

Practical Data Communications for
Instrumentation and Control

Titles in the series

Practical Cleanrooms: Technologies and Facilities (David Conway)

Practical Data Acquisition for Instrumentation and Control Systems (John Park,
Steve Mackay)

Practical Data Communications for Instrumentation and Control (John Park, Steve
Mackay, Edwin Wright)

Practical Digital Signal Processing for Engineers and Technicians (Edmund Lai)

Practical Electrical Network Automation and Communication Systems (Cobus
Strauss)

Practical Embedded Controllers (John Park)

Practical Fiber Optics (David Bailey, Edwin Wright)

Practical Industrial Data Networks: Design, Installation and Troubleshooting (Steve
Mackay, Edwin Wright, John Park, Deon Reynders)

Practical Industrial Safety, Risk Assessment and Shutdown Systems (Dave
Macdonald)

Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems (Gordon
Clarke, Deon Reynders)

Practical Radio Engineering and Telemetry for Industry (David Bailey)

Practical SCADA for Industry (David Bailey, Edwin Wright)

Practical TCP/IP and Ethernet Networking (Deon Reynders, Edwin Wright)

Practical Variable Speed Drives and Power Electronics (Malcolm Barnes)

Practical Data Communications for
Instrumentation and Control

John Park ASD, IDC Technologies, Perth, Australia

Steve Mackay CPEng, BSc(ElecEng), BSc(Hons), MBA, IDC Technologies,
Perth, Australia

Edwin Wright MIPENZ, BSc(Hons), BSc(Elec Eng), IDC Technologies, Perth,
Australia
.

Newnes
An imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Road, Burlington, MA 01803

First published 2003

Copyright  2003, IDC Technologies. All rights reserved

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether
or not transiently or incidentally to some other use of this publication) without
the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder's written
permission to reproduce any part of this publication should be addressed
to the publisher

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 07506 57979

Typeset and Edited by Vivek Mehra, Mumbai, India
(vivekmehra@tatanova.com)

Printed and bound in Great Britain

For information on all Newnes publications, visit
our website at www.newnespress.com

���������
�	�
���� � � � � � � � � �
��
�

1 ���	������� � � � � � � ��

� ���� ���	���������� � � � � � � ���

� ���� �����	����������	����� � � � � � ���

� ���� ������	��� � � � � � � � ���

� ���� � ����!���"������	�����������#���$�"����� � � ���

� ��%� �	�������� � � � � � � � ���

� ��&� �'!������������	���� � � � � � �%�

� ��(�)���	������	�"�����������������	����!���"�� � � �&�

� ��*� +���	�����������	����!���"��#+���$� � � � �(�

� ��,� �	��	�""���������������	����	��#�-��$� � � � �(�

� ���.� �" �����
��'��"��	� 	������	� � � � � �*�

� ����� �"�	������	�"����������!���"� ,

2 /����� 	���� ���� � � � � � � ��

� ���� /���0��!���������'�	����	��� � � � � ���

� ���� ��""���������� 	���� ����� � � � � ���

� ���� ��""����������"����� � � � � � ���

� ���� 1�!��'	�������!���"�� � � � � � ���

� ��%� �!��'	�������!���"�� � � � � � �%�

� ��&� 2		�	����������� � � � � � � �&�

� ��(� 3	���"��������'�	����	������� � � � � �(�

� ��*� +������������ � � � � � � �*�

� ��,� 3'�������	������!��'	������	������	4�	���"����	��

� � #5163$� � � � � � � � �,�

� ���.� 3'��'��'�� ����5163�#�&%%.$� � � � � ���

3 ��	������""����������������	��� � � �%

� ���� ������	����	����7������� � � � � � �&�

� ���� ��	�����������""���������������	
����������	��� � �*�

� ���� /������������������������	���"������������� � � �*�

���� 2�18��������	
����������	��#���33�9��������	
�����

� ������	�$� � � � � � � � �.�

� ��%� 3	������'���������	�����������""������������	���������� %�
� ��&� 3�����:�� "����� � � � � � � %��

� ��(� 6�8��,�����	
����������	��#;���"��	��,(($� � � %*�

� ��*� 6�8��������	
����������	�� � � � � %*�

vi ���������

� ��,� 3'��6�8��������	
����������	�� � � � � %,�

� ���.� 3'��6�8�*%�����	
����������	�� � � � � &��

� ����� 3	������'����������������������'�6�8�*%� � � &(�

� ����� 6�43�18%�.1�����	
����������	��#)�!��,,�$� � � &*�

� ����� 6�43�18%&������	
����������	��#<�����,,�$� � � &*�

� ����� ��" �	������
��'��2�1�����	
����������	��� � � &,�

� ���%� 3'���.�"1���		������� � � � � � � (.�

� ���&� ��	��������	
���������	��	�� � � � � (��

� ���(� ����	
���������	���� 	����	��� � � � � (��

� ���*� ��	�������������""���������������	
����������	��� � (��

���,� =���	��� �	 ��������	
��������#=��/$��	��2228�**��	�

� � �2�8&�%� � � � � � � � (��

� ���.� 3'������	����������	
����������	�� � � � *.�

� ����� 3'�������	������	��������#5�/$� � � � � *��

4 2		�	����������� ��������������� �������������������������������������.�

� ���� �	������
��		�	�� � � � � � � �.��

� ���� >����	���

�������������� 	� �������� � � � �.��

� ���� 3! ����
��		�	����������0�����	���������		������� � �.��

� ���� ��'�	�����	���"��'����"�� � � � � ����

5 ��������������� � ��

� %��� ���	����� � � � � � � � ����

� %��� �� �	8������������� � � � � � ����

� %��� 3������� ��	�������� � � � � � ����

� %��� ���
����������� � � � � � � ��&�

� %�%� >���	8� ����������� � � � � � � ��&

6 2����	�������������������	
�	����� � ���������������������

� &��� +�
���������
������� � � � � � � ����

� &��� >	�:����!�����!�����
������� � � � � ��&�

� &��� ���	�����
������	����������� � � � � ����

� &��� 2����	�������� ������
������� � � � � ����

� &�%� �'�������� � � � � � � � ��*�

� &�&� =�����'�������� �	
�	"�����	������ � � � ��,�

� &�(� ���������������	�	�����!�� � � � � ��,�

� &�*� ������� ������ � � � � � � ��,�

� &�,� 2�	�'���������	��������	�:��	�"����� � � � ��.�

� &��.� �� 	����������'��:���� � � � � � ���

����������vii�

� &���� >����	���� � � � � � � � ����

7)���"������"���� ��
�	�� ��������������������������������������%

� (��� ���	���������� � � � � � � ��&�

� (���)������
�� �	������ � � � � � ��(�

� (��� �!��'	�������	���!��'	������ � � � � ��(�

� (��� ����	�'�������	������ � � � � � ��,�

� (�%� >��������	���� � � � � � � ��,�

� (�&� +����	����� � � � � � � � �%.�

� (�(�)�������������'��:���� � � � � � �%��

� (�*� ��" ��������
���"���"�� � � � � �%&�

� (�,� 3! ����
�"���"� � � � � � � �%*�

� (��.� 6�����"���"�� � � � � � � �&��

� (���� 2		�	����������4��		�������� � � � � �&(�

� (���� +������" 	����������'��:���� � � � � �(.�

� (����)���"�������	��� � � � � � � �(��

� (���� 3	������'����������!���"�������"���"�� � � �(&�

� (��%� �����������������	������� � � � � � �(*�

� (��&�)���� ��
��������� ��� � � � � � �*.�

� (��(� 3�	"�����"���� ��
�	�� � � � � � �*��

� (��*� ������������"���� ��
�	�� � � � � � �*%

8 ���	������������ 	�������� �������������������������������������*&�

� *��� >��������	��� 	�������� � � � � � �*(�

� *��� ?�;4�>>� � � � � � � � �*(�

� *��� /���	!��!��'	������ 	������� � � � � �*(�

� *��� �+-�������+-�� 	�������� � � � � �,.�

� *�%� >�����	���
�	� 	�������� � � � � � �,��

9 � ����!���"������	�����������"����� �������������������,,

� ,��� +������""�����������
�	�����	�"�����������������	����� �,,�

� ,��� �����������������!�	�� � � � � � �.��

� ,��� ����������!�� � � � � � � �.��

� ,��� 1���
�" ����
����������	��������	���� ���������� � �.��

� ,�%� ��" ��
��������"����� � � � � � �.��

10 ������	���� 	��������������������������������������� �������������������.%�

� �.��� ���	���������� � � � � � � �.%�

viii ���������

� �.��� 1����������� 	�������� � � � � � �.&�

� �.��� 1����������� 	�������1;��8?���*8��%81�� � � ��.�

� �.���)������ 	������� � � � � � � ����

� �.�%� 1�����/	����!�+�������'��!�#����$� 	������� � � ��,�

11 �163� 	���,

� ����� ���	�������������163������"�	������	�"��������� � ��,�

� ����� ���'��!����	��������	�"�����	�������	�#�163$� � ��.�

� ����� �'!��������!�	� � � � � � � ����

� ����� +�����������!�	� � � � � � � ����

� ���%� 1 �����������!�	� � � � � � � ����

� ���&� 3! ������ ���
��������
�	���6���"������	���"����	� � ��&�

12 � ���������	����>������������+�����;����!���"������*�

� ����� ���	���������� � � � � � � ��*�

� ����� ���	����� � � � � � � � ��,�

� ����� 1������	������	�����	
����#1�8�$� � � � � �%%�

� ����� ��	� ��
� � � � � � � � �&��

� ���%� �1;���0�+�����;��������+���!���"�� � � � �&%�

� ���&� ����	���8�� � � � � � � � �(��

� ���(� �	�
����� � � � � � � � �(��

� ���*� >����	!���
�	"����������#>��$� � � � � �*.�

� ���,� @�	��>� � � � � � � � � �*��

� ����.� >����������>�������� � � � � � �*��

13 -������	��������	���#-1;�$�� � � ���������,�

 ����� ���	����� � � � � � � � �,��

� ����� ��	��������� �����������'���� � � � � �,��

� ����� ;����	���� ��������� � � � � � �,��

� �����)����������������	���"��'����"�� � � � �,%�

� ���%� 3	���"����������'��:���� � � � � � �,(�

� ���&� ��""�	!��
�-1;�������	��� � � � � �,*�

� ���(� 2�'�	���� � � � � � � � �,,�

� ���*�)����"������������	��� � � � � � �.��

� ���,� 2�'�	���� 	�������� �	������ � � � � �.��

� ����.� 2�'�	����'�	���	��	�:��	�"������ � � � �.%�

� ������ 2�'�	���� �	
�	"����� 	���������� � � � �.*�

� ������ 6������������������� � � � � � �.,�

� ������ >����2�'�	���� � � � � � � ��.�

����������ix�

� ������ 3�����	���� � � � � � � � ��.�

� ����%� 3��������� � � � � � � � ����

� ����&� 3��������� 	�������� �	������� � � � � ����

� ����(� ����	�����	�������������� � � � � � ��(�

� ����*� ;����	��� �	�������!���"�� � � � � ��.�

� ����,� ;����	���	�'������	������� 	�������� � � � ����

� ����.� ;��� 	������� � � � � � � ���

Appendix A ;�"��	�����!���"�� � � � � ����������%

Appendix B �!�����	��������!��'����#�6�$� 	��	�"�����������������

Appendix C ��	���������������� � � � � �����������

Appendix D =�����	!� � � � � � ������������������%*

Index �*�

Preface

The challenge for the engineer and technician today is to make effective use of modern
instrumentation and control systems and ‘smart’ instruments. This is achieved by linking equipment
such as PCs, programmable logic controllers (PLCs), SCADA and distributed control systems, and
simple instruments together with data communications systems that are correctly designed and
implemented. In other words: to fully utilize available technology.

Practical Data Communications for Instrumentation and Control is a comprehensive book covering
industrial data communications including RS-232, RS-422, RS-485, industrial protocols, industrial
networks, and communication requirements for ‘smart’ instrumentation.

Once you have studied this book, you will be able to analyze, specify, and debug data
communications systems in the instrumentation and control environment, with much of the material
presented being derived from many years of experience of the authors. It is especially suited to those
who work in an industrial environment and who have little previous experience in data
communications and networking.

Typical people who will find this book useful include:
• Instrumentation and control engineers and technicians
• Process control engineers and technicians
• Electrical engineers
• Consulting engineers
• Process development engineers
• Design engineers
• Control systems sales engineers
• Maintenance supervisors

We would hope that you will gain the following from this book:

• The fundamentals of industrial data communications
• How to troubleshoot RS-232 and RS-485 links
• How to install communications cables
• The essentials of industrial Ethernet and local area networks
• How to troubleshoot industrial protocols such as Modbus
• The essentials of Fieldbus and DeviceNet standards

You should have a modicum of electrical knowledge and some exposure to industrial automation

systems to derive maximum benefit from this book.

Why do we use RS-232, RS-422, RS-485 ?
One is often criticized for using these terms of reference, since in reality they are obsolete.
However, if we briefly examine the history of the organization that defined these standards, it
is not difficult to see why they are still in use today, and will probably continue as such.

The common serial interface RS-232 was defined by the Electronics Industry Association (EIA) of
America. ‘RS’ stands for Recommended Standards, and the number (suffix -232) refers to the
interface specification of the physical device. The EIA has since established many standards
and amassed a library of white papers on various implementations of them. So to keep track of

Preface xii

them all it made sense to change the prefix to EIA. (You might find it interesting to know that
most of the white papers are NOT free).

The Telecommunications Industry Association (TIA) was formed in 1988, by merging the telecom
arms of the EIA and the United States Telecommunications Suppliers Association. The prefix
changed again to EIA/TIA-232, (along with all the other serial implementations of course).
So now we have TIA-232, TIA-485 etc.

We should also point out that the TIA is a member of the Electronics Industries Alliance (EIA).
The alliance is made up of several trade organizations (including the CEA, ECA, GEIA...) that
represent the interests of manufacturers of electronics-related products. When someone refers to ‘EIA’
they are talking about the Alliance, not the Association!

If we still use the terms EIA-232, EIA-422 etc, then they are just as equally obsolete as the ‘RS’
equivalents. However, when they are referred to as TIA standards some people might give
you a quizzical look and ask you to explain yourself... So to cut a long story short, one says ‘RS-xxx’
and the penny drops.

In the book you are about to read, the authors have painstakingly altered all references for
serial interfaces to ‘RS-xxx’, after being told to change them BACK from ‘EIA-xxx’! So from now
on, we will continue to use the former terminology. This is a sensible idea, and we trust we are
all in agreement!

Why do we use DB-25, DB-9, DB-xx ?
Originally developed by Cannon for military use, the D-sub(miniature) connectors are so-called
because the shape of the housing’s mating face is like a ‘D’. The connectors have 9-, 15-, 25-, 37- and
50-pin configurations, designated DE-9, DA-15, DB-25, DC-37 and DD-50, respectively. Probably the
most common connector in the early days was the 25-pin configuration (which has been around for
about 40 years), because it permitted use of all available wiring options for the RS-232 interface.

It was expected that RS-232 might be used for synchronous data communications, requiring a timing
signal, and thus the extra pin-outs. However this is rarely used in practice, so the smaller 9-position
connectors have taken its place as the dominant configuration (for asynchronous serial
communications).

Also available in the standard D-sub configurations are a series of high density options with 15-, 26-,
44-, and 62-pin positions. (Possibly there are more, and are usually variations on the original A,B,C,D,
or E connector sizes). It is common practice for electronics manufacturers to denote all D-sub
connectors with the DB- prefix... particularly for producers of components or board-level products and
cables. This has spawned generations of electronics enthusiasts and corporations alike, who refer to
the humble D-sub or ‘D Connector’ in this fashion. It is for this reason alone that we continue the
trend for the benefit of the majority who are so familiar with the ‘DB’ terminology.

The structure of the book is as follows.

Chapter 1: Overview. This chapter gives a brief overview of what is covered in the book with
an outline of the essentials and a historical background to industrial data communications.

Chapter 2: Basic principles. The aim of this chapter is to lay the groundwork for the more
detailed information presented in the following chapters.

Chapter 3: Serial communication standards. This chapter discusses the main
physical interface standards associated with data communications for instrumentation and control
systems.

xiii Preface

Chapter 4: Error detection. This chapter looks at how errors are produced and the types of
error detection, control, and correction available.

Chapter 5: Cabling basics. This chapter discusses the issues in obtaining the best
performance from a communication cable by selecting the correct type and size.

Chapter 6: Electrical noise and interference. This chapter examines the various
categories of electrical noise and where each of the various noise reduction techniques applies.

Chapter 7: Modems and multiplexers. This chapter reviews the concepts of modems
and multiplexers, their practical use, position and importance in the operation of a data communication
system.

Chapter 8: Introduction to protocols. This chapter discusses the concept of a protocol
which is defined as a set of rules governing the exchange of data between a transmitter and receiver
over a communications link or network.

Chapter 9: Open systems interconnection model. The purpose of the Open
Systems Interconnection reference model is to provide a common basis for the development of
systems interconnection standards. An open system is a system that conforms to specifications and
guidelines, which are ‘open’ to all.

Chapter 10: Industrial protocols. This chapter focusses on the software aspects of
protocols (as opposed to the physical aspects which are covered in earlier chapters).

Chapter 11: HART protocol. The Highway Addressable Remote Transducer (HART)
protocol is one of a number of smart instrumentation protocols designed for collecting data from
instruments, sensors and actuators by digital communication techniques. This chapter examines this in
some depth.

Chapter 12: Open industrial Fieldbus and DeviceNet systems. This chapter
examines the different Fieldbus and DeviceNet systems on the market with an emphasis on ASI Bus,
CanBus and DeviceNet, Interbus-S, Profibus and Foundation Fieldbus.

Chapter 13: Local area networks (LANs). This chapter focuses on networks
generally used in industrial data communications with an emphasis on Ethernet.

1

���������

This chapter introduces data communications, and provides a historical background. It
discusses the need for standards in the data communications industry in terms of the
physical transfer of information and the way in which data is handled. Finally, it takes a
brief look at data communications as they apply to instrumentation and control systems.

���������	

When you have completed studying this chapter you will be able to:

• Describe the basic principles of all communication systems
• Describe the historical background and evolution of data communications
• Explain the role of standards and protocols
• Describe the OSI model of communication layers
• Describe four important physical standards
• Explain the purpose of instrumentation and control system
• Describe the four most important control devices:

– DCS
– PLCs
– Smart instruments
– PCs

���

�����������

Data communications is the transfer of information from one point to another. In this
book, we are specifically concerned with digital data communication. In this context,
‘data’ refers to information that is represented by a sequence of zeros and ones; the same
sort of data that is handled by computers. Many communications systems handle analog
data; examples are the telephone system, radio, and television. Modern instrumentation is
almost wholly concerned with the transfer of digital data.

2 ��������� ����	
���
���������	���	�����
���������	���	
������

Any communications system requires a transmitter to send information, a receiver to
accept it and a link between the two. Types of link include copper wire, optical fiber,
radio, and microwave.

Some short distance links use parallel connections; meaning that several wires are
required to carry a signal. This sort of connection is confined to devices such as local
printers. Virtually all modern data communication use serial links, in which the data is
transmitted in sequence over a single circuit.

The digital data is sometimes transferred using a system that is primarily designed for
analog communication. A modem, for example, works by using a digital data stream to
modulate an analog signal that is sent over a telephone line. At the receiving end, another
modem demodulates the signal to reproduce the original digital data. The word ‘modem’
comes from modulator and demodulator.

There must be mutual agreement on how data is to be encoded, that is, the receiver
must be able to understand what the transmitter is sending. The structure in which devices
communicate is known as a protocol.

In the past decade many standards and protocols have been established which allow
data communications technology to be used more effectively in industry. Designers and
users are beginning to realize the tremendous economic and productivity gains possible
with the integration of discrete systems that are already in operation.

���
 ��	�������
����������

Although there were many early systems (such as the French chain of semaphore stations)
data communications in its modern electronic form started with the invention of the
telegraph. The first systems used several parallel wires, but it soon became obvious that
for long distances a serial method, over a single pair of wires, was the most economical.

The first practical telegraph system is generally attributed to Samuel Morse. At each
end of a link, there was an operator with a sending key and sounder. A message was sent
as an encoded series of ‘dots’ (short pulses) and ‘dashes’ (longer pulses). This became
known as the Morse code and comprised of about 40 characters including the complete
alphabet, numbers, and some punctuation. In operation, a sender would first transmit a
starting sequence, which would be acknowledged by a receiver. The sender would then
transmit the message and wait for a final acknowledgment. Signals could only be
transmitted in one direction at a time.

Manual encoding and decoding limited transmission speeds and attempts were soon
made to automate the process. The first development was ‘teleprinting’ in which the dots
and dashes were recorded directly onto a rotating drum and could be decoded later by the
operator.

The next stage was a machine that could decode the signal and print the actual
characters by means of a wheel carrying the typefaces. Although this system persisted for
many years, it suffered from synchronization problems.

Perhaps the most severe limitation of Morse code is its use of a variable number of
elements to represent the different characters. This can vary from a single dot or dash, to
up to six dots and/or dashes, and made it unsuitable for an automated system. An
alternative ‘code’ was invented, in the late 1800s, by the French telegraphic engineer
Maurice Emile Baudot. The Baudot code was the first uniform-length binary code. Each
character was represented by a standard 5-bit character size. It encoded 32 (25) characters,
which included all the letters of the alphabet, but no numerals.

The International Telecommunications Union (ITU) later adopted the code as the
standard for telegraph communications and incorporated a ‘shift’ function to

�������� 3�

accommodate a further set of 32 characters. The term ‘baud’ was coined in Baudot’s
honor and used to indicate the rate at which a signal changes state. For example, 100 baud
means 100 possible signal changes per second.

The telegraph system used electromechanical devices at each end of a link to encode
and decode a message. Later machines allowed a user to encode a message off-line onto
punched paper tape, and then transmit the message automatically via a tape reader. At the
receiving end, an electric typewriter mechanism printed the text. Facsimile transmission
using computer technology, more sophisticated encoding and communications systems,
has almost replaced telegraph transmissions.

The steady evolution of data communications has led to the modern era of very high
speed systems, built on the sound theoretical and practical foundations established by the
early pioneers.

���
 ��������	

Protocols are the structures used within a communications system so that, for example, a
computer can talk to a printer. Traditionally, developers of software and hardware
platforms have developed protocols, which only their products can use. In order to
develop more integrated instrumentation and control systems, standardization of these
communication protocols is required.

Standards may evolve from the wide use of one manufacturer’s protocol (a de facto
standard) or may be specifically developed by bodies that represent an industry.
Standards allow manufacturers to develop products that will communicate with
equipment already in use, which for the customer simplifies the integration of products
from different sources.

���
 ����
	�	���	
���������������
���

�����

The OSI model, developed by the International Standards Organization (ISO), is rapidly
gaining industry support. The OSI model reduces every design and communication
problem into a number of layers as shown in Figure 1.1. A physical interface standard
such as RS-232 would fit into the ‘physical layer’, while the other layers relate to various
other protocols.

Figure 1.1
Representation of the OSI model

4 ��������� ����	
���
���������	���	�����
���������	���	
������

Messages or data are generally sent in packets, which are simply a sequence of bytes.
The protocol defines the length of the packet, which is usually fixed. Each packet requires
a source address and a destination address so that the system knows where to send it, and
the receiver knows where it came from. A packet starts at the top of the protocol stack,
the application layer, and passes down through the other software layers until it reaches
the physical layer. It is then sent over the link. When traveling down the stack, the packet
acquires additional header information at each layer. This tells the next layer down what
to do with the packet. At the receiver end, the packet travels up the stack with each piece
of header information being stripped off on the way. The application layer only receives
the data sent by the application layer at the transmitter.

The arrows between layers in Figure 1.1 indicate that each layer reads the packet as
coming from, or going to, the corresponding layer at the opposite end. This is known as
peer-to-peer communication, although the actual packet is transported via the physical
link. The middle stack in this particular case (representing a router) has only the three
lower layers, which is all that is required for the correct transmission of a packet between
two devices.

The OSI model is useful in providing a universal framework for all communication
systems. However, it does not define the actual protocol to be used at each layer. It is
anticipated that groups of manufacturers in different areas of industry will collaborate to
define software and hardware standards appropriate to their particular industry. Those
seeking an overall framework for their specific communications requirements have
enthusiastically embraced the OSI model and used it as a basis for their industry specific
standards, such as Fieldbus and HART.

Full market acceptance of these standards has been slow due to uncertainty about
widespread acceptance of a particular standard, additional upfront cost to implement the
standard, and concern about adequate support and training to maintain the systems.

��!
 "�������	

As previously mentioned, the OSI model provides a framework within which a specific
protocol may be defined. A frame (packet) might consist of the following. The first byte
can be a string of 1s and 0s to synchronize the receiver or flags to indicate the start of the
frame (for use by the receiver). The second byte could contain the destination address
detailing where the message is going. The third byte could contain the source address
noting where the message originated. The bytes in the middle of the message could be the
actual data that has to be sent from transmitter to receiver. The final byte(s) are end-of-
frame indicators, which can be error detection codes and/or ending flags.

Figure 1.2
Basic structure of an information frame defined by a protocol

�������� 5�

Protocols vary from the very simple (such as ASCII based protocols) to the very
sophisticated, which operate at high speeds transferring megabits of data per second.
There is no right or wrong protocol; the choice depends on the particular application.

��#
 "$�	����
	�������	

%�&���
�����'���
	�������

The RS-232C interface standard was issued in the USA in 1969 to define the electrical
and mechanical details of the interface between data terminal equipment (DTE) and data
communications equipment (DCE) which employ serial binary data interchange.

In serial Data Communications the communications system might consist of:
• The DTE, a data sending terminal such as a computer, which is the source of

the data (usually a series of characters coded into a suitable digital form)
• The DCE, which acts as a data converter (such as a modem) to convert the

signal into a form suitable for the communications link e.g. analog signals
for the telephone system

• The communications link itself, for example, a telephone system
• A suitable receiver, such as a modem, also a DCE, which converts the

analog signal back to a form suitable for the receiving terminal
• A data receiving terminal, such as a printer, also a DTE, which receives the

digital pulses for decoding back into a series of characters

Figure 1.3 illustrates the signal flows across a simple serial data communications link.

Figure 1.3
A typical serial data communications link

The RS-232C interface standard describes the interface between a terminal (DTE) and a
modem (DCE) specifically for the transfer of serial binary digits. It leaves a lot of
flexibility to the designers of the hardware and software protocols. With the passage of
time, this interface standard has been adapted for use with numerous other types of
equipment such as personal computers (PCs), printers, programmable controllers,
programmable logic controllers (PLCs), instruments and so on. To recognize these
additional applications, the latest version of the standard, RS-232E has expanded the
meaning of the acronym DCE from ‘data communications equipment’ to the more
general ‘data circuit-terminating equipment”.

RS-232 has a number of inherent weaknesses that make it unsuitable for data
communications for instrumentation and control in an industrial environment.
Consequently, other RS interface standards have been developed to overcome some of
these limitations. The most commonly used among them for instrumentation and control

6 ��������� ����	
���
���������	���	�����
���������	���	
������

systems are RS-423, RS-422 and RS-485. These will be described in more detail in
Chapter 3.

%�&���
�����'���
	�������

The RS-423 interface standard is an unbalanced system similar to RS-232 with increased
range and data transfer rates and up to 10 line receivers per line driver.

%�&���
�����'���
	�������

The RS-422 interface system is a balanced system with the same range as RS-423, with
increased data rates and up to 10 line receivers per line driver.

%�&�(!
�����'���
	�������

The RS-485 is a balanced system with the same range as RS-422, but with increased data
rates and up to 32 transmitters and receivers possible per line.
 The RS-485 interface standard is very useful for instrumentation and control systems
where several instruments or controllers may be connected together on the same multi-
point network.

��)

*�����
��	������������
���
�������
	�	���	

In an instrumentation and control system, data is acquired by measuring instruments and
is transmitted to a controller – typically a computer. The controller then transmits data (or
control signals) to control devices, which act upon a given process.

Integration of a system enables data to be transferred quickly and effectively between
different systems in a plant along a data communications link. This eliminates the need
for expensive and unwieldy wiring looms and termination points.

Productivity and quality are the principal objectives in the efficient management of any
production activity. Management can be substantially improved by the availability of
accurate and timely data. From this we can surmise that a good instrumentation and
control system can facilitate both quality and productivity.

The main purpose of an instrumentation and control system, in an industrial
environment, is to provide the following:

• Control of the processes and alarms
Traditionally, control of processes, such as temperature and flow, was
provided by analog controllers operating on standard 4–20 mA loops. The 4–
20 mA standard is utilized by equipment from a wide variety of suppliers. It
is common for equipment from various sources to be mixed in the same
control system. Stand-alone controllers and instruments have largely been
replaced by integrated systems such as distributed control systems (DCS),
described below.

• Control of sequencing, interlocking and alarms
Typically, this was provided by relays, timers and other components
hardwired into control panels and motor control centers. The sequence
control, interlocking and alarm requirements have largely been replaced by
PLCs, described in section 1.9.

• An operator interface for display and control

�������� 7�

Traditionally, process and manufacturing plants were operated from local
control panels by several operators, each responsible for a portion of the
overall process. Modern control systems tend to use a central control room to
monitor the entire plant. The control room is equipped with computer based
operator workstations which gather data from the field instrumentation and
use it for graphical display, to control processes, to monitor alarms, to
control sequencing and for interlocking.

• Management information
Management information was traditionally provided by taking readings from
meters, chart recorders, counters, and transducers and from samples taken
from the production process. This data is required to monitor the overall
performance of a plant or process and to provide the data necessary to
manage the process. Data acquisition is now integrated into the overall
control system. This eliminates the gathering of information and reduces the
time required to correlate and use the information to remove bottlenecks.
Good management can achieve substantial productivity gains.

The ability of control equipment to fulfill these requirements has depended on the major

advances that have taken place in the fields of integrated electronics, microprocessors and
data communications.

The four devices that have made the most significant impact on how plants are
controlled are:

• Distributed control system (DCS)
• Programmable logic controllers (PLCs)
• Smart instruments (SIs)
• PCs

��(
 +�	��������
�������
	�	���	
�+,�	

A DCS is hardware and software based digital process control and data acquisition based
system. The DCS is based on a data highway and has a modular, distributed, but
integrated architecture. Each module performs a specific dedicated task such as the
operator interface/analog or loop control/digital control. There is normally an interface
unit situated on the data highway allowing easy connection to other devices such as PLCs
and supervisory computer devices.

��-
 "�����������
�����
����������	
�".,	

PLCs were developed in the late sixties to replace collections of electromagnetic relays,
particularly in the automobile manufacturing industry. They were primarily used for
sequence control and interlocking with racks of on/off inputs and outputs, called digital
I/O. They are controlled by a central processor using easily written ‘ladderlogic’ type
programs. Modern PLCs now include analog and digital I/O modules as well as
sophisticated programming capabilities similar to a DCS e.g. PID loop programming.
High speed inter-PLC links are also available, such as 10 and 100 Mbps Ethernet. A
diagram of a typical PLC system is given in Figure 1.4.

8 ��������� ����	
���
���������	���	�����
���������	���	
������

Figure 1.4
A typical PLC system

���/

�����
�'
�$�
����������		��

The microprocessor has had an enormous impact on instrumentation and control systems.
Historically, an instrument had a single dedicated function. Controllers were localized
and, although commonly computerized, they were designed for a specific purpose.

It has become apparent that a microprocessor, as a general-purpose device, can replace
localized and highly site-specific controllers. Centralized microprocessors, which can
analyze and display data as well as calculate and transmit control signals, are capable of
greater efficiency, productivity, and quality gains.

Currently, a microprocessor connected directly to sensors and a controller, requires an
interface card. This implements the hardware layer of the protocol stack and in con-
junction with appropriate software, allows the microprocessor to communicate with other
devices in the system. There are many instrumentation and control software and hardware
packages; some are designed for particular proprietary systems and others are more
general-purpose. Interface hardware and software now available for microprocessors
cover virtually all the communications requirements for instrumentation and control.

�������� 9�

As a microprocessor is relatively cheap, it can be upgraded as newer and faster models
become available, thus improving the performance of the instrumentation and control sys-
tem.

����
 �����
��	������������
	�	���	

In the 1960s, the 4–20 mA analog interface was established as the de facto standard for
instrumentation technology. As a result, the manufacturers of instrumentation equipment
had a standard communication interface on which to base their products. Users had a
choice of instruments and sensors, from a wide range of suppliers, which could be
integrated into their control systems.

With the advent of microprocessors and the development of digital technology, the
situation has changed. Most users appreciate the many advantages of digital instruments.
These include more information being displayed on a single instrument, local and remote
display, reliability, economy, self tuning, and diagnostic capability. There is a gradual
shift from analog to digital technology.

There are a number of intelligent digital sensors, with digital communications,
capability for most traditional applications. These include sensors for measuring
temperature, pressure, levels, flow, mass (weight), density, and power system parameters.
These new intelligent digital sensors are known as ‘smart’ instrumentation.

The main features that define a ‘smart’ instrument are:
• Intelligent, digital sensors
• Digital data communications capability
• Ability to be multidropped with other devices

There is also an emerging range of intelligent, communicating, digital devices that
could be called ‘smart’ actuators. Examples of these are devices such as variable speed
drives, soft starters, protection relays, and switchgear control with digital communication
facilities.

10 ��������� ����	
���
���������	���	�����
���������	���	
������

Figure 1.5
Graphical representation of data communications

2

���������	���
���

The aim of this chapter is to lay the groundwork for the more detailed information
presented in the following chapters.

���������	

When you have completed study of this chapter you will be able to:

• Explain the basics of the binary numbering system – bits, bytes and characters
• Describe the factors that affect transmission speed:

 – Bandwidth
 – Signal-to-noise ratio
 – Data throughput
 – Error rate

• Explain the basic components of a communication system
• Describe the three communication modes
• Describe the message format and error detection in asynchronous

communication systems
• List and explain the most common data codes:

 – Baudot
 – ASCII
 – EBCDIC
 – 4-bit binary code
 – Gray code
 – Binary coded decimal (BCD)

• Describe the message format and error detection in synchronous
communication systems

• Describe the universal asynchronous transmitter/receiver

12 ��������� ����	
���
��������� ���	�����
���������	���	
������

��

 ���	�
����	
���
���������	

A computer uses the binary numbering system, which has only two digits, 0 and 1. Any
number can be represented by a string of these digits, known as bits (from binary digit).
For example, the decimal number 5 is equal to the binary number 101.

Table 2.1
Different sets of bits

As a bit can have only two values, it can be represented by a voltage that is either on (1)
or off (0). This is also known as logical 1 and logical 0. Typical values used in a
computer are 0 V for logical 0 and +5 V for logical 1, although it could also be the other
way around i.e. 0 V for 1 and +5 V for 0.

A string of eight bits is called a ‘byte’ (or octet), and can have values ranging from 0
(0000 0000) to 25510 (1111 11112). Computers generally manipulate data in bytes or mul-
tiples of bytes.

Table 2.2
The hexadecimal table

�����	���������� 13

Programmers use ‘hexadecimal’ notation because it is a more convenient way of
defining and dealing with bytes. In the hexadecimal numbering system, there are 16 digits
(0–9 and A–F) each of which is represented by four bits. A byte is therefore represented
by two hexadecimal digits.

A ‘character’ is a symbol that can be printed. The alphabet, both upper and lower case,
numerals, punctuation marks and symbols such as ‘*’ and ‘&’ are all characters. A
computer needs to express these characters in such a way that they can be understood by
other computers and devices. The most common code for achieving this is the American
Standard Code for Information Interchange (ASCII) described in section 2.8.

���
 �������������
���������	

 Every data communications system requires:
• A source of data (a transmitter or line driver), which converts the information

into a form suitable for transmission over a link
• A receiver that accepts the signal and converts it back into the original data
• A communications link that transports the signals. This can be copper wire,

optical fiber, and radio or satellite link

In addition, the transmitter and receiver must be able to understand each other. This
requires agreement on a number of factors. The most important are:

• The type of signaling used
• Defining a logical ‘1’ and a logical ‘0’
• The codes that represent the symbols
• Maintaining synchronization between transmitter and receiver
• How the flow of data is controlled, so that the receiver is not swamped
• How to detect and correct transmission errors

The physical factors are referred to as the ‘interface standard’; the other factors
comprise the ‘protocols’.

The physical method of transferring data across a communication link varies according
to the medium used. The binary values 0 and 1, for example, can be signaled by the
presence or absence of a voltage on a copper wire, by a pair of audio tones generated and
decoded by a modem in the case of the telephone system, or by the use of modulated light
in the case of optical fiber.

���
 �������������
����	

In any communications link connecting two devices, data can be sent in one of three
communication modes. These are:

• Simplex
• Half duplex
• Full duplex

A simplex system is one that is designed for sending messages in one direction only.

This is illustrated in Figure 2.1.

14 ��������� ����	
���
��������� ���	�����
���������	���	
������

Figure 2.1
Simplex communications

A duplex system is designed for sending messages in both directions.
Half duplex occurs when data can flow in both directions, but in only one direction at a

time (Figure 2.2).

Figure 2.2
Half-duplex communications

In a full-duplex system, the data can flow in both directions simultaneously (Figure
2.3).

Figure 2.3
Full duplex communications

���
 �	���������	
	�	���	

An asynchronous system is one in which each character or byte is sent within a frame.
The receiver does not start detection until it receives the first bit, known as the ‘start bit’.

�����	���������� 15

The start bit is in the opposite voltage state to the idle voltage and allows the receiver to
synchronize to the transmitter for the following data in the frame.

The receiver reads in the individual bits of the frame as they arrive, seeing either the
logic 0 voltage or the logic 1 voltage at the appropriate time. The ‘clock’ rate at each end
must be the same so that the receiver looks for each bit at the time the transmitter sends it.
However, as the clocks are synchronized at the start of each frame, some variation can be
tolerated at lower transmission speeds. The allowable variation decreases as data
transmission rates increase, and asynchronous communication can have problems at high
speeds (above 100 kbps).

��		� �
!�����

An asynchronous frame may have the following format:
Start bit: Signals the start of the frame
Data: Usually 7 or 8 bits of data, but can be 5 or 6 bits
Parity bit: Optional error detection bit
Stop bit(s): Usually 1, 1.5 or 2 bits. A value of 1.5 means that the level is held for

1.5 times as long as for a single bit

Figure 2.4
Asynchronous frame format

An asynchronous frame format is shown in Figure 2.4. The transmitter and receiver
must be set to exactly the same configuration so that the data can be correctly extracted
from the frame. As each character has its own frame, the actual data transmission speed is
less than the bit rate. For example, with a start bit, seven data bits, one parity bit and one
stop bit, there are ten bits needed to send seven bits of data. Thus the transmission of
useful data is 70% of the overall bit rate.

��"
 #���������	
	�	���	

In synchronous systems, the receiver initially synchronizes to the transmitter’s clock
pulses, which are incorporated in the transmitted data stream. This enables the receiver to
maintain its synchronization throughout large messages, which could typically be up to
4500 bytes (36 000 bits). This allows large frames to be transmitted efficiently at high
data rates. The synchronous system packs many characters together and sends them as a
continuous stream, called a packet or a frame.

16 ��������� ����	
���
��������� ���	�����
���������	���	
������

��		� �
!�����

A typical synchronous system frame format is shown below in Figure 2.5.

Figure 2.5
Typical synchronous system frame format

Preamble: This comprises one or more bytes that allow the receiving unit to

synchronize with the frame.
SFD: The start of frame delimiter signals the beginning of the frame.
Destination: The address to which the frame is sent.
Source: The address from which the frame originated.
Length: The number of bytes in the data field.
Data: The actual message.
FCS: The frame check sequence is for error detection.

Each of these is called a field.

��$
 %����
���������

All practical data communications channels are subject to noise, particularly copper
cables in industrial environments with high electrical noise. Refer to Chapter 6 for a
separate discussion on noise. Noise can result in incorrect reception of the data.

The basic principle of error detection is for the transmitter to compute a check character
based on the original message content. This is sent to the receiver on the end of the
message and the receiver repeats the same calculation on the bits it receives. If the
computed check character does not match the one sent, we assume an error has occurred.
The various methods of error detection are covered in Chapter 4.

The simplest form of error checking in asynchronous systems is to incorporate a parity
bit, which may be even or odd.

Even parity requires the total number of data bits at logic 1 plus the parity bit to equal
an even number. The communications hardware at the transmission end calculates the
parity required and sets the parity bit to give an even number of logic 1 bits.

Odd parity works in the same way as even parity, except that the parity bit is adjusted
so that the total number of logic 1 bits, including the parity bit, equals an odd number.

The hardware at the receiving end determines the total number of logic 1 bits and
reports an error if it is not an appropriate even or odd number. The receiver hardware also
detects receiver overruns and frame errors.

Statistically, use of a parity bit has only about a 50% chance of detecting an error on a
high speed system. This method can detect an odd number of bits in error and will not
detect an even number of bits in error. The parity bit is normally omitted if there are more
sophisticated error checking schemes in place.

�����	���������� 17

��&
 '���	��		���
����������	���	

#� �����
����
(��
����
����)

The signaling rate of a communications link is a measure of how many times the physical
signal changes per second and is expressed as the baud rate. An oscilloscope trace of the
data transfer would show pulses at the baud rate. For a 1000 baud rate, pulses would be
seen at multiples of 1 ms.

With asynchronous systems, we set the baud rate at both ends of the link so that each
physical pulse has the same duration.

*���
����

The data rate or bit rate is expressed in bits per second (bps), or multiples such as kbps,
Mbps and Gbps (kilo, mega and gigabits per second). This represents the actual number
of data bits transferred per second. An example is a 1000 baud RS-232 link transferring a
frame of 10 bits, being 7 data bits plus a start, stop and parity bit. Here the baud rate is
1000 baud, but the data rate is 700 bps.

Although there is a tendency to confuse baud rate and bit rate, they are not the same.
Whereas baud rate indicates the number of signal changes per second, the bit rate
indicates the number of bits represented by each signal change. In simple baseband
systems such as RS-232, the baud rate equals the bit rate. For synchronous systems, the
bit rate invariably exceeds the baud rate. For ALL systems, the data rate is less than the
bit rate due to overheads such as stop, stand, and parity bits (synchronous systems) or
fields such as address and error detection fields in synchronous system frames.

There are sophisticated modulation techniques, used particularly in modems that allow
more than one bit to be encoded within a signal change. The ITU V.22bis full duplex
standard, for example, defines a technique called quadrature amplitude modulation, which
effectively increases a baud rate of 600 to a data rate of 2400 bps. Irrespective of the
methods used, the maximum data rate is always limited by the bandwidth of the link.
These modulation techniques used with modems are discussed in Chapter 7.

����+����

The single most important factor that limits communication speeds is the bandwidth of
the link. Bandwidth is generally expressed in hertz (Hz), meaning cycles per second. This
represents the maximum frequency at which signal changes can be handled before
attenuation degrades the message. Bandwidth is closely related to the transmission
medium, ranging from around 5000 Hz for the public telephone system to the GHz range
for optical fiber cable.

As a signal tends to attenuate over distance, communications links may require
repeaters placed at intervals along the link, to boost the signal level.

Calculation of the theoretical maximum data transfer rate uses the Nyquist formula and
involves the bandwidth and the number of levels encoded in each signaling element, as
described in Chapter 4.

#� ���
��
���	�
�����

The signal to noise (S/N) ratio of a communications link is another important limiting
factor. Sources of noise may be external or internal, as discussed in Chapter 6.

18 ��������� ����	
���
��������� ���	�����
���������	���	
������

The maximum practical data transfer rate for a link is mathematically related to the
bandwidth, S/N ratio and the number of levels encoded in each signaling element. As the
S/N decreases, so does the bit rate. See Chapter 4 for a definition of the Shannon-Hartley
Law that gives the relationships.

*���
����� ����

As data is always carried within a protocol envelope, ranging from a character frame to
sophisticated message schemes, the data transfer rate will be less than the bit rate. As
explained in Chapter 9, the amount of redundant data around a message packet increases
as it passes down the protocol stack in a network. This means that the ratio of
non-message data to ‘real’ information may be a significant factor in determining the
effective transmission rate, sometimes referred to as the throughput.

%����
����

Error rate is related to factors such as S/N ratio, noise, and interference. There is
generally a compromise between transmission speed and the allowable error rate,
depending on the type of application. Ordinarily, an industrial control system cannot
allow errors and is designed for maximum reliability of data transmission. This means
that an industrial system will be comparatively slow in data transmission terms. As data
transmission rates increase, there is a point at which the number of errors becomes
excessive. Protocols handle this by requesting a retransmission of packets. Obviously, the
number of retransmissions will eventually reach the point at which a high apparent data
rate actually gives a lower real message rate, because much of the time is being used for
retransmission.

��,
 *���
�����

An agreed standard code allows a receiver to understand the messages sent by a
transmitter. The number of bits in the code determines the maximum number of unique
characters or symbols that can be represented. The most common codes are described on
the following pages.

������
����

Although not in use much today, the Baudot code is of historical importance. It was
invented in 1874 by Maurice Emile Baudot and is considered to be the first uniform-
length code. Having five bits, it can represent 32 (25) characters and is suitable for use in
a system requiring only letters and a few punctuation and control codes. The main use of
this code was in early teleprinter machines.

A modified version of the Baudot code was adopted by the ITU as the standard for
telegraph communications. This uses two ‘shift’ characters for letters and numbers and
was the forerunner for the modern ASCII and EBCDIC codes.

�#�--
����

The most common character set in the western world is the American Standard Code for
Information Interchange, or ASCII (see Table 2.3).

This code uses a 7-bit string giving 128 (27) characters, consisting of:
• Upper and lower case letters

�����	���������� 19

• Numerals 0 to 9
• Punctuation marks and symbols
• A set of control codes, consisting of the first 32 characters, which are used by

the
• Communications link itself and are not printable

For example: D = ASCII code in binary 1000100.

A communications link setup for 7-bit data strings can only handle hexadecimal values

from 00 to 7F. For full hexadecimal data transfer, an 8-bit link is needed, with each
packet of data consisting of a byte (two hexadecimal digits) in the range 00 to FF. An
8-bit link is often referred to as ‘transparent’ because it can transmit any value. In such a
link, a character can still be interpreted as an ASCII value if required, in which case the
eighth bit is ignored.

The full hexadecimal range can be transmitted over a 7-bit link by representing each
hexadecimal digit as its ASCII equivalent. Thus the hexadecimal number 8E would be
represented as the two ASCII values 38 45 (hexadecimal) (‘8’ ‘E’). The disadvantage of
this technique is that the amount of data to be transferred is almost doubled, and extra
processing is required at each end.

ASCII control codes can be accessed directly from a PC keyboard by pressing the
Control key [Ctrl] together with another key. For example, Control-A (^A) generates the
ASCII code start of header (SOH).

The ASCII Code is the most common code used for encoding characters for data
communications. It is a 7-bit code and, consequently, there are only 27 = 128 possible
combinations of the seven binary digits (bits), ranging from binary 0000000 to 1111111
or hexadecimal 00 to 7F.

Each of these 128 codes is assigned to specific control codes or characters as specified
by the following standards:

• ANSI-X3.4
• ISO-646
• ITU alphabet #5

The ASCII Table is the reference table used to record the bit value of every character

defined by the code. There are many different forms of the table, but all contain the same
basic information according to the standards. Two types are shown here.

Table 2.3 shows the condensed form of the ASCII Table, where all the characters and
control codes are presented on one page. This table shows the code for each character in
hexadecimal (HEX) and binary digits (BIN) values. Sometimes the decimal (DEC) values
are also given in small numbers in each box.

This table works like a matrix, where the MSB (most significant bits – the digits on the
left-hand side of the written HEX or BIN codes) are along the top of the table and the
LSB (least significant bits – the digits on the right-hand side of the written HEX or BIN
codes) are down the left-hand side of the table. Some examples of the HEX and BIN
values are given below:

Table 2.4 and Table 2.5 show the form commonly used in printer manuals, sometimes
also called the ASCII Code Conversion Table, where each ASCII character or control
code is cross referenced to:

• BIN : A 7-bit binary ASCII code
• DEC : An equivalent 3 digit decimal value (0 to 127)
• HEX : An equivalent 2 digit hexadecimal value (00 to 7F)

20 ��������� ����	
���
��������� ���	�����
���������	���	
������

Table 2.3
 The ASCII table

�����	���������� 21

Table 2.4
ASCII code conversion table

22 ��������� ����	
���
��������� ���	�����
���������	���	
������

Table 2.5
ASCII code conversion table (cont.)

�����	���������� 23

Character

Control

7-Bit
Binary Code

Hex

Decimal

NUL Null ^@ 000 0000 00 0
SOH Start of Header ^A 000 0001 01 1
STX Start of Text ^B 000 0010 02 2
ETX End of Text ^C 000 0011 03 3
EOT End of Transmission ^D 000 0100 04 4
ENQ Enquiry ^E 000 0101 05 5
ACK Acknowledge ^F 000 0110 06 6
BEL Bell ^G 000 0111 07 7
BS Backspace ^H 000 1000 08 8
HT Horizontal Tabulation ^I 000 1001 09 9
LF Line feed ^J 000 1010 0A 10
VT Vertical Tabulation ^K 000 1011 0B 11
FF Form Feed ^L 000 1100 0C 12
CR Carriage return ^M 000 1101 0D 13
SO Shift Out ^N 000 1110 0E 14
SI Shift In ^O 000 1111 0F 15
DLE Data Link Escape ^P 001 0000 10 16
DC1 Device Control 1 ^Q 001 0001 11 17
DC2 Device Control 2 ^R 001 0010 12 18
DC3 Device Control 3 ^S 001 0011 13 19
DC4 Device Control 4 ^T 001 0100 14 20
NAK Negative Acknowledgement ^U 001 0101 15 21
SYN Synchronous Idle ^V 001 0110 16 22
ETB End of Trans Block ^W 001 0111 17 23
CAN Cancel ^X 001 1000 18 234
EM End of Medium ^Y 001 1001 19 25
SUB Substitute ^Z 001 1010 1A 26
ESC Escape ^[001 1011 1B 27
FS File Separator ^\ 001 1100 1C 28
GS Group Separator ^] 001 1101 1D 29
RS Record Separator ^| 001 1110 1E 30
US Unit Separator ^_ 001 1111 1F 31
DEL Delete, Rubout 111 1111 7F 127

Table 2.6
Table of control codes for the ASCII

24 ��������� ����	
���
��������� ���	�����
���������	���	
������

Least significant bits

 4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Bit 3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

positions 2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
8 7 6 5
0 0 0 0 NUL SOH STX ETX PF HT LC DEL SMM VT FF CR SO SI
0 0 0 1 DLE DC1 DC2 DC3 RES NL BS IL CAN EM CC IFS IGS IRS IUS
0 0 1 0 DS SOS FS BYP LF EOB PRE SM ENQ ACK BEL
0 0 1 1 SYN PN RS UC EOT DC4 NAK SUB
0 1 0 0 SP ¢ . < (+ |
0 1 0 1 & ! $ *) ; _
0 1 1 0 - / ‘ % - > ?
0 1 1 1 : # @ ‘ = “
1 0 0 0 a b c d e f g h i
1 0 0 1 j k l m n o p q r
1 0 1 0 s t u v w x y z
1 0 1 1
1 1 0 0 A B C D E F G H I
1 1 0 1 J K L M N O P Q R
1 1 1 0 S T U V W X Y Z
1 1 1 1 0 1 2 3 4 5 6 7 8 9

Most significant bits

Table 2.7
EBCDIC code table

Control codes are often difficult to detect when troubleshooting a data system, unlike
printable codes, which show up as a symbol on the printer or terminal. Digital line
analyzers can be used to detect and display the unique code for each of these control
codes to assist in the analysis of the system.

To represent the word DATA in binary form using the 7-bit ASCII code, each letter is
coded as follows:

Binary Hex
D : 100 0100 44
A : 100 0001 41
T : 101 0100 54
A : 100 0001 41

Referring to the ASCII table, the binary digits on the right-hand side of the binary

column change by one digit for each step down the table. Consequently, the bit on the far
right has become known as least significant bit (LSB) because it changes the overall
value so little. The bit on the far left has become known as most significant bit (MSB)
because it changes the overall value so much.

According to the reading conventions in the western world, words and sentences are
read from left to right. When looking at the ASCII code for a character, we would read
the MSB (most significant bit) first, which is on the left-hand side. However, in data
communications, the convention is to transmit the LSB of each character FIRST,
which is on the right-hand side and the MSB last. However, the characters are still
usually sent in the conventional reading sequence in which they are generated. For
example, if the word D-A-T-A is to be transmitted, the characters are transferred in that
sequence, but the 7 bit ASCII code for each character is ‘reversed’.

�����	���������� 25

Consequently, the bit pattern that is observed on the communication link will be as
follows, reading each bit in order from right to left.

Adding the stop bit (1) and parity bit (1 or 0) and the start bit (0) to the ASCII
character, the pattern indicated above is developed with even parity. For example, an
ASCII ‘A’ character is sent as:

%��*-�

Extended binary coded data interchange code (EBCDIC), originally developed by IBM,
uses 8 bits to represent each character. EBCDIC is similar in concept to the ASCII code,
but specific bit patterns are different and it is incompatible with ASCII. When IBM
introduced its personal computer range, they decided to adopt the ASCII Code, so
EBCDIC does not have much relevance to data communications in the industrial
environment. Refer to the EBCDIC Table 2.7.

�.���
������
����

For purely numerical data a 4-bit binary code, giving 16 characters (24), is sometimes
used. The numbers 0–9 are represented by the binary codes 0000 to 1001 and the
remaining codes are used for decimal points. This increases transmission speed or reduces
the number of connections in simple systems. The 4-bit binary code is shown in
Table 2.8.

26 ��������� ����	
���
��������� ���	�����
���������	���	
������

Table 2.8
4-bit binary code

/���
����

Binary code is not ideal for some types of devices because multiple digits have to change
every alternate count as the code increments. For incremental devices, such as shaft
position encoders, which give a code output of shaft positions, the Gray code can be used.
The advantage of this code over binary is that only one bit changes every time the value is
incremented. This reduces the ambiguity in measuring consecutive angular positions. The
Gray code is shown in Table 2.9.

�����	���������� 27

Table 2.9
Gray code

������
�����
�������

Binary coded decimal (BCD) is an extension of the 4-bit binary code. BCD encoding
converts each separate digit of a decimal number into a 4-bit binary code. Consequently,
the BCD uses 4 bits to represent one decimal digit. Although 4 bits in the binary code can
represent 16 numbers (from 0 to 15) only the first 10 of these, from 0 to 9, are valid for
BCD.

28 ��������� ����	
���
��������� ���	�����
���������	���	
������

Table 2.10
Comparison of Binary, Gray and BCD codes

BCD is commonly used on relatively simple systems such as small instruments,
thumbwheels, and digital panel meters. Special interface cards and integrated circuits
(ICs) are available for connecting BCD components to other intelligent devices. They can
be connected directly to the inputs and outputs of PLCs.

A typical application for BCD is the setting of a parameter on a control panel from a
group of thumbwheels. Each thumbwheel represents a decimal digit (from left to right;
thousands, hundreds, tens and units digits). The interface connection of each digit to a
PLC requires 4 wires plus a common, which would mean a total of 20 wires for a 4-digit
set of thumbwheels. The number of wires, and their connections to a PLC, can be reduced
to 8 by using a time division multiplexing system as shown in Figure 2.6. Each PLC
output is energized in turn, and the binary code is measured by the PLC at four inputs. A
similar arrangement is used in reverse for the digital display on a panel meter, using a
group of four 7-segment LCD or LED displays.

�����	���������� 29

Figure 2.6
BCD Thumbwheel switches and connections to PLC

��0
 '��
������	��
�	���������	
��������1����	������
(2�3')

The start, stop and parity bits used in asynchronous transmission systems are usually
physically generated by a standard integrated circuit (IC) chip that is part of the interface
circuitry between the microprocessor bus and the line driver (or receiver) of the
communications link. This type of IC is called a UART (universal asynchronous
receiver/transmitter) or sometimes an ACE (asynchronous communications element).

Various forms of UART are also used in synchronous data communications, called
USRT. Collectively, these are all called USARTs. The outputs of a UART are not
designed to interface directly with the communications link. Additional devices, called
line drivers and line receivers, are necessary to give out and receive the voltages
appropriate to the communications link.

8250, 16450, 16550 are examples of UARTs, and 8251 is an example of a USART.

30 ��������� ����	
���
��������� ���	�����
���������	���	
������

Figure 2.7
Typical connection details of the UART

The main purpose of the UART is to look after all the routine ‘housekeeping’ matters
associated with preparing the 8 bit parallel output of a microprocessor for asynchronous
serial data communication. The timing pulses are derived from the microprocessor master
clock through external connections.

When transmitting, the UART:
• Sets the baud rate
• Accepts character bits from microprocessor as a parallel group
• Generates a start bit
• Adds the data bits in a serial group
• Determines the parity and adds a parity bit (if required)
• Ends transmission with a stop bit (sometimes 2 stop bits)
• Then signals the microprocessor that it is ready for the next character
• Coordinates handshaking when required

The UART has a separate signal line for transmit (TX) and one for receive (RX) so that

it can operate in the full-duplex or a half-duplex mode. Other connections on the UART
provide hardware signals for handshaking, the method of providing some form of
‘interlocking’ between two devices at the ends of a data communications link.
Handshaking is discussed in more detail in Chapter 3.

When receiving, the UART:
• Sets the baud rate at the receiver
• Recognizes the start bit
• Reads the data bits in a serial group
• Reads the parity bit and checks the parity
• Recognizes the stop bit(s)
• Transfers the character as a parallel group to the microprocessor for further

processing
• Coordinates handshaking when required
• Checks for data errors and flags the error bit in the status register

�����	���������� 31

This removes the burden of programming the above routines in the microprocessor and,
instead, they are handled transparently by the UART. All the program does with serial
data is to simply write/read bytes to/from the UART.

'��
2�3'
����	������

A byte received from the microprocessor for transmission is written to the I/O address of
the UART’s transmission sector. The bits to be transmitted are loaded into a shift register,
then shifted out on the negative transition of the transmit data clock. This pulse rate sets
the baud rate. When all the bits have been shifted out of the transmitter’s shift register,
the next packet is loaded and the process is repeated. The word ‘packet’ is used to
indicate start, data, parity and stop bits all packaged together. Some authors refer to the
packet as a serial data unit (SDU).

Figure 2.8
The UART transmitter

Between the transmitter holding register and the shift register is a section called the
SDU (serial data unit) formation. This section constructs the actual packet to be loaded
into the shift register.

In full duplex communications, the software needs to only test the value of the
transmitter buffer empty (TBE) flag to decide whether to write a byte to the UART. In
half-duplex communications, the modem must swap between transmitter and receiver
states. Hence, the software must check both the transmitter buffer and the transmitter’s
shift register, as there may still be some data there.

32 ��������� ����	
���
��������� ���	�����
���������	���	
������

'��
2�3'
��������

The UART receiver continuously monitors the incoming serial line waiting for a start bit.
When the start bit is received, the receiver line is monitored at the selected baud rate and
the successive bits are placed in the receiver’s shift register. This takes place according to
the format described in the user programmable data format register. After assembly of the
byte, it is moved into a FIFO (first in first out) buffer. At this stage, the RxRDY (receiver
ready) flag is set true and remains true until all the contents of the FIFO buffer are
empty.

Figure 2.9
The UART receiver

'������
�����	

Another major function of the UART is to detect errors in the data received. Most errors
are receiver errors. Typical errors are:
Receiver overrun: Bytes received faster than they can be read
Parity error: Parity bit disagreement
Framing error: This occurs if the detected bits do not fit into the frame selected
Break error: This occurs if a start bit is detected for more than a frame time.

����4
������

To gain the attention of a receiver, a transmitter may hold the data line in a space
condition (+voltage) for a period of time longer than that required for a complete
character. This is called a break, and receivers can be equipped with a break detect to
detect this condition. It is useful for interrupting the receiver, even in the middle of a
stream of characters being sent. The break detect time is a function of the baud rate.

�����	���������� 33

Serialization errors are reported in the serialization status register as shown in Figure
2.8 and Figure 2.9.

3�������
�����

It is necessary to have separate clock signals for the UART’s internal operations and to
control the shifting operations in the transmitter and receiver sections. The frequency of
the master signal is designed to be many times higher than that of the baud rate. This ratio
of master serial clock to baud rate is called the clocking factor (typically 16). Instead of
sampling the input line at the baud rate frequency, the improved start bit detector samples
the incoming line at the rate of the master clock. This minimizes the possibility of an
error due to slippage of sampling a stream of serial bits and sampling the wrong bit.

Figure 2.10
Example of incorrect timing between source and receiver

Figure 2.11
Minimization of error with a clocking factor of 16

34 ��������� ����	
���
��������� ���	�����
���������	���	
������

The earliest serial ports used 8250 or 8251 chips, which interrupted the main processor
for every character to be transmitted or received. This worked well for the speeds of that
time. This has since been replaced by the 16450 chip which works in a similar fashion but
supported faster PC bus speeds, and later by 16550 which has a 16-byte buffer thereby
reducing the number of CPU interruptions by a factor of 16. A more recent development
is to use an enhanced serial port, which provides a buffer of about 1000 bytes and has its
own processor to reduce the interruptions to the main CPU by a factor of 1000.

��
5
 '��
�� �
	����
2�3'
(
$""5)

The 16550 is a high speed serial universal asynchronous receiver transmitter (UART). It
is the default UART used on all IBM compatible computers and COM ports sold today. It
varies greatly from the old 8250 UARTs in two ways: speed and the size of the FIFO
buffer. The advantage of the 16550 over the older 16450 and 8250 UARTs is that it has a
16-byte buffer.

#����

The 16550 can operate at speeds from 1 to 115 k baud. The 16550 is commonly used on
RS-232 even though the RS-232 standard only allows communication at speeds up to
19.2 k baud. Due to the availability and low cost of 16550 chips, the manufacturers of
computers and add-on COM ports have included the 16550 as standard equipment.

6-6�
��!!��

The old 8250 UART (19.2 k) had only a one-byte FIFO buffer. The advantages of the
16-byte buffer on the 16550 are twofold:

• The 16550 makes high speed communications much more reliable.
On older chips, with their one-byte buffer, the UART would lose data if a
second byte came in to the UART before the CPU had a chance to retrieve the
first byte. The 16550, with its 16-byte buffer, gives the CPU up to 16 chances
to retrieve the data before a character is lost. To realize what this means, if a
UART is running at 19 200 bps (with a 10-bit character frame) the CPU will
need to service the COM port 1920 times each second or once every .0005
seconds. If the CPU happens to take .0006 seconds to get around to servicing
the COM port then the first byte is lost in the one-byte buffer UART. On the
16550 chip, with 16 bytes of buffer space, you can have up to 0.008 seconds
to service the COM port.

• It helps make a multitasking system more efficient.
When the COM port is transmitting data, it has to interrupt the CPU and fill
the UART’s transmitter buffer. That means that if the CPU is doing a
background directory scan the scan will take longer while the COM port
attempts to send data out to the outside world.
 In the one-byte buffer UARTs at 19 200 bps the COM port must interrupt
the CPU 1920 times each second just to send data out of the COM port. With
the 16550, however, it can put up to 16 bytes into the buffer at a time and
therefore interrupt the CPU only 120 times each second. This increases the
performance of the CPU to COM port system.

3

��������	

�����
�	��

�
��������

This chapter discusses the main physical interface standards associated with data
communications for instrumentation and control systems. It includes information on
balanced and unbalanced transmission lines, current loops, and serial interface
converters.

���������	

When you have completed studying this chapter you will be able to:

• List and explain the function of the important standards organizations
• Describe and compare the serial data communications interface standards:

– RS-232
– RS-449
– RS-423
– RS-422
– RS-485
– RS/TIA-530A
– RS/TIA-562

• Explain troubleshooting in serial data communication circuits
• Describe commonly used serial interface techniques:

– 20 mA current loop
– Serial interface converters
– Interface to serial printers

• Describe the most important parallel data communication interface standards:
– General purpose interface bus
– Centronics

36 ����������	����
���
�������������������
��������������
������

��

 ��������	
������������	

There are seven major organizations worldwide involved in drawing up standards or
recommendations, which affect data communications. These are:

• ISO: International Standards Organization
• ITU-T: International Telecommunications Union (ITU formerly CCITT)
• IEEE: Institute of Electrical and Electronic Engineers
• IEC: International Electrotechnical Commission
• RS: Electronic Industries Association
• ANSI: American National Standards Institute
• TIA: Telecommunication Industries Association

ANSI is the principal standards body in the USA and is that country’s member body to
the ISO. ANSI is a non-profit, non-governmental body supported by over 1000 trade
organizations, professional societies, and companies.

The International Telecommunications Union (ITU) is a specialist agency of the United
Nations Organization (UNO). It consists of representatives from the Postal, Telephony,
and Telegraphy organizations (PTTs), common carriers and manufacturers of
telecommunications equipment. In Europe, administrations tend to follow the ITU
defined recommendations closely. Although the US manufacturers did not recognize
them in the past, they are increasingly conforming to ITU recommendations.

The ITU defines a complete range of standards for interconnecting telecommunications
equipment. The standards for data communications equipment are generally defined by
the ITU-T ‘V’ series recommendations.

 The two ITU-T physical interface standards are:
• V.24: equivalent to RS-232 for low speed asynchronous serial circuits
• V.35: equivalent to RS-449 for wide bandwidth circuits

�����������
������������������ 37

Figure 3.1
ITU-T V series

The RS is a voluntary standards organization in the USA, specializing in the electrical
and functional characteristics of interface equipment. It mainly represents the manu-
facturers of electronic equipment. Since the RS and the TIA merger in 1988, the TIA
represents the telecommunications sector of the RS and its initials appear on certain RS
standard documents.

The IEC is an international standards body, affiliated to ISO. It concentrates on
electrical standards. The IEC developed in Europe and is used by most Western countries,
except the USA or those countries closely affiliated with the USA.

The IEEE is a professional society for electrical engineers in the USA and issues its
own standards and codes of practice. The IEEE is a member of ANSI and ISO.

The ISO draws members from all countries of the world and concentrates on
coordination of standards internationally.

38 ����������	����
���
�������������������
��������������
������

���
 ������
����
�������������	
���������
	�������	

An interface standard defines the electrical and mechanical details that allow equipment
from different manufacturers to be connected and able to communicate.

The RS have produced several well known data interface standards, which will be
discussed in this chapter. They are:

• RS-232 and revisions
• RS-449
• RS-423
• RS-422
• RS-485
• RS/TIA-530A
• RS/TIA-562

Specific interfacing techniques discussed here also include:

• The 20 mA current loop
• Serial interface converters
• Interface to serial printers

���
 ��������
���
����������
����	��		���
����	

The choice between unbalanced and balanced transmission lines is an important
consideration when selecting a data communications system.

����������
����	��		���

In an unbalanced system, the signal common reference conductor is simultaneously
shared by many signals and other electronic circuitry. Only one wire carries the signal
voltage, which is referenced to a signal common wire, sometimes called the signal
ground. The transmitted signal is the voltage between the signal conductor and the
common reference conductor.

Theoretically, unbalanced transmission should work well if the signal currents are small
and the common conductor has very low impedance. In practice, unbalanced systems
only work over short communication links. The signal common conductor has
characteristics similar to other conductors (resistance, inductance and capacitance) and is
not a perfect reference point. For long communication distances, the common conductor
does not have the same zero voltage at all points along its length or at its ends. The
common conductor can also pick up noise and have other voltages superimposed on it.
Sometimes the shield conductor is used as the common reference wire. This practice can
introduce excessively high noise-levels and should be avoided. Unbalanced transmission
is used in the RS-232 and RS-423 interfaces.

The fact that the common reference conductor may carry superimposed interference
voltages means that the voltages V1, V2, and V3 measured at the receiver will be affected
(Figure 3.2).

�����������
������������������ 39

Figure 3.2
Data communication with unbalanced interfaces

��������
����	��		���

Balanced communication interfaces require two conductors to transmit each signal. The
voltage at the receiving end is measured as the voltage difference between these two
wires. This is known as a balanced or differential system. This eliminates many of the
interference problems associated with the common reference wire.

Figure 3.3
Data communications with balanced interfaces

40 ����������	����
���
�������������������
��������������
������

The balanced transmission line permits a higher rate of data transfer over longer dis-
tances. The differential method of data transfer is preferable in industrial applications
where noise can be a major problem. The disadvantage is that a balanced system requires
two conductors for every signal.

The successful transfer of voltage signals across two conductors in the presence of, say
noise or voltage drops is based on the assumption that the conductors have similar
characteristics and will be affected equally. It does not mean that noise does not exist in
the balanced differential system. The voltages on both conductors should rise and fall
together, and the differential voltage should remain the same. The voltage between the
signal conductor and the common reference conductor is called the common mode
voltage (CMV). The CMV is an indication of the induced voltage or noise on the
communication link. Ideally, the CMV on the two wires will cancel out completely.
However, the greater the CMV, the higher the likelihood of output voltage distortion and
damage to the device.

The receiver circuitry of a 2-wire differential system is designed to ignore or reject the
CMV, using a technique called common mode rejection (CMR). The effect of noise on
the signal is measured as the ratio of the voltage after passing through the receiver to the
CMV. The success of the receiver in rejecting the noise is measured as the common mode
rejection ratio (CMRR).












=

dV
dV

CM

OUTlog20CMRR(Db)

Balanced transmission is used in most of the fast interfaces such as RS-422 and
RS-485.

���
 ��� !"#���
���������
	�������
$%%!
&���
���������

	�������'

The RS-232 interface standard was developed for the single purpose of the interface
between data terminal equipment (DTE) and data circuit terminating equipment (DCE)
employing serial binary data interchange. In particular, RS-232 was developed for
interfacing data terminals to modems.

The RS-232 interface standard was issued in the USA in 1969 by the engineering
department of the RS. Almost immediately minor revisions were made and today’s
standard – RS-232-C – was issued. RS-232 was originally named RS-232, (recom-
mended standard) which is still in popular usage. The prefix ‘RS’ was superseded by
‘EIA/TIA’ in 1988. The current revision is EIA/TIA-232E (1991), which brings it into
line with the international standards ITU V.24, ITU V.28, and ISO-2110. The common
convention is to call all revisions of the EIA/TIA 232 standards as EIA-232, as they are
effectively functionally equivalent. Only where the differences between specific versions
are being discussed, will the version letters be added.

Poor interpretation of RS-232 has been responsible for many problems in interfacing
equipment from different manufacturers. This had led some users to dispute whether it is
a ‘standard’. It should be emphasized that RS-232 and other related RS standards define
the electrical and mechanical details of the interface and do not define a protocol.

The RS-232 interface standard specifies the method of connection of two devices – the
DTE and DCE.

�����������
������������������ 41

DTE: Data terminal equipment, for example, a computer or a printer. A DTE device

communicates with a DCE device. A DTE device transmits data on pin 2 and
receives data on pin 3.

DCE: Data communications equipment, for example a modem, now also called data

circuit-terminating equipment in RS-232E. A DCE device receives data from
the DTE and retransmits via another data communications link, such as the
telephone system. A DCE device transmits data on pin 3 and receives data on
pin 2.

Figure 3.4
Connections between the DTE and the DCE

42 ����������	����
���
�������������������
��������������
������

 (�
�����
�������	
��
��#���

The RS-232 standard consists of three major parts, which define:
• Electrical signal characteristics
• Mechanical characteristics of the interface
• Functional description of the interchange circuits

)���������
	�����
�(��������	���	

RS-232 defines electrical signal characteristics such as the voltage levels and grounding
characteristics of the interchange signals and associated circuitry for an unbalanced
system.

The RS-232 transmitter is required to produce voltages in the range:
• Logic 1: –5 V to –25 V
• Logic 0: +5 V to +25 V
• Undefined logic level: +5 V to –5 V

At the RS-232 receiver the following voltage levels are defined:

• Logic 1: –3 V to –25 V
• Logic 0: +3 V to +25 V
• Undefined logic level: –3 V to +3 V

Note: The RS-232 transmitter requires the slightly higher voltage to overcome voltage

drop along the line.
The voltage levels associated with a microprocessor are 0 V to +5 V for transistor–

transistor Logic (TTL). A line driver is required at the transmitting end to adjust the
voltage to the correct level for the communications link. Similarly, at the receiving end a
line receiver is required to translate the voltage on the communications link to the correct
voltages for interfacing to the microprocessor.

Modern PC power supplies usually have a standard +12 V output that could be used for
the line driver.

The control, or ‘handshaking’, lines have the same range of voltages as transmission of
logic 0 and logic 1, except that they are of opposite polarity. This means that:

• A control line asserted or made active by the transmitting device has a voltage
range of +5 V to +25 V. The receiving device connected to this control line is
allowed a voltage range of +3 V to +25 V.

• A control line inhibited or made inactive by the transmitting device has a
voltage range of –5 V to –25 V. The receiving device of this control line is
allowed a voltage range of –3 V to –25 V.

�����������
������������������ 43

Figure 3.5
Voltage levels for RS-232

At the receiving end, a line receiver is necessary in each data and control line to convert
the line voltage levels back to the 0 V and +5 V logic levels required by the internal
electronics.

44 ����������	����
���
�������������������
��������������
������

Figure 3.6
RS-232 transmitters and receivers

The RS-232 standard defines 25 electrical connections. The electrical connections are
divided into four groups:

• Data lines
• Control lines
• Timing lines
• Special secondary functions

Data lines are used for the transfer of data. Data flow is designated from the perspective
of the DTE interface. The transmit line, on which the DTE transmits and the DCE
receives, is associated with pin 2 at the DTE end and pin 2 at the DCE end. The receive
line, on which the DTE receives, and the DCE transmits, is associated with pin 3 at the
DTE end and pin 3 at the DCE end. Pin 7 is the common return line for the transmit and
receive data lines. The allocations are illustrated in Table 3.2.

Control lines are used for interactive device control, which is commonly known as
hardware handshaking. They regulate the way in which data flows across the interface.
The four most commonly used control lines are:

• RTS: request to send
• CTS: clear to send
• DCE Ready: or data set ready (DSR in RS-232-C)
• DTE Ready or data terminal ready (DTR in RS-232-C)

It is important to remember that with the handshaking lines, the enabled state means a

positive voltage and the disabled state means a negative voltage.
Hardware handshaking is the cause of most interfacing problems. Manufacturers

sometimes omit control lines from their RS-232 equipment or assign unusual app-
lications to them. Consequently, many applications do not use hardware handshaking but
instead use only the three data lines (transmit, receive and signal common ground) with
some form of software handshaking. The control of data flow is then part of the

�����������
������������������ 45

application program. Most of the systems encountered in data communications for
instrumentation and control use some sort of software-based protocol in preference to
hardware handshaking. These protocols are discussed in Chapter 8.

There is a relationship between the allowable speed of data transmission and the length
of the cable connecting the two devices on the RS-232 interface. As the speed of data
transmission increases, the quality of the signal transition from one voltage level to
another, for example from –25 V to +25 V, becomes increasingly dependent on the capa-
citance and inductance of the cable.

The rate at which voltage can ‘slew’ from one logic level to another depends mainly on
the cable capacitance, and the capacitance increases with cable length. The length of the
cable is limited by the number of data errors acceptable during transmission. The RS-
232 D&E standard specifies the limit of total cable capacitance to be 2500 pF. With
typical cable capacitance having improved from around 160 pF/m to only 50 pF/m, the
maximum cable length has extended from around 15 meters (50 feet) to about 50 meters
(166 feet).

The common data transmission rates used with RS-232 are 110, 300, 600, 1200, 2400,
4800, 9600 and 19 200 bps. Based on field tests, Table 3.1 shows the practical relation-
ship between selected Baud rates and maximum allowable cable length, indicating that
much longer cable lengths are possible at lower Baud rates. Note that the achievable
speed depends on the transmitter voltages, cable capacitance (as discussed above) as well
as the noise environment.

Baud Rate Cable Length (metres)

110 850
300 800
600 700

1200 500
2400 200
4800 100
9600 70

19 200 50
115 K 20

Table 3.1
Demonstrated maximum cable lengths with RS-232 interface

*��(������
�(��������	���	
��
�(�
���������

RS-232 defines the mechanical characteristics of the interface between the DTE and the
DCE. This section dictates that the interface must consist of a plug and socket and that the
socket will normally be on the DCE. The familiar DB-25 connector is specified together
with a smaller 26 pin alternative connector.

Although not specified by RS-232C, the DB-25 connector (25 pin, D-type) is closely
associated with RS-232 and became the de facto standard with revision D. Revision E
formally specifies a new connector in the 26-pin alternative connector (known as the ALT
A connector). This connector supports all 25 signals associated with RS-232. ALT A is

46 ����������	����
���
�������������������
��������������
������

physically smaller than the DB-25 and satisfies the demand for a smaller connector
suitable for modern computers. Pin 26 is not currently used. On most RS-232 compatible
equipment, where little or no handshaking is required, the DB-9 connector (9 pin, D-type)
is common. This practice originated when IBM decided to make a combined
serial/parallel adapter for the AT personal computer. A small connector format was
needed to allow both interfaces to fit onto the back of a standard ISA interface card.
Subsequently, the DB-9 connector has also became an industry standard to reduce the
wastage of pins. The pin allocations commonly used with the DB-9 and DB-25
connectors for the RS-232 interface are shown in Table 3.2. The pin allocation for the
DB-9 connector is not the same as the DB-25 and often traps the unwary.

The data pins of a DB-9 IBM connector are usually allocated as follows:
• Data transmit pin 3
• Data receive pin 2
• Signal common pin 5

�����������
������������������ 47

Table 3.2
Common DB-9 and DB-25 pin assignments for RS-232 and EIA/TIA-530 (often used for RS-422 and RS-485)

48 ����������	����
���
�������������������
��������������
������

+���������
��	���,����
��
�(�
������(����
�������	

RS-232 defines the function of the data, timing, and control signals used at the interface
of the DTE and DCE. However, very few of the definitions in this section are relevant to
applications for data communications for instrumentation and control.

The circuit functions are defined with reference to the DTE as follows:
• Protective ground (Shield)

The protective ground ensures that the DTE and DCE chassis are at equal
potentials. (Remember that this protective ground could cause problems with
circulating earth currents.)

• Transmitted data (TxD)
This line carries serial data from the DTE to the corresponding pin on the
DCE. The line is held at a negative voltage during periods of line idle.

• Received data (RXD)
This line carries serial data from the DCE to the corresponding pin on the
DTE.

• Request to send (RTS)
(RTS) is the request to send hardware control line. This line is placed active
(+V) when the DTE requests permission to send data. The DCE then activates
(+V) the CTS (clear to send) for hardware data flow control.

• Clear to send (CTS)
When a half duplex modem is receiving, the DTE keeps RTS inhibited. When
it is the DTE’s turn to transmit, it advises the modem by asserting the RTS
pin. When the modem asserts the CTS, it informs the DTE that it is now safe
to send data.

• DCE ready
Formerly called data set ready (DSR) – the DTE Ready line is an indication
from the DCE to the DTE that the modem is ready.

• Signal ground (Common)
This is the common return line for all the data transmit and receive signals and
all other circuits in the interface. The connection between the two ends is
always made.

• Data carrier detect (DCD)
This is also called the received line signal detector. It is asserted by the
modem when it receives a remote carrier and remains asserted for the duration
of the link.

• DTE ready (data terminal ready)
Formerly called data terminal ready (DTR) – DTE ready enables, but does not
cause, the modem to switch onto the line. In originate mode, DTE ready must
be asserted in order to auto dial. In answer mode, DTE ready must be asserted
to auto answer.

• Ring indicator
This pin is asserted during a ring voltage on the line.

• Data signal rate selector (DSRS)
When two data rates are possible, the higher is selected by asserting DSRS,
however, this line is not used much these days.

�����������
������������������ 49

Table 3.3
ITU-T V24 pin assignment (ISO 2110)

50 ����������	����
���
�������������������
��������������
������

 (�
(���
��,��-
�,�������
��
�(�
��#���
���������

The following description of one particular operation of the RS-232 interface is based on
a half duplex data interchange. The description encompasses the more generally used full
duplex operation.

Figure 3.7 shows the operation with the initiating user terminal, DTE, and its associated
modem, DCE, on the left of the diagram, the remote computer, and its modem on the
right.

The following sequence of steps occurs when a user sends information over a telephone
link to a remote modem and computer.

• The initiating user manually dials the number of the remote computer.
• The receiving modem asserts the ring indicator line (RI) in a pulsed ON/OFF

fashion reflecting the ringing tone. The remote computer already has its data
terminal ready (DTR) line asserted to indicate that it is ready to receive calls.
Alternatively, the remote computer may assert the DTR line after a few rings.
The remote computer then sets its request to send (RTS) line to ON.

• The receiving modem answers the phone and transmits a carrier signal to the
initiating end. It asserts the DCE Ready line after a few seconds.

• The initiating modem asserts the data carrier detect (DCD) line. The initiating
terminal asserts its DTR, if it is not already high. The modem responds by
asserting its DTE ready line.

• The receiving modem asserts its clear to send (CTS) line, which permits the
transfer of data from the remote computer to the initiating side.

• Data is transferred from the receiving DTE (transmitted data) to the receiving
modem. The receiving remote computer then transmits a short message to
indicate to the originating terminal that it can proceed with the data transfer.
The originating modem transmits the data to the originating terminal.

• The receiving terminal sets its request to send (RTS) line to OFF. The
receiving modem then sets its clear to send (CTS) line to OFF.

• The receiving modem switches its carrier signal OFF.
• The originating terminal detects that the data carrier detect (DCD) signal has

been switched OFF on the originating modem and switches its RTS line to the
ON state. The originating modem indicates that transmission can proceed by
setting its CTS line to ON.

• Transmission of data proceeds from the originating terminal to the remote
computer.

• When the interchange is complete, both carriers are switched OFF and in
many cases the DTR is set to OFF. This means that the CTS, RTS, and DCE
Ready lines are set to OFF.

Full duplex operation requires that transmission and reception occur simultaneously. In

this case, there is no RTS/CTS interaction at either end. The RTS line and CTS line are
left ON with a carrier to the remote computer.

�����������
������������������ 51

Figure 3.7
Half duplex operational sequence of RS-232

52 ����������	����
���
�������������������
��������������
������

������.
��
�(�
��� !"#���
����	���	

A summary of the main differences between RS-232 revisions, C, D, and E are discussed
below.

����	���
/
$��#���/'

The 25-pin D type connector was formally specified. In revision C, reference was made
to the D type connector in the appendices and a disclaimer was included revealing that it
was not intended to be part of the standard, however it was treated as the de-facto
standard.

The voltage ranges for the control and data signals were extended to a maximum limit
of 25 volts from the previously specified 15 volts in revision C.

The 15 meter (50 foot) distance constraint, implicitly imposed to comply with circuit
capacitance, was replaced by ‘circuit capacitance shall not exceed 2500 pF’. (Standard
RS-232 cable has a capacitance of 50 pF/ft.)

����	���
)
$��#���)'

Revision E formally specifies the new 26-pin alternative connector, the ALT A
connector. This connector supports all 25 signals associated with RS-232, unlike the 9-
pin connector, which has become associated with RS-232 in recent years. Pin 26 is
currently not used. The technical changes implemented by RS-232E do not present
compatibility problems with equipment confirming to previous versions of RS-232.

This revision brings the RS-232 standard into line with international standards CCITT
V.24, V.28, and ISO 2110.

0���������	

In spite of its popularity and extensive use, it should be remembered that the RS-232
interface standard was originally developed for interfacing data terminals to modems. In
the context of modern requirements, RS-232 has several weaknesses. Most have arisen as
a result of the increased requirements for interfacing other devices such as PCs, digital
instrumentation, digital variable speed drives, power system monitors and other
peripheral devices in industrial plants.

The main limitations of RS-232 when used for the communications of instrumentation
and control data in an industrial environment are:

• The point-to-point restriction is a severe limitation when several ‘smart’
instruments are used

• The distance limitation of 15 meters (50 feet) end to end is too short for most
control systems

• The 20 kbps rate is too slow for many applications
• The –3 to –25 V and +3 to +25 V signal levels are not directly compatible

with modern standard power supplies.

Consequently, a number of other interface standards have been developed by the RS,
which overcome some of these limitations. The RS-422 and RS-485 interface standards
are increasingly being used for instrumentation and control systems.

�����������
������������������ 53

��1
 ������	(������
	�����
����
�������������
�������	

When troubleshooting a serial data communications interface, you need to adopt a logical
approach in order to avoid frustration and wasting many hours. A procedure similar to
that outlined below is recommended:

• Check the basic parameters. Are the baud rate, stop/start bits, and parity set
identically for both devices? These are sometimes set on DIP switches in the
device. However, the trend is towards using software, configured from a
terminal, to set these basic parameters.

• Identify which is DTE or DCE. Examine the documentation to establish what
actually happens at pins 2 and 3 of each device. On the 25-pin DTE device,
pin 2 is used for transmission of data and should have a negative voltage
(mark) in idle state, whilst pin 3 is used for the receipt of data (passive) and
should be at approximately 0 volts. Conversely, at the DCE device, pin 3
should have a negative voltage, whilst pin 2 should be around 0 Volts. If no
voltage can be detected on either pin 2 or 3, then the device is probably not
RS-232 compatible and could be connected according to another interface
standard, such as RS-422, RS-485, etc.

Figure 3.8
Flowchart to identify an RS-232 device as either a DTE or DCE

• Clarify the needs of the hardware handshaking when used. Hardware
handshaking can cause the greatest difficulties and the documentation should
be carefully studied to yield some clues about the handshaking sequence.
Ensure all the required wires are correctly terminated in the cables.

54 ����������	����
���
�������������������
��������������
������

• Check the actual protocol used. This is seldom a problem but, when the above
three points do not yield an answer; it is possible that there are irregularities in
the protocol structure between the DCE and DTE devices.

• Alternatively, if software handshaking is utilized, make sure both have
compatible application software. In particular, check that the same ASCII
character is used for XON and XOFF.

��2
 �	�
�3��,����

From a testing point of view, section 2.1.2 in the RS-232-E interface standard states that:
‘...The generator on the interchange circuit shall be designed to withstand an open

circuit, a short circuit between the conductor carrying that interchange circuit in the
interconnecting cable and any other conductor in that cable... including signal ground,
without sustaining damage to itself or its associated equipment...’

In other words, any pin may be connected to any other pin, or even earth, without
damage and, theoretically, one cannot blow anything up! This does not mean that the
RS-232 interface cannot be damaged. The incorrect connection of incompatible external
voltages can damage the interface, as can static charges.

If a data communication link is inoperable, the following devices may be useful when
analyzing the problem:

• A digital multimeter
Any cable breakage can be detected by measuring the continuity of the cable
for each line. The voltages at the pins in active and inactive states can also be
ascertained by the multimeter to verify its compatibility to the respective
standards.

• An LED
The use of LED is to determine which the asserted lines are or whether the
interface conforms to a particular standard. This is laborious and accurate pin
descriptions should be available.

• A breakout box
• PC-based protocol analyzer (including software)
• Dedicated protocol analyzer (e.g. Hewlett Packard)

 (�
����4���
��-

The breakout box is an inexpensive tool that provides most of the information necessary
to identify and fix problems on data communications circuits, such as the serial RS-232,
RS-422, RS-423, RS-485, etc., interfaces and also on parallel interfaces.

�����������
������������������ 55

Figure 3.9
Breakout box showing test points

A breakout box is connected into the data cable, to bring out all 25 (or 9, 37, 50, etc.)
conductors in the cable to accessible test points. Many versions of this equipment are
available on the market, from the ‘homemade’ using a back-to-back pair of male and
female DB-25 sockets, to fairly sophisticated test units with built in LEDs, switches and
test points.

Breakout boxes usually have a male and a female socket and by using 2 standard serial
cables the box can be connected in series with the communication link. The 25 test points
can be monitored by LEDs, a simple digital multimeter, an oscilloscope, or a protocol
analyzer. In addition, a switch in each line can be opened or closed while trying to
identify where the problem is.

The major weakness of the breakout box is that, while one can interrupt any of the data
lines, it does not help much with the interpretation of the flow of bits on the data
communication lines. A protocol analyzer is required for this purpose.

5���
�����

Null modems look like DB-25 ‘through’ connectors and are used when interfacing two
devices of the same gender (e.g. DTE–DTE, DCE–DCE) or devices from different
manufacturers with different handshaking requirements. A null modem has appropriate
internal connections between handshaking pins that ‘trick’ the terminal into believing
conditions are correct for passing data. A similar result can be achieved by soldering extra
loops inside the DB-25 Plug. Null modems generally cause more problems than they cure
and should be used with extreme caution and preferably avoided.

56 ����������	����
���
�������������������
��������������
������

Figure 3.10
Null modem connections

Note that the null modem may inadvertently connect pins 1 together, as in Fig 3.10.
This is an undesirable practice and should be avoided.

0��,
���4
,���

This is a hardware plug, which loops back the transmit data pin to receive data pin and
similarly for the hardware handshaking lines. This is another quick way of verifying the
operation of the serial interface without connecting to another system.

6�������
����.���

A protocol analyzer is used to display the actual bits on the data line, as well as the
special control codes, such as STX, DLE, LF, CR, etc. The protocol analyzer can be used
to monitor the data bits as they are sent down the line and compared with what should be
on the line. This helps to confirm that the transmitting terminal is sending the correct data
and that the receiving device is receiving it. The protocol analyzer is useful in identifying
incorrect setting of baud rate, parity, stop bit, noise or incorrect wiring and connection. It
also makes it possible to analyze the format of the message and look for protocol errors.

When the problem has been shown not to be due to the connections, baud rate, bits, or
parity, then the content of the message will have to be analyzed for errors or
inconsistencies. Protocol analyzers can quickly identify these problems.

Purpose built protocol analyzers are expensive devices and it is often difficult to justify
the cost when it is unlikely that the unit will be used very often. Fortunately, software has
been developed that enables a normal PC to be used as a protocol analyzer. The use of a
PC as a test device for many applications is a growing field, and one way of connecting a
PC as a protocol analyzer is shown in Figure 3.11.

�����������
������������������ 57

Figure 3.11
Protocol analyzer connection

 .,����
��#���
,������	

Below is a list of typical RS-232 problems, which can arise because of inadequate
interfacing. These problems could equally apply to two PCs connected to each other or to
a PC connected to a printer.

Problem Probable Cause of Problem

Garbled or lost data Baud rates of both connecting ports may be different
 Connecting cables could be defective
 Data Formats may be inconsistent (Stop Bit/Parity/No of data bits)
 Flow control may be inadequate
 High error rate due to electrical interference
 Buffer size of receiver is inadequate
First characters garbled The receiving port may not be able to respond quickly enough. Precede the first few

characters with the ASCII (DEL) code to ensure frame synchronization.
No data
communications

Power for both devices may not be ON

 Transmit and receive lines of cabling may be incorrect
 Handshaking lines of cabling may be incorrectly connected
 Baud rates for both ports may not match
 Data format may be inconsistent
 Earth loop may have formed for EIA-232 line
 Extremely high error rate due to electrical interference for transmitter and receiver
 Protocols may be inconsistent Intermittent communications
 Intermittent interference on cable
ASCII data has incorrect
spacing

There is a mismatch between ‘LF’ and ‘CR’ characters generated by transmitting device
and for receiving device.

Table 3.4
A list of typical RS-232 problems

58 ����������	����
���
�������������������
��������������
������

��7
 ��#��8
���������
	�������
$5�������

877'

RS-449 was the intended successor to the functional portion of RS-232. It defined a
mechanical specification for plugs and sockets based on a 37-pin and 9-pin assembly.
Apart from its improved speed and distance specification, it also offered a number of
enhancements such as the provision for automatic modem testing, new grounding
arrangements and a number of new signals. Little support was given to RS-449 because
of the popularity of RS-232. One problem was that the 37- and 9-pin connectors were not
commonly used in the RS-232 domain. In recent years, RS-449 has gained support from
the users of RS-422 and RS-485 whose standards do not specify any mechanical
connectors. (Refer to Table 3.5 for pinouts). RS-449 has now been superseded by RS/TIA
530-A.

��9
 ��#���
���������
	�������

The RS-423 standard defines an unbalanced data communications interface similar to RS-
232, but with some improvements. It allows an increase in cable length between devices,
improved data transmission rates and multiple receivers on a line. RS-423 permits reliable
communication for:

• Distances of up to 1200 meters (4000 feet)
• Data rates of up to 100 kbps
• Only one line driver on a line, but the driver current rating has been increased

to permit multiple receivers
• Up to 10 line receivers, with lower current requirements, to be driven by the

line driver

The improvements in performance have mainly been achieved by reducing the voltages

to
• Logic 1: –3.6 V to –6 V
• Logic 0: +3.6 V to +6 V

Compared to RS-232, the total voltage slew is reduced by a factor of 4, with 12 V

swings compared to 50 V swings. The effect of the line capacitance is reduced which
allows faster data rates. Like the RS-232 interface, the data link is unbalanced and
requires 3 wires for a full duplex signal path. Figure 3.12 illustrates the transmit
connections.

�����������
������������������ 59

Figure 3.12
The RS-423 unbalanced line driver connection

The ability to support up to 10 receivers is achieved by increasing the current capacity
of the line drivers, reducing the current drain of the line receivers, and connecting the
receivers in a differential mode.

The RS-423 standard does not specify the mechanical connections or assign pin
numbers. It is common to use the DB-25 connector with pin allocations as specified by
RS-232.

��8
 (�
��#���
���������
	�������

The RS-422 standard introduced in the early ’70s defines a balanced, or differential, data
communications interface using two separate wires for each signal. This permits very
high data rates and minimizes problems with varying ground potentials because the
ground is not used as a voltage reference, as in RS-232 and RS-423. RS-422 is an
improvement on RS-423 and allows:

• Data to be communicated at distances of up to 1200 m (4000 feet, similar to
RS-423)

• Data rates of up to 10 Mbps (increase of 100 times)
• Only one line driver on a line
• Up to 10 line receivers to be driven by one line driver

The differential voltages between the A and B lines are specified as:

• –2 V to –6V with respect to the B line for a binary 1 (MARK or OFF) state
• +2 V to +6V with respect to the B line for a binary 0 (SPACE or ON) state

The specification refers to the lines as A and B, but there are also called A(–) and B(+),

or TX+ and TX–.

60 ����������	����
���
�������������������
��������������
������

The line driver for the RS-422 interface produces a 5 V differential voltage on two
wires. These voltage levels allows the transmitters and drivers to be supplied by the 5 V
supply, common in today’s computers.

Figure 3.13 illustrates the connection of RS-422 devices.

Figure 3.13
The RS-422 balanced line driver connections

As the differential receiver is only sensitive to the difference between two signals on its
inputs, common noise signals picked up in both wires will have little effect on the ope-
ration of the receiver. Differential receivers are therefore said to have good common
mode rejection (CMR) characteristics.

The major feature of the RS-422 standard is the differential voltage signal, which
allows an increase in speed and provides higher noise immunity. Each signal is
transferred on one pair of wires and is the voltage difference between them. The penalty
is that two wires are required for each signal, compared to one wire for RS-232 and
RS-423. A common ground wire is preferred to aid noise rejection. Consequently, 3 wires
are required for a half duplex, and 5 wires for a full duplex system.

The balanced line driver can also have an input signal called an enable signal. The
purpose of this signal is to connect the driver to its output terminals, A & B. If the enable
signal is off, one can consider the driver as disconnected from the transmission line or in
a high impedance state. (This tri-state approach is discussed under RS-485.)

The differential lines of the RS-422 are normally terminated with a resistor equal to the
characteristic impedance (Z0) of the line. This will prevent signal distortion due to
reflections from the end of line. A typical value of Z0 would be in the order of 120 Ω, for
a twisted pair line.

�����������
������������������ 61

The RS-422 standard does not specify mechanical connections or assign pin numbers. It
is common practice to use the pin assignment of RS-449 for a DB-37 connector (see
Table 3.5).

Table 3.5
Common DB-9 pin assignments for RS-422 and RS-485 and DB-37 pin assignments specified according to
RS-449

62 ����������	����
���
�������������������
��������������
������

��
:

 (�
��#�91
���������
	�������

The RS-485 standard is the most versatile of the four RS interface standards discussed in
this chapter. It is an extension of RS-422 and allows the same distance and data speed but
increases the number of transmitters and receivers permitted on the line.

RS-485 permits a ‘multidrop’ network connection on 2 wires and allows reliable serial
data communication for:

• Distances of up to 1200 m (4000 feet, same as RS-422)
• Data rates of up to 10 Mbps (same as RS-422)
• Up to 32 line drivers on the same line
• Up to 32 line receivers on the same line

Note: You can have 32 transceivers on a RS-485 network. If you require more than 32

devices, you would have to use repeaters (which is not defined in the RS-485 standards).
The differential voltages between the A and B lines are specified as:

• –1.5 V to –6V with respect to the B line for a binary 1 (MARK or OFF) state
• +1.5 V to +6V with respect to the B line for a binary 0 (SPACE or ON) state

The specification refers to the lines as A and B, but there are also called A(–) and B(+),

or TX+ and TX–.
As with RS-422, the line driver for the RS-485 interface produces a ±5V differential

voltage on two wires.
The major enhancement of RS-485 is that a line driver can operate in three states called

tri-state operation:
• Logic 1
• Logic 0
• High-impedance

In the high impedance state, the line driver draws virtually no current and appears not to

be present on the line. This is known as the ‘disabled’ state and can be initiated by a
signal on a control pin on the line driver integrated circuit. Tri-state operation allows a
multidrop network connection and up to 32 transmitters can be connected on the same
line, although only one can be active at any one time. Each terminal in a multidrop
system must be allocated a unique address to avoid conflicting with other devices on the
system. RS-485 includes current limiting in cases where contention occurs.

The RS-485 interface standard is very useful for systems where several instruments or
controllers may be connected on the same line. Special care must be taken with the
software to coordinate which devices on the network can become active. In most cases, a
master terminal, such as a PC or computer, controls which transmitter/receiver will be
active at any one time.

The 2-wire data transmission line does not normally require special termination unless
required by the manufacturer. On long lines, the leading and trailing edges of data pulses
will be much sharper if terminating resistors approximately equal to the characteristic
impedance (Z0) of the line are fitted at the extreme ends. This is indicated in Figure 3.14.
For twisted pair systems, the resistor used is typically 120 Ω.

Figure 3.14 shows a typical two wire multidrop network. Note that the transmission line
is terminated on both ends of the line but not at drop points in the middle of the line. The

�����������
������������������ 63

signal ground line is also recommended in an RS-485 system to keep the common mode
voltage that the receiver must accept within the –7 to +12 volt range.

Figure 3.14
Typical two wire multidrop network

An RS-485 network can also be connected as a four wire configuration as shown in
Figure 3.15. In this type of connection, it is necessary that one node be a master node and
all others be slaves. The master node communicates to all slaves, but a slave node can
communicate only to the master. Since the slave nodes never listen to another slave’s
response to the master, a slave node cannot reply incorrectly to another slave node. This
is an advantage in a mixed protocol environment.

64 ����������	����
���
�������������������
��������������
������

Figure 3.15
Four wire network configuration

During normal operation, there are periods when all RS-485 drivers are off, and the
communications lines are in the idle, high impedance state. In this condition the lines are
susceptible to noise pick up, which can be interpreted as random characters on the
communications line. If a specific RS-485 system has this problem, it should incorporate
10 kΩ bias resistors as indicated in Figure 3.16. These resistors will maintain the data
lines in a mark condition (idle) when the system is in the high impedance state.

The ground resistors shown in figure 3.15 are recommended in the specification and
should be 100 ohms ½ watt. Their purpose is to reduce any loop currents if the earth
potentials are significantly different.

The bias resistors are chosen in such a way that the B line will be kept at least 200 mV
HIGHER than the A line with no input signal (i.e. all transmitters in the high impedance
state). For the purpose of the calculation, remember that the two 120 Ω terminating
resistors appear in parallel for this purpose. This particular example uses bias resistors on
only one node.

Some systems employ bias resistors on all nodes, in which case the values of the bias
resistors will be significantly higher since they appear in parallel.

�����������
������������������ 65

Figure 3.16
Suggested installation of resistors to minimize noise

RS-485 line drivers are designed to handle 32 nodes. This limitation can be overcome
by employing an RS-485 repeater connected to the network. When data occurs in either
side of the repeater, it is transmitted to the other side. The RS-485 repeater transmits at
full voltage levels, consequently another 31 nodes can be connected to the network. A
diagram for the use of RS-485 with a bi-directional repeater is given in Figure 3.17.

66 ����������	����
���
�������������������
��������������
������

Figure 3.17
RS-485 used with repeaters

The ‘decision threshold’ of the RS-485 receiver is identical to that of both RS-422 &

RS-423 receivers at ±200 mV (0.2 V), as indicated in Figure 3.18.

Figure 3.18
RS-485/422 & 423 receiver sensitivities

�����������
������������������ 67

��

 ������	(������
���
��	����
;��(
��#�91

A few suggestions and testing procedures for RS-485 systems are outlined below. Both
hardware and software testing will be discussed. There are also some examples of real
problems and their solutions.

<���;���
��	�
,��������

• Check cabling connections for proper and complete connections. This should
be done off-line (no power to the circuit). It maybe helpful to do a continuity
check at this point, while the power is off.

• Check the polarity of the connections between each device on the RS-485
network. They should be A to A and B to B. Usually the black wire is B and
the white wire is A, but this can be different for the various systems on the
market. In most systems, the red wire of the voltmeter is to go on A and the
black lead goes on the B. Check for your system by following the
manufacturer’s instructions.

• Check the voltage of the RS-485 system when the system is in an idle state.
The idle state on most RS-485 systems is when the transmitters are not
sending any data. Most RS-485 systems bias their transmitters to a minus
voltage output (a mark or ‘1’) using the voltage divider network indicated in
an earlier discussion. However, this is not always the case. Some systems bias
the lines with a positive voltage (a space or a ‘0’) via the software while
others turn the transmitters off (and have no voltage divider network
connected externally) with a resultant zero voltage. Remember the true output
of the RS-485 driver chip is usually an open collector output. Biasing keeps
the lines from floating.

• Check that the shield (if there is one) is connected to ground at only one point.
Ensure that there are no other connections to earth or ground. This is of course
more important if the RS-485 devices are far away from each other. It would
be wise if the devices were far away (100 meters/300 feet or more), to
visually check the shield at each of the locations. The shields of different pairs
must be connected.

• Check that the single shield ground is properly connected to an independent,
clean earth ground. A clean ground is an earth ground that is as free as
possible from noise.

• Check for common mode voltage problems. This is a difficult problem to
detect, as it can be intermittent and sporadic. Usual symptoms may include
intermittent failures and/or unusual events such as every other unit failing to
communicate. The common mode voltage can be measured from each line to
ground using a hand-held voltmeter. These voltages should not approach the
maximum voltage of the driver chip.

• Ensure that the lines are terminated with the correct resistance terminators (if
needed or required). The manufacturer’s requirements must be followed.

��������

The manufacturer’s recommended termination resistors were added, one at each end.
The reflections disappeared and the system worked correctly.

68 ����������	����
���
�������������������
��������������
������

Note 1: Termination resistors on an RS-485 system are not necessarily required for
operation but are preferable to reduce reflections (especially above cable lengths longer
than 100 m and baud rates exceeding 40 kbaud).
Note 2: Reducing the baud rate (if possible) is another possible solution.
Note 3: Adding the terminating resistors effectively loads down the RS-485 line drivers.
This can cause problems of its own. Do not put a resistor in any location except at the
ends of the line. Never install a lower resistance than the manufacturer’s specifications.

)-��,��
�

A two wire master/slave RS-485 system had errors in the responses. The situation was:
• Master dispatched request to slave
• The slave responded with the information. Unfortunately, the master had

given up and sent out another request.
• The problem was the delay in the slave responding.
• The master then recorded this as a communication error

��������

The timeout for the master, before sending out another request to the slave for
information, was extended.

"����������
	�������

An increase in the baud rate may have improved the situation slightly (minor fix).

)-��,��
�

A two wire master/slave RS-485 system had errors in the responses. The situation was:
• Master dispatched request to slave.
• Slave responded very quickly.
• Master transmitter lines had not gone into the high impedance state.
• Hence, the response from the slave was ‘flattened’ by being transmitted into

low impedance.
• The master then recorded this as a communication error.

��������

The master was put into the high impedance state quicker by disabling the RTS line.
Obviously, ensure that this does not worsen the situation by disabling the transmitter
before it has completed transmitting the signal.

"����������
	�������

Slow down the response from the slave so that the master has a chance to go into the high
impedance state.

��
�
)!"� !"#1�:"
���������
	�������
$*�.

88�'

This standard supersedes RS-449. It is intended that the standard be used for applications
where a balanced system is required such as RS-422 and RS-485.

��
�
)!"� !"#12�
���������
	�������
$=���

88�'

EIA/TIA-562 supports the new 3.3 V technology, which enables systems to have higher
clock speeds, faster data communication rates, lower energy consumption, and to be

�����������
������������������ 69

smaller and lighter. The EIA/TIA-562 standard allows 64 kbps operation compared with
the RS-232 maximum limit of 20 kbps.

Typical features of the EIA-562 standard are:
• 64 kbps operation (maximum)
• Stringent wave form specifications (ripple no larger than 5% of voltage

swing)
• Maximum slew rate of 30 V/microsecond
• Ability to interface to RS-232

One of the disadvantages of the EIA-562 standard, compared to RS-232 is the reduction

of the noise margin from 2 V to 0.7 V.

��
�
 %��,���	��
��
�(�
)!"
���������
	�������	

The main features of the four most common EIA interface standards are compared below:

Transmitter EIA-232 EIA-423 EIA-422 EIA-485
Mode of operation Unbalanced Unbalanced Differential Differential
Max No. of Drivers &
Receivers on line

1 Driver
1 Receiver

1 Driver
10 Receivers

1 Driver
10 Receivers

32 Drivers
32 Receivers

Recommended cable
length

75 m 1,200 m 1,200 m 1,200 m

Maximum Data Rate 20 kbps 100 kbps 10 Mbps 10 Mbps
Maximum Common Mode
Voltage

±25 V ±6 V ±6 V to
–0.25 V

+12 V to –7 V

Driver Output Signal ±5.0 V min
±25 V max

±3.6 V min
±6.0 V max

±2.0 V min
±6.0 V max

±1.5 V min
±6.0 V max

Driver Load > 3 ohm > 450 ohm 100 ohm 60 ohm
Driver Output
Resistance

Power
On

n/a n/a n/a 100 µA
–7 V ≤ Vcm
≤12V

(high-Z state) Power
Off

300 ohm 100 µA
@ ±6 V

100 µA
–0.25 V ≤Vcm
≤6 V

100 µA
–7V ≤ Vcm ≤
12 V

Receiver input resistance 3 kohm to
7 kohm

> 4 kohm > 4 kohm > 12 kohm

Receiver sensitivity ±3.0 V ±200 mV ±200 mV
–7 Vcm 7 V

±200 mV
–12 V ≤ Vcm
≤12 V

Table 3.6
Comparison of main features of RS-232, RS-423, RS-422, and RS-485

70 ����������	����
���
�������������������
��������������
������

The data signaling rate versus cable length for balanced interface using 24 AWG
twisted pair cable is shown in Figure 3.19.

Figure 3.19
Data signaling rate vs. cable length

From a practical point of view, many RS-422/485 systems run up to
5000 meters (16 000 feet) at 1200 bps without any problems.

��
1
 (�
�:
�"
�������
���,

Another commonly used interface technique is the current loop. This uses a current signal
rather than a voltage signal, employing a separate pair of wires for the transmitter current
loop and receiver current loop.

A current level of 20 mA, or up to 60 mA, is used to indicate logic 1 and 0 mA logic 0.
The use of a constant current signal enables a far greater separation distance to be
achieved than with a standard RS-232 voltage connection. This is due to the higher noise
immunity of the 20 mA current loop which can drive long lines of up to 1 km, but at
reasonably slow bit rates. Current loops are mainly used between printers and terminals in
the industrial environment. Figure 3.20 illustrates the current loop interface.

�����������
������������������ 71

Figure 3.20
The 20 mA current loop interface

��
2
 ������
���������
���������	

Serial interface converters are becoming increasingly important with the move away from
RS-232 to industrial standards such as RS-422 and RS-485. Since many industrial devices
still use RS-232 ports, it is necessary to use converters to interface a device to other
physical interface standards. Interface converters can also be used to increase the
effective distance between two RS-232 devices.

The most common converters are:
• RS-232/422
• RS-232/485
• RS-232/current loop

Figure 3.21 is a block diagram of an RS-232/RS-485 converter. Figure 3.22 shows a
circuit wiring diagram.

Figure 3.21
Block structure of RS-232/RS-485 converter

72 ����������	����
���
�������������������
��������������
������

Figure 3.22
RS-232/485 converter

The RS-232/422 and RS-232/485 interface converters are very similar and provide bi-
directional full-duplex conversion for synchronous or asynchronous transfer between RS-
232 and RS-485 ports. These converters may be powered from an external AC source,
such as 240 V, or smaller units can be powered at 12 V DC from pins 9 and 10 of the
RS-232 port. For industrial applications, externally powered units are recommended. The
RS-232 standard was designed for communications, not as a power supply unit!

The connections for a typical, externally powered RS-232/485 converter (Black Box
Corporation) are shown below. Black Box does not recommend operating both ports on
the converter at both DCE and DTE. LEDs are provided to show the status of incoming
signals from both EIA-232 and EIA-485.

Figure 3.23
Wiring diagram for EIA-232/485 converter

When operating over long distances, a useful feature of interface converters is optical
isolation. This is especially valuable in areas prone to lightning. Even if the equipment is

�����������
������������������ 73

not directly hit by lightning, the earth potential rise (EPR) in the surrounding area may be
sufficient to damage the communications equipment at both ends of the link. Some
specifications quote over 10 kV isolation, but these figures are seldom backed up with
engineering data and should be treated with some caution.

Typical specifications for the RS-232/422 or RS-232/485 converters are:
• Data transfer rate of up to 1 Mbps
• DCE/DTE switch selectable
• Converts all data and control signals
• LEDs for status of data and control signals
• Powered from AC source
• Optically isolated (optional)
• DB-25 connector (male or female)
• DB-37 connector (male or female)

Typical specifications for the RS-232/current loop converters are:

• 20 mA or 60 mA operation
• DCE/DTE, full/half-duplex selectable
• Active or passive loops supported
• Optically isolated (optional)
• Powered from AC source
• Data rates of up to 19 200 kbps over 3 km (10 000 feet)
• DB-25 connector (male or female)
• Current loop connector – 5 screw

��
7
 !��������
��
	�����
,������	

It is important that the serial interface for serial printers is set up correctly. The following
points should provide a guide:

• Select the correct terminator for the end of each block of characters (or bytes)
sent down from the PC to the printer: This can either be a CR or LF (although
CR is more common).

• Check what sort of flow control is being supported between the PC and the
printers. If XON/XOFF is selected on the printer (as opposed to DTR), the
printer cable must have the transmit and receive data pins connected and the
PC software must support the XON/XOFF flow control. The PC’s hardware
and firmware itself does not directly support XON/XOFF. Ensure that the
ASCII characters used to represent XON and XOFF are the same for both the
printer and the PC.

• Select the appropriate settings for the buffer full (XOFF) and buffer empty
(XON) codes on the printer. Most PCs have a maximum line buffer length of
256 bytes. The printer should send an XOFF when the buffer has 256 free
bytes of storage remaining and XON when the buffer has emptied to less than
256 bytes. Typical printers have at least 2 K bytes of buffer memory.

• Check that the option of using pin 20 or pin 11 for the indication of DTR or
printer ready line has been set correctly.

• Check that the correct selection has been made for either parallel or serial
connections to the PC if this is optional on the printer.

74 ����������	����
���
�������������������
��������������
������

• Ensure that the baud rate is not set too high, which do not employ any form of
handshaking or flow control at all, as there could be loss of data.

Figure 3.24
PC to printer serial connection

��
9
 6�������
����
�������������	
���������
	�������	

The two most important parallel data communication interface standards are:
• The general purpose interface bus (GPIB) or IEEE-488, used mainly for

scientific purposes and automatic testing/measurement
• The Centronics standard – used mainly for cabling between PCs and printers.

��
8
 >������
,��,�	�
���������
��	
$>6!�'
��
!)))#�99
��

!)%#2�1

The GPIB was originally developed for automatic testing and for use with scientific
equipment in laboratories, manufacturing, and other industrial and power system
applications. In the early days of automatic testing, it became clear to manufacturers of
digital test and scientific equipment that a universally accepted data communications
interface was required between the computer controlling the testing sequence, the test
equipment and recording devices, such as plotters and printers.

The standard used today was originally defined by Hewlett-Packard in 1965 as a digital
data interface standard for the interconnection of engineering test instruments and was
initially called the Hewlett-Packard Interface Bus (HPIB). This standard was adopted by
other manufacturers and was published in 1975 as the IEEE-488 standard. IEEE-488 was
updated in 1978 and issued internationally as IEC-625. There have been further revisions
to the standard since 1978. IEC-625 is the common designation for GPIB in Europe.

The GPIB is an interface design that allows the simultaneous connection of up to 15
devices or instruments on a common parallel data communications bus. This allows
instruments to be controlled or data to be transferred to a controller, printer, or plotter. It
defines methods for the orderly transfer of data, addressing of individual units, standard
bus management commands and defines the physical details of the interface.

6(.	����
����������
�������������	

The devices on the GPIB can be connected in one of two ways:
• A star configuration
• A chain (linear) configuration

�����������
������������������ 75

A star configuration is one in which each instrument is connected directly to the
controller by means of a separate GPIB cable. The connectors are all connected to the
same port as the controller, as shown in Figure 3.25. A drawback to this simple
arrangement is that all devices on the same bus must be relatively close to the controller
because of the length limitation of each cable.

Figure 3.25
The GPIB star connection

The chain configuration, each device, including the controller, is connected to the next
in a chain. The controller does not have to be the first or last device in the chain, but can
be linked in anywhere as shown in Figure 3.26. A controller is a controller in the sense
that it coordinates the events on the bus. Physically and electrically, it is similar to any
other device connected to the GPIB. This configuration is usually the most convenient
way to connect equipment.

Figure 3.26
The GPIB chain (linear) configuration

76 ����������	����
���
�������������������
��������������
������

Although the star and chain configurations are suggested for GPIB, connections can be
made in any other way, if the following rules are observed:

• All devices are connected to the bus
• No more than 15 devices, including the controller, may be on the bus with no

less than two thirds powered on
• Cable length between any two devices may not exceed 4 meters (13.33 feet)

with an average separation of 2 meters (6.66 feet) over the entire bus
• Total cable length may not exceed 20 meters (66.66 feet)

A single device on the GPIB can transfer data to up to 14 other devices. The GPIB uses
asynchronous handshaking, so the actual data transfer rate is determined by the devices
themselves. Generally, the hardware limits the maximum data rate to about 250 kbps.

/�����
�.,�	

There are many thousands of different types of GPIB-compatible devices available for
various applications. There are 4 different groups of devices:

• Talkers
• Listeners
• Talkers/listeners
• Controllers

A talker is a one-way communicating device that can only send data to other devices. It

does not receive data. The talker waits for a signal from the controller and then places its
data on the bus. Common examples are simple digital voltmeters (DVMs) and some A/D
converters.

A listener is a one-way communicating device that can only receive data from another
device. It does not send data. It receives data when the controller signals it to read the
bus. Common examples are printers, plotters, and recorders.

A talker/listener has the combined characteristics of both talkers and listeners, with the
limitation that it is never a talker and a listener at the same time. A common example is a
programmable one, which is a listener while its range is being set by the controller, and a
talker while it sends the results back to the controller. Most modern digital instruments
are talker/listeners as this is the most flexible configuration.

A controller manages and controls everything that happens on the GPIB. It is usually an
intelligent or programmable device, such as a PC or a microprocessor controlled device.
The controller determines which devices will send and which will receive data and when.
To avoid confusion in any GPIB application, there can only be one active controller,
called the controller in charge (CIC). There can be several controllers, but to avoid
confusion, only one can be active at any time. A controller also has the features of a
talker/listener. In some cases, when several PCs are simultaneously connected on a GPIB,
one is usually configured as the controller and the others configure as talkers/listeners.
The controller needs to be involved in every transfer of data. It needs to address a talker
and a listener before the talker can send its message to a listener. After the message is
sent, the controller unaddresses both units.

Some GPIB configurations do not require a controller, for example, when only one
talker is connected to one or more listener. A controller is necessary when the active or
addressed talker or listener must be changed.

�����������
������������������ 77

)���������
��
���(������
�(��������	���	

The GPIB bus is carried inside a shielded 24-wire cable with standard connectors at each
end. The standard connector used is the ‘Amphenol’ as shown in Figure 3.27. Adding a
new device to the bus is done by connecting a new cable in a star or chain configuration.
Screws hold one connector securely to the next. Since the 24-pin connectors are usually
stackable, it is easy to connect or disconnect devices to the bus.

Figure 3.27
GPIB connector and pin assignment

The 24 lines in each cable consist of 8 data lines and 8 pairs (16) of control and bus
management lines. The data lines are used exclusively to carry data, in a parallel
configuration (byte by byte), along the bus. The control and bus management lines are
used for various bus management tasks that synchronize the flow of data. When data or
commands are sent down the bus, the bus management lines distinguish between the two.
Detailed knowledge of how these management lines interact is useful but not necessary to
effectively use the GPIB.

In the RS-232, the UART is used to coordinate the ‘housekeeping’ activities associated
with the serial interface. The full capacity of the microprocessor can then be directed to
other duties. In a similar way, the coordination of the GPIB parallel interface is controlled
by a GPIB IC. The most common GPIB ICs used for this purpose are the Texas
Instruments TMS9914A and the NEC-7210.

78 ����������	����
���
�������������������
��������������
������

>6!�
��	
	��������

The GPIB consists of 8 data lines (DI01–DI08) and 8-pairs of control lines. Three of the
eight control line pairs are the handshaking lines, which coordinate the transfer of data
(DAV, NRFD and NDAC). The other five pairs are for bus control and management
(ATN, REN, IFC, SRQ and EOI). The 8 ‘ground’ wires provide electronic shielding and
prevent bus control signals from interfering with one another or from being influenced by
external signals.

Figure 3.28
The GPIB bus structure

The signal lines can be separated into three groups:

Table 3.7
Three groups of signal lines

The eight data lines DI01 to DI08 carry both data and command messages. All
commands and most data use the 7-bit ASCII code, in which case the eighth bit, DI08, is
either unused or used for parity.

The GPIB uses binary signals to represent the information that is carried on the lines of
the bus. It uses the symbols ‘true’ and ‘false’ to represent the two states of voltages on the
lines. The GPIB uses the logic convention called ‘low-true’ or negative logic, where the
lower voltage state is ‘true’, and the higher voltage states are ‘false’. Standard TTL
voltage levels are used. For example, when DAV is ‘true’, the TTL voltage level is low
(±0.8 V), when DAV is false, the TTL level is high (±2.0 V). Despite low being ‘true’, no
line can be high (i.e. ‘false’), unless all devices on that line allow it to go high. This is

�����������
������������������ 79

convenient when there are several listeners accepting data. The ‘not data accepted’
(NDAC) line cannot go to the ‘false’ state, indicating data accepted, until the last listener
has accepted the data. Consequently, the handshaking process waits for the slowest
listener on the bus.

Each device connected to the GPIB has a unique device address and must be designed
with enough intelligence to identify whether the data or command sent down the data line
is meant for it or for another device. Device addresses are arbitrary and are set by the
user, usually on a DPI switch on the back of the device, or by programming the device
software. Each connected device is identified in the software of the controllers program.
The only limitation in choosing a device address is that it must be an integer number in
the range 1 to 30.

>6!�
(���	(�4���

Data is transmitted asynchronously on the GPIB parallel interface one byte at a time. The
transfer of data is coordinated by the handshake voltage signals on the 3 bus control lines
(DAV, NDAC and NRFD), called a three-wire interlocked handshake. Handshaking
ensures that a talker will put a data byte on the bus only when all listeners are ready and
will keep the data on the bus until it has been read by all listeners. It also ensures that
listeners will accept data only when a valid byte is available on the bus.

The talker must wait for the NRFD line to go high (false) before any data can be put
onto the bus. The NRFD line is controlled by the listeners. Only when NRFD voltage is
high (false) are all listeners ready to receive data. The talker then asserts DAV ‘true’
(voltage low) and when the listeners detect the low level on DAV, they read the byte on
the data lines. As each listener accepts the data, it releases NDAC. After the last listener
has accepted the data, the NDAC line voltage goes high (false) and this signals the talker
that the data has been accepted. Only when the data byte has been accepted by all the
listeners can the talker allow DAV voltage to go high (false) and remove its data from the
bus. Figure 3.29 illustrates this handshaking sequence.

Figure 3.29
The GPIB handshaking timing diagram

80 ����������	����
���
�������������������
��������������
������

!��������
����������
����	

The other five lines manage the flow of information across the interface:
• ATN
• REN
• IFC
• SRQ
• EOI

/���
����	���	

Device addresses are any integer in the range of 1 to 30. There are 2 kinds of addresses
for a device:

• Talk address (maximum of 15)
• Listen address (maximum of 15)

If a device sees its talk address on the bus, it knows it will act as a talker and will be

required to send data. Conversely, when it sees its listen address on the bus, it will be
required to act as a listener and receive data.

Both command/response with polling and interrupt driven protocols are allowed under
the IEEE-488 specification.

���:
 (�
%��������	
���������
	�������

The parallel printer or Centronics interface standard is used primarily to interface printers
to computers or other intelligent devices and includes a 36-pin connector. This interface
has a limited distance capability because of its low level +5 V signals. Full signal
definitions are given in Table 3.8.

Signal Name Signal

Pin
Return
Pin

Signal Definition

*DSTB 1 19 Low level pulse of 0.5 microseconds or more, used to
strobe the DATA signals into the printer. The printer
reads the data at the Low Level of this signal. Ensure an
Acknowledge has been returned before using the next
Data Strobe. Data Strobe is ignored if the BUSY is high.

*DATA 1-8 2-9 20-27 8 data lines from the host. High level represents binary
1, Low level represents binary 0. DATA 8 is the most
significant bit. Signal must be High at least 0.5
microseconds before the falling edge of the Data Strobe
signal and held at least 0.5 microseconds after the rising
edge.

Acknowledge 10 28 Low level pulse of 2 to 6 microseconds indicates input
of a character into the print data buffer, or the end of an
operation.

BUSY 11 29 High level indicates the printer cannot receive data.
Typical conditions that cause a High BUSY level are
buffer full or ERROR condition.

PE(Paper
Empty)

12 High Level indicates that the printer is out of paper.

SLCT (Select) 13 High Level indicates that the printer is ON LINE.

�����������
������������������ 81

*AUTO FEED
XT

14 Low Level indicates LF (Line Feed) occurs after each
CT (carriage return) code.

No Connection 15 Reserved Signal Line.
Signal Ground 16 Logic/Signal Ground Level (0 V)
Frame Ground 17 Printer Cabinet/Frame Ground line
No Connection Reserved Signal Line
Signal Ground 19-30 Twisted Pair cable return lines.
*INIT Initialize 31 Low Level pulse of 50 microseconds or more, resets the

buffer and initializes the printer.
ERROR 32 Low Level indicates the printer is OFF LINE, has a

PAPER OUT or has sensed an ERROR condition.
Signal Ground 33 Logic/Signal Ground Level (0 V)
No Connection 34 Not used.
+5 V Regulate 35 Connected to the +5 V source through a 3.n k Ohm

Resistor.
*SLCT IN
(-Select In)

36 Low level indicates the printer is placed ON LINE
(Selected) when the power is turned ON.

Table 3.8
Centronics pin assignment

* Indicates that the signal is generated by the host system, for example, the PC.771.

���

 (�
������	��
	�����
��	
$���'

In September 1998, Microsoft, Intel, Compaq, and NEC developed revision 1.1 of the
universal serial bus. The objective was to standardize the input/output connections on the
IBM PC for devices like printers, mice, keyboards, and speakers. Data acquisition (DAQ)
devices were not envisioned to be connected to the USB system. However, that does not
mean that the USB cannot be used for DAQ. In many ways, the USB is well suited for
DAQ systems in the laboratory or other small-scale systems.

Small-scale DAQ systems have traditionally suffered from the need for an easy to use
and standardized bus system for connecting smart DAQ devices. The nearest thing was
the IEEE 488 GPIB system. The GPIB system can be expensive and is not supported on
every PC without purchasing additional hardware. There is a need for an easy to operate,
inexpensive, and standardized bus system to connect small-scale DAQ devices. The USB
can fill those needs. With its plug-and-play ability, it is extremely easy to implement and
use. In addition, it is now standard on all IBM compatible PCs. Although it is not in any
way as cheap as say an RS-232 connection, it is affordable.

The USB is limited by its very nature for its application to DAQ systems. The biggest
problem is the maximum cable distance. The low-speed version is limited to 3 meters (10
feet) and the high-speed version is limited to 5 meters (16 feet) in total cable length. This
requirement reduces the ability of USB to be used in the large factory or plant
environment. Typically, the DAQ systems in these industries need to cover distances of
up to 1 km (0.6 miles). Due to the timing requirements of the USB, the length of the cable
cannot be increased with repeaters. This limits the use of the USB to the laboratory or
bench top systems.

82 ����������	����
���
�������������������
��������������
������

Figure 3.30
Connecting the USB

���
?
�������
	��������

The USB is a master/slave, half-duplex, timed communication bus system designed to
connect close peripherals and hubs to an IBM compatible PC. It runs at either 1.5 Mbps
(low-speed) or 12 Mbps (high-speed). The PC’s software program (using device drivers)
creates packets of information that are going to be sent to devices connected on the USB
bus. The USB drivers in the computer allocate a certain time within a frame for the
information. The packet is then placed in this 1 ms frame that can contain many packets.
One frame might contain information for many devices or it may contain information for
only one device. The frame is then sent to the physical layer via the USB drivers, and
then on to the bus.

The device receives its part of the packet and if necessary formulates a response. It
places this response on the bus. The USB drivers in the PC detect the response on the bus
and verify that the frame is correct using a CRC checking method. If the CRC indicates
that the frame is correct, the software in the PC accepts the response.

The devices connected to the USB bus can also be powered off the bus cable. Devices
can use no more than 500 mA. This works well for small scale DAQ devices, larger DAQ
devices usually use external power supplies. Both power and communications are on the
same cable and connector.

There are many parts in the USB system that make the communication possible. These
include:

• Host hubs
• External hubs
• Type A connector
• Type B connector
• Low-speed cables

�����������
������������������ 83

• High-speed cables
• USB devices
• Host hub controller hardware and driver
• USB software driver
• Device drivers

 �,����.

The USB uses a pyramid-shaped topology with everything starting at the host hub. The
host hub usually consists of two USB ports on the back of the PC. These ports are
basically in parallel with each other.

Each port is a four-pin socket with two pins reserved for power and two for
communications. The cables from external hubs or USB devices are plugged into the host
hub ports. One or both of the ports can be used. It does not matter which one is used if
only one connection is being made. If the external device or hub has a removable cable
then a ‘type A or type B’ cable is used to make the connection. The ‘A’ plug goes into the
back of the PC (host hub) and the ‘B’ plug goes into the device or external hub. If the
external hub or device has an in-built cable then the ‘A’ plug is plugged into the host hub
port. The socket on the host hub is keyed so the plug will only go in one way. ‘B’ plugs
will not go into ‘A’ sockets and vice-versa.

84 ����������	����
���
�������������������
��������������
������

Figure 3.31
USB topology

The limitations on cable lengths are very important for the USB system. All cables,
even if they come out of repeater hubs, must be counted in the total length of the cables.

<�	�
(��	

The controller chips for the host hub usually reside on the motherboard inside the PC,
although the hub could be a PCB in a PCI slot. The host controller does the parallel to
serial and serial to parallel conversion from the PCI bus to the USB connectors.
Sometimes a pre-processor is used to improve efficiency of the USB system. This host
controller and connector combination is called the root hub or host hub. The host hub’s

�����������
������������������ 85

function is to pass the information to and from the PCI bus to the data lines (+D and –D)
on the USB socket. The host controller can control the speed at which the USB operates.
It also connects power lines (+5 V and ground) to a USB device via the USB cable. The
external USB device may be another USB Hub or a USB type device like a printer

Figure 3.32
Host hub block diagram

The host hub has complete control over the USB ports. This control would include:
• Initialization and configuration
• Enabling and disabling the ports
• Recognizing the speed of devices
• Recognizing that a device has been connected
• Getting information from the application software
• Creating a packet and then frame
• Sending the information on to the bus
• Waiting and recognizing a response
• Error correction
• Recognizing that a device has been disconnected
• Using the port as a repeater

86 ����������	����
���
�������������������
��������������
������

 (�
���������	
$.,�
"
���
�'

There are two types of connectors, type A and type B. The reason there are two types is
that some devices have built in cables while others have removable cables. If the cables
were the same, it would be possible to connect a host hub port to another host hub port.
Because of the polarity of the connectors, the +5 V would be connected to ground. To
keep this from happening the hub’s output ports use type A connectors and the device
input ports are type B. This means that it is impossible to connect one hub port to another
hub port. On an external hub, the input to the hub is a type B connector unless the cable
on the hub is permanently connected (no connector).

Figure 3.33
USB connectors

0�;#	,���
�����	
���
(��(#	,���
�����	

The USB standard states that the USB will run at either 1.5 Mbps (slow-speed) or 12
Mbps (fast speed). The USB must have low-speed cables and high-speed cables. This is
due to the impedance difference caused by the different frequencies of data transfer. The
low-speed cables use untwisted unshielded cable. The data pair is 28 AWG and the power
pair is 20–28 AWG. The low-speed cable is used on devices like keyboards and mice.
The maximum distance for low-speed cabling is 3 meters (10 feet). The high-speed cables
use twisted shielded cable pairs. The data pair is 28 AWG and the power pair is 20–28
AWG. The maximum propagation delay must be less than 30 ns. The maximum distance
for high-speed USB is 5 meters (16 feet).

�����������
������������������ 87

)-������
(��	

The external hubs are used to increase the amount of devices connected to the system.
Usually they have four USB output ports and either one type B input connector or a
dedicated cable. This cable has a type A plug. It is usually connected to a host hub, but
could be connected to the output socket (type A) of another external hub. Even though the
external hub is a repeater, it cannot extend the overall length of the system. This is
because of the timing requirements of the USB standard.

The external hub is an intelligent device that can control the communication lines and
power lines on its USB ports. It is a bi-directional repeater for information coming from
the host hub and from USB devices. It talks to and even acts like an external USB device
to the host hub. It plays an integral part in the configuration of devices at start up. There
is no physical limit to the number of hubs.

���
������	

The USB system supports every existing peripheral that can be connected to a PC. It also
can and has been adapted to devices that are not usually considered peripherals. This
would include data acquisition devices such as digital I/O modules and analogue
input/output modules. All USB devices must be intelligent devices. Smart devices
obviously cost more than ‘dumb’ RS-232 and RS-485 connected devices. With this
increased cost, the user gets more functions, ease of use and the ability to connect more
devices to the PC. With the old non-USB system, the computer was limited to a few
devices. The USB system allows 127 devices to be connected to the PC at the same time.

There are two types of USB device:
• Low-speed, and
• High-speed

The low-speed devices are not only limited in their speed but also in features. These

devices include keyboards, mice, and digital joysticks. Since these devices put out small
amounts of information, they are polled less frequently and are slower than other devices.
When high-speed devices access the USB bus, the low-speed device communication is
disabled. Turning off the low-speed device ports at the root or external hubs disables the
low-speed devices. The hubs re-enable the low-speed ports after receiving a special
preamble packet.

High-speed devices like printers, CD–ROMs, and speakers need the speed of the
12 Mbps bus to transfer the large amount of data required for these devices. All high-
speed devices see all traffic on the bus. They are never disabled like the low-speed
devices. When a device like a microphone is ‘connected’ to the speakers most of the
traffic and therefore packets will be used by the audio system. Other traffic like keyboard
and mouse functions will have to wait. The host hub controller driver decides who has to
wait and how long.

<�	�
(��
����������
(���;���
���
������

The host hub controller hardware and software driver controls all transactions. The host
hub controller hardware does the physical connections from the PCI bus to the USB
connectors. It enables and initializes the host ports one at a time. It determines the speed
and direction of data transfer on both host ports. The host controller in conjunction with
the host hub software driver determines the frame contents, prioritization of the devices
and how many frames are needed for a particular transfer.

88 ����������	����
���
�������������������
��������������
������

Figure 3.34
Host hub controller diagram

���
	���;���
������

The USB software driver handles the interface between the USB devices, the device
drivers, and the host hub driver. When it receives a request from a device driver in the PC
to access a certain device, it coordinates the request with other device requests from the
application software in the PC. It works with the host hub controller driver to prioritize
packets before they are loaded into a frame. The USB software driver gets information
from the USB devices during device configuration. It uses this information to tell the host
hub controller how to communicate to the device.

/�����
������	

For each USB device, a device driver must be loaded into the PC. This device driver is a
software interface between the external USB device and the application software, the
USB software driver and the host hub controller driver. It has information for the other
drivers about that particular device’s needs. This information is used to determine things
like the type, speed (although that information can be determined physically by the hub
ports), priority, and function of the device, as well as the size of packet needed for the
transfer of data.

�����������
������������������ 89

%������������
���;

As mentioned before, the USB system is a master/slave, half duplex, timed
communication bus system designed to connect peripherals and external hubs. This
means that the peripherals cannot initiate a communication on the USB bus. The master
(or host) hub has complete control over the transaction. It initiates all communications
with hubs and devices. The USB is timed because all frames are sent within a 1 ms time
slot. More than one device can place a packet of information inside that 1 ms frame. The
host hub driver, in conjunction with the USB software driver determines the size of the
packet and how much time each device is allocated in one frame.

If the applications software wants to send or receive some information from a device, it
initiates a transfer via the device driver. Either the manufacturer of the device supplies
this device driver or it comes with the operating system. The USB driver software then
takes the request and places it in a memory location with other requests from other device
drivers. Working together the USB driver, the host hub driver and the host hub controller
place the request, data, and packets from the device drivers into a 1 ms wide frame. The
host controller then transfers the data serially to the host hub ports. Since all the devices
are in parallel on the USB bus, all devices ‘hear’ the information (except low-speed
devices, unless it is a low-speed transfer. Low-speed devices are turned off when they are
not being polled.) If necessary, the host waits for a response. The remote USB device
then responds with an appropriate packet of information. If a device does not see any bus
activity for 3 ms, it will go into the suspend mode.

Figure 3.35
Example of an IN packet

There are four types of IN packets (reading information from a device) and three types
of OUT packets (sending information out to a device).

Certain devices like mice and keyboards need to be polled (IN packets), but not too
often. The USB software driver knows about these devices and schedules a regular poll
for them. Included in the response are three levels of error correction. This type of
transfer is very reliable. The peripherals are usually low-speed devices and therefore need
a distinct low-speed packet to enable them. This packet is called a preamble packet. The
preamble packet is sent out before the poll. The low-speed devices are disabled until they
receive this preamble packet. Once they are enabled, they hear the poll and respond. Only
one device can be polled at a time and therefore only one device will respond. USB has
no provisions for multiple responses from devices.

90 ����������	����
���
�������������������
��������������
������

On the other hand, there are devices that need constant attention but polling is not
possible. These would be devices like microphones (IN packets), speakers (OUT
packets), and CD-ROMs (both types of packets IN and OUT). The transfer rate is very
important to these devices. Obviously, they would use the high-speed transfer rate and
they would use a large portion of the frame (up to 90%). The receiving device does not
respond to the data transfer. This transfer is a one-way data transfer (simplex). This
means that error correction is effectively turned off for these types of transfers.

 (�
,(.	����
��.��

The physical layer of the Universal Serial Bus is based on a differential +/– 3 V dc
communication system. It is in some ways very similar to the RS-485 voltage standard.
Unfortunately, it does not have the range of RS-485. This is not because of the type of
wire used or because of the USB voltage standard itself, but because of the timing
requirements of the USB protocol. In order to fit in everything the peripherals do on a
USB bus, it was necessary to put very strict time requirements on the USB.

The USB physical standard has many benefits to the user. It is fast – 12 MHz – is very
resistant to noise and is very reliable as long as the cabling rules are followed. With
standardized cables and connectors, it is very hard for the user to get things wrong when
cabling the USB system.

Table 3.9
USB connector pins

The story goes that one day Bill Gates was watching his new computer being installed.
When he saw the number of wires coming out of the back of the computer, he called the
CEO at Intel and said, ‘We have to get rid of this mess of cables and connectors’. And as
they say, the rest is history.

%��������	

The plugs and sockets on the USB have two wires for data communication and two wires
for power. Using bus-powered devices is optional. The pins on the plug are not the same
lengths. The power pins are 7.41 mm long and the communication pins are 6.41 mm long.
This means that if a cable is plugged in ‘hot’ the power will be applied to the device
before the communications lines. More importantly, it also means that when a cable is
unplugged the data communications lines will be disconnected before the power. This
reduces the possibility of back EMF voltage damaging the equipment. There are two
types of connectors for the USB, type A and type B.

Type A is a flat semi-rectangular keyed connector that is used on the host ports,
external hubs, and devices. The type B keyed connector is half-round and smaller than the

�����������
������������������ 91

type A connector is. Note that both type A and B plugs have the USB symbol on the top
of the connector. This is for orientation purposes.

The hubs and devices all have female sockets, while the cables have a type A male plug
on one end and a type B on the other end. This is because if there were a type A on both
ends it would be possible to connect two host hub sockets or external hub sockets. Cables
that are not removable from the device or external hub only have a type A plug on one
end.

%����	

The cables for the USB are specified as either low- or high-speed cables. Both the low-
and high-speed cables can use type A connectors, but only a high-speed device can use
type B connectors. Detachable cables are therefore always high-speed cables.

Due to that fact that the impedance of a cable is determined in part by the frequency of
the signal, the two speeds need two different cables. External hubs are always high-speed
units, but they accept low- and high-speed cables. Low-speed devices like keyboards only
connect to other low-speed devices using low-speed cables. The ports on the hub can
detect the speed of the device on the other end. If the D+ line is pulled high (+3.0 V dc to
+3.6 V dc) then the device is considered high-speed. If the D– line is pulled high then the
device is considered low-speed.

The low-speed (1.5 Mbps) cable is an unshielded, untwisted data cable. The
communication pair is 28 AWG gauge but due to the lack of shielding and twisting, the
overall diameter of the cable is smaller than a high-speed cable. The maximum distance
for the low-speed cable is 3 meters (10 feet). This includes all host hub ports to external
hub as well as the external hub to device cables. Usually on data communication systems,
slower data speeds mean longer distances. In this case, the cable is unprotected against
noise and because of the FCC restrictions on 1 to 16 Mbps communication the distance is
severely limited.

The high-speed (12 Mbps) cable uses shielded twisted pair 28 AWG gauge wire. The
maximum distance for high-speed cables is 5 meters (16 feet). Again, this includes all
hub-to-hub and hub-to-device connections. The shield is internally connected to chassis
ground at both ends. Usually on data communication systems, the ground is connected at
only one end, but because the distances are short, this is not a problem.

Note: It is recommended to measure the chassis to chassis ground difference between
both devices before making the connection.

92 ����������	����
���
�������������������
��������������
������

Figure 3.36
Low-speed and high-speed cables

The power pair on both low- and high-speed cables is 20 to 28 AWG gauge. The power
pair supplies between 500 and 100 mA to external devices at +5 V dc. Every port on a
hub provides this power to the devices if enabled by the hub. All hubs can decide if a port
has power applied to the connector. If an external hub is itself powered by the bus then it
divides the 500 mA up into 100 mA or so per port.

���������

When a device is plugged in to a hub, the port on the hub immediately determines the
speed of the device. The port looks at the voltage on the D+ and D– lines. If the D+ line
goes positive, the port knows that the device is a high-speed device. If the D– line goes
positive, the port knows that the device is a low-speed device.

If both D+ and D– voltages fall below 0.8 V dc for more than 2.5 ms, the hub sees this
as the device having been disconnected. If the voltage on either line is raised above 2 V
dc for more than 2.5 ms, the port sees this as the device is plugged in.

�����������
������������������ 93

Figure 3.37
USB wiring diagram

The idle states for low and high-speed devices are opposite each other. For the low-
speed device the idle state is the D+ line is a 0 V and the D– is a positive voltage. The
idle state for the high-speed devices is such that the D+ is a positive voltage and the D– is
0 V at idle. In most data communications, a positive voltage indicates a zero (0) condition
and a one (1) is minus voltage. In the USB system, it is not possible to say this because it
uses an encoding system called NRZI.

The voltages used for the differential balanced signaling are:
• Maximum voltage transmitted +3.6 V dc
• Minimum voltage transmitted +2.8 V dc
• Minimum voltage needed to sense a transition +/– 0.2 V dc
• Typical line voltage as seen from the receiver +/– 3 V dc

94 ����������	����
���
�������������������
��������������
������

5�@!
���
���
��������

Figure 3.38
NRZI example

The USB uses the non-return to zero inverted (NRZI) encoding scheme. In NRZI a ‘1’
is defined as no change or transition of voltage whereas a “0” is a change or transition of
voltage. A string of 0s would cause a clock-like data stream. The USB signaling system
uses the transition from one voltage to another to synchronize the receivers. A stream of
1s therefore would mean no transitions. This would cause the receiver to lose
synchronization. To overcome this problem the USB system uses a 6 of 7 bit stuffing
technique. If six or more 1s are to be transmitted in a row, the transmitter stuffs in a 0 (a
transition). If the receiver sees six 1s in a row, it knows that the next transition (zero) is to
be ignored.

6�;��
��	���������

Devices like keyboards and mice need power to operate. This power is supplied by the
USB system through the cables and hubs. External hubs can be either self-powered or
powered off the bus. The voltage supplied by a USB hub is +5 V dc. The hubs must be
able to supply minimum of 100 mA and maximum of 500 mA through each port. If an
external hub with four ports is powered off the bus it divides the 500 mA supplied off the
bus between the ports. Four times 100 mA equals 400 mA. This leaves 100 mA to run the
hub. It is not possible to connect two bus-powered hubs together unless the devices
connected to the last hub are self-powered. If the external hub is self-powered (i.e. mains-
powered), it should be able to supply 500 mA to each of the ports.

/���
���4
��.��

The data link layer within the USB specification defines the USB as a master/slave, half
duplex, timed communication bus system designed to connect close peripherals and
external hubs. The hardware and software devices such as the host hub controller
hardware and driver, USB software driver and device drivers all contribute to the data
link layer of the USB.

�����������
������������������ 95

With all these devices working together, the data link layer accomplishes the following:
• Collects data off the PCI bus via the device drivers
• Processes the information or data
• Verifies, determines and processes the different transfer types
• Calculates and checks for errors in the packets and frames
• Puts the different packets into 1 ms frames
• Checks for start of frame delimiters
• Sends the packets to the physical layer
• Receives packets from the physical layer

Figure 3.39
USB data link layer block diagram

 ���	���
�.,�	

A good place to start when looking at the data link layer of the USB is with the four
different transfer types. The wide range of devices that the USB has to deal with requires
that there be multiple transfer types. These are:

• Interrupt transfer
• Isochronous transfer
• Control transfers
• Bulk transfers

96 ����������	����
���
�������������������
��������������
������

As stated before, two speeds can be used in the USB system. For the most part the data
link layer is the same, but there are some differences. The low-speed devices do not
support bulk and isochronous transfers. The reason for this will become apparent in the
following transfer descriptions.

The interrupt transfer is used for devices that traditionally used IRQ lines. Devices
like keyboards, mice, and DAQ cards use the IRQ lines to tell the computer that they
needed service. The USB does not support devices that initiate requests to the computer.
To overcome this problem the USB driver initiates a poll of those devices that it knows
need periodical attention. This poll must be frequent enough so that data does not get lost,
but not too frequent, as not to use up much needed bandwidth. When installed, the device
determines its minimum requirements for polling. Devices that need to be polled are
rarely polled on every frame. The keyboard is typically polled only every 100th frame.

Isochronous transfer is used when the devices need to be written to or read from at a
constant rate. This includes devices like microphones and speakers. The transfer can be
done in an asynchronous, synchronous or device specific manner, depending on the
device. This constant attention requires that the bulk of the bandwidth of the frame be
allocated to one or two devices. If too many of these transfers take place at the same time,
data could be lost. This type of transfer is not critical for data quality. There is no error
correction and lost data or data that contains errors is ignored. Low-speed devices cannot
use isochronous transfer because of the small amounts of data being transferred. It is not
possible to move data fast enough using low-speed devices. In an isochronous transfer,
the maximum amount of data that can be placed in one packet is 1023 bytes. There is no
maximum number of packets that can be sent.

�����������
������������������ 97

Figure 3.40
Isochronous transfer example

Control transfers are used to transfer specific requests and information to specific
devices. This method is used mostly during the configuration and initialization cycles.
These transfers are very data critical and require a response or acknowledgment from the
device. Full error correction is in force for this type of transfer. All devices use this type
of transfer at one time or another. These transfers use very little bandwidth but because
the device must respond back to the host hub, the frames are dedicated to this one
transfer.

Bulk transfers are used to transfer large blocks of data to devices that are not time
dependent but where data quality is important. A typical device that would use the bulk
transfer method would be a writeable CD or printer. These devices need large amounts of
data but there is no time constraint like there is for a speaker. Whether the data get there
in this 10 ms block or the next is not a problem. However, they do need correct data, so
this type of transfer includes handshaking and full error correction.

98 ����������	����
���
�������������������
��������������
������

Figure 3.41
 Bulk transfer example

6��4��	
���
�����	

The USB protocol can and often does use a multi-packeted frame format. The USB frame
is made up of up to three parts. One frame equals one transaction.

The three parts of the USB frame are:
• The token packet
• The data packet
• Handshaking

Every frame starts with a token packet. The token packet includes the other smaller

packets. These include the synchronization pattern, packet type ID and token packet type.

�����������
������������������ 99

Figure 3.42
Packet format

 (���
���
����
�.,�	
��
��4��
,��4��	A

• Start of frame packets
• In packets
• Out packets
• Setup packets

The start of frame token packet indicates the start of the packet. This tells the receiver

that this is the beginning of the 1 ms frame. The ‘in’ packets transfer data in from the
devices to the PC. The ‘out’ packets transfer data out from the PC to the device. The ‘set-
up’ packet is used to ask the devices or hubs for startup information. They have
information for the devices or hubs.

A special packet is only used on low-speed transfers. It is called the preamble packet. It
is a shorter packet than the high-speed frame, only holds up to 64 bytes of data and
always uses handshaking. It only has three variations, in packet, out packet and setup
packet.

Figure 3.43
End of packet waveform

At the end of all packets, except for isochronous frames, there is an error correction
packet. On high-speed frames, this is a 16 bit CRC, low-speed devices use a 5 bit CRC
because of their smaller packets. If a device or host hub sees an end of frame message, it
checks the CRC. If the CRC is correct, it assumes that this is the end of the message. If
the CRC is not correct and the timeout limit has not been reached, the receiver waits. If
the CRC is not correct and the timeout has been reached, the receiver assumes that the
frame is not correct.

100 ����������	����
���
�������������������
��������������
������

",,��������
��.��
$�	��
��.��'

The application layer can be divided into two sub-layers, the operating system, (such as
Windows 2000) and the device application software (such as a modem application
program).

The application layer of the USB standard is really a user layer, because the USB
standard does not define a true application layer. What it does define is a user layer that
can be used (by an application programmer) to build an application layer.

Figure 3.44
Application software diagram

�����������
������������������ 101

The operating system user layer includes:
• Commands
• Software drivers
• Hub configuration
• Bandwidth allocation

Device applications would use:

• Commands
• Device drivers
• Device configuration

Specific user layer information can be found in the universal serial bus specifications at

the USB Implementers Forum web page at http://www.usb.org.

%�����	���

Designed as a peripheral connection system for the PC, the USB can be adapted to be
used on data acquisition systems. Now that the DAQ industry is developing increasingly
intelligent data acquisition and control systems, the USB is easily adaptable to modern
DAQ. The devices can be either low- or high-speed devices and very quickly and easily
connected to a PC. There are many devices on the market now and it is bound to grow in
the future. With the plug and play, system incorporated in USB the user does not have to
spend hours or even days configuring the DAQ system. These time savings often offset
the extra cost of the devices.

The target speed of USB 2.0 is 480 Mbps, as announced by the USB 2.0 promoter
group, consisting of Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and
Philips. The target speed announcement coincides with the release of the USB 2.0
specification draft to industry developers.

"�4��;��������	

Information from the following sources has been included in this section:
• Universal Serial Bus Specification, USB Implementers Forum web page at

http://www.usb.org
• Universal Serial Bus System Architecture, MindShare Inc., by Don Anderson
• Intel USB Product Specifications Intel 8x930 and 8x931 USB Peripheral

Controllers at:
http://www.intel.com/design/usb/prodbref/29776501.htm

• Other Web sites of interest:
http://www.lucent.com/micro/suite/usb.html
http://www-us.semiconductors.philips.com/usb/

�
�

4

������������	�
�

Errors in data communications occur when the value of a bit is altered from 1 to 0 or vice
versa. This chapter looks at how errors are produced and the types of error detection,
control, and correction available.

�������	�
�
When you have completed studying this chapter you will be able to:

• Describe the origin of errors
• List and explain the factors affecting the propagation of signals
• List and explain the methods of feedback error control
• Explain forward error correction

��
� ���������������
�

 Errors are produced by one or more of the following three phenomena:
• Static events
• Thermal noise
• Transient events

A static event is caused by a predictable process such as high frequency alternations,

bias distortion, or radio frequency interference. They can generally be minimized by good
design and engineering.

Thermal noise is caused by natural fluctuations in the physical transmission medium.
Transient events are difficult to predict because they are caused by natural phenomena

such as electrical interference (e.g. lightning), dropouts, and crosstalk. It is not always
possible to eliminate errors resulting from transient events.

 ������������	�
 103�

���� ������
�����������
������������������

A signal transmitted across any form of transmission medium can be practically affected
by:

• Attenuation
• Limited bandwidth
• Delay distortion
• Noise

������������

Signal attenuation is the decrease in signal amplitude, which occurs as a signal is
propagated through a transmission medium.

A limit needs to be set on the maximum length of cable allowable before one or more
amplifiers, or repeaters, must be inserted to restore the signal to its original level. The at-
tenuation of a signal increases for higher frequency components. Devices such as
equalizers can be employed to equalize the amount of attenuation across a defined band
of frequencies.

������������������

Essentially, the larger the bandwidth of the medium the closer the received signal will be
to the transmitted one.

The Hartley Law is used to determine the maximum data transfer rate of a transmission
line, in the absence of noise:

 Max. transfer rate (bps) = 2 B log2 M

where:

 B is the bandwidth in Hertz
 M is the number of levels per signaling element

For example:
A modem using Phase QAM, four levels per signaling element and a bandwidth on the
public telephone network of 3000 Hz, has a maximum data transfer rate calculated by:

Maximum data transfer rate = 2 × 3000 log24
 = 12 000 bits per second

���� ���
��������

When transmitting a digital signal, the different frequency components arrive at the
receiver with varying delays between them. The received signal is affected by delay
distortion. Intersymbol interference occurs when delays become sufficiently large that
frequency components from different discrete bits interfere with each other. As the bit
rate increases, delay distortion can lead to an increasingly incorrect interpretation of the
received signal.

104 �����	��
�����������
	���	�
�������
������
���	�
��
����
���
 �

!��
��

An important parameter associated with the transmission medium is the concept of signal
to noise ratio (S/N ratio). The signal and noise levels will often differ by many orders of
magnitude, so it is common to express the S/N ratio in decibels where:

 S/N ratio = 10 Log10 S/N dB
where:
 S is the signal power in watts
 N is the noise power in watts
For example:
 an S/N ratio of 1 000 000, is referred to as 60 dB
To calculate the maximum theoretical data rate of a transmission medium we use the
Shannon-Hartley Law, which states:

 Max data Rate = B log2 (1 + S/N) bps
where:
 B is the bandwidth in Hz
For example:
with an S/N ratio of 100, and a bandwidth of 3000 Hz, the maximum theoretical data rate
that can be obtained is given by:

Maximum information rate =3000 log2 (1 + 100)
 =19 963 bits per second

��"� # ��
�������������������$��������$����������������

 There are two approaches for dealing with errors in a message:
• Feedback error control,
• Forward error correction

�������%����������������

Feedback error control is where the receiver is able to detect the presence of errors in the
message sent by the transmitter. The detected error cannot be corrected but its presence
is indicated. This allows the receiver to request a retransmission of the message as
defined by a specific protocol. The majority of industrial systems use this approach.

The three most important mechanisms for error detection within feedback error control
are:

• Character redundancy: parity check
• Block redundancy: longitudinal parity check, arithmetic checksum
• Cyclic redundancy check (CRC)

&������������������ �����%
�'����� (�

Before transmission of a character, the transmitter uses the agreed mechanism of even or
odd parity to calculate the necessary parity bit to append to a character.
For example:

If odd parity has been chosen, then ASCII 0100001 becomes 10100001 to ensure that
there are an odd number of 1s in the byte.

 ������������	�
 105�

For even parity, the above character would be represented as 00100001. At the
receiving end, parity for the 7 bit data byte is calculated and compared to the parity bit
received. If the two do not agree, an error has occurred.
However: If two of the bits in the character 0100001 had changed the character to
00111001, the parity error reporting scheme would not have indicated an error, when in
fact there had been a substantial error.

Parity checking provides only minimal error detection, catching only around 60% of
errors on high speed systems.

Parity has been popular because:
• It is low in cost and simple to implement electronically
• It allows a quick check on data accuracy
• It is easy to mentally calculate by the engineer verifying the performance of a

system

Although parity has significant weaknesses it is still used where the application is not

critical, such as transmitting data to a printer, or communicating between adjacent
components in a common electrical system where the noise level is low. Parity is
appropriate where the noise burst length is expected to not exceed one bit, i.e. only single
bit errors can be expected. This means it is only effective for slow systems. Parity error
detection is not used much today for communication between different computer and
control systems. Sophisticated algorithms, such as block redundancy, longitudinal parity
check, and cyclic redundancy check (CRC), are preferred where the application is more
critical.

)���%���������� �����%
�

The parity check on individual characters can be supplemented by a parity check on a
block of characters. There are two block check methods:

���������������������� �����%�'	������������� ����������������� (�

In the vertical redundancy check (VRC), block check strategy, message characters are
treated as a two dimensional array. A parity bit is appended to each character. After a
defined number of characters, a block check character (BCC), representing a parity check
of the columns, is transmitted. Although the VRC, which is also referred to as column
parity, is better than character parity error checking, it still cannot detect an even number
of errors in the rows. It is acceptable for messages up to 15 characters in length.

106 �����	��
�����������
	���	�
�������
������
���	�
��
����
���
 �

Table 4.1
 Vertical/longitudinal redundancy check using even parity

���������������%
���

An extension of the VLRC is the arithmetic checksum, which is a simple sum of
characters in the block. The arithmetic checksum provides better error checking
capabilities than VLRC. The arithmetic checksum can be 1 byte (for messages up to 25
characters) or 2 bytes (for messages up to 50 characters in length).

Table 4.2
Block redundancy: arithmetic checksum

 ������������	�
 107�

& �������������� �����%�'&*&(�

For longer messages, an alternative approach has to be used. For example, an Ethernet
frame has up to 1500 bytes or 12 000 bits in the message. A popular and very effective
error checking mechanism is cyclic redundancy checking. The CRC is based upon a
branch of mathematics called algebra theory, and is relatively simple to implement. Using
a 16 bit check value, CRC promises detection of errors as shown in Table 4.3. (1)

Table 4.3
 CRC error reduction (1)

The CRC error detection mechanism is obviously very effective at detecting errors,
particularly difficult to handle ‘burst errors’, where an external noise source temporarily
swamps the signal, corrupting an entire string of bits. The CRC is effective for messages
of any length.

+�� ����������������

Before discussing the CRC error checking mechanisms, a few words need to be said
about expressing the CRC in polynomial form. The binary divisor, which is the key to the
successful implementation of the CRC, is:

10001000000100001

This can be expressed as:
1 × X16

 + 0 × X15 + 0 × X14 + 0 ×X13 + 1 × X12... + 1 × X5 + 1 × X0
which when simplified equals:

 X16 + X12 + X5 + 1
The polynomial language is preferred for describing the various CRC error checking
mechanisms because of the convenience of this notation.

There are two popular 16-bit CRC polynomials.
• CRC-CCITT
• CRC-16

 (1) Source: Tanenbaum, Andrew S, Computer Networks (Prentice Hall, 1981)

108 �����	��
�����������
	���	�
�������
������
���	�
��
����
���
 �

&*&,&&-##�

‘The....information bits, taken in conjunction, correspond, to the coefficients of a message
polynomial having terms from Xn-1 (n = total number of bits in a block or sequence) down
to X16. This polynomial is divided, modulo 2, by the generating polynomial X16 + X12 + X5
+ 1. The check bits correspond to the coefficients of the terms from X15 to X0 in the
remainder polynomial found at the completion of this division.’ (2)

CRC-CCITT was used by IBM for the first floppy disk controller (model 3770) and
quickly became a standard for microcomputer disk controllers. This polynomial is also
employed in IBM’s popular synchronous protocols HDLC/SDLC (high-level data link
control/synchronous data link control) and XMODEM – CRC file transfer protocols.

&*&,
.�

CRC-16 is another widely used polynomial, especially in industrial protocols:
 X16 +X15 + X2 + 1

CRC-16 is not quite as efficient at catching errors as CRC-CCITT, but is popular due to
its long history in IBM’s binary synchronous communications protocol (BISYNC)
method of data transfer.

The CRC-16 method of error detection uses modulo-2 arithmetic, where addition and
subtraction give the same result. The output is equivalent to the exclusive OR (XOR)
logic function, as given in Table 4.4.

Table 4.4
Truth table for exclusive OR (XOR) or Modulo-2 addition and subtraction

(2) CRC-CCITT is specified in recommendation V.41, ‘Code-Independent Error Control
System’, in the CCITT Red Book

Using this arithmetic as a basis, the following equation is true:

 ������������	�
 109�

Equation 4.1:
 (Message × 216) / Divisor = Quotient + Remainder
where:
Message – is a stream of bits, e.g., the ASCII sequence of H E L P with even parity:

216 – in multiplying, effectively adds 16 zeros to the right side of the message.
Divisor – is a number which is divided into the (message × 216) number and is the
generating polynomial.
Quotient – is the result of the division.
Remainder – is the value left over from the result of the division and is the CRC
checksum.
Equation 4.1 then becomes:
Equation 4.2:
 [(Message × 216) + Remainder] / Divisor = Quotient

This information is implemented in the transmitter, using Equation 4.1, as follows:
• Take the message which consists of a stream of bits
 [01001000] [11000101] [11001100] [0101000]
• Add 16 zeros to the right side of the message to get
 [01001000] [11000101] [11001100] [0101000] [00000000] [00000000]
• Divide modulo-2 by a second number, the divisor (or generating polynomial)

e.g. 11000000000000101 (CRC-16) the resulting remainder is called the CRC
checksum

• Add on the remainder as a 16 bit number to the original message stream (i.e.
replace the 16 zeros with the 16 bit remainder) and transmit it to a receiver

At the receiver the following sequence of steps is followed, using Equation 4.1:
• Take the total message plus the CRC checksum bits and divide by the same

divisor as used in the transmitter
• If no errors are present, the resulting remainder is all zeros (as per

Equation 4.2)
• If errors are present then the remainder is non zero

The CRC mechanism is not perfect at detecting errors. Intuitively, the CRC checksum

(consisting of 16 bits) can only take on one of 216 (65 536) unique values. The CRC
checksum, being a ‘fingerprint’ of the message data, has only 1 of 65 536 types. Logi-
cally it should be possible to have several different bit patterns in the message data, which
is greater than 16 bits that can produce the same fingerprint. The likelihood that the
original data and the corrupted data will both produce the same fingerprint is however
negligible.

The error detection schemes examined only allow the receiver to detect when data has
been corrupted. They do not provide a means for correcting the erroneous character or
frame. This correction is normally accomplished by the receiver informing the transmitter
that an error has been detected and requesting another copy of the message to be sent.
This combined error detection/correction cycle is known as error control.

110 �����	��
�����������
	���	�
�������
������
���	�
��
����
���
 �

�������������������������

Forward error correction is where the receiver can not only detect the presence of errors
in a message, but also reconstruct the message into what it believes to be the correct form.
It may be used where there are long delays in requesting retransmission of messages or
where the originating transmitter has difficulty in retransmitting the message when the
receiver discovers an error. Forward error correction is generally used in applications
such as NASA space probes operating over long distances in space where the turn around
time is too great to allow a retransmission of the message.

/�����������
���������������
������

In the late 1940s, Richard Hamming and Marcel Golay did pioneering work on error
detecting and error correcting codes. They showed how to construct codes which were
guaranteed to correct certain specified numbers of errors, by elegant, economic and
sometimes optimal means.

Coding the data simply refers to adding redundant bits in order to create a codeword.
The extra information in the codeword, allows the receiver to reconstruct the original data
in the event of one or more bits being corrupted during transmission.

An effective method of forward error correction is the use of the Hamming codes.
These codes detect and correct multiple bits in coded data. A key concept with these
codes is that of the Hamming distance. For a binary code, this is just the number of bit
positions at which two codewords vary. For instance, the Hamming distance between
0000 and 1001 is 2.

A good choice of code means that the codewords will be sufficiently spaced, in terms of
the Hamming distance, to allow the original signal to be decoded even if some of the
encoded message is transmitted incorrectly.

The following examples illustrate a Hamming code.
A code with a Hamming distance of 1 could represent the eight alphanumeric symbols

in binary as follows:
 000 A
 001 B
 010 C
 011 D
 100 E
 101 F
 110 G
 111 H

If there is a change in 1 bit in the above codes, due to electrical noise for example, the
receiver will read in a different character and has no way of detecting an error in the
character. Consequently, the Hamming distance is 1, and the code has no error detection
capabilities.

If the same three bit code is used to represent four characters, with the remaining bit
combinations unused and therefore redundant, the following coding scheme could be
devised.

 000 A
 011 B
 110 C
 101 D

 ������������	�
 111�

This code has a Hamming distance of 2, as two bits at least have to be in error before
the receiver reads an erroneous character.

It can be demonstrated that a Hamming distance of three requires three additional bits,
if there are four information bits. This is referred to as a Hamming (7,4) code. For a 4-bit
information code, a 7-bit code word is constructed in the following sequence:

 C1C2I3C4I5I6I7
where:
 I3I5I6I7 are the information, or useful bits
 C1C2C4 are the redundant bits calculated as follows:
- C1 = I3 XOR I5 XOR I7
- C2 = I3 XOR I6 XOR I7
- C4 = I5 XOR I6 XOR I7
For example:
If the information bits are 1101
 (I3 = 1; I5 = 1; I6 = 0; I7 = 1), the Hamming (7,4) codeword is:
- C1 = 1 XOR 1 XOR 1 = 1
- C2 = 1 XOR 0 XOR 1 = 0
- C4 = 1 XOR 0 XOR 1 = 0
The codeword (C1C2I3C4I5I6I7) is then represented as 1010101.
If one bit is in error and the codeword 1010111 was received, the redundant bits would

be calculated as:
- C1 = 1 XOR 1 XOR 1 = 1

 (and matches the 1 from the received codeword)
- C2 = 1 XOR 1 XOR 1 = 1

 (but does not match the 0 from the received codeword)
- C4 = 1 XOR 1 XOR 1 = 1

 (but does not match the 0 from the received codeword)
C2 and C4 indicate one bit out of place, which would be either I6 or I7 (as this is

common to both). However C1 matches the check calculation, therefore I6 must be in
error.

Hence, the code word should be: 1010101.

���� ���������������������
�
��

There are obviously other control mechanisms in place between two communicating
devices, which allow efficient and accurate transfer of messages. Error detection and
control are not enough to ensure that data is transferred successfully from one point to
another. An overall protocol framework is required to ensure that information is
transferred correctly and any errors are handled appropriately. The subject of protocols is
discussed in Chapter 8.

5

Cabling basics

To make sure that you get the best performance from communication cables, the type and
size of cable should be chosen to suit the application.

���������	

When you have completed studying this chapter you will be able to:

• List the four basic cable types
• Describe the general properties of copper-based cables
• Describe the properties and use of two-wire open lines
• Describe the properties and use of twisted pair cables
• Describe the properties and use of coaxial cables
• Describe the properties, use, theory of operation, handling and limitations of

fiber-optic cables

5.1 Overview
 The most common types of cables used in data communications systems are:

• Twisted pair
• Coaxial
• Fiber-optic

These offer differing:

• Signal and mechanical characteristics
• Installation convenience
• Costs

The noise susceptibility and data rate values of individual system components should

also be considered when determining the type and specification of wiring to be used.
Specific noise details of the various system components are normally available from the
manufacturers or suppliers.

Cabling basics 113

5.2 Copper-based cables
Two wire open lines, twisted pair and coaxial cables are all manufactured with copper
conductors and extruded plastic insulation. This construction combines good electrical
characteristics with mechanical flexibility, ease of installation and low cost. Fiber-optic
cable is technologically different and is addressed later in this chapter. Aluminum
conductors are seldom used for data communication cables because of their higher
resistance and other physical limitations such as lack of flexibility.

The resistance of copper cables depends on the cross-sectional area of the conductor,
usually expressed in mm², and the length of the cable. The thicker the conductor, the
lower the resistance, the lower the signal voltage drop, and the higher the current it can
carry without excessive heating.

The wire size must reflect the current carrying requirement of the application, while the
voltage rating should be equal to or exceed the anticipated circuit rated voltage. Physical
stresses imposed on the cable during installation and operation must also be considered to
make sure that the mechanical strength of the cable is acceptable. It is possible to increase
the cable strength by using multiconductor grouping within a single jacket. The signal
voltage drop, which is expressed (Vdrop = I × R), depends on:

• The line current, which is dependent on the receiver input and transmitter
output impedances

• The conductor resistance which is dependent on wire size and length

For dc voltages and low frequency signals, the resistance of the conductor is the only

major concern. The voltage drop along the cable affects the magnitude of the signal
voltage at the receiving end. In the presence of noise, the voltage drop affects the signal-
to-noise ratio and the quality of the signal received.

As the frequency (or data transfer rate) increases, the other characteristics of the cable,
such as capacitance and series inductance, become important. Inductance and capacitance
are factors that are affected by:

• How the cable is made
• The number and thickness of shields used
• The number of conductors in the cable
• The insulation materials used

The resistance, inductance, and capacitance are distributed along the length of the cable

and, at high frequencies, combine to present the effects of a low pass filter. The
equivalent electrical circuit of a cable is illustrated in Figure 5.1 with these parameters
shown distributed along the length of the cable.

Figure 5.1
The main parameters of a data communications cable

114 Practical Data Communications for Instrumentation and Control��

To optimize data communications performance, the correct type and size of cable must
be chosen for the application. The following information applies to most data appli-
cations:

Lower data transfer rates: Low frequency type cables (e.g. twisted pair cables)
High data transfer rates: High frequency type cables (e.g. coaxial cables, optic

fiber or high quality twisted pair data cables)
High noise environment cables: Shielded copper or optic fiber
Note: There are some new types of twisted pair cables available that give good high

frequency performance.
Another important consideration is the type of outer insulation and protection. For

example, a cable may have the following options:
• A thin aluminum tape wound around the cable, under the plastic insulation, to

provide a barrier against moisture ingress (moisture will permeate through
plastic over a period of time) and noise

• A steel armored outer cover for areas where protection is required against
excessive heat, fire, mechanical damage, and noise

• A filling of petroleum jelly between pairs to provide a good moisture barrier
• A nylon coated outer to provide a slippery jacket for ease of installation in

conduits as well as protection from rodents
• Plenum cables, which are made with non toxic insulation, for installation in

vented areas to ensure no poisonous fumes are produced in fires

5.3 Twisted pair cables
Twisted pair cables are the most economical solution for data transmission and allow for
rates of up to 180 Mbps on communication links of up to 100 meters (330 feet). Longer
distances are possible with lower data transfer rates. Twisted pairs are either shielded
twisted pair (STP) or unshielded twisted pair (UTP).

100 Mbps Ethernet is widely used on twisted pair (Cat 5) cables over 100 m and 16 bps.
Ethernet is now becoming available on copper cables.

Twisted pair cables are made from two identical insulated conductors, which are
twisted together along their length at a specified number of twists per meter, typically
forty, twists per meter (twelve twists per foot). The wires are twisted to reduce the effect
of electromagnetic and electrostatic induction. An earth screen and/or shield is often
placed around the wires to help reduce the electrostatically (capacitive) induced noise. An
insulating PVC sheath is provided for overall mechanical protection. The cross-sectional
area of the conductor will affect the voltage loss, so for long distances thicker conductor
sizes are recommended. The capacitance of a twisted pair is fairly low at about 40 to
160 pF/m, allowing a reasonable bandwidth and an achievable slew rate.

For full-duplex digital systems using balanced transmission, two sets of screened
twisted pairs are required in one cable; each set with individual and overall screens. The
entire cable is then covered by a protective PVC sheath.

The 1970s and ’80s saw a rapid increase in the use of twisted pair cables for data
communications. This increase left the EIA to develop a set of rules and standards for the
selection and installation of UTP cables in data communications applications up to
100 Mbps.

The EIA-568 standard divides UTP cables into five application categories, which are
listed below:

• Category 1 UTP Low-speed data and analogue voice

Cabling basics 115

• Category 2 UTP ISDN data
• Category 3 UTP High-speed data and LAN (10 Mbps)
• Category 4 UTP Extended distance LAN
• Category 5 UTP Extended frequency LAN (100 Mbps)

The connection point of a landline into a building or equipment shelter is at the main

distribution frame (MDF) or intermediate distribution frame (IDF).
In making data connections to modems, telemetry units or computer equipment, it is

common to use withdrawable multiconductor connectors (e.g. 9 pin, 15 pin, 25 pin, 37
pin, 50 pin etc.). These connectors are usually classified as follows:

• The type, make or specification of the connector
• The number of associated pins or connections
• The gender (male or female)
• Mounting (socket or plug)

For example, the common connector DB-25 SM specifies a D-type, 25 pin socket, male

(with pins).
There are many different types of connectors used by computer manufacturers such as

IBM, Hewlett Packard, Wang, Apple etc. and the various manufacturers of printers, radio
equipment, modems, instrumentation and actuators. The following is a selection of some
of the more popular connectors:

• DB-9, DB-15, DB-25, DB-37, DB-50
• Amphenol 24-pin
• Centronics 36-pin
• Telco 50-pin
• Berg 50-pin
• RJ-11 4-wire
• RJ-12 6-wire
• RJ-45 8-wire
• DEC MMJ
• M/34 (ITU V.35)
• M/50

There is also a wide range of DIN-type connectors (German/Swiss), IEC-type

connectors (French/European), BS-type connectors (British), and many others for audio,
video, and computer applications. With all connectors, the main requirement is to ensure
compatibility with the equipment being used. Suitable types of connectors are usually
recommended in the manufacturer’s specifications.

The DB-9, DB-25, and DB-37 connectors, used with the EIA standard interfaces such
as RS-232, RS-422, and RS-485 have become very common in data communication
applications. The interface standards for multidrop serial data communications RS-422
and RS-485 do not specify any particular physical connector. Manufacturers, who sell
equipment, complying with these standards, can use any type of connector, but the DB-9,
DB-25 (pin assignments to EIA-530) DB-37 (pin assignments to EIA-449) and
sometimes screw terminals, have become common. Another connector commonly used
for high speed data transmission is the ITU V.35 34-pin connector.

116 Practical Data Communications for Instrumentation and Control��

5.4 Coaxial cables
Coaxial cables are used, almost without exception, for all antennas operating between the
HF band of frequencies up to the SHF band around 2 GHz, where waveguides begin to
take over.

The impedance of a cable is determined by the ratio of the surrounding shield and the
diameter of the inner conductors. Although the characteristic impedance of a television
antenna is 75 Ω, most communications antennas have an impedance of 50 Ω and care
should always be taken to use the correct cable.

The size of a coaxial cable is determined by two factors – the transmitter power being
fed to the antenna system and the frequency being used.

If a transmitter has an output power of 500 watt, the peak voltage across a 50 Ω cable
will be 223 volt and the current will be about 3.3 amp. If the dielectric insulation is
insufficient, the cable will breakdown and if the inner conductor is too small, there will be
a high resistive loss in the cable.

Higher radio frequencies energy tends to travel on the surface of a conductor rather than
through the center so a small diameter inner conductor will obviously have a small
surface area and consequently a high resistance. It follows that as the frequency increases,
so should the diameter of the inner conductor but the impedance of the cable is
determined in part by the capacitance between the inner conductor and the screen.
Therefore, in order to maintain the correct impedance, the size of the inner conductor and
the spacing between the conductors, i.e. the dielectric, are the critical design elements.

Smaller types of coaxial cable, up to about 10 mm (0.4") diameter, use a copper braided
sleeve as the outer conductor because this is efficient and cheap to manufacture. The
largest coaxial cables are 200 mm (8") diameter, and as these cables may have to be
curved around a bend any deformity badly affects the cable performance, a new type of
shield conductor was developed.

The first outer conductor was an aluminum tube but this proved difficult to handle and
was replaced with a copper tube with spiral corrugations. The corrugations ensure that the
diameter, at any point along the length of the tube, is always constant. In this way, the
average distance between the inner conductor and the outer is constant so the impedance
remains stable even though the cable may be easily curved around quite a small radius
without any damage.

Cable manufacturers publish accurate data on the characteristics of the cables they
produce. The selection of a cable may seem to involve little more than finding the
cheapest cable that will carry the power involved. However, in most cases where radio
links are involved, this will be a minor consideration and the attenuation of the cable will
be the major factor.

5.5 Fiber-optic cables
Fiber-optic cables are normally used for the transmission of digital signals. The capa-
bilities of fiber-optic cables will satisfy any future requirement in data communications,
allowing transmission rates in the Gigabits per second (Gbps) range. There are many
currently installed systems operating at around 10 Gbps.

Fiber-optic cables are generally cheaper than coaxial cables, especially when comparing
data capacity per unit cost. However, the transmission and receiving equipment, together
with more complicated methods of terminating and joining these cables, makes fiber-
optic cable the most expensive medium for data communications. The cost of the cables
has halved since the late 1980s and is becoming insignificant in an economic equation

Cabling basics 117

and it is worth noting that fiber-optic technology has become more affordable over the
last decade and this trend will continue into the future.

The main benefits of fiber-optic cables are:
• Enormous bandwidth (greater information carrying capacity)
• Low signal attenuation (greater speed and distance characteristics)
• Inherent signal security
• Low error rates
• Noise immunity (impervious to EMI and RFI)
• Logistical considerations (light in weight, smaller in size)
• Total galvanic isolation between ends (no conductive path)
• Safe for use in hazardous areas
• No crosstalk

Theory of operation
The optical fiber forms a wave guide for light with the light being guided through the
core of the fiber.

Communication over fiber-optic cables works on the principle that light propagates
through different media at different speeds (in the same manner as radio waves). When
light moves from one medium of a certain density to another of a different density, the
light will change direction. This phenomenon is known as refraction.

The effectiveness of a medium to propagate light can be expressed as a ratio of an
absolute reference; light traveling through a vacuum (3 ×108 m/s) i.e. speed of light in free
space. This ratio is known as the ‘Refractive Index’ and is calculated as:

medium in thelight of Speed
in vacuumlight of Speed Index Refractive =n

In a typical fiber-optic medium, light travels at approximately 2 × 108 m/s. Therefore

the refractive index is:

8
8

1 10 × 2
10 × 3 = n

 n1 = 1.5

The optical medium is said to have a refractive index of 1.5.
Fiber-optics follows Snell’s law, which states that the ratio of the sine of the angle of

incidence (Qi) to the sine of the angle of refraction (Qr) is equal to the ratio of the speed of
light in the two respective media (C1/C2). This is equal to a constant (K), which has a ratio
of the refractive index of medium 2 to medium 1 (n2/n1).

The formula is:

 Sin
Sin

i

r

q
q

 =
C

C
 = Κ =

n
n

1

2
2

1

118 Practical Data Communications for Instrumentation and Control��

Fiber-optic cables are manufactured with a pure optical glass core, surrounded by a
glass cladding. The core and cladding are treated with an impurity so that their refractive
indices are different. Figure 5.2 and Figure 5.3 show the basic construction of the optical
fiber. This construction allows the core to guide the light pulses to the receiver.

Because the refractive index of the core and cladding is different, light entering the core
at an acceptable angle of entry will propagate the length of the fiber without losing light
through the cladding. Light must enter the fiber within a ‘cone of acceptance’ angle.
When light attempts to enter at an angle greater than the ‘cone of acceptance’, it will not
reflect from the cladding and is lost.

Figure 5.2
Optical fiber principles

Cabling basics 119

Figure 5.3
Typical optical fiber values (multimode fiber/step index)

The optical fiber acts as a conduit (or wave guide) for pulses of light generated by a
light source. The light source is typically a laser diode or light emitting diode (LED)
operating at wavelengths of 0.85, 1.3 or 1.55 micrometers.

The optical fiber is coated with a protective colored sheath to provide environmental
protection and easy identification.

Modes of propagation
Fiber types are generally identified by the number of paths that the light follows inside
the fiber core called ‘modes’ of propagation. There are two main modes of light
propagation through an optic fiber, which give rise to two main constructions of fiber,
‘multimode’, and ‘monomode’ (also known as ‘single mode’).

Multimode fibers are easier and cheaper to manufacture than monomode fibers.
Multimode cores are typically 50 times greater than the wavelength of the light signal
they will propagate. With this type of fiber, an LED transmitter light source is normally
used because it can be coupled with less precision than a laser diode.

120 Practical Data Communications for Instrumentation and Control��

With the wide aperture and LED transmitter, the multimode fiber will send light in
multiple paths (modes) toward the receiver as illustrated in Figure 5.4.

Figure 5.4
LED light source coupled to a multimode fiber (Step Index)

The light takes many paths between the two ends as it reflects from the sides of the
fiber core. This causes the light paths to arrive both out of phase and at different times
resulting in a spreading of the original pulse shape. As a result, the original sharp pulses
sent from one end become distorted by the time they reach the receiving end.

The problem becomes worse as data rates increase. Multimode fibers, therefore, have a
limited maximum data rate (bandwidth) as the receiver can only differentiate between the
pulsed signals at a low data rate. The effect is known as ‘modal dispersion’ and its result
referred to as ‘intersymbol interference’. For slower data rates over short distances,
multimode fibers are quite adequate and speeds of up to 300 Mbps are readily available.

A further consideration, with multimode fibers, is the ‘index’ of the fiber (how the
impurities are applied in the core). The cable can be either ‘graded index’ (more
expensive but better performance) or ‘step index’ (less expensive), refer to Figure 5.5.
The type of index affects the way in which the light waves reflect or refract off the walls
of the fiber. Graded index cores focus the modes as they arrive at the receiver, and
consequently improve the permissible data rate of the fiber.

The core diameters of multimode fibers typically range between
50–100 mm. The two most common core diameters are 50 and 62.5 mm.

Cabling basics 121

Figure 5.5
Optical fibers and their characteristics

‘Monomode’ or ‘single mode’ fibers are less expensive but more difficult to interface.
They allow only a single path or mode for the light to travel down the fiber with minimal
reflections. Monomode fibers typically use lasers as light sources.

Monomode fibers do not suffer from major dispersion or overlap problems and permit a
very high rate of data transfer over much longer distances. The core of the fibers is much
thinner than multimode fibers at approximately 5–10 mm. The cladding diameter is
125 mm, the same as for multimode fibers.

Source lighting must be powerful and aimed precisely into the fiber to overcome any
misalignment (hence the use of laser diodes). The thin monomode fibers are difficult to
work with when splicing, terminating, and are consequently expensive to install.

A typical application for a monomode installation would be a high capacity telephone
link where the traffic volume makes a large bandwidth necessary.

122 Practical Data Communications for Instrumentation and Control��

Figure 5.6
Monomode and multimode optic fibers

Specification of cables
Optical fibers are specified based on diameter. A fiber specified as 50/150 has a core of
50 µm and a cladding diameter of 150 µm. The most popular sizes of multimode fibers
are 50/125, used mainly in Europe, and 62.5/125, used mainly in Australia and the USA.

Another outer layer provides an external protection against abrasion and shock. Outer
coatings can range from 250–900 µm in diameter, and very often cable specifications
include this diameter, for example: 50/150/250.

To provide additional mechanical protection, the fiber is often placed inside a loose, but
stiffer, outer jacket which adds thickness and weight to the cable. Cables made with
several fibers are most commonly used. The final sheath and protective coating on the
outside of the cable depends on the application and where the cable will be used. A
strengthening member is normally placed down the center of the cable to give it
longitudinal strength. This allows the cable to be pulled through a conduit or hung from a
power pole without causing damage to the fibers. The tensile members are made from
steel or Kevlar, the latter being more common. In industrial and mining applications, fiber
cores are often placed inside cables used for other purposes, such as trailing power cables
for large mining, stacking, or reclaiming equipment.

Experience has shown that optic fibers will break two or three times in a 25 year period.
In general, the incremental cost of extra fiber cores in cables is not very high when
compared to overall costs (including installation and termination costs). Therefore, it is
often worthwhile specifying extra cores as spares, or for future use.

Joining cables
In the early days of optic fibers, connections and terminations were a major problem.
Largely, this has improved but connections still require a great deal of care to avoid
signal losses that will affect the overall performance of the communications system.

Cabling basics 123

There are three main methods of splicing optic fibers:
Mechanical: Where the fibers are fitted into mechanical alignment structures
Chemical: Where the two fibers are fitted into a barrel arrangement with epoxy

glue in it – they are then heated in an oven to set the glue
Fusion splicing: Where the two fibers are heat-welded together

To overcome the difficulties of termination, fiber-optic cables can be provided by a
supplier in standard lengths such as 10 m, 100 m or 1000 m with the ends cut and finished
with a mechanical termination ferrule that allows the end of the cable to slip into a closely
matching female socket. This enables the optical fiber to be connected and disconnected
as required. The mechanical design of the connector forces the fiber into a very accurate
alignment with the socket and results in a relatively low loss. Similar connectors can be
used for in-line splicing using a double-sided female connector.

Although the loss through this type of connector can be an order of magnitude greater
than the loss of a fused splice, it is much quicker and requires no special tools or training.
Unfortunately, mechanical damage or an unplanned break in a fiber requires special tools
and training to repair and re-splice. One way around this problem is to keep spare
standard lengths of pre-terminated fibers that can quickly and easily be plugged into the
damaged section. The techniques for terminating fiber-optic cables are constantly being
improved to simplify these activities.

Limitations of cables
On the negative side, the limitations of fiber-optic cables are as follows:

• The cost of source and receiving equipment is relatively high.
• It is difficult to ‘switch’ or ‘tee-off’ a fiber-optic cable so fiber-optic systems

are most suitable for point-to-point communication links.
• Techniques for joining or terminating fibers (mechanical and chemical) are

difficult and require precise physical alignment. Special equipment and
specialized training are required.

• Equipment for testing fiber-optic cables is different and more expensive from
traditional methods used for electronic signals.

• Fiber-optic systems are used almost exclusively for binary digital signals and
are not suitable for long distance analog signals.

6

����������	
����	�

	�
�������
��	

Sources of electrical noise and the ability of a cable to exclude them are important issues
when selecting and installing data cables. This chapter examines the various categories
of noise and where each of the various noise reduction techniques applies. In addition, a
brief examination is included of noise suppression techniques and filtering of the noise
that gets into the signal system.

���������	

 When you have completed studying this chapter you will be able to:

• Define the terms noise and SNR
• Explain the frequency spectrum analysis of the three noise groups
• Give examples of electrical noise sources
• Explain the four forms of electrical coupling of noise:

 – Impedance coupling
 – Electrostatic coupling
 – Magnetic/inductive coupling
 – Electromagnetic radiation

• Explain shielding techniques and shielding performance ratios, including
cable ducting and cable spacing

• Describe earthing and grounding requirements
• Describe suppression techniques
• Describe the filtering of specific noise sources

��

 ����������
��
���	�

Noise, or interference, can be defined as undesirable electrical signals, which distort or
interfere with an original (or desired) signal. In many cases, the noise will be un-
predictable due to transients (or spikes) caused, for example, by lightning. In other cases,
it may be due to the predictable 50 or 60 Hz ac ‘hum’ from power circuits close to the

 ����������	
����	�

	�
�������
��		125	

data communications cable. This unpredictability makes the design of a data com-
munications system quite challenging.

Noise can be generated from within the system itself (internal noise) or from an outside
source (external noise).

Examples of noise sources are:
• Internal noise
• Thermal noise (due to electron movement within the electrical circuits)
• Imperfections (in the electrical design)
• External noise
• Natural origins (electrostatic interference and electrical storms)
• Electromagnetic Interference (EMI) – from currents in cables
• Radio Frequency Interference (RFI) – from radio systems radiating signals
• Crosstalk (from other cables separated by a small distance)

It is commonly accepted that the main techniques used to reduce noise consist of

• Applying shielding around the signal wires
• Increasing the distance between the noise source and the signal
• Proper grounding of the shield and twisting of the signal wires

Noise is only important if it is measured in relation to the communication signal, which

carries the data information. In previous chapters, it has been demonstrated that electronic
receiving circuits for digital communications have a broad voltage range, which
determines whether a signal is a binary bit ‘1’ or ‘0’. The noise voltage has to be high
enough to take the signal voltage outside these limits for errors to occur.

The ratio of the signal voltage to the noise voltage determines the strength of the signal
in relation to the noise. This is called ‘signal to noise ratio’ (SNR) and is important in
assessing how well the communication system will operate. In data communications, the
signal voltage is relatively stable and is determined by the voltage at the source
(transmitter) and the volt drop along the line due to the cable resistance (size and length).
SNR is therefore a measure of the interference on the communication link.

The SNR is usually expressed in decibels (dB), which is the logarithmic ratio of the
signal voltage (S) to noise voltage (N).

SNR = 10log S/N dB

An SNR of 20 dB is considered low (bad), while an SNR of 60 dB is considered high

(good). The higher the SNR, the easier it is to provide acceptable performance with
simpler circuitry and cheaper cabling.

In data communications, a more relevant performance measurement of the link is the bit
error rate (BER). This is a measure of the number of successful bits received compared to
bits that are in error. A BER of 10–6 means that one bit in a million will be in error and is
considered poor performance on a bulk data communications system with high data rates.
A BER of 10–12 (one error bit in a million, million) is considered very good. Over
industrial systems, with low data requirements, a BER of 10–4 could be quite acceptable.

There is a relationship between SNR and BER. As the SNR increases, the error rate
drops off rapidly as is shown in Figure 6.1. Most communications systems start to
provide reasonably good BERs when the SNR is above 20 dB.

126		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

Figure 6.1
Relationship between the bit error rate and the signal to noise ratio

���
 ���������
�����	�	
��
���	�

Another useful way of evaluating the effects of noise is to examine its frequency
spectrum. Noise can be seen to fall into three groups:

• Wideband noise
• Impulse noise
• Frequency specific noise

The three groups are shown in the simplified frequency domain as well as the

conventional time domain. In this way, we can appreciate the signal’s changing properties
as well as viewing the amplitude in the customary time domain.

Wideband noise contains numerous frequency components and amplitude values. These
are depicted in the time domain graph shown in Figure 6.2 and in the frequency domain
graph shown in Figure 6.3.

 ����������	
����	�

	�
�������
��		127	

Figure 6.2
Time domain plot of wideband noise

In the frequency domain, the energy components of wideband noise extend over a wide
range of frequencies (frequency spectrum).

Figure 6.3
Frequency domain plot of wideband noise

128		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

Wideband noise will often result in the occasional loss or corruption of a data bit. This
occurs at times when the noise signal amplitude is large enough to confuse the system
into making a wrong decision on what digital information or character was received.
Encoding techniques such as parity checking and block character checking (BCC) are
important for wideband error detection so that the receiver can determine when an error
has occurred.

Impulse noise is best described as a burst of noise which may last for duration of say up
to 20 ms. It appears in the time domain as indicated in Figure 6.4.

Figure 6.4
Time domain plot of impulse noise

The frequency domain illustrates this type of noise. It affects a wide bandwidth with
decreasing amplitude versus frequency.

 ����������	
����	�

	�
�������
��		129	

Figure 6.5
Frequency domain plot of impulse noise

Impulse noise is brought about by the transient disturbances in electrical activity such
as when an electric motor starts up, or from switching elements within telephone
exchanges. Impulse noise swamps the desired signal, thus corrupting a string of data bits.
As a result of this effect, synchronization may be lost or the character framing may be
disrupted. Noise of this nature usually results in garbled data making messages difficult to
decipher. Cyclic redundancy checking (CRC) error detection techniques may be required
to detect such corruption.

Although more damaging than wideband noise, impulse noise is generally less frequent.
The time and frequency domain plots for impulse noise will vary depending on the actual
shape of the pulse. Pulse shapes may be squared, trapezoidal, triangular or sine for
example.

In general, the narrower and steeper a pulse, the more energy is placed in the higher
frequency regions.

Frequency specific noise is characterized by a constant frequency, but its amplitude
may vary depending on how far the communication system is from the noise source, the
amplitude of the noise signal and the shielding techniques used.

130		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

Figure 6.6
Time domain plot of constant frequency noise

This noise group is typical of ac power systems and can be reduced by separating the
data communication system from the power source. Because this form of noise has a
predictable frequency spectrum, noise resistance is easier to implement within the system
design.

Filters are typically used to reduce this to an acceptable level.

Figure 6.7
Frequency domain plot of constant frequency noise

 ����������	
����	�

	�
�������
��		131	

���
 ������	
��
����������
���	�

Typical sources of noise are devices, which produce quick changes (or spikes) in voltage
or current, such as:

• Large electrical motors being switched on
• Fluorescent lighting tubes
• Lightning strikes
• High voltage surges due to electrical faults
• Welding equipment

From a general point of view, there must be three contributing factors before an

electrical noise problem can exist. These are:
• A source of electrical noise
• A mechanism coupling the source to the affected circuit
• A circuit conveying the sensitive communication signals

���
 ����������
��������
��
���	�

There are four forms of coupling of electrical noise into the sensitive data com-
munications circuits. These are:

• Impedance coupling (sometimes referred to as conductance coupling)
• Electrostatic coupling
• Magnetic or inductive coupling
• Radio frequency radiation (a combination of electrostatic and magnetic)

Each of these noise forms will be discussed in some detail in the following sections.

Although the order of discussion is indicative of the frequency of problems, this will
obviously depend on the specific application.

 !��"����
��������
#��
��!!��
�!��"����
��������$

For situations where two or more electrical circuits share common conductors, there can
be some coupling between the different circuits with deleterious effects on the connected
circuits. Essentially, this means that the signal current from the one circuit proceeds back
along the common conductor resulting in an error voltage along the return bus, which
affects all the other signals. The error voltage is due to the capacitance, inductance, and
resistance in the return wire. This situation is shown in the Figure 6.8.

132		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

Figure 6.8
Impedance coupling

Obviously, the quickest way to reduce the effects of impedance coupling is to minimize
the impedance of the return wire. The best solution is to use a balanced circuit with
separate returns for each individual signal.

 ����������	
����	�

	�
�������
��		133	

Figure 6.9
Impedance coupling eliminated with balanced circuits

�������	�����
��
����������
��������

This form of coupling is proportional to the capacitance between the noise source and the
signal wires. The magnitude of the interference depends on the rate of change of the noise
voltage and the capacitance between the noise circuit and the signal circuit.

134		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

Figure 6.10
Electrostatic coupling

In the Figure 6.10, the noise voltage is coupled into the communication signal wires
through the two capacitors C1 and C2, and a noise voltage is produced across the resis-
tances in the circuit. The size of the noise (or error) voltage in the signal wires is pro-
portional to the:

• Inverse of the distance of noise voltage from each of the signal wires
• Length (and hence impedance) of the signal wires into which the noise is

induced
• Amplitude (or strength) of the noise voltage
• Frequency of the noise voltage

There are four methods for reducing noise induced by electrostatic coupling. They are:

• Shielding of the signal wires
• Separating from the source of the noise
• Reducing the amplitude of the noise voltage (and possibly the frequency)
• Twisting of the signal wires

Figure 6.11 indicates the situation that occurs when an electrostatic shield is installed

around the signal wires. The currents generated by the noise voltages prefer to flow down
the lower impedance path of the shield rather than the signal wires. If one of the signal
wires and the shield are tied to the earth at one point, which ensures that the shield and
the signal wires are at an identical potential, then reduced signal current flows between
the signal wires and the shield.

Note: The shield must be of a low resistance material such as aluminum or copper. For
a loosely braided copper shield (85% braid coverage), the screening factor is about 100

 ����������	
����	�

	�
�������
��		135	

times or 20 dB i.e. C3 and C4 are about 1/100 C1
or C2. For a low resistance multi-layered

screen, this screening factor can be 35 dB or 3000 times.

Figure 6.11
Shield to minimize electrostatic coupling

Twisting of the signal wires provides a slight improvement in the induced noise voltage
by ensuring that C1 and C2 are closer together in value; thus ensuring that any noise
voltages induced in the signal wires tend to cancel one another out.

Note: Provision of a shield by a cable manufacturer ensures that the capacitance
between the shield and the wires are equal in value (thus eliminating any noise voltages
by cancellation).

%�������
��
��"������
��������

This depends on the rate of change of the noise current and the mutual inductance
between the noise system and the signal wires. Expressed slightly differently, the degree
of noise induced by magnetic coupling will depend on the:

• Magnitude of the noise current
• Frequency of the noise current
• Area enclosed by the signal wires (through which the noise current magnetic

flux cuts)
• Inverse of the distance from the disturbing noise source to the signal wires

The effect of magnetic coupling is shown in Figure 6.12.

136		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

Figure 6.12
Magnetic coupling

The easiest way of reducing the noise voltage caused by magnetic coupling is to twist
the signal conductors. This results in lower noise due to the smaller area for each loop.
This means less magnetic flux to cut through the loop and consequently a lower induced
noise voltage. In addition, the noise voltage that is induced in each loop tends to cancel
out the noise voltages from the next sequential loop. Hence, an even number of loops will
tend to have the noise voltages canceling each other out. It is assumed that the noise
voltage is induced in equal magnitudes in each signal wire due to the twisting of the wires
giving a similar separation distance from the noise voltage. See Figure 6.13.

Figure 6.13
Twisting of wires to reduce magnetic coupling

 ����������	
����	�

	�
�������
��		137	

The second approach is to use a magnetic shield around the signal wires. The magnetic
flux generated from the noise currents induces small eddy currents in the magnetic shield.
These eddy currents then create an opposing magnetic flux ∅1 to the original flux ∅2.
This means a lesser flux (∅2 – ∅1) reaches our circuit!

Figure 6.14
Use of magnetic shield to reduce magnetic coupling

Note: The magnetic shield does not require earthing. It works merely by being present.
High permeability steel makes best magnetic shields for special applications. However,
galvanized steel conduit makes a quite effective shield.

&�"��
���������
��"������

The noise voltages induced by electrostatic and inductive coupling (discussed above) are
manifestations of the near field effect, which is electromagnetic radiation close to the
source of the noise. This sort of interference is often difficult to eliminate and requires
close attention of grounding of the adjacent electrical circuit and the earth connection is
only effective for circuits in close proximity to the electromagnetic radiation. The effects
of electromagnetic radiation can be neglected unless the field strength exceeds
1 volt/meter. This can be calculated by the formula:

Distance
Power0.173 = strengthField

where:
 – Field strength is in volt/meter

 – Power is in kilowatt
 – Distance is in km

The two most commonly used mechanisms to minimize electromagnetic radiation are:
• Proper shielding (iron)
• Capacitors to shunt the noise voltages to earth

Any incompletely shielded conductors will perform as a receiving aerial for the radio
signal and hence care should be taken to ensure good shielding of any exposed wiring.

138		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

��'
 �(���"���

It is important that electrostatic shielding is only earthed at one point. More than one
earth point will cause circulating currents. The shield should be insulated to prevent
inadvertent contact with multiple points, which behave as earth points resulting in
circulating currents. The shield should never be left floating because this would tend to
allow capacitive coupling, rendering the shield useless.

Two useful techniques for isolating one circuit from another are by the use of opto-
isolation as shown in the Figure 6.15, and transformer coupling as shown in Figure 6.16.

Figure 6.15
Opto-isolation of two circuits

Although opto-isolation does isolate one circuit from another, it does not prevent noise
or interference being transmitted from one circuit to another.

Figure 6.16
Transformer coupling

Transformer coupling can be preferable to optical isolation when there are very high
speed transients in the one circuit. There is some capacitive coupling between the LED
and the base of the transistor, which in the opto-coupler can allow these types of
transients to penetrate one circuit from another. This is not the case with transformer
coupling.

 ����������	
����	�

	�
�������
��		139	

���
)��"
	(���"���
������!����
�����	

The use of some form of low resistance material covering the signal conductors is
considered good shielding practice for reducing electrostatic coupling. When comparing
shielding with no protection, this reduction can vary from copper braid (85% coverage)
which returns a noise reduction ratio of 100:1 to aluminum Mylar tape, with drain wire,
with a ratio of 6000:1.

Twisting the wires to reduce inductive coupling reduces the noise (in comparison to no
twisting) by ratios varying from 14:1 (for four inch lay) to 141:1 (for one inch lay). In
comparison, putting parallel (untwisted) wires into steel conduit only gives a noise
reduction of 22:1.

On very sensitive circuits with high levels of magnetic and electrostatic coupling the
approach is to use coaxial cables. Double shielded cable can give good results for very
sensitive circuits.

Note: With double shielding, the outer shield could be earthed at multiple points to
minimize radio frequency circulating loops. This distance should be set at intervals of less
than 1/8th the wavelength of the radio frequency noise.

��*
 +����
"������
��
����,��	

These are useful in providing a level of attenuation of electric and magnetic fields. These
figures are 60 Hz for magnetic fields and 100 kHz for electric fields.

Typical screening factors are:
• 5 cm (0.2 inch) aluminum conduit with 0.154 inch thickness

 – Magnetic fields 1.5:1
 – Electric fields 8000:1

• Galvanized Steel conduit 5 cm (0.2 inch), wall thickness 0.154 inch with
 – Magnetic fields 40:1
 – Electric fields 2000:1

��-
 +����
	������

In situations where there are a large number of cables varying in voltage and current
levels, the IEEE 518-1982 standard has developed a useful set of tables indicating
separation distances for the various classes of cables. There are four classification levels
of susceptibility for cables. Susceptibility, in this context, is understood to be an
indication of how well the signal circuit can differentiate between the undesirable noise
and required signal. It follows that a data communication physical standard such as
RS-232E would have a high susceptibility and a 1000 volt, 200 amp ac cable has a low
susceptibility.

The four susceptibility levels defined by the IEEE 518-1982 standard are briefly:
• Level 1 – High

This is defined as analog signals less than 50 volt and digital signals less than
15 volt. This would include digital logic buses and telephone circuits. Data
communication cables fall into this category.

140		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

• Level 2 – Medium
This category includes analog signals greater than 50 volt and switching
circuits.

• Level 3 – Low
This includes switching signals greater than 50 volt and analog signals greater
than 50 volt. Currents less than 20 amp are also included in this category.

• Level 4 – Power
This includes voltages in the range 0–1000 Volt and currents in the range 20–
800 amp. This applies to both ac and dc circuits.

The IEEE 518 also provides for three different situations when calculating the

separation distance required between the various levels of susceptibilities.
In considering the specific case where one cable is a high susceptibility cable and the

other cable has a varying susceptibility the required separation distance would vary as
follows:

• Both cables contained in a separate tray
 – Level 1 to Level 2 – 30 mm
 – Level 1 to Level 3 – 160 mm
 – Level 1 to Level 4 – 670 mm

• One cable contained in a tray and the other in conduit
 – Level 1 to Level 2 – 30 mm
 – Level 1 to Level 3 – 110 mm
 – Level 1 to Level 4 – 460 mm

• Both cables contained in separate conduit
 – Level 1 to Level 2 – 30 mm
 – Level 1 to Level 3 – 80 mm
 – Level 1 to Level 4 – 310 mm

The figures are approximate as the original standard is quoted in inches.
A few words need to be said about the construction of the trays and conduits. It is

expected that the trays are manufactured from metal and be firmly earthed with complete
continuity throughout the length of the tray. The trays should also be fully covered
preventing the possibility of any area being without shielding.

��.
 ����(���
��"
�����"���
�������!���	

This is a contentious issue and a detailed discussion laying out all the theory and practice
is possibly the only way to minimize the areas of disagreement. The picture is further
complicated by the different national codes, which whilst not actively disagreeing with
the basic precepts of other countries tend to lay down different practical techniques in the
implementation of a good earthing system.

A typical design should be based around two separate electrically insulated earth
systems. The two earth systems are:

• The equipment earth
• The instrumentation (and data communications) earth

 ����������	
����	�

	�
�������
��		141	

The aims of these two earthing systems are as follows:
• To minimize the electrical noise in the system
• To reduce the effects of fault or earth loop currents on the instrumentation

 system
• To minimize the hazardous voltages on equipment due to electrical faults

Earth (or ground) is defined as a common reference point for all signals in equipment

situated at zero potential. Below 10 MHz, the principle of a single point earthing system
is the optimum solution. Two key concepts to be considered when setting up an effective
earthing system are:

• To minimize the effects of impedance coupling between different circuits (i.e.
when three different currents for example flow through a common impedance)

• To ensure that earth or ground loops are not created (e.g. by mistakenly tying
the screen of a cable at two points to earth)

There are three types of earthing systems possible as shown in Figure 6.17. The series

single point is perhaps the more common, while the parallel single point is the preferred
approach with a separate earthing system for groups of signals:

• Safety or power earth
• Low level signal (or instrumentation) earth
• High level signal (motor controls) earth
• Building earth

142		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

Figure 6.17
Various earthing configurations

��
/
 ������		���
���(�����	

It is often appropriate to approach the problem of electrical noise proactively by limiting
the noise at the source. This requires knowledge of the electrical apparatus that is causing
the noise and then attempting to reduce the noise caused here. The two main approaches
are shown in Figure 6.18.

 ����������	
����	�

	�
�������
��		143	

Figure 6.18
RC network in parallel across coil

In Figure 6.18, the inductance will generate a back emf across the contacts when the
voltage source applied to it is switched off. This RC network then takes this back emf and
thus reduces damage to the contacts.

The voltage can be limited by various combinations of devices (depending on whether
the circuit is ac or dc).

The user of these techniques should be aware that the response time of the coil can be
reduced by a significant time e.g. the dropout time of a coil can be increased by a factor
of ten. Hence, this should be approached with caution where quick response is required
from regular switched circuits (apart from the obvious deleterious impact on safety due to
slowness of operation).

Two other areas to consider are:

�������
���������"
���������	
#��
�+&	$
��"
�����	

Generate considerable electrical noise due to the switching of large currents. A possible
solution is to place a correctly sized inductor placed in series with the switching device.

0��(�����
����������

Can be affected by the use of voltage limiters (suitably rated for the high level of current
and voltage) connected across the power lines.

144		���������	����	�����
������
�	���	�
������
�����
	�

	��
����	

��

 ���������

Filtering should be done as close to the source of noise as possible. A table below
summarizes some typical sources of noise and possible filtering means.

Table 6.1
Typical noise sources and some possible means of filtering

7

Modems and multiplexers

This chapter reviews the concepts of modems and multiplexers, their practical use,
position and importance in the operation of a data communications system.

Objectives
When you have completed studying this chapter you will be able to:

• Explain the modes of operation of a modem
• Describe the role of interchange circuits
• Describe three methods of flow control
• Explain the causes of signal distortion
• Describe the different methods of modulation:

 – ASK
 – FSK
 – PSK
 – QAM
 – TCM

• List and describe the components of a modem
• Describe the properties of different modem types:

 – Dumb modems
 – Smart modems, including their states and commands

• Describe radio modems:
 – Terms
 – Modes
 – Features
 – Spread spectrum modems

• Describe the error detection protocols
• Describe data compression techniques
• List and describe the CCITT and Bell modem standards
• Explain troubleshooting
• Describe modem selection
• Describe three multiplexing concepts

146 Practical Data Communications for Instrumentation and Control

• Describe terminal multiplexers
• Describe statistical multiplexers

7.1 Introduction

Communications systems, whether they are telephone, landline, or radio, cannot directly
transport digital information without some distortion of the signal. This is due to the
bandwidth limitation inherent in any of the connecting mediums. A conversion device,
called a modem (modulator/demodulator), is required to convert the digital signals
generated by the transmitting computer, into an analogue form suitable for long distance
transmission. The demodulator in the modem receives analogue information and converts
it back to the original digital information. Figure 7.1 gives a schematic view of the place
of the modem in the communications hierarchy.

Figure 7.1
The modem as a component in a typical communication system

The bandwidth in a telephone network, for example, is limited by cable capacitance and
inductance. The bandwidth is defined as the difference between the upper and lower
allowable frequency and is typically 300 Hz to 3400 Hz for a telephone cable. This is
illustrated in Figure 7.2.

Figure 7.2
The bandwidth limitation problem

Modems and multiplexers 147

An example of what a digital signal would look like at the far end of a cable without
conversion to an analog signal is given in Figure 7.3.

Figure 7.3
Injection of a digital signal down a cable

7.2 Modes of operation

 Modems can operate in two modes:
• Half duplex
• Full duplex

A full duplex system is more efficient than a half duplex system, as data can flow in

both directions simultaneously. A full duplex system requires a communication capacity
of at least twice that of a half duplex system, where data can flow in both directions, but
in only one direction at a time, as discussed in Chapter 2.

7.3 Synchronous or asynchronous
 Modems can operate in either of two modes.

• Asynchronous
• Synchronous

Asynchronous
In asynchronous communication each character is encoded with a start bit at the
beginning of the character bit stream and a parity and stop bit at the end of the character
bit stream. The start bit allows the receiver to synchronize with the transmitter so that the
receiver looks for each character as it is sent. Once the character has been received the
communications link returns to the idle state and the receiver waits for the next start bit
indicating the arrival of the next character. This is illustrated in Figure 7.4.

148 Practical Data Communications for Instrumentation and Control

Figure 7.4
Asynchronous transmission of a few characters

Figure 7.5
Format of a typical serial asynchronous data message

Synchronous communications
Synchronous communication relies on all characters being sent in a continuous bit stream.
The first few bytes in the message contain synchronization data allowing the receiver to
synchronize to the incoming bit stream. Synchronization is then maintained by a timing
signal or clock. The receiver follows the incoming bit stream and maintains a close
synchronization between the transmitter clock and receiver clock. Synchronous com-
munication provides for far higher speeds of transmission of data, but is avoided in many
systems because of the greater technical complexity of the communications’ hardware.

Figure 7.6
Synchronous communication protocol frame

Modems and multiplexers 149

The major difference between asynchronous and synchronous communications with
modems is the need for timing signals.

A synchronous modem outputs a square wave on Pin 15 of the RS-232 DB-25
connector. Pin 15 is called the transmit clock pin or more formally the DCE transmitter
signal element timing pin. The square wave is set to the frequency of the modem’s bit
rate. The attached personal computer, the DTE, synchronizes its transmission of data
from Pin 2 to the modem.

7.4 Interchange circuits
The interchange circuits that can be employed to change the operation of the attached
communications devices are:

• Signal quality detector
• Data signal rate selector

Signal quality detector (CG, Pin 21)
If there is high probability of error in the received data to the modem because of poor
signal quality this line is set to OFF.

Data signal rate selector (CH/CI, Pin 23)
If the signal quality detector pin indicates that the quality of the signal is unacceptable,
that is, it is set to OFF, the terminal may set Pin 23 to ON to select a higher data rate; or
OFF to select a lower data rate. This is called the CH circuit. If, however, the modem
selects the data rate and advises the terminal on Pin 23 (ON or OFF), the circuit is known
as circuit CI.

7.5 Flow control
Flow control techniques are widely used to ensure that there will be no overflow of data
by the device receiving a stream of characters, which it is temporarily unable to process
or store. The receiving device needs a facility to signal the transmitter to temporarily
cease sending characters down the line. Flow control between the PC and modem can be
achieved either through hardware or software handshaking.

There are three mechanisms of flow control:
• XON/XOFF signaling, software based
• ENQ/ACK, software based
• RTS/CTS signaling, hardware based

When the modem decides that it has too much data arriving, it sends an XOFF character

to the connected terminal to tell it to stop transmitting characters. This typically occurs
when the modem memory buffer is approximately 66% full. The delay in transmission of
characters by the terminal allows the modem to process the data in its memory buffer.
Once the data has been processed and the memory buffer has emptied to typically 33%
full, the modem sends an XON character to the terminal and transmission of data to the
modem resumes. XON and XOFF are two defined ASCII characters DC1 and DC3
respectively.

XON/XOFF signaling works well unless there are flow control characters
(XON/XOFF) in the normal data stream. These characters can cause problems and should

150 Practical Data Communications for Instrumentation and Control

be removed from the standard stream of transmitted information and reserved for control
purposes.

ENQ/ACK
The terminal sends an ENQ control character to the modem when it wants to transmit a
finite block of data. When the modem is ready to receive characters, it transmits an ACK,
which then allows the terminal to commence transmission of this block of data. The
process is repeated for subsequent blocks of data.

RTS/CTS signaling
This technique of hardware flow control is a simplified version of the full hardware
handshaking sequence discussed. When the terminal wants to transmit data to the modem,
it asserts the request to send (RTS) line and waits for the modem to assert the clear to
send (CTS) line before transmitting. When the modem is unable to process any further
characters it switches off, or inhibits, the CTS control line. The terminal device then stops
transmitting characters until the CTS line is again asserted.

7.6 Distortion
There are two significant causes of distortion in the signal during communications (as
discussed in Chapter 4). These are:

• Attenuation distortion
• Envelope delay distortion

Both forms of distortion are illustrated in Figure 7.7

Modems and multiplexers 151

Figure 7.7
Attenuation distortion and envelope delay

Attenuation distortion
Attenuation distortion indicates that the theoretical smooth, horizontal plot of power
transmitted versus frequency is not realized in practice. Higher frequencies tend to
attenuate more easily and attenuation becomes more non-linear at the edges of the
operating bandwidth, or ‘passband’. Hence, the ‘equalizer’ compensates with an equal
and opposite effect, giving a constant total loss throughout the passband.

152 Practical Data Communications for Instrumentation and Control

Envelope delay distortion
Envelope delay distortion reflects the reality of transmission of signals down a line where
the phase change to frequency is non linear, that is, the phase tends to alter as the signal is
transmitted down the communications link. The phase delay is calculated by dividing the
phase by the frequency of the signal at any point along the line. The slope of phase versus
frequency is called the envelope delay. Delay distortion causes problems in that two
different frequencies (indicating a‚ ‘1’ or a ‘0’ bit) interfere with each other at the
receiving modem thus causing a potential error, called intersymbol interference.

7.7 Modulation techniques
The modulation process modifies the characteristics of a carrier signal, which can be
represented as a sine wave, with the equation:

F(t) = A sin (2 /ft + Æ)

where:

F(t) = instantaneous value of voltage at time t
A = maximum amplitude
f = frequency
Æ = phase angle

There are several modulation techniques:

• Amplitude modulation or amplitude shift keying (ASK)
• Frequency modulation or frequency shift keying (FSK)
• Phase modulation or phase shift keying (PSK)
• Quadrature amplitude modulation (QAM)

Amplitude shift keying (ASK)
The amplitude of the carrier signal is varied according to the binary stream of incoming
data. ASK is sometimes still used for low data rates, however, it does have difficulty
distinguishing the signal from the noise, as noise in the communications channel is an
amplitude based phenomenon.

This form of modulation is indicated in Figure 7.8.

Figure 7.8
Operation of amplitude shift keying

Modems and multiplexers 153

Frequency shift keying (FSK)
Frequency modulation allocates different frequencies to logic 1 and logic 0 of the binary
data message. FSK is primarily used by modems operating at data rates of up to 300 bps
in full duplex mode and 1200 bps in half duplex mode.

The Bell 103/113 and the compatible ITU V.21 standards are indicated in Table 7.1.

Table 7.1
CCITT V.21 and Bell System 103/113 modems frequency allocation

The Bell 103/113 modems are setup in either originate or answer mode. Typically,
terminals are connected to originate modems and main frame computers are connected to
answer type modems. It is easy to communicate when originate modems are connected to
answer mode modems, but similar modems, for example, two originate modems
connected together, cannot communicate with each other as they expect different
frequencies.

Because of the two different bands of frequencies in which the sets of signals operate,
full duplex operation is possible with these modems. Note that they fit into the allowable
bandwidth of the communications channel.

Phase shift keying (PSK)
PSK is the process of varying the carrier signal by phase. There are two forms of phase
modulation:

• Quadrature phase shift keying (QPSK)
• Differential PSK

QPSK
 In QPSK four phase angles are used for encoding:

0°, 90°, 180° and 270°

There are four phase angles possible at any one time, allowing the basic unit of data to

be a 2-bit pair, or dibit. The weakness of this approach is that a reference signal is
required as indicated in Figure 7.9.

154 Practical Data Communications for Instrumentation and Control

Figure 7.9
Quadrature phase shift keying

Differential PSK
The preferred option is to use differential PSK where the phase angle for each cycle is
calculated relative to the previous cycle as shown in Figure 7.10.

Figure 7.10
Differential PSK

Modems and multiplexers 155

A modulation rate of 600 baud results in a data rate of 1200 bps using two bits for each
phase shift.

A typical allocation of dibits, or two bit codes, for each phase shift is as follows:

Table 7.2
Allocation of dibits for differential PSK

Quadrature amplitude modulation (QAM)
Two parameters of a sinusoidal signal, amplitude and phase, can be combined to give
QAM. QAM allows for 4 bits to be used to encode every amplitude and phase change.
Hence, a signal at 2400 baud would provide a data rate of 9600 bps. The first
implementation of QAM provided for 12 values of phase angle and 3 values of amplitude.

Figure 7.11
CCITT V.22bis quadrature amplitude modulation

156 Practical Data Communications for Instrumentation and Control

QAM also uses two carrier signals. The encoder operates on 4 bits for the serial data
stream and causes both an in-phase (IP) cosine carrier and a sine wave that serves as the
quadrature component (QC) of the signal to be modulated. The transmitted signal is then
changed in amplitude and phase resulting in the constellation pattern illustrated above.

Trellis coding
QAM modems are susceptible to noise; hence, a new technique called trellis coding was
introduced. Trellis coding allows 9600 to 14 400 bps transmission over normal tele-
communication lines and 14 400 bps and higher over good quality leased lines. In order
to minimize the errors that occur when noise is evident on the line, an encoder adds a
redundant code bit to each symbol interval.

Only certain sequences are valid. If there is noise on the line, which causes the
sequence to differ from an accepted sequence, the receiver will select the valid signal
point closest to the observed signal without needing a retransmission of the affected data.

A conventional QAM modem, which might require 1 out of every 10 data blocks to be
retransmitted, could be replaced by a modem using trellis coding where only one in every
10 000 data blocks might be in error.

7.8 Components of a modem
The components of a modem are indicated in Figure 7.12.

Figure 7.12
Basic components of a modem

Modems and multiplexers 157

The components of a modem can be divided into two areas:
• Modem transmitter
• Modem receiver

Modem transmitter
The modem transmitter contains the following:

• Data encoder
• Scrambler
• Modulator
• Amplifier

Data encoder

The data encoder takes the serial bit stream and uses multilevel encoding, where each
signal change represents more than one bit of data, to encode the data. Depending on the
modulation technique used the bit rate can be two, four, or more times the baud rate.

Scrambler

The scrambler is used for synchronous operation only. It modifies the bit stream so that
long sequences of 1s and 0s do not occur. Long sequences of 1s and 0s are difficult to use
in synchronous circuits because of the difficulties they cause in extracting clocking
information.

Modulator

The bit stream is converted into the appropriate analogue form using the selected
modulation technique. Where initial contact is established with the receiving modem, a
carrier is put on the line.

Amplifier

The amplifier increases the level of the signal to the appropriate level for the telephone
line and matches the impedance of the line.

Modem receiver
 The modem receiver contains the following:

• Filter and amplifier
• Equalizer
• Demodulator
• Descrambler
• Data decoder

Filter and amplifier

Noise is removed from the signal and the resultant signal is amplified.

158 Practical Data Communications for Instrumentation and Control

Equalizer

The equalizer minimizes the effect of attenuation and delay on the various components of
the transmitted signal. A predefined modulated signal, called a training signal, is sent
down the line by the transmitting modem. The receiving modem knows the ideal
characteristics of the training signal and the equalizer will adjust its parameters to correct
for the attenuation and delay characteristics of the signal.

Demodulator

The demodulator retrieves the bit stream from the analogue signal.

Descrambler

The descrambler is used in synchronous operation only. The descrambler restores the data
to its original serial form after it has been encoded in the scrambler circuit, ensuring that
long sequences of 1s and 0s do not occur.

Data decoder

The final bit stream is produced in the data decoder in true RS-232 format.

7.9 Types of modem
 There are two types of wire modems available today:

• Dumb, or non-intelligent modems
• Smart modems (Hayes compatible)

Dumb modems
Dumb, or non-intelligent, modems depend on the computer to which they are connected
to instruct the modem when to perform most of its tasks such as answering the telephone.

Smart modems
Smart modems have an on-board microprocessor enabling them to perform such
functions as automatic dialing and selection of the appropriate method of modulation.

As defined by RS-232, any interaction between a traditional dumb modem and the
computer equipment occurs by exchanging signal voltages across wires. For example,
without pin 20 (DTR) asserted, modems are disabled. However, the smart modem
interacts with peripheral equipment by exchanging ASCII character sequences. The smart
modem also handles such normally complex tasks as answering the phone automatically,
and is capable of answering on a particular ring. A de facto standard has been established
based on the Hayes Smartmodem.

The Hayes Smartmodem employs the minimum number of RS-232E functions
necessary for full duplex control. RS-232E connections are made through the DB-25S
(female) connector.

The smart modem has three states:
• On-line state
• Command state
• Comatose state

Modems and multiplexers 159

On-line state

The on-line state occurs whenever the smart modem is engaged in a carrier link with
another modem. In this state, it behaves as a conventional modem transferring all RS-232
input directly to its transmitter.

Command state

When not on-line the smart modem is said to be in the command state and all RS-232
data is treated as a potential command. Usually, modems power up into the command
state.

Comatose state

The comatose state is where the DTR pin is inhibited and the modem does not
acknowledge commands, participate in dialing activity, or exhibit modem behavior.

Smart modems typically do not use DIP switches to select options because all options
and commands are implemented in software. In the command state, the smart modem
monitors the bytes incoming from the RS-232 port and watches for a particular sequence
of characters referred to as the command sequence introducer. After the smart modem has
executed the commands in its command buffer, the smart modem responds with its own
sequence of ASCII characters.

There are two general classes of commands:
• Mode commands
• Numeric register commands

Mode commands

There are four basic sets of mode commands:
• User interface group
• Primary answer/dial group
• Answer/dial group
• Miscellaneous

The user interface group commands alter the way in which the smart modem interacts

with the user and includes commands, which alter speaker level setting, for example.
The primary answer/dial group commands control the dialing process with commands

such as answer, dial, and hook.
The answer/dial group commands affect the characteristics of the primary dial

command, the second group with, for example, a pause setting.
The miscellaneous group commands handle such things as managing its own carrier

and resetting the modem.

Numeric register commands

The second class of commands is the numeric class which sets up the thirteen status
registers (S0 to S12). Other more modern modems use a larger number of registers. There
are also three bit mapped registers (S13, S14 and S15). These enable the programmer to
query the smart modem about the state of its internal variables, command flags, and
current data format.

160 Practical Data Communications for Instrumentation and Control

Status registers

Smart modems use the ATS Command to set and read status registers. A typical selection
of S-registers for a smart modem is listed below:

Modems and multiplexers 161

162 Practical Data Communications for Instrumentation and Control

7.10 Radio modems
Radio modems are suitable for replacing wire lines to remote sites or as a backup to wire
or fiber-optic circuits, and are designed to ensure that computers and PLCs, for example,
can communicate transparently over a radio link without any specific modifications
required.

Figure 7.13
Radio modem configuration

Modems and multiplexers 163

Modern radio modems operate in the 400 to 900 MHz band. Propagation in this band
requires a free line of sight between transmitting and receiving antennae for reliable
communications. Radio modems can be operated in a network, but require a network
management software system (protocols) to manage network access and error detection.
Often, a master station with hot change-over, communicates with multiple radio field
stations. The protocol for these applications can use a simple poll/response technique.

The more sophisticated peer-to-peer network communications applications require a
protocol based on carrier sensing multiple access with collision detection (CSMA/CD). A
variation on the standard approach is to use one of the radio modems as a network
watchdog to periodically poll all the radio modems on the network and to check their
integrity. The radio modem can also be used as a relay station to communicate with other
systems, which are out of the range of the master station.

The interface to the radio modem is typically RS-232 but RS-422, RS-485, and fiber-
optics are also options. Typical speeds of operation are up to 9600 bps. A buffer is
required in the modem and is typically a minimum of 32 kilobytes. Hardware and
software flow control techniques are normally provided in the radio modem firmware,
ensuring that there is no loss of data between the radio modem and the connecting
terminal.

Typical modulation techniques are two level direct FM (1200 to 4800 bps) to three
level direct FM (9600 bps).

A typical schematic of a radio modem is given in Figure 7.14.

Figure 7.14
Typical block diagram of a radio modem

The following terms are used in relation to radio modems:
PTT Push to talk signal
RSSI Receive signal strength indicator – indicates the received signal

strength with a proportionally varying dc voltage.

164 Practical Data Communications for Instrumentation and Control

noise squelch Attempts to minimize the reception of any noise signal at the
discriminator output.

RSSI squelch Opens the ‘receive audio path’ when the signal strength of the RF
carrier is of a sufficiently high level.

channel monitor Indicates if the squelch is open.
soft carrier delay Allows the RF transmission to be extended slightly after the actual

end of the data message which avoids the end of transmission bursts
that occur when the carrier stops and the squelch almost
simultaneously disconnects the studio path.

RTS,
CTS,
DCD,
clock,
transmit data,
receive data All relate to RS-232.

The radio modem has a basic timing system for communications between a terminal

and the radio modem, indicated in Figure 7.15.

Modems and multiplexers 165

Figure 7.15
Radio modem timing diagram

Data transmission begins with the RTS line becoming active at the remote terminal
side. The radio modem then raises the CTS line to indicate that transmission can proceed.
At the end of the transmission, the PTT is kept active to ensure that the receiving side
detects the remaining useful data before the RF carrier is removed.

Modes of radio modems
 Radio modems can be used in two modes:

• Point to point
• Point to multi-point

A point to point system can operate in continuous RF mode, which has a minimal turn

on delay in transmission of data, and non-continuous mode where there is a considerable

166 Practical Data Communications for Instrumentation and Control

energy saving. The RTS to CTS delay for continuous and switched carriers is of the order
of 10 ms and 20 ms respectively.

A point to multi-point system generally operates with only the master and one radio
modem at a time.

In a multi-point system when the data link includes a repeater, data regeneration must
be performed to eliminate signal distortion and jitter. Regeneration is not necessary for
voice systems where some error is tolerable.

Regeneration is performed by passing the radio signal through the modem which
converts the RF analogue signal back to a digital signal and then applies this output
binary data stream to the other transmitting modem, which repeats the RF analogue signal
to the next location.

Figure 7.16
Regeneration of a signal with a radio modem

Features of a radio modem
Typical features that have to be configured in the radio modem are:

• Transmit/receive radio channel frequency.
In a point to point configuration running in a dual frequency/split channel
assignment, two radios will operate on opposing channel sets.

Modems and multiplexers 167

• Host data rate and format
Data rate/character size/parity type and number of stop bits for RS-232
communications.

• Radio channel data rate
 Data rate across the radio channel defined by the radio and bandwidth
capabilities. Note that these specifications are generally set at the time of
manufacture.

• Minimum radio frequency signal level
Should not be set too low on the receiver otherwise noise data will also be
read.

• Supervisory data channel rate
Used for flow control and should therefore not be set too low otherwise the
buffer on the receiver will overflow. Typically one flow control bit to 32 bits
of serial data is standard.

• Transmitter key up delay
The time for the transmitter to energize and stabilize before useful data is sent
over the radio link. Transmitter key up delay should be kept as low as possible
to minimize overheads.

Spread spectrum radio modems
Several countries around the world have allocated a section of bandwidth for use with
spread spectrum radio modems. In Australia and America, this is in the 900 MHz area.

In brief, a very wide band channel is allocated to the modem, for example,
approximately 3.6 MHz wide. The transmitter uses a pseudo random code to place
individual bits, or groups of bits, broadly across the bandwidth and the receiver uses the
same random code to receive them. Because they are random, a number of transceivers
can operate on the same channel and a collision of bits will be received as noise by a
receiver in close proximity.

The advantage of ‘spread spectrum’ radio modems is very high data security and data
speeds of up to 19.2 kbps. The disadvantage is the very inefficient use of the radio
spectrum.

7.11 Error detection/correction
The most popular form of error detection was initially cyclic redundancy check (CRC),
especially CRC-16. CRC is discussed in detail in Chapter 4. Unfortunately different
manufacturers implemented minor variations on the CRC approach, which resulted in
incompatibilities between different products. The advent of the Microcom networking
protocol (MNP), licensed by Microcom to numerous other manufacturers resulted in a de
facto standard developing.

MNP protocol classes
MNP defines a system for the detection and correction of errors by retransmission
between modems.

168 Practical Data Communications for Instrumentation and Control

Figure 7.17
Asynchronous and synchronous MNP frame formats

There are nine MNP Protocol classes defined in Table 7.3, which cover the
transmission alternatives. Smart modems are programmed to attempt an MNP connection
at the highest class that both modems can support. An initial frame called the link request
is used to establish the standards to be followed in transferring the data. If MNP
connection fails, the normal mode is used without error detection, correction, or data
compression.

Modems and multiplexers 169

MNP Class Async/
Synchronous

Half or Full
Duplex

Efficiency Description

1 Asynchronous Half 70% Byte oriented protocol
2 Asynchronous Full 84% Byte oriented protocol
3 Synchronous Full 108% Bit oriented protocol –

communications between (PC)
terminal and modem is still
asynchronous.

4 Synchronous Full 120% Adaptive Packet Assembly (large data
packets used if possible). Data phase
optimization (elimination of protocol
administrative overheads)

5 Synchronous Full 200% Data compression ratio of 1.3 to 2.0
6 Synchronous Full - 9600 bps V.29 modulation universal

link negotiation allows modems to
locate the highest operating speed and
use statistical multiplexing

7 Synchronous Full - Huffman encoding (enhanced data
compression) reduces data by 42%

8 Synchronous Full - CCITT V.29 fast Train Modem
technology added to class 7

9 Synchronous Half Duplex
emulates

Full Duplex

- CCITT V.32 modulation + Class 7
enhanced data compression. Selective
retransmission in which error packets
are retransmitted.

Table 7.3
 MNP protocol classes

Link access protocol modem (LAP-M)
This is recognized as the primary method for error detection and correction under the
ITU-T V.42 recommendation. MNP error detection and correction is considered the
secondary mechanism.

170 Practical Data Communications for Instrumentation and Control

7.12 Data compression techniques
Data compression is used to achieve higher effective speeds in the transmission of the
data and a reduction in transmission time.

Two of the most popular data compression methods are Adaptive Computer Tech-
nology’s (ACT) compressor technology and Microcom’s MNP class 5 and class 7
compression procedures. In 1990, the CCITT promulgated the V.42 bis standard which
defines a new data compression method known as Lempel-Ziv.

The data compression standards that will be discussed here are:
• MNP class 5
• MNP class 7, Huffman
• V.42bis, Lempel-Ziv

MNP class 5 compression
 MNP-5 involves a two stage process:

• Run length encoding
• Adaptive frequency encoding

Run length encoding

The first three bytes indicate the beginning of a run length encoded sequence. The next
byte is the repetition count of bits, with a maximum number of 250 bits. For runs of
similar bits, this can reduce the total size of the data bytes dramatically.

Essentially, the number of successive bits, which are the same, are counted and then
coded into an eight bit symbol, for example. The eight-bit symbol is then transmitted.

Data compression is used extensively in the fax machine. For example in Group 3
machines, a regular 11 inch sheet of paper can be vertically digitized into 100 lines per
inch to produce 1100 lines and horizontally each line is further digitized into
1700 bits/line.

Total size of the file = 1700 bits/line × 1100 lines = 1.87 Mbits

Assuming this file is sent on a 2400 baud modem, the transmission time for one page of

text would be 779 seconds, as calculated below. However, in practice, the transmission
time of a page is about 30 to 60 seconds. Data compression is used to achieve these
results.

The microprocessor on the facsimile machine can process the data bits before sending
them and uses a compression algorithm for compressing the data into fewer bits.

Modems and multiplexers 171

Figure 7.18
Data compression techniques applied to a scanned line

Adaptive frequency coding

In adaptive frequency coding a compression token is substituted for the actual byte
transferred. Shorter tokens are substituted for more frequently occurring data bytes. A
compression token consists of two parts:

• A fixed length header, 3 bits long, which indicates the length of the body
• A variable length body

At compression initialization, a table is set up for each byte from 0 to 255. To encode a

data byte, the token to which it is mapped is substituted for the actual data byte in the data
stream. The frequency of occurrence of the current data byte is increased incrementally
by one. If the frequency of occurrence of the current data byte is greater than the
frequency of the next most frequently occurring data byte, the two tokens are swapped.
This comparison process is repeated for the next most frequently occurring data byte and
the tokens are again swapped.

MNP class 7: enhanced data compression
MNP class 7 combines run length encoding with an adaptive encoding table. The table is
used to predict the probability of a character occurring, based on the value of the previous
character. Up to 256 (28) coding tables are kept for each 8-bit pattern. All characters are
organized according to the rules of Huffman coding.

172 Practical Data Communications for Instrumentation and Control

Huffman encoding

Huffman encoding relies on some characters occurring more frequently than others. The
Huffman code is computed by determining the frequency of occurrence of each symbol in
the set of symbols used for communications.

The following steps should be followed in computing the Huffman codes:
• List next to each of the symbols used the probability of occurrence in the

message. The sum total of probabilities must total 1. For example, the sym-
bols A, X, Y, S are used with probabilities of occurrence indicated in brackets
as follows: A(0.2); X(0.1); Y(0.4); Z(0.3) Note: The sum totals of the
probabilities must equal one.

• Write the symbols in order of ascending probability of occurrence.

Add the two lowest probabilities and form a new node over the two nodes with the sum
of the probabilities as in Figure 7.19.

Figure 7.19
 First node generation

• Repeat the process with the new node created and the next node to the left in
order of probability.

• Repeat this process until completed, with a result as indicated in Figure 7.20.

Figure 7.20
Second and third nodes

Modems and multiplexers 173

• Assign a 1 to the branches leaning in one direction as indicated above and 0 to
the remaining branches.

• Compute the Huffman code for each symbol by tracing the path from the apex
of the pyramid to each base.

Hence:
 Y = 0
 Z = 10
 A = 110
 X = 111

In order to compute the compression ratio, as compared to the standard 7-bit ASCII

code, assume there are 1000 symbols (that is, Y, Z, A and X) transmitted.
Total bits using Huffman encoding =
(Probability of occurrence of symbol of 0.4 * 1000 symbols) * 1 bit/symbol Y +
(Probability of occurrence of symbol of 0.3 * 1000 symbols) * 2 bits/symbol Z +
(Probability of occurrence of symbol of 0.2 * 1000 symbols) * 3 bits/symbol A +
(Probability of occurrence of symbol of 0.1 * 1000 symbols) * 3 bits/symbol X

 = 400 + 600 + 600 + 300
 = 1900 bits

If the ASCII code had been used this would have resulted in –
1000 symbols * 7 bits/symbol = 7000 bits
Hence the compression ratio = 7000/1900 = 3.68.

Once the Huffman code has been computed, the software converts each symbol into its
equivalent code and includes the table used for translating the code back to symbols in the
original transmission. The receiver software will then decompress the stream of bits into
the original stream of symbols.

Run length encoding is used if there are four or more identical characters in a specified
sequence of characters. The first three characters are encoded (as for the rules of Huffman
encoding) and the number of remaining, identical characters is encoded in a 4-bit nibble.

Decoding the data stream is achieved quite simply because the receiving modem keeps
the same compression table as the transmitting modem.

V.42bis
V.42bis relies on the construction of a dictionary, which is continually modified as data is
transferred between two modems. The dictionary consists of a set of trees in which each
root corresponds to a character in the alphabet. When communications is established each
tree comprises a root node with a unique code word assigned to each node. The sequence
of characters received by the modem from its attached terminal is compared with and
matched against the dictionary.

The maximum string length can vary from 6 to 250 characters and is defined by the two
connecting modems. The number of code words has a minimum of 512, but any value
above this default minimum value can be agreed between the two connecting modems.

V.42bis data compression, in substituting a code word for a string, is between twenty
and thirty per cent more efficient than MNP class 5 compression. V.42bis is effective for
large file transfers, but not for short strings of data.

174 Practical Data Communications for Instrumentation and Control

7.13 Modem standards
 Table 7.4 summarizes the ITU-T modem standards.

Table 7.4
ITU-T Modem standards

ITU V.34 and V.90 are high-speed dialup modem standards that are commonly used to
connect to the Internet. Many data communication systems use modems to connect to the
Internet. The V.34 and V.90 standard use a modulation scheme very similar to V.22bis. It
has a symbol rate or baud rate of 3429 symbols per second. It can transmit up to 10 bits
per symbol. With overheads, this averages out to approximately 33.6 k.

V.34 and V.90 use a modified QAM system called ‘super constellation’ that has 1664
possible symbol combinations. Not all symbols are used in every conversation. At the
beginning of the conversation, the modems transmit special test strings that are used to
formulate the best possible connection. The V.34 and V.90 modems will accept
asynchronous data from the modem. They then change the asynchronous data to
synchronous before sending it down the telephone line. Both standards also use a
scrambler and Trellis coding to increase the quality of the signal.

Modems and multiplexers 175

V.90 modems like the V.34 modems check the telephone line when they first connect and
can modify their parameters for optimal data communications. They also can change
parameters midstream if either modem sees the need.

Figure 7.21
One quarter of the points (in decimal) in a super-constellation

Motorola and Rockwell originally designed 56 k modems for Internet communications.
Both the Motorola and Rockwell company standards would ‘talk’ at the same speed but
they were slightly different. For a while, Internet Service Providers (ISP) used both
standards. Then the ITU standardized the 56 k-modem communication system under ITU
V.90.

The 56 k ISP to modem communication system transfers data from the user to the ISP
at 33.6 k and from the ISP to the user at 56 k. This happens because the ISP uses a digital
modem connected to the telephone exchange, whereas the user is connected using an
analog modem. V.90 modems only connect at 56 k when they are connected to a digital
modem. The 33.6 k part of the V.90 standard is the same as the V.34 standard.

176 Practical Data Communications for Instrumentation and Control

The following table summarizes the various Bell modem standards.

Table 7.5
Bell modems

7.14 Troubleshooting a system using modems
 There are two aspects to troubleshooting a system, which uses modems. These relate to:

• Satisfactory operation of the RS-232 system
• Specifics of the modem

Figure 7.22
Troubleshooting a system using modems

Troubleshooting the modem
There are various tests available for troubleshooting operational problems associated with
a modem, which fall into two categories:

• Self test
• Loop back test

Modems and multiplexers 177

Self Test

The self test is where the modem connects its transmitter to its receiver. The connection
with the communications line is broken and a specified sequence of bits is transmitted to
the receiving parts of the modem where this is then compared with a defined pattern. An
error will be indicated on the modem front panel if the transmitted sequence does not
match the expected pattern.

Figure 7.23
Modem internal self test

Loop back tests
 The second set of tests is the loop back tests. There are four forms of loop back tests:

• Local digital loop to test the terminal or computer and connecting RS-232 line
• Local analog loop to test the modem’s modulator and demodulator circuitry
• Remote analog loop to test the connecting cable and local modem
• Remote digital loop to test the local and remote modem and connecting cable

178 Practical Data Communications for Instrumentation and Control

Figure 7.24
Loop back tests for modems

7.15 Selection considerations

There are certain features you should especially consider when selecting a modem for use
in an industrial or telemetry application. Some of the more important are listed here:
Automatic smart features Most asynchronous modems are compatible with the Hayes

AT command set, which automates most modem features.
Data rate Usually, the data rate of a modem is one of the first features

considered. It is important to distinguish between the data

Modems and multiplexers 179

rate and the baud rate, and the difference between the
nominal data rate before compression and the effective data
rate when compression has been performed should be noted.

Asynchronous/synchronous The ability to switch between both modes allows more modes
flexibility for future applications, and is sometimes provided
as a dip switch configuration.

Transmission modes The most efficient and preferable method of data transfer
operation is full duplex rather than half duplex where the line
turnaround time introduces a considerable amount of data
transfer inefficiency.

Modulation techniques The two most popular modulation techniques are V.22bis,
which supports 1200 and 2400 bps transmission, and V.34+,
which has V.22bis as a subset and supports the other almost
universal transmission capability.

Data compression The modem should have compatibility with the four main
techniques compression standards used for telecom-
munication switched lines:
 • ACT
 • MNP class 5
 • MNP class 7
 • CCITT V.42bis

Error correction/detection The most popular error detection and correction mechanism
is MNP-4, which ITU have incorporated into the V.42
standard, which also allows LAP-M.

Flow control Useful in controlling the flow of data from an attached
terminal so that it does not overload the modem. You should
ensure that the existing terminals and hardware support the
necessary flow control protocols such as ENQ/ACK,
RTS/CTS, or XON/XOFF.

Optimal blocking of data Before transfer of data occurs, two modems negotiate with
(protocol spoofing) each other for the specific file transfer
protocol that should be used. This avoids unnecessary
acknowledgments from the terminal device connected to the
modem. If two modems can transfer 500 character blocks
between them but the terminal to modem only supports 100
character blocks, the modem would accumulate 5 sets of 100
character blocks and transfers this in one hit to the receiving
modem. The receiving modem would transfer 5 sets of 100
character blocks to the receiving terminal, which would
acknowledge each 100 character blocks in turn.

Rack Selection must be made based on the application. Many
mounted/internal/stand industrial systems use rack mounted
 modems for space alone modems saving and the ease of
providing appropriate power supplies.

Power supply The latest modems have a separate power supply or derive
power from the telephone lines.

180 Practical Data Communications for Instrumentation and Control

Self testing features Ensure that the modem can perform a self test and the
standard local and remote loop back tests.

7.16 Multiplexing concepts
Multiplexing allows an existing link or channel to be used for more than one message at a
time and has the potential to dramatically expand line utilization. It should be noted that
multiple stages of multiplexing are possible.

Demultiplexing is the process of extracting the individual channel messages from the
multiplexed data.

There are three possible multiplexing techniques:
• Space division multiplexing (SDM)
• Frequency division multiplexing (FDM)
• Time division multiplexing (TDM)

Space division multiplexing (SDM)
SDM is where multiple paths are created by running new physical channels next to the
existing ones to connect a receiver and transmitter as shown in Figure 7.24. Some
authorities feel that SDM is not a true multiplexing method. The technique is generally
considered unattractive because additional cables, transmitters, and receivers are required.

Figure 7.25
Space division multiplexing

The best example of space division multiplexing is the local telephone system. Each
telephone is connected to the central office by a local loop not shared by other sub-
scribers.

Demultiplexing SDM systems is virtually unnecessary as each signal has its own
independent link and receiver/transmitter equipment.

Modems and multiplexers 181

Frequency division multiplexing (FDM)
FDM is where different, unique frequencies are used by each channel enabling several
channels to use the same medium electrical cable. FDM occurs, therefore, when the
bandwidth of the link is greater than the bandwidth of the messages sent over the link.

FDM is used extensively in telemetry and radio/TV broadcast applications where each
sensor signal, representing for example, temperature, pressure and speed, is within a
0–1 V range, suitable for narrow band FM, and each has a final bandwidth of 4000 Hz. A
basic signal of 0–4 kHz is called the ‘baseband’ signal. All of these baseband signals are
multiplexed with various sub-carriers spaced 4 kHz apart with a bandwidth extending
from 0 Hz to 4 kHz times the number of telemetry channels. Figure 7.26 gives an
example of the division of a frequency spectrum.

Figure 7.26
FDM spectrum containing five signals

Care should be taken to maximize the available total bandwidth. For example, using a
4 MHz bandwidth spacing to send 4 kHz bandwidth signals wastes
(4000–4) kHz = 3996 kHz, using only 7% of the spectrum.

At the receiver, demultiplexing begins with translation of the multiplexed signal down
to an intermediate frequency, with a local oscillator and mixer for each channel. The
intermediate frequency bandwidth is set equal to the bandwidth of an individual baseband
signal after modulation. A receiver that demultiplexes ten signals requires ten separate
local oscillators and mixers, with each oscillator operating at the frequency appropriate
for its intended signal.

Figure 7.27 is a block diagram of a basic FDM transmitter and receiver circuit.

182 Practical Data Communications for Instrumentation and Control

Figure 7.27
Basic FDM receiver and transmitter circuit

Time division multiplexing (TDM)
In a communications system, it is possible for the many users to time share the physical
links by switching each signal for a short period of time, as in Figure 7.28. As the
scanning rate rises, the system will eventually become ineffective because of an increase
in the following:

• Propagation delays
• Noise
• Errors
• Retransmission

Unlike analog signals, digital TDM has greater latitude in sampling each bit of each

channel. As long as samples occur within the bit period, even though it may be late or
early in the specific bit period, no data will be lost. The greatest limitation of TDM lies in
the bandwidth of the communications medium. As the bit rate increases, the frequency
requirements of that medium also increase.

Modems and multiplexers 183

Figure 7.28
A basic TDM circuit

Practical example

The Modbus Plus bridge/multiplexer is a practical example of an alternative use of a
multiplexer in TDM mode. This permits the connection of Modbus based devices to
Modbus Plus networks. The example illustrates the use of a multiplexer in a broader
sense, rather than maximizing the use of a communication channel. Figure 7.29 shows the
NW-BM85-000 Modbus Plus bridge/multiplexer from AEG Modicon.

Figure 7.29
Example of use of BM85 multiplexer

184 Practical Data Communications for Instrumentation and Control

This multiplexer permits interconnection of four Modbus ports and one Modbus Plus
port. Configuration is possible by setting a few switches and doing some software
configuration, which is then stored in an EEPROM. A buffer in the multiplexer allows up
to 512 transactions to be queued. The software automatically connects the relevant port to
its destination. Alternatively, it can be used as a four channel modbus port expander
permitting connection of master devices to either individual slaves or several networks of
modbus slave devices.

7.17 Terminal multiplexers
A terminal multiplexer employs TDM to connect groups of terminals to a central
computer. The same multiplexer is used at both ends of the link with operation
transparent to the users of the terminals. The microprocessor in each multiplexer
continually polls each connected terminal for incoming characters. In using TDM, each
terminal or UART in the multiplexer, gets a time slot. Each sequence of time slots is
preceded by a synchronizing control character, such as SYN, so that the receiving
multiplexer can determine the beginning of the next sequence of time slots. When no
characters are received at the UART from a terminal, the multiplexer inserts a NULL
character into the time slot for that terminal. With the additional overhead of this
synchronizing character, it is important that the bit rate of the common data link
connecting both terminal multiplexers is greater than the sum total of the bit rates of the
terminals. Figure 7.30 is a block diagram of a terminal multiplexer.

Figure 7.30
Terminal multiplexer

Terminal multiplexers can vary in performance from devices servicing up to four
terminals each operating at 1200 bps with a throughput of 9600 bps, to 32 terminals each
operating at up to 9600 bps with the common data link operating at well over 310 kbps.

Modems and multiplexers 185

7.18 Statistical multiplexers
A terminal multiplexer can be inefficient because time slots are allocated irrespective of
whether or not a particular terminal requires them. A statistical multiplexer operates on
the principle that not all terminals are active at a particular time and that inactive channels
are ‘skipped’ until such time as they become active again. Each terminal has an
identification tag, which is transmitted before a set of characters.

There are two methods of operation:
• The statistical multiplexer buffers a stream of characters from a particular

terminal up to a pre-defined limit. It then prefixes this block of characters with
a unique terminal identifier and appends an error checking frame check
sequence before dispatching the message to a central computer, for example.

• The statistical multiplexer creates a block of characters consisting of groups
of characters from all the active terminals. A unique +-terminal identifier is
prefixed to each group of characters. An overall frame check sequence is
appended to the block before it is dispatched to the central computer.

Figure 7.31 shows a block diagram of a statistical multiplexer.

Figure 7.31
Statistical multiplexer

8

���������	��
��
��������

A protocol can be defined as a set of rules governing the exchange of data between a
transmitter and a receiver over a communications link or network.

���������	

When you have completed studying this chapter you will be able to:

• Define the term ‘protocol’
• Describe the role of protocols in flow control
• Describe the two most popular types of flow control protocols:

 – XON/XOFF
 – ETX/ACK

• Differentiate between and describe the two modes of binary synchronous
protocols:

 – Point-to-point
 – Multipoint

• Describe HDLC and SDLC protocols in terms of:
 – Frame format
 – Frame contents
 – Operation
 – Error/flow control

• Describe file transfer protocols
• Describe ARQ protocols

As we will see in Chapter 9, data communications systems, which follow the OSI

reference model, are made up of several hierarchical layers. Each of these layers contains
working software or hardware elements referred to as entities. One of the elements in
each layer is a protocol entity, which has its own specification, and broadly speaking is a
protocol in its own right. The purpose of the protocol entity is to determine how messages
are transferred across a network to a peer entity in another node.

���������	��
��
��������

187

Actual transfers across the physical link are determined by the data link layer protocol,
and it is these types of protocols that are discussed in this chapter. Other more complex
protocols are discussed in later chapters.

A protocol is concerned with some or all of the following:
• Initialization, to start the transmission of data.
• Framing and frame synchronization – this defines the beginning and end of a

frame and ensures that the receiver can synchronize with the frame.
• Flow control, to ensure that the receiver is not swamped.
• Line control, applies to half duplex links in which the transmitter tells the

receiver to start transmitting.
• Error control.
• Timeout control, so action can be taken if no acknowledgment is received

within a certain period.

��

 ����
�������
��������	

The most elementary protocols are only concerned with flow control and were introduced
as an improvement on simple techniques such as the insertion of delays between
characters or echoing of received characters to the transmitter. The two most popular
types of flow control protocols are XON/XOFF and ETX/ACK.

���
 �������

This is a character based flow-control protocol, which uses two special characters.
Typically, these are the ASCII characters DC1 for XON and DC3 for XOFF. The
transmitter sends data until it receives an XOFF from the receiver; it then waits for an
XON before resuming transmission. A typical example can be found in a printer buffer.
When the buffer reaches a certain point (say 66%), the printer sends an XOFF to the PC,
then sends an XON when the buffer is emptied to another point (say 33%).

One disadvantage of XON/XOFF is that the data stream being sent may contain one of
the control characters, although this is not a problem in applications such as printer
control.

���
 ������
	���������	
��������

The binary synchronous control (BSC) protocol was designed by IBM in 1966 for
computer-to-terminal and computer-to-computer communications. It can be used in point-
to-point or in multipoint mode. BSC is a character-based protocol as opposed to the high-
level data link control (HDLC) protocol, which is bit-based. HDLC is discussed under
‘HDLC and SDLC protocols’ below.

The XON/XOFF flow control mechanism can easily handle short interactive messages
between a terminal and a computer. They are less adequate in ‘block mode’, that is when
passing complete messages, with hundreds or even thousands of characters, between
terminals. The BSC protocol, on the other hand, was specifically designed to handle large
blocks of data.

Control characters are used to separate the different fields in a BSC message and for the
exchange of acknowledgment information.

188

�����	���
����
������	���	��

���
��
���������	��
���
�������

Table 8.1 lists the control characters involved in BSC.

Table 8.1
BSC control characters

There are various types of BSC messages, as given in Figure 8.1.

Figure 8.1
BSC message format

���������	��
��
��������

189

The receiver of the message uses the two SYN characters, (bit pattern 0010110) to
synchronize with the start of the message. Note that the SYN characters are not
considered to be part of the message itself and are therefore not used in the calculation of
the block check character (BCC). In order to maintain synchronization, the transmitter
inserts SYN characters into text messages once every second; however, as before, these
are not used in BCC calculations.

A text field starts with the STX character and ends with ETX, ETB, EOT or ITB, as
appropriate. The BCC field consists of a vertical/longitudinal check or a cyclic redun-
dancy check such as the CRC-16 used for transparent mode (see Data Transparency later
in this chapter).

If a message is received without error, the receiver responds with ACK1 for the first
response, ACK2 for the next, and so on, alternating at each response so that odd
numbered messages return ACK1 and even numbered messages return ACK2. This
enables the transmitter to track the responses and detect any messages not acknowledged.
ACK1 is represented by the sequence DLE00, and ACK2 is represented by the sequence
DLE01.

If the receiver detects an error in a message, it responds with a NAK.
Point-to-point mode full sequence transmission is as follows:

Table 8.2
Sequence of transmission in point-to-point mode

����������
 �!�

In this mode there is one primary station and one or more secondary stations on the same
line.

All exchanges are initiated by the primary station as one of two types of transaction:
• The primary station issues a poll to determine if a secondary station has any

data to transmit.
• The primary station selects a secondary station in order to transmit data to it.

"� �
���
#�������	

• The transmitting station times out if there is no response within three seconds.

190

�����	���
����
������	���	��

���
��
���������	��
���
�������

• A station on a switched network (the normal telephone system) disconnects
itself if there is no activity for 20 seconds.

• A transmitter receiving a TTD or WAK character waits for two seconds
before retrying.

$���
����	�������

• As an ASCII based protocol, BSC cannot usually operate transparently. That
is, it is unable to handle binary data because the 7-bit data field limits the
range of numbers to 0 to 127. Binary (or hexadecimal) data needs the range 0
to 225 (8 bits).

• It is possible to make BSC handle binary data by using eight data bits (and
thus no parity bit) and preceding each BSC control character with a DLE.
Thus ETX becomes DLE ETX, and so forth. In this way, control character
sequences in the binary data will not be erroneously interpreted as BSC
control characters. To avoid the possibility of problems with a DLE in the
binary data, the transmitter inserts an additional DLE into the data when it
detects a DLE. This is removed by the receiver before it passes on the data.

• Error checking uses a cyclic redundancy check (CRC) polynomial code in
transparent operation because the eighth bit is not available for the parity
calculation.

�%&
�� �������	

• BSC is a half duplex protocol in which each message must be acknowledged
by the receiver. This is very slow compared to more efficient protocols that
number each message and send them out in multiples, requiring only an
acknowledgment for the group. In transparent mode, the extra number of
DLE characters that may be required is wasteful.

��'
 ($)&
��!
%$)&
��������	

HDLC has been defined by the International Standards Organization for use on both
multipoint and point-to-point links. Other descriptions of it include SDLC (synchronous
data link control used by IBM) and ADCCP (advanced data communication control
procedure used by ANSI). HDLC will be the reference used throughout the following
text. In contrast to the BSC protocol, HDLC is a bit-based protocol. It is interesting to
note that it is a predecessor to the local area network datalink protocols.

The two most common modes of operation for HDLC are:
• Unbalanced normal response mode (NRM). This is used with only one

primary (or master) station initiating all transactions.
• Asynchronous balanced mode (ABM). In this mode each node has equal

status and can act as either a primary or secondary node.

��� �
#�� ��

The standard format is indicated Figure 8.2. The three different classes of frames used
are as follows:
Unnumbered frames: Used for setting up the link or connection and to define

whether NRM or ABM is to be used. They are called

���������	��
��
��������

191

unnumbered frames because no sequence numbers are
included.

Information frames: Used to convey the actual data from one node to another.
Supervisory frames: Used for flow control and error control purposes. They

indicate whether the secondary station is available to receive
the information frames; they are also used to acknowledge the
frames. There are two forms of error control used: a selective
retransmission procedure because of an error, or a request to
transmit a number of previous frames.

Figure 8.2
HDLC frame format and types

��� �
�������	

The frame contents are as follows:
• The flag character is a byte with the value 01111110. To ensure that the

receiver always knows that the character it receives is unique (rather than
merely some other character in the sequence); a procedure called zero
insertion is adopted. This requires the transmitter to insert a 0 after a
sequence of five 1s in the text, so that the flag character can never appear in
the message text. The receiver removes the inserted zeros.

192

�����	���
����
������	���	��

���
��
���������	��
���
�������

• The frame check sequence (FCS) uses the CRC-CCITT methodology, with
sixteen 1s to the tail of the message before the CRC calculation proceeds, and
the remainder is inverted.

• The address field can contain one of three types of address for the request or
response messages to or from the secondary node:

 – Standard secondary address
 – Group addresses for groups of nodes on the network
 – Broadcast addresses for all nodes on the network (here the

address contains all 1s)
• Where there are a large number of secondaries on the network, the address

field can be extended beyond eight bits by encoding the least significant bit as
a 1. This then indicates that there is another byte to follow in the address
field.

• The control field is indicated in Figure 8.2.

Note: The send and receive sequence numbers are important for the detection and
correction of errors in messages. The P/F bit is the poll/final bit and when set to 1
indicates to the receiver that it must respond or acknowledge this frame (again with the
P/F bit set to 1).

*�������
���������

A typical sequence of operations for a multidrop link is given below:
1 The primary node sends a Normal Response Mode frame, with the P/F bit set

to 1, together with the address of the secondary node.
2 The secondary node responds with an unnumbered acknowledgment with the

P/F bit set to 1. If the receiving node is unable to accept the setup command,
a disconnected mode frame is returned instead.

3 Data is transferred with the information frames.
4 The primary node sends an unnumbered frame containing a disconnect in the

control field.
5 The secondary node responds with an unnumbered acknowledgment.

A similar approach is followed for a point-to-point link using asynchronous balanced

mode, except that both nodes can initiate the setting up of the link and the transfer of
information frames, and the clearing of the point-to-point link. The following differences
also apply:

• When the secondary node transfers the data, it transmits the data as a
sequence of information frames with the P/F bit set to 1 in the final frame of
the sequence.

• In NRM mode, if the secondary node has no further data to transfer, it
responds with a Receiver Not Ready frame with the P/F bit set to 1.

+����
��������#���
�������

For a half duplex exchange of information frames, error control is by means of sequence
numbers. Each end maintains a transmit sequence number and a receive sequence
number. When a node successfully receives a frame, it responds with a supervisory frame

���������	��
��
��������

193

containing a receiver ready (RR) indication and a receive sequence number. The number
is that of the next frame expected, thus acknowledging all previous frames.

If the receiving node responds with a negative acknowledgment (REJ) frame, the
transmitter must transmit all frames from the receive sequence number in the REJ frame.
This happens when the receiver detects an out-of-sequence frame.

It is also possible for selective retransmission to be used. In this case the receiver would
return a selection rejection frame containing only the sequence number of the missing
frame.

A slightly more complex approach is required for a point-to-point link using
asynchronous balanced mode with full duplex operation, where information frames are
transmitted in two directions at the same time. The same philosophy is followed as for
half duplex operation except that checks for correct sequences of frame numbers must be
maintained at both ends of the link.

Flow control operates on the principle that the maximum number of information frames
awaiting acknowledgment at any time is seven. If seven acknowledgments are
outstanding, the transmitting node will suspend transmission until an acknowledgment is
received. This can be either in the form of a receiver ready supervisory frame, or
piggybacked in an information frame being returned from the receiver.

If the sequence numbers at both ends of the link become so out of sequence that the
number of frames awaiting acknowledgment exceeds seven, the secondary node transmits
a frame reject or a command reject frame to the primary node. The primary node then sets
up the link again, and on an acknowledgment from the secondary node, both sides reset
all the sequence numbers and commence the transfer of information frames.

It is possible for the receiver to run out of buffer space to store messages. When this
happens it will transmit a receiver not ready (RNR) supervisory frame to the primary
node to instruct it to stop sending any more information frames.

��,
 ����
����	#��
��������	

In most asynchronous file transfers used on PCs, the basic structure is the packet (or
frame) consisting of a group of fields. Only one of these fields contains the actual data.
The remaining fields, known as service fields, contain the information required for the
receiver to verify that the packet is error free.

-��� ����
������
��.��	�
/-012
��������	

The most common type of packet protocol is the automatic repeat request (ARQ) protocol
in which an error detected in a received packet and an unacknowledged packet
automatically results in the retransmission of the packet.

%��!
��!
����
-01

Here the receiver inputs the packets and after verifying that the packet is in the correct
sequence relative to the previous packet, computes a local check value on the data portion
of the packet. On a successful match with the one in the packet the receiver acknowledges
with an ACK; or sends a NAK. When the transmitter receives the ACK it then sends the
next packet.

&��������	
-01

Here the transmitter sends several packets in a row with no delay between packets. The
receiver sends a NAK or ACK (as per the send and wait ARQ) together with the packet’s

194

�����	���
����
������	���	��

���
��
���������	��
���
�������

number. The transmitter continually examines the stream of acknowledgments returning
and keeps track of the packets with errors. At the end of the transmission the packets with
errors are retransmitted.

The send and wait ARQ remains the most popular file transfer protocol found on PCs.

*��3��
!�	�4�

There are three approaches for design of packets as shown in the figures below.

Figure 8.3
Packet for transfer of text files (64 to 512 bytes)

Figure 8.4
 Packet for transfer of binary files

Figure 8.5
Packet for fixed length data field packet

The two types of protocols that are used for file transfer are XMODEM and Kermit.

���$+�

XMODEM is a simple send and wait ARQ protocol that uses a fixed length data field.
The check value is a single byte arithmetic checksum.

Figure 8.6
Layout of XMODEM protocol

���������	��
��
��������

195

���
 �����
��
������
����

������

�������
��
 �������
������
������
���
��
�� !
"’

 ����������
��
���
�������
������

������

�������
 #���
�’

����������
��
���
�������

 ������
������
	�
���
���$	��

�	���

%���
 &��'��
��
����
��	����
��
��(�!
	

�	(��
��

 "�)
����

*�	�����	�
�����
��
 *
"
����
��	�����	�

��
��
���
����

 �	���
����
+
������
��

Table 8.3
Bytes in the XMODEM protocol

The mode of operation of the XMODEM protocol is briefly as follows:
• The receiver sends a NAK to transmitter to initiate transmission.
• The transmitter then sends a packetized 128 byte block of data. An ACK

received by the transmitter commences transmission of the next packet. A
NAK receipt means retransmit the packet; whilst a CAN aborts the transfer.

• When all the data has been sent, a sender transmits a solitary EOT, which the
receiver acknowledges with an ACK.

Other versions of XMODEM use a 1 byte CRC instead of the single byte arithmetic

checksum (XMODEM-CRC). This is a non-reversed CRC algorithm with the CCITT
divisor polynomial X16 + X12 + X5 + 1.

"��
������ 	
����
���$+�

• The XMODEM protocol is designed to operate at lower error rates on
communication links. Unless an in-built error-correction algorithm is used
within the modem the XMODEM protocol will fail. Higher baud rates and
lower quality telecommunication services (that provide a cheaper service)
make the problem worse.

• Line noise with multiple bit changes often pass through XMODEM’s simple
error detection system undetected.

• The simple response control characters (ACK/NAK/EOT) are often corrupted
to other codes resulting in erroneous actions taken with a resulting waste of
time. If the characters are corrupted to the control-X character, file transfer is
aborted.

• Sliding windows giving more efficiency in the use of the protocol cannot be
implemented, as each NAK or ACK response character does not have an
accompanying sequence number. This makes for inefficient operation over
communication systems with long time delays.

• 8 bits are required in the construction of the characters in the packet. This
makes it inappropriate for communication systems, which only allow 7 bits
for each character.

The big advantage with XMODEM is that it is provided on all popular communication

packages (such as the Windows Terminal package). This de facto standard is useful for
transferring files between different incompatible computer systems, which have

196

�����	���
����
������	���	��

���
��
���������	��
���
�������

XMODEM as the only common denominator. It should be noted however that the
XMODEM is often merely then used to transfer the more efficient actual file transfer
protocol (such as ZMODEM) from one machine to the other. This is then used to affect
the actual file transfer. The result can be a huge saving in time and thus costs of
communication time.

5��$+�

This was introduced as an improvement to the XMODEM protocol. This protocol has
enjoyed wide spread acceptance as it was released into the public domain and it was
written in C.

�������	
�����!�6

• YMODEM has less overhead than XMODEM in its frame structure with 1024
bytes allowed to be transferred per block. YMODEM still has the flexibility to
reduce the data block size to 128 bytes if the error rate is too high (causing
repeated retransmissions).

• YMODEM is more reliable than XMODEM. In order to terminate a file
transfer, the character sequence: control-X, control-X (or two CAN
characters) must be received. This prevents unnecessary file transfer
terminations due to errors on the line.

• CRC error detection is used to ensure a high level of error detection.
• File related information (file name; file time; file date; size) is also transferred

to the receiving computer.
• Multiple files can be transferred using the batch file capability of the protocol.
• 8 data bits are the basis of file transfer. This causes some problems as

discussed earlier with XMODEM.
• The stop and wait technique is used to send data packets. This lack of an

adequate sliding window is the cause of inefficiencies on systems with
significant time delays.

7��$+�

This was developed to overcome the limitations in the previous file transfer protocols.
Typical features of the ZMODEM protocols are as follows:

• In addition to batch file transfer, which is a standard feature, a useful feature
is that ZMODEM can recommence the file transfer at any point at which the
communication link failed (to the precise byte at which communications were
lost).

• ZMODEM will not perform a file transfer if the same file already exists on
the receiver’s hard disk. This check is performed automatically by ZMODEM.
This saves on time.

• Better error detection and correction is performed by negotiating the use of
the CRC-32 error detection mechanism.

• Data compression can be performed; thus speeding up file transfer.
• The sliding windows technique is used to improve performance over

communication links with time delays. This size of the packet can be
modified automatically by the software, downwards from 1024 bytes, to
handle increasing noise on the communications link.

���������	��
��
��������

197

8�� ��

The basic Kermit is a send and wait ARQ packet protocol. The sender transmits a packet
and then awaits the receiver’s acknowledgment of the packet. The receiver can then either
request the next packet (ACK) or retransmission of the previous packet (NAK).

Although there are a number of similarities with XMODEM the main differences are:
• Kermit can transfer a number of files in one file transfer session.
• Packets may be of variable length.
• The I/O channels only have to transfer printable ASCII characters.
• Several types of packets are defined.
• The receiver’s responses must consist of entire packets.
• Transmitter and receivers negotiate important operating parameters such as

device padding, etc.
• Name of file is included in protocol.
• The herald packets make the protocol extensible.

The operating sequence of Kermit commences in a similar way to XMODEM where the

receiver sends repeated NAK packets until the transmitter responds by sending a herald
packet, which in Kermit is called a send initiate packet. The receiver makes its own
preference known by including them in its ACK packet. When the entire file is
transferred the sender transmits a special end of file packet. If there are more files to
transmit, it sends the file header packet for the next file. When all files have been sent, the
transmitter sends an end of transmission packet to signal the end of the session.

Figure 8.7
Kermit packet

Where:
Mark This is the start of packet signature byte, SOH. This is the

 only canonical control bit permitted in the packet.
LEN Number of bytes in the packet following this field.
SEQ Characterized packet sequence number, Modulo-64.
Type A single literal ASCII character identifying the type of packet

 (e.g. ‘D’ for data).
Data The actual packet type determines the contents of this field.
Check 1 Packet check value.
Check 2
Check 3

198

�����	���
����
������	���	��

���
��
���������	��
���
�������

Note: Kermit converts ‘high risk’ characters to printable characters before transmission.
Control characters are thus moved to printable form before transmission and then
transformed back after reception. High-risk characters are those that the computer system
may elect to modify or throw away because of its system philosophy.

Table 8.4
File transfer protocols comparison

9

Open systems interconnection
model

The purpose of the open systems interconnection reference model is to provide a common
basis for the development of systems interconnection standards. An open system is a
system that conforms to specifications and guidelines, which are ‘open’ to all.

Objectives
 When you have completed studying this chapter you will be able to:

• Describe data communications for instrumentation and control
• List and describe the seven layers of the OSI reference model
• Give an example of an OSI model application

9.1 Data communications for instrumentation and control
In digital data communications wiring together two or more devices is one of the first
steps in establishing a network. As well as this hardware requirement, software must also
be addressed. Where all the devices on a network are from the same manufacturer, any
hardware and software problems are usually overcome easily because the system is
generally designed within the same guidelines and specifications. However, it is where
devices from different manufacturers are used on the same network that the problems
seem to begin.

Networks which use devices from one manufacturer and that work with specific
hardware connections and protocols are called ‘closed systems’. Most of these networks
were developed before standardization or when it was thought unlikely that equipment
from other manufacturers would be included in the network.

In contrast, ‘open systems’ are those that conform to specifications and guidelines,
which are ‘open’ to all. This enables equipment from various manufacturers, who claim
compliance to a standard, to be used interchangeably on a network using that standard.

In 1978, faced with a proliferation of closed network systems, the International
Standards Organization (ISO) defined a ‘reference model for communication between

200 Practical Data Communications for Instrumentation and Control

open systems’. This is known as the open systems interconnection (OSI) reference model,
or more correctly as the ISO/OSI Model (ISO 7498). The model can be applied to all
communication systems, from personal computers to satellite systems.

The ISO defines the purpose of the OSI reference model as:
‘.... providing a common basis for the coordination of standards development for the

purpose of systems interconnection, while allowing existing standards to be placed into
perspective within the overall reference model.’

OSI is essentially a ‘management structure’, which simplifies data communications into
a hierarchy of seven layers. Each layer has a defined purpose, which is dependent on, and
interfaces with, the layer above and below it. Standards are defined for each layer in a
way, which allows some flexibility enabling system designers to develop independent
protocol layers. Any two or more of these layers together are referred to as a ‘protocol
stack’.

It is important to realize that the OSI reference model is not a protocol or set of rules
dictating how a protocol should be written but an overall framework in which to define
protocols. The OSI model framework specifically and clearly defines the functions or
services that have to be provided at each of the seven layers (or levels).

 The OSI reference model consists of the following seven layers:
• Layer 1, physical layer Electrical and mechanical definition

 of the system
• Layer 2, data link layer Framing and error correction format

 of data
• Layer 3, network layer Optimum routing of messages from one net-
 work to another
• Layer 4, transport layer Channel for transfer of messages of

 one application process to another
• Layer 5, session layer Organization and synchronization

 of the data exchange
• Layer 6, presentation layer Data format or representation
• Layer 7, application layer File transfer, message exchange

The OSI model can be visualized as a collection of entities, such as software programs

or hardware integrated circuits, situated at each of the seven layers. Data in a network is
exchanged in packet form, each packet originating at a source node and addressed to a
destination node. In effect, a packet starts at an upper layer, and passes down through
each of the layers. As a packet moves down from one layer to another, it is enclosed in a
‘protocol envelope’. Each envelope, therefore, encloses the message data and any
protocol envelope from the layer above. The protocol envelope carries addressing and
control information that advises the next layer down what to do with the packet, and the
lower layer only reads that information.

When a packet reaches layer 1, that is the physical layer, it is sent across a physical
communications link to the next node en route to its destination. At the receiving node,
the packet moves up the protocol stack, losing the outer protocol envelope at each layer.
In effect, the receiving node’s network layer, for example, sees the packet as coming
directly from the transmitting node’s network layer because it has the appropriate
envelope. For this reason, equivalent layers in different nodes are called ‘peer entities’
and there is said to be a ‘virtual link’ between them.

Open systems interconnection model 201

Figure 9.1 shows that a packet needs to go only as far as Layer 3, the network layer, on
an intermediate node on its route. This is because the network layer protocol envelope
contains all the information required for routing the packet along its journey.

Figure 9.1
The layers of the OSI model

9.2 Individual OSI layers

Layer 7: The application layer
The application layer is the top most layer in the OSI/RM. It is responsible for giving
applications access to the network. Examples of application layer tasks include file
transfer, e-mail services and network management.

To accomplish the tasks, the application layer passes program requests and data to the
presentation layer, which is responsible for encoding the application layer’s data in the
appropriate form.

Layer 6: The presentation layer
This layer maps the data representations into a suitable format for the recipient. It
translates the format and syntax of the data produced by applications, and handles
encryption or compression of the data.

202 Practical Data Communications for Instrumentation and Control

Layer 5: The session layer
This layer manages interactive sessions between devices. It defines the use of software
that allows reference to other devices by name rather than binary address (logical
naming). It allows seamless recovery of sessions.

Layer 4: The transport layer
 This layer defines:

• The management of the communications between two end systems.
• Data transfer at agreed levels of quality.
• How the packets in a large message are accounted for and correctly

segmented. This improves the reliability of data transfer.

Layer 3: The network layer
 This layer defines:

• How the packets of information are routed around the network.
• How the status messages are regulated and sent to other devices on the

network.
• How large packets of data received from the transport layer are fragmented

into small ones.
• Enough frames to go through the underlying network.

Layer 2: The data link layer
This layer is always needed and defines:

• The methods used to access the network for transmitting and receiving
messages.

• The handling of the information received and its acknowledgment.
• The procedures for managing flow control between users.

Layer 1: The physical layer
This layer is always needed and defines the physical connections between the computer
and the network. It provides Layer 2, the Data Link Layer, with the physical means of
transmitting data onto the network.

This layer is concerned with the following:
• The network topology
• The electrical aspects of voltages and currents
• The signal modulation techniques
• The mechanical aspects of the connection, i.e. the cables and connectors

Note: It stipulates, but does not include the actual medium.

9.3 OSI analogy
The following is a simple analogy to better explain the OSI model.

A French-speaking manager in her Paris office wants to send a letter containing a
request to an English-speaking colleague in an office in Chicago. The French manager

Open systems interconnection model 203

merely dictates the letter to her secretary who translates it into English. The French
manager is like the application layer, while the secretary represents the presentation layer.

The letter is passed to a clerk who records its details in a file or correspondence with the
Chicago company, making sure that details of title and address for the Chicago manager
are correct. The clerk represents the session layer.

The shipping manager then receives the letter(s) and makes arrangements for the
delivery and quality of service promised for the letter(s). He also makes a copy of the
letter in case it has to be sent out again. He represents the transport layer.

Next in line is a shipping clerk who establishes the route for the letter. She decides that
the best route for the letter is via the company’s Boston office. She represents the network
layer. The letter is then passed to the mailroom where it is weighed together with other
letters going to Chicago by courier. The weight is labeled on the courier bag to ensure
that there are no discrepancies at the other end. The mailroom is the data link layer.

The mailbag is then dropped off at the shipping dock, which acts as the physical layer.
Once the letter is received in Chicago the above process is repeated, but in reverse

order.

9.4 An example of an industrial control application
The following is an example of the sequence of steps necessary to transfer a command,
such as ‘change the set point’ on a remote programmable logic controller output:

• The user selects a command via the menu of a user program located on an
operator station.

 For example, ‘change the set point for a remote valve from 20% to 95%’.
• The menu-driven system software then instructs a command within the

application layer program to make the necessary change. This layer can be
visualized as being similar to the DOS interface on a computer, with a group
of high level commands, acting as a high level interface.

• The application layer passes the message to the presentation layer, which
translates it into a system usable form. For example, it could translate from
the type coding used by the application layer into an ASCII based format
suitable for the system.

• The session layer allows the two application protocol entities (at the operator
station and the remote programmable logic controller) to synchronize, setup
and manage the data interchange between them. This allows different requests
to be queued and transmitted in an orderly manner.

• The transport layer forms the interface between the higher-level OSI layers
and the lower network and data link layers. It shields the higher layers from
the detailed operation of the lower layers. The transport layer provides various
classes of service, for example adding the routing address onto the message
received from the session layer.

• The message is passed onto the network layer, which arranges the detailed
optimum routing, which the message is to follow across the network to arrive
at the remote programmable logic controller.

• The message is then passed onto the data link layer, which calculates the
frame check sequence for error checking and adds in source and destination
addresses.

• The physical layer then modulates the physical connection with the
appropriate bit pattern received from the data link layer.

204 Practical Data Communications for Instrumentation and Control

The whole process is then repeated in reverse at the programmable logic controller.

9.5 Simplified OSI model
For many industrial protocols the use of the full seven layers of the OSI model is
inappropriate as the application may require a high-speed response. Hence a simplified
OSI model is often preferred for industrial applications where time critical
communications is more important than full communications functionality provided by
the seven-layer model.

Generally, most industrial protocols are written around three layers:
• The physical layer
• The data link layer
• The application layer

When the reduced OSI model is implemented the following limitations exist:

• As there is no transport layer, the maximum size of the application messages
is limited by the maximum size allowed on the channel

• As there is no network layer, no routing of messages is possible between
different networks

• As there is no session layer, no full duplex communications are possible
• As there is no presentation layer, message formats must be the same for all

nodes

The MiniMap and Fieldbus protocol standards use the reduced three layer OSI model.

Similarly, other industrial protocols such as the Allen Bradley Data Highway Plus
protocol, Modbus Plus and the HART smart instrumentation protocols have all
standardized on the three layers only.

One of the challenges when using the OSI model is the concept of interoperability and
the need to define another layer called the ‘user’ Layer. This topic is examined in
Chapter 12.

10

��������	
���
�
�

��

The industrial protocols discussed in this chapter vary from a straightforward ASCII type
protocol to the industry standard Modbus protocol. A fairly sophisticated Allen Bradley
Data Highway Plus protocol is also reviewed. This chapter focuses on the software
aspects of the protocols (as opposed to the physical aspects which are covered in
separate chapters).

���������	

When you have completed study of this chapter you will be able to:

• Describe the features of industrial protocols
• Describe the use of ASCII based protocols
• Describe the read and write commands of ANSI-X3.28-2.5-A4
• List and describe the three Modbus structures
• Describe the Modbus protocol:

 – Message format
 – Synchronization
 – Memory location
 – Function codes
 – Exception responses

• Describe the Allen Bradley Data Highway protocol
• Describe the Allen Bradley Data Highway Plus protocol
• Describe the OSI model layers used by the Allen Bradley Data Highway Plus

protocol
• Describe the application of MAP/TOP protocols

��
�
 ������������

In some respects the distinction between an industrial and commercial (or data
processing) protocol is somewhat artificial. There are, however, a few features contained
in an industrial protocol, which can make it useful to an engineer on a plant.

206������������	����
���
�������������������
��������������
�������

These are:
• Ease of troubleshooting systems

Where the level of understanding of industrial communication systems on a
plant may be fairly low it makes sense to select a simple protocol such as one
of the ASCII protocols.

• High level of integrity of data transfer
In an industrial environment where there is electrical noise and no errors in
the transfer of the data are acceptable (due to the communications link
controlling critical equipment for example), a protocol should be selected with
a high degree of error checking such as cyclic redundancy checks.

• Standardization of protocol
There may be a requirement to interface to other manufacturers PLCs or
industrial systems. In this case a commonly accepted industrial protocol such
as Modbus would be appropriate.

• High speed update of parameters
There may be a necessity to update a number of setpoints to a series of con-
trolling devices virtually simultaneously. Here one of the new FieldBus
protocols may be appropriate to ensure that there is no skew (or delays)
between transferring the setpoint to the first and last devices on the data
highway.

��
�
 �����
��	��
��������	

ASCII based protocols are popular because of their simplicity. Their main disadvantage is
that they are slow and become unwieldy for larger systems with the requirement for
multiple nodes on a network that need to communicate with one another (rather than in a
simple one master, multiple slave setup).

Consequently, ASCII based protocols are normally only used for slow systems with one
master talking to a limited number of slaves (preferably only one).

ASCII based protocols are also popular for stand-alone instruments where a serial
interface has been added on with no major design changes to the existing design.
Essentially this means that the additional serial port is treated like another keypad by the
instrument.

Although ASCII based protocols would appear to be the simplest; in the author’s
experience they have proved problematic in their implementation because of the lack of a
tight definition by the particular manufacturer.

Two ASCII based protocol implementations are given below. The first is for the
implementation of smart transmitters and the other for a variable speed drive. The smart
transmitter is a fairly simple protocol structure whilst the ANSI-X3.28-2.5-A4 is a
slightly more complex approach.

�����
��	��
��������	
���
�������
����	������	

A variety of digital signal transmitters has recently appeared on the market, which accept
a variety of sensor and process inputs and communicate the data back to the serial port of
a computer or other processor based device in a digital format. Data is also sent down
from the computer to the signal transmitter for controlling devices (via a digital or analog
output from the conditioner unit). The RS-232 or RS-485 standards are used for
communications between the signal transmitter and computer.

���
������������������207�

Each digital transmitter is a complete single channel interface system with analog signal
conditioning electronics optimized for a specific input type. The analog input signals are
digitized by an analog to digital (A/D) converter whilst the analog output signals are
converted from their digital form by a digital to analog converter. All data is stored in an
ASCII format in a buffer where contents can be updated about eight times per second.
The host computer may transmit or request data from or to the transmitter by sending
simple ASCII commands to it.

There are many variations on the standard transmitter available such as for high
frequency inputs, digital inputs and outputs, thermocouple and RTD (resistance, temper-
ature, dependent) inputs and analog outputs.

�������������	
��������

The RS-232 standard is used as a point-to-point communication system but these
transmitters can be setup with multiple units ‘hanging off’ the same RS-232
communications port. However, as the RS-232 standard does not allow a multi-node
system, the units are daisy chained as indicated in the Figure 10.1. In this network any
characters transmitted by the host computer are received by each transmitter in the chain
and passed on to the next until a transmitter recognizes its address and then transmits a
response which is rippled back through other transmitters in the chain.

Figure 10.1
RS-232 Communications for smart transmitters

The RS-485 standard is used in a half duplex fashion for multidropped systems. If more
than 32 modules are required to hang off the same RS-485 port, then an RS-485 repeater
module is required to boost the signal and supply power to the additional modules.

208������������	����
���
�������������������
��������������
�������

Figure 10.2
RS-485 Communications for smart transmitters

The transmitter module contains an EEPROM (electrically erasable programmable read
only memory) to store setup information and calibration constants. As the com-
munications parameters (such as baud rate) could be forgotten by the user, the module
can be put into a default mode where it resets to 300 baud, no parity and recognizes any
address.

 �������
	��������

A simple command/response ASCII based protocol is used for communications between
the host computer and the transmitter module. The host computer always generates the
command sequence.

Communications is performed with two character ASCII command codes. All analog
data is requested as a nine-character string consisting of a sign, five digits, decimal point
and two additional digits.

A typical command/response is indicated in Figure 10.3.

Figure 10.3
Short form command and response messages

This command reads from transmitter at address 1 and receives a value of 275.00 in the
response message.

���
������������������209�

The maximum length of the command and response messages is 20 printable characters
(i.e. non ASCII control characters).

A variation on the short form command and response messages are the long form which
is used to ensure greater response message integrity and echoes the command message
and appends a block checksum at the end of the message. The long form command is
initiated using a # in place of the $ signifying the commencement of the command mes-
sage. Note that the two-character checksum can be optionally added to all command
messages at the host computer’s discretion.

A checksum is simply the sum of the hexadecimal values of all the ASCII characters in
the message.

Figure 10.4
Long form command and response messages

Note: The calculation of the checksum for the response is performed as follows:

Table 10.1
 Calculation of checksum

Discard the 2 and add the A4 onto the end of the message.

210������������	����
���
�������������������
��������������
�������

Note that the A and 4 being hexadecimal characters have to be sent as their ASCII
equivalents.

!����	

If the transmitter module indicates that it has received a message with an error in it, it will
respond with ‘?’ character. Alternatively, there may be no response at all if an incorrect
address or command prompt has been used.

Typical error responses are illustrated in Figure 10.5.

Figure 10.5
Typical error responses

��
"
 �����
��	��
��������
�#��$%"
�&$�
'$�(

ANSI-X3.28-2.5-A4 is an example of an ASCII based protocol. One particular
manufacturer of variable speed drives, Control Techniques, uses this protocol to
communicate from a programmable controller or personal computer to up to 32 drives.
Generally the RS-485 standard is preferred in the implementation of this protocol.

�������
��������

The ANSI-X3.28-2.5-A4 standard defines the character format and sequence of
characters in a message. The typical structure adopted in the RS-485 standard is:

• A 10 bit character consisting of 1 start bit, 7 bit ASCII Code, even or no
parity, 1 stop bit

• Baud rate selectable between 300 and 19 200 bps
• Up to 32 drives or slaves permitted on the network

There are two types of commands:

• READ command from the PC to the specific drive requesting information on
a specific parameter

• A WRITE command from the PC to the specific drive to change
 READ/WRITE parameters

)��
����
�������

The read command and its response have the format shown in Figure 10.6.

���
������������������211�

Figure 10.6
Format of READ request and its response (Pass 1)

The ASCII characters used in the READ request message are:
• EOT (1 character)

This resets all the devices connected to the serial link

• ADD (4 characters)
 The protocol allows addressing up to 32 devices. Each character in the
address is transmitted twice, to ensure data integrity. For example if drive
address is 14, ADD = 1144

• PAR (3 characters)
 This consists of the parameter information, which is in the range of
0–999. For bit parameters, add 100 to the bit number

• ENQ (1 character)
Termination of message

The ASCII characters used in the READ response message are:
• STX (1 character)

 This indicates to the master the start of the reply

• PAR (3 characters)
 As above

212������������	����
���
�������������������
��������������
�������

• DATA (6 characters)
 The first character consists of the polarity (or a space if this is
irrelevant). A maximum of four digits and a decimal point form the remaining
characters.

• ETX (1 character)
 This indicates to the master that the data is finished.

• BCC (1 character)
 The block checksum forms the error checking mechanism. This is
calculated by doing an exclusive OR calculation on the parameter number, the
data and the ASCII character EOT. Sometimes the BCC is disabled on the
equipment and a CR is only returned.

Figure 10.7
Format of READ command and the responses (Pass 2)

The message interchange between the master and slave can be continued after the first
READ request and response frames by:

• Stepping forward to the next (sequential) parameter by sending an ACK
or

• Stepping backwards to the previous (sequential) parameter by sending a BS

���
������������������213�

or
• Requesting the same parameter again by sending a NAK to the slave

This can be repeated indefinitely (until the end of the parameter list). Sending of EOT

resets all the devices on the network.

)��
�����
�������

Figure 10.8
Format of the write command request and its response

The same descriptions as for the READ command apply. In addition the slave will
return the NAK character if the drive parameter, data or BCC is in error.

If it is requested to write further data to the drive, the sequence outlined in Figure 10.9
should be followed.

214������������	����
���
�������������������
��������������
�������

Figure 10.9
Format of WRITE

��
(
 *����	
��������

+������
��������

Modbus transmission protocol was developed by Gould Modicon (now AEG) for process
control systems. In contrast to the many other buses discussed, no interface is defined.

The user can therefore choose between RS-422, RS-485 or 20 mA current loops, all of
which are suitable for the transmission rates, which the protocol defines.

Although the Modbus is relatively slow in comparison with other buses, it has the
advantage of wide acceptance among instrument manufacturers and users. About 20 to
30 manufacturers produce equipment with the Modbus protocol and many systems are in
industrial operation. It can therefore be regarded as a de facto industrial standard with
proven capabilities. A recent survey in the well-known American Control Engineering
magazine indicated that over 40% of industrial communication applications use the
Modbus protocol for interfacing.

Besides the standard Modbus protocol, there are two other Modbus protocol structures:
• Modbus Plus
• Modbus II

���
������������������215�

The most popular one is Modbus Plus. It is not an open standard as the classical
Modbus has become. Modbus II is not used much due to additional cabling requirements
and other difficulties.

The Modbus is accessed on the master/slave principle, the protocol providing for one
master and up to 247 slaves. Only the master initiates a transaction.

Transactions are a query/response type where only a single slave is addressed, or a
broadcast/no response type where all slaves are addressed. A transaction comprises a
single query and single response frame or a single broadcast frame.

Certain characteristics of the Modbus protocol are fixed, such as frame format, frame
sequences, handling of communications errors and exception conditions and the functions
performed. Other characteristics are selectable. These are transmission medium,
transmission characteristics and transmission mode, RTU or ASCII. The user charac-
teristics are set at each device and cannot be changed when the system is running.

The Modbus protocol provides frames for the transmission of messages between master
and slaves. The information in the message is the address of the intended receiver, what
the receiver must do, the data needed to perform the action and a means of checking
errors. The slave reads the messages, and if there is no error it performs the task and
sends a response back to the master. The information in the response message is the slave
address, the action performed, the result of the action and a means of checking errors. If
the initial message was of broadcast type, there is no response from the slaves.

Normally, the master can send another query as soon as it has received the response
message. A timeout function ensures that the system still functions when the query is not
received correctly.

Data can be exchanged in two transmission modes:
• ASCII – readable, used e.g. for testing
• RTU – compact and faster; used for normal operation (Hex)

The RTU mode (sometime also referred to as Modbus-B for Modbus binary) is the

preferred Modbus mode and will be discussed in this section. The ASCII transmission
mode has a typical message, which is about twice the length of the equivalent RTU
message.

The Modbus also provides an error check for transmission and communication errors.
Communication errors are detected by character framing, a parity check, a redundancy
check or CRC. The latter varies depending on whether the RTU or ASCII transmission
mode is being used.

*����	
��������	

All functions supported by the Modbus Protocol are identified by an index number. They
are designed as control commands for field instrumentation and actuators and are as
follows:

• Coil control commands for reading and setting a single coil or a group of coils
• Input control commands for reading input status of a group of inputs
• Register control commands for reading and setting one or more holding

registers
• Diagnostics test and report functions
• Program functions
• Polling control functions
• Reset

216������������	����
���
�������������������
��������������
�������

 �������
	�������	

This section reviews the Modbus protocol in detail and is broken down into the
following sections:

• Message format
• Synchronization
• Memory location
• Function codes
• Exception responses

*�		�����������

A transaction consists of a single request from the host to a specific secondary device and
a single response from that device back to the host. Both of these messages are formatted
as Modbus message frames. Each such message frame consists of a series of bytes
grouped into four fields as described in the following paragraphs. Note that each of these
bytes indicated here are in Hex format (not ASCII).

Figure 10.10
Format of Modbus message frame

The first field in each message frame is the address field, which consists of a single byte
of information. In request frames, this byte identifies the controller to which the request
is being directed. The resulting response frame begins with the address of the responding
device. Each slave can have an address field between 1 and 247, although practical
limitations will limit the maximum number of slaves. A typical Modbus installation will
have one master and two or three slaves.

The second field in each message is the function field, which also consists of a single
byte of information. In a host request, this byte identifies the function which the target
PLC is to perform.

If the target PLC is able to perform the requested function, the function field of its
response will echo that of the original request. Otherwise, the function field of the request
will be echoed with its most-significant bit set to one, thus signaling an exception
response. Table 10.2 summarizes the typical functions used.

The third field in a message frame is the data field, which varies in length according to
which function is specified in the function field. In a host request, this field contains
information the PLC may need to complete the requested function. In a PLC response,
this field contains any data requested by that host.

���
������������������217�

The last two bytes in a message frame comprise the error-check field. The numeric
value of this field is calculated by performing a cyclic redundancy check (CRC-16) on the
message frame. This error checking ensures that devices do not react to messages that
may have been changed during transmission.

�,�������-�����

In order to achieve reliable communication, the reception of a message must be
synchronized with its transmission. In other words, the receiving device must be able to
identify the start of a new message frame. Under the Modbus RTU protocol, frame
synchronization is established by limiting the idle time between successive characters
within a message frame. If three character times (approximately three milliseconds)
elapse without the receiving device detecting a new character, the pending message will
be flushed. The next byte will then be interpreted as the address field of a new message
line.

*����,
��������

The memory notation allows for four different data types: coils, discrete inputs, input
registers and holding registers. Register variables consist of two bytes, while coils and
discrete inputs are single bytes.

Each function references only one type of data. This allows message-frame memory
references to be expressed as hexadecimal offsets relative to the lowest possible address
for that data type. For example, the first holding register (40001) is referenced as 0000.

Figure 10.11
Diagram illustrating Modbus PLC notation

Table 10.2 lists the address range and offsets for these four data types, as well as the
function codes, which apply to each. The diagram above also gives an easy reference to
the Modbus data types.

218������������	����
���
�������������������
��������������
�������

Table 10.2
Modicon addresses and function codes

.�������
����	

Each request frame contains a function code that defines the action expected for the target
controller. The meaning of the request data fields is dependent on the function code
specified.

The following paragraphs define and illustrate most of the popular function codes
supported. In these examples, the contents of the message-frame fields are shown as
hexadecimal bytes.

/���
����
��
�������
������
	����	
0��������
����
��1

This function allows the host to obtain the ON/OFF status of one or more logic coils in
the target device.

The data field of the request consists of the relative address of the first coil followed by
the number of coils to be read. The data field of the response frame consists of a count of
the coil bytes followed by that many bytes of coil data.

The coil data bytes are packed with one bit for the status of each consecutive coil
(1=ON, 0=OFF). The least significant bit of the first coil data byte conveys the status of
the first coil read. IF the number of coils read is not an even multiple of eight, the last
data byte will be padded with zeros on the high end. Note that if multiple data bytes are
requested, the low order bit of the first data byte in the response of the slave contains the
first addressed coil.

In the following example, the host requests the status of coils 000A (decimal 00011)
and 000B (00012). The target device’s response indicates both coils are ON.

���
������������������219�

Figure 10.12
Example of read coil status read digital input status (Function Code 02)

This function enables the host to read one or more discrete inputs in the target device.
The data field of the request frame consists of the relative address of the first discrete

input followed by the number of discrete inputs to be read. The data field of the response
frame consists of a count of the discrete input data bytes followed by that many bytes of
discrete input data.

The discrete-input data bytes are packed with one bit for the status of each consecutive
discrete input (1=ON, 0=OFF). The least significant bit of the first discrete input data
byte conveys the status of the first input read. If the number of discrete inputs read is not
an even multiple of eight, the last data byte will be padded with zeros on the high end.
The low order bit of the first byte of the response from the slave contains the first
addressed digital input.

In the following example, the host requests the status of discrete inputs hexadecimal
offsets 0000 and 0001 (i.e. decimal 10001 and 10002). The target device’s response
indicates that discrete input 10001 is OFF and 10002 is ON.

220������������	����
���
�������������������
��������������
�������

Figure 10.13
Example of read input status

/���
�������
����	���	
0��������
����
�"1

This function allows the host to obtain the contents of one or more holding registers in the
target device.

The data field of the request frame consists of the relative address of the first holding
register followed by the number of registers to be read. The data field of the response
time consists of a count of the register data bytes followed by that many bytes of holding
register data.

The contents, of each requested register, are returned in two consecutive register-data
bytes (most significant byte first).

In the following example, the host requests the contents of holding register hexadecimal
offset 0002 or decimal 40003. The controller’s response indicates that the numerical
value of the register’s contents is hexadecimal 07FF or decimal 2047. The first byte of the
response register data is the high order byte of the first addressed register.

���
������������������221�

Figure 10.14
Example of reading holding register

/������
�����
����	���	
0��������
����
�(1

This function allows the host to obtain the contents of one or more input registers in the
target device.

The data field of the request frame consists of the relative address of the first input
register followed by the number of registers to be read. The data field of the response
frame consists of a count of the register-data bytes followed by that many bytes of input-
register data.

The contents, of each requested register, are returned in two consecutive register-data
bytes (most-significant byte first). The range for register variables is 0 to 4095.

In the following example, the host requests the contents of input register hexadecimal
offset 000 or decimal 30001. The PLC’s response indicates that the numerical value of
that register’s contents is 03FFH, which would correspond to a data value of 25 per cent
(if the scaling of 0 to 100 per cent is adopted) and a 12-bit A/D converter with a
numerical range of 0 to 4095 (0FFFH) is used.

222������������	����
���
�������������������
��������������
�������

Figure 10.15
Example of reading input register

.����
	�����
����
0��������
����
�'1

This function allows the host to alter the ON/OFF status of a single logic coil in the target
device.

The data field of the request frame consists of the relative address of the coil followed
by the desired status for that coil. A hexadecimal status value of FF00 will activate the
coil, while a status value of zero (H) will deactivate it. Any other status value is illegal.

If the controller is able to force the specified coil to the Requested state, the response
frame will be identical to the request. Otherwise an exception response will be returned.

If the address 00 is used to indicate broadcast mode, all attached slaves will modify the
specified coil address to the state required.

The following example illustrates a successful attempt to force coil 11 (decimal) OFF.

���
������������������223�

Figure 10.16
Example of forcing a single coil

 ��	��
	�����
����	���
0��������
����
�21

This function enables the host to alter the contents of a single holding register in the
target device.

The data field of the request frame consists of the relative address of the holding
register followed by the new value to be written to that register (most-significant byte
first).

If the controller is able to write the requested new value to the specified register, the
response frame will be identical to the request. Otherwise, an exception response will be
returned.

The following example illustrates a successful attempt to change the contents of
holding register 40003 to 3072 (0C00 Hex).

When slave address is set to 00 (broadcast mode), all slaves will load the specified
register with the value specified.

224������������	����
���
�������������������
��������������
�������

Figure 10.17
Example of presetting a single register

/���
�3�������
	����	
0��������
����
�41

This is a short message requesting the status of eight digital points within the slave
device.

This will provide the status of eight predefined digital points in the slave. For example
this could be items such as the status of the battery, whether memory protect has been
enabled or the status of the remote input/output racks connected to the system.

���
������������������225�

Figure 10.18
Read exception status query message

5������6
��	�
0��������
����
�&1

The objective of this function code is to test the operation of the communications system
without affecting the memory tables of the slave device. It is also possible to implement
additional diagnostic features in a slave device (should this be considered necessary) such
as number of CRC errors, number of exception reports etc.

The most common implementation will only be considered in this section; namely a
simple return of the query message.

226������������	����
���
�������������������
��������������
�������

Figure 10.19
Loopback test message

.����
��������
����	
��
�������
������	
0��������
����
�.1

This forces a contiguous (or adjacent) group of coils to an ON or OFF state. The
following example sets 10 coils starting at address 01 Hex (at slave address 01) to the ON
state. If slave address 00 is used in the request frame broadcast mode will be implemented
resulting in all slaves changing their coils at the defined addresses.

���
������������������227�

Figure 10.20
Example of forcing multiple coils

.����
��������
����	���	
0��������
����
��1

This is similar to the preset single register and the forcing of multiple coils. In the
example below, a slave address 01 has 2 registers changed commencing at address 4011.

Figure 10.21
Example of presetting multiple registers

228������������	����
���
�������������������
��������������
�������

!3�������
��	���	�	

Request frames containing parity or checksum errors are ignored – no response is sent by
any device. If an otherwise valid request frame contains an illegal request (one not
supported by the target slave unit), an exception response will be returned to the host.

The four fields of an exception response contain:
• The address of the responding controller
• The requested function number with its most-significant bit set to one
• An appropriate exception code
• The CRC-16 checksum

Table 10.3 lists the most important exception codes, which may be returned.

�

Table 10.3
Abbreviated list of exception codes returned

An example of an illegal request and the corresponding exception response is shown
below. The request in this example is to READ COIL STATUS of points 514 to 521
(eight coils beginning an offset 0201H). These points are not supported in this PLC, so an
exception report is generated indicating code 02, illegal address.

���
������������������229�

Figure 10.22
 Example of an illegal request

��
'
 �����
7�����,
8���
9�����,
0 ��	1
��������

��������
��
�����
7�����,
��������

There are two main protocol standards used in Allen Bradley data communications:

)��
8���
9�����,
��������

This is a local area network (LAN) that allows peer-to-peer communications up to 64
nodes. It uses a half duplex (polled) protocol and rotation of link mastership. It operates
at 57.6 kBaud.

)��
8���
9�����,
 ��	
��������

This is similar to the Data Highway Network although designed for fewer PCs and
operates at a data rate of 57.6 kbaud. This has peer-to-peer communications with a token
passing scheme to rotate link mastership among the nodes connected to that link.

Note that both protocol standards implement peer-to-peer communications through a
modified token passing system called the floating master. This is a fairly efficient
mechanism as each node has an opportunity to become a master at which time it can
immediately transmit without checking with each mode for the requisite permission to
commence transmission.

The Allen Bradley Data Highway Plus uses the three layers of the OSI layer model:
• Hardware (a physical layer)
• Data link layer protocol
• Application layer protocol

230������������	����
���
�������������������
��������������
�������

��������������������������������

This is based on twin axial cable with three conductors essentially in line with the RS-485
specifications.

�
����
���������������������

Note that the asynchronous link can use either a full duplex (unpolled) protocol or a
master slave communication through a half duplex (unpolled) protocol. Although both
types of protocols are available the tendency today is to use the full duplex protocol as
this explains the high performance nature of the link. Hence this protocol will be
examined in more detail in the following sections.

Full duplex protocol is character orientated. It uses the ASCII control characters listed
in the following table, extended to eight bits by adding a zero for bit number seven (i.e.
the eighth bit).

The following ASCII characters are used:

Table 10.4
ASCII characters used

Full duplex protocol combines these characters into control and data symbols. The
following table lists the symbols used for full duplex implementation.

Table 10.5
Symbols used for full duplex mode

���
������������������231�

��������������������

Note that response symbols transmitted within a message packet are referred to as
embedded responses.

F
igure 10.23
Protocol structure

The CRC-16 calculation is done using the value of the application layer data bytes and
the ETX byte. The CRC-16 result consists of two bytes. Refer to section 8.4 for more
information on the cyclic redundancy check mechanism.

Note that to transmit the data value of 10H, the sequence of data symbols DLE DLE
must be used. Only one of these DLE bytes and no embedded responses are included in
the CRC value.

��������������������

• Minimum size of a valid message is six bytes.
• Duplicate message detection algorithm – receiver compares the second, third,

fifth and sixth bytes of a message with the same bytes in the previous
message.

232������������	����
���
�������������������
��������������
�������

Figure 10.24
Software logic for transmitter

P = Recovery procedure

T = Ready to transmit next message

* = Default values used by module

Depending on the highway traffic and saturation level, there may be a wait for a reply
from the remote node before transmitting the next message.

���
������������������233�

Figure 10.25
Software logic for receivers

��������
�����
���
��������	

The following diagrams show typical events that occur in the communications process.

234������������	����
���
�������������������
��������������
�������

Figure 10.26
Normal message transfer

Figure 10.27
Message transfer with NAK

There are two types of application programs:
• Command initiators
• Command executors

Command initiators specify which command function to execute at a particular remote

node.
The command executor must also issue a reply message for each command it receives.

If the executor cannot execute a command it must send the appropriate error code.

���
������������������235�

The reply message may contain an error. The command initiator must check for this
condition and depending on the type of error, retransmit the message or notify the user.

If the command executor reply is lost due to noise, the command initiator should
maintain a timer for each outstanding command message. If the timer expires the
command initiator should take appropriate action (notify the user or retransmit to
executor).

If the application layer software cannot deliver a command message, it should generate
a reply message with the appropriate error code and send the reply to the initiator. If it
cannot deliver a reply message, the application layer should destroy the reply without
notification to the command executor.

Figure 10.28
 Basic command set message packet fields

Note that not all command messages have FNC, ADR, SIZE or DATA bytes. Not all
reply messages have DATA or EXT STS bytes.

��������������� �����

DST Destination byte. This contains the ultimate destination of the node.

SRC Source node of the message. Set this to zero as the KF2 interface
module will set the byte to its own node number.

CMD Command byte.

FNC Function byte.

236������������	����
���
�������������������
��������������
�������

These together define the activity to be performed by the command message at the
destination node. Note that bit five of the command byte shall always be zero (normal
priority).

�)�
���
!%)
�:�
;
	����	
���
�3������
	����	
�,��	

In command messages the STS byte is set to zero. In reply messages the STS byte may
contain a status code. If the four high bits of the STS byte are ones, there is extended
status information in an EXT STS byte.

)#�
;
����	������
�,��	
0���
�,��	1

The application level software must assign a unique 16 bit transaction number (generated
via a counter). When the command initiator receives reply to one of its command
messages, it can use the TNS value to associate the reply message with its corresponding
command.

Whenever the command executor receives a command from another node, it should
copy the TNS field of the command message into the same field of the corresponding
reply message.

�88/

Address field contains the address of a memory location in the command executor where
the command is to begin executing. The ADDR field specifies a byte address (not a word
address as in PLC programming).

��-�

The size byte specifies the number of data bytes to be transferred by a message.

8����

The data field contains binary data from the application programs.

 5�$'
�������
	��
��		���
���6��
�����	

1 Packet offset: This field contains the offset between the DATA field of the
current message packet and the DATA field of the first
packet in the transmission.

2 Total trans: This field contains the total number of PLC-5 data elements
transferred in all message packets initiated by a command.

7�	��
�������
	��

The asynchronous link message packet formats to be used are delivered below:
In the lists below, privileged commands are initiated by computer and executed by

PLCs. Non-privileged commands are initiated by a PLC or a computer. The CMD values
listed are for non-priority command message packets.

���
������������������237�

Figure 10.29
Basic command set for PLC-5

�,��������	
���6
	����	
����
0�)�<
!%)
�)�1

The TS bytes provide information about the execution or failure of the corresponding
command that was transmitted from the computer. If the reply returns a code of 00, the
command was executed at the remote node. All other codes are divided into two types:

• Local error – local node is unable to transmit a message to the remote node.
• Remote error – remote node is unable to execute the command.

238������������	����
���
�������������������
��������������
�������

Local STS error code
 Code description
00 Success – no error
01 Destination node out of buffer space
02 Remote node does not ACK command message
03 Duplicate token holder detected
04 Local port is disconnected

Remote STS error codes
 Code description
00 Success – no errors
10 Illegal command or format
20 Host has a problem and will not communicate
30 Remote node is missing, disconnected
40 Host could not complete function due to hardware fault
50 Addressing problem or memory protect rungs
60 Function disallowed due to command protection selection
70 Processor is in program mode
80 Compatibility mode file is missing or communication zone problem
AO Not used
BO Remote node problem due to download
CO to EO Not used
FO Error in the ETX STS byte �

�

!)%
�)�
�,��

There is only an EXT STS byte if the STS code is FO. If the command code is 00 to 08,
there is not an EXT STS byte. Commands used in this implementation are in this range;
hence the EXT STS byte is not being used.

8�����	���
�������
���
����
������

Diagnostic counters are bytes of information stored in RAM in each Data Highway and
Data Highway Plus module. When using the diagnostic read command a dummy value
should be used for the address. The reply contains the entire counter block.

11

HART protocol

The highway addressable remote transducer (HART) protocol is one of a number of
smart instrumentation protocols designed for collecting data from instruments, sensors,
and actuators by digital communication techniques.

Objectives
When you have completed studying this chapter you will be able to:

• Describe the origin and benefits of the HART protocol
• Describe the three OSI layers of the HART protocol

11.1 Introduction to HART and smart instrumentation
Smart (or intelligent) instrumentation protocols are designed for applications where actual
data is collected from instruments, sensors, and actuators by digital communication
techniques. These components are linked directly to programmable logic controllers
(PLCs) and computers.

The HART (highway addressable remote transducer) protocol is a typical smart
instrumentation Fieldbus that can operate in a hybrid 4–20 mA digital fashion.

HART is, by no means, the only protocol in this sphere. There are hundreds of smart
implementations produced by various manufacturers – for example Honeywell, which
compete with HART. This chapter deals specifically with HART. For information about
the other Fieldbus protocols refer to Chapter 12.

At a basic level, most smart instruments provide core functions such as:
• Control of range/zero/span adjustments
• Diagnostics to verify functionality
• Memory to store configuration and status information (such as tag numbers

etc.)

Accessing these functions allows major gains in the speed and efficiency of the

installation and maintenance process. For example, the time consuming 4–20 mA loop

240 Practical Data Communications for Instrumentation and Control

check phase can be achieved in minutes, and the device can be readied for use in the
process by zeroing and adjustment for any other controllable aspects such as the damping
value.

11.2 Highway addressable remote transducer (HART)
This protocol was originally developed by Rosemount and is regarded as an open
standard, available to all manufacturers. Its main advantage is that it enables an
instrumentation engineer to keep the existing 4–20 mA instrumentation cabling and to use
simultaneously the same wires to carry digital information superimposed on the analog
signal. This enables most companies to capitalize on their existing investment in
4–20 mA instrumentation cabling and associated systems; and to add the further
capability of HART without incurring major costs.

HART is a hybrid analog and digital protocol, as opposed to most Fieldbus systems,
which are purely digital.

The HART protocol uses the frequency shift keying (FSK) technique based on the Bell
202 communications standard. Two individual frequencies of 1200 and 2200 Hz,
representing digits 1 and 0 respectively, are used. The average value of the sine wave (at
the 1200 and 2200 Hz frequencies), which is superimposed on the 4–20 mA signal, is
zero. Hence, the 4–20 mA analog information is not affected.

Figure 11.1
Frequency allocation of HART protocol

The HART protocol can be used in three ways:
• In conjunction with the 4–20 mA current signal in point-to-point mode
• In conjunction with other field devices in multidrop mode
• In point-to-point mode with only one field device broadcasting in burst mode

Traditional point-to-point loops use zero for the smart device polling address. Setting

the smart device polling address to a number greater than zero creates a multidrop loop.

HART protocol 241

The smart device then sets its analog output to a constant 4 mA and communicates only
digitally.

The HART protocol has two formats for digital transmission of data:
• Poll/response mode
• Burst (or broadcast) mode

In the poll/response mode the master polls each of the smart devices on the highway

and requests the relevant information. In burst mode the field device continuously
transmits process data without the need for the host to send request messages. Although
this mode is fairly fast (up to 3.7 times/second) it cannot be used in multidrop networks.

The protocol is implemented with the OSI model (see Chapter 9) using layers 1, 2 and
7. The actual implementation is covered in this chapter.

11.3 Physical layer
 The physical layer of the HART Protocol is based on two methods of communication.

• Analog 4–20 mA
• Digital frequency shift keying (FSK)

Analog 4 to 20 mA communications

Figure 11.2
HART point-to-point communications

The basic communication of the HART protocol is the 4–20 mA current system. This
analog system is used by the sensor to transmit an analog value to the HART PLC or
HART card in a PC. In a 4–20 mA the sensor outputs a current value somewhere between
4 and 20 mA that represents the analog value of the sensor. For example, a water tank that
is half full – say 3400 kilolitres – would put out 12 mA. The receiver would interpret this
12 mA as 3400 kilolitres. This communication is always point-to-point, i.e. from one
device to one other. It is not possible to do multidrop communication using this method
alone. If two or more devices put some current on the line at the same time, the resulting
current value would not be valid for either device.

242 Practical Data Communications for Instrumentation and Control

Digital multidrop communications

Figure 11.3
HART multi-point communications

For multidrop communications, the HART protocol uses a digital/analog modulation
technique known as frequency shift keying (FSK). This technique is based on the
Bell 202 communication standard. Data transfer rate is 1200 baud with a digital ‘0’
frequency (2200 Hz) and a digital ‘1’ frequency (1200 Hz). Category 5 shielded, twisted
pair wire is recommended by most manufacturers. Devices can be powered by the bus or
individually. If the bus powers the devices, only 15 devices can be connected. As the
average DC current of an ac frequency is zero, it is possible to place a 1200 Hz or
2200 Hz tone on top of a 4–20 mA signal. The HART protocol does this to allow
simultaneous communications on a multidrop system.

The HART handheld communicator

Figure 11.4
HART handheld controller

HART protocol 243

The HART system includes a handheld control device. This device can be a second
master on the system. It is used to read, write, range and calibrate devices on the bus. It
can be taken into the field and used for temporary communications. The battery operated
handheld has a display and key input for specific commands.

Figure 11.5
HART handheld connection method

The HART field controller in Figure 11.5 is wired in series with the field device (valve
positioner or other actuator). In some cases, a bypass capacitor may be required across the
terminals of the valve positioner to keep the positioner’s series impedance below the
100 Ω level required by HART specifications. Communications with the field controller
requires the communicating device (handheld terminal or PC) to be connected across a
loop impedance of at least 230 Ω. Communications is not possible across the terminals of
the valve positioner because of its low impedance (100 Ω). Instead, the communicating
device must be connected across the transmitter or the current sense resistor. (Taken from
the HART applications guide by the HART Communications Foundation 1999
www.hartcomm.org.)

11.4 Data link layer
The data link frame format is shown in Figure 11.7.

244 Practical Data Communications for Instrumentation and Control

Figure 11.6
HART protocol implementation of OSI layer model

Figure 11.7
HART data link frame format

Two-dimensional error checking, including both vertical and longitudinal parity checks,
is implemented in each frame. Each character or frame of information has the following
parameters:

• 1 start bit
• 8 data bits
• 1 odd parity bit
• 1 stop bit

11.5 Application layer
The application layer allows the host device to obtain and interpret field device data.
There are three classes of commands:

• Universal commands
• Common practice commands
• Device specific commands

Examples of these commands are listed below.

HART protocol 245

Universal commands
• Read manufacturer and device type
• Read primary variable (PV) and units
• Read current output and per cent of range
• Read up to 4 predefined dynamic variables
• Read or write 8-character tag, 16-character descriptor, date
• Read or write 32 character message
• Read device range, units and damping time constant
• Read or write final assembly number
• Write polling address

Common practice commands
• Read selection of up to 4 dynamic variables
• Write damping time constant
• Write device range
• Calibrate (set zero, set span)
• Set fixed output current
• Perform self-test
• Perform master reset
• Trim PV zero
• Write PV units
• Trim dac zero and gain
• Write transfer function (square root/linear)
• Write sensor serial number
• Read or write dynamic variable assignments

Instrument specific commands
• Read or write low flow cut-off value
• Start, stop or clear totalizer
• Read or write density calibration factor
• Choose PV (mass flow or density)
• Read or write materials or construction information
• Trim sensor calibration

246 Practical Data Communications for Instrumentation and Control

Figure 11.8
HART application layer implementation

Summary of HART benefits
• Simultaneous analog and digital communications
• Allows other analog devices on the highway
• Allows multiple masters to control same smart instrument
• Multiple smart devices on the same highway
• Long distance communications over telephone lines
• Two alternative transmission modes
• Flexible messaging structure for new features
• Up to 256 process variables in any smart field device

11.6 Typical specification for a Rosemount transmitter

Communication specifications
Method of communication: Frequency shift keying (FSK). Conforms to Bell

202 modem standard with respect to baud rate and
binary ‘1’ and binary ‘0’ frequencies.

Baud rate: 1200 bps
Binary ‘0’ frequency: 2200 Hz
Binary ‘1’ frequency: 1200 Hz
Data byte structure: 1 start bit

8 data bits
1 odd parity bit
1 stop bit

HART protocol 247

Digital process variable rate: poll/response mode: 2.0 per second
 burst mode: 3.7 per second
No. of multidropped devices: loop powered: 15 max.
 individually powered: no limit
Multi-variable specification: max. 256 process variables per smart device

Communication masters: max. 2

Hardware recommendations
Minimum cable size: 24 AWG, (0.51 mm diameter)
Cable type: single pair shielded

or multiple pair with overall shield
Single twisted pair length: 3048 meters max. (3335 yards)
Multiple twisted pair length: 1524 meters max. (1667 yards)

The following formula can be used to determine the maximum cable length:





 +

−






 ×
=

C
Cf

RC
L 100001065 6

Where: L = max. length (meters)
R = total resistance (Ω), inclusive of barriers
C = cable capacitance (pF/m)
Cf = max. shunt capacitance of smart field devices (pF)

Worked example

Assume that a Model 3051C smart pressure transmitter, for a Rosemount System 3
control system, is to be installed using a shielded twisted pair. Calculate the maximum
cable length permitted for reliable operation.

R = 250 ohms
C = 164 pF/m
Cf = 5000 pF





 +

−







×
×

=
164

100005000
164250
1065 6

L

L = 1494 meters

12

���������	
���
����
���	�����

��������
�	�	
��	�

Fieldbus and DeviceNet are communications standards that enable communications
between smart or intelligent instruments and a master device such as a PLC. This chapter
examines the different Fieldbus systems on the market.

���������	

 When you have completed studying this chapter you will be able to:

• Describe the origin and benefits of Fieldbus and DeviceNet systems
• List and describe the three network classes of Fieldbus and DeviceNet

systems
• Describe the characteristics of the following standards (including OSI layers)

– Actuator sensor interface (AS-i)
– Seriplex
– CANbus and DeviceNet
– Interbus-S
– Profibus
– Factory information bus (FIP) and WorldFIP
– Foundation Fieldbus

��
�
 ������������

There are currently several hundreds of analog and digital standards available for com-
munication between data acquisition and control devices. These field devices commu-
nicate using both open and proprietary standards. Traditionally suppliers have produced
and sold complete systems that included hardware, software and proprietary protocols.
These closed systems made it difficult if not impossible to connect devices of different
manufactures. The introduction of open, non-proprietary protocol standards has seen the
beginnings of truly open and interoperable systems.

���������	
���
����
���	�������������
�	�	
��	��249

For simplicity the word Fieldbus will be used to refer to both Fieldbus and DeviceNet
systems in this chapter. DeviceNet generally refers to the on/off and simpler digital de-
vices whilst Fieldbus tends to encompass instrumentation systems, which need to transfer
16-bit data as a minimum.

A universal open protocol standard is thought by some to be the most desirable con-
clusion to the problem of multiple Fieldbus systems. The benefits to end users being that
all devices would talk using the same protocol and therefore the user could buy any
product and plug it in to any system without interfacing problems.

This chapter includes:
• A history of Fieldbus systems
• Classes of Fieldbuses
• The OSI model and Fieldbus systems
• Interoperability
• Examples of various Fieldbus protocols

Before examining the different protocols, it would be helpful to ask why there is

considerable effort, time and money being invested in searching for a ‘perfect’ digital
communication network. Why are there several approaches and not just one unified
effort? Aren’t there enough standards and what is wrong with the one’s we have? To
answer these questions we need to look at the evolution of digital technology and in
particular digital communication technology.

��
�
 ��������

Looking at these technologies from a historical perspective, it becomes clear that they are
relatively new and, more importantly, still evolving. As technology progresses, more
complicated and smaller systems are developed. These new applications and systems
reveal shortcomings in the existing technology. This requires the technology to be
modified or improved to meet these new demands.

The current approach to cabling a typical control system is shown in Figure 12.1. The
concept of Fieldbus is illustrated in Figure 12.2. The figure shows how the instruments
are connected with a communication cable. There are numerous benefits not only with
regard to minimization of the cables but in greatly increased levels of data available to the
operator of the instrument.

250 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Figure 12.1
Current approach to cabling of a typical control system

���������	
���
����
���	�������������
�	�	
��	��251

Figure 12.2
Fieldbus approach to cabling of a typical control system

�������	
��
���
������
�������	

There are real benefits to be gained from the emerging networks, including:
• Greatly reduced wiring costs
• Reduced installation and startup time
• Improved on-line monitoring and diagnostics
• Easy change-out and expansion of devices
• Improved local intelligence in the devices
• Improved interoperability between manufacturers

���		�	
��
�������	
�������	

It would seem at first that a single Fieldbus system would be beneficial to all users, but
this is not the case. Very simple field devices such as proximity switches, limit switches,
and basic actuators only require a few bits of digital information to communicate an ‘off’
or ‘on’ state. These are usually associated with real time control applications where
update times of a few milliseconds are required. The associated electronics necessary to
communicate with these systems can be simple, compact and inexpensive enough to be
integrated in the device itself.

252 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Alternatively, complicated devices like PLCs, DCSs, or operator stations (human-
machine-interfaces, HMIs), require multi-byte length messages (up to 256 in some
systems) and may only require update times of 10–100 ms depending on the application.
These systems require larger packets due to a large amount of data to be transferred.

The solution is to select the digital communication network that is best suited to the
application, and integrate information up through the higher speed networks as required.
Several approaches in digital networks have been developed over the last few years, each
with a different target application, speed and technology.

These different approaches are generically referred to as Fieldbus and DeviceNet
systems and are typically categorized by the length of the ‘message’ required by the
devices to adequately convey information to the host or network.

This method of categorization allows these Fieldbus and DeviceNet systems to be
placed in one of the following three network oriented classes:

• Bit: Sensor level devices such as AS-i
• Byte: Device level instruments such as Interbus-S, CANbus and

DeviceNet
• Message: Field level devices such as Profibus and Foundation Fieldbus

Bit oriented systems are used, for example, with simple binary type devices such as

proximity sensors, contact closures (pressure switches, float switches, etc.), simple push-
button stations and pneumatic actuators. These types of networks are also known as
‘sensor bus’ networks due to the nature of the devices (sensors and actuators) typically
used.

Byte oriented systems are used in much broader applications such as motor starters, bar
code readers, temperature and pressure transmitters, chromatographs and variable speed
drives due to their larger addressing capability and the larger information content of the
several byte length message format.

Message oriented systems, which are those systems containing over 16 bytes per mes-
sage, are used in interconnecting more intelligent systems such as PCs, PLCs, operator
terminals and engineering workstations where uploading and downloading system or
device configurations is required, or in linking the above mentioned networks together.

���
���
�����
���
�������	
	 	���	

The ISO/OSI is an internationally accepted communications reference model and as such
has been universally accepted by all Fieldbus systems committees as a starting point in
the design process.

As outlined, the OSI model allocates specific tasks and defines the interface for each
layer. The model used in an industrial system is a simplified version with only three
layers: application, data link and physical (see Figure 12.3). In addition to the three OSI
model levels, a user layer is required in Fieldbus systems, to incorporate the function
blocks. This is discussed later.

���������	
���
����
���	�������������
�	�	
��	��253

Figure 12.3
OSI and simplified OSI models

The functions of each layer are:

!� 	����
�� ��

This layer defines the voltages and physical connections. Data received from the data link
layer is encoded as electrical information on the actual wire. Similarly, electrical signals
received from the wire are passed as binary data to the data link layer.

"���
����
�� ��

This defines the protocol and error detection part of the protocol, where the messages sent
on the wire are encoded and messages received from the wire are decoded.

#$$��������
�� ��

This layer defines the content messages and the services required supporting them.
Network and transports layers have been omitted by almost every producer of Fieldbus

protocols. This means that without a Network layer the protocol cannot ‘internetwork’ as
can be done with the TCP/IP protocol. Therefore most industrial Fieldbus protocols are
not directly able to communicate over multiple interconnected networks as with Ethernet
and TCP/IP.

254 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

������$��������

Interoperability is defined as the capability of using similar field devices from different
manufacturers as replacements without losing functionality or sacrificing the degree of
integration with the host system. The user is able to choose the right devices for an
application independent of the supplier, control system and the protocol.

Refer to Figure 12.4.

Figure 12.4
A Non-interoperable system

The host system, from manufacturer A, can access flow meters at addresses 1, 2 and 3
from manufacturer A with full read/write capability, but only has read capability for the
flow meter at address 4, from manufacturer B. Therefore, the host control system treats
each of these field devices differently and they could not be used as effective
replacements for each other. Only if the flow meter at address 4 is totally interchangeable
with the other devices is the system considered interoperable.

Interoperability is valuable because:
• It allows the end user to select different manufacturers’ devices in an

interchangeable manner with no discernible differences in the use of each
device.

• The concept allows the easy integration of new field devices into control
strategies, as they become available.

Importantly, a communication hierarchy, such as the OSI model, cannot address the

issue of interoperability. Standardization of the physical, data link and application layers
will ensure information can be exchanged among devices on a Fieldbus network. It is the
User layer that actually specifies the type of data or information and how it is to be used.
Hence, specification of the user layer is vital to ensure complete performance of a
Fieldbus system (although it is not part of the OSI communications model).

!�������
������

The following sections include a short review of selected open Fieldbus standards. These
include:

• Actuator sensor interface (AS-i)
• Seriplex
• CANbus, DeviceNet and SDS
• Interbus-S
• Profibus
• Foundation Fieldbus

���������	
���
����
���	�������������
�	�	
��	��255

��
%
 #�������
	��	��
���������
&#�'�(

The AS-i is a master/slave, open system network developed by eleven manufacturers.
These manufacturers created the AS-i Association to develop an open Fieldbus
specification. Some of the more widely known members of the AS-i association include
Pepperl-Fuchs, Allen-Bradley, Banner Engineering, Datalogic Products, Siemens,
Telemecanique, Turck, Omron, Eaton, and Festo. The number of AS-i Association
members continues to grow. The AS-i Association also certifies that products under
development for the network meet the AS-i specifications. This will assure compatibility
between products from different vendors.

AS-i is a bit oriented communication link, designed to connect binary sensors and
actuators. Most of these devices do not require multiple bytes to adequately convey the
necessary information about the device status, so the AS-i communication interface is
designed for bit-oriented messages to increase message efficiency for these types of
devices.

The AS-i interface is an interface for binary sensors and actuators, designed to interface
binary sensors and actuators to microprocessor based controllers using bit length
‘messages’. It was not developed to connect intelligent controllers together as this would
be far beyond the limited capability of short bit length message streams.

Modular components form the central design of AS-i. Connection to the network is
made with unique connecting modules requiring minimal, or in some cases no tools, and
provide for rapid, positive device attachment to the AS-i flat cable. Provision is made in
the communications system to make ‘live’ connections, permitting the removal or
addition of nodes with minimum network interruption.

Connection to higher-level networks is made possible through plug-in PC, PLC cards or
serial interface converter modules.

The following sections examine these features of the AS-i network in more
detail.

���
$� 	����
�� ��

AS-i uses a two-wire untwisted, unshielded cable, which serves as both communication
link and power supply for up to thirty-one slaves. A single master module controls
communication over the AS-i network, which can be connected in various configurations
such as bus, ring, or tree (see Figure 12.5). The AS-i flat cable has a unique cross-section
that permits only properly polarized connections when making field connections to the
modules (see Figure 12.6). Other types of cable may be used for the AS-i network
providing they meet the AS-i cable specification. A special shielded cable is also
available for high noise environments.

256 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Figure 12.5
AS-i topographical examples

Figure 12.6
AS-i cable cross-section

Each slave is permitted to draw a maximum of 65 mA from the 30 V dc power supply.
If devices require more than this, separate supplies must be provided for each such
device. With a total 31 slaves drawing 65 mA, a total limit of 2 A has been established to

���������	
���
����
���	�������������
�	�	
��	��257

prevent excessive voltage drop over the 100 m permitted network length. A 16 AWG
cable is specified to ensure this condition.

The slave (or field) modules are available in four configurations:
• Input modules for 2- and 3-wire dc sensors or contact closure
• Output modules for actuators
• Input and output (I/O) modules for dual purpose applications
• Field connection modules for direct connection to AS-i compatible devices

The I/O modules are capable of accepting up to 4 I/O per slave, and a total of 124 I/O

for the network.
A unique design allows the field modules to be connected directly into the bus while

maintaining network integrity (see Figure 12.7). The field module is composed of an
upper and lower section; secured together once the cable is inserted. Specially designed
contact points pierce the self-sealing cable, providing bus access to the I/O points and/or
continuation of the network. True to the modular design concept, two types of lower
sections and three types of upper sections are available to permit ‘mix-and-match’
combinations to accommodate various connection schemes and device types (see
Figure 12.8). Plug connectors are utilized to interface the I/O devices to the slave (or with
the correct choice of modular section screw terminals) and the entire module is sealed
from the environment with special seals where the cable enters the module. The seals
conveniently store away within the module when not in use.

Figure 12.7
AS-i cable to device connections (1)

258 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Figure 12.8
AS-i cable to device connections (2)

The AS-i network is capable of a transfer rate of 167 kbps. Using an access procedure
known as ‘master-slave access with cyclic polling’, the master continually polls all the
slave devices during a given cycle to ensure rapid update times. For example, with all 31
slaves and 124 I/O points connected, the AS-i network can ensure a 5 ms cycle time,
making the AS-i network one of the fastest available.

A modulation technique called ‘alternating pulse modulation’ provides this high
transfer rate capability as well as high data integrity. This technique is described in the
following section.

���
����
����
�� ��

The data link layer of the AS-i network consists of a master call-up and slave response.
The master call-up is exactly fourteen bits in length while the slave response is 7 bits. A
pause between each transmission is used for synchronization, error detection and
correction. Refer to Figure 12.9 for example call-up and answer frames.

���������	
���
����
���	�������������
�	�	
��	��259

Figure 12.9
AS-i packet format

Various code combinations are possible in the information portion of the call-up frame.
It is these code combinations that are used to read and write information to the slave
devices. Examples of some of the master call-ups are listed in Figure 12.10. A detailed
explanation of these call-ups is available from the AS-i association literature and is only
included here to illustrate the basic means of information transfer on the AS-i network.

260 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Figure 12.10
AS-i packet format continued

The modulation technique used by AS-i is known as ‘alternating pulse modulation’
(APM). As the information frame is of a limited size, providing conventional error
checking was not possible and therefore the AS-i developers chose a different technique
to insure high-level data integrity.

Referring to Figure 12.11, the coding of the information is similar to Manchester II
coding, but utilizing a ‘sin squared’ waveform for each pulse. This wave-shape has
several unique electrical properties, which reduce the bandwidth required of the

���������	
���
����
���	�������������
�	�	
��	��261

transmission medium (permitting faster transfer rates), and reduce the end of line
reflections, common in networks using square wave pulse techniques. Also, each bit has
an associated pulse during the second half of the bit period. This property is used as a bit
level of error checking by all AS-i devices. The similarity to Manchester II coding is due
to this technique having been used for many years to pass synchronizing information to a
receiver along with the actual data.

In addition, AS-i developers also established an internal set of regulations for the APM
coded signal, which is used to further enhance data integrity. For example, the start bit or
first bit in the AS-i telegram must be a negative impulse and the stop bit a positive
impulse. Two subsequent impulses must be of opposite polarity and the pause length
between two consecutive impulses should be 3 ms. Even parity and a prescribed frame
length are also incorporated at the frame level. So the ‘odd’ looking wave form,
combined with the rules of the frame formatting, the set of regulations of the APM coded
signal, and parity checking, work together to provide timing information and a high level
of data integrity for the AS-i network.

Figure 12.11
Alternating pulse modulation

�$������)
����������	���	

AS-i node addresses are stored in non-volatile memory and can be assigned either by the
master or one of the addressing or service units. Should a node fail, AS-i has the ability to
automatically reassign the replaced node’s address and in some cases reprogram the node
itself allowing rapid response and repair times.

Since AS-i was designed as an interface between lower level devices, connection to
higher-level systems enables the capability to transfer data and diagnostic information.
Plug-in PC cards and PLC cards are currently available. The PLC cards allow direct
connection with various Siemens PLCs. Serial communication converters are also
available to enable AS-i connection to conventional RS-232, 422, and 485
communication links. Direct connection to a Profibus field network is also possible with

262 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

the Profibus coupler, enabling several AS-i networks access to a high-level digital
network.

Handheld and PC-based configuration tools are available which allow initial start-up
programming and also serve as diagnostic tools after the network is commissioned. With
these devices on-line monitoring is possible to aid in determining the health of the
network and locating possible error sources.

��
*
 ����$��+

Automated Process Control, Inc. developed the Seriplex control bus in 1987 specifically
for industrial control applications. The Seriplex Technology Organization Inc. was
formed to provide information concerning Seriplex, distribute development tools and the
Seriplex Application Specific Integrated Circuit (AS-iC) chip, as well as technical
assistance for Seriplex developers. Like other sensor (bit level) networks Seriplex was
designed to interface lower level I/O devices over a dedicated cabling system, while
providing the capability to connect to a host controller or higher-level digital networks.
However, for simple control functions, a unique feature of the Seriplex network allows
configuration in a peer-to-peer mode that does not require a host or supervisory
controller.

Seriplex allows the implementation of simple control schemes without the need for a
supervisory processor. This is done through the use of intelligent modules providing a
link between inputs and outputs similar to logic gates, i.e. outputs can be programmed
based on the status of certain inputs. If more complicated control is required, or
supervisory functions desired, Seriplex may be connected to a host processor through
interface adapters. Various PLC and PC plug-in cards are available for this interface (see
Figure 12.12).

Figure 12.12
Seriplex system example

���������	
���
����
���	�������������
�	�	
��	��263

Various physical topologies are possible for connecting the modular components of the
Seriplex network via a five-conductor cable, which provides power, data communications
– and clocking signals. Over 7,000 binary I/O points or 480 analog channels (240 In, 240
Out) or various combinations can be supported by Seriplex over this cabling system. The
basic configuration without multiplexing can support 255 digital I/O, 32 analog I/O or
some combination thereof.

The following sections describe the Seriplex network in more detail.

���
$� 	����
�� ��

The Seriplex cabling system consists of a single four-conductor cable with two AWG #22
shielded wires for data and clock signals and two AWG #16 wires for power and
common. A shield drain wire is also provided for shield grounding. Clock rates from 16
to 100 kHz are selectable with newer versions capable of up to 200 kHz. Capacitance
values of cable dramatically affect all communication systems and low capacitance cable
designs are available from several manufacturers to maximize data transfer rates. Rates of
up to 100 kHz over 500 feet are possible with Seriplex using low capacitance (16 pF/ft)
cabling. However, 20 pF/ft cables would limit this distance at 100 kHz to 350 ft. The
importance of low capacitance cabling cannot be over emphasized in any system.

12 V dc is provided by the cable to power the I/O devices in the first generation
systems. Second generation systems operate on either 12 or 24 V dc, with the level
selected by the user for the particular system used. Field connections are made through
Seriplex modules located near the field devices.

Individual I/O addresses are programmed in the module to allow the network access to
each point. A total of 255 usable addresses is available to the modules. Digital inputs and
outputs use one address each. Each 8-bit analog module uses eight addresses (for one
analog input or output). Multiplexing methods are employed to increase the total digital
I/O count to 7,706 or analog I/O count to 480 or a combination of these.

Data and clock signals are transferred over the network in the form of 0 to +12 V digital
pulses.

���
����
����
�� ��

Two different methods of operation are possible with Seriplex, depending on the mode
of operation. Both modes of operation use the unique access control method described in
Mode 2 below.

In Mode 1, or peer-to-peer mode, modules can be logically inter-linked without the
need for a host controller. In this case logical functions are implemented directly between
modules. A separate clock module is required in this mode as there is no host to provide
crucial clock line information. Module outputs can be logically programmed to function,
based on the status of other modules’ inputs. With this capability simple logic functions
can be performed without the need of a host controller.

Mode 2 operation requires the host controller to provide timing clock signals. The
receiver in each module counts the clock pulses. When the pulse count of the clock line
equals the receiver’s address, access is granted on the data link line for the receiver to
read from and, in turn, write to, the host controller.

This access control method is unique in that a continuous ‘train’ of clock and data
pulses cycle through the system. Access on the data line for individual addresses (bit
status) is granted for a time period within the data stream based on the time slot of the
address (see Figure 12.13). This ‘continuous polling’ starts with a synchronizing signal 8
clock cycles long and serves as notification that the ‘polling’ is about to begin. At the

264 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

beginning of the cycle the data line is ‘empty’. As the pulse count equals each module’s
address count, the modules ‘dump’ their bit values on the data line so that at the end of
the cycle all information is available to the host. The frame size can be adjusted in length
from 16 to 256 bits, in multiples of 16, to accommodate different size systems. Correct
sizing of the system and resultant frame size can provide extremely fast update times for
smaller networks.

Figure 12.13a
Seriplex mode 1

Figure 12.13b
 Seriplex mode 2

Data echoing provides error detection on the bit level. The receiver echoes messages
(which are typically one bit per address) to confirm correct data receipt. This is not
automatic and is implemented in the application layer of the software by the applications
programmer.

�$������)
����������	���	

Seriplex is a bit oriented network system intended to link lower level devices both
physically and, in Mode 1 operation, logically. These features are incorporated in the
AS-I-C chip located in all Seriplex devices. Handheld programming devices are available
to enable Seriplex device configuration.

���������	
���
����
���	�������������
�	�	
��	��265

Interface devices to higher-level field networks through host controllers or special
Gateways are also available.

��
,
 �#-��	.
"�����-��
���
�"�
	 	���	

�#-��	

The CAN network was developed in the automotive industry in response to the rapidly
growing use of electronic-control systems in automobiles. As demands for fuel efficiency
and safety increased, more and more electronic devices became part of the system. The
need for multiple devices to pass information between them rapidly became a necessity.
A type of serial data bus system was developed by Bosch to meet these demands. It was
called the controller area network or CAN. CAN is formally specified in: 1) BOSCH
CAN specification – Version 2.0, Part A, and 2) ISO 11898: 1993 – road vehicles –
Interchange of digital information – controller area network (CAN) for high-speed
communication. CAN has since been rapidly adapted to industrial applications.

CAN is a bus type network system which does not use a bus master or token passing
schemes to access the bus. Instead it uses a unique access control method called ‘non-
destructive bit-wise arbitration’. This type of access control uses the station identifier bit
pattern itself to gain access to the bus as shown in Figure 12.14. The priority of the station
is determined by the addressing assignments during configuration of the network and
allows the station with the highest priority preferred access. Unlike token passing or
master-slave type arbitration schemes CAN is not deterministic, but defers to the station
with highest priority making the lower priority stations wait for access.

Figure 12.14
Bit arbitration example

Figure 12.14 shows the bit arbitration of a CAN type system. The devices 1, 2, and 3 try
to transmit at the same time. Ground or a ‘0’ is dominant. The results can be seen on the
top waveform. Because device 1 puts out a ‘1’ and it is dominated by the ‘0’ from 2 and
3, it loses and stops transmitting. Then device 3 puts out a ‘1’ and is dominated by 2.
Therefore, 2 continues to transmit while 1 and 3 wait until the line is clear.

266 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

The CAN station that wins the arbitration continues to transmit its message frame
uninterrupted with no corruption from the other stations arbitration attempts. This allows
higher efficiency of data transfer over the network. A typical CAN message frame is
shown in Figure 12.15. Notice the data field can be of variable length – up to 8 bytes.
This makes CAN suitable for use with more sophisticated devices that may require
several bytes to adequately convey their information content. CRC error checking and
specific frame length requirements, as well as individual message acknowledgments, are
used to ensure data integrity over the bus.

Figure 12.15
The canbus packet

The CAN protocol specifications cover only the physical (layer 1) and data link (layer
2) layers of the ISO/OSI model. Specifics concerning the physical medium for the
communication link and the application layer (layer 7) are left to the designers of the
systems as described below.

"�����-��

DeviceNet, developed by Allen-Bradley, is a low-level device oriented network based on
the CAN network. It is designed to interconnect lower level devices (sensors and
actuators) with higher-level devices (controllers). The variable, multi-byte format of the

���������	
���
����
���	�������������
�	�	
��	��267

CAN message frame is well suited to this task as more information can be communicated
per message than with the bit type systems.

The Open DeviceNet Vendor Association Inc. (ODVA) has been formed to issue
DeviceNet specifications, ensure compliance with the specifications and offer technical
assistance for manufacturers wishing to implement DeviceNet. Over 125 firms have
either joined formally or have signed intent to become members. The DeviceNet
specification is an open specification and available through the ODVA.

DeviceNet can support up to 64 nodes, supporting as many as 2048 total devices. A
single, four-conductor cable provides both power and data communications. Various
devices are available to interconnect I/O devices, and the network trunk-line cable
allowing customized configurations.

As DeviceNet was designed to interface lower level devices with higher-level
controllers, a unique adaptation of the basic CAN protocol was developed. This is similar
to the familiar poll/response or master/slave technique, but still utilizes the speed benefits
of the original CAN.

Figure 12.16 shows the DeviceNet profile in its relationship to the ISO/OSI Model. It is
important to note that only Layers 1 and 2 are covered by the CAN protocol specification
while the remaining layers were developed for the DeviceNet network.

Figure 12.16
DeviceNet and the OSI model

The following sections examine these features of the DeviceNet network and protocol in
more detail.

���
$� 	����
�� ��

The DeviceNet cabling system consists of a single four-conductor cable in a bus topology
providing both power and data communication. Data is transmitted over the #18 twisted
pair. Power is provided over the #15 twisted pair. Both pairs have a foil shield and an
overall braid with #18 drain wire. Terminating resistors are required on both ends of the
trunk line. 24 V dc power is provided on the power bus and can support up to 3 Amp on
the DeviceNet thin cable or 8 amp on the DeviceNet thick cable. The total length of trunk
line allowed depends on which type of cable is used, the number of devices supported and
the data rate. The voltage at each device should be at least 11 V dc or higher.

268 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Data rates of 125, 250, and 500 kbps are possible with the corresponding network
configuration shown in Figure 12.17. Various connectors can be used to connect devices
to the network such as screw terminals, screw terminals or sealed screw tight connectors.

Drop Length Data Rate Trunk Distance Maximum Cumulative
125 k baud 500 meters (1600 ft.) 156 meters (512 ft.)
250 k baud 200 meters (600 ft.) 78 meters (256 ft.)
500 k baud 100 meters (300 ft.)

3 meters (10 ft.)
39 meters (128 ft.)

Figure 12.17
DeviceNet lengths and baud rates

To allow non-destructive arbitration during simultaneous transmission from two or
more nodes the BOSCH CAN specification defines the two possible logic levels as
‘dominant’ and ‘recessive’. During arbitration the dominant value will win access to the
bus. For DeviceNet, the dominant level is represented by a logical ‘0’ and the recessive
level by a logical ‘1’. The electrical voltage levels representing these logic levels are
taken from the ISO 11898 standard. CAN utilizes a balanced transmission system with
data signals appearing as the difference between CAN_H and CAN_L.

DeviceNet specifications require isolation to prevent ground loops. As the circuitries in
all devices are ultimately referenced to the V-bus signal, connection of the network
should be earth grounded at the bus power supply only. All devices attached to the
network must either be referenced to V– or otherwise ground isolated.

DeviceNet requires the following features to be incorporated within the physical and
media layers:

• Use of CAN technology
• Support of both thick and thin drop line
• Ability to operate at a minimum of three data rates
• 125 kbaud for distances up to 500 meters (max.) (1640 feet)
• 250 kbaud for distances up to 200 meters (max.) (656 feet)
• 500 kbaud for distances up to 100 meters (max.) (328 feet)
• Linear bus topology
• Low loss and low delay cable
• Shielded twisted pair cable, containing both power and signal pairs
• Small size and low cost
• Support of up to 64 nodes
• Support drop lines of up to 6 meters (20 feet) in length
• Node removal without disturbing or interrupting network operation
• Simultaneous support of isolated and non-isolated physical layers

DeviceNet uses two types of pre-made cables, thick cable and thin cable. The thick

cable is a large gray cable used as long trunk runs between devices. The thin cable is a
small and usually short yellow cable that connects thick cables to devices. The thick and
thin cables are connected together by a large black ‘T’ junction. All cables and
connections have threaded ring connectors.

���������	
���
����
���	�������������
�	�	
��	��269

���
����
����
�� ��

The data link layer is specified in the CAN protocol specification (see Figure 12.16). The
format of the data link layer (frame format) is fixed by this specification. However, the
method used to encode the identifier and data fields in the CAN message packet is left to
the application layer developer as described in the following section. The method of
communication is based on the producer/consumer approach where one station (*the
producer) places data on the bus at regular intervals and this is then read by the consumer
station on the network.

���
�$$��������
�� ��

The CAN specification does not dictate how information within the CAN message frame
fields are to be interpreted – this was left up to the developers of the specific application
software. In the case of DeviceNet a unique method was developed to allow for two types
of messages to exist.

Through the use of special identifier codes (bit patterns), master is differentiated from
slave. Also, sections of this field tell the slaves how to respond to the master’s message.
For example, slaves can be requested to respond with information simultaneously in
which case the CAN bus arbitration scheme assures the timeliest consecutive response
from all slaves in decreasing order of priority. Or, slaves can be polled individually, all
through the selection of different identifier field codes. This technique allows the system
implementers more flexibility when establishing node priorities and device addresses.

� 	���
�$�������

Several devices are available to allow connection of DeviceNet to higher-level devices.
For example, Allen-Bradley has developed PLC plug in cards to function as DeviceNet
scanners. These devices support a master/slave configuration communicating with slave
devices through either the strobe or poll methods. Two separate DeviceNet channels (or
networks) can be supported. These modules also perform limited diagnostics on the
network, and chassis communication link report this information to higher-level
controllers. An interface is also available, which allows a PC to act as another node on the
Network.

With the DeviceNet flex I/O adapter up to 128 non-DeviceNet compatible devices can
communicate to other DeviceNet I/O and PLC controllers. Other types of DeviceNet
compatible products are also being marketed which are connected directly to the network
with a minimum of configuration effort.

�����
��	��������
	 	���
&�"�(

The smart distributed system (SDS) was developed by Honeywell and is a low-level
device oriented network based on the CAN network. It is designed to interconnect lower
level devices (sensors and actuators) with higher-level devices (controllers). The variable,
multi-byte format of the CAN message frame is well suited to this task since more
intelligence can be communicated per message than with the bit type systems.

The SDS ‘partners’ program has been formed, and in cooperation with Honeywell
issues the SDS specifications, ensures compliance and offers technical assistance for
manufacturers wishing to implement SDS. The SDS specification is an open specification
and available through Honeywell and the SDS ‘partners’ program.

The SDS network can connect up 126 devices on a single bus. Each group of 16 I/O is
interfaced to a higher-level device (PLC, for example) through the interface terminal strip

270 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

(ITS). The ITS provides the physical interface between the network bus and individual
I/O points on the PLC I/O cards. Plug-in cards are also available to interface the bus
directly to the PC. This choice between interfaces gives the designer a method for
integrating the SDS with an existing PLC system.

The SDS utilizes the CAN network to allow devices to report information only when
there is a need, e.g. a change of state of an input to the controller. This approach reduces
traffic on the network by minimizing polling inquires from the controller to the slave
devices.

As with other CAN based systems the SDS network uses the OSI Layers 1 and 2
(physical and data link layers) of the CAN protocol and develops the SDS application
layer (OSI Layer 7) for its specific target application area, integrating lower level devices
with higher level controllers.

The following sections examine these features of the smart distributed system (SDS)
network and protocol in more detail.

���
$� 	����
�� ��

The SDS cabling system consists of a single, four conductor, shielded, cable in a bus
topology providing both power and data communication. Both data and power pairs are
twisted and an overall shield is provided for noise protection. Terminating resistors are
required on both ends of the bus. 12 to 24 V dc power is provided on the power bus to
support field devices. The total length of trunk line allowed depends on which type of
cable is used, the number of devices supported and the data rate.

Various data rates are possible with the corresponding network configuration
restrictions. Several connector types can be used to connect devices to the network such
as screw terminals or sealed screw tight connectors.

���
����
����
�� ��

The data link layer is specified in the CAN protocol specification (see Figure 12.16). The
format of the data link layer (frame format) is fixed by this specification. However, the
method used to encode the identifier and data fields in the CAN message packet is left to
the application layer developer.

���
�$$��������
�� ��

The CAN specification does not dictate how information within the CAN message frame
fields is to be interpreted; this was left up to the developers of the specific application
software. In the case of SDS, various codes within the identifier frame allow for
communication between slave devices and controllers.

Through the use of special identifier codes (bit patterns) unique addresses are
established for each device. Source and destination addresses of messages are
distinguished by the setting (1 or 0) of the most significant CAN identifier bit, called the
SDS Direction bit. A 0 designates the address, what follows is the destination; a 1
designates it as the source of the message. The application protocol allows any device,
which needs to read the message (or ‘consumer’) access to this information as it appears
on the network. There can be more than one consumer of a given message.

Conversely, when a device senses a change of state it can put that information on the
network as soon as it can gain access to the bus consistent with the CAN arbitration
procedure. This device is known as a ‘producer’ in the CAN protocol.

���������	
���
����
���	�������������
�	�	
��	��271

Through these unique CAN identifier field code patterns, SDS provides the functions
and unique capabilities of this flexible and fast device level networking system.

� 	���
�$�������

Several features of SDS are implemented at the system level to speed startup and monitor
the ‘health’ of the devices and network. One of these is the Autobaud. Through this
special function of the bus manager, (a designated device controller on the network,
usually the host controller) a unique message packet is sent immediately after initial bus
power-up. This allows all the other devices to monitor the time length of the frame and
determine the baud rate setting of the controller. Each device can then adjust its baud rate
accordingly to ensure all devices operate at the same data rate.

Continuous monitoring for ‘missing’ devices and defective devices is implemented by
periodic polling. If a device fails to report within a specified period of time the host will
flag the device missing warning. Polling will continue until the device reappears.

Another monitoring feature is the periodic device self-test control. Periodically, instead
of device polling, the host will substitute the self-test command and examine the device’s
diagnostic registers in the reply for device errors.

Several devices developed through the SDS ‘partners’ program have enabled direct
SDS connection to various higher level devices such as PLCs, PCs, VMEbus systems,
starters and pilot devices. Interfaces to new devices are certainly possible in the future for
SDS as this network continues to find new applications in the industry.

��
/
 �������	'�

The Interbus-S is an open device level network that allows connection of up to 4096
digital I/O points over a distance of up to 400 m. Through a unique frame transfer
protocol these points can be updated in as little as 14 ms, faster speeds are possible with a
lower I/O count. It is a timed ring topology with subsystem drops (tree structure) allowing
connections of up to 256 stations. Data rate is 500 kbps.

The variable length frame format allows message frames of up to 512 bytes enabling
communication between intelligent I/O devices. Integration to the higher-level Fieldbus
networks is also within the capability of this network.

The Interbus-S Club, founded in 1993 was established to maintain and advance the
Interbus-S network standard. The organization provides Interbus-S specifications to
potential developers and assists with technical information.

The following sections examine these features of the Interbus-S (IBS) network and
protocol.

���
$� 	����
�� ��

The Interbus-S cabling system specification allows for either twisted pair copper or fiber
optic cable connected to each station in a ring topology. Communication is serial and
frame transmission is accomplished through a unique register shifting procedure
developed specifically for the Interbus-S network. Two types of communication buses are
used as part of the same network – local bus and remote bus. Each bus type carries the
same signals but at different electrical levels. Local bus operates at TTL voltage levels
and is designed for short distances typically within a control enclosure. Remote bus
utilizes RS-485 voltage levels and is designed to communicate over much longer
distances – up to 1300 ft (400 m). Both buses operate at 500 kbps transfer speed and a

272 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

special module; the BK module is required to translate the two signal levels (Figure
12.18).

Figure 12.18
Interbus-S layout example

Figure 12.19
Interbus-S scan cycles and I/O points

���������	
���
����
���	�������������
�	�	
��	��273

Communication is performed through scan cycles. Each scan cycle shifts messages
through each station in increasing order through the network. Data is read from the
message and written to the message during each cycle making for very fast response
times (see Figure 12.19).

���
����
����
�� ��

The data link layer protocol provides for full duplex transmission. The complete message
frame is clocked through the network on each cycle. No arbitration or contention for
access to the network is required since each station has access during each cycle. All
input and output data are updated and transferred during each scan cycle. CRC error
checking is performed between each network connection allowing identification of the
error source. Both digital and analog data are supported as well as client/server
messaging.

The network does individual station addressing automatically during initialization of
the network, eliminating the need to manually assign these during system startup. This is
accomplished through an identification (ID) cycle that tells the controller the type and
physical order of location of the stations on the network (see Figure 12.20).

Figure 12.20
Interbus block diagram example

���
�$$��������
�� ��

Interbus-S supports network and module diagnostics and monitoring through a special
‘telegram’ message sent out after each byte is shifted. All stations monitor this message
simultaneously. This unique function is accomplished by a ‘telegram control’ switch in
each station (see Figure 12.21) which automatically activates after each 8-bit shift
allowing not only simultaneous reception of the message by all stations, but synchro-
nization information as well.

274 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Figure 12.21
Interbus-S register flow diagram

Figure 12.22 shows the ID and scan transmission frames noting the location of the
various field parameters.

Figure 12.22
Interbus-S packet configuration

��
0
 !������	

������������
��
!������	

Profibus is an open standard Fieldbus defined by the German DIN 19245 Parts 1 and 2. It
is based on a token bus/floating master system. There are three different types of Profibus
– FMS, DP and PA. Fieldbus message specification (FMS) is used for general data
acquisition systems. DP is used when fast communications are needed. And PA is used in
areas when intrinsically safe devices and intrinsically safe communications are needed.
Figure 12.23 outlines the structure of the various versions of Profibus.

���������	
���
����
���	�������������
�	�	
��	��275

Figure 12.23
Profibus protocol architecture

���
$� 	����
�� ��

The physical layer specifies the type of Profibus transmission medium. The RS-485
voltage standard is defined for the FMS and DP versions of Profibus. The IEC 1158-2
standard is used in the PA version. For FMS and DP a maximum number of 255 stations
are possible.

• FMS (RS-485): 187.5 kbps General use
• DP (RS-485): 500 kbps /1.5 Mbps/12 Mbps Fast devices
• PA (IEC 1158-2): 31.25 kbps Intrinsically safe

Basic properties of the RS-485 voltage standard for Profibus

Topology: Linear bus, terminated at both ends
Medium: Twisted pair shielded cable
Wire size: 18 AWG (0.8 mm)
Attenuation: 3 dB/km at 39 kHz
Number of stations: 32 stations without repeaters extendible to 127
Bus length: max. 1200 meters (3940 feet) extendible to 4800 meters (7900 feet)

at slow rates
Speed: 1200 to 12 Mbps
Connector: Phoenix type screw or 9-pin D-sub connector

IEC 1158-2 is a standardized current standard used in special areas of a factory or plant
that require intrinsically safe devices. IEC 1158-2 works by modulating a Manchester
encoded bipolar NRZ ±10 mA signal on top of a 9 to 32 dc voltage. This 10 mA creates a
±1 volt signal that is read by each of the devices on the bus.

276 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

It is very easy to connect Profibus FMS, DP and PA versions together on the same
system, as the main difference between the FMS, DP and PA versions is the physical
layer. This allows a company to run lower cost devices in most of the plant (FMS), fast
devices (DP) in parts of the plant that need the speed. Intrinsically safe devices (PA) are
used in the areas of the plant that need intrinsically safe devices.

���
����
����
�� ��

The data link layer is defined by Profibus as the Fieldbus data link Layer (FDL).
The medium access control (MAC) part of the FDL defines when a station may

transmit data. The MAC ensures that only one station transmits data at any given time.
Profibus communication is termed hybrid medium access. It uses two methods of

operation:
• Token passing
• Master/slave.

By means of a software token, the token passing method ensures (which when passed

from node to node assigns the right of transmission to that node), the assignment of the
bus access right within a precisely defined time interval. This is circulated with a
maximum (and configurable) token rotation time between all masters. Token passing is
especially useful for communication between complex automation masters who require
equal rights on the bus. The token is passed in a defined sequence (in order of increasing
addresses).

The master/slave method allows the master that currently has the token to communicate
with the associated slave devices. The master can then read from or write data to the
slave devices.

A typical configuration is shown in Figure 12.24.

Figure 12.24
Typical architecture of a Profibus system

���������	
���
����
���	�������������
�	�	
��	��277

During the Bus system startup phase, the task of the active station’s MAC is to detect
logical assignment and establish the token ring. The MAC also handles adding or deleting
stations (which have become inactive), deleting multiple nodes with the same address and
multiple or lost tokens.

���
�$$��������
�� ��

 This consists of two sections:
• Fieldbus message specification (FMS)
• Lower layer interface (LLI)

The application layer is defined in DIN 19245 part 2.

���
!������	
�������������
�����

The part of the application process in a field device that is readable for communication is
called the virtual field device (VFD). The VFD contains the communication objects that
may be manipulated by the services of the application layers. The objects of a real device
that are readable for the communication (variables, programs, data domains) are called
communication objects.

All communication objects of a Profibus station are entered into its local object
dictionary (source OD). There are two types:

• Static communication objects
• Dynamic communication objects

Static communication objects are defined in the static object dictionary. They may be

predefined by the manufacturer of the device, or defined during the configuration of the
bus system. Static communication objects are used mainly for communication in the field
area. Profibus recognizes the following static communication objects:

• Simple variable
• Array – sequence of simple variables of the same type
• Record – sequence of simple variables, not necessarily of the same type
• Domain – data range
• Event

Dynamic communication objects are entered into the dynamic part of the OD (list of

variable lists of program invocations). They may be predefined or defined, deleted or
changed by the application services in the operational phase.

Profibus supports the following dynamic communication objects:
• Program invocation
• Variable list (sequence of simple variables, arrays or records).

278 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Figure 12.25
Virtual field device (VFFigD) with object dictionary (OD)

There are two methods for accessing the variables:
• Addressing by name (using a symbolic name)
• Physical addressing (to access a physical location in memory)

Profibus defines logical addressing (by symbolic name) as the preferred method as this

increases the speed of access.

#$$��������
	������	

From the point of view of an application process, the communication system is a service
provider offering various application services – the FMS services. The FMS describes the
communication objects, the application services, and the resulting models from the
viewpoint of the communication partner. There are two types of services:

• Confirmed services: These are only permitted on connection-oriented
communication relationships.

• Unconfirmed services: These are used on connectionless communication
 relationships such as broadcast and multicast.

Note:
Refer to ‘Connectionless-oriented’ and ‘Connection-oriented’ under Lower layer
interface following for an explanation of these terms.

���������	
���
����
���	�������������
�	�	
��	��279

Service primitives in the Profibus standard describe the execution of the services. The
services can be divided into the following groups:

• Context management services allow establishment and release of logical
connections

• Variable access services permit access to simple variables, records, arrays and
variable lists

• Domain management services enable the transmission of contiguous memory
areas

• Program invocation management services allow the control of program
execution

• Event management services make the transmission of alarm messages
possible

• VFD support services permit device identification and status report
• OD management services permit object dictionaries to be read and written

1����
�� ��
���������
&11�(

The LLI conducts the data flow control and connection monitoring as well as the
mapping of the FMS services onto the layer 2 with consideration of the various types of
devices.

The user communicates with other application processes over the logic channels, the
communication relationships. For the execution of the FMS and FMA7 services the LLI
provides various types of communication relationships.

There are two types of communication relationships:
• Connection-oriented relationships

This requires a connection establishment phase (or initiate service) before the
connection can be used for data transmission. When the connection is no
longer required, it may be released with the abort service (or connection
release phase). The connection attribute distinguishes between defined
connections where the communication partner is fixed at a configuration time
and may not be changed and an open connection where the communication
partner is dynamically defined in the connection establishment phase.

• Connectionless-oriented relationships
Cyclic data transfer means exactly one variable is permanently read or written
over a connection. A typical application for cyclic data transfer is the periodic
update of the remove inputs and outputs of a PLC. Acyclic data transfer
means an application sporadically accesses various communication objects
over a connection.

�������������
��������	��$
��	�
&�21(

The CRL contains the description of all communication relationships of a device
independent of the time of their usage.

-������
����)�����

In addition to the application services and FMS models, Profibus includes specifications
for network management (Fieldbus management layer 7, FMA7).

280 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

FMA7 functions are defined in three groups:
• Context management

This allows the establishment and release of management connections.

• Configuration management
This allows the CRL to be loaded and read, access to variable, statistic
counters and parameters of the layers 1 and 2, identification of
communication components of the stations and registration of stations.

• Fault management
This allows the indication of faults and events and the reset of stations.

!������	
$������	

For the various application fields it is necessary to adopt the functionality actually needed
for the real world. A profile includes application specific definitions of the meanings of
the communication functions, as well as the interpretation of status and error indications.

Profiles for the following application fields are available:
• Building automation
• Drive control
• Sensors and actuators
• Programmable logic controllers
• Textile machines

These enable different manufacturers, which use the same profile, to have full

interoperability with the different devices on a common interconnecting Profibus.

3�����

Gateways are required to link other protocols to the Profibus system. Some gateways are
easy to implement, such as one from Profibus to the higher-level MAP. This is due to
both standards adhering to the OSI model and the good relationship of Profibus to the
definitions of the MAP layer 7 functions (using MMS).

��$�����������
�������	

No special hardware components are required to implement the Profibus protocol,
providing the microprocessor has a UART serial interface. The implementation can range
from a simple slave device, which has one microprocessor (such as an Intel 8051). This
executes both the protocol and the application task; to a complex master device, which
has communication, functions (and protocol) implemented on one processor. The
application tasks are performed on a separate processor. For time critical applications, it
is possible to implement the functions of layers 1 and 2 using a special hardware circuit
(e.g. AS-iCs or a Motorola 68302).

��
4
 ������
�����������
��	
&��!(

The FIP is the result of work carried out by companies located primarily in France, Italy
and Belgium. US companies such as Honeywell are involved with French manufacturers
in developing the World FIP standard (see next section).

The FIP standard aims for very high transmission rates and strictly defined scanning
intervals.

���������	
���
����
���	�������������
�	�	
��	��281

��	
����		
������

The broadcasting approach is used, with a central unit (called the bus arbitrator) co-
coordinating the transmissions. This means that it is not necessary to give each device a
unique address. A variable (processed by the transmitter only) is transmitted on the bus
by one transmitter and is read by any number of receivers situated on the same bus.

The bus arbitrator has three operating cycles:
• Cyclic traffic

The bus arbitrator names a set of variables using a table command.

• Aperiodic traffic
The bus arbitrator calls on request variable from every device.

• Message service
The arbitrator gives the right to transmit to a device, which requested it during
the previous cyclic traffic period.

Figure 12.26
Operation of FIP

282 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

���
$� 	����
�� ��

The FIP standard allows twisted pairs, optical fiber or coaxial cable in a bus topology to a
maximum distance of 2 km. Speeds can vary between 31.25 and 1000 kbps. A maximum
number of 256 devices is allowed on the bus network.

���
����
����
�� ��

The data link layer is non-proprietary FIP.

��	���������	

There are a number of installations in France and Italy that are being used to evaluate the
FIP standard.

The FIP standard has evolved into the WorldFIP standard as discussed in the next
section.

��
5
 6������$

WorldFip is the present day association of European manufacturers that support the use
and international standardization of the factory information protocol (FIP). FIP is a
communications protocol developed and presently in use in Europe.

The FIP physical layer is compliant with the IEC S50.02, which allows for twisted pair,
or fiber optic cable media operating at 31.25 kbps, 1, or 2.5 Mbps, designated
respectively as S1, S2 and S3. S2 is the standard speed. An additional speed of 5 Mbps
has been designated for fiber optic media. Devices can be bus powered or independently
powered.

FIP uses a producer-distributor-consumer type communications and access control
model for transferring time critical information throughout the network. Devices and
their variables are designated either producers or consumers of specific variables. One
device can be both a producer of one variable but a consumer of another variable located
somewhere else on the network.

Instead of a poll and response type integration of the entire network and then routing
the required information to the specified destination, the FIP bus arbitrator simply places
the request for a variable on to the network in a broadcast fashion. All devices ‘hear’ the
broadcast. The producer of that variable then places it on the network again in a
broadcast form. It is then available to all consumers of that particular variable – see
Figure 12.26. This procedure allows rapid access of all variables in a timely and
determined manner while ensuring no collisions and therefore a very efficient use of the
network capabilities.

This requires a configuration and scheduling table within the arbitrator and the devices.
Certain variables may need to be polled more often than others and this is taken into
account in the scheduling table. In fact, the table can be configured for the specific
application and time requirements of the process, making FIP very adaptable to changing
conditions and new applications. The table is defined during initial network con-
figuration. An example table is shown in Figure 12.27 for reference.

���������	
���
����
���	�������������
�	�	
��	��283

Figure 12.27 FIP
Configuration and scheduling table

FIP uses the Manchester coding to transfer data and synchronizing information. The
unique frame start and stop sequences are used to help the receivers distinguish clearly
the start and end of the data frames from random noise that may occur on the network.
The unusual pattern is clearly different than almost any randomly occurring noise pattern.

��
�7
 ����������
�������	

������������
��
����������
�������	

Prior to 1994, two organizations were independently trying to develop a communication
solution standard for the process control industry. These organizations were WorldFip
(North America) and Interoperable Systems Project (ISP). In September 1994 these two
organizations merged to become the Foundation Fieldbus (FF).

Foundation Fieldbus takes full advantage of the emerging ‘smart’ field devices and
modern digital communications technology allowing end user benefits such as:

• Reduced wiring
• Communications of multiple process variables from a single instrument
• Advanced diagnostics
• Interoperability between devices of different manufacturers

284 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

• Enhanced field level control
• Reduced startup time
• Simpler integration

The concept behind Foundation Fieldbus is to preserve the desirable features of the

present 4–20 mA standard (such as a standardized interface to the communications link,
bus power derived from the link and intrinsic safety options) while taking advantage of
the new digital technologies. This will provide the features noted above due to the:

• Reduced wiring due to the multidrop capability
• Flexibility of supplier choices due to interoperability
• Reduced control room equipment due to distribution of control functions to

the device level
• Increased data integrity and reliability due to the application of digital

communications.

To understand how this standard works, it is helpful to look at Foundation Fieldbus in

terms of the OSI Model. The FF consists of three parts that correspond to OSI layers 1, 2,
7 and 8. Layer 8 of the OSI model corresponds to the ‘user’ layer.

���
$� 	����
�� ��
���
�����)
����	

The physical layer standard has been approved and is detailed in the IEC 1158-2 and the
ISA standard S50.02-1992. It supports communication rates of 31.25 kbps and 10 Mbps.
All of these use the Manchester bi-phase L encoding scheme with four encoding states as
shown in Figure 12.28. The use of the N+ and N– encoding states is illustrated in
Figure 12.29. Devices can be optionally powered from the bus under certain conditions as
detailed below for the various configurations. The 31.25 kbps (or H1, or low-speed bus)
can support from 2 to 32 devices that are not bus powered, two to twelve devices that are
bus powered or two to six devices that are bus powered in an intrinsically safe area.
Repeaters are allowed and will increase the length and number of devices that can be put
on the bus. The H2 or high speed bus options are not currently being implemented, but
have been superseded by the high speed Ethernet (HSE) standard. This is discussed later
in this section.

The low speed bus was intended to utilize existing plant wiring and is referred to as
Type B wiring (shielded twisted pair) and with #22 AWG can be used for segments up to
1200 m (3936 feet). The higher speeds require higher grade cabling and are referred to as
Type A. For Type A cable (shielded twisted pair) for H1 #18 AWG can be used up to
1900 meters (6232 feet). Two additional types of cabling are specified and are referred to
as Type C (multi-pair twisted without shield) and Type D (called multi-core, no shield).
Type C using #26 AWG cable is limited to 400 meters (1312 feet) per segment and
Type D with #16 AWG is restricted to segments less than 200 meters (660 feet).

• Type A #18 AWG 1900 m (6232 feet)
• Type B #22 AWG 1200 m (3936 feet)
• Type C #26 AWG 400 m (1312 feet)
• Type D #16 AWG multi-core 200 m (660 feet)

The Foundation Fieldbus wiring method is floating balanced and equipped with a

termination resistor combination connected across each end of the transmission line.
Neither of the wires should ever be connected to ground. The terminator consists of a

���������	
���
����
���	�������������
�	�	
��	��285

100 Ω quarter watt resistor and a capacitor sized to pass 31.25 kHz. As an option one of
the terminators can be center tapped and grounded to prevent voltage build-up on the
Fieldbus. Power supplies must be impedance matched for FF. Off the shelf power
supplies must be conditioned. If a ‘normal power supply’ is placed across the line it will
load down the line due to its low impedance. This will cause the transmitters to stop
transmitting.

Fast response times for the bus are one of the FF goals. For example, at 31.25 kbps on
the H1 bus response times as low as 32 microseconds are expected (this will vary based
on the loading of the system but will average between 32 ms and 2.2 ms with an average
approximately 1 ms).

Spurs can be connected to the ‘home run’. The length of the spurs depends on the type
of wire used and the number of spurs connected. The maximum length is the total length
of the spurs and the home run.

Figure 12.28
Foundation Fieldbus physical layer

286 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Figure 12.29
Use of N+ and N– encoding states

The physical layer standard has been out for some time. Most of the recent work has
been focused on these upper layers and are defined by the FF as the ‘communications
stack’ and the ‘user layer’. The following sections will explore these upper layers.
Figure 12.30 helps understanding the subsequent discussions.

Figure 12.30
The OSI model of the FF protocol stack

���������	
���
����
���	�������������
�	�	
��	��287

���
����
����
�� ��

The communications stack as defined by the FF corresponds to OSI layers two and seven,
the data link and applications layers. The DLL (data link layer) controls access to the bus
through a centralized bus scheduler called the link active scheduler (LAS). The DLL
packet format is shown in Figure 12.31.

Figure 12.31
Data link layer packet format

The link active scheduler (LAS) controls access to the bus by granting permission to
each device according to predefined ‘schedules’. No device may access the bus without
LAS permission. There are two types of schedules implemented: cyclic (scheduled) and
acyclic (unscheduled). It may seem odd that one could have an unscheduled ‘schedule’,
but these terms actually refer to messages that have a periodic or non-periodic routine, or
‘schedule’.

The cyclic messages are used for information (process and control variables) that
require regular, periodic updating between devices on the bus. The technique used for
information transfer on the bus is known as the publisher–subscriber method. Based on
the user predefined (programmed) schedule the LAS grant permission for each device in
turn access to the bus. Once the device receives permission to access the bus it
‘publishes’ its available information. All other devices can then listen to the ‘published’
information and read it into memory (subscribe) if it requires it for its own use. Devices
not requiring specific data simply ignore the ‘published’ information.

The acyclic messages are used for special cases that may not occur on a regular basis.
These may be alarm acknowledgment or special commands such as retrieving diagnostic
information from a specific device on the bus. The LAS detects time slots available
between cyclic messages and uses these to send the acyclic messages.

���
�$$��������
�� ��

The application layer in the FF specification is divided into two sub-layers – the
Foundation Fieldbus access sublayer (FAS) and the Foundation Fieldbus messaging
specification (FMS).

The capability to pre-program the ‘schedule’ in the LAS provides a powerful
configuration tool for the end user since the time of rotation between devices can be
established and critical devices can be ‘scheduled’ more frequently to provide a form of
prioritization of specific I/O points. This is the responsibility and capability of the FAS.
Programming the schedule via the FAS allows the option of implementing (actually,
simulating) various ‘services’ between the LAS and the devices on the bus.

288 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

Three such ‘services’ are readily apparent such as:
• Client/server: with a dedicated client (the LAS) and several

 servers (the bus devices)
• Publisher/subscriber: as described above, and
• Event distribution: with devices reporting only in response to a ‘trigger’

event, or by exception, or other predefined criteria.

These variations, of course, depend on the actual application and one scheme would not

necessarily be ‘right’ for all applications, but the flexibility of the Foundation Fieldbus is
easily understood from this example.

The second sub-layer, the Foundation Fieldbus messaging specification (FMS),
contains an ‘object dictionary’ which is a type of database that allows access to
Foundation Fieldbus data by tag name or an index number. The object dictionary contains
complete listings of all data types, data type descriptions, and communication objects
used by the application. The services allow the object dictionary (application database) to
be accessed and manipulated. Information can be read from or written to the object
dictionary allowing manipulation of the application and the services provided.

���
�	��
�� ��

The FF specifies an eighth layer called the user layer that resides ‘above’ the application
layer of the OSI model; this layer is usually referred to as Layer 8. In the Foundation
Fieldbus this layer is responsible for three main tasks – network management, system
management and function block/device description services. Figure 12.32 illustrates how
all the layer’s information packets are passed to the physical layer.

The network management service provides access to the other layers for performance
monitoring and managing communications between the layers and between remote
objects (objects on the bus). The system management takes care of device address
assignment, application clock synchronization, and function block scheduling. This is
essentially the time coordination between devices and the software, and ensures correct
time stamping of events throughout the bus.

���������	
���
����
���	�������������
�	�	
��	��289

Figure 12.32
The passage of information packets to the physical layer

Function blocks and device description services provide pre-programmed ‘blocks’,
which can be used by the end user to eliminate redundant and time-consuming
configuration. The block concept allows selection of generic functions, algorithms, and
even generic devices from a library of objects during system configuration and
programming. This process can dramatically reduce configuration time since large
‘blocks’ are already configured and simply need to be selected. The goal is to provide an
open system that supports interoperability and a device description language (DDL),
which will enable multiple vendors, and devices to be described as ‘blocks’ or ‘symbols’.
The user would select generic devices then refine this selection by selecting a DDL object
to specify a specific vendor’s product. Entering a control loop ‘block’ with the
appropriate parameters would nearly complete the initial configuration for the loop.
Advanced control functions and mathematics ‘blocks’ are also available for more
advanced control applications.

8����
���������
���
���)��	���	

FF has been developed as a purely digital communications bus for the process industry
and incorporates error detection and diagnostic information. It uses multiple vendors’
components and has extensive diagnostics across the stack from the physical link up
through the network and system management layers by design.

The signal method used by the physical layer timing and synchronization is monitored
constantly as part of the communications. Repeated messages and the reason for the
repeat can be logged and displayed for interpretation.

290 ����
���
���
�����������
���	�������	
�����
�
�����������
��
��

In the upper layer, network and system management is an integral feature of the
diagnostic routines. This allows the system manager to analyze the network ‘on-line’ and
maintain traffic loading information. As devices are added and removed, optimization of
the link active scheduler (LAS) routine allows communications optimization dynamically
without requiring a complete network shutdown. This ensures optimal timing and device
reporting, giving more time to higher priority devices and removing, or minimizing,
redundant or low priority messaging.

With the device description (DD) library for each device stored in the host controller (a
requirement for true interoperability between vendors) all the diagnostic capability of
each vendors’ produces can be accurately reported and logged and/or alarmed to provide
continuous monitoring of each device.

9�)�'	$���
8�������
&9�8(

High-speed Ethernet (HSE) is the Fieldbus Foundation’s backbone network running at
100 Mbps. HSE Field Devices are connected to the backbone via HSE linking devices. A
HSE linking device is a device used to interconnect H1 Fieldbus segments to HSE to
create a larger network. A HSE switch is an Ethernet device used to interconnect multiple
HSE devices such as HSE linking devices and HSE field devices to form an even larger
HSE network. HSE hosts are used to configure and monitor the linking devices and H1
devices. Each H1 segment has its own link active scheduler (LAS) located in a linking
device. This feature enables the H1 segments to continue operating even if the hosts are
disconnected from the HSE backbone. Multiple H1 (31.25 kbps) Fieldbus segments can
be connected to the HSE backbone via linking devices.

Figure 12.33
High-speed Ethernet and Foundation Fieldbus

13

�����������	�
����
�����
��

A network is a system for interconnecting various devices, usually in such a way that all
users have access to common resources (such as printers) and can communicate with
each other. In the 1970s, networks were developed to link terminals to a mainframe
computer, laying the foundations for computer networks in general. This chapter is
concerned with local area networks (LANs), with a special focus on networks generally
used in industrial data communications.

���������	

 When you have completed studying this chapter you will be able to:

• Explain the difference between circuit switched and packet switched networks
• Describe the different network topologies:

 – Star
 – Ring
 – Bus

• Discuss the physical and protocol issues arising when taking different
approaches to networking

• Describe baseband and broadband transmission techniques
• Describe the Ethernet standard:

 – Topology
 – Collision avoidance
 – Protocol operation
 – Hardware requirements
 – Performance

• Describe the token ring standard
• Describe the token bus standard
• Describe internetwork connections
• Network operating systems and architectures

292 ����������	����
���
�������������������
��������������
��������

����� �����	�
�

There are three broad classes of network, although the distinction between them is blurred
and they tend to overlap:

• Local area networks (LANs)
LANs are usually confined to one building or group of buildings within a
radius of a few hundred meters. All devices on a LAN are connected to a
common transmission medium such as coaxial cable. Transmission speeds are
typically up to hundreds of Mbps.

• Metropolitan area networks (MANs)
A MAN covers a city or metropolitan area, and may have several LANs
connected to it. Transmission speeds are generally up to hundreds of Mbps
and almost always use optical fiber cable.

• Wide area networks (WANs)
WANs may cover thousands of kilometers and involve several different
transmission media (such as optical fiber, satellite links, microwave and
coaxial cable). Transmission speeds vary greatly. An example WAN is the
public telecommunications system, which now has 200 Mbps optical fiber
links between capital cities and major centers. However, many WAN circuits
(such as twisted pair telephone lines) may be limited to a few thousand bits
per second.

Refer to Internetwork connections, Chapter 13.17, for a brief discussion about the use
of WANs to link LANs.

����� �	�
�	��������
�����
	�
�	���

The two basic types of networks are ‘circuit’ switched and ‘packet’ switched. In a circuit
switched network, a connection is established between the two ends and maintained for
the duration of the message exchange (an example is the public telephone system). The
advantage is a guarantee of continuity, while the disadvantage is cost. The circuit is tied
up even when no one is talking or the transmission rate may be slow.

A packet switched network does not establish a direct connection. Instead, the message
is broken up into a series of packets or frames, sometimes known as protocol data units
(PDUs). These are transmitted one at a time, each carrying the destination address.
Depending on the network conditions, they may take different routes to the destination,
and may arrive out of order. It is the job of the protocol software to reassemble the
packets in the right order. Packet switching is cheaper as it makes better use of the
resources; the physical communications links carry packets from multiple sources
concurrently.

Packet-switched network can offer either connectionless or connection-oriented
communications, depending on the protocols used. Datagram services are provided in
connectionless transmissions. Because connectionless transmissions cannot guarantee
delivery of messages, receipt verification is the responsibility of a higher-level protocol.
Contrary to this, a virtual circuit is a temporary connection between two points. It appears
as a dedicated line to the uses, but actually uses packet switching to accomplish
transmission. The virtual circuit is maintained as long as the connection exists.

This book concentrates on the packet switching networks, as they are used almost
exclusively in data communications networks.

 ����������������������������293��

����� ���
�����������	���

The way in which nodes are interconnected is known as the network topology. The three
most common topologies are:

• Star
• Ring or loop
• Bus (or multidrop)

�����������	
�

In the star configuration, there is a central node or hub and all the outlying nodes
communicate back to it on separate communication links. A typical example of a star
network is a timesharing mainframe computer system, where the central node is the
computer itself and the outlying nodes are the user terminals. With the star network, each
outlying node is connected to the central node via its own cable. Figure 13.1 shows the
topology of a star network.

Figure 13.1
Example of a star network topology

The central hub must have the capacity to simultaneously send and receive messages.
Contention problems are overcome by using buffers in the computer at the hub of the star
network.

The major disadvantages of the star network are:
• If the central hub is disabled, the entire system is inoperable.
• Depending on the physical layout, the costs of cabling a star network tend to

be higher than some of the alternatives.

294 ����������	����
���
�������������������
��������������
��������

��
	�������	
�

Nodes in a ring network are connected node to node, ultimately forming a loop. The data
flow is often arranged to be unidirectional, with each node passing data on to the next
node and so on. It is essential that each node, when receiving, is capable of removing data
from the ring so that it does not circle through the network indefinitely.

Figure 13.2
Example of ring network topology

The basic ring network is unable to function if a node is disabled or the ring broken.
Consequently, if modifications or additions are to be made to the network, a complete
system shutdown is necessary. Figure 13.2 shows the topology of a ring network.

����������	
�

The bus topology consists of a communication path with nodes connected to it like leaves
off a branch. The nodes are not physically inserted into the bus, as is the case with ring
topology, but are ‘teed-off’ the bus.

Bus networks can be bi-directional or unidirectional. Figure 13.3 shows the topology of
some typical bus networks.

Data on the bus can be ‘seen’ by all the nodes, but only the destination node or nodes
will copy the information.

 ����������������������������295��

Figure 13.3
 Examples of bus network topology

In the event of a disabled node, either due to a failure or an access control malfunction
(i.e. the destination node not taking its information from the bus), the network can
continue to operate as before, without the malfunctioning node.

As any of the devices on the network can send data at any time, there is a potential
‘traffic control’ problem. A number of protocols have been developed to regulate the
access of devices to the bus network to avoid data collisions. Ethernet is one of the best
known and most successful of the LANs using the bus topology. It is described in more
detail in the following sections.

����� ���	���

����
���������
���	����

The three main methods of controlling access to the medium are:

• Master-slave (or poll-response) mode
• Token passing
• CSMA/CD

���������������������������
���������

This is a common method of gathering data from an instrument connected to a bus. When
one master node is connected to several slave nodes, the master-slave method works as
follows:

• The master node sends a message addressed to the first slave, in a sequence of
nodes, requesting data (or writing data to the slave).

• All the slave nodes on the bus read the message, but if the destination address
of the message does not match their own address, they discard the message.

• The correctly addressed slave node reads the message and checks for any
errors (e.g. frame size and CRC or BCC errors).

• If the addressed slave node does not immediately respond, the master node
typically attempts to transmit three read requests (in total) before retrying to
transmit a message to the next slave node in the sequence.

• The master node then cycles through all the nodes on the bus requesting data
(or writing data) to each of them. A complete cycle is referred to as a polling-
cycle.

296 ����������	����
���
�������������������
��������������
��������

The master node may need to retry a failed node every few polling-cycles to see if it has
recovered and now wants to transfer data.

Depending on the configuration, the physical link can be used in a half-duplex or full-
duplex mode. For example, using RS-232 would allow full-duplex mode for only two
nodes, (one at each end of the link).

The advantage of this approach is that the software is easy to setup as the master node is
in total control and will never receive unsolicited messages. The polling-cycle approach is
very efficient if any one, or all, of the following situations exist:

• Each slave has a constant predictable amount of data to be read and written to
it.

• There is no need to transfer data between slave nodes (but only from the slave
node back to the master node).

• A slave node will never need to jump ahead of the polling queue to transfer
urgent data back to the master node.

• There is a very low probability of failure of a slave or master node.

The disadvantage of this approach is that when a slave node has an unpredictable

amount of data and may want to get onto the bus at certain times to transfer critical data
to the master or any other node.

The polling-cycle approach is commonly used for instruments connected back to a
central node (such as a PLC or computer). The physical topology used is typically a bus
type network.

����
������
	�

Token passing is a common methodology for industrial control systems requiring a
guaranteed transfer of data between nodes that are network peers.

There are two types of messages:
• Token messages (which transfer control of the network from one node to the

next)
• Application messages (which transfer actual data from one node to the other)

The approach would work as follows for a group of nodes connected on a bus network:

• A node receives the token message from a neighbor node, indicating that it
now has control.

• The token will remain at this node for a specified maximum length of time or
until it has transferred it messages, whichever is the shorter period of time.

• This node now transmits messages to other nodes with which it wants to
communicate.

• The token is forwarded to the next node and the process repeats itself.
The use of a token ensures that each node on the network will be allowed to transmit

within a given time slot. This is called deterministic operation.
Tokens can be used on any network topology. Examples are:

• Arcnet (star)
• Modbus (bus)
• IBM token ring (ring)

This is very common method where transfer of data (such as alarm conditions) is vital and
worst-case access time to the medium must be guaranteed.

 ����������������������������297��

����������
���������������������������
���������
�����������

CSMA/CD is the simplest method of passing data, on a bus, between nodes that want to
communicate in a peer-to-peer fashion. It is becoming increasingly popular in industrial
systems because of its ease of implementation and low cost.

The system works as follows for nodes connected to a bus:
• A node that wants to transmit first listens for any bus activity. If there is no

activity detected the node will transmit a message.
• As the node transmits a message it compares the message being sent with that

being present on the bus. If it detects a mismatch it will immediately stop
transmitting as this signifies an error on the system (either due to noise or to
another node or nodes transmitting at the same time).

• If there is a collision, the affected node will stop transmitting and wait for a
random period of time before trying to transmit again.

• The node backs off for a random time. This reduces the risk of a collision
when the node tries to retransmit.

The advantages of CSMA/CD are its simplicity and speed, when the bus is lightly

loaded.
The disadvantage with CSMA/CD is that all activity on the bus is unpredictable (and

the greater the loading of the bus the more unpredictable it becomes). In fact, during
extreme high-activity periods the bus may almost cease to function and no data
transferred.

CSMA/CD uses a bus topology and operates over a half-duplex connection. The most
common example of CSMA/CD is Ethernet (or the IEEE 802.3). Canbus (or DeviceNet
and SDS) use a similar version called CSMA/CA carrier sense multiple access/collision
avoidance, as discussed in section 12.5. The difference here is that collisions are not
destructive and the highest priority node continues transmitting and all others stop.

����� ������	��	�����
��	 ����

Two main methods used for the transmission of information over a LAN are baseband
and broadband.

���� �
��

This is also known as time division multiplexing (TDM). Only one device is allowed to
transmit at any one time and can use the entire bandwidth of the system. No carrier is
used, so the signal (e.g. the output from a UART) is directly applied to the medium.

As one communicating device takes over the medium during transmission, there has to
be a time limitation on individual device access so that other devices can take their turns.

����� �
��

Broadband is also known as frequency division multiplexing (FDM). The system
bandwidth is divided into channels that do not overlap, meaning that many pairs of
devices can communicate simultaneously and they usually retain their channel until the
message transfer is complete. As only a part of the system bandwidth is available, data
transfer rates for individual communications are less than for TDM using the same
physical setup.

298 ����������	����
���
�������������������
��������������
��������

Data is transmitted by injecting a carrier (sine) wave on to the medium and modulating
the carrier with the data – be that by frequency modulation, amplitude modulation, or
phase modulation.

Coaxial cable and optical fiber are preferred for FDM because the bandwidth of a
twisted pair is generally not sufficient to make the technique worthwhile. However,
special new twisted pair types such as TwistLAN offer up to 16 Mbps, making them also
suitable for FDM use.

���!� "�����#��$�%&������������

The most important standard for LAN interfaces and protocols is IEEE 802, a series
administered by the IEEE 802 LAN Standards Technologies Committee. The standard
has several sections, each with its own co-coordinating committee. Some standards have
been superseded by ISO standards as shown in brackets in the descriptions below.

• IEEE 802.1 (ISO 8802.1)
Details how the other 802 standards relate to one another and to the ISO/OSI
reference model. As with the ISO/OSI model, the IEEE 802.1 specification
describes interface layers or communication interfaces between different
hierarchical levels of devices and activities.

• IEEE 802.2 (ISO 8802.2)
Standard has divided the ISO/OSI data link layer into two sublayers and
defines the functions of the logic link control (LLC) sublayer and the media
access control (MAC) sublayer. An IEEE 802.2 interface defines services that
fall into the following categories:

!
��������
	������	����������

Generating appropriate responses to errors and acknowledgment of message packets
Both Ethernet and IBM’s token ring are compatible with this section.

• IEEE 802.3 (ISO 8802.3)
This standard defines the carrier sense multiple accessing with collision
detection (CSMA/CD) protocol, which is the protocol used by Ethernet and is
described in the section on Ethernet.

• IEEE 802.4 (ISO 8802.4)
This standard defines the token passing bus access method. Physically this
looks like a bus network with the operation like that of a token ring network.
Nodes on the network see themselves as being arranged in a logical loop, with
each node assigned an address. Collision problems that occurred in
CSMA/CD are solved as only one token can exist on the network at one time,
and only one node may own the token. Token holding times exist so that no
node may own the period for prolonged periods of time. Token bus is superior
to CSMA/CD for networks with heavy loads, because each node has a regular
time to communicate.

• IEEE 802.5 (ISO 8802.5)
This standard defines a token ring access method, similar to that used by IBM
for their token ring standard.

 ����������������������������299��

���'� (��������

Ethernet was developed by Xerox in the early 1970s and standardized by Xerox, Digital
Equipment and Intel in 1978. It uses CSMA/CD as a medium access control method.

The relevant standards are:
• Ethernet V2 (Bluebook)
• IEEE 802.3 (ISO 8802.3)

It should be noted that Ethernet is a trade name for a proprietary LAN system Ethernet

Version 2, commonly called ‘Blue Book Ethernet’, and although it is now virtually a
standard in itself, it is not the only LAN of that type. The IEEE ‘802.3 LAN’ has a slight
difference in its frame format, but is commonly known as ‘Ethernet’. This convention is
used here.

To ensure every node address is unique, the IEEE assigns blocks of addresses to
manufacturers, who are responsible for ensuring that no address is duplicated. The 48-bit
address is incorporated into the firmware. There should therefore never be any address
conflicts on a LAN.

Below are listed some of the hardware variations of Ethernet, which are explained more
fully later in ‘Ethernet hardware requirements’ in sections 13.10 and 13.13

• Standard (or thick) Ethernet (10Base5) uses 10 Mbps baseband operation on
coaxial cable with a maximum segment length of 500 m.

• Thin Ethernet (10Base2) uses 10 Mbps baseband operation on coaxial cable
with a maximum segment length of 185 m.

• 10BaseT uses unshielded twisted pair cables and operates at 10 Mbps with the
use of a wiring hub onto which each node connects.

• 100BaseT is similar to 10BaseT but operates at 100 Mbps.
• 1000BaseT (gigabit Ethernet) is similar to Fast Ethernet, but operates at

1000 Mbps.
• 1BaseT is similar to 10BaseT but limited to a 1 Mbps data rate. Obsolete.
• Broadband Ethernet (10Broad36) uses FDM with maximum segment length

of 3600 meters (11,800 feet). Obsolete.
• 10BaseF is a 10 Mbps baseband system operating on optic fibers.

"�#��
���������	
�

Standard and thin Ethernet use a bus topology, in which each node attaches to the
communications cable as shown in Figure 13.4. In this arrangement the removal of a node
does not affect operation of the LAN; it simply means that the node will then not reply to
frames addressed to it.

300 ����������	����
���
�������������������
��������������
��������

Figure 13.4
Standard Ethernet (10Base5) bus topology

10BaseT (Ethernet) uses a star configuration in which each node is connected via two
twisted pairs to a wiring hub as shown in Figure 13.5. A hub may be connected to some
other type of Ethernet; operation is the same as for the bus configuration.

Figure 13.5
10BaseT star topology

 ����������������������������301��

���)� ���	����

����
�������

As every node has access to the LAN at all times, it is possible that two nodes may
transmit simultaneously, thus disrupting communications. Ethernet uses the carrier sense
multiple access with collision detection (CSMA/CD) technique to detect and minimize
collisions between frames.

A node always waits until there is no carrier present on the line (indicating that no other
node is transmitting) before sending a frame. It then monitors the cable as it transmits,
and any difference between the signals it is sending and those it is receiving indicates that
a collision has occurred (that is, another node has started transmission).

If a collision is detected, the node enforces it by sending a random bit pattern (the jam
sequence), then waits for a short random interval before trying again. As each of the two
nodes is waiting for a different interval, the chances are that a collision will not occur the
next time.

As a node may have to wait for signal propagation to reach the other end of the bus
before a collision occurs, there is a minimum length for messages to ensure collision
detection in all circumstances. The hardware is required to pad short messages to reach
this minimum length.

Figure 13.6 illustrates the sequence of events when a collision occurs. Note that node 1
must wait for twice as long as it takes for the signal to propagate to node 2, and must be
transmitting all this time in order to be able to detect a collision.

302 ����������	����
���
�������������������
��������������
��������

Figure 13.6
CSMA/CD collision

���*� (�������������
���������	���

�����$�����

All data transfer is in the form of a packet or frame. It consists of an envelope containing
control information (such as synchronization bytes and addresses) and the actual message

 ����������������������������303��

data. Each node examines the destination address and reads the data if the frame is
directed at that node.

An Ethernet data frame has the structure shown in Figure 13.7.

Figure 13.7
Format of an IEEE 802.3 frame

���
����

This field comprises seven bytes, each with the binary value 10101010. Its purpose is to
allow all receiving MAC units to synchronize with the frame.

��
��
��
��
��
���������
�����

The SFD indicates the start of a frame and has the binary value 10101011.

��	���
����

����		

This may be either 16 bits or 48 bits, depending on how the system is configured. In
practice it is almost always 48 bits. It must be the same length for every node. The node
with this address will read the data.

������

����		

This may be either 16 bits or 48 bits, depending on how the system is configured. In
practice it is almost always 48 bits. This is the address of the node that sent the data.

������
�����
���

The two-byte length indicator specifies how many bytes are in the data field.

�
�

This is the actual message data and can be from 46 to 1500 bytes in length. The minimum
value is determined by the need for collision detection and the maximum value limits the
access time for any one node to 1, 2 milliseconds. If the actual data is less than 46 bytes
it must be ‘padded’ up to 46 bytes.

��
��
�����
	�������

This is a 32-bit cyclic redundancy check value used for error detection.

��
�	��		���
	�������

1 The MAC unit applies the frame envelope to the data.
2 The MAC unit monitors the line until no carrier is sensed.
3 The node sends the frame as a bit stream, via the transceiver unit.
4 The transceiver monitors the line in order to detect a collision.

304 ����������	����
���
�������������������
��������������
��������

If there is a collision, the transmitter sends a jam sequence, terminates transmission and
tries again after a short random interval.

 ���!����
	�������

1 The MAC unit detects an incoming signal from the transceiver.
2 The carrier sense signal is switched on to inhibit any transmission by the

MAC unit.
3 The MAC unit uses the incoming preamble bytes to achieve synchronization.
4 The destination address is checked, and reading continues if it matches this

node.
5 The data is read, and the length checked against the length indicator. The FCS

is calculated and checked against the FCS field value. If both are OK, the
message is passed on.

�
�

��������

��
��
�	��		���

Clock signals are encoded into the transmitted bit stream and extracted by each receiver
for synchronizing purposes. That is, the system is ‘self-clocking’. The encoding and
decoding process is illustrated in Figure 13.8. The original data stream varies between
two levels and does not return to zero symbols. This is known as a non-return to zero
(NRZ) signal. This data is encoded for transmission using Manchester (or phase)
encoding where a binary 1 is encoded as a ‘low to high’ transition in the middle of each
bit and a binary 0 as a ‘high to low’ transition. There is always a transition in the middle
of each bit and this is used to extract the received clock signal. This received clock signal
defines when the receiver samples the encoded data, which is either high (for binary 1) or
low (for binary 0), which ensures a correct reproduction of the original data.

Figure 13.8
Manchester encoding and decoding

 ����������������������������305��

����+� (������������
������ �	��������

The hardware requirements will depend on the variety of Ethernet being used; these are
described below.

���
�������#�����"�#��
���

The standard 10Base5 Ethernet requires a 10.28 mm outside diameter 50 ohm cable
(RG-8) that can carry a clamp-on tap forming a T junction. A transceiver media
attachment unit (MAU) is joined to the tap. A transceiver drop cable or attachment unit
interface (AUI) connects the MAU to the media access control (MAC) unit. In the case of
an instrumentation system, the MAC unit is built into the controller card and includes the
protocol control firmware. This makes up the communication subsystem, acting as a
DTE.

Figure 13.9
Standard Ethernet hardware

Within the transceiver, the jabber control section disconnects the node from the bus if it
detects excessive transmission activity. This prevents a faulty node from disrupting all
network communications. The collision detection section implements the CSMS/CD
method described previously.

306 ����������	����
���
�������������������
��������������
��������

"#$

 The MAU can be attached to the cable in one of two ways:
• A ‘vampire’ tap. In older systems it was necessary to predrill a hole for

connection to the center conductor of the coaxial cable. Modern systems use
a simple insulation displacement method whereby ‘spikes’ are driven into the
screen and center conductor by means of a small wrench or screwdriver.

• An N-connector MAU has two female N-connectors. The cable has to be cut
and fitted with two female N connectors. This approach is preferable in a dirty
environment such as a factory.

An MAU can have one, two or four ports. The standard requires a minimum interval of

2.5 meters (8.2 feet) between MAUs. A 500 meter (1640 feet) segment (the maximum)
can have up to 100 MAUs connected.

#$%

The AUI is a 15-conductor shielded cable, consisting of five individually shielded pairs
and may be up to 50 meters (164 feet) long. Figure 13.10 illustrates an AUI.

Figure 13.10
AUI Cable Connectors

Figure 13.11
Standard Ethernet cabling example

 ����������������������������307��

It is recommended that all cabling within a system be taken from the same reel to avoid
reflections due to impedance mismatches. Splicing is achieved via male N-connectors on
the cable ends, joined by a female-female connector barrel.

�#�
�"�#��
���

A thin Ethernet system uses 50 Ω RG-58 A/U or C/U cable and can have a maximum
segment length of 185 m (607 feet). It is designed for lower installation costs.

The setup is the same as for standard Ethernet, except that the minimum spacing
between MAUs is 0.5 m (1.7 feet) and up to 30 MAUs are allowed per segment. A
segment cable should not be spliced, but joined with barrel connectors.

At a controller, the MAU and AUI are typically integrated into the card as shown in
Figure 13.12.

Figure 13.12
Thin Ethernet cabling example

10Base5 components can be used on 10Base7, but the MAU cannot use a vampire tap
or N-connector. The cable is different therefore a BNC T-piece is used.

&'(
	��

A 10BaseT system provides lower installation costs again and uses twisted pair cables.
Each node is connected to a central hub by two pairs (one for receiving and one for trans-
mitting). The hub can be up to 100 m (330 feet) away. Connection to the interface cards is
by modular RJ-45 8-pin plugs as shown in Figure 13.13.

308 ����������	����
���
�������������������
��������������
��������

Figure 13.13
RJ-45 connector for twisted pairs

A hub provides a bus between the nodes and may incorporate AUI connectors for thick
Ethernet, thin Ethernet or fiber optic transceivers.

������ (�����������$�����
������	
�	����

We will now calculate some performance parameters for a heavily loaded Ethernet
system.

Assume that N nodes are always queuing to send a packet. N represents the total
loading on the system and it is assumed to be greater than 1.

On an Ethernet system there is a contention interval or time slot during which nodes
attempt to transmit before guaranteeing to have control of the bus. During this time of
512 bit times collisions are possible due to propagation delays on the network.

If it is assumed that a node has a probability of transmitting in any time slot of

N
1

, then the probability of being delayed is: 



 −

N
11

The probability P, that exactly one node attempts to transmit in the time slot, and is
successful in gaining control of the bus is:

111
−
















−=

N

N
P

So, the probability of waiting no time before gaining control of the bus is P.
The probability of waiting only one time slot is P(1–P) and the probability of waiting N

time slots is P [(1–P)N].

This is a geometric progression that has a mean of
P

P)1(−

Therefore, the mean number of time slots a node must wait before getting access to the
bus is:

P
PS)1(−

=

 For two stations queuing continuously 5.0
2
11

12

=






 −=

−

P

 ����������������������������309��

and 1
5.0
5.01

==
−

=
P

PS

The efficiency E is given by the percentage of time the network is transmitting useful
data. Each packet has a maximum of 192 overhead bits, consisting of:

7 bytes preamble
1 byte SFD
6 bytes destination address
6 bytes source address
2 bytes length
4 bytes CRC

The maximum packet size is 1526 bytes or 12208 bits while a minimum sized packet is

72 bytes or 576 bits. Between each frame is a gap of 96 bit times or 9, 6 microseconds at
10 Mbps.
For a maximum sized frame:

gapinterframewaiting data Useful
data UsefulE

++
=

%95
12816

208 12
96512208 12

208 12
==

++
=E

For a minimum length frame: %52
96512656

656
=

++
=E

This reduction in efficiency is caused by the increasing proportion of time for the fixed

overheads and interframe gap.

������ ,���
	���
���	�	����

The main cause of collisions is the signal propagation time between nodes. Effectively,
the delay in a node picking up the fact that there has been a collision can be up to twice
the propagation delay between the two nodes. This round trip time is often referred to as
the collision window. This time is usually fairly short – in the order of a few
microseconds. With the maximum configuration for Ethernet consisting of five 500
meters (1640 feet) cables, four bit repeaters, ten transceivers and ten 50 meters (164 feet)
transceiver cables, the round trip propagation through all the cables, transceivers and
repeaters can be as much as 50 microseconds. This is equivalent to about 500 bit times at
10 Mbps. Note that the minimum length of an Ethernet message is 64 bytes, or 512 bits,
which represents 51.2 ms. Hence, collisions can always be detected within one packet.

The main reasons for collision rates on an Ethernet network are the:
• Number of packets per second
• Signal propagation delay between transmitting nodes
• Number of nodes initiating packets
• Bandwidth utilization

310 ����������	����
���
�������������������
��������������
��������

A few suggestions on reducing collisions in an Ethernet network are:
• Keep all cables as short as possible
• Keep all high activity sources and their destinations as close as possible.

Possibly isolate these nodes from the main network backbone with
bridges/routers and switches to reduce backbone traffic

• Use buffered repeaters rather than bit repeaters
• Check for unnecessary broadcast packets which are aimed at non existent

nodes
• Remember that the monitoring equipment to check out network traffic can

contribute to the traffic (and the collision rate)

������ -����(��������

Fast Ethernet systems operate at 100 Mbps on different forms of physical media and they
retain the existing Ethernet MAC layer.

IEEE 802.3u standard defines:
• 100BaseTX, which uses two pairs of category 5 UTP or STP and is the most

commonly used standard.
• 100BaseFX, which uses two pairs of multimode (or single node) fiber.
• 100BaseT4, which uses four pairs of category 3, 4 or 5 UTP. This is no longer

used.

The IEEE also has a standard 802.3y that defines 100BaseT2, which was to use two

pairs of category 3, 4 or 5 UTP. This system has not been developed commercially.
The original 802.3 MAC layer was defined independently of the various physical layers

it supports. The MAC layer defines the CSMA/CD access mechanism, and defines most
parameters in terms of bit-time intervals, which are independent of speed. With 100 Mbps
systems, the interframe gap and the time to transmit the frame are reduced to one tenth
that of the 10 Mbps system.

The 100BaseTX systems are star wired to a hub in the same configuration as the
10Base T systems. Modern copper based systems use 10/100 nodes and hubs. Here the
node and the hub exchange capability information and adjust to the appropriate speed (i.e.
10 Mbps or 100 Mbps).

The system is designed to operate over 100 meters (328 feet) of Cat 5 UTP between
node and hub. The maximum size network in which collisions can be detected is
250 meters (820 feet), being one tenth the size of the maximum 10BaseT network. This
effectively means that networks greater than 200 meters (656 feet) need to be logically
connected by store and forward devices such as bridges, routers or switches. This is
discussed in section 13.17.

Fast Ethernet is becoming cheaper and is now widely used for industrial applications.
Gigabit Ethernet has been commercially available since 1998.

������ �������	���

The token ring LAN was developed by IBM in the 1980s, and involves the passing of a
‘token’ a special frame as the method of collision avoidance.

The relevant standards are:
• IBM token ring
• IEEE 802.5 (token ring)

 ����������������������������311��

������	
�

This is a ring network in which the transmission medium forms a closed loop. Data is
transmitted in one direction as shown in Figure 13.14.

Figure 13.14
Token ring topology

Note that failure at any node will put the network out of action unless special
precautions are taken, making a plain token ring unsuitable for industrial applications.

The ring can be modified in the following ways to improve reliability:
• Each node can have a set of bypass relay switches so that ring continuity is

maintained even when a node fails or is switched off
• Ring architecture can be duplicated to provide two communication paths

"���

���		
�������

A special empty frame called a token is passed from one node to another, and a node can
transmit data only when it holds the token. After confirming transmission of a data frame,
the node generates a new token and sends it to the next node. This means that collisions
cannot occur.

��������
�!��
����

As mentioned above, a node cannot transmit a data frame unless it holds the token.
There is a time limit on how long a node can hold the token.

�
�

��
��

A token ring data frame has the structure shown in Figure 13.15.

Node 3 assumed switched
off and hence in bypass
mode

312 ����������	����
���
�������������������
��������������
��������

Figure 13.15
Token Ring data frame

��
��
���������

This field indicates the start of the frame and is encoded with non-data symbols.

#���		
�������

The field contains access and reservation sub-fields and controls access to the ring.

��
��
�������

This distinguishes normal data frames from protocol control (MAC) frames.

��	���
����

����		

This may be either 16 bits or 48 bits, depending on how the system is configured. It must
be the same length for every node. The node with this address will read the data.

������

����		

This may be either 16 bits or 48 bits, depending on how the system is configured. It must
be the same length for every node.

%�����
����

This is the actual message data and has no upper limit apart from that related to the
maximum time the node is allowed to hold a token.

��
��
�����
	�������

This is a 32-bit cyclic redundancy check value used for error detection. It is calculated
over the entire frame apart from the Start and End Delimiters.

)��
���������

Signals the end of the frame.

�����
����
�

A token has the format shown in Figure 13.15(a). Field descriptions are as for the data
frame.

 ����������������������������313��

Transmission sequence

1 The MAC unit formats a frame ready for transmission.
2 When the node receives a token with the same priority as the frame, the MAC

unit transmits the frame.
3 The MAC unit receives the frame back and checks that it has been read by the

destination node.
4 The MAC unit forwards the token to the nearest downstream active neighbor,

which repeats the procedure.

Reception sequence

1 The MAC unit receives a frame from the nearest active upstream neighbor.
2 If the destination address matches the node, the MAC unit copies the frame

and sets an access control flag to indicate that it has read the information. It
passes the frame on to the nearest downstream active neighbor.

3 If the destination address does not match the node, the MAC unit passes the
frame on without taking any action.

*
��+
��
�����������	

The hardware layout for a token ring system is shown in Figure 13.16.

Figure 13.16
Token ring hardware

Although they use a logical ring structure, token rings are actually arranged in a hub
(star) topology, with each node connected to a central hub or MAU (multistation access
unit). MAUs can be interconnected by using special RI (ring in) and RO (ring out) ports
on the MAUs.

������ ������.���

Token bus network provides guaranteed access for all nodes at regular intervals and can
prioritize frame transmission. Operation is either broadband or a single-channel carrier
band. Token bus architecture supports the following:

314 ����������	����
���
�������������������
��������������
��������

• Both carrier band (single channel) and broadband networks
• Operation over either 75 Ω coaxial or fiber optic cable
• Network speeds of 1, 5, 10 and 20 Mbps depending on the medium
• Four priority levels for regulating access to the network medium
• Four physical layer medium configurations; two carrier band (full bandwidth),

one broadband and an optical configuration.

An open standard for token bus is IEEE 802.4. However, most token bus systems are

proprietary standards such as MAP, Allen Bradley, Data Highway Plus, Modbus Plus or
Honeywell TDC300.

������	
�

The physical topology is that of a bus, but overlaying that is a logical ring topology
(based on addresses) as illustrated in Figure 13.17.

Figure 13.17
Token bus topology

��������
�������
���

Possession of a token is required before a node can transmit a frame, in the same way as
described for token ring.

����!� ������.��������
���������	����

A node waits until it receives the token, which is passed around the logical ring from
node to node. Each node knows its predecessor and successor; and the physical position
of nodes on the bus is of no consequence as long as all nodes read all messages. The
token is passed from higher addresses to lower addresses.

At initialization, each node puts a message on the bus demanding to be the token
holder. The node with the highest address is successful, and then starts the procedure
described in ‘addition of nodes’ to setup the logical ring and start token rotation.

When a node has messages to transmit, it can keep the token up to a predefined time
and may send as many frames as desired within that time limit. If the node finishes

 ����������������������������315��

transmissions before the timeout is reached, it must immediately generate a new token
and send it to its successor on the logical ring. This scheme is useful for industrial
communications networks because the maximum time a node must wait before it can
send a message is known.

Messages can be assigned one of four priority classes, and the higher priority messages
are always transmitted first. This means that during heavy network traffic the lower
priority messages may be delayed. Token rotation time increases, as each node tends to
hold the token for the maximum period to reduce the message backlog.

Messages can be broadcast to all nodes or multicast to groups of nodes.

�����$�����

A token bus data frame has the structure shown in Figure 13.18

Figure 13.18
Token bus data frame

���
����
�����

This is a field that allows the MAC unit of the receiver to synchronize with the frame.

��
��
���������

This field indicates the start of the frame and is encoded with non-data symbols.

��
��
�������

This distinguishes normal data frames from protocol control (MAC) frames.

��	���
����

����		

This may be either 16 bits or 48 bits, depending on how the system is configured. It must
be the same length for every node. The node with this address will read the data.
Individual node addresses have the least significant bit (LSB) set to 0; multicast (group)
addresses have the LSB set to 1. A broadcast message has all bits set to 1.

������

����		

This may be either 16 bits or 48 bits, depending on how the system is configured. It must
be the same length for every node.

�
�

This is the actual message data and can be up to 8191 bytes long.

��
��
�����
	�������

This is a 32-bit cyclic redundancy check value used for error detection. It is calculated
over the entire frame except the preamble and start and end delimiters.

316 ����������	����
���
�������������������
��������������
��������

)��
���������

Signals the end of the frame and is encoded identically to the start delimiter.

#�������
��
����	

The protocol includes a mechanism for the automatic addition of nodes as they come on
line. At regular intervals the current token holder sends an inquiry control frame
containing its own address and that of the node it has listed as its successor. Three results
are possible:

• There is no response within a defined period, indicating that there is no new
node between the transmitting node and its successor. The node sends the
token to its successor as usual.

• A new node sends a message giving its address as the new successor. The
node that originated the inquiry updates its list to make the new node its
successor and sends the token to it.

• Two or more nodes attempt to send a message indicating they are the new
additions. An arbitration procedure then follows to work out the addresses and
logical assignments. This will also resolve the problem of two nodes with
incorrectly set identical addresses.

As addition of nodes can be time consuming, it should be carried out when network

loading is not too heavy.

 ����
�
��
����	

When a node is to leave the network, it waits for the token then sends an advisory
message to its predecessor, giving its successor’s address. The predecessor then sends
future tokens to the leaving node’s successor and the node can leave the network.

,���
�
�����

When a node sends the token, it listens for a response from its successor and acts as
follows:

• If there is no transmission within a defined period, the node sends the token
again.

• If there is still no response, the successor is assumed to be out of action and
the node sends a general inquiry message to determine the faulty node’s
successor. If the latter responds, the transmitting node removes the faulty
node from its list and substitutes the successor; it then sends the token.

• If there is still no response, the node tries again. Should there still be no
response, the node attempts to build a new logical ring by requesting all active
nodes to respond.

*
��+
��
�����������	

The hardware components for a token bus node are shown in Figure 13.19.

 ����������������������������317��

Figure 13.19
Token bus hardware

Token bus configurations use a co-axial broadband cable, which has 75 Ω impedance.
The cable is quite often quad shielded with a foil/braid/foil/braid composition around the
signal wire and the dielectric, as protection under even the worst operating conditions.

Cable segments are linked using ‘F’ connectors.
Some token bus configurations use optical fibre as the transmission medium. This

arrangement uses a star configuration in which the center of the star may be a node
(active star) or a coupler (passive star). In an active star, each node in the star sends its
transmissions to the central node, which then broadcasts the transmission to all the other
connected nodes.

In a passive star, the coupler, or signal re-director, is created by fusing the fibers
coming from each of the nodes. This fusion creates paths between all nodes, so that any
transmission from a node will automatically reach all the other nodes.

����'� /�������
����
����
�	����

In many cases LANs need to have connections to other networks. For example, a
company with offices in each capital city will have a LAN at each site and usually
interconnections between them via a WAN. Messages can be sent to nodes on any LAN,
and to the user there appears to be just a single large network. However, depending on the
speed of the WAN links, operations between remote LANs may be considerably slower
than those between nodes on the same LAN.

Various items of equipment are used for connections within and between networks, as
described in the following sections.

318 ����������	����
���
�������������������
��������������
��������

����������

A repeater is used to connect two segments of the same LAN, and simply retransmits an
incoming signal. The repeater also carries out collision checking. Remote segments may
each have a repeater, joined by a link; also a repeater may operate between different types
of segment such as coaxial cable and optical fiber cable. Figure 13.20 illustrates the use
of repeaters in an Ethernet LAN.

Figure 13.20
Use of repeaters

����	���

A bridge connects two networks, or two segments of one network. It acts as a node as far
as each side is concerned. The data link layer protocol has to be the same on each side,
but the physical media can be different.

Bridges are more intelligent than repeaters and have software that ensures that noise
and truncated packets are not passed across. The most commonly used bridges maintain
address lists so that only packets addressed to the other side are retransmitted. In addition,
they usually have ‘learning’ algorithms that allow them to build up and maintain
complete address lists that can respond to changes in the network. Splitting a network
with such bridges can produce a dramatic reduction in traffic density.

Another use for bridges is to extend a network. Two fully stocked networks (that is,
with the maximum number of nodes and segments) can be joined by a bridge and made
into effectively one large network. In fact it will be more efficient than an equivalent
single network would be because the bridge ensures that only the necessary messages are
repeated to one side or the other.

 ����������������������������319��

�%���#���

On a normal hub, all ports are interconnected and hence all users connected to that hub
share the same available bandwidth. Any traffic on a given port will be ‘seen’ by all
users connected to the hub.

A switching hub (or ‘switch’), on the other hand, only forwards each packet to the
relevant port, based on the hardware address information in the header. A switch
therefore acts as a multi-port bridge.

The advantage of using a switch to interconnect several LANs is that each LAN retains
its full bandwidth, whilst still allowing communication between all hosts.

Figure 13.21
Switch applications

��������

A router transfers data between networks that have the same network layer protocols
(such as TCP/IP) but not necessarily the same physical or data link protocols. Routers
maintain tables of addresses in the networks to which they are attached, and route each
packet to the appropriate network depending on its destination address.

When a packet arrives at one side, the router translates the data link protocol if
necessary, and then sends the packet on to the next node on the route. Figure 13.22
illustrates the use of routers.

320 ����������	����
���
�������������������
��������������
��������

Figure 13.22
Router applications

-
��+
.	

A gateway can connect networks that are completely dissimilar, and may need to translate
all seven OSI protocol layers. Gateways therefore have the highest overhead and lowest
performance of the internetworking devices.

����)� ���
����������	����#������

This section looks at the features of a network operating system (NOS) and examines
how implementation relates to the OSI model. It also looks at the various systems’
architectures and their associated protocols and, finally, briefly explores some of the
commercially available network operating systems. Though no one network operating
system is recommended, the features are compared from an academic point of view.

Chapter 9 demonstrated that data communication between any two systems could be
described in the open systems interconnection reference model (OSI/RM) architecture as
proposed by the International Standards Organization. This model lays down the
framework on which any network can be based to ensure interoperability. It describes the
requirements of the different logical entities, which interact with one another, but can be
implemented independently. The associated protocols contain the details of the exact
implementations.

When manufacturers or software providers implement those protocols, the result is an
operating environment, which makes the underlying complexities of a particular system
or its interconnections transparent to a user.

 ����������������������������321��

A network operating system is the software necessary to integrate the various
components of a network into a single entity to which users have access. It manages the
resources of a network, schedules the services and tries to ensure an error free session for
every user. Simply, a NOS is a network resource manager.

In an ideal situation, no user need be aware of the connection details or the mechanism
by which various things are co-ordinated. For example, to copy file1 to file2, having both
copies to reside on the same physical medium, such as a disk, one could type:

�����������������

However, if there are different physical disks or volumes present, the source and
destinations might need to be designated in a way appropriate to the command interpreter
being used. For example, in MSDOS, a file might be copied from one disk to another by
means of a command such as:

����������������
��������������

It follows that if the source and destination can be represented uniquely; it should not
matter to which machine each medium is physically connected. Any resource attached to
any computer in a network can be made to appear as a common resource of the network
and the way it is achieved is transparent to the user. This is what a NOS is typically aimed
to provide. It presents an operating environment in which any valid user is able to utilize
the resources of a network as if it is attached to a local node.

So, a NOS extends the functions of a conventional operating system. On local stand-
alone computers, the operating environment is provided by the local operating system. It:

• Manages files
• Manages the computer’s memory
• Manages the peripherals attached to it
• Manages programs as processes
• Does a few housekeeping functions

Additional functionality is provided (the more sophisticated operating systems become)

depending on the complexity of the hardware platform.
In addition, a network operating system manages the communications between network

components. This can be achieved in two ways. Either the local resources are managed by
the local operating system and the communication management is provided through add-
on modules, or, local as well as network resources are managed as an integrated
environment.

As many manufacturers started providing network services before the OSI/RM was
established, the approaches developed to cater for the networking needs of industry are
not uniform or even compatible. However, most of the vendors provide implementation
to most of the popular approaches, thereby allowing interoperability, though the trend is
to adopt a uniform approach based on the OSI/RM.

����*� ���
������
�	��
���������������
����

Though there are many Novell network and Windows NT operating systems
architectures in the market, the following three are the most popular.

• OSI/RM
• TCP/IP
• SNA

322 ����������	����
���
�������������������
��������������
��������

���
�������
���
��������������!
���
���������������&�!&��

This is the result of a US Department of Defense initiated project to implement a global
network, interconnecting various local area networks or individual computers. In this
sense this is a demonstrated open system model. The architecture is based on a four-layer
model. The layers are:

• Application layer
This comprises the session, presentation and application layers of the OSI
model.

• Services layer (host-to-host)
This represents the transport layer of the OSI model.

• Internetwork layer
This represent the network layer of the OSI model.

• Network interface layer
It represents the physical and datalink layers of the OSI model.

Figure 13.22 shows how TCP/IP relates to the OSI/RM. It can be seen that although the

requirement for communication is the same or similar in reality, they are classified
differently in different architectures. Hence it is not possible to define the exact
equivalence of layers in different architectures.

Due to the support of the US Department of Defense and later by the National Science
Foundation, TCP/IP has become the de facto open systems standard. It is widely used on
the Internet and is supported by many PLC manufacturers for industrial interfacing.

�
������
��%�������#�����������'���

SNA is a layered architecture similar to OSI/RM. SNA is part of an IBM corporate design
philosophy, which laid the framework for the data communication development of its
products. The scope of SNA is so broad that none of its products implements the entire
architecture. Each product implements only those elements of SNA that pertain to the
function of that particular product. As SNA is a layered architecture, integration of all
these products to form a network is only a matter of the proper configuration. The layers
are described below.

• End user layer
This describes the end user requirement of communication, much like the
application layer of OSI.

• Function management layer
All the requirements of translation in terms of coding or file formats, together
with their management, are described in this layer and are functionally
equivalent to the presentation layer of OSI.

• Data flow control layer
This takes care of the control aspects of creating an end-to-end connection/
session.

• Transmission control
This describes the end-to-end data transmission details such as reliability and
integrity.

• Path control layer
The actual sequencing of information packets and its routing on the network
are described in this layer and is functionally equivalent to the transport and
network layers put together of OSI.

 ����������������������������323��

• Data link layer
This is essentially similar to that of OSI.

• Physical layer
The description of the physical media details as in OSI.

SNA, when originally marketed, had only five layers and did not have end-user and

physical layers. This was because all traditional mainframe operating systems provided
the end user interface as part of the environment and the communication requirements
were described without them. Also, since IBM had proprietary network standards, where
the physical media details were described, there were no additional layers described.
However, a seven layer integrated SNA model was proposed later and became an
accepted standard. Other vendors had to reconcile with this and had to give SNA
connectivity due to market pressures.

While OSI/RM is only a functional model, SNA is a functional as well as an
implemented proprietary standard. It is dynamic and is growing in order to accommodate
developments in the networking field. Advanced peer to peer communication (APPC) is
the result of such a development and is primarily designed to provide enhanced
capabilities for a distributed environment.

����+� ��"������
���

'"��!(���
��'"��")!�

NETBIOS is an interface, an upper-level protocol developed by IBM. It provides a
standard interface to the lower networking layers and functionally covers the top three
layers (session, presentation and application) in the OSI reference model.

NETBIOS can also serve as an API (Application Program Interface) for data exchange.
It provides programmers with access to resources for establishing a connection between
two machines or between two applications on the same machine.

NETBIOS provides four types of service
• Naming, for creating and checking group and individual names (hardware or

symbolic names)
• Datagram support, for connectionless communication
• Session support, for connection-orientated communication
• General services (e.g. resetting adapter states, canceling application

commands, etc.)

NETBEUI (network basic extended user interface) is a protocol developed originally

for use on IBM token ring networks. NETBEUI can communicate with standard
(IEEE 802.2 LLC) protocols at the lower layers.

NETBEUI can be used instead of TCP/IP or SPX/IPX in a protocol stack. It is faster
than TCP/IP and SPX/IPX and is ideally suited for small LANs but it is unfortunately not
routable.

�&*�!&*�

Novell has a major share of the commercial LAN market today with its NetWare product
ranges. Comparison of the NetWare components SPX and IPX to OSI/RM is given in
Figure 13.23.

324 ����������	����
���
�������������������
��������������
��������

Figure 13.23
Comparison of Netware to OSI/RM

(
�.
�
����	

Unlike other vendors, Banyan decided to implement its network operating system on the
popular UNIX kernel.

�#,
�!��
����
	.	���	
����
%("

IBM supports several LAN technologies by its PC LAN program and the OS/2 LAN
Server.

/0��1	
�#,
�
�
���

3Com based its NOS on the LAN manager developed by Microsoft.

�#,
�!��
����
	.	���	
����
"����	���

Microsoft has introduced a few remarkable products in the network operating systems
field such as Windows for Work Groups, Windows NT, Windows NT Advanced Server
and Windows 95/98.

������
�

The function of a NOS is to provide an environment in which computer systems
communicate irrespective of the different hardware or software available at the local
nodes. The international standards movement that resulted in OSI/RM has influenced all
the big players in the networking market and the market is leaning towards this common
standard slowly. Hence the integrated/add-on approaches adopted by the main players in
the LAN market today, namely Novell, Banyan, 3Com, Microsoft and IBM.

Appendix A

Numbering systems

 A generalized number system
A number system is formed by allocating symbols to specific numerical values. Any
group of symbols can be used with the total number of symbols for a number system
called the base of the system.

The three most common bases are:
• Binary with two symbols (0 and 1) and hence a base of 2.
• Hexadecimal with sixteen symbols (0,1,2...9,A, B....F) and hence a base of 16.
• Decimal with ten symbols (0,1,2...9) and hence a base of 10.

When numbers with different bases are being used in the same descriptive text they
sometimes have the subscript referring to the base being used, as in 3421.1910 for a
decimal or base 10 number.

Numerical symbols have to be combined in a certain way to represent other
combinations of numbers. The decimal numbering system has the structure laid out in
Table A.1 for weighting each digit in the number 3421.1910 in a combination of numbers
written together.

Exponential notation is used here, for example: 102 means 100 and 10–3 means 0.001.

Weight 104 103 102 101 100 . 10–1 10–2 10–3 10–4 10–5
 0 3 4 2 1 . 1 9 0 0 0

Table A.1
Decimal weighting structure

The most significant digit (or MSD) in this number is 3. This refers to the left most
digit that has the greatest weight (103 or 1000) assigned to it.

The least significant digit (or LSD) in this number is 9. This refers to the right most
digit that has the least weight (10-2 or 0.01) assigned to it.

This represents the number calculated below:

326 Practical Data Communications For Instrumentation and Control

. . .0×104+3×103+4×102+2×101+1×100+1×10–1+9×10–2+0×10–3+...

Binary numbers
Binary numbers are commonly used with computers and data communications because
they represent two states – either ON or OFF. For example, the EIA-232-C standard has
two voltages assigned for indicating ON (say, –5 Volts,) or OFF (say, +5 Volts). Any
other voltages outside a narrow band around these voltages are undefined.

The word bit, referred to often in the literature, is a contraction of the words binary
digit.

The same principles for representing a binary number apply as in section 1 above. For
example, the number 1011.12 means the following using Table A.2.

Weight 24 23 22 21 20 . 2–1 2–2 2–3 2–4 2–5
 0 1 0 1 1 . 1 0 0 0 0

Table A.2
Binary weighting system

This translates into the following number:

.0×24+1×23+0×22+1×21+1×20+1×2–1+0×2–2+... . .

The most significant bit (MSB) in the above number is the left most bit and is 1 with
weighting of 23. The right most bit is the least significant bit (LSB) and is valued at 1
with a weighting of 2–1.

Conversion between decimal and binary numbers
Table A.3 gives the conversion between decimal and binary numbers. Note that the
binary equivalent of decimal 15 is written in binary form as 1111 (using 4 bits). This 4 bit
binary grouping will have significance in hexadecimal arithmetic later. As expected
binary 0 is equivalent to decimal 0.

Decimal number Binary equivalent
 0 0
 1 1
 2 10
 3 11
 4 100
 5 101
 6 110
 7 111
 8 1000
 9 1001
 10 1010 contd…

Appendix A – Numbering systems 327

contd… 11 1011
 12 1100
 13 1101
 14 1110
 15 1111

Table A.3
Equivalent binary and decimal numbers

The procedure to convert from a binary number to a decimal number is straightforward.
For example, to convert 1101.012 to decimal; use the weighting factors for each bit to
make the conversion.

1101.012=1×(23)+1×(22)+0×(21)+1×(20)+0(2– 1)+1×(2– 2)
This is equivalent to:

1101.012=1×(8)+1×(4)+0×(2)+1×(1)+0×(½)+1×(¼)
This then works out to:

1101. 012=8+4+0+1+0.25

1101. 012=13.25
The conversion process from a decimal number to a binary number is slightly more

complex. The procedure here is to repeatedly divide the decimal number by 2 until the
quotient (the result of the division) is equal to zero. Each of the remainders forms the
individual bits of the binary number.

For example, to convert decimal number 4310 to binary form:

2 43 remainder 1 (LSB)
2 21 remainder 1
2 10 remainder 0
2 5 remainder 1
2 2 remainder 0
2 1 remainder 1 (MSB)
 0

Table A.4
Illustration of decimal to binary conversion

This translates a number 4310 to 1010112.

Hexadecimal numbers
Most of the work done with computers and data communications systems is based on the
Hexadecimal number system, with the base of 16 and uses the sequence of symbols:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

328 Practical Data Communications For Instrumentation and Control

Hence, the number of FA9.0216 would be represented as below in Table A.5

Weight 164 163 162 161 160 . 16– 1 16– 2 16– 3 16– 4 16– 5
 0 0 F A 9 . 0 2 0 0 0

Table A.5
Hexadecimal weighting structure

This translates into the following number:

.0×164+0×163+F×162+A×161+9×160+0×16– 1+2×16– 2+.

The most significant digit (MSD) in the above number is the left most symbol and is F
with weighting of 162. The right most symbol is the least significant digit (LSD) and is
valued at 2 with a weighting of 16–2.

Conversion between binary and hexadecimal
The conversion between binary and hexadecimal is effected by modifying Table A.6 to
Table A.6 below:

Decimal
number

Hexadecimal
equivalent

Binary equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Table A.6
Relationship between decimal, binary and hexadecimal numbers

As can be seen from the table, the binary numbers are grouped in fours for the largest
single digit hexadecimal character or symbol. A similar approach of grouping bits in
fours is followed in expressing a binary number as a Hexadecimal number.

In converting the binary number 10000100111101112 to its hexadecimal equivalent the
following procedure should be adopted. First, break up the binary number into groups of

Appendix A – Numbering systems 329

four commencing from the least significant bit. Then equate the equivalent Hex symbol
to it (derived from Table A.6 above).

1000010011110111 becomes:

1000 ... 0100 ... 1111 ... 01112
8 ... 4 ... F ... 716

or 84F716.
In order to convert a hexadecimal number back to binary the procedure used above

must be reversed.
For example, in converting from C9A4 to binary this becomes:

C ... 9 ... A ... 416
1100 ... 1001 ... 1010 ... 01002

or 11001001101001002.

Binary arithmetic
���������

Knowledge of binary addition is useful although it can be cumbersome. It is based on the
following four combinations of adding binary numbers:

0 0 1 1
0 1 0 1
0 1 1 0 and carry 1

The carry 1 (or bit) is the only difficult part of the process. This addition of the
individual bits of the number should be done sequentially from the LSB to the MSB (as in
normal decimal arithmetic).

An example of addition is given below:

10100010012
00111010102
11011100112

�	
���
�����

The most commonly used method of binary subtraction is to use 2’s complement. This
means that instead of subtracting two binary numbers (with the attendant problems such
as having ‘carry out’ bits); the addition process is applied.

For example, take two numbers and subtract the one from the other as follows:

12 which is equivalent to: 1100
–4 Subtrahend –0100
8 Result 1000

The two’s complement is found by first complementing all the bits in the subtrahend
and then adding 1 to the least significant bit.

Complementing the number results in 0100 becoming: 1011.
Add 1 to the least significant bit gives a two’s complement number of: 1100.

330 Practical Data Communications For Instrumentation and Control

Add 11002 to 11002 as follows:
1100
1100
1000 carry 1
(This is the same result as above).

��
�	��������������

Exclusive-OR is a procedure very commonly used with binary numbers in the error
detection sequences of data communications. The result of an XOR operation on any two
binary digits is the same as the addition of two digits without the carry bit.
Consequently, this operation is sometimes also called the Modulo-2 adder. The truth table
for XOR is shown below:

Bit 1 Bit 2 XOR
0
0
1
1

0
1
0
1

0
1
1
0

Table A.7
Exclusive-OR truth table

Hardware/firmware and software
The hardware refers to the physical components of a device, such as a computer, sensor,
controller or data communications system. These are the physical items that one can see.

The software refers to the programs that are written by a user to control the actions of a
microprocessor or a computer. These may be written in one of many different
programming languages and may be changed by the user from time to time.

The firmware refers to the ‘microprograms’, usually residing in a read-only memory
(ROM) and which normally cannot be changed by the user. The firmware usually
controls the sequencing of a microprocessor. Consequently, it is a combination of
hardware and software.

A port is the place of access to a device or a network used for the input or output of
digital data signals.

Appendix B

Cyclic redundancy check
(CRC) program listing

#include <malloc.h>
#include <stdlib.h>
#include <stdio.h>

#ifndef DAT // to avoid multiple definitions due to order
#define DAT // of #includes
struct dat // this is a data structure used for passing between objects
 {
 int addr, // address of device
 fcn, // number of function
 dcount, // number of elements in data
 crc; // crc check code
 char *data; // pointer to data
 };
#endif

static unsigned CRC16=0xA001; // Polynomial used for CRC-16 checksum

union doub { // union for CRC check
 unsigned i; // as an unsigned word
 char c[2]; // as two characters
 struct bits{ // as a bitfield

332��Practical Data Communications for Instrumentation and Control

 unsigned msb:1; // most significant bit
 unsigned:14;
 unsigned lsb:1; // least significant bit
 } b;
 };

void whatcrc(struct dat *d, int mode) // calculate a CRC given a dat structure
 {
 char *msg; // buffer to message
 int i,j,len; // counters and length of message
 union doub sck,byt;

 len=(mode?2:0)+2+(d->dcount); // calculate length (data is the only field
without fixed length)
 msg = (char *)malloc(len); // allocate space for message buffer
 if (!msg) // didn't happen? Say so and quit.

 {
 printf("Sorry, but I couldn't allocate memory\n");
 exit(1);
 }

 // Load the msg buffer
 msg[0]=d->addr; // load the addr field as byte 1
 msg[1]=d->fcn; // load the fcn field as byte 2

 for (i=0;i<d->dcount;++i)
 msg[i+2]=d->data[i];

 if (mode)
 {
 msg[i+2]=(d->crc&0xFF00)>>8;
 msg[i+3]=d->crc&0x00FF;
 }

 // CRC check algorithm live!

 sck.i=0xFFFF; // set initial remainder
 for (i=0;i<len;++i) // for each byte in buffer

Appendix B – CRC listing 333�

 {
 byt.c[0]=msg[i]; // put the current character at end of working byt
 byt.c[1]=0; // set start of byt to 0
 sck.i^=byt.i; // set sck to sck XOR byt (MOD-2 maths)
 for (j=0;j<8;++j) // for each bit
 {
 if (sck.b.msb)
 {
 sck.i>>=1; // shift the remainder right 1 bit

 (divide by 2)
 sck.b.lsb=0; // and set the MSB to 0
 sck.i^=CRC16; // set remainder = sck XOR the CRC16

 polynomial
 }
 else
 {
 sck.i>>=1; // shift the remainder right 1 bit
(divide by 2)
 sck.b.lsb=0; // and set the MSB to 0
 }
 }
 }
 d->crc = (sck.i)<<8; // update the CRC in the data structure
 d->crc |= (sck.i&0xFF00)>>8;
 free (msg); // free the temporary storage area
 }

�

�

Appendix C

����������	�
������

���� �����	
�	���
������

�����������������	�

Bearing in mind the complexity of implementing a protocol program, the anecdotal
stories of cost over-runs in writing protocols are not surprising. This section will examine
the software implementation of a protocol.

Protocol software has to support bi-directional communications between two devices.
This requires the appropriate data (of interest to the user) being packaged in a ‘system
level envelope’ by the transmitter, and decoded by the receiver. The system level is
usually of fixed length and describes fully how the protocol works. The data level, on the
other hand, can often be of a variable length.

The process of writing a protocol involves various levels of sophistication and the
following factors have to be considered in implementing an appropriate protocol:

Cost The budget size has to be carefully assessed against
the required level of protocol implementation.

Level of performance If you only require a low level of performance there
is no point in implementing the full protocol at an
increased cost.

Future requirements Future requirements may encourage the programmer
to include additional features now, which may only
be used in the future.

Risk and security Where possible failure of the serial link has the
potential for catastrophic results, it may be prudent to
put significant effort into protocol development.

Access to information,
technical support Many vendors are very reluctant to release all the

information about their particular protocol for fear of
compromising their market position, or do not have
the local organization to provide adequate technical
support.

���������	�
�����
���������������335�

�

The three levels of writing protocol software are:
• Simple one-way asynchronous
• Simple one-way synchronous
• Bi-directional asynchronous

��������	�
��
���
	����	����

This allows the programmer to drive the software development with a protocol that
constructs a message and transmits it from device A to device B. The response from
device B would then be crudely received and displayed by device A. Any messages
generated independently by device B (without initiation from device A) would not be
read by device A.

This would apply to both read and write type messages from device A. In the case of
read messages, the user can verify that the correct data status was received in the return
string. In the case of write messages, the user can confirm that the address specified in the
request message has been updated correctly by the response message.

��������	�
��
��
	����	����

This implementation would be to extend the first option to make the program in device A
respond to synchronous messages from device B. By synchronous we mean that the
program in device A would enter a mode where it would wait for a command to be issued
from device B and respond accordingly. During this time device A would not be able to
send a command to device B.

��
��������	�����
	����	����

This option would provide asynchronous bi-directional communications between the two
devices. That is, device A could send commands to device B, and simultaneously service
any requests received from device A.

This option would require an interrupt service routine to initiate the response to a
device ‘A’ command, as it arrives. This is important because the speed of response is also
a constraint imposed by the protocol. A response that is too slow may have to be ignored.

The disadvantages of this option are the complexity of the protocol software required.
In addition, the device used for such a task would have to be sufficiently fast to allow the
interrupts to be serviced, and to handle its own processing requirements.

���� �������������
������������	�

A block diagram of a typical program structure is given in Figure C.1. The structure has
been used successfully in implementing a number of different protocol structures, but is
included here only as a guide.

Typically, most industrial protocols are involved in the following operations:
• Read digital data
• Read analog data
• Write digital data
• Write analog data

336 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

�

Figure C.1
Block diagram of typical protocol program structure

The following describes each part of the typical protocol program structure.

�	�����������	�

This routine runs at the start of the program only and comprises a number of routines
(or tasks).

����������	�����������	�

The program should declare adequate storage for the data area, to be used for transfer of
the data points, across the serial link by the protocol. The data areas used in each
communicating device do not necessarily have to be identical in size or even structure.
The easiest way to use storage is to define an array of variables representing a block of
addresses. All data should be initialized before the other program steps are commenced.

���������������	��������
��	�����������	�

The display and status variables should be initialized. This includes putting the display
into the correct video mode and writing all static text to the screen. The communication
port should also be initialized.

�������������

This function processes incoming commands from the user. The use of interrupts here
would be ideal.

���� �������������	���

This is the main body of the program; the steps are as follows:
• Get any input required from the user and write to or read from the other

device.
• Compute any parts of the protocol that require calculation, e.g. CRC check

word, byte count etc.

���������	�
�����
���������������337�

�

• Send a command message and wait for the response.
• Update the display showing the response message, system and data fields.
• Read any input data from the other device and decode as per the protocol

structure.
• Identify, define any error messages that occur and pass onto the next step.

���������������������

This is where any clean-up operations are performed. This includes such items as
communications port status, or a message indicating the success or failure of the
preceding operation. The ‘protocol process’ routine could return an error code to the main
part of the program.

���� �������������	���	
���
�	�	���
�����������������	�

Some typical practical problems, which a programmer may encounter when imple-
menting protocol software, are listed below. A lot of these may sound like commonsense
but it is surprising how many times they are ignored.

Typical problems are:
• The list of data points transferred over the communications link is normally

dynamic. Appropriate data structures to handle the variation in the points
transferred (and their addresses) are not implemented.

• Speed of transfer of data across the communications link is too slow because
of the quantity of points transferred across. A prioritized or exception report-
ing scheme of transfer of data points can solve this problem.

• Buffer size of receiver is inadequate. This causes loss of data or delays in
transferring information across the link.

• Receiving station, CPU cannot react fast enough to service data coming in,
because of overload generated by other activities.

• Physical disruption to communications channel (by a link breakage) causes a
catastrophic collapse in re-establishing transfer of the latest data because of
inadequate error handling and the build up of old messages.

• The use of interrupt handling of messages is avoided because of the
complexity associated with this feature. This results in a significant
degradation in performance because of the overload of the CPU.

• Scaling of data at transmitter and receiver is often not done correctly.

���� ��
�	
������������������
����������	
��
�!��"��

A program is included at the end of this chapter, which demonstrates the use of a protocol
with a PC (refer to section C.11). This is to illustrate the basics of constructing a protocol
and the various functions used.

Microsoft QuickBASIC has been chosen for illustrating the basics of protocol
construction, for the following reasons:

• It is a simple and straightforward computer language to use.
• It is relatively powerful and efficient (especially in the later versions).
• Many people are familiar with it.
• It can be compiled (instead of merely interpreted).
• It is low cost and freely available.

338 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

It should be emphasized that QuickBASIC is not the most efficient computer language
for this sort of work. Most programmers elect to use C language because of its portability,
power and efficiency. C is, however, a fairly cryptic language, difficult to remember, and
learning it is time-consuming. Hence, it has not been used for this example.

Microsoft QuickBASIC is a programming environment that includes all the tools
needed for writing, editing, running, and de-bugging programs. A full help facility is
available online to assist in writing the programs. The software has to run on an IBM PC
or IBM PC compatible, which uses MS-DOS.

��������� �����������	�����	�

A few elementary ‘housekeeping’ rules are necessary when using QuickBASIC language.
Comments have been added to all QuickBASIC statements, used in the example program,
to help you understand the programming process.

The following points should be remembered when writing a program. Although
obviously directly related to QuickBASIC, the concepts will be applicable to
implementations in other languages.

In this discussion, COM1 and COM2 refer to the two serial ports on the IBM or
compatible PC. The following opening statement, which makes BASIC as tolerant as
possible of hardware-related problems, should always be used when uncertain of the
hardware and software configuration:

OPEN ‘COM1:300,N,8,1,BIN,CD0,CS0,DS0,OP0,RS,TB2048,
RB2048’ AS #1

(This OPEN is FOR RANDOM access). The following is an explanation of each
recommended parameter used in the OPEN statement:

• The higher the baud rate, the greater the chances of problems; thus, 300 baud
is unlikely to give any problems. 56 K baud is the highest speed possible
over most telephone lines, due to their limited high-frequency capability.
19 200 baud, which requires a direct wire connection, is most likely to cause
problems. (Possible baud rates for QuickBASIC are: 75, 110, 150, 300, 600,
1200, 1800, 2400, 4800, 9600 and 19 200).

• Parity usually does not help significantly. Because of this, no parity (N) is
recommended. As discussed in an earlier chapter, parity error detection is
not a very efficient way of identifying errors.

For those devices that require parity, the parity enable (PE) option should be used in the

OPEN COM statement, which is required to turn on parity checking. When the PE option
turns on parity checking, a ‘Device I/O error’ occurs if the two communication programs
have two different parities (parity can be Even, Odd, None, Space or Mark). For example,
a ‘Device I/O error’ occurs when two programs try to talk to each other across a serial
line using the following two different OPEN COM statements.

OPEN ‘COM,1200,O,7,2,PE’FOR RANDOM AS #1

and

OPEN "COM2:1200,E,7,2,PE"FOR RANDOM AS#2

If the PE option is removed from the OPEN COM statements above, no error message
is displayed.

���������	�
�����
���������������339�

�

• The above example uses 8 data bits and 1 stop bit. 8 data bits requires no
parity (N), because of the size limit for BASIC’s communications data frame
(10 bits).

• The BIN (binary mode) is the default. Note: The ASC option does NOT
support XON/XOFF protocol, and the XON and XOFF characters are passed
without special handling.

• Ignoring hardware handshaking often corrects many problems. Thus, if the
application does not require handshaking, try turning off the following hard-
ware line-checking:

– CD0 Turns off time out for data carrier detect (DCD) line
– CS0 Turns off time out for clear to send (CTS) line
– DS0 Turns off time out for data set ready (DSR) line
– OP0 Turns off time out for a successful OPEN

• RS suppresses detection of request to send (RTS).
• For buffer-related problems, increase the transmit and receiver buffer sizes

above the 512-byte default:
– TB2048 = Increases the transmit buffer size to 2048 bytes
– RB2048 = Increases the receive buffer size to 2048 bytes

A large receive buffer can work around BASIC delays caused by statements, like the
graphics function, PAINT, which use the processor intensively.

The following are additional important hints for troubleshooting communications
problems:

• Use the INPUT$(x) function in conjunction with the LOC (n) function to
receive all input from the communications device (where ‘x’ is the number
of characters returned by LOC(n)), which is the number of characters in the
input queue waiting to be read. ‘n’ is the file number that is OPENed for
‘COM1:’ or ‘COM2:’.

• Avoid using the INPUT#n statement to input from the communications port
because INPUT#n waits for a carriage return (ASCII 13) character.

• Avoid using the GET#n statement for communications because GET#n waits
for the buffer to fill (and buffer overrun could then occur).

• Avoid using the PUT#n statement for communications and use the PRINT#n
statement instead. For example, in QuickBASIC 4.00b and 4.50, in BASIC
Compiler 6.00 and 6.00b, and in BASIC PDS 7.00 and 7.10 using the
PUT#n,,x$ syntax for sending a variable length string variable as the third
argument of the PUT#n statement sends an extra 2 bytes containing the
string length before the actual string. These 2 length bytes sent to the
communications port may confuse the receiving program, if it is not
designed to handle them. No length bytes are sent with PUT#n,,x$ in
QuickBASIC 4.00 (QuickBASIC versions earlier than 4.00 don’t offer the
feature to use a variable as the third argument of the PUT#n statement).

• Many communications problems can only be shown on certain hardware
configurations and are difficult to resolve or duplicate on other computers.
Experimenting with a direct connection (with a short null modem cable) is
recommended instead of with a phone/modem link, between sender and
receiver, to isolate problems on a given configuration.

340 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

• The wiring scheme for cables varies widely. Check the pin wiring on the
cable connectors. For direct cable connections, a long or high-resistance
cable is more likely to give problems than a short, low-resistance one.

• If both ‘COM1:’ and ‘COM 2:’ are open, ‘COM2:’ will be serviced first. At
high baud rates, ‘COM1:’ can lose characters when competing for processor
time with ‘COM2:’.

• Using the ON COM GOSUB statement, instead of polling the LOC(n)
function to detect communications input, can sometimes work around timing
or buffering problems caused by delays in BASIC. Delays in BASIC can be
caused by string space garbage collection, PAINT statements, or other
operations that heavily use the processor.

��#� $�
�
	�	
�������������
����%	���&	��	�������
'�

Although possibly considered a trivial subject by most engineers who are more concerned
with the development and commissioning of the data communications system, the
management of the data coming over the link can be a challenging issue.

The main reasons why this requires attention are:
• Data can vary from a few points to a few thousand.
• Data points coming across a serial link can vary in terms of addressing as the

design proceeds.
• Update times of serial data points can vary from point to point.
• Tag names of serial points can vary as the design and implementation

proceeds.

Typical parameters that need to be recorded (preferably in a database program such as

dBase to allow easy manipulation of the data) are:
• Tag name of the data point
• Description of the data point
• Address of point (e.g. Modbus address)
• Update time for point
• Scaling factor
• Maximum and minimum and ranges (including the possibility of the data

becoming negative)
• Data format (maximum number of digits)
• Type of data for point (e.g. ASCII, integer, floating point)
• Destination of point
• Source of point

An area, which always causes problems, is scaling of the data on the link. For example,

if the protocol restricts the range of values over the link to 0 to 4095 (i.e. a 12 bit
quantity) and the actual engineering (or ‘real world’ quantities) are –10 kPa to
20 000 kPa, some delicate footwork has to be done. This is to ensure that there are no
problems with the scaling at the transmitting end, transfer of the data across the link and
rescaling at the receiving end. In addition, there should be a careful analysis of the loss in
resolution caused by scaling.

���������	�
�����
���������������341�

�

��(� ��

	��	���	���

��&������&�������������
������
��

����	��

Data communication is a strategic part of a control system. Failure of a communications
link could be the cause of information loss from thousands of data points. It is imperative,
therefore, that a communications system is thoroughly tested within the framework of a
rigorous standard.

There are numerous reasons for the test requirements to be more demanding than those
for a standard control system; some of the main reasons are:

• Information losses resulting from a failure of a communications link can be
catastrophic.

• Loading factors of a data communications system can vary considerably and
may lead to failure if the system is pushed to the limit.

• The communications interface can be complex consisting of hard-
ware/firmware and software components.

• The communication link normally serves as an interface between two dis-
similar systems (sometimes consisting of different design personnel,
different hardware), which raises the level of technical risk and the need for
common understanding of the overall requirements of the system.

A good framework in which to do the testing is ANSI/IEEE standard 829-1983 for

software test documentation. While some engineers may be less than enthusiastic about
formal testing procedures of this nature, the investment in time and effort is worthwhile in
creating a high quality final product, engineered with proven standards of performance.
The authors can testify from bitter experience that this approach pays off.

A typical test procedure (or master test plan) for the link between a PC and the Modbus
port of a new PLC is sketched out below.

��)� ���������	�������	���	�	*����	�

The test specification procedures and recording practices have been prepared in
accordance with ANSI/IEEE Std 829-1983. All software written or modified for this
installation will be tested according to these guidelines.

This test is to confirm that the link from the PC to the Modbus port of the new PLC
operates correctly as per the specifications.

!���������������������

The functions to be tested will be derived from the serial link requirements specification
PC-MOD1 and functional specification PC-MOD2. These functions will be grouped
under the following headings:

• Hardware/firmware checks
• Interface protocol
• Interface I/O points (and addresses)
• Control strategy
• Program structure

"�����	����	��	��

A PC/AT (the monitor) will interface via a second PC/AT (or protocol analyzer) to the
Modbus port of the serial hardware being tested. Serial port (COM 1) of the second

342 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

PC/AT will connect to the PC/AT monitor. Serial port (COM 2) will connect to the
Modbus port of the serial hardware being tested.

The relevant ‘C’ language compiled software modules for the serial link will be
downloaded into the monitor PC/AT.

The appropriate EPROM (Revision C, 10 Nov.’91) for the PLC will be inserted into the
PLC communication board. Test data will be downloaded into the monitor PC controller
and the proprietary unit control system.

"����	 ����������

There are no risks and contingencies at the initial phase of testing, as this is performed
offline and merely tests the serial interface system. The second stage of testing is
envisaged to directly interface with the operational hardware, but will be done in a
manual mode at the specific construction yard. The third phase of testing will be the
commissioning phase and will be carried out at the plant.

The second and third phases of the testing which do have risks will not form part of this
test procedure, but will be incorporated into an overall test program covering all aspects
of testing.

#�	�����������
�

The test hardware will be connected to the proprietary hardware under test. The
appropriate version of compiled C code and data will be downloaded to the monitor PC.
The vendor will download certain specified data structures in the unit controller. Each
item of data will be transferred between the two nodes of the link in the appropriate form.

Specifically the following characteristics will be checked:
• Accuracy of data transfer
• Average speed of data transfer
• Loopback and diagnostic tests where applicable
• Loading of link with high traffic loads
• Interaction of multiple nodes on link (e.g. multiplexers, dual controllers)
• Transmission of incorrect function requests
• Interface between ‘C’ code and the EPROM on the proprietary hardware
• Interface ‘C’ code and the user software in PLC
• Interface between ‘C’ code and the serial port hardware/firmware
• Handling of failure of:

– Serial link
– Proprietary hardware/firmware/software

• Monitor hardware/firmware/software (with reference to fallback strategies,
recovery times, diagnostics, error messages)

• High levels of electrostatic/electromagnetic noise on the link
• Adequacy of earthing systems for each mode of line (including earth poten-

tial rise)
• Performance of error checking features of the link (e.g. using CRC-16)

Note: A PC-based protocol analyzer will be used to confirm that the data structures

being transmitted down the link and the appropriate responses are correct. This will be in
addition to the diagnostic messages generated by both the monitor PC and the PLC serial
hardware being tested.

���������	�
�����
���������������343�

�

Acceptance tests on the various portions of the system will occur at different stages of
the testing. Tests will be jointly performed by the client and the contractor. No modified
software will be available for use by the client until it has been fully tested and accepted
by the client.

����������������������	�����	�

Full test documentation should be filled out correctly and stored in a central safe location.

��+� �
�	*����	��	���������������
������
���
'�

This section contains an example of a serial data communication link for the control of a
variable speed drive using the EIA-485 interface and ANSI-X3.28 protocol.

 ‘Smart’ instrumentation and other digital sensors and actuators are increasingly being
used in factory automation and industrial process control systems. A ‘sensor’ is a general
term that refers to instruments, monitors, etc. that measure field variables such as
temperature, pressure, levels, flow and power in a process control system. An ‘actuator’
is a general term that refers to devices located in the field, such as valves, variable speed
drives, positioners, servos, etc., that implement instructions from the control system.

Making effective use of these devices depends on their ability to transfer data reliably
and quickly to and from other controlling devices, such as computers, PLCs, DCSs, etc.
via a common data communications network. Data communications at this level is
usually referred to as the ‘field level’ communications and the type of networks used are
often called the ‘field bus’.

Data communications at the field level is usually reliable when all the equipment comes
from one manufacturer. When several different types of equipment from various
manufacturers are required to communicate on the same network, difficulties always
seem to appear. One major reason is that no clear and universally acceptable data
communication network standard has yet emerged for systems for the field level.

The process of developing and implementing acceptable international standards is a
painfully slow process and a solution to this problem is still a long way off. In the
meantime, manufacturers have created their own standards or have used a combination of
available standards that may have been developed for other similar applications.

Therefore, the practical problem of controlling a field actuator device, such as a
variable speed drive (VSD), from an intelligent control device, such as a PLC or a PC,
needs to be addressed on an application by application basis. This section describes the
process of designing and implementing a simple data communications system for
transferring data between an IBM compatible PC and an AC VSD to achieve the
following:

• To read data from the list of parameter registers in the VSD, transfer them to
the PC and display variables such as speed, current etc., on the PC monitor.

• To write data to the VSD parameter registers for starting, stopping, changing
settings (e.g. speed reference), or adjusting any other variable in the VSD, as
would be required in an industrial application.

Most modern VSDs have some form of communications capability, usually based on a

well known physical standard, such as EIA-232 or EIA-485. The transfer of data can be
controlled by a suitable program (written by the user) based on one of the ASCII
character protocols. The program should be able to address multiple VSDs on the
network without having a problem with data collision on the network. Typically, the
programs use the poll/response method with one ‘master’ (PC or PLC) in control of the

344 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

network and several ‘slaves’ (VSDs). The slaves respond only when they are polled by
the master. Although this approach works quite well, it has some limitations that affect
the overall performance of the system:

• This type of system is slow because it uses low baud rates, with inefficient
ASCII coding. The master also needs to address each slave individually.
This type of data communications solution is not suitable for controlling
several drives in applications with fast speed and torque dynamics.

• There is no available software standardization, so a special program has to
be written for each application.

"�����
�������	���$����

The physical connections between the PC and VSDs are according to the EIA-232 and
EIA-485 interface standards, both of which are covered in detail in Chapter 3 The
standard PC is fitted with an EIA-232 port. The standard VSD port is EIA-485, suitable
for multidropping up to 32 units.

From Chapter 3, it is clear that EIA-232 and EIA-485 are not directly compatible and
the two devices cannot be directly connected and expected to work.

This apparent mismatch at the physical level can be overcome by one of the following
methods:

• Interface Converter – an EIA-232/EIA-485 interface converter can be con-
nected between the two devices to convert the voltage levels and the con-
nection configuration from one to the other (unbalanced to differential). An
interface converter should be physically located close to the EIA-232 port
(i.e. at the PC end) to take advantage of the better performance character-
istics of the EIA-485 interface for the longer distance to the VSD in the field.
The interface between the PC and the interface converter is one-to-one,
while the EIA-485 side may have several drives (up to 32) connected in a
multidrop configuration. The internal connection details, of an EIA-
232/EIA-485 converter, are shown in figure below.

Figure C.2
Block diagram of an EIA-232/EIA-485 converter

���������	�
�����
���������������345�

�

• EIA-485 PC interface card – plug-in EIA-485 interface cards are available
for IBM compatible PCs for mounting directly onto the motherboard. Simi-
lar cards are also available for PLCs. This card must be configured as a sep-
arate port in the PC. The PC can then be connected directly to the EIA-485
network.

Figure C.3
Block diagram of an EIA-232/EIA-485 converter

"�����$�������	���$����

Once the physical interface problems have been solved, the flow of data between the PC
and the VSD must be controlled by software located in the master device. In our example,
the program is based on ANSI-X3.28-2.5-A4, which is an ASCII based protocol that
defines the format, order, and syntax of the characters. There is no standard format, or
content, for this type of program and it is usually written by the user to suit the
application. The program below is an example of a simple program written in
QuickBASIC for demonstration purposes only.

In accordance with ANSI-X3.28, the 10 bit character format is as follows:
• 1 Start Bit : Logic 0
• 7 Data Bits : ASCII Code for each character
• 1 Parity Bit : Even or None
• 1 Stop Bit : Logic 1

There are two styles of message order and syntax:

• Read message
• Write message

The read message comprises of a maximum 9 characters in the order shown in the
following flow chart. The read message is used to transfer data from the VSDs to the
master. This data is usually the field data, such as speed, current, etc. or the VSD’s setting
parameters.

346 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

The block checksum character (BCC) is a single character generated from all the data in
the message and is used to detect errors in the transmitted data.

The write message comprises of a maximum 17 characters in the order shown in the
following flowchart. The write message is used to transfer data from the master to the
VSDs. This data is used to issue commands to the field device or change parameters (e.g.
start, stop, change speed).

The baud rate can be set to any one of the ‘standard’ values between 300 to 19,200 bps.

Figure C.4
Flow chart showing the order and syntax of the read message

���������	�
�����
���������������347�

�

7-Bit ASCII Codes
EOT = End of Text (Control-D)
ADD = Address of Slave Unit
PAR = Parameter in Slave Unit
ENQ = Enquiry (Control-E)
STX = Start of Text (Control-B)
ETX = End of Text (Control-C)
ACK = Acknowledge (Control-F)
NAK = Negative ACK (Control-U)
BS = Backspace (Control H)
DAT = Data in ASCII Code
BCC = Block ChecksumCharacter
(Error Detection)

Slave
Response

Start

End Write
Message

Master to Slave

12 Characters

STX
(1)

PAR
(3)

DAT
(6)

ETX
(1)

BCC
(1)

Master to Slave

5 Characters

EOT
(1)

ADD
(4)

Slave to Master

12 Characters

ACK
(1)

No
Response

Data
Received and
Implemented

Invalid Message
or

BCCError

Possible Causes

1 - Comms Link Failure
2 - Parity Error

3 - Addr not Recognised

Slave to Master

Fast Repeat Access

1 Characters

NAK
(1)

Comms reset (EOT) and address
Data need not be retransmitted
for continued communications

Figure C.5
Flow chart showing the order and syntax for the write message

348 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

���,� ����������������-�.������	�	���

Table C.1 shows a shortened list of typical parameters for a ontrol Techniques ‘Vector’
drive. The parameter registers in the range 00 to 99 contain analog (numerical) values,
while those from 100 to 199 contain binary digital values. The read command can be used
to transfer data from the VSD parameter registers to the PC over the serial data
communications link.

The write command can be used to transfer data to the VSD parameter registers from
the PC.

Parameter
no.

Analog/
bits

Description Default Value

00 A Digital speed reference, run 100
01 A Digital speed reference, inch – 100
02 A Analog speed reference offset 0
03 A Minimum speed limit – 1500
04 A Maximum speed limit + 1500
05 A Analog reference input filter 32
06 A Torque limit – motoring 150
07 A Torque limit – generating 150
08 A Internal torque reference 0
09 A Forward acceleration limit 0.01
10 A Reverse acceleration limit 0.01
11 A Forward deceleration limit 0.01
12 A Reverse deceleration limit 0.01
13 A Speed loop proportional gain 1.5
14 A Speed loop internal gain 1.5
15 A Speed loop derivative gain 0
16 A Analog output scaling 1.67
17 A Speed reference select 3
18 A Analog speed input scaling 600
22 A Serial link – drive address 01
23 A Serial link – baud rate 9600
25 A Security key 0
40 A Drive model number n/a
41 A Motor full load current n/a
42 A Motor magnetizing current n/a
43 A Motor base frequency n/a
70 A Motor speed n/a
71 A Motor frequency n/a
75 A Active current n/a
78 A DC bus voltage n/a
82 A Motor line current n/a

100 B Security key enable n/a
101 B Miscellaneous trip 1
102 B Drive enable 1
103 B Drive reset n/a
104 B Zero torque demand 1
105 B Torque/speed control mode 1

���������	�
�����
���������������349�

�

106 B Torque reference select 1
120 B Serial link – parity enable 1
121 B Serial link – block checksum enable 1
133 B Drive healthy n/a

Table C.1
Example list of VSD parameters

����� /*����	�

'* INSTRUMENT DATA COMMUNICATIONS
'*
'* Example of PC program written in Microsoft QuickBASIC Version 4.5
'* for IBM compatible PC to a Control Techniques CD Variable Speed Drive.
'*
'* Creation date : 02-12-91
'*
'*
'* SERIAL INTERFACE CONNECTION
'* This program provides for communication to a Commander CD Variable
'* Speed Drive through one of the PC's EIA-232 serial interface ports.
'* An EIA-485 interface would be preferable because of its noise immunity.
'*
'*
'* THE PROTOCOL
'* The protocol implemented is ANSI-X3.28-2.5-A4. It defines the
'* format and order of characters and the syntax of the commands.
'* A character consists 10 bits, comprising 1 start bit (logic-0),
'* followed by 7 data bits (ASCII Code), 1 parity bit (even or none)
'* and the final bit is 1 stop bit (logic-1).
'*
'* There are two styles of commands.
'* The READ command allows reading of all the drives parameters.
'* The WRITE command allows the read/write to be changed.
ON ERROR GOTO FAULT 'Activate error trapping
CLS 'Clears the screen

OPEN "COM1:9600,E,7,1,CD0,CS0,DS0,OP0,RS" FOR RANDOM AS #1
'* Opens the PC's serial port 1 for serial bit-by-bit communication
'* with the peripheral device. (The OPEN is FOR RANDOM access)
'* An explanation of each parameter used in the OPEN statement follows:

'* 1. 9600 specifies the Baud Rate (bits transmitted each second). The
'* baud rate setting for the drive and the host (PC) must be set
'* equal to allow communication to take place.

'* 2. E sets the parity of the drive to EVEN. With even parity selected,
'* the parity bit is set to logic 1 when the data segment of the
'* character consists of an odd number of logic 1's.

350 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

'* 3. 7 bits in each byte of data transmitted or received constitute
'* actual data.
'* 4. Since this application does not require handshaking, setting CD,
'* CS, DS and OP to 0 tells the hardware to ignore handshaking
'* CD0 = Turns off time-out for Data Carrier Detect (DCD) line
'* CS0 = Turns off time-out for Clear To Send (CTS) line
'* DS0 = Turns off time-out for Data Set Ready (DSR) line
'* OP0 = Turns off time-out for a successful OPEN
'* 5. RS suppresses detection of Request To Send (RTS)

MENU: VIEW PRINT 1 TO 24 'set text viewport
CLS
LOCATE 4, 5: PRINT "VECTOR Drive communications program"
LOCATE 5, 5: PRINT "~~~~~~~~~~~~~~~~~~"
LOCATE 7, 5: PRINT " 1. List Parameter Values"
LOCATE 8, 5: PRINT " 2. Get a specific particular parameter from VECTOR"
LOCATE 9, 5: PRINT " 3. Write data to VECTOR"
LOCATE 10, 5: PRINT " 4. Quit"
LOCATE 12, 5: PRINT " Select an option (1-4)"

OPT: '* Wait for key to be pressed
 KY$ = INKEY$: IF KY$ = "" THEN GOTO OPT
 A = VAL(KY$)
 IF A >= 4 THEN GOSUB QUIT
 ON A GOSUB PARAMVALUES, GETPARAM, WRITEDATA
 GOTO MENU

QUIT: CLOSE #1 ' end communication with the Flux Vector Drive
 END ' end the basic program

'**

' Read all the drive parameters
' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
' The message format is: <EOT> ADD PAR <ENQ>
' 1 char 4 chars 3 chars 1 char

' When the ASCII control character <EOT> is sent it initializes the drive
' connected to the serial link. (<EOT> - ASCII code 04 HEX, CONTROL D)

' ADD represents the drive address. The drive address identifies which
' device connected to the serial link is to be communicated with. For
' data integrity the digits are sent twice. For example if addressing
' drive 31 send 3311.

' PAR - this is the parameter which is required to be read. It is a maximum
' of 3 characters. e.g. For the Minimum Speed Limit, Pr-3 : just the number
' 003 is sent

' The message is terminated by the ASCII control character <ENQ>.

���������	�
�����
���������������351�

�

' (<ENQ> - ASCII CODE 05 HEX, CONTROL E)
'**

' Response from the drive: <STX> PAR DATA <ETX> BCC
' ~~~~~~~~~~~~~~~~~~~~~~~ 1 char 3 chars 6 chars 1 char 1 char

' <STX> is an ASCII control character. This indicates to the host the start
' of the reply. (<STX> - ASCII code 02 HEX, CONTROL B)

' PAR - The drive parameter. (See above for description)

' DATA - This symbol represents a parameter's numerical value. It is 1-6
' numeric characters in length, with optional decimal point and sign
' character, and is accurate to 1 decimal point.
' <ETX> is an ASCII control character. It indicates to the host that the
' data is finished.
' BCC, Block checksum - The final character is generated by the drive to
' allow the host which is receiving data to perform an error check on the
' data received. This character is not sent if the drive is set for BCC
' disabled, bit parameter b-21. BCC is the exclusive-OR of all the characters
' after the <STX> character up to and including the <ETX> character.
' If the BCC is disabled the ASCII control character <CR> is sent.
' NOTE: The same parameter can be re-read simply by sending the ASCII
' control character <NAK> (ASCII code 15 HEX, CONTROL U).
' Alternatively it is possible to step forward or backwards through the
' parameters sequentially by sending the ASCII control characters <ACK>
' (ASCII code 6 HEX, CONTROL F) OR <BS> (ASCII code 8 HEX, CONTROL H)
'**

PARAMVALUES:
 CLS
 txd$ = CHR$(4) + "0011000" + CHR$(5) 'String transmitted
 '<EOT> - CHR$(4)
 '<ENQ> - CHR$(5)
 rxd$ = ""
 LOCATE 1, 5: PRINT "STRING TRANSMITTED IS :- "; txd$
 LOCATE 3, 1: PRINT "PARAMETER"
 LOCATE 3, 14: PRINT "VALUE"
 LOCATE 3, 40: PRINT "PARAMETER"
 LOCATE 3, 54: PRINT "VALUE"
 VIEW PRINT 4 TO 25 'set text viewport
 x = 4 'x-coord cursor position
 i = 0 'variable to keep track of y-coord position
 parameter$ = "00"
 PRINT #1, txd$ 'Writes data to Coms port 1
 GOSUB delay

DO UNTIL parameter$ = "83" 'display up to parameter 83
 rxd$ = INPUT$(LOC(1), #1) 'receive input from the comms device
 STXloc = INSTR(rxd$, CHR$(2)) 'find position of control character

352 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

 '<STX> to obtain start of message

 rxd$ = MID$(rxd$, STXloc, 11) 'remove unwanted noise from response OR
 'obtain required info from response.
 'Ignore BCC - ie BCC disabled
 parameter$ = MID$(rxd$, 2, 3)
 IF VAL(parameter$) > 83 THEN RETURN
 parameter$ = MID$(rxd$, 3, 2) 'extract parameter from response
 dat$ = MID$(rxd$, 5, 6) 'extract data from driver's response
 GOSUB CURSORPOSI
 LOCATE y, x
 PRINT parameter$; " "; dat$
 IF VAL(parameter$) >= 83 THEN GOSUB MENURETURN
 prevrxd$ = rxd$ 'keep record of the previous received
 'message from the drive in case of error
 PRINT #1, CHR$(6) 'Send <ACK> to the drive to step forward
 'through the parameters sequentially
 GOSUB delay
 LOOP
 RETURN
GETPARAM: '*******************************
 'Get a specific parameter from VECTOR
 CLS
 LOCATE 3, 3: PRINT "1. Minimum Speed Limit"
 LOCATE 4, 3: PRINT "2. Maximum Speed Limit"
 LOCATE 5, 3: PRINT "3. Drive Address"
 LOCATE 6, 3: PRINT "4. Baud Rate"
 LOCATE 7, 3: PRINT "5. Motor Speed"
 LOCATE 8, 3: PRINT "6. Motor Frequency"
 LOCATE 9, 3: PRINT "7. Active Current"
 LOCATE 10, 3: PRINT "8. Drive Status"
 LOCATE 11, 3: PRINT "9. Parity Status"
 LOCATE 12, 3: PRINT "10. Block CheckSum Status "
 LOCATE 13, 3: PRINT "11. Hardware Status"
 LOCATE 14, 3: PRINT "12. Return to main menu"
 LOCATE 16, 1: PRINT "Choose a parameter and press 'return':"
 INPUT PR$
 IF LEN(PR$) = 0 OR LEN(PR$) > 2 OR PR$ = "12" THEN RETURN
 IF PR$ = "1" THEN GOSUB GP1
 IF PR$ = "2" THEN GOSUB GP2
 IF PR$ = "3" THEN GOSUB GP3
 IF PR$ = "4" THEN GOSUB GP4
 IF PR$ = "5" THEN GOSUB GP5
 IF PR$ = "6" THEN GOSUB GP6
 IF PR$ = "7" THEN GOSUB GP7
 IF PR$ = "8" THEN GOSUB GP8
 IF PR$ = "9" THEN GOSUB GP9
 IF PR$ = "10" THEN GOSUB GP10
 IF PR$ = "11" THEN GOSUB GP11

���������	�
�����
���������������353�

�

TRANSMIT: txd$ = CHR$(4) + "0011" + DP$ + CHR$(5)
 rxd$ = ""
 PRINT #1, txd$
 GOSUB delay

 rxd$ = INPUT$(LOC(1), #1)
 IF rxd$ = "" THEN GOTO TRANSMIT
 STXloc = INSTR(rxd$, CHR$(2)) 'Filter out any noise if it exists
 rxd$ = MID$(rxd$, STXloc, 11)
 IF MID$(rxd$, 2, 3) <> DP$ THEN GOTO TRANSMIT
 dat$ = MID$(rxd$, 5, 6)
 LOCATE 18, 4: PRINT MSG$; " "; dat$; " "; UNIT$
 LOCATE 20, 1: PRINT "Would you like to read another parameter (Y/N)"

RAGAIN: KY$ = INKEY$: IF KY$ = "" THEN GOTO RAGAIN
 IF KY$ = "y" OR KY$ = "Y" THEN GOTO GETPARAM
 RETURN

GP1: DP$ = "003"
 MSG$ = "The minimum speed limit is: "
 UNIT$ = "r.p.m."
 RETURN
GP2: DP$ = "004"
 MSG$ = "The maximum speed limit is: "
 UNIT$ = "r.p.m."
 RETURN
GP3: DP$ = "022"
 MSG$ = "The drive address is:"
 UNIT$ = ""
 RETURN
GP4: DP$ = "023"
 MSG$ = "The baud rate is:"
 UNIT$ = "baud"
 RETURN
GP5: DP$ = "070"
 MSG$ = "The motor speed is:"
 UNIT$ = "r.p.m."
 RETURN
GP6: DP$ = "071"
 MSG$ = "The motor frequency is:"
 UNIT$ = "Hz"
 RETURN
GP7: DP$ = "075"
 MSG$ = "The active current is:"
 UNIT$ = "%"
 RETURN
GP8: DP$ = "102"
 MSG$ = "The drive is:"
 UNIT$ = " 0-drive enabled 1-drive disabled"
 RETURN

354 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

GP9: DP$ = "120"
 MSG$ = "The parity is:"
 UNIT$ = " 0-parity disabled 1-parity enabled"
 RETURN
GP10: DP$ = "121"
 MSG$ = "The block checksum is:"
 UNIT$ = " 0-BCC disabled 1-BCC enabled"
 RETURN
GP11: DP$ = "190"
 MSG$ = "The hardware status is:"
 UNIT$ = " 0-Inactive 1-Active"
 RETURN
'**

'The Write Command. The message sent to the drive is :-

' <EOT> ADD <STX> PAR DATA <ETX> BCC
' 1 char 4 chars 1 char 3 chars 6 chars 1 char 1 char

' If the drive parameter, data or the BCC is in error then the control
' character <NAK> is sent.
' If it is required to write further data to the drive, it is not necessary
' to re-send the initialization character or the drive address. The drive
' parameter characters are the first characters sent.
'**

WRITEDATA: '* Send data to VECTOR
 CLS
 COUNT = 0
 LOCATE 3, 3: PRINT "1. Minimum Speed Limit"
 LOCATE 4, 3: PRINT "2. Maximum Speed Limit"
 LOCATE 5, 3: PRINT "3. Drive Status"
 LOCATE 6, 3: PRINT "4. Return to main menu"
 LOCATE 8, 1: PRINT "Choose a parameter: (1,2,3 or 4)";

WDMENU: KY$ = INKEY$: IF KY$ = "" THEN GOTO WDMENU
 A = VAL(KY$)
 IF A >= 4 THEN GOSUB MENU
 ON A GOSUB WD1, WD2, WD3
 COUNT = COUNT + 1

WDSEND: IF COUNT <= 1 THEN
 txd$ = CHR$(4) + "0011" + CHR$(2) + DP$ + DATA$ + CHR$(3) + " "
 ELSEIF COUNT > 1 THEN
 txd$ = DP$ + DATA$ + CHR$(3) + " "
 END IF
 rxd$ = ""
 PRINT #1, txd$
 FOR j = 1 TO 3
 GOSUB delay

���������	�
�����
���������������355�

�

 NEXT
 rxd$ = INPUT$(LOC(1), #1)
 IF rxd$ = "" THEN GOTO WDSEND
 '************ First locate the beginning of the received string
 FOR k = 1 TO LEN(rxd$)
 ch$ = MID$(rxd$, k, 1)
 IF ch$ = CHR$(6) OR ch$ = CHR$(15) THEN messageposi = k
 NEXT

 rxd$ = MID$(rxd$, messageposi, 1)

 IF rxd$ = CHR$(15) THEN
 PRINT " I/O error"; rxd$
 ELSEIF rxd$ = CHR$(6) THEN
 PRINT "successful write"; rxd$
 ELSEIF rxd$ <> CHR$(15) OR rxd$ <> CHR$(6) THEN
 GOTO WDSEND
 END IF
 LOCATE 20, 1: PRINT "Would you like to write to another parameter (Y/N)"

WAGAIN: KY$ = INKEY$: IF KY$ = "" THEN GOTO WAGAIN
 IF KY$ = "y" OR KY$ = "Y" THEN GOTO WRITEDATA
 RETURN

WD1: DP$ = "003"
 GOSUB INPUTDATA
 RETURN
WD2: DP$ = "004"
 GOSUB INPUTDATA
 RETURN
WD3: DP$ = "102"
 LOCATE 15, 1: INPUT "Do you wish to (E)nable or (D)isable the drive"; ABLE$
 IF ABLE$ = "E" THEN
 DATA$ = " 0000."
 ELSEIF ABLE$ = "D" THEN
 DATA$ = " 0001."
 ELSEIF ABLE$ <> "E" OR ABLE$ <> "D" THEN
 GOTO WD3
 END IF
 RETURN

'**

'Error handling routine

' This is the first statement the program branches to after an error.
' The error handler is placed where it cannot be executed during the normal
' flow of program execution.
'**

356 ��
����
� �
�
�	�������
��������������������
�����
���	��������

�

FAULT: LOCATE 23, 1
 PRINT "ERL="; ERL, "ERR="; ERR;
 GOSUB PAUSE
 rxd$ = prevrxd$
 RESUME NEXT

PAUSE: LOCATE 24, 1: PRINT "Press any key to continue ... ";
KEYPRESSED: KY$ = INKEY$
 IF KY$ = "" THEN GOTO KEYPRESSED
 LOCATE 23, 1: PRINT " "
 LOCATE 24, 1: PRINT " "
 RETURN

NEXTSCR: LOCATE 24, 1: PRINT "Press any key for next screen of Parameters ... ";
KYPRESSED: KY$ = INKEY$
 IF KY$ = "" THEN GOTO KYPRESSED
 RETURN
MENURETURN: LOCATE 24, 1: PRINT "Press any key to return to the main menu

..."
KPRESSED: KY$ = INKEY$
 IF KY$ = "" THEN GOTO KYPRESSED
 RETURN

CURSORPOSI:
 i = i + 1
 IF i <= 19 THEN
 y = i + 3
 x = 4
 ELSEIF i > 19 AND i <= 38 THEN
 y = i - 16
 x = 44
 ELSEIF i > 38 AND i <= 57 THEN
 y = i - 35
 x = 4
 ELSEIF i > 57 THEN
 y = i - 54
 x = 44
 END IF
 IF i = 39 THEN GOSUB NEXTSCR: CLS
 RETURN
delay: 'Delay
 FOR k = 1 TO 10
 z = SIN(z * 3.4) + COS(z * 3.45)
 NEXT k
 RETURN

INPUTDATA:
 DECPOSI = 0

���������	�
�����
���������������357�

�

 LOCATE 12, 1: INPUT "Enter data to be sent (-1500 to 1500) (No decimals) ",
dat$

 IF ABS(VAL(dat$)) > 1500 OR LEN(dat$) > 5 THEN GOTO WD1

 FOR CNT = 1 TO LEN(dat$)
 DUM$ = MID$(dat$, CNT, 1)
 IF DUM$ = "." THEN DECPOSI = CNT
 NEXT

 IF LEFT$(dat$, 1) = "-" THEN
 IF DECPOSI = 0 THEN 'No decimal
 IF LEN(dat$) = 3 THEN dat$ = "-" + "00" + RIGHT$(dat$, 2) + "."
 IF LEN(dat$) = 4 THEN dat$ = "-" + "0" + RIGHT$(dat$, 3) + "."
 IF LEN(dat$) = 5 THEN dat$ = dat$ + "."
 ELSEIF DECPOSI <> 0 THEN
 LOCATE 15, 1: INPUT "Please enter a whole number:"; b
 GOTO WD1
 END IF
ELSEIF LEFT$(dat$, 1) <> "-" THEN
 IF DECPOSI = 0 THEN 'No decimal
 IF LEN(dat$) = 2 THEN dat$ = " " + "00" + RIGHT$(dat$, 2) + "."
 IF LEN(dat$) = 3 THEN dat$ = " " + "0" + RIGHT$(dat$, 3) + "."
 IF LEN(dat$) = 4 THEN dat$ = " " + RIGHT$(dat$, 4) + "."
 IF LEN(dat$) = 5 THEN dat$ = dat$ + "."
 ELSEIF DECPOSI <> 0 THEN
 LOCATE 15, 1: INPUT "Please enter a whole number:"; b
 GOTO WD1
 END IF
 END IF
 DATA$ = dat$
 RETURN

Appendix D
���������

��

ABM Asynchronous balanced mode
ACE Association control element
ACE Asynchronous communications element. Similar to UART
ACK Acknowledge (ASCII - control F)
Active filter Active circuit devices (usually amplifiers), with passive

circuit elements (resistors and capacitors) and which have
characteristics that more closely match ideal filters than do
passive filters.

Active passive
device Device capable of supplying the current for the loop (active)

or one that must draw its power from connected equipment
(passive).

ADCCP Advanced data communication control procedure
ADDR Address field
Address A normally unique designator for location of data or the

identity of a peripheral device that allows each device on a
single communications line to respond to its own message.

Algorithm Normally used as a basis for writing a computer program.
This is a set of rules with a finite number of steps for solving
a problem.

Alias frequency A false lower frequency component that appears in data
reconstructed from original data acquired at an insufficient
sampling rate (which is less than two (2) times the maximum
frequency of the original data).

ALU Arithmetic logic unit

���������	�
���
�������359

Amplitude
flatness A measure of how close to constant the gain of a circuit

remains over a range of frequencies.
Amplitude
modulation A modulation technique (also referred to as AM or ASK)

used to allow data to be transmitted across an analog
network, such as a switched telephone network. The
amplitude of a single (carrier) frequency is varied or
modulated between two levels – one for binary 0 and one for
binary 1.

Analog A continuous real time phenomena where the information
values are represented in a variable and continuous
waveform.

ANSI American National Standards Institute – the principal
standards development body in the USA.

APM Alternating pulse modulation
Appletalk A proprietary computer networking standard initiated by the

Apple Computer for use in connecting the Macintosh range
of computers and peripherals (including laser writer
printers). This standard operates at 230 kbps.

Application
layer The highest layer of the seven layer ISO/OSI reference

model structure, which contains all user or application
programs.

Arithmetic logic
unit The element(s) in a processing system that perform(s) the

mathematical functions such as addition, subtraction,
multiplication, division, inversion, AND, OR, NAND and
NOR.

ARP Address resolution protocol
A transmission control protocol/ Internet protocol (TCP/IP)
process that maps an IP address to Ethernet address, required
by TCP/IP for use with Ethernet.

ARQ Automatic request for transmission
A request by the receiver for the transmitter to retransmit a
block or frame because of errors detected in the originally
received message.

AS Australian standard
ASCII American standard code for information interchange. A

universal standard for encoding alphanumeric characters into
7 or 8 binary bits. Drawn up by ANSI to ensure
compatibility between different computer systems.

AS-i Actuator sensor interface
ASIC Application specific integrated circuit
ASK Amplitude shift keying – see Amplitude modulation

360 ����������	�����
���������
����
���������������
�������
���
��

ASN.1 Abstract syntax notation 1 – an abstract syntax used to
define the structure of the protocol data units associated with
a particular protocol entity.

Asynchronous Communications where characters can be transmitted at an
arbitrary unsynchronized point in time and where the time
intervals between transmitted characters may be of varying
lengths. Communication is controlled by start and stop bits
at the beginning and end of each character.

Attenuation The decrease in the magnitude of strength (or power) of a
signal. In cables, generally expressed in dB per unit length.

AWG American wire gauge

��

Balanced circuit A circuit so arranged that the impressed voltages on each
conductor of the pair are equal in magnitude but opposite in
polarity with respect to ground.

Bandpass filter A filter that allows only a fixed range of frequencies to pass
through. All other frequencies outside this range (or band)
are sharply reduced in magnitude.

Bandwidth The range of frequencies available expressed as the
difference between the highest and lowest frequencies is
expressed in Hertz (or cycles per second).

Base address A memory address that serves as the reference point. All
other points are located by offsetting in relation to the base
address.

Baseband Baseband operation is the direct transmission of data over a
transmission medium without the prior modulation on a high
frequency carrier band.

Baud Unit of signaling speed derived from the number of events
per second (normally bits per second). However if each
event has more than one bit associated with it the baud rate
and bits per second are not equal.

Baudot Data transmission code in which five bits represent one
character. 64 alphanumeric characters can be represented.
This code is used in many teleprinter systems with one start
bit and 1.42 stop bits added.

BCC Block check calculation
BCC Block check character – error checking scheme with one

check character; a good example being block sum check.
BCD Binary coded decimal

A code used for representing decimal digits in a binary code.
BEL Bell (ASCII for control-G)
Bell 212 An AT&T specification of full duplex, asynchronous or

synchronous 1200 baud data transmission for use on the
public telephone networks.

BER Bit error rate

���������	�
���
�������361

BERT/BLERT Bit error rate/block error rate testing – an error checking
technique that compares a received data pattern with a
known transmitted data pattern to determine transmission
line quality.

BIN Binary digits
BIOS Basic input/output system
Bipolar A signal range that includes both positive and negative

values.
BISYNC Binary synchronous communications protocol
Bit Derived from “BInary DigiT”, a one or zero condition in the

binary system.
Bit stuffing with
zero bit insertion A technique used to allow pure binary data to be transmitted

on a synchronous transmission line. Each message block
(frame) is encapsulated between two flags that are special bit
sequences. Then if the message data contains a possibly
similar sequence, an additional (zero) bit is inserted into the
data stream by the sender, and is subsequently removed by
the receiving device. The transmission method is then said to
be data transparent.

Bits per second
(bps) Unit of data transmission rate.
Block sum check This is used for the detection of errors when data is being

transmitted. It comprises a set of binary digits (bits) which
are the modulo 2 sum of the individual characters or octets
in a frame (block) or message.

Bridge A device to connect similar subnetworks without its own
network address. Used mostly to reduce the network load.

Broadband A communications channel that has greater bandwidth than a
voice grade line and is potentially capable of greater
transmission rates. Opposite of baseband. In wideband
operation the data to be transmitted are first modulated on a
high frequency carrier signal. They can then be
simultaneously transmitted with other data modulated on a
different carrier signal on the same transmission medium.

Broadcast A message on a bus intended for all devices that requires no
reply.

BS Backspace (ASCII Control-H)
BS British standard
BSC Bisynchronous transmission

A byte or character oriented communication protocol that
has become the industry standard (created by IBM). It uses
a defined set of control characters for synchronized
transmission of binary coded data between stations in a data
communications system.

BSP Binary synchronous protocol

362 ����������	�����
���������
����
���������������
�������
���
��

Buffer An intermediate temporary storage device used to
compensate for a difference in data rate and data flow
between two devices (also called a spooler for interfacing a
computer and a printer).

Burst mode A high-speed data transfer in which the address of the data is
sent followed by back to back data words while a physical
signal is asserted.

Bus A data path shared by many devices with one or more
conductors for transmitting signals, data or power.

Byte A term referring to eight associated bits of information;
sometimes called a ‘character’.

��

CAN Controller area network
Capacitance Storage of electrically separated charges between two plates

having different potentials. The value is proportional to the
surface area of the plates and inversely proportional to the
distance between them.

Capacitance
(mutual) The capacitance between two conductors with all other

conductors, including shield, short-circuited to the ground.
CATV Community Antenna Television
CCITT See ITU
Cellular
polyethylene Expanded or ‘foam’ polyethylene consisting of individual

closed cells suspended in a polyethylene medium.
Character Letter, numeral, punctuation, control figure or any other

symbol contained in a message.
Characteristic
impedance The impedance that, when connected to the output terminals

of a transmission line of any length, makes the line appear
infinitely long. The ratio of voltage to current at every point
along a transmission line on which there are no standing
waves.

CIC Controller in charge
Clock The source(s) of timing signals for sequencing electronic

events e.g. synchronous data transfer.
CMD Command byte
CMR Common mode rejection
CMRR Common mode rejection ratio
CMV Common mode voltage
Common carrier A private data communications utility company that

furnishes communications services to the general public.

���������	�
���
�������363

Composite link The line or circuit connecting a pair of multiplexers or
concentrators; the circuit carrying multiplexed data.

Contention The facility provided by the dial network or a data PABX
which allows multiple terminals to compete on a first come,
first served basis for a smaller number of computer posts.

CPU Central processing unit
CR Carriage return (ASCII control-M)
CRC Cyclic redundancy check – an error-checking mechanism

using a polynomial algorithm based on the content of a
message frame at the transmitter and included in a field
appended to the frame. At the receiver, it is then compared
with the result of the calculation that is performed by the
receiver. Also referred to as CRC-16.

CRL Communication relationship list
Cross talk A situation where a signal from a communications channel

interferes with an associated channel’s signals.
Crossed
planning Wiring configuration that allows two DTE or DCE devices

to communicate. Essentially it involves connecting pin 2 to
pin 3 of the two devices.

Crossover In communications, a conductor that runs through the cable
and connects to a different pin number at each end.

CSMA/CD Carrier sense multiple access/collision detection – when two
senders transmit at the same time on a local area network;
they both cease transmission and signal that a collision has
occurred. Each then tries again after waiting for a
predetermined time period.

CTS Clear to send
Current Loop Communication method that allows data to be transmitted

over a longer distance with a higher noise immunity level
than with the standard EIS-232-C voltage method. A mark (a
binary 1) is represented by current of 20 mA and a space (or
binary 0) is represented by the absence of current.

��

DAQ Data acquisition
Data integrity A performance measure based on the rate of undetected

errors.
Data link layer This corresponds to layer 2 of the ISO reference model for

open systems interconnection. It is concerned with the
reliable transfer of data (no residual transmission errors)
across the data link being used.

Data reduction The process of analyzing large quantities of data in order to
extract some statistical summary of the underlying
parameters.

364 ����������	�����
���������
����
���������������
�������
���
��

Datagram A type of service offered on a packet-switched data network.
A datagram is a self contained packet of information that is
sent through the network with minimum protocol overheads.

DCD Data carrier detect
DCE Data communications equipment or data circuit-terminating

equipment – devices that provide the functions required to
establish, maintain, and terminate a data transmission
connection. Normally it refers to a modem.

DCS Distributed control systems
Decibel (dB) A logarithmic measure of the ratio of two signal levels

where dB = 20log
10
V1/V2 or where dB = 10log

10
P1/P2 and

where V refers to voltage or P refers to power. Note that it
has no units of measurement.

Default A value or setup condition assigned, which is automatically
assumed for the system unless otherwise explicitly specified.

Delay distortion Distortion of a signal caused by the frequency components
making up the signal having different propagation velocities
across a transmission medium.

DES Data encryption standard
DFM Direct frequency modulation
Dielectric
constant (E) The ratio of the capacitance using the material in question as

the dielectric, to the capacitance resulting when the material
is replaced by air.

Digital A signal which has definite states (normally two).
DIN Deutsches Institut Fur Normierung
DIP Dual in line package, referring to integrated circuits and

switches.
Direct memory
access A technique of transferring data between the computer

memory and a device on the computer bus without the
intervention of the microprocessor. Also abbreviated to
DMA.

DISC Disconnect
DLE Data link escape (ASCII character)
DNA Distributed network architecture
DPI Dots per inch
DPLL Digital phase locked loop
DR Dynamic range

The ratio of the full-scale range (FSR) of a data converter to
the smallest difference it can resolve. DR = 2n where n is the
resolution in bits.

���������	�
���
�������365

Driver software A program that acts as the interface between a higher-level
coding structure and the lower level hardware/firmware
component of a computer.

DSP Digital signal processing
DSR Data set ready or DCE ready in EIA-232D/E – A EIA-232

modem interface control signal which indicates that the
terminal is ready for transmission.

DTE Data terminal equipment – devices acting as data source or
data sink, or both.

DTR Data terminal ready or DTE ready in EIA-232D/E
Duplex The ability to send and receive data simultaneously over the

same communications line.

��

EBCDIC Extended binary coded decimal interchange code
An eight bit character code used primarily in IBM
equipment. The code allows for 256 different bit patterns.

EDAC Error detection and correction
EFTPOS Electronic funds transfer at the point of sale
EIA Electronic Industries Association – a standards organization

in the USA specializing in the electrical and functional
characteristics of interface equipment.

EISA Enhanced industry standard architecture
EMI/RFI Electromagnetic interference/radio frequency interference

‘background noise’ that could modify or destroy data
transmission.

EMS Expanded memory specification
Emulation The imitation of a computer system performed by a

combination of hardware and software that allows programs
to run between incompatible systems.

ENQ Enquiry (ASCII Control-E)
EOT End of transmission (ASCII Control-D)
EPA Enhanced performance architecture
EPR Earth potential rise
EPROM Erasable programmable read only memory – non-volatile

semiconductor memory that is erasable in an ultra violet
light and reprogrammable.

Error rate The ratio of the average number of bits that will be corrupted
to the total number of bits that are transmitted for a data link
or system.

ESC Escape (ASCII character)
ESD Electrostatic discharge
ETB End of transmission block

366 ����������	�����
���������
����
���������������
�������
���
��

Ethernet Name of a widely used LAN, based on the CSMA/CD bus
access method (IEEE 802.3). Ethernet is the basis of the
TOP bus topology.

ETX End of text (ASCII control-C)
Even parity A data verification method normally implemented in

hardware in which each character must have an even number
of ‘ON’ bits.

��

Farad Unit of capacitance whereby a charge of one coulomb
produces a one volt potential difference.

FAS Fieldbus access sublayer
FCC Federal communications commission
FCS Frame check sequence – a general term given to the

additional bits appended to a transmitted frame or message
by the source to enable the receiver to detect possible
transmission errors.

FDM Frequency division multiplexer – a device that divides the
available transmission frequency range in narrower bands,
each of which is used for a separate channel.

FIB Factory information bus
FIFO First in, first out
Filled cable A telephone cable construction in which the cable core is

filled with a material that will prevent moisture from
entering or passing along the cable.

FIP Factory instrumentation protocol
Firmware A computer program or software stored permanently in

PROM or ROM or semi-permanently in EPROM.
Flame
retardancy The ability of a material not to propagate flame once the

flame source is removed.

Flow control The procedure for regulating the flow of data between two

devices preventing the loss of data once a device’s buffer
has reached its capacity.

FMS Fieldbus message specification
FNC Function byte
Frame The unit of information transferred across a data link.

Typically, there are control frames for link management and
information frames for the transfer of message data.

Frequency
modulation A modulation technique (abbreviated to FM) used to allow

data to be transmitted across an analog network where the
frequency is varied between two levels – one for binary ‘0’

���������	�
���
�������367

and one for binary ‘1’. Also known as frequency shift keying
(or FSK).

Frequency Refers to the number of cycles per second.
FRMR Frame reject
FSK Frequency shift keying, see frequency modulation
Full duplex Simultaneous two-way independent transmission in both

directions (4 wire). See Duplex.

��

G Giga (metric system prefix – 109)
Gateway A device to connect two different networks which translates

the different protocols.
GMSK Gaussian minimum shift keying
GPIB General purpose interface bus – an interface standard used

for parallel data communication, usually used for controlling
electronic instruments from a computer. Also known as
IEEE 488 standard.

Ground An electrically neutral circuit that has the same potential as
the earth. A reference point for an electrical system also
intended for safety purposes.

	�

Half duplex Transmissions in either direction, but not simultaneously.
Hamming
Distance A measure of the effectiveness of error checking. The higher

the Hamming distance (HD) index, the safer is the data
transmission.

Handshaking Exchange of predetermined signals between two devices
establishing a connection.

Hardware Refers to the physical components of a device, such as a
computer, sensor, controller or data communications system.
These are the physical items that one can see.

HART Highway addressable remote transducers
HDLC High level data link control

The international standard communication protocol defined
by ISO to control the exchange of data across either a point-
to-point data link or a multidrop data link.

Hertz (Hz) A term replacing cycles per second as a unit of frequency.
Hex Hexadecimal
HF High frequency
Host This is normally a computer belonging to a user that

contains (hosts) the communication hardware and software
necessary to connect the computer to a data communications
network.

368 ����������	�����
���������
����
���������������
�������
���
��

HSE High speed Ethernet

�

I/O address A method that allows the CPU to distinguish between
different boards in a system. All boards must have different
addresses.

IA5 International alphabet number 5
IC Integrated circuit
ICS Instrumentation and control system
IDF Intermediate distribution frame
IEC International Electrotechnical Commission
IEE Institution of Electrical Engineers – an American based

international professional society that issues its own
standards and is a member of ANSI and ISO.

IEEE Institute of Electrical and Electronic Engineers
IFC International Fieldbus Consortium
ILD Injection laser diode
Impedance The total opposition that a circuit offers to the flow of

alternating current or any other varying current at a
particular frequency. It is a combination of resistance R and
reactance X, measured in Ohms.

Inductance The property of a circuit or circuit element that opposes a
change in current flow, thus causing current changes to lag
behind voltage changes. It is measured in henrys.

Insulation
resistance (IR) That resistance offered by insulation to an impressed dc

voltage, tending to produce a leakage current though the
insulation.

Interface A shared boundary defined by common physical
interconnection characteristics, signal characteristics and
measurement of interchanged signals.

Interrupt
handler The section of the program that performs the necessary

operation to service an interrupt when it occurs.
Interrupt An external event indicating that the CPU should suspend its

current task to service a designated activity.
IP Internet protocol
IRQ Interrupt request line
ISA Industry Standard Architecture (for IBM Personal

Computers)
ISB Intrinsically safe barrier
ISDN Integrated services digital network – the new generation of

worldwide telecommunications network that utilizes digital

���������	�
���
�������369

techniques for both transmission and switching. It supports
both voice and data communications.

ISO International Standards Organization
ISP Interoperable systems project
ISR Interrupt service routine, see interrupt handler
ITB End of intermediate block
ITS Interface terminal strip
ITU International Telecommunications Union – formerly CCITT

(Consultative Committee International Telegraph and
Telephone). An international association that sets worldwide
standards (e.g. V.21, V.22, V.22bis).

��

Jumper A wire connecting one or more pins on the one end of a
cable only.

��

k (kilo) This is 210 or 1024 in computer terminology,
 e.g. 1 kB = 1024 bytes.

�

LAN Local area network – a data communications system
confined to a limited geographic area typically about 10 km
with moderate to high data rates (100 kbps to 50 Mbps).
Some type of switching technology is used, but common
carrier circuits are not used.

LAN Local area network. See Local area network.
LAP-M Link access protocol modem
LAS Link active scheduler
LCD Liquid crystal display – a low-power display system used on

many laptops and other digital equipment.
LDM Limited distance modem – a signal converter which

conditions and boosts a digital signal so that it may be
transmitted further than a standard EIA-232 signal.

Leased
(or Private) line A private telephone line without inter-exchange switching

arrangements.
LED Light emitting diode

A semiconductor light source that emits visible light or infra
red radiation.

LF Line feed (ASCII Control-J)
Line driver A signal converter that conditions a signal to ensure reliable

transmission over an extended distance.

370 ����������	�����
���������
����
���������������
�������
���
��

Line turnaround The reversing of transmission direction from transmitter to
receiver or vice versa when a half duplex circuit is used.

Linearity A relationship where the output is directly proportional to
the input.

Link layer Layer 2 of the ISO/OSI reference model. Also known as the
data link layer.

Listener A device on the GPIB bus that receives information from the
bus.

LLC Logical link control (IEEE 802)
LLI Lower layer interface
Loaded line A telephone line equipped with loading coils to add

inductance in order to minimize amplitude distortion.
Loop resistance The measured resistance of two conductors forming a

circuit.
Loopback Type of diagnostic test in which the transmitted signal is

returned on the sending device after passing through all, or a
portion of, a data communication link or network. A
loopback test permits the comparison of a returned signal
with the transmitted signal.

LRC Longitudinal redundancy check
LSB Least significant bits – the digits on the right hand side of

the written HEX or BIN codes.
LSD Least significant digit

��

M Mega. Metric system prefix for 106.
m Meter. Metric system unit for length.
MAC Media Access Control (IEEE 802).
MAN Metropolitan Area Network
Manchester
encoding Digital technique (specified for the IEEE 802.3 Ethernet

baseband network standard) in which each bit period is
divided into two complementary halves; a negative to
positive voltage transition in the middle of the bit period
designates a binary ‘1’, whilst a positive to negative
transition represents a ‘0’. The encoding technique also
allows the receiving device to recover the transmitted clock
from the incoming data stream (self clocking).

MAP 3.0 Standard profile for manufacturing developed by MAP.
MAP Manufacturing automation protocol – a suite of network

protocols originated by General Motors, which follow the
seven layers of the OSI model. A reduced implementation is
referred to as a mini-MAP.

Mark This is equivalent to a binary 1.

���������	�
���
�������371

Master/slave Bus access method whereby the right to transmit is assigned
to one device only, the master, and all the other devices, the
slaves may only transmit when requested.

MDF Main distribution frame
MIPS Million instructions per second
MMI Man-machine-interface
MMS Manufacturing message services – a protocol entity forming

part of the application layer. It is intended for use
specifically in the manufacturing or process control industry.
It enables a supervisory computer to control the operation of
a distributed community of computer-based devices.

MNP Microcom networking protocol
Modem
eliminator A device used to connect a local terminal and a computer

port in lieu of the pair of modems to which they would
ordinarily connect, allow DTE to DTE data and control
signal connections otherwise not easily achieved by standard
cables or connections.

Modem MODulator/DEModulator – a device used to convert serial
digital data from a transmitting terminal to a signal suitable
for transmission over a telephone channel or to reconvert the
transmitted signal to serial digital data for the receiving
terminal.

MOS Metal oxide semiconductor
MOV Metal oxide varistor
MSB Most significant bits – the digits on the left hand side of the

written HEX or BIN codes.
MSD Most significant digit
MTBF Mean time between failures
MTTR Mean time to repair
Multidrop A single communication line or bus used to connect three or

more points.
Multiplexer
(MUX) A device used for division of a communication link into two

or more channels either by using frequency division or time
division.

��

NAK Negative acknowledge (ASCII Control-U)
Network
architecture A set of design principles including the organization of

functions and the description of data formats and procedures
used as the basis for the design and implementation of a
network (ISO).

372 ����������	�����
���������
����
���������������
�������
���
��

Network layer Layer 3 in the ISO/OSI reference model, the logical network
entity that services the transport layer responsible for
ensuring that data passed to it from the transport layer is
routed and delivered throughout the network.

Network topology
The physical and logical relationship of nodes in a network;
the schematic arrangement of the links and nodes of a
network typically in the form of a star, ring, tree or bus
topology.

Network An interconnected group of nodes or stations.
NMRR Normal mode rejection ratio
Node A point of interconnection to a network.
Noise A name given to the extraneous electrical signals that may

be generated or picked up in a transmission line. If the noise
signal is large compared with the data carrying signal, the
latter may be corrupted resulting in transmission errors.

NOS Network operating system
NRM Unbalanced normal response mode
NRZ Non return to zero – pulses in alternating directions for

successive 1 bits but no change from existing signal voltage
for 0 bits.

NRZI Non return to zero inverted
Null modem A device that connects two DTE devices directly by

emulating the physical connections of a DCE device.
Nyquist sampling
theorem In order to recover all the information about a specified

signal it must be sampled at least at twice the maximum
frequency component of the specified signal.

��

OD Object dictionary
Ohm (Ω) Unit of resistance such that a constant current of one ampere

produces a potential difference of one Volt across a
conductor.

Optical isolation Two networks with no electrical continuity in their
connection because an optoelectronic transmitter and
receiver have been used.

OSI Open systems interconnection

��

Packet A group of bits (including data and call control signals)
transmitted as a whole on a packet switching network.
Usually smaller than a transmission block.

PAD Packet access device – an interface between a terminal or
computer and a packet switching network.

���������	�
���
�������373

Parallel
transmission The transmission model where a number of bits is sent

simultaneously over separate parallel lines. Usually
unidirectional such as the Centronics interface for a printer.

Parity bit A bit that is set to a ‘0’ or ‘1’ to ensure that the total number
of 1 bits in the data field is even or odd.

Parity check The addition of non-information bits that make up a
transmission block to ensure that the total number of bits is
always even (even parity) or odd (odd parity). Used to detect
transmission errors but rapidly losing popularity because of
its weakness in detecting errors.

Passive filter A circuit using only passive electronic components such as
resistors, capacitors and inductors.

PBX Private branch exchange
PCIP Personal computer instrument products
PDU Protocol data unit
Peripherals The input/output and data storage devices attached to a

computer e.g. disk drives, printers, keyboards, display,
communication boards, etc.

Phase
modulation The sine wave or carrier changes phase in accordance with

the information to be transmitted.
Phase shift
keying A modulation technique (also referred to as PSK) used to

convert binary data into an analog form comprising a single
sinusoidal frequency signal whose phase varies according to
the data being transmitted.

Physical layer Layer 1 of the ISO/OSI reference model, concerned with the
electrical and mechanical specifications of the network
termination equipment.

PID Proportional integral derivative – a form of closed loop
control.

PLC Programmable logic controller
Point to point A connection between only two items of equipment.
Polling A means of controlling devices on a multipoint line. A

controller queries devices for a response.
Polyethylene A family of insulators derived from the polymerization of

ethylene gas and characterized by outstanding electrical
properties, including high IR, low dielectric constant, and
low dielectric loss across the frequency spectrum.

Polyvinyl chloride
(PVC) A general-purpose family of insulations whose basic

constituent is polyvinyl chloride or its copolymer with vinyl
acetate. Plasticizers, stabilisers, pigments and fillers are

374 ����������	�����
���������
����
���������������
�������
���
��

added to improve mechanical and/or electrical properties of
this material.

Port A place of access to a device or network, used for
input/output of digital and analog signals.

Presentation
layer Layer 6 of the ISO/OSI reference model, concerned with

negotiating suitable transfer syntax for use during an
application. If this is different from the local syntax, the
translation to/from this syntax.

Profibus Process field bus developed by a consortium of mainly
German companies with the aim of standardization.

Protocol entity The code that controls the operation of a protocol layer.
Protocol A formal set of conventions governing the formatting,

control procedures and relative timing of message exchange
between two communicating systems.

PSDN Public switched data network
Any switching data communications system, such as telex
and public telephone networks, which provides circuit
switching to many customers.

PSK See Phase shift keying
PSTN Public switched telephone network – this is the term used to

describe the (analog) public telephone network.
PTT Post, Telephone and Telecommunications Authority or: push

to talk signal
PV Primary variable

��

QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying

��

R/W Read/write
RAM Random access memory – semiconductor read/write volatile

memory. Data is lost if the power is turned off.
Reactance The opposition offered to the flow of alternating current by

inductance or capacitance of a component or circuit.
REJ Reject
Repeater An amplifier that regenerates the signal and thus expands the

network.
Resistance The ratio of voltage to electrical current for a given circuit

measured in Ohms.
Response time The elapsed time between the generation of the last character

of a message at a terminal and the receipt of the first
character of the reply. It includes terminal delay and
network delay.

���������	�
���
�������375

RF Radio frequency
RFI Radio frequency interference
Ring Network topology commonly used for interconnection of

communities of digital devices distributed over a localized
area, e.g. a factory or office block. Each device is connected
to its nearest neighbors until all the devices are connected in
a closed loop or ring. Data is transmitted in one direction
only. As each message circulates around the ring, it is read
by each device connected in the ring.

RMS Root mean square
RNR Receiver not ready
ROM Read only memory – computer memory in which data can

be routinely read but written to only once using special
means when the ROM is manufactured. A ROM is used for
storing data or programs on a permanent basis.

Router A linking device between network segments which may
differ in layers 1, 2a and 2b of the ISO/OSI reference model.

RR Receiver ready
RS Recommended standard (e.g. RS-232C) – newer

designations use the prefix EIA (e.g. EIA-RS-232C or just
EIA-232C).

RS-232-C Interface between DTE and DCE, employing serial binary
data exchange. Typical maximum specifications are 15 m
(50 feet) at 19200 Baud.

RS-422 Interface between DTE and DCE employing the electrical
characteristics of balanced voltage interface circuits.

RS-423 Interface between DTE and DCE, employing the electrical
characteristics of unbalanced voltage digital interface
circuits.

RS-449 General purpose 37 pin and 9 pin interface for DCE and
DTE employing serial binary interchange.

RS-485 The recommended standard of the EIA that specifies the
electrical characteristics of drivers and receivers for use in
balanced digital multipoint systems.

RSSI Receiver signal strength indicator
RTS Request to send
RTU Remote terminal unit – terminal unit situated remotely from

the main control system.
RxRDY Receiver ready

��

S/N Signal to noise (ratio)
SAA Standards Association of Australia
SAP Service access point

376 ����������	�����
���������
����
���������������
�������
���
��

SDLC Synchronous data link control – IBM standard protocol
superseding the bisynchronous standard.

SDM Space division multiplexing
SDS Smart distributed system
Serial
transmission The most common transmission mode in which information

bits are sent sequentially on a single data channel.
Session layer Layer 5 of the ISO/OSI reference model, concerned with the

establishment of a logical connection between two
application entities and with controlling the dialogue
(message exchange) between them.

SFD The start of frame delimiter
Short haul
modem A signal converter that conditions a digital signal for

transmission over dc continuous private line metallic
circuits, without interfering with adjacent pairs of wires in
the same telephone cables.

Signal to noise
ratio The ratio of signal strength to the level of noise.
Simplex
transmissions Data transmission in one direction only.
Slew rate This is defined as the rate at which the voltage changes from

one value to another.
SNA Subnetwork access, or systems network architecture
SNDC Subnetwork dependent convergence
SNIC Subnetwork independent convergence
SNR Signal to noise ratio
Software Refers to the programs that are written by a user to control

the actions of a microprocessor or a computer. These may
be written in one of many different programming languages
and may be changed by the user from time to time.

SOH Start of header (ASCII Control-A)
Space Absence of signal. This is equivalent to a binary 0.
Spark test A test designed to locate imperfections (usually pinholes) in

the insulation of a wire or cable by application of a voltage
for a very short period of time while the wire is being drawn
through the electrode field.

SRC Source node of a message
SREJ Selective reject
Star A type of network topology in which there is a central node

that performs all switching (and hence routing) functions.
Statistical
multiplexer A device used to enable a number of lower bit rate devices,

normally situated in the same location, to share a single,

���������	�
���
�������377

higher bit rate transmission line. The devices usually have
human operators and hence data is transmitted on the shared
line on a statistical basis rather than, as is the case with a
basic multiplexer, on a pre-allocated basis. It endeavors to
exploit the fact that each device operates at a much lower
mean rate than its maximum rate.

STP Shielded twisted pair
Straight through
pinning RS-232 and RS-422 configuration that match DTE to DCE,

pin for pin (pin 1 with pin 1, pin 2 with pin 2, etc.).
STX Start of text (ASCII Control-B).
Switched line A communication link for which the physical path may vary

with each usage, such as the public telephone network.
SYN Synchronous Idle
Synchronization The coordination of the activities of several circuit elements.
Synchronous
transmission Transmission in which data bits are sent at a fixed rate, with

the transmitter and receiver synchronized. Synchronized
transmission eliminates the need for start and stop bits.

��

Talker A device on the GPIB bus that simply sends information on
to the bus without actually controlling the bus.

TCP Transmission control protocol
TCU Trunk coupling unit
TDM Time division multiplexer

A device that accepts multiple channels on a single
transmission line by connecting terminals, one at a time, at
regular intervals, interleaving bits (bit TDM) or characters
(character TDM) from each terminal.

Telegram In general a data block which is transmitted on the network.
Usually comprises address, information and check
characters.

Temperature
rating the maximum and minimum temperature at which an

insulating material may be used in continuous operation
without loss of its basic properties.

TIA Telecommunications Industry Association
Time sharing A method of computer operation that allows several

interactive terminals to use one computer.
TNS Transaction bytes
Token ring Collision free, deterministic bus access method as per IEEE

802.2 ring topology.

378 ����������	�����
���������
����
���������������
�������
���
��

TOP Technical Office Protocol – a user association in USA which
is primarily concerned with open communications in offices.

Topology Physical configuration of network nodes, e.g. bus, ring, star,
tree.

Transceiver Transmitter/receiver – network access point for IEEE 803.2
networks.

Transient An abrupt change in voltage of short duration.
Transport layer Layer 4 of the ISO/OSI reference model, concerned with

providing a network independent reliable message
interchange service to the application oriented layers (Layers
5 through 7).

Trunk A single circuit between two points, both of which are
switching centers or individual distribution points. A trunk
usually handles many channels simultaneously.

TTL Transistor-transistor logic
Twisted pair A data transmission medium, consisting of two insulated

copper wires twisted together. This improves its immunity
to interference from nearby electrical sources that may
corrupt the transmitted signal.

��

UART Universal asynchronous receiver/transmitter – an electronic
circuit that translates the data format between a parallel
representation, within a computer, and the serial method of
transmitting data over a communications line.

UHF Ultra high frequency
Unbalanced
circuit A transmission line in which voltages on the two conductors

are unequal with respect to ground e.g. a coaxial cable.
Unloaded line A line with no loaded coils that reduce line loss at audio

frequencies.
UP Unnumbered poll
USB Universal serial bus
USRT Universal synchronous receiver/transmitter. See UART.
UTP Unshielded twisted pair

��

V.35 ITU standard governing the transmission at 48 kbps over 60
to 108 kHz group band circuits.

Velocity of
propagation The speed of an electrical signal down a length of cable

compared to speed in free space expressed as a percentage.
VFD Virtual field device – a software image of a field device

describing the objects supplied by it e.g. measured data,

���������	�
���
�������379

events, status etc. which can be accessed by another
network.

VHF Very high frequency
VLAN Virtual LAN
Volatile memory An electronic storage medium that loses all data when power

is removed.
Voltage rating The highest voltage that may be continuously applied to a

wire in conformance with standards of specifications.
VRC Vertical redundancy check
VSD Variable speed drive
VT Virtual terminal

��

WAN Wide area network
Word The standard number of bits that a processor or memory

manipulates at one time. Typically, a word has 16 bits.

��

X.21 ITU standard governing interface between DTE and DCE
devices for synchronous operation on public data networks.

X.25 ITU standard governing interface between DTE and DCE
device for terminals operating in the packet mode on public
data networks.

X.25 Pad A device that permits communication between non X.25
devices and the devices in an X.25 network.

X.3/X.28/X.29 A set of internationally agreed standard protocols defined to
allow a character oriented device, such as a visual display
terminal, to be connected to a packet switched data network.

X-ON/X-OFF Transmitter on/transmitter off – control characters used for
flow control, instructing a terminal to start transmission (X-
ON or control-S) and end transmission (X-OFF or control-
Q).

XOR Exclusive-OR

�����
Actuator sensor interface (AS-i) 255, 258–9,

261
Manchester II coding 261, 275

Amplifiers 103, 157
Amplitude 103, 128, 155–6
Antenna 116, 163
ASCII 5, 13, 18, 19, 24–5, 78, 187, 190, 203,

206–7, 210–1, 215, 230
commands 207, 210, 213, 234–5, 245
control techniques 210
read request 212
RTU mode 215
start of header (SOH) 19
thermocouple 207
write 210, 213

Asynchronous 14–7, 29, 30, 72, 76, 96, 147,
175, 179, 190, 193, 230, 236
asynchronous balance mode (ABM) 190
asynchronous communication element

(ACE) 29
clock rate 15
message format 15–6
modem see Modem
receiver see Receiver
serial data communication see Serial

communication
start bit 14–5, 33
transmitter see Transmission
UART 29–34, 77, 184, 280, 297

see also Transmission
break detect 32
data clock 31
for handshaking see Transmission
full duplex see Full duplex
half duplex see Half duplex
purpose 30
serial data unit (SDU) 31
serial ports see Ports
serialization errors 33
shift register see Register
transmitter buffer empty (TBE) 31
USART 29

Attenuation 17, 103, 139, 151, 158

Bandwidth 17–8, 103, 114, 146, 181–2, 319
Baudot code 2
Binary:

code 2, 25–7
numbering system 12–3

Bit:
least significant bit (LSB) 24, 315
most significant bit (MSB) 24

Buffer 32, 34
16-byte buffer 34

advantages 34
first in first out (FIFO) buffer 32, 34

Cable:

AS-i flat cable 255
category 5 shielded 242
coaxial cable 113, 116, 139, 282, 292, 316,

318
antenna see Antenna
dielectric insulation 116
HF band 116
impedance see Impedance
inner conductor 116
SHF band 116
waveguides 116

copper cables 16, 113
detachable cables 91
ducting or raceways 139
error detection see Error detection
FCC restrictions 91
fiber optic cable 17, 116, 282, 292

see also Optic fiber
glass cladding 118
optical glass core 118

GPIB cable 75
high-speed cables 86
joining cables 122

fusion splicing 123
splicing 123
termination 122

limitations 123
low pass filters 113
low-speed cables 86
modes of propagation 119

laser diode 119
modes of light 119
monomode 119
multimode 119–20, 122

multi-pair twisted without shield 284
outer insulation 113

382 Index

propagation delay 86, 308
protection 113

lightning protection 143
mechanical protection 122

ratio 117
refraction 117
refractive index 117–8
resistance 125
self-sealing cable 257
shielded 24-wire cable 77
specification:

cladding diameter 122
theory of operation 117

cone of acceptance angle 118
wave lengths 119

trunk-line cable 267
twin axial cable 230
twisted pair cable 70, 91, 113–4, 242, 282,

284, 307
16 AWG 257
22 AWG 284
24 AWG 70
28 AWG 86, 91–2
FIA-568 114
induced noise 114
intermediate distribution frame (IDF)

115
main distribution frame (MDF) 115
PVC sheath 114
shielded 114, 235, 284
unshielded 114

untwisted data cable 91
Capacitance 113, 131, 133, 146

cable capacitance 146
see also Cable

Communication:
modes 13

half duplex see Half duplex
full duplex see Full duplex
simplex see Simplex system

principles 13
physical factors 13
physical method 13

Conductors:
aluminum conductor 113
copper conductor 113

Connectors:
24-pin connector 77
26-pin alternative connector 52

ALT A 45, 52
amphenol 77
AUI connector 308
barrel connector 307
DB-9 46, 115
DB-25 45–6, 55, 59, 115, 149, 158
DB-37 61, 115
din-type connector 115
F connector 316
host hub see Hub
IEC-type connector 115
ITU v.35 34-pin connector 115
polarity 86
type A and B 85, 91

Controller area network (CAN) 265, 268–70
BOSCH CAN, specification 268
bus arbitration 269
CANbus 265, 297
message frame 267, 269

CPU 33
interruption 33

Cyclic redundancy check (CRC) 82, 104–5,
107–9, 129, 189, 192, 215, 217, 225, 231,
266, 273, 303, 315
checking method 82
CRC error detection see Error detection
polynomial code 190

Data:

acquisition (DAQ) 7, 81–2, 87, 96, 101
coding 18

ASCII code see ASCII
baudot code see Baudot code
binary code decimal (BCD) 27–8
gray code 26

communication equipment (DCE) 5, 40–1,
44–5, 48, 53, 72

compression 170, 179
MNP class 5 compression 170

decoder 157
encoder 157
terminal equipment (DTE) 5, 40, 44–5, 48,

53, 72, 149, 305
transmission see Transmission

DeviceNet 249, 252, 265–6, 268–9
application fields 280
configuration management 280
factory information protocol (FIP) 280, 282

world FIP 280, 282–3
fault management 280

Index 383

Interbus-S 271, 273
interface terminal strip (ITS) 269
network management 279
smart distributed system (SDS) 269–71
VMEbus system 271

Distributed control system (DCS) 6–7

EBCDIC code 18, 25
Error detection 17, 102, 109, 111, 167, 264

arithmetic check sum 106
VLRC 106

asynchronous see Asynchronous
attenuation see Attenuation
block redundancy check 104–5
cable see Cable
character redundancy 104

parity 105
CRC see Cyclic redundancy check
delay distortion 103
error checking mechanism 107, 109
feedback error control 104
forward error correction 110
hamming code 110–1
limited bandwidth see Bandwidth

phase QAM 103
longitudinal redundancy check 105

block check character 105
VRC 105

MNP error detection 169
modem see Modem
noise see Noise
polynomial notation 107

16-bit CRC polynomials 107
protocol see Protocol

Ethernet 7, 107, 114, 253, 284, 290, 298–9,
303, 305, 307–10, 318
attachment unit interface (AUI) 305–7
blue book Ethernet 299
fixed overheads 308
hardware requirements 305
high speed Ethernet (HSE) 284, 290
jabber control section 305
MAC layer 310
Manchester encoding 304
media attachment unit (MAU) 305–7, 313
preamble 303, 315
protocol operation 302
start of frame delimiter (SFD) 303
T junction 305
topology see Local area network

via two twisted pair cable 300

Fieldbus 240, 248–9, 251–2, 254–5, 276, 285

AS-i see Actuator sensor interface
fieldbus data link layer (FDL) 276
fieldbus message specification (FMS) 274,

276–7, 279, 287–8
foundation fieldbus (FF) 283–90

fieldbus access sub-layer (FAS) 287
interoperable systems project (ISP) 283
Manchester bi-phase L encoding 284
object dictionary 277, 288
open standard fieldbus 274
seriplex 262–4

application specific integrated circuit
(AS-iC) 262

Full duplex 13, 17, 30, 50, 58, 60, 72, 114,
147, 153, 230, 273, 296

Half duplex 13, 30, 50, 60, 89, 94, 147, 153,

229, 296, 297
Hartley law 103
Hub 84–7, 293, 307, 310, 319

external hub 87, 91–2, 94
host hub 84–5, 87–8

hardware 87
software driver 87

Impedance 38, 60, 116, 243, 285

high impedance 60, 62, 64
Inductance 113, 131, 135
Integrated circuit (IC) 28, 149
Interference 18, 125, 133, 138

intersymbol interference 103, 120, 152
Internet service providers (ISP) 175

LCD 28
Light emitting diode (LED) 28, 54–5, 72, 119,

138
Local area network (LAN) 190, 229, 291–2,

299, 301, 317, 324
AS-i network 255, 258–9, 261, 295
backbone network 290

broadband 297, 313
cable see Cable
CSMA/CD 297, 298–301, 305, 310
DeviceNet network 267

see also DeviceNet
gigabit Ethernet 310
interface 298

384 Index

master-slave mode 295
media access control mechanism 295

methods 295
polling cycle approach 296

microwave 292
network operating system (NOS) 320, 323–

4
application program interface (API) 323
NET BIOS 323
NETBEUI 323
OS/2 LAN 324
Unix kernel 324

network topologies 293
access control malfunctions 295
bus topology 282, 294–5, 299
hub see Hub
major disadvantages 293
node see Node
ring topology 294
start topology 293

packet switching 292
see also Transmission
protocol data units (PDUs) 292

reducing collisions 309
physical layer see Open systems

interconnection
signal propagation 103, 309

routers 310, 319
satellite links 292
token ring 310, 313

MAP 314
single-channel carrier band 313
token bus 314, 316
token format 312

topology 83, 299, 314
collision avoidance 314
logical ring topology 314
physical topology 314

Metropolitan area network (MAN) 292
Modem 2, 5, 13, 17, 31, 55, 100, 103, 115,

146–7, 149–50, 152–3, 156, 158–60, 162–6,
173–5
ACK 150, 189, 193, 195, 212
adaptive frequency coding 171
amplitude shift keying (ASK) 153
analog information 146
analog signal 147
asynchronous see Asynchronous
automatic dialing 158

bandwidth see Bandwidth
clear to send (CTS) 150
command:

ATS command 159
numeric register commands 159
state 159
status registers 159

compression 170
Bell 103/113 modem 153
demodulator 2, 146, 187
demultiplexing 180, 181
digital signal 147
distortion 150–2

attenuation distortion 151
envelope delay distortion 152
phase delay 152

dumb modems 158
ENQ control 150
fiber optic see Optic fiber
flow control 149
frequency shift keying (FSK) 153, 240–2

full duplex mode 153
half duplex mode 153

Huffman:
coding 171
encoding 172

ITU-T V.42 recommendation 169
link access protocol modem (LAP-M) 169,

179
loop back test 177, 225

analog loop 177
digital loop 177

master station 163
memory buffer 149
Microcom networking protocol see Protocol
modulation techniques 17, 152, 157, 163,

179, 242, 258, 260
sine wave 152

multiplexing 180–3, 263
frequency division multiplexing (FDM)

181, 297
modbus plus see Modbus
space division multiplexing (SDM) 180
statistical multiplexers 185
techniques 180
terminal multiplexer 184
time division multiplexing (TDM) 28,

182, 184, 297
null modem 55

internal connections 55

Index 385

on-line state 159
operational problems 176
passband 151
peer-to-peer 163, 229, 263, 297, 323
phase shift keying (PSK) 153

differential PSK 153
modulation rate 154
quadrature phase shift keying (QPSK)

153
power supply 179
quadrature amplitude modulation (QAM)

17, 155–6
amplitude see Amplitude
carrier signal 156
implementation 155
IN-phase (IP) 156
quadrature component (QC) 156
serial data stream 156
sinusoidal signal 155

radio modem 162–5
channel data rate 167
channel frequency 166
CTS line 165
direct FM 163
features 166
minimum radio frequency 167
noise squelch 164
point to multipoint 166
push to talk signal 163
receiver signal strength indicator (RSSI)

163
RF carrier 165
RSSI squelch 164
soft carrier delay 164

receiver see Receiver
remote terminal 165
request to send (RTS) 150
signal quality detector 149
smart modems 158, 160, 168
supervisory data channel rate 167
swap 31
synchronous see Synchronous
telemetry applications 178
transmitter see Transmitter
trellis coding 156, 174
troubleshooting 176
Xmodem 194, 196–7
Ymodem 196
Zmodem 196

Modbus:

ADDR 236
address fields 216
error check field 217
functions 215
message format 216
PLC-5 command set 236
plus 183, 204, 215, 314
port 184

see also Ports
read exception status 224
RTU protocol 217
STS error code 238
synchronization 217

Microprocessor 7– 9
impact 7
interface card 8

Morse code 2

Node:
malfunctioning node 295
master node 63, 296
node to node 294
outlying node 293
slave node 63, 295–6

Noise:
bit error rate (BER) 125
block character checking (BCC) 128, 213
cable see Cable
CRC see Cyclic redundancy check
earthing and grounding 140

earth systems 140–1
hazardous voltages 141
key concepts 141
requirements 140

electrical coupling of noise 131
electrical noise problems 131
electrostatic or capacitive coupling 133–4,

138–9
capacitance see Capacitance 133
electrostatic shield 134
noise circuit 133
signal circuit 133

encoding techniques 128
filters 130
frequency:

analysis 126
domain graph 126
specific noise 126
spectrum 126, 129

impedance coupling 132, 141

386 Index

error voltage 131
impulse noise 128
interference see Interference
magnetic or inductive coupling 135–6, 139

eddy current 137
inductance see Inductance
magnetic flux 136–7
magnetic shield 137

performance ratio 139
radio frequency radiation 137

mechanisms to minimize 137
shielding 137, 139

electrostatic shielding 138
opto coupler 138

signal amplitude 128
signal to noise ratio (SNR) 17–8, 104, 124
silicon controlled rectifier (SCR) 143
suppression techniques 142

EMF 143
RC network 143

to reduce noise 125, 134
transformer coupling 138
transient disturbances 129
wideband noise 126, 128–9

Nyquist 17

Optic fiber 2, 13, 117, 119, 122–3, 162–3,

282, 316, 318
modulated light 13

Open systems interconnection (OSI) 3, 186,
199–204, 229, 241, 252, 254, 270, 280, 284,
287–8, 320, 323
application layer 100, 201, 203, 231, 235,

244, 253, 269–70, 273, 277, 287
lower layer interface (LLI) 277, 279
TCP/IP protocol 253, 319, 323

closed system 199
data link layer 94–5, 202–3, 243, 252, 258,

263, 269–70, 273, 276, 282, 287, 323
link active scheduler (LAS) 287, 290
message limitations 231
two-dimensional error checking 244

DOS interface 203
for industrial applications 204
industrial control application 203
limitation 240, 282
network layer 200–2, 319
open system 199–200
peer entities 200

physical layer 3, 90, 202–3, 230, 263, 267,
270–1, 275, 282, 284, 288–9, 310, 323
bus topology see Local area network
FIP see DeviceNet
medium access control (MAC) 276–7,

301, 303, 305, 310–3, 315
presentation layer 201, 203
protocol envelop 200

see also Protocol
reference model (OSI/RM) 320, 323–4
session layer 202–3
system network architecture (SNA) 322–3

end user layer 322
function management layer 322
path control layer 322

transmitting nodes 200
transport layer 202–3
user layer 288

device description language (DDL) 289–
90

function blocks 288
upper layer 290

Oscilloscope 17

Parallel data communications 74

general purpose interface bus (GPIB) 74,
77–9, 81
bus structure 78
chain configuration 75
characteristics 77
compatible device 76
controller in charge (CIC) 76
data transfers 79
digital voltmeters (DVMs) 76
Hewlett-Packard interface bus (HPIB)

74
interface management lines 79
not data accepted (NDAC) 79
parallel configuration 77
parallel interface 79
physical connection configurations 74
star configuration 75, 316
three-wire interlocked handshake 79
TTL voltage levels 78

PCB 84
PCI:

slot 84
bus 85, 87, 95

Ports:
analyzer 56

Index 387

to display 56
binary synchronous protocol 187

binary synchronous control (BSC) 187
COM ports 34
modbus port see Modbus
serial ports 34, 206
USB ports 83

Profibus 261–2, 274–80
transmission medium 275
virtual field device (VFD) 277

Programmable logic controller (PLC) 5–7, 28,
162, 216, 221–2, 236, 239, 252, 262, 269–
71
central processor 7
ladder logic 7

Protocol 2–5, 8, 13, 18, 40, 45, 54, 81, 90,
104, 108, 111, 163, 167, 179, 186, 190,
199–200, 214, 229–30, 239, 253–4, 273,
280, 292, 298, 312, 323
Allen Bradley data highway plus protocols

204, 229, 314
automatic repeat request (ARQ) protocols

193, 197
CAN protocol 266–7, 269–70

specification 269
block check character (BCC) 189
character-based protocol 187
computer-to-computer 187
computer-to-terminal 187
data transparency 190
fieldbus protocol standards 204

see also Fieldbus
file transfer protocol 193–4

asynchronous file transfer 193
flow control protocols 187, 192
frame transfer protocol 271
HART protocols 204, 239, 241–2

digital multidrop communications 242
fieldbus see Fieldbus
hardware recommendations 247
smart instrumentation protocols 204, 239

HLDC protocol 187, 190
industrial protocols 204–5

analog to digital converter 207
ASCII protocols 206
digital to analog converter 207

Microcom networking protocol (MNP)
167–8, 170–1

mixed protocol 63
modbus protocol 214–6

see also Modbus
multipoint mode 189

primary station 189
secondary station 189

point-to-point 189, 241
poll/final bit 192
printer buffer 187
SLDC protocol 187, 190

advance data communication control
protocol (ADCCP) 190

bit-based protocol 190
data link protocol 190, 319
frame format see Transmission
normal response mode (NRM) 190

time out functions 189
USB protocol 90, 98

see also Universal serial bus

RAM 238
Receiver 13, 15–6, 38, 43, 157, 177, 187, 189,

193
differential receiver 60
UART receiver 32

clocking factor 33
incoming serial line 32
master serial clock 33
receiver timing 33

Register:
bit mapped register 159
input registers 221
packet see Transmission
preset single register 223
shift register 31–2

buffer see Buffer 32
Relays 7
Repeater 17, 65, 103, 309, 318
Resistor 60, 62, 64, 285

bias resistor 64
RS:

see also Standards
RS-232 3, 5, 17, 38, 40–2, 44–6, 48, 50,

52–4, 57, 59, 69–72, 77, 80, 115, 149,
158, 163–4, 261, 296
control lines 44
data lines 44
DB-25 connector see Connector
electrical signal characteristics 42
half duplex see Half duplex
handshaking see Transmission

388 Index

interchange circuits see Interchange
circuit

limitations 52
mechanical characteristics 45
transistor–transistor logic (TTL) 42
transmit lines 44

RS-422 6, 40, 52–4, 58–62, 68, 70, 72, 115,
163, 214, 261
balanced line driver 60
differential voltages 59–60

RS- 423 6, 36, 38, 41, 54, 58–60
total voltage slew 58–9

RS-449 36, 58, 61, 68
RS-485 7, 52–4, 58, 62–8, 70, 72, 115, 163,

210, 214, 230, 261, 271, 275
advantage 63
common mode voltage 63
four wire configuration 63
multidrop network 62
node see Node
repeater see Repeater
testing 67
tri-state operation 62

Serial communication 35

comparison 69
current loop 70

higher noise immunity 70
data communication 30–2, 53

interface standards see Standards
interface to serial printers 38, 73
troubleshooting 53, 67

EIA/TIA:
EIA-530A 68
EIA-562 68–9

interface converters 38, 71
earth potential rise (EPR) 73
full duplex conversion 72
specifications 73

test equipment 54
breakout box 54
LED see Light emitting diode
loop back plug 56
null modem see Modem
parallel interface 54
protocol analyzer see Protocol
serial interface 56

Simplex system 13
Smart instruments (SI) 7, 9
Snell’s law 117

Standards:
ANSI 37
bell 202 communication 240, 242
CCITT 52, 108, 170
Centronics 74, 79

limited distance capability 79
DeviceNet see DeviceNet
dialup modem standards 174
fieldbus see Fieldbus
FIP see DeviceNet
IEC 37, 74, 275, 282, 284
IEEE 37, 74, 81, 139–40, 298–9
interface standards 13, 38, 40, 52, 54, 58,

62, 68, 74, 115
EIA see Serial communication
RS see RS

ISA 284
ISO 37, 52, 190
ITU 2, 17–8, 36, 40, 175
physical standards 5, 139
PTT 36
TIA 37, 40
UNO 36

Synchronous 15–7, 29, 72, 96, 108, 147, 157,
174, 179, 187, 190, 237

incoming bit stream 148
link status code 237
modem see Modem
packet 15, 193, 200, 231

design 194
Kermit 194, 197

receiver clock 148
transmitter clock 148

Transducers 7
Transmission 15, 17, 29, 38–9, 165, 297, 303–

4, 313, 322
balanced transmission 39–40

common mode rejection (CMR) 40, 60
common mode rejection ratio (CMRR)

40
common mode voltage (CMV) 40
differential system 39–40
disadvantages 40

baud rate 17, 31–3, 44, 56, 210
clock signal 304
data throughput 18

transfer rate 18
error rate 18
frame 14, 190, 193, 217

Index 389

check sum errors 28
force multiple registers 227
frame check sequence (FCS) 192, 303,

312, 315
frame format 190, 215, 243
information frames 191
message frame memory 217
normal response mode frame 192
request frame 219–21, 223, 226, 228
supervisory frames 191

handshaking 30, 42, 44, 53, 76, 78
asynchronous handshaking 76
GPIB handshaking 79

interference see Interference
layers see Open systems interconnections
noise see Noise
non-return to zero (NRZ) 304
packet 31, 89, 96

IN packets 89, 99
OUT packets 89, 99
preamble packet 89, 99
start of frame 99
token packet 98

protocol see Protocol
RS-232 see RS
self clocking 304
signal to noise ratio (SNR) see Noise
speed 15
transmitter 13, 15–6, 31, 149, 157, 167,

177, 194
DCE transmitter 149
digital transmitter 207
UART transmitter 31

unbalance transmission 38
common reference conductor 38
impedance see Impedance

Universal serial bus (USB) 81–91, 93–4, 96,

98, 100–1
application layer see Open systems

interconnection
cable see Cable
communication flow 89
data link layer see Open systems

interconnection
device driver 88
devices 87
frame see Transmission
host controller 85
host hub see Hub
impedance difference 86
master/slave 82, 89, 94

principle 215
power distribution 94
signaling 92
socket 85
software driver 88
timed communication 82, 89, 94
topology see Local area network
transfer types 95

control transfer 97
interrupt transfer 96
isochronous transfer 96, 99

type A and B see Connectors

Variable speed drive 210

Wide area network (WAN) 292, 317

WHO ARE WE?
IDC Technologies is internationally acknowledged as the premier
provider of practical, technical training for engineers and technicians.

We specialise in the fields of electrical systems, industrial data
communications, telecommunications, automation & control,
mechanical engineering, chemical and civil engineering, and are
continually adding to our portfolio of over 60 different
workshops. Our instructors are highly respected in their fields of
expertise and in the last ten years have trained over 50,000
engineers, scientists and technicians.

With offices conveniently located worldwide, IDC Technologies
has an enthusiastic team of professional engineers, technicians
and support staff who are committed to providing the highest
quality of training and consultancy.

TECHNICAL WORKSHOPS
TRAINING THAT WORKS
We deliver engineering and technology training that will
maximise your business goals. In today's competitive
environment, you require training that will help you and your
organisation to achieve its goals and produce a large return on
investment. With our "Training that Works" objective you and
your organisation will:

• Get job-related skills that you need to achieve your business goals

• Improve the operation and design of your equipment and plant

• Improve your troubleshooting abilities

• Sharpen your competitive edge

• Boost morale and retain valuable staff

• Save time and money

EXPERT INSTRUCTORS
We search the world for good quality instructors who have three
outstanding attributes:

1. Expert knowledge and experience – of the course topic

2. Superb training abilities – to ensure the know-how is transferred
effectively and quickly to you in a practical hands-on way

3. Listening skills – they listen carefully to the needs of the
participants and want to ensure that you benefit from the
experience

IDC Technologies produce a set of 4 Pocket Guides used by
thousands of engineers and technicians worldwide.

Each and every instructor is evaluated by the delegates and we
assess the presentation after each class to ensure that the
instructor stays on track in presenting outstanding courses.

HANDS-ON APPROACH TO TRAINING
All IDC Technologies workshops include practical, hands-on
sessions where the delegates are given the opportunity to apply
in practice the theory they have learnt.

REFERENCE MATERIALS
A fully illustrated workshop book with hundreds of pages of
tables, charts, figures and handy hints, plus considerable
reference material is provided FREE of charge to each delegate.

ACCREDITATION AND CONTINUING EDUCATION
Satisfactory completion of all IDC workshops satisfies the
requirements of the International Association for Continuing
Education and Training for the award of 1.4 Continuing
Education Units.

IDC workshops also satisfy criteria for Continuing Professional
Development according to the requirements of the Institution of
Electrical Engineers and Institution of Measurement and Control
in the UK, Institution of Engineers in Australia, Institution of
Engineers New Zealand, and others.

CERTIFICATE OF ATTENDANCE
Each delegate receives a Certificate of Attendance documenting
their experience.

100% MONEY BACK GUARANTEE
IDC Technologies’ engineers have put considerable time and
experience into ensuring that you gain maximum value from
each workshop. If by lunch time of the first day you decide that
the workshop is not appropriate for your requirements, please let
us know so that we can arrange a 100% refund of your fee.

ONSITE WORKSHOPS
All IDC Technologies Training Workshops are available on an
on-site basis, presented at the venue of your choice, saving
delegates travel time and expenses, thus providing your company
with even greater savings.

OFFICE LOCATIONS
AUSTRALIA • CANADA • IRELAND • NEW ZEALAND • SINGAPORE •
SOUTH AFRICA • UNITED KINGDOM • UNITED STATES

Vol. 1 - ELECTRONICS

Vol. 2 - ELECTRICAL

Vol. 3 - COMMUNICATIONS

Vol. 4 - INSTRUMENTATION

Visit our Website for FREE Pocket Guides

idc@idc-onl ine .com • www.idc-onl ine .com

To download a FREE copy of these internationally best selling pocket guides go to:
www.idc-online.com/freedownload/

THIS BOOK WAS DEVELOPED BY IDC TECHNOLOGIES

	front cover
	Copyright
	Contents
	Preface
	1. Overview
	2. Basic principles
	3. Serial communication standards
	4. Error detection
	5. Cabling basics
	6. Electrical noise and interference
	7. Modems and multiplexers
	8. Introduction to protocols
	9. Open system interconnection model
	10. Industrial protocols
	11. HART protocol
	12. Open industrial Fieldbus and DeviceNet systems
	13. Local area networks (LANs)
	Appendix A: Numbering systems
	Appendix B: Cyclic redundancy check (CRC) program listing
	Appendix C: Serial link design
	Appendix D: Glossary
	Index

