows the variable declarations. This program
counts from 0 to 10 with a loop. When the example program starts the value of integer
memory i will be set to zero. The REPEAT and END REPFEAT statements define the loop.
The UNTIL statement defines when the loop must end. A line is present to increment the
value of i for each loop.
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PROGRAM main ]
VAR Note: Allen Bradley does not implement
i INT: the standard so that the programs can be
END VAR ’ written with text only. When program-
i = 0;_ — ming in RSLogix, only the section indi-
REPEAT / cated to the left would be entered. The
=i+ 1: variable ’i’ would be defined as a tag,
UNTIL i,>= 10; and the program would be defined as a
END_REPEAT; task.
END PROGRAM ~—

Figure 19.1 A Structured Text Example Program

One important difference between ST and traditional programming languages is
the nature of program flow control. A ST program will be run from beginning to end many
times each second. A traditional program should not reach the end until it is completely
finished. In the previous example the loop could lead to a program that (with some modi-
fication) might go into an infinite loop. If this were to happen during a control application
the controller would stop responding, the process might become dangerous, and the con-
troller watchdog timer would force a fault.

ST has been designed to work with the other PLC programming languages. For
example, a ladder logic program can call a structured text subroutine.

19.2 THE LANGUAGE

The language is composed of written statements separated by semicolons. The
statements use predefined statements and program subroutines to change variables. The
variables can be explicitly defined values, internally stored variables, or inputs and out-
puts. Spaces can be used to separate statements and variables, although they are not often
necessary. Structured text is not case sensitive, but it can be useful to make variables lower
case, and make statements upper case. Indenting and comments should also be used to
increase readability and documents the program. Consider the example shown in Figure
19.2.
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FUNCTION sample
GOOD INPUT VAR
start : BOOL; (* a NO start input *)
stop : BOOL; (* a NC stop input *)
END_ VAR
OUTPUT VAR
motor : BOOL;(* a motor control relay
%k
)
END VAR
motor := (motor + start) * stop;(* get the motor output *)
END_FUNCTION

FUNCTION sample
BAD INPUT VAR
START:BOOL;STOP:BOOL;
END VAR
OUTPUT VAR
MOTOR:BOOL;
END VAR
MOTOR:=(MOTOR+START)*STOP;END FUNCTION

Figure 19.2 A Syntax and Structured Programming Example

19.2.1 Elements of the Language

ST programs allow named variables to be defined. This is similar to the use of
symbols when programming in ladder logic. When selecting variable names they must
begin with a letter, but after that they can include combinations of letters, numbers, and
some symbols such as ’ . Variable names are not case sensitive and can include any com-
bination of upper and lower case letters. Variable names must also be the same as other
key words in the system as shown in Figure 19.3. In addition, these variable must not have
the same name as predefined functions, or user defined functions.

Invalid variable names: START, DATA, PROJECT, SFC, SFC2, LADDER, 1/O, ASCII,
CAR, FORCE, PLC2, CONFIG, INC, ALL, YES, NO, STRUCTURED TEXT

Valid memory/variable name examples: TESTER, I, 1:000, 1:000/00, T4:0, T4:0/DN,
T4:0.ACC

Figure 19.3  Acceptable Variable Names
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When defining variables one of the declarations in Figure 19.4 can be used. These
define the scope of the variables. The VAR INPUT, VAR OUTPUT and VAR IN OUT
declarations are used for variables that are passed as arguments to the program or function.
The RETAIN declaration is used to retain a variable value, even when the PLC power has
been cycled. This is similar to a latch application. As mentioned before these are not used
when writing Allen Bradley programs, but they are used when defining tags to be used by
the structured programs.

Declaration Description

VAR the general variable declaration

VAR _INPUT defines a variable list for a function

VAR OUTPUT defines output variables from a function

VAR IN OUT defines variable that are both inputs and outputs from a function

VAR _EXTERNAL
VAR GLOBAL a global variable

VAR _ACCESS

RETAIN a value will be retained when the power is cycled

CONSTANT a value that cannot be changed

AT can tie a variable to a specific location in memory (without this vari-
able locations are chosen by the compiler

END_VAR marks the end of a variable declaration

Figure 19.4  Variable Declarations

Examples of variable declarations are given in Figure 19.5.
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Text Program Line Description

VAR AT %B3:0 : WORD; END VAR a word in bit memory

VAR AT %N7:0 : INT; END VAR an integer in integer memory

VAR RETAIN AT %0:000 : WORD ; END VAR makes output bits retentive

VAR _GLOBAL A AT %I:000/00 : BOOL ; END VAR variable ‘A’ as input bit

VAR GLOBAL A AT %N7:0 : INT ; END VAR variable ‘A’ as an integer

VAR A AT %F8:0 : ARRAY [0..14] OF REAL; END VAR an array ‘A’ of 15 real values

VAR A : BOOL; END VAR a boolean variable ‘A’

VAR A, B, C: INT ; END VAR integers variables ‘A’, ‘B’, ‘C’

VAR A : STRING[10] ; END VAR a string ‘A’ of length 10

VAR A : ARRAY[1..5,1..6,1..7] OF INT; END VAR a 5x6x7 array ‘A’ of integers

VAR RETAIN RTBT A : ARRAY[1..5,1..6] OF INT; a 5x6 array of integers, filled
END_ VAR with zeros after power off

VAR A : B; END VAR ‘A’ is data type ‘B’

VAR CONSTANT A : REAL :=5.12345 ; END VAR a constant value ‘A’

VAR A AT %N7:0 : INT :=55; END VAR ‘A’ starts with 55

VAR A : ARRAYT1..5] OF INT :=[5(3)]; END_VAR ‘A’ starts with 3 in all 5 spots

VAR A : STRING[10] = “test’; END_ VAR ‘A’ contains ‘test’ initially

VAR A : ARRAY[0..2] OF BOOL :=[1,0,1]; END VAR an array of bits

VAR A : ARRAY[0..1,1..5] OF INT :=[5(1),5(2)]; an array of integers filled with 1
END VAR for [0,x] and 2 for [1,x]

Figure 19.5  Variable Declaration Examples

Basic numbers are shown in Figure 19.6. Note the underline ¢ ’ can be ignored, it
can be used to break up long numbers, ie. 10_000 = 10000. These are the literal values dis-

cussed for Ladder Logic.
number type examples
integers -100, 0, 100, 10_000
real numbers -100.0, 0.0, 100.0, 10_000.0
real with exponents -1.0E-2, -1.0e-2, 0.0e0, 1.0E2
binary numbers 2#1TT1111111, 2#1111 1111, 2#1111_1101_0110_0101
octal numbers 8#123, 8#777, 8#14
hexadecimal numbers 16#FF, 16#{f, 16#9a, 16#01
boolean 0, FALSE, 1, TRUE

Figure 19.6  Literal Number Examples
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Character strings defined as shown in Figure 19.7.

example description

< a zero length string

“f o, 87, 88 a single character, a space, or ‘a’, or a single quote, or a dollar

sign $

‘SRSL’, “$r$l’,SODSOA’ produces ASCII CR, LF combination - end of line characters

‘$P°, ‘$p° form feed, will go to the top of the next page

‘ST, “4t’ tab

‘this%Tis a testSR$L’ a string that results in ‘this<TAB>is a test<NEXT LINE>’
Figure 19.7  Character String Data

Basic time and date values are described in Figure 19.8 and Figure 19.9. Although
it should be noted that for ControlLogix the GSV function is used to get the values.

Time Value Examples
25ms T#25ms, T#25.0ms, TIME#25.0ms, T#-25ms, t#25ms
5.5hours TIME#5.3h, T#5.3h, T#5h_30m, T#5h30m

3days, Shours, 6min, 36sec

TIME#3d5h6m36s, T#3d_Sh 6m_36s

Figure 19.8  Time Duration Examples

description examples

date values
time of day
date and time

DATE#1996-12-25, D#1996-12-25
TIME OF DAY#12:42:50.92, TOD#12:42:50.92
DATE AND TIME#1996-12-25-12:42:50.92, DT#1996-12-25-12:42:50.92

Figure 19.9  Time and Date Examples

The math functions available for structured text programs are listed in Figure
19.10. It is worth noting that these functions match the structure of those available for lad-
der logic. Other, more advanced, functions are also available - a general rule of thumb is if
a function is available in one language, it is often available for others.



plc st - 19.7

= assigns a value to a variable
+ addition

- subtraction

/ division

* multiplication

MOD(A,B) modulo - this provides the remainder for an integer divide A/B
SQR(A) square root of A

FRD(A) from BCD to decimal

TOD(A) to BCD from decimal
NEG(A) reverse sign +/-

LN(A) natural logarithm
LOG(A) base 10 logarithm
DEG(A) from radians to degrees
RAD(A) to radians from degrees
SIN(A) sine

COS(A) cosine

TAN(A) tangent

ASN(A) arcsine, inverse sine
ACS(A) arccosine - inverse cosine
ATN(A) arctan - inverse tangent
XPY(A,B) A to the power of B
A**B A to the power of B

Figure 19.10 Math Functions

Functions for logical comparison are given in Figure 19.11. These will be used in
expressions such as [F-THEN statements.

> greater than

>= greater than or equal
= equal

<= less than or equal

< less than

< not equal

Figure 19.11 Comparisons

Boolean algebra functions are available, as shown in Figure 19.12. The can be
applied to bits or integers.
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AND(A,B) logical and

OR(A,B) logical or

XOR(A,B)  exclusive or

NOT(A) logical not

! logical not (note: not implemented on AB controllers)

Figure 19.12 Boolean Functions

The precedence of operations are listed in Figure 19.13 from highest to lowest. As
normal expressions that are the most deeply nested between brackets will be solved first.
(Note: when in doubt use brackets to ensure you get the sequence you expect.)

! - (Note: not available on AB controllers)
9

functions

XPY, **

negation

SQR, TOD, FRD, NOT, NEG, LN, LOG, DEG, RAD, SIN, COS, TAN, ASN, ACS, ATN
* /[, MOD

—{—, -

> >= = <= < <>

AND (for word)

XOR (for word)

OR (for word)

AND (bit)

XOR (bit)

OR (bit)

ladder instructions

Figure 19.13 Operator Precedence

Common language structures include those listed in Figure 19.14.

IF-THEN-ELSIF-ELSE-END IF; normal if-then structure
CASE-value:-ELSE-END CASE; a case switching function
FOR-TO-BY-DO-END_FOR; for-next loop

WHILE-DO-END WHILE;

Figure 19.14 Flow Control Functions



plcst-19.9

Special instructions include those shown in Figure 19.15.

RETAIN(); causes a bit to be retentive
1IN(); immediate input update

EXIT; will quit a FOR or WHILE loop
EMPTY

Figure 19.15 Special Instructions

19.2.2 Putting Things Together in a Program

Consider the program in Figure 19.16 to find the average of five values in a real
array 'f[]’. The FOR loop in the example will loop five times adding the array values.
After that the sum is divided to get the average.

avg :=0;

FOR (i1:=0TO 4) DO
avg :=avg + f[i];

END_FOR;

avg :=avg/5;

Figure 19.16 A Program To Average Five Values In Memory With A For-Loop

The previous example is implemented with a WHILE loop in Figure 19.17. The
main differences is that the initial value and update for ’1i” must be done manually.

avg :=0;

1:=0;

WHILE (i <5) DO
avg = avg + f[i];
1:=1+1;

END_ WHILE;

avg :=avg/5;

Figure 19.17 A Program To Average Five Values In Memory With A While-Loop
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The example in Figure 19.18 shows the use of an IF statement. The example
begins with a timer. These are handled slightly differently in ST programs. In this case if
’b’ is true the timer will be active, if it is false the timer will reset. The second instruction
calls "TONR’ to update the timer. (Note: ST programs use the FBD TIMER type, instead
of the TIMER type.) The IF statement works as normal, only one of the three cases will
occur with the ELSE defining the default if the other two fail.

t.TimerEnable := b;

TONR(t);
IF (a=1) THEN
x:=1;
ELSIF (b=1 AND t.DN = 1) THEN
y=1
IF (I:000/02 = 0) THEN
z:=1;
END IF;
ELSE
x:=0;
y =0;
z:=0;
END IF;

Figure 19.18 Example With An If Statement

Figure 19.19 shows the use of a CASE statement to set bits 0 to 3 of ’a’ based upon
the value of ’test’. In the event none of the values are matched, ’a’ will be set to zero, turn-
ing off all bits.

CASE test OF
0:
a.0:=1;
1:
a.l:=1;
2:
a2 :=1;
3:
a3 :=1;
ELSE
a:=0;

END CASE;
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Figure 19.19 Use of a Case Statement

The example in Figure 19.20 accepts a BCD input from "bed input’ and uses it to
change the delay time for TON delay time. When the input ’test_input’ is true the time
will count. When the timer is done ’set” will become true.

FRD (bcd_input, delay_time);
t.PRE = delay_time;
IF (test_input) THEN
t.EnableTimer := 1;
ELSE
t.EnableTimer := 0;
END IF;
TONR(t);
set :=t.DN;

Figure 19.20 Function Data Conversions

Most of the IEC61131-3 defined functions with arguments are given in Figure
19.21. Some of the functions can be overloaded, for example ADD could have more than
two values to add, and others have optional arguments. In most cases the optional argu-
ments are things like preset values for timers. When arguments are left out they default to
values, typically 0. ControlLogix uses many of the standard function names and argu-
ments but does not support the overloading part of the standard.



Function

ABS(A);

ACOS(A);

ADD(A,B,...);
AND(A,B....);

ASIN(A);

ATAN(A);
BCD TO INT(A);
CONCAT(A,B,...);
COS(A);
CTD(CD:=A,LD:=B,PV:=C);
CTU(CU:=A,R:=B,PV:=C);

CTUD(CU:=A,CD:=B,R:=C,LD:

=D,PV:=E);
DELETE(IN:=A,L:=B,P:=C);
DIV(A,B);
EQ(A,B,C,...);
EXP(A);
EXPT(A,B);
FIND(IN1:=A,IN2:=B);
F TRIG(A);
GE(A,B,C,...);
GT(A,B,C,...);
INSERT(IN1:=A,IN2:=B,P:=C);
INT TO BCD(A);
INT TO_REAL(A);
LE(A,B,C,...);
LEFT(IN:=A,L:=B);
LEN(A);
LIMIT(MN:=A,IN:=B,MX:=C);
LN(A);
LOG(A);
LT(A,B,C,...);
MAX(A,B,...);
MID(IN:=A,L:=B,P:=C);
MIN(A,B,...);
MOD(A,B);
MOVE(A);
MUL(A,B,...);
MUX(A,B,C,...);
NE(A,B);
NOT(A);
OR(A,B,...);
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Description

absolute value of A

the inverse cosine of A

add A+B+...

logical and of inputs A,B,...

the inverse sine of A

the inverse tangent of A

converts a BCD to an integer

will return strings A,B,... joined together

finds the cosine of A

down counter active <=0, A decreases, B loads preset

up counter active >=C, A decreases, B resets

up/down counter combined functions of the up and
down counters

will delete B characters at position C in string A

A/B

will compare A=B=C=...

finds e**A where e is the natural number

A**B

will find the start of string B in string A

a falling edge trigger

will compare A>=B, B>=C, C>=...

will compare A>B, B>C, C>...

will insert string B into A at position C

converts an integer to BCD

converts A from integer to real

will compare A<=B, B<=C, C<=...

will return the left B characters of string A

will return the length of string A

checks to see if B>=A and B<=C

natural log of A

base 10 log of A

will compare A<B, B<C, C<...

outputs the maximum of A,B,...

will return B characters starting at C of string A

outputs the minimum of A,B,...

the remainder or fractional part of A/B

outputs the input, the same as :=

multiply values A*B*....

the value of A will select output B,C,...

will compare A <> B

logical not of A

logical or of inputs A,B,...
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Function Description

REAL TO INT(A); converts A from real to integer
REPLACE(IN1:=A,IN2:=B,L:=  will replace C characters at position D in string A with
C,P:=D); string B

RIGHT(IN:=A,L:=B); will return the right A characters of string B
ROL(IN:=A,N:=B); rolls left value A of length B bits
ROR(IN:=A,N:=B); rolls right value A of length B bits
RS(A,B); RS flip flop with input A and B
RTC(IN:=A,PDT:=B); will set and/or return current system time
R_TRIG(A); a rising edge trigger

SEL(A,B,C); if a=0 output B if A=1 output C
SHL(IN:=A,N:=B); shift left value A of length B bits
SHR(IN:=A,N:=B); shift right value A of length B bits

SIN(A); finds the sine of A

SQRT(A); square root of A

SR(S1:=A,R:=B); SR flipflop with inputs A and B

SUB(A,B); A-B

TAN(A); finds the tangent of A

TOF(IN:=A,PT:=B); off delay timer

TON(IN:=A,PT:=B); on delay timer

TP(IN:=A,PT:=B); pulse timer - a rising edge fires a fixed period pulse
TRUNC(A); converts a real to an integer, no rounding
XOR(A,B,...); logical exclusive or of inputs A,B,...

Figure 19.21 Structured Text Functions

Control programs can become very large. When written in a single program these
become confusing, and hard to write/debug. The best way to avoid the endless main pro-
gram is to use subroutines to divide the main program. The IEC61131 standard allows the
definition of subroutines/functions as shown in Figure 19.22. The function will accept up
to three inputs and perform a simple calculation. It then returns one value. As mentioned
before ControlLogix does not support overloading, so the function would not be able to
have a variable size argument list.
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D :=TEST(1.3, 3.4); (* sample calling program, here C will default to 3.14 *)
E :=TEST(1.3, 3.4, 6.28); (* here C will be given a new value *)

FUNCTION TEST : REAL
VAR _INPUT A, B : REAL; C: REAL :=3.14159; END VAR
TEST :=(A+B)/C;

END FUNCTION

Figure 19.22 Declaration of a Function

19.3 AN EXAMPLE

The example beginning in Figure 19.24 shows a subroutine implementing traffic
lights in ST for the ControlLogix processor. The variable ’state’ is used to keep track of
the current state of the lights. Timer enable bits are used to determine which transition
should be checked. Finally the value of ’state’ is used to set the outputs. (Note: this is pos-

sible because ’=" and ’:=’ are not the same.) This subroutine would be stored under a name
such as *TrafficLights’. It would then be called from the main program as shown in Figure
19.23.

\

‘ Function Name: TrafficLights

Figure 19.23 The Main Traffic Light Program
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SBR();

IF S:FS THEN
state := 0;
green EW.TimerEnable := 1;
yellow EW.TimerEnable := 0;
green NS.TimerEnable := 0;
yellow NS.TimerEnable := 0;

END _IF;

TONR(green EW); TONR(yellow EW);
TONR(green NS); TONR(yellow NS);

CASE state OF
0: IF green EW.DN THEN
state :=1;

green EW.TimerEnable := 0;
yellow EW.TimerEnable := 1;
END IF
l: IF yellow EW.DN THEN
state :=2;
yellow EW.TimerEnable := 0;
green NS.TimerEnable := 1;
END _IF
2: IF green NS.DN THEN
state :=3;
green_NS.TimerEnable := 0;
yellow NS.TimerEnable := 1;
END IF
3: IF yellow NS.DN THEN
state :=0;
yellow NS.TimerEnable := 0;
green EW.TimerEnable := 1;
END IF

light EW_green := (state = 0);

light EW_yellow := (state = 1);
light EW red := (state = 2) OR (state = 3);
light NS green := (state = 2);
light NS yellow := (state = 3);
light NS red := (state = 0) OR (state = 1);

RET();

Figure 19.24 Traffic Light Subroutine

Note: This example is for the AB
ControlLogix platform, so it
does not show the normal
function and tag definitions.
These are done separately in
the tag editor.

state : DINT

green EW : FBD TIMER

yellow EW : FBD TIMER

green NS : FBD TIMER

yellow NS : FBD TIMER

light EW_green : BOOL alias =
rack:1:0.Data.0

light EW_yellow : BOOL alias =
rack:1:0.Data.1

light EW red : BOOL alias =
rack:1:0.Data.2

light NS green : BOOL alias =
rack:1:0.Data.3

light NS yellow : BOOL alias =
rack:1:0.Data.4

light NS red : BOOL alias =
rack:1:0.Data.5
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19.4 SUMMARY

* Structured text programming variables, functions, syntax were discussed.

* The differences between the standard and the Allen Bradley implementation
were indicated as appropriate.

* A traffic light example was used to illustrate a ControlLogix application

19.5 PRACTICE PROBLEMS

1. Write a structured text program that will replace the following ladder logic.

A active

EQU MOV
I I \H\ Source A 20 Source -2
Source B n Destn

A LEQ

Source A n active
Source B 20

ADD
Source A n
Source B 2
Destn

active

active

LOG
Source n

Dest x

SUB
Source A x
Source B 1
Dest x

MUL
Source A x
Source B 2
Dest x

2. Implement the following Boolean equations in a Structured Text program. If the program was
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for a state machine what changes would be required to make it work?

light = (light+ dark e switch) e switch e light

dark = (dark +light e switch) e switch e dark

3. Convert the following state diagram to a Structured Text program.

C

4. A temperature value is stored in F8:0. When it rises above 40 the following sequence should
occur once. Write a ladder logic program that implement this function with a Structured Text
program.

horn _A4|—| [ L

2 5 11 15 Pt (s)
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5. Write a structured text program that will replace the following ladder logic.

A active

EQU MOV
I I \H\ Source A 20 Source -2
Source B n Destn

A LEQ

Source A n active
Source B 20

ADD
Source A n
Source B 2
Destn

active

active

LOG
Source n
Dest x

SUB
Source A x
Source B 1
Dest x

MUL
Source A x
Source B 2
Dest x
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19.6 PRACTICE PROBLEM SOLUTIONS

SBR();
IF A AND NOT (active) AND (20 =n) THEN
=-2;
END_IF
active := (A OR active) AND (n <= 20);
IF active THEN

n:=n-+2;
x := LOG(n);
X =Xx-1;
X:=x*2;
END_IF
RET();
2.
Implemented Exactly
SBR()
light := (light OR dark AND switch) AND NOT (NOT(switch) AND dark) OR S:FS;
dark := (dark OR light AND NOT(switch)) AND NOT(switch AND dark);
RET();
Corrected for State Diagram
SBR()

lightX := (light OR dark AND switch) AND NOT (NOT(switch) AND dark) OR S:FS;
darkX := (dark OR light AND NOT(switch)) AND NOT(switch AND dark);
light := lightX + S:FS;
dark := darkX;
RET();
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SBR()
T1 :=X AND C;
T2 := X AND A AND NOT (C);
T3 :=Y AND B AND NOT (D);
T4 =7 AND E;
T5:=Y AND D;

X := (X OR T4 OR T5) AND NOT (T1 OR T2) OR S:FS
Y := (Y OR T2) AND NOT (T3 OR T5)
Z :=(Z OR T1 OR T3) AND NOT T4;

RET();

SBR()
run := (run OR (F8:0 >= 40)) AND stop;

t 2.TimerEnable := run;
t 5.TimerEnable := run;
t 11.TimerEnable := run;
t 15.TimerEnable := run;
TONR(t_2);

TONR(t_5);
TONR(t_11);
TONR(t_15);

horn := (t 2.DN AND t 5.TT) OR (t 11.DN AND t 15.TT);
RET();
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5.
SBR();
IF A AND NOT (active) AND (20 =n) THEN
n:=-2;
END_IF
active := (A OR active) AND (n <= 20);
IF active THEN
n:=n+2;
x := LOG(n);
X:=x-1;
X =Xx*2;
END IF
RET();

19.7 ASSIGNMENT PROBLEMS

1. Write logic for a traffic light controller using structured text.

2. Write a structured text program to control a press that has an advance and retract with limit
switches. The press is started and stopped with start and stop buttons.

3. Write a structured text program to sort a set of ten integer numbers and then find the median
value.
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20. SEQUENTIAL FUNCTION CHARTS

Topics:
* Describing process control SFCs
* Conversion of SFCs to ladder logic

Objectives:
* Learn to recognize parallel control problems.
* Be able to develop SFCs for a process.
* Be able to convert SFCs to ladder logic.

20.1 INTRODUCTION

All of the previous methods are well suited to processes that have a single state
active at any one time. This is adequate for simpler machines and processes, but more
complex machines are designed perform simultaneous operations. This requires a control-
ler that is capable of concurrent processing - this means more than one state will be active
at any one time. This could be achieved with multiple state diagrams, or with more mature
techniques such as Sequential Function Charts.

Sequential Function Charts (SFCs) are a graphical technique for writing concur-
rent control programs. (Note: They are also known as Grafcet or [IEC 848.) SFCs are a
subset of the more complex Petri net techniques that are discussed in another chapter. The
basic elements of an SFC diagram are shown in Figure 20.1 and Figure 20.2.
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flowlines - connects steps and transitions (these basically indicate sequence)
transition - causes a shift between steps, acts as a point of coordination

Allows control to move to the next step when con-
ditions met (basically an if or wait instruction)

initial step - the first step

step - basically a state of operation. A state often has an associated action

macrostep - a collection of steps (basically a subroutine

step action

Figure 20.1  Basic Elements in SFCs
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selection branch - an OR - only one path is followed

simultaneous branch - an AND - both (or more) paths are followed

Figure 20.2  Basic Elements in SFCs

The example in Figure 20.3 shows a SFC for control of a two door security system.
One door requires a two digit entry code, the second door requires a three digit entry code.
The execution of the system starts at the top of the diagram at the Start block when the
power is turned on. There is an action associated with the Start block that locks the doors.
(Note: in practice the SFC uses ladder logic for inputs and outputs, but this is not shown
on the diagram.) After the start block the diagram immediately splits the execution into
two processes and both steps 1 and 6 are active. Steps are quite similar to states in state
diagrams. The transitions are similar to transitions in state diagrams, but they are drawn
with thick lines that cross the normal transition path. When the right logical conditions are
satisfied the transition will stop one step and start the next. While step 1 is active there are
two possible transitions that could occur. If the first combination digit is correct then step
1 will become inactive and step 2 will become active. If the digit is incorrect then the tran-
sition will then go on to wait for the later transition for the 5 second delay, and after that
step 5 will be active. Step 1 does not have an action associated, so nothing should be done
while waiting for either of the transitions. The logic for both of the doors will repeat once
the cycle of combination-unlock-delay-lock has completed.
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Ist digit
wrong

2nd digit
wrong

Start lock doors
1 . 6
Ist digit
st digit = wrong 15t digit =
2 7
2st digit | 2st digit |
ok I onddigit op ° I
wrong
3
8 unlock#2
3rd digit o
OK 3rd digit 5 sec.
wrong delay™T
4 unlock#1
9 relock#2
5 sec.
delay™T
5 relock#1
Parallel/Concurrent because things happen separately, but at same time
(this can also be done with state transition diagrams)
Figure 20.3  SFC for Control of Two Doors with Security Codes

A simple SFC for controlling a stamping press is shown in Figure 20.4. (Note: this
controller only has a single thread of execution, so it could also be implemented with state
diagrams, flowcharts, or other methods.) In the diagram the press starts in an idle state.
when an automatic button is pushed the press will turn on the press power and lights.
When a part is detected the press ram will advance down to the bottom limit switch. The
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press will then retract the ram until the top limit switch is contacted, and the ram will be
stopped. A stop button can stop the press only when it is advancing. (Note: normal designs
require that stops work all the time.) When the press is stopped a reset button must be
pushed before the automatic button can be pushed again. After step 6 the press will wait
until the part is not present before waiting for the next part. Without this logic the press
would cycle continuously.

1
6 part not
— detected
] 1
reset .
button automatic
button
2 power on
light on
part detect_ )
3 advance on
part hold on
bottom
4 stop 3 e [ 11
—— button
s light off 4 advance off
ghto retract on
advance off
power off
5 tOp
r——limit
6 retract off
part hold off

Figure 20.4  SFC for Controlling a Stamping Press
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The SFC can be converted directly to ladder logic with methods very similar to
those used for state diagrams as shown in Figure 20.5 to Figure 20.9. The method shown is
patterned after the block logic method. One significant difference is that the transitions
must now be considered separately. The ladder logic begins with a section to initialize the
states and transitions to a single value. The next section of the ladder logic considers the
transitions and then checks for transition conditions. If satisfied the following step or tran-
sition can be turned on, and the transition turned off. This is followed by ladder logic to
turn on outputs as requires by the steps. This section of ladder logic corresponds to the
actions for each step. After that the steps are considered, and the logic moves to the fol-
lowing transitions or steps. The sequence examine transitions, do actions then do steps is
very important. If other sequences are used outputs may not be actuated, or steps missed
entirely.
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INITIALIZE STEPS AND TRANSITIO

z

S
first scan

=

step 1

step 2

step 3

step 4

step 5

step 6

transition 1

transition 2

transition 3

transition 4

transition 5

transition 6

transition 7

HOOOOOOOOOOOC

Figure 20.5 SFC Implemented in Ladder Logic
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CHECK TRANSITIONS

automatic on

transition 7

reset button

transition 2

part detect
||

transition 3

bottom limit

transition 4

stop button
| |

Figure 20.6  SFC Implemented in Ladder Logic

POEOEDEDEVOE

step 2

transition 1

step 1

transition 7

step 3

transition 2

step 4

transition 3

transition 4

step 5

transition 3

transition 4
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transition 5 top limit

step 6
I |

transition 5

transition 6 part detected

step 2
I |

transition 6

PERFORM ACTIVITIES FOR STEPS

step 2
I I power
light
step 3
| | advance
part hold
step 4
|| retract
|
advance
step 5

light

advance

power

POEEOOEEEBOOE

Figure 20.7  SFC Implemented in Ladder Logic
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step 6
| | retract
| U
part hold
ENABLE TRANSITIONS
step 1
| | step 1
4@ transition 1
step 2
| | step 2
4@ transition 2
step 3
| | step 3
4@ transition 3
4@ transition 4
step 4
| | step 4
< > transition 5
step 5
| | step 5
< > transition 7

Figure 20.8  SFC Implemented in Ladder Logic
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step 6

@
< > transition 6

Figure 20.9  SFC Implemented in Ladder Logic

Many PLCs also allow SFCs to entered be as graphic diagrams. Small segments of
ladder logic must then be entered for each transition and action. Each segment of ladder
logic is kept in a separate program. If we consider the previous example the SFC diagram
would be numbered as shown in Figure 20.10. The numbers are sequential and are for
both transitions and steps.



2

15 part not
13 m—— detected
.| 8
reset -
button automatic
button

3 power on

light on
part detect_ 10

4 advance on

part hold on
bottom
utton
7 lioht off 5 advance off
1ght 0 retract on
advance off
power off
14 top
—limit

6 retract off

part hold off
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Figure 20.10 SFC Renumbered

Some of the ladder logic for the SFC is shown in Figure 20.11. Each program cor-
responds to the number on the diagram. The ladder logic includes a new instruction, EOT,
that will tell the PLC when a transition has completed. When the rung of ladder logic with
the EOT output becomes true the SFC will move to the next step or transition. when devel-
oping graphical SFCs the ladder logic becomes very simple, and the PLC deals with turn-
ing states on and off properly.
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Program 3 (for step #3)
power
@
4@ light
Program 10 (for transition #10)
part detect
step 2
i EOT) ~ 7
Program 4 (for step #3)
advance
@
_@ part hold
Program 11 (for transition #10)
‘ bottom limit
| | step 2

‘ I EOT

Figure 20.11 Sample Ladder Logic for a Graphical SFC Program

SFCs can also be implemented using ladder logic that is not based on latches, or
built in SFC capabilities. The previous SFC example is implemented below. The first seg-
ment of ladder logic in Figure 20.12 is for the transitions. The logic for the steps is shown
in Figure 20.13.
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—
~
w

—
=
oo

—
~
(o)

=
e

ST7 reset button

ST2 automatic button
ST6 part not detected
ST3 part detect

ST4 bottom limit
ST4 stop button

STS top limit

Figure 20.12 Ladder logic for transitions

QOOQQOQOU
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Figure 20.13 Step logic

ST2 TR2|%
N
TR13
|Fs
I
ST3 TR10
TRS
TR15
ST4 TRll 1 TR}2
N “Ne
TR10
STS TR}4
“Ne
TR11 TR12
ST6 TR13
TR14
ST7 TR|13
N
TR12
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Aside: The SFC approach can also be implemented with traditional programming lan-
guages. The example below shows the previous example implemented for a Basic
Stamp II microcontroller.

autoon = 1; detect=2; bottom=3; top=4; stop=5;reset=6 ‘define input pins
input autoon; input detect; input button; input top; input stop; input reset
s1=1; s2=0; s3=0; s4=0; s5=0; s6=0 ‘set to initial step
advan=7;onlite=8; hold=9;retrac=10 ‘define outputs

output advan; output onlite; output hold; output retrac

stepl: if s1<>1 then step2; s1=2

step2: if s2<>1 then step3; s2=2

step3: if s3<>1 then step4; s3=2

step4: if s4<>1 then step5; s4=2

step5: if s5<>1 then step6; s5=2

step6: if s6<>1 then transl; s6=2

trans1: if (inl<>1 or s1<>2) then trans2;s1=0;s2=1

trans2: (if in2<>1 or s2<>2) then trans3;s2=0;s3=1

trans3: .....occceevieene

stepal: if (st2<>1) then goto stepa2: high onlite

goto stepl

Figure 20.14 Implementing SFCs with High Level Languages

20.2 A COMPARISON OF METHODS

These methods are suited to different controller designs. The most basic control-
lers can be developed using process sequence bits and flowcharts. More complex control
problems should be solved with state diagrams. If the controller needs to control concur-
rent processes the SFC methods could be used. It is also possible to mix methods together.
For example, it is quite common to mix state based approaches with normal conditional
logic. It is also possible to make a concurrent system using two or more state diagrams.

20.3 SUMMARY

* Sequential function charts are suited to processes with parallel operations
* Controller diagrams can be converted to ladder logic using MCR blocks
* The sequence of operations is important when converting SFCs to ladder logic.
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20.4 PRACTICE PROBLEMS

1. Develop an SFC for a two person assembly station. The station has two presses that may be
used at the same time. Each press has a cycle button that will start the advance of the press. A
bottom limit switch will stop the advance, and the cylinder must then be retracted until a top
limit switch is hit.

2. Create an SFC for traffic light control. The lights should have cross walk buttons for both direc-
tions of traffic lights. A normal light sequence for both directions will be green 16 seconds and
yellow 4 seconds. If the cross walk button has been pushed, a walk light will be on for 10 sec-
onds, and the green light will be extended to 24 seconds.

3. Draw an SFC for a stamping press that can advance and retract when a cycle button is pushed,
and then stop until the button is pushed again.

4. Design a garage door controller using an SFC. The behavior of the garage door controller is as
follows,

- there is a single button in the garage, and a single button remote control.

- when the button is pushed the door will move up or down.

- if the button is pushed once while moving, the door will stop, a second push will
start motion again in the opposite direction.

- there are top/bottom limit switches to stop the motion of the door.

- there is a light beam across the bottom of the door. If the beam is cut while the
door is closing the door will stop and reverse.

- there is a garage light that will be on for 5 minutes after the door opens or closes.
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20.5 PRACTICE PROBLEM SOLUTIONS

1.
start
|
start button #1 start button #2

press #1 adv. press #2 adv.
__ | bottom limit switch #1 __ | bottom limit switch #2

press #1 retract press #2 retract
__ | top limit switch #1 __ | top limit switch #2

press #1 off press #2 off
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Start

EW crosswalk button

red NS, green EW
walk light on for 10s

24s delay

NO EW crosswalk button

red NS, green EW

1 6s delay

red NS, yellow EW

= 4s delay

e EW crosswalk button

red NS, green EW
walk light on for 10s

o 24s delay

—O EW crosswalk button

red NS, green EW

——t— 05 delay

red NS, yellow EW

o 4s delay
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start

idle

cycle button

advance

advance limit switch

retract

retract limit switch
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step 1

step 2

button + remote

step 3

close door

T3

light beam

T2

button + remote + bottom limit

step 4

T4

button + remote

open door

button + remote + top limit



first scan
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LOOOOOEGE

step 1

step 2

step 3

step 4

step 5

=

]
&

—
(O8]

=~
N

—
w
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L )step3

-

remote
T1

button

remote
T2

button

bottom limit

L ) step4

—
)

—
w

L )step5

—
w

L )step5

—
N~

L )step2

light beam
T3
remote
T4
button
remote
T5
button
top limit

—
w

.
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| | step 2 door open
| U
door close
step 4 < >
step 3 Q door close
L
step 5 Q door open
L
step 3 TOF
T4:0
preset 300s
step 5

T4:O/|D?I

Q garage light



step 1

plc sfc -

20.25

step 1

step 2

step 2

step 2

step 3

=

step 3

step 4

—
w

step 4

step 5

=~
N

step 5

20.6 ASSIGNMENT PROBLEMS

—
w

HOOOOOEH0E

1. Develop an SFC for a vending machine and expand it into ladder logic.
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21. FUNCTION BLOCK PROGRAMMING

Topics:
* The basic construction of FBDs
* The relationship between ST and FBDs
* Constructing function blocks with structured text
* Design case

Objectives:
* To be able to write simple FBD programs

21.1 INTRODUCTION

Function Block Diagrams (FBDs) are another part of the IEC 61131-3 standard.
The primary concept behind a FBD is data flow. In these types of programs the values
flow from the inputs to the outputs, through function blocks. A sample FBD is shown in
Figure 21.1. In this program the inputs 4 and B are used to calculate a value sin(4) * In(B).
The result of this calculation is compared to C. If the calculated value is less than C then
the output X is turned on, otherwise it is turned off. Many readers will note the similarity
of the program to block diagrams for control systems.

A SIN LES
MUL
A X
B
B
LN
C

Figure 21.1 A Simple Calculation and Comparison Program
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It is possible to disable part of the FBDs using enables. These are available for
each function block but may not be displayed. Figure 21.2 shows an XOR calculation.
Both of the Boolean AND functions have the enable inputs connected to ’enable’. If
’enable’ is true, then the system works as expected and the output "X’ is the exclusive OR
of ’A’ and ’B’. However if ’enable’ is off then the BAND functions will not operate. In
this case the ’enable’ input is not connected to the BOR function, but because it relies on
the outputs from the BAND blocks, it will not function, and the output X’ will not be
changed.

BAND
¢ BNOT

in0

in 1 BOR

in 0 - X

BAND in 1
EN
in 0
in 1

BNOT

Figure 21.2  Using Enables in FBDs

A FBD program is constructed using function blocks that are connected together to
define the data exchange. The connecting lines will have a data type that must be compat-
ible on both ends. The inputs and outputs of function blocks can be inverted. This is nor-
mally shown with a small circle at the point where the line touches the function block, as
shown in Figure 21.3. (Note: this is NOT available for Allen Bradley RSLogix, so BNOT
functions should be used instead.)

input output input output

40——0—

inverted input inverted output

Figure 21.3  Inverting Inputs and Outputs on Function Blocks
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The basic functions used in FBD programs are equivalent to the basic set used in
Structured Text (ST) programs. Consider the basic addition function shown in Figure 21.4.
The ST function on the left adds 4 and B, and stores the result in O. The function block on
the right is equivalent. By convention the inputs are on the left of the function blocks, and
the outputs on the right.

Structural Text Function Function Block Equivalent
A— ——— 0
O := ADD(A, B); B ADD

Figure 21.4 A Simple Function Block

Some functions allow a variable number of arguments. In Figure 21.5 there is a
third value input to the ADD block. This is known as overloading.

Structural Text Function Function Block Equivalent

A— O
O = ADD(A, B, C); B ADD

C

Figure 21.5 A Function with A Variable Argument List

The ADD function in the previous example will add all of the arguments in any
order and get the same result, but other functions are more particular. Consider the circular
limit function shown in Figure 21.6. In the first ST function the maximum MX, minimum
MN and test IN values are all used. In the second function the MX value is not defined and
will default to 0. Both of the ST functions relate directly to the function blocks on the right
side of the figure.
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Structural Text Function Function Block Equivalent
A— | MN —— 0
O :=LIM(MN := A, IN :=B, MX :=C); LIM
B— | IN
C MX
O :=LIM(MN := A, IN :=B); A— | MN LIM O
B— | IN

Figure 21.6  Function Argument Lists

21.2 CREATING FUNCTION BLOCKS

When developing a complex system it is desirable to create additional function
blocks. This can be done with other FBDs, or using other IEC 61131-3 program types.
Figure 21.7 shows a divide function block created using ST. In this example the first state-
ment declares it as a FUNCTION BLOCK called divide. The input variables a and b, and
the output variable ¢ are declared. In the function the denominator is checked to make sure
it is not 0. If not, the division will be performed, otherwise the output will be zero.

FUNCTION_BLOCK divide
VAR _INPUT
a: INT;
divide b: INT;
END VAR
a VAR _OUTPUT
c c: INT;
b END VAR
IF b<>0 THEN
c:=a/b;
ELSE
c:=0;
END IF;
END FUNCTION BLOCK

Figure 21.7  Function Block Equivalencies
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21.3 DESIGN CASE

A simple state diagram is shown in Figure 21.8.

STA

Figure 21.8  An Example State Diagram

The state diagram is implemented in FBD form in Figure 21.9. In this case the
transition equations approach was used, although other methods are equally applicable.
The transitions ’'STA TO STB’,"STB_TO_STA’,’STB TO STC’, and ’'STC_TO_STA’
are calculated first. These are then used to update the states ’STA’, ’STB’, and *STC’.
Additional program steps could then be added to drive outputs.
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STA BAND STA_TO_STB
A

STB BAND STB_TO STA
B

C —1 BNOT

STB BAND STB_TO STC
C

STC BAND STC_TO STA
D

STA BOR BAND [ STA
STB. TO STA —

STC_TO_STA

S:FS

STA_TOSTB — [ proT

STB BOR BAND | STB
STA TO STB

STB_TO_STA — [ pNOT

STB_TO_STC — [ pNOT

STC BOR BAND —  STC
STB TO STC —

STC_TOSTA — [ gnoT

Figure 21.9  An FBD Implementation of a State Diagram Using Transition Equations
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* FBDs use data flow from left to right through function blocks
* Inputs and outputs can be inverted

* Function blocks can have variable argument list sizes
* When arguments are left off default values are used
* Function blocks can be created with ST

21.5 PRACTICE PROBLEMS

1. Draw a timing diagram for the following FBD program.

run

TONR
Timer: tl
TimerEnable

TONR
Timer: t2

TimerEnable

TONR
Timer: t4
TimerEnable

TONR
Timer: t5

TimerEnable

horn

start BOR
run BAND
stop
t5.DN NOT
t1.PRE = 1000
t2.PRE = 2000
t4. PRE = 4000
t5.PRE = 5000
tT.DN
BAND
2.TT BOR
B5TT
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2. Write a function block diagram program that will replace the following ladder logic.

A active

EQU MOV
i I \H\ Source A 20 Source -2

Source B n Dest n

A LEQ

Source A n active
Source B 20

ADD
Source A n
Source B 2
Destn

active

active

LOG
Source n
Dest x

SUB
Source A x
Source B 1
Dest x

MUL
Source A x
Source B 2
Dest x

3. Write a Function Block Diagram program to implement the following timing diagram. The
sequence should begin when a variable ‘temp’ rises above 80.

horn _A4’—| | L e

2 5 11 15 Pt (s)

4. Develop a FBD for a system that will monitor a high temperature salt bath. The systems has
start and stop buttons as normal. The temperature for the salt bath is available in temp. If the
bath is above 250 C then the heater should be turned off. If the temperature is below 220 C
then the heater should be turned on. Once the system has been in the acceptable range for 10
minutes the system should shut off.
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5. Write a function block diagram program that will replace the following ladder logic.

A active

EQU MOV
i I \H\ Source A 20 Source -2
Source B n Destn

A LEQ

Source A n active
Source B 20

ADD
Source A n
Source B 2
Destn

active

active

LOG
Source n
Dest x

SUB
Source A x
Source B 1
Dest x

MUL
Source A x
Source B 2
Dest x

6. Write a structured text program that reads inputs from ‘channel 0’. An input string of ‘CLEAR’
will clear a storage array. Up to 100 real values with the format ‘XXX.XX’ will arrive on ‘channel
0’ and are to be stored in the array. If the string ‘AVG’ is received, the average of the array con-
tents will be calculated and written out ‘Channel 0°.
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- t(s)

P

SEL

mo <"

in 1

select

active

horn T
| 2 4 5
2.
20 EQU
L | BAND

n
active

BNOT

-
A — L
BOR
BAND

n

LEQ
20
1 SUB
n ADD LOG

SR

SEL
in0

in 1

MUL

select
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temp
GRT run
80
BOR TONR
Timer: t2
run
BAND ® TimerEnable
stop
TONR
t15.DN NOT Timer: t5
TimerEnable
TONR
Timer: t11
TimerEnable
TONR
t2.DN BAND Timer: t15
TimerEnable
t5.TT BOR
horn
tI11.DN BAND
tI5.TT
start
BOR i
=— ™|
| o
TimerEnable
t10.DN NOT
250 LW NOT
LES E
test
cs % BAND BAND
>0 LES heater
BOR

heater
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SEL

mo <"

in 1l

select

20 EQU
L | BAND

n
active

BNOT

-
A ) L
BOR
BAND

n

LEQ
20
1 SUB
n ADD LOG

N

active

SEL
mno

in 1

MUL

select
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6.
SBR();
IF S:FS THEN
1=0;
END IF;
ACB(0, ¢);
IF c.POS = 6 THEN
ARL(O, str_in, s);
IF 1 <100 THEN
r[i] = STOR(str_in);
1:=1+1;
END IF;
ELSE
ARL(O0, str_in, s);
IF str_in = str_clear THEN
1:=0;
END IF
IF str_in =str avg THEN
sum :=0;
FOR j =0 to length-1 DO
sum := sum + r[j];
END FOR;
str_out := RTOS(sum / 1);
AWT(0, str_out, s);
END IF;
END IF;
RET();

21.7 ASSIGNMENT PROBLEMS

Tags:

r:REAL[100]

1:INT

J:INT

sum:REAL
c:SerialPortControl
s:SerialPortControl

str in:STRING
str_out:STRING
str_clear:STRING = “CLEAR”
str_ avg:STRING = “AVG”

1. Convert the following state diagram to ladder logic using Function Block Diagrams.

C
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22. ANALOG INPUTS AND OUTPUTS

Topics:
* Analog inputs and outputs

» Sampling issues; aliasing, quantization error, resolution
* Analog I/O with a PLC

Objectives:
* To understand the basics of conversion to and from analog values.
* Be able to use analog I/O on a PLC.

22.1 INTRODUCTION

An analog value is continuous, not discrete, as shown in Figure 22.1. In the previ-
ous chapters, techniques were discussed for designing logical control systems that had
inputs and outputs that could only be on or off. These systems are less common than the
logical control systems, but they are very important. In this chapter we will examine ana-
log inputs and outputs so that we may design continuous control systems in a later chapter.

Voltage or Current

A
[ ’ — )
’ 4 & continuous
Y4 Y4 ~ .
4 P 4 - -
— ~ | r 4 >

Figure 22.1  Logical and Continuous Values

Typical analog inputs and outputs for PLCs are listed below. Actuators and sensors
that can be used with analog inputs and outputs will be discussed in later chapters.

Inputs:
* oven temperature
* fluid pressure
* fluid flow rate
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Outputs:
* fluid valve position
* motor position
* motor velocity

This chapter will focus on the general principles behind digital-to-analog (D/A)
and analog-to-digital (A/D) conversion. The chapter will show how to output and input
analog values with a PLC.

22.2 ANALOG INPUTS

To input an analog voltage (into a PLC or any other computer) the continuous volt-
age value must be sampled and then converted to a numerical value by an A/D converter.
Figure 22.2 shows a continuous voltage changing over time. There are three samples
shown on the figure. The process of sampling the data is not instantaneous, so each sample
has a start and stop time. The time required to acquire the sample is called the sampling
time. A/D converters can only acquire a limited number of samples per second. The time
between samples is called the sampling period 7, and the inverse of the sampling period is
the sampling frequency (also called sampling rate). The sampling time is often much
smaller than the sampling period. The sampling frequency is specified when buying hard-
ware, but for a PLC a maximum sampling rate might be 20Hz.

Voltage is sampled during these time periods

voltage

,—\\_///\

time

- | » =

T = (Sampling Frequency)’! Sampling time

Figure 22.2  Sampling an Analog Voltage
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A more realistic drawing of sampled data is shown in Figure 22.3. This data is
noisier, and even between the start and end of the data sample there is a significant change
in the voltage value. The data value sampled will be somewhere between the voltage at the
start and end of the sample. The maximum (Vmax) and minimum (Vmin) voltages are a

function of the control hardware. These are often specified when purchasing hardware, but
reasonable ranges are;

OV to 5V
0V to 10V
-5V to 5V
-10V to 10V

The number of bits of the A/D converter is the number of bits in the result word. If
the A/D converter is § bit then the result can read up to 256 different voltage levels. Most
A/D converters have 12 bits, 16 bit converters are used for precision measurements.
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where,

V(t) = the actual voltage over time

Tt = sample interval for A/D converter

t = time

t;, 1, = time at start,end of sample

V(t,), V(t,) = voltage at start, end of sample

y ..,V = input voltage range of A/D converter

min®> © max

N = number of bits in the A/D converter

Figure 22.3  Parameters for an A/D Conversion

The parameters defined in Figure 22.3 can be used to calculate values for A/D con-
verters. These equations are summarized in Figure 22.4. Equation 1 relates the number of
bits of an A/D converter to the resolution. In a normal A/D converter the minimum range
value, Rmin, is zero, however some devices will provide 2’s compliment negative num-
bers for negative voltages. Equation 2 gives the error that can be expected with an A/D
converter given the range between the minimum and maximum voltages, and the resolu-
tion (this is commonly called the quantization error). Equation 3 relates the voltage range
and resolution to the voltage input to estimate the integer that the A/D converter will
record. Finally, equation 4 allows a conversion between the integer value from the A/D
converter, and a voltage in the computer.
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— N _ 1
R=2 = Rmax_Rmin M
v _ (Vmax — Vmin) (2)
ERROR 2R
V.-V, .
v, - INTKM) (R—1)+ Rmm} 3)
Vmax o Vmin
c - (rlln)m) ( Vmax - Vmin) + Vmin (4)
where,

R,R, ., R, . = absolute and relative resolution of A/D converter

V; = the integer value representing the input voltage
Ve = the voltage calculated from the integer value

Verror = the maximum quantization error

Figure 22.4  A/D Converter Equations

Consider a simple example, a 10 bit A/D converter can read voltages between -
10V and 10V. This gives a resolution of 1024, where 0 is -10V and 1023 is +10V. Because
there are only 1024 steps there is a maximum error of £9.8mV. If a voltage of 4.564V is
input into the PLC, the A/D converter converts the voltage to an integer value of 745.
When we convert this back to a voltage the result is 4.565V. The resulting quantization
error is 4.565V-4.564V=+0.001V. This error can be reduced by selecting an A/D converter
with more bits. Each bit halves the quantization error.
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Given,
N=10,R, ;, =0
Vour = 10V
Viin = =10V
V,, = 4564V
Calculate,

N
R=R,, =2 =1024

Verron (M

”) = 0.0098V
2R

V. —V .
v, = INT[(V’”—”””) (R— 1)+o} — 745

max Vmin

VI_
Ve = (R—l Voo = Vinin) T Vpin = 4565V

Figure 22.5  Sample Calculation of A/D Values

If the voltage being sampled is changing too fast we may get false readings, as
shown in Figure 22.6. In the upper graph the waveform completes seven cycles, and 9
samples are taken. The bottom graph plots out the values read. The sampling frequency
was too low, so the signal read appears to be different that it actually is, this is called alias-

ing.
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Figure 22.6  Low Sampling Frequencies Cause Aliasing

The Nyquist criterion specifies that sampling frequencies should be at least twice
the frequency of the signal being measured, otherwise aliasing will occur. The example in
Figure 22.6 violated this principle, so the signal was aliased. If this happens in real appli-
cations the process will appear to operate erratically. In practice the sample frequency
should be 4 or more times faster than the system frequency.

fAD > 2fsignal where, .
f4p = sampling frequency

fsi gnal = maximum frequency of the input

There are other practical details that should be considered when designing applica-
tions with analog inputs;

* Noise - Since the sampling window for a signal is short, noise will have added
effect on the signal read. For example, a momentary voltage spike might result
in a higher than normal reading. Shielded data cables are commonly used to
reduce the noise levels.

* Delay - When the sample is requested, a short period of time passes before the
final sample value is obtained.

» Multiplexing - Most analog input cards allow multiple inputs. These may share
the A/D converter using a technique called multiplexing. If there are 4 channels
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using an A/D converter with a maximum sampling rate of 100Hz, the maximum
sampling rate per channel is 25Hz.

» Signal Conditioners - Signal conditioners are used to amplify, or filter signals
coming from transducers, before they are read by the A/D converter.

* Resistance - A/D converters normally have high input impedance (resistance), so
they do not affect circuits they are measuring.

» Single Ended Inputs - Voltage inputs to a PLC can use a single common for mul-
tiple inputs, these types of inputs are called single ended inputs. These tend to
be more prone to noise.

* Double Ended Inputs - Each double ended input has its own common. This
reduces problems with electrical noise, but also tends to reduce the number of
inputs by half.
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Vin above (+ve) or below (-ve) Ve

ASIDE: This device is an 8 bit A/D converter. The main concept behind this is the succes-
sive approximation logic. Once the reset is toggled the converter will start by setting
the most significant bit of the 8 bit number. This will be converted to a voltage Ve that
is a function of the +/-Vref values. The value of Ve is compared to Vin and a simple
logic check determines which is larger. If the value of Ve is larger the bit is turned off.
The logic then repeats similar steps from the most to least significant bits. Once the last
bit has been set on/off and checked the conversion will be complete, and a done bit can
be set to indicate a valid conversion value.

Vin

+Vref

clock —p

reset

O L

successive
approximation
logic

Dto A
converter

done

O
-Vref

8

data out

\

Quite often an A/D converter will multiplex between various inputs. As it switches the
voltage will be sampled by a sample and hold circuit. This will then be converted to a
digital value. The sample and hold circuits can be used before the multiplexer to collect
data values at the same instant in time.

Figure 22.7 A Successive Approximation A/D Converter

22.3 ANALOG OUTPUTS

Analog outputs are much simpler than analog inputs. To set an analog output an
integer is converted to a voltage. This process is very fast, and does not experience the

timing problems with analog inputs. But, analog outputs are subject to quantization errors.

Figure 22.8 gives a summary of the important relationships. These relationships are
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almost identical to those of the A/D converter.

_ N _ 5
R=2 = Rmax_Rmin )
_ (Vmax_ Vmin) (6)

VERROR 2R

Viesived = Vimi
VI — INT|:( a{/eszred 7 mm) (R-1) +Rmin:| (7)

max min

y+v . (8)

min

Voutput - (Tin)m)(l/max_ Vmin

where,

R,R,;.,R, . = absolute and relative resolution of A/D converter
Verror = the maximum quantization error

V; = the integer value representing the desired voltage
Voutpur = the voltage output using the integer value

V jesirea = the desired analog output value

Figure 22.8  Analog Output Relationships

Assume we are using an 8 bit D/A converter that outputs values between 0V and
10V. We have a resolution of 256, where 0 results in an output of 0V and 255 results in
10V. The quantization error will be 20mV. If we want to output a voltage of 6.234V, we
would specify an output integer of 159, this would result in an output voltage of 6.235V.

The quantization error would be 6.235V-6.234V=0.001V.
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Given,
N=8 R, =0
Viar = 10V
Voin = OV

Vdesired = 6234V
Calculate,
R=R,, =2"=256

%

—V_.

V. —V .
v, - INT[(H)(R—I)JrO} ~ 159

max min

V,—
Ve = (RI_ f)(Vmax_ V.. )tV . = 6235V

The current output from a D/A converter is normally limited to a small value, typi-
cally less than 20mA. This is enough for instrumentation, but for high current loads, such
as motors, a current amplifier is needed. This type of interface will be discussed later. If
the current limit is exceeded for 5V output, the voltage will decrease (so don’t exceed the

rated voltage). If the current limit is exceeded for long periods of time the D/A output may
be damaged.
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ASIDE:
5KQ
10KQ v ‘%
MSB bit 3 . — |- *
20K & ’
bit2 AArA_ 4 * *
Computer 6 0 v,
40KQ
bit 1 AAAA o
o
80KQ _
LSB bit0 A AnA

First we write the obvious,
V., =0=7V_
Next, sum the currents into the inverting input as a function of the output voltage and the
input voltages from the computer,
Vs, Vo, , Vo, Vb, 4

— 0

10KQ 20KQ 40KQ B80KQ 5KQ
¥V, =05V, +025V, +0.125V, +0.0625V,

Consider an example where the binary output is 1110, with 5V for on,

LV, = 0.5(5V)+025(5V)+0.125(5V) + 0.625(0V) = 4.375V

Figure 22.9 A Digital-To-Analog Converter

22.4 ANALOG INPUTS AND OUTPUTS WITH CONTROLLOGIX

In this section analog I/0 will be discussed using a 1794-IE4XOE2/B 4 Input/
20utput 24V DC Non-Isolated Analog module. The card has a 12 bit resolution. To use
this module it is defined under the "I/O Configuration’. While configuring the module the
following options are available.

» Update rate (Requested Packet Interval) 2-750ms
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* Input channel ranges for channels 0 to 3
4 to 20mA
0 to 10V/0 to 20mV
-10 to 10V
* Output channel ranges for channel 0 and 1
4 to 20mA
0 to 10V/0 to 20mV
-10 to 10V

After the card is configured the configuration words are available in the ’controller
scooped tags’. These are listed below with descriptions assuming the card is in ’rack:2:’.
The configuration words may also be used to update the card during operation. To do this
the values are changed using normal program statements to read or write to values.

rack:2:C.ChOSafeStateConfig - Sets the safe state when the module update fails
rack:2:C.ChlSafeStateConfig - Sets the safe state when the module update fails
rack:2:C.ChOInputFullRange - 0 =4-20mA; 1 = -10-10V,0-10V,0-20mA
rack:2:C.ChlInputFullRange - 0 =4-20mA; 1 =-10-10V,0-10V,0-20mA
rack:2:C.Ch2InputFullRange - 0 =4-20mA; 1 = -10-10V,0-10V,0-20mA
rack:2:C.Ch3InputFullRange - 0 =4-20mA; 1 = -10-10V,0-10V,0-20mA
rack:2:C.ChOOututFullRange - 0 =4-20mA; 1 =-10-10V,0-10V,0-20mA
rack:2:C.Ch1OutputFullRange - 0 = 4-20mA; 1 =-10-10V,0-10V,0-20mA
rack:2:C.ChOInputConfigSelect - 0 = 0-10V, 0-20mA; 1 = 4-20mA, -10V-10V
rack:2:C.ChlInputConfigSelect - 0 = 0-10V, 0-20mA; 1 = 4-20mA, -10V-10V
rack:2:C.Ch2InputConfigSelect - 0 = 0-10V, 0-20mA; 1 = 4-20mA, -10V-10V
rack:2:C.Ch3InputConfigSelect - 0 = 0-10V, 0-20mA; 1 = 4-20mA, -10V-10V
rack:2:C.ChO0OutputConfigSelect - 0 = 0-10V, 0-20mA; 1 =4-20mA, -10V-10V
rack:2:C.Ch10OutputConfigSelect - 0 = 0-10V, 0-20mA; 1 =4-20mA, -10V-10V
rack:2:C.SSChOOutputData - A safe output value for channel 0
rack:2:C.SSCh1OutputData - A safe output value for channel 1

rack:2:1.Fault - Returns a fault code for the module

rack:2:1.ChOInputData - The analog input value read on channel 0
rack:2:1.ChlInputData - The analog input value read on channel 1
rack:2:1.Ch2InputData - The analog input value read on channel 2
rack:2:1.Ch3InputData - The analog input value read on channel 3
rack:2:1.ChOInputUnderrange - The channel O current is below 4mA
rack:2:1.ChlInputUnderrange - The channel 1 current is below 4mA
rack:2:1.Ch2InputUnderrange - The channel 2 current is below 4mA
rack:2:1.Ch3InputUnderrange - The channel 3 current is below 4mA
rack:2:1.ChOOutputOpenWire - The output current is zero - indicates broken wire
rack:2:1.Ch1OutputOpenWire - The output current is zero - indicates broken wire
rack:2:1.PowerUp - The module is configured and running normally

rack:2:0.ChO0OutputData - The analog output voltage for channel 0
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rack:2:0.Ch1OutputData - The analog output voltage for channel 1

Figure 22.10 shows a simple analog IO example with some error checking. The
system uses start and stop buttons to operate, along with a check for module errors. If the
system is running the input voltage from input channel 0 will be divided by two and then
set as the output voltage for output channel 0. If the system is not running the output volt-
age on channel zero is set to 0 (0V).

start stop
N EQU
| | 0 run
run rack:2:1.Fault
run
| CPT

| Dest: rack:2:0.ChOOutputData
Exp.: "rack:2:1.ChOInputData / 2"

| MOV
BN ;

rack:2:0.ChOOutputData

Figure 22.10 A Voltage Divide by Two Example

Although the card is a 12 bit card, it uses data values as if it has 15 digits of accu-
racy. Hence the valid range for the card is -32,768 to 32,767.

22.4.1 ANALOG INPUTS AND OUTPUTS WITH A PLC-5

(NOTE: This section is optional but is included for historical perspective.)

The PLC 5 ladder logic in Figure 22.11 will control an analog input card. The
Block Transfer Write (BTW) statement will send configuration data from integer memory
to the analog card in rack 0, slot 0. The data from N7:30 to N7:66 describes the configura-
tion for different input channels. Once the analog input card receives this it will start doing
analog conversions. The instruction is edge triggered, so it is run with the first scan, but
the input is turned off while it is active, BT10:0/EN. This instruction will require multiple
scans before all of the data has been written to the card. The update input is only needed if
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the configuration for the input changes, but this would be unusual. The Block Transfer
Read (BTR) will retrieve data from the card and store it in memory N7:10 to N7:29. This
data will contain the analog input values. The function is edge triggered, so the enable bits
prevent it from trying to read data before the card is configured BT10:0/EN. The BT10:1/
EN bit will prevent if from starting another read until the previous one is complete. With-
out these the instructions experience continuous errors. The MOV instruction will move
the data value from one analog input to another memory location when the BTR instruc-
tion is done.

update  pyyg.0/EN BTW

| Rack: 0
/1/1/ Group: 0
Module: 0
BT Array: BT10:0
Data File: N7:30
Length: 37
Continuous: no

S2:1/15

BT10:0/EN BT10:1/EN BTR

Rack: 0
/H/ /H/ Group: 0
Module: 0
BT Array: BT10:1
Data File: N7:10
Length: 20
Continuous: no

BT10:1/DN MOV note:

I I Source N7:15 analog
Dest N7:0 channel #2

Note: The basic operation is that the BTW will send the control block to the input
card. The inputs are used because the BTR and BTW commands may take longer
than one scan.

Figure 22.11 Ladder Logic to Control an Analog Input Card

The data to configure a /771-IFE Analog Input Card is shown in Figure 22.12.
(Note: each type of card will be different, and you need to refer to the manuals for this
information.) The 1771-IFE is a 12 bit card, so the range will have up to 2**12 = 4096
values. The card can have 8 double ended inputs, or 16 single ended inputs (these are set
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with jumpers on the board). To configure the card a total of 37 data words are needed. The
voltage range of different inputs are set using the bits in word 0 (N7:30) and 1 (N7:31).
For example, to set the voltage range on channel 10 to -5V to 5V we would need to set the
bits, N7:31/3 = 1 and N7:31/2 = 0. Bits in data word 2 (N7:32) are set to determine the
general configuration of the card. For example, if word 2 was 0001 0100 0000 0000b the
card would be set for; a delay of 00010 between samples, to return 2s compliment results,
using single ended inputs, and no filtering. The remaining data words, from 3 to 36, allow
data values to be scaled to a new range. Words 3 and 4 are for channel 1, words 5 and 6 are
for channels 2 and so on. To scale the data, the new minimum value is put in the first word
(word 3 for channel 1), and the maximum value is put in the second word (word 4 for
channel 1). The card then automatically converts the actual data reading between 0 and
4095 to the new data range indicated in word 3 and 4. One oddity of this card is that the
data values for scaling must always be BCD, regardless of the data type setting. The man-
ual for this card claims that putting zeros in the scaling values will cause the card to leave
the data unscaled, but in practice it is better to enter values of 0 for the minimum and 4095
for the maximum.



plc analog - 22.17

N7:30

0 R8| RE| R7| R7| R6| R6 | R5| R5| R4| R4| R3| R3| R2| R2| R1 | RI1
1 R16| R16/ R15 R15 R14| R14| RI13| R13|] R12| R12| R11| RI11| RI10[] R10| R9 | R9
2/|S|S|S|S|S|ININ|\T|F|F|F|F|F|F|F|F
3 L1
4 Ul
5 L2
6 U2
1
1
33 L15
34 Ul5
35 L16
36 Ule6
R1,R2,...R16 - range values 00 1to5V
01 0to5V
10 -5to 5V

11 -10 to 10V

T - input type - (0) gives single ended, (1) gives double ended

N - data format - 00 BCD
01 not used
10 2’s complement binary

11 signed magnitude binary

F - filter function - a value of (0) will result in no filtering, up to a value of (99BCD)
S - real time sampling mode - (0) samples always, (11111binary) gives long delays.
L1,L2,...L16 - lower input scaling word values

UL,U2,...,Ul6 - upper input scaling word values

Figure 22.12 Configuration Data for an 1771-IFE Analog Input Card

The block of data returned by the BTR statement is shown in Figure 22.13. Bits 0-
2 in word 0 (N7:10) will indicate the status of the card, such as error conditions. Words 1
to 4 will reflect status values for each channel. Words 1 and 2 indicate if the input voltage
is outside the set range (e.g., -5V to 5V). Word 3 gives the sign of the data, which is
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important if the data is not in 2s compliment form. Word 4 indicates when data has been
read from a channel. The data values for the analog inputs are stored in words from 5 to
19. In this example, the status for channel 9 are N7:11/8 (under range), N7:12/8 (over
range), N7:13/8 (sign) and N7:14/8 (data read). The data value for channel 9 is in N7:13.

N7:10

ul6| uls5| ul4| ul3| ul2| ull| ul0f u9 u8 u7 | u6 [ us u4 | u3 u2 ul

v16| v15| v14| v13| vI2| vIl| vIO| v9 [ v8 v7 | v6 | V5 vd | V3 v2 | vl

s16| s15| sl14| s13| s12| sll| sl0| s9 s8 s7 s6 s5 s4 s3 s2 sl

WO = O

dl | d1 | d1 | d1 | d1 | d1 | d1 | d1 | d1 | d1I | d1 | d1 | d1 | d1 | d1 | dI

-¢---

19 d16| die| die| die| die| die| die| d16| di6| di6| d16| die| di6| dl6| di6| dl16

D - diagnostics

u - under range for input channels
v - over range for input channels
s - sign of data

d - data values read from inputs

Figure 22.13 Data Returned by the 1771-IFE Analog Input Card

Most new PLC programming software provides tools, such as dialog boxes to help
set up the data parameters for the card. If these aids are not available, the values can be set
manually in the PLC memory.

The PLC-5 ladder logic in Figure 22.14 can be used to set analog output voltages
with a 1771-OFE Analog Output Card. The BTW instruction will write configuration
memory to the card (the contents are described later). Values can also be read back from
the card using a BTR, but this is only valuable when checking the status of the card and
detecting errors. The BTW is edge triggered, so the BT10:0/EN input prevents the BTW
from restarting the instruction until the previous block has been sent. The MOV instruc-
tion will change the output value for channel 1 on the card.
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BT10:0/EN Block Transfer Write
Module Type Generic Block Transfer

/H/ Rack 000

Group 3

Module 0

Control Block BT10:0
Data File N9:0
Length 13

Continuous No

Source 300
Dest N9:0

uﬁ)dlate MOV
||

Figure 22.14 Controlling a 1771-OFE Analog Output Card

The configuration memory structure for the 1771-OFE Analog Output Card is
shown in Figure 22.15. The card has four 12 bit output channels. The first four words set
the output values for the card. Word 0 (N9:0) sets the value for channel 1, word 1 (N9:1)
sets the value for channel 2, etc. Word 4 configures the card. Bit 16 (N9:4/15) will set the
data format, bits 5 to 12 (/4 to /11) will enable scaling factors for channels, and bits 1 to 4
(/0 to /3) will provide signs for the data in words 0 to 3. The words from 5 to 13 allow
scaling factors, so that the values in words 0 to 3 can be provided in another range of val-
ues, and then converted to the appropriate values. Good default values for the scaling fac-
tors are 0 for the lower limit and 4095 for the upper limit.
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N9:0 D1

D2

D3

D4

L1

Ul

L2

U2

O 00 3 O U K~ W N — O

L3

[
(-

u3

—
—

L4

[
\S]

U4

D - data value words for channels 1, 2, 3 or 4

f - data format bit (1) binary, (0) BCD

s - scaling factor bits

p - data sign bits for the four output channels

L - lower scaling limit words for output channels 1, 2, 3 or 4
U - upper scaling limit words for output channels 1, 2, 3 or 4

Figure 22.15 Configuration Data for a 1771-OFE Output Card

22.4.2 Pulse Width Modulation (PWM) Outputs

An equivalent analog output voltage can be generated using pulse width modula-
tion, as shown in Figure 22.16. In this method the output circuitry is only capable of out-
puting a fixed voltage (in the figure *A’) or OV. To obtain an analog voltage between the
maximum and minimum the voltage is turned on and off quickly to reduce the effective
voltage. The output is a square wave voltage at a high frequency, typically over 20Khz,
above the hearing range. The duty cycle of the wave determines the effective voltage of
the output. It is the percentage of time the output is on relative to the time it is off. If the
duty cycle is 100% the output is always on. If the wave is on for the same time it is off the
duty cycle is 50%. If the wave is always off, the duty cycle is 0%.



plc analog - 22.21

IAA
o V= A
|
1/\‘ —
34
vy .=24
|
A
Al P A
\ \ ‘ y. =4
¢ eff o
|
A
Al_ P ] A
‘ y. =4
¢ ef 4
|
A
A
¢ Verr = 0
e

Figure 22.16 Pulse Width Modulated (PWM) Signals

PWM is commonly used in power electronics, such as servo motor control sys-
tems. In this case the response time of the motor is slow enough that the motor effectively
filters the high frequency of the signal. The PWM signal can also be put through a low
pass filter to produce an analog DC voltage.
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Aside: A basic low pass RC filter is shown below. This circuit is suitable for an analog
output that does not draw much current. (drawing too much current will result in large

losses across the resistor.) The corner frequency can be easily found by looking at the
circuit as a voltage divider.

O * O
R
VPWM _ C Vanalog
O ¢ O
L
oC 1
Vanalog = Vewi RJ+ 1 - VPWM(W)
joC
Vanalog _ 1

Vewy JOCRA+1

corner frequenc

o 1 - q y
CR

As an example consider that the PWM signal is used at a frequency of 100KHz, an it is to
be used with a system that has a response time (time constant) of 0.1seconds. Therefore
the corner frequency should be between 10Hz (1/0.1s) and 100KHz. This can be put at
the mid point of 1000Hz, or 6.2Krad/s. This system also requires the arbitrary selection

of a resistor or capacitor value. We will pick the capacitor value to be 0.1uF so that we
don’t need an electrolytic.

Figure 22.17 Converting a PWM Signal to an Analog Voltage

In some cases the frequency of the output is not fixed, but the duty cycle of the out-
put is maintained.

22.4.3 Shielding

When a changing magnetic field cuts across a conductor, it will induce a current
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flow. The resistance in the circuits will convert this to a voltage. These unwanted voltages
result in erroneous readings from sensors, and signal to outputs. Shielding will reduce the
effects of the interference. When shielding and grounding are done properly, the effects of
electrical noise will be negligible. Shielding is normally used for; all logical signals in
noisy environments, high speed counters or high speed circuitry, and all analog signals.

There are two major approaches to reducing noise; shielding and twisted pairs.
Shielding involves encasing conductors and electrical equipment with metal. As a result
electrical equipment is normally housed in metal cases. Wires are normally put in cables
with a metal sheath surrounding both wires. The metal sheath may be a thin film, or a
woven metal mesh. Shielded wires are connected at one end to "drain" the unwanted sig-
nals into the cases of the instruments. Figure 22.18 shows a thermocouple connected with
a thermocouple. The cross section of the wire contains two insulated conductors. Both of
the wires are covered with a metal foil, and final covering of insulation finishes the cable.
The wires are connected to the thermocouple as expected, but the shield is only connected
on the amplifier end to the case. The case is then connected to the shielding ground, shown
here as three diagonal lines.

—~ — — — — — — — — — — — —

Insulated wires
Two conductor

shielded cable

cross section Metal sheath

Insulating cover

Figure 22.18 Shielding for a Thermocouple

A twisted pair is shown in Figure 22.19. The two wires are twisted at regular inter-
vals, effectively forming small loops. In this case the small loops reverse every twist, so
any induced currents are cancel out for every two twists.
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1" or less typical

Figure 22.19 A Twisted Pair

When designing shielding, the following design points will reduce the effects of
electromagnetic interference.

* Avoid “noisy” equipment when possible.

* Choose a metal cabinet that will shield the control electronics.

* Use shielded cables and twisted pair wires.

* Separate high current, and AC/DC wires from each other when possible.

* Use current oriented methods such as sourcing and sinking for logical 1/0O.
* Use high frequency filters to eliminate high frequency noise.

* Use power line filters to eliminate noise from the power supply.

22.5 DESIGN CASES

22.5.1 Process Monitor

Problem: Design ladder logic that will monitor the dimension of a part in a die. If
the

Solution:

22.6 SUMMARY

* A/D conversion will convert a continuous value to an integer value.

* D/A conversion is easier and faster and will convert a digital value to an analog
value.

* Resolution limits the accuracy of A/D and D/A converters.

 Sampling too slowly will alias the real signal.

 Analog inputs are sensitive to noise.

* The analog I/O cards are configured with a few words of memory.

* BTW and BTR functions are needed to communicate with the analog I/O cards
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for older PLCs such as the PLC-5s.
* Analog shielding should be used to improve the quality of electrical signals.

22.7 PRACTICE PROBLEMS

1. Analog inputs require:
a) A Digital to Analog conversion at the PLC input interface module
b) Analog to Digital conversion at the PLC input interface module
c¢) No conversion is required
d) None of the above

2. You need to read an analog voltage that has a range of -10V to 10V to a precision of +/-0.05V.
What resolution of A/D converter is needed?

3. We are given a 12 bit analog input with a range of -10V to 10V. If we put in 2.735V, what will
the integer value be after the A/D conversion? What is the error? What voltage can we calcu-
late?

4. Use manuals on the web for a 1794 analog input card, and describe the process that would be
needed to set up the card to read an input voltage between -2V and 7V. This description should
include jumper settings, configuration memory and ladder logic.

5. We need to select a digital to analog converter for an application. The output will vary from -5V
to 10V DC, and we need to be able to specify the voltage to within 50mV. What resolution will
be required? How many bits will this D/A converter need? What will the accuracy be?

6. Write a program that will input an analog voltage, do the calculation below, and output an ana-
log voltage.

Vout - ln( Vin)

7. The following calculation will be made when input 4 is true. If the result x is between 1 and 10
then the output B will be turned on. The value of x will be output as an analog voltage. Create a
ladder logic program to perform these tasks.

x = 5./1+siny

8. You are developing a controller for a game that measures hand strength. To do this a START
button is pushed, 3 seconds later a LIGHT is turned on for one second to let the user know
when to start squeezing. The analog value is read at 0.3s after the light is on. The value is con-
verted to a force ' with the equation below. The force is displayed by converting it to BCD and
writing it to an output card (force display). If the value exceeds 100 then a BIG LIGHT and
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SIREN are turned on for Ssec. Use a structured design technique to develop ladder logic..

ro Y
6

9. A machine is connected to a load cell that outputs a voltage proportional to the mass on a plat-
form. When unloaded the cell outputs a voltage of 1'V. A mass of 500K g results in a 6V output.
Write a program that will measure the mass when an input sensor (M) becomes true. If the
mass is not between 300K g and 400K g and alarm output (A) will be turned on. Write a pro-
gram and indicate the general settings for the analog 10O.

22.8 PRACTICE PROBLEM SOLUTIONS

1.b)
2.
R = 10V-(101) _ 54 7 bits = 128
0.1V 8 bits = 256
The minimum number of bits is 8.
3.
N =12 R = 4096 Viin = —10V Viax = 10V V., = 2735V

V. —V_.
v, - INT[(-—i”———”i’"—)R} ~ 2608
Vmax o Vmin

V]
Ve = (E)(Vmax— V.. +V, . = 2734V

4. For the 1794-IE4XOE2/B card you would turn the key on the terminal block to match the back
of the module. The card can then be installed in the terminal block. After the programming
software is running the card is added to the IO configuration, and automatic settings can be
used - these change the memory values to set values in integer memory. The values chosen
would include a range of -10 to 10V.
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A card with a voltage range from -10V to +10V will be selected to cover the
entire range.
R = W = 400 minimum resolution
8 bits =256
9 bits =512
10 bits = 1024
The A/D converter needs a minimum of 9 bits, but this number of bits is not
commonly available, but 10 bits is, so that will be selected.

Vv _ (Vmax_ Vmin) _ 10r-(1or) _ +0.00976V
ERROR 2R 2(1024) o

BT9:1/DN CPT
| | Dest rack:2:ChOOutputData

| Expression "LN (rack:2:1.ChOInputData)"
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LIM

lower lim. 1
value x
upper lim. 10

SIN
Source y
Dest. temp

ADD

Source A 1
Source B temp
Dest. temp

SQR
Source A temp
Dest. temp

XPY
Source A 5
Source B y
Dest. temp2

MUL
Source A temp2
Source B temp

Dest. x
Q B
MOV
Source A x
Dest. rack:2:0.ChOOutputData
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sampling

TON(S3, 5sec)

TON(S1,START

L TON(S2, 1sec)

FS
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|| ST1
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ST?2 T4:1
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@ ST t st2.DN
R ) \Y
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Q BIG LIGHT Dest. temp
40 SIREN
ST1 @
START t st2.DN
TON —}S |F (U sT2
t stl.TT t stl
preset 3s @ ST1
t stl.DN ST1
@ TOD
ST2 Source A temp
—@ Dest. force display
MOV t ﬂStg'DN GRT
T1
— Source 0.0 || Source A temp S
Dest rack:2:0.Ch0OutputD3ata Source B 100 ST3

B
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SBR();
v_in := rack:2:1.ChOInputData / 32767; /* range is 0=0V,32767=10V */
mass :=500.0 * (v_in - 1.0) / (6.0 - 1.0); /* convert to Kg */

A=0;
IF M THEN
IF NOT ((mass >= 300) AND (mass <=400)) THEN
A=1;
END IF
END IF
RET();

22.9 ASSIGNMENT PROBLEMS

1 In detail, describe the process of setting up analog inputs and outputs for a range of -10V to 10V
in 2s compliment in realtime sampling mode.

2. Develop a program to sample analog data values and calculate the average, standard deviation,
and the control limits. The general steps are listed below.

1. Read *'m’ sampled inputs.

2. Randomly select values and calculate the average and store in memory. Calcu-
late the standard deviation of the 'n’ stored values.

3. Compare the inputs to the standard deviation. If it is larger than 3 deviations
from the mean, halt the process.

4. If it is larger than 2 then increase a counter A, or if it is larger than 1 increase a
second counter B. If it is less than 1 reset the counters.

5. If counter A is =3 or B is =5 then shut down.

6. Goto 1.
m N
3 X, ) UCL = X+30y
X = =1 X - X C; = N
7 on .Z ’ ¥ LCL = X-3c.
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14. CONTINUOUS SENSORS

Topics:
 Continuous sensor issues; accuracy, resolution, etc.
» Angular measurement; potentiometers, encoders and tachometers
* Linear measurement; potentiometers, LVDTs, Moire fringes and accelerometers
* Force measurement; strain gages and piezoelectric
* Liquid and fluid measurement; pressure and flow
» Temperature measurement; RTDs, thermocouples and thermistors
* Other sensors
+ Continuous signal inputs and wiring
* Glossary

Objectives:
* To understand the common continuous sensor types.
* To understand interfacing issues.

14.1 INTRODUCTION

Continuous sensors convert physical phenomena to measurable signals, typically
voltages or currents. Consider a simple temperature measuring device, there will be an
increase in output voltage proportional to a temperature rise. A computer could measure
the voltage, and convert it to a temperature. The basic physical phenomena typically mea-
sured with sensors include;

- angular or linear position
- acceleration

- temperature

- pressure or flow rates

- stress, strain or force

- light intensity

- sound

Most of these sensors are based on subtle electrical properties of materials and
devices. As a result the signals often require signal conditioners. These are often amplifi-
ers that boost currents and voltages to larger voltages.

Sensors are also called transducers. This is because they convert an input phenom-
ena to an output in a different form. This transformation relies upon a manufactured
device with limitations and imperfection. As a result sensor limitations are often charac-
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terized with;

Accuracy - This is the maximum difference between the indicated and actual read-
ing. For example, if a sensor reads a force of 100N with a +1% accuracy, then
the force could be anywhere from 99N to 101N.

Resolution - Used for systems that step through readings. This is the smallest
increment that the sensor can detect, this may also be incorporated into the
accuracy value. For example if a sensor measures up to 10 inches of linear dis-
placements, and it outputs a number between 0 and 100, then the resolution of
the device is 0.1 inches.

Repeatability - When a single sensor condition is made and repeated, there will be
a small variation for that particular reading. If we take a statistical range for
repeated readings (e.g., +3 standard deviations) this will be the repeatability.
For example, if a flow rate sensor has a repeatability of 0.5cfm, readings for an
actual flow of 100cfm should rarely be outside 99.5ctfm to 100.5¢cfm.

Linearity - In a linear sensor the input phenomenon has a linear relationship with
the output signal. In most sensors this is a desirable feature. When the relation-
ship is not linear, the conversion from the sensor output (e.g., voltage) to a cal-
culated quantity (e.g., force) becomes more complex.

Precision - This considers accuracy, resolution and repeatability or one device rel-
ative to another.

Range - Natural limits for the sensor. For example, a sensor for reading angular
rotation may only rotate 200 degrees.

Dynamic Response - The frequency range for regular operation of the sensor. Typ-
ically sensors will have an upper operation frequency, occasionally there will be
lower frequency limits. For example, our ears hear best between 10Hz and
16KHz.

Environmental - Sensors all have some limitations over factors such as tempera-
ture, humidity, dirt/oil, corrosives and pressures. For example many sensors
will work in relative humidities (RH) from 10% to 80%.

Calibration - When manufactured or installed, many sensors will need some cali-
bration to determine or set the relationship between the input phenomena, and
output. For example, a temperature reading sensor may need to be zeroed or
adjusted so that the measured temperature matches the actual temperature. This
may require special equipment, and need to be performed frequently.

Cost - Generally more precision costs more. Some sensors are very inexpensive,
but the signal conditioning equipment costs are significant.

14.2 INDUSTRIAL SENSORS

This section describes sensors that will be of use for industrial measurements. The
sections have been divided by the phenomena to be measured. Where possible details are
provided.
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14.2.1 Angular Displacement

14.2.1.1 - Potentiometers

Potentiometers measure the angular position of a shaft using a variable resistor. A
potentiometer is shown in Figure 14.1. The potentiometer is resistor, normally made with
a thin film of resistive material. A wiper can be moved along the surface of the resistive
film. As the wiper moves toward one end there will be a change in resistance proportional
to the distance moved. If a voltage is applied across the resistor, the voltage at the wiper
interpolate the voltages at the ends of the resistor.

resistive y
film 1
VW
V,
wiper

physical

schematic

Figure 14.1 A Potentiometer

The potentiometer in Figure 14.2 is being used as a voltage divider. As the wiper
rotates the output voltage will be proportional to the angle of rotation.
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Figure 14.2 A Potentiometer as a Voltage Divider

Potentiometers are popular because they are inexpensive, and don’t require special
signal conditioners. But, they have limited accuracy, normally in the range of 1% and they
are subject to mechanical wear.

Potentiometers measure absolute position, and they are calibrated by rotating them
in their mounting brackets, and then tightening them in place. The range of rotation is nor-
mally limited to less than 360 degrees or multiples of 360 degrees. Some potentiometers
can rotate without limits, and the wiper will jump from one end of the resistor to the other.

Faults in potentiometers can be detected by designing the potentiometer to never
reach the ends of the range of motion. If an output voltage from the potentiometer ever
reaches either end of the range, then a problem has occurred, and the machine can be shut
down. Two examples of problems that might cause this are wires that fall off, or the poten-
tiometer rotates in its mounting.

14.2.2 Encoders

Encoders use rotating disks with optical windows, as shown in Figure 14.3. The
encoder contains an optical disk with fine windows etched into it. Light from emitters
passes through the openings in the disk to detectors. As the encoder shaft is rotated, the
light beams are broken. The encoder shown here is a quadrature encode, and it will be dis-
cussed later.



continuous sensors - 14.5

light light
emitters detectors

Note: this type of encoder is
commonly used in com-

puter mice with a roller
ball.

Figure 14.3  An Encoder Disk

There are two fundamental types of encoders; absolute and incremental. An abso-
lute encoder will measure the position of the shaft for a single rotation. The same shaft
angle will always produce the same reading. The output is normally a binary or grey code
number. An incremental (or relative) encoder will output two pulses that can be used to
determine displacement. Logic circuits or software is used to determine the direction of
rotation, and count pulses to determine the displacement. The velocity can be determined
by measuring the time between pulses.

Encoder disks are shown in Figure 14.4. The absolute encoder has two rings, the
outer ring is the most significant digit of the encoder, the inner ring is the least significant
digit. The relative encoder has two rings, with one ring rotated a few degrees ahead of the
other, but otherwise the same. Both rings detect position to a quarter of the disk. To add
accuracy to the absolute encoder more rings must be added to the disk, and more emitters
and detectors. To add accuracy to the relative encoder we only need to add more windows
to the existing two rings. Typical encoders will have from 2 to thousands of windows per
ring.
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sensors read across
a single radial line ’

relative encoder
(quadrature)

absolute encoder

Figure 14.4  Encoder Disks

When using absolute encoders, the position during a single rotation is measured
directly. If the encoder rotates multiple times then the total number of rotations must be
counted separately.

When using a relative encoder, the distance of rotation is determined by counting
the pulses from one of the rings. If the encoder only rotates in one direction then a simple
count of pulses from one ring will determine the total distance. If the encoder can rotate
both directions a second ring must be used to determine when to subtract pulses. The
quadrature scheme, using two rings, is shown in Figure 14.5. The signals are set up so that
one is out of phase with the other. Notice that for different directions of rotation, input B
either leads or lags 4.
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Quad input A » —J J
N -
/ ~
AN e
N\ /
clockwise rotation | g
Quad Input B N ;
/ N / e
-
/ N
/ N,
Note the changé total displacement can be determined
as direction | by adding/subtracting pulse counts
is reversed  \ (direction determines add/subtract)

\

|

Quad input A

counterclockwise rotation

Quad Input B —If

Note: To determine direction we can do a simple check. If both are off or on, the first to
change state determines direction. Consider a point in the graphs above where both
A and B are off. If A is the first input to turn on the encoder is rotating clockwise. If
B is the first to turn on the rotation is counterclockwise.

Aside: A circuit (or program) can be built for this circuit using an up/down counter. If
the positive edge of input A is used to trigger the clock, and input B is used to drive
the up/down count, the counter will keep track of the encoder position.

Figure 14.5 Quadrature Encoders

Interfaces for encoders are commonly available for PLCs and as purchased units.
Newer PLCs will also allow two normal inputs to be used to decode encoder inputs.
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Normally absolute and relative encoders require a calibration phase when a con-
troller is turned on. This normally involves moving an axis until it reaches a logical sensor
that marks the end of the range. The end of range is then used as the zero position.
Machines using encoders, and other relative sensors, are noticeable in that they normally
move to some extreme position before use.

14.2.2.1 - Tachometers

Tachometers measure the velocity of a rotating shaft. A common technique is to
mount a magnet to a rotating shaft. When the magnetic moves past a stationary pick-up
coil, current is induced. For each rotation of the shaft there is a pulse in the coil, as shown
in Figure 14.6. When the time between the pulses is measured the period for one rotation
can be found, and the frequency calculated. This technique often requires some signal
conditioning circuitry.

pickup Vout

: A
rotating coil
shaft @8 Vout

t
magne

Ly

Figure 14.6 A Magnetic Tachometer

Another common technique uses a simple permanent magnet DC generator (note:
you can also use a small DC motor). The generator is hooked to the rotating shaft. The
rotation of a shaft will induce a voltage proportional to the angular velocity. This tech-
nique will introduce some drag into the system, and is used where efficiency is not an
issue.

Both of these techniques are common, and inexpensive.

14.2.3 Linear Position

14.2.3.1 - Potentiometers
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Rotational potentiometers were discussed before, but potentiometers are also
available in linear/sliding form. These are capable of measuring linear displacement over
long distances. Figure 14.7 shows the output voltage when using the potentiometer as a
voltage divider.

Figure 14.7  Linear Potentiometer

Linear/sliding potentiometers have the same general advantages and disadvantages
of rotating potentiometers.

14.2.3.2 - Linear Variable Differential Transformers (LVDT)

Linear Variable Differential Transformers (LVDTs) measure linear displacements
over a limited range. The basic device is shown in Figure 14.8. It consists of outer coils
with an inner moving magnetic core. High frequency alternating current (AC) is applied to
the center coil. This generates a magnetic field that induces a current in the two outside
coils. The core will pull the magnetic field towards it, so in the figure more current will be
induced in the left hand coil. The outside coils are wound in opposite directions so that
when the core is in the center the induced currents cancel, and the signal out is zero
(OVac). The magnitude of the signal out voltage on either line indicates the position of the
core. Near the center of motion the change in voltage is proportional to the displacement.
But, further from the center the relationship becomes nonlinear.
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A rod drives
the sliding core
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AV = KAx

where, AC input
AV = output voltage —0 O—

K = constant for device ~ @

L S 6

signal out

Ax = core displacement

Figure 14.8 An LVDT

Aside: The circuit below can be used to produce a voltage that is proportional to position.
The two diodes convert the AC wave to a half wave DC wave. The capacitor and resis-

tor values can be selected to act as a low pass filter. The final capacitor should be large
enough to smooth out the voltage ripple on the output.

o O > * o O
Vac out Vdc out
Vac in LVDT ~ E -
o : .
O > & O

Figure 14.9 A Simple Signal Conditioner for an LVDT

These devices are more accurate than linear potentiometers, and have less friction.
Typical applications for these devices include measuring dimensions on parts for quality
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control. They are often used for pressure measurements with Bourdon tubes and bellows/
diaphragms. A major disadvantage of these sensors is the high cost, often in the thousands.

14.2.3.3 - Moire Fringes

High precision linear displacement measurements can be made with Moire
Fringes, as shown in Figure 14.10. Both of the strips are transparent (or reflective), with
black lines at measured intervals. The spacing of the lines determines the accuracy of the
position measurements. The stationary strip is offset at an angle so that the strips interfere
to give irregular patterns. As the moving strip travels by a stationary strip the patterns will
move up, or down, depending upon the speed and direction of motion.

Note: you can recreate this effect with the strips below. Photocopy the pattern twice,

overlay the sheets and hold them up to the light. You will notice that shifting one sheet
will cause the stripes to move up or down.

Figure 14.10 The Moire Fringe Effect

A device to measure the motion of the moire fringes is shown in Figure 14.11. A
light source is collimated by passing it through a narrow slit to make it one slit width. This
is then passed through the fringes to be detected by light sensors. At least two light sensors
are needed to detect the bright and dark locations. Two sensors, close enough, can act as a
quadrature pair, and the same method used for quadrature encoders can be used to deter-
mine direction and distance of motion.
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Figure 14.11 Measuring Motion with Moire Fringes

These are used in high precision applications over long distances, often meters.
They can be purchased from a number of suppliers, but the cost will be high. Typical
applications include Coordinate Measuring Machines (CMMs).

14.2.3.4 - Accelerometers

Accelerometers measure acceleration using a mass suspended on a force sensor, as
shown in Figure 14.12. When the sensor accelerates, the inertial resistance of the mass
will cause the force sensor to deflect. By measuring the deflection the acceleration can be
determined. In this case the mass is cantilevered on the force sensor. A base and housing
enclose the sensor. A small mounting stud (a threaded shaft) is used to mount the acceler-
ometer.

Base

Mounting, Force )
Stud o Sensor Mass Housing

Figure 14.12 A Cross Section of an Accelerometer

Accelerometers are dynamic sensors, typically used for measuring vibrations
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between 10Hz to 10KHz. Temperature variations will affect the accuracy of the sensors.
Standard accelerometers can be linear up to 100,000 m/s**2: high shock designs can be
used up to 1,000,000 m/s**2. There is often a trade-off between a wide frequency range
and device sensitivity (note: higher sensitivity requires a larger mass). Figure 14.13 shows
the sensitivity of two accelerometers with different resonant frequencies. A smaller reso-
nant frequency limits the maximum frequency for the reading. The smaller frequency
results in a smaller sensitivity. The units for sensitivity is charge per m/s**2.

resonant freq. (Hz) ‘ sensitivity

22 KHz 4.5 pC/(m/s**2)
180KHz .004

Figure 14.13 Piezoelectric Accelerometer Sensitivities

The force sensor is often a small piece of piezoelectric material (discussed later in
this chapter). The piezoelectic material can be used to measure the force in shear or com-
pression. Piezoelectric based accelerometers typically have parameters such as,

-100 to 250°C operating range
ImV/g to 30V/g sensitivity
operate well below one forth of the natural frequency

The accelerometer is mounted on the vibration source as shown in Figure 14.14.
The accelerometer is electrically isolated from the vibration source so that the sensor may
be grounded at the amplifier (to reduce electrical noise). Cables are fixed to the surface of
the vibration source, close to the accelerometer, and are fixed to the surface as often as
possible to prevent noise from the cable striking the surface. Background vibrations can be
detected by attaching control electrodes to non-vibrating surfaces. Each accelerometer is
different, but some general application guidelines are;

* The control vibrations should be less than 1/3 of the signal for the error to be less
than 12%)).

» Mass of the accelerometers should be less than a tenth of the measurement mass.

* These devices can be calibrated with shakers, for example a 1g shaker will hit a
peak velocity of 9.81 m/s**2.
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Figure 14.14 Mounting an Accelerometer

Equipment normally used when doing vibration testing is shown in Figure 14.15.
The sensor needs to be mounted on the equipment to be tested. A pre-amplifier normally
converts the charge generated by the accelerometer to a voltage. The voltage can then be
analyzed to determine the vibration frequencies.

Sensor . )
of vibrations,

¢ for vibration
measurement

pre-
amp

signal processor/ control system
recorder

Figure 14.15 Typical Connection for Accelerometers

Accelerometers are commonly used for control systems that adjust speeds to
reduce vibration and noise. Computer Controlled Milling machines now use these sensors
to actively eliminate chatter, and detect tool failure. The signal from accelerometers can be
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integrated to find velocity and acceleration.

Currently accelerometers cost hundreds or thousands per channel. But, advances in
micromachining are already beginning to provide integrated circuit accelerometers at a
low cost. Their current use is for airbag deployment systems in automobiles.

14.2.4 Forces and Moments

14.2.4.1 - Strain Gages

Strain gages measure strain in materials using the change in resistance of a wire.
The wire is glued to the surface of a part, so that it undergoes the same strain as the part (at
the mount point). Figure 14.16 shows the basic properties of the undeformed wire. Basi-
cally, the resistance of the wire is a function of the resistivity, length, and cross sectional
area.

w
i1z
L
14
V L
+ R=-=p==p—
4 7 P2 P
I
where,

R = resistance of wire

V, 1 = voltage and current

L = length of wire

w, t = width and thickness

A = cross sectional area of conductor

p = resistivity of material

Figure 14.16 The Electrical Properties of a Wire
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After the wire in Figure 14.16 has been deformed it will take on the new dimen-
sions and resistance shown in Figure 14.17. If a force is applied as shown, the wire will
become longer, as predicted by Young’s modulus. But, the cross sectional area will

decrease, as predicted by Poison’s ratio. The new length and cross sectional area can then
be used to find a new resistance.

c=-=—=F¢ .'.szi
A wt Ewt

v L L(1+¢)
R pw't‘ p(w(l —ve)t(l —vs))

“AR=R-R = R[ (1+e) —1}
(1-ve)(l-ve)
where,
v = poissons ratio for the material
F = applied force
E = Youngs modulus for the material
o

& = stress and strain of material

Aside: Gauge factor, as defined below, is a commonly used measure of stain gauge
sensitivity.

Figure 14.17 The Electrical and Mechanical Properties of the Deformed Wire



continuous sensors - 14.17

Aside: Changes in strain gauge resistance are typically small (large values would require

strains that would cause the gauges to plastically deform). As a result, Wheatstone
bridges are used to amplify the small change. In this circuit the variable resistor R2
would be tuned until Vo = 0V. Then the resistance of the strain gage can be calculated
using the given equation.

R,R

V+ R . = 21 whenVo =0V

strain R

3
R4

R2 RI1
///V
——eo—)
+
Vo
R3
Rstrain
RS

Figure 14.18 Measuring Strain with a Wheatstone Bridge

A strain gage must be small for accurate readings, so the wire is actually wound in
a uniaxial or rosette pattern, as shown in Figure 14.19. When using uniaxial gages the
direction is important, it must be placed in the direction of the normal stress. (Note: the
gages cannot read shear stress.) Rosette gages are less sensitive to direction, and if a shear
force is present the gage will measure the resulting normal force at 45 degrees. These
gauges are sold on thin films that are glued to the surface of a part. The process of mount-
ing strain gages involves surface cleaning. application of adhesives, and soldering leads to
the strain gages.
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stress
directio

0

uniaxial rosette
Figure 14.19 Wire Arrangements in Strain Gages

A design techniques using strain gages is to design a part with a narrowed neck to
mount the strain gage on, as shown in Figure 14.20. In the narrow neck the strain is pro-
portional to the load on the member, so it may be used to measure force. These parts are
often called load cells.

mounted in narrow section
to increase strain effect

F
- —

A N

Figure 14.20 Using a Narrow to Increase Strain

Strain gauges are inexpensive, and can be used to measure a wide range of stresses
with accuracies under 1%. Gages require calibration before each use. This often involves
making a reading with no load, or a known load applied. An example application includes
using strain gages to measure die forces during stamping to estimate when maintenance is
needed.

14.2.4.2 - Piezoelectric

When a crystal undergoes strain it displaces a small amount of charge. In other
words, when the distance between atoms in the crystal lattice changes some electrons are
forced out or drawn in. This also changes the capacitance of the crystal. This is known as
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the Piezoelectric effect. Figure 14.21 shows the relationships for a crystal undergoing a
linear deformation. The charge generated is a function of the force applied, the strain in
the material, and a constant specific to the material. The change in capacitance is propor-
tional to the change in the thickness.

be

gab . d
- I = ngtF

C = capacitance change
a, b, c = geometry of material
& = dielectric constant (quartz typ. 4.06*10**-11 F/m)
i = current generated
F = force applied
g = constant for material (quartz typ. 50*10**-3 Vm/N)

E = Youngs modulus (quartz typ. 8.6*10**10 N/m**2)

Figure 14.21 The Piezoelectric Effect

These crystals are used for force sensors, but they are also used for applications
such as microphones and pressure sensors. Applying an electrical charge can induce
strain, allowing them to be used as actuators, such as audio speakers.

When using piezoelectric sensors charge amplifiers are needed to convert the small
amount of charge to a larger voltage. These sensors are best suited to dynamic measure-
ments, when used for static measurements they tend to drift or slowly lose charge, and the
signal value will change.
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14.2.5 Liquids and Gases

There are a number of factors to be considered when examining liquids and gasses.

* Flow velocity
* Density

* Viscosity

* Pressure

There are a number of differences factors to be considered when dealing with flu-
ids and gases. Normally a fluid is considered incompressible, while a gas normally fol-
lows the ideal gas law. Also, given sufficiently high enough temperatures, or low enough
pressures a fluid can be come a gas.

PV = nRT

where,
P = the gas pressure

V' = the volume of the gas

n
R

T = the gas temperature

the number of moles of the gas

the ideal gas constant =

When flowing, the flow may be smooth, or laminar. In case of high flow rates or
unrestricted flow, turbulence may result. The Reynold’s number is used to determine the
transition to turbulence. The equation below is for calculation the Reynold’s number for
fluid flow in a pipe. A value below 2000 will result in laminar flow. At a value of about
3000 the fluid flow will become uneven. At a value between 7000 and 8000 the flow will
become turbulent.
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= Reynolds number

= velocity

= fluid density

= viscosity

14.2.5.1 - Pressure

R
V
D = pipe diameter
P
u

Figure 14.22 shows different two mechanisms for pressure measurement. The
Bourdon tube uses a circular pressure tube. When the pressure inside is higher than the
surrounding air pressure (14.7psi approx.) the tube will straighten. A position sensor, con-
nected to the end of the tube, will be elongated when the pressure increases.

pressure
Jdncrease

?pressure

Y,
position sensor

a) Bourdon Tube

pressure
increase
- =

position sensor

pressure ?

b) Baffle

Figure 14.22 Pressure Transducers
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These sensors are very common and have typical accuracies of 0.5%.

14.2.5.2 - Venturi Valves

When a flowing fluid or gas passes through a narrow pipe section (neck) the pres-
sure drops. If there is no flow the pressure before and after the neck will be the same. The
faster the fluid flow, the greater the pressure difference before and after the neck. This is
known as a Venturi valve. Figure 14.23 shows a Venturi valve being used to measure a
fluid flow rate. The fluid flow rate will be proportional to the pressure difference before
and at the neck (or after the neck) of the valve.

differential
pressure
transducer

Sfluid flow

-

Figure 14.23 A Venturi Valve
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Aside: Bernoulli'’s equation can be used to relate the pressure drop in a venturi valve.

2

il vz =C

p

where,
p = pressure
p = density
v = velocity

g = gravitational constant

z = height above a reference
C

constant

Consider the centerline of the fluid flow through the valve. Assume the fluid is incompress-
ible, so the density does not change. And, assume that the center line of the valve does

not change. This gives us a simpler equation, as shown below, that relates the velocity
and pressure before and after it is compressed.

2

2
pbefore+vbefore +gz=C = patter+ Vafier +gz
p 2 p
2 2
pbefore + vbefore _ paﬁer + Vaﬁer
P 2 P 2
\% 2 \%
— 1 beft
Poefore ~ Pafter — p( aféer - efzorezj

The flow velocity v in the valve will be larger than the velocity in the larger pipe sec-
tion before. So, the right hand side of the expression will be positive. This will mean

that the pressure before will always be higher than the pressure after, and the differ-
ence will be proportional to the velocity squared.

Figure 14.24 The Pressure Relationship for a Venturi Valve

Venturi valves allow pressures to be read without moving parts, which makes them
very reliable and durable. They work well for both fluids and gases. It is also common to
use Venturi valves to generate vacuums for actuators, such as suction cups.

14.2.5.3 - Coriolis Flow Meter

Fluid passes through thin tubes, causing them to vibrate. As the fluid approaches
the point of maximum vibration it accelerates. When leaving the point it decelerates. The
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result is a distributed force that causes a bending moment, and hence twisting of the pipe.
The amount of bending is proportional to the velocity of the fluid flow. These devices typ-
ically have a large constriction on the flow, and result is significant loses. Some of the
devices also use bent tubes to increase the sensitivity, but this also increases the flow resis-
tance. The typical accuracy for a Coriolis flowmeter is 0.1%.

14.2.5.4 - Magnetic Flow Meter

A magnetic sensor applies a magnetic field perpendicular to the flow of a conduc-
tive fluid. As the fluid moves, the electrons in the fluid experience an electromotive force.
The result is that a potential (voltage) can be measured perpendicular to the direction of
the flow and the magnetic field. The higher the flow rate, the greater the voltage. The typ-
ical accuracy for these sensors is 0.5%.

These flowmeters don’t oppose fluid flow, and so they don’t result in pressure
drops.

14.2.5.5 - Ultrasonic Flow Meter

A transmitter emits a high frequency sound at point on a tube. The signal must then
pass through the fluid to a detector where it is picked up. If the fluid is flowing in the same
direction as the sound it will arrive sooner. If the sound is against the flow it will take
longer to arrive. In a transit time flow meter two sounds are used, one traveling forward,
and the other in the opposite direction. The difference in travel time for the sounds is used
to determine the flow velocity.

A doppler flowmeter bounces a soundwave off particle in a flow. If the particle is
moving away from the emitter and detector pair, then the detected frequency will be low-
ered, if it is moving towards them the frequency will be higher.

The transmitter and receiver have a minimal impact on the fluid flow, and there-
fore don’t result in pressure drops.

14.2.5.6 - Vortex Flow Meter

Fluid flowing past a large (typically flat) obstacle will shed vortices. The fre-
quency of the vortices will be proportional to the flow rate. Measuring the frequency
allows an estimate of the flow rate. These sensors tend be low cost and are popular for low
accuracy applications.
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14.2.5.7 - Positive Displacement Meters

In some cases more precise readings of flow rates and volumes may be required.
These can be obtained by using a positive displacement meter. In effect these meters are
like pumps run in reverse. As the fluid is pushed through the meter it produces a measur-
able output, normally on a rotating shaft.

14.2.5.8 - Pitot Tubes

Gas flow rates can be measured using Pitot tubes, as shown in Figure 14.25. These
are small tubes that project into a flow. The diameter of the tube is small (typically less
than 1/8") so that it doesn’t affect the flow.

____________________ .
__gasflow . _ _ _ _ _ _ _ _ _ _ _ _ _ -
____________________ .
____________________ .
——————— :————————————>
pitot
tube [~

pressure

connecting hose

Figure 14.25 Pitot Tubes for Measuring Gas Flow Rates

14.2.6 Temperature

Temperature measurements are very common with control systems. The tempera-
ture ranges are normally described with the following classifications.

very low temperatures <-60 deg C - e.g. superconductors in MRI units

low temperature measurement -60 to 0 deg C - e.g. freezer controls

fine temperature measurements 0 to 100 deg C - e.g. environmental controls
high temperature measurements <3000 deg F - e.g. metal refining/processing
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very high temperatures > 2000 deg C - e.g. plasma systems

14.2.6.1 - Resistive Temperature Detectors (RTDs)

When a metal wire is heated the resistance increases. So, a temperature can be
measured using the resistance of a wire. Resistive Temperature Detectors (RTDs) nor-
mally use a wire or film of platinum, nickel, copper or nickel-iron alloys. The metals are
wound or wrapped over an insulator, and covered for protection. The resistances of these
alloys are shown in Figure 14.26.

Material Temperature DBypical
Range C (F) Resistance
(ohms)
Platinum -200 - 850 (-328 - 1562) 100
Nickel -80-300 (-112 - 572) 120
Copper =200 - 260 (-328 - 500) 10

Figure 14.26 RTD Properties

These devices have positive temperature coefficients that cause resistance to
increase linearly with temperature. A platinum RTD might have a resistance of 100 ohms
at 0C, that will increase by 0.4 ohms/°C. The total resistance of an RTD might double over
the temperature range.

A current must be passed through the RTD to measure the resistance. (Note: a volt-
age divider can be used to convert the resistance to a voltage.) The current through the
RTD should be kept to a minimum to prevent self heating. These devices are more linear
than thermocouples, and can have accuracies of 0.05%. But, they can be expensive

14.2.6.2 - Thermocouples

Each metal has a natural potential level, and when two different metals touch there
is a small potential difference, a voltage. (Note: when designing assemblies, dissimilar
metals should not touch, this will lead to corrosion.) Thermocouples use a junction of dis-
similar metals to generate a voltage proportional to temperature. This principle was dis-
covered by T.J. Seebeck.

The basic calculations for thermocouples are shown in Figure 14.27. This calcula-
tion provides the measured voltage using a reference temperature and a constant specific
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to the device. The equation can also be rearranged to provide a temperature given a volt-
age.

measuring +
device | Vour >.
Vout = u‘( T_ Tref)

V t
- T = ;” + T,

where, v
a = constant (V/C) 50'Li—c (typical)

T ref = current and reference temperatures

Figure 14.27 Thermocouple Calculations

The list in Table 1 shows different junction types, and the normal temperature
ranges. Both thermocouples, and signal conditioners are commonly available, and rela-
tively inexpensive. For example, most PLC vendors sell thermocouple input cards that

will allow multiple inputs into the PLC.

Table 1: Thermocouple Types

?I;IpSeI Materials Ten;{%i?;ure Voltezgrg:l: \E{)ange
(°F)

T copper/constantan -200 to 400 -5.60to 17.82

J iron/constantan 0 to 870 0 to 42.28

E chromel/constantan -200 to 900 -8.82 to 68.78

K chromel/aluminum -200 to 1250 | -5.97 to 50.63

R platinum-13%rhodium/platinum 0 to 1450 0to 16.74

S platinum-10%rhodium/platinum 0 to 1450 0 to 14.97

C tungsten-5%rhenium/tungsten-26%rhenium | 0 to 2760 0to 37.07
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Figure 14.28 Thermocouple Temperature Voltage Relationships (Approximate)

The junction where the thermocouple is connected to the measurement instrument
is normally cooled to reduce the thermocouple effects at those junctions. When using a
thermocouple for precision measurement, a second thermocouple can be kept at a known
temperature for reference. A series of thermocouples connected together in series pro-
duces a higher voltage and is called a thermopile. Readings can approach an accuracy of
0.5%.

14.2.6.3 - Thermistors

Thermistors are non-linear devices, their resistance will decrease with an increase
in temperature. (Note: this is because the extra heat reduces electron mobility in the semi-
conductor.) The resistance can change by more than 1000 times. The basic calculation is
shown in Figure 14.29.

often metal oxide semiconductors The calculation uses a reference temperature
and resistance, with a constant for the device, to predict the resistance at another tempera-
ture. The expression can be rearranged to calculate the temperature given the resistance.
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Rz = R e ’
r-_ Pl
T 1 (R’) +B
n —
) RO
where,

Ro’ R ; = resistances at reference and measured temps.
T e T = reference and actual temperatures
f = constant for device

Figure 14.29 Thermistor Calculations

Aside: The circuit below can be used to convert the resistance of the thermistor to a volt-
age using a Wheatstone bridge and an inverting amplifier.

+V
RS
RI R3
O
+
Vout
R2 R4 40

Figure 14.30 Thermistor Signal Conditioning Circuit
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Thermistors are small, inexpensive devices that are often made as beads, or metal-
lized surfaces. The devices respond quickly to temperature changes, and they have a
higher resistance, so junction effects are not an issue. Typical accuracies are 1%, but the
devices are not linear, have a limited temperature/resistance range and can be self heating.

14.2.6.4 - Other Sensors

IC sensors are becoming more popular. They output a digital reading and can have
accuracies better than 0.01%. But, they have limited temperature ranges, and require some
knowledge of interfacing methods for serial or parallel data.

Pyrometers are non-contact temperature measuring devices that use radiated heat.
These are normally used for high temperature applications, or for production lines where it
is not possible to mount other sensors to the material.

14.2.7 Light

14.2.7.1 - Light Dependant Resistors (LDR)

Light dependant resistors (LDRs) change from high resistance (>*Mohms) in bright
light to low resistance (<Kohms) in the dark. The change in resistance is non-linear, and is
also relatively slow (ms).
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Aside: an LDR can be used in a voltage divider to convert the change in resistance to a
measurable voltage.
? O Vhigh
These are common in low
cost night lights.
O VOMt
YA
O Vlow

Figure 14.31 A Light Level Detector Circuit

14.2.8 Chemical

14.2.8.1 - pH

The pH of an ionic fluid can be measured over the range from a strong base (alka-
line) with pH=14, to a neutral value, pH=7, to a strong acid, pH=0. These measurements
are normally made with electrodes that are in direct contact with the fluids.

14.2.8.2 - Conductivity

Conductivity of a material, often a liquid is often used to detect impurities. This
can be measured directly be applying a voltage across two plates submerged in the liquid
and measuring the current. High frequency inductive fields is another alternative.
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14.2.9 Others

A number of other detectors/sensors are listed below,

Combustion - gases such as CO2 can be an indicator of combustion
Humidity - normally in gases
Dew Point - to determine when condensation will form

14.3 INPUT ISSUES

Signals from transducers are typically too small to be read by a normal analog
input card. Amplifiers are used to increase the magnitude of these signals. An example of
a single ended signal amplifier is shown in Figure 14.32. The amplifier is in an inverting
configuration, so the output will have an opposite sign from the input. Adjustments are
provided for gain and offset adjustments.

Note: op-amps are used in this section to implement the amplifiers because they are
inexpensive, common, and well suited to simple design and construction projects.
When purchasing a commercial signal conditioner, the circuitry will be more com-
plex, and include other circuitry for other factors such as temperature compensation.
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+V
Ro offset Rf Rg
-V gain
oW . o
Ri
Vin Vout
O

Figure 14.32 A Single Ended Signal Amplifier

A differential amplifier with a current input is shown in Figure 14.33. Note that Rc
converts a current to a voltage. The voltage is then amplified to a larger voltage.

O Wy

RI Rf
lin Re N . O
R2
O Vout
—O
R3
R4

Figure 14.33 A Current Amplifier
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The circuit in Figure 14.34 will convert a differential (double ended) signal to a
single ended signal. The two input op-amps are used as unity gain followers, to create a
high input impedance. The following amplifier amplifies the voltage difference.

Wy

Vin

) S Vout

CMRR
adjust

Figure 14.34 A Differential Input to Single Ended Output Amplifier

The Wheatstone bridge can be used to convert a resistance to a voltage output, as

shown in Figure 14.35. If the resistor values are all made the same (and close to the value
of R3) then the equation can be simplified.
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+V
RS
RI R3
O
+
Vout
R2 R4 —0

R
Vo = V(7 320) (&t 7 ) w)
ou R,+R/\R; R, RS R,

orif R=R, =R, =R, = Ry

R
Vout - V(Z_Rg

Figure 14.35 A Resistance to Voltage Amplifier

14.4 SENSOR GLOSSARY

Ammeter - A meter to indicate electrical current. It is normally part of a DMM

Bellows - This is a flexible volumed that will expand or contract with a pressure
change. This often looks like a cylinder with a large radius (typ. 2") but it is
very thin (type 1/4"). It can be set up so that when pressure changes, the dis-
placement of one side can be measured to determine pressure.

Bourdon tube - Widely used industrial gage to measure pressure and vacuum. It
resembles a crescent moon. When the pressure inside changes the moon shape
will tend to straighten out. By measuring the displacement of the tip the pres-
sure can be measured.

Chromatographic instruments - laboratory-type instruments used to analyze chem-
ical compounds and gases.

Inductance-coil pulse generator - transducer used to measure rotational speed. Out-
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put is pulse train.

Interferometers - These use the interference of light waves 180 degrees out of
phase to determine distances. Typical sources of the monochromatic light
required are lasers.

Linear-Variable-Differential transformer (LVDT) electromechanical transducer
used to measure angular or linear displacement. Output is Voltage

Manometer - liquid column gage used widely in industry to measure pressure.

Ohmmeter - meter to indicate electrical resistance

Optical Pyrometer - device to measure temperature of an object at high tempera-
tures by sensing the brightness of an objects surface.

Orifice Plate - widely used flowmeter to indicate fluid flow rates

Photometric Transducers - a class of transducers used to sense light, including
phototubes, photodiodes, phototransistors, and photoconductors.

Piezoelectric Accelerometer - Transducer used to measure vibration. Output is
emf.

Pitot Tube - Laboratory device used to measure flow.

Positive displacement Flowmeter - Variety of transducers used to measure flow.
Typical output is pulse train.

Potentiometer - instrument used to measure voltage

Pressure Transducers - A class of transducers used to measure pressure. Typical
output is voltage. Operation of the transducer can be based on strain gages or
other devices.

Radiation pyrometer - device to measure temperature by sensing the thermal radia-
tion emitted from the object.

Resolver - this device is similar to an incremental encoder, except that it uses coils
to generate magnetic fields. This is like a rotary transformer.

Strain Gage - Widely used to indicate torque, force, pressure, and other variables.
Output is change in resistance due to strain, which can be converted into volt-
age.

Thermistor - Also called a resistance thermometer; an instrument used to measure
temperature. Operation is based on change in resistance as a function of temper-
ature.

Thermocouple - widely used temperature transducer based on the Seebeck effect,
in which a junction of two dissimilar metals emits emf related to temperature.

Turbine Flowmeter - transducer to measure flow rate. Output is pulse train.

Venturi Tube - device used to measure flow rates.

14.5 SUMMARY

» Selection of continuous sensors must include issues such as accuracy and resolu-
tion.

» Angular positions can be measured with potentiometers and encoders (more
accurate).

 Tachometers are useful for measuring angular velocity.
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* Linear positions can be measured with potentiometers (limited accuracy), LVDTs
(limited range), moire fringes (high accuracy).

* Accelerometers measure acceleration of masses.

» Strain gauges and piezoelectric elements measure force.

* Pressure can be measured indirectly with bellows and Bourdon tubes.

* Flow rates can be measured with Venturi valves and pitot tubes.

» Temperatures can be measured with RTDs, thermocouples, and thermistors.

* Input signals can be single ended for more inputs or double ended for more accu-
racy.
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14.7 PRACTICE PROBLEMS

1. Name two types of inputs that would be analog input values (versus a digital value).

2.

Search the web for common sensor manufacturers for 5 different types of continuous sensors. If
possible identify prices for the units. Sensor manufacturers include (hyde park, banner, allen
bradley, omron, etc.)

. What is the resolution of an absolute optical encoder that has six binary tracks? nine tracks?

twelve tracks?

. Suggest a couple of methods for collecting data on the factory floor

. If a thermocouple generates a voltage of 30mV at 800F and 40mV at 1000F, what voltage will

be generated at 1200F?

. A potentiometer is to be used to measure the position of a rotating robot link (as a voltage

divider). The power supply connected across the potentiometer is 5.0 V, and the total wiper
travel is 300 degrees. The wiper arm is directly connected to the rotational joint so that a given
rotation of the joint corresponds to an equal rotation of the wiper arm.
a) If the joint is at 42 degrees, what voltage will be output from the potentiometer?
b) If the joint has been moved, and the potentiometer output is 2.765V, what is the
position of the potentiometer?

. A motor has an encoder mounted on it. The motor is driving a reducing gear box with a 50:1



continuous sensors - 14.38

ratio. If the position of the geared down shaft needs to be positioned to 0.1 degrees, what is the
minimum resolution of the incremental encoder?

8. What is the difference between a strain gauge and an accelerometer? How do they work?

9. Use the equations for a permanent magnet DC motor to explain how it can be used as a tachom-
eter.

10. What are the trade-offs between encoders and potentiometers?
11. A potentiometer is connected to a PLC analog input card. The potentiometer can rotate 300
degrees, and the voltage supply for the potentiometer is +/-10V. Write a ladder logic program

to read the voltage from the potentiometer and convert it to an angle in radians stored in
“angle’.

14.8 PRACTICE PROBLEM SOLUTIONS

1. Temperature and displacement
2. Sensors can be found at www.ab.com, www.omron.com, etc
3. 360°/64steps, 360°/512steps, 360°/4096steps

4. data bucket, smart machines, PLCs with analog inputs and network connections

5.
Vo = 6(T=T,)  0.030 = a(800—T,,)  0.040 = a(1000-T,,)
1 _800-T,  1000-T,,
o 0030 0.040
800~ T,,; = 750 —0.75T,,,
50 = 0.257,,, T =200F  o=—2080 _ 0¥
- < 1000-200 F

V., = 0.00005(1200-200) = 0.050V
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0 42d
a)  Vou = (Vz_Vl)(ew)+V1 = (5V—0V)(ﬁ)+01/= 0.7V
max

by 27657 = (5V-07) Oy )+ov

300deg
ew
2765V = (SV—OV)( )+OV
300deg
0, = 165.9deg
deg einput _ 50 ( deg) deg
0 = 0.1 —= — = — 0. =50{0.1—=| = 5—=-
output count eoutpm 1 input count count
3609¢8
R = rot _ 7zcount
5 deg rot
count

strain gauge measures strain in a material using a stretching wire that increases resis-
tance - accelerometers measure acceleration with a cantilevered mass on a piezoelec-
tric element.

When the motor shaft is turned by
another torque source a voltage is gener-
ated that is proportional to the angular
DMM V=Ko velocity. This is the reverse emf. A dmm,
or other high impedance instrument can
be used to measure this, thus minizing
the loses in resistor R.

2
o-oft) - (8
JR "\JR

v, = 0)(K)+0')(‘]—I§)
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10.

encoders cost more but can have higher resolutions. Potentiometers have limited
ranges of motion

I1.

CPT

Dest voltage

Expression
"rack:2:1.ChOInputData/3276.8"

CPT
Dest temp

Expression
"300.0 * (voltage + 10) / 20"

RAD
Source temp
Dest angle

14.9 ASSIGNMENT PROBLEMS

1. Write a simple C program to read incremental encoder inputs (A and B) to determine the cur-
rent position of the encoder. Note: use the quadrature encoding to determine the position of the
motor.

2. A high precision potentiometer has an accuracy of +/- 0.1% and can rotate 300degrees and is

used as a voltage divider with a of 0V and 5V. The output voltage is being read by an A/D con-

verter with a 0V to 10V input range. How many bits does the A/D converter need to accommodate
the accuracy of the potentiometer?

3. The table of position and voltage values below were measured for an inexpensive potentiome-
ter. Write a C subroutine that will accept a voltage value and interpolate the position value.

theta (deg)| V

0 0.1
67 0.6
145 1.6
195 2.4
213 3.4
296 4.2
315 5.0
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15. CONTINUOUS ACTUATORS

Topics:
» Servo Motors; AC and DC
* Stepper motors
* Single axis motion control
* Hydraulic actuators

Objectives:
* To understand the main differences between continuous actuators
* Be able to select a continuous actuator
* To be able to plan a motion for a single servo actuator

15.1 INTRODUCTION

Continuous actuators allow a system to position or adjust outputs over a wide
range of values. Even in their simplest form, continuous actuators tend to be mechanically
complex devices. For example, a linear slide system might be composed of a motor with
an electronic controller driving a mechanical slide with a ball screw. The cost for such
actuators can easily be higher than for the control system itself. These actuators also
require sophisticated control techniques that will be discussed in later chapters. In general,
when there is a choice, it is better to use discrete actuators to reduce costs and complexity.

15.2 ELECTRIC MOTORS

An electric motor is composed of a rotating center, called the rotor, and a station-
ary outside, called the stator. These motors use the attraction and repulsion of magnetic
fields to induce forces, and hence motion. Typical electric motors use at least one electro-
magnetic coil, and sometimes permanent magnets to set up opposing fields. When a volt-
age is applied to these coils the result is a torque and rotation of an output shaft. There are
a variety of motor configuration the yields motors suitable for different applications. Most
notably, as the voltages supplied to the motors will vary the speeds and torques that they
will provide.
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* Motor Categories
» AC motors - rotate with relatively constant speeds proportional to the fre-
quency of the supply power
induction motors - squirrel cage, wound rotor - inexpensive, effi-
cient.
synchronous - fixed speed, efficient

* DC motors - have large torque and speed ranges

permanent magnet - variable speed

wound rotor and stator - series, shunt and compound (universal)
* Hybrid

brushless permanent magnet -

stepper motors

» Contactors are used to switch motor power on/off

* Drives can be used to vary motor speeds electrically. This can also be done with
mechanical or hydraulic machines.

* Popular drive categories

» Variable Frequency Drives (VFD) - vary the frequency of the power
delivered to the motor to vary speed.

» DC motor controllers - variable voltage or current to vary the motor speed

* Eddy Current Clutches for AC motors - low efficiency, uses a moving
iron drum and windings

» Wound rotor AC motor controllers - low efficiency, uses variable resistors
to adjust the winding currents

A control system is required when a motor is used for an application that requires
continuous position or velocity. A typical controller is shown in Figure 15.1. In any con-
trolled system a command generator is required to specify a desired position. The control-
ler will compare the feedback from the encoder to the desired position or velocity to
determine the system error. The controller will then generate an output, based on the sys-
tem error. The output is then passed through a power amplifier, which in turn drives the
motor. The encoder is connected directly to the motor shaft to provide feedback of posi-
tion.
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command
generator
(e.g., PLC)
desired position
or velocity amplified encoder
voltage/ voltage/
current current
controller

Figure 15.1 A Typical Feedback Motor Controller

15.2.1 Basic Brushed DC Motors

In a DC motor there is normally a set of coils on the rotor that turn inside a stator
populated with permanent magnets. Figure 15.2 shows a simplified model of a motor. The
magnets provide a permanent magnetic field for the rotor to push against. When current is
run through the wire loop it creates a magnetic field.

magneti
field p 7

axis of -
rotation
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Figure 15.2 A Simplified Rotor

The power is delivered to the rotor using a commutator and brushes, as shown in
Figure 15.3. In the figure the power is supplied to the rotor through graphite brushes rub-
bing against the commutator. The commutator is split so that every half revolution the
polarity of the voltage on the rotor, and the induced magnetic field reverses to push against
the permanent magnets.

brushes

Top split commutator
Front split commutator
brushes
4 power V-
supply

Figure 15.3 A Split Ring Commutator

The direction of rotation will be determined by the polarity of the applied voltage,
and the speed is proportional to the voltage. A feedback controller is used with these
motors to provide motor positioning and velocity control.

These motors are losing popularity to brushless motors. The brushes are subject to
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wear, which increases maintenance costs. In addition, the use of brushes increases resis-
tance, and lowers the motors efficiency.

ASIDE: The controller to drive a servo motor normally uses a Pulse Width Modulated
(PWM) signal. As shown below the signal produces an effective voltage that is rela-
tive to the time that the signal is on. The percentage of time that the signal is on is
called the duty cycle. When the voltage is on all the time the effective voltage deliv-
ered is the maximum voltage. So, if the voltage is only on half the time, the effective
voltage is half the maximum voltage. This method is popular because it can pro-
duce a variable effective voltage efficiently. The frequency of these waves is nor-
mally above 20KHz, above the range of human hearing.

A 50% duty cycle
Vmax
‘ 50
0 Vejff - m Vmax
-’
Vv A 20% duty cycle

max —|

20
Veff - m max

0-—

>t
A 100% duty cycle
Vmax
100
v .. = 20
]
0 eff 100 ™ax
>t
A 0% duty cycle
Vmax -1
0
Vo= —V
ff
0 e 100 max

Figure 15.4  Pulse Width Modulation (PWM) For Control
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ASIDE: A PWM signal can be used to drive a motor with the circuit shown below. The
PWM signal switches the NPN transistor, thus switching power to the motor. In this
case the voltage polarity on the motor will always be the same direction, so the
motor may only turn in one direction.

py POWEr
i y supply

signal N
source

DC motor

Figure 15.5 PWM Unidirectional Motor Control Circuit
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ASIDE: When a motor is to be con- +Vs(f

trolled with PWM in two directions
the H-bridge circuit (shown below)
is a popular choice. These can be

built with individual components, or Va Vb
purchased as integrated circuits for
smaller motors. To turn the motor in

one direction the PWM signal is
applied to the Va inputs, while the
Vb inputs are held low. In this

arrangement the positive voltage is
at the left side of the motor. To

reverse the direction the PWM sig- Vb O— O Va
nal is applied to the Vb inputs, while

the Va inputs are held low. This W F

applies the positive voltage to the

right side of the motor. v, é
-Vs

Figure 15.6 PWM Bidirectional Motor Control Circuit

15.2.2 AC Motors

* Power is normally generated as 3-phase AC, so using this increases the efficiency
of electrical drives.

* In AC motors the AC current is used to create changing fields in the motor.

* Typically AC motors have windings on the stator with multiple poles. Each pole
is a pair of windings. As the AC current reverses, the magnetic field in the rotor appears to
rotate.
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Figure 15.7 A 2 Pole Single Phase AC Motor
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Figure 15.8 A 6 Pole 3-Phase AC Motor

* The number of windings (poles) can be an integer multiple of the number of
phases of power. More poles results in a lower rotational speed of the motor.

* Rotor types for induction motors are listed below. Their function is to intersect
changing magnetic fields from the stator. The changing field induces currents in the rotor.
These currents in turn set up magnetic fields that oppose fields from the stator, generating
a torque.

Squirrel cage - has the shape of a wheel with end caps and bars
Wound Rotor - the rotor has coils wound. These may be connected to exter-
nal contacts via commutator

* Induction motors require slip. If the motor turns at the precise speed of the stator
field, it will not see a changing magnetic field. The result would be a collapse of the rotor
magnetic field. As a result an induction motor always turns slightly slower than the stator
field. The difference is called the slip. This is typically a few percent. As the motor is
loaded the slip will increase until the motor stalls.
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An induction motor has the windings on the stator. The rotor is normally a squirrel
cage design. The squirrel cage is a cast aluminum core that when exposed to a changing
magnetic field will set up an opposing field. When an AC voltage is applied to the stator
coils an AC magnetic field is created, the squirrel cage sets up an opposing magnetic field
and the resulting torque causes the motor to turn.

The motor will turn at a frequency close to that of the applied voltage, but there is
always some slip. It is possible to control the speed of the motor by controlling the fre-
quency of the AC voltage. Synchronous motor drives control the speed of the motors by
synthesizing a variable frequency AC waveform, as shown in Figure 15.9.

o w Q
|

Figure 15.9  AC Motor Speed Control

These drives should be used for applications that only require a single rotational
direction. The torque speed curve for a typical induction motor is shown in Figure 15.10.
When the motor is used with a fixed frequency AC source the synchronous speed of the
motor will be the frequency of AC voltage divided by the number of poles in the motor.
The motor actually has the maximum torque below the synchronous speed. For example a
2 pole motor might have a synchronous speed of (2*60*60/2) 3600 RPM, but be rated for
3520 RPM. When a feedback controller is used the issue of slip becomes insignificant.



continuous actuators - 15.11

torque A — operating range

synchronous speed

speed

Figure 15.10 Torque Speed Curve for an Induction Motor

1 A
Class A e /\
| pspeed
torque A
Class B /\
| p-speed
torque A
Class C /\
! pspeed
torque A
Class D
\ »Speed

Figure 15.11 NEMA Squirrel Cage Torque Speed Curves
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» Wound rotor induction motors use external resistors. varying the resistance
allows the motors torque speed curve to vary. As the resistance value is increased the
motor torque speed curve shifts from the Class A to Class D shapes.

* The figure below shows the relationship between the motor speed and applied
power, slip, and number of poles. An ideal motor with no load would have a slip of 0%.

RPM = @(1 __S )
p 100%

where,
f = power frequency (60Hz typ.)
p = number of poles (2, 4, 6, etc...)

RPM = motor speed in rotations per minute

S = motor slip

» Single phase AC motors can run in either direction. To compensate for this a
shading pole is used on the stator windings. It basically acts as an inductor to one side of
the field which slows the field buildup and collapse. The result is that the field strength
seems to naturally rotate.

» Thermal protection is normally used in motors to prevent overheating.

» Universal motors were presented earlier for DC applications, but they can also be
used for AC power sources. This is because the field polarity in the rotor and stator both
reverse as the AC current reverses.

* Synchronous motors are different from induction motors in that they are designed
to rotate at the frequency of the fields, in other words there is no slip.

* Synchronous motors use generated fields in the rotor to oppose the stators field.

» Starting AC motors can be hard because of the low torque at low speeds. To deal
with this a switching arrangement is often used. At low speeds other coils or capacitors are
connected into the circuits. At higher speeds centrifugal switches disconnect these and the
motor behavior switches.
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» Single phase induction motors are typically used for loads under 1HP. Various
types (based upon their starting and running modes) are,

- split phase - there are two windings on the motor. A starting winding is
used to provide torque at lower speeds.

- capacitor run -

- capacitor start

- capacitor start and run

- shaded pole - these motors use a small offset coil (such as a single copper
winding) to encourage the field buildup to occur asymmetrically. These
motors are for low torque applications much less than 1HP.

- universal motors (also used with DC) have a wound rotor and stator that
are connected in series.
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Split Winding
O
Vin running squirrel cage
winding rotor
O starting winding
sta?ipg capacitor
!
Capacitor Start
O
Vin running squirrel cage
winding rotor
O starting winding
caqaﬁ:itor
|
Capacitor Run
O
Vin running squirrel cage
winding rotor
O capacitor winding

Figure 15.12 Single Phase Motor Configurations



continuous actuators - 15.15

runping capacitor

Capacitor Start and Capacitor Run Motor . .
starting capacitor

o/c ®

O
Vin running squirrel cage
winding rotor
O

starting winding

Figure 15.13 Single Phase Motor Configurations

15.2.3 Brushless DC Motors

Brushless motors use a permanent magnet on the rotor, and use windings on the
stator. Therefore there is no need to use brushes and a commutator to switch the polarity of
the voltage on the coil. The lack of brushes means that these motors require less mainte-
nance than the brushed DC motors.

A typical Brushless DC motor could have three poles, each corresponding to one
power input, as shown in Figure 15.14. Each of coils is separately controlled. The coils are
switched on to attract or repel the permanent magnet rotor.
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Figure 15.14 A Brushless DC Motor

To continuously rotate these motors the current in the stator coils must alternate
continuously. If the power supplied to the coils was a 3-phase AC sinusoidal waveform,
the motor will rotate continuously. The applied voltage can also be trapezoidal, which will
give a similar effect. The changing waveforms are controller using position feedback from
the motor to select switching times. The speed of the motor is proportional to the fre-
quency of the signal.

A typical torque speed curve for a brushless motor is shown in Figure 15.15.
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torque A

speed

Figure 15.15 Torque Speed Curve for a Brushless DC Motor

15.2.4 Stepper Motors

Stepper motors are designed for positioning. They move one step at a time with a
typical step size of 1.8 degrees giving 200 steps per revolution. Other motors are designed
for step sizes of 1.8, 2.0, 2.5, 5, 15 and 30 degrees.

There are two basic types of stepper motors, unipolar and bipolar, as shown in Fig-
ure 15.16. The unipolar uses center tapped windings and can use a single power supply.
The bipolar motor is simpler but requires a positive and negative supply and more com-
plex switching circuitry.

unipolar bipolar
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Figure 15.16 Unipolar and Bipolar Stepper Motor Windings

The motors are turned by applying different voltages at the motor terminals. The
voltage change patterns for a unipolar motor are shown in Figure 15.17. For example,
when the motor is turned on we might apply the voltages as shown in line 1. To rotate the
motor we would then output the voltages on line 2, then 3, then 4, then 1, etc. Reversing
the sequence causes the motor to turn in the opposite direction. The dynamics of the motor
and load limit the maximum speed of switching, this is normally a few thousand steps per
second. When not turning the output voltages are held to keep the motor in position.

Step | la 2a 1b 2b

controller stepper
motor

AN W N~
I~ OO~
S~~~ O
SIS~~~
~~ O O

To turn the motor the phases are stepped through 1, 2, 3, 4, and then back to 1.
To reverse the direction of the motor the sequence of steps can be reversed,
eg. 4,3,2, 1,4, ... If a set of outputs is kept on constantly the motor will be
held in position.

Figure 15.17 Stepper Motor Control Sequence for a Unipolar Motor

Stepper motors do not require feedback except when used in high reliability appli-
cations and when the dynamic conditions could lead to slip. A stepper motor slips when
the holding torque is overcome, or it is accelerated too fast. When the motor slips it will
move a number of degrees from the current position. The slip cannot be detected without
position feedback.

Stepper motors are relatively weak compared to other motor types. The torque
speed curve for the motors is shown in Figure 15.18. In addition they have different static
and dynamic holding torques. These motors are also prone to resonant conditions because
of the stepped motion control.
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torque

p speed

Figure 15.18 Stepper Motor Torque Speed Curve

The motors are used with controllers that perform many of the basic control func-
tions. At the minimum a translator controller will take care of switching the coil voltages.
A more sophisticated indexing controller will accept motion parameters, such as distance,
and convert them to individual steps. Other types of controllers also provide finer step res-
olutions with a process known as microstepping. This effectively divides the logical steps
described in Figure 15.17 and converts them to sinusoidal steps.

translators - the user indicates maximum velocity and acceleration and a distance
to move

indexer - the user indicates direction and number of steps to take

microstepping - each step is subdivided into smaller steps to give more resolution

15.2.5 Wound Field Motors

* Uses DC power on the rotor and stator to generate the magnetic field (i.e., no per-
manent magnets)

» Shunt motors

- have the rotor and stator coils connected in parallel.

- when the load on these motors is reduced the current flow increases
slightly, increasing the field, and slowing the motor.

- these motors have a relatively small variation in speed as they are varied,
and are considered to have a relatively constant speed.

- the speed of the motor can be controlled by changing the supply voltage,
or by putting a rheostat/resistor in series with the stator windings.
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LV
¢ R

a
T =Kl
where,

]a’ Va’ Ra = Armature current, voltage and resistance

T = Torque on motor shaft

K ;= Motor speed constant

@ = motor field flux

~Y

* Series motors\

- have the rotor and stator coils connected in series.
- as the motor speed increases the current increases, the motor can theoreti-
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cally accelerate to infinite speeds if unloaded. This makes the dangerous
when used in applications where they are potentially unloaded.

- these motors typically have greater starting torques that shunt motors

O

(rrrr...

— V(l
“ R, R,
T=KI¢ =Kl
where,
Ia’ Va = Armature current, voltage
R R
a

Armature and field coil resistance

T = Torque on motor shaft

K ;= Motor speed constant

@ = motor field flux

stall torque
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The XXXXXXX

ep = rji,tDli, te,
e, = K,0D

T =Ky,

e, = (r,+1,D)i,+K,DO

e, = (ra+zaD)(ET) +K,DO

Figure 15.19 Equations for an armature controlled DC motor
» Compound motors\

- have the rotor and stator coils connected in series.

- differential compound motors have the shunt and series winding field
aligned so that they oppose each other.

- cumulative compound motors have the shunt and series winding fields
aligned so that they add

o

A

\cumulative

differential

-

>
T
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Figure 15.20 Equations for a controlled field motor

15.3 HYDRAULICS

Hydraulic systems are used in applications requiring a large amount of force and
slow speeds. When used for continuous actuation they are mainly used with position feed-
back. An example system is shown in Figure 15.21. The controller examines the position
of the hydraulic system, and drivers a servo valve. This controls the flow of fluid to the
actuator. The remainder of the provides the hydraulic power to drive the system.
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Figure 15.21 Hydraulic Servo System

The valve used in a hydraulic system is typically a solenoid controlled valve that is
simply opened or closed. Newer, more expensive, valve designs use a scheme like pulse
with modulation (PWM) which open/close the valve quickly to adjust the flow rate.

15.4 OTHER SYSTEMS

The continuous actuators discussed earlier in the chapter are the more common
types. For the purposes of completeness additional actuators are listed and described
briefly below.

Heaters - to control a heater with a continuous temperature a PWM scheme can be
used to limit a DC voltage, or an SCR can be used to supply part of an AC
waveform.

Pneumatics - air controlled systems can be used for positioning with suitable feed-
back. Velocities can also be controlled using fast acting valves.

Linear Motors - a linear motor works on the same principles as a normal rotary
motor. The primary difference is that they have a limited travel and their cost is
typically much higher than other linear actuators.

Ball Screws - rotation is converted to linear motion using balls screws. These are
low friction screws that drive nuts filled with ball bearings. These are normally
used with slides to bear mechanical loads.
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15.5 SUMMARY

* AC motors are low cost and work in a relatively narrow speed range (e.g., around
1700RPM).

* DC motors work over a range of speeds and tend to be more controllable. Costs
are higher for controls or maintenance.

» Motion control introduces velocity and acceleration objectives to servo control.

15.6 PRACTICE PROBLEMS

1. A stepping motor is to be used to drive each of the three linear axes of a cartesian coordinate
robot. The motor output shaft will be connected to a screw thread with a screw pitch of 0.125”.
It is desired that the control resolution of each of the axes be 0.025”
a) to achieve this control resolution how many step angles are required on the step-
per motor?
b) What is the corresponding step angle?
c¢) Determine the pulse rate that will be required to drive a given joint at a velocity
of 3.0”/sec.

2. For the stepper motor in the previous question, a pulse train is to be generated by the robot con-
troller.
a) How many pulses are required to rotate the motor through three complete revo-
lutions?
b) If it is desired to rotate the motor at a speed of 25 rev/min, what pulse rate must
be generated by the robot controller?

3. Explain the differences between stepper motors, variable frequency induction motors and DC
motors using tables.

4. Short answer,

a) Compare the various types of motors discussed in the class using a detailed table.

b) When using a motor there are the static and kinetic friction limits. Will deadband correction

allow the motor to move slower than both, one, or neither? Explain your answer.

¢) What is the purpose of a calibration curve?
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15.7 PRACTICE PROBLEM SOLUTIONS

1.
a) P = 0.125(i—”) R = 0.025-1L
rot step
0.025-L . ot
OZBZ—StePZO.Zﬂ Thus = 5P
Py 125(’”) step 0222 ot
: rot step
b) 6= 0210L = ppdeg
step step
c) 3i_n
PPS = — 5 — 1poSkeps
0.025 L s
step
2.
a
) pulses = (3r0t)(5srﬁ) = 15steps
rot
by pulses _ (25r_()t)(sstﬂ) _ [psSteps _ 125(1min)st€ps _ 5 ogster
S min rot min 60s / min ' s
3.
speed torque
stepper motor very low speeds low torque
vid limited speed range good at rated speed
dc motor wide range decreases at higher speeds
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a)
(ans.
Motor Type Cost Torque Speed Applications
AC/Inuction  low med limited  consumer applications/large power
DC Brushed low/med med variable  short life
DC Brushless  high med variable  high precision
Stepper low/med low low positioning
Shunt med med varies
Series med high varies large break away torques

b) Deadband correction allows the motor to break free of the statis friction. Once moving freely
the torque required to ‘stick’ the motor is determined by the lower kinetic friction. Generally this
means that the motor can move slightly slower than the static friction minimum speed, but not the
kinetic friction minimum speed.

c) Calibration is a process where instrumentation outputs are related to inputs. These results are
then used later to relate measurement equipment outputs with actual phenomenon. For example,
in the laboratory, tachometers are calibrated by turning them at a steady speed. The speed is mea-
sured with a strobe tachometer and the voltage output is also recorded. These are then used to
make a graph relating voltage and speed. Later the strobe tachometer is not used and the voltage
output of the tach. is used to calculate the speed.

15.8 ASSIGNMENT PROBLEMS

1. A stepper motor is to be used to actuate one joint of a robot arm in a light duty pick and place
application. The step angle of the motor is 10 degrees. For each pulse received from the pulse
train source the motor rotates through a distance of one step angle.

a) What is the resolution of the stepper motor?

b) Relate this value to the definitions of control resolution, spatial resolution, and
accuracy, as discussed in class.

c) For the stepper motor, a pulse train is to be generated by a motion controller.
How many pulses are required to rotate the motor through three complete revo-
lutions? If it is desired to rotate the motor at a speed of 25 rev/min, what pulse
rate must be generated by the robot controller?

2. Describe the voltage ripple that would occur when using a permanent magnet DC motor as a
tachometer. Hint: consider the use of the commutator to switch the polarity of the coil.

3. Compare the advantages/disadvantages of DC permanent magnet motors and AC induction
motors.
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25. CONTINUOUS CONTROL

Topics:
* Feedback control of continuous systems
* Control of systems with logical actuators
* PID control with continuous actuators
* Analysis of PID controlled systems
* PID control with a PLC
* Design examples

Objectives:
* To understand the concepts behind continuous control
* Be able to control a system with logical actuators
* Be able to analyze and control system with a PID controller

25.1 INTRODUCTION

Continuous processes require continuous sensors and/or actuators. For example,
an oven temperature can be measured with a thermocouple. Simple decision-based control
schemes can use continuous sensor values to control logical outputs, such as a heating ele-
ment. Linear control equations can be used to examine continuous sensor values and set
outputs for continuous actuators, such as a variable position gas valve.

Two continuous control systems are shown in Figure 25.1. The water tank can be
controlled valves. In a simple control scheme, one of the valves is set by the process, but
we control the other to maximize some control object. If the water tank was actually a city
water tank, the outlet valve would be the domestic and industrial water users. The inlet
valve would be set to keep the tank level at maximum. If the level drops there will be a
reduced water pressure at the outlet, and if the tank becomes too full it could overflow.
The conveyor will move boxes between stations. Two common choices are to have it
move continuously, or to move the boxes between positions, and then stop. When starting
and stopping the boxes should be accelerated quickly, but not so quickly that they slip.
And, the conveyor should stop at precise positions. In both of these systems, a good con-
trol system design will result in better performance.
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Figure 25.1  Continuous Systems

A mechanical control system is pictured in Figure 25.2 that could be used for the
water tank in Figure 25.1. This controller will adjust the valve position, therefore control-
ling the flow rate into the tank. The height of the fluid in the tank will change the hydro-
static pressure at the bottom of the tank. A pressure line is connected to a pressure cell. As
the pressure inside the cell changes, the cell will expand and contract, opening and closing
the valve. As the tank fills the pressure becomes higher, the cell expands, and the valve
closes, reducing the flow in. The desired height of the tank can be adjusted by sliding the
pressure cell up/down a distance x. In this example the height x is called the setpoint. The
control variable is the position of the valve, and, the feedback variable is the water pres-
sure from the tank. The controller is the pressure cell.
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N \  — -1. Feedback of hydrostatic pressure through a rubber tube.
A\ \ - 2. This input slider adjusts the position of the bellows (can
\ \ be adjusted with a screwdriver).

o 3. Bellows expand/contract as pressure increases/decreases,
and move the rod that closes/opens the valve

— — 4. The valve changes the flow into the tank, thus changing

the water height.

For control add,

feedback——»1. Some means of measuring the water height (system state)
setpoint —®2. Some input for desired control height
system error —®3. Some error compensation

4. An actuator to change the system input

Figure 25.2 A Feedback Controller

Continuous control systems typically need a target value, this is called a setpoint.
The controller should be designed with some objective in mind. Typical objectives are
listed below.

fastest response - reach the setpoint as fast as possible (e.g., hard drive speed)
smooth response - reduce acceleration and jerks (e.g., elevators)

energy efficient - minimize energy usage (e.g., industrial oven)

noise immunity - ignores disturbances in the system (e.g., variable wind gusts)

An engineer can design a controller mathematically when performance and stabil-
ity are important issues. A common industrial practice is to purchase a PID unit, connect it
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to a process, and tune it through trial and error. This is suitable for simpler systems, but
these systems are less efficient and prone to instability. In other words it is quick and easy,
but these systems can go out-of-control.

25.2 CONTROL OF LOGICAL ACTUATOR SYSTEMS

Many continuous systems will be controlled with logical actuators. Common
examples include building HVAC (Heating, Ventilation and Air Conditioning) systems.
The system setpoint is entered on a thermostat. The controller will then attempt to keep
the temperature within a few degrees as shown in Figure 25.3. If the temperature is below
the bottom limit the heater is turned on. When it passes the upper limit it is turned off, and
it will stay off until if passes the lower limit. If the gap between the upper and lower the
boundaries is larger, the heater will turn on less often, but be on for longer, and the temper-
ature will vary more. This technique is not exact, and time lags will often lead to over-
shoot above and below the temperature limits.

room

upper |, temp. overshoot
temp. A P *

limit - | ___/\_F__ _7/\ ______

t t .
?relorrel?rllgl) /
lower - |— — f — — — — — | __X/______XJ/_

temp.
limit
4 .
time
|
heater on heater off heater on  heater off heater on

Note: This system turns on/off continuously. This behavior is known as hunting. If the
limits are set too close to the nominal value, the system will hunt at a faster rate. There-
fore, to prevent wear and improve efficiency we normally try to set the limits as far
away from nominal as possible.

Figure 25.3  Continuous Control with a Logical Actuator

Figure 25.4 shows a controller that will keep the temperature between 72 and 74



plc pid - 25.5

(degrees presumably). The temperature will be read and stored in temp, and the output to
turn the heater on is connected to Zeater.

SourceB 74
LES L

SourceA temp
SourceB 72

heater

GRT U ) heater
SourceA temp

Figure 25.4 A Ladder Logic Controller for a Logical Actuator

25.3 CONTROL OF CONTINUOUS ACTUATOR SYSTEMS

25.3.1 Block Diagrams

Figure 25.5 shows a simple block diagram for controlling arm position. The sys-
tem setpoint, or input, is the desired position for the arm. The arm position is expressed
with the joint angles. The input enters a summation block, shown as a circle, where the
actual joint angles are subtracted from the desired joint angles. The resulting difference is
called the error. The error is transformed to joint torques by the first block labeled neural
system and muscles. The next block, arm structure and dynamics, converts the torques to
new arm positions. The new arm positions are converted back to joint angles by the eyes.
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real world
neutral . Tupplied | arm structure arm position
System an and dynamics -
muscles N 4
N /
~ - - _ (
~ 4
N
Loy
b
eyes - l
N
-1 T L
- \ - / |
/ —
- |
** This block diagram shows a §ystem that has dynamics, actuators,
/

Figure 25.5 A Block Diagram

The blocks in block diagrams represent real systems that have inputs and outputs.
The inputs and outputs can be real quantities, such as fluid flow rates, voltages, or pres-
sures. The inputs and outputs can also be calculated as values in computer programs. In
continuous systems the blocks can be described using differential equations. Laplace
transforms and transfer functions are often used for linear systems.

25.3.2 Feedback Control Systems

As introduced in the previous section, feedback control systems compare the
desired and actual outputs to find a system error. A controller can use the error to drive an
actuator to minimize the error. When a system uses the output value for control, it is called
a feedback control system. When the feedback is subtracted from the input, the system has
negative feedback. A negative feedback system is desirable because it is generally more
stable, and will reduce system errors. Systems without feedback are less accurate and may
become unstable.

A car is shown in Figure 25.6, without and with a velocity control system. First,
consider the car by itself, the control variable is the gas pedal angle. The output is the
velocity of the car. The negative feedback controller is shown inside the dashed line. Nor-
mally the driver will act as the control system, adjusting the speed to get a desired veloc-
ity. But, most automobile manufacturers offer cruise control systems that will
automatically control the speed of the system. The driver will activate the system and set
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the desired velocity for the cruise controller with buttons. When running, the cruise con-
trol system will observe the velocity, determine the speed error, and then adjust the gas
pedal angle to increase or decrease the velocity.

g\Control
INPUT variable OUTPUT
(c.g. Ogas) SYSTEM (e.g. velocity)
> (e.g.acar) >
Vdesired Driver or Ogas |

\Y
. ! car actual
cruise control >

Figure 25.6  Addition of a Control System to a Car

The control system must perform some type of calculation with Verror, to select a
new Ogas. This can be implemented with mechanical mechanisms, electronics, or soft-
ware. Figure 25.7 lists a number of rules that a person would use when acting as the con-
troller. The driver will have some target velocity (that will occasionally be based on speed
limits). The driver will then compare the target velocity to the actual velocity, and deter-
mine the difference between the target and actual. This difference is then used to adjust the
gas pedal angle.

L. If Verroy 1 a little positive/negative, increase/decrease 0, a little.
2. If Vepror 1s very big/small, increase/decrease Oy, a lot.
3. If Verpor 1s near zero, keep O, the same.

4. If Verror suddenly becomes bigger/smaller, then increase/decrease 6,5 quickly.

Figure 25.7 Human Control Rules for Car Speed

Mathematical rules are required when developing an automatic controller. The
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next two sections describe different approaches to controller design.

25.3.3 Proportional Controllers

Figure 25.8 shows a block diagram for a common servo motor controlled position-
ing system. The input is a numerical position for the motor, designated as C. (Note: The
relationship between the motor shaft angle and C is determined by the encoder.) The dif-
ference between the desired and actual C values is the system error. The controller then
converts the error to a control voltage V. The current amplifier keeps the voltage V' the
same, but increases the current (and power) to drive the servomotor. The servomotor will
turn in response to a voltage, and drive an encoder and a ball screw. The encoder is part of
the negative feedback loop. The ball screw converts the rotation into a linear displacement
x. In this system, the position x is not measured directly, but it is estimated using the motor
shaft angle.

v v , eactual X
Controller - po| Current | p| DC p Ball | p
Amplifier Servomotor Screw
Encoder |-

Figure 25.8 A Servomotor Feedback Controller

The blocks for the system in Figure 25.8 could be described with the equations in
Figure 25.9. The summation block becomes a simple subtraction. The control equation is
the simplest type, called a proportional controller. It will simply multiply the error by a
constant Kp. A larger value for Kp will give a faster response. The current amplifier keeps
the voltage the same. The motor is assumed to be a permanent magnet DC servo motor,
and the ideal equation for such a motor is given. In the equation J is the polar mass
moment of inertia, R is the resistance of the motor coils, and Km is a constant for the
motor. The velocity of the motor shaft must be integrated to get position. The ball screw
will convert the rotation into a linear position if the angle is divided by the Threads Per
Inch (TPI) on the screw. The encoder will count a fixed number of Pulses Per Revolution
(PPR).
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Summation Block: e = Cy.gred — Cactual (D)
Controller: V.= er (2)
Current Amplifier: V, =V, 3)
K K
Servomotor: (i)m +| L2 o = (—m) V., 4)
dt JR JR
d
0 = Eeactual (5)
0 tual 6
Ball Screw: = 2 (6)
TPI
. _ (7)
Encoder: Coctval = PPR(O,00a1)

Figure 25.9 A Servomotor Feedback Controller

The system equations can be combined algebraically to give a single equation for
the entire system as shown in Figure 25.10. The resulting equation (12) is a second order
non-homogeneous differential equation that can be solved to model the performance of the
system.

d)2 K d K
(214), 21.5) (QT) eactual + {J_ﬁj (E) eactual - (J_;n) Vm (21.8)
(212),213)  p, =K (21.9)
(21.1), (21.9) Vi = K (Cdesued actual) (21.10)
K
(21.8), 21.10) ( dt actual ( ZJ actual o JR)K (Cde51red Cactual) 2L11)
K
(21. 7) (21 11) ( dt actual ( j actual - JR)K (Cdesued PP Reactual)
(21.12)

7\2 K4 K, (PPR)K KK
(67) 6actual + {J_né] (07) eactual + (Tg) eactual = (%) Cdesired
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Figure 25.10 A Combined System Model

A proportional control system can be implemented with the ladder logic shown in
Figure 25.11. The control system has a start/stop button. When the system is active Run
will be on, and the proportional controller calculation will be performed with the SUB and
MUL functions. When the system is inactive the MOV function will set the output to zero.

Start Stop
| || Q Run
I |

Rurf

MOV

Run
Source 0

Dest rack:2:0.ChOOutputData

Run SUB

SourceA Setpoint
SourceB rack:2:1.ChOInputDataj
Dest Error

MUL

SourceA Error

SourceB Kp

Dest rack:2:0.ChO0OutputData

Figure 25.11 Implementing a Proportional Controller with Ladder Logic

This controller may be able to update a few times per second. This is an important
design consideration - recall that the Nyquist Criterion requires that the control system
response be much faster than the system being controlled. Typically this controller will
only be suitable for systems that don’t change more than 10 times per second. (Note: The
speed limitation is a practical limitation for a SoftLogix processor with reasonable update
times for analog inputs and outputs.) This must also be considered if you choose to do a
numerical analysis of the control system.

25.3.4 PID Control Systems

Proportional-Integral-Derivative (PID) controllers are the most common controller
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choice. The basic controller equation is shown in Figure 25.12. The equation uses the sys-
tem error e, to calculate a control variable u. The equation uses three terms. The propor-
tional term, Kp, will push the system in the right direction. The derivative term, Kd will
respond quickly to changes. The integral term, Ki will respond to long-term errors. The
values of Kc, Ki and Kp can be selected, or tuned, to get a desired system response.

u = Kce+Kijedt+Kd(fl—i) Ke ' .
Ki Relative weights of components

Kd

Figure 25.12 PID Equation

Figure 25.13 shows a (partial) block diagram for a system that includes a PID con-
troller. The desired setpoint for the system is a potentiometer set up as a voltage divider. A
summer block will subtract the input and feedback voltages. The error then passes through
terms for the proportional, integral and derivative terms; the results are summed together.
An amplifier increases the power of the control variable u, to drive a motor. The motor
then turns the shaft of another potentiometer, which will produce a feedback voltage pro-
portional to shaft position.

proportional

K, (e)

integral

K ( j e)

motor s

derivative

Figure 25.13 A PID Control System

Recall the cruise control system for a car. Figure 25.14 shows various equations
that could be used as the controller.
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PID Controller
PI Controller

Ogas = KpVerror = Kif Verrord!
PD Controller

dv
6gas - vaerror +Kd($)

P Controller
0 =K

gas pverror

Figure 25.14 Different Controllers

When implementing these equations in a computer program the equations can be
rewritten as shown in Figure 25.15. To do this calculation, previous error and control val-
ues must be stored. The calculation also require the scan time 7 between updates.

Figure 25.15 A PID Calculation

The PID calculation is available as a ladder logic function, as shown in Figure
25.16. This can be used in place of the SUB and MUL functions in Figure 25.11. In this
example the calculation uses the feedback variable stored in Proc Variable (as read from
the analog input rack:2:1.ChOInputData). The result is stored in the analog output
rack:2:0.ChOOutputData. The control block uses the parameters stored in pid control to
perform the calculations. Most PLC programming software will provide dialogues to set
these value.
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PID

Control word: ~ Ppid_control

Proc Variable: rack:2:1.ChOInputData
Tieback: N7:1 0

Control variable: rack:2:0.ChOOutputData
PID master loop: 0

Inhold bit: 0
Inhold value: 0
Setpoint: --displays value--
Process variable: --displays value--
Output %: --displays value--

Note: When entering the ladder logic program into the computer you will be able to
enter the PID parameters on a popup screen.

Figure 25.16 PLC-5 PID Control Block

A description of important PID parameters is given in the following list assuming
that we have defined ’pid:PID’. At the upper end the parameters can be set to generate
alarms and verify system operation. For example, many of the limit values are a function
of the integers used for analog 10 values, and will be limited to -4096 to 4095.

pid.CTL:DINT
pid.EN:BOOL - the PID function is enabled and running
pid.PVT:BOOL -
pid.DOE:BOOL - 0=d/dtPV; 1=d/dtError
pid.SWM:BOOL - 0 = automatic, 1 = manual
pid.MO:BOOL
pid.PE:BOOL - O=independent PID eqn; 1=dependent
pid.NDF:BOOL - 0=no derivative smoothing; 1=derivative smoothing
pid.NOBC:BOOL - 0=no bias calculation, 1=yes
pid.NOZC:BOOL - 0=no zero crossing calculation; 1=yes
pid.INI:BOOL - O0=not initialized; 1=initialized
pid.SPOR:BOOL - O0=setpoint not out of range, 1=within
pid.OLL:BOOL - 0=above minimum CV limit; 1=outside
pid.OLH:BOOL - 0=below maximum CV limit; 1=inside
pid. EWD:BOOL - O=error outside deadband; 1=error inside
pid.DVNA:BOOL - 0=ok; 1=Error is below lower limit
pid.DVPA:BOOL - 0=ok; 1=Error is above upper limit
pid.PVLA:BOOL - 0=0k; 1=PV is below lower limit
pid.PVHA:BOOL - 0=ok; 1=PV is above upper limit
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pid.SP:REAL - setpoint

pid.KP:REAL - proportional gain

pid. KI:REAL - integral gain

pid. KD:REAL - derivative gain

pid.BIAS:REAL - feed forward bias

pid. MAXS:REAL - maximum scaling
pid.MINS:REAL - minimum scaling

pid.DB:REAL - deadband

pid.SO:REAL - set output percentage

pid. MAXO:REAL - maximum output limit percentage
pid.MINO:REAL - minimum output limit percentage
pid.UPD:REAL - loop update time in seconds
pid.PV:REAL - scaled PV value

pid.ERR:REAL - scaled Error value

pid.OUT:REAL - scaled output value
pid.PVH:REAL - process variable high alarm
pid.PVL:REAL - process variable low alarm

pid. DVP:REAL - positive deviation alarm

pid. DVN:REAL - negative deviation alarm
pid.PVDB:REAL - process variable deadband alarm
pid. DVDB:REAL - error alarm deadband

pid. MAXI:REAL - maximum PV value

pid. MINI:REAL - minimum PV value

pid. TIE:REAL - tieback value for manual control
pid. MAXCV:REAL - maximum CV value

pid. MINCV:REAL - minimum CV value

pid. MINTIE:REAL - maximum tieback value

pid. MAXTIE:REAL - minimum tieback value
pid.DATA:REAL[17] - temporary and workspace (e.g. integration sums)

When a controller is off it can drift far from the setpoint and have a large. If the
controller is reengaged this error will be integrated, potentially resulting in a very large
integral value. As the PID equation approaches the setpoint it may not be able to handle
the large error and shoot past the setpoint. This phenomenon is known as windup. The tie-
back value is used to overcome this problem by allowing a smooth transfer from manual
to automatic mode.

PID controllers can also be purchased as cards or stand-alone modules that will
perform the PID calculations in hardware. These are useful when the response time must
be faster than is possible with a PLC and ladder logic.
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25.4 DESIGN CASES

25.4.1 Oven Temperature Control

Problem: Design an analog controller that will read an oven temperature between
1200F and 1500F. When it passes 1500 degrees the oven will be turned off, when it falls
below 1200F it will be turned on again. The voltage from the thermocouple is passed
through a signal conditioner that gives 1V at 500F and 3V at 1500F. The controller should

have a start button and E-stop.

Solution:

Select a 12 bit 1794 module and use the OV to 10V range on channel 1 with

double ended inputs. Vo7
V= INTK—”’ min )R} ~ 410
N Vmax - Vmin
R =2" = 4096
Vi = INT[(——————VW — Vi )R}
3V 7

max Vmin

1229

Cards:  rack:0 - Analog Input
rack:1 - DC Inputs
rack:2 - DC Outputs
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rack:1:I.Data.0-Start rack:1:1.Data.1-Stop

Run

GRT

SourceA rack:2:1.ChOInputData
SourceB 1229

Heat

LES
SourceA rack:2:1.ChOInputData
SourceB 410

Heat

00O O

Run N Healt| |

rack:2:0.Data.0

Heater

)

Figure 25.17 Oven Control Program with Analog Inputs and Logical Outputs

25.4.2 Water Tank Level Control

Problem: The system in Figure 25.18 will control the height of the water in a tank.
The input from the pressure transducer, Vp, will vary between OV (empty tank) and 5V
(full tank). A voltage output, Vo, will position a valve to change the tank fill rate. Vo varies
between OV (no water flow) and 5V (maximum flow). The system will always be on: the
emergency stop is connected electrically. The desired height of a tank is specified by
another voltage, Vd. The output voltage is calculated using Vo = 0.5 (Vd - Vp). If the out-
put voltage is greater than 5V is will be made 5V, and below 0V is will be made OV.
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Digital
ot K Analog Amp

Converter
PLC Water
Running Supply
Control
Program

* Analog
to Digital
Converter Water Tank

Y,

pressure
transducer

Figure 25.18 Water Tank Level Controller

SOLUTION  AnalogInput:  Select a 12 bit 1794 output module and use the 0V to 10V
range on channel 1 with double ended inputs.

R =2V = 4096

Analog Output: Select a 12 bit 1794 output module and use the 0V to 10V
range on channel 1.

R = 2" = 4096

Card: rack:0 - Analog Input / Output
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SUB

SourceA Setpoint

SourceB rack:0:1.ChOInputData
Dest Error

DIV

SourceA Error

SourceB Kp

Dest rack:0:0.ChOOutputData

Figure 25.19 A Water Tank Level Control Program

25.4.3 Position Measurement
- A touch sensor combined with a servo mechanism to measure a dimension

- the sensor must be compliant. The servo axis speed must be slow enough so that
the motion can stop within the compliance of the sensor

- move until the sensor touches then stop and backup slowly until it releases

- used for CMMs

25.5 SUMMARY

* Negative feedback controllers make a continuous system stable.

» When controlling a continuous system with a logical actuator set points can be
used.

* Block diagrams can be used to describe controlled systems.

* Block diagrams can be converted to equations for analysis.

+ Continuous actuator systems can use P, PI, PD, PID controllers.

25.6 PRACTICE PROBLEMS

1. What is the advantage of feedback in a control system?
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2. Can PID control solve problems of inaccuracy in a machine?

3. If a control system should respond to long term errors, but not respond to sudden changes, what
type of control equation should be used?

4. Develop a ladder logic program that implements a PID controller using the discrete equation.
5. Why is logical control so popular when continuous control allows more precision?

6. Design the complete ladder logic for a control system that implements the control equation
below for motor speed control. Assume that the motor speed is read from a tachometer, into an
analog input card in rack 0, slot 0, input 1. The tachometer voltage will be between 0 and
8Vdc, for speeds between 0 and 1000rpm. The voltage output to drive the motor controller is
output from an analog output card in rack 0, slot 1, output 1. Assume the desired RPM is stored

in "rpm’.
Viotor = (rpmy, o —rpm g, ...)0.02154

where,

Vomotor = The voltage output to the motor
rpm, ... = The RPM of the motor
rpmg, ... = The desired RPM of the motor

7. Write a ladder logic control program to keep a water tank at a given height. The control system
will be active after the Start button is pushed, but it can be stopped by a Stop button. The water
height in the tank is measured with an ultrasonic sensor that will output 10V at Im depth, and
1V at 10cm depth. A solenoid controlled valve will open and close to allow water to enter. The
water height setpoint is put in height, in centimeters, and the actual height should be +/-5cm.

8. Implement a program that will input an analog voltage Vi and output half that voltage, Vi/2. If
the input voltage is between 3V and 5V the output *warning’ will be turned on. Include start
and stop buttons that will force the output voltage to zero when not running. Do not show the

bits that would be set in memory, but list the settings that should be made for the cards (e.g.
voltage range).

9. List and describe the most important control memory parameters required to enable a PID func-
tion.

10. Implement the system in the block diagram below. Indicate all of the settings required for the
analog 10 cards. The calculations are to be done with voltage values, therefore input values
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must be converted from their integer values.

SP + D/A
3.0 output

0.2

25.7 PRACTICE PROBLEM SOLUTIONS

1. Feedback control, more specifically negative feedback, can improve the stability and accuracy
of a control system.

2. A PID controller will compare a setpoint and output variable. If there is a persistent error, the
integral part of the controller will adjust the output to reduce long term errors.

3. A PI controller
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update MOV
||

|| Source e
Dest e _last

SUB

Source A Setpoint
Source B Feedback
Dest e

CPT
Dest e_integral
Expression "e sum+e * T"

CPT
Dest e _derivative
Expression "(e - e last)/T"

CPT
Dest CV
Expression "Kp * e + Ki * e_integral + Kd * e_derivative"

5. Logical control is more popular because the system is more controllable. This means either
happen, or they don’t happen. If a system requires a continuous control system then it will tend
to be unstable, and even when controlled a precise values can be hard to obtain. The need for
control also implies that the system requires some accuracy, thus the process will tend to vary,
and be a source of quality control problems.

CPT
|| Dest analog_output

| I Expression
"0.02154*(analog_input - SP)"
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Start Stop
|| Run
|
Run ADD
Source A SP
Source B 5
Dest upper_lim
Note: Assume that a 12 bit ana- SUB
log input card is set for 0 to Source A SP
10V input. Thus giving a Source B 5
range of 0V(0) to Dest lower_lim
10V(4095). DIV
Source A analog_input
Source B 409.5
Dest voltage feedback

GRT Valve toggle

SourceA voltage feedback
SourceB upper_lim

SourceB lower lim

Run Valvel_tloggle Valve output

LES
Valve toggl
SourceA voltage feedback 4® alve toggle
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start stop
| | i
| O active
active
DIV
sourceA voltage input
sourceB 2
dest voltage output
actilve MOV
\t\;\ source 0
dest voltage output
Tlc|tive LIM 2048
upper < ) warnin
|| lower 1229 s

test voltage output

assume:

12 bit input and output
2s complement values
-10V to 10V range
constant update

no filtering

scale from -4095 to 4095

3V - 34095 = 1229
10
5V %4095 = 2048



pid. CTL:DINT
pid.EN:BOOL = TRUE
pid.DOE:BOOL - TRUE=d/dtError
pid.SWM:BOOL - 0 = automatic

pid.INI:BOOL - 1=initialized

plc pid - 25.24

pid.SP:REAL - setpoint
pid.KP:REAL - proportional gain
pid. KI:REAL - integral gain

pid. KD:REAL - derivative gain

pid. MAXS:REAL - maximum scaling
pid.MINS:REAL - minimum scaling
pid.SO:REAL - set output percentage

pid. MAXO:REAL - maximum output limit percentage
pid.MINO:REAL - minimum output limit percentage

pid.UPD:REAL - loop update time in seconds

pid.PV:REAL - scaled PV value

pid.ERR:REAL - scaled Error value
pid.OUT:REAL - scaled output value

pid. MAXI:REAL - maximum PV value

pid.MINI:REAL - minimum PV value

pid. MAXCV:REAL - maximum CV value
pid. MINCV:REAL - minimum CV value

10.

SP

SUB

0.2

rack:2:1.ChOInputData

MUL

5.0

MUL

rack:2:0.ChOOutputDat

25.8 ASSIGNMENT PROBLEMS

1. Design a basic feedback control system for temperature control of an oven. Indicate major

components, and where they are used.
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2. Develop ladder logic for a system that adjusts the height of a box of plastic pellets. An ultra-
sonic sensor detects the top surface of the plastic pellets. The ultrasonic sensor has been cali-
brated so that when the output is above 5V the box is in the right height range. When it is less
than 5V, a motor should be turned on until the box height results in an input of 6V.

3. Write a program that implements a simple proportional controller. The analog input card is in
slot 0 of the PLC rack, and the analog output card is in slot 1. The setpoint for the controller is
stored in *Setpoint’. The gain constant is stored in ’Kgain’.

4. A conveyor line is to be controlled with either a variable frequency drive, or a brushless servo
motor. Workers will place boxes on the inlet side of the conveyor, these will be detected with a
‘box present’ sensor. The box position is also detected with an ultrasonic sensor with a range
from 10cm to Im . When present, boxes on the conveyor will be moved until they are 55cm
from the sensor. Once in place, the system will stop until the box is removed. After this, the
process can begin again when a new box is detected. Design all of the required ladder logic for
the process.

5. A temperature control system is being developed to control the water flow rate for cooling a
mold set. Unfortunately the sensor in the dies doesn’t allow us to measure the temperature. But
it does provide a set of bimetallic contacts that close when the die is above 110C. Luckily a
Variable Frequency Drive (VFD) is available for controlling the flow rate of the water. The
control scheme will increase the water flow rate when the die temperature input, HOT, is
active. When the HOT input if off the flow rate will be decreased, until the flow rate is zero. In
other words, when the HOT input is on, a timer will start. The time accumulated, DELAY, will
be proportional to a voltage output to control the VFD. If the HOT sensors turns off the
DELAY value will be decreased until it has a value of zero. Write the ladder logic for this con-
troller.
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26. FUZZY LOGIC

<TODO - Find an implementation platform and add section>

Topics:
* Fuzzy logic theory; sets, rules and solving

Objectives:
* To understand fuzzy logic control.
* Be able to implement a fuzzy logic controller.

26.1 INTRODUCTION

Fuzzy logic is well suited to implementing control rules that can only be expressed
verbally, or systems that cannot be modelled with linear differential equations. Rules and
membership sets are used to make a decision. A simple verbal rule set is shown in Figure
26.1. These rules concern how fast to fill a bucket, based upon how full it is.

1. If (bucket is full) then (stop filling)
2. If (bucket is half full) then (fill slowly)
3. If (bucket is empty) then (fill quickly)

Figure 26.1 A Fuzzy Logic Rule Set

The outstanding question is "What does it mean when the bucket is empty, half
full, or full?" And, what is meant by filling the bucket slowly or quickly. We can define
sets that indicate when something is true (1), false (0), or a bit of both (0-1), as shown in
Figure 26.2. Consider the bucket is full set. When the height is 0, the set membership is 0,
so nobody would think the bucket is full. As the height increases more people think the
bucket is full until they all think it is full. There is no definite line stating that the bucket is
full. The other bucket states have similar functions. Notice that the angle function relates
the valve angle to the fill rate. The sets are shifted to the right. In reality this would proba-
bly mean that the valve would have to be turned a large angle before flow begins, but after
that it increases quickly.
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A A

1
/ bucket is full . \ stop filling

/ wket is half full _An slowly
0 |
[ | 1
\ bucket is empty . ﬁl-ll quickly

>height >angle
Figure 26.2  Fuzzy Sets

Now, if we are given a height we can examine the rules, and find output values, as
shown in Figure 26.3. This begins be comparing the bucket height to find the membership
for bucket is full at 0.75, bucket is half full at 1.0 and bucket is empty at 0. Rule 3 is
ignored because the membership was 0. The result for rule 1 is 0.75, so the 0.75 member-
ship value is found on the stop filling and a value of a/ is found for the valve angle. For
rule 2 the result was 1.0, so the fil/ slowly set is examined to find a value. In this case there
is a range where fill slowly is 1.0, so the center point is chosen to get angle a2. These two
results can then be combined with a weighted average to get
0.75(al) + 1.0(a2)

1 =
angie 0.75+ 1.0
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1. If ﬂ)ucket is full) then (stop filling)
1
1

0 J ‘tTuc-ket-is-fuﬁ ==

1
1 ™ height
|
2. If (bucket is half ull) then (fill slowly)
A 1
1 N N IE BN BN = .
g \ bucket is half full
0 [ I
| ™ height
|
3. If (bucket is empt}) then (fill quickly)
A
1 & !
\ buckdt is empty
0 |
| > .
' height
Figure 26.3  Fuzzy Rule Solving

A

()

o

1 angle
al 8
A
N N . L—--—-—- -
1 \ fill slowly
0 I
o
) angle
A
1
0 ﬁl-ll quickly
-
angle

An example of a fuzzy logic controller for controlling a servomotor is shown in
Figure 26.4 [Lee and Lau, 1988]. This controller rules examines the system error, and the
rate of error change to select a motor voltage. In this example the set memberships are
defined with straight lines, but this will have a minimal effect on the controller perfor-

mance.
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v 1
Vdesired Verror FuZZ,y Vmo or Motor Imot actua
Logic 8 power % Servo >
Controller Amplifier Motor
The rules for the fuzzy logic controller are;
1. If Verror 1s LP and /dtVerror is any then V(o 1 LP.
2. If Vo 18 SP and /dtvermr is SP or ZE then Vinotor 18 SP.
3. If Verror 18 ZE and /dtvem)r is SP then V,or 1S ZE.
4. If Veppor 18 ZE and /dtVerror is SN then V ,o¢or 15 SN.
5. If Verpor is SN and 94 vorror is SN then Voo, is SN.
6. If Verror 18 LN and */ Voo 15 any then Vi, i, 1s LN.
The sets for verrop d/dtvermr, and V0 are;
d
Verror / dtVerror Vmotor
IN| O T T ===t P O T T et Ppss O T T e Py
-100-50 0 50 100 6 -3 0 3 6 0 6 1218 24
1 1—A /—\ 1—A /—\
SN| 01 s O Tt s O T e Py
-100-50 0 50 100 -6 -3 0 3 6 0 6 12 18 24
1 n 1—A ’—‘ 1—A ’—‘
ZE| 0t MmO e Oy
-100-50 0 50 100 -6 -3 0 0 6 12 18 24
1—A 1—A 1—A
SP I \ ps I \ rps/s \Y
07 > T > O == -
—100 50 0 50 100 -6 -3 0 3 6 0 6 1218 24
1 1—A 1—A
LP /
=T T % O T T T ™y O T T T Py
-100-50 0 50 100 6 -3 0 3 6 0 6 1218 24
Figure 26.4 A Fuzzy Logic Servo Motor Controller

Consider the case where Ve o = 1 'P%/,. Rule 1to 6 are calcu-

lated in Figure 26.5.

30 rps and /01t Verror =



1. If Veppor 18 LP and d/dtvem)r is any then Vo0 18 LP.

!
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l_

O ==
| -100 -50

2. If Veprop is SP and Y/ yve, o, is SP or ZE then Voo, is SP.

30rps

[T 1
0 (50 100

ps

e A
6 -3 03 6
ANY VALUE

(so ignore)

ps/s

This has about 0.6 (out of 1) membership

the OR means take the

0

T T ™y
18 24

17V

(could also
have chosen
some value

above 17V)

the AND means take the
lowest of the two

highest of the two memberships
memberships
1? 1—A 1A H\ 1A |
ps ps/s y \
T ? - o 0 l—rl"|=|>rps/s0 — 1
-100-50 0 |50 100 6 -3 036 6 -3036 0 6 121
lrps/s
30rps lrps/s

This has about 0.4 (out of 1) membership

3. If Verror 18 ZE and d/dtVerror is SP then V,or 1S ZE.

et ALt A
5 7\
0 s O T T L2 I e A B
100 50 O 50 100 -6 -3 0| 3 6 0 6 12 18 24
the lowest results in 0 set
lrps/s membership

30rps

This has about 0.0 (out of 1) membership
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4. If Veyyop is ZE and Y gvg o, is SN then V(o is SN.

! Sl Sl
0 II I‘I s O II I‘I e
ps rps/s
-100-50 0 {50 100 -6 -3 0]/3 6 0 6 12 18 24
Irps/s the lowest results in 0 set

30rps
) . membership
This has about 0.0 (out of 1) membership

5. If Verror 18 SN and d/dtvermr is SN then V,,¢0r 18 SN.

Nt o

G| I 7 T
-100-50 0 ‘50 100 -6 0 6 12 18 24

|
ps ‘ 3I 6I
30rps Irps

This has about 0.0 (out of 1) membership

6. If Verror 18 LN and d/dtVerror 1s any then Vo 18 LN.

1\

G|| o
-100 -50 0

W‘ ﬁ -
>0 > 0 >
= "0 T T T T ™y I B o e N
0100 ™ le 3 036 710 6 s 4

ANY VALUE

30rps
This has about 0 (out of 1) membership

Figure 26.5 Rule Calculation

The results from the individual rules can be combined using the calculation in Fig-
ure 26.6. In this case only two of the rules matched, so only two terms are used, to give a
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final motor control voltage of 15.8V.

n

Z (Vmolori)(men’lberShipi)
|4 —i=1

n
z (membership;)
i=1

v 06(171) +0.4(14V) _

15.
motor 0.6 +04 S8V

Figure 26.6  Rule Results Calculation

26.2 COMMERCIAL CONTROLLERS

At the time of writing Allen Bradley did not offer any Fuzzy Logic systems for
their PLCs. But, other vendors such as Omron offer commercial controllers. Their control-
ler has 8 inputs and 2 outputs. It will accept up to 128 rules that operate on sets defined
with polygons with up to 7 points.

It is also possible to implement a fuzzy logic controller manually, possible in struc-
tured text.

26.3 REFERENCES

Li, Y.F,, and Lau, C.C., “Application of Fuzzy Control for Servo Systems”, IEEE International
Conference on Robotics and Automation, Philadelphia, 1988, pp. 1511-1519.

26.4 SUMMARY

* Fuzzy rules can be developed verbally to describe a controller.

* Fuzzy sets can be developed statistically or by opinion.

* Solving fuzzy logic involves finding fuzzy set values and then calculating a value
for each rule. These values for each rule are combined with a weighted average.
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26.5 PRACTICE PROBLEMS

26.6 PRACTICE PROBLEM SOLUTIONS

26.7 ASSIGNMENT PROBLEMS

1. Find products that include fuzzy logic controllers in their designs.

2. Suggest 5 control problems that might be suitable for fuzzy logic control.

3. Two fuzzy rules, and the sets they use are given below. If v, = 30rps, and d/dtvermr = 3PS/,
find Vmotor

1. If (Verpor 18 ZE) and (d/dtVerror is ZE) then (Vo101 1S ZE).
2. If (Vergor 15 SP) of (YgeVerror is SP) then (V ot0r 18 SP).

d
Verror / dtVerror Vmotor
1_A /_\ 1_A /_\ 1_A /_\
SN| O ===t O Tt P s 0T 1 T e Py
-100-50 0 50 100 -6 -3 0 3 6 0 6 12 18 24
1—A n I—A H I—A H
ZE | 0t s O T T T P pys O T T T Py
-100-50 0 50 100 6 -3 0 3 6 0 6 12 18 24
1—A l—A l—A
SP } \ ps I \ ps/s I \ \Y%
ot > N e e S B R
-100-50 0 50 100 6 -3 0 3 6 0 6 12 18 24

4. Develop a set of fuzzy control rules adjusting the water temperature in a sink.

5. Develop a fuzzy logic control algorithm and implement it in structured text. The fuzzy rule set
below is to be used to control the speed of a motor. When the error (difference between desired
and actual speeds) is large the system will respond faster. When the difference is smaller the
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response will be smaller. Calculate the outputs for the system given errors of 5, 20 and 40.

A
100%—1—
Big Error
error
0% ! | >
10 30
100%
Small Error
error
0% | -
16 30
20 A
Big Output
error
—
50
A
Small Output
5
—— i > error
0

if (big error) then (big output)
if (small error) then (small output)
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27. SERIAL COMMUNICATION

Topics:
 Serial communication and RS-232c¢

» ASCII ladder logic functions
* Design case

Objectives:
» To understand serial communications with RS-232
» Be able to use serial communications with a PLC

27.1 INTRODUCTION

Multiple control systems will be used for complex processes. These control sys-
tems may be PLCs, but other controllers include robots, data terminals and computers. For
these controllers to work together, they must communicate. This chapter will discuss com-
munication techniques between computers, and how these apply to PLCs.

The simplest form of communication is a direct connection between two comput-
ers. A network will simultaneously connect a large number of computers on a network.
Data can be transmitted one bit at a time in series, this is called serial communication.
Data bits can also be sent in parallel. The transmission rate will often be limited to some
maximum value, from a few bits per second, to billions of bits per second. The communi-
cations often have limited distances, from a few feet to thousands of miles/kilometers.

Data communications have evolved from the 1800’s when telegraph machines
were used to transmit simple messages using Morse code. This process was automated
with teletype machines that allowed a user to type a message at one terminal, and the
results would be printed on a remote terminal. Meanwhile, the telephone system began to
emerge as a large network for interconnecting users. In the late 1950s Bell Telephone
introduced data communication networks, and Texaco began to use remote monitoring
and control to automate a polymerization plant. By the 1960s data communications and
the phone system were being used together. In the late 1960s and 1970s modern data com-
munications techniques were developed. This included the early version of the Internet,
called ARPAnet. Before the 1980s the most common computer configuration was a cen-
tralized mainframe computer with remote data terminals, connected with serial data line.
In the 1980s the personal computer began to displace the central computer. As a result,
high speed networks are now displacing the dedicated serial connections. Serial communi-
cations and networks are both very important in modern control applications.
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An example of a networked control system is shown in Figure 27.1. The computer
and PLC are connected with an RS-232 (serial data) connection. This connection can only
connect two devices. Devicenet is used by the Computer to communicate with various
actuators and sensors. Devicenet can support up to 63 actuators and sensors. The PLC
inputs and outputs are connected as normal to the process.

Computer |« Devicenet
A
RS-232 Process Process
Actuat
ctuators | y Sensors
Process
> —
y Process Process
Actuators Sensors
PLC |
Normal /O on PLC

Figure 27.1 A Communication Example

27.2 SERIAL COMMUNICATIONS

Serial communications send a single bit at a time between computers. This only
requires a single communication channel, as opposed to 8 channels to send a byte. With
only one channel the costs are lower, but the communication rates are slower. The commu-
nication channels are often wire based, but they may also be can be optical and radio. Fig-
ure 27.2 shows some of the standard electrical connections. RS-232c is the most common
standard that is based on a voltage change levels. At the sending computer an input will
either be true or false. The /ine driver will convert a false value in to a Txd voltage
between +3V to +15V, true will be between -3V to -15V. A cable connects the Txd and
com on the sending computer to the Rxd and com inputs on the receiving computer. The
receiver converts the positive and negative voltages back to logic voltage levels in the
receiving computer. The cable length is limited to 50 feet to reduce the effects of electrical
noise. When RS-232 is used on the factory floor, care is required to reduce the effects of
electrical noise - careful grounding and shielded cables are often used.
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50 ft >
RS-232¢ Txd Rxd
In = :
Out
com
}4 3000 ft >
RS-422a *
%
In
¢ Out
3000 ft >
RS-423a
_O
In

Fa .

Figure 27.2  Serial Data Standards

The RS-422a cable uses a 20 mA current loop instead of voltage levels. This
makes the systems more immune to electrical noise, so the cable can be up to 3000 feet
long. The RS-423a standard uses a differential voltage level across two lines, also making
the system more immune to electrical noise, thus allowing longer cables. To provide serial
communication in two directions these circuits must be connected in both directions.

To transmit data, the sequence of bits follows a pattern, like that shown in Figure
27.3. The transmission starts at the left hand side. Each bit will be true or false for a fixed
period of time, determined by the transmission speed.
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A typical data byte looks like the one below. The voltage/current on the line is
made true or false. The width of the bits determines the possible bits per second (bps). The
value shown before is used to transmit a single byte. Between bytes, and when the line is
idle, the Txd is kept true, this helps the receiver detect when a sender is present. A single
start bit is sent by making the 7xd false. In this example the next eight bits are the trans-
mitted data, a byte with the value 17. The data is followed by a parity bit that can be used
to check the byte. In this example there are two data bits set, and even parity is being used,
so the parity bit is set. The parity bit is followed by two stop bits to help separate this byte
from the next one.

—E———— ] — F— T — = — — — 11— ) ' ' true
I | | | | | | I |
. o . . . . o false

before start data parity  stop idle

Descriptions:

before - this is a period where no bit is being sent and the line is true.

start - a single bit to help get the systems synchronized.

data - this could be 7 or 8 bits, but is almost always 8 now. The value shown here is a
byte with the binary value 00010010 (the least significant bit is sent first).

parity - this lets us check to see if the byte was sent properly. The most common
choices here are no parity bit, an even parity bit, or an odd parity bit. In this case
there are two bits set in the data byte. If we are using even parity the bit would be
true. If we are using odd parity the bit would be false.

stop - the stop bits allow a pause at the end of the data. One or two stop bits can be
used.

idle - a period of time where the line is true before the next byte.

Figure 27.3 A Serial Data Byte

Some of the byte settings are optional, such as the number of data bits (7 or 8), the
parity bit (none, even or odd) and the number of stop bits (1 or 2). The sending and receiv-
ing computers must know what these settings are to properly receive and decode the data.
Most computers send the data asynchronously, meaning that the data could be sent at any
time, without warning. This makes the bit settings more important.

Another method used to detect data errors is half-duplex and full-duplex transmis-
sion. In half-duplex transmission the data is only sent in one direction. But, in full-duplex
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transmission a copy of any byte received is sent back to the sender to verify that it was
sent and received correctly. (Note: if you type and nothing shows up on a screen, or char-
acters show up twice you may have to change the half/full duplex setting.)

The transmission speed is the maximum number of bits that can be sent per sec-
ond. The units for this is baud. The baud rate includes the start, parity and stop bits. For
example a 9600 baud transmission of the data in Figure 27.3 would transfer up to

9600
(1+8+1+2)
9.6K. Higher speeds are 19.2K, 28.8K and 33.3K. (Note: When this is set improperly you
will get many transmission errors, or garbage on your screen.)

= 800 bytes each second. Lower baud rates are 120, 300, 1.2K, 2.4K and

Serial lines have become one of the most common methods for transmitting data to
instruments: most personal computers have two serial ports. The previous discussion of
serial communications techniques also applies to devices such as modems.

27.2.1 RS-232

The RS-232c standard is based on a low/false voltage between +3 to +15V, and an
high/true voltage between -3 to -15V (+/-12V is commonly used). Figure 27.4 shows
some of the common connection schemes. In all methods the #xd and rxd lines are crossed
so that the sending #xd outputs are into the listening rxd inputs when communicating
between computers. When communicating with a communication device (modem), these
lines are not crossed. In the modem connection the dsr and dtr lines are used to control the
flow of data. In the computer the cts and rts lines are connected. These lines are all used
for handshaking, to control the flow of data from sender to receiver. The null-modem con-
figuration simplifies the handshaking between computers. The three wire configuration is
a crude way to connect to devices, and data can be lost.



Modem

Computer

com
txd
rxd
dsr
dtr
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Computer

Computer
A

com
txd
rxd
cts
rts

com
txd
rxd
dsr
dtr

Modem

Null-Modem!

Computer
A

com
txd
rxd

dsr
dtr
cts
rts

com
txd
rxd
cts
rts

Computer
B

X X XX

Three wire

Computer
A

com
txd
rxd
cts
rts

com
txd
rxd

dsr
dtr
cts
rts

Computer
B

X

Figure 27.4

Common connectors for serial communications are shown in Figure 27.5. These
connectors are either male (with pins) or female (with holes), and often use the assigned
pins shown. The DB-9 connector is more common now, but the DB-25 connector is still in
use. In any connection the RXD and TXD pins must be used to transmit and receive data.
The COM must be connected to give a common voltage reference. All of the remaining

Common RS-232 Connection Schemes

pins are used for handshaking.

L

com
txd
rxd
cts
rts

Computer
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Commonly used pins

1 - GND (chassis ground)

2 - TXD (transmit data)

3 - RXD (receive data)

4 - RTS (request to send)

5 - CTS (clear to send)

6 - DSR (data set ready)

7 - COM (common)

8 - DCD (Data Carrier Detect)

20 - DTR (data terminal ready)
Other pins

9 - Positive Voltage

10 - Negative Voltage

11 - not used

12 - Secondary Received Line Signal Detector

13 - Secondary Clear to Send

14 - Secondary Transmitted Data

15 - Transmission Signal Element Timing (DCE)

16 - Secondary Received Data

17 - Receiver Signal Element Timing (DCE)

18 - not used Note: these connec-
19 - Secondary Request to Send tors often have
21 - Signal Quality Detector very small num-
22 - Ring Indicator (RI) bers printed on
23 - Data Signal Rate Selector (DTE/DCE) them to help you
24 - Transmit Signal Element Timing (DTE) identify the pins.
25 - Busy

Figure 27.5  Typical RS-232 Pin Assignments and Names

The handshaking lines are to be used to detect the status of the sender and receiver,
and to regulate the flow of data. It would be unusual for most of these pins to be connected
in any one application. The most common pins are provided on the DB-9 connector, and
are also described below.

TXD/RXD - (transmit data, receive data) - data lines
DCD - (data carrier detect) - this indicates when a remote device is present



RI - (ring indicator) - this is used by modems to indicate when a connection is
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about to be made.
CTS/RTS - (clear to send, ready to send)

DSR/DTR - (data set ready, data terminal ready) these handshaking lines indicate

when the remote machine is ready to receive data.

COM - a common ground to provide a common reference voltage for the TXD and

RXD.

When a computer is ready to receive data it will set the CTS bit, the remote
machine will notice this on the RTS pin. The DSR pin is similar in that it indicates the
modem is ready to transmit data. XON and XOFF characters are used for a software only

flow control scheme.

Many PLC processors have an RS-232 port that is normally used for programming
the PLC. Figure 27.6 shows a PLC connected to a personal computer with a Null-Modem
line. It is connected to the channel 0 serial connector on the PLC processor, and to the com
1 port on the computer. In this example the terminal could be a personal computer running
a terminal emulation program. The ladder logic below will send a string to the serial port
channel 0 when A goes true. In this case the string is stored is string memory ‘example’
and has a length of 4 characters. If the string stored in example is "HALFLIFE", the termi-

nal program will display the string "HALF".

PLC

cha

RS-232 Cable

nnel 0

com 1

Terminal
Emulator

AWT
Channel 0

source: example
SerialPortControl: ser cnt
SerialPortControlLen: 4

Figure 27.6  Serial Output Using Ladder Logic

The AWT (Ascii WriTe) function below will write to serial ports on the CPU only.
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27.2.2 ASCII Functions

ASCII functions allow programs to manipulate strings in the memory of the PLC.
The basic functions are listed in Figure 27.7.

AWA((channel, string, control, length) - append characters to the output buffer
ABL(channel, control)- reports the number of ASCII characters including line endings
ACB(channel, control) - reports the numbers of ASCII characters in buffer
AHL(channel, mask, mask, control) - does data handshaking

ARD(channel, dest, control, length) - will get characters from the ASCII buffer
ARL(channel, dest, control, length) - will get characters from an ASCII buffer
ASR(string, string) - compares two strings

AWT(channel, string, control, length) - will write characters to an ASCII output
CONCAT(string, string, dest) - concatenate strings

DELETE(string, len, start, dest) - deletes characters from a larger string
DTOS(integer, string) - convert an integer to a string

FIND(string, string, start) - find one string inside another

INSERT(string, string, start, dest) - puts characters inside a string

LOWER(integer, string) - convert a string to lower case

MID(string, start, length, dest) - this will copy a segment of a string out of a larger string
RTOS(integer, string) - convert a real to a string

STOD(string, dest) - convert ASCII string to integer

STOR(string, dest) - convert ASCII string to real

UPPER(string, dest) - convert a string to upper case

Figure 27.7  PLC ASCII Functions

In the example in Figure 27.8, the characters "Hi " are placed into string memory
str_in. The ACB function checks to see how many characters have been received, and are
waiting in channel 0. When the number of characters equals 2, the ARD (Ascii ReaD)
function will then copy those characters into memory s#» 0, and bit real ctl. DN will be
set. This done bit will cause the two characters to be concatenated to the "Hi ", and the
result written back to the serial port. So, if [ typed in my initial "HJ", I would get the
response "HI HJ".
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input_ctLEN ACB
\A\Ir\ Channel 0
! Control input_ctl
read_lctl.EN ARL
GEQ
Source A input_ctl.POS \1\’\ I(;hannel 0
Source B 2 est str_in
Control read_ctl
Length 2
read ctl. DN CONCAT
I I StringA str_pre
StringB str_in
Dest str_out

AWT

str_pre = "HIL " Channel 0

String str_out
Control output_ctl
Length 7

Figure 27.8  An ASCII String Example

The ASCII functions can also be used to support simple number conversions. The
example in Figure 27.9 will convert the strings in st»_a and str_b to integers, add the num-
bers, and store the result as a string in str_c.
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STOD

|| String str_a
Destint a

STOD

String str b
Dest int_b

ADD

SourceA int a
SourceB int_b
Dest int_¢

DTOS

Source int_c
String str ¢

Figure 27.9 A String to Integer Conversion Example

Many of the remaining string functions are illustrated in Figure 27.10. When 4 is
true the ABL and ACB functions will check for characters that have arrived on channel 1,
but have not been retrieved with an ARD function. If the characters "ABC<CR>" have
arrived (<CR> is an ASCII carriage return) the ACB would count the three characters, and
store the value in cnt 1.POS. The ABL function would also count the <CR> and store a
value of four in cnt 2.POS. If B is true, and the string in str_a is "ABCDEFGHIJKL",
then "EF" will be stored in st»_b. The last function will compare the strings in st ¢ and
str_d, and if they are equal, output string match will be turned on.
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ACB

Channel 1
Control cnt_1

ABL

Channel 1
Control cnt 2

EQU

StringA str ¢
StringB str d

MID

Source str_a
Index 5
Length 2
Dest str b

Figure 27.10 String Manipulation Functions

Q string_match

The AHL function can be used to do handshaking with a remote serial device.

27.3 PARALLEL COMMUNICATIONS

Parallel data transmission will transmit multiple bits at the same time over multiple
wires. This does allow faster data transmission rates, but the connectors and cables
become much larger, more expensive and less flexible. These interfaces still use hand-

shaking to control data flow.

These interfaces are common for computer printer cables and short interface
cables, but they are uncommon on PLCs. A list of common interfaces follows.

Centronics printer interface - These are the common printer interface used on most
personal computers. It was made popular by the now defunct Centronics printer

company.

GPIB/IEEE-488 - (General Purpose Instruments Bus) This bus was developed by
Hewlett Packard Inc. for connecting instruments. It is still available as an option
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on many new instruments.

27.4 DESIGN CASES

27.4.1 PLC Interface To a Robot

Problem: A robot will be loading parts into a box until the box reaches a prescribed
weight. A PLC will feed parts into a pickup fixture when it is empty. The PLC will tell the
robot when to pick up a part and load it into the box by passing it an ASCII string,

"pickup".
RS-232
"pickup" = pickup part
-
PLC Robot
g
g
feed part part waiting box full
Parts Parts Pickup Box and
Feeder Fixture Weigh Scale

Figure 27.11 Box Loading System

Solution: The following ladder logic will implement part of the control system for
the system in Figure 27.11.
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part waiting box full

SNE SNE O feed part

part waiting

N ONS AWT
|| Bit test Channel 0
String ST10:0

Control: cnt
ST10:0 = "pickup" Length 6

Figure 27.12 A Box Loading System

27.5 SUMMARY

* Serial communications pass data one bit at a time.

* RS-232 communications use voltage levels for short distances. A variety of com-
munications cables and settings were discussed.

» ASCII functions are available of PLCs making serial communications possible.

27.6 PRACTICE PROBLEMS

1. Describe what the bits would be when an 4 (ASCII 65) is transmitted in an RS-232 interface
with 8 data bits, even parity and 1 stop bit.

2. Divide the string in ’str_a’ by the string in ’str_b’ and store the results in ’str_c’. Check for a
divide by zero error.

str_a “100”
str_ b “10”
str ¢

3. How long would it take to transmit an ASCII file over a serial line with 8 data bits, no parity, 1
stop bit? What if the data were 7 bits long?

4. Write a number guessing program that will allow a user to enter a number on a terminal that
transmits it to a PLC where it is compared to a value in target. If the guess is above "Hi" will
be returned. If below "Lo" will be returned. When it matches "ON" will be returned.
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5. Write a structured text program that reads inputs from ‘channel 0°. An input string of ‘CLEAR’
will clear a storage array. Up to 100 real values with the format ‘XXX.XX’ will arrive on
‘channel 0’ and are to be stored in the array. If the string ‘AVG’ is received, the average of the
array contents will be calculated and written out ‘Channel 0.

27.7 PRACTICE PROBLEM SOLUTIONS

before start data parity  stop

STOD
|| Source str_a
Destint a

STOD
Source str b
Dest int_b

NEQ DIV

Source A 0 Source A int_a
Source B int b Source B int b
Dest int_¢

DTOS
Source int_¢
Dest str ¢

3. If we assume 9600 baud, for (1start+8data+Oparity+1stop)=10 bits/byte we get 960 bytes per
second. If there are only 7 data bits per byte this becomes 9600/9 = 1067 bytes per second.
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stl_inputEN ACB
Channel 0

Control ctl input

ctl read.EN ARL

EQU I Channel 0
SourceA ctl_input.POS \t\’\ De:tn 2; guess
Source B 2 _

Control ctl_read
Length 3

V.

ctl read.DN
T | STOD

! Source str_guess
Dest guess

LES AWT

Source A guess Channel 0
Source B target Source str_lo
Control ctl_lo
Length 2

EQ AWT

. Source A guess Channel 0
str_lo= "LO . Source B target Source str_on
str_op=" OI'?I Control ctl_on
str_hi="Hi Length 2

GRT AWT

Source A guess Channel 0
Source B target Source str_hi
Control ctl_hi
Length 2
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SBR();
IF S:FS THEN
1=0;
END _IF; Tags:
ACB(0, ¢);
IF c.IEOS)Z 6 THEN r:REAL[100]
ARL(O, str_in, s); FINT
IF i < 100 THEN JINT
ifi] = STOR(str_in); sum:REAL
P=it1; - C:Ser}alPortCOntrol
END IF: s:SepalPortControl
ELSE - str_ in:STRING
ARL(O, str_in, s); str_out:STRING
IF str in =str clear THEN str_clear:STRING = “CLEAR”
= O;_ str_ avg:STRING = “AVG”
END _IF
IF str_in =str avg THEN
sum := 0;
FOR j =0 to length-1 DO
sum := sum + r[j];
END FOR;
str_out := RTOS(sum / 1);
AWT(0, str_out, s);
END IF;
END _IF;
RET();

27.8 ASSIGNMENT PROBLEMS

1. Describe an application of ASCII communications.

2. Write a ladder logic program to output an ASCII warning message on channel 1 when the value
in "temp’ is less than 10, or greater than 20. The message should be "out of temp range".

3. Write a program that will send an ASCII message every minute. The message should begin
with the word ‘count’, followed by a number. The number will be 1 on the first scan of the
PLC, and increment once each minute.

4. A PLC will be controlled by ASCII commands received through the RS-232C communications
port. The commands will cause the PLC to move between the states shown in the state dia-
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gram. Implement the ladder logic.
FS

5. A program is to be written to control a robot through an RS-232c interface. The robot has
already been programmed to respond to two ASCII strings. When the robot receives the string
‘start’ it will move a part from a feeder to a screw machine. When the robot receives an ‘idle’
command it will become inactive (safe). The PLC has ‘start” and ‘end’ inputs to control the
process. The PLC also has two other inputs that indicate when the parts feeder has parts avail-
able (‘part present’) and when the screw machine is done (‘machine idle’). The ‘start’ button
will start a cycle where the robot repeatedly loads parts into the screw machine whenever the
‘machine idle’ input is true. If the ‘part present’ sensor is off (i.e., no parts), or the ‘end’ input
is off (a stop requested), the screw machine will be allowed to finish, but then the process will
stop and the robot will be sent the idle command. Use a structured design method (e.g., state
diagrams) to develop a complete ladder logic program to perform the task.

6. A PLC is connected to a scale that measures weights and then sends an ASCII string. The string
format is ‘XXXX.XX’. So a weight of 29.9 grams would result in a string of ‘0029.90°. The
PLC is to read the string and then check to see if the weight is between 18.23 and 18.95 grams.
If it is not then an error output light should be set until a reset button is pushed.

7. Write a program that will convert a numerical value stored in the 'REAL’ value float and write
it out the RS-232 output with 3 decimal places.

8. A system for testing hydraulic resevoirs is to be designed and built using a PLC. Part of the test
will be conducted using a computer based Data AQuisition (DAQ) system for high speed ana-
log inputs. When the test begins a command of ’S’ is sent to the DAQ system, and an output
pump’ will be turned on. The test is started with a ’start’” input and stopped with a ’stop’ input.
The test will be shut down and an error light turned on if the flow sensor does not turn on
within 0.1s, or if the pressure input rises above 4V. When the test is done the DAQ system will
send a ’D’ to the PLC. The PLC will retrieve the data by sending and "R’ to the DAQ system.
The data is returned in the format "xxxx.x<cr><If>’. The last data line will be ’TEND’. The
array of data should be analyzed and the results stored in the real variables 'maximum’, ’aver-
age’, ’standard deviation’, and 'median’. These variables will displayed on an HMI. Write a
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structured text program for the control system.
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28. NETWORKING

<TODO - get AB ethernet specs for MSG instruction>

<TODO - clean up internet materials>

Topics:
* Networks; topology, OSI model, hardware and design issues
* Network types; Devicenet, CANbus, Controlnet, Ethernet, and DH+
* Design case

Objectives:
* To understand network types and related issues
* Be able to network using Devicenet, Ethernet and DH+

28.1 INTRODUCTION

A computer with a single network interface can communicate with many other
computers. This economy and flexibility has made networks the interface of choice,
eclipsing point-to-point methods such as RS-232. Typical advantages of networks include
resource sharing and ease of communication. But, networks do require more knowledge
and understanding.

Small networks are often called Local Area Networks (LANs). These may connect
a few hundred computers within a distance of hundreds of meters. These networks are
inexpensive, often costing $100 or less per network node. Data can be transmitted at rates
of millions of bits per second. Many controls system are using networks to communicate
with other controllers and computers. Typical applications include;

« taking quality readings with a PLC and sending the data to a database computer.
» distributing recipes or special orders to batch processing equipment.
* remote monitoring of equipment.

Larger Wide Area Networks (WANSs) are used for communicating over long dis-
tances between LANs. These are not common in controls applications, but might be
needed for a very large scale process. An example might be an oil pipeline control system
that is spread over thousands of miles.
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28.1.1 Topology

The structure of a network is called the topology. Figure 28.1 shows the basic net-
work topologies. The Bus and Ring topologies both share the same network wire. In the
Star configuration each computer has a single wire that connects it to a central hub.

/ LAN\

A Wire Loop Central Connection

PN
7 |?

Ring
Star

Figure 28.1  Network Topologies

In the Ring and Bus topologies the network control is distributed between all of the
computers on the network. The wiring only uses a single loop or run of wire. But, because
there is only one wire, the network will slow down significantly as traffic increases. This
also requires more sophisticated network interfaces that can determine when a computer is
allowed to transmit messages. It is also possible for a problem on the network wires to halt
the entire network.

The Star topology requires more wire overall to connect each computer to an intel-
ligent hub. But, the network interfaces in the computer become simpler, and the network
becomes more reliable. Another term commonly used is that it is deterministic, this means
that performance can be predicted. This can be important in critical applications.

For a factory environment the bus topology is popular. The large number of wires
required for a star configuration can be expensive and confusing. The loop of wire
required for a ring topology is also difficult to connect, and it can lead to ground loop
problems. Figure 28.2 shows a tree topology that is constructed out of smaller bus net-
works. Repeaters are used to boost the signal strength and allow the network to be larger.
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Figure 28.2  The Tree Topology

28.1.2 OSI Network Model

The Open System Interconnection (OSI) model in Figure 28.3 was developed as a
tool to describe the various hardware and software parts found in a network system. It is
most useful for educational purposes, and explaining the things that should happen for a
successful network application. The model contains seven layers, with the hardware at the
bottom, and the software at the top. The darkened arrow shows that a message originating
in an application program in computer #1 must travel through all of the layers in both
computers to arrive at the application in computer #2. This could be part of the process of
reading email.
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Layer Computer #1 Unit of Transmission Computer #2
7 Application . Message Application
6 Presentation il Message 1Presentati0n
5 Session : Message : Session
4 Transport : Message : Transport
3 Network : Packet : Network
o) Data Link : Frame : Data Link
1 Physical 1 Bit : Physical

\~ e ——
Interconnecting Medium

Application - This is high level software on the computer.

Presentation - Translates application requests into network operations.

Session - This deals with multiple interactions between computers.

Transport - Breaks up and recombines data to small packets.

Network - Network addresses and routing added to make frame.

Data Link - The encryption for many bits, including error correction added to a
frame.

Physical - The voltage and timing for a single bit in a frame.

Interconnecting Medium - (not part of the standard) The wires or transmission
medium of the network.

Figure 28.3  The OSI Network Model

The Physical layer describes items such as voltage levels and timing for the trans-
mission of single bits. The Data Link layer deals with sending a small amount of data,
such as a byte, and error correction. Together, these two layers would describe the serial
byte shown in the previous chapter. The Network layer determines how to move the mes-
sage through the network. If this were for an internet connection this layer would be
responsible for adding the correct network address. The Transport layer will divide small
amounts of data into smaller packets, or recombine them into one larger piece. This layer
also checks for data integrity, often with a checksum. The Session layer will deal with
issues that go beyond a single block of data. In particular it will deal with resuming trans-
mission if it is interrupted or corrupted. The Session layer will often make long term con-
nections to the remote machine. The Presentation layer acts as an application interface so
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that syntax, formats and codes are consistent between the two networked machines. For
example this might convert ’\’ to ’/> in HTML files. This layer also provides subroutines
that the user may call to access network functions, and perform functions such as encryp-
tion and compression. The Application layer is where the user program resides. On a com-
puter this might be a web browser, or a ladder logic program on a PLC.

Most products can be described with only a couple of layers. Some networking
products may omit layers in the model.

28.1.3 Networking Hardware

The following is a description of most of the hardware that will be needed in the
design of networks.

» Computer (or network enabled equipment)

* Network Interface Hardware - The network interface may already be built into
the computer/PLC/sensor/etc. These may cost $15 to over $1000.

* The Media - The physical network connection between network nodes.

10baseT (twisted pair) is the most popular. It is a pair of twisted copper
wires terminated with an RJ-45 connector.

10base2 (thin wire) is thin shielded coaxial cable with BNC connectors

10baseF (fiber optic) is costly, but signal transmission and noise properties
are very good.

* Repeaters (Physical Layer) - These accept signals and retransmit them so that
longer networks can be built.

* Hub/Concentrator - A central connection point that network wires will be con-
nected to. It will pass network packets to local computers, or to remote net-
works if they are available.

* Router (Network Layer) - Will isolate different networks, but redirect traffic to
other LANS.

* Bridges (Data link layer) - These are intelligent devices that can convert data on
one type of network, to data on another type of network. These can also be used
to isolate two networks.

» Gateway (Application Layer) - A Gateway is a full computer that will direct traf-
fic to different networks, and possibly screen packets. These are often used to
create firewalls for security.

Figure 28.4 shows the basic OSI model equivalents for some of the networking
hardware described before.
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7 - application A

6 - presentation gateway

5 - session

4 - transport

3 - network

2 - data link router

bridge/
1 - physical # repeater | switch Y
Figure 28.4  Network Devices and the OSI Model
Layer Computer #1 Computer #2
7 Application= |y Application
6 Presentation || resentation
5 Session : Session
4 Transport : Router , Transport
3 Network : Netonk_ I Network
2 Data Link : J;ata Link I Data Link
1 Physical l‘ : Physical I 1| Physical
3 7 ’

Interconnecting Medium

- e o

Figure 28.5 The OSI Network Model with a Router
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28.1.4 Control Network Issues

A wide variety of networks are commercially available, and each has particular
strengths and weaknesses. The differences arise from their basic designs. One simple issue
is the use of the network to deliver power to the nodes. Some control networks will also
supply enough power to drive some sensors and simple devices. This can eliminate sepa-
rate power supplies, but it can reduce the data transmission rates on the network. The use
of network taps or tees to connect to the network cable is also important. Some taps or tees
are simple passive electrical connections, but others involve sophisticated active tees that
are more costly, but allow longer networks.

The transmission type determines the communication speed and noise immunity.
The simplest transmission method is baseband, where voltages are switched off and on to
signal bit states. This method is subject to noise, and must operate at lower speeds. RS-232
is an example of baseband transmission. Carrierband transmission uses FSK (Frequency
Shift Keying) that will switch a signal between two frequencies to indicate a true or false
bit. This technique is very similar to FM (Frequency Modulation) radio where the fre-
quency of the audio wave is transmitted by changing the frequency of a carrier frequency
about 100MHz. This method allows higher transmission speeds, with reduced noise
effects. Broadband networks transmit data over more than one channel by using multiple
carrier frequencies on the same wire. This is similar to sending many cable television
channels over the same wire. These networks can achieve very large transmission speeds,
and can also be used to guarantee real time network access.

The bus network topology only uses a single transmission wire for all nodes. If all
of the nodes decide to send messages simultaneously, the messages would be corrupted (a
collision occurs). There are a variety of methods for dealing with network collisions, and
arbitration.

CSMA/CD (Collision Sense Multiple Access/Collision Detection) - if two nodes
start talking and detect a collision then they will stop, wait a random time, and
then start again.

CSMA/BA (Collision Sense Multiple Access/Bitwise Arbitration) - if two nodes
start talking at the same time the will stop and use their node addresses to deter-
mine which one goes first.

Master-Slave - one device one the network is the master and is the only one that
may start communication. slave devices will only respond to requests from the
master.

Token Passing - A token, or permission to talk, is passed sequentially around a net-
work so that only one station may talk at a time.

The token passing method is deterministic, but it may require that a node with an
urgent message wait to receive the token. The master-slave method will put a single
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machine in charge of sending and receiving. This can be restrictive if multiple controllers
are to exist on the same network. The CSMA/CD and CSMA/BA methods will both allow
nodes to talk when needed. But, as the number of collisions increase the network perfor-
mance degrades quickly.

28.2 NETWORK STANDARDS

Bus types are listed below.

Low level busses - these are low level protocols that other networks are built upon.
RS-485, Bitbus, CAN bus, Lonworks, Arcnet

General open buses - these are complete network types with fully published stan-

dards.
ASI, Devicenet, Interbus-S, Profibus, Smart Distributed System (SDS),
Seriplex

Specialty buses - these are buses that are proprietary.

Genius 1/0, Sensoplex

28.2.1 Devicenet

Devicenet has become one of the most widely supported control networks. It is an
open standard, so components from a variety of manufacturers can be used together in the
same control system. It is supported and promoted by the Open Devicenet Vendors Asso-
ciation (ODVA) (see http://www.odva.org). This group includes members from all of the
major controls manufacturers.

This network has been designed to be noise resistant and robust. One major change
for the control engineer is that the PLC chassis can be eliminated and the network can be
connected directly to the sensors and actuators. This will reduce the total amount of wiring
by moving I/O points closer to the application point. This can also simplify the connection
of complex devices, such as HMIs. Two way communications inputs and outputs allow
diagnosis of network problems from the main controller.

Devicenet covers all seven layers of the OSI standard. The protocol has a limited
number of network address, with very small data packets. But this also helps limit network
traffic and ensure responsiveness. The length of the network cables will limit the maxi-
mum speed of the network. The basic features of are listed below.

* A single bus cable that delivers data and power.
* Up to 64 nodes on the network.
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» Data packet size of 0-8 bytes.

* Lengths of 500m/250m/100m for speeds of 125kbps/250kbps/500kbps respec-
tively.

* Devices can be added/removed while power is on.

* Based on the CANbus (Controller Area Network) protocol for OSI levels 1 and
2.

* Addressing includes peer-to-peer, multicast, master/slave, polling or change of
state.

An example of a Devicenet network is shown in Figure 28.6. The dark black lines
are the network cable. Terminators are required at the ends of the network cable to reduce
electrical noise. In this case the PC would probably be running some sort of software
based PLC program. The computer would have a card that can communicate with
Devicenet devices. The FlexIO rack is a miniature rack that can hold various types of
input and output modules. Power taps (or tees) split the signal to small side branches. In
this case one of the taps connects a power supply, to provide the 24Vdc supply to the net-
work. Another two taps are used to connect a smart sensor and another FlexIO rack. The
Smart sensor uses power from the network, and contains enough logic so that it is one
node on the network. The network uses thin trunk line and thick trunk line which may
limit network performance.

thin thin thick trunk I
ick trunk line

tmnk tap tmnk power tap

line line
5 =N 5
= drop S
R=! line FlexIO g
é rack g
& ta 8

P drop
line
Smart FlexIO power
sensor rack supply

Figure 28.6 A Devicenet Network

The network cable is important for delivering power and data. Figure 28.7 shows a
basic cable with two wires for data and two wires for the power. The cable is also shielded
to reduce the effects of electrical noise. The two basic types are thick and thin trunk line.
The cables may come with a variety of connections to devices.
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* bare wires

* unsealed screw connector
* sealed mini connector

* sealed micro connector

* vampire taps

] 7 \ power (24Vdc)

data

/N ——drain/shicld

Thick trunk - carries up to 8A for power up to 500m
Thin trunk - up to 3A for power up to 100m

Figure 28.7  Shielded Network Cable
Some of the design issues for this network include;

» Power supplies are directly connected to the network power lines.

* Length to speed is 156m/78m/39m to 125Kbps/250Kbps/500Kbps respectively.
* A single drop is limited to 6m.

* Each node on the network will have its own address between 0 and 63.

If a PLC-5 was to be connected to Devicenet a scanner card would need to be
placed in the rack. The ladder logic in Figure 28.8 would communicate with the sensors
through a scanner card in slot 3. The read and write blocks would read and write the
Devicenet input values to integer memory from N7:40 to N7:59. The outputs would be
copied from the integer memory between N7:20 to N7:39. The ladder logic to process
inputs and outputs would need to examine and set bits in integer memory.
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MG9:0/EN MSG —(EN)
\H\ Send/Rec Message —(DN)
Control Block MG9:0
—(ER)
MG9:1/EN MSG —(EN)
\H\ Send/Rec Message —(DN)
Control Block MG9:1
—(ER)
MG9:0 MG9:1
Read/Write Write Read/Write Read
Data Table N7:20 Data Table N7:40
Size 20 Size 20
Local/Remote Remote Local/Remote Remote
Remote Station 29 Remote Station 29
Link ID 29 Link ID 29
Remote Link type 22 Remote Link type 22
Local Node Addr. N/A Local Node Addr. N/A
Processor Type 27772 Processor Type 27772
Dest. Addr. 2992 Dest. Addr. 2992

Note: Get exact settings for these parameters X X XXX XXXXXXXXXXXX

Figure 28.8 Communicating with Devicenet Inputs and Outputs

On an Allen Bradley Softlogix PLC the I/O will be copied into blocks of integer
memory. These blocks are selected by the user in setup software. The ladder logic would
then using integer memory for inputs and outputs, as shown in Figure 28.9. Here the
inputs are copied into N9 integer memory, and the outputs are set by copying the N10
block of memory back to the outputs.
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N9:0
| | @ N10:23

Figure 28.9  Devicenet Inputs and Outputs in Software Based PLCs

28.2.2 CANbus

The CANbus (Controller Area Network bus) standard is part of the Devicenet
standard. Integrated circuits are now sold by many of the major vendors (Motorola, Intel,
etc.) that support some, or all, of the standard on a single chip. This section will discuss
many of the technical details of the standard.

CANbus covers the first two layers of the OSI model. The network has a bus topol-
ogy and uses bit wise resolution for collisions on the network (i.e., the lower the network
identifier, the higher the priority for sending). A data frame is shown in Figure 28.10. The
frame is like a long serial byte, like that seen in the previous chapter. The frame begins
with a start bit. This is then followed with a message identifier. For Devicenet this is a 5
bit address code (for up to 64 nodes) and a 6 bit command code. The ready to receive it bit
will be set by the receiving machine. (Note: both the sender and listener share the same
wire.) If the receiving machine does not set this bit the remainder of the message is
aborted, and the message is resent later. While sending the first few bits, the sender moni-
tors the bits to ensure that the bits send are heard the same way. If the bits do not agree,
then another node on the network has tried to write a message at the same time - there was
a collision. The two devices then wait a period of time, based on their identifier and then
start to resend. The second node will then detect the message, and wait until it is done. The
next 6 bits indicate the number of bytes to be sent, from 0 to 8. This is followed by two
sets of bits for CRC (Cyclic Redundancy Check) error checking, this is a checksum of ear-
lier bits. The next bit ACK slot is set by the receiving node if the data was received cor-
rectly. If there was a CRC error this bit would not be set, and the message would be resent.
The remaining bits end the transmission. The end of frame bits are equivalent to stop bits.
There must be a delay of at least 3 bits before the next message begins.



plc network - 28.13

1 bit start of frame

11 bits identifier § arbitration field

1 bit ready to receive it

6 bits control field - contains number of data bytes
0-8 bytes data - the information to be passed

15 bits CRC sequence

1 bit CRC delimiter

1 bit ACK slot - other listeners turn this on to indicate frame received
1 bit ACK delimiter

7 bits end of frame

>= 3 bits delay before next frame

Figure 28.10 A CANbus Data Frame

Because of the bitwise arbitration, the address with the lowest identifier will get
the highest priority, and be able to send messages faster when there is a conflict. As a
result the controller is normally put at address 0. And, lower priority devices are put near
the end of the address range.

28.2.3 Controlnet

Controlnet is complimentary to Devicenet. It is also supported by a consortium of
companies, (http://www.controlnet.org) and it conducts some projects in cooperation with
the Devicenet group. The standard is designed for communication between controllers,
and permits more complex messages than Devicenet. It is not suitable for communication
with individual sensors and actuators, or with devices off the factory floor.

Controlnet is more complicated method than Devicenet. Some of the key features
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of this network include,

* Multiple controllers and I/O on one network
* Deterministic
* Data rates up to SMbps
» Multiple topologies (bus, star, tree)
* Multiple media (coax, fiber, etc.)
* Up to 99 nodes with addresses, up to 48 without a repeater
* Data packets up to 510 bytes
* Unlimited I/O points
* Maximum length examples
1000m with coax at SMbps - 2 nodes
250m with coax at SMbps - 48 nodes
5000m with coax at 5SMbps with repeaters
3000m with fiber at SMbps
30Km with fiber at SMbps and repeaters
* 5 repeaters in series, 48 segments in parallel
* Devices powered individually (no network power)
* Devices can be removed while network is active

This control network is unique because it supports a real-time messaging scheme
called Concurrent Time Domain Multiple Access (CTDMA). The network has a sched-
uled (high priority) and unscheduled (low priority) update. When collisions are detected,
the system will wait a time of at least 2ms, for unscheduled messages. But, scheduled mes-
sages will be passed sooner, during a special time window.

28.2.4 Ethernet

Ethernet has become the predominate networking format. Version I was released in
1980 by a consortium of companies. In the 1980s various versions of ethernet frames were
released. These include Version Il and Novell Networking (IEEE 802.3). Most modern
ethernet cards will support different types of frames.

The ethernet frame is shown in Figure 28.11. The first six bytes are the destination
address for the message. If all of the bits in the bytes are set then any computer that
receives the message will read it. The first three bytes of the address are specific to the
card manufacturer, and the remaining bytes specify the remote address. The address is
common for all versions of ethernet. The source address specifies the message sender. The
first three bytes are specific to the card manufacturer. The remaining bytes include the
source address. This is also identical in all versions of ethernet. The ethernet type identi-
fies the frame as a Version Il ethernet packet if the value is greater than 05SDChex. The
other ethernet types use these to bytes to indicate the datalength. The data can be between
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46 to 1500 bytes in length. The frame concludes with a checksum that will be used to ver-
ify that the data has been transmitted correctly. When the end of the transmission is
detected, the last four bytes are then used to verify that the frame was received correctly.

6 bytes destination address
6 bytes source address

2 bytes ethernet type
46-1500 bytes data

4 bytes checksum

Figure 28.11 Ethernet Version II Frame

28.2.5 Profibus

Another control network that is popular in europe, but also available world wide. It
is also promoted by a consortium of companies (http://www.profibus.com). General fea-
tures include;

* A token passing between up to three masters

* Maximum of 126 nodes

» Straight bus topology

* Length from 9600m/9.6Kbps with 7 repeaters to S00m/12Mbps with 4 repeaters
« With fiber optic cable lengths can be over 80Km

» 2 data lines and shield

» Power needed at each station

* Uses RS-485, ethernet, fiber optics, etc.

* 2048 bits of I/O per network frame

28.2.6 Sercos

The SErial Real-time COmmunication System (SERCOS) is an open standard
designed for multi-axis motion control systems. The motion controller and axes can be



plc network - 28.16

implemented separately and then connected using the SERCOS network. Many vendors
offer cards that allow PLCs to act as clients and/or motion controllers.

* Deterministic with response times as small as a few nanoseconds
* Data rates of 2, 4, 8 and 16 Mbaud

* Documented with IEC 61491 in 1995 and 2002

» Uses a fiber optic rings, RS-485 and buses

28.3 PROPRIETARY NETWORKS

28.3.1 Data Highway

Allen-Bradley has developed the Data Highway II (DH+) network for passing data
and programs between PLCs and to computers. This bus network allows up to 64 PLCs to
be connected with a single twisted pair in a shielded cable. Token passing is used to con-
trol traffic on the network. Computers can also be connected to the DH+ network, with a
network card to download programs and monitor the PLC. The network will support data
rates of 57.6Kbps and 230 Kbps

The DH+ basic data frame is shown in Figure 28.12. The frame is byte oriented.
The first byte is the DLE or delimiter byte, which is always $10. When this byte is
received the PLC will interpret the next byte as a command. The SOH identifies the mes-
sage as a DH+ message. The next byte indicates the destination station - each node one the
network must have a unique number. This is followed by the DLE and STX bytes that iden-
tify the start of the data. The data follows, and its’ length is determined by the command
type - this will be discussed later. This is then followed by a DLE and ETX pair that mark
the end of the message. The last byte transmitted is a checksum to determine the correct-
ness of the message.
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DLE = 10H
> header fields
SOH =01H

STN - the destination number

DLE = 10H
> start fields
STX =02H
data
DLE = 10H

> termination fields
ETX =03H

block check - a 2s compliment checksum of the DATA and STN values

Figure 28.12 The Basic DH+ Data Frame

The general structure for the data is shown in Figure 28.13. This packet will
change for different commands. The first two bytes indicate the destination, DS7, and
source, SRC, for the message. The next byte is the command, CMD, which will determine
the action to be taken. Sometimes, the function, FNC, will be needed to modify the com-
mand. The transaction, 7NS, field is a unique message identifier. The two address, ADDR,
bytes identify a target memory location. The DATA fields contain the information to be
passed. Finally, the SIZE of the data field is transmitted.
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DST - destination node for the message

SRC - the node that sent the message

CMD - network command - sometime FNC is required
STS - message send/receive status

TNS - transaction field (a unique message 1D)

FNC may be required with some CMD values

ADDR - a memory location

DATA - a variable length set of data

SIZE - size of a data field

Figure 28.13 Data Filed Values

Examples of commands are shown in Figure 28.14. These focus on moving mem-
ory and status information between the PLC, and remote programming software, and other
PLCs. More details can be found in the Allen-Bradley DH+ manuals.
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CMD FNC Description

00 Protected write

01 Unprotected read

02 Protected bit write

05 Unprotected bit write

06 00 Echo

06 01 Read diagnostic counters
06 02 Set variables

06 03 Diagnostic status

06 04 Set timeout

06 05 Set NAKs

06 06 Set ENQs

06 07 Read diagnostic counters
08 Unprotected write

OF 00 Word range write

OF 01 Word range read

OF 02 Bit write

OF 11 Get edit resource

OF 17 Read bytes physical

OF 18 Write bits physical

OF 26 Read-modify-write

OF 29 Read section size

OF 3A Set CPU mode

OF 41 Disable forces

OF 50 Download all request

OF 52 Download completed

OF 53 Upload all request

OF 55 Upload completed

OF 57 Initialize memory

OF S5E Modify PLC-2 compatibility file
OF 67 typed write

OF 68 typed read

OF A2 Protected logical read - 3 address fields
OF AA Protected logical write - 3 addr. fields

Figure 28.14 DH+ Commands for a PLC-5 (all numbers are hexadecimal)

The ladder logic in Figure 28.15 can be used to copy data from the memory of one
PLC to another. Unlike other networking schemes, there are no login procedures. In this
example the first MSG instruction will write the message from the local memory N7:20 -
N7:39 to the remote PLC-5 (node 2) into its memory from N7:40 to N7:59. The second
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MSG instruction will copy the memory from the remote PLC-5 memory N7:40 to N7:59
to the remote PLC-5 memory N7:20 to N7:39. This transfer will require many scans of
ladder logic, so the EN bits will prevent a read or write instruction from restarting until the
previous MSG instruction is complete.

MG9:0/EN MSG —(EN)
\H\ Send/Rec Message —(DN)
Control Block MG9:0
—(ER)
MG9:1/EN MSG —(EN)
\H\ Send/Rec Message —(DN)
Control Block MG9:1
—(ER)
MG9:0 MG9:1
Read/Write Write Read/Write Read
Data Table N7:20 Data Table N7:40
Size 20 Size 20
Local/Remote Local Local/Remote Local
Remote Station N/A Remote Station N/A
Link ID N/A Link ID N/A
Remote Link type N/A Remote Link type N/A
Local Node Addr. 2 Local Node Addr. 2
Processor Type PLC-5 Processor Type PLC-5
Dest. Addr. N7:40 Dest. Addr. N7:20

Figure 28.15 Ladder Logic for Reading and Writing to PLC Memory

The DH+ data packets can be transmitted over other data links, including ethernet
and RS-232.

28.4 NETWORK COMPARISONS
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Table 1: Network Comparison

Network topology addresses length speed packet size
Bluetooth wireless 8 10 64Kbps continuous
CANopen bus 127 25m-1000m | 1Mbps- 8 bytes

10Kbps
ControlNet | bus or star 99 250m- 5Mbps 0-510 bytes
1000m
wire, 3-
30km fiber
Devicenet bus 64 500m 125- 8 bytes
500Kbps
Ethernet bus, star 1024 85m coax, 10- 46-
100m 1000Gbps 1500bytes
twisted pair,
400m-50km
fiber
Foundation | star unlimited 100m 100Mbps <=1500
Fieldbus twisted pair, bytes
2km fiber
Interbus bus 512 12.8km 500-2000 0-246 bytes
with 400m | Kbps
segments
Lonworks bus, ring, 32,000 <=2km 78Kbps- 228 bytes
star 1.25Mbps
Modbus bus, star 250 350m 300bps- 0-254 bytes
38.4Kbps
Profibus bus, star, 126 100-1900m | 9.6Kbps- 0-244bytes
ring 12Mbps
Sercos rings 254 800m 2-16Mbps 32bits
USB star 127 5Sm >100Mbps | 1-1000bytes
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28.5 DESIGN CASES

28.5.1 Devicenet

Problem: A robot will be loading parts into a box until the box reaches a prescribed
weight. A PLC will feed parts into a pickup fixture when it is empty. The PLC will tell the
robot when to pick up a part and load it using Devicenet.

RS-232
"pickup" = pickup part
PLC Robot
-
-
feed part part waiting box full
Parts Parts Pickup Box and
Feeder Fixture Weigh Scale

Figure 28.16 Box Loading System

Solution: The following ladder logic will implement part of the control system for
the system in Figure 28.16.
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Figure 28.17 A Box Loading System

28.6 SUMMARY

 Networks come in a variety of topologies, but buses are most common on factory
floors.

* The OSI model can help when describing network related hardware and software.

* Networks can be connected with a variety of routers, bridges, gateways, etc.

* Devicenet is designed for interfacing to a few inputs and outputs.

* Controlnet is designed for interfacing between controllers.

* Controlnet and devicenet are based on CANbus.

* Ethernet is common, and can be used for high speed communication.

* Profibus is another control network.

28.7 PRACTICE PROBLEMS

1. Explain why networks are important in manufacturing controls.

2. We will use a PLC to control a cereal box filling machine. For single runs the quantities of
cereal types are controlled using timers. There are 6 different timers that control flow, and
these result in different ratios of product. The values for the timer presets will be downloaded
from another PLC using the DH+ network. Write the ladder logic for the PLC.

a) We are developing ladder logic for an oven to be used in a baking facility. A
PLC is controlling the temperature of an oven using an analog voltage output.
The oven must be started with a push button and can be stopped at any time
with a stop push button. A recipe is used to control the times at each tempera-
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ture (this is written into the PLC memory by another PLC). When idle, the out-
put voltage should be 0V, and during heating the output voltages, in sequence,
are 5V, 7.5V, 9V. The timer preset values, in sequence, are in N7:0, N7:1, N7:2.
When the oven is on, a value of 1 should be stored in N7:3, and when the oven
is off, a value of 0 should be stored in N7:3. Draw a state diagram and write the
ladder logic for this station.

b) We are using a PLC as a master controller in a baking facility. It will update rec-
ipes in remote PLCs using DH+. The master station is #1, the remote stations
are #2 and #3. When an operator pushes one of three buttons, it will change the
recipes in two remote PLCs if both of the remote PLCs are idle. While the
remote PLCs are running they will change words in their internal memories
(N7:3=0 means idle and N7:3=1 means active). The new recipe values will be
written to the remote PLCs using DH+. The table below shows the values for
each PLC. Write the ladder logic for the master controller.

button A button B button C

13 17 14
PLC #2 690 235 745

45 75 34

76 72 56

345 234 645
PLC #3 987 12 23

345 34 456

764 456 568

87 67 8

4. A controls network is to be 1500m long. Suggest three different types of networks that would
meet the specifications.

5 How many data bytes (maximum) could be transferred in one second with DH+?
6. Is the OSI model able to describe all networked systems?

7. What are the different methods for resolving collisions on a bus network?

28.8 PRACTICE PROBLEM SOLUTIONS

1. These networks allow us to pass data between devices so that individually controlled systems
can be integrated into a more complex manufacturing facility. An example might be a serial
connection to a PLC so that SPC data can be collected as product is made, or recipes down-
loaded as they are needed.
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Read Message
MG9:0/EN  on Remote station #1
MSG Remote Addr. N7:0

\H\ \H\ MG9:0 | Length 6

Destination N7:0

MG9:0/DN  on
FAL

I I \H\ DEST. #T4:0.PRE
EXPR. #N7:0

start stop

| ("

on

box present on
| TON

|| T4:0

TON
T4:1

TON
T4:2

TON
T4:3

TON
T4:4

TON
T4:5

T4:0/TT

@ fill hearts

T4:1/TT

Q fill moons
1

v ETC...
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s|te|1rt StIOIT TT2/DN
| N N|\ O on N7:3/0
MOV
on N7:3/0 Source N7:0
| | Dest T4:0.PRE
MOV
Source N7:1
Dest T4:1.PRE
MOV
Source N7:2
Dest T4:2.PRE
on
TON
Timer T4:0
T4:0/DN Delay 0s
TON
Timer T4:1
T4:1/DN Delay 0s
TON
Timer T4:2
Delay 0Os
BT10:0/EN Block Transfer Write
Module Type Generic Block Transfer
/l)/ Rack 000
| Group 3
Module 0
Control Block BT10:0
Data File N9:0
Length 13
Continuous No
Source 2095
Dest N9:0
Source 3071
Dest N9:0
Source 3686
Dest N9:0
on MOV
=T Source 0
Dest N9:0




b)
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MG9:0/EN MSG —(EN)
\H\ Send/Rec Message —(DN)
Control Block MG9:0
— (ER)
MG9:1/EN MSG —(EN)
\H\ Send/Rec Message —(DN)
Control Block MG9:1
—(ER)
MG9:2/EN MSG —EN)
Send/Rec Message —(DN)
Control Block MG9:2
MGO:3/EN [ (ER)
Send/Rec Message —(DN)
Control Block MG9:3
— (ER)
MG9:0 MG9:1 MG9:2 MG9:3
Read/Write  Write Read/Write  Write Read/Write Read Read/Write Read
Data Table N7:40 Data Table N7:43 DataTable N7:3 Data Table N7:3
Size 3 Size 6 Size 1 Size 1
Local/Remote T.ocal Local/Remote ] ocal Local/Remoteocal Local/Remote] ocal
Remote N/A Remote N/A Remote N/A Remote N/A
Link ID N/A Link ID N/A Link ID N/A Link ID N/A
Remote Link N/A Remote Link N/A Remote Link N/A Remote Link N/A
Local Node 2 Local Node 3 Local Node 2 Local Node 3
Processor PLC-5 Processor PL.C-5 Processor PLC-5 Processor PLC-5
Dest. Addr.  N7:0 Dest. Addr. N7:0 Dest. Addr. N7:0 Dest. Addr. N7:1
|A| 7 :|0/0 7:|0/ 1 COP
|| | | Source N7:10
Dest N7:40
Length 9
[B| 7 |O/O 7:|0/ 1 COP
|| | | Source N7:20
Dest N7:40
Length 9
C 7:0/0 7:0/1 COP
I I | | | | Source N7:30
Dest N7:40
Length 9
N7:10 13 690 45 76 345 987 345 764 87 0
N7:20 17 235 75 72 234 12 34 456 67 O
N7:30 14 745 34 56 645 23 456 568 8 0
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4. Controlnet, Profibus, Ethernet with multiple subnets

5 the maximum transfer rate is 230 Kbps, with 11 bits per byte (1start+8data+2+stop) for 20909
bytes per second. Each memory write packet contains 17 overhead bytes, and as many as 2000
data bytes. Therefore as many as 20909*2000/(2000+17) = 20732 bytes could be transmitted
per second. Note that this is ideal, the actual maximum rates would be actually be a fraction of
this value.

6. The OSI model is just a model, so it can be used to describe parts of systems, and what their
functions are. When used to describe actual networking hardware and software, the parts may
only apply to one or two layers. Some parts may implement all of the layers in the model.

7. When more than one client tries to start talking simultaneously on a bus network they interfere,
this is called a collision. When this occurs they both stop, and will wait a period of time before
starting again. If they both wait different amounts of time the next one to start talking will get
priority, and the other will have to wait. With CSMA/CD the clients wait a random amount of
time. With CSMA/BA the clients wait based upon their network address, so their priority is
related to their network address. Other networking methods prevent collisions by limiting
communications. Master-slave networks require that client do not less talk, unless they are
responding to a request from a master machine. Token passing only permits the holder of the
token to talk.

28.9 ASSIGNMENT PROBLEMS

1. Describe an application for DH networking.

2. The response times of hydraulic switches is being tested in a PLC controlled station. When the
units arrive a ‘part present’ sensor turns on. The part is then clamped in place by turning on a
‘clamp’ output. 1 second after clamping, a ‘flow’ output is turned on to start the test. The
response time is the delay between when ‘flow’ is turned on, and the ‘engaged’ input turns on.
When the unit has responded, up to 10 seconds later, the ‘flow’ output is turned off, and the
system is allowed to sit for 5 seconds to discharge before unclamping. The result of the test is
written to one of the memory locations from F8:0 to F8:39, for a total of 40 separate tests.
When 40 tests have been done, the memory block from F8:0 to F8:39 is sent to another PLC
using DH+, and the process starts again. Write the ladder logic to control the station.

3. a) Controls are to be developed for a machine that packages golf tees. Each container will nor-
mally hold 1000 tees filled from three different hoppers, each containing a different color. For
marketing purposes the ratio of colors is changed frequently. To make the controller easy to
reconfigure, the number of tees from each hopper are stored in the memory locations N7:0,
N7:1 and N7:2. The process is activated when an empty package arrives, activating a
PRESENT input. When filling the package, the machine opens a single hopper with a solenoid,
and counts the tees with an optical sensor, until the specified count has been surpassed. It then
repeats the operation with the two other hoppers. When done, it activates a SEAL for 2 seconds
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to advance a heated ram that seals the package. After that, the DONE output is turned on until
the PRESENT sensor turns off. Write the ladder logic for this process.

b) Write a ladder logic program that will read and parse values from an RS-232 input. The format
of the input will be an eleven character line with three integer numbers separated by commas.
The integers will be padded to three characters by padding with zeros. The line will be termi-
nated with a CR and a LF. The three integers are to be parsed and stored in the memory loca-
tions N7:0, N7:1 and N7:2 to be used in a golf tee packaging machine.

4. A master PLC is located at the top of a mine shaft and controls an elevator system. A second
PLC is located half a mile below to monitor the bottom of the elevator shaft. At the top of the
mine shaft the PLC has inputs for the door (D), a top limit switch (T), and start (G) and stop (S)
pushbuttons. The PLC has two outputs to apply power (P) to the motor, or reverse (R) the
motor direction. The PLC at the bottom of the elevator shaft checks a bottom limit switch (B)
and a door closed (C) sensor. The two PLCs are connected using DH+. Write ladder logic for
both PLCs and indicate the communication settings. Use structured design techniques.
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29. INTERNET

<TODO - clean up internet materials>

Topics:
* Internet; addressing, protocols, formats, etc.
* Design case

Objectives:
* To understand the Internet topics related to shop floor monitoring and control

29.1 INTRODUCTION

* The Internet is just a lot of LANs and WANSs connected together. If your com-
puter is on one LAN that is connected to the Internet, you can reach computers on other
LANsS.

* The information that networks typically communicate includes,

email - text files, binary files (MIME encoded)
programs - binary, or uuencoded
web pages - (HTML) Hyper Text Markup Language

» To transfer this information we count on access procedures that allow agreement
about when computers talk and listen, and what they say.

email - (SMTP) Simple Mail Transfer Protocol, POP3, IMAP
programs - (FTP) File Transfer Protocol

login sessions - Telnet

web access - (HTTP) Hyper Text Transfer Protocol
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Aside: Open a Dos window and type ‘telnet river.it.gvsu.edu 25°. this will connect you to
the main student computer. But instead of the normal main door, you are talking to a
program that delivers mail. Type the following to send an email message.

ehlo northpole.com

mail from: santa

rcpt to: jackh

data

Subject: Bogus mail

this is mail that is not really from santa

29.1.1 Computer Addresses

» Computers are often given names, because names are easy to remember.

* In truth the computers are given numbers.

Machine Name: claymore.engineer.gvsu.edu
Alternate Name: www.eod.gvsu.edu
IP Number: 148.61.104.215

* When we ask for a computer by name, your computer must find the number. It does this using a
DNS (Domain Name Server). On campus we have two ‘148.61.1.10° and ‘148.61.1.15".

EXERCISE: In netscape go to the location above using the name, and using the IP number
(148.61.104.215).

* The number has four parts. The first two digits ‘148.61” indicate to all of the internet that the
computer is at ‘gvsu.edu’, or on campus here (we actually pay a yearly fee of about $50 to reg-
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ister this internationally). The third number indicates what LAN the computer is located on
(Basically each hub has its own number). Finally the last digit is specific to a machine.

EXERCISE: Run the program ‘winipcfg’. You will see numbers come up, including an IP
number, and gateway. The IP number has been temporarily assigned to your computer. The
gateway number is the IP address for the router. The router is a small computer that con-
trols traffic between local computers (it is normally found in a locked cabinet/closet).

 Netmask, name servers, gateway

29.1.1.1 - IPV6

29.1.2 Phone Lines

* The merit dialup network is a good example. It is an extension of the internet that you can reach
by phone.

* The phone based connection is slower (about 5 MB/hour peak)

* There are a few main types,

SLIP - most common
PPP - also common
ISDN - an faster, more expensive connection, geared to permanent connections

* You need a modem in your computer, and you must dial up to another computer that has a
modem and is connected to the Internet. The slower of the two modems determines the speed
of the connection. Typical modem speeds are,

- 52.4 kbps - very fast

- 28.8/33.3 kbps - moderate speed, inexpensive
- 14.4 kbps - a bit slow for internet access

- 2.4, 9.6 kpbs - ouch

- 300 bps - just shoot me
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29.1.3 Mail Transfer Protocols

* Popular email methods include,

SMTP (Simple Mail Transfer Protocol) - for sending mail
POP3 - for retrieving mail
IMAP - for retrieving mail

EXERCISE: In netscape go to the ‘edit-preferences’ selection. Choose the ‘mail and groups’
option. Notice how there is a choice for mail service type under ‘Mail Server’. It should be
set for ‘POP3’ and refer to ‘mailhost.gvsu.edu’. This is where one of the campus mail serv-
ers lives. Set it up for your river account, and check to see if you have any mail.

* Note that the campus mail system ‘ccmail’ is not standard. It will communicate with other mail
programs using standard services, but internally special software must be used. Soon ccmail
will be available using the POP3 standard, so that you will be able to view your ccmail using
Netscape, but some of the features of ccmail will not be available.

» Listservers allow you to send mail to a single address, and it will distribute it to many users (IT
can set this up for you).

29.1.4 FTP - File Transfer Protocol

* This is a method for retrieving or sending files to remote computers.

Aside: In Netscape ask for the location ‘ftp://sunsite.unc.edu’ This will connect you via ftp the
same way as with the windows and the dos software.

29.1.5 HTTP - Hypertext Transfer Protocol

» This is the protocol used for talking to a web server.
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29.1.6 Novell

» Allows us to share files stored on a server.

29.1.7 Security

* Security problems usually arise through protocols. For example it is common for a hacker to
gain access through the mail system.

* The system administrator is responsible for security, and if you are using the campus server,
security problems will normally be limited to a single user.

* Be careful with passwords, this is your own protection again hacking. General rules include,

1. Don’t leave yourself logged in when somebody else has access to your com-
puter.
2. Don’t give your password to anybody (even the system administrator).
3. Pick a password that is not,
- in the dictionary
- some variation of your name
- all lower case letters
- found in television
- star trek, the bible
- pet/children/spouse/nick names
- swear words
- colloquial phrases
- birthdays
- etc.
. Watch for unusual activity in you computer account.
. Don’t be afraid to call information technology and ask questions.
. Don’t run software that comes from suspect or unknown sources.
. Don’t write your password down or give it to others.

N N LD b

29.1.7.1 - Firewall

29.1.7.2 - TP Masquerading
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29.1.8 HTML - Hyper Text Markup Language

* This is a format that is invisible to the user on the web. It allows documents to be formatted to fit
the local screen.

Aside: While looking at a home page in Netscape select ‘View - Page Source’. You will see a
window that includes the actual HTML file - This file was interpreted by Netscape to make
the page you saw previously. Look through the file to see if you can find any text that was
on the original page.

» Editors are available that allow users to update HTML documents the same way they use word
processors.

* Keep in mind that the website is just another computer. You have directories and files there too.
To create a web site that has multiple files we need to create other files or directory names.

* Note that some web servers do not observe upper/lower case and cut the ‘html’ extension to
‘htm’. Microsoft based computers are notorious for this, and this will be the most common
source of trouble.

29.1.9 URLs

* In HTML documents we need to refer to resources. To do this we use a label to identify the type
of resource, followed by a location.

* Universal Resource Locators (URLSs)

- http:WEB_SITE_NAME

- fip:FTP_SITE_ NAME

- mailto:USER@MAIL_SERVER
- news:NEWSGROUP_NAME

EXERCISE: In netscape type in ‘mailto:YOUR NAME@river.it.gvsu.edu’. After you are
done try ‘news:gvsu’.
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29.1.10 Encryption

» Allows some degree of privacy, but this is not guaranteed.

* Basically, if you have something you don’t want seen, don’t do it on the computer.

29.1.11 Compression

* We can make a file smaller by compressing it (unless it is already compressed, then it gets
larger)

* File compression can make files harder to use in Web documents, but the smaller size makes
them faster to download. A good rule of thumb is that when the file is MB is size, compression
will have a large impact.

* Many file formats have compression built in, including,

images - JPG, GIF
video - MPEG, AVI
programs - installation programs are normally compressed

* Typical compression formats include,

zip - zip, medium range compression
gz - g-zip - good compression

Z - unix compression

Stuffit - A Mac compression format

» Some files, such as text, will become 1/10 of their original size.

29.1.12 Clients and Servers

« Some computers are set up to serve others as centers of activity, sort of like a campus library.
Other computers are set up only as users, like bookshelves in a closed office. The server is
open to all, while the private bookshelf has very limited access.

* A computer server will answer requests from other computers. These requests may be,
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- to get/put files with FTP
- to send email
- to provide web pages

* A client does not answer requests.

* Both clients and servers can generate requests.

EXERCISE: Using Netscape try to access the IP number of the machine beside you. You will
get a message that says the connection was refused. This is because the machine is a client.
You have already been using servers to get web pages.

* Any computer that is connected to the network Client or Server must be able to generate
requests. You can see this as the Servers have more capabilities than the Clients.

* Microsoft and Apple computers have limited server capabilities, while unix and other computer
types generally have more.

Windows 3.1 - No client or server support without special software
Windows 95 - No server support without special software
Windows NT - Limited server support with special versions
MacOS - Some server support with special software

Unix - Both client and server models built in

* In general you are best advised to use the main campus servers. But in some cases the extra
effort to set up and maintain your own server may also be useful.

* To set up your own server machine you might,

1. Purchase a computer and network card. A Pentium class machine will actually
provide more than enough power for a small web site.

2. Purchase of copy of Windows NT server version.

3. Choose a name for your computer that is easy to remember. An example is ‘art-
site’.

4. Call the Information technology people on campus, and request an IP address.
Also ask for the gateway number, netmask, and nameserver numbers. They will
add your machine to the campus DNS so that others may find it by name (the
number will always work if chosen properly).

5. Connect the computer to the network, then turn it on.
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6. Install Windows NT, and when asked provide the network information. Indicate
that web serving will be permitted.
7. Modify web pages as required.

29.1.13 Java

* This is a programming language that is supported on most Internet based computers.

* These programs will run on any computer - there is no need for a Mac, PC and Unix version.

* Most users don’t need to program in Java, but the results can be used in your web pages

EXERCISE: Go to ‘www.javasoft.com’ and look at some sample java programs.

29.1.14 Javascript

« Simple programs can be written as part of an html file that will add abilities to the HTML page.

29.1.15 CGI

* CGI (Common Gateway Interface) is a very popular technique to allow the html page on the cli-
ent to run programs on the server.

* Typical examples of these include,

- counters
- feedback forms
- information requests

29.1.16 ActiveX

* This is a programming method proposed by Microsoft to reduce the success of Java - It has been
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part of the antitrust suit against Microsoft by the Justice Department.
* It will only work on IBM PC computers running the ‘Internet Explorer’ browser from Microsoft.

* One major advantage of ActiveX is that it allows users to take advantage of programs written for
Windows machines.

* Note: Unless there is no choice avoid this technique. If similar capabilities are needed, use Java
instead.

29.1.17 Graphics

* Two good formats are,

GIF - well suited to limited color images - no loss in compression. Use these for
line images, technical drawings, etc

JPG - well suited to photographs - image can be highly compressed with minimal
distortion. Use these for photographs.

* Digital cameras will permit image capture and storage - images in JPG format are best.

* Scanners will capture images, but this is a poor alternative as the image sizes are larger and
image quality is poorer

- Photographs tend to become grainy when scanned.
- Line drawings become blurred.

* Screen captures are also possible, but do these with a lower color resolution on the screen (256
color mode).

29.2 DESIGN CASES
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29.2.1 Remote Monitoring System

Problem: A system is to be designed to allow engineeers and managers to monitor
the shop floor conditions in real time. A network system and architecture must be
designed to allow this system to work effectively without creating the potential for
secutiry breaches.

Solution:

29.3 SUMMARY

* The internet can be use to monitor and control shop floor activities.

29.4 PRACTICE PROBLEMS

29.5 PRACTICE PROBLEM SOLUTIONS

29.6 ASSIGNMENT PROBLEMS
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30. HUMAN MACHINE INTERFACES (HMI)

<TODO - Find an implementation platform and write text>

Topics:

Objectives:

30.1 INTRODUCTION

* These allow control systems to be much more interactive than before.
* The basic purpose of an HMI is to allow easy graphical interface with a process.
* These devices have been known by a number of names,

- touch screens

- displays

- Man Machine Interface (MMI)

- Human Machine Interface (HMI)

* These allow an operator to use simple displays to determine machine condition
and make simple settings.

» The most common uses are,

- display machine faults

- display machine status

- allow the operator to start and stop cycles
- monitor part counts
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* These devices allow certain advantages such as,

- color coding allows for easy identification (eg. red for trouble)

- pictures/icons allow fast recognition

- use of pictures eases problems of illiteracy

- screen can be changed to allow different levels of information and access

* The general implementation steps are,

1. Layout screens on PC based software.

2. Download the screens to the HMI unit.

3. Connect the unit to a PLC.

4. Read and write to the HMI using PLC memory locations to get input and update
screens.

* To control the HMI from a PLC the user inputs set bits in the PLC memory, and
other bits in the PLC memory can be set to turn on/off items on the HMI screen.

30.2 HMI/MMI DESIGN

* The common trend is to adopt a user interface which often have,

- Icons

- A pointer device (such as a mouse)

- Full color

- Support for multiple windows, which run programs simultaneously
- Popup menus

- Windows can be moved, scaled, moved forward/back, etc.

* The current demands on user interfaces are,

- on-line help

- adaptive dialog/response

- feedback to the user

- ability to interrupt processes

- consistent modules

- a logical display layout

- deal with many processes simultaneously

* To design an HMI interface, the first step is to identify,
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1. Who needs what information?

2. How do they expect to see it presented?

3. When does information need to be presented?
4. Do the operators have any special needs?

5. Is sound important?

6. What choices should the operator have?

30.3 DESIGN CASES

* Design an HMI for a press controller. The two will be connected by a Devicenet
network.

Press and PLC
HMI

Figure 30.1 A PLC With Connected HMI

30.4 SUMMARY
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30.5 PRACTICE PROBLEMS

30.6 PRACTICE PROBLEM SOLUTIONS

30.7 ASSIGNMENT PROBLEMS
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31. ELECTRICAL DESIGN AND CONSTRUCTION

Topics:
* Electrical wiring issues; cabinet wiring and layout, grounding, shielding and
inductive loads
* Enclosures

Objectives:
* To learn the major issues in designing controllers including; electrical schemat-
ics, panel layout, grounding, shielding, enclosures.

31.1 INTRODUCTION

It is uncommon for engineers to build their own controller designs. For example,
once the electrical designs are complete, they must be built by an electrician. Therefore, it
is your responsibility to effectively communicate your design intentions to the electricians
through drawings. In some factories, the electricians also enter the ladder logic and do
debugging. This chapter discusses the design issues in implementation that must be con-
sidered by the designer.

31.2 ELECTRICAL WIRING DIAGRAMS

In an industrial setting a PLC is not simply "plugged into a wall socket". The elec-
trical design for each machine must include at least the following components.

transformers - to step down AC supply voltages to lower levels

power contacts - to manually enable/disable power to the machine with e-stop but-
tons

terminals - to connect devices

fuses or breakers - will cause power to fail if too much current is drawn

grounding - to provide a path for current to flow when there is an electrical fault

enclosure - to protect the equipment, and users from accidental contact

A control system will normally use AC and DC power at different voltage levels.
Control cabinets are often supplied with single phase AC at 220/440/550V, or two phase
AC at 220/440Vac, or three phase AC at 330/550V. This power must be dropped down to a
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lower voltage level for the controls and DC power supplies. 110Vac is common in North
America, and 220Vac is common in Europe and the Commonwealth countries. It is also
common for a controls cabinet to supply a higher voltage to other equipment, such as
motors.

An example of a wiring diagram for a motor controller is shown in Figure 31.1
(note: the symbols are discussed in detail later). Dashed lines indicate a single purchased
component. This system uses 3 phase AC power (L1, L2 and L3) connected to the termi-
nals. The three phases are then connected to a power interrupter. Next, all three phases are
supplied to a motor starter that contains three contacts, M, and three thermal overload
relays (breakers). The contacts, M, will be controlled by the coil, M. The output of the
motor starter goes to a three phase AC motor. Power is supplied by connecting a step
down transformer to the control electronics by connecting to phases L2 and L3. The lower
voltage is then used to supply power to the left and right rails of the ladder below. The
neutral rail is also grounded. The logic consists of two push buttons. The start push button
is normally open, so that if something fails the motor cannot be started. The stop push but-
ton is normally closed, so that if a wire or connection fails the system halts safely. The sys-
tem controls the motor starter coil M, and uses a spare contact on the starter, M, to seal in
the motor stater.
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terminals  power interrupter motor starter

L2

step down transformer

I
I
I
I
I
- — — d
0010 |

start —
| stop
0020 o— O Q—@i.

0030 ¢ ’ ‘

Aside: The voltage for the step down transformer is connected between phases L2 and
L3. This will increase the effective voltage by 50% of the magnitude of the voltage
on a single phase.

Figure 31.1 A Motor Controller Schematic

The diagram also shows numbering for the wires in the device. This is essential for
industrial control systems that may contain hundreds or thousands of wires. These num-
bering schemes are often particular to each facility, but there are tools to help make wire
labels that will appear in the final controls cabinet.
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Once the electrical design is complete, a layout for the controls cabinet is devel-
oped, as shown in Figure 31.2. The physical dimensions of the devices must be consid-
ered, and adequate space is needed to run wires between components. In the cabinet the
AC power would enter at the terminal block, and be connected to the main breaker. 1t
would then be connected to the contactors and fuses. Two of the phases are also connected
to the transformer to power the logic. The start and stop buttons are at the left of the box
(note: normally these are mounted elsewhere, and a separate layout drawing would be
needed).

: Contactors
Main
Breaker
Fuses
Transformer
Start
Stop
Terminal Block

Figure 31.2 A Physical Layout for the Control Cabinet

The final layout in the cabinet might look like the one shown in Figure 31.3.
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3 phase AC

Final Panel Wiring

Figure 31.3
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When being built the system will follow certain standards that may be company
policy, or legal requirements. This often includes items such as;

hold downs - the will secure the wire so they don’t move
labels - wire labels help troubleshooting

strain reliefs - these will hold the wire so that it will not be pulled out of screw ter-
minals

grounding - grounding wires may be needed on each metal piece for safety

A photograph of an industrial controls cabinet is shown in Figure 31.4.

Get a photo of a controls cabinet with
wire runs, terminal strip, buttons on panel front, etc

Figure 31.4  An Industrial Controls Cabinet

When including a PLC in the ladder diagram still remains. But, it does tend to
become more complex. Figure 31.5 shows a schematic diagram for a PLC based motor
control system, similar to the previous motor control example.

XXXXXXXXXXXXXX This figure shows the E-stop wired to cutoff power to all
of the devices in the circuit, including the PLC. All critical safety functions should be
hardwired this way.
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L - — — _— 4

L — — 4

PLC

ADD TO DIAGRAM.................

Figure 31.5  An Electrical Schematic with a PLC
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31.2.1 Selecting Voltages

When selecting voltage ranges and types for inputs and outputs of a PLC some
care can save time, money and effort. Figure 31.6 that shows three different voltage levels
being used, therefore requiring three different input cards. If the initial design had selected
a standard supply voltage for the system, then only one power supply, and PLC input card
would have been required.

n PLC Input Cards
48Vdc

- 10

com
+
24Vdc ? 10

com
10

+ com
5Vdc

PLC Input Card

+ 10

I1

24Vdc

I 12

I3

com

Figure 31.6  Standardized Voltages
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31.2.2 Grounding

The terms ground and common are often interchanged (I do this often), but they do
mean different things. The term, ground, comes from the fact that most electrical systems
find a local voltage level by placing some metal in the earth (ground). This is then con-
nected to all of the electrical outlets in the building. If there is an electrical fault, the cur-
rent will be drawn off to the ground. The term, common, refers to a reference voltage that
components of a system will use as common zero voltage. Therefore the function of the
ground is for safety, and the common is for voltage reference. Sometimes the common and
ground are connected.

The most important reason for grounding is human safety. Electrical current run-
ning through the human body can have devastating effects, especially near the heart. Fig-
ure 31.7 shows some of the different current levels, and the probable physiological effects.
The current is dependant upon the resistance of the body, and the contacts. A typical sce-
nario is, a hand touches a high voltage source, and current travels through the body and
out a foot to ground. If the person is wearing rubber gloves and boots, the resistance is
high and very little current will flow. But, if the person has a sweaty hand (salty water is a
good conductor), and is standing barefoot in a pool of water their resistance will be much
lower. The voltages in the table are suggested as reasonable for a healthy adult in normal
circumstances. But, during design, you should assume that no voltage is safe.

current in body (mA) | effect

0-1 negligible (normal circumstances, SVDC)

1-5 uncomfortable (normal circumstances, 24VDC)
10-20 possibility for harm (normal circumstances, 120VAC)
20-50 muscles contract (normal circumstances, 220VAC)
50-100 pain, fainting, physical injuries

100-300 heart fibrillates

300+ burns, breathing stops, etc.

Figure 31.7  Current Levels
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Aside: Step potential is another problem. Electron waves from a fault travel out in a radial

direction through the ground. If a worker has two feet on the ground at different radial
distances, there will be a potential difference between the feet that will cause a current
to flow through the legs. The gist of this is - if there is a fault, don’t run/walk away/
towards.

Figure 31.8 shows a grounded system with a metal enclosures. The left-hand
enclosure contains a transformer, and the enclosure is connected directly to ground. The
wires enter and exit the enclosure through insulated strain reliefs so that they don’t contact
the enclosure. The second enclosure contains a load, and is connected in a similar manner
to the first enclosure. In the event of a major fault, one of the "live" electrical conductors
may come loose and touch the metal enclosure. If the enclosure were not grounded, any-
body touching the enclosure would receive an electrical shock. When the enclosure is
grounded, the path of resistance between the case and the ground would be very small
(about 1 ohm). But, the resistance of the path through the body would be much higher
(thousands of ohms or more). So if there were a fault, the current flow through the ground
might "blow" a fuse. If a worker were touching the case their resistance would be so low
that they might not even notice the fault.

wire break off

and touches case —

. i)

—— —— 3
N 3 E N
(- (-
N N
1"

Current can flow two ways, but most will follow the path of least
resistance, good grounding will keep the worker relatively safe
in the case of faults.

Figure 31.8  Grounding for Safety



plc electrical - 31.11

Note: Always ground systems first before applying power. The first time a system is
activated it will have a higher chance of failure.

When improperly grounded a system can behave erratically or be destroyed.
Ground loops are caused when too many separate connections to ground are made creat-
ing loops of wire. Figure 31.9 shows ground wires as darker lines. A ground loop caused
because an extra ground was connected between device A and ground. The last connection
creates a loop. If a current is induced, the loop may have different voltages at different
points. The connection on the right is preferred, using a free configuration. The grounds
for devices 4 and B are connected back to the power supply, and then to the ground.

creates a loop

'/ extra ground Pr ed

device A —

|
|
: device A
S B NN S
o 1 | |
. .' | |
device B 1 device B
e | | ' : °
! |
ground loop | > 2 >
gnd} $ |
power | power
supply I supply
— e
|

Figure 31.9  Eliminating Ground Loops

Problems often occur in large facilities because they may have multiple ground
points at different end of large buildings, or in different buildings. This can cause current
to flow through the ground wires. As the current flows it will create different voltages at
different points along the wire. This problem can be eliminated by using electrical isola-
tion systems, such as optocouplers.



plc electrical - 31.12

When designing and building electrical control systems, the following points
should prove useful.

* Avoid ground loops
- Connect the enclosure to the ground bus.
- Each PLC component should be grounded back to the main PLC chassis.
The PLC chassis should be grounded to the backplate.
- The ground wire should be separated from power wiring inside enclo-
sures.
- Connect the machine ground to the enclosure ground.
* Ensure good electrical connection
- Use star washers to ensure good electrical connection.
- Mount ground wires on bare metal, remove paint if needed.
- Use 12AWG stranded copper for PLC equipment grounds and 8AWG
stranded copper for enclosure backplate grounds.
- The ground connection should have little resistance (<0.1 ohms is good).

31.2.3 Wiring

As the amount of current carried by a wire increases, it is important to use a wire
with a larger cross section. A larger cross section results in a lower resistance, and less
heating of the wire. The standard wire gages are listed in Figure 31.10.

AWG # Dia. (mil) Res. 25C Rated Current
(ohm/1000 ft) (A)

4 204 0.25

6 162 0.40

8 128 0.64

10 102 1.0

12 81 1.6

14 64 2.6

16 51 4.1

18 40 6.5

20 32 10

22 25 17

24 20 26

Figure 31.10 American Wire Gage (AWG) Copper Wire Sizes
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31.2.4 Suppressors

Most of us have seen a Vandegraaf generator, or some other inductive device that
can generate large sparks using inductive coils. On the factory floor there are some mas-
sive inductive loads that make this a significant design problem. This includes devices
such as large motors and inductive furnaces. The root of the problem is that coils of wire
act as inductors and when current is applied they build up magnetic fields, requiring
energy. When the applied voltage is removed and the fields collapse the energy is dumped
back out into the electrical system. As a result, when an inductive load is turned on it
draws an excess amount of current (and lights dim), and when it is turn it off there is a
power surge. In practical terms this means that large inductive loads will create voltage
spikes that will damage our equipment.

Surge suppressors can be used to protect equipment from voltage spikes caused by
inductive loads. Figure 31.11 shows the schematic equivalent of an uncompensated induc-
tive load. For this to work reliably we would need to over design the system above the
rated loads. The second schematic shows a technique for compensating for an AC induc-
tive load using a resistor capacitor pair. It effectively acts as a high pass filter that allows a
high frequency voltage spike to be short circuited. The final surge suppressor is common
for DC loads. The diode allows current to flow from the negative to the positive. If a neg-
ative voltage spike is encountered it will short circuit through the diode.
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inductive load
output J L VDC+/VAC
Uncompensated
VDC-/COM.
common
Control Relay (PLC) Power supply

inductive load

output L L VAC Compensating
}_/\/\/\/_T + for AC loads

C R Vs
COM.
common
Relay or Triac Power supply
R =Vs*(.5to 1) ohms
C = (.5 to 1)/Adc (microfarads)
Vcapacitor = 2(Vswitching) + (200 to 300) V
where, Adc is the rated amperage of the load
Vs is the voltage of the load/power supply
Vswitching may be up to 10*Vs
inductive load
output M + Compensating
I I for DC loads
N
V1
common
Relay or Transistor Power supply

Figure 31.11 Surge Suppressors

31.2.5 PLC Enclosures

PLCs are well built and rugged, but they are still relatively easy to damage on the
factory floor. As a result, enclosures are often used to protect them from the local environ-
ment. Some of the most important factors are listed below with short explanations.
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Dirt - Dust and grime can enter the PLC through air ventilation ducts. As dirt clogs
internal circuitry, and external circuitry, it can effect operation. A storage cabi-
net such as Nema 4 or 12 can help protect the PLC.

Humidity - Humidity is not a problem with many modern materials. But, if the
humidity condenses, the water can cause corrosion, conduct current, etc. Con-
densation should be avoided at all costs.

Temperature - The semiconductor chips in the PLC have operating ranges where
they are operational. As the temperature is moved out of this range, they will
not operate properly, and the PLC will shut down. Ambient heat generated in
the PLC will help keep the PLC operational at lower temperatures (generally to
0°C). The upper range for the devices is about 60°C, which is generally suffi-
cient for sealed cabinets, but warm temperatures, or other heat sources (e.g.
direct irradiation from the sun) can raise the temperature above acceptable lim-
its. In extreme conditions heating, or cooling units may be required. (This
includes “cold-starts” for PLCs before their semiconductors heat up).

Shock and Vibration - The nature of most industrial equipment is to apply energy
to change workpieces. As this energy is applied, shocks and vibrations are often
produced. Both will travel through solid materials with ease. While PLCs are
designed to withstand a great deal of shock and vibration, special elastomer/
spring or other mounting equipment may be required. Also note that careful
consideration of vibration is also required when wiring.

Interference - Electromagnetic fields from other sources can induce currents.
Power - Power will fluctuate in the factory as large equipment is turned on and off.
To avoid this, various options are available. Use an isolation transformer. A
UPS (Uninterruptable Power Supply) is also becoming an inexpensive option,

and are widely available for personal computers.

A standard set of enclosures was developed by NEMA (National Electric Manu-
facturers Association). These enclosures are intended for voltage ratings below 1000Vac.
Figure 31.12 shows some of the rated cabinets. Type 12 enclosures are a common choice
for factory floor applications.
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Type 1 - General purpose - indoors

Type 2 - Dirt and water resistant - indoors

Type 3 - Dust-tight, rain-tight and sleet (ice) resistant - outdoors
Type 3R- Rainproof and sleet (ice) resistant - outdoors

Type 3S- Rainproof and sleet (ice) resistant - outdoors

Type 4 - Water-tight and dust-tight - indoors and outdoors
Type 4X - Water-tight and Dust-tight - indoors and outdoors
Type 5 - Dust-tight and dirt resistant - indoors

Type 6 - Waterproof - indoors and outdoors

Type 6P - Waterproof submersible - indoors and outdoors
Type 7 - Hazardous locations - class |

Type 8 - Hazardous locations - class |

Type 9 - Hazardous locations - class 11

Type 10 - Hazardous locations - class II

Type 11 - Gas-tight, water-tight, oiltight - indoors

Type 12 - Dust-tight and drip-tight - indoors

Type 13 - Oil-tight and dust-tight - indoors

Factor 112 3|3R35 44X 5| 6| 6P 11| 12/ 12K13
Prevent human contact X | X| X| X|[X|X|X|X|X|X|X|X]|X|X
falling dirt X[ X| X | X|X| X|X|X|XxX|X|X]|Xx|X]|X
liquid drop/light splash X X | X X | X| x| X| x| X
airborne dust/particles X | X| x| x| X X | x| x
wind blown dust X X | X| X X | X

liquid heavy stream/splash X | X X | X

oil/coolant seepage X | x| x
oil/coolant spray/splash X
corrosive environment X X | X

temporarily submerged X | X

prolonged submersion X

Figure 31.12 NEMA Enclosures

31.2.6 Wire and Cable Grouping

In a controls cabinet the conductors are passed through channels or bundled. When
dissimilar conductors are run side-by-side problems can arise. The basic categories of con-
ductors are shown in Figure 31.13. In general category 1 conductors should not be
grouped with other conductor categories. Care should be used when running category 2
and 3 conductors together.
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A more sensitive
category 1
AC power lines
high power AC/DC 10
category 2
analog IO signals
low power AC/DC 10

remote communications
category 3 \ \

low voltage dc power
local communications

more noisy
|

Figure 31.13 Wire and Cable Categories

* Types of wire pathways - channels - raceways/trays - conduit

* Conductor types enter and exit the controls cabinet separately

* When conductors mst be near incompatible types, they should cross at right
angles

31.3 FAIL-SAFE DESIGN

All systems will fail eventually. A fail-safe design will minimize the damage to
people and equipment. Consider the selection electrical connections. If wires are cut or
connections fail, the equipment should still be safe. For example, if a normally closed stop
button is used, and the connector is broken, it will cause the machine to stop as if the stop
button has been pressed.

NO (Normally open) - When wiring switches or sensors that start actions, use nor-
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mally open switches so that if there is a problem the process will not start.

NC (Normally Closed) - When wiring switches that stop processes use normally
closed so that if they fail the process will stop. E-Stops must always be NC, and
they must cut off the master power, not just be another input to the PLC.

Hardware

* Use redundancy in hardware.

* Directly connect emergency stops to the PLC, or the main power supply.

* Use well controlled startup procedures that check for problems.

* Shutdown buttons must be easily accessible from all points around the
machine.

31.4 SAFETY RULES SUMMARY

A set of safety rules was developed by Jim Rowell (http://www.mrplc.com,
"Industrial Control Safety; or How to Scare the Bejesus Out of Me"). These are summa-
rized below.

Grounding and Fuses
» Always ground power supplies and transformers.
* Ground all metal enclosures, casings, etc.
* All ground connections should be made with dedicated wires that are
exposed so that their presence is obvious.
* Use fuses for all AC power lines, but not on the neutrals or grounds.
» If ground fault interrupts are used they should respond faster than the con-
trol system.
Hot vs. Neutral Wiring
* Use PNP wiring schemes for systems, especially for inputs that can ini-
tiate actions.
* Loads should be wired so that the ground/neutral is always connected,
and the power is switched.
* Sourcing and sinking are often confused, so check the diagrams or look
for PNP/NPN markings.
AC/DC
 Use lower voltages when possible, preferably below 50V.
* For distant switches and sensors use DC.
Devices
* Use properly rated isolation transformers and power supplies for control
systems. Beware autotransformers.
* Use Positive or Force-Guided Relays and contacts can fail safely and pre-
vent operation in the event of a failure.
* Some ’relay replacement’ devices do not adequately isolate the inputs and
output and should not be used in safety critical applications.
Starts
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* Use NO buttons and wiring for inputs that start processes.

* Select palm-buttons, and other startup hardware carefully to ensure that
they are safety rated and will ensure that an operator is clear of the
machine.

* When two-hand start buttons are used, use both the NO and NC outputs
for each button. The ladder logic can then watch both for a completed

actuation.
Stops

* E-stop buttons should completely halt all parts of a machine that are not
needed for safety.

* E-stops should be hard-wired to kill power to electrically actuated sys-
tems.

* Use many red mushroom head E-stop buttons that are easy to reach.

* Use red non-mushroom head buttons for regular stops.

* A restart sequence should be required after a stop button is released.

* E-stop buttons should release pressure in machines to allow easy
‘escape’.

* An ’extraction procedure’ should be developed so that trapped workers
can be freed.

« If there are any power storage devices (such as a capacitor bank) make
sure they are disabled by the E-stops.

* Use NC buttons and wiring for inputs that stop processes.

* Use guards that prevent operation when unsafe, such as door open detec-
tion.

» If the failure of a stop input could cause a catastrophic failure, add a
backup.

Construction

 Wire so that the power enters at the top of a device.

» Take special care to review regulations when working with machines that
are like presses or brakes.

* Check breaker ratings for overload cases and supplemental protection.

* A power disconnect should be located on or in a control cabinet.

* Wires should be grouped by the power/voltage ratings. Run separate con-
duits or raceways for different voltages.

 Wire insulation should be rated for the highest voltage in the cabinet.

* Use colored lights to indicate operational states. Green indicates in opera-
tion safely, red indicates problems.

* Construct cabinets to avoid contamination from materials such as oils.

* Conduits should be sealed with removable compounds if they lead to
spaces at different temperatures and humidity levels.

* Position terminal strips and other components above 18" for ergonomic
reasons.

* Cabinets should be protected with suitably rated fuses.

* Finger sized objects should not be able to reach any live voltages in a fin-
ished cabinet, however DMM probes should be able to measure voltages.
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31.5 REFERENCES

31.6 SUMMARY

* Electrical schematics used to layout and wire controls cabinets.

+ JIC wiring symbols can be used to describe electrical components.

* Grounding and shielding can keep a system safe and running reliably.

» Failsafe designs ensure that a controller will cause minimal damage in the event
of a failure.

* PLC enclosure are selected to protect a PLC from its environment.

31.7 PRACTICE PROBLEMS

1. What steps are required to replace a defective PLC?

2. What are the trade-offs between 3-phase and single-phase AC power.

31.8 PRACTICE PROBLEM SOLUTIONS

1. in a rack the defective card is removed and replaced. If the card has wiring terminals these are
removed first, and connected to the replacement card.

2. 3-phase power is ideal for large loads such as motors. Single phase power is suited to small
loads, and the power usage on each phase must be balanced someplace on the electrical grid.

31.9 ASSIGNMENT PROBLEMS

1. Where is the best location for a PLC enclosure?
2. What is a typical temperature and humidity range for a PLC?

3. Draw the electrical schematic and panel layout for the relay logic below. The system will be
connected to 3 phase power. Be sure to include a master power disconnect.
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4. Why are nodes and wires labelled on a schematic, and in the controls cabinet?
5. Locate at least 10 JIC symbols for the sensors and actuators in earlier chapters.
6. How are shielding and grounding alike? Are shields and grounds connected?
7. What are significant grounding problems?

8. Why should grounds be connected in a tree configuration?
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32. SOFTWARE ENGINEERING

Topics:

* Electrical wiring issues; cabinet wiring and layout, grounding, shielding and
inductive loads

* Controller design; failsafe, debugging, troubleshooting, forcing

* Process modelling with the ANSI/ISA-S5.1-1984 standard

* Programming large systems

* Documentation

Objectives:

* To learn the major issues in program design.

* Be able to document a process with a process diagram.

* Be able to document a design project.

* Be able to develop a project strategy for large programs.

32.1 INTRODUCTION

A careful, structured approach to designing software will cut the total development
time, and result in a more reliable system.

32.1.1 Fail Safe Design

It is necessary to predict how systems will fail. Some of the common problems that
will occur are listed below.

Component jams - An actuator or part becomes jammed. This can be detected by
adding sensors for actuator positions and part presence.

Operator detected failure - Some unexpected failures will be detected by the oper-
ator. In those cases the operator must be able to shut down the machine easily.

Erroneous input - An input could be triggered unintentionally. This could include
something falling against a start button.

Unsafe modes - Some systems need to be entered by the operators or maintenance
crew. People detectors can be used to prevent operation while people are
present.

Programming errors - A large program that is poorly written can behave erratically
when an unanticipated input is encountered. This is also a problem with
assumed startup conditions.
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Sabotage - For various reasons, some individuals may try to damage a system.
These problems can be minimized preventing access.

Random failure - Each component is prone to random failure. It is worth consider-
ing what would happen if any of these components were to fail.

Some design rules that will help improve the safety of a system are listed below.

Programs
* A fail-safe design - Programs should be designed so that they check for
problems, and shut down in safe ways. Most PLC’s also have imminent
power failure sensors, use these whenever danger is present to shut down
the system safely.
* Proper programming techniques and modular programming will help
detect possible problems on paper instead of in operation.
* Modular well designed programs.
* Use predictable, non-configured programs.
» Make the program inaccessible to unauthorized persons.
* Check for system OK at start-up.
* Use PLC built in functions for error and failure detection.
People
* Provide clear and current documentation for maintenance and operators.
* Provide training for new users and engineers to reduce careless and unin-
formed mistakes.

32.2 DEBUGGING

Most engineers have taken a programming course where they learned to write a
program and then debug it. Debugging involves running the program, testing it for errors,
and then fixing them. Even for an experienced programmer it is common to spend more
time debugging than writing software. For PLCs this is not acceptable! If you are running
the program and it is operating irrationally it will often damage hardware. Also, if the
error is not obvious, you should go back and reexamine the program design. When a pro-
gram is debugged by trial and error, there are probably errors remaining in the logic, and
the program is very hard to trust. Remember, a bug in a PLC program might kill some-
body.

Note: when running a program for the first time it can be a good idea to keep one hand
on the E-stop button.
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32.2.1 Troubleshooting

After a system is in operation it will eventually fail. When a failure occurs it is
important to be able to identify and solve problems quickly. The following list of steps
will help track down errors in a PLC system.

1. Look at the process and see if it is in a normal state. i.e. no jammed actuators,
broken parts, etc. If there are visible problems, fix them and restart the process.

2. Look at the PLC to see which error lights are on. Each PLC vendor will provide
documents that indicate which problems correspond to the error lights. Com-
mon error lights are given below. If any off the warning lights are on, look for
electrical supply problems to the PLC.

HALT - something has stopped the CPU

RUN - the PLC thinks it is OK (and probably is)

ERROR - a physical problem has occurred with the PLC

3. Check indicator lights on I/O cards, see if they match the system. i.e., look at
sensors that are on/off, and actuators on/off, check to see that the lights on the
PLC I/O cards agree. If any of the light disagree with the physical reality, then
interface electronics/mechanics need inspection.

4. Consult the manuals, or use software if available. If no obvious problems exist
the problem is not simple, and requires a technically skilled approach.

5. If all else fails call the vendor (or the contractor) for help.

32.2.2 Forcing

Most PLCs will allow a user to force inputs and outputs. This means that they can
be turned on, regardless of the physical inputs and program results. This can be convenient
for debugging programs, and, it makes it easy to break and destroy things! When forces
are used they can make the program perform erratically. They can also make outputs occur
out of sequence. If there is a logic problem, then these don’t help a programmer identify
these problems.

Many companies will require extensive paperwork and permissions before forces
can be used. I don’t recommend forcing inputs or outputs, except in the most extreme cir-
cumstances.

32.3 PROCESS MODELLING

There are many process modeling techniques, but only a few are suited to process
control. The ANSI/ISA-S5.1-1984 Piping and Instrumentation Diagram (P&ID) standard
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provides good tools for documenting processes. A simple example is shown in Figure
32.1.

L/

control valve

Figure 32.1 A Process Model

The symbols used on the diagrams are shown in the figure below
XXXXXXXXXXXXX. Note that the modifier used for the instruments can be applied to
other discrete devices.
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Discrete Device Symbols

Instruments

field mounted

panel mounted

unaccessible or embedded

auxilliary location, operator accessible

Controls

Computer Function

PLC

Shared Display/Control

KO DPODO

Figure 32.2  Symbols for Functions and Instruments

The process model is carefully labeled to indicate the function of each of the func-
tion on the diagram. Table 2 shows a list of the different instrumentation letter codes.
XXX X XXX XXX XX XXX XXXXXX

Table 1: ANSI/ISA-S5.1-1984 Instrumentation Symbols and Identification

LETTER FIRST LETTER SECOND LETTER

A Analysis Alarm

B Burner, Combustion User’s Choice
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Table 1: ANSI/ISA-S5.1-1984 Instrumentation Symbols and Identification

LETTER FIRST LETTER SECOND LETTER
C User’s Choice Control
D User’s Choice
E Voltage Sensor (Primary Element)
F Flow Rate
G User’s Choice Glass (Sight Tube)
H Hand (Manually Initiated)
I Current (Electric) Indicate
J Power
K Time or Time Schedule Control Station
L Level Light (pilot)
M User’s Choice
N User’s Choice User’s Choice
0] User’s Choice Orifice, Restriction
P Pressure, Vacuum Point (Test Connection)
Q Quantity
R Radiation Record or Print
S Speed or Frequency Switch
T Temperature Transmit
U Multivariable Multifunction
A% Vibration, Mechanical Analysis Valve, Damper, Louver
W Weight, Force Well
X Unclassified Unclassified
Y Event, State or Presence Relay, Compute
Z Position, Dimension Driver, Actuator, Unclassified

popular flow lines.

The line symbols also describe the type of flow. Figure 32.3 shows a few of the
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Connection to process

Instrument Supply

— l_ — l_ Hydraulic

Pneumatic

X Capillary Tube

______________ Electric Signal

EM, Sonic, Radioactive

®o—@—e0—0—©—@® Mechanical Connection
OO OO O 0O Software Connection

Figure 32.3  Flow Line Symbols and Types

Figure 32.4 shows some of the more popular sensor and actuator symbols.
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| —

orifice plate

magnetic

N

venturi or nozzle

control valve rotameter

(pneumatic activated)

Figure 32.4  Sensor and Actuator Symbols and Types

32.4 PROGRAMMING FOR LARGE SYSTEMS

Previous chapters have explored design techniques to solve large problems using
techniques such as state diagrams and SFCs. Large systems may contain hundreds of those
types of problems. This section will attempt to lay a philosophical approach that will help
you approach these designs. The most important concepts are clarity and simplicity.

32.4.1 Developing a Program Structure

Understanding the process will simplify the controller design. When the system is
only partially understood, or vaguely defined the development process becomes iterative.
Programs will be developed, and modified until they are acceptable. When information
and events are clearly understood the program design will become obvious. Questions that
can help clarify the system include;

"What are the inputs?"

"What are the outputs?"

"What are the sequences of inputs and outputs?"
"Can a diagram of the system operation be drawn?"
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"What information does the system need?"
"What information does the system produce?"

When possible a large controls problems should be broken down into smaller prob-
lems. This often happens when parts of the system operate independent of each other. This
may also happen when operations occur in a fixed sequence. If this is the case the controls
problem can be divided into the two smaller (and simpler) portions. The questions to ask
are;

"Will these operations ever occur at the same time?"

"Will this operation happen regardless of other operations?"
"Is there a clear sequence of operations?"

"Is there a physical division in the process or machine?"

After examining the system the controller should be broken into operations. This
can be done with a tree structure as shown in Figure 32.5. This breaks control into smaller
tasks that need to be executed. This technique is only used to divide the programming
tasks into smaller sections that are distinct.

Press
Conveyor in Press Pickup bin
part detected advance bin replaced full detect
adv./retract idle part detect
advancing retracting

Figure 32.5  Functional Diagram for Press Control
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Each block in the functional diagram can be written as a separate subroutine. A
higher level executive program will call these subroutines as needed. The executive pro-
gram can also be broken into smaller parts. This keeps the main program more compact,
and reduces the overall execution time. And, because the subroutines only run when they
should, the change of unexpected operation is reduced. This is the method promoted by
methods such as SFCs and FBDs.

Each functional program should be given its’ own block of memory so that there
are no conflicts with shared memory. System wide data or status information can be kept
in common areas. Typical examples include a flag to indicate a certain product type, or a
recipe oriented system.

Testing should be considered during software planning and writing. The best sce-
nario is that the software is written in small pieces, and then each piece is tested. This is
important in a large system. When a system is written as a single large piece of code, it
becomes much more difficult to identify the source of errors.

The most disregarded statement involves documentation. All documentation
should be written when the software is written. If the documentation can be written first,
the software is usually more reliable and easier to write. Comments should be entered
when ladder logic is entered. This often helps to clarify thoughts and expose careless
errors. Documentation is essential on large projects where others are likely to maintain the
system. Even if you maintain it, you are likely to forget what your original design inten-
tion was.

Some of the common pitfalls encountered by designers on large projects are listed
below.

» Amateur designers rush through design to start work early, but details they
missed take much longer to fix when they are half way implemented.

* Details are not planned out and the project becomes one huge complex task
instead of groups of small simple tasks.

* Designers write one huge program, instead of smaller programs. This makes
proof reading much harder, and not very enjoyable.

* Programmers sit at the keyboard and debug by trial and error. If a programmer is
testing a program and an error occurs, there are two possible scenarios. First,
the programmer knows what the problem is, and can fix it immediately. Second,
the programmer only has a vague idea, and often makes no progress doing trial-
and-error debugging. If trial-and-error programming is going on the program is
not understood, and it should be fixed through replanning.

» Small details are left to be completed later. These are sometimes left undone, and
lead to failures in operation.

* The design is not frozen, and small refinements and add-ons take significant
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amounts of time, and often lead to major design changes.

* The designers use unprofessional approaches. They tend to follow poor designs,
against the advice of their colleagues. This is often because the design is their
child

* Designers get a good dose of the not invented here syndrome. Basically, if we
didn’t develop it, it must not be any good.

* Limited knowledge will cause problems. The saying goes “If the only tool you
know how to use is a hammer every problem looks like a nail.”

* Biting off more than you can chew. some projects are overly ambitious. Avoid
adding wild extras, and just meet the needs of the project. Sometimes an unnec-
essary extra can take more time than the rest of the project.

32.4.2 Program Verification and Simulation

After a program has been written it is important to verify that it works as intended,
before it is used in production. In a simple application this might involve running the pro-
gram on the machine, and looking for improper operation. In a complex application this
approach is not suitable. A good approach to software development involves the following
steps in approximate order:

1. Structured design - design and write the software to meet a clear set of objec-
tives.

2. Modular testing - small segments of the program can be written, and then tested
individually. It is much easier to debug and verify the operation of a small pro-
gram.

3. Code review - review the code modules for compliance to the design. This
should be done by others, but at least you should review your own code.

4. Modular building - the software modules can then be added one at a time, and
the system tested again. Any problems that arise can then be attributed to inter-
actions with the new module.

5. Design confirmation - verify that the system works as the design requires.

6. Error proofing - the system can be tested by trying expected and unexpected
failures. When doing this testing, irrational things should also be considered.
This might include unplugging sensors, jamming actuators, operator errors, etc.

7. Burn-in - a test that last a long period of time. Some errors won’t appear until a
machine has run for a few thousand cycles, or over a period of days.

Program testing can be done on machines, but this is not always possible or desire-
able. In these cases simulators allow the programs to be tested without the actual machine.
The use of a simulator typically follows the basic steps below.

1. The machine inputs and outputs are identified.
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2. A basic model of the system is developed in terms of the inputs and outputs.
This might include items such as when sensor changes are expected, what
effects actuators should have, and expected operator inputs.

3. A system simulator is constructed with some combination of specialized soft-
ware and hardware.

4. The system is verified for the expect operation of the system.

5. The system is then used for testing software and verifying the operation.

A detailed description of simulator usage is available [Kinner, 1992].

32.5 DOCUMENTATION

Poor documentation is a common complaint lodged against control system design-
ers. Good documentation is developed as a project progresses. Many engineers will leave
the documentation to the end of a project as an afterthought. But, by that point many of the
details have been forgotten. So, it takes longer to recall the details of the work, and the
report is always lacking.

A set of PLC design forms are given in Figure 32.6 to Figure 32.12. These can be
used before, during and after a controls project. These forms can then be kept in design or
maintenance offices so that others can get easy access and make updates at the controller
is changed. Figure 32.6 shows a design cover page. This should be completed with infor-
mation such as a unique project name, contact person, and controller type. The list of
changes below help to track design, redesign and maintenance that has been done to the
machine. This cover sheet acts as a quick overview on the history of the machine. Figure
32.7 to Figure 32.9 show sheets that allow free form planning of the design. Figure 32.10
shows a sheet for planning the input and output memory locations. Figure 32.11 shows a
sheet for planning internal memory locations, and finally Figure 32.12 shows a sheet for
planning the ladder logic. The sheets should be used in the order they are given, but they
do not all need to be used. When the system has been built and tested, a copy of the work-
ing ladder logic should be attached to the end of the bundle of pages.
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PLC Project Sheet
Project ID:

Start Date:

Contact Person:

PLC Model:

Attached Materials/Revisions:

Date Name # Sheets Reason

Figure 32.6  Design Cover Page
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Project Notes
Project ID: Date:
[1 System Description Page of
[] I/O Notes
] Power Notes Name:
(] Other Notes
Figure 32.7  Project Note Page
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Design Notes
Project ID: Date:
[] State Diagram [ ] Truth Table Page of
(] Flow Chart [ Safety
[0 Sequential Function Chart [ Communications Name:
[0 Boolean Equations [0 Other Notes

Figure 32.8  Project Diagramming Page



plc software - 32.16

Application Notes
Project ID: Date:
(1 Test Plan Page of
1 Electrical I/O
0 PLC Modules Name:
1 Other Notes

Figure 32.9  Project Diagramming and Notes Page
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Input/Output Card Page __ of
Project I.D. Name Date
Card Type Rack # Slot #

Notes:

’input/output ’ ‘ JIC symbol ‘ ’ Description

Vin

2 0 0
0 L 0 0
o v 0 0
2 D 0 0
B D 0 0
0 LD 0 0
05 Y& 0 0
06 L& 0 0
07 Y& 0 0
08/10 @ 0 0
09/11 @ 0 0
10/12 @ 0 0
ER> 0 0
12/14 @ 0 0
13/15 @ 0 0
14/16 @ 0 0
15/17 @ 0 0
com D 0 0

Figure 32.10 10 Planning Page
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Internal Locations Page of
Project I.D. Name Date
Register or Word o
Description
Internal Word

Figure 32.11 Internal Memory Locations Page
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Program Listing

Project I.D. Name

Page

of

Date

rung#

Figure 32.12 Ladder Logic Page

comments
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These design sheets are provided as examples. PLC vendors often supply similar
sheets. Many companies also have their own internal design documentation procedures. If
you are in a company without standardized design formats, you should consider imple-
menting such a system.

32.6 COMMISIONING

When a new machine is being prepared for production, or has been delivered by a
supplier, it is normal to go through a set of commissioning procedures. Some typical steps
are listed below.

1. Visual inspection
« verify that the machine meets internal and external safety codes
- electrical codes
- worker safety codes (e.g., OSHA)
* determine if all components are present
2. Mechanical installation
* physically located the machine
* connect to adjacent machines
* connect water, air and other required services
3. Electrical installation
* connect grounds and power
* high potential and ground fault tests
« verify sensor inputs to the PLC
4. Functional tests
» start the machine and test the emergency stops
* test for basic functionality
5. Process verification
* run the machine and make adjustments to produce product
* collect process capability data
* determine required maintenance procedures
6. Contract/specification verification
* review the contact requirements and check off individually on each one
* review the specification requirements and check off each one individually
* request that any non-compliant requirements are corrected
7. Put into production
» start the process in the production environment and begin normal use

32.7 SAFETY
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32.7.1 IEC 61508/61511 safety standards

REF: McCrea-Steele, R., "Proven-in-Use: Making the right choices for process

safety", Hotlinks, Invensys, Summer 2003.

REF: Eberhard, A, "Safety in Programmable Applications", Automation World,

Nov., 2004.

tems.

- these standards cover electrical, electronic, and programmable electronic sys-

- three categories of software languages covered by the standard

- FPL (Fixed Programming Language) - a very limited approach to pro-
gramming. For example the system is programmed by setting parame-
ters.

- LVL (Limited Variability Language) - a language with a strict program-
ming model, such as ladder logic.

- FVL (Full Variability Language) - a language that gives full access to a
systems, such as C.

- Safety Integrity Level (SIL) - the safety requirements for a function in a system

Low demand:
level 4: P =10"-4 to 10"-5
level 3: P =10"-3 to 10"-4
level 2: P =10"-2 to 10"-3
level 1: P =10"-1 to 10"-2

High Demand or continuous mode:
level 4: P =10"-8 to 10"-9
level 3: P =10"-7 to 10"-8
level 2: P =10"-6 to 10"-7
level 1: P =10"-5 to 10"-6

- System safety levels are defined as,

SIF (Safety Instrumented Function) - The SIL for each function is chosen
to ensure an overall system functionality.

SIS (Safety Instrumented System) - A combined system with one or more
logic processors.

SFF (Safe Failure Fraction) - the ratio of safe and dangerous detected fail-
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ures to the total failures.

- To calculate the SFF

- do an FMEA for each system component in the system

- classify failure modes as safe or dangerous

- calculate the probabilities of safe/dangerous failures (S/D [0, 1])
- estimate the fraction of the failures that can be detected (F [0, 1])
- SFF = ...

32.8 LEAN MANUFACTURING

- lean manufacturing has received attention lately, but it embodies many common
sense machine design concepts.

- In simple terms lean manufacturing involves eliminating waste from a system.

- Some general concepts to use when designing lean machines include,

- setups should be minimized or eliminated
- product changeovers should be minimized or eliminated
- make the tool fit the job, not the other way. If necessary, design a new tool
- design the machine be faster than the needed cycle time to allow flexibil-
ity and excess capacity - this does seem contradictory, but it allows better
use of other resources. For example, if a worker takes a bathroom break,
the production can continue with fewer workers.
- allow batches with a minimum capacity of one.
- people are part of the process and should integrate smoothly - the motions
or workers are often described as dance like.
- eliminate wasted steps, all should go into making the part
- work should flow smoothly to avoid wasted motion
- do not waste motion by spacing out machines
- make-one, check-one
- design "decouplers" to allow operations to happen independantly.
- eliminate material waste that does not go into the product
- pull work through the cell
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- design the product so that it is easy to manufacture

- use methods that are obvious, so that anybody can understand - this
makes workers portable and able to easily cover for others.

- use poke-yoke

- design tools to reduce the needs for guards.

32.9 REFERENCES

Kenner, R. H., “The Use of Simulation Within a PLC to Improve Program Development and Test-
ing”, Proceedings of the First Automation Fair, Philadelphia, 1990.

Paques, Joseph-Jean, “Basic Safety Rules for Using Programmable Controllers”, ISA Transac-
tions, Vol. 29, No. 2, 1990.

32.10 SUMMARY

» Debugging and forcing are signs of a poorly written program.
* Process models can be used to completely describe a process.

* When programming large systems, it is important to subdivide the project into
smaller parts.

» Documentation should be done at all phases of the project.

32.11 PRACTICE PROBLEMS

1. List 5 advantages of using structured design and documentation techniques.

32.12 PRACTICE PROBLEM SOLUTIONS

1. more reliable programs - less debugging time - more routine - others can pick up where you left
off - reduces confusion

32.13 ASSIGNMENT PROBLEMS

1. What documentation is requires for a ladder logic based controller? Are comments important?
Why?
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2. When should inputs and outputs be assigned when planning a control system?
3. Discuss when I/O placement and wiring documentation should be updated?
4. Should you use output forces?

5. Find web addresses for 10 PLC vendors. Investigate their web sites to determine how they
would be as suppliers.
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33. SELECTING A PLC

Topics:
* The PLC selection process
* Estimating program memory and time requirements
* Selecting hardware

Objectives:
* Be able to select a hardware and software vendor.
* Be able to size a PLC to an application
* Be able to select needed hardware and software.

33.1 INTRODUCTION

After the planning phase of the design, the equipment can be ordered. This deci-
sion is usually based upon the required inputs, outputs and functions of the controller. The
first decision is the type of controller; rack, mini, micro, or software based. This decision
will depend upon the basic criteria listed below.

» Number of logical inputs and outputs.

* Memory - Often 1K and up. Need is dictated by size of ladder logic program. A
ladder element will take only a few bytes, and will be specified in manufactur-
ers documentation.

* Number of special I/O modules - When doing some exotic applications, a large
number of special add-on cards may be required.

* Scan Time - Big programs or faster processes will require shorter scan times.
And, the shorter the scan time, the higher the cost. Typical values for this are 1
microsecond per simple ladder instruction

« Communications - Serial and networked connections allow the PLC to be pro-
grammed and talk to other PLCs. The needs are determined by the application.

* Software - Availability of programming software and other tools determines the
programming and debugging ease.

The process of selecting a PLC can be broken into the steps listed below.

1. Understand the process to be controlled (Note: This is done using the design
sheets in the previous chapter).
* List the number and types of inputs and outputs.
* Determine how the process is to be controlled.
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* Determine special needs such as distance between parts of the process.
2. If not already specified, a single vendor should be selected. Factors that might
be considered are, (Note: Vendor research may be needed here.)
* Manuals and documentation
* Support while developing programs
* The range of products available
* Support while troubleshooting
+ Shipping times for emergency replacements
* Training
* The track record for the company
* Business practices (billing, upgrades/obsolete products, etc.)
3. Plan the ladder logic for the controls. (Note: Use the standard design sheets.)
4. Count the program instructions and enter the values into the sheets in Figure
33.1 and Figure 33.2. Use the instruction times and memory requirements for
each instruction to determine if the PLC has sufficient memory, and if the
response time will be adequate for the process. Samples of scan times and
memory are given in Figure 33.3 and Figure 33.4.
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PLC MEMORY TIME ESTIMATES - Part A

Project ID:

Name:

Date:

Instruction
Type

Time
Max
(us)

Time
Min.
(us)

Instruction
Memory
(words)

Instruction
Data
(words)

Instruction
Count
(number)

Total
Memory
(words)

Min.
Time
