
MACHINE LEARNING
An Artificial Intelligence Approach

Contributing authors:

John Anderson
Ranan Banerji
Gary Bradshaw
Jaime Carbonell
Thomas Dietterich
Norman Haas
Frederick Hayes-Roth
Gary Hendrix
Patrick Langley
Douglas Lenat

Ryszard Michalski
Tom Mitchell
Jack Mostow

Bernard Nudel
Michael Rychener

Ross Quinlan
Herbert Simon

Derek Sleeman
Robert Stepp

Paul Utgoff

Editors:

Ryszard S. Michalski
University of Illinois
at Urbana-Champaign, IL

Jaime G. Carbonell
Carnegie-Mellon University

Pittsburgh, PA

Tom M. Mitchell
Rutgers University

New Brunswick, NJ

MORGAN KAUFMANN

PUBLISHERS, INC.

Library of Congress Cataloging-in-Publication Data

Machine learning.

Reprint. Originally published: Palo Alto, Calif. :
TiogaPub. Co., © 1983.

Bibliography: p.
Includes index.
1. Machine learning. 2. Artificial intelligence.

I. Anderson, John R. (John Robert), 1947-
II. Michalski, Ryszard Stanislaw, 1937-
III. Carbonell, Jaime G. (Jaime Guillermo) IV. Mitchell,
Tom M. (Tom Michael), 1951-
Q325.M32 1986 006.3Ί 86-2953
ISBN 0-934613-09-5

© 1983 by Morgan Kaufmann

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Printed in the United
States of America, Library of Congress Catalog Card Number 86-2953.

This book was set in Times Roman by Fast on a Mergenthaler Omnitech™/2000 phototype-
setter driven by the Scribe™ document production system.

ISBN 0-934613-09-5
(Previously published by Tioga Publishing Company under ISBN 0-935382-05-4)

DEFG-DO-8

PREFACE

The ability to learn is one of the most fundamental attributes of intelligent
behavior. Consequently, progress in the theory and computer modeling of learn-
ing processes is of great significance to fields concerned with understanding in-
telligence. Such fields include cognitive science, artificial intelligence, infor-
mation science, pattern recognition, psychology, education, epistemology,
philosophy, and related disciplines.

The recent observance of the silver anniversary of artificial intelligence has
been heralded by a surge of interest in machine learning—both in building
models of human learning and in understanding how machines might be endowed
with the ability to learn. This renewed interest has spawned many new research
projects and resulted in an increase in related scientific activities. In the summer
of 1980, the First Machine Learning Workshop was held at Carnegie-Mellon
University in Pittsburgh. In the same year, three consecutive issues of the Inter-
national Journal of Policy Analysis and Information Systems were specially
devoted to machine learning (No. 2, 3 and 4, 1980). In the spring of 1981, a
special issue of the SIGART Newsletter No. 76 reviewed current research projects
in the field.

This book contains tutorial overviews and research papers representative of
contemporary trends in the area of machine learning as viewed from an artificial
intelligence perspective. As the first available text on this subject, it is intended
to fulfill several needs. For researchers in artificial intelligence, computer
science, and cognitive psychology, it provides an easily accessible collection of
state-of-the-art papers presenting current results, which will hopefully spur fur-
ther research. For students in artificial intelligence and related disciplines, this
volume may serve as a supplementary textbook for a course in artificial intel-
ligence, or as a primary text for a specialized course devoted to machine learn-
ing. Finally, due to the potential impact of machine learning on a variety of
disciplines, this book may be of interest to a diverse range of readers, including
computer scientists, robotics experts, knowledge engineers, educators,
philosophers, data analysts, psychologists and electronic engineers.

v

vi PREFACE

The major contemporary research directions in machine learning covered in
this book include: learning from examples, modeling human learning strategies,
knowledge acquisition for expert systems, learning heuristics, learning from in-
struction, learning by analogy, discovery systems, and conceptual data analysis.
A glossary of selected terminology and an extensive up-to-date bibliography are
provided to facilitate instruction and suggest further reading.

—Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell

ACKNOWLEDGMENTS

The editors wish to express a deep gratitude to all the authors whose ef-
forts made this book possible, and to the reviewers whose ideas and criticism
were indispensable in refereeing and improving the contributions. They are most
grateful to the Office of Naval Research for supporting the First Machine Learn-
ing Workshop, where the idea of publishing this book originated.

The following people provided invaluable assistance in preparing the book:
Margorie Ast, Trina and Nathaniel Borenstein, Kitty Fischer, Edward Frank, Jo
Ann Gabinelli, Joan Mitchell, June Wingler and Jan Zubkoff. Their hard work
and perseverance are gratefully acknowledged. The editors also acknowledge the
support and access to technical facilities provided by the Computer Science
Departments of Carnegie-Mellon University, the University of Illinois at Urbana-
Champaign, and Rutgers University.

vi PREFACE

The major contemporary research directions in machine learning covered in
this book include: learning from examples, modeling human learning strategies,
knowledge acquisition for expert systems, learning heuristics, learning from in-
struction, learning by analogy, discovery systems, and conceptual data analysis.
A glossary of selected terminology and an extensive up-to-date bibliography are
provided to facilitate instruction and suggest further reading.

—Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell

ACKNOWLEDGMENTS

The editors wish to express a deep gratitude to all the authors whose ef-
forts made this book possible, and to the reviewers whose ideas and criticism
were indispensable in refereeing and improving the contributions. They are most
grateful to the Office of Naval Research for supporting the First Machine Learn-
ing Workshop, where the idea of publishing this book originated.

The following people provided invaluable assistance in preparing the book:
Margorie Ast, Trina and Nathaniel Borenstein, Kitty Fischer, Edward Frank, Jo
Ann Gabinelli, Joan Mitchell, June Wingler and Jan Zubkoff. Their hard work
and perseverance are gratefully acknowledged. The editors also acknowledge the
support and access to technical facilities provided by the Computer Science
Departments of Carnegie-Mellon University, the University of Illinois at Urbana-
Champaign, and Rutgers University.

1

AN OVERVIEW OF

MACHINE LEARNING

Jaime G. Carbonell
Carnegie-Mellon University

Ryszard S. Michalski
University of Illinois

at Urbana-Champaign

Tom M. Mitchell
Rutgers University

1.1 INTRODUCTION

Learning is a many-faceted phenomenon. Learning processes include the
acquisition of new declarative knowledge, the development of motor and cog-
nitive skills through instruction or practice, the organization of new knowledge
into general, effective representations, and the discovery of new facts and
theories through observation and experimentation. Since the inception of the
computer era, researchers have been striving to implant such capabilities in com-
puters. Solving this problem has been, and remains, a most challenging and fas-
cinating long-range goal in artificial intelligence (AI). The study and computer
modeling of learning processes in their multiple manifestations constitutes the
subject matter of machine learning.

1.2 THE OBJECTIVES OF MACHINE LEARNING

At present, the field of machine learning is organized around three primary
research foci:

• Task-Oriented Studies—the development and analysis of learning systems
to improve performance in a predetermined set of tasks (also known as the
"engineering approach")

3

4 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

• Cognitive Simulation—the investigation and computer simulation of
human learning processes

• Theoretical Analysis—the theoretical exploration of the space of possible
learning methods and algorithms independent of application domain
Although many research efforts strive primarily towards one of these objec-

tives, progress towards one objective often leads to progress towards another.
For instance, in order to investigate the space of possible learning methods, a
reasonable starting point may be to consider the only known example of robust
learning behavior, namely humans (and perhaps other biological systems).
Similarly, psychological investigations of human learning may be helped by
theoretical analysis that may suggest various plausible learning models. The
need to acquire a particular form of knowledge in some task-oriented study may
itself spawn new theoretical analysis or pose the question: "How do humans ac-
quire this specific skill (or knowledge)?" This trichotomy of mutually challenging
and supportive objectives is a reflection of the entire field of artificial intel-
ligence, where expert systems research, cognitive simulation, and theoretical
studies provide cross-fertilization of problems and ideas.

1.2.1 Applied Learning Systems: A Practical Necessity

At present, instructing a computer or a computer-controlled robot to per-
form a task requires one to define a complete and correct algorithm for that task,
and then laboriously program the algorithm into a computer. These activities
typically involve a tedious and time-consuming effort by specially trained person-
nel.

Present-day computer systems cannot truly learn to perform a task through
examples or by analogy to a similar, previously-solved task. Nor can they im-
prove significantly on the basis of past mistakes, or acquire new abilities by ob-
serving and imitating experts. Machine learning research strives to open the pos-
sibility of instructing computers in such new ways, and thereby promises to ease
the burden of hand-programming growing volumes of increasingly complex in-
formation into the computers of tomorrow. The rapid expansion of applications
and availability of computers today makes this possibility even more attractive
and desirable.

When approaching a task-oriented knowledge acquisition task, one must be
aware that the resultant computer systems must interact with humans, and there-
fore should closely parallel human abilities. The traditional argument that an
engineering approach need not reflect human or biological performance is not
truly applicable to machine learning. Since airplanes, a successful result of an
almost pure engineering approach, bear little resemblance to their biological
counterparts, one may argue that applied knowledge acquisition systems should
be equally divorced from any consideration of human capabilities. This argument
does not apply here because airplanes need not interact with or understand birds.
Learning machines, on the other hand, will have to interact with the people who

CARBONELL, MICHALSKI AND MITCHELL 5

make use of them, and consequently the concepts and skills they acquire—if not
necessarily their internal mechanisms—must be understandable to humans.

1.2.2 Machine Learning as a Science

The question of what are the genetically-endowed abilities in a biological
system (versus environmentally-acquired skills or knowledge) has fascinated
biologists, psychologists, philosophers and artificial intelligence researchers
alike. A clear candidate for a cognitive invariant in humans is the learning
mechanism—the innate ability to acquire facts, skills and more abstract concepts.
Therefore, understanding human learning well enough to reproduce aspects of
that learning behavior in a computer system is, in itself, a worthy scientific goal.
Moreover, the computer can render substantial assistance to cognitive psychol-
ogy, in that it may be used to test the consistency and completeness of learning
theories, and enforce a commitment to fine-structure process-level detail that
precludes meaningless, tautological or untestable theories.

The study of human learning processes is also of considerable practical sig-
nificance. Gaining insights into the principles underlying human learning abilities
is likely to lead to more effective educational techniques. Thus, it is not surpris-
ing that research into intelligent computer-assisted instruction, which attempts to
develop computer-based tutoring systems, shares many of the goals and perspec-
tives with machine learning research. One particularly interesting development is
that computer tutoring systems are starting to incorporate abilities to infer models
of student competence from observed performance. Inferring the scope of a
student's knowledge and skills in a particular area allows much more effective
and individualized tutoring of the student.

An equally basic scientific objective of machine learning is the exploration
of alternative learning mechanisms, including the discovery of different induction
algorithms, the scope and limitations of certain methods, the information that
must be available to the learner, the issue of coping with imperfect training data,
and the creation of general techniques applicable in many task domains. There
is no reason to believe that human learning methods are the only possible means
of acquiring knowledge and skills. In fact, common sense suggests that human
learning represents just one point in an uncharted space of possible learning
methods—a point that through the evolutionary process is particularly well suited
to cope with the general physical environment in which we exist. Most theoreti-
cal work in machine learning has centered on the creation, characterization and
analysis of general learning methods, with the major emphasis on analyzing
generality and performance rather than psychological plausibility.

Whereas theoretical analysis provides a means of exploring the space of
possible learning methods, the task-oriented approach provides a vehicle to test
and improve the performance of functional learning systems. By constructing
and testing applied learning systems, one can determine the cost-effectiveness
trade-offs and limitations of particular approaches to learning. In this way, in-

6 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

dividual data points in the space of possible learning systems are explored, and
the space itself becomes better understood. Many of the chapters of this book
can be viewed from this perspective.

1.2.3 Knowledge Acquisition versus Skill Refinement

There are two basic forms of learning: knowledge acquisition and skill
refinement. When we say that someone learned physics, we mean that this per-
son acquired significant concepts of physics, understood their meaning, and un-
derstood their relationship to each other and to the physical world. The essence
of learning in this case is the acquisition of new knowledge, including descrip-
tions and models of physical systems and their behaviors, incorporating a variety
of representations—from simple intuitive mental models, examples and images,
to completely tested mathematical equations and physical laws. A person is said
to have learned more if his knowledge explains a broader scope of situations, is
more accurate, and is better able to predict the behavior of the physical world.
This form of learning is typical in a large variety of situations and is generally
termed knowledge acquisition. Hence, knowledge acquisition is defined as learn-
ing new symbolic information coupled with the ability to apply that information
in an effective manner.

A second kind of learning is the gradual improvement of motor and cog-
nitive skills through practice, such as learning to ride a bicycle or to play the
piano. Acquiring textbook knowledge on how to perform these activities
represents only the initial phase in developing the requisite skills. The bulk of
the learning process consists of refining the learned skills, whether mental or
motor coordination, by repeated practice and by correcting deviations from
desired behavior. This form of learning, often called skill refinement, differs in
many ways from knowledge acquisition. Whereas the essence of knowledge ac-
quisition may be a conscious process whose result is the creation of new sym-
bolic knowledge structures and mental models, skill refinement occurs at a sub-
conscious level by virtue of repeated practice. Most human learning appears to
be a mixture of both activities, with intellectual endeavors favoring the former,
and motor coordination tasks favoring the latter.

This book focuses on the knowledge acquisition aspect of learning, al-
though some chapters, specifically those concerned with learning in problem-
solving and transforming declarative instructions into effective actions, touch on
aspects of both types of learning. Whereas knowledge acquisition clearly
belongs in the realm of artificial intelligence research, a case could be made that
skill refinement comes closer to non-symbolic processes, such as those studied in
adaptive control systems. It may indeed be the case that skill acquisition is in-
herently non-symbolic in biological systems, but an interesting symbolic model
capable of simulating gradual skill improvement through practice has been
proposed recently by Ne well and Rosenbloom [Ne well, 1981]. Hence, perhaps
both forms of learning can be captured in artificial intelligence models.

CARBONELL, MICHALSKI AND MITCHELL 7

1.3 A TAXONOMY OF MACHINE LEARNING RESEARCH

This section presents a taxonomic road map to the field of machine learn-
ing with a view towards presenting useful criteria for classifying and comparing
most artificial intelligence-based machine learning investigations. Later sections
survey the main directions actually taken by research in machine learning over
the past twenty years, and introduce each major research approach corresponding
to subsequent chapters in this book.

One may classify machine learning systems along many different dimen-
sions. We have chosen three dimensions as particularly meaningful:

• Classification on the basis of the underlying learning strategies used. The
processes themselves are ordered by the amount of inference the learning
system performs on the available information.

• Classification on the basis of the representation of knowledge or skill ac-
quired by the learner.

• Classification in terms of the application domain of the performance sys-
tem for which knowledge is acquired.
Each point in the space defined by the above dimensions corresponds to a

particular learning strategy, employing a particular knowledge representation, ap-
plied to a particular domain. Since existing learning systems employ multiple
representations and processes, and many have been applied to more than one
domain, such learning systems are characterized by several points in the space.

The subsections below describe explored values along each of these dimen-
sions. Future research may well reveal new values and dimensions. Indeed, the
larger space of all possible learning systems is still only sparsely explored and
partially understood. Existing learning systems correspond to only a small por-
tion of the space because they represent only a small number of possible com-
binations of the values.

1.3.1 Classification Based on the Underlying Learning Strategy

Since we distinguish learning strategies by the amount of inference the
learner performs on the information provided, we first consider the two extremes:
performing no inference, and performing a substantial amount of inference. If a
computer system is programmed directly, its knowledge increases, but it per-
forms no inference whatsoever; all cognitive effort is on the part of the program-
mer. Conversely, if a system independently discovers new theories or invents
new concepts, it must perform a very substantial amount of inference; it is deriv-
ing organized knowledge from experiments and observations. An intermediate
point in the spectrum would be a student determining how to solve a math-
ematics problem by analogy to worked-out examples in the textbook—a process
that requires inference, but much less than discovering a new branch of math-
ematics without guidance from teacher or textbook.

As the amount of inference that the learner is capable of performing in-

8 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

creases, the burden placed on the teacher or external environment decreases. It is
much more difficult to teach a person by explaining each step in a complex task
than by showing that person the way that similar tasks are usually handled. It is
more difficult yet to program a computer to perform a complex task than to in-
struct a person to perform the task; as programming requires explicit specifica-
tion of all requisite detail, whereas a person receiving instruction can use prior
knowledge and common sense to fill in most mundane details. The taxonomy
below captures this notion of trade-offs in the amount of effort required of the
learner and of the teacher.

1. Rote learning and direct implanting of new knowledge—No inference or
other transformation of the knowledge is required on the part of the
learner. Variants of this knowledge acquisition method include:

• Learning by being programmed, constructed or modified by an exter-
nal entity, requiring no effort on the part of the learner (for example,
the usual style of computer programming).

• Learning by memorization of given facts and data with no inferences
drawn from the incoming information (for example, as performed by
primitive database systems). The term "rote learning" is used
primarily in this context.

2. Learning from instruction (or, learning by being told)—Acquiring
knowledge from a teacher or other organized source, such as a textbook,
requiring that the learner transform the knowledge from the input language
to an internally-usable representation, and that the new information be in-
tegrated with prior knowledge for effective use. Hence, the learner is re-
quired to perform some inference, but a large fraction of the burden
remains with the teacher, who must present and organize knowledge in a
way that incrementally augments the student's existing knowledge. Learn-
ing from instruction parallels most formal education methods. Therefore,
the machine learning task is one of building a system that can accept in-
struction or advice and can store and apply this learned knowledge effec-
tively. This form of learning is discussed in Chapters 12, 13 and 14.

3. Learning by analogy—Acquiring new facts or skills by transforming and
augmenting existing knowledge that bears strong similarity to the desired
new concept or skill into a form effectively useful in the new situation.
For instance, a person who has never driven a small truck, but who drives
automobiles, may well transform his existing skill (perhaps imperfectly) to
the new task. Similarly, a learning-by-analogy system might be applied to
convert an existing computer program into one that performs a closely-
related function for which it was not originally designed. Learning by
analogy requires more inference on the part of the learner than does rote
learning or learning from instruction. A fact or skill analogous in relevant
parameters must be retrieved from memory; then the retrieved knowledge
must be transformed, applied to the new situation, and stored for future
use. This form of learning is discussed in Chapters 5 and 7.

CARBONELL, MICHALSKI AND MITCHELL 9

4. Learning from examples (a special case of inductive learning)—Given a
set of examples and counterexamples of a concept, the learner induces a
general concept description that describes all of the positive examples and
none of the counterexamples. Learning from examples is a method that has
been heavily investigated in artificial intelligence. The amount of in-
ference performed by the learner is much greater than in learning from in-
struction, as no general concepts are provided by a teacher, and is some-
what greater than in learning by analogy, as no similar concepts are
provided as "seeds" around which the new concept may be grown. Learn-
ing from examples can be subcategorized according to the source of the
examples:

• The source is a teacher who knows the concept and generates se-
quences of examples that are meant to be as helpful as possible. If
the teacher also knows (or, more typically, infers) the knowledge
state of the learner, the examples can be selected to optimize conver-
gence on the desired concept (as in Winston's system [Winston,
1975]).

• The source is the learner itself. The learner typically knows its own
knowledge state, but clearly does not know the concept to be ac-
quired. Therefore, the learner can generate instances (and have an
external entity such as the environment or a teacher classify them as
positive or negative examples) on the basis of the information it
believes necessary to discriminate among contending concept descrip-
tions. For instance, a learner trying to acquire the concept of
"ferromagnetic substance", may generate as a possible candidate "all
metals". Upon testing copper and other metals with a magnet, the
learner will then discover that copper is a counterexample, and there-
fore the concept of ferromagnetic substance should not be generalized
to include all metals.

• The source is the external environment. In this case the example
generation process is operationally random, as the learner must rely
on relatively uncontrolled observations. For example, an astronomer
attempting to infer precursors to supernovas must rely mainly upon
unstructured data presentation. (Although the astronomer knows the
concept of a supernova, he cannot know a priori where and when a
supernova will occur, nor can he cause one to exist.)
One can also classify learning from examples by the type of ex-

amples available to the learner:
• Only positive examples available. Whereas positive examples provide

instances of the concept to be acquired, they do not provide infor-
mation for preventing overgeneralization of the inferred concept. In
this kind of learning situation, overgeneralization might be avoided
by considering only the minimal generalizations necessary, or by

10 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

relying upon a priori domain knowledge to constrain the concept to
be inferred.

• Positive and negative examples available. In this kind of situation,
positive examples force generalization whereas negative examples
prevent overgeneralization (the induced concept should never be so
general as to include any of the negative examples). This is the most
typical form of learning from examples.
Learning from examples may be one-trial or incremental. In the

former case, all examples are presented at once. In the latter case, the sys-
tem must form one or more hypotheses of the concept (or range of
concepts) consistent with the available data, and subsequently refine the
hypotheses after considering additional examples. The incremental ap-
proach more closely parallels human learning, allows the learner to use
partially learned concepts (for performance, or to guide the example
generation process), and enables a teacher to focus on the basic aspects of
a new concept before attempting to impart less central details. On the other
hand, the one-step approach is less apt to lead one down garden paths by
an injudicious choice of initial examples in formulating the kernel of the
new concept. Various aspects of learning from examples are discussed in
Chapters 3, 4, 5, 6, 7, 8, 15 and 16.

5. Learning from observation and discovery (also called unsupervised
learning)—This is a very general form of inductive learning that includes
discovery systems, theory-formation tasks, the creation of classification
criteria to form taxonomic hierarchies, and similar tasks without benefit of
an external teacher. This form of unsupervised learning requires the
learner to perform more inference than any approach thus far discussed.
The learner is not provided with a set of instances of a particular concept,
nor is it given access to an oracle that can classify internally-generated in-
stances as positive or negative instances of any given concept. Moreover,
rather than focusing on a single concept at a time, the observations may
span several concepts that need to be acquired, thus introducing a severe
focus-of-attention problem. One may subclassify learning from observation
according to the degree of interaction with an external environment. The
extreme points in this dimension are:

• Passive observation, where the learner classifies and taxonomizes ob-
servations of multiple aspects of the environment.

• Active experimentation, where the learner perturbs the environment to
observe the results of its perturbations. Experimentation may be ran-
dom, dynamically focused according to general criteria of interesting-
ness, or strongly guided by theoretical constraints. As a system ac-
quires knowledge, and hypothesizes theories it may be driven to con-
firm or disconfirm its theories, and hence explore its environment ap-
plying different observation and experimentation strategies as the

CARBONELL, MICHALSKI AND MITCHELL 11

need arises. Often this form of learning involves the generation of
examples to test hypothesized or partially acquired concepts.

Learning from observation is discussed in Chapters 4, 9, 10 and 11.
The above classification of learning strategies helps one to compare various

learning systems in terms of their underlying mechanisms, in terms of the avail-
able external source of information, and in terms of the degree to which they
rely on pre-organized knowledge.

1.3.2 Classification According to the Type of Knowledge Acquired

A learning system may acquire rules of behavior, descriptions of physical
objects, problem-solving heuristics, classification taxonomies over a sample
space, and many other types of knowledge useful in the performance of a wide
variety of tasks. The list below spans types of knowledge acquired, primarily as
a function of the representation of that knowledge.

1. Parameters in algebraic expressions—Learning in this context consists of
adjusting numerical parameters or coefficients in algebraic expressions of a
fixed functional form so as to obtain desired performance. For instance,
perceptrons [Rosenblatt, 1958; Minsky & Papert, 1969] adjust weighting
coefficients for threshold logic elements when learning to recognize two-
dimensional patterns.

2. Decision trees—Some systems acquire decision trees to discriminate
among classes of objects. The nodes in a decision tree correspond to
selected object attributes, and the edges correspond to predetermined alter-
native values for these attributes. Leaves of the tree correspond to sets of
objects with an identical classification.

3. Formal grammars—In learning to recognize a particular (usually
artificial) language, formal grammars are induced from sequences of ex-
pressions in the language. These grammars are typically represented as
regular expressions, finite-state automata, context-free grammar rules, or
transformation rules.

4. Production rules—A production rule is a condition-action pair {C => A},
where C is a set of conditions and A is a sequence of actions. If all the
conditions in a production rule are satisfied, then the sequence of actions is
executed. Due to their simplicity and ease of interpretation, production
rules are a widely-used knowledge representation in learning systems. The
four basic operations whereby production rules may be acquired and
refined are:

• Creation: A new rule is constructed by the system or acquired from
an external entity.

• Generalization: Conditions are dropped or made less restrictive, so
that the rule applies in a larger number of situations.

12 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

• Specialization: Additional conditions are added to the condition set,
or existing conditions made more restrictive, so that the rule applies
to a smaller number of specific situations.

• Composition: Two or more rules that were applied in sequence are
composed into a single larger rule, thus forming a "compiled"
process and eliminating any redundant conditions or actions.

5. Formal logic-based expressions and related formalisms—These general-
purpose representations have been used to formulate descriptions of in-
dividual objects (input to a learning system) and to formulate resultant con-
cept descriptions (output from a learning system). They take the form of
formal logic expressions whose components are propositions, arbitrary
predicates, finite-valued variables, statements restricting ranges of variables
(such as "a number between 1 and 9"), or embedded logical expressions.

6. Graphs and Networks—In many domains graphs and networks provide a
more convenient and efficient representation than logical expressions, al-
though the expressive power of network representations is comparable to
that of formal logic expressions. Some learning techniques exploit graph-
matching and graph-transformation schemes to compare and index
knowledge efficiently.

7. Frames and schémas—These provide larger units of representation than
single logical expressions or production rules. Frames and schémas can be
viewed as collections of labeled entities ("slots"), each slot playing a cer-
tain prescribed role in the representation. They have proven quite useful in
many artificial intelligence applications. For instance, a system that ac-
quires generalized plans must be able to represent and manipulate such
plans as units, although their internal structure may be arbitrarily complex.
Moreover, in experiential learning, past successes, untested alternatives,
causes of failure, and other information must be recorded and compared in
inducing and refining various rules of behavior (or entire plans). Schema
representations provide an appropriate formalism.

8. Computer programs and other procedural encodings—The objective of
several learning systems is to acquire an ability to carry out a specific
process efficiently, rather than to reason about the internal structure of the
process. Most automatic programming systems fall in this general cate-
gory. In addition to computer programs, procedural encodings include
human motor skills (such as knowing how to ride a bicycle), instruction
sequences to robot manipulators, and other "compiled" human or machine
skills. Unlike logical descriptions, networks or frames, the detailed inter-
nal structure of the resultant procedural encodings need not be comprehen-
sible to humans, or to automated reasoning systems. Only the external be-
havior of acquired procedural skills become directly available to the
reasoning system.

9. Taxonomies—Learning from observation may result in global structuring

CARBONELL, MICHALSKI AND MITCHELL 13

of domain objects into a hierarchy or taxonomy. Clustering object descrip-
tions into newly-proposed categories, and forming hierarchical classifica-
tions require the system to formulate relevant criteria for classification.

10. Multiple representations—Some knowledge acquisition systems use
several representation schemes for the newly-acquired knowledge. Most
notably, some discovery and theory-formation systems that acquire con-
cepts, operations on those concepts, and heuristic rules for a new domain
must select appropriate combinations of representation schemes applicable
to the different forms of knowledge acquired.

1.3.3 Classification by Domain of Application

A useful dimension for classifying learning systems is their area of applica-
tion. The list below specifies application areas to which various existing learn-
ing systems have been applied. Application areas are presented in alphabetical
order, not reflecting the relative effort or significance of the resultant machine
learning system.

1. Agriculture
2. Chemistry
3. Cognitive Modeling (simulating human learning processes)
4. Computer Programming
5. Education
6. Expert Systems (high-performance, domain-specific AI programs)
7. Game Playing (chess, checkers, poker, and so on)
8. General Methods (no specific domain)
9. Image Recognition
10. Mathematics
11. Medical Diagnosis
12. Music
13. Natural Language Processing
14. Physical Object Characterizations
15. Physics
16. Planning and Problem-solving
17. Robotics
18. Sequence Prediction
19. Speech Recognition

The Bibliography provides an index to the literature organized around
several criteria including some of the more commonly explored application areas.
Now that we have a basis for classifying and comparing learning systems, we
turn to a brief historical outline of machine learning.

14 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

1.4 AN HISTORICAL SKETCH OF MACHINE LEARNING

Over the years, research in machine learning has been pursued with vary-
ing degrees of intensity, using different approaches and placing emphasis on dif-
ferent aspects and goals. Within the relatively short history of this discipline,
one may distinguish three major periods, each centered around a different
paradigm:

• neural modeling and decision-theoretic techniques
• symbolic concept-oriented learning
• knowledge-intensive learning systems exploring various learning tasks

The distinguishing feature of the first paradigm was the interest in building
general purpose learning systems that start with little or no initial structure or
task-oriented knowledge. The major thrust of research based on this tabula rasa
approach involved constructing a variety of neural model-based machines, with
random or partially random initial structure. These systems were generally
referred to as neural nets or self-organizing systems. Learning in such systems
consisted of incremental changes in the probabilities that neuron-like elements
(typically threshold logic units) would transmit a signal.

Due to the primitive nature of computer technology at that time, most of
the research under this paradigm was either theoretical or involved the construc-
tion of special purpose experimental hardware systems, such as perceptrons
[Rosenblatt, 1958], pandemonium [Selfridge, 1959] and adelaine [Widrow,

1962]. The groundwork for this paradigm was laid in the forties by Rashevsky
and his followers working in the area of mathematical biophysics [Rashevsky,
1948], and by McCulloch and Pitts [1943], who discovered the applicability of
symbolic logic to modeling nervous system activities. Among the large number
of research efforts in this area, one may mention works such as [Ashby, 1960;
Rosenblatt, 1958, 1962; Minsky & Papert, 1969; Block, 1961; Yovits, 1962,
Widrow, 1962; Culberson, 1963; Kazmierczak, 1963]. Related research in-
volved the simulation of evolutionary processes, that through random mutation
and "natural" selection might create a system capable of some intelligent be-
havior (for example, [Friedberg, 1958, 1959; Holland, 1980]).

Experience in the above areas spawned the new discipline of pattern recog-
nition and led to the development of a decision-theoretic approach to machine
learning. In this approach, learning is equated with the acquisition of linear,
polynomial, or related forms of discriminant functions from a given set of train-
ing examples (for example, [Nilsson, 1965; Koford, 1966; Uhr, 1966; High-
leyman, 1967]). One of the best known successful learning systems utilizing
such techniques (as well as some original new ideas involving non-linear
transformations) was Samuel's checkers program [Samuel, 1959, 1963]. This
program was able to acquire through learning a master level of performance.
Somewhat different, but closely related, techniques utilized methods of statistical
decision theory for learning pattern recognition rules (for example, [Sebestyen,

CARBONELL, MICHALSKI AND MITCHELL 15

1962; Fu, 1968; Watanabe, I960; Arkadev, 1971; Fukananga, 1972; Duda &
Hart, 1973; Kanal, 1974]).

In parallel to research on neural modeling and decision-theoretic tech-
niques, researchers in control theory developed adaptive control systems able to
adjust automatically their parameters in order to maintain stable performance in
the presence of various disturbances (for example, [Truxal, 1955; Davies, 1970;
Mendel, 1970; Tsypkin, 1968, 1971, 1973; Fu, 1971, 1974]).

Practical results sought by the neural modeling and decision theoretic ap-
proaches met with limited success. High expectations articulated in various early
works were not realized, and research under this paradigm began to decline.
Theoretical studies have revealed strong limitations of the "knowledge-free"
perceptron-type learning systems [Minsky & Papert, 1969].

A second major paradigm started to emerge in the early sixties stemming
from the work of psychologists and early AI researchers on models of human
learning [Hunt et al., 1963, 1966]. The paradigm utilized logic or graph struc-
ture representations rather than numerical or statistical methods. Systems learned
symbolic descriptions representing higher level knowledge and made strong
structural assumptions about the concepts to be acquired.

Examples of work in this paradigm include research on human concept ac-
quisition (for example, [Hunt & Hovland, 1963; Feigenbaum, 1963; Hunt et al.,
1966; Hilgard, 1966; Simon & Lea, 1974]), and various applied pattern recog-
nition systems ([Bongard, 1970; Uhr, 1966; Karpinski & Michalski, 1966]).

Some researchers constructed task-oriented specialized systems that would
acquire knowledge in the context of a practical problem. For instance, the
META-DENDRAL program [Buchanan, 1978] generates rules explaining mass
spectrometry data for use in the DENDRAL system [Buchanan et al., 1971].

An influential development in this paradigm was Winston's structural
learning system [Winston, 1975]. In parallel with Winston's work, different ap-
proaches to learning structural concepts from examples emerged, including a
family of logic-based inductive learning programs (AQVAL) [Michalski, 1972,
1973, 1978], and related work by Hayes-Roth [1974], Hayes-Roth & McDermott
[1978], Vere [1975], and Mitchell [1978]. More details on this paradigm are in-
cluded in Chapters 3, 4 and 6. (See also [Michie, 1982].)

The third paradigm represents the most recent period of research starting in
the mid-seventies. Researchers have broadened their interest beyond learning
isolated concepts from examples, and have begun investigating a wide spectrum
of learning methods, most based upon knowledge-rich systems. Specifically,
this paradigm can be characterized by several new trends, including:

1. Knowledge-Intensive Approaches: Researchers are strongly emphasizing
the use of task-oriented knowledge and the constraints it provides in guid-
ing the learning process. One lesson from the failures of earlier tabula
rasa and knowledge-poor learning systems is that to acquire new
knowledge a system must already possess a great deal of initial knowledge.

16 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

2. Exploration of alternative methods of learning: In addition to the earlier
research emphasis on learning from examples, researchers are now inves-
tigating a wider variety of learning methods such as learning from instruc-
tion (Chapters 12, 13, and 14 in this book), learning by analogy
([Winston, 1979], and Chapter 5 of this book), and discovery of concepts
and classifications ([Lenat, 1976] and Chapters 4, 10, and 11 of this
book).

3. Incorporating abilities to generate and select learning tasks: In contrast
to previous efforts, a number of current systems incorporate heuristics to
control their focus of attention by generating learning tasks, proposing ex-
periments to gather training data, and choosing concepts to acquire
([Lenat, 1976] and Chapter 6 of this book).

The research presented in this book is concerned primarily with the last,
knowledge-intensive paradigm of learning.

1.5 A BRIEF READER'S GUIDE

The chapters in this book are organized according to the major thrust of
each investigation, whether that thrust is the development of a general method,
the application of various learning techniques to a particular domain, or the
theoretical analysis of existing methods. The progression of chapters roughly
corresponds to the sequence:

• Basic principles
• General-purpose systems
• Task-oriented applications

Although there is much overlap among the objectives of different chapters, the
specific content differs substantially. For instance, the four papers listed under
the general category "Learning in problem-solving and planning," share a com-
mon top-level objective, but differ substantially in terms of the learning methods
employed, the type of knowledge acquired, and the range of applicability of the
described systems.

The reader not familiar with the field of machine learning is encouraged to
read the first few chapters, omitting technical detail, in order to acquire a general
understanding. Later, these chapters and any others that are of special interest
may be studied in more detail with an appropriate perspective on the field as a
whole. Readers are encouraged to use our chapter descriptions below, as well as
the abstracts in the individual chapters, to focus on areas of interest. The topics
of the individual chapters range from cognitive modeling and discussion of un-
derlying principles to applications in general problem-solving, chemistry, math-
ematics, music, education and game playing.

At the Carnegie-Mellon Machine Learning Workshop in July, 1980, Her-
bert Simon was asked to deliver the keynote address, where he chose to play the

CARBONELL, MICHALSKI AND MITCHELL 17

role of devil's advocate and ask the question "Why Should Machines Learn?"
His analysis concluded that, with the exception of cognitive modeling, some
rethinking of long-term objectives was in order. After dispelling some common
myths, Simon concluded with a clarified and more appropriate set of reasons
why one ought to pursue machine learning research. Chapter 2 is based almost
entirely on that rather controversial keynote address.

In Chapter 3, Dietterich and Michalski analyze some well-known work in
concept acquisition from a unified perspective. After developing some requisite
formalism, they examine the range of possible concept descriptions that may be
acquired via a set of basic generalization and discrimination operators applied to
logic-based representations of instances and concepts. Then, they describe the
work of Winston, Hayes-Roth, Vere, and Michalski's earlier work as particular
combinations of learning operators applied to different restriction0 on the
representation language. Chapter 3, therefore, provides a general framework for
comparison of different concept-acquisition systems.

In Chapter 4, Michalski describes a general theory and methodology for
inductive learning of structural descriptions from examples. The theory unif;es
and clarifies various types of inductive learning, and demonstrates that such
learning can be viewed as a process of applying generalization inference rules
(and conventional deductive inference rules) to initial and intermediate descrip-
tions. This process is guided by problem-oriented background knowledge
provided to the learning system. Various generalization rules are presented and
discussed. The methodology developed is illustrated by a problem from the area
of conceptual data analysis.

In Chapter 5, Carbonell examines the issue of learning from experience, a
common phenomenon among humans, but heretofore a nemesis to machines that
could not transfer planning knowledge to new but similar situations, or otherwise
analyze their past behavior. A general planning and problem-solving paradigm is
proposed based on a computationally-effective model of analogical reasoning. In
essence, the planner exploits prior experience in solving new problems that bear
strong similarity to past situations by transforming solutions of past problems
into potential plans that solve new, externally or internally generated problems.
The analogical paradigm interfaces with a learning-from-examples method, ena-
bling the learner to formulate generalized plans for recurring situations, as well
as to accumulate and classify more specific experiences for less common situa-
tions.

In Chapter 6, Mitchell, Utgoff and Banerji investigate the issue of acquir-
ing and refining problem-solving heuristics by examining solutions to symbolic
integration problems. Like Carbonell's approach, learning is based on past
problem-solving experience, but Mitchell et al. focus on acquiring heuristics for
applying known strategies, rather than generalizing recurring behaviors into reus-
able plans. Their approach also generates problems internally for the purpose of
testing and refining existing heuristics, and uses the version-space approach to
keep track of viable generalizations of current heuristics. Unlike Carbonell's

18 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

analogical approach to problem-solving, Mitchell et al. rely on heuristic search
guided by the constantly updated domain heuristics to solve new problems.
After describing the LEX program for learning heuristics, they consider ways in
which the system's learning abilities could be improved by giving it new
knowledge about heuristic search, the problem domain, and the goals of the
learner.

In Chapter 7, Anderson examines human problem-solving in the context of
providing justifications to geometric proofs. He relies entirely upon a production
system framework to encode domain knowledge, learning heuristics, and
problem-solving strategies. Anderson reviews the basic mechanisms for
production-rule knowledge acquisition and demonstrates how they apply to a
progression of tasks in Geometry. The major significance of this chapter is the
explanation and illustration of learning methods in the context of a performance
system implemented as a set of production rules.

In Chapter 8, Hayes-Roth investigates the issue of improving flawed or in-
complete theories that guide plan formation in a given domain. His primary
thrust is on refining and restructuring theories based upon the way in which ob-
served consequences of one's behavior differ from theoretical predictions. In
short, Hayes-Roth views empirical disconfirmation not as a mechanism for
rejecting existing theories, but rather as input to various methods of modifying
theoretical concepts to accord with past and present observations. He presents
five heuristic methods and applies them to problem-solving in playing the card
game hearts.

In Chapter 9, Lenat focuses on methods for learning from observation and
discovery. He analyzes three domains in which heuristics play a dominant role in
guiding search through the space of possible concepts or processes one may ac-
quire. First, Lenat examines his AM system, where heuristic rules that measure
intrinsic "interestingness" help the system rediscover essential concepts in num-
ber theory, such as the notion of a prime number. Then, the EURISKO system is
discussed, which acquires and modifies learning heuristics, as well as formulat-
ing task-specific heuristics and concept representations. Finally, Lenat discusses
the conjecture that evolution is a heuristically-driven learning engine in constant
operation.

In Chapter 10, Langley, Simon and Bradshaw discuss their BACON system
and its application to rediscovering some basic laws of Chemistry. BACON ap-
plies the principles of scientific inquiry first elucidated by Sir Francis Bacon to
find the simplest numerical relations that hold invariant across sets of measure-
ments. In this manner, it postulates meaningful combinations of independent
measurements and intrinsic properties of objects (such as specific heat), and
searches for the simplest relationship among measured and derived quantities that
summarizes all observations. Although not able to design its own experiments,
given the unanalyzed results of appropriate chemical experiments, BACON has
rediscovered such laws as Gay-Lussac's law and Proust's law of definite propor-
tions.

CARBONELL, MICHALSKI AND MITCHELL 19

In Chapter 11, Michalski and Stepp investigate the problem of automated
construction of taxonomies of observed events in a manner that is meaningful to
a human. That is, given sets of object or process descriptions, plus an a priori
set of descriptive concepts, they develop a method of grouping observations into
meaningful classes that represent selected concepts. They present an algorithm
that implements this "conceptual clustering" operation and demonstrate its utility
for the tasks of formulating descriptions of plant diseases from observed
symptoms and taxonomizing Spanish songs in a manner meaningful to
musicologists. In contrast with statistical clustering techniques, the conceptual
clustering algorithm produces characteristic descriptions of the concepts defined
by each cluster. Both the Michalski and Stepp approach and the Langley et al.
approach exemplify learning from passive observations, whereas Lenat's ap-
proach stresses the role of active experimentation.

In Chapter 12, Mostow discusses the process of learning by taking advice.
Declaratively stated advice must be transformed into operational procedures ef-
fective in a given task domain. The transformation process can be quite complex,
as implicit domain knowledge must be accessed, the advice must be restated in
terms consistent with the existing procedural knowledge base, and plausible
reasoning heuristics must be consulted in deciding how to make best use of the
incoming advice. Mostow focuses on the general issue of providing advice to a
heuristic search mechanism, as applied to playing the game of hearts and com-
posing a cantus firmus.

In Chapter 13, Haas and Hendrix investigate the issue of automatically ex-
tending a natural language interface by acquiring domain semantics, dictionary
entries and syntactic patterns from the user. The most significant aspect of their
KLAUS system is that the user need not be a computational linguist, but rather is
guided by the system into providing exemplary information that is later trans-
formed into effective grammar and dictionary representations. This form of learn-
ing by being told, where the student (that is, the KLAUS system) is in control and
the teacher provides information only when asked, constitutes an interesting
variation on more traditional versions of the learning-from-instruction paradigm.

In Chapter 14, Rychener provides a retrospective analysis of the instruct-
able production system project, in which many different instructional techniques
for learning by being told were tried, different organizations of the knowledge
were considered, and different problem-solving strategies were investigated. Al-
though many combinations of representational schemes and instructional methods
proved infeasible, other approaches proved much more promising. Hence the
field of machine learning can learn from its own experience—false starts as well
as successful approaches. Rychener concludes his chapter with an analysis of the
organizational and instructional principles that a production-system based instruc-
tional learner should adhere to in order to maximize chances for successful
knowledge acquisition.

In Chapter 15, Quinlan presents a method for generating efficient decision
trees for classifying given exemplars, and applies his method to the analysis of

20 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

king-and-rook versus king-and-knight chess endgames. Chess authorities had
previously believed that all but a few special positions of this type were in-
herently drawn (with best play for both sides). Due to the size of the search
space, a systematic analysis was not performed until Quinlan applied his efficient
method of learning classifications, whereupon it became clear that a very large
fraction of king-and-rook versus king-and-knight positions were forced wins for
the side with the rook. Therefore, the Quinlan paper illustrates not only an ef-
ficient classification method, but demonstrates the utility of at least one applica-
tion of machine learning.

In Chapter 16, Sleeman investigates the application of machine learning to
infer models of students learning algebra. Student modeling is becoming a recog-
nized necessity in intelligent computer-assisted instruction (ICAI). The difficult
task of formulating viable student models requires that the system infer a
student's knowledge from his performance (plus general knowledge of the in-
structional material). A general model must be inferred that can generate all ob-
served student behavior, as well as account for the lack of any expected but un-
observed behavior. The search space of possible student models is large, and the
number of trials one may require of each student is proportionately small. There-
fore the problem becomes one of searching this space quickly and without requir-
ing large amounts of student testing. Sleeman provides and analyzes algorithms
that fit these requirements. An interesting aspect of Sleeman's work is that the
teacher, in order to be effective, must learn to adapt to the student's needs, in-
dicating that machine learning can help to make computer-assisted human educa-
tion more effective.

Finally, the book concludes with a comprehensive bibliography of past and
present research in machine learning, a glossary of selected terms, and a brief
note about each author. The bibliography is indexed according to several criteria
(methods, applications, and so on) in order to provide guidance to the reader
who desires additional background in the field.

REFERENCES

Arkadev, A. G. and Braverman, E. M., Learning in Pattern Classification Machines, Nauka, Mos-
cow, 1971.

Ashby, W. Ross, Design for a Brain, The Origin of Adaptive Behavior, John Wiley and Sons, Inc.,
1960.

Block, H. D., "The Perceptron: A Model of Brain Functioning, I," Rev. Math. Physics, Vol. 34,
No. 1, pp. 123-135, 1961.

Bongard, N., Pattern Recognition, Spartan Books, New York, 1970, (Translation from Russian
original, published in 1967).

CARBONELL, MICHALSKI AND MITCHELL 21

Buchanan, B. G. and Mitchell, T. M., "Model-Directed Learning of Production Rules," Pattern-
Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press,
New York, 1978.

Buchanan, B. G., Feigenbaum, E. A. and Lederberg, J., "A heuristic programming study of theory
formation in sciences," Proceedings of the Second International Joint Conference on Artificial
Intelligence, international Joint Conferences on Artificial Intelligence, London, pp. 40-48,
1971.

Culberson, J. T., The Minds of Robots, University of Illinois Press, Urbana, Illinois, 1963.

Davies, W. D. T., System Identification for Self Adaptive Control, Wiley-Interscience, Wiley and
Sons, Ltd., 1970.

Duda, R. O. and Hart, P. E., Pattern Classification and Scene Analysis, Wiley, New York, 1973.

Feigenbaum, E. A., "The Simulation of Verbal Learning Behavior," Computers and Thought,
Feigenbaum, E. A. and Feldman, J. (Eds.), McGraw-Hill, New York, pp. 297-309, 1963,
(originally in Proceedings Western Joint Computer Conference, 1961).

Friedberg, R. M., "A Learning Machine: Part 1," IBM Journal, Vol. 2, pp. 2-13, 1958.

Friedberg, R., Dunham, B. and North, T., "A Learning Machine: Part 2," IBM Journal of Research
and Development, Vol. 3, No. 3, pp. 282-287, 1959.

Fu, K. S., Sequential Methods in Pattern Recognition and Machine Learning, Academic Press, New
York, 1968.

Fu, K. S., Pattern Recognition and Machine Learning, Plenum Press, New York, 1971.

Fu, K. S. and Tou, J. T., Learning Systems and Intelligent Robots, Plenum Press, 1974.

Fukanaga, K., Introduction to Statistical Pattern Recognition, Academic Press, 1972.

Hayes-Roth, F., "Schematic Classification Problems and their Solution," Pattern Recognition, Vol.
6, pp. 105-113, 1974.

Hayes-Roth, F. and McDermott, J., "An interference matching technique for inducing abstractions,"
Communications of the ACM, Vol. 21, No. 5, pp. 401-410, 1978.

Highleyman, W. H., "Linear Decision Functions, with Applications to Pattern Recognition,"
Proceedings of IRE, No. 50, pp. 1501-1504, 1967.

Hilgard, E. R. and Bower, G. H., Theories of Learning - Third Edition, Appleton-Century-Grafts,
New York, 1966.

Holland, J. H., "Adaptive Algorithms for Discovering and Using General Patterns in Growing
Knowledge Bases," Policy Analysis and Information Systems, Vol. 4, No. 3, September
1980.

Hunt, E. B. and Hovland, C. I., "Programming a Model of Human Concept Formation," Computers
and Thought, Feigenbaum, E. A. and Feldman, J. (Eds.), McGraw-Hill, New York, pp.
310-325, 1963.

Hunt, E. B., Marin, J. and Stone, P. T., Experiments in Induction, Academic Press, New York,
1966.

22 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING

Kanal, L., "Patterns in Pattern Recognition: 1968-1974," IEEE Transactions on information Theory,
Vol. IT-20, No. 6, pp. 697-722, 1974.

Karpinski, J. and Michalski, R. S., "A System that Learns to Recognize Hand-written Alphanumeric
Characters", Technical Report 35, Proce Institute Automatyki, Polish Academy of Sciences,
1966.

Kazmierczak, H. and Steinbuch, K., "Adaptive Systems in Pattern Recognition," IEEE Transactions
of Electronic Computers, Vol. EC-12, No. 5, pp. 822-835, 1963.

Koford, T. S. and Groner, G. F., "The Use of an Adaptive Threshold Element to Design a Linear
Optimal Pattern Classifier," IEEE Transactions-Information Theory, Vol. IT-12, pp. 42-50,
1966.

Lenat, D. B., AM: an artificial intelligence approach to discovery in mathematics as heuristic
search, Ph.D. dissertation, Stanford University, Stanford, California, 1976.

McCulloch, W. S. and Pitts, W., "A Logical Calculus of Ideas Imminent in Nervous Activity," Bull.
Math. Biophysics, Vol. 5, pp. 115-133, 1943.

Mendel, T. and Fu, K. S., Adaptive Learning and Pattern Recognition: Theory and Applications,
Spartan Books, New York, 1970.

Michalski, R. S., "A Variable-Valued Logic System as Applied to Picture Description and
Recognition," Graphic Languages, Nake, F. and Rosenfeld, A. (Ed.), North-Holland, 1972.

Michalski, R. S. and Larson, J. B., "Selection of Most Representative Training Examples and
Incremental Generation of VLl Hypotheses: The Underlying Methodology and Description of
Programs ESEL and AQ11", Report 867, University of Illinois, 1978.

Michalski, R. S., "AQVAL/1 - Computer implementation of a variable valued logic system VLl and
examples of its application to pattern recognition," Proceedings of the First International
Joint Conference on Pattern Recognition, Washington, D. C , pp. 3-17, 1973b.

Michie, "The State of the Art in Machine Learning," Introductory Readings in Expert Systems,
D. Michie (Ed.), Gordon and Breach, UK, 1982.

Minsky, M. and Papert, S., Perceptrons, MIT Press, Cambridge, Mass., 1969.

Mitchell, T. M., Version Spaces: An approach to concept learning, Ph.D. dissertation, Stanford
University, December 1978, (also Stanford CS report STAN-CS-78-711, HPP-79-2).

Newell, A. and Rosenbloom, P., "Mechanisms of Skill Acquisition and the Law of Practice,"
Cognitive Skills and Their Acquisition, Anderson, J. R. (Ed.), Erlbaum Associates, Hillsdale,
New Jersey, 1981.

Nilsson, N. J., Learning Machines, McGraw-Hill, New York, 1965.

Rashevsky, N., Mathematical Biophysics, University of Chicago Press, Chicago, IL, 1948.

Rosenblatt, F., "The Perceptron: A Probabilistic Model for Information Storage and Organization in
the Brain," Psychological Review, Vol. 65, pp. 386-407, 1958.

Rosenblatt, F., Principles of Neurodynamics and the Theory of Brain Mechanisms, Spartan Books,
Washington, D. C , 1962.

CARBONELL, MICHALSKI AND MITCHELL 23

Samuel, A. L., "Some Studies in Machine Learning Using the Game of Checkers," IBM Journal of
Research and Development, No. 3, pp. 211-229, 1959.

Samuel, A. L., "Some Studies in Machine Learning using the Game of Checkers," Computers and
Thought, Feigenbaum, E. A. and Feldman, J. (Eds.), McGraw-Hill, New York, pp. 71-105,
1963.

Sebestyen, G. S., Decision-Making Processes in Pattern Recognition, Macmillan, New York, 1962.

Selfridge, O. G., "Pandemonium: A Paradigm for Learning," Proceedings of the Symposium on
Mechanization of Thought Processes, Blake, D. and Uttley, A. (Eds.), HMSO, London, pp.
511-529, 1959.

Simon, H. A. and Lea, G., "Problem Solving and Rule Induction: A Unified View," Knowledge and
Cognition, Gregg, L. W. (Ed.), Lawrence Erlbaum Associates, Potomac, Maryland, pp.
105-127, 1974.

Truxal, T. G., Automatic Feedback Control System Synthesis, McGraw-Hill, New York, 1955, (New
York).

Tsypkin, Y. Z., "Self Learning - What is it?," IEEE Transactions on Automatic Control, Vol.
AC-18, No. 2, pp. 109-117, 1968.

Tsypkin, Ya Z., Adaptation and Learning in Automatic Systems, Academic Press, New York, 1971.

Tsypkin, Y. Z., Foundations of the Theory of Learning Systems, Academic Press, New York, 1973,
(Translated by Z. L. Nikolic).

Uhr, L., Pattern Recognition, John Wiley and Sons, New York, 1966.

Vere, S. A., "Induction of concepts in the predicate calculus," Proceedings of the Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI, Tbilisi, USSR, pp. 281-287,
1975.

Watanabe, S., "Information-Theoretic Aspects of Inductive and Deductive Inference," IBM Journal
of Research and Development, Vol. 4, No. 2, pp. 208-231, 1960.

Widrow, B., Generalization and Information Storage in Networks of Adelaine 'Neurons,', Spartan
Books, Washington, D. C , pp. 435-461, 1962, (Yovitz, M. C ; Jacobi, G. T.; Goldstein,
G. D., editors).

Winston, P. H., "Learning structural descriptions from examples," The Psychology of Computer
Vision, Winston, P. H. (Ed.), McGraw Hill, New York, ch. 5, 1975, (Original version
published as a Ph.D. dissertaition, at MIT AI Lab, September, 1970).

Winston, P. H., "Learning and Reasoning by Analogy," CACM, Vol. 23, No. 12, pp. 689-703,
1979.

Yovits, M. C , Jacobi, G. T. and Goldstein, G. D., Self-Organizing Systems, Spartan Books,
Washington, D. C , 1962.

2

WHY SHOULD

MACHINES LEARN?

Herbert A. Simon
Carnegie-Me lion University

2.1 INTRODUCTION

When I agreed to write this chapter, I thought I could simply expand a
paper that I wrote for the Carnegie Symposium on Cognition, since the topic of
that symposium was also learning. The difficulty with plagiarizing that paper is
that it was really about psychology, whereas this book is concerned with
machine learning. Now although we all believe machines can simulate human
thought—unless we're vitalists, and there aren't any of those around any
more—still, I didn't think that was what was intended by the title of the book. I
didn't think it was appropriate to write about psychology.

When my chapter finally was outlined and written, it surprised me a bit;
whether it will surprise you or not, we can leave to the event. My chapter
turned out to propose a thesis to which perhaps the other chapters in this volume
will serve as antitheses. That will allow us to arrive at the great Hegelian syn-
thesis that we all wish for.

2.2 HUMAN LEARNING AND MACHINE LEARNING

I must begin, after all, by saying something about human learning, because
I want to compare and contrast what is involved in human learning with what is
involved in machine learning. Out of the synthesis of that contrast—in itself a
thesis and antithesis—will come my thesis.

25

26 CHAPTER 2: WHY SHOULD MACHINES LEARN?

2.2.1 Tediousness of Human Learning

The first obvious fact about human learning is that it's horribly slow. It
takes decades for human beings to learn anything. It took all of us six years just
to get up to starting speed for school, and then twenty more years to become
cognitive scientists or computer scientists. That is the minimum—some of us
took even longer than that. So, we're terribly slow learners. We maintain big
expensive educational systems that are supposed to make the process effective,
but with all we've been able to do with them—to say nothing of computer aided
instruction—it remains a terribly slow process.

I can still remember, although it was 45 years ago, trying to learn how to
do multiple regressions by the Gauss-Doolittle method with the aid of a desk
calculator. There's nothing complicated about the method except when you're
learning it. And then it seems terribly mysterious. You wonder why this gets
multiplied by that, and after a long while it gradually dawns on you. As a mat-
ter of fact you can carry out the calculations long before you understand the
rationale for the procedure.

Learning the linear programming simplex method also illustrates this point
and another one as well. Even after you've learned it, even after you've under-
stood it, even after (in principle) you can do it, you still can't really do it be-
cause you can't compute fast enough. I don't know of any humans who cal-
culate solutions of LP problems by the simplex method; as far as I know it's all
done by computers. The human doesn't even have to know the simplex method;
he just has to know the program library—cookbook statistics, or cookbook com-
puting, which we all do most of the time.

So human learning is a long, slow process. It should give us some pause,
when we build machine learning systems, to imagine what can possibly be going
on during all the time a human being is mastering a "simple" skill. We should
ask whether we really want to make the computer go through that tedious
process, or whether machines should be programmed directly to perform tasks,
avoiding humanoid learning entirely.

Of course we might discover a trick: a method of machine learning that
was orders of magnitude faster than human learning. Whether such tricks exist
depend on whether the inefficiencies of human learning derive from peculiar
properties of the human information processing system or whether they will be
present in any system that tries to extract patterns or other kinds of information
from complex, noisy situations and to retain those patterns in a manner that
makes them available for later use. The search for such tricks that manage to
escape the tediousness of human learning, however, provides a strong motivation
for research in machine learning.

SIMON 27

2.2.2 Learning and Copying

The second distinctive feature about human learning is that there's no copy
process. In contrast, once you get a debugged program in the computer you can
have as many copies as you want (given equivalence in operating systems and
hardware). You can have these copies free, or almost free. When one computer
has learned it, they've all learned it—in principle. An algorithm only has to be
invented once—not a billion times.

I've been involved a little bit in tutoring someone during the last few
weeks in beginning calculus. I think I know the calculus pretty well—I haven't
used it much for years, but it comes back. Yet I find it terribly frustrating trying
to transfer my knowledge and skill to another human head. I'd like to open the
lid and stuff the program in. But for one thing, I don't know where it is in my
head, I don't even know what language it's encoded in. For another thing, I
have no way of transferring it to the other head. That, of course, is why we
humans go through the slow learning process—because we can't copy and trans-
fer programs.

2.2.3 Why Machine Learning?

Contrast this with the machine learning task. In machine learning, the
minute you have the debugged program you read it into the computer and it
runs. The computer does what the psychologists call "one-trial learning". And,
as I've already indicated, what is learned can be copied ad nauseam. So, if one
thinks about that a little, one says, "What's all this about machine learning?
Why are we interested in it—if by machine learning we mean anything that's at
all like human learning? Who—what madman—would put a computer through
twenty years of hard labor to make a cognitive scientist or a computer scientist
out of it? Let's forget this nonsense—just program it." It would appear that,
now that we have computers, the whole topic of learning has become just one
grand irrelevancy—for computer science.

I have already qualified that conclusion in one respect: we do have reason
to search for machine learning programs that will avoid the inefficiencies of
human learning, although we must be alert to the possibility that such programs
cannot, in principle, be constructed. The difficulty may be intrinsic in the task;
human learning, though slow, may be close to optimally efficient.

I must also enter another caveat because you'll ask me, "What were you
saying in that talk you gave two months ago? Why were you talking about
learning?" The caveat is: Even in a world in which there are lots of computers it
still may be important for us to understand human learning. Artificial intel-
ligence has two goals. First, AI is directed toward getting computers to be smart
and do smart things so that human beings don't have to do them. And second,
AI (sometimes called cognitive simulation, or information processing
psychology) is also directed at using computers to simulate human beings, so
that we can find out how humans work and perhaps can help them to be a little
better in their work.

28 CHAPTER 2: WHY SHOULD MACHINES LEARN?

None of the doubts I have just raised about computer learning apply to this
second application of AI. Anybody who is interested in machine learning be-
cause he wants to simulate human learning—because he wants to understand
human learning and thinking, and perhaps improve it—can pursue his interest in
good conscience. But what about those who have other goals?

2.3 WHAT IS LEARNING?

When I had arrived at this point and surprised myself by writing down
these notes, I asked myself, "What can we talk about legitimately for the next
three days, other than cognitive psychology?" But I looked at the names of the
people who were going to be here and at some of the titles of papers in the
program, and I decided that a good deal of what we were talking about wasn't
really learning anyway, so it was all right.

Let me elaborate on that remark. The term "learning", like a lot of other
everyday terms, is used broadly and vaguely in the English language, and we
carry those broad and vague usages over to technical fields, where they often
cause confusion. I just saw a notice of a proposed special issue of SIGART,
with a list of kinds of learning. It's a long list, and I'd be astonished if all of
the items on it denote the same thing. Maybe it is just a list of the different
species of learning, but I suspect that it also reflects the great ambiguity of the
term "learning".

2.3.1 A Definition of Learning

The only partially satisfactory definition I've been able to find is that learn-
ing is any change in a system that allows it to perform better the second time on
repetition of the same task or on another task drawn from the same population.
The change should be more or less irreversible—not irreversible in the sense that
you can't unlearn (although that sometimes is hard, especially unlearning bad
habits) but irreversible in that the learning doesn't go away rapidly and
autonomously. Learning denotes changes in the system that are adaptive in the
sense that they enable the system to do the same task or tasks drawn from the
same population more efficiently and more effectively the next time.

Since we may want the same task done over and over and over again,
tuning a system so that it runs very fast is a great thing. Human beings seem to
have some tuning capabilities, often called automating task performance. But
more often, particularly in the university, we're interested in learning, not so that
the same task can be done over and over again, but so that we acquire the ability
to perform a wide range of tasks (for example, solving problems that appear on
examinations, or performing similar tasks that may occur afterwards in real life).

SIMON 29

2.3.2 Learning and Discovery

There are relations between learning and some other activities. For one
thing, learning is related to discovery. By discovery I mean finding new things.
Very little human learning is discovery. Most of what we know somebody told
us about or we found in a textbook. At the very best we acquired it by working
out some very carefully selected exercises, which guided us nicely in the right
direction and provided most of the selective heuristics for our search. There can
be all kinds of learning without discovery, and there usually are. Most of the
things we know were discovered by other people before we knew them, and only
a few were even reinvented by us.

Nevertheless, there is a relation between learning and discovery, because if
you do discover something and it's good, you'd like to retain it. So, if you have
a discovery system, you would like (somehow or other) to associate a learning
system with it, even a simple memorization and indexing scheme. That doesn't
quite get us off the hook. If you have a computer that discovers the proof for
Goldbach's Theorem or the Four Color Theorem, you don't have to have a
separate learning program, for you can simply get the proof out of the computer
and transport it around on paper in the usual way. But, it would be very con-
venient if the computer could store the proof so that it could be used in sub-
sequent work.

One of the first learning programs for computers was the little learning
routine in the Logic Theorist (LT) [Newell & Simon, 1956]. When the Logic
Theorist had the good fortune to prove a theorem in Principia Mathematica it
had the good sense to keep the theorem around. On the next problems, it didn't
start from the axioms alone but could use the new theorem along with the
axioms. It wasn't any great feat to program this learning program. It did what
we teachers call (pejoratively) "rote learning"—just memorizing. LT memorized
only the theorem, not the proof; but giving it the latter capability also would
have been a trivial matter.

In the Artificial Intelligence literature, the distinction I have been main-
taining here between discovery and learning is not usually observed. That is to
say, a great many machine "learning" systems are also discovery systems; they
discover new knowledge that they subsequently retain. Most of the skeptical ar-
guments I have raised about machine learning do not apply to the discovery
process. Hence, I think it quite appropriate that a large part of the research ef-
fort in the domain of "machine learning" is really directed at "machine
discovery". As long as we are not ourselves confused by the terminology, I do
not even see a strong reason to object to this substitution of terms.

2.3.3 Learning and Understanding Natural Language

So, there's a connection here between learning and discovery. There is
also a connection between learning and understanding. Understanding includes
the whole natural language problem. In human life (and I'll try later to connect

30 CHAPTER 2: WHY SHOULD MACHINES LEARN?

this up with computers) most of what we learn we get from other people, com-
municated to us in natural language. A good many of the tasks that people have
undertaken for machine learning have involved a natural language front end as an
important part of the task. It is also a very annoying part of the task, eating up
all of your time and energy when you wish you were doing something else.

2.3.4 Learning and Problem-Solving

Additionally, some things we might call "learning" could also be called
"problem-solving". I've heard "automatic programming" called "learning". The
aim of automatic programming is to be able to say the same brief vague things to
a computer you'd say to a good human programmer in defining a task for him
and to come out with a program on the other end. What the automatic program-
ming program does is not really learning; it is solving the problem of getting
from the sloppy ill-structured input statement of the programming problem to a
well-structured program in the programming language. This kind of "learning"
could readily come under the usual heading of "problem-solving".

Nevertheless, traditionally at least, the tasks of discovery, of natural lan-
guage understanding, and of self-programming have often been intermingled
with, or even identified as, learning tasks. If you want to call it learning you
won't get an argument from me. It really isn't learning but...

2.4 SOME LEARNING PROGRAMS

I'm going to back off one step further from my unkind words about
machine learning and look at some "classical" examples ("classical" in the field
of computer science is anything twenty years old) of learning programs, to see
whether they really justify my harsh judgment.

2.4.1 Learning to Play Checkers

The first that I ought to mention is surely Arthur Samuel's checker
program [Samuel, 1959]. Here was a program that, in the morning, wasn't very
much of a checker player. But after you switched on its learning process and
gave it games to play and other training exercises, by evening it was a State-
champion-level checker player. That is a lot better than any of us could do. So
there's a very impressive example of a learning program going back twenty-five
years.

Let me submit that however fine this program was from an AI standpoint,
it only made sense if we really didn't understand checkers. If Samuel had un-
derstood checkers well, he could have put the final evaluation function in right at
the beginning. (You may recall that he used two kinds of learning, but the only
one I want to mention at the moment is tuning the evaluation function for posi-
tions on the basis of outcomes. When good things happened, items that were

SIMON 31

heavily weighted in the evaluation function got additional weight, and when bad
things happened they lost some of their weight.) If Samuel had known the right
evaluation function at the outset, he would have put it in the program; he would
not have gone through all the learning rigamarole. It cost only one day of com-
puting time, to be sure, but computers were expensive then, even for one day.

It does make sense to provide for such learning in a task where you don't
know enough to do the fine tuning. We might think of this as an area of
machine learning (or, more accurately, machine discovery) where we can get the
system to behave better than it would behave if we just sat down and
programmed it. Nobody writing chess programs has had this feeling yet. They
all think they know more chess than a computer could acquire just by tuning
itself. As far as I know, none of the successful chess-playing programs have had
any learning ability.

So there are cases where the computer can learn some things that we didn't
know when we programmed it. But if you survey the fields of AI and
knowledge engineering today, you will find very few cases where people have
had the feeling this could or should be done, or have had any ideas of how to do
it. Nevertheless, this potential application of learning procedures is certainly one
further qualification on my general stricture against such programs.

I've already mentioned learning by the Logic Theorist, but that was just
convenience, unless LT had reached the point where it was discovering
genuinely new things. If Doug Lenat had let AM [Lenat, 1977] run for another
two hours—as I kept telling him he should—and it had discovered something
completely new, then the learning would make sense, for you would want to
save what had been discovered.

2.4.2 Automatic Indexing

There's something to be said (again, largely on convenience grounds) for
systems that are capable at least of learning discrimination nets—EPAM nets, if
you like [Feigenbaum, 1963]. If you're building up a big data base and adding
information to it all the time, you want easy access to that information, and so
you want an index. It's a lot more convenient to have the system index itself as
it goes along, than to index it by hand.1 Or if you're building a large production
system and don't want to search it linearly, you're going to incorporate an index
in the production system to select the order in which it performs the tests. There
is no difficulty in automating that; we have known for twenty-five years how to
do it. So why not?

So there's some room for learning there. I don't know whether there's
much room for learning research, since the technology of growing discrimination

•By "indexing" I mean building up a tree or network of tests so that you can access a data store in
ways other than by linear search.

32 CHAPTER 2: WHY SHOULD MACHINES LEARN?

nets, alias indexes, is already pretty well developed, but someone may find a
great new way of doing it.

2.4.3 Perceptrons

A final "classical" example (this is a negative example to prove my point)
is the whole line of Perceptron research and nerve net learning [Rosenblatt,
1958]. A Perceptron is a system for classifying objects (that is, a discovery and
learning system) that computes features of the stimulus display, then attempts to
discriminate among different classes of displays by computing linear additive
functions of these features. Functions producing correct choices are reinforced
(receive increased weight), those producing incorrect choices have their weights
reduced. I have to conclude (and here I don't think I am in the minority) that
this line of research didn't get anywhere. The discovery task was just so horren-
dous for those systems that they never learned anything that people didn't al-
ready know. So they should again strengthen our skepticism that the problems
of AI are to be solved solely by building learning systems.

2.5 GROWTH OF KNOWLEDGE IN LARGE SYSTEMS

In the remainder of my remarks, I would like to focus attention on large
knowledge-based AI systems, particularly systems that can be expected to con-
tinue to grow and accumulate over a period of years of use. We may find in
such systems some reasons to qualify a general skepticism about the role of
learning in applied AI. Medical diagnosis systems like INTERNIST [Pople, 1977]
and MYCIN [Shortliffe, 1976], and the venerable DENDRAL program [Feigenbaum
et al., 1971] are examples of the kinds of systems I have in mind.

There has been attention (as in TEIRESIAS [Davis, 1981] and other such
efforts) to designing an effective programming interface between these
knowledge-based systems and the humans who are supposed to improve them,
and you can call that learning (or instruction). Most of the work has been aimed
at making the job of the human easier. (Perhaps that's unfair, for it's a mutual
job for the two of them.) So one might think of the man-machine interface as a
good locus for learning research.

2.5.1 The ISAAC Program

To make my remarks more concrete, I would like to discuss for a bit Gor-
don Novak's well-known ISAAC system, which solves English-language college
physics problems of the sorts found in textbooks [Novak, 1977]. Although
ISAAC is primarily a performance or problem-solving program, one can think of
some interesting ways of complementing it with a learning program.

ISAAC has a data bank containing schémas that describe various kinds of
simple objects that physicists talk about—levers, masses, pivots, surfaces, and

SIMON 33

the like. A schema is just what you'd expect—a description list of an object
with slots that you can fill in with information about its characteristics. In ad-
dition, ISAAC has, of course, some productions and a control structure.

When you give ISAAC a physics problem in natural language out of the
physics textbook, it uses its schémas and productions to produce an internal
representation of the problem. The representation is another node-link structure,
which you can think of as a super-schema made up by assembling and instan-
tiating some of the basic schémas. ISAAC will assemble some levers, and some
masses, and a pivot or two, and a surface in the way the problem tells it, and
make a problem schema out of them. At the outset it parses the sentences stat-
ing the problem, using its schémas to extract structure and meaning from them,
and builds its internal representation, a problem schema.

This internal representation contains so much information about the
problem that ISAAC uses a little subsidiary program to depict the problem scene
on a CRT. Of course the real reason ISAAC wants this internal representation is
not to draw a picture on a scope, but to use it to set up an appropriate set of
equations and solve them.

Notice that ISAAC doesn't try to translate the natural language problem
directly into equations, as Bobrow's STUDENT program did for algebra [Bobrow,
1968]. It first builds up an internal representation—what I think a physicist
would call a physical representation (a "mental picture") of the situation. It then
uses that intermediate representation to build the equations, which it ultimately
solves. The internal representation does a lot of work for ISAAC because it iden-
tifies the points where forces have to be equilibrated and therefore identifies
which equations have to be set up.

2.5.2 A Learning Extension of ISAAC

We can enlarge ISAAC by adding to it an UNDERSTAND program [Hayes &
Simon, 1974]. Now you're going to say, "Ah ha! ISAAC already has an under-
standing program, because ISAAC can understand the problems it is given." That
is true. But to do this, ISAAC must already have in memory a rich set of
schémas describing physical devices, and it must already have the set of produc-
tions that allow it to organize these schémas into an internal representation. So
ISAAC already knows all the physics it's going to know. While it understands
problems, how about understanding physics? This would require the ability to
use natural language information to construct new schémas and new productions.
This is what the UNDERSTAND program does—not for physics, but for slightly
simpler domains, UNDERSTAND creates, from the natural language, schémas for
the kinds of objects being talked about and their relations. (In fact, Novak is
presently exploring similar lines of investigation.)

What I want to ask about this whole amalgam of ISAAC and UNDERSTAND

is, what is the place here for learning research in AI? (I know what the place is
here for learning research in psychology. I think this is a very important area.

34 CHAPTER 2: WHY SHOULD MACHINES LEARN?

But let's continue to talk about the AI side of it.) If we understand the domain
ourselves, if we understand physics, why don't we just choose an internal
representation and provide the problems to the system in that internal represen-
tation? What's all this learning and natural language understanding about? Or,
if we still want to give the system a capability of doing the problems in the back
of the textbook, which are in natural language, then-lets build Novak's ISAAC
system. Why go through all the rigamarole of an UNDERSTAND program to learn
the schémas and the productions painstakingly instead of just programming
them? Before you launch into such a project as an AI effort (as distinct from a
psychological research project), you have to answer that question.

2.6 A ROLE FOR LEARNING

Since you have listened very patiently to my skeptical challenge to learning
as the road to the future in AI, I think I should own up to one more important
qualification that needs to be attached to my thesis—a little fragment of the more
complete antithesis that the other papers of this volume develop.

I began by running down the human species—emphasizing how stupid we
all are as revealed by our agonizingly slow rates of learning. It is just possible
that the complexity of the learning process is not an accident but is, instead, an
adaptive product of evolution. The human brain is a very large collection of
programs that cumulates over a lifetime or a large part of a lifetime. Suppose
that we were allowed to open up the lid and program ourselves directly. In or-
der to write debugged programs, modifications of our present programs, we
would have to learn a lot about the internal code, the internal representations of
the knowledge and skills we already possess.

Perhaps you know how knowledge is organized in your brain; I don't know
how it is organized in mine. As a consequence, I think it would be exceedingly
difficult for me to create a new, debugged code that would be compatible with
what is already stored. This is, of course, a problem that we already encounter
with our time-shared computers today. As we add new utility programs, or
modify the monitors or operating systems, we encounter all sorts of interactions
that make these modifications cumulatively harder to effect. At best, we encap-
sulate knowledge in hosts of separate programs that can operate independently of
each other, but by the same token, cannot cooperate and share their knowledge
effectively. Old programs do not learn, they simply fade away. So do human
beings, their undebuggable programs replaced by younger, possibly less tangled,
ones in other human heads. But at least until the state of undebuggability is
reached, human programs are modified adaptively and repeatedly by learning
processes that don't require a knowledge of the internal representation.

It may be that for this kind of system (a human brain or the memory of a
very large time-shared computing system) the only way to bring about continual
modification and improvement of the program is by means of learning

SIMON 35

procedures that don't involve knowing the detail of the internal languages and
programs. It is a salient characteristic of human learning procedures that neither
teacher nor learner has a detailed knowledge of the internal representation of data
or process. It may turn out that there aren't procedures more efficient than these
very slow ones that human beings use. That's just a speculation, but we ought
to face the grim possibilities as well as the cheery possibilities in the world.

Even if we had to accomplish our complex programming in this indirect
way, through learning, computers still would have a compensation—the costless
copying mechanism that is not shared by human beings. Only one computer
would have to learn; not every one would have to go to school.

2.7 CONCLUDING REMARKS

By now you are aware that my case against AI research in learning is a
very qualified case with several important exceptions—exceptions you may be
able to stretch until they become the rule. Let me put the matter in a positive
way, and rephrase these exceptions as priorities for learning research. They are
five in number.

1. I would give a very high priority to research aimed at simulating, and
thereby understanding, human learning. It may be objected that such
research is not AI but cognitive psychology or cognitive science or some-
thing else. I don't really care what it is called; it is of the greatest impor-
tance that we deepen our understanding of human learning, and the AI
community possesses a large share of the talent that can advance us toward
this goal.

2. I would give a high priority, also, to basic research aimed at understanding
why human learning is so slow and inefficient, and correspondingly, at ex-
amining the possibility that machine learning schemes can be devised that
will avoid, for machines as well as people, some of the tediousness of
learning.

3. I would give a high priority to research on the natural language interface
between computer systems and human users. Again, it does not matter
whether you call it research on learning or research on understanding. We
do want systems, particularly in the knowledge engineering area, in which
we don't have to know the internal language or representation in order to
interact with them. This is especially true, as I have just argued, if the
systems are to be cumulative over many years.

4. I think there is an important place for research on programming from in-
complete instructions (automatic programming), which is not unrelated to
the preceding item. Giving instructions to a skilled programmer is dif-
ferent from writing the program yourself—else why hire the programmer?
It is a very important research question to ask whether we can get the com-
puter to be the skilled programmer.

36 CHAPTER 2: WHY SHOULD MACHINES LEARN?

5. My final priority is research on discovery programs—programs that dis-
cover new things. We may regard discovery itself as a form of learning,
but in addition we will want to give a discovery system learning
capabilities because we will want it to preserve and to be able to use all
the new things it finds.
So now, I guess, I have come full circle, and have made a strong case for

machine learning. But I do not think the effort in addressing my initial skep-
ticism has been wasted. Research done in the right area for the wrong reasons
seldom achieves its goals. To do good research on machine learning, we must
have clear targets to aim at. In my view, the usual reasons given for AI learning
research are too vague to provide good targets, and do not discriminate with suf-
ficient care the learning requirements for people and computers, respectively.

Perhaps the deepest legitimate reason for doing machine learning research
is that, in the long run for big knowledge-based systems, learning will turn out
to be more efficient than programming, however inefficient such learning is.
Gaining a deeper understanding of human learning will continue to provide im-
portant clues about what to imitate and what to avoid in machine learning
programs. If this is true, then it follows that among the most important kinds of
learning research to carry out in AI are those that are oriented toward under-
standing human learning. Here as elsewhere, Man seems to be the measure of
all things.

ACKNOWLEDGMENTS

This research was supported by Research Grant MH-07722 from the Na-
tional Institute of Mental Health, and a grant from the Alfred P. Sloan Foun-
dation.

REFERENCES

Bobrow, D. G., "Natural language input for a computer problem-solving system," Semantic Infor-
mation Processing, Minsky, M. (Ed.), MIT Press, Cambridge, MA, 1968.

Davis, R., "Applications of meta level knowledge to the construction and use of large knowledge
bases," Knowledge-Based Systems in Artificial Intelligence, Davis, R. and Lenat, D. (Eds.),
McGraw-Hill Book Company, New York, NY, 1981.

Feigenbaum E. A., "The simulation of verbal learning behavior," Computers and Thought, Feigen-
baum, E. A. and Feldman, J. (Eds.), McGraw-Hill Book Company, New York, NY, 1963.

Feigenbaum, E. A., Buchanan, B. G. and Lederberg, J., "On generality and problem solving: A case
study using the DENDRAL program," Machine Intelligence, Meltzer, B. and Michie,
D. (Eds.), Edinburgh University Press, Edinburgh, Scotland, 1971.

Hayes, J. R. and Simon, H. A., "Understanding written problem instructions," Knowledge and
Cognition, Gregg, L. W. (Ed.), Lawrence Erlbaum Associates, Potomac, MD, 1974.

SIMON 37

Lenat, D. B., "Automated theory formation in mathematics," Proceedings of the Fifth International
Joint Conference on Artificial Intelligence, IJCAI, Cambridge, MA, pp. 833-842, August
1977.

Newell, A. and Simon, H. A., "The logic theory machine," IRE Transactions on Information
Theory, Vol. IT-2, No. 3, pp. 61-79, September 1956.

Novak, G. S., "Representations of knowledge in a program for solving physics problems," Proceed-
ings of the Fifth International Joint Conference on Artificial Intelligence, IJCAI, Cambridge,
MA, pp. 286-291, August 1977.

Pople, H., "The formation of composite hypotheses in diagnostic problem solving," Proceedings of
the Fifth International Joint Conference on Artificial Intelligence, IJCAI, Cambridge, MA,
pp. 1030-1037, August 1977.

Rosenblatt, F., "The perceptron: A probabilistic model for information storage and organization in
the brain," Psychological Review, Vol. 65, pp. 386-407, 1958.

Samuel, A. L., "Some studies in machine learning using the game of checkers," IBM Journal of
Research and Development, No. 3, pp. 210-220, 1959.

Shortliffe, E., Computer-Based Medical Consultations: MYCIN, American Elsevier Publishing Com-
pany, New York, NY, 1976.

3

A COMPARATIVE REVIEW

OF SELECTED METHODS FOR

LEARNING FROM EXAMPLES
Thomas G. Dietterich

Stanford University

Ryszard S. Michalski
University of Illinois

at Urbana-Champaign

ABSTRACT

Research in the area of learning structural descriptions from examples is
reviewed, giving primary attention to methods of learning characteristic descrip-
tions of single concepts. In particular, we examine methods for finding the
maximally-specific conjunctive generalizations (MSC-generalizations) that cover
all of the training examples of a given concept. Various important aspects of
structural learning in general are examined, and several criteria for evaluating
structural learning methods are presented. Briefly, these criteria include (i) ade-
quacy of the representation language, (ii) generalization rules employed, (Hi)
computational efficiency, and (iv) flexibility and extensibility. Selected learning
methods developed by Buchanan, et al., Hayes-Roth, Vere, Winston, and the
authors are analyzed according to these criteria. Finally, some goals are sug-
gested for future research.

3.1 INTRODUCTION

3.1.1 Motivation and Scope of Chapter

The purpose of this chapter is to introduce some of the important issues
affecting the design of learning programs—particularly programs that learn from
examples. This chapter begins with a survey of these issues. From the survey,

41

42 CHAPTER 3: A COMPARATIVE REVIEW

four criteria are developed for evaluating learning methods. The remainder of
the chapter describes and evaluates five existing learning systems according to
these criteria.

We do not attempt to review all of the work on learning from examples
(also known as learning by induction). Instead, we focus on one particular
problem: the problem of learning structural descriptions from a set of positive
training instances. Specifically, we survey methods for finding the maximally-
specific conjunctive generalizations (called MSC-generalizations) that charac-
terize a given class of entities. This is one of the simplest learning problems that
has been addressed by AI researchers. The problem of finding MSC-
generalizations lends itself to comparative analysis because several different
methods have been developed. This is unusual in current research on machine
learning, which is currently investigating a wide variety of learning problems and
learning methods. Particular methods reviewed in this chapter include those
developed by Buchanan et al. [1971, 1976, 1978], , Hayes-Roth [1976a, 1976b,
1977, 1978] Vere [1975, 1977, 1978, 1980], Winston [1970, 1975], and the au-
thors. This chapter is based on the article by Dietterich and Michalski [1981].

Before proceeding any further, let us explain our terminology. The chapter
deals first of all with structural descriptions. Structural descriptions portray ob-
jects as composite structures consisting of various components. For instance, a
structural description of a building could represent the building in terms of the
floors, the walls, the ceilings, the hallways, the roof, and so forth, along with
the relations that hold among these various components. Structural descriptions
can be contrasted with attribute descriptions, which specify only global
properties of an object. An attribute description of a building might list its cost,
architect, height, total square-footage and so forth. No internal structure is
represented. Attribute descriptions can be expressed using propositional
logic—that is, null-ary predicates.1 Structural descriptions, however, must be ex-
pressed in predicate logic. Each subcomponent is described globally using vari-
ables and unary predicates, and relations between components are expressed as
k-ary predicates and functions.2 In this chapter, variables, predicates, and func-
tions are all referred to as descriptors.

The second item of terminology that requires explanation is the notion of a
maximally-specific conjunctive generalization. A conjunctive generalization is a
description of a class of objects obtained by forming the conjunction (AND) of a
group of primitive statements. For example, the class of houses might be
described as the set of all objects such that:

'This is a slight simplification. With multi-valued attributes such as color, one must either create a
separate predicate for each color, or else employ some form of multiple-valued logic, such as VL,.
2This is also a slight simplification. In principle, it is always possible to convert a structural
description into an attribute description, but such a conversion leads to a combinatorial explosion in
the number of attributes.

DIETTERICH & MICHALSKI 43

the number of floors is less than four AND the purpose of the
building is to be used as a dwelling

We write this symbolically as a VI^ expression:
[#-of-floors < 4] & [purpose-of-building = dwelling]

An example of a description that is not conjunctive is the definition of "not
married for tax purposes" as:

[marital status = single] V [marital status = married] [filing status = separate returns]

This is a disjunctive description.
A maximally-specific conjunctive generalization is the most detailed (most

specific) description that is true of all of the known objects in the class. Since
specific descriptions list many facts about the class, the maximally-specific con-
junctive generalization is the longest conjunctive generalization that still
describes all of the training instances.

Now that we have described the scope of this chapter, we introduce several
issues that are important in learning from examples. From these issues, we will
later develop four criteria for evaluating learning systems and apply these criteria
to the comparison of five existing learning methods.

3.1.2 Important Aspects of Learning From Examples

The process of inductive learning can be viewed as a search for plausible
general descriptions (inductive assertions) that explain the given input data and
are useful for predicting new data. In order for a computer program to formulate
such descriptions, an appropriate description language must be used. For any set
of input data and any non-trivial description language, a large number of induc-
tive assertions can be formulated. These assertions form a set of descriptions
partially ordered by the relation of relative generality [Mitchell, 1977]. The min-
imal elements of this set are the most specific descriptions of the input data in
the given language, and the maximal elements are the most general descriptions
of these data. The elements of this set can be generated by starting with the
most specific descriptions and repeatedly applying rules of generalization to
produce more general descriptions.

The view of induction as a search through a space of generalized descrip-
tions draws attention to the following aspects of learning:

• Representation. What description language is employed for expressing the
input examples and formulating the inductive assertions? What are the
possible forms of assertions that a method is able to learn? What operators
are used in these forms?

• Type of description sought. For what purpose are the inductive assertions
being formulated? What assumptions does the induction method make
about the underlying process(es) that generated the data?

• Rules of generalization. What kinds of transformations are performed on

44 CHAPTER 3: A COMPARATIVE REVIEW

the input data and intermediate descriptions in order to produce the induc-
tive assertions?

• Constructive induction. Does the induction process change the description
space; that is, does it produce new descriptors that were not present in the
input events?

• Control strategy. What is the strategy used to search the description
space: bottom-up (data-driven), top-down (model-driven), or mixed?

• General versus problem-oriented approach. Is the method oriented
toward solving a general class of problems, or is it oriented toward
problems in some specific application domain?
We now discuss each of these aspects in more detail.

3.1.3 Representation Issues

Many representational systems can be used to represent events and
generalizations of events—for example, predicate calculus, production rules,
hierarchical descriptions, semantic nets, frames, and scripts. Much AI work on
inductive learning (the exceptions include the AM system [Lenat, 1976], and
work by Winston [1970]) has employed predicate calculus (or some closely re-
lated system), because of its well-defined syntax and semantics. (An important
study of theoretical problems of induction in the context of predicate calculus
was undertaken by Plotkin [1970, 1971].)

The mere statement that some learning method "uses predicate calculus"
does not tell us very much about that method. Most learning methods place fur-
ther restrictions on the forms of inductive assertions. For example, although a
learning system might in principle be able to represent disjunctive descriptions,
in practice it may have no mechanisms for actually discovering such descrip-
tions. One way to capture this distinction between "representable forms" and
"learnable forms" is to indicate which operators can actually be used in each.
The most common operators are conjunction (&), disjunction (V), exception,
and the existential and universal quantifiers.

3.1.4 Types of Descriptions

Since induction is a search through a description space, one must specify
the goal of this search—that is, one must provide criteria that define the goal
description. These criteria depend upon the specific domain in question, but
some regularities are evident. We distinguish among characteristic, discriminant,
and taxonomic descriptions.

A characteristic description is a description of a class of objects (or situa-
tions, events, and so on) that states facts that are true of all objects in the class.
It is usually intended to discriminate objects in the given class from objects in all
other possible classes. For example, a characteristic description of the set of all
tables would discriminate any table from all things that are non-tables. In this

DIETTERICH & MICHALSK! 45

way, the description characterizes the concept of a table. The task of discover-
ing a characteristic description is a single-concept acquisition task (see Chapter
4 of this book). Since it is impossible to examine all objects in a given class (or
not in a given class), a characteristic description is usually developed by specify-
ing all characteristics that are true for all known objects of the class (positive
examples). In some problems, negative examples (counterexamples) are avail-
able that represent objects known to be outside the class. Negative examples can
greatly help to circumscribe the desired conceptual class. Even more helpful are
counterexamples that are "near misses"—that is, negative examples that just
barely fail to be positive examples (see Winston [1970, 1975]).

A discriminant description is a description of a class of objects in the con-
text of a fixed set of other classes of objects. It states only those properties of
the objects in the given class that are necessary to distinguish them from the ob-
jects in the other classes. A characteristic description can be viewed as an ex-
treme kind of discriminant description in which the given class is discriminated
against infinitely many alternative classes.

A taxonomic description is a description of a class of objects that sub-
divides the class into subclasses. In constructing such a description, it is as-
sumed that the input data are not necessarily members of a single conceptual
class. Rather it is assumed that they are members of several different classes (or
produced by several different processes). An important kind of taxonomic
description is a description that determines a conceptual clustering—a structuring
of the data into object classes corresponding to distinct concepts. Taxonomic
descriptions can be "flat"—with all object classes stated at the same level of
abstraction—or hierarchical—with object classes arranged in an abstraction tree.
A taxonomic description is fundamentally disjunctive. The overall class is
described by the disjunction of the subclass descriptions. Taxonomic description
is a kind of descriptive generalization rather than concept acquisition (see Chap-
ter 4 of this book).

Determination of characteristic and discriminant descriptions is the subject
of learning from (pre-classified) examples, while determination of taxonomic
descriptions (conceptual clustering) is the subject of learning from observation or
"learning without teacher". This distinction between these two forms of learning
is examined in detail in Chapter 4 of this book.

In this chapter we restrict ourselves to the problem of determining charac-
teristic descriptions. The problem of determining discriminant descriptions has
been studied by Michalski and his collaborators [Larson & Michalski, 1977; Lar-
son, 1977; Michalski, 1973, 1975, 1977, 1980a, 1980b] (see also Chapters 4 and
15 of this book.). A general method and computer program, CLUSTER/2, for con-
ceptual clustering is described by Michalski and Stepp in Chapter 11 of this
book.

46 CHAPTER 3: A COMPARATIVE REVIEW

3.1.5 Rules of Generalization

The partially-ordered space of descriptions of different levels of generality
can be described by indicating what transformations are being applied to change
less general descriptions into more general ones. Consequently, determination of
inductive assertions can be viewed as a process of consecutive application of cer-
tain "generalization rules" to initial and intermediate descriptions. A generaliza-
tion rule is a transformation rule that, when applied to a classification rule
Si ::> K , produces a more general classification rule S2 ::> K .3

This means that the implication Sj => S2 holds. A generalization rule is called
selective if S2 involves no descriptors other than those used in Sj. If S2 does
contain new descriptors, then the rule is called constructive (see section 3.1.6).
Selective rules of generalization do not change the space of possible inductive
assertions, while constructive rules do change it.

The concept of rules of generalization provides further insight into the view
of induction as a heuristic search of description space. The rules of generaliza-
tion specify the operators that the search uses to move from one node to another
in this space. The concept of generalization rules is also useful for comparing
different learning methods because these rules abstract from the particular
description languages used in the methods. In this chapter, we briefly outline
the concept of a generalization rule and present a few examples. Chapter
4 presents a much more detailed discussion of the subject and an extensive list of
generalization rules.

One of the simplest generalization rules is the dropping condition rule,
which states that to generalize a conjunction, you may drop any of its conjunc-
tive conditions. For example, the class K of "red apples" can be generalized to
the class of all "apples" of any color by dropping the "red" condition. This can
be written as:

red(v) & apple(v) ::> K can generalize to apple(v) ::> K

This is a selective rule of generalization because it does not introduce any
new descriptors. An example of a constructive rule is the find extrema of partial
orders rule. This rule augments a structural description by adding new descrip-
tors for objects that are at the end points of ordered chains. For example, in a
description of a four-storey office building, we might have the statement that
"the second floor is on top of the first floor, the third floor is on top of the
second, and so on." The find extrema rule would generate the fact that "the first
floor is the bottom-most and the fourth floor is the top-most floor." The "on top
o f relations form an ordered chain. Symbolically, this is written as:

ontop(f2,fl) & ontop(f3,f2) & ontop(f4,f3) l< most-ontop(f4) & least-ontop(f 1)

3The notation Sj ::> K means that all objects for which S, is true are classified as belonging to
class K.

DIETTERICH & MICHALSKI 47

where the l< sign is interpreted as "can be generalized to". Other selective
rules of generalization needed for this chapter include:

• the turning constants to variables rule
• the adding internal disjunction rule
• the closing interval rule
• the climbing generalization tree rule

These rules are explained in Chapter 4 of this book.
We also employ one rule of specialization. Any of the above rules of

generalization can become rules of specialization by using them in reverse.
However, one important rule of specialization is the introducing exception rule.
It can be applied to a description in order to specialize it to take into account a
counterexample. Suppose, for example, that a program is attempting to learn the
concept of a "fish". Its initial hypothesis might be that a fish is anything that
swims. However, it then is told about a dolphin that swims and breathes air but
is not a fish. At this point, the program might guess that a fish is anything that
swims and does not breathe air. This can be written as:

> swims(v) & —breathes-air(v) ::> K
current description: swims(v) ::> K

negative example: swims(v) & breathes-air(v) ::> ~K

The l> sign is interpreted as meaning "can be specialized to".

3.1.6 Constructive Induction

As we have mentioned above, constructive induction is any form of induc-
tion that generates new descriptors not present in the input data. It is important
for learning programs to be able to perform constructive induction, since it is
well known that many AI problems cannot be solved without a change of
representation. Many existing methods of induction (for example, [Hunt et al.,
1966; Hayes-Roth, 1976a, 1976b; Vere, 1975, 1980; Mitchell, 1977, 1978]) do
not perform constructive induction. We say that these methods perform selective
induction, since the descriptors present in the generalizations produced by the
program are selected from those present in the input data.

There are several existing systems that perform some form of constructive
induction. Soloway's BASEBALL system [Soloway, 1978], for example, applies
several rules of constructive induction to convert raw snapshots of a simulated
baseball game into high-level episode descriptions that can be generalized to dis-
cover such concepts as "run", "hit", and "out". In this system, the constructive
induction takes place first, followed by selective induction.

Larson's INDUCE-I system [Larson, 1977; Larson & Michalski, 1977], on
the other hand, performs constructive and selective induction simultaneously.
INDUCE-1 implements the "find extrema of partial orders" rule of generalization
described above, along with a few other constructive induction rules. New

48 CHAPTER 3: A COMPARATIVE REVIEW

descriptors are tested for discriminatory ability before they are added to all of the
training instances.

Unfortunately, most existing systems have not implemented constructive
induction rules in any general way. Instead, specific procedures are written to
generate the new descriptors. This is an important problem for future research.
In Chapter 4 of this book, Michalski presents more rules of constructive induc-
tion.

3.1.7 Control Strategy

Induction methods can be divided into bottom-up (data-driven), top-down
(model-driven), and mixed methods depending on the strategy that they employ
during the search for generalized descriptions. Bottom-up methods process the
input events one at a time, gradually generalizing the current set of descriptions*
until a final conjunctive generalization is computed:

G2 is the set of conjunctive generalizations of E, and E2. G, is the set of con-
junctive generalizations obtained by taking each element of G,_, and generalizing
it with E,.

Methods described by Winston, Hayes-Roth, and Vere are reviewed in this
chapter. Other bottom-up methods include the candidate elimination approach
described by Mitchell [1977, 1978], the ID3 technique of Quinlan [1979a,
1979b] (see also Chapter 15 of this book), and the Uniclass method described by
Stepp [1970].

Top-down methods search a set of possible generalizations in an attempt to
find a few "best" hypotheses that satisfy certain requirements. The two methods
discussed in this chapter (Buchanan, et al. and Michalski) search for a small
number of conjunctions that together cover all of the input events. The search
proceeds by choosing as the initial working hypotheses some elements from the
partially-ordered set of all possible descriptions. If the working hypotheses
satisfy certain criteria, then the search halts. Otherwise, the current hypotheses
are modified by slightly generalizing or specializing them. These new
hypotheses are then checked to see if they satisfy the termination criteria. The
process of modifying and checking continues until the criteria are met. Top-
down techniques typically have better noise immunity and can be easily extended
to discover disjunctions. The principal disadvantage of these techniques is that
the working hypotheses must be checked repeatedly to determine whether they
subsume all of the input events.

DIETTERICH & MICHALSKI 49

3.1.8 General versus Problem-oriented Methods

It is a common view that general methods of formal induction, although
mathematically elegant and theoretically applicable to many problems, are in
practice very inefficient and rarely lead to any interesting solutions. This
opinion has led certain workers to abandon (at least temporarily) work on general
methods and concentrate on learning problems in some specific domains (for ex-
ample, Buchanan, et al. [1978] in chemistry or Lenat [1976] in elementary num-
ber theory). Such an approach can produce novel and practical solutions. On
the other hand, it is difficult to extract general principles of induction from such
problem-specific work. It is also difficult to apply such special-purpose
programs to new areas.

An attractive possibility for solving this dilemma is to develop methods
that incorporate various general principles of induction (including constructive
induction) together with mechanisms for using exchangeable packages of
problem-specific knowledge. This idea underlies the development of the INDUCE
programs [Larson, 1977; Larson & Michalski, 1977; Michalski, 1980a] and the
Star methodology described by Michalski in Chapter 4 of this book.

3.2 COMPARATIVE REVIEW OF SELECTED METHODS

3.2.1 Evaluation Criteria

The selected methods of induction are evaluated in terms of several criteria
considered especially important in view of our discussion in Section 3.1.

1. Adequacy of the representation language: The language used to represent in-
put data and output generalizations determines to a large extent the quality and
utility of the output descriptions. Although it is difficult to assess the adequacy
of a representation language out of the context of some specific problem, recent
work in AI has shown that languages that treat all phenomena uniformly must
sacrifice descriptive precision. For example, researchers who are attempting to
build systems for understanding natural language prefer rich knowledge represen-
tations, such as frames, scripts, and semantic nets, to more uniform and less
structured representations, such as attribute-value lists and PLANNER-style
representations. Although languages with many syntactic forms do provide
greater descriptive precision, they also lead to combinatorial increases in the
complexity of the induction process. In order to control this complexity, a com-
promise must be sought between uniformity and richness of representational
forms. In the evaluation of each method, a review of the operators and syntactic
forms of each description language is provided.

2. Rules of generalization implemented: The generalization rules implemented in
each algorithm are listed.
3. Computational efficiency: To get some approximate measure of computational

50 CHAPTER 3: A COMPARATIVE REVIEW

efficiency, we have hand simulated each algorithm on the test problem shown in
Figure 3-2. In the simulation, we have measured the total number of times an
inductive description was generated and the total number of times one inductive
description was compared to another (or compared to a training instance). These
provide good measures of computational effort, since generation and comparison
of structural descriptions are expensive operations. We have also computed the
ratio of the number of final descriptions output by the algorithm to the total num-
ber of descriptions generated by the algorithm. This provides a measure of over-
all efficiency, since a ratio of 1 indicates that every description generated by the
algorithm was correct, while a ratio of 0 indicates that none of the generated
descriptions were correct.

Our evaluation of these induction methods is not based entirely on these
numerical measures, however (particularly since they are derived from only one
test problem). An additional value of the simulation is that it gives some general
idea of how the algorithms behave and shows the kinds of descriptions that the
algorithms are able to discover. The reader is admonished to treat the efficiency
measurements as highly approximate.
4. Flexibility and extensibility: Programs that can only discover conjunctive
characteristic descriptions have limited practical application. In particular, they
are inadequate in situations involving noisy data or in which no single conjunc-
tive description can describe the phenomena of interest. Consequently, as one of
the evaluation criteria, we consider the ease with which each method could be
extended to:

• discover descriptions with forms other than conjunctive generalizations, for
example, disjunctions and exceptions (see Section 3.1.4)

• include mechanisms that facilitate the detection of errors in the input data
• provide a general facility for incorporating externally-specified domain

knowledge into the induction process as an exchangeable package
• perform constructive induction

Two sample learning problems will be used to explain these methods. The
first problem (Figure 3-1) is made up of two examples (El and E2). Each ex-
ample consists of objects (geometrical figures) that can be described by:

• attributes size (small or large) and shape (circle or square)
• relationships ontop (which indicates that one object is above another) and

inside (which indicates that one object lies inside another)
The second sample problem (Figure 3-2) contains three examples of con-

structions made of simple geometrical objects. These objects can be described
by:

• attributes shape (box, triangle, rectangle, ellipse, circle, square, or
diamond), size (small, medium, or large), and texture (blank or shaded)

• relationships ontop and inside (the same as in the first sample problem)

DIETTERICH & MICHALSKI 51

fi H a n
El E2

Figure 3-1: Sample problem for illustrating representation languages.

El E2 E3
Figure 3-2: Sample problem for comparing the performance of the methods.

In each sample problem, the task is to determine a set of maximally-
specific conjunctive generalizations (MSC-generalizations) of the examples. No
negative examples are supplied in either problem. In the discussion below, the
first problem is used to illustrate the representational formalism and the
generalization process implemented in each method. The second, more complex,
problem is used to compare the computational efficiency and representational
adequacy of each method. This comparison is based on a hand simulation of
each method.

3.2.2 Data-driven Methods: Winston, Hayes-Roth, and Vere

3.2.2.1 Winston: Learning Blocks World Concepts

Winston's well known work [Winston, 1970, 1975] deals with learning
concepts that characterize simple toy block constructions. Although his method
uses no precise criterion to define the goal description, the method usually
develops MSC-generalizations of the input examples. The method assumes that
the examples are provided to the program by an intelligent teacher who carefully
chooses both the kinds of examples used and their order of presentation. The

52 CHAPTER 3: A COMPARATIVE REVIEW

program uses so-called "near miss" negative examples to rapidly determine the
correct generalized description of the concept. A near-miss example is a nega-
tive example that differs from the desired concept in only one significant at-
tribute. Winston also uses the near-misses to develop "emphatic" conditions
such as "must support" or "must not support". These Must- type descriptors in-
dicate which conditions in the concept description are necessary to eliminate
negative examples.

As Knapman has pointed out in his review of Winston's work [Knapman,
1978], many parts of the exposition in Winston's thesis [Winston, 1970] and
subsequent publication [Winston, 1975] are not entirely clear. Although the
general ideas in the thesis are well-explained, the exact implementation of these
ideas is difficult to extract from these publications. Consequently, our descrip-
tion of Winston's method is necessarily a reconstruction. We begin by discuss-
ing the knowledge representation employed by Winston. Then, we turn our at-
tention to his learning algorithm.

A semantic network is used to represent the input events, the background
blocks-world knowledge, and the concept descriptions generated by the program
(see Figures 3-3 and 3-4). The representation is quite general although the im-
plemented programs appear to process the network in domain-specific ways (see
Knapman [1978]; Winston [1970, page 196]).

Nodes in the network are used for several different purposes. We will il-
lustrate these purposes by referring to the corresponding concepts in first-order
predicate logic (FOPL). The first use of nodes is to represent various primitive
concepts that are properties of objects or their parts (such as small, size, circle,
shape). Nodes in this case correspond to constants in first-order predicate logic
expressions. There is no distinction between attributes and values of attributes in
Winston's network representation, and consequently, there is no representational
equivalent of the one-argument predicates and functions of FOPL.

Another use of nodes is to represent individual examples and their parts.
Thus, in Figure 3-3, we have the node El and two nodes A and B that make up
El. These can be regarded as quantified variables in predicate calculus. Dis-
tinct variable nodes are created for each training example.

Labeled links connecting these nodes represent various binary relationships
among the nodes. The links correspond to two-argument predicates. The first
two uses of nodes as constants and variables, plus the standard use of links as
predicates, constitute the basic semantic network representation used by Winston.

There is, however, a third use of nodes. Each link type (analogous to a
predicate symbol) is also represented in the network as a node. Thus, in ad-
dition to the numerous On-Top links that may appear in the network, there is an
On-Top node that describes the link type On-Top and its relationship to other
link types. For example, there might be a Negative-Satellite link that joins the
On-Top node to the Beneath node. Such a link indicates that On-Top and
Beneath are semantically opposite predicates. Similarly, there is a Must-be-
Satellite link connecting the Must-Be-On-Top node to the On-Top node.

DIETTERICH & MICHALSKI 53

HAS-PROPERTY-OF
HAS-AS-PART

ON-TOP

BF:NF:ATH

A-KIND-OF

Figure 3-3: Network representing example El in Figure 3-1.

All of the nodes in the network are joined into one generalization hierarchy
through the A-Kind-Of links. This hierarchy is used to implement the climbing
generalization tree rule.

Now that we have described the network representation, we turn our atten-
tion to the learning algorithm. The learning algorithm proceeds in two steps.
First, the current concept description is compared to the next example, and a
difference description is developed. Then this difference description is processed
to obtain a new, generalized concept description. Often, the second step results
in several possible generalized concept descriptions. In such a case, one general-
ized concept is selected for further refinement and the remaining possibilities are
placed on a backtrack list. The program backtracks when it is unable to consis-
tently generalize its current concept description.

The first step of the algorithm (the development of the difference

54 CHAPTER 3: A COMPARATIVE REVIEW

Figure 3-4: Network representing example E2 in Figure 3-1.

description) is accomplished by graph-matching the current concept description
against the example supplied by the teacher, and annotating this match with com-
ment notes (C-NOTES). These C-NOTES describe conditions in the concept
description and example that partially matched or did not match. Winston's
description of the graph-matching algorithm is sketchy [Knapman, 1978;
Winston, 1970, pages 254-263]. The algorithm apparently finds one "best"
match between the training example and the current concept description. The
method does not address the important problem of multiple graph sub-
isomorphisms, that is, the problem arising when the training example matches
the current concept description in more than one way. This problem was ap-
parently avoided by assuming that the teacher will present training instances that
can be unambiguously matched to the current concept description.

DIETTERICH & MICHALSKI 55

Once this match between the concept description and the example is ob-
tained, a generalized skeleton is created containing only those links and nodes
that matched exactly. The C-NOTES are then attached to this skeleton. Each
C-NOTE is a sub-network of nodes and links that describes a particular type of
match. There are several types of C-NOTES corresponding to partially-matching
or mismatching nodes and partially-matching or mismatching links. The dif-
ferent types are summarized in Table 3-1. In detail, there are the following
types of C-NOTES:

• For nodes:

o Intersection C-NOTES indicate that two nodes match exactly.
o A-Kind-of-Merge and A-Kind-Of-Chain C-NOTES indicate that two

nodes match partially. The A-Kind-Of-Merge C-NOTE handles the
case when two nodes are different but share a common A-Kind-Of
link, for example, when square partially matches triangle (since they
are both polygons). The A-Kind-Of-Chain C-NOTE handles the case
when a node matches a more general node, for example, when
square matches polygon.

o Exit C-NOTES indicate that two nodes do not match at all.
• For links:

o Negative-Satellite-Pair C-NOTES indicate that two semantically op-
posite links mismatched, for example, Marries and Does-Not-Marry.

o Must-Be-Satellite-Pair C-NOTES indicate that a normal link, such as
Supports, matches an emphatic link, such as Must-Support.

o Must-Not-Be-Satellite-Pair C-NOTES indicate that a normal link
matches a Must-Not form of the same link.

o Supplementary Pointer C-NOTES indicate that two links do not
match at all.

Table 3-1: Winston's CNOTK Categories

Match Partially match Mismatch
Node Intersection A-Kind-Of-Merge Exit

A-Kind-Of Chain

Link Negative-Satellite-Pair Supplementary pointer
Must-Not-Be-Satellite-pair

The network diagram of Figure 3-5 shows the difference description that
results from matching the two networks of Figures 3-3 and 3-4 to each other.

The generalization phase of the algorithm is fairly simple. Each C-NOTE is
handled in a way determined by the C-NOTE type and whether the example is a
positive or negative training example. Winston provides a table that indicates
what actions his program takes in each case [Winston, 1970, pages 145-146].

56 CHAPTER 3: A COMPARATIVE REVIEW

Figure 3-5: Difference description obtained by comparing El and E2 from Figure 3-1 and annotat-
ing the comparison with two C-NOTES.

Some C-NOTES can be handled in multiple ways. For positive examples,
only one C-NOTE causes problems: the A-Kind-Of-Merge. In this case, the
program can either climb the A-Kind-Of generalization tree or else drop the con-
dition altogether. The program develops both possibilities but only pursues the
former (leaving the latter on the backtrack list). The concept description that
results from generalizing the difference description of Figure 3-5 is shown in

DIETTERICH & MICHALSKI 57

Figure 3-6. The alternative generalization would drop the Has-Property link
from node b.

HAS-PROPHRTY-OF
HAS-AS-PART

ON-TOP

ΒΚΝΚΛΤΗ

A-K1ND-OF

Figure 3-6: Network representing the generalized concept resulting from generalizing the dif-
ference description of Figure 3-5.

Evaluation:

1. Representational adequacy. The semantic network is used to represent
properties, object hierarchies (using A-Kind-Of), and binary relationships. As in
most semantic networks, n-ary relationships cannot be represented directly. The
conjunction operator is implicit in the structure of the network, since all of the
conditions represented in the network are assumed to hold simultaneously. There
is no mechanism indicated for representing disjunction or internal disjunction.
The Not and Must-Not links implement a form of the exception operator. An
interesting feature of Winston's work is the use of the emphatic Must- relation-
ships.

58 CHAPTER 3: A COMPARATIVE REVIEW

The program works in a depth-first fashion and produces only one general-
ized concept description for any given order of the training examples. Permuting
the training examples may lead to a different generalization. Two generaliza-
tions obtained by simulating Winston's learning algorithm on the examples of
Figure 3-2 are shown in Figures 3-7 and 3-8.

Figure 3-7: The first generalization obtained by simulating Winston's learning algorithm on the
examples of Figure 3-2 (in the order E3, El , E2). An English paraphrase is: "There is
a medium, blank polygon on top of another object that has a size and texture. There is
also another object with size and texture."

The second generalization (Figure 3-8) is not maximally specific since it
does not mention the fact that all training examples also contain a small- or
medium-sized shaded object. The algorithm cannot discover this generalization

DIETTERICH & MICHALSKI 59

Figure 3-8: The second generalization obtained by simulating Winston's learning algorithm on the
examples of Figure 3-2 (in the order El , E2, E3). An English paraphrase is: "There is
a large, blank object."

due to the fact that the graph-matcher finds the "best" match of the current con-
cept with the example. When the order of presentation of the examples is El
followed by E2 followed by E3, the "best" match of the first two examples
eliminates the possibility of discovering the maximally-specific conjunctive
generalization when the third example is matched.
2. Rules of Generalization. The program uses the dropping condition rule (for
generalizing exit C-NOTES), the turning constants to variables rule (when creat-
ing the generalized skeleton), and the climbing generalization tree rule (for the
A-Kind-Of-Merge). It also uses the introducing exception specialization rule (for
the A-Kind-Of-Merge C-NOTE with negative examples).
3. Computational efficiency. The algorithm is quite fast: it requires only two
graph comparisons to handle the examples of Figure 3-2. However, the algo-
rithm does use a lot of memory to store intermediate descriptions. The first
graph comparison produces eight alternatives, of which only one is pursued.
The second graph comparison leads to four more alternatives from which one is
selected as the "best" concept description. This inefficient use of memory is
reflected in our figure for computational efficiency (the number of output
descriptions / the number of examined descriptions), which is 1/11 or 9%.

60 CHAPTER 3: A COMPARATIVE REVIEW

The performance of the algorithm can be much worse in certain situations.
When "poor" negative examples are used—those which do not match the current
concept description well—the number of intermediate descriptions explodes com-
binatorially. Such situations are also likely to cause extensive backtracking.

Since the algorithm produces only one generalization for any given order
of the input examples, it must be executed repeatedly if several alternative
generalizations are desired.
4. Flexibility and Extensibility. Iba [1979] has successfully extended this algo-
rithm to discover some disjunctive descriptions. His solution is not entirely
general, however. The main difficulty seems to be that Winston's algorithm
operates under the assumption that there is one conjunctive concept characteriz-
ing the examples, so the development of disjunctive concepts is not consistent
with the spirit of the work.

Since the program behaves in a depth-first manner, noisy training events
cause it to make serious errors from which it cannot recover without extensive
backtracking. This is not surprising since Winston assumes that the teacher is
intelligent and does not make any mistakes in training the student. It seems to
be very difficult to extend this method to handle noisy input data.

The inductive generalization portion of the program does not contain much
problem-specific knowledge. However, many of the techniques used in the
program, such as building complete difference descriptions and using a back-
tracking search, may become combinatorially infeasible in real-world problem
domains. The A-Kind-Of generalization hierarchy can be used to represent
problem-specific knowledge.

The system of programs described by Winston performs some types of
constructive induction. The original inputs to the system are noise-free line
drawings. Some knowledge-based algorithms convert these line drawings into
the network representation. Winston describes an algorithm for combining a
group of objects into a single concept and subsequently using this concept in
other descriptions. The "arcade" concept ([Winston, 1970], page 183) is a good
example of such a constructive induction process.
3.2.2.2 Hayes-Roth: Program SPROUTER

Hayes-Roth's work on inductive learning [Hayes-Roth, 1976a, 1976b;
Hayes-Roth & McDermott, 1977, 1978] is concerned with finding MSC-
generalizations of a set of input positive examples (he calls such generalizations
maximal abstractions or interference matches). Parameterized structural
representations (PSR's) are used to represent both the input events and their
generalizations. The PSR's for the two events of Figure 3-1 are:

El: {{circle:a}{square:b}{small:a}
{small:b}{ontop:a, undenb}}

E2: {{circle:c}{square:d}{circle:e}
{small:c}{large:d}{small:e}
{ontopx, under:d}{inside:e, outside:d}}

DIETTERICH & MICHALSKI 61

El: {{circle:aHsquare:b}{small:a}
{small:b}{ontop:a, under:b}}

E2: {{circle:c}{square:d}{circle:e}
{small:c}{large:d}{small:e}
{ontopx, under:d}{inside:e, outside:d}}

In Hayes-Roth's terminology, the expressions such as {small:a} are called
case frames. They are composed of case labels (such as small, circle) and
parameters (such as a, b, c, d). The PSR can be interpreted as a conjunction of
predicates of the form case-label(parameter-list). For example, {smallia} can be
interpreted as small(a), and {ontopx, under:d} can be interpreted as ontop(c,d).
The parameters can be viewed as existentially-quantified variables denoting dis-
tinct objects.

The induction algorithm works in a purely bottom-up fashion. The first set
of conjunctive generalizations, Gj, is initialized to contain only the first input
example. Given a new example and the set of generalizations, Gj, obtained in
the ith step, a new set of generalizations, Gj + j , is obtained by performing a par-
tial match between each element in Gj and the current training example. It is not
clear from publications [Hayes-Roth, 1976b; Hayes-Roth, 1976a; Hayes-Roth &
McDermott, 1977; Hayes-Roth & McDermott, 1978] whether or not these sets Gj
are pruned during this process. Hayes-Roth calls each of the partial-matching
operations an interference match.

The interference match attempts to find the longest one-to-one match of
parameters and case frames (that is, the longest common subexpression). This is
accomplished in two steps. First the case frames in El and E2 are matched in
all possible ways to obtain the set M. Two case frames match if all of their case
labels match. Each element of M is a case frame and a list of parameter cor-
respondences that permit that case frame to match in both events:

M = {{circle:((a/c)(a/e))},
{square:((b/d))},
{small:((a/c)(b/c)(a/e)(b/e))},
{ontop,under:((a/c b/d))}}

The second step involves selecting a subset of the parameter correspon-
dences in M such that all parameters can be bound consistently. This is con-
ducted by a breadth-first search of the space of possible bindings with pruning of
unpromising nodes. The search can be visualized as a node-building process.
Here is one such (pruned) search graph:

62 CHAPTER 3: A COMPARATIVE REVIEW

M Interference match

{circle}
a/c
a/e

{square}
b/d

{small}
a/c
b/c
a/e — —
b/e

{ontop, under}
a/c b/d

The nodes are numbered in order of their generation. One at a time, a pair
of corresponding parameters is selected from M and a new node is created for
them. Then this new node is compared with all previously generated nodes.
Additional nodes are created for each case in which the new parameter cor-
respondence node can be consistently merged with a previously existing node.
In the search graph above, when the parameter binding {small: (a/c)} is selected,
node 6 is created. Then node 6 is compared to nodes 1 through 5 and two new
nodes are created: node 7, which is created by merging node 6 (a/c) with node 2
(b/e), and node 8, which is created by merging node 6 (a/c) with node 1 (a/c b/d).
Node 6 cannot be merged with node 3, for instance, because parameter a would
be inconsistently bound to both parameters c and e.

When the search is completed, nodes 7, 12, and 14 are bindings that lead
to conjunctive generalizations. Node 14, for example, binds a to c (to give vl)
and b to d (to give v2) to produce the conjunction:

{{circle:vlXsquare:v2Hsmall:vl}{ontop:vl y under:v2}}

The node-building process is guided by computing a utility value for each
candidate node to be built. The nodes are pruned by setting an upper limit on
the total number of possible nodes and pruning nodes of low utility when that
limit is reached.

Evaluation:

1. Representational adequacy. The algorithm discovers the following conjunc-
tive generalizations of the example in Figure 3-2:

a. {{ontop:vl, under:v2}{medium:vl}{blank:vl}}
There is a medium blank object ontop of something.

b. {{ontop:vl, under:v2}{medium:vlKlarge:v2}{blank:v2}}
There is a medium object ontop of a large, blank object.

c. {{medium:v 1 Hblank: v 1 Klarge:v3}{blank:v3}{shaded:v2}}

DIETTERICH & MICHALSKI 63

There is a medium sized blank object, a large sized blank object, and
a shaded object.
PSR's provide two symbolic forms: parameters and case labels. The case

labels can express ordinary predicates and relations easily. Symmetric relations
may be expressed by using the same label twice as in {same!size:a, same!size:b}.
The only operator is the conjunction. The language has no disjunction or inter-
nal disjunction. As a result, the fact that each event in Figure 3-2 contains a
polygon on top of a circle or rectangle cannot be discovered.
2. Rules of generalization. The method uses the dropping condition and turning
constants to variables rules.
3. Computational efficiency. On our test example, the algorithm requires 22 ex-
pression comparisons and generates 20 candidate conjunctive generalizations of
which 6 are retained. This gives a figure of 6/20 or 30% for computational ef-
ficiency. Four separate interference matches are required since the first match of
El and E2 produces three possible conjunctive generalizations.
4. Flexibility and extensibility. An attempt has been made (Hayes-Roth, personal
communication) to extend this method to produce disjunctive generalizations and
to detect errors in data. Hayes-Roth has applied this method to various problems
in the design of the speech understanding system HEARSAY II. However, no
facility has been developed for incorporating domain-specific knowledge into the
generalization process.

Also, no facility for constructive induction has been incorporated although
Hayes-Roth has developed a technique for converting a PSR to a lower-level,
finer-grained uniform PSR. This transformation permits the program to develop
descriptions that involve a many-to-one binding of parameters.
3.2.2.3 Vere: Program Thoth

Vere's earlier work on inductive learning [Vere, 1975] was also directed at
finding the MSC-generalizations of a set of input positive examples (in his work
such generalizations are called maximal conjunctive generalizations or maximal
unifying generalizations). Each example is represented as a conjunction of
literals. A literal is a list of constants called terms enclosed in parentheses. For
example, the objects in Figure 3-1 would be described as:

El: (circle a)(square b)(small a)(small b)(ontop a b)

E2: (circle c)(square d)(circle e)(small c) (large d)(small e)(ontop c d)(inside e d)

Although these resemble Hayes-Roth's PSR's, they are quite different.
There are no distinguished symbols. All terms (such as "small" and "e") are
treated uniformly.

As in Hayes-Roth's work, Vere's method operates in a purely bottom-up
fashion in which the input examples are processed one at a time in order to build
the set of conjunctive generalizations. The algorithm for generalizing a pair of
events operates in four steps. First, the literals in each of the two events are

64 CHAPTER 3: A COMPARATIVE REVIEW

matched in all possible ways to generate the set of matching pairs MP. Two
literals match if they contain the same number of constants and they share at
least one common term in the same position. For the sample problem of Figure
3-2, we have:

MP= {((circle a),(circle c)),
((circle a),(circle e)),
((square b),(square d)),
((small a),(small c)),
((small a),(small e)),
((small b),(small c)),
((small b),(small e)),
((ontop a b),(ontop c d))}

The second step involves selecting all possible subsets of MP such that no
single literal of one event is paired with more than one literal in another event.
Each of these subsets eventually forms a new generalization of the original
events.

In the third step, each subset of matching pairs selected in step 2 is ex-
tended by adding to the subset additional pairs of literals that did not previously
match. A new pair p is added to a subset S of MP if each literal in p is related
to some other pair q in S by a common constant in a common position. For
example, if S contained the pair ((square b),(square d)) then we could add to S
the pair ((ontop a b),(inside e d)) because the third element of (ontop a b) is the
second element of (square b) and the third element of (inside e d) is the second
element of (square d) (Vere calls this a 3-2 relationship). New indirectly-related
pairs are merged into S until no more can be added.

In the fourth, and final, step, the resulting set of pairs is converted into a
new conjunction of literals by merging each pair to form a single literal. Terms
that do not match are turned into new terms, which may be viewed formally as
variables. For example, ((circle a),(circle c)) would be converted to (circle vl).

Evaluation:
1. Representational adequacy. When applied to the test example (Figure 3-2)
this algorithm produces many generalizations. A few of the significant ones are
listed below:

• (ontop vl v2)(medium vl)(large v2)(blank v2)(blank v3)(shaded v4)
(v5 v4)

There is a medium object on top of a large blank object. Another
object is blank. There is a shaded object. (The literal (v5 v4) is vacuous
since it contains only variables. Variable v5 was derived by unifying
circle and triangle).

• (ontop vl v2)(blank vl)(medium vl)(v9 vl)(v5 v3 v4)(shaded v3)
(v7 v3)(v6 v3)(blank v4)(large v4)(v8 v4)

There is a medium, blank object on top of some other object and
there are two objects related in some way (v5) such that one is shaded and
the other is large and blank.

DIETTERICH & MICHALSKI 65

• (ontop vl v2)(medium vl)(blank v2)(large v2)(v5 v2)(shaded v3)(v7 v3)
(blank v4)(v6 v4)

There is a medium object on top of a large blank object. There is a
shaded object and there is a blank object.
The representation is basically an uninterpreted list structure and, con-

sequently, has very little logical structure. By convention the first symbol of a
literal can be interpreted as a predicate symbol. The algorithm, however, treats
all terms uniformly. This absence of semantic constraints creates difficulties.
One difficulty is that the algorithm generates vacuous literals in certain situa-
tions. For instance, step 3 of the algorithm allows (circle a) to be paired with
(triangle b) to produce the vacuous literal (v5 v4) as in generalization 1 above.
Although these vacuous literals could easily be removed after being generated,
the algorithm would perform more efficiently if it did not generate them in the
first place. A second difficulty resulting from the relaxation of semantic con-
straints is that the algorithm creates generalizations involving a many-to-one
binding of variables. While such generalizations may be desirable in some situa-
tions, they are usually meaningless, and their uncontrolled generation is com-
putationally expensive.

The description language contains only the conjunction operator. No dis-
junction or internal disjunction is included.
2. Rules of generalization. The algorithm implements the dropping condition
rule and the turning constants to variables rule.
3. Computational efficiency. From the published articles [Vere, 1975, 1977,
1978, 1980] it is not clear how to perform steps 2 and 3. The space of possible
subsets of MP (computed in step 2) is very large, and the space of possible ex-
tensions to that set (computed in step 3) is even larger. An exhaustive search
could not possibly give the computation times that Vere has published.
4. Flexibility and extensibility. Vere has published algorithms that discover
descriptions with disjunctions [Vere, 1978] and exceptions (which he calls coun-
terfactuals, see [Vere, 1980]). He has also developed techniques to generalize
relational production rules [Vere, 1977, 1978]. The method has been
demonstrated using the traditional AI toy problems of IQ analogy tests and
blocks-world sequences. A facility for using background information to assist
the induction process has also been developed. It uses a spreading activation
technique to extract relevant relations from a knowledge base and add them to
the input examples prior to generalizing them. The method has been extended to
discover disjunctions and exceptions. It is not clear how well the method would
work in noisy environments.

3.2.3 Model-driven Methods: Buchanan, et a/., and Michalski

In addition to acquiring context-free concept descriptions, some systems
use models of the underlying domain to constrain the search for viable structural
descriptions.

66 CHAPTER 3: A COMPARATIVE REVIEW

3.2.3.1 Buchanan, etal.: Program META-DENDRAL

META-DENDRAL is a program that discovers cleavage rules to explain the
operation of a mass spectrometer. A mass spectrometer is a device that bom-
bards small chemical samples with accelerated electrons, causing the molecules
of the sample to break apart into many charged fragments. The masses of these
fragments can then be measured to produce a mass spectrum—a histogram of the
number of fragments (also called the intensity) plotted against their mass-to-
charge ratio.

Analytic chemists can use the mass spectrum to guess the three-
dimensional structure of the molecules in the sample. An expert system has
been developed—the Heuristic DENDRAL program—that can also perform this
structure elucidation task. It is supplied with the chemical formula (but not the
three-dimensional structure) of the sample and its mass spectrum. Heuristic
DENDRAL first examines the spectrum to obtain a set of constraints. These con-
straints are then given to CONGEN, a program that can generate all possible
chemical structures satisfying the constraints. Finally, each of these generated
structures is tested by running it through a mass-spectrometer simulator. The
simulator applies a set of cleavage rules to predict which bonds in the proposed
structure will be broken. The result is a simulated mass spectrum for each can-
didate structure. The simulated spectra are compared with the actual spectrum,
and the structure whose simulated spectrum best matches the actual spectrum is
ranked as the most likely structure for the unknown sample. The purpose of the
META-DENDRAL system is to learn cleavage rules for use by the mass-
spectrometer simulator.

The cleavage rules employed by the simulator are written as condition-
action rules in which the condition part describes—in common ball-and-stick
language—a portion of the molecular structure, and the action part indicates (by
**) one or more bonds that will break (see Figure 3-9). The simulator applies
these rules by matching the condition part against the molecular structure of the
molecule being bombarded. Whenever the condition part matches, the simulator
predicts that the bonds corresponding to those mentioned in the action part will
break.

Figure 3-9 shows a typical cleavage rule. The atom descriptors have the
following meanings. Type is the atomic element of the atom. Nhs is the number
of hydrogen atoms bound to that atom. Nbrs is the number of non-hydrogen
atoms bound to the atom. Dots counts the number of unsaturated valence
electrons of the atom. This rule says that whenever a molecule containing the
four atoms w, x, y, and z (connected as shown in the molecule graph and with
the indicated atom descriptors) is placed in a mass spectrometer, then the bond
joining w to x will be broken.

How can META-DENDRAL discover these rules? META-DENDRAL is given as
input a set of molecules whose three-dimensional structures and mass spectra are
known. We can view these training instances as condition-action rules of the
form:

DIETTERICH & MICHALSKI 67

CONDITION PART (BOND ENVIRONMENT):

Molecule graph: w—x—y—z—
Atom descriptors: atom type nhs nbrs dots

w carbon 3 1 0
x carbon 2 2 0
y nitrogen 1 2 0
z carbon 2 2 0

ACTION PART (CLEAVAGE PREDICTION):

w ** χ y Z

Figure 3-9: Typical Cleavage Rule.

<whole molecular structure> φ <mass spectrum>

The first step in META-DENDRAL (carried out by subprogram INTSUM) is to
apply background knowledge and rules of constructive induction to convert these
training instances into the form of highly-specific cleavage rules:

<whole molecular structure> => <one designated broken bond>

To achieve this transformation, INTSUM must hypothesize, for each frag-
ment appearing in the mass spectrum, which bonds could have broken to produce
that fragment. INTSUM employs a very simple theory of mass spectrometry (the
so-called half-order theory) to propose these hypotheses. The result is one or
more highly-specific cleavage rules for every fragment that appeared in any of
the mass spectra in the original training instances.

These highly-specific cleavage rules are given to the second and third sub-
programs in the META-DENDRAL system: RULEGEN and RULEMOD. These two
programs seek to find a small set of generalized cleavage rules that cover most of
these highly-specific training rules. Notice that in this learning problem, no
single generalized cleavage rule (or equivalently, no conjunctive generalization)
can be expected to explain all of the training rules. In fact, since the INTSUM
interpretation process can produce incorrect training instances, there is no reason
to expect that even a set of cleavage rules will cover all of the training rules.
Consequently, RULEGEN and RULEMOD do not search for MSC-generalizations.
Instead, they develop a taxonomic description of the mass spectrometry data in
the form of a set of cleavage rules that together cover the most important of the
training rules.

The generalization process is done in two steps. First, RULEGEN conducts
a model-driven generate-and-test search of the space of possible cleavage rules.
This is a fairly coarse search from which redundant and approximate rules may
result. The second phase of the search is conducted by the RULEMOD program,
which cleans up the rules developed by RULEGEN to make them more precise and
less redundant. We will concentrate on the description of the RULEGEN program,

68 CHAPTER 3: A COMPARATIVE REVIEW

since it employs a top-down, model-driven algorithm that can be compared, in
part, to the other learning methods described in this chapter.

The RULEGEN algorithm chooses as its starting point the most general
cleavage pattern (x ** y) with no properties specified for either atom. Since this
pattern matches every bond in every molecule, it predicts that every bond will
break. RULEGEN generates successively more refined rules by specializing this
pattern. The algorithm performs a sort of breadth-first search. At each iteration
(each level of the search tree) it specializes a parent cleavage pattern by making
a change to all atoms at a specified distance (radius) from the ** bond—the bond
designated to break. The change can involve either adding new neighbor atoms
or specifying an atom feature. All possible specializations are made for which
there are supporting training instances. The technique of modifying all atoms at
a particular radius causes the RULEGEN search to be coarse.

After each cycle of specialization, the resulting bond patterns are tested
against the training instances, and a heuristic measure of "improvement" is com-
puted that indicates whether a newly specialized bond pattern is more plausible
than its parent pattern. If a pattern is determined to be an improvement, it is
retained, and the specialization process continues. If all specializations of a
parent pattern are less plausible than their parent, the parent pattern is output as a
new cleavage rule, and no more specializations of that pattern are considered.

The improvement criterion states that a child pattern graph is more
plausible than its parent if:

• It predicts fewer fragmentations per training molecule (that is, it is more
specific).

• It still predicts fragmentations for at least half of all of the training
molecules (that is, it is sufficiently general).

• It predicts fragmentations for as many molecules as its parent—unless the
parent graph was "too general" in the sense that the parent predicts more
than 2 fragmentations in some single training molecule or on the average it
predicts more than 1.5 fragmentations per molecule.
Thus, RULEGEN can be viewed as following paths of increasing specializa-

tion through the space of possible bond patterns until the improvement criterion
achieves a local maximum. The result of this process is a set of such plausible
bond patterns. RULEMOD improves this set by performing detailed hill-climbing
searches in the region immediately around each generated bond pattern. For the
detailed searches, negative training instances are employed as part of the
plausibility criterion. Negative training instances are bond patterns for which the
actual spectrum shows that the designated bond did not break. RULEMOD also
compares the generated bond patterns with one another and removes bond pat-
terns that are redundant. The result of the RULEMOD processing is a smaller set
of more precise bond patterns. Each of these bond patterns is converted into a
cleavage rule and printed out.

Evaluation:

DIETTERICH & MICHALSKI 69

It is somewhat difficult to compare META-DENDRAL to the other methods
described in this chapter since it is such a complex system and since even the
RULEGEN subprogram is not searching for MSG-generalizations. However, we
have included META-DENDRAL because it is such an important and powerful
learning system.

1. Representational adequacy. The bond-pattern representation was adequate for
the task of developing cleavage rules. It was specifically designed for use in
chemical domains and is not general. The descriptions can be viewed as con-
junctions. Individual rules developed by the program can be considered to be
linked by disjunction.
2. Rules of generalization. The dropping condition and turning constants to vari-
ables rules are used "in reverse" during the specialization process.
META-DENDRAL also uses the generalization by internal disjunction rule. For ex-
ample, it can learn that the number of non-hydrogen neighbors (nbrs) of an atom
is "greater-than one." In related work on nuclear magnetic resonance (NMR),
Schwenzer and Mitchell [1977] present an example in which the value of nhs is
listed as "greater than or equal to one" (which indicates an internal disjunction).
3. Computational efficiency. The comparison of computational efficiency is not
provided for META-DENDRAL because it is not possible to hand simulate its opera-
tion on the sample problem of Figure 3-2. First of all, it is impossible to
represent the sample problem as a chemical graph because the problem uses two
different connecting relationships (ontop and inside) whereas META-DENDRAL
only allows one (chemical bonding). Secondly, as mentioned above, the algo-
rithm seeks a taxonomic—not characteristic—description of the input examples.
Thirdly, the termination criteria for the RULEGEN algorithm are stated in purely
chemical terms that have no counterpart in the domain of geometric figures. The
current program is considered to be relatively inefficient [Buchanan et al., 1976].
4. Flexibility and extensibility. META-DENDRAL has been extended to handle
NMR spectra [Schwenzer & Mitchell, 1977]. The program works well in an
error-laden environment. It uses domain-specific knowledge extensively.
However, there is no strict separation between a general-purpose induction com-
ponent and a special-purpose knowledge component. It is not clear whether the
methods developed for META-DENDRAL could be easily applied to any non-
chemical domain.
5. META-DENDRAL has extensive constructive induction facilities. In particular,
program INTSUM performs sophisticated transformations of the input spectrum in
order to develop the bond-environment descriptions. Unfortunately, this part of
the program is highly procedural. None of the rules of constructive induction
have been made explicit nor is there a general facility for accepting additional
rules of constructive induction from the user. The user can alter some of the
parameters of the half-order theory, however.

70 CHAPTER 3: A COMPARATIVE REVIEW

3.2.3.2 Michalski and Dietterich: Program INDUCE 1.2

Michalski and his collaborators have worked on many aspects of inductive
learning. Most relevant here are works by Larson and Michalski [Larson &
Michalski, 1977; Larson, 1977; Michalski, 980a]. These articles describe a
general method (and program) for determining disjunctive structural descriptions
that can also be used (somewhat inefficiently) to discover MSC-generalizations.
The method presented here is different from previous work and is specially
designed for finding MSC-generalizations.

The language used to describe the input events is VL2i [Michalski, 980a],
an extension to first-order predicate logic (FOPL) that was developed specifically
for use in inductive inference.4 Each event is represented as a conjunction of
selectors. A selector is a relational statement that typically contains a function
or predicate descriptor (with variables as arguments) and a list of values that the
descriptor may assume. For example, the selector [size(vl) = small, medium] as-
serts that the size of vl may take the values small or medium. Another form of
selector is an n-ary predicate in brackets, which is interpreted in the same way as
in FOPL. For example, the selector [ontop(vl,v2)] asserts that object vl is on-
top of object v2. A conjunction of selectors is denoted by their concatenation.
The events in Figure 3-1 are represented as:

El: 3v l , v2 [size(vl) = small][size(v2) = small] &
[shape(v 1) = circle] [shape(v2) = square] [ontop(v 1, v2)]

E2: 3vl , v2, v3 [size(vl) = small][size(v2) = large] &
[size(v3) = small][shape(v 1) = circle] &
[shape(v2) = square][shape(v3) = circle] &
[ontop(vl ,v2)][inside(v3,v2)]

In this method, we attempt to accelerate the search for plausible generaliza-
tions by using techniques similar to those of hierarchical planning [Sacerdoti,
1973] . First, we separate all descriptors into two classes, unary and non-unary.
We call the unary descriptors attribute descriptors since they are typically used
to represent attributes such as size or shape. Non-unary descriptors are called
structure-specifying descriptors since they are typically used to specify structural
information (for example, relationships ontop and inside).

The basic idea of the method is to first search the description space that is
defined by the structure-specifying descriptors. Once plausible generalizations
are found in this abstract structure-only space, attribute descriptor space is
searched to fill out the detailed generalizations. There are several advantages to
this two-phase approach as compared to a standard search of the entire descrip-
tion space:

The first is representational. As we have seen above, it is usually neces-

4A somewhat modified and generalized form of VL2i, called the annotated predicated calculus, is
described in Chapter 4 of this book.

DIETTERICH & MICHALSKI 71

sary to use a graph (or equivalent data structure) to represent an event in a struc-
tural learning problem. This is due to the fact that a graph is the most compact
way to represent binary relationships among n objects when the number of such
relationships is substantially less than the n(n-l) possible relationships (that is,
when the relationship matrix is sparse). Thus, in our method, the structure-only
events are represented as graphs. But once we have located plausible points in
this structure-only space, we can continue the search in attribute space. Attribute
(or unary) descriptors can be represented as vectors that are substantially more
compact and more efficiently manipulated than graphs.

The second advantage of this hierarchical approach is computational. The
task of comparing two graph structures is NP-complete. Any decrease in the
size of these graph structures leads to large decreases in the cost of a graph com-
parison. Furthermore, we can confine graph comparisons to the first phase of
the algorithm.

A third advantage of this approach is that we can take "large steps" during
the search for plausible descriptions by conducting much of the search in a
sparse, abstract space. This is similar in spirit to the coarse search employed in
RULEGEN.

There are also several disadvantages to this approach. Firstly, no speedup
will be obtained unless the learning problem uses both unary and non-unary
descriptors. There are some learning problems in which attributes play almost
no role at all. In such cases, the structure-only search space is the same as the
complete search space, so no computational savings will be obtained. There are
also learning problems that require only unary descriptors (as in [Hunt et al.,
1966]). These are not structural learning problems, and the structure-only space
is empty.

A second disadvantage of this approach involves the problem of defining
"plausible" descriptions in structure-only space. One fact that can be used is the
following: If g is a MSC-generalization in structure-only space, then there exists
a full description G, such that g is the structure-only portion of G and G is a
MSC-generalization in the complete space.

Thus, if we find all MSC-generalizations of the input events in structure-
only space, then we can use these to find MSC-generalizations in the complete
space. However, we will not necessarily find all possible MSC-generalizations
in this fashion, since there may exist MSC-generalizations in the complete space
whose structure-only component is not maximally specific in structure-only
space. To avoid this problem, the algorithm may accept less than maximally-
specific generalizations in the structure-only space (that is, more general
descriptions) and terminate the search using some problem-oriented knowledge.

Another difficulty concerns how to conduct the attribute search once
plausible structure-only descriptions have been located. Our approach is to use
each structure-only description to define a new attribute-only space into which all
of the input events are translated. Unfortunately, an input event can be mapped
to more than one attribute-only description as shown below. This complicates
the search.

72 CHAPTER 3: A COMPARATIVE REVIEW

The algorithm searches structure-only space using a "beam search"—a
form of best-first search in which a set of best candidate descriptions is main-
tained during the search (see [Rubin & Reddy, 1977]). First, all unary descrip-
tors are removed from the input events (thus abstracting them into structure-only
space). Then a random sample of these events is taken to form set B0, the in-
itial set of generalizations (the initial beam set). In each step, B, is first pruned
to a fixed sized beam width by removing unpromising generalizations. (Promise
is determined by the application of the heuristic evaluation functions described
below). Then B7 is checked to see if any of its generalizations covers all of the
input examples. If any do, they are removed from B, and placed in the set C of
candidate conjunctive generalizations. Lastly, B/ is generalized to form B/ + / by
taking each element of B, and generalizing it in all possible ways by dropping
single selectors. When the set of candidates C reaches a prespecified size, the
search halts. The set C contains conjunctive generalizations of the input data,
some of which are maximally specific. The size limit on C determines how
deeply the algorithm searches.

The program allows the user to employ simultaneously several criteria for
evaluating the promise of intermediate generalizations. These criteria are com-
bined to form a lexicographic evaluation functional with tolerances [Michalski,
1973]. Some of the criteria presently included in the program are:

• maximize the number of input events covered by a generalization.
• maximize the number of selectors in a generalization.
• minimize the total "cost" of the descriptors in a generalization. Different

descriptors can be given costs according to their difficulty of measurement
and other domain-dependent properties.
The user creates the evaluation functional by selecting criteria from a list

of available criteria and ordering them in decreasing order of importance. Each
criterion is accompanied by a tolerance that specifies the allowed departure of the
associated criterion from the optimum value (see [Michalski, 1973]).

Once the structure-only candidate set C has been built, each candidate
generalization in C must be filled out by finding values for its attribute descrip-
tors. Each candidate generalization g in C is used to define an attribute-only
space that is then searched using a beam search technique similar to that used to
search the structure-only space. The attribute-only space is defined as follows.
Let {vy, v2, ..., vk} be the existentially quantified variables used in the candidate
structure-only generalization g. The attribute-only space generated by g is the
space of all mx£-tuples consisting of the values of the m attributes describing the
k objects denoted by the quantified variables {vh v2, ..., v j . In cases where
some of the m attributes are not applicable to some of the objects, the attribute-
only space will be correspondingly smaller.

In order to search this space, all of the input events must first be translated
into this attribute-only space. This is accomplished by matching g against all
input events and extracting the attributes of the variables in the input events that

DIETTERICH & MICHALSKI 73

match Vy, v2, ..., ν^ in g. The values of these attributes form a single wxfc-tuple.
For example, if g = [ontop(vl, v2)] and the variables vl and v2 have two at-
tributes, size and shape, then the attribute-only space generated by g is the space
of all 4-tuples of the form:

< size(vl), size(v2), shape(vl), shape(v2) >

Let Ej be the following input event:
E,: 3pl , p2, p3 [ontop(pl, p2)][ontop(p2, p3)] &

[size(pl)= I][size(p2) = 3][size(p3) = 5] &
[color(p 1) = red] [color(p2) = green] [color(p3) = blue]

Then we can translate E, into this attribute-only space in two different
ways—since g matches E, in two distinct ways.

When g is matched to E, so that vl is matched with pi and v2 with p2,
the resulting attribute-only 4-tuple is:

< 1, 3, red, green >

When vl is matched to p2 and v2 to p3, then the resulting event is:
< 3, 5, green, blue >

During the search of this attribute-only space, the goal is to find an MSC-
generalization that covers at least one of these two translated events (and thus
covers E,). Such an MSC-generalization is in the form of an raxfc-tuple as
above, except that each position in the tuple may contain a set of values of the
corresponding attribute. This set of values is expressed by an internal disjunc-
tion in the final corresponding formula.

The beam search of attribute-only space is similar to the search of
structure-only space. A random sample of events is selected and generalized
step-by-step by extending the internal disjunctions in the events. The generaliza-
tion process is guided by a means-ends analysis to detect relevant differences be-
tween the current generalizations and events that have not yet been covered.
Heuristic criteria are used to prune the beam set to a fixed beam width. Can-
didate generalizations that cover all of the input events (that is, at least one of
the attribute-only events translated from each input event) are removed from the
beam set and added to the candidate set C . Each candidate in C provides pos-
sible settings of the attribute descriptors that, when combined with the structure-
specifying descriptors in g, produces an output conjunctive generalization G.

Among all conjunctive generalizations produced by this algorithm, there
may be some that are not maximally specific. This occurs when the search of
structure-only space is permitted to produce candidate structure-only generaliza-
tions that are not maximally specific. In most observed cases such candidate
generalizations become maximally specific when their attribute descriptors are
filled in during the second phase of the algorithm.

Evaluation:
1. Representational adequacy. Using only selective rules of generalization, the
algorithm discovers, among others, the following generalizations of the events in
Figure 3-2:

74 CHAPTER 3: A COMPARATIVE REVIEW

• 3v l , v2 [ontop(vl,v2)] [size(vl) = medium]
[shape(v 1) = polygon] [texture(v 1) = blank]
[size(v2) = mediumVlarge] [shape(v2) = rectangleVcircle]

There exist two objects (in each event), such that one is a blank,
medium-sized polygon on top of the other, a medium or large circle or
rectangle.

• 3v l , v2 [ontop(vl,v2)] [size(vl) = medium]
[shape(v 1) = circleVsquareVrectangle] [size(v2) = large]
[shape(v2) = boxVrectangleVellipse] [texture(v2) = blank]

There exist two objects such that one of them is a medium-sized
circle, rectangle, or square on top of the other, a large, blank box, rec-
tangle, or ellipse.

• 3v l , v2 [ontop(vl,v2)] [size(vl) = medium] [shape(vl) = polygon]
[size(v2) = mediumVlarge] [shape(v2) = rectangleVellipseVcircle]
v

There exist two objects such that one of them is a medium-sized
polygon on top of the other, a large or medium rectangle, ellipse, or circle.

• 3vl [size(vl) = smallVmedium]
[shape(v 1) = circleVrectangle] [texture(v 1) = shaded]

There exists one object, a medium or small shaded circle or rec-
tangle.
A few simple constructive induction rules have been incorporated into the

current implementation. These include rules that count the number of objects
possessing certain characteristics and rules that locate the top-most and bottom-
most parts of an object (or more generally, extremal elements in a linearly-
ordered set defined by any transitive relation, such as On-top). Other construc-
tive induction rules can be specified by the user. Using the built-in constructive
induction rules, the program produces the following conjunctive generalization of
the input events in Figure 3-2:

• [# v's = 3,4] [# v's with texture blank = 2] &
3v l , v2 [top-most(vl)] [ontop(vl,v2)]
[size(v 1) = medium] [shape(v 1) = polygon]
[texture(v 1) = clear] [size(v2) = medium, large]
[shape(v2) = circle, rectangle]

There are either three or four objects in each event. Exactly two of
these objects are blank. The top-most object is a medium-sized, clear
polygon and it is on top of a large or medium-sized circle or rectangle.
This algorithm implements the conjunction, disjunction, and internal dis-

junction operators. The representation distinguishes among descriptors, vari-
ables, and values. Descriptors are further divided into structure-specifying
descriptors and attribute descriptors. The current method discriminates among
three types of descriptors:

DIETTERICH & MICHALSKI 75

• nominal—which have unordered value sets
• linear—which have linearly ordered value sets
• structured—which have tree-ordered value sets

This variety of possible representational forms is intended to provide a bet-
ter "fit" between the description language and any specific problem.
2. Rules of generalization. The algorithm uses all rules of generalization men-
tioned in Section 3.1.5 and also a few constructive induction rules. It does not
implement the introducing exception specialization rule. The effect of the turn-
ing constants to variables rule is achieved as a special case of the generalization
by internal disjunction rule.
3. Computational efficiency. The algorithm requires 28 comparisons and builds
13 rules during the search to develop the descriptions listed above. Four rules
are retained so this gives an efficiency ratio of 4/13 or 30%.
4. Flexibility and extensibility. The algorithm can be modified to discover dis-
junctions by altering the termination criteria for the search of structure-only space
to accept structure conjuncts that do not necessarily cover all of the input events.
The same general two-phase approach can also be applied to problems of deter-
mining discriminant descriptions. (See papers by Larson and Michalski [1977],
Larson [1977], Michalski [1975, 1980a,b] and Chapter 4 of this book.)

The algorithm has good noise immunity. Noise events can be discovered
because the algorithm tends to place them in separate terms of a disjunction.

Domain-specific knowledge can be incorporated into the program by defin-
ing the types and domains of descriptors, specifying the structures of these
domains, specifying certain simple production rules (for domain constraints on
legal combinations of variables), specifying the evaluation functional, and by
providing constructive induction rules. These forms of knowledge representation
are not always convenient, however. Further work should provide other facilities
for knowledge representation.

As mentioned above, this method does perform a few general kinds of con-
structive induction. The method provides mechanisms for adding more rules of
constructive induction.

The comparison of the above methods in terms of the criteria of Section
3.2.1 is summarized in Table 3-2.

3.3 CONCLUSION

This chapter has discussed various aspects of inductive learning of struc-
tural descriptions and has presented several criteria for evaluating learning
methods. These criteria have been applied to the evaluation of five selected
methods for learning structural descriptions. The main features revealed by this
analysis are:

Criterion: Hayes-Roth

Intended application Learning toy
block concepts

Language Parameterized
structural
representation

Quantifier-
free FOPL

Syntactic concepts Nodes and
links of many
types

Case frames
parameters

Literals
constants

Operators &, exception

Generalization and specialization rules:
Dropping condition?
Constants to variables?
Generalizing by internal V?
Climbing tree?
Closing intervals?
Introducing exceptions?

Efficiency:
Graph comparisons
Graph generations
during search
Ratio of output to total

Extensibility:
Applications

Disjunctive forms?
Noise immunity?
Domain knowledge?

Constructive induction?

Yes
Yes
No
Yes
No
Yes

2

II
1/11=9%

None

No
Very low
Yes, built-in
to program
Limited
facility

Yes
Yes
No
No
No
No

22

20
6/20 = 30%

Speech
analysis
No
Low
No

No

Yes
Yes
No
No
No
No

Complete
algorithm not
known

None

Yes
Probably good
Yes

No

Method:

Buchanan et al.

Discovering
mass spectro-
metry rules

Chemical model

Molecule graph
attributes
constants in
value sets

&. V, internal V

Yes
Yes
Yes
No
No
No

Not applicable

Not applicable
Not applicable

Mass spectro-
metry, NMR
Yes
Excellent
Yes, built-in
to program
Extensive
problem-specific
facility

Michalski

General

Variable-valued
Logic system VL21

Selectors
descriptors
variables
value sets

&, V, internal V

Yes
Yes
Yes
Yes
Yes
No

28

13
4/13 = 30%

Soybean disease
diagnosis
Yes
Very good
Yes

Few general
rules

H
SB

n
o
3

Winston

Semantic net

General General

Vere

& &

76
C

H
A

P
T

E
R

 3: A
 C

O
M

P
A

R
A

T
IV

E
 R

E
V

IE
W

DIETTERICH & MICHALSKI 77

• Top-down and bottom-up methods present a trade-off between computa-
tional efficiency on the one hand, and flexibility and extensibility on the
other. Bottom-up methods tend to be faster, but have lower noise im-
munity and less flexibility. Top-down methods have good noise immunity
and can be easily modified to discover disjunctive and other forms of
generalization. They do tend to be computationally more expensive.

• The description language employed by a learning method is critically im-
portant. A learning method that uses a language with little structure (that
is, that has few operators and few types of operands) tends to be relatively
efficient and easy to implement but may not be able to learn descriptions
that are most useful in real-world applications. On the other hand, a
method that uses a language that is too rich will lead to enormous im-
plementation problems that will be detrimental to successful research in
machine learning.

• A significant problem in current research on inductive learning is that each
research group is using a different notation and terminology. This not only
makes the exchange of research results difficult, but it also makes it hard
for new researchers to enter the field. This chapter has attempted to devel-
op a set of concepts and criteria that abstract from these differences in
notation and terminology.

The analysis raises some important problems to be addressed in future
research:

• Further work on representations. Present learning programs are limited by
the kinds of operators and variable types they allow, and also by the forms
of descriptions they can produce. Methods for handling additional
operators, variable types, and forms of descriptions need to be designed
and implemented. Rules of generalization corresponding to these
operators, types, and forms should also be developed. Among the forms
that are particularly desirable are hierarchical and related forms in which a
name of one description is used to build other, more complex descriptions.
Some initial work in this area has been done by Winston [1970, 1975],
Cohen and Sammut [1978], and in the area of grammatical inference in
general (for example, Biermann [1972]).

• The Principle of Comprehensibility. In applications where people will
need to use the generalizations produced by a learning program, it is im-
portant that the learning method produce generalizations that are easy to
understand and close to corresponding natural language descriptions. This
means that the descriptions developed by an inductive method must be
structured to take into consideration human information processing limita-
tions. As a rough guideline, conjunctions should involve no more than
three or four conditions, full descriptions should involve only two or three
disjunctive terms, and there should be no more than two quantifiers in the
description. Descriptions should correspond to single "chunks" of infor-

78 CHAPTER 3: A COMPARATIVE REVIEW

mation. Hierarchically-structured descriptions may provide a way to meet
these guidelines. For more details, see Chapter 4 of this book.

• Constructive induction. The constructive induction techniques developed to
date are very limited. New rules of constructive induction need to be iden-
tified and implemented. An important problem is the development of ef-
ficient mechanisms for guiding the process of constructive induction
through the potentially immense space of possible derived descriptors.

• Integration of problem-specific knowledge. Further work should be done
on the problem of when and how to use problem-specific knowledge in a
general induction method. The use of typed variables is a good example
of a general way to incorporate problem-specific knowledge.

• Extension to discriminant and taxonomic descriptions. Much work has
been done on characteristic generalization. Discriminant and taxonomic
descriptions are very important, especially in noisy environments. More
work on this subject is needed.

• User interface. As AI learning programs become more powerful, their
functions will become more opaque. Learning programs should provide
explanation facilities for justifying their generalizations.

• Handling errors and missing data. Very little attention has been paid to the
problem of developing methods that work well in noisy environments.
There is need for research on methods of learning from uncertain input in-
formation, from incomplete information, and from information containing
errors.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the National Science
Foundation under grants MCS-79-06614 and MCS-82-05166. This chapter is a
descendant and an extension of a paper that first appeared in IJCAI-79. Since
that time, reviewers from the AI Journal, where the initial version of the paper
was subsequently published, and the editors of this volume have carefully read
and criticized this work. The authors are grateful for these comments and
criticisms, which significantly helped to improve the presentation and the
readability of this chapter.

REFERENCES

Biermann, A. and Feldman, J., A survey of results in grammatical inference, Academic Press, New
York, 1972.

Buchanan, B. G. and Feigenbaum, E. A., "DENDRAL and Meta-DENDRAL: their applications
dimension," Artificial Intelligence, Vol. 11, pp. 5-24, 1978.

DIETTERICH & MICHALSKI 79

Buchanan, B. G., Feigenbaum, E. A. and Lederberg, J., "A heuristic programming study of theory
formation in sciences," Proceedings of the Second International Joint Conference on Artificial
Intelligence, International Joint Conferences on Artificial Intelligence, London, pp. 40-48,
1971.

Buchanan, B. G., Smith, D. H., White, W. C , Gritter, R. J., Feigenbaum, E. A., Lederberg, J.,
and Djerassi, C , "Applications of artificial intelligence for chemical inference xxn.
Automatic rule formation in mass spectrometry by means of the Meta-DENDRAL program,"
Journal of the American Chemical Society, Vol. 98, pp. 6168, 1976.

Cohen, B. L. and Sammut, C. A., "Pattern recognition and learning with a structural description
language," Proceedings of the Fourth International Joint Conference on Artificial Intelligence,
IJCPR, Kyoto, Japan, pp. 394, 1978.

Dietterich, T. and Michalski, R., "Inductive Learning of Structural Descriptions," Artificial Intel-
ligence, Vol. 16, 1981.

Hayes-Roth, F., "Collected papers on the learning and recognition of structured patterns", Technical
Report technical report, Carnegie-Mellon Department of Computer Science, Pittsburgh, PA.,
May 1976.

Hayes-Roth, F., "Patterns of induction and associated knowledge acquisition algorithms", Technical
Report, Carnegie-Mellon University, May 1976.

Hayes-Roth, F. and McDermott, J., "Knowledge acquisition from structural descriptions," Proceed-
ings of the Fifth International Joint Conference on Artificial Intelligence, IJCAI, Cambridge,
Mass., pp. 356-362, August 1977.

Hayes-Roth, F. and McDermott, J., "An interference matching technique for inducing abstractions,"
Communications of the ACM, Vol. 21, No. 5, pp. 401-410, 1978.

Hunt, E. B., Marin, J. and Stone, P. T., Experiments in Induction, Academic Press, New York,
1966.

Iba, G. A., "Learning disjunctive concepts from examples," Master's thesis, M.I.T., Cambridge,
Mass., 1979, (also AI memo 548).

Knapman, J., "A critical review of Winston's learning structural descriptions from examples," AISB
Quarterly, Vol. 31, pp. 319-320, September 1978.

Larson, J., Inductive inference in the variable-valued predicate logic system VL2I: methodology and
computer implementation, Ph.D. dissertation, University of Illinois, Urbana, Illinois, May
1977.

Larson, J. and Michalski, R. S., "Inductive inference of VL decision rules," Proceedings of the
Workshop on Pattern Directed Inference Systems, SIGART Newsletter 63, pp. 38-44, June
1977.

Lenat, D. B., AM: an artificial intelligence approach to discovery in mathematics as heuristic
search, Ph.D. dissertation, Stanford University, Stanford, California, 1976.

Michalski, R. S., "Discovering classification rules using variable-valued logic system VL1,"
Proceedings of the Third International Joint Conference on Artificial Intelligence, IJCAI, pp.
162-172, 1973.

80 CHAPTER 3: A COMPARATIVE REVIEW

Michalski, R. S., "Discovering classification rules using variable-valued logic system VL1,"
Proceedings of the Third International Joint Conference on Artificial Intelligence, IJCAI, pp.
162-172, 1973a.

Michalski, R. S., "Variable-Valued Logic and its Applications to Pattern Recognition and Machine
Learning," Multiple-Valued Logic and Computer Science, Rine, D. (Ed.), North-Holland, pp.
506-534, 1975a.

Michalski, R. S., "Pattern recognition as rule-guided inductive inference," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4, pp. 349-361, 1980a.

Michalski, R. S. and Chilausky, R. L., "Learning by being told and learning from examples: an
experimental comparison of the two methods of knowledge acquisition in the context of
developing an expert system for soybean disease diagnosis," Policy Analysis and Information
Systems, Vol. 4, No. 2, pp. 125-160, June 1980, (Special issue on knowledge acquisition and
induction).

Mitchell, T. M., "Version Spaces: A candidate elimination approach to rule learning," Proceedings
of the Fifth International Joint Conference on Artificial Intelligence, IJCAI, Cambridge,
Mass., pp. 305-310, 1977.

Mitchell, T. M., Version Spaces: An approach to concept learning, Ph.D. dissertation, Stanford
University, December 1978, (also Stanford CS report STAN-CS-78-711, HPP-79-2).

Plotkin, G. D., "A note on inductive generalization," Machine Intelligence, Meltzer, B. and Michie,
D. (Eds.), Edinburgh University Press, Edinburgh, pp. 153-163, 1970.

Plotkin, G. D., "A further note on inductive generalization," Machine Intelligence, Meltzer, B. and
Michie, D. (Eds.), Elsevier, Edinburgh, pp. 101-124, 1971.

Quinlan, J. R., "Discovering rules from large collections of examples: a case study," Expert Systems
in the Micro Electronic Age, Michie, D. (Ed.), Edinburgh University Press, Edinburgh, 1979.

Quinlan, J. R., "Induction over large data bases", Technical Report Report HPP-79-14, Heuristic
Programming Project, Stanford University, 1979.

Rubin, S. M., and Reddy, R., "The locus model of search and its use in image interpretation,"
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp.
590-595, 1977.

Sacerdoti, E., "Planning in a hierarchy of abstraction spaces," Proceedings of the Third International
Joint Conference on Artificial Intelligence, IJCAI, pp. 412-422, 1973.

Schwenzer, G. M., and Mitchell, T. M., Computer-assisted structure elucidation using automatically
acquired carbon-13 NMR rules, American Chemical Society, 1977.

Soloway, E. M., Learning interpretation + generalization: a case study in knowledge-directed
learning, Ph.D. dissertation, University of Massachusetts at Amherst, 1978, (Computer and
Information Science Report COINS TR-78-13).

Stepp, R., "Learning without.negative examples via variable-valued logic characterizations: the
Uniclass inductive program AQ7UNI", Technical Report 982, Department of Computer
Science, University of Illinois at Urbana-Champaign, July 1979.

D1ETTERICH & MICHALSKI 81

Vere, S. A., "induction of concepts in the predicate calculus," Proceedings of the Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI, Tbilisi, USSR, pp. 281-287,
1975.

Vere, S. A., "induction of relational productions in the presence of background information,"
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, IJCAI,
Cambridge, Mass., pp. 349-355, 1977.

Vere, S. A., "Inductive learning of relational productions," Pattern-Directed Inference Systems,
Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press, New York, 1978.

Vere, S. A., "Multilevel counterfactual s for generalizations of relational concepts and productions,"
Artificial Intelligence, Vol. 14, No. 2, pp. 138-164, September 1980.

Winston, P. H., "Learning structural descriptions from examples", Technical Report AI-TR-231,
MIT, Cambridge, Mass., September 1970.

Winston, P. H., "Learning structural descriptions from examples," The Psychology of Computer
Vision, Winston, P. H. (Ed.), McGraw Hill, New York, ch. 5, 1975, (Original version
published as a Ph.D. dissertation, at MIT AI Lab, September, 1970).

4

A THEORY AND

METHODOLOGY OF

INDUCTIVE LEARNING
Ryszard S. Michalski
University of Illinois

at Urbana-Champaign

ABSTRACT

The presented theory views inductive learning as a heuristic search through
a space of symbolic descriptions, generated by an application of various in-
ference rules to the initial observational statements. The inference rules include
generalization rules, which perform generalizing transformations on descriptions,
and conventional truth-preserving deductive rules. The application of the in-
ference rules to descriptions is constrained by problem background knowledge,
and guided by criteria evaluating the "quality" of generated inductive assertions.

Based on this theory, a general methodology for learning structural descrip-
tions from examples, called Star, is described and illustrated by a problem from
the area of conceptual data analysis.

4.1 INTRODUCTION

"...Scientific knowledge through demonstration1 is impossible unless a
man knows the primary immediate premises ... We must get to know the
primary premises by induction; for the method by which even sense-
perception implants the universal is inductive..!'—Aristotle, Posterior
Analytics, Book II, Chapter 19 (circa 330 B.C.)
The ability of people to make accurate generalizations from a few scattered

•That is, what we now call "deduction".

83

84 CHAPTER 4: INDUCTIVE LEARNING

facts or to discover patterns in seemingly chaotic collections of observations is a
fascinating research topic of long-standing interest. The understanding of this
ability is now also of growing practical importance, as it holds the key to an
improvement of methods by which computers can acquire knowledge. A need
for such an improvement is evidenced by the fact that knowledge acquisition is
presently the most limiting "bottleneck" in the development of modern
knowledge-intensive artificial intelligence systems.

The above ability is achieved by a process called inductive learning, that
is, inductive inference from facts provided by a teacher or the environment. The
study and modeling of this form of learning is one of the central topics of
machine learning. This chapter outlines a theory of inductive learning and then
presents a methodology for acquiring general concepts from examples.

Before going further into this topic, let us first discuss the potential for
applications of inductive learning systems. One such application is an automated
construction of knowledge bases for expert systems. The present approach to
constructing knowledge bases involves a tedious process of formalizing experts'
knowledge and encoding it in some knowledge representation system, such as
production rules [Shortliffe, 1976; Davis & Lenat, 1981] or a semantic network
[Brachman, 1979; Gaschnig, 1980]. Inductive learning programs could provide

both an improvement of the current techniques and a basis for developing alter-
native knowledge acquisition methods.

In appropriately selected small domains, inductive programs are already
able to determine decision rules by induction from examples of expert decisions.
This process greatly simplifies the transfer of knowledge from an expert into a
machine. The feasibility of such inductive knowledge acquisition has been
demonstrated in the expert system PLANT/DS, for the diagnosis of soybean dis-
eases. In this system, the diagnostic rules were developed in two ways: by
formalizing experts' diagnostic processes and by induction from examples. In an
experiment where both types of diagnostic rules were tested on a few hundred
disease cases, the inductively-derived rules outperformed the expert-derived ones
[Michalski & Chilausky, 1980]. Another example is an inductive acquisition of

decision rules for a chess end-game [Michalski & Negri, 1977; Quinlan, 1979;
Shapiro & Niblett, 1982; O'Rorke, 1982]. (See also Chapter 15 of this book.)

A less direct, but potentially promising, use of inductive learning is for the
refinement of knowledge-bases initially developed by human experts. Here, in-
ductive learning programs could be used to detect and rectify inconsistencies, to
remove redundancies, to cover gaps, and to simplify expert-derived decision
rules. By applying an inductive inference program to the data, consisting of
original rules and examples of correct and incorrect results of these rules' perfor-
mance in new situations, the rules could be incrementally improved with little or
no human assistance.

Another important application of inductive programs is in various ex-
perimental sciences, such as biology, chemistry, psychology, medicine, and
genetics. Here they could assist a user in detecting interesting conceptual pat-

MICHALSKI 85

terns or in revealing structure in collections of observations. The widely used
traditional mathematical and statistical data analysis techniques, such as regres-
sion analysis, numerical taxonomy, or factor analysis, are not sufficiently power-
ful for this task. Methods for conceptual data analysis are needed, that generate
not merely mathematical formulas but logic-style descriptions, characterizing data
in terms of high-level, human-oriented concepts and relationships. An early ex-
ample of such an application is the META-DENDRAL program [Buchanan &
Feigenbaum, 1978], which infers cleavage rules for mass-spectrometer simula-
tion. (See its analysis in Chapter 3 of this book.)

There are two basic modes in which inductive programs can be utilized: as
interactive tools for acquisition of knowledge from specific facts or examples, or
as parts of machine-learning systems. In the first mode, a user supplies learning
examples and exercises strong control over the way the program is used (for ex-
ample, [Michalski, 975a; Quinlan, 1979; Michalski & Chilausky, 1980] and
Chapter 15 of this book).

In the second mode, an inductive program is a component of an integrated
learning system whose other components generate the needed learning examples
[Buchanan et al., 1979]. Such examples—positive and negative—constitute the

feedback from the system's attempts to perform a desired task. An example of
the second mode is the learning system LEX for symbolic integration (see Chap-
ter 6 of this book), where a "generalizer" module performs inductive inference
on instances provided by a "critic" module. Another example is discussed in
Chapter 5 of this book, in the context of analogy-based learning.

From the viewpoint of applications, such as aiding the construction of ex-
pert systems or conceptual analysis of experimental data, the most relevant is
conceptual inductive learning. We use this term to designate a type of inductive
learning whose final products are symbolic descriptions expressed in high-level,
Human-oriented terms and forms (more details are given in Section 4.3.1). The
descriptions typically apply to real world objects or phenomena, rather than
abstract mathematical concepts or computations. This paper is concerned specifi-
cally with conceptual inductive learning.

The most frequently studied type of such learning is concept learning from
examples (called also concept acquisition), whose task is to induce general
descriptions of concepts from specific instances of these concepts. The early
studies of this subject go back to the fifties, for example, [Hovland, 1952;
Bruner et al., 1956; Newell et al., 1960; Amarel, 1960; Feigenbaum, 1963;
Kochen, 1960; Banerji, 1962; Simon & Kotovsky, 1963; Hunt et al., 1966;
Hàjek et al., 1966; Bongard, 1970]. Among more recent contributions there are,
for instance, [Winston, 1970; Waterman, 1970; Michalski, 1972; Hayes-Roth,
1973; Simon & Lea, 1974; Stoffel, 1974; Vere, 1975; Larson & Michalski,
1977; Mitchell, 1978; Quinlan, 1979; Moraga, 1981]. An important variant of
concept learning from examples is the incremental concept refinement, where the
input information includes, in addition to the training examples, previously-
learned hypotheses, or human-provided initial hypotheses that may be partially

86 CHAPTER 4: INDUCTIVE LEARNING

incorrect or incomplete [Michalski & Larson, 1978]. Chapter 3 of this book dis-
cusses various evaluation criteria and several methods for concept learning from
examples.

Another type of conceptual inductive learning is concept learning from ob-
servation (or descriptive generalization), concerned with establishing new con-
cepts or theories characterizing given facts. This area includes such topics as
automated theory formation (for example, [Lenat, 1976] and Chapter 9 of this
book), discovery of relationships in data (for example, [Hajek & Havrânek,
1978; Pokorny, 1980; Zagoruiko, 1981] and Chapter 10 of this book), or an
automatic construction of taxonomies (for example, Chapter 11 of this book).
Differences between concept learning from examples and concept learning from
observation are discussed in more detail in the next section.

Conceptual inductive learning has a strong cognitive science flavor. Its
emphasis on inducing human-oriented, rather than machine-oriented descriptions,
and its primary interest in nonmathematical domains distinguishes it from other
types of inductive learning, such as grammatical inference and program syn-
thesis. In grammatical inference, the task is to determine a formal grammar that
can generate a given set of symbol strings (for example, [Solomonoff, 1964;
Biermann & Feldman, 1972; Yau & Fu, 1978; Gaines, 1979]). In program syn-
thesis the objective is to construct a computer program from I/O pairs or com-
putational traces, or to transform a program from one form to another by apply-
ing correctness-preserving transformation rules (for example, [Shaw et al., 1975;
Burstall & Darlington, 1977; Case & Smith, 1981; Biermann, 1978; Jouannaud
& Kodratoff, 1980; Smith, 1980; Pettorossi, 1980]). The final result of such
learning is a computer program, in an assumed programming language, destined
for machine rather than human "consumption". For example, the method of
"model inference" by Shapiro [1981] constructs a PROLOG program characterizing
a given set of mathematical facts.

Recent years have witnessed the development of a number of task-oriented
inductive learning systems that have demonstrated an impressive performance in
their specific domain of application. Major weaknesses, however, persist in
much of the research in this area. Most systems lack generality and exten-
sibility. The theoretical principles upon which they are built are rarely well ex-
plained. Lack of common terminology and an adequate formal theory makes it
difficult to compare different learning methods.

In the following sections we formulate logical foundations of inductive
learning, define various types of such learning, present inference rules for
generalizing concept descriptions, and finally describe a general methodology,
called Star, for learning structural descriptions from examples. To improve the
readability of this chapter, Table 4-1 provides a list of basic symbols used, with
a short explanation. The Appendix gives the details of the description language
used (the annotated predicate calculus).

MICHALSKI 87

Table 4-1: A Table of Basic Symbols

~

&
V
Φ
<=>
<-»
\
F
H
l>
l<
1 =
3 V i

3(1) Vj
Vv,
Dj
Kj
::>
ej
Ei
xi
LEF
DOM(p)

negation
conjunction (logical product)
disjunction (logical sum)
implication
logical equivalence
term rewriting
exception (symmetric difference)
a set of facts (formally, a predicate that is true for all the facts)
a hypothesis (an inductive assertion)
specialization
generalization
reformulation
existential quantifier over Vj
numerical quantifier over Vj (I is a set of integers)
universal quantifier over Vj
a concept description
a predicate asserting the name of a concept (a class)
the implication linking a concept description with a concept name
an event (a description of an object or a situation)
a predicate that is true only for the training events of concept Kj
an attribute (zero- or one-argument descriptor)
a lexicographic evaluation functional
the domain of descriptor p

4.2 TYPES OF INDUCTIVE LEARNING

4.2.1 Inductive Paradigm

As mentioned before, inductive learning is a process of acquiring
knowledge by drawing inductive inferences from teacher- or
environment- provided facts. Such a process involves operations of generalizing,
specializing, transforming, correcting and refining knowledge representations.
Although it is one of the most common forms of learning, it has one fundamen-
tal weakness: except for special cases, the acquired knowledge cannot, in prin-
ciple, be completely validated. This predicament, observed by the Scottish
philosopher David Hume in the 18th century, is due to the fact that inductively-
acquired assertions are hypotheses with a potentially infinite number of con-
sequences, while only a finite number of confirming tests can be performed.

Traditional inquiries into inductive inference have therefore dealt with
questions of what are the best criteria for guiding the selection of inductive asser-
tions, and how these assertions can be confirmed. These are difficult problems,
permeating all scientific activities. The search for answers has turned inductive
inference into a battlefield of philosophers and logicians. There was even doubt
whether it would ever be possible to formalize inductive inference and perform it
on a machine. For example, philosopher Karl Popper [1968] believed that in-
ductive inference requires an irrational element. Bertrand Russell [1946] stated:

88 CHAPTER 4: INDUCTIVE LEARNING

"So far no method has been found which would make it possible to invent
hypotheses by rule." George Polya [1954] in his pioneering and now classic
treatise on plausible inference (of which inductive inference is a special case)
observed: "A person has a background, a machine has not; indeed, you can
build a machine to draw demonstrative conclusions for you, but I think you can
never build a machine that will draw plausible inferences."

The above pessimistic prospects are now being revised. With the develop-
ment of modern computers and subsequent advances in artificial intelligence
research, it is now possible to provide a machine with a significant amount of
background information. Also, the problem of automating inductive inference
can be simplified by concentrating on the subject of hypothesis generation, while
ascribing to humans the question of how to adequately validate them. Some suc-
cessful inductive inference systems have already been built and a body of
knowledge is emerging about the nature of this inference. The rest of this sec-
tion will analyze the logical basis for inductive inference, and then Section
4.5 will present various generalization rules, which can be viewed as inductive
inference rules.

In contrast to deduction, the starting premises of induction are specific
facts rather than general axioms. The goal of inference is to formulate plausible
general assertions that explain the given facts and are able to predict new facts.
In other words, inductive inference attempts to derive a complete and correct
description of a given phenomenon from specific observations of that
phenomenon or of parts of it. As mentioned earlier, of the two aspects of induc-
tive inference—the generation of plausible hypotheses and their validation (the
establishment of their truth status)—only the first is of primary interest to induc-
tive learning research. The problem of hypothesis validation, a subject of
various philosophical inquiries (for example, [Carnap, 1962]) is considered to be
of lesser importance, because it is assumed that the generated hypotheses are
judged by human experts, and tested by known methods of deductive inference
and statistics.

As described in Chapter 1 of this book, there are several different methods
by which a human (or a machine) can acquire knowledge, such as rote learning
(or learning by being programmed), learning from instruction (or learning by
being told), learning from teacher-provided examples (concept acquisition), and
learning by observing the environment and making discoveries (learning from ob-
servation and discovery).

Although all of these ways except the first involve some amount of induc-
tive inference, in the last two, that is, in learning from examples and in learning
from observation, this inference is the central operation. These two forms are
therefore considered to be the major forms of inductive learning. In order to
explain them, let us formulate a general paradigm for inductive inference:

Given:
• Observational statements (facts), F, that represent specific

knowledge about some objects, situations, processes, and so on,

MICHALSKI 89

• A tentative inductive assertion (which may be null),
• Background knowledge that defines the assumptions and constraints

imposed on the observational statements and generated candidate in-
ductive assertions, and any relevant problem domain knowledge.
The last includes the preference criterion characterizing the desirable
properties of the sought inductive assertion.

Find:
• An inductive assertion (hypothesis), H, that tautologically or weakly

implies the observational statements, and satisfies the background
knowledge.

A hypothesis H tautologically implies facts F if F is a logical consequence
of H, that is, if the expression H φ F is true under all interpretations ("=>"
denotes logical implication). This is expressed as follows:

H l> F (read: H specializes to F) (1)
or

F l< H (read: F generalizes to H) (2)
Symbols l> and l< are called the specialization and generalization

symbols, respectively. If H => F is valid, and H is true, then by the law of
detachment (modus ponens) F must be true. Deriving F from H (deductive
inference), is, therefore, truth-preserving. In contrast, deriving H from F
(inductive inference) is not truth-preserving, but falsity-preserving; that is, if
some facts falsify F, then they also must falsify H. (More explanation on this
topic is given in Section 4.5.)

The condition that H weakly implies F means that facts F are not certain
but only plausible or partial consequences of H. By allowing weak implication,
this paradigm includes methods for generating "soft" hypotheses, which hold
only probabilistically, and partial hypotheses, which account for some but not all
of the facts (for example, hypotheses representing "dominant patterns" or charac-
terizing inconsistent data). In the following we will limit our attention to
hypotheses that tautologically imply facts.

For any given set of facts, a potentially infinite number of hypotheses can
be generated that imply these facts. Background knowledge is therefore neces-
sary to provide the constraints and a preference criterion for reducing the infinite
choice to one hypothesis or a few most preferable ones.

A typical way of defining such a criterion is to specify the preferable
properties of the hypothesis—for example, to require that the hypothesis is the
shortest or the most economical description consistent with all the facts (as, for
example, in [Michalski, 1973]). Such a "biased-choice" criterion is necessary
when the description language is complete, that is, able to express any possible
hypothesis. An alternative is to use a "biased-language" criterion [Mitchell,
1978], restricting the description language in which hypotheses are expressed

90 CHAPTER 4: INDUCTIVE LEARNING

(that is, to use an incomplete description language). Although in many methods
the background knowledge is not explicitly stated, the authors make implicit as-
sumptions serving the same purpose. More details on the criteria for selecting
hypotheses are given in Section 4.4.7.

4.2.2 Concept Acquisition versus Descriptive Generalization

As mentioned in the Introduction, one can distinguish between two major
types of inductive learning: learning from examples (concept acquisition) and
learning from observation (descriptive generalization). In concept acquisition,
the observational statements are characterizations of some objects (situations,
processes, and so on) preclassified by a teacher into one or more classes
(concepts). The induced hypothesis can be viewed as a concept recognition rule,
such that if an object satisfies this rule, then it represents the given concept. For
example, a recognition rule for the concept "philosopher" might be:

"A person who pursues wisdom and gains the knowledge of underlying
reality by intellectual means and moral self-discipline is a philosopher."

In descriptive generalization the goal is to determine a general description (a law,
a theory) characterizing a collection of observations. For example, observing
that the philosophers Aristotle, Plato, and Socrates were Greek, but that Spencer
was British, one might conclude:

"Most philosophers were Greek."
Thus, in contrast to concept acquisition that produces descriptions for clas-

sifying objects into classes on the basis of the objects' properties, descriptive
generalization produces descriptions specifying properties of objects belonging to
a certain class. Here are some example problems belonging to the above two
categories:

1. Concept Acquisition:
• Learning a characteristic description of a class of objects, that

specifies all common properties of known objects in the class, and by
that defines the class in the context of an unlimited number of other
object classes (for example, [Bongard, 1967; Winston, 1970; Stoffel,
1974; Vere, 1975; Cohen, 1977; Hayes-Roth & McDermott, 1978;
Mitchell, 1978; Stepp, 1978; Michalski, 1980a] and Chapter 3 of this
book).

• Learning a discriminant description of a class of objects that distin-
guishes the given class from a limited number of other classes (for
example, [Michalski, 1973; Quinlan, 1979; Michalski, 1980a] and
Chapter 15 of this book).

• Inferring sequence extrapolation rules (for example, [Simon &
Kotovsky, 1963; Dietterich, 1979]) able to predict the next element
(a symbol, a number, an object, and so on) in a given sequence.

MICHALSKI 91

2. Descriptive Generalization:
• Formulating a theory characterizing a collection of entities (for ex-

ample, a number theory, as in [Lenat, 1976] and Chapter 9 of this
book).

• Discovering patterns in observational data (for example, [Soloway &
Riseman, 1977; Hajek & Havrânek, 1978; Pokorny, 1980; Zago-
ruiko, 1981] and Chapter 10 of this book).

• Determining a taxonomic description (classification) of a collection of
objects (for example, [Michalski, 980c; Michalski et al.9 1981] and
Chapter 11 of this book).

This paper is concerned primarily with problems of concept acquisition. In
this case, the set of observational statements F can be viewed as a collection of
implications:

F : {eik ::> Kj}, i € I (3)

where eik (a training event) denotes a description of the kth example of concept
(class) asserted by predicate Kj (for short, class Kj) and I is a set indexing
classes Kv It is assumed here that any given event represents only one concept.
Symbol ::> is used here, and will be used henceforth, to denote the implica-
tion linking a concept description with a predicate asserting the concept name (in
order to distinguish this implication from the implication between arbitrary
descriptions). The inductive assertion H can be characterized as a set of concept
recognition rules:

H : {^ ::> KJ, i c i (4)
where Dj is a concept description of class Kj, that is, an expression of con-
ditions, such that when they are satisfied by an object, the object is considered
an instance of class Kj.

According to the definition of inductive assertion, we must have:
H l> F (5)

By substituting (3) and (4) for F and H, respectively, in (5), and making ap-
propriate transformations, one can derive the following conditions to be satisfied
in order that (5) holds:

V i € I (Ej Φ Dj) (6)
and

Vi,j c K D i ^ - E p . i f j Φ i (7)
where Ej, i £ I, is a description satisfied by all training events of class Kj, and
only by such events (the logical disjunction of training events).

Expression (6) is called the completeness condition, and (7) the consistency
condition. These two conditions are the requirements that must be satisfied for
an inductive assertion to be acceptable as a concept recognition rule. The com-

92 CHAPTER 4: INDUCTIVE LEARNING

pleteness condition states that every training event of some class must satisfy the
description Dj of the same class (since the opposite does not have to hold, Dj is
equivalent to, or more general than, Ej). The consistency condition states that if
an event satisfies a description of some class, then it cannot be a member of a
training set of any other class. In learning a concept from examples and counter-
examples, the latter constitute the "other" class.

The completeness and consistency conditions provide the logical foundation
of algorithms for concept learning from examples. We will see in Section 4.5
that to derive Dj satisfying the completeness condition one can adopt some in-
ference rules of formal logic.

4.2.3 Characteristic versus Discriminant Descriptions

The completeness and consistency conditions allow us to clearly explain
the distinction between the previously mentioned characteristic and discriminant
descriptions. A characteristic description of a class of objects (also known as
conjunctive generalization) is an expression that satisfies the completeness con-
dition or is the logical product of such expressions. It is typically a conjunction
of some simple properties common to all objects in the class. From the applica-
tions viewpoint, the most interesting are maximal characteristic descriptions
(maximal conjunctive generalizations) that are the most specific (that is, the
longest) logical products characterizing all objects in the given class, using terms
of the given language. Such descriptions are intended to discriminate the given
class from all other possible classes (for illustration see Section 4.7.2).

A discriminant description is an expression that satisfies the completeness
and consistency condition, or is the logical disjunction of such expressions. It
specifies one or more ways to distinguish the given class from a fixed number of
other classes. The most interesting are minimal discriminant descriptions that
are the shortest (that is, have the minimum number of descriptors) expressions
distinguishing all objects in the given class from objects of the other classes.
Such descriptions are intended to specify the minimum information sufficient to
identify the given class among a fixed number of other classes (for illustration
see Section 4.7.1).

4.2.4 Single- versus Multiple-concept Learning

It is instructive to distinguish between learning a single concept, and learn-
ing a collection of concepts. In single concept learning, one can distinguish two
cases: (i) when observational statements are just examples of the concept to be
learned (learning from "positive" instances only); and (ii) when they are ex-
amples and counter-examples of the concept (learning from "positive" and
"negative" instances).

In the first case, because of the lack of counter-examples, the consistency
condition (7) is not applicable, and there is no natural limit to which description
Dj (here, i= 1) can be generalized. One way to impose such a limit is to specify

MICHALSKI 93

restrictions on the form and properties of the sought description. For example,
one may require that it be the maximal characteristic description, that is, the
longest conjunctive statement satisfying the completeness condition (for example,
[Vere, 1975; Hayes-Roth & McDermott, 1978]). Another way is to require that

the description not exceed a given degree of generality, measured, for example,
by the ratio of the number of all distinct events which could potentially satisfy
the description to the number of training instances [Stepp, 1978].

In the second case, when the teacher also provides counter-examples of the
given concept, the learning process is considerably simplified. These counter-
examples can be viewed as representing a "different class", and the consistency
condition (7) provides an obvious limit on the extent to which a hypothesis can
be generalized. The most useful counter-examples are the so-called "near
misses" that only slightly differ from positive examples [Winston, 1970, 1977].
Such examples place stronger constraints on the generalization process than
randomly-generated examples.

In multiple-concept learning one can also distinguish two cases: (i) when
descriptions Dj of different classes are required to be mutually disjoint, that is,
no event can satisfy more than one description; and (ii) when they are overlap-
ping. In an overlapping generalization an event may satisfy more than one
description. In some situations this is desirable. For example, if a patient has
two diseases, his symptoms should satisfy the descriptions of both diseases, and
in this case the consistency condition is not applicable.

An overlapping generalization can be interpreted in such a way that it al-
ways indicates only one decision class. For example, the concept recognition
rules, Dj ::> Kj, can be applied in a linear order, and the first rule satisfied
generates the decision. In this case, if a concept description Dj for class Kj con-
tains a conjunctively-linked condition A, and precedes the rule for class K: that
contains condition ~A, then the condition ~A is superfluous and can be
removed. As a result, the linearly-ordered recognition rules can be significantly
simplified. For example, the set of linearly-ordered rules:

D, ::> K,
Ό-, ::> K2
DJ ::> K3

is logically equivalent to the set of (unordered) rules:
D, ::> K,

- D j & D2 ::> K2
~Dj & ~ D 2 & D3 ::> K3

There are also other ways to derive a single decision from overlapping rules,
such as those given in [Davis & Lenat, 1981].

The above forms of multiple-concept learning have been implemented in
inductive programs AQVAL/1 [Michalski, 1973] and AQ11 [Michalski & Larson,
1978].

94 CHAPTER 4: INDUCTIVE LEARNING

4.3 DESCRIPTION LANGUAGE

4.3.1 Bias Toward Comprehensibility

In concept acquisition, the main interest is in derivation of symbolic
descriptions that are human-oriented, that is, that are easy to understand and easy
to use for creating mental models of the "information they convey. A tentative
criterion for judging inductive assertions from such a viewpoint is provided by
the following comprehensibility postulate:

The results of computer induction should be symbolic descrip-
tions of given entities, semantically and structurally similar to those
a human expert might produce observing the same entities. Com-
ponents of these descriptions should be comprehensible as single
"chunks" of information, directly interprétable in natural language,
and should relate quantitative and qualitative concepts in an in-
tegrated fashion.

As a practical guide, one can assume that the components of descriptions
(single sentences, rules, labels on nodes in a hierarchy, and so on) should be
expressions that contain only a few (say, less than five) conditions in a conjunc-
tion, few single conditions in a disjunction, at most one level of bracketing, at
most one implication, no more than two quantifiers, and no recursion (the exact
numbers may be disputed,2 but the principle is clear). Sentences are kept within
such limits by substituting names for appropriate subcomponents. Any operators
used in descriptions should have a simple intuitive interpretation. Conceptually
related sentences are organized into a simple data structure, preferably a shallow
hierarchy or a linear list, such as a frame [Minsky, 1975]. (See also Chapter
9 of this book.)

The rationale behind this postulate is to ensure that descriptions generated
by inductive inference bear similarity to human knowledge representations
[Hintzman, 1978], and therefore, are easy to comprehend. This requirement is

very important for many applications. For example, in developing knowledge
bases for expert systems, it is important that human experts can easily and reli-
ably verify the inductive assertions and relate them to their own domain
knowledge. Satisfying the comprehensibility postulate will also facilitate debug-
ging or improving the inductive programs themselves. When the complexity of
problems undertaken by computer induction becomes very great, the comprehen-
sibility of the generated descriptions will likely be a crucial criterion. This
research orientation fits well within the role of artificial intelligence envisaged by
Michie [1977] to study and develop methods for man-machine conceptual inter-
face and knowledge refinement.

2The numbers mentioned seem to apply to the majority of human descriptive sentences.

MICHALSKI 95

4.3.2 Language of Assertions

One of the difficulties with inductive inference is its open-endedness. This
means that when one makes an inductive assertion about some aspect of reality
there is no natural limit to the level of detail in which this reality may be
described, or to the richness of forms in which this assertion can be expressed.
Consequently, when conducting research in this area, it is necessary to cir-
cumscribe very carefully the goals and the problem to be solved. This includes
defining the language and the scope of allowed forms in which assertions will be
expressed, as well as the modes of inference which will be used. The descrip-
tion language should be chosen so that crucial features can be easily encoded
while peripheral or irrelevant information ignored.

An instructive criterion for classifying inductive learning methods is there-
fore the type of language used to express inductive assertions. Many authors use
a restricted form of predicate calculus or closely related notation (for example,
[Plotkin, 1971; Fikes et al., 1972; Morgan, 1975; Vere, 1975; Banerji, 1980;
Michalski, 1980a; Sammut, 1981; Zagoruiko, 1981]). Some other formalisms
include decision trees [Hunt et al., 1966; Quinlan, 1979] (see also Chapter 15 of
this book), production rules (for example, [Waterman, 1970; Hedrick, 1974] (see
also Chapter 16 of this book), semantic nets (Chapter 13), and frames (Chapter
9). In his earlier work (for example, [Michalski, 1972, 1973, 1975a, 1975b]
this author used a multiple-valued logic propositional calculus with typed vari-
ables, called VLj (the variable-valued logic system one). Later on an extension
of the predicate calculus, called VL2, was developed, that was especially
oriented to facilitate inductive inference [Michalski, 980a].

Here we will use a somewhat modified and extended version of the latter
language, to be called the annotated predicate calculus (APC). The APC adds
to predicate calculus additional forms and new concepts that increase its expres-
sive power and facilitate inductive inference. The major differences between the
annotated predicate calculus and the conventional predicate calculus can be sum-
marized as follows:

1. Each predicate, variable and function (referred to collectively as a
descriptor) is assigned an annotation that contains relevant
problem- oriented information. The annotation may contain the definition
of the concept represented by a descriptor, a characterization of its relation-
ship to other concepts, a specification of the set over which the descriptor
ranges (when it is a variable or a function), a characterization of the struc-
ture of this set, and so on (see Section 4.4).

2. In addition to predicates, the APC also includes compound predicates. Ar-
guments of such predicates can be compound terms, composed of two or
more ordinary terms.

3. Predicates that express relations = , Φ , > , > , < and < between terms or
between compound terms are expressed explicitly as relational statements,
also called selectors.

96 CHAPTER 4: INDUCTIVE LEARNING

4. In addition to the universal and existential quantifiers, there is also a
numerical quantifier that expresses quantitative information about the ob-
jects satisfying an expression.
The concept of annotation is explained in more detail in the next section.

Other aspects of the language are described in the Appendix. (The reader inter-
ested in a thorough understanding of this work is encouraged to read the Appen-
dix at this point.)

4.4 PROBLEM BACKGROUND KNOWLEDGE

4.4.1 Basic Components

As we mentioned earlier, given a set of observational statements, one may
construct a potentially infinite number of inductive assertions that imply these
statements. It is therefore necessary to use some additional information, problem
background knowledge, to constrain the space of possible inductive assertions
and locate the most desirable one(s). In this section, we shall look at various
components of the problem background knowledge employed in the inductive
learning methodology called Star, described in Section 4.6. These components
include:

• Information about descriptors (i.e., predicates, variables, or functions) used
in observational statements. This information is provided by an annotation
assigned to each descriptor (Section 4.4.3).

• Assumptions about the form of observational and inductive assertions.
• A preference criterion that specifies the desirable properties of inductive

assertions sought.
• A variety of inference rules, heuristics, and specialized procedures, general

and problem-dependent, that allow a learning system to generate logical
consequences of given assertions and new descriptors.
Before we examine these components in greater detail, let us first consider

the problem of how the choice of descriptors in the observational statements af-
fects the generated inductive assertions.

4.4.2 Relevance of the Initial Descriptors

A fundamental problem underlying any machine inductive learning task is
that of what information is provided to the machine and what information the
machine is expected to produce or learn. As specified in the inductive paradigm,
the major component of the input to a learning system is a set of observational
statements. The descriptors used in those statements are observable characteris-
tics and available measurements of objects under consideration. These descrip-
tors are selected as relevant to the learning task by a teacher specifying the
problem.

MICHALSKI 97

Determining these descriptors is a major part of any inductive learning
problem. If they capture the essential properties of the objects, the role of the
learning process is simply to arrange these descriptors into an expression con-
stituting an appropriate inductive assertion. If the selected descriptors are com-
pletely irrelevant to the learning task (as the color, weight, or shape of men in
chess is irrelevant to deciding the right move), no learning system will be able to
construct a meaningful inductive assertion.

There is a range of intermediate possibilities between the above two ex-
tremes. Consequently, learning methods can be characterized on the basis of the
degree to which the initial descriptors are relevant to the learning problem.

Three cases can be distinguished:
1. Complete relevance—In this case all descriptors in the observational state-

ments are assumed to be directly relevant to the learning task. The task of
the learning system is to formulate an inductive assertion that is a math-
ematical or logical expression of some assumed general form that properly
relates these descriptors (for example, a regression polynomial).

2. Partial relevance—Observational statements may contain a large number
of irrelevant or redundant descriptors. Some of the descriptors, however,
are relevant. The task of the learning system is to select the most relevant
ones and construct from them an appropriate inductive assertion.

3. Indirect relevance—Observational statements may contain no directly-
relevant descriptors. However, among the initial descriptors there are
some that can be used to construct derived descriptors that are directly
relevant. The task of the learning system is to construct those derived
descriptors and formulate an appropriate inductive assertion. A simple
form of this case occurs, for example, when a relevant descriptor is the
volume of an object, but the observational statements contain only the in-
formation about the object's dimensions (and various irrelevant facts).

The above three cases represent problem statements that put progressively
less demand on the relevance of the initial descriptors (that is, that require less
work from the person defining the problem) and more demand on the learning
system. Early work on adaptive control systems and concept formation
represents case 1. More recent research has dealt with case 2, which is ad-
dressed in selective inductive learning. A method of such learning must possess
efficient mechanisms for determining combinations of descriptors that are
relevant and sufficient for the learning task. Formal logic provides such
mechanisms, and therefore it has become the major underlying formalism for
selective methods.

An example of a selective learning method is the one implemented in
program AQll [Michalski & Larson, 1978] that inductively determined soybean
disease diagnostic rules for the system PLANT/DS, mentioned in the Introduction.
A different type of selective method was implemented in program ID3 (Chapter
15) that determines a decision tree for classifying a large number of events. A
comparison between these two programs is described by O'Rorke [1982].

98 CHAPTER 4: INDUCTIVE LEARNING

Case 3 represents the task of constructive inductive learning. Here, a
method must be capable of formulating new descriptors (that is, new concepts,
new variables, and the like), of evaluating their relevance to the learning task
and of using them to construct inductive assertions. There has been relatively
little done in this area. The "automated mathematician" program AM (Chapter 9)
can be classified as a domain-specific system of this category. Some construc-
tive learning capabilities have been incorporated in system BACON that automati-
cally formulates mathematical expressions encapsulating chemical and other laws
[Langley et al., 1980] (see also Chapter 10). The general-purpose INDUCE

program for learning structural descriptions from examples incorporates several
constructive generalization techniques [Larson, 1977; Michalski, 1980a]. Sec-
tions 4.5 and 4.6 give more details on this subject.

4.4.3 Annotation of Descriptors

An annotation of a descriptor (that is, of a predicate, variable, or function)
is a store of background information about this descriptor tailored to the learning
problem under consideration. It may include:

• A specification of the domain and the type of the descriptor (see below).
• A specification of operators applicable to it.
• A specification of the constraints and the relationships between the descrip-

tor and other descriptors.
• For numerical descriptors, the mean, the variance, or the complete prob-

ability distribution of values for the problem under consideration.
• A characterization of objects to which the descriptor is applicable (such as

a characterization of its possible arguments).
• A specification of a descriptor class containing the given descriptor, that is,

the parent node in a generalization hierarchy of descriptors (for example,
for descriptors "length", "width", and "height", the parent node would be
the "dimensions").

• Synonyms that can be used to denote the descriptor.
• A definition of a descriptor (when it is derived from some other

descriptors).
• If a descriptor denotes a class of objects, typical examples of this class can

be specified.
Let us consider some of the above components of the annotation in greater

detail.

4.4.4 The Domain and Type of a Descriptor

Given a specific problem, it is usually possible to specify the set of values
each descriptor could potentially adopt in characterizing any object in the popula-
tion under consideration. Such a set is called the domain (or the value set) of

MICHALSKI 99

the descriptor. The domain is used to constrain the extent to which a descriptor
can be generalized. For example, the information that the temperature of a
living human being may vary, say, only between 34°C and 44°C prevents the
system from considering inductive assertions in which the descriptor "body
temperature" would assume values beyond these limits.

Other important information for conducting the generalization process is
concerned with the structure of the domain, that is, with the relationship existing
among the elements of the domain. For numerical descriptors, such relationships
are specified by the measurement scale. Depending on the structure of the
descriptor domain, we distinguish among three basic types of descriptors:

1. Nominal (categorical) descriptors—The value set of such descriptors con-
sists of independent symbols or names, that is, no structure is assumed to
relate the values in the domain. For example, "blood-type(person)" and
"name(person)" are unary nominal descriptors. Predicates, that is, descrip-
tors with the value set {True, False}, and n-ary functions whose ranges are
unordered sets, are also nominal descriptors. An example of a two-
argument nominal descriptor is "license-plate-number(car, owner)", which
denotes a function assigning to a specific car of the given owner a license
plate number.

2. Linear descriptors—The value set of linear descriptors is a totally ordered
set. For example, a person's military rank or the temperature, weight, or
number of items in a set is such a descriptor. Variables measured on or-
dinal, interval, ratio, and absolute scales are special cases of a linear
descriptor. Functions that map a set into a totally-ordered set are also
linear descriptors, for example, "distance(Pj,P2)".

3. Structured descriptors—The value set of such descriptors has a tree-
oriented graph structure that reflects the generalization relation between the
values, that is, is a generalization hierarchy. A parent node in such a
structure represents a more general concept than the concepts represented
by its children nodes. For example, in the value set of descriptor "place",
"U.S.A." would be a parent node of the nodes "Indiana", "Illinois",
"Iowa", and so on. The domain of structured descriptors is defined by a
set of inference rules specified in the problem background knowledge (see,
for example, descriptor "shape(Bj)" in Section 4.7.

Structured descriptors can be further subdivided into ordered and unordered
structured descriptors (see Chapter 11).

Sometimes, descriptors themselves can also be organized into a generaliza-
tion hierarchy. For example, as already mentioned, the descriptors "length",
"width", and "depth" belong to a class of "dimensions". Information about the
type of a descriptor is useful as it determines the operations applicable to a
descriptor.

100 CHAPTER 4: INDUCTIVE LEARNING

4.4.5 Constraints on the Description Space

For a given induction problem there may exist a variety of constraints on
the space of the acceptable concept descriptions, due to the specific properties
and relationships among descriptors. Here are a few examples of such relation-
ships:

• Interdependence among values—In many practical problems some vari-
ables specify a state of an object, and some other variables characterize the
state. Depending on the values of the state-specifying variables, the vari-
ables characterizing a state may or may not be needed. For example, if a
descriptor "state(plant's leaf)" takes on value "diseased", then a descriptor
"leaf discoloration" will be used to characterize the change of the leafs
color. When the descriptor "state(plant's leaf)" takes on value "normal",
then obviously the "leaf discoloration" descriptor is irrelevant. Such infor-
mation can be represented by an implication:

[state(plant's leaf) = normal] Φ [discoloration(plant's leaf) = NA]
where NA is a special value meaning "not applicable".

• Properties of descriptors—Descriptors that are relations between objects
may have certain general properties—they can be reflexive, symmetric,
transitive, and so on. All such properties are defined as assertions in the
annotated predicate calculus (see the Appendix). For example, the tran-
sitivity of relation "above(Pj ,P2)" can be defined as:

V Pi,P2,P3, (above(P!,P2) & above(P2,P3)) Φ above(Pj,P3)
• Interrelationships among descriptors—In some problems there may exist

relationships between descriptors that constrain their values. For example,
the length of an object is assumed always to be greater than or equal to its
width:

V P, length(P) > width(P)
Also, descriptors may be related by known equations. For example, the
area of a rectangle is the arithmetic product of its length and width:

V P, ([shape(P) = rectangle] Φ [area(P) = length(P) x width(P)])
The infix operator " x " is used to simplify notation of the term
multiply(length(P), width(P)).

4.4.6 The Form of Observational and Inductive Assertions

The basic form of assertions in the Star methodology is a c-expression,
defined as a conjunctive statement:

<quantifier form><conjunction of relational statements> (8)
where <quantifier form> stands for zero or more quantifiers, and <relational

MICHALSKI 101

statements> are predicates in a special form, as defined in the Appendix. The
following is an example of a c-expression:

3.P0,P1,P2,P3([contains(P0,P1,P2,P3)][ontop(P1&P2,P3)][length(P1) = 3..5]
[weight^) > weight(P2][color(P1) = red V blueHshapeiPj & P2 & P3) = box]

that can be paraphrased in English:

An object P0 contains parts Pj, P2 and P3 and only these parts. Parts
Pj & P2 are on top of part P3, length of Pj is between 3 and 5, the weight
of P{ is greater than that of P2, the color of Px is red or blue, and the
shape of all three parts is box.

An important special case of a c-expression is an a-expression (an atomic
expression), in which there is no "internal disjunction" (see the Appendix).

Note that due to the use of internal disjunction a c-expression represents a
more general concept than a universally quantified conjunction of predicates,
used in typical production rules.

Progressively more complex forms of expressions are described below:

• A case expression is a logical product of implications:

[L = aj => Expj, i = 1,2,...

where a, are single elements or disjoint subsets of elements from the
domain of descriptor L, and Expj are c-expressions.

A case expression describes a class of objects by splitting it into
separate cases, each represented by a different value(s) of a certain descrip-
tor.

• An implicative expression (i-expression):

C & (Cx => C2) (9)

where C, Cx and C2 are c-expressions.
This form of description is very useful when the occurrence of some

properties (defined in C2) depends on the occurrence of some other
properties (defined in C{). Typical production rules used in expert systems
are a special case of (9), where C is omitted and no internal logical
operators are used. When (Cj φ C2) is omitted, then the conditional ex-
pression becomes a c-expression.

• A disjunctive expression (d-expression), defined as a disjunction of im-
plicative expressions.

• An exception-based expression (e-expression). In some situations it is
simpler to formulate a somewhat overgeneralized statement and indicate
exceptions than to formulate a precise statement. The following form is
used for such purposes:

Dj \ D 2

where Dj and D2 are d-expressions. This expression is equivalent to
(~D2 φ Di) & (D2 φ -DO.

102 CHAPTER 4: INDUCTIVE LEARNING

Observational assertions are formulated as a set of rules:
{a-expression ::> Kj} (10)
Inductive assertions are expressed as a set of rules:
{EXP ::> c-expression} (11)

where EXP is a c-expression or any of the more complex expressions
described above. It is also assumed that the left side and the right side of
(11) satisfy the principle of comprehensibility described in Section 4.2.

4.4.7 The Preference Criterion

In spite of the constraints imposed by the above components of the back-
ground knowledge, the number of inductive assertions consistent with obser-
vational statements may still be unlimited. The problem then arises of choosing
the most desirable inductive assertion(s). In making such a choice, one must
take into consideration the aspects of the particular inductive learning problem;
therefore the definition of a "preference criterion" for selecting a hypothesis is a
part of the problem background knowledge. Typically, the inductive assertions
are chosen on the basis of some simplicity criterion (such as given in [Kemeni,
1953; Post, I960]).

In the context of scientific discovery, philosopher Karl Popper [1968] has
advocated constructing hypotheses that are both simple and easy to refute. By
generating such hypotheses and conducting experiments aimed at refuting them,
he argues, one has the best chance of ultimately formulating the true hypothesis.
In order to use this criterion for automated inductive inference, it is necessary to
define it formally. This, however, is not easy because there does not seem to
exist any universal measure of hypothesis simplicity and refutability.

Among more specific measures for evaluating the "quality" of inductive
assertions one may list:

• An overall simplicity for human comprehension, measured, for example,
by the number of descriptors and number of operators used in an inductive
assertion.

• The degree of "fit" between the inductive and observational assertions
(measured, for example, by the degree of generalization, defined as the
amount of uncertainty that any given description satisfying the inductive
assertion corresponds to some observational statement [Michalski, 980c]).

• The cost of measuring values of descriptors used in the inductive assertion.
• The computational cost of evaluating the inductive assertion.
• The memory required for storing the inductive assertion.
• The amount of information needed for encoding the assertion using

predefined operators [Coulon & Kayser, 1978].
The importance given to each such measure depends on the ultimate pur-

MICHALSKI 103

pose of constructing the inductive assertions. For that reason, the Star methodol-
ogy allows a user to build a global preference criterion as a function of such
measures, tailored to a specific inductive problem. Since some of the above
measures are computationally costly, simpler measures are used, called elemen-
tary criteria. Among such criteria are: the number of c-expressions in the asser-
tion, the total number of relational statements, the ratio of possible but unseen
events implied by an assertion to the total number of training events (a simple
measure of generalization), and the total number of different descriptors. The
global preference criterion is formulated by selecting from the above list those
elementary criteria that are most relevant to the problem, and then arranging
them into a lexicographic evaluation functional (LEF). A LEF is defined as a
sequence of criterion-tolerance pairs:

L E F : (C , , T ,) , (C2,T2)... (12)

where Cj is an elementary criterion selected from the available "menu", and η is
a tolerance threshold for criterion Cj (Tj 6 [0..100%]).

Given a set of inductive assertions, the LEF determines the most preferable
one(s) in the following way:

In the first step, all assertions are evaluated from the viewpoint of criterion
Cj, and those which score best, or within the range defined by the threshold Tj
from the best, are retained. Next the retained assertions are evaluated from the
viewpoint of criterion c2 and reduced similarly as above, using tolerance τ2.
This process continues until either the subset of retained assertions contains only
one assertion (the "best" one) or the sequence of criterion-tolerance pairs is ex-
hausted. In the latter case, the retained set contains assertions that are equivalent
from the viewpoint of the LEF.

An important and somewhat surprising property of such an approach is that
the same learning system can generate either characteristic or discriminant
descriptions of object classes by properly defining the preference criterion (see
Section 4.7).

4.5 GENERALIZATION RULES

4.5.1 Definitions and an Overview

Constructing an inductive assertion from observational statements can be
conceptually characterized as a heuristic state-space search [Nilsson, 1980],
where:

• states are symbolic descriptions; the initial state is the set of observational
statements.

• operators are inference rules, specifically, generalization, specialization
and reformulation rules, as defined below.

• the goal state is an inductive assertion that implies the observational state-

104 CHAPTER 4: INDUCTIVE LEARNING

ments, satisfies the problem background knowledge and maximizes the
given preference criterion.
A generalization rule is a transformation of a description into a more

general description, one that tautologically implies the initial description. A
specialization rule makes an opposite transformation: given a description, it
generates a logical consequence of it. A reformulation rule transforms a descrip-
tion into another, logically-equivalent description. A reformulation rule can be
viewed as a special case of a generalization and a specialization rule.

Specialization and reformulation rules are the conventional truth-preserving
inference rules used in deductive logic. In contrast to them, the generalization
rules are not truth-preserving but falsity preserving. This means that if an event
falsifies some description, then it also falsifies a more general description. This
is immediately seen by observing that H φ F is equivalent to ~F φ ~Η (the
law of contraposition). To illustrate this point, suppose that a statement "some
water birds in this lake are swans" has been generalized to "all water birds in
this lake are swans." If there are no water birds in the lake that are swans, then
this fact falsifies not only the first statement but also the second. Falsifying the
second statement, however, does not imply the falsification of the first.

In concept acquisition, as explained in Section 4.2.2, transforming a rule
E ::> K into a more general rule D ::> K means that description E must
imply description D:

E=>D (13)
(recall expression (6)). Thus, to obtain a generalization rule for concept acquisi-
tion, one may use a tautological implication of formal logic. The premise and
consequence of such an implication must, however, be interprétable as a descrip-
tion of a class of objects. For example, the known law of simplification:

P & Q ^ P (14)
can be turned into a generalization rule:

P & Q ::> K K P ::> K (15)
If P stands for "round objects", Q for "brown objects" and K for "balls",

then rule (15) states that the expression "round and brown objects are balls" can
be generalized to "round objects are balls." Thus, in concept acquisition, the
generalization operation has a simple set-theoretical interpretation: a description
is more general if it is satisfied by a larger number of objects. (Such an inter-
pretation does not apply, however, to descriptive generalization, as shown
below.)

In order to obtain a rule for descriptive generalization, implication (14) is
reversed, and P and Q are interpreted as properties of objects of some class K:

P(K) l< P(K)&Q(K) (16)
If P(K) stands for "balls are round" and Q(K) for "balls are brown," then

according to rule (16), the statement "balls are round and brown" is a generaliza-

MICHALSKI 105

tion of the statement "balls are round" (because from the former one can deduce
the latter). We can see that the notion "the number of objects satisfying a
description" is not applicable here. Generalizing means here adding
(hypothesizing) properties that are ascribed to a class of objects.

After this informal introduction we shall now present various fypes of
generalization rules, concentrating primarily on the rules for concept acquisition.
These rules will be expressed using the notation of the annotated predicate cal-
culus (see the Appendix). The reverse of these rules are specialization rules and,
as special cases, reformulation rules. With regard to other specialization and
reformulation rules we shall refer the reader to a standard book on predicate cal-
culus (such as [Suppes, 1957]). Some reformulation rules of the annotated
predicate calculus that do not occur in ordinary predicate calculus are given in
the Appendix.

We will restrict our attention to generalization rules that transform one or
more statements into a single more general statement:

{Di ::> K } i € l l< D ::> K (17)
Such a rule states that if an event (a symbolic description of an object or

situation) satisfies any description Dv i £ I, then it also satisfies description D
(the reverse may not be true). A basic property of the generalization transfor-
mation is that the resulting description has "unknown" truth-status, that is, is a
hypothesis that must be tested on new data. A generalization rule does not
guarantee that the obtained description is useful or plausible.

We distinguish between two types of generalization rules, selective and
constructive. If every descriptor used in the generated concept description D is
among descriptors occurring in the initial concept descriptions Dj, i= 1,2,..., then
the rule is selective, otherwise it is constructive.

4.5.2 Selective Generalization Rules

In the rules presented below, CTX, CTXj and CTX2 stand for some ar-
bitrary expressions (context descriptions) that are augmented by additional com-
ponents to formulate a concept description.
• The dropping condition rule—This rule is a generalized version of the
previously described rule (15):

CTX & S ::> K l< CTX ::> K (18)
where S is an arbitrary predicate or logical expression.

This rule states that a concept description can be generalized by simply
removing a conjunctively-linked expression. This is one of the most commonly-
used rules for generalizing information.
• The adding alternative rule:

CTXj ::> K K CTX! V CTX2 ::> K (19)
A concept description can be generalized by adding, through the use of

106 CHAPTER 4: INDUCTIVE LEARNING

logical disjunction, an alternative to it. An especially useful form of this rule is
when the alternative is added by extending the scope of permissible values of
one specific descriptor. Such an operation can be expressed very simply by
using the internal disjunction operator of the annotated predicate calculus. For
example, suppose that a concept description is generalized by allowing objects to
be not only red but also blue. This can be expressed as follows:

CTX& [color = red] ::> K l< CTX&[color = red V blue] ::> K (20)
(Forms in brackets are selectors; the expressions on the right of ' = ' are called
references—see the Appendix) ·

Because of the importance of this special case, it will be presented as a
separate general rule.
• The extending reference rule:

CTX&[L = R!] ::> K K CTX & [L = R2] ::> K (21)
where Rj Ç R 2 Ç DOM(L) and DOM(L) denotes the domain of L.

In this rule, L is a term, and Rj and R2 (references) are internal disjunc-
tions of values of L. References Rj and R2 can be interpreted as sets of values
that descriptor L can take in order to satisfy the concept description.

The rule states that a concept description can be generalized by enlarging
the reference of a descriptor (R2 3 Rj). The elements added to R2 must,
however, be from the domain of L.

If R2 is extended to be the whole domain, that is, R2 = DOM(L), then the
selector [L = DOM(L)] is always true, and therefore can be removed. In this
case, the extending reference rule becomes the dropping condition rule. There
are two other special cases of the extending reference rule. They take into con-
sideration the type of the descriptor L [defined by the structure of DOM(L)].
They are presented as separate rules below.
• The closing interval rule:

CTX&[L = a] ::> K I
< CTX& [L = a..b] ::> K (22)

CTX&[L = b] ::> K |
where L is a linear descriptor, and a and b are some specific values of descriptor
L. The two premises are assumed to be connected by the logical conjunction
(this convention holds for the remaining rules as well).

The rule states that if two descriptions of the same class (the premises of
the rule) differ in the values of only one linear descriptor, then the descriptions
can be replaced by a single description in which the reference of the descriptor is
the interval linking these two values.

To illustrate this rule, consider as objects two states of a machine, and K
as a class of normal states. The rule says that if a machine is in the normal state
for two different temperatures, say a and b, then a hypothesis is made that all
states in which the temperature falls into the interval [a,b] are also normal.

MICHALSKI 107

Thus, this rule is not only a logically-valid generalization rule, but expresses also
some aspect of plausibility.
• The climbing generalization tree rule

< C T X & [L = s] ::> K (23)

CTX&[L = a] ::> K

CTX&[L = b] ::> K
(one or
more
statements)

CTX&[L = i] ::> K
where L is a structured descriptor, and s represents the lowest parent node whose
descendants include nodes a, b, ... and i, in the generalization tree domain of L.

The rule is applicable only to descriptions involving structured descriptors,
and is used in various forms in, for example [Winston, 1977; Hedrick, 1974;
Lenat, 1976] (see also Chapters 11 and 6 of this book). The following example
illustrates the rule:

< 3 P, CTX& [shape(P) = polygon] ::> K
3 P, CTX & [shape(P) = triangle] ::>

3 P, CTX & [shape(P) = rectangle] ::>

Paraphrasing this rule in English: if an object of class K is triangular and
another object of this class is rectangular, then the rule generates a statement that
objects of class k are polygonal.
• The turning constraints into variables rule—This rule is best known for the
case of descriptive generalization:

(one or
more
statements)

FM
F[&]

F[/]

< V v, F[v] (24)

where F[v] stands for some description (formula) dependent on variable v, and a,
b, ... are constants.

If some description F[v] holds for v being a constant a or constant b, and
so on, then the rule generalizes these observations into a statement that F[v]
holds for every value of v. This is the rule used most often in methods of induc-
tive inference employing predicate calculus.

A corresponding rule for concept acquisition is:

F[a] & ¥[b] & ... ::> K K 3 v, F[v] ::> K (25)
To illustrate this version, assume that a, b, and so on, are parts of an ob-

ject of class K that have a property F. Rule (25) generalizes these facts into an

108 CHAPTER 4: INDUCTIVE LEARNING

assertion that if any part of an object has property F then the object belongs to
class K.
• The turning conjunction into disjunction rule:

F, & F2 ::> K l< F, V F2 ::> K (26)
where Fj and F2 are arbitrary descriptions.

A concept description can be generalized by replacing the conjunction
operator by the disjunction operator.
• The extending the quantification domain rule—In the simplest case, the rule
changes the universal quantifier into the existential quantifier:

V v, F[x] ::> K K 3 v, F[v] ::> K (27)
This rule can be viewed as a generalization of the previous rule (26).

Using the concept of numerical quantifier (see the Appendix) this rule can be
expressed in an even more general way:

3(l!)v, F[v] ::> K K 3 (I2)v, F[v] ::> K (28)
where Ij , I2 are the quantification domains (sets of integers) satisfying relation Ij

For example, the statement "if an object has two parts (Ij={2}) with
property F, then it belongs to class K" can be generalized by rule (28) to a state-
ment "if an object has two or more parts (I2 = {2,3,...}) with property F then it
belongs to class K."
• The inductive resolution rule

(i) As applied to concept acquisition
The deductive inference rule, called the resolution principle, widely

used in automatic theorem proving, can be adopted as a rule of generaliza-
tion for concept acquisition. In propositional form, the resolution principle
can be expressed as:

(P φ F,) & (~P φ F2) l> ¥x V F2 (29)
where P is a predicate and Fl and F2 are arbitrary formulas. By inter-
preting both sides of (29) as concept descriptions, and making appropriate
transformations we obtain:

P & F , ::> K I
< Fj V F 2 ::> K (30)

~ P & F 2 ::> K |
To illustrate this rule, assume that K is the set of situations when

John goes to a movie. Suppose that it has been observed that he goes to a
movie when he has company (P) and the movie has high rating (Fj), or
when he does not have company (~P), but has plenty of time (F2). Rule
(30) generalizes these two observations to a statement "John goes to a
movie when either the movie has high rating or he has plenty of time."

MICHALSKI 109

(ii) As applied to descriptive generalization
By applying logical equivalence (Q l> P) <=> (~P l> ~Q) (the

law of contraposition) to expression (29), then reversing the obtained rule
and substituting the negative literals by the positive, we obtain:

P&Fj V ~P & F2 l< Fj & F2 (31)
This version has been formulated by Morgan (1975).
Both versions, (i) and (ii), can be generalized by applying the full-fledged

resolution principle that uses predicates with arguments, and the unification algo-
rithm to unify these arguments (for example, [Chang & Lee, 1973]).
• The extension against rule:

C T X j & t l ^ R i] ::> K
< [L^R 2] ::> K (32)

CTX 2 &[L = R2] ::> ~K
where sets Rj and R2 are assumed to be disjoint.

Given a description of an object belonging to class K (a positive example),
and a description of an object not belonging to this class (a negative example),
the rule produces the most general statement consistent with these two descrip-
tions. It is an assertion that classifies an object as belonging to class K if
descriptor L does not take any value from the set R2, thus ignoring context
descriptions CTXj and CTX2. This rule is the basic rule for learning dis-
criminant descriptions from examples used in the previously-mentioned inductive
program AQii [Michalski & Larson, 1978]. Various modifications of this rule
can be obtained by replacing reference R2 in the output assertion by some super-
set of it that does not intersect with Rj.

4.5.3 Constructive Generalization Rules

Constructive generalization rules generate inductive assertions that use
descriptors not present in the original observational statements. This means that
the rules perform a transformation of the original representation space. The fol-
lowing is a general constructive rule that makes such a transformation by apply-
ing the knowledge of a relationship between different concepts. It is assumed
that this relationship is known to the learning system as background knowledge,
as a previously-learned concept, or that it is computed according to user-defined
procedures.

CTX & F! ::> K I
< CTX & F2 ::> K (33)

Fi => F 2 I
The rule states that if a concept description contains a part Fj (a concept, a

subdescription, and so on) that is known to imply some other concept F2, then a
more general description is obtained by replacing Fj by F2. For example, sup-

110 CHAPTER 4: INDUCTIVE LEARNING

pose a learning system is told that if an object is black, wide and long, then it
belongs to class K (for example, it is a blackboard). This can be expressed in
the annotated predicate calculus:

3 P, [color(P) = black][width(P) & length(P) = large] ::> K
Suppose the learner already knows that:

V P, ([width(P) & length(P) = large] => [area(P) = large])

Then rule (33) produces a generalization:

3 P, [color(P) = black][area(P) = large] ::> K
As another example, suppose the system is given a description of an object

classified as an arch. This description states that a horizontal bar is on top of
two equal objects placed apart, B{ and B2, having certain color, weight, shape,
and so on. Suppose now that characterizations of Bj and B2 in this description
satisfy a previously-learned concept of a block. Then rule (33) generates an
assertion that an arch is a bar on top of two blocks placed apart. This rule is the
basis for an interactive concept learning system developed by Sammut [1981].

Specific constructive generalization rules can be obtained from (33) by
evoking procedures computing new descriptors in expression F2 as functions of
initial or previously-derived descriptors (contained in Fj). Here are some ex-
amples of rules for generating new descriptors.
• Counting arguments rules

(i) The CQ rule (count quantified variables)—If a concept description is in the
form:

3 . V!,v2,...,vk, F[v,,v2,...,vk]
then the rule generates descriptors "#v-COND" representing the number of
Vj's that satisfy some condition COND. This condition expresses selected
properties of Vj's specified in the concept description. Since many such
COND's can usually be formulated, the rule allows the system to generate
a large number of such descriptors.

For example, if the COND is "[attribute{(ν{) = R]", then the
generated descriptor will be '^Vj-attributepR" counting the number of Vj's
that satisfy this condition. If the attributej is, for instance, length, and R
is [2..4], then the derived descriptor is "#vrlength-2..4" (that is, it
measures the number of Vj's whose length is between 2 and 4, inclusively).

(ii) The CA-rule (count arguments of a predicate)—If a descriptor in a
description is a relation with several arguments, REL(vj,v2,...), the rule
generates descriptors "#v-COND", measuring the number of arguments in
REL that satisfy some condition COND. As above, many such descriptors
can be generated, each with different COND.

The annotation of a descriptor provides information about its
properties. Such a property may be that a descriptor is, for instance, a

MICHALSKI 111

transitive relation, such as relation "above", "inside", "left-of", and
"before". For example, if the relation is "contains(A,Bj,B2,...)", stating
that object A contains objects Bl,B2,.., and COND is "large and red", then
the derived descriptor "#B-large-red-A-contains" measures the number of
Brs contained in A that are large and red.

• The generating chain properties rule—If the arguments of different occur-
rences of a transitive, relation in a concept description form a chain (that is, form
a sequence of consecutive objects ordered by this relation), the rule generates
descriptors characterizing some specific objects in the chain. Such objects may
be:

LST-object the "least object",or the object at the beginning of the chain (for
example, the bottom object in the case of the relation "above").

MST-object the object at the end of the chain (for example, the top object).
MID-object the objects in the middle of the chain.
Nth-object the object in the Nth position in the chain (starting from LST-

object).

After identifying these objects, the rule investigates all known properties of them
(as specified in the observational statements) in order to determine potentially
relevant new descriptors. The rule also generates a descriptor characterizing the
chain itself, namely:

REL-chain-length: the length of the chain defined by relation REL.
For example, if the REL is ON-TOP, then descriptor ON-TOP-chain-length
would specify the height of a stack of objects. When a new description is
generated and adopted, an annotation for it is also generated and filled out, as in
Lenat [1976]. This rule can be extended to a partial order relation. In such a
case it becomes the "find extrema of a partial order" rule.
• The detecting descriptor interdependence rule—Suppose that given is a set of
objects exemplifying some concept, and that attribute descriptions are used to
characterize these objects. Such descriptions specify only attribute values of the
objects; they do not characterize the objects' structure. Suppose that the values a
linear descriptor x takes on in all descriptions (events) are ordered in increasing
order. If the corresponding values of another linear descriptor y exhibit an in-
creasing or decreasing order, then a two-place descriptor:

M(x,y)
is created, signifying that x and y have a monotonie relationship. This descriptor
has value f when y values are increasing and value I when they are decreas-
ing.

The idea of the above M-descriptor can be extended in two directions.
The first is to create M-descriptors dependent on some condition COND that
must be satisfied by the events under consideration:

112 CHAPTER 4: INDUCTIVE LEARNING

M(x,y)-COND
For example, descriptor:

M(length ,weight)-red
states that length and weight have a monotonie relationship for red objects.

The second direction of extension is to relax the requirement for the
monotonie relationship; that is, not to require that the order of y values is strictly
increasing (or decreasing), but only approximately increasing (or decreasing).
For example, the coefficient of statistical correlation between x and y can be
measured, and when its absolute value is above a certain threshold, a descriptor
R(x,y) is created. The domain of this R- descriptor can also be { f , J, }, in-
dicating the positive or negative correlation, respectively, or it can have values
representing several subranges of the correlation coefficient. Similarly, as in the
case of M- descriptors, R-descriptors can be extended to R-COND descriptors.

The M- or R-descriptors can be used to generate new descriptors. For ex-
ample, if [M(x,y) = Î], then a new descriptor z = x/y can be generated. If z
assumes a constant or nearly-constant value, then an important relationship has
been discovered. Similarly, if [M(x,y) = I] then a new descriptor z = xXy
can be generated. These two techniques for generating new descriptors have
been successfully used in the BACON system for discovering mathematical ex-
pressions representing physical or chemical laws, as described in Chapter 10 of
this book.

The above ideas can be extended to structural descriptions. Such descrip-
tions involve not only global properties of objects, but also properties of objects'
parts and the relationships among the parts. Suppose that in a structural descrip-
tion of an object, existentially-quantified variables Pj,P2,...,Pm denote its parts.
If x(Pj) and y(Pj) are linear descriptors of Pj (for example, numerical attributes
characterizing parts Pj, i=l,2,...), the above-described techniques for generating
M- and R- descriptors can be applied.

4.6 THE STAR METHODOLOGY

4.6.1 The Concept of a Star

The methodology presented here for learning structural descriptions from
examples receives its name from the major concept employed in it, that of a
star. In the most general sense, a star of an event e under constraints E is a set
of all possible alternative non-redundant descriptions of event e that do not vio-
late constraints E. A somewhat more restrictive definition of a star will be used
here. Let e be an example of a concept to be learned and E be a set of some
counterexamples of this concept. A star of the event e against the event set E,
denoted G(elE), is defined as the set of all maximally general c-expressions that
cover (that is, are satisfied by) event e and that do not cover any of the negative
events in E.

MICHALSKI 113

The c-expressions in a star may contain derived descriptors, that is,
descriptors not present in the observational statements. In such a case, testing
whether event e satisfies a given description requires that appropriate transfor-
mations be applied to the event. Such a process can be viewed as proving that
the event implies the description, and therefore methods of automatic theorem
proving could be used.

In practical problems, a star of an event may contain a very large number
of descriptions. Consequently, such a theoretical star is replaced by a bounded
star G(elE,m) that contains no more than a fixed number, m, of descriptions.
These m descriptions are selected as the m most preferable descriptions, among
the remaining ones, according to the preference criterion defined in the problem
background knowledge. Variable m is a parameter of the learning program,
defined either by the user or by the program itself, as a function of the available
computational resources.

Chapter 11 of this book gives an illustration and an algorithm for generat-
ing a bounded star with c-expressions restricted to attribute expressions (that
is,expressions involving only object attributes). Section 4.6.3 presents an algo-
rithm for generating a bounded star consisting of regular c-expressions. The
concept of a star is useful because it reduces the problem of finding a complete
description of a concept to subproblems of finding consistent descriptions of
single positive examples of the concept.

Since any single example of a concept can always be characterized by a
conjunctive expression (a logical product of some predicates), elements of a star
can always be represented by conjunctive descriptions. One should also notice
that if the concept to be learned is describable by a c-expression, then this
description clearly will be among the elements of a (non-bounded) star of any
single positive example of the concept. Consequently, if there exists a positive
example not covered by any description of such a star, then the complete concept
description must be disjunctive, that is, must include more than one c-
expression.

4.6.2 Outline of the General Algorithm

It is assumed that every observational statement is in the form:
a-expression ::> K (34)

where a-expression is an atomic expression describing an object (recall Section
4.4.6) and K is the concept exemplified by this object.

It is also assumed that inductive assertions are in the form of a single c-
expression or the disjunction of c-expressions. For simplicity we will restrict our
attention to only single-concept learning. In the case of multiple-concept learn-
ing, the algorithm is repeated for each concept with modifications depending on
the assumed interdependence among the concept descriptions (Section 4.2.4).

Let POS and NEG denote sets of events representing positive and negative
examples of a concept, respectively. A general and simplified version of the
Star methodology can be described as follows:

114 CHAPTER 4: INDUCTIVE LEARNING

1. Randomly select an event e from POS.
2. Generate a bounded star, G(elNEG,m), of the event e against the set of

negative examples NEG, with no more than m elements. In the process of
star generation apply generalization rules (both selective and constructive),
task-specific rules, heuristics for generating new descriptors supplied by
problem background knowledge, and definitions of previously-learned con-
cepts.

3. In the obtained star, find a description D with the highest preference ac-
cording to the assumed preference criterion LEF.

4. If description D covers set POS completely, then go to step 6.
5. Otherwise, reduce the set POS to contain only events not covered by D,

and repeat the whole process from step l.
6. The disjunction of all generated descriptions D is a complete and consistent

concept description. As a final step, apply various reformulation rules
(defined in the problem background knowledge) and "contracting" rules
[equations (8) and (9) in the Appendix] in order to obtain a possibly
simpler expression.

This algorithm is a simplified version of the general covering algorithm AQ
[Michalski, 1975b]. The main difference is that algorithm A 9 selects the initial
events (if possible) from events not covered by any of the descriptions of
generated stars, rather than not covered by only the selected descriptions D. This
way the algorithm is able to determine a bound on the maximum number of
separate descriptions in a disjunction needed to define the concept. Such a
process may, however, be computationally costly.

The above algorithm describes only single-step learning. If, after generat-
ing a concept description, a newly-presented training event contradicts it,
specialization or generalization rules are applied to generate a new consistent
concept description. A method for such incremental learning is described in
[Michalski & Larson, 1978]. (See also Chapter 8 of this book.)

The central step in the above methodology is the generation of a bounded
star. This can be done using a variety of methods. Thus, the above Star
methodology can be viewed as a general schema for implementing various learn-
ing methods and strategies. The next section describes one specific method of
star generation.

4.6.3 Star Generation: The INDUCE Method

This method generates a bounded star G(elNEG,m) by starting with a set
of expressions that are single selectors, either extracted from the event for which
the star is generated or inferred from the event by applying constructive
generalization rules or inference rules provided by background knowledge.
These expressions are then specialized by adding other selectors until consistency
is achieved (that is, until each expression does not intersect with set NEG).

MICHALSKI 115

Next, the obtained consistent expressions are generalized so that each achieves
the maximum coverage of the remaining positive training examples. The best
consistent m so obtained and the generalized c-expressions (if some are also
complete, then they are alternative solutions) constitute the bounded star sought,
G(elNEG,m). Specifically, the steps of the procedure are:

1. In the first step individual selectors of event e are put on the list called PS.
This list is called a partial star, because its elements may cover some
events in NEG. These initial elements of PS (single selectors from e) can
be viewed as generalizations of event e obtained by applying in all possible
ways the dropping condition generalization rule (each application drops all
selectors except one). Elements of the partial star PS are then ordered
from the most to the least preferred according to a preference criterion:

LEFj = <(-negcov,Tj), (poscov, τ2)> (35)
where negcov and poscov are numbers of negative and positive examples,
respectively, covered by an expression in the star, and Tj and τ2 are
tolerances (recall Section 4.4.7).

The LEFj minimizes the negcov (by maximizing the -negcov) and
maximizes poscov.

2. The list PS is then expanded by adding new selectors obtained by applying
the following inference rules to the event e:

a. the constructive generalization rules (Section 4.5.3)
b. the problem-specific heuristics defined in the background knowledge
c. the definitions of the previously-learned concepts (to determine

whether parts of e satisfy some already known concepts)
3. Each new selector is inserted in the appropriate place in list PS, according

to preference criterion LEFj. The size of PS is kept within the limit
defined by parameter m by removing from PS all but the m most preferred
selectors.

4. Descriptions in PS are tested for consistency and completeness. A descrip-
tion is consistent if negcov = 0 (that is, if it covers no events in NEG)
and is complete if poscov is equal to the total number of positive ex-
amples. Consistent and complete descriptions are removed from PS and
put on the list called SOLUTIONS. If the size of the list SOLUTIONS is
greater than a parameter #SOL, then the algorithm stops. Parameter
#SOL determines the number of desired alternative concept descriptions.
Incomplete but consistent descriptions are removed from the list PS and put
on the list called CONSISTENT. If the size of the CONSISTENT list is
greater than a parameter #CONS, then control is transferred to step 6.

5. Each expression in PS is specialized in various ways by appending to it a
single selector from the original list PS. Appended selectors must be of
lower preference than the last selector in the conjunctive expression

116 CHAPTER 4: INDUCTIVE LEARNING

(initially, the expression has only one selector). Parameter %BRANCH
specifies the percentage of the selectors ranked lower (by the preference
criterion) than the last selector in the current conjunction. If %BRANCH
= 100%, all lower preference selectors are singly appended—that is, the
number of new expressions generated from this conjunction will be equal
to the total number of selectors having lower preference than the last selec-
tor in the conjunction. All newly-obtained expressions are ranked by LEFj
and only the m best are retained. This "expression growing" process is
illustrated in Figure 4-1.

Steps 4 and 5 are repeated until the CONSISTENT list contains the number of
expressions specified by parameter #CONS, or until the time allocated for this
process is exhausted.

6. Each expression on the CONSISTENT list is generalized by applying the
extension against, closing the interval, and climbing generalization tree
generalization rules. An efficient way to implement such a process is to
transform the original structural-description space into an attribute-
description space. Attributes (that is, descriptions with zero arguments)
defining this space are created from the descriptors in the given expression
on the CONSISTENT list in a manner such as that described in Section
3.2.3.2 of Chapter 3 in this book. The generalization of the obtained at-
tribute descriptions is accomplished by the star generation procedure,
analogous to the one described in Chapter 11 of this book. Details of this
process of transforming structural descriptions into attribute descriptions are
described by Larson [1977]. The reason for such a transformation is that
structural descriptions are represented as labeled graphs while attribute
descriptions are represented as binary strings. It is computationally much
more economical to handle binary strings than labeled graphs.

7. The obtained generalizations are ranked according to the global preference
criterion LEF defined in the background knowledge. To obtain a dis-
criminant description, a typical LEF is to maximize the number of events
covered in POS set and to minimize the complexity of the expression
(measured, for example, by the number of selectors it contains). The m
best expressions so determined constitute the bounded star G(elNEG,m).
The Star algorithm and a somewhat restricted version of the above-

described star generation algorithm has been implemented in various incarnations
of the INDUCE learning program [Larson, 1977; Dietterich, 1978; Michalski,
1980a; Hoff et al, 1982].

4.7 AN EXAMPLE

To illustrate the inductive learning methodology just presented, let us con-
sider a simple problem in the area of conceptual data analysis. Suppose we are

MICHALSKI 117

JA, - a disregarded rule
9 - an active rule
£ - a terminal node denoting a consistent c-expression
^ - a terminal node denoting a consistent and complete c-expression (a

solution)
The nodes in the first column are selectors extracted from the event e or
derived from e by applying inference rules. Each arc represents an
operation of adding a new selector to the current c-expression.
Figure 4-1: Illustration of the process of generating a reduced star RG(elNEG,m).

118 CHAPTER 4: INDUCTIVE LEARNING

DNC DNN

Figure 4-2: "Cancerous" and "Normal" cells.

MICHALSKI 119

given examples of "cancerous" and "normal" cells, denoted DNC and DNN,
respectively, in Figure 4-2, and the task of the analysis is:

• to determine properties differentiating the two classes of cells (that is, to
find discriminant descriptions of each class)

• to determine important common properties of the cancerous and the normal
cells (that is, to find characteristic descriptions of each class).
An assumption is made that the properties to be discovered may involve

both quantitative information about the cells and their components, and qualita-
tive information, expressed by nominal variables and relationships existing
among the components.

The solution to the problem posed (or similar problems) can be obtained by
a successive repetition of the "focus attention—»hypothesize—»test" cycle
described below.

The "focus attention" phase is concerned with defining the scope of the
problem under consideration. This includes selecting descriptors appearing to be
relevant, specifying underlying assumptions, and formulating the relevant
problem knowledge. This first phase is performed by a researcher; it involves
his/her technical knowledge and informal intuitions. The third, the "test" phase,
examines the hypotheses and tests them on new data. This phase may require
collecting new samples, performing laboratory experiments, and/or critically
analyzing the hypotheses. This phase is likely to involve knowledge and abilities
that go beyond currently-feasible computer systems.

It is the second, the "hypothesize" phase, in which an inductive learning
system may play a useful role: the role of an assistant for conducting a search for
the most plausible and/or most interesting hypotheses. This search may be a for-
midable combinatorial task for a researcher, if the data sample is large and if
each item of the data (in this case, a cell) is described by many variables and/or
relations.

Individual steps are as follows:
1. The user determines the set of initial descriptors and provides an annotation
for each descriptor. We will assume that the annotation specifies the type, the
domain, and any special properties of each descriptor (for example, the tran-
sitivity of a relation). In the case of structured descriptors, the annotation also
specifies the structure of the domain. The specification of the annotation con-
stitutes the first part of the problem background knowledge.

Suppose that for our simple example problem, the following descriptors are
selected:

a. Global descriptors (those characterizing a whole cell)
• circ—the number of segments in the circumference of the cell

Type: linear Domain: {1..10}

• pplasm—the type of protoplasm in the cell (marked by encircled
capital letters in Figure 4-2)

120 CHAPTER 4: INDUCTIVE LEARNING

Type: nominal Domain: {A,B,C,D}

Local descriptors (those characterizing cell bodies and their relationships)

• shape (Bj)—the shape of body Bj

Type: structured
Domain: a tree structure with a set of leaves {triangle, circle, ellipse,

heptagon, square, boat, spring}
Non-leaf nodes are defined by rules:

[shape = circle V ellipse] Φ [shape = oval]
[shape = triangle V square V heptagon] Φ [shape = polygon]
[shape = oval V polygon] Φ [shape = regular]
[shape = spring V boat] Φ [shape = irregular]

• texture(Bj)—the texture of body Bj

Type: nominal
Domain: {blank, shaded, solid-black, solid-grey, stripes, crossed,

wavy}

• weight (Bj)—the weight of body Bj

Type: linear Domain: {1,2,...,5}

• orient (Bj)—the orientation of Bj

Type: linear-cyclic (the last element is followed by the first)
Domain: {N, NE, E, SE, S, SW, W, NW}
Condition of applicability: if [shape (Bj) = boat]

• contains (C, Bj, B2, ...)—C contains Bj, B2, ...

Type: nominal Domain: {True,False}

Properties: transitive relation

• hastails (B, Llf L2, ...)—a body B has tails Llf L2, ...

Type: nominal Domain: {True,False}
Condition of applicability: if [shape (B) = boat]

Note that the descriptors "contains" and "hastails" are predicates with a
variable number of arguments. Descriptor "contains" is characterized as a tran-
sitive relation. Descriptors "hastails" and "orient" are applicable only under cer-
tain conditions.

2. The user formulates observational statements which describe cells in terms of
selected descriptors and specify the class to which each cell belongs. For ex-
ample, the following is an observational statement for the DNC cell 1:

MICHALSKI 121

3.CELL,, B,,B2....,B6 [contains(CELL!,Bi,...,B6)] [circ(CELL!) = 8] &
[pplasm(CELLI) = A][shape(BI) = ellipse] [texture(Bj) = stripes] &
[weight^) = 4] [orient(Bl) = NW][shape(B2) = circle] &
[contains(B2,B3)][texture(B2) = blank][weight(B2) = 3]... &
[shape(B6) = circle] [texture(B6) = shaded] [weight(B6) = 5]

::> [class = DNC]
3. To specify the second part of the problem background knowledge the user
indicates which general rules of constructive induction (Section 4.5.3) are ap-
plicable, and also formulates any problem-specific rules.

The constructive rules will generate various derived descriptors. For ex-
ample, the counting rule CQ will generate, among others, a descriptor:

• #B-black-boat—the number of bodies whose shape is "boat" and texture is
"solid-black" (that is, assuming COND:
[texture(B) = solid-black] & [shape(B) = boat])
(For simplicity of notation, the name of this descriptor, as well as other

descriptors below, has been abbreviated, so it does not follow strictly the naming
convention described in Section 4.5.3.) The counting rule CA will generate such
descriptors as:

• total-B—the total number of bodies in a cell (no COND is used)
• indep-B—the number of independent bodies in a cell (assuming the COND

"bodies not contained in another body")
• #contained-in-B—the number of smaller bodies contained in the body B
• #tails-boat-B—the number of tails in a body B, whose shape is "boat"

As advice to the system, the user may formulate arbitrary arithmetic ex-
pressions for generating possibly relevant descriptors. For example, the user
may suggest a descriptor:

weight(CELL) = % weight(Bj)
where Bj, i = 1,2,... denote bodies in a cell.

The background knowledge may also contain special concepts, such as
even or odd numbers, the definitions of the area and perimeter of a circle or
rectangle, and so on.
4. Finally, as the last part of the background knowledge, the user specifies the
type of description sought and the hypothesis preference criterion. Let us as-
sume that both characteristic descriptions and discriminant descriptions are
sought. We therefore choose as the preference criterion for constructing charac-
teristic descriptions "maximize the length of the complete c-expressions," and for
constructing discriminant descriptions, "minimize the length of consistent and
complete c-expressions."

As illustration, we shall present here samples of discriminant descriptions
and characteristic descriptions of the DNC "cells", obtained by the INDUCE
program.

122 CHAPTER 4: INDUCTIVE LEARNING

4.7.1 Discriminant Descriptions of DNC Cells

Each of these descriptions is sufficient to discriminate all DNC cells from
DNN cells. A concept description for class DNC can thus be any one of these
descriptions or the disjunction of two or more of these descriptions.

• 3(1)B [texture(B) = shaded][weight(B) > 3]
Paraphrasing in English: "Every DNC cell, as opposed to DNN, has ex-
actly one body with 'shaded' texture and weight at least 3."

• [circ = even]
"The number of segments in the circumference of every DNC cell is
even." (The concept of "even" was determined by "climbing the
generalization tree" rule.)

• 3 (> 1)B [shape(B) = boat][orient(B) = N V NE]
"Every DNC cell has at least one 'boat' shape body with orientation N or
NE."

• 3 (> 1)B [#tails-boat-B = 1]
"Every DNC cell has at least one body with number of tails equal to 1."

• 3(1)B [shape(B) = circle][#contains-B = 1]
"Every DNC cell has a circle containing a single object."
Underscored descriptors are derived descriptors obtained through construc-

tive generalization rules.

4.7.2 Characteristic Descriptions of DNC Cells

Every description below is a characterization of some pattern common to
all DNC cells. Some of these patterns taken separately may cover one or more
DNN cells. The length of each description has been maximized, rather than
minimized, as in the case of discriminant descriptions.

• 3(1)B [weight(B) = 5]
Paraphrasing in English: "In every DNC cell there is one and only one
body with weight 5."

• 3 .Bj , B2 [contains^, B2)] [shape(Bj) & shape(B2) = circle] &
[texture(B j) = blank] [weight(B j) = odd] [texture(B2) = solid-black] &
[weight(B2) = even] [#contained-in-B1 = 1]
"In every cell there are two bodies of circle shape, one contained in
another, of which the outside circle is blank and has Odd' weight, the in-
side circle is solid-black and has 'even' weight. The number of bodies in
the outside circle is only one." (This is also a non-minimal discriminant
description.)

• 3(1)B [shape(B) = circle][texture(B) = shaded][weight(B) > 3]
"Every cell contains a circle with 'shaded' texture, whose weight is at least
3." (This is also a non-minimal discriminant description.)

MICHALSKI 123

• 3 (> 1)B [shape(B) = boat][orient(B) = N V NE][#tails-boat(B^= 1]
"Every cell has at least one body of 'boat' shape with N or NE orientation,
which has one tail." (This is also a non-minimal discriminant description.)

• 3(2)B [shape(B) = circle] [texture(B) = solid-black], or, alternatively,
[#B-cirde-SQlid-black = 2]
"Each cell has exactly two bodies that are solid black circles." (This is also
a non-minimal discriminant description.)

• [pplasm = A V D]
"The protoplasm of every cell is of type A or D."

The above example is too simple for really unexpected patterns to be dis-
covered. But it illustrates well the potential of the learning program as a tool for
searching for patterns in complex data, especially when the relevant properties
involve both numerical and structural information about the objects under con-
sideration. An application of this program to a more complex problem
[Michalski, 980a] did generate unexpected patterns.

4.8 CONCLUSION

A theory of inductive learning has been presented that views such learning
as a heuristic search through a space of symbolic descriptions, generated by an
application of certain inference rules to the initial observational statements
(teacher-generated examples of some concepts or environment-provided facts).
The process of generating the goal description—the most preferred inductive
assertion—relies on the universally intertwined and complementary operations of
specializing or generalizing the currently-held assertion in order to accommodate
new facts. The domain background knowlege has been shown to be a necessary
component of inductive learning, which provides constraints, guidance, and a
criterion for selecting the most preferred assertion.

Such a characterization of inductive learning is conceptually simple, and
constitutes a theoretical framework for describing and comparing learning
methods, as well as developing new methods. The Star methodology for learn-
ing structural descriptions from examples, described in the second part of this
chapter, represents a general approach to concept acquisition which can be im-
plemented in a variety of ways and applied to different problem domains.

There are many important topics of inductive learning that have not been
covered here. Among them is learning from incomplete or uncertain infor-
mation, learning from descriptions containing errors, learning with a multitude of
forms of observational statements, as well as multimodel-based inductive asser-
tions, and learning general rules with exceptions. The problem of discovering
new concepts, descriptors and, generally, various many-level transformations of
the initial description space (that is, the problem of constructive inductive
learning) has been covered only very superficially.

124 CHAPTER 4: INDUCTIVE LEARNING

These and related topics have been given little attention so far in the field
of machine learning. There is no doubt, however, that as the understanding of
the fundamental problems in the field matures, these challenging topics will be
given increasing attention.

ACKNOWLEDGMENTS

In the development of the ideas presented here the author benefited from
discussions with Tom Dietterich and Robert Stepp. Proofreading and comments
of Jaime Carbonell, Bill Hoff and Tom Mitchell were helpful in shaping up the
final version of the chapter. Comments and suggestions of the reviewers of Ar-
tificial Intelligence Journal, where the original version of this chapter was sub-
mitted and accepted for publication, helped to improve its clarity and organiza-
tion.

The author gratefully acknowledges the partial support of the research by
the National Science Foundation under grant MCS 82-05166, and the Office of
Naval Research under grant N00014-82-K-0186.

REFERENCES

Amarel, S., "An approach to automatic theory formation," Illinois Symposium on Principles of
Self-Organization, H. von Foerster (Ed.), 1960.

Banerji, R. B., "The description list of concepts," J.A.C.M, 1962.

Banerji, R. B., Artificial Intelligence: A Theoretical Perspective, Elsevier North Holland, New York,
1980.

Biermann, A. W., "The inference of regular LISP programs from examples," IEEE Transcations on
Systems, Man, and Cybernetics, Vol. SMC-8, No. 8, pp. 585-600, August 1978.

Biermann, A. and Feldman, J., A survey of results in grammatical inference, Academic Press, New
York, 1972.

Bongard, N., Pattern Recognition, Spartan Books, New York, 1970, (Translation from Russian
original, published in 1967).

Brachman, R. J., "On the epistemological status of semantic networks," Associative Networks, N. V.
Findler (Ed.), New York: Academic Press, 1979.

Bruner, J. S., Goodnow, J. J. and Austin, G. A., A Study of Thinking, Wiley, New York, 1956.

Buchanan, B. G. and Feigenbaum, E. A., "DENDRAL and Meta-DENDRAL: their applications
dimension," Artificial Intelligence, Vol. 11, pp. 5-24, 1978.

Buchanan, B. G., Mitchell, T. M., Smith, R. G. and Johnson, C. R. Jr., "Models of Learning
Systems", Technical Report STAN-CS-79-692, Stanford University, Computer Science Dept.,
January 1979.

MICHALSKI 125

Burstall, R. M. and Darlington, J., "A transformation system for developing recursive programs,"
Journal of the ACM, Vol. 24, No. 1, pp. 44-67, 1977.

Carnap, R., "The aim of inductive logic," Logic, Methodology and Philosophy of Science, Nagel,
E., Suppes, P. and Tarski, A. (Eds.), Stanford University Press, Stanford, pp. 303-318,
1962.

Case, J. and Smith, C , "Comparison of identification criteria for mechanized inductive inference",
Technical Report TR-154, Dept. Computer Science., State U. of New York at Buffalo, 1981.

Chang, C , and Lee, R. C , Symbolic Logic and Mechanical Theorem Proving, Academic Press,
New York, 1973.

Cohen, B. L., "A powerful and efficient structural pattern recognition system," Artificial Intel-
ligence, Vol. 9, No. 3, December 1977.

Coulon, D. and Kayser, D., "Learning criterion and inductive behavior," Pattern Recognition, Vol.
10, No. 1, pp. 19-25, 1978.

Davis, R. and Lenat, D. B., Knowledge Based Systems in Artificial Intelligence, McGraw Hill, New
York, 1981.

Dietterich, T., "Description of inductive program INDUCE 1.1", Technical Report (Internal), Depart-
ment of Computer Science, University of Illinois, Urbana-Champaign, October 1978.

Dietterich, T. G., "The methodology of knowledge layers for inducing descriptions of sequentially
ordered events," Master's thesis, University of Illinois, Urbana, October 1979.

Feigenbaum E. A., "The simulation of verbal learning behavior," Computers and Thought, Feigen-
baum, E. A. and Feldman, J. (Eds.), McGraw-Hill Book Company, New York, NY, 1963.

Fikes, R. E., Hart, P. E. and Nilsson, N. J., "Learning and executing generalized robot plans,"
Artificial Intelligence, Vol. 3, pp. 251-288, 1972.

Gaines, B. R., "Maryanski's grammatical inferencer," IEEE Trans on Computers, Vol. C-28, pp.
62-64, 1979.

Gaschnig, J., "Development of Uranium Exploration Models for Prospector Consultant System",
Internal, SRI International, March 1980.

Hajek, P. and Havrânek, T., Mechanizing Hypothesis Formation: Mathematical Foundations for a
General Theory, Springer-Verlag, 1978.

Hajek, P., Havel, I., and Chytil, M., "The GUHA method of automatic hypothesis determination,"
Computing, No. 1, pp. 293-308, March 1966.

Hayes-Roth, F., "A structural approach to pattern learning and the acquisition of classificatory
power," Proceedings of the First International Joint Conference on Pattern Recognition,
Washington, D. C , pp. 343-355, 1973.

Hayes-Roth, F. and McDermott, J., "An interference matching technique for inducing abstractions,"
Communications of the ACM, Vol. 21, No. 6, pp. 401-410, 1978.

Hedrick, C. L., A Computer Program to Learn Production Systems Using a Semantic Net, Ph.D.
dissertation, Carnegie-Mellon University, July 1974, (Department of Computer Science).

126 CHAPTER 4: INDUCTIVE LEARNING

Hintzman, D. L., The Psychology of Learning and Memory, W. H. Freeman and Company, 1978.

Hoff, B., Michalski, R. S., and Stepp, R., "INDUCE 2 - a program for learning structural descrip-
tions from examples", Technical Report 82-5, Intelligent Systems Group, October 1982.

Hovland, C. I., "A 'Communication Analysis' of Concept Learning," Psychological Review, pp.
461-472, November 1952.

Hunt, E. B., Marin, J. and Stone, P. T., Experiments in induction, Academic Press, New York,
1966.

Jouannaud, J. P., and Kodratoff, Y., "An automatic construction of LISP programs by transfor-
mations of functions synthesized from their input-output behavior," International Journal of
Policy Analysis and Information Systems, Vol. 4, No. 4, pp. 331-358, December 1980.

Kemeni, T. G., "The use of simplicity in induction," Psychological Review, Vol. 62, No. 3, pp.
391-408, 1953.

Kochen, M., "Experimental study of hypothesis formation by computer," Proc. I960 London Symp.
on Information Theory, 1960.

Langley, P. W., Neches, R., Neves, D. and Anzai, Y., "A domain-independent framework for
procedure learning," Journal of Policy Analysis and Information Systems, Vol. 4, No. 2, pp.
163-197, June 1980.

Larson, J., Inductive inference in the variable-valued predicate logic system VL2I: methodology and
computer implementation, Ph.D. dissertation, University of Illinois, Urbana, Illinois, May
1977.

Larson, J. and Michalski, R. S., "Inductive inference of VL decision rules," Proceedings of the
Workshop on Pattern Directed Inference Systems, SIGART Newsletter 63, pp. 38-44, June
1977.

Lenat, D. B., AM: an artificial intelligence approach to discovery in mathematics as heuristic
search, Ph.D. dissertation, Stanford University, Stanford, California, 1976.

Michalski, R. S., "A Variable-Valued Logic System as Applied to Picture Description and
Recognition," Graphic Languages, F. Nake and A. Rosenfeld (Ed.), North-Holland Publish-
ing Co., pp. 20-47, 1972.

Michalski, R. S., "AQVAL/1 - Computer implementation of a variable valued logic system VLl and
examples of its application to pattern recognition," Proceedings of the First International
Joint Conference on Pattern Recognition, Washington, D. C , pp. 3-17, 1973b.

Michalski, R. S., "Variable-Valued Logic and its Applications to Pattern Recognition and Machine
Learning," Multiple-Valued Logic and Computer Science, Rine, D. (Ed.), North-Holland, pp.
506-534, 1975a.

Michalski, R. S., "Synthesis of optimal and quasi-optimal variable-valued logic formulas," Proceed-
ings of the 1975 International Symposium on Multiple-Valued Logic, Bloomington, Indiana,
pp. 76-87, May 1975b.

Michalski, R. S., "Pattern recognition as rule-guided inductive inference," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4, pp. 349-361, 1980a.

MICHALSKI 127

Michalski, R. S., "Knowledge Acquisition Through Conceptual Clustering: A Theoretical Framework
and an Algorithm for Partitioning Data into Conjunctive Concepts," Policy Analysis and
Information Systems, Vol. 4, No. 3, pp. 219-244, 1980c, (A Special Issue on Knowledge
Acquisition and Induction).

Michalski, R. S. and Chilausky, R. L., "Learning by being told and learning from examples: an
experimental comparison of the two methods of knowledge acquisition in the context of
developing an expert system for soybean disease diagnosis," Policy Analysis and Information
Systems, Vol. 4, No. 2, pp. 125-160, June 1980, (Special issue on knowledge acquisition and
induction).

Michalski, R. S. and Larson, J. B., "Selection of most representative training examples and in-
cremental generation of VL, hypotheses: the underlying methodology and the description of
programs ESEL and AQ11", Technical Report 867, Computer Science Department, University
of Illinois, 1978.

Michalski, R. S., and Negri, P., "An Experiment on Inductive Learning in Chess End Games,"
Machine Representation of Knowledge, Machine Intelligence 8, E. W. Elcock and D. Michie
(Ed.), Ellis Horwood, pp. 175-192, 1977.

Michalski, R. S., Stepp, R., and Diday, E., "A recent advance in data analysis: clustering objects
into classes characterized by conjunctive concepts," Progress in Pattern Recognition,
L. Kanal and A. Rosenfeld (Ed.), North-Holland, Amsterdam, pp. 33-56, 1981.

Michie, D., "New face of AI", Technical Report 33, University of Edinburgh, 1977.

Minsky, M., "A framework for representing knowledge," The Psychology of Computer Vision, P. H.
Winston (Ed.), McGraw-Hill, New York, ch. 6, pp. 211-277, 1975.

Mitchell, T. M., Version Spaces: An Approach to Concept Learning, Ph.D. dissertation, Stanford
University, December 1978.

Moraga, C , "A didactic experiment in pattern recognition", Technical Report AIUD-PR-8101,
Dartmund University, 1981.

Morgan, C. G., "Automated hypothesis generation using extended inductive resolution," Advance
Papers of Fourth International Joint Conference on Artificial Intelligence, Tbilisi, USSR, pp.
351-356, September 1975.

Newell, A., Shaw, J. C. and Simon, H. A., "A variety of intelligent learning in a general problem
solver," Self Organizing Systems, Yovits and Cameron (Eds.), Pergamon Press, New York,
1960.

Nilsson, N. J., Priciples of Artificial Intelligence, Tioga Publishing Co., 1980.

O'Rorke, P., "A comparative study of inductive learning systems AQll and ID3", Intelligent
Systems Group Report 82-2, Department of Computer Science, University of Illinois at
Urbana-Champaign, 1982.

Pettorossi, A., "An Algorithm for Reducing Memory Requirements in Recursive Programs Using
Annotations," International Workshop on Program Construction, September 1980.

Plotkin, G. D., "A further note on inductive generalization," Machine Intelligence, Meltzer, B. and
Michie, D. (Eds.), Elsevier, Edinburgh, pp. 101-124, 1971.

128 CHAPTER 4: INDUCTIVE LEARNING

Pokorny, D., "Knowledge Acquisition by the GUHA Method," International Journal of Policy
Analysis and Information Systems, Vol. 4, No. 4, pp. 379-399, 1980, (A special issue on
knowledge acquisition and induction).

Polya, G., Mathematics and Plausible Reasoning, Princeton University Press, Princeton, N.J., 1954.

Popper, K., The Logic of Scientific Discovery, Harper and Row, New York, 1968, (2nd edition).

Post, H. R., "Simplicity of Scientific Theories," British Journal for the Philosophy of Science, Vol.
11, No. 41, 1960.

Quinlan, J. R., "Discovering rules from large collections of examples: a case study," Expert Systems
in the Micro Electronic Age, Michie, D. (Ed.), Edinburgh University Press, Edinburgh, 1979.

Russell, B., History of Western Philosophy, George Allen and Unwin, London, 1946.

Sammut, C , Learning Concepts by Performing Experiments, Ph.D. dissertation, University of New
South Wales, November 1981.

Shapiro, Ehud Y., "Inductive inference of Theories From Facts", Research Report 192, Yale Univer-
sity, February 1981.

Shapiro, A. and Niblett, T., "Automatic Induction of classification rules for a chess endgame,"
Advances in Computer Chess, volume 3, Clarke, M.R.B. (Ed.), Edinburgh University Press,
1982.

Shaw, D. E., Swartout, W. R. and Green, C. C , "Inferring LISP programs from examples," Fourth
International Joint Conference on Artificial Intelligence, Tbilisi, USSR, pp. 351-356, Septem-
ber 1975.

Shortliffe, E., Computer Based Medical Consultations: MYCIN, New York: Elsevier, 1976.

Simon, H. A. and Kotovsky, K., "Human acquisition of concepts for sequential patterns,"
Psychological Review, Vol. 70, pp. 534-546, 1963.

Simon, H. A. and Lea, G., "Problem solving and rule induction: A unified view," Knowledge and
Cognition, L. Gregg (Ed.), Lawrence Erlbaum Associates, Hillsdale, N.J., 1974.

Smith, D. R., "A Survey of the Synthesis of LISP Programs from Examples", Technical Report,
Duke University, Bonas, France, September 1980.

Solomonoff, R. J., "A Formal Theory of Inductive Inference," Information and Control, Vol. 7,
1964.

Soloway, E. M. and Riseman, E. M., "Levels of pattern description in learning," Fifth International
Joint Conference on Artificial Intelligence, Cambridge, Mass., pp. 801-811, 1977.

Stepp, R., "The investigation of the UNICLASS inductive program AQ7UNI and User's Guide",
Technical Report 949, Department of Computer Science, University of Illinois, Urbana,
Illinois, November 1978.

Stoffel, J. C , "The theory of prime events: data analysis for sample vectors with inherently discrete
variables," Information Processing 74, North-Holland, Amsterdam, pp. 702-706, 1974.

Suppes, P., Introduction to Logic, Van Nostrand Co., Princeton, 1957.

MICHALSKI 129

Vere, S. A., "Induction of concepts in the predicate calculus," Proceedings of the Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI, Tbilisi, USSR, 1975.

Waterman, D. A., "Generalized learning techniques for automating the learning of heuristics," Artifi-
cial Intelligence, Vol. 1, No. 1-2, pp. 121-170, Spring 1970.

Winston, P., Learning Structural Descriptions from Examples, Ph.D. dissertation, ΜΓΤ, September
1970.

Winston, P. H., Artificial Intelligence, Addison-Wesley, 1977.

Yau, K. C , and Fu, K. S., "Syntactic shape recognition using attributed grammars," Proceedings of
the Eighth Annual El A Symposium on Automatic Imagery Pattern Recognition, 1978.

Zagoruiko, N. G., Mietody ohnaruzhenia zakonomiernostiej {Methods for revealing regularities in
data), Izd. Nauka, Moscow, 1981.

130 CHAPTER 4: INDUCTIVE LEARNING

APPENDIX: ANNOTATED PREDICATE CALCULUS (APC)

This appendix presents definitions of the basic components of the annotated
predicate calculus and some rules for equivalence-preserving transformations of
APC expressions (rules that are nonexistent in the ordinary calculus).
1. Elementary and Compound Terms—Terms can be elementary or compound.
An elementary term (an eterm) is the same as a term in predicate calculus, that
is, a constant, a variable, or a function symbol followed by a list of arguments
that are eterms. A compound term {cterm) is a composite of elementary terms or
is an eterm in which one or more arguments are such composites. The com-
posite of eterms is defined as the internal conjunction (&) or internal disjunction
(V) of eterms. (The meaning of these operators is explained later.) The follow-
ing are examples of compound terms:

RED V BLUE (l)
height(BOX, & BOX2) (2)

where RED, BLUE, BOXj, BOX2 are constants. Expression (l) and the form
in parentheses in (2) are composites. Note that expressions (l) and (2) are not
logical expressions that have a truth-status (that is, can be true or false); they are
terms to be used only as arguments of predicates. A compound term in which
arguments are composites can be transformed (expanded) into a composite of
elementary terms. Let f be an n-argument function whose n-l arguments are
represented by list A, and let tj and t2 be elementary terms. The rules for per-
forming such a transformation, that is, term rewriting rules, are:

f(t, Vt2 ,A) <r> f(t,,A)Vf(t,,A) (3)
f(t, &t2,A) <r> f(t,,A)&f(t2,A) (4)

Thus, term (2) can be transformed into a composite:
height(BOX,) & height(BOX2) (5)
If list A itself contains composites, then it is assumed that the internal dis-

junction is expanded first, followed by the internal conjunction (that is, the con-
junction binds stronger than the disjunction).
2. Elementary and Compound Predicates—Predicates also can be elementary
or compound. An elementary predicate is the same as a predicate in the predi-
cate calculus, that is, a predicate symbol followed by a list of arguments that are
eterms. In a compound predicate one or more arguments is a compound term.
For example, the following are compound predicates:

Went(Mary & Mother(Stan),Movie V Theater) (6)
Inside(Key, Drawer(Desk, V Desk2)) (7)
The meaning of a compound predicate is defined by rules for transforming

it into an expression made of elementary predicates and ordinary "external" logic
operators of conjunction (&) and disjunction (V). We denote the internal and

MICHALSKI 131

external operators identically, because they can be easily distinguished by the
context (note that there is no distinction between them in natural language). If
an operator connects predicates, then it is an external operator; if it connects
terms, then it is an internal operator.

Let tj and t2 be eterms and P an n-ary predicate whose last n-1 arguments
are represented by a list A. We have the following reformulation rules (that is,
equivalence-preserving transformations of descriptions):

P(t ,Vt 2 ,A) 1= P(t„A)VP(t2 ,A) (8)
P(t!&t2,A) 1= Ρ α ^ & Ρ ^ , Α) (9)
If an argument of a predicate is a compound term that is not a composite

of elementary terms, then it is transformed first into a composite by rules (3) and
(4). If A contains a composite of terms, then the disjunction is expanded first
before conjunction (similarly as in expanding compound terms).

Rules (3), (4), (8) and (9) can be used as bidirectional transformation
rules. By applying them forward (from left to right), a compound predicate can
be expanded into an expression containing only elementary predicates, and by
applying them backward, an expression with elementary predicates can be con-
tracted into a compound predicate.

For example, by applying forward rule (8) and then (9), one can expand
the compound predicate (6) into

Went(Mary,movie) & Went(Mother(Stan),movie) V
Went(Mary,theater) & Went(Mother(Stan),theater) (10)

Comparing logically-equivalent expressions (6) and (10), one can notice
that expression (6) is considerably shorter than (10), and in contrast to (10),
represents explicitly the fact that Mary & Mother(Stan) went to the same place.
Also, the structure of (6) is more similar to the structure of the corresponding
natural language expression.
3. Relational Statements—A simple and often used way of describing objects
or situations is to state the values of selected attributes applied to these objects or
situations. Although such information can be represented by predicates, this is
not the most readable or natural way. The APC uses for this purpose a state-
ment:

etermj = a (11)
stating that etermj evaluates to a constant a. Such a statement is called an atomic
relational statement (or an atomic selector). Expression (11) is a special case of
a relational statement (also called selector), defined as:

Term! rel Term2 (12)
where Termj and Term2 are elementary or compound terms, and rel stands for
one of the relational symbols: = , > , > , < , < .

If Ternij and Term2 are both elementary, then expression (12) states that
the value of the function represented by Termj is in relation rel to the value of
function represented by Term2. For example, the expression:

132 CHAPTER 4: INDUCTIVE LEARNING

distance(Boston,Tampa) = distance(Washington,Dallas) (13)
states that the distance between Boston and Tampa is the same as the distance
between Washington and Dallas. If Term2 is a constant, then it evaluates to
itself.

Expression (12) can be represented by a predicate:
ré?/(Term,, Term2) (14)
If Termj and/or Term2 is compound, then the meaning of expression (12)

is defined by expanding it into a form containing only relational statements with
elementary terms. The expansion is performed by transforming expression (12)
into (14), applying transformation rules (3), (4), (8), and (9), and then convert-
ing the elementary predicates into relational statements.

For example, a relational statement:

color(Pj V P2) = Red V Blue (15)
can be expanded into an expression:

(color(Pj) = Red V Blue) V (color(P2) = Red V Blue) (16)
and finally to an expression consisting of only atomic selectors:

(color(Pj) = Red) V (color(Pj) = Blue) V
(color(P2) = Red) V (color(P2) = Blue) (17)

The two selectors in the disjunction (16) are examples of a referential
selector, defined as a form:

Termj rel Term2 (18)
where Termj (called referee) is a nonconstant elementary term and Term2 (called
reference) is a constant or the internal disjunction of constants from the domain
of Termj. If relation rel is " = " and Term2 is the disjunction of some constants,
then the referential selector (18) states that the function represented by Termj
evaluates to one of the constants in Term2. The referential selector is very use-
ful for representing concept descriptions.

If the reference of a referential selector contains a sequence of consecutive
constants from the domain of a linear descriptor, then the range operator ".." is
used to simplify the expression. For example:

size (P) = 2 V 3 V 4
can be written:

size (P) = 2..4
The negation of a selector:

—(Termj = Term2)
can be equivalently written:

Termj Φ Term2 (20)

MICHALSKI 133

An arbitrary predicate P(ti,t2,...) can be written in the form of a referential selec-
tor:

P(t!,t2,...) = True .
Therefore, for the uniformity of terminology, a predicate will be considered a
special form of a selector.

To facilitate the interpretation and readability of individual selectors in ex-
pressions, they are usually surrounded by square brackets and their conjunction is
expressed by concatenating the bracketed forms (see Section 4.7).

APC expressions are created from selectors (relational statements) in the
same way as predicate calculus expressions are created from predicates, that is,
by using logic connectives (~, &, V, =>, <=>) and quantifiers. One additional
useful connective is the exception operation ("\"), defined as:

S , \ S 2 l= (~S2 φ S,) & (S2 Φ ~ S,) (21)
where Sj and S2 are APC expressions. (Sj \ S2 reads: S\ except when S2.) It
is easy to see that the exception operator is equivalent to the symmetrical dif-
ference.

In addition to ordinary quantifiers there is also a numerical quantifier, ex-
pressed in the form:

3(1) v, S[v] (22)
where I, the index set, denotes a set of integers, and S[v] is an APC expression
having v as a free variable.

Sentence (22) evaluates as true if the number of values of v for which ex-
pression S[v] is true is an element of the set I. For example, formula:

3(2..8) v, S[v] (23)
states that there are two to eight values of v for which the expression S[v] is
true. The following equivalences hold:

3v, S[v] is equivalent to 3(>1) v, S[v]
and

Vv, S[v] is equivalent to 3(k) v, S[v]
where k is the number of possible values of variable v.

To state that there are k and only k distinct values for variables Vj,v2,...,vk
for which expression S[V|,v2,...,vk] is true, we write:

3.v,,v2v..,vk, S[v,...,vk] (24)
For example, the expression:

3.P0,P!,P2 [contains(P0,P!&P2)] & [color(Pj&P2) = red]=>
[two-red-parts(Pq)]

states that predicate two-red-parts(P0) holds if P0 has two, and only two, distinct
parts in it that are red.

134 CHAPTER 4: INDUCTIVE LEARNING

Section 4.7 presents an example of the usage of the APC for formulating
observational statements and concept descriptions.

5

LEARNING BY ANALOGY:

FORMULATING AND

GENERALIZING PLANS

FROM PAST EXPERIENCE
Jaime G. Carbonell

Carnegie-Mellon University

ABSTRACT

Analogical reasoning is a powerful mechanism for exploiting past ex-
perience in planning and problem solving. This chapter outlines a theory of
analogical problem solving based on an extension to means-ends analysis. An
analogical transformation process is developed to extract knowledge from past
successful problem-solving situations that bear a strong similarity to the current
problem. Then, the investigation focuses on exploiting and extending the
analogical reasoning model to generate useful exemplary solutions to related
problems from which more general plans can be induced and refined. Starting
with a general analogical inference engine, problem-solving experience is, in es-
sence, compiled incrementally into effective procedures that solve various classes
of problems in an increasingly reliable and direct manner.

5.1 INTRODUCTION

Analogical reasoning has been a sparsely-investigated phenomenon in ar-
tificial intelligence [Kling, 1971; Moore & Newell, 1974; Korf, 1980; Winston,
1979]. Nonetheless, analogy is one of the central inference methods in human
cognition as well as a powerful computational mechanism. This chapter dis-
cusses a computational model of problem-solving by analogy based on an exten-
sion of means-ends analysis (MEA). My central hypothesis (based in part on
Schank's theory of memory organization [Schank, 1980; Schank & Carbonell,
1979; Schank, 1979]) is the following: When encountering a new problem situa-

137

138 CHAPTER 5: LEARNING BY ANALOGY

tion, a person is reminded of past situations that bear strong similarity to the
present problem (at different levels of abstraction). This type of reminding ex-
perience serves to retrieve behaviors that were appropriate in earlier problem-
solving episodes, whereupon past behavior is adapted to meet the demands of the
current situation.

Commonalities among previous and current situations, as well as successful
applications of modified plans can serve as the basis for generalization.
Similarly, performing an inappropriate action in a new situation can provide in-
formation useful in reorganizing episodic memory. If the inappropriate action
resulted from the application of a recently-acquired general plan, an analysis of
the type of error may trigger a discrimination process that constrains the range of
applicability for that plan. In either case, a reactive environment that informs
the problem solver of success, failure, or partial success is an absolute require-
ment for any generalization or discrimination process to apply.

Whereas humans exhibit a universal ability to learn from experience no
matter what the task [Newell & Rosenbloom, 1981], AI systems are seldom
designed to model this adaptive quality. Concept acquisition, that is, inducing
structural or attribute descriptions of non-procedural objects from examples, has
received substantial attention in the AI literature [Hayes-Roth & McDermott,
1977; Dietterich & Michalski, 1981; Mitchell, 1978; Waterman & Hayes-Roth,
1978; Winston, 1970], but with few exceptions, the techniques developed therein
have not been transferred to learning in problem-solving scenarios.1 Since the
process of acquiring and refining problem-solving and planning skills is indis-
putably a central component in human cognition, its investigation from an AI
perspective is clearly justified.

This chapter presents an analogical inference engine and investigates two
fundamental hypotheses:

Hypothesis: Problem-solving and learning are inalienable aspects
of a unified cognitive mechanism.

In other words, one cannot acquire the requisite cognitive skills without solving
problems—and, the very process of solving problems provides the information
necessary to acquire and tune problem-solving skills. The second hypothesis
postulates a unified learning mechanism.

Hypothesis: The same learning mechanisms that account for con-
cept formation in declarative domains, operate in acquiring problem-
solving skills and formulating generalized plans.

One method of verifying the second hypothesis is to develop a problem-solving
mechanism into which one can integrate the techniques developed in concept

exceptions include Anzai and Simon's Learning-by-Doing Paradigm [Anzai & Simon, 1979],
Mitchell's LEX system (Chapter 6 of this book), STRIPS with MACROPS [Fikes & Nilsson, 1971], and
indirectly Lenat's AM [Lenat, 1977].

CARBONELL 139

formation—with a resultant system that learns from problem-solving experience.
The analogical problem-solving method discussed below provides a framework
for automated example generation that enables one to apply learning-from-
examples techniques in order to acquire generalized plans. In essence, the objec-
tive is akin to Anzai and Simon's learning-by-doing method [Anzai & Simon,
1979]. First, the basic analogical problem-solving method is discussed, and sub-
sequently an experiential learning component is incorporated as an integral part
of the general analogical inference process.

5.2 PROBLEM-SOLVING BY ANALOGY

Traditional AI models of problem-solving (such as GPS [Newell & Simon,
1972], STRIPS [Fikes & Nilsson, 1971], and NOAH [Sacerdoti, 1977]) approach
every problem almost without benefit of prior experience in solving other
problems in the same or similar problem spaces.2 Consider, for instance, two
related problems:

The monkey-and-bananas problem: A (hungry) monkey is placed
in a room with bananas suspended from the ceiling beyond its reach.
A wooden box of sufficient size to serve as a platform from which
the monkey can reach up to the bananas is placed elsewhere in the
room.
The experimenter-and-bananas problem: An experimenter wishes
to set up the monkey-and-bananas problem. He has some bananas, a
hook in the ceiling just beyond his reach, and a wooden box else-
where in the experimental room, and, of course, a monkey.

A means-ends analysis problem solver, such as GPS, will solve either problem,
given sufficient time and a reasonable encoding of the permissible actions and
their consequences. However, solving one problem does not provide any infor-
mation useful in solving the other. One would think that practice solving a
given type of problem should help in solving similar future problems. For in-
stance, an intelligent monkey observing the experimenter move the box beneath
the hook, hang the bananas, and return the box to its original location, may infer
which parts of the experimenter's behavior it should replicate in order to reach
the bananas. Similarly, if the experimenter tires of watching an unenlightened

2A problem space encodes the information necessary to solve a problem, including goals, initial
state, and legal actions that may be taken in solution attempts. Means-ends analysis is a problem-
solving method that consists of selecting actions that reduce known differences between the current
situation and a desired state. Both of these concepts are elaborated in the course of the present
discussion. However, the reader not familiar with means-ends analysis is encouraged to review the
technique in any standard AI text, such as Winston's Artificial Intelligence [Winston, 1977] or
Nilsson's Principles of Artificial intelligence [Nilsson, 1980], or read the much more thorough
treatment in [Newell & Simon, 1972].

140 CHAPTER 5: LEARNING BY ANALOGY

monkey repeatedly fail in its attempts to solve the problem, he should know how
to take down the bananas by modifying parts of his earlier plan, rather than
replanning from ground zero. In general, transfer of experience among related
problems appears to be a theoretically significant phenomenon, as well as a prac-
tical necessity in acquiring the task:dependent expertise necessary to solve more
complex real-world problems. Indeed, the premise that humans transfer
problem-solving expertise between closely related situations is inextricably
woven into the pedagogical practices of our educational institutions.

The bulk of human problem-solving takes place in problem spaces that are
either well known or vary only slightly from familiar situations. It is rare for a
person to encounter a problem that bears no relation to similar problems solved
or observed in past experience. New abstract puzzles (such as Rubik's magic
cube) are such exceptional problems, where initially the only tractable solution
procedure is the application of standard weak methods [Newell & Simon, 1972]
without benefit of (non-existent) past experience. Therefore, my investigations
center on simplified versions of real-world problems, rather than more abstract,
self-contained puzzles.

Now, let us turn to problem-solving in familiar problem spaces. What
makes a problem space "familiar"? Clearly, a major aspect consists of memory
of past problems and their corresponding solutions that bear strong similarity to
the new problem. Such knowledge, once acquired, can be exploited in the
problem-solving process. There is no other way to account for the fact that
humans solve problems in familiar situations much faster, and with more self-
assurance than in unfamiliar abstract situations. A computer model should exhibit
the same skill-acquisition process; that is, it should learn to adapt its problem-
solving behavior by relying on past experience when available—falling back on
the application of standard weak methods when more direct recall-and-
modification of existing solutions fails to provide an answer. How might a
problem solver be augmented to exhibit such adaptive behavior? First, let us
review the standard MEA process; then we will see how the analogical transfor-
mation process augments MEA to exploit prior experience.

5.2.1 The Plan-Transformation Problem Space

Consider a traditional means-ends analysis (MEA) problem space [Newell
& Simon, 1972], consisting of:

• A set of possible problem states.
• One state designated as the Initial State

• One or more state(s) designated as goal states—for simplicity, assume
there is only one goal state.

• A set of operators with known preconditions that transform one state into
another state in the space.

• A difference function that computes differences between two states

CARBONELL 141

(typically applied to compute the difference between the current state and
the goal state).

• A method for indexing operators as a function of the difference(s) they
reduce (such as the table of differences in GPS).

• A set of global path constraints that must be satisfied in order for a solu-
tion to be viable.3 A path constraint is essentially a predicate on a partial
solution sequence, rather than on a single state or operator. The introduc-
tion of path constraints in this manner constitutes a slight modification of
the standard ME A problem space.

Problem-solving in this space consists of standard MEA:
1. Compare the current state to the goal state
2. Choose an operator that reduces the difference
3. Apply the operator if possible—if not, save the current state and apply

MEA to the subproblem of establishing the unsatisfied precondition(s) of
that operator.

4. When a subproblem is solved, restore the saved state and resume work on
the original problem.
How can one exploit knowledge of solutions to previous problems in this

type of problem space? First, consider the simplest case: knowledge consists
only of solutions to previous problems. Each solution consists of a sequence of
operators and intermediate states, including the initial and final states, together
with the path constraints that the solution was designed to satisfy. One rather
simple idea is to create macro-operators from sequences and sub-sequences of
atomic operators that have proven useful as solutions to earlier problems. For
instance, STRIPS with MACROPS exploited this idea [Fikes & Nilsson, 1971] using
its triangle table to store all partial sequences of operators encountered in a solu-
tion to a previous problem. However, the simple creation of macro-operators suf-
fers three serious shortcomings. First, the combinatorics involved in storing and
searching all possible subsequences of all solutions ever encountered becomes
rapidly unmanageable. Searching for applicable macro-operators can become a
more costly process than applying MEA to the original problem. Second, path
constraints are ignored in this process. If the new problem must satisfy a dif-
ferent set of path constraints, most previous macro-operators may prove invalid.
Third, no provision is made for substituting, deleting, or inserting additional
operators into recalled solution sequences. These operations prove crucial in the
analogical transform process described below. Therefore, let us think not in
terms of creating more and more powerful operators that apply to fewer and

3For instance, a path constraint may disallow particular subsequences of operators, or prevent an
operator that consumes K amount of a resource from applying more than N times, if there is only
NxK amount of the resource available to the problem solver.

142 CHAPTER 5: LEARNING BY ANALOGY

fewer situations, but rather think in terms of gradually transforming an existing
solution into one that satisfies the requirements of the new problem.

Consider a reminding process (a search for solutions to problems similar to
the one at hand) that compares differences among the following:

1. The initial state of the new problem and the initial state of previously-
solved problems

2. The final state of the new problem and the final state of previously-solved
problems

3. The path constraints under which the new problem must be solved and path
constraints present when previous similar problems were solved.

4. The proportion of operator preconditions of the retrieved operator sequence
satisfied in the new problem situation. This measure is called the ap-
plicability of a candidate solution.
The difference function used in comparing initial and final states may be

the very same function used for difference reduction in standard ME A. Here, I
advocate using the difference function as a similarity metric to retrieve the solu-
tion of a previously-solved problem closely resembling the present problem. The
difference function applied to path constraints is an augmented version of the
problem-state difference function, as it must address operator-sequence dif-
ferences in addition to state information. Hence, reminding in our problem-
solving context consists of recalling a previously-solved problem whose solution
may transfer to the new problem under consideration. A more sophisticated
method of computing similarities among episodic memory structures is based on
a relative-invariance hierarchy among different components of recalled problem
solutions, as discussed in [Carbonell, 1982a].

Reminding is only the first phase in analogical problem-solving. The
second phase consists of transforming the old solution sequence into one satis-
fying the criteria for the new problem. How does this transformation process
proceed? I submit that it is equivalent to problem-solving in the space of
solutions.4

Finding an appropriate analogical transformation is itself a problem-solving
process, but in a different problem space. The states of the transform problem
space are solutions to problems in the original problem space. Thus, the initial
state in the transform space is the retrieved solution to a similar problem, and the
goal state is a solution satisfying the criteria for the new problem. The operators
in the transform problem space are the atomic components of all solution trans-

4Here I apply my previous definition of a solution to be a sequence of operators and intermediate
states together with the set of path constraints that sequence is known to satisfy. Thus, I advocate
applying MEA to the space of potential solution sequences rather than the original problem space.
However, the reminding process should generate an initial solution sequence close to the goal
solution sequence, where closeness is determined by the difference metric above.

CARBONELL 143

Original Space T- Space
(Retrieved Solution)

Figure 5-1: A solution path in the original problem space becomes a state in the analogy
transform problem space.

formations (for example, substitute an operator in the solution sequence for
another operator that reduces the same difference, but requires a different set of
preconditions or entails different side effects, and so on—see below). The dif-
ferences that the problem solver attempts to reduce in the new problem space are
precisely those computed by the similarity metric in the reminding process. In
other words, progress towards a goal is determined by transitions in the solution
space towards "solution sequences" corresponding to problems increasingly
similar to the new problem. Intermediate states in the transform space need not
correspond to viable solutions in tfie original (object) space, in that intermediate
solution sequences may not be executable due to unsatisfied operator precon-
ditions. The diagram in Figure 5-1 gives an intuitive flavor of this problem-
solving process. More precisely, the analogy transform problem space (T-space)
is defined as follows:

• States in the transform space are potential solutions to problems in the
original problem space (that is, sequences of states and operators including
the initial and final states, plus the path constraints under which those solu-
tions were computed.)

• The initial state in the transform space is the solution to a similar problem
retrieved by the reminding process.

• A goal state in the transform space is the specification of a solution that
solves the new problem, satisfying its path constraints.

144 CHAPTER 5: LEARNING BY ANALOGY

• An operator in the transform space (labeled a 'T-operator" to avoid
confusion) maps an entire solution sequence into another potential solution
sequence. The following is a list of the most useful T-operators:

o General Insertion. Insert a new operator into the solution sequence.
o General deletion. Delete an operator from the solution sequence.
o Subsequence Splicing. Splice a solution to a new subproblem into

the larger established solution sequence. This T-operator is useful in
the following situation: If an operator in the original problem se-
quence cannot be applied under the new problem specification be-
cause one of its preconditions is not satisfied, solve the subproblem
of establishing that precondition. This subproblem may be solved ei-
ther in T-space or in the original (object) space. If successful, splice
the precondition-fulfilling subsequence into the original solution se-
quence.

o Subgoal-preserving substitution. Substitute an operator in the
original solution sequence by another operator (or sequence of
operators) that reduces the same difference. This T-operator is par-
ticularly useful if either a precondition of an operator in the original
sequence cannot be satisfied, or if the presence of a particular
operator in the solution sequence violates a path constraint.5

o Final-segment concatenation. Treat the solution sequence as a
macro-operator in the original problem space and apply MEA to
reduce the difference between the old final state and the new final
state. If successful, concatenate the solution to this subproblem at the
end of the original solution sequence.

o Initial-segment concatenation. Apply the process above to find a
path in the original problem space from the new initial state to the
old initial state. If successful, concatenate the solution to this sub-
problem at the beginning of the original solution. (Note that in this
case we start with the initial state for the new problem and seek a
path to the initial state for the retrieved solution, whereas in the final
segment-concatenation operator the inverse process applies.)

o Sequence meshing. Merge the operator sequences of two com-
plementary solutions retrieved in the reminding process. The resul-
tant solution sequence should differ from a complete solution to the
new problem by the intersection of the differences between each

5Note that a subgoal-preserving substitution is much more restrictive than a general delete T-operator
followed by a general insert T-operator. Therefore, this T-operator is more apt to yield useful
transformations, a fact reflected in the ordering of operators under each appropriate entry in the
difference table.

CARBONELL 145

retrieved solution and the new problem specification.6 If the dif-
ferences between the two retrieved solutions and the new problem
specification form disjoint sets, sequence meshing yields a complete
solution.

o Operator reordering. Reorder the operators in a solution sequence.
Often a path constraint in the new problem specification can be
satisfied by simple reordering of operators (when allowed by their
preconditions) in the retrieved solution.

o Parameter substitution. Substitute the objects to which operators
were applied in the retrieved solution by the corresponding objects in
the new problem specification.

o Solution-sequence truncation. Eliminate unnecessary operators.
Two significant special cases of this T-operator are initial-segment
truncation and final-segment truncation. For instance, if the final
state of an operator subsequence of the retrieved solution exhibits a
smaller difference to a goal state of the new problem, use this sub-
sequence as the new basis for mapping into the desired solution se-
quence.

o Sequence inversion. Reverse the operator sequence, inverting each
individual operator, if a problem formulation is such that its goal
state matches the initial state of a solved problem, and its initial state
matches the goal state of that same previously solved problem. In-
verting a process is not always possible, and seldom directly achiev-
able. In the present case, the inverse of each operator must be found,
and its preconditions satisfied, in order to apply global inversion.
However, the general notion is attractive—consider solving the
problem of driving between two points in an unknown city. Once this
problem is solved, the subsequent problem of returning to the depar-
ture site is easily solved by operator sequence inversion (barring
travel on one-way streets and other non-invertible operations).

• The difference metric in the transform space (DT) is a combination of the
difference measures between initial states (of the retrieved and desired
solution sequences), final states, path constraints, and degree of ap-
plicability of the retrieved solution in the new problem scenario. Hence,
the values of DT are 4-vectors, with the interpretation that all four com-
ponent differences must be reduced (independently or jointly) in the trans-
form space (T-space) problem-solving process.

6Merging two partial operator sequences is an interesting and potentially complex problem in itself.
Procedural networks, developed in the NOAH system [Sacerdoti, 1977], facilitate computations of
operator interactions when meshing two plans. It is not always the case that two partial solution
sequences can be merged effectively (for example, each subsequence may violate necessary precon-
ditions for the other subsequence). Non-algorithmic T-operators, such as sequence meshing, define
their own internal problem space.

146 CHAPTER 5: LEARNING BY ANALOGY

DT = <Do(SIfl,SIf2),Do(SF>,,SFf2),
Dp(PC!,PC2), DA(SOL,,SOL2)>

o D 0 is the difference function between states in the original space.
o Dp computes differences between path constraints (PC's).
o DA measures the applicability of the old solution in the new scenario

by determining the fraction of operators in the initial solution se-
quence (SOLj) whose preconditions are not satisfied under the new
problem specification.

o Sj denotes an initial state.
o Sp denotes a final (goal) state.
o The subscript l indexes the retrieved solution.
o The subscript 2 indexes the specifications on the desired solution to

the new problem.
DT is reduced when any of its four components is independently reduced.
The problem-solving process in T-space succeeds when
DT = <NIL, NIL, NIL, NIL>. Interesting search problems occur when,
in order to reduce one component in the difference vector, one or more of
the other components must be increased. For example, the insertion of
new operators into the solution sequence may have the unfortunate side-
effect of violating an established precondition of an operator in the original
sequence. In this case, reducing DQ(I) or DQ(F) results in increasing DA.
Our first-pass solution is to define a (linear) combination of the four com-
ponents and choose the operator that maximally reduces this value, back-
tracking when necessary. Fortunately, it is often the case that differences in
the 4-vector can be reduced in a componentwise-independent manner.
Moreover, a modified version of the Δ-ΜΙΝ method [Carbonell, 1980]
may apply, focusing the backtracking process when backtracking proves
necessary.

• A difference table for indexing the T-operators is needed. Entries in the
difference table take the form "To reduce <DIFFERENCE>, apply a
member of <T-OPERATOR-SET>". The operators in the applicable set
are usually ordered as a function of the heuristic measure of their utility in
reducing the given difference. A sample difference table entry would be:

o If the preconditions to an operator in SOL] are not satisfied (that is,
DA is non-null), try subgoal-preserving substitution on the in-
applicable operator, or try solution-sequence splicing to satisfy the
violated preconditions.

• There are no path constraints in the transform space. Since we are mapping
from one solution sequence to another, the intermediate states and T-

CARBONELL 147

operators do not necessarily correspond to actual operations performed on
an external world, and therefore are not subject to its restrictions. This
simplification is offset by the more complex difference metric in T-space.

5.2.2 Some Examples

Consider a simple problem where analogical problem-solving may prove
quite appropriate:

John is located in Pittsburgh and must travel to New York City.
However, when he called the airlines, he discovered that all the
flights were booked. John never took the intercity train (Amtrak) be-
fore, but knows it is a possible means of long-distance travel.

John's plan might be the following: Call Amtrak to make a reservation.
Make sure he has sufficient money for the ticket. Find out where to buy the
ticket; buy it; and later go to the station and board the train. Why is this a
reasonable plan? How could John have synthesized his plan? We cannot really
say that John had a "script"7 for taking trains, as he had not previously traveled
by train, nor had he acquired the requisite, detailed information enabling him to
do so.

A reasonable way of formulating the plan is by analogy with taking an
airplane (or perhaps an intercity bus). The first step is for John to be reminded of
taking an airplane (thus recalling: making reservations, tickets being costly, of-
ten purchasing the tickets in advance, later traveling to the airport, and so on).
Note that it is crucial for John to be reminded of an experience (or a general
procedure) where he was fulfilling a similar goal (intercity travel) and not one
where superficial similarities abound (such as taking a subway, where both
means of conveyance are called "trains", they travel on tracks, have many stops,
and so on). Subway travel would not suggest the potential necessity of making a
reservation, nor would it suggest the requirement for a reasonable sum of money
to purchase the ticket. Hence, a comparison of goal states, as suggested in our
general method, is indeed a crucial component in the similarity judgments neces-
sary for modeling a reasonable reminding process.

The solution transformation process proceeds by applying the subgoal-
preserving substitution T-operator, substituting TRAIN-TRAVEL for AIR-
TRAVEL, as both operators reduce the same difference. Then, the parameter-
substitution T-operator replaces "airport" by "train station", "airline ticket" by
"train ticket", and so on. John must rely on his knowledge of how to satisfy the
preconditions of AIR-TRAVEL, and hope that the same methods apply to
TRAIN-TRAVEL. If this were not the case, further problem-solving would be
necessary.

7By "script" I mean a slight variation of Schank and Abelson's terminology [Schank & Abelson,
1977; Cullingford, 1977], that is, a frozen plan: one or more normative sequences of planned actions
whose purpose is to satisfy the preconditions of (and carry out) a high-level operator.

148 CHAPTER 5: LEARNING BY ANALOGY

Now, let us reconsider the monkey-and-bananas and experimenter-and-
bananas problems, in light of the analogical problem-solving model.

A monkey watches a behavioral psychologist (that is, the
experimenter) pick up a wooden box and place it under a hook in the
ceiling. Next, the experimenter climbs on the box, places some
bananas on the hook, climbs off the box, and returns it to its original
location. Then, the experimenter releases the (hungry) monkey and
leaves the room. How does the monkey plan to reach the bananas?
Can he benefit from having observed the experimenter?

As we mentioned earlier, a "smart monkey" ought to learn from his obser-
vations of the experimenter. Let us see how analogical problem-solving applies
here. For simplicity, assume the monkey does not have prior experience solving
similar problems beyond his recent observation of the experimenter. The
monkey's problem is: initial state = monkey on the floor, bananas on the ceil-
ing, box in the room; final state = monkey in possession of the bananas; path
constraints = physical abilities of the monkey. However, the solution to the
experimenter's problem cannot be applied directly. (His problem was initial
state = possession of the bananas, box in the room, experimenter on the floor;
final state = Bananas on the ceiling, box not under the bananas; path con-
straints = physical abilities of the experimenter.)

Assuming the path constraints match, the differences between the initial
states (and the differences between the final states) are so large as to preclude
any reasonable attempt at direct analogical transformation. Therefore, the
monkey must resort to standard MEA (in the original problem space). He selects
the operator GET-OBJECT (applied to bananas). This operator suffers an un-
satisfied precondition: The monkey cannot reach the bananas. Therefore, the ac-
tive subgoal becomes: Reach the ceiling where the bananas are located. How
may the monkey proceed at this juncture?

The entire problem can, of course, be solved by recursively applying stan-
dard MEA. However, there is a more direct solution method. If the monkey
recalls his observation of the experimenter, he may realize that the problem of
reaching the ceiling has already been solved (by the experimenter, as a subgoal
to placing the bananas there—although the monkey need not understand the
experimenter's higher-level goals). The monkey can apply the parameter-
substitution T-operator (substituting "monkey" for "experimenter"), and option-
ally the solution-sequence truncation T-operator (eliminating the need to return
the box to its original location after having used it). This problem-solving
process in T-space results in a plan that the monkey can apply directly to reach
the bananas, and thus achieve his original goal of having them.

The significant aspect of the experimenter-monkey-and-bananas example is
that standard MEA and T-space MEA were combined into a uniform problem-
solving process where standard MEA calls on analogical problem-solving to
solve a subproblem more directly. The converse process is also possible, and

CARBONELL 149

potentially significant. For instance, in the Amtrak example, if John could not
have satisfied one of the preconditions for taking the train by analogy with the
corresponding AIR-TRAVEL precondition, he could have resorted to standard
MEA to solve this subproblem. Hence, analogical reasoning adds a powerful
dimension to standard problem-solving when prior experience can be brought to
bear, but remains largely unobstrusive when no relevant prior knowledge sug-
gests itself.

It would be useful for the problem solver to remember his new problem-
solving experiences to use as a basis for future analogical reasoning. These could
be remembered directly or abstracted into episodic traces, much like Schank and
Abelson's scripts [Schank & Abelson, 1977; Cullingford, 1977], and hierarchi-
cally organized as a function of the goals they fulfill.

An interesting observation concerns the recursive closure of analogical
MEA.8 If the T-operator sequence of an analogical problem-solving transforma-
tion is remembered, the analogical MEA process can be applied to these transfor-
mations themselves. That is, one can construct an analogical mapping between
two solution sequences by recycling a past analogical mapping among similar
solutions, or by transforming a past, almost usable mapping by recursive applica-
tion of analogical MEA to the analogical mapping itself. A significant point is
that no infinite regress requiring new "hyper-analogical" methods occurs. The
same analogical transformation process that applies to object-level solution se-
quences applies directly to transforming analogical mappings.

5.3 EVALUATING THE ANALOGICAL REASONING PROCESS

In an informal experiment, not meant to withstand statistical significance
tests, I gave the following problem to five undergraduate history and art students:

Prove that the product of two even numbers is even.

Somewhat to my surprise and dismay, none of the five was able to solve this
simple algebraic problem, although all five made serious attempts. I had in-
tended to give the subjects similar but more difficult problems in subsequent
stages of the experiment, measuring whether they improved in speed or accuracy
from their recently-acquired experience solving analogically-related problems.
Nevertheless, the experiment proved useful in demonstrating the reliance of
human problem solvers on analogical mechanisms, as discussed below. Continu-
ing with the experiment, I explained the proof process carefully enough to insure
that all five subjects understood it:

1. Recall the definition of an even number: a number that is divisible by 2.
2. Write down an expression that represents an even number: You may write

"2N" where N is any integer, to represent a number divisible by 2.

8This observation is due in part to Mitchell, personal communication.

150 CHAPTER 5: LEARNING BY ANALOGY

3. Multiply two even numbers, writing: 2N x 2M, where M is also any in-
teger. Multiplying we get 4NM.

4. Recall the representation of an even number: 2 x any integer. Therefore
you can write 4NM = 2 x 2NM, which by closure of integers under mul-
tiplication matches the representation of an even number. Hence, the
product of two even numbers is even.
At this point, all five subjects claimed they understood the proof, and

moreover expressed some feeling of embarrassment for not having derived such
an "obvious" proof themselves. Then, I suggested they try the following
problem:

Prove that the product of two odd numbers is odd.

With grim determination to redeem their previous poor performance all five at-
tempted the problem and three of them succeeded. Briefly:

5. Odd numbers can be represented as "even + 1" = 2N+ 1 for any integer
N.

6. The product is: (2N+1) x (2M+1) = 4NM + 2N + 2M + 1 =
2(2NM + N + M) + 1, which is the representation of an odd number.9

This informal experiment strongly indicates that the second problem was
solved by analogy from the solution to the first problem. The scratch papers
collected from the subjects suggest direct attempts at transferring and modifying
steps of the first solution. The insertion of an extra algebraic step10 illustrates an
application of the subsequence splicing T-operator. The global substitution of a
representation for odd numbers in place of a representation for even numbers
strongly suggests parameter substitution. Moreover, the mere fact that three of
five subjects were able to solve a problem more complex than the one where all
five failed previously, argues very convincingly for an analogical process exploit-
ing the previous solution (or some abstraction thereof). However, it should be
noted that this type of experiment does not, in itself, demonstrate dominance of
analogical reasoning in human problem-solving, but rather it provides strong
evidence for the existence of analogical processes in cognitive activities.
Demonstrating the conjecture that analogy is the central inference mechanism for

interestingly, one subject chose to represent odd numbers as 2N + 3, which is correct but requires a
bit of additional algebraic manipulation. When asked why she chose such a representation, her reply
was "4 is a nice even number, and 7 is a nice odd number. The difference between them is 3. The
next even number is 6; the next odd is 9; and the difference is always 3. So, I took 2N and added
3." What a graphic illustration of means-ends analysis to solve the subproblem of mapping from a
representation of even numbers to a representation of odd numbers! Of the two subjects who did not
present an adequate proof, one erred in an algebraic manipulation step, the other erroneously chose
3N as his representation for odd numbers.

,0That is, distributing the product of the two odd numbers is required to fulfill a precondition for
factoring the constant "2" from three of the four terms in: 4NM + 2N + 2M + 1.

CARBONELL 151

human problem-solving would require a much more thorough (and perhaps more
controlled) set of psychological observations.

As a test of the computational feasibility of the analogical problem-solving
process, a simple version of MEA was programmed to operate on the transform
space, and given a subset of the T-operators with a corresponding difference
table. It solved the product-of-two-odds problem starting from the solution for
two even numbers.11 The initial computer implementation of analogical MEA is
not of particular interest—it demonstrates that the analogical problem-solving
process actually works, but does little else. The truly interesting issues will arise
when:

• a much fuller implementation is available allowing comparisons among dif-
ferent problem-solving methods over a representative corpus of problems,

• the learning from experience process discussed in the following section is
fully integrated with the analogical transform process,

• and the analogical problem solver is integrated with a dynamically-
changing long-term memory model.

5.4 LEARNING GENERALIZED PLANS

The analogical transformation process provides a method of exploiting
prior experience in a flexible manner. That is, it requires only that the new
problem be structurally similar, rather than identical, to one or .more previously-
solved problems.12 Hence, simply storing solutions to new problems constitutes
a form of learning—as these can serve as a basis from which solutions to yet
newer problems may be analogized. However, there are other aspects to learn-
ing that present more interesting challenges. To wit, if a type of problem recurs
with sufficient frequency, a human planner is apt to formulate a generalized plan
for dealing with future instances of that problem, rather than reasoning analogi-

11 The program used 2N-1 to represent an odd number, since the SUBI operator was inadvertently
listed before ADD1 in the object-space difference table, and therefore the program had to splice in an
additional algebraic step in the solution: (2N-1)(2M-1) = 2(2NM - N - M) + 1, which does
not correspond to the 2N-1 representation for odd numbers, and therefore had to apply subsequence
splicing to add two algebraic operators that transformed the expression into
2(2NM - N - M + 1) - 1. In fact, most of the computational effort was spent finding those two
operators (adding and subtracting the same quantity, and «factoring the expression). This allocation
of effort roughly corresponds to the substantial time spent by the subject who chose 2N + 3 as a
representation with the resultant product being 2(2NM + 3N + 3M) + 9, which did not exactly
match the original representation, and was eventually refactored into
2(2NM + 3N + 3M + 3) + 3.
12The MACROPS facility in STRIPS required corresponding initial states and goal states to be identical
modulo parameterization of operators in order to reuse portions of past solution sequences [Fikes &
Nilsson, 1971].

152 CHAPTER 5: LEARNING BY ANALOGY

cally from a particular member of that cluster of similar experiences. A general-
ized plan is, in essence, similar to Schank's notion of a script [Schank & Abel-
son, 1977; Schank, 1980; Cullingford, 1977], that is, a parameterized branching
sequence of events with expected goals and default actions.

5.4.1 Acquiring Generalized Solution Procedures

How is a generalized plan acquired from past problem-solving experience?
Consider an inductive engine, such as those developed to formulate generalized
concepts from sequences of positive and negative exemplars of the target con-
cept, as discussed in Chapters 3 and 4 of this book and in [Hayes-Roth &
McDermott, 1977; Waterman & Hayes-Roth, 1978; Winston, 1970; Dietterich &
Michalski, 1981; Mitchell, 1978]. Instead of acquiring disembodied concepts
from an external teacher providing training sequences of exemplars labeled
"positive" or "negative", in experiential learning the exemplars consist of past
problems and their respective solutions. These solutions are grouped together as
exemplars of a generalized plan by virtue of being derived from a common an-
cestor in the analogical transform process. Thus, as in learning from observation,
the concepts to be acquired are not known a priori by an external teacher, but
correspond to clusters of expferientially-related solutions to a common type of
problem. The "type" is not artificially defined, but depends on the actual ex-
perience of the individual problem solver. More specifically, generalized plans
are acquired by the following process:

• Whenever the analogical problem solver generates a solution to a new
problem, that solution is tested in the external world. If it works, it be-
comes a member of the positive exemplar set, together with the prior solu-
tion from which it was analogized and other successful solutions to
problems from the same analogical root.

• If the analogized solution fails to work when applied in the external world,
the cause of the failure is stored and this solution becomes a member of
the corresponding negative exemplar set.

• The positive and negative exemplar sets are given to an induction engine
that generates a plan encompassing all the successful solutions and none of
the unsuccessful ones. Thus, the training sequence is provided by past ex-
perience solving similar problems, rather than by an external teacher. And,
the concept acquired is a generalized solution procedure rather than the
description of a static object, as is typically the case in the concept acquisi-
tion literature. If the description language for the object-space operators is
extended, additional generalization can occur (for example, in selecting
more general operators that cover disjunctive subsequences in the general-
ized solution plan).

CARBONELL 153

• Moreover, negative exemplars are near-misses,13 since the analogical
process generated them by making a small number of changes to known
positive instances (that is, transformations to past solutions of the same
general problem type, retaining the bulk of the solution structure invariant).
Hence, near-miss analysis can point out the relevant discriminant features
between positive and negative exemplars of the general planning structure
under construction. In other words, the problem solver serves as an
automated example generator, producing near-misses as a side effect when
failing to generate an effective plan.

• Finally, in cases where the analogical problem solver fails to generate a
solution for the new problem (as opposed to generating an erroneous solu-
tion that becomes a negative exemplar for the generalized plan formation
process), different information can be acquired. The situations where a
solution was recalled and a plan was formed analogically (independent of
whether the plan worked) serve as positive exemplars to reinforce and per-
haps generalize the similarity metric used to search memory. The cases
where a recalled solution could not be analogized into a candidate plan for
the new problem suggest that the old and new problems differed in some
crucial aspect not adequately taken into account in the similarity metric,
and thus serve as negative reinforcement to refine and constrain the
similarity criterion.

Graphically, the information flow in the learning process is illustrated in
Figure 5-2. The formula

Analogy: P/Ci -> P/Cj
should be interpreted as "The analogical transform process maps plan Pj ap-
plicable under conditions Cj into plan Pj applicable under conditions Cj." And,
the formula

Environment: Pj/C —> + (or —)
should read as "Plan Pj succeeded (or failed) when executed in the external en-
vironment under conditions G."

Figure 5-2 summarizes the process of acquiring generalized plans and up-
dating the similarity criterion from experience. The analogized plans along with
their conditions of applicability, form the input to a learning-from-examples en-
gine. Successful solutions are classified as positive exemplars; unsuccessful ones
are classified as near-miss negative exemplars. Moreover, the cases where the
analogy transform process failed to yield a candidate plan become negative rein-
forcement instances to a parameter-tuning process, which is positively reinforced

,3Winston [1970] defines a near-miss as a negative exemplar that differs from positive exemplars in a
small number of significant features. Near misses are crucial in isolating defining characteristics of a
concept in the learning-from-examples paradigm.

154 CHAPTER 5: LEARNING BY ANALOGY

The analogical problem-solving process

P2/C2 Environment: P2/C2 -» +
P3/C3 Environment: P3/C3 —> +
P4/C4 Environment: P4/C4 —► -
P5/C5 Environment: Ps/C5 —> -

<no-plan>/C6

<no-plan>/C7

Acquiring generalized plans
from solutions attempts to similar problems

Input to a learning-from-examples process
Positive exemplars: P,/C,, P2/C2, P3/C3

Negative exemplars: P4/C4, P5/C5 (near misses)

Output from the learning-from-examples process
Generalized plan: PQ/C G

Updating the similarity criterion
used to recall relevant prior experience

Input to a parameter-tuning process
Present similarity metric
Positive reinforcement trials: Cj, C2, C3, C4, C5

Negative reinforcement trials: C6, C7

Output from the parameter-tuning process
Updated similarity metric

Figure 5-2: Acquiring generalized plans and updating the similarity metric.

by those cases where a (successful or unsuccessful) plan was formulated. Updat-
ing the similarity criterion should make future memory searches for solutions to
similar problems more responsive to the features that enable the analogical trans-
form system to map a recalled solution into a potential solution for the new
problem. Thus, we see that analogical problem-solving interfaces naturally with
a learning-from-examples method in that it provides an internal example gener-
ator requiring no external teacher.

Presently, I am extending the problem-solving engine to extract and use
information from the planning process itself (not just problem descriptions and
corresponding solutions), such as viable alternatives not chosen, causes of failure
to be wary of in similar situations, and so on. The objective of this endeavor is
to enable the learning-from-examples component to learn, or at least refine, the
problem-solving strategies themselves, in addition to forming generalized plans.

Analogy: P,/C,
Analogy: P2/C2

Analogy: P,/C,
Analogy: P3/C3

Analogy: P3/C3

Analogy: P,/C,

CARBONELL 155

Thus, general patterns of inference may be acquired from experience [Carbonell,
1982b].

Parts of the plan generalization process are currently being implemented to
test the viability of the proposed knowledge-acquisition method, and preliminary
results are encouraging. Although much of the theoretical and experimental
work in acquiring problem-solving skills is still ahead of us, there is sufficient
evidence to support the two original hypotheses: the integration of learning and
problem-solving methods into a unified cognitive mechanism, and the utility of
the learning-from-examples technique for acquiring planning skills as well as ac-
quiring more static concepts.

As our discussion has demonstrated, learning can occur in both phases of
analogical problem-solving: (i) the reminding process that organizes and
searches past experience, and (ii) the analogical transformation process itself.
Additional issues in the experiential adaptation of the reminding process are dis-
cussed below.14

5.4.2 Episodic Memory Organization

Memory of solutions to previous problems, whether observed or directly
experienced, must be organized by similarities in goal states, initial states, means
available, and path constraints present. Otherwise, there can be no reasonable
reminding process when solving future problems of a similar nature. Hence, a
hierarchical indexing structure on an episodic memory must be constructed
dynamically and extended as the system gradually accumulates new experience.
Given an effective memory model, the process of continuously expanding and
structuring past experience becomes a relatively simple, but absolutely essential,
aspect of learning that proceeds concurrently with analogical reasoning.
Moreover, the memory model should retrieve general plans when these have
proven reliable to the exclusion of the original episodic memory traces, which
then effectively "fade" from memory. "Fading" means that the memory indexing
structure is altered so they are no longer easily recalled in the reminding process.
(This notion is akin to Schank's "mushing" process [Schank, 1979] and
Anderson's masking by declining relative activation [Anderson & Greeno,
1981].)

5.4.3 Episodic Memory Restructuring

It is conceivable that in the lifetime of an adaptive problem solver, the na-
ture of the problems it is called upon to solve may change gradually. The change

14The reader is referred to Schank [Schank & Carbonell, 1979; Schank, 1980], Lebowitz [1980] and
Kolodner [1980] for various discussions on the type of basic episodic memory model implicit in this
chapter. The memory organization scheme must be structured according to similarity criteria in-
strumental to the task of indexing and recalling past problem-solving experience [Carbonell, 1982a].

156 CHAPTER 5: LEARNING BY ANALOGY

may manifest itself as decreased reliability of the difference function comparing
new and old problem specifications, causing the reminding process to retrieve
inappropriate solutions, or to miss relevant past experiences. Hence, a means of
tuning the difference metric in a failure-driven manner is a requisite process for
long-term adaptive behavior.

More specifically, the heuristic combining the four values in the DT 4-
vector may be tuned to yield appropriate values for certain classes of problems
most commonly encountered. For instance, differences in path constraints are
less meaningful to a problem-solver who has ample resources than to a more
spartanly-endowed problem solver. If a graduate student later becomes a mil-
lionaire, the fact that he then commands more substantial resources should lessen
the impact of resource-based path constraints in his problem-solving. Con-
sequently, the similarity metric will cease to consider past solutions of otherwise
similar problems that were solved when operating under more severe resource
constraints. This is not a particularly desirable state of affairs, as resource-limited
solutions are certainly viable, if not always desirable, to a problem solver com-
manding more resources. Therefore, the reminding heuristic should no longer
weigh path-constraint differences as heavily. (Note that reminding is a con-
strained search process, whereas analogical mapping or instantiating a general
solution pattern are generative processes. Hence, the reminding process need
only retrieve approximate, plausible solutions.) Returning to our example, if
that same millionaire later files for bankruptcy, the relevance of resource-based
path constraints assumes significant proportions once again. A pauper will not be
able to solve most problems by emulating a millionaire. Thus, the path-constraint
component of the similarity/difference metric should reestablish its central role in
the reminding heuristic. In this manner, the relevance of each component in the
similarity measure is subject to long-term fluctuation.15

How can the relative weights in the similarity heuristic be tuned? When
the reminding process fails to retrieve a viable initial state to the T-space
problem solver, but the problem is later solved in the original problem space, the
solution can be compared to episodic memory. If a solution to a previous
problem is found to be very similar, then the problem descriptions should also
have been found similar by the reminding heuristic. The component contributing
the largest difference is then reduced in importance. The converse process also
applies. If a solution retrieved as similar does not lead to a solution in T-space,
the difference(s) that could not be reduced by the T-space problem solver are
assigned more importance in the difference heuristic. These complementary

l5This process is analogous to Berliner's application coefficients in SNAC [Berliner, 1979], whose
values change gradually over the course of a game. Here change occurs more gradually over the
lifetime of the problem solver, but I am proposing an adaptive rather than a pre-programmed
contextual-weighting process. Note that whereas individual path constraints differ from problem to
problem, I am discussing gradual changes in the relative significance of path constraints vis a vis
other criteria in the similarity metric on average over many individual problem-solving episodes.

CARBONELL 157

processes regulating the difference metric are designed to make all changes very
gradually to insure against potentially unstable behavior. This form of experien-
tial parameter tuning is a new application of a credit assignment technique dating
back to Samuel [1963] .

5.4.4 T-Operator Refinement

If episodic memory is extended to contain T-space problem-solving traces,
in addition to experienced events and solutions to past problems, then learning
can occur in the T-operator domain. For instance, consider a T-operator present
with high frequency in unsuccessful T-space ^plution attempts. It is conceivable
that the entry (or entries) in the difference table indexing that T-operator are in-
sufficiently constrained, suggesting the need for a discrimination process such as
the following:

1. Compare T-space solution attempts where the T-operator in question was
present only in failure paths, with solution attempts where it was present in
successful solution paths.

2. If there are multiple entries in the difference table for that T-operator, and
some entries correspond only to failure instances of the operator, delete
these entries, as the operator is being applied to reduce a difference it
proved incapable of reducing.

3. If a single entry corresponds to many more failures than successes, the
description of the difference being reduced may be too general and ought
to be factored into a disjunctive set of more specific differences. Later ex-
perience can help isolate which of these sub-differences the T-operator is
actually capable of reducing. Then, the more specific differences (those
that the T-operator in question proved capable of reducing) replace the pre-
vious more general entry in the difference table. Other differences in the
factored disjunctive set that (as experience shows) cannot be reduced by
the T-operator are discarded. It should be noted that the operation of fac-
toring an arbitrary concept into a disjunctive set of sub-concepts is, in
general, not a tractable process. However, given a hierarchical memory
model and a non-monotonic inference capability,16 approximately correct
factorings can be achieved.

5.4.5 The Acquisition of New T-Operators

If the reminding process retrieved one or more solutions, but the analogy
transform process failed to map these into a solution satisfying the specifications

16Non-monotonic inference is a plausible inference technique based on tentative deductions and
assumptions that may prove invalid as additional knowledge is acquired [McDermott & Doyle,
1980].

158 CHAPTER 5: LEARNING BY ANALOGY

of the new problem, and the original-problem-space problem solver found a solu-
tion, then we have a clear indication that the T-space problem solver is missing
some essential T-operators. One approach to remedy this situation is the follow-
ing process:

1. Compare the solution computed by the problem solver in the untransformed
space with the various attempted transformations in T-space.

2. Find the intermediate state in the failed T-space solution attempt that min-
imizes the difference metric (DT) to the solution computed by standard
ME A.

3. Hypothesize a T-operator instance to be the transformation from the closest
state (reached in the T-space solution attempts) to the actual solution.
Save this T-operator instance.

4. If later problem-solving impasses cause failure-driven creation of more T-
operator instances, then the application of a learning-from-observations
technique, such as the conceptual clustering method presented in Chapter
11, may prove fruitful. If the exemplars are sufficiently similar, or form
clusters of closely similar exemplars, new T-operators can be hypothesized
according to the characteristic description of each conceptual cluster.
"Sufficiently similar" in this context means that the common structure
shared by the cluster of T-operator instances is not present in other active
T-operators. Hence, the new operator will perform transformations dif-
ferent from those of any previously existing T-operator—that is, the new
operator may prove generatively useful.

5. The newly-created T-operator may then be added to the set of active T-
operators (subject to the refinement process above if the new operator
proves unreliable).

6. The entry in the difference table indexing the new T-operator is a bounded
generalization of the differences that each T-operator instance reduced at
the time it was created. If these differences do not share a common com-
ponent not present in other entries, more than one (disjunctive) entry must
be made in the difference table.
Thus, new T-operators can be acquired if the problem solver is given a set

of problems for which the same (previously unknown), general T-space transfor-
mation was required. Moreover, the operator acquisition and discrimination
processes are equally applicable to refining and extending sets of operators in the
original untransformed problem space (if the problem solver can tap an external
source of knowledge upon failure, or relax processing constraints upon resource-
limited failure). Acquiring T-operators, however, requires learning from obser-
vation, rather than the better understood and generally simpler process of learn-
ing from examples used to acquire generalized plans.

The learning mechanisms discussed in this section can prove effective if,
and only if, the reasoning system is capable of remembering, indexing and

CARBONELL 159

retrieving past experience, including aspects of its internal processing in previous
problem-solving attempts (such as hypothesized T-operator instances). Therefore,
the necessity for both dynamic memory organization processes and a problem-
solving mechanism capable of exploiting episodic memory is clearly manifest.

5.5 CONCLUDING REMARK

The primary objective of this paper has been to lay a uniform framework
for analogical problem-solving capable of integrating skill refinement and plan-
acquisition processes. Most work in machine learning has not addressed the
issue of integrating learning and problem-solving into a unified process.
(However, Chapter 6 of this book and Lenat [1977] are partial counter-
examples.) Past and present investigations of analogical reasoning have focused
on disjoint aspects of the problem. For instance, Winston [1980] investigated
analogy as a powerful mechanism for classifying and structuring episodic
descriptions. Kling [1971] studied analogy as a means of reducing the set of
axioms and formulae that a theorem prover must consider when deriving new
proofs to theorems similar to those encountered previously. In his own words,
his system "...derives the analogical relationship between two [given] problems
and outputs the kind of information that can be usefully employed by a problem-
solving system to expedite its search." However, analogy takes no direct part in
the problem-solving process itself. Hence, the extension of means-ends analysis
to an analogy transform space is, in itself, a new, potentially-significant
problem-solving method, in addition to supporting various learning mechanisms
in an integrated manner.

ACKNOWLEDGMENTS

I wish to thank Allen Newell, David Klahr, and Derek Sleeman for useful
comments and discussion on earlier drafts of this work, and Monica Lam for
suggesting problems used to test the analogical process. This research was spon-
sored in part by the Office of Naval Research (ONR) under grant number
N0014-79-C-0661, and in part by the Defense Advanced Research Projects
Agency (DOD), ARPA order number 3597, monitored by the Air Force Avionics
Laboratory under contract number F-33615-81-K-1539. The views and conclu-
sions in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Ad-
vanced Research Agency or the U.S. Government.

160 CHAPTER 5: LEARNING BY ANALOGY

REFERENCES

Anderson, J. R. and Greeno, J. G., "Acquisition of Problem-Solving Skill," Cognitive Skills and
Their Acquisition, J. R. Anderson (Ed.), Hillsdale, NJ: Erlbaum Assoc, 1981.

Anzai, Y. and Simon, H. A., "The Theory of Learning by Doing," Psychological Review. Vol. 86,
pp. 124-140, 1979.

Berliner, H., "On the Construction of Evaluation Functions for Large Domains," Proceedings of the
Sixth International Joint Conference on Artificial Intelligence, IJCAI-79, pp. 53-55, 1979.

Carbonell, J. G., "Δ-ΜΙΝ: A Search-Control Method for Information-Gathering Problems," Proceed-
ings of the First AAAI Conference, AAAI-80, August 1980.

Carbonell, J. G., "Metaphor: An Inescapable Phenomenon in Natural Language Comprehension,"
Knowledge Representation for Language Processing Systems, W. Lehnert and M. Ringle
(Eds.), New Jersey: Erlbaum, 1982a.

Carbonell, J. G., "Towards a Computational Model of Metaphor in Common Sense Reasoning,"
Proceedings of the Fourth Annual Meeting of the Cognitive Science Society, 1982b, (Ann
Arbor, MI).

Cullingford, R., Script Application: Computer Understanding of Newspaper Stories, Ph.D. disser-
tation, Yale University, Sept. 1977.

Dietterich, T. and Michalski, R., "Inductive Learning of Structural Descriptions," Artificial Intel-
ligence, Vol. 16, 1981.

Fikes, R. E. and Nilsson, N. J., "STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving," Artificial Intelligence, Vol. 2, pp. 189-208, 1971.

Hayes-Roth, F. and McDermott, J., "Knowledge Acquisition from Structural Descriptions," Proceed-
ings of the Fifth International Joint Conference on Artificial Intelligence, IJCAI-77, pp.
356-362, 1977.

Kling, R. E., "A Paradigm for Reasoning by Analogy," Artificial Intelligence, Vol. 2, pp. 147-178,
1971.

Kolodner, J. L., Retrieval and Organizational Strategies in Conceptual Memory: A Computer Model,
Ph.D. dissertation, Yale University, Nov. 1980.

Korf, R. E., "Toward a Model of Representation Changes," Artificial Intelligence, Vol. 14, No. 1,
pp. 41-78, 1980.

Lebowitz, M., Generalization and Memory in an Integrated Understanding System, Ph.D. disser-
tation, Yale University, Oct. 1980.

Lenat, D., AM: Discovery in Mathematics as Heuristic Search, Ph.D. dissertation, Stanford Univer-
sity, 1977.

McDermott, D. V. and Doyle J., "Non-Monotonic Logic I," Artificial Intelligence, Vol. 13, pp.
41-72, 1980.

Mitchell, T. M., Version Spaces: An Approach to Concept Learning, Ph.D. dissertation, Stanford
University, December 1978.

CARBONELL 161

Moore, J. and Ne well, A., "How can MERLIN Understand?," Knowledge and Cognition, L. Gregg
(Ed.), Hillsdale, NJ: Erlbaum Assoc, pp. 253-285, 1974.

Newell, A. and Rosenbloom, P., "Mechanisms of Skill Acquisition and the Law of Practice,"
Cognitive Skills and Their Acquisition, J. R. Anderson (Ed.), Hillsdale, NJ: Erlbaum Assoc,
1981.

Newell, A. and Simon, H. A., Human Problem Solving, New Jersey: Prentice-Hall, 1972.

Nilsson, N. Priciples of Artificial Intelligence, Tioga Publishing Co., 1980.

Sacerdoti, E. D., A Structure for Plans and Behavior, Amsterdam: North-Holland, 1977.

Samuel, A. L., "Some Studies in Machine Learning Using the Game of Checkers," Computers and
Thought, E. A. Feigenbaum and J. Feldman (Eds.), McGraw Hill, New York, pp. 71-105,
1963.

Schank, R. C , "Reminding and Memory Organization: An Introduction to MOPS", Technical
Report 170, Yale University Comp. Sei. Dept., 1979.

Schank, R. C , "Language and Memory," Cognitive Science, Vol. 4, No. 3, pp. 243-284, 1980.

Schank, R. C. and Abelson, R. P,, Scripts, Goals, Plans and Understanding, Hillside, NJ: Lawrence
Erlbaum, 1977.

Schank R. C. and Carbonell, J. G., "Re: The Gettysburgh Address, Representing Social and Political
Acts," Associative Networks, Findler, N. (Ed.), Academic Press, 1979, (Also Yale U. Comp.
Sei. Report #127, 1978).

Waterman, D. A. and Hayes-Roth, F., "Inductive Learning of Relational Productions," Pattern-
Directed Inference Systems, Waterman and Hayes-Roth, 1978 (Eds.), New York: Academic
Press, 1978.

Winston, P., Learning Structural Descriptions from Examples, Ph.D. dissertation, ΜΓΤ, September
1970.

Winston, P. H., Artificial Intelligence, Addison-Wesley, 1977.

Winston, P. H., "Learning and Reasoning by Analogy," CACM, Vol. 23, No. 12, pp. 689-703,
1979.

6

LEARNING BY

EXPERIMENTATION:

ACQUIRING AND REFINING

PROBLEM-SOLVING HEURISTICS
Tom M. Mitchell

Paul E. Utgoff
Rutgers University

Ranan Banerji
St. Joseph's University

ABSTRACT

This chapter concerns learning heuristic problem-solving strategies through
experience. In particular, we focus on the issue of learning heuristics to guide a
forward-search problem solver, and describe a computer program called LEX,
which acquires problem-solving heuristics in the domain of symbolic integration.
LEX acquires and modifies heuristics by iteratively applying the following
process: (i) generate a practice problem; (ii) use available heuristics to solve this
problem; (Hi) analyze the search steps performed in obtaining the solution; and
(iv) propose and refine new domain-specific heuristics to improve performance
on subsequent problems. We describe the methods currently used by LEX,
analyze strengths and weaknesses of these methods, and discuss our current
research toward more powerful approaches to learning heuristics.

6.1 INTRODUCTION

Efforts to build powerful, specialized, heuristic problem solvers have met
with increasing success over the past decade. However, identifying and encod-
ing the domain-specific heuristics necessary for high performance of these sys-
tems is a painstaking, difficult process. As the complexity of a heuristic

163

164 CHAPTER 6: LEARNING BY EXPERIMENTATION

program grows, it becomes increasingly difficult for the system builder to predict
how the addition of a particular new heuristic or operator will affect overall sys-
tem performance. In response to this problem, there has been increased interest
over the past several years in developing semi-automated and fully-automated
methods to help construct expert heuristic problem solvers [Waterman, 1970;
Davis, 1981; Buchanan, 1978; Politakis, 1979] (See also Chapter 7 of this
book). At the same time, in the Cognitive Psychology literature there have been
several attempts to model acquisition of problem-solving skills in humans
[Anzai, 1979; Neves, 1978] (See also Chapter 7 of this book).

The research presented here is directed toward devising methods by which
heuristic problem-solving programs improve their problem-solving expertise
through experience, by generating selected problems in the domain, solving
them, and learning by analyzing their solutions. As part of this research we
have designed and constructed a computer program, called LEX, that incorporates
general methods for discovering domain-dependent problem-solving heuristics.

The organization of this chapter is as follows. The learning problem con-
sidered by LEX is described, followed by a discussion of the methods employed
by the current system. This includes methods for (i) solving practice problems,
(ii) performing the credit assignment task of isolating appropriate and in-
appropriate search steps, (Hi) proposing and generalizing heuristics, and (iv)
generating new practice problems with which to experiment. The final sections
of the chapter discuss augmenting the system by giving it knowledge to conduct
detailed analyses of problem solutions. This knowledge can be used to provide
strong guidance for the generalization process, and to generate new terms in the
language with which heuristics are described. Some of the material from this
chapter is drawn from a collection of previously published articles, including
[Mitchell, 1981; Mitchell, 1982a; Mitchell, 1982b; Utgoff, 1982].

6.2 THE PROBLEM

LEX begins with a heuristic search problem solver without the heuristics. It
is given a set of operators for solving problems in symbolic integration, and it
learns a set of heuristics that recommend in which situations the various
operators should be applied. Whereas each operator given to LEX contains a set
of preconditions that characterize a class of problem states to which that operator
can validly be applied, learned heuristics characterize the more restrictive sub-
class of problem states to which the operator should be applied; that is, the sub-
class of problem states for which application of the operator leads to an accept-
able solution. Heuristics are learned by generalizing from examples of problem
states to which the operator is applied in solving practice problems. These train-
ing examples are generated by the program, by proposing, solving, and analyz-
ing practice problems.

LEX operates in the domain of symbolic integration. It solves integration

MITCHELL, UTGOFF AND BANERJI 165

problems by searching through a space of mathematical expressions containing
indefinite integrals. The operators for traversing the search space are the stan-
dard rules of integration (for instance, integration by parts) as well as transfor-
mations that characterize algebraic equivalence of expressions (such as the as-
sociative and distributive laws). The problem-solving goal is to derive a problem
state that contains no integrals.

0P1 S r - f (x) dx —> r S f (x) dx

0P2 Integration by parts:
S u dv «■*· uv - J v du

(the precondition is internally represented
as J f 1 (x) f2(x) dx, where f 1 (x) corresponds
to u and f2(x)dx corresponds to dv)

0P3 1-f (x) · -* f (x)

OPk J f1 (x)+f2(x) dx -> S f1(x) dx + J f2 (x) dx

0P5 S sin(x) dx -> -cos (x) + C

0P6 J cos(x) dx -> sin(x) + C

0P7 S xAr dx -* [xA(r+1)]/(r+1) + C

Figure 6-1: Some of the operators for symbolic integration.

Over 40 problem-solving operators are currently provided to LEX, some of
which are shown in Figure 6-1. Each operator is interpreted as follows: If the
general pattern on the left hand side of the operator is found within the problem
state, then that pattern may be replaced by the pattern specified on the right hand
side of the operator. For example, opl indicates that if the problem state con-
tains a subexpression of the form " / r-f(x) dx" (here "r" stands for any real num-
ber, and "f(x)" for any function of x), then that subexpression may be rewritten
with the real number outside the integral.

In addition to its problem solver, representation for problem states, and
problem-solving operators, LEX also begins with a language for describing
heuristics. Each heuristic learned by LEX is of the form:

IF the current problem state matches the applicability condition P,
THEN apply operator O, with variable binding B.

166 CHAPTER 6: LEARNING BY EXPERIMENTATION

Thus, the generalization task that LEX faces is that of determining the ap-
propriate applicability condition, P, for each heuristic. Learning this ap-
plicability condition corresponds to learning the concept "situations in which
operator O should be applied, with variable binding B."

The language for describing generalizations, or applicability conditions, of
heuristics is based on a grammar for algebraic expressions containing indefinite
integrals. The sentences derivable by this grammar are the expressions that form
legal problem states. The sentential forms derivable by the grammar constitute
legal generalizations. Briefly, the grammar contains non-terminal symbols that
correspond to classes of functions (for example, trigonometric, polynomial) and
classes of operators (such as function composition, multiplication, integration).
These can be combined to form generalized algebraic expressions. Figure
6-2 shows this grammar in the form of a hierarchy. Each node in the hierarchy
represents some substring of a sentential form, and each edge corresponds to a
rule in the grammar.

expr

...-1.5 -1 0 1 2.5 5 6 7

sin cos tan In exp id r (Λ id k) (* r id) (* r (Λ id k))

Figure 6-2: A grammar for a concept description language for symbolic integration.

Below is an example of the kind of heuristics that LEX can describe and
learn. This heuristic may be interpreted as "//"the current problem state contains
an integrand which is the product of x and any transcendental function of x,
Then try integration by parts, with u and dv bound to the indicated
subexpressions."

/ x transc(x) dx Φ op2 (Integration by parts),
with u = x
and dv = transc(x) dx

The language used to describe applicability conditions of heuristics deter-

MITCHELL, UTGOFF AND BANERJI 167

mines, to a great extent, the range of heuristics that can be learned by the sys-
tem. In the current system, this language is fixed. Section 6.4 discusses an
approach to dynamically altering the language when necessary.

6.3 DESIGN OF LEX

PROBLEM
I GENERATOR

practi ce
problem

partial1y
learned
heur i sties

Figure 6-3: The major components of LEX.

LEX is based on four program modules, as shown in Figure 6-3. These
modules are summarized below, and described in more detail in the following
subsections.

1. Problem Solver— This module utilizes whatever operators and heuristics
are currently available, to solve a given practice problem. The output of
this module is a solution to the given problem, along with a detailed trace
of the search performed in attempting to solve the problem.

2. Critic—This module analyzes the search performed by the Problem Solver.
The output of this module is a set of positive and negative training in-
stances from which heuristics will be inferred. Positive instances cor-
respond to desirable search steps executed in solving the problem, whereas
negative instances correspond to undesirable steps.

168 CHAPTER 6: LEARNING BY EXPERIMENTATION

3. Generalizer—This module proposes and refines general heuristics intended
to produce more effective problem-solving behavior on subsequent
problems. It formulates heuristics by generalizing from the training in-
stances provided by the Critic.

4. Problem Generator—This module generates practice problems to be con-
sidered by the other modules. It attempts to generate practice problems
that will be informative (that is, problems that will lead to training data
useful for proposing and refining heuristics), yet easy enough to be solved
using existing heuristics.

6.3.1 Representing Incompletely-learned Heuristics

LEX learns heuristics incrementally, requiring many positive and negative
training instances before converging to a final definition of any given heuristic.
Therefore, at any given stage in the system's development, there are typically
many partially-learned heuristics whose exact description is underdetermined by
the data, knowledge, and assumptions currently held by the system. It is essen-
tial that the system have a way of describing what the system does and does not
know about each such partially-learned heuristic. This information is important
(i) to the Problem Solver, which must use the partially-learned heuristics in try-
ing to solve problems, (ii) to the Generalizer, which must revise partially-learned
heuristics as new training data become available, and (Hi) to the Problem Gener-
ator, which must choose practice problems that will lead to refinements of
partially-learned heuristics.

LEX represents each partially-learned heuristic by representing the range of
all alternative plausible descriptions of the heuristic. A description is considered
plausible if it applies to all the known positive instances associated with the
heuristic, but to none of the negative instances. Thus, for each partially-learned
heuristic, we refer to the set of all plausible descriptions of the heuristic as the
version space of the partially-learned heuristic, relative to the observed instances
and the language in which heuristics are described.

While, in principle, the version space of a partially-learned heuristic could
be represented by listing all of its members, there are typically far too many
plausible descriptions of a heuristic for this to be feasible. Fortunately, a much
more compact method for representing version spaces is possible. Any version
space can be represented compactly by storing only its maximally-specific and
maximally-general elements, according to the following definition of "more
specific".

MITCHELL, UTGOFF AND BANERJI 169

Heuristic Hl is more specific than or equal to heuristic H2 if and only if
both of the following conditions hold:

1. The applicability condition of H2 matches every instance matched by the applicability
condition of HI (that is, the applicability condition of HI is more specific than or
equal to the applicability condition of HI).

2. In each case where both HI and H2 apply, their recommendations are identical (that
is, they recommend the same operator and the same binding of operator arguments).

S: S 3x cos(x) dx - * Apply 0P2

S kx cos (x) dx —* Apply 0P2 S 3x trig(x) dx -*· Apply 0P2

S rx cos (x) dx -* Apply 0P2 f kx trig(x) dx -*· Apply 0P2

S poly(x) f (x) dx -* Apply 0P2

- ^

S f (x) transe (x) dx ^> Apply 0P2

G: S f1(x) f2(x) dx -* Apply 0P2

Figure 6-4: Representing a version space.

We will refer to the maximally-specific members of a version space as the
subset S of the version space, and to the maximally-general (minimally-specific)
members of the version space as the subset G. LEX represents the version space
of each partially-learned heuristic by storing the subsets S and G of that version
space, as illustrated in Figure 6-4. In this figure, some of the members of a
particular version space are shown, with the more-specific-than relationship
among them indicated. While there are very many plausible heuristic descrip-
tions in this version space, the (singleton) sets S and G completely determine the
version space by the following rule: a heuristic description is contained in the
version space if and only if it is both (i) more specific than or equal to some
member of G, and (ii) more general than or equal to some member of S.

This representation and use of version spaces for generalizing from ex-

170 CHAPTER 6: LEARNING BY EXPERIMENTATION

amples has been used previously in the META-DENDRAL program for inferring
rules of mass spectroscopy, and is described more fully in [Mitchell, 1978] and
[Mitchell, 1982a]. In [Mitchell, 1978] a more formal definition of version

spaces is given, along with proofs that the algorithm for incrementally updating
the sets S and G is correct.

3x sin(x) - 3 S sin (x) d

0P5

3x sin(x) + 3cos (x) + C

Version space of a proposed heuristic
S: S 3x cos (x) dx -> Apply 0P2

wi th u * 3x. and
dv « cos (x) dx

G: S f1(x) f2(x) dx -> Apply 0P2
with u « f1 (x)
and dv « f2

One of the suggested
positive training instances:

S 3x cos (x) dx -> Apply 0P2
with u - 3*» and
dv « cos (x) dx

Figure 6-5: The learning cycle in LEX.

The remainder of this section presents the methods used by the four
modules of LEX, in formulating and refining heuristics. The discussion centers
around the example shown in Figure 6-5, which illustrates one particular practice
problem considered by LEX, and the resulting version space of one heuristic.
This figure shows the search tree generated by the Problem Solver, one of the
training instances produced by the Critic, and the sets S and G computed by the
Generalizer to describe the resulting proposed heuristic.

MITCHELL, UTGOFF AND BANERJI 171

6.3.2 The Problem Solver

The Problem Solver uses a forward-search strategy guided by whatever
heuristics are available during the current propose-solve-criticize-generalize
cycle. The Problem Solver accepts as input a problem to be solved, along with
a resource limit on the CPU time and memory space that it may expend in at-
tempting to solve that problem. If the problem is not solved within the allocated
resources, the Problem Solver stops and waits for a new problem, unsolved
problems do not lead to any learning, because the credit assignment strategy of
the Critic depends upon knowing the problem solution.

The Problem Solver generates a search tree, repeatedly choosing a node to
expand and an operator with which to expand it, as shown below.

DO UNTIL problem is solved OR resource allocation is expended

BEGIN

IF no heuristics are applicable to any open node

THEN expand the lowest cost open node, using any applicable operator

ELSE IF exactly one heuristic applies to exactly one open node,

THEN execute the step recommended by that heuristic,

ELSE follow the recommendation of one of the applicable heuristics,
choosing that heuristic which applies with the highest estimated
degree of match (see explanation below).

END.

Here, the "cost" of a node refers to the sum of CPU time expended for
each step leading from the root of the tree to that node. An open node refers to
any node in the search tree with at least one applicable operator that has not yet
been applied. The notion of "estimated degree of match" of a heuristic to a node
is introduced to allow using partially-learned heuristics in a reasonable fashion.
Notice that for a given partially-learned heuristic and search node, it is possible
that some of the alternative plausible descriptions of the heuristic will match the
node while others will not. Because of this we define the degree of match of a
partially-learned heuristic to a given node as the proportion of the members of its
version space that match the node. Because the degree of match is difficult to
compute exactly, it is estimated by the proportion of members in the union of S
and G that match the given problem state.

The ability of the Problem Solver to use partially-learned heuristics to con-

*LEX makes no distinction between problems that are unsolvable in principle, and those that are
solvable in principle but unsolvable within the given resource limits.

172 CHAPTER 6: LEARNING BY EXPERIMENTATION

trol search is important in allowing it to solve problems that will provide ad-
ditional training data. In experiments with LEX, it has typically been the case
that the majority of available heuristics are only partially learned. Even so, it is
quite common that a partially-learned heuristic will apply to a particular node
with a degree of match of 1. In such cases, even though the exact identity of
the heuristic is not yet determined, the applicability of the heuristic to this par-
ticular node is fully determined (that is, it does not matter which of the alter-
native heuristic descriptions is correct, since they all apply to the node in
question). The ability to distinguish such cases from those in which there is
ambiguity regarding the heuristic recommendation is an important capability in
the Problem Solver's use of partially-learned heuristics.

6.3.3 The Critic

After a solution has been determined, the Critic faces the task of assigning
credit (or blame) to individual search steps for their role in leading to (or away
from) a solution. The Critic examines the detailed search trace recorded by the
Problem Solver, and selects certain search steps to be classified as positive or
negative training instances for forming general heuristics. Each training instance
corresponds to a single search step; that is, the application of a single operator to
a given problem state, with a particular binding of operator arguments.

Figure 6-5 illustrates part of the search tree generated by the Problem Sol-
ver for a given practice problem, and one of the associated positive training in-
stances produced by the Critic. The positive instance shown there corresponds to
the first step along the path to the solution.

The criterion used by the Critic to produce training instances may be sum-
marized as follows:

1. The Critic labels as a positive instance every search step along the lowest
cost solution path found. Here, the cost of a solution is taken to be the
sum of the execution times of all operators applied along the solution path.

2. The Critic labels as a negative instance every search step that (i) leads
away from a node on the lowest cost solution path found, to a node not on
this path, and (ii) when its resulting problem state is given anew to the
Problem Solver, leads either to no solution or to a higher cost solution.
Here a solution is considered higher cost if its cost is more than a certain
factor times the cost of the lowest cost known solution (currently this fac-
tor is set to 1.15). The resource allocation given to the Problem Solver in
this case is equal to the resources spent in obtaining the known solution.

Notice that the Critic is not infallible. It is possible for the Critic to
produce positive training instances that are not on the minimum cost solution
path, but are rather on the lowest cost solution path found by the Problem Sol-
ver. Also, it is possible for the Critic to label as negative a search step that is in
fact part of the true (but never discovered) minimum cost solution path. Both

MITCHELL, UTGOFF AND BANERJI 173

kinds of errors can arise because the heuristic Problem Solver is not assured of
finding the minimum cost solution. Criterion 2(ii) above is included in order to
reduce the likelihood that such errors will occur. Here, the Critic reinvokes the
Problem Solver, giving it a problem state associated with a potential negative
instance, in order to explore a portion of the problem space that may not have
been sufficiently considered during the solution of the original problem. If the
Problem Solver is unable to find an appropriate solution from the given state
within the specified resource limits, the confidence that this is a negative in-
stance is increased. If the Problem Solver finds a lower cost solution when it is
reinvoked, this new solution is used in determining positive training instances.
Of course, the only completely error-free strategy for labeling training instances
requires a full breadth-first or uniform-cost search, which is usually prohibitively
time consuming.

The Critic typically produces between two and twenty training instances
from each solved problem, depending upon the length of the problem solution
and the branching factor of the search (the search trees produced by the Problem
Solver typically contain from a few to a few hundred search nodes). We have
found empirically that even though the Critic cannot guarantee correct classifica-
tions, it rarely produces incorrect training instances. We have also found that in
a significant number of cases, when the Critic calls the Problem Solver to con-
sider a possible negative instance (see criterion 2(ii) above) an improved solution
is found. For example, in one run of LEX for a sequence of 12 training
problems, this occurred 4 times. In those cases in which the Problem Solver
does not find the best solution during its first attempt, the cause is usually a
misleading recommendation by an incompletely-learned heuristic.

6.3.4 The Generalizer

The Generalizer considers the positive and negative training instances sup-
plied by the Critic within the current learning cycle, in order to propose and
refine heuristics to improve problem-solving performance. The generalization
problem faced by this module is one of learning from examples. Given a se-
quence of training instances corresponding to search steps involving a given
operator, the generalization problem here is to infer the general class of problem
states for which this operator will be useful, along with the range of appropriate
bindings for operator variables.

The Generalizer describes the version space for each proposed heuristic, by
computing the sets S and G that delimit the plausible versions of that heuristic.
For example, Figure 6-5 shows a positive training instance associated with op2
as input to the Generalizer. The output of the Generalizer in this case is a ver-
sion space corresponding to a partially-learned heuristic, and represented by the
(singleton) sets S and G shown in Figure 6-5. This partially-learned heuristic is
proposed on the basis of the single training instance shown, and will be refined
as subsequent instances become available. Below, we describe the procedures
for proposing and refining problem-solving heuristics in LEX.

174 CHAPTER 6: LEARNING BY EXPERIMENTATION

Proposing a new heuristic—When the Generalizer is given a new positive
instance, it determines whether any member of the version space of any current
heuristic applies to this instance. If not, a new heuristic is formed to cover the
positive instance. This is the case in the example of Figure 6-5. In forming a
new heuristic, the set S is initialized to the very specific version of the heuristic,
that applies only to the current positive training instance (this is the most specific
possible version consistent with the single observed training instance). G is in-
itialized to the version of the heuristic that suggests the operator will prove use-
ful in every situation where it can validly be applied; that is, it is initialized to
the given precondition of the operator being recommended. Thus, in the ex-
ample of Figure 6-5, G is initialized to the version whose precondition is the
precondition for op2. Here, / fl(x) f2(x) dx represents the integral of the
product of any two real functions of x, and corresponds to the precondition / u
dv as it is stated in the system's generalization language.

At this point, S and G delimit a broad range of alternative versions of the
proposed heuristic, corresponding to all the generalizations expressible in the
given language that are consistent with this single training instance. As sub-
sequent positive instances are considered, S becomes more general to include
newly-observed instances in which op2 is found to be useful. Likewise, as sub-
sequent negative instances are considered, G becomes more specific in order to
exclude negative instances in which op2 may validly be applied, but in which it
does not lead to an acceptable solution path. Thus, the range of alternative
plausible versions of the heuristic delimited by S and G will narrow as new in-
formation is acquired through subsequent practice problems, and the uncertainty
regarding the correct description of the heuristic is thereby reduced.

Refining incompletely-learned heuristics—If the Generalizer finds that an
existing heuristic applies to a newly-presented positive or negative instance (that
is, if its degree of match to the instance is nonzero), then that heuristic is revised
by eliminating from its version space any version that is inconsistent with this
training instance. In the current example, the next practice problem that is con-
sidered is / 3x sin(x) dx (the following section explains why). The solution to
this problem leads to both a positive and a negative training instance for the
heuristic from Figure 6-5. Figure 6-6 shows these two new training instances,
and the way in which they lead to a refinement of the version space of this
heuristic. In the revised version space shown there, the most specific version, S,
of the heuristic has been generalized just enough to allow it to apply to the new
positive training instance. Here trig(x) replaces cos(x) so that the heuristic will
apply to integrals containing any trigonometric function of x. The program deter-
mines this revision by first noting that the term cos(x) in the old S prevents that
generalization from applying to the new instance. It then consults the grammar
for expressing heuristics (shown in Figure 6-2) to determine the next more

MITCHELL, UTGOFF AND BANERJI 175

Version Space

New

Rev

S:

G:

Traini ng

! of Heuristic

S 3* cos (K) dx ->

S f1 (x) f2(x) dx

Instances:

Positive training

S 3x

Negative training

sed Versi

S:

G:

S 3x

on Space:

S 3x trig

g1 : S poly (:

g2: S f1 (x)

instance

sin (x)

instance

sin (x)

(x) dx -

0 f2(x)

transe (

Apply 0P2 wi th
u * 3x» and
dv = cos (x) dx

-> Apply 0P2 wi th
u = f 1 (x) , and
dv = f2(x)dx

:

dx -> Apply 0P2 wi
u = 3x» and
dv = sin (x)

:

dx -> Apply 0P2 wi
u « si n (x) ,
dv s 3x dx

> Apply 0P2 with
u = 3x» and
dv - trig (x) dx

th

dx

th
and

dx -> Apply 0P2 wi th
u ■ poly (x), and
dv = f2(x) dx

x) dx -> Apply 0P2
with u s f 1 (x) ,
dv « transe (x)

and
dx

Figure 6-6: Revising the version space of a heuristic.

176 CHAPTER 6: LEARNING BY EXPERIMENTATION

general term that can be substituted in order to include this new instance.2

The general boundary of the revised version space of Figure 6-6 has also
been altered so that it does not apply to the new negative training instance. In
this case, there are two maximally-general versions (gl and g2) of the heuristic
consistent with the three observed training instances. Here, "poly(x)" refers to
any polynomial function of x, and "transc(x)" denotes any transcendental func-
tion of x. As with revising the set S, revisions to G depend upon the generaliza-
tion language being used. For instance, gl is computed by replacing fl(x)
(which represents "any real-valued function") by the next more specific accept-
able expression. Notice in the hierarchy of Figure 6-2, this expression is "poly".

As subsequent training instances are considered, this partially-learned
heuristic is further refined, and S and G converge to the heuristic description
shown below. Notice that this description is contained in the version space
represented in Figure 6-6, since it is more general than the S boundary set and
more specific than the G boundary set of the version space.

/ rx transc(x) dx => apply op2 with u = rx, and dv = transc(x) dx

Although the Generalizer attempts to form a single conjunctive heuristic for
each operator known to the system, sometimes it is not possible to cover all the
positive instances and exclude all the negative instances with a single conjunctive
generalization. The Generalizer deals with learning disjunctions in the following
straightforward manner: if a positive instance associated with operator O is not
consistent with any current heuristic that recommends operator O, then it
proposes a new heuristic (that is, disjunct) for operator O that covers this in-
stance. This new heuristic will be updated by all subsequent negative instances
associated with operator O, and by any subsequent positive instances associated
with operator O and to which at least some member of its version space applies.
This technique for learning disjunctive concepts is similar to several described
previously (for example, [Mitchell, 1978; Iba, 1979; Vere, 1978]).

How effective is the Generalizer at producing useful heuristics? One way
to answer this question is to measure the improvement in problem-solving perfor-
mance due to learned heuristics. In one experiment that illustrates typical be-
havior of LEX, a sequence of twelve hand-selected3 training problems was
presented to the Problem Solver, Critic, and Generalizer, and performance of the
Problem Solver was measured at various stages in the training sequence. Perfor-

2Although the disjunction "cos(x) OR sin(x)" would be a more specific generalization than "trig", this
disjunction is not currently in the generalization language, and therefore cannot be stated by the
program. Of course if this disjunction were defined a priori as a separate term in the language, then
it would be considered by the Generalizer.

3At the time that this experiment was conducted, we had not implemented the Problem Generator
module.

MITCHELL, UTGOFF AND BANERJI 177

Total
Search
Steps
Executed

i n
Solvi ng

Set of Test
Problems

200 +

100 +

1—i- 10 12

Number of Training Problems Completed

Figure 6-7: Performance Results

mance was measured by testing the Problem Solver on a set of five test problems
before any training had occurred, and again after every second training problem.
The five test problems were different from the set of twelve training problems,
though the two sets were chosen to be similar enough that learned heuristics
would be relevant to the test problems. This experiment is reported in greater
detail in [Mitchell, 1981], and is summarized in Figure 6-7.

Fourteen heuristics were formed by LEX during this training session, cover-
ing thirteen of the 32 operators available to the system at that time. Twelve of
these fourteen heuristics remained incompletely learned at the end of the training
sequence (that is, their version space still contained multiple plausible descrip-
tions of the heuristic).

Figure 6-7 shows the improvement in problem-solving performance
(roughly two orders of magnitude) for this experiment, as measured by the total
number of search steps required in attempting to solve the five test problems. At
certain points during the training, the Problem Solver could not solve all five test
problems within the given resource allocation.4 Such points are shown as a "*"
in Figure 6-7, and the number of search steps recorded in those cases is the num-
ber of steps executed before the solution attempt was aborted. While the exact
values of the points on this curve would be different for different sets of training
and test problems, the general form of the curve is quite repeatable, given
reasonable test problems and a well-chosen sequence of training problems.

In addition to observing that problem-solving performance improved sig-
nificantly using the learned heuristics, it is interesting to note that problem-
solving performance did not improve monotonically as a function of training. In
particular, while all five test problems could be solved following the fourth train-

4The Problem Solver was allowed four CPU minutes and 800,000 cons cells per test problem,
running in RUCILISP on a DEC2060.

178 CHAPTER 6: LEARNING BY EXPERIMENTATION

ing problem, only four of the test problems could be solved after the sixth train-
ing problem. This phenomenon was due to the proposal of new, partially-
learned heuristics that led the Problem Solver to consider new (and not very
useful) branches of the search in one of the test problems. Subsequent training
refined these heuristics and the Problem Solver became able again to solve (this
time more efficiently) all five test problems by the completion of the eighth
training problem.

6.3.5 The Problem Generator

After a practice problem has been solved and analyzed, and the resulting
training data has been used to propose and refine heuristics, the Problem Gener-
ator must propose a new practice problem. This module is responsible for focus-
ing the system's efforts on useful activity, by choosing useful experiments. Its
task is very different from that of a teacher of symbolic integration, or an outside
trainer in most work on learning from examples. In contrast to an expert tea-
cher, the Problem Generator must choose appropriate practice problems without
knowing the heuristics that it is trying to teach. While the Problem Generator
lacks this important information, it has other information that an expert teacher
may not have: very detailed knowledge about the learner's current state
(including knowledge of alternative versions of heuristics under consideration).
As a result of these characteristics, the experimentation strategy of the Problem
Generator is based primarily on generating problems designed to eliminate
known ambiguities in LEX's heuristic knowledge.

The major criteria for generating problems are (i) to generate training
problems whose solutions will provide informative new training data, and (ii) to
generate training problems that can be solved using the available operators and
current set of heuristics. The current implementation of the Problem Generator
is based mainly on the first of these considerations, and consists of two different
problem generation tactics.

The first problem generation tactic is to produce problems that will allow
refinement of existing, partially-learned heuristics. This is done by selecting a
partially-learned heuristic, then generating a problem state that matches some,
but not all, of the members of the version space of that heuristic. For example,
consider the partially-learned heuristic described by the version space at the top
of Figure 6-6. The problem state / 3x sin(x) dx matches some, but not all, of
the alternative generalizations in this version space, and is therefore a useful
problem to attempt to solve. By solving the problem, LEX will find out whether
or not the heuristic should cover this problem state. If the answer is yes, a posi-
tive instance will be produced for this heuristic, and the S boundary of the ver-
sion space will be generalized. If the answer is no, a negative instance will be
produced, and the G boundary of the version space will be specialized. As it
turns out, this problem leads to both a positive and a negative instance
(corresponding to different bindings of operator arguments), and both version
space boundaries are refined as shown in Figure 6-6.

MITCHELL, UTGOFF AND BANERJI 179

How does the Problem Generator create a problem that matches part of a
given version space? It begins by selecting a single member, si, of the S
boundary, and a more general member, gl , of the G boundary. (In the version
space at the top of Figure 6-6 both boundary sets happen to be singleton sets.) It
then creates, as follows, a problem state that matches gl, but does not match si.
One term in the generalization si is selected (in this case cos(x)), and the cor-
responding term in gl is found (in this case f2(x)). The generalization hierarchy
(see Figure 6-2) is then examined to determine a sibling of the term from si, that
is more specific than the corresponding term from gl. In this case, sin(x) is a
sibling of cos(x) that is more specific than f2(x). This sibling is then substituted
into si, and the resulting generalization is fully instantiated to produce a problem
state that matches gl, but not the original si. In the current example, this leads
to the problem state / 3x sin(x) dx. Notice that if the term 3x were chosen,
rather than cos(x), as the basis for forming a new problem state, the new
problem might instead be / 7x cos(x) dx. Furthermore, both of these terms
could be replaced to produce the problem state / 7x sin(x) dx. Because of the
need to create a problem that can be solved, the Problem Generator attempts to
create a problem that is very similar to the most recently encountered positive
instance for the heuristic. Therefore, only a single term from si is altered, and
the resulting generalization is instantiated to correspond as closely as possible to
the most recently encountered positive instance (a known solvable problem).

The second tactic for problem generation is to create a problem that will
lead to proposing a new heuristic. This is accomplished by looking for pairs of
operators whose preconditions intersect, but for which there is no current heuris-
tic. Should a problem be encountered for which both operators apply, a heuristic
will be needed to choose which of the two to apply. For example, consider opl
and op3 from Figure 6-1. The intersection of the preconditions of these
operators is / l-f(x) dx; that is, both opl and op3 will apply to any problem that
matches this applicability condition. This applicability condition is therefore in-
stantiated to produce a specific problem state (such as / l-cos(x) dx) which is
then output by the Problem Generator. When the Problem Solver, Critic, and
Generalizer consider this problem, a new heuristic will be proposed which will
be useful in selecting between opl and op3 in cases where they are both ap-
plicable.

The current Problem Generator incorporates the above two tactics for creat-
ing practice problems, and can employ any of several strategies for determining
which tactic to apply at any given step. One such experimentation strategy is to
apply the first tactic (refine an existing heuristic) whenever possible, and to ap-
ply the second tactic only when the first cannot be applied (for example, when
the system begins operation and has no heuristics at all). While we have not yet
done extensive testing of this module, it has been used to generate sequences of
practice problems that lead to useful heuristics. The main observations that have
come out of our preliminary experiments with this module are given below.

• It will be useful to extend the other system modules so that they can take

180 CHAPTER 6: LEARNING BY EXPERIMENTATION

into account the reason why the current problem has been suggested, and
focus their activity accordingly. For example, if a problem is suggested in
order to refine a particular heuristic, then the Problem Solver and Critic
should be sure to consider the search steps that become training instances
for that heuristic, and the Critic might allocate greater resources to obtain a
reliable classification of that training instance.

• While the tactics described above are generally successful at creating infor-
mative problems to consider, they are not always successful at creating
solvable problems. Some problems that are generated are simply not solv-
able with the set of operators known to the system. Other generated
problems are solvable in principle, but cannot be solved within the al-
located CPU time and space resources, using existing heuristics. In our
initial experiments, more than half the generated problems turned out to be
solved by the Problem Solver. Both of the current tactics produce a
generalization which can be instantiated in any fashion to produce an infor-
mative problem. The instantiation is then controlled by a single heuristic:
try to create a problem state that is as similar as possible to a previously-
solved problem. More reliable methods for creating solvable instances of
problems may require that the system have (or acquire) more appropriate
knowledge about the characteristics of solvable problems.

• It may be useful to introduce a new tactic that produces problems that are
guaranteed to be solvable, by beginning with a goal state, then applying
inverses of the known operators to produce a problem state with a known
solution. While the solution produced along with the problem will not
necessarily be the optimal solution, it will provide an upper bound on the
cost of the optimal solution. For this tactic to be useful, there must be a
way of selecting sequences of operators that produce informative as well as
solvable problems.

• There are also interesting questions to be considered regarding global
strategies for exploring the problem domain. For example, should the
Problem Generator focus first on refining existing heuristics, and then sug-
gest problems that lead to new heuristics? Or is it better to build up a
more broad set of heuristics, focusing at each step on problem types for
which no heuristics yet exist, leaving refinement of these heuristics until a
broad set of incompletely-determined heuristics are proposed?

6.4 NEW DIRECTIONS: ADDING KNOWLEDGE TO AUGMENT LEARNING

The current LEX system, as described in the previous section, is able to
learn useful problem-solving heuristics in the domain of symbolic integration, by
generalizing from self-generated examples. There are several features of the
design of LEX that have an important impact on its capabilities. The ability to
represent incompletely-learned heuristics is crucial; to the Problem Solver that

MITCHELL, UTGOFF AND BANERJI 181

must use these partially-learned heuristics in order to solve additional practice
problems to obtain additional training data; to the Generalizer that must refine
these heuristics; and to the Problem Generator that must be able to consider alter-
native plausible descriptions of a heuristic in order to suggest an informative
practice problem. The ability of the Critic to produce reliable training instances
is also crucial to system performance. In spite of the heuristic nature of the
Critic's credit assignment method (following from the fact that only part of the
search space is explored by the Problem Solver), the Critic in fact performs quite
well in producing reliable classifications of training instances. Its ability to call
the Problem Solver in a controlled manner to explore selected portions of the
search space is important to increasing the reliability of its classifications of
training instances. The Generalizer's use of the version space method for
generalizing from examples is also a major feature of LEX, which gives it the
capability to incrementally converge on heuristics consistent with a sequence of
training instances observed over the course of many practice problems.

While LEX is able to learn useful heuristics, it also has significant limita-
tions. One of the most fundamental difficulties is that learning is strongly tied to
the language used to describe heuristics—the system can only learn heuristics
that it can represent in the provided language. It is difficult to manually select
an appropriate language before learning occurs, and LEX often fails to converge
on an acceptable heuristic for a given set of training instances, simply because it
does not have the appropriate vocabulary for stating the heuristic. For example,
we have found that the addition of terms such as "odd integer" and "twice in-
tegrate function" to the language shown in Figure 6-2, would allow LEX to
describe (and therefore learn) heuristics that it cannot currently represent. This
constraint imposed by a fixed representation language is one of the most fun-
damental difficulties associated with this and some other approaches to learning
from examples.

A second deficiency of LEX is its failure to take advantage of an important
source of information for chosing an appropriate generalization: analysis of why a
particular search step was useful in the context of the overall problem solution.
By analyzing the role of a particular search step in leading to a problem solution,
it is sometimes possible for humans to determine a very good general heuristic
after observing only a single training instance. If LEX were to conduct such an
analysis, it would converge much more quickly on appropriate heuristics, pos-
sibly with less sensitivity to classification errors by the Critic.

In this section, we describe our current research toward giving LEX new
knowledge and reasoning capabilities to overcome the above limitations. In par-
ticular, we consider how knowledge about heuristic search and about the in-
tended purpose of learned heuristics could allow LEX to (i) derive justifiable
generalizations of heuristics via analysis of individual training instances, and (ii)
respond to situations' in which the vocabulary for describing heuristics is insuf-
ficient to characterize a given set of training instances. More detailed discus-
sions of this material can be found in [Mitchell, 1982b] and [Utgoff, 1982]. The

182 CHAPTER 6: LEARNING BY EXPERIMENTATION

kind of knowledge considered here, regarding the intended purpose of learned
heuristics, is one kind of meta-knowledge that can be useful in acquiring
problem-solving strategies. The importance of meta-knowledge in acquiring
problem-solving strategies is also discussed in other chapters of this book, such
as Chapters 9 and 12.

6.4.1 Describing the Learner's Goal

In order to reason about why a given training instance is positive, and to
determine which features of the training instance are relevant, it is necessary that
the system have a definition of the criterion by which the instance is labeled as
positive (that is, the criterion that determines the goal of its learning activity).
LEX is intended to learn heuristics that lead the Problem Solver to minimum cost
solutions of symbolic integration problems. This goal is implicit in the credit
assignment procedure used by the Critic, which attempts to classify individual
search steps as positive or negative according to this criterion. While this
criterion is currently defined procedurally within the Critic, it is not defined
declaratively, and the system therefore cannot reason symbolically about its
learning goal. Here we present a declarative representation of this credit assign-
ment criterion, then discuss in subsequent subsections how this knowledge
provides the starting point for analyzing training instances, and extending the
vocabulary of the language for describing heuristics.

To simplify the examples and discussion here, we assume a slightly
modified credit assignment criterion, for which the goal of LEX is to learn heuris-
tics that recommend problem-solving steps that lead to any solution (rather than
the minimum cost solution). In this case, any search step that applies some
operator, op, to some problem state, state, is a positive instance, provided it
satisfies the predicate Poslnst defined as follows:

PosInst(op, state) <=>
-Goal(state) Λ [Goal(Apply (op, state)) V Solvable(Apply(op, state))].

Here, Goal is the predicate for recognizing solution states, Apply is the
function for applying operators to states, and Solvable is the predicate that tests
whether a state can be transformed to a Goal state with the available operators.

Solvable is defined as follows:
Solvable(state) <=>

(3 op) [Goal(Apply (op, state)) V Solvable(Apply(op,state))]

6.4.2 Analyzing Training Instances to Guide Generalization

This section suggests how the declarative representation of the credit as-
signment criterion, Poslnst, could be used by LEX to produce a justifiable
generalization of a heuristic based on analysis of a single training instance. The
key idea here is that by analyzing why the observed positive instance is classified
as positive, in the context of the overall problem solution, it is possible to deter-

MITCHELL, UTGOFF AND BANERJI 183

mine a logically sufficient condition for satisfying Poslnst. Such an analysis
leads to a justifiable generalization of the heuristic, that follows from the credit
assignment criterion, together with knowledge about search and the represen-
tation of operators and problem states. This process is related to the process of
operationalizing advice, as discussed by Mostow in Chapter 12 of this book and
by [Hayes-Roth, 1980]. The particular method for analyzing solution traces is a
generalization of the method of solution analysis presented in [Fikes et al.,
1972].

As an example, suppose that the system has just produced the problem
solution tree shown in Figure 6-8, and the generalizer is now considering the
first step along the solution path as a positive training instance for a heuristic that
is to recommend opl. Assuming no heuristic yet exists for opl, the empirical
generalization method described earlier will produce the following version space
for the new heuristic:

S: / 7 (x2)dx => use opl

G: / r f(x) dx => use opl

In this example, analysis of how this training instance satisfies the credit
assignment criterion will lead to additional information for refining the above
version space of alternative hypotheses. The trace of this arialysis is broken into
four main stages, which attempt to determine some property of the integrand in
the training instance which is sufficient to assure that the credit assignment
criteria will be met. This sufficient condition for satisfying Poslnst can then be
used to further generalize the S boundary of the version space for this heuristic.
The four main stages are (i) Generate an explanation that shows how the current
positive instance satisfies Poslnst, (ii) Extract from this explanation a sufficient
condition for satisfying Poslnst, (Hi) Restate the sufficient condition in terms of
the generalization language (that is, the language of applicability conditions for
heuristics), as restrictions on various problem states in the solution tree, and (iv)
Propagate the restrictions on various problem states through the solution tree, and
combine them into a generalization that corresponds to a sufficient condition for
assuring Poslnst will be satisfied.

Stage 1: Produce an explanation of how the current training instance
satisfies Poslnst. This explanation is produced by instantiating the definition of
Poslnst for the positive instance in question. By determining which disjunctive
clauses in the definition of Poslnst are satisfied by the current training instance,
and then by further expanding those clauses by instantiating predicates to which
they refer, a proof is produced that PosInst(opl, State 1). The result of this stage
is an And/Or proof tree, which we shall call the explanation tree for the training
instance. The tip nodes in the explanation tree are known to be satisfied because
of the observed solution tree to which the training instance belongs. This ex-
planation tree indicates how the training instance satisfies Poslnst, and forms the
basis for generalization by inferring sufficient conditions for satisfying Poslnst.

The explanation tree for the positive training instance <opl , State 1> is

184 CHAPTER 6: LEARNING BY EXPERIMENTATION

statel: S 7 (xA2) dx

0P1
J r f (x) dx -> r Jf (x) dx

state2: 7J"UA2) dx

0P9:
S (xMr NEQ -1}) -* (xMr+D)/(r+D

s t a t e 3 : 7. (xA3)/3

Figure 6-8: The solution tree for example 1.

Poslnst(0P1, Statel)

Solvable (Apply(0P1, Statel)) ~ (Goal(Statel))

(3 op) (Solvable(Apply(op,(Apply 0P1, Statel))))

Goal(Apply(0P9, Apply (0P1, Statel)))

Figure 6-9: The explanation tree for PosInst(opl, Statel).

shown in Figure 6-9. Nodes in the explanation tree correspond to statements
about various problem states and operators in the associated solution tree. The
explanation tree for the current example indicates that <opl , Statel > is a Posi-
tive instance because (i) Statel is not a Goal state, and (ii) by applying op9 to
the state resulting from the positive instance step, it is possible to reach a goal
state. Subsequent stages of analysis of this explanation tree, shown below, ex-
tract this explanation (at an appropriate level of generality), and to restate it in
the generalization language in which heuristics are expressed.

Stage 2: Extract a sufficient condition for satisfying Poslnst. If the ex-
planation tree is viewed as a proof that Poslnst is satisfied by the current training

MITCHELL, UTGOFF AND BANERJI 185

instance, then it is clear that any set of nodes that satisfy this And/Or tree cor-
respond to a sufficient condition for satisfying Poslnst. In the current example,
for instance, if all the tip nodes of the explanation tree are satisfied by a given
state, s, then Poslnst will be satisfied by the training instance <opl , s>. In this
stage, a set of nodes that satisfy the And/Or tree is selected, and the correspond-
ing sufficient condition for Poslnst is formulated by replacing the problem state
from the training instance by a universally-quantified variable. In the current
example, if the tip nodes of the explanation tree are selected, then the resulting
sufficient condition for Poslnst may be stated as follows:

(Vs) PosInst(opl, s) <: (~Goal(s) Λ Goal(Apply(op9, Apply(opl, s))))

Notice that there are many possible choices of sets of nodes to satisfy the
And/Or tree, and correspondingly many sufficient conditions. This choice of
nodes is one of the major control issues in the analysis of the training instance.
Generally, nodes close to the root of the explanation tree lead to more general
sufficient conditions. However, since the sufficient conditions formulated in this
stage must be transformed by subsequent stages to statements in the generaliza-
tion language for heuristics, the choice of covering nodes from the explanation
tree must trade off (i) the generality of the corresponding sufficient condition,
with (ii) the loss in generality that is likely when this sufficient condition is
transformed into the generalization language for heuristics. As an example, con-
sider the alternative choice of the two nodes at the second level of the explana-
tion tree. This set of nodes leads to the following sufficient condition for
Poslnst:

(Vs) PosInst(opl, s) <= (~Goal(s) Λ Solvable(Apply (op 1, s)))

While this sufficient condition on satisfying Poslnst is more general than
the earlier sufficient condition, it turns out that this added generality will be lost
when attempting to redescribe the sufficient condition in terms of the generaliza-
tion language. The difficulty in this case stems from the fact that there is no
straightforward translation from the predicate "Solvable" to a statement in the
generalization language of LEX. In contrast, the sufficient condition correspond-
ing to the tip nodes of the explanation tree involves only the predicate "Goal",
which is easily characterized in terms of the generalization language.

Stage 3: Restate the sufficient condition in terms of the generalization
language, as restrictions on various problem states involved in the solution
tree. In the current example, the sufficient condition corresponding to the tip
nodes of the explanation tree can be restated as follows:

(Vs)PosInst(opl, s) <=
(Match(/f(x)dx, s) Λ Match(f(x), Apply(op9, Apply(opl, s))))

The predicate "Match" corresponds to the matching procedure used to com-
pare applicability conditions, or generalizations, with problem states (that is, it
tests whether the applicability conditions are satisfied in the problem state). The
first conjunct above expresses the fact that "s" is not a Goal state ("s" contains

186 CHAPTER 6: LEARNING BY EXPERIMENTATION

an integral), and the second conjunct expresses the fact that Apply(op9,
Apply (op 1, s)) is a goal state (it is some expression that does not contain an
integral sign). This second conjunct corresponds to a restriction on the state
labeled State3 in Figure 6-8.

In general, the goal of this stage is to translate the sufficient condition into
a conjunctive set of statements of the form Match(<generalization>, <problem-
state>), where <generalization> can be any statement in the generalization lan-
guage used by the system, and <problem-state> can be any expression that cor-
responds to a particular problem state in the solution tree for the current ex-
ample.

The translation of sufficient conditions into the generalization language re-
quires knowledge about the correspondence between the representation language
in which the analysis is being done, and the generalization language used to
describe heuristics. For instance, in the current example the following
knowledge is used in the translation:

(Vs) ~Goal(s) <̂> Match(/f(x)dx, s)
and
(Vs) Goal(s) <=> Match(f(x)dx, s)

Unfortunately, some expressions generated by analyzing the explanation
tree may have no corresponding expression in the generalization language. For
example, in the current LEX generalization language, there is no way of charac-
terizing all "Solvable" functions. In this case, translating the sufficient condition
corresponding to the second level nodes in the explanation tree may require fur-
ther specializing the sufficient condition, by replacing Solvable(x) by sufficient
conditions for Solvable. An example of such knowledge is the knowledge that
all polynomial integrands are solvable. It is important to note that even if no
such knowledge is available, it will always be possible to translate the sufficient
condition into some weaker condition describable in the generalization language.
This can always be accomplished by using the fact that the solution tree provides
at least one problem state which satisfies the predicate, and the problem state is
itself describable in the generalization language. Thus, for example, the con-
dition Sol vable(Apply (op 1, s)) may, if no other relevant knowledge is available,
be weakened and replaced by Match(7/(x2)dx, Apply (op 1, s)).

Stage 4: Propagate the restrictions on various problem states through
the solution tree to determine equivalent conditions on the problem state in-
volved in the current training instance. By examining the definitions of the
operators involved in reaching a given state, x, it is possible to propagate restric-
tions on x through the solution tree to deduce the corresponding constraints on an
earlier problem state. This back propagation of restrictions is necessary in order
to restate the sufficient condition on Poslnst in terms of a generalization that ap-
plies to the training instance. This propagation requires using the operators in a
way different from the way in which they are used during forward search
problem-solving, and is similar to the process of goal regression discussed in the
literature on means-ends problem-solving and planning [Nilsson, 1980].

MITCHELL, UTGOFF AND BANERJI 187

As an example, consider the second expression in the sufficient condition
from stage 3: Match(f(x), Apply(op9, Apply(opl, s))). This condition, when
back propagated through op9 becomes Match(f(x)/(x | (r=£ -l)dx), Apply (op 1,
s)). The new generalization corresponds to the class of problem states which can
be transformed using op9 into an expression that satisfies the original condition.
Similarly, this new expression can be propagated back through opl to yield an
equivalent condition on State 1: Match(/ r(x f {τΦ -l})dx, s). Thus, the suf-
ficient condition from stage 3 can be restated as:

(Vs) PosInst(opl, s) <=
(Match(/f(x)dx, s) Λ Match(/ r(x | {r Φ -l})dx, s))

Since the second conjunct is more specific than the first, the above expres-
sion can be simplified to:

(Vs) [PosInst(opl, s) φ Match(/ r(x] {r Φ -l})dx, s)]

Finally, we have found sufficient conditions for PosInst(opl, s) which are
stated as a generalization that must match State 1. While the sufficient condition
determined by the above analysis is not the most general sufficient condition pos-
sible, it is satisfied by the current training instance and follows naturally from
analyzing that instance. If this training instance were the first instance encoun-
tered for this particular heuristic, the resulting version space would reflect the
extra information extracted from analyzing this instance, as shown below.

S : / r [x t (r Φ -1)] dx => Apply opl

G: / r f(x) dx Φ Apply opl

6.4.3 Automatically Extending the Vocabulary for Describing Heuristics

One of the most fundamental difficulties associated with current approaches
to machine learning is the problem of acquiring an appropriate vocabulary with
which to describe learned concepts. Nearly all existing systems assume some
fixed vocabulary of terms with which to represent learned concepts (for instance,
the LEX terms trigonometric, polynomial, exponential, and so on, as shown in
Figure 6-2). In cases where this vocabulary is inappropriate, it will be impos-
sible to describe (and hence to learn) the desired concept. In the LEX system, we
have found that there are many cases where the current language for describing
heuristics is insufficient to correctly characterize sets of training instances
produced by the Critic.

As an example, consider the solution path shown in Figure 6-10, and the
positive training instance corresponding to the first step of this solution path. If
this positive training instance is observed, together with the positive training in-
stance Jcos7(x)dx, and the negative training instance /cos6(x)dx, then LEX will
be unable to produce a heuristic that matches these two positive instances, and
excludes the negative instance. The problem here is that the language in Figure
6-2 for describing heuristics has no term that includes both 5 and 7 while exclud-
ing 6.

188 CHAPTER 6: LEARNING BY EXPERIMENTATION

state l: Jcos7(x)dx

opl: fHx)=>flMJ(x)f(x)

state2: /cos6(x)cos(x)dx

op2: fr(x)^(f2(x))lr/2l
Ψ

state3: /(cos2(x))3cos(x)dx

op3: cos2(x)^(l-sin2(x))

state4: /(l-sin2(x))3cos(x)dx

op4: /g(f(x))f(x)dx^/g(u)du, u = f(x)

state5: J(l-u2)3du, u = sin(x)

op5: polyk(x)^[poly(x)*|...*kpoly(x)]

stateo: Jl-3u2 + 3u4-u6du, u = sin(x)

Figure 6-10: Solution path for Jcos7(x)dx.

In this case, a solution analysis similar to that described in the previous
section can lead to the generation of a new term to be added to the language of
Figure 6-2. As in the previous case, the solution trace analysis first produces a
set of statements about various nodes in the search tree, which characterize why
the training instance is positive. These statements are then propagated through
the problem-solving operators in the search tree to determine which features of
the training instance were necessary to satisfy these statements. It is during this
propagation and combination of constraints that new descriptive terms may be
suggested.

For example, in the case of the solution path shown in Figure 6-10, sup-
pose that the analysis first determines that the solution path leads to a solution
because State6 is of the following form, which we assume satisfies the system's
definition of a solvable state.

/poly(x)*,...*kpoly(x)dx

Then the set of states, X], for which application of op5 leads to such a solvable
state can be computed as:

X, φ op5-'(/poly(x)*,...*kpoly(x)dx)

giving
X, = Jpolyk(x)dx

In turn, we can compute the set of states, X2, for which application of op4
leads to such a solvable state, as shown below. Here, "range(op4)" indicates the
set of all problem states that can be reached by applying op4 to some other
problem state.

MITCHELL, UTGOFF AND BANERJI 189

X2 Φ op4-,(intersection(range(op4),X1)).

By this repeated backward propagation of constraints through the solution
tree, it can be determined that application of the solution method of Figure
6-10 leads to a solvable state when the initial state (in this case State 1) is of the
form /cosc(x)dx where c is constrained to satisfy the predicate "real(c) Λ
integer((c-l)/2)", better known as "odd integer". Thus, detailed analysis of the
solution path can suggest the need for new predicate terms in the language for
describing heuristics. These terms (such as "odd integer") arise from combina-
tions of existing terms, composed in a way that is determined by the particular
operator sequence in the solution path being analyzed.

6.5 SUMMARY

The LEX system is an experiment in learning by experimentation. The cur-
rent system, based on a generator of practice problems, problem solver, critic,
and generalizer, indicates that useful problem-solving heuristics can be learned
by employing empirical methods for generalizing from examples. It also in-
dicates that more powerful and more general approaches to learning will be
needed before practical systems can be built that improve their strategies in sig-
nificant ways. One way of augmenting empirical learning methods by analytical
methods has been discussed, which is based on giving the system the ability to
reason about its goals, heuristic search, and the task domain. This research and
the research of others (for example, that described in Chapters 8, 9, and 12 of
this book) suggests that the addition of such meta-knowledge about the goals, the
learner, and the problem-solving methods in the domain, is a promising area for
further research.

ACKNOWLEDGMENTS

The LEX system has been developed over the past three years with the aid
of several researchers in addition to the authors. We gratefully acknowledge the
aid of William Bogdan, who helped implement the Critic; Bernard Nudel, who
helped implement the Critic and Problem Solver; and Adam Irgon, who imple-
mented the Problem Generator. Richard Keller has contributed to the newer
work on using the intended purpose of heuristics for analyzing training instances.
This research is supported by the National Science Foundation under Grant No.
MCS80-08889, and by the National Institutes of Health under Grant No.
RR-64309.

190 CHAPTER 6: LEARNING BY EXPERIMENTATION

REFERENCES

Anzai, Y. and Simon, H., "The theory of learning by doing," Psychological Review, Vol. 36, No. 2,
pp. 124-140, 1979.

Buchanan, B. G. and Mitchell, T. M., "Model-Directed Learning of Production Rules," Pattern-
Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press,
New York, 1978.

Davis, R., "Applications of meta level knowledge to the construction and use of large knowledge
bases," Knowledge-based Systems in Artificial Intelligence, Davis, R. and Lenat, D. (Eds.),
McGraw-Hill, New York, 1981.

Fikes, R. E., Hart, P. E. and Nilsson, N. J., "Learning and executing generalized robot plans,"
Artificial Intelligence, Vol. 3, pp. 251-288, 1972.

Hayes-Roth, F., Klahr, P. and Mostow, D. J., "Knowledge acquisition, knowledge programming,
and knowledge refinement", Technical Report R-2540-NSF, The Rand Corporation, Santa
Monica, CA., May 1980.

Iba, G. A., "Learning disjunctive concepts from examples," Master's thesis, M.I.T., Cambridge,
Mass., 1979, (also AI memo 548).

Mitchell, T. M., Version Spaces: An approach to concept learning, Ph.D. dissertation, Stanford
University, December 1978, (also Stanford CS report STAN-CS-78-711, HPP-79-2).

Mitchell, T. M., Utgoff, P. E., Nudel, B. and Banerji, R., "Learning problem-solving heuristics
through practice," Proceedings of the Seventh International Joint Conference on Artificial
Intelligence, Vancouver, pp. 127-134, August 1981.

Mitchell, T. M., "Generalization as Search," Artificial Intelligence, Vol. 18, No. 2, pp. 203-226,
March 1982.

Mitchell, T. M., "Toward Combining Empirical and Analytic Methods for Learning Heuristics,"
Human and Artificial Intelligence, Elithorn, A. and Banerji, R. (Eds.), Erlbaum, 1982.

Neves, D. M., "A computer program that learns algebraic procedures," Proceedings of the 2nd
Conference on Computational Studies of Intelligence, Toronto, 1978.

Nilsson, N. Principles of Artificial Intelligence, Tioga, Palo Alto, 1980.

Politakis, P., Weiss, S. and Kulikowski, C , "Designing consistent knowledge bases for expert
consultation systems", Technical Report DCS-TR-100, Department of Computer Science,
Rutgers University, 1979, (also 13th Annual Hawaii International Conference on System
Sciences).

Utgoff, P. E. and Mitchell, T. M., "Acquisition of Appropriate Bias for Inductive Concept
Learning," Proceedings of the 1982 National Conference on Artificial Intelligence, Pittsburgh,
August 1982.

Vere, S. A., "Inductive learning of relational productions," Pattern-Directed Inference Systems,
Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press, New York, 1978.

Waterman, D. A., "Generalization learning techniques for automating the learning of heuristics,"
Artificial Intelligence, Vol. 1, No. 1/2, pp. 121-170, 1970.

7

ACQUISITION OF PROOF SKILLS

IN GEOMETRY

John R. Anderson
Carnegie-Mellon University

ABSTRACT

The ACT theory of learning is applied to the domain of high school
geometry. The concern is with how students become skilled at planning a proof
of a geometry problem. A general control structure is proposed for integrating
backward and forward search in proof planning. This is embodied in a produc-
tion system framework. Two types of learning are described. Knowledge com-
pilation is concerned with how students transit from a declarative characterization
of the domain to a set of operators for performing a specific task in that domain.
Tuning is concerned with how students learn which problem features are predic-
tive of the success of which operators.

7.1 INTRODUCTION

Much of my research has been concerned with the refinement of skills
from general methods. I have developed a theory of learning called ACT which
involves a set of mechanisms by which skills can be refined. These include
knowledge compilation mechanisms for converting from declarative represen-
tation of a skill to a procedural representation. They also include a set of
mechanisms for learning which problem features are predictive of the success of
problem-solving operators. Much of the later discussion in this chapter is con-
cerned with describing these mechanisms and their application to acquisition of
proof skills in geometry. First, however, I will discuss the nature of the empiri-
cal phenomena that we are trying to simulate with our learning system and how
our performance theory goes about organizing search for geometry proofs.

We have been studying how high school students learn to generate proofs

191

192 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

in geometry and how they get better at generating proofs through practice. A
major empirical base for this work comes from protocols of thirty 45-minute ses-
sions that we had with one of our students (Subject R). In these sessions the
student read textbook instructions and worked out textbook problems. We tried
to confine our interruptions to clearing up serious misconceptions. R did all of
his work in these sessions; his textbook and notes were taken away from him,
and he was encouraged not to think about geometry between sessions. Thus, we
have a more or less complete record of the learning that occurs in the first part
of geometry. In the thirty sessions he worked through two column proofs, a
section about angles, to where he was generating non-trivial proofs about triangle
congruence. A substantial amount of learning occurs after this initial period.
Therefore, we have supplemented our data base with spot protocols from more
advanced high school students and from various adults who are relatively expert
at generating geometry proofs.

Our goal has been to generate a computer simulation of the learning
processes in geometry. The ultimate test of this program is that it be given
textbook instruction and have a learning history like that of our high school stu-
dent. The dimensions of this ultimate test are, of course, a little overwhelming.
For the time being we have contented ourselves with simulating learning on frag-
ments of the geometry text. A major concern in this research has been the so-
called "sufficiency condition" for a psychological theory—that is proposing
mechanisms powerful enough to produce the observed learning of the necessary
skills.

The constraint that the behavior of the system be such that it corresponds
to human behavior is a severe one but not one that is orthogonal to the frequent
AI goal of getting a system capable of intelligent behavior. We have argued
elsewhere [Anderson & Kline, 1977] that the psychological constraint may
facilitate ultimately achieving a robust intelligent system, particularly if the goal
is machine learning. Therefore, I would commend to the reader the learning
proposal contained in here as a viable scheme for skill acquisition by a machine.

The simulation has been worked out in the context of the ACT system
[Anderson, 1976] which is a simulation system based on hypotheses about the

basic mechanisms of human cognition. The procedural knowledge of the ACT
system is based on a production system architecture and the declarative com-
ponent in ACT is based on a semantic network. The productions use the infor-
mation in the semantic network as a working memory to match against. The
learning investigations discussed in this chapter are principally focused on how
new productions are developed in acquiring a skill. The ACT theory has been
tested out on a wide variety of empirical domains including memory and inferen-
tial processes [Anderson, 1976], language acquisition and processing [Anderson
et al., 1977], [Anderson, 1981], and schema abstraction and prototype formation
[Anderson et al., 1979].

ANDERSON 193

7.2 A MODEL OF THE SKILL UNDERLYING PROOF GENERATION

Most successful attempts at proof generation can be divided into two major
episodes—an episode in which a student attempts to find a plan for the proof and
an episode in which the student translates that plan into an actual proof. The
first stage we call planning and the second execution. It is true that actual proof
generation behavior often involves alternation back and forth between the two
modes—with the student doing a little planning, writing portions of the proof,
running into trouble, planning some more, writing some more, and so on.
However, we believe that planning exists as a logically and empirically separable
component of proof generation. Moreover, we believe that planning is the more
significant aspect where the interesting learning occurs. Execution, while not
necessarily trivial, is more "mechanical".

A plan, in the sense we are using it here, is an outline for action—the
action in this case being proof execution. We believe that the plan students
emerge with is a specification of a set of geometric rules that allows one to get
from the givens of the problem, through intermediate levels of statements, to the
to-be-proven statement. We call such a plan a proof tree.

Figure 7-1 illustrates (a) an example geometry problem and (b) a proof
tree. In the tree, the goal to prove two angles congruent leads to the subgoal of
proving the triangles AXVZ and AWVY congruent. This goal is achieved by
the side-angle-side (SAS) postulate. The first side VX = VW is gotten directly
from the givens. Since these sides form an isosceles triangle, they also imply
ZVXZ = Z-VWY, the second part of the SAS congruence pattern. The third
part XZ = WY can be gotten from the other given that XY = WZ. A proof can
be obtained from Figure 7-1 by unpacking various links in the proof tree. Such
a proof is given below. The reader should be noted that some of these links map
into multiple lines of proof. The link connecting XY = WZ to XZ = WY, for
instance, maps into the 9 lines 4—12 in the proof. This is one of the important
reasons why we characterize the proof tree as an abstract specification of a
proof.

The proof tree is, of course, not something that students typically draw out
for themselves. Rather it is a knowledge structure in the head. Various remarks
of students suggest to us that it is a real knowledge structure, not just a product
of our theoretical fantasies. For instance, one student described a proof as "an
upside down pyramid".

Statement

1. VX = VW
2. XY = WZ
3. ΔΧΥΖ is isosceles
4. Z-VXZ = Z.VWY
5. XY = WZ
6. YZ = YZ

Reason

given
given
definition
base Z-'s of isosceles
def. of =
symmetric property of equality

194 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

Given: VX^VW, XY^WZ, XYZW
Prove i ^XVZ^Z-WVY

(b) P L A N

Z_XVZ=OVVY

ΔΖΥΧ SAWVY

fcvXZ^Z.VWY XZ^WY

vx^vw XYSWZ
Figure 7-1: A problem with its proof tree and detailed proof.

7. XY + YZ = YZ + WZ addition property of equality
8. XY = ZW given
9. XZ = XY + YZ segment addition
10. WY = YZ + WZ segment addition
11. XZ = _WY substitution
12. XZ = WY def. of =
13. AXVZ = AWVY SAS
14. Z.XVZ = ^WVY corresponding parts of congruent A's

Creating a proof tree is not a trivial problem. The student must either try
to search forward from the givens trying to find some set of paths that converge
satisfactorily on the statement to be proven, or he must try to search backward
from the statement to be proven, trying to find some set of dependencies that
lead back to the givens. Using unguided forward or backward search, it is easy
to become lost in the combinatorial possibilities. We will argue that students use

ANDERSON 195

a mixture of forward and backward search. This mixture, along with various
search heuristics they acquire, enables students to deal with the search demands
of proof problems found in high school geometry texts.

7.2.1 An Example of Planning

Before discussing the learning processes, I would like to discuss how our
simulation organizes its search for a proof tree. I will discuss an example
problem derived from Chapter 4 of Jurgensen, Donnelly, Maier and Rising
[1975]. This problem is illustrated in Figure 7-2. It is among the most difficult
problems found in that chapter. We would first like to discuss how our ACT
simulation performed on this problem.

Given : M is the midpoint of AE3 and CD
Prove: M is the midpoint of EF

Figure 7-2: Problem for simulation of planning.

ACT's search for a proof tree involves simultaneously searching backward
from the to-be-proven statement and searching forward from the givens. We see
our students combine forward and backward search. An attempt is made to try
to bring these two searches together. This search process creates a network of
logical dependencies. When successful ACT will eventually find in its search
some set of logical dependencies that defines a satisfactory proof tree. This
proof tree will be embedded within the search network. This larger network we
call the problem net.

196 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

Figure 7-3 illustrates the problem net at an early state of its development
for the problem in Figure 7-2. The first two reasoning forward productions1 to
apply are

PI: IF X, Y, and Z are on a line
and U, Y, and V are on a line

THEN ^XYU = ^ZYU because they are vertical angles

P2: IF Y_is the_midpoint of XZ
THEN XY = YZ by definition

The first production, for vertical angles, generates from the diagram in
Figure 7-2 that zLAMC = ZBMD and that ^CME = ZDMF. This is indicated
in Figure 7-3 by arrows leading from the vertical angles' reason to the angle con-
gruences. The second production translates the two givens about midpoints into
inferences about line congruence.

With this information in hand the following working forward production
can apply:

P3: IF ΧΫ=_ϋΫ
and ZY = WV
and ^XYZ = Z.UVW

THEN ΔΧΥΖ = AUVW because of SAS

This production embodies the side-angle-side rule (SAS). Applied to the first
level of forward inferences in Figure 7-3 it adds the inference that AAMC =
ABMD. It has been our experience that almost everyone presented with this
problem works forward to this particular inference as the first step to solving the
problem.

Meanwhile ACT has begun to unwind a plan of backward inferences to
achieve the goal. It has translated the midpoint goal to a goal of proving the
congruence EM = FM. This is accomplished by the following production rule:

P4: IF the goal is to prove that Y is the midpoint of XZ
THEN set as the subgoal to prove XY = YZ

This in turn is translated by the following production:

!Both of these productions and the others in this paper are given in a considerably more informal
syntax than what is implemented in the ACT production system. However, it is our judgment that
the renditions above are considerably more intelligible and do not omit much that is essential.

ANDERSON 197

Goal M is midpoint

of ÊF
y

EM = FM

I
ACME=ADMF

ΔΑΜΟ=ΔΒΜΟ

t
ÄM=MB CM = MD ZAMC=Z.BMD ZCMESZ.DMF

î Î X X
M midpoint M midpoint vertical angles

ofAF of CD

Figure 7-3: Problem network early in planning.

P5: IF the goal is to prove XY = UV
and XY is part of triangle 1
and UV is part of triangle 2

THEN set as the subgoal to prove that triangle 1 is congruent to triangle 2

Matching this production to the diagram, ACT determines that ACME con-
tains ËM and that ADMF contains FM. This leads to the subgoal of proving
ACME = ADMF.

Note that the forward inferences have progressed much more rapidly than
the backward inferences. This is because backward inferences, manipulating a
single goal, are inherently serial, whereas the forward inferences can apply in the
ACT simulation in parallel. With respect to the serial-parallel issue it should be
noted that the backward and forward search progress in parallel.

Figure 7-3 illustrates the limit to the forward inferences that ACT

198 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

generates. While there are, of course, more forward inferences that could be
made, this is the limit to the inferences for which ACT has productions avail-
able.

Figure 7-4 illustrates the history of ACT's reasoning backward efforts to
establish that ACME = ADMF. ACT first attempts to achieve this by the side-
side-side (SSS) postulate. This subgoal is set by the following production:

P6: IF the goal is to prove that ΔΧΥΖ = AUVW
THEN try to use SSS by proving XY = UV, YZ = VW, and ZX = WU

This effort is doomed to failure because the triangle congruence has been set as a
subgoal of proving one of the sides congruent. When ACT gets to the goal of
establishing EM = FM it recognizes the problem and backs away. Our subject,
like ACT, had a certain propensity to plunge into hopeless paths. Presumably
one component of learning is to stop setting such hopeless subgoals.

I will skip over ACT's unsuccessful attempt to achieve the triangle con-
gruence by side-angle-side (SAS) and look in detail at its efforts with the angle-
side-angle (ASA) postulate. Two of the three pieces required for this,
ZCME = ZDMF and CM = MD, have already been established by forward in-
ferences. This leaves the third piece to be established—that zlECM = AFDM.
This can be inferred by supplementary angles from something that is already
known—that AAMC = ΔΒΜΟ. However, ACT does not have available the
postulate for making this inference. This corresponds to a blindness of our sub-
ject with respect to using the supplementary rule. Although the opportunity did
not arise in this problem because he was following a different path to solution,
many times he overlooked opportunities to achieve his goals by the supplemen-
tary angle rule.

Having failed the three available methods for proving triangle congruence,
ACT backed up and found a different pair of triangles, ΔΑΜΕ and ABMF,
whose triangle congruence would establish the higher goal that EM = FM. (It
turns out that, by failing on the supplementary angle needed to establish
ACME = ADMF and trying ΔΑΜΕ = ABMF, ACT finds the shorter proof.)

Fortuitously, ACT chooses ASA as its first method. The attempt to apply
this method is illustrated in Figure 7-5. One of the angle congruences is ob-
tained by the following working backward rule:

P7: IF the goal is to prove that ^XYZ = ^UYW
and X, Y, and W are on a line
and Z, Y, and W are on a line

THEN the goal can be inferred because of vertical angles

Note that this inference was not made by the forward-reasoning, vertical-angle
production. This turns out to be due to a difficulty that the ACT pattern matcher
has in seeing lines define multiple angles. The segments AM and ME that

ANDERSON 199

Goal M is midpoint

of EF

_ * _
EM = FM

I
B ACME= ADMF

I
SAS

CMS DM ME=MFFC*FD

ZCME^DMF CM^MD ZECM^FDM

AM^MB

t
M midpoint

of AB

CM=MD

t
M midpoint

of CD

LAMC=Z_BMD LCME-LDMF

X t
vertical angles

Figure 7-4: Trace of backward-chaining efforts by ACT.

define ^AME were already used in extracting the angles /-MAC and Z CME for
use by the forward-reasoning vertical angle postulate.

ACT is also able to get the other parts of the ASA pattern. The side AM
= BM has already been gotten by forward inference. The fact that ZEAM =
Z.FBM can be inferred from the fact that AAMC = ΔΒΜΟ since he angles are

200 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

Goal M is midpoint
of ËF

EM = FM
F D Θ

ACME=ADMF

SSS SAS ASA

AAME=ABMF

ASA

LAME^Z-BMF AM^BM LEAM=Z_FBM

AM=MB CM^MD LAMC=LBMD \ZLCME=/LDMF

M=midpoint M=midpoint \ \ , /
of AB of CD vertical angles

Figure 7-5: Application of ASA method by ACT.

corresponding parts of congruent triangles. With this ACT has found its proof
tree embedded within the search net. That proof tree is highlighted in Figure
7-5.

ANDERSON 201

7.2.2 Comparison of ACT to Subject R

It is of interest to see how ACT's behavior compares to that of a typical
student. We have gathered extensive protocols from one subject, R. R took
geometry from us in grade 7 as a special enrichment opportunity one year before
he would normally take geometry in school. We have a more or less complete
record of all his learning and work at geometry through Chapter 4 of Jurgensen,
Donnelly, Maier, and Rising [1975]. In particular, we have a record of his per-
formance on the critical problem in Figure 7-2.

Subject R's performance did not correspond to that of ACT in all details.
This is to be expected because ACT s choices about what productions to apply
have an important probabilistic component to them. However, one can still ask
whether ACT and subject R have the same character to their inferences. One
way of defining this is whether ACT could have produced R's protocol if the
probabilities came out correct. By this criterion ACT is compatible with much
of R's protocol.

Like ACT, R began by making the forward inferences necessary to con-
clude AAMC = ABMD and then making this conclusion. Like ACT these in-
ferences were made with little idea for how they would be used. Then like
ACT, R_began to reason backward from his goal to prove that M was the mid-
point of EF to the goal of proving triangle congruence. However, unlike ACT
he was lucky and chose the triangle ΔΑΜΕ = ABMF first. Unlike ACT again,
but this time unlucky, he first chose SAS as his method for establishing the tri-
angle congruence. He got AM = MB from previous forward inference and the
ZEAM = ZFBM from the fact that AAMC = ABMD—just as ACT obtained
this in trying to use ASA. However, he then had to struggle with the goal of
proving AE = BF. Unlike ACT, subject R is reluctant to back up and he tena-
ciously tried to find some way of achieving his goal. He was finally told by the
instructor to try some other method. Then he turned to ASA. He already had
two pieces of the rule by his efforts with SAS and quickly got the third com-
ponent ZAME = ZBMF from the fact that they were vertical angles. Note that
subject R also failed to make this vertical angle inference in forward mode and
only made it in backward mode.

In conclusion, R's behavior is very similar in character to that of ACT.
The only major exception is R's reluctance to back up when a particular method
is not working out.

7.3 LEARNING

What has been described so far is a general framework in which a student
can plan proofs. I believe that much of the basic architecture is a reflection of
general reasoning methods the student brings to geometry for solving problems.
However, the basic architecture is not enough to enable the student to be suc-
cessful and facile at planning proofs in geometry. The student obviously must

202 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

learn things specific to geometry. I will now discuss two stages of learning that
are important to geometry. The first stage involves creating production embodi-
ments of the basic search operators that make forward and backward inferences.
Once the student has these operators he must tune them so that they will be
selected in the appropriate situations and not selected in situations where they
will not achieve the goals.

7.4 KNOWLEDGE COMPILATION

Knowledge compilation [Neves & Anderson, 1981] is the process by which
subjects go from a declarative representation of a skill to a procedural represen-
tation. The declarative representation is applied to the task by means of general
interpretive productions. After achieving a procedural form, in contrast, the
knowledge applies directly because it is encoded in production form. In recog-
nition of the obvious analogy, we call this process knowledge compilation.
However, unlike computer compilation, this process in ACT is gradual and oc-
curs through practice.

When students read a definition, postulate, or theorem, it seems unreason-
able to suppose that they immediately convert it into a procedural form such as
the productions presented in the discussion of Figures 7-3 through 7-5. One
reason that it is unreasonable is that the same fact of geometry can give rise to a
great many possible productions reflecting various ways that the information can
be used. For instance, consider the textbook definition of supplementary angles:

"Supplementary angles are two angles whose measures have sum 180."
Below are productions that embody just some of the ways in which this
knowledge can be used. These productions differ in terms of whether one is
reasoning forward or backward, what the current goal is, and what is known.

P8: IF m^A + mZ.B = 180°
THEN Lk and LB are supplementary

P9: IF the goal is to prove ΔΑ and Δ.Β are supplementary
THEN set as a subgoal to prove Z.A + ΔΒ = 180°

P10: IF Z.A and ΔΒ are supplementary
THEN τηΔΑ + τηΔΒ = 180°

Pli: IF Z.A and Δ.Β are supplementary
and mZLA = X

THEN π\ΔΒ = 180° - X

PI2: IF ΔΑ and Δ.Β are supplementary
and the goal is to find mZA

THEN set as a subgoal to find mZLB

ANDERSON 203

P13: IF the goal is to prove ZA = ΔΒ
and ΔΑ is supplementary to LQ
and Δ.Β is supplementary to ZD

THEN set as a subgoal to prove Z.C = ΔΌ

A basic point is that the definition of supplementary angles is fundamen-
tally declarative in the sense that it can be used in multiple ways and does not
contain a commitment to how it will be used. It is unreasonable to suppose that,
in encoding the definition, the system anticipates all the uses to which it might
be put and creates a procedural structure for each.

Rather than assuming students directly encode this textbook information
into procedures, I assume that they first encode this information declaratively.
In the ACT system encoding information declaratively amounts to growing new
semantic network structure. General interpretive procedures then use this infor-
mation according to the features of the particular circumstance. When declara-
tive knowledge is used multiple times in a particular way, automatic learning
processes in the ACT theory will begin to create new procedures that directly
apply the knowledge without the interpretive step. This kind of learning is
called procedural compilation.

In individual subjects we see a gradual shift in performance which we
would like to put into correspondence with this compilation from the interpretive
application of declarative knowledge to direct application of procedures. After
reading, say, a particular postulate, students' applications of that postulate is
both slow and halting. Students will often recite to themselves the postulate be-
fore trying to apply it—or even go back and reread it. It seems that they need to
activate the declarative representation in their working memory so that interpre-
tive procedures can apply to the data of this representation. They typically
match separately fragments of the postulate to the problem. We will see that
such fragmentary application is typical of a general knowledge interpreter apply-
ing to a declarative representation. With repeated use, however, application of
the postulate smoothes out. It is no longer explicitly recalled and it is no longer
possible as observer or subject to discriminate separate steps in the application of
the procedure. It certainly has the appearance of the postulate being embodied in
separate pattern recognition productions such as those described with respect to
Figures 7-3 through 7-5.

7.4.1 Knowledge Schemas

We have found a schema-like representation to be very useful for struc-
turing the initial declarative encoding of a geometry fact. Table 7-1 illustrates a
schema encoding for the SAS postulate which is stated in the text as:

"If two sides and the included angle of one triangle are congruent to
the corresponding parts of another triangle, the triangles are congruent."

The diagram in Figure 7-6 accompanied this statement. The postulate schema in
Table 7-1 is divided into background, hypothesis, conclusion, and comment.

204 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

The hypothesis and conclusion reflect the if/then structure of the condition, which
our subject was fairly facile at extracting. The background information amounts
to a description of the diagram and contains the constraints which allow the vari-
ables (sides and angles) to be properly bound. The comment contains additional
information relevant to its use. Here we have the name of the postulate which
prescribes what the student should write as a reason.

Table 7-1: SAS Schema

Background
si is a side of ΔΧΥΖ
s2 is a side of ΔΧΥΖ
Al is an angle of ΔΧΥΖ
Al is included by si and s2
s3 is a side of AUVW
s4 is a side of AUVW
A2 is an angle of AUVW
A2 is included by s3 and s4

Hypothesis
si is congruent to s3
s2 is congruent to s4
Al is congruent to A2

Conclusion
ΔΧΥΖ is congruent to AUVW

Comment
This is the side-angle-side postulate

Figure 7-6: Diagram accompanying the SAS postulate.

I regard the knowledge structure in Table 7-1 to be schema-like; it is a unit
organized into parts according to "slots" such as background, hypothesis, conclu-
sion, and comment. The knowledge structure is declarative in that it can be used
in multiple ways by interpretive procedures. For instance, the following produc-
tion would be evoked to apply that knowledge in a working backwards manner:

ANDERSON 205

P14: IF the goal is to prove a statement
and there is a schema that has this statement as conclusion

THEN set as subgoals to match the background of the schema
and after that to prove the hypothesis of the schema

If the schema is in working memory and its conclusion matches the current goal,
this production will start up the application of the schema to the current problem.
First the background is matched to bind the variables and then the hypotheses are
checked.

To appreciate how learning switches the student from the initial piecemeal
interpretive application to direct, unitary procedures, it would be useful to sketch
out a few more of the productions that are used in the initial interpretive applica-
tion. Let us consider some of the productions involved in working backwards.
After production PI4, which starts things, the next production to apply would be

PI6: IF the goal is to match a set of statements
THEN match the first statement in the set

Production PI4 had set the subgoal of matching the statements in the back-
ground. This production above starts that process going by focusing on the first
statement in the background. This production is followed by a production which
iterates through the statements of the background.

PI7: IF the goal is to match a statement in a set
and the problem contains a match to the statement

THEN go on to match the next statement in the set

(Actually, there is a call to a subroutine of productions which execute the
matches to each statement. See [Neves & Anderson, 1981].) After all state-
ments in the background have been matched, the following production sets the
goal to prove the hypotheses:

PI8: IF the goal is to match a set of statements
and the last statement in that set has been matched

THEN go on to the goal that follows

Note productions P14, P16, P17, and PI8 are sufficiently general that it is
reasonable to propose that even a novice in geometry has them Jrom prior skills.

7.4.2 Composition

There are two major processes in knowledge compilation—composition and
proceduralization. When a series of productions apply in a fixed order, com-
position will create a new production that accomplishes the effect of the se-
quence in a single step (see [Neves & Anderson, 1981]). Composition, operat-

206 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

ing on the sequence of P14, P16, and P17, applied to the SAS schema, would
put forth the production

PI9: IF the goal is to prove a statement
and there is a schema that has this statement as conclusion
and the schema has a statement as the first member of its background
and the problem contains a match to the statement

THEN set as subgoal s to match the background
and within this subgoal to match the next statement of the background
and after that to prove the hypotheses of the schema

This production only applies in the circumstance that the sequence P14, PI6, and
PI7 applied and has the same effect in terms of changes to the data base. The
details underlying composition are discussed in [Neves & Anderson, 1981], but
the gist of the process is easy to describe. The composed production collects in
its condition all those clauses from the individual productions' conditions except
those that are the product of the actions of earlier productions in the sequence.
As an example of this exception, PI6 has in its condition that the goal is to
match the set of statements. Since this goal was set by PI4 earlier in the se-
quence, it is not mentioned in the condition of the composed production P19.
Thus, the condition is a test of whether the circumstances are right for the full
sequence of productions to execute. The action of the composed production col-
lects all actions of the individual productions except those involved in setting
transitory goals that are finished with by the end of the sequence. As an ex-
ample of this exception, PI6 sets the subgoal of matching the first statement of
the background but PI7 meets this subgoal. Therefore, the subgoal is not men-
tioned in the action of the composed production PI9.

This composition process can apply to the product of earlier compositions.
Although there is nothing special about compositions of three, consider what the
resulting production would be like if PI9 were composed with two successive
iterative applications of PI7:

P20: IF the goal is to prove a statement
and there is a schema that has this statement as conclusion
and the schema has a statement as the first member of the background
and the problem contains a match to this statement
and the schema has another statement as the next member of its background
and the problem contains a match to this statement
and the schema has another statement as the next member of its background
and the problem contains a match to this statement

THEN set as subgoal s to match the background
and within this the next statement of the background
and after that to prove the hypotheses of the schema

It should be noted that such productions are not really specific to the SAS
schema. Indeed, productions such as PI9 and P20 might have been formed from

ANDERSON 207

compositions derived from the productions applying to other, earlier schemata.
If so, these composed productions would be ready to apply to the current
schema. Thus, there can be some general transfer of practice through composi-
tion. However, there is a limit on how large such composed productions can
become. As they get larger they require more information in the schema be
retrieved from long-term memory and held active in working memory. Limits
on the capacity of working memory imply limits on the size of the general, in-
terpretive conditions that can successfully match.

7.4.3 Proceduralization

Proceduralization is a process that builds specialized versions of produc-
tions by eliminating retrieval of information from long-term memory. Rather the
information that would have been retrieved from long-term memory is encoded
directly into the specialized version of the production. To illustrate the process
of proceduralization, consider its application to the production P20. This state-
ment contains in its condition four clauses that require retrieval of information
from long-term memory:

1. There is a schema that has this statement as conclusion.
2. The schema has a statement as the first member of its background.
3. The schema has another statement as the next member of its background.
4. The schema has another statement as the next member of its background.

Applied to the SAS schema these statements match the following infor-
mation:

1. The SAS schema has as its conclusion "ΔΧΥΖ = AUVW".
2. The first statement of its background is "SI is a side of ΔΧΥΖ".
3. The next statement of its background is "S2 is a side of ΔΧΥΖ".
4. The next statement of its background is "Al is an angle of ΔΧΥΖ".

What is accomplished by matching these statements in P20 is to identify the SAS
schema, its conclusion, and the first three statements of its background. A spe-
cialized production can be built which contains this information and does not re-
quire the long-term memory retrievals:

P21: IF the goal is to prove that ΔΧΥΖ = AUVW
and SI is a side of ΔΧΥΖ
and S2 is a side of ΔΧΥΖ
and A1 is an angle of ΔΧΥΖ

THEN set as subgoals to match the background of the SAS schema
and within this to match the next statement in the schema
and after that to prove the hypothesis of the schema

This production is now specialized to the SAS schema and does not require any
long-term memory retrieval. Rather, built into its condition are the patterns
retrieved from long-term memory.

208 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

The effect of this proceduralization process is to enable larger composed
productions to apply because the proceduralized productions are not limited by
the need to retrieve information into working memory. This in turn allows still
larger compositions to be formed. The eventual product of the composition
process applied to the top-down evocation of the SAS schema, initially via
productions P14, P16, P17, and P18 would be:

P22: IF the goal is to prove that ΔΧΥΖ is congruent to AUVW
and SI is a side of ΔΧΥΖ
and S2 is a side of ΔΧΥΖ
and A1 is an angle of ΔΧΥΖ
and Al is included by SI and S2
and S3 is a side of AUVW
and S4 is a side of AUVW
and A2 is an angle of AUVW
and A2 is included by S3 and S4

THEN set as subgoals to prove:
51 is congruent to S3
52 is congruent to S4
Al is congruent to A2

This production serves to apply the SAS postulate in working backward mode.
When the knowledge reaches this state the complete SAS postulate has been put
into a single production.

As will be discussed in later portions of the paper, composition need not
stop when the postulate has been completely incorporated into a single produc-
tion. It can continue to merge productions to compress even longer sequences of
actions into a single production.

In the ACT implementation, composition works on pairs of productions
that fire in succession. It operates every opportunity it gets. There are two fac-
tors that limit the size of the eventual productions. First, too large productions
will not match to working memory. Second, the composition is specific to the
particular production sequence. The larger the production sequence the less
likely that the opportunity for that exact sequence will be repeated on another
problem. If the opportunity for the sequence is not repeated, the composed
production will not fire and so cannot enter into further compositions. It should
be noted in this regard that composed productions do not replace the components
from which they were composed. So, if a problem appears that requires a novel
combination of the components inconsistent with the higher compositions, the in-
dividual component productions are available.

The proceduralization step occurs in ACT at the first opportunity. This
means that proceduralized versions of productions are quickly built. In this fea-
ture ACT is probably too fast a learner for a human simulation. In applying
proceduralization to account for a number of phenomena from the psychological
literature, Neves and Anderson [1981] had to assume that proceduralization
progressed relatively slowly. This could be achieved in the current program by

ANDERSON 209

making proceduralization probabilistic or by requiring a production fire a number
of times in the same way before it can be proceduralized.

7.4.4 Tuning the Search for a Proof

Having operators proceduralized is not enough to guarantee successful
proof generation. There is still a potentially very large search space of forward
and backward inferences. Finding the proof tree in this net would often be in-
feasible without some search heuristics that cause the system to try the right in-
ferences first.

A heuristic in this discussion amounts to adding some discriminative con-
ditions to a production to restrict its applicability. While satisfying these con-
ditions does not guarantee success of the operator, it does make it more likely.
This is the nature of a heuristic—to select operators on the basis of tests that
suggest higher than average probability of success.

It is interesting to note that novices do not deal with proofs by plunging
into endless search. They are very restrictive in what paths they attempt and are
quite unwilling to consider all the paths that are legally possible. The problem
is, of course, that the paths they select are often non-optimal or just plain dead-
ends. Thus, at a general level, expertise does not develop by becoming more
restrictive in search, rather it develops by becoming more appropriately restric-
tive.

I have been able to discover four ways by which subjects can learn to
make better choices in searching for a proof tree. One is by analogy to prior
problems—using with the current problem methods that succeeded in similar past
problems. The second, related technique is to generalize from specific problems
operators that capture what the solutions to these specific problems have in com-
mon. The third is a discrimination process by which restrictions are added to the
applicability of more general operators. These restrictions are derived from a
comparison of where the general operators succeeded and failed. The fourth
process is a composition process by which sequences of operators become col-
lapsed into single operators that apply in more restrictive situations. I will dis-
cuss each of these methods of learning search heuristics in turn.

7.4.4.1 Learning by Analogy

The process of using analogy to past problems can, in some ways, be
characterized as a degenerate learning process. Figure 7-7 illustrates an early
opportunity for analogy in the chapter on triangles. The student has just seen a
solution to the problem in part (a) and then is presented with the problem in part
(b). Our subject R noticed the similarity between the two problems, went back
to the first, and almost copied over the solution.

Analogy of this sort is an interesting kind of learning in that it amounts to
learning very specific operators. (See Chapter 5 of this book for a more general
method of learning by analogy.) For example, for the problem in part (a) we
would have a schema that described the specific problem and its solution:

210 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

GIVEN : XY=WY
XZ2WZ

PROVE :AXYZ = AWYZ

GIVEN: AB=DB _
BC Bisects AD

PROVE :AABC=ADBC

Figure 7-7: Two problems with obvious similarity.

PROBLEM SCHEMA
Background

There is a triangle ΔΧΥΖ
There is a triangle AWYZ

Givens
XY = WY
xz = wz

Goal
ΔΧΥΖ = AWYZ

Method
YZ = YZ by reflexivity
ΔΧΥΖ = AWYZ by SSS

To account for the effectiveness of analogy we must assume that the stu-
dent has a facility to partially match the background and givens of one problem
to the background and given of another problem. This is because there is not a
perfect match between the two problems. We have recently developed such par-
tial matching facilities for the ACT theory [Kline, 1981],

One problem with analogy to specific problems is that it appears to be ef-
fective only in the short run because students' memory for specific problems

ANDERSON 211

tends to be short-lived. All examples of analogy in R's protocols come within
the same section of a chapter. There are no examples of problems in one section
reminding R of problems in an early section. Therefore, it seems that pure anal-
ogy tends to produce no permanent benefits.

A second problem with pure analogy is that it is superficial. Any point of
similarity between two problems increases the partial match. It is no accident
that the two pairs of triangles in Figure 7-7 are oriented in the same direction,
although this is completely irrelevant for the success of the analogy.

In ACT analogy depends on partial matching processes which are quite
"syntactic" in character. That is, the partial match process just counts up the
degree of overlap in the problem description without really evaluating whether
the overlaps are essential to the appropriateness of the solution or not. In myself
I note a tendency to respond to overlap between problems in this same super-
ficial way. Consider the three problems in Figure 7-8. At a deep level the first
two problems are really quite similar. Larger triangles contain smaller triangles.
To prove the containing triangles congruent it is first necessary to prove the con-
tained triangles congruent. The contained triangles in the two problems are con-
gruent in basically the same way and they overlap with the containing triangles
in basically the same way. However, on first glance the two problems seem
quite different. In contrast, on first glance, the two problems in parts (a) and (c)
of Figure 7-8 appear to have much in common. Now it is true that upon careful
inspection one can determine that the first pair provides a more useful analogy
than the second pair. However, it seems that analogy in problem-solving of this
sort is to serve a noticing function. Similar problems spontaneously come to
mind as possible models for solutions. If the superficial similarity between
problems (a) and (b) is not sufficient for the analogy to be noticed there will
never be the opportunity for careful inspection to realize how good the deep cor-
respondence is.

There is one very nice illustration of the problem with the superficiality of
analogy in the protocol of R. This concerns a pair of problems that come in the
first chapter. Figure 7-9 illustrates the two problems. Part (a) illustrates the
initial problem R studied along with an outline of the proof. Later in the section
R came across problem (b) and immediately noticed the analogy. He tried to use
the first proof as a model for how the second should be structured. Analogous
to the line RO = NY he wrote down the line AB > CD. Then analogous to the
second line ON = ON he wrote down BC > BC! His semantic sensitivities
caught this before he went on and he abandoned the attempt to use the analogy.
7.4.4.2 Generalization

I have characterized solving problems by analogy as superficial. Part of
what is superficial about the approach is that the analogy is based only on the
statement of the problems, not on the structures of their solution. Analogy, in
the sense discussed, cannot use the structure of the solution, because the proof
for the second problem is not available yet. Analogy is being used in service of
finding the second proof.

212 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

GIVEN: AE^EC
ZBEA=ZBEC

PROVE: AABD=ACBD

GIVEN

GIVEN ;

PROVE:
A F D G C

QNSfOR
Z.QON-Z.RON
MN^ÖP

PROVE. AMQOSAPRN

AB=BC
ZBE_F_5ZBEG
ABIIFE

BC^ËG
AABD=ACBD

Figure 7-8: Problems illustrating the limited validity of superficial analogy.

Generalization, on the other hand, is based on a comparison between two
problems and their solutions. By using the structure of the solution, it is pos-
sible to select the relevant aspects of the problem statement. A rule is for-
mulated by the generalization process which tries to formulate what the two
problems and their solutions have in common. That t rule can then be used
should similar problems appear. For instance, consider the first two problems in
Figure 7-8. The generalization process applied to these two examples would en-
code what they have in common by the following schema:

ANDERSON 213

(α)
N

0.

GIVEN :R0 NY, RONY GIVEN! AB>CD,ÄBCD
PROVE ! RN =0Y PROVE! A O B D

R0 = NY
0N=0N

R0+0N=0N+NY

AB>CD
B O B C

RONY I |
R0+0N=RN
0N+NY=0Y
RN=0Y

Figure 7-9: A problem where superficial analogy goes wrong.

GENERALIZED SCHEMA:

Background
ΔΧΥΖ contains ASYZ
AUVW contains ATVW

Givens
SY = TV
^YSZ = Z-VTW

Goal
ΔΧΥΖ = AUVW

Method
ASYZ = ATVW by SAS
YZ = VW by corresponding parts
Z.XYZ = /LUYW by corresponding parts
ΔΧΥΖ = AUVW by SAS

These generalizations are based on the same partial matching process that
underlies analogy. However, the partial matching occurs between solved
problems not just between problem statements. Because the product of the par-
tial match is a fairly general problem description, it is likely to apply to many

214 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

problems. Thus it is likely to be strengthened and become a permanent part of
the student's repertoire for searching for proofs. This contrasts to the specific
examples that serve as the basis for analogy. These specific examples are likely
to be forgotten.
7.4.4.3 Discrimination

Discrimination provides a complementary process to generalization. It
takes operators that are too general and thus are applied in incorrect situations
and places restrictions on their range of applicability. If the operator to be dis-
criminated is embodied as a production, discrimination adds an additional clause
to restrict the range of situations where the production condition will match.
ACT determines what additional clauses to add by comparing the difference be-
tween successful and unsuccessful applications of the rule.

GIVEN: Z.landZ_2
are right angles
JS = KS

PROVE: ARSJSARSK

(b)

GOAL. ARSJ=ARSK

RS = RS ^JS^KS
St

reflexivity

RK=RJ Z.lfZ.2

right angles

Figure 7-10: Problem leading to a discrimination.

Figure 7-10 illustrates an analysis of a problem which led subject R to
form a discrimination. In part (a) I have a representation of the problem and in

ANDERSON 215

part (b) I have indicated in search net form R's attempt to solve the problem.
First he tried to use SSS, a method which had worked on a previous problem
that had a great deal of superficial similarity to this problem. However, he was
not able to get the sides RK and RS congruent. Then he switched to SAS, the
other method he had at the time for proving triangles congruent. Interestingly, it
was only in the context of this goal that he recognized the right angles were
congruent. After he had finished with this problem, he verbally announced the
rules to use SSS only if there was no angle mentioned. This can be seen to be
the product of discrimination. The "don't use SSS if angle" comes from a com-
parison of the previous problem in which no angle was mentioned with the cur-
rent problem that did mention angles.

Discrimination requires that the system determine when a production has
made an error. This is not easy in all domains, but fortunately it is fairly easy in
the proof planning domain. After ACT has completed a proof plan it has a
structure like that in Figure 7-5 illustrating the logical connections among the
inferences required to derive the proof. This is the proof tree embedded in the
search net. Any planning production that contributed to the creation of the proof
tree is regarded as successful. Productions that led to the creation of irrelevant
portions of the search net are regarded as misfirings. These are the ones that are
subject to discrimination. These are not all of the unsuccessful productions. To
see that this is so, consider an example: Suppose that a goal is set to prove two
angles congruent by showing they are corresponding parts of congruent triangles.
Suppose all methods tried for proving congruent triangles fail and the angle con-
gruence is eventually proven by resorting to the supplementary angle postulate.
The mistake is not in the productions that proposed methods for proving the tri-
angles congruent. These would receive a neutral evaluation. The mistake was
in the production that set the subgoal of triangle congruence.

As in the composition case, generalization and discrimination are invoked
whenever possible in the ACT simulation. Whenever the program solves a new
problem it compares its solution to past solutions to check for generalization.
Similarly, whenever an error is made in the use of a production a comparison is
made to the last successful operation of that production and a discrimination is
formed. This undoubtedly implies a better memory for past instances than is
realistic psychologically.
7.4.4.4 Composition

I feel that composition has an important role to play in forming multiple
operator sequences just as it played an important role in the initial proceduraliza-
tion of operators. Figure 7-11 illustrates an example where composition can ap-
ply. The first production to apply in solving this problem would be:

216 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

P24: IF the goal is to prove ΔΧ = ZU
and ΔΧ is part of ΔΧΥΖ
and ZU is part of AUVW

THEN the subgoal is to prove ΔΧΥΖ = AUVW

This production would set as a subgoal to prove AABC = ADBC. At this point
the following production might apply:

P25: IF the goal is to prove ΔΧΥΖ = AUVW
and XY = UV
and ZX = WU

THEN the subgoal is to prove YZ = VW

GIVEN: AB SDB
CA-CD

PROVE Z-A-Z-D

C

Figure 7-11: Problem leading to a composition.

This production, applied to the situation in Figure 7-11, would set as the
subgoal to prove BC = BC as a step on the way to using SSS. At this point,
the following production would apply:

P26: IF the goal is to prove ΧΫ = ΧΫ
THEN this may be concluded by reflexivity

This production would add BC = BC and allow the following production to ap-
ply:

P27: IF the goal is to prove ΔΧΥΖ = AUVW
and XY s UV
and YZ as VW
and ZX = WU

THEN the goal may be concluded by SSS

ANDERSON 217

where XY = AB, UV = DB, YZ = BC, VW = BC, ZX = CA, and WU =
CD. This adds the information that AABC = ADBC. Finally, the following
production will apply which recognizes that the desired conclusion is now es-
tablished:

P28: IF the goal to prove Z.X = /-\J
and ΔΧΥΖ = AUVW

THEN the goal may be concluded because of congruent parts of congruent triangles

The composition process, operating on this sequence of productions, would even-
tually produce a production of the form:

P29: IF the goal is to prove Lk = ΔΌ
and ΔΑ is part of AABC
and £ D is part of ADBC
and AB = DB
and CA = DC

THEN conclude AB = AB by reflexivity
and conclude AABC = ADBC by SSS
and conclude the goal because of congruent parts of congruent triangles

The variables in this production have been named to correspond to the terms in
Figure 7-11 for purposes of readability. This production would immediately
recognize the solution to a problem like that in Figure 7-11.

7.5 SUMMARY OF GEOMETRY LEARNING

It would be useful to summarize the student's progress as he gathers more
experience and becomes more expert at generating proofs in geometry. There
are two initial sources of information. There are the postulates, theorems, and
definitions that he reads in the textbook instructions. The second source is the
examples of worked out problems (either solved in the text or by the student
himself). The rules are declaratively encoded into a schema-like form to which
general problem-solving productions can apply. As discussed, the rules in this
form are applied in a piecemeal way. The twin processes of knowledge compila-
tion, composition and proceduralization, eventually transform each rule into a
procedural form in which each rule is embodied by a production.

The examples can be used through analogy to guide the solution of
problems. Solution by analogy involves interpretive processing of the examples
much as the initial use of the general rules. However, as noted, specific ex-
amples are very limited in their range of applicability. The processes of com-
pilation and generalization applied to these examples can lead the student to the
same kind of general, proceduralized, unitary operators as can compilation ap-
plied to the rules. To the extent that generalization leaves in features of the
original problems, the operators from this source might not be as general as the

218 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY

operators derived directly from the rules, but rather will remain tuned to specific
problem characteristics.

Finally, the processes of discrimination and composition create larger
multiple-inference operators which are much more discriminant in their range of
applicability. In the extreme, special rules could evolve that outline full proof
trees for certain kinds of problems. To the extent that new problems fit the
specifications of these advanced operators, solution will be quick and efficient.
However, to the extent that new problems pose novel configurations of features
not covered by the advanced operators, the student will have to fall back to the
slower and more general operators for working backwards. The view of exper-
tise developed here, then, is very much the one that was developed for chess
[Chase & Simon, 1973; Simon & Gilmartin, 1973]; that is, experts in geometry

proof generation have simply encoded many special case rules.

ACKNOWLEDGMENTS

This research is supported by grant IST-80-15357 from the National
Science Foundation.

REFERENCES

Anderson, J. R., Language, Memory, and Thought, Lawrence Erlbaum Associates, Hillsdale, NJ,
1976.

Anderson, J. R., "A theory of language acquisition based on general learning mechanisms," Proceed-
ings of the Seventh International Joint Conference on Artificial Intelligence, IJCAI, Van-
couver, British Columbia, August 1981.

Anderson, J. R. and Kline, P., "Design of a production system," SIGART Newsletter, June 1977.

Anderson, J. R., Kline, P. and Lewis, C , "A production system model for language processing,"
Cognitive Processes in Comprehension, Carpenter, P. and Just, M. (Eds.), Lawrence Erlbaum
Associates, Hillsdale, NJ, 1977.

Anderson, J. R., Kline, P. J. and Beasley, C. M., "A general learning theory and its application to
schema abstraction," The Psychology of Learning and Motivation, Bower, G. H. (Ed.),
Academic Press, 1979.

Chase, W. G. and Simon, H. A., "The mind's eye in chess," Visual Information Processing, Chase,
W. G. (Ed.), Academic Press, New York, NY, 1973.

Jurgenson, R. C , Donnelly, A. J., Maier, J. E. and Rising, G. R., Geometry, Houghton Mifflin
Company, Boston, MA, 1975.

Kline, P. J., "The superiority of relative criteria in partial matching and generalization," Proceedings
of the Seventh International Joint Conference on Artificial Intelligence, IJCAI, Vancouver,
British Columbia, August 1981.

ANDERSON 219

Neves, D. and Anderson, J. R., "Knowledge compilation: Mechanisms for the automatization of
cognitive skills," Cognitive Skills and Their Acquisition, Anderson, J. R. (Ed.), Lawrence
Erlbaum Associates, Hillsdale, NJ, 1981.

Simon, H. A. and Gilmartin, K., "A simulation of memory for chess positions," Cognitive Psychol-
ogy, Vol. 5, pp. 29-46, 1973.

8

USING PROOFS AND

REFUTATIONS TO

LEARN FROM EXPERIENCE
Frederick Hayes-Roth

Teknowledge Inc.

ABSTRACT

To learn, a learner needs to formulate plans, monitor the plan execution to
detect violated expectations, and then diagnose and rectify errors which the dis-
continuing data reveal. In this paper, five heuristic methods are presented for
repairing flawed beliefs. These beliefs are considered as theories that predict
effects of actions. Theories presuppose particular structural characteristics.
When data disconfirm a theory, the heuristics proposed suggest specific ways to
remedy the theory, including restricting the conditions for invoking the theory
and weakening the theory's predictions. The five methods accomplish retraction,
exclusion, avoidance, assurance and inclusion of outcomes that disconfirm a
theory's predictions. Each proposed theory fix produces as a by-product new
domain concepts that capture environmental characteristics of instrumental value
to the learner. The techniques proposed here provide the first analytical methods
for constructing new knowledge. They extend and make practical the ideas of
proofs and refutations originally introduced by Lakatos.

8.1 INTRODUCTION

Much of what we call "intelligence" has evolved so that creatures who pos-
sess it can plan successfully to achieve goals. Goal attainment requires an ability
to deduce a plan of action that should achieve the goal and an ability to carry out
planned actions. Ordinary creatures must acquire at least some of these abilities
during their lifetimes because they do not possess them at birth. This acquisition
process is what we call "learning". Intelligent creatures learn to plan effectively.

Learning to plan effectively is difficult, because the learner possesses in-

221

222 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

complete knowledge. The learner's knowledge of the world evolves gradually in
response to its experiences. At any stage in its cognitive development, the
learner possesses a limited set of beliefs about the world; an accurate and com-
prehensive characterization of the world would require vastly more. Unless the
learner's environment adheres to a small number of simple laws, the learner can
only develop an approximate understanding of environmental behavior. Since no
natural habitat satisfies this constraint, natural learning systems always produce
incomplete and error-ridden knowledge. The learner cannot avoid occasional
mistakes.

In this paper, I describe learning methods that can rectify error-ridden
knowledge and extend the range of its applicability by generating new concepts.
In response to a failed plan, these methods suggest ways to diagnose and correct
problematic beliefs. These corrections generally improve the learner's
knowledge by eliminating sources of error. Each proposed modification changes
some aspect of the learner's erroneous knowledge so that similar plan failures do
not recur. Five different ways to repair knowledge will be described.

Henceforth, we will focus on machine learning and refer to a learning
program, rather than a natural organism. The learning entity we will consider is
called TL (the learner). TL plans to achieve its goals and employs heuristic
methods to rectify its erroneous knowledge. This paper focuses on TL's learning
heuristics. The proposed heuristics extend and operationalize earlier, related
ideas developed by Lakatos [1976]. Lakatos describes how mathematicians itera-
tively formulate concepts, prove theorems about these concepts, and confront
refutations that force them to revise their concepts and theorems. His narrative
account illuminates only the most superficial features of this learning cycle. By
contrast, the heuristic methods discussed in this paper provide mechanizable
procedures to reformulate concepts as needed in order to rectify and salvage dis-
confirmed theories.

8.2 THE LEARNING CYCLE

The learning cycle consists of several phases (see Figure 8-1). First, TL
formulates a plan to achieve some goal. In this phase, TL uses its knowledge to
develop causal chains from starting conditions to goal attainment. I will call the
plan justified if, according to TL's assumptions and theories, TL's planned ac-
tions logically entail attainment of the goal. If TL can "prove" that the planned
actions will achieve the plan's goals conditional only upon TL's assumptions and

HAYES-ROTH 223

theories, I will say TL has "justified" its plan.1

Environment

Goals-
Planning

and
projection

-► Plans

- ♦ ' Expectations

■♦· Plan rationales

Theories

Theory
Rectification

Plan
execution ► Outcomes

Buggy
theories

Plan
diagnosis

Figure 8-1: The Learning Cycle

The failure of a justified plan to achieve its goal reveals an error in TL's
knowledge. In particular, a disconfirmed plan reveals a localized fault in the

'One reviewer felt that this definition, although informal, nonetheless was too strong. It seemed to
preclude his informal approach, which often justifies a plan by noting it "worked once or twice"
before. However, even such a "weak" justification fits the scheme employed in this paper. The
reviewer's theory and its proof are shown below:

Theory: If I execute plan P, I will achieve goal G.

Proof:

1. Plan P has achieved goal G once or twice before (given,
assumption).

2. Any plan which has achieved a goal once or twice before will
work successfully again (given, theory).

3. If I execute plan P, I will achieve goal G (follows from 1 and
2).

224 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

plan's "proof, that is, a bug in the plan's rationale (or justification). The
methods proposed in this paper localize the fault within the rationale and debug
the plan by fixing the unit of knowledge responsible for the fault.

Theory T

Has Parts:

Assumed Conditions (Prerequisites)
Planned Actions
Predicted Effects (Consequents)

Relations:

For all situations s, there exists a subsequent situation s \
where CT(s) Λ Perform(AT, s) Φ ET(s')

Figure 8-2: A unit of knowledge, called a "theory".

Each unit of TL's knowledge is modeled in a uniform and simple way, as
indicated in Figure 8-2. Each knowledge unit contains three parts: assumed con-
ditions which the unit prerequires, planned actions for TL, and predicted effects
of the plan. When the theory includes no planned actions, its predicted effects
correspond to theoretical consequents of the theory's antecedents. In essence, a
knowledge unit predicts the effects of actions which are conditional on some
prerequisites. Because of their predictiveness, I refer to all such units of
knowledge as theories.2 By definition, TL acts in accordance with its theories.
TL plans to make desired outcomes predictable. TL justifies its plans by
developing rationales that support the expectation of goal attainment. As long as
the environment satisfies the prerequisites of TL's plans, TL rationally expects to
achieve its goals by following its plans.

Inevitably, plans fail. Failures derive from several different sources: (i) a
plan may actually be unjustifiable with respect to TL's current theories; (H) a
previously justified plan may not have adapted to subsequent changes in theories
on which it depends; or (Hi) the plan's current rationale is faulty. In the first
case, to repair the faulty plan, TL should develop a plan rationale that shows
how the goals of the plan derive from the plan's assumed conditions and actions.
Thus, learning in this case requires only ordinary methods of problem-solving
and deduction. In the second case, TL should revise the plan's rationale to con-
form to TL's current theories. In case (Hi), however, TL must recognize that the

2I realize that this terminology conflicts with conventional usage of the word theory. However, none
of the alternatives seems more desirable. These include belief, conjecture, hypothesis, supposition,
assumption, heuristic, conditional, and unit. The proposed term theory captures the central feature of
this type of belief: it is part of à systematic body of knowledge supporting a wide class of inferences.

AT

ET

HAYES-ROTH 225

plan's failure refutes one or more of TL's theories. TL must identify the impli-
cated theory, analyze the possible theoretical flaws, and formulate and adopt one
or more theory repairs that circumvent the flaws. How this may be done is the
subject of the next section.

8.3 FIVE HEURISTICS FOR RECTIFYING REFUTED THEORIES

In this section, I describe five heuristics for rectifying refuted theories.
The five learning methods will be described first in general terms, and later in
more detail. Each technique prescribes one way to modify a theory which has
proved faulty; the theory's faultiness is manifested by the fact that although its
assumed conditions were satisfied and TL successfully executed its prescribed ac-
tions, if any, the theory predicted some effects that failed to materialize. Any
situation which exhibits these features refutes the theory and is called a coun-
terexample. The proposed learning methods presuppose that every theory's con-
ditions are accurately observable, which is a strong assumption. Learning in
situations that violate this assumption lies beyond the scope of this paper. A
brief description of each learning method follows.

1. Retraction Method: Restricting the theory's predictions to be consistent
with observations. This method revises the theory so it no longer predicts
those effects that were empirically disconfirmed. One specific, operational
implementation of this method replaces the current theory's predicted ef-
fects by predictions which generalize both the original predicted effects and
the empirically observed, disconfirming effects. Thus, this method rec-
tifies a theory by retracting those predictions which do not conform with
observations.

2. Exclusion Method: Barring the theory from applying to the current situa-
tion. This method revises a faulty theory so its prerequisites exclude the
theory from applying in situations like the current one. This is the
"Monster-barring" method of Lakatos. TL chooses a feature that charac-
terizes the disconfirming situation and disallows the theory's application in
future situations with that feature. The simplest operational implemen-
tation of this method revises the theory by conjoining to its prerequisites
the negated description of the disconfirming situation. This method rec-
tifies a theory by preventing it from making the same error in similar fu-
ture situations.

3. Avoidance Method: Ruling out situations that predictably deny the
theory's predictions. This method modifies a refuted theory by incorporat-
ing prerequisites that preclude theory disconfirmations like the current one.
When faced with a refuted theory, TL deduces from its other current
theories sufficient antecedents of the situational events that empirically dis-
confirmed the theory's expectations. These sufficient antecedents define
situation predicates which TL believes can guarantee the theory will make

226 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

faulty predictions. TL then revises the refuted theory by excluding from
the theory's domain of applicability all situations that exhibit these suf-
ficient conditions. The simplest operational implementation of this method
revises the theory by conjoining to its prerequisites the negation of one of
these predicates. In doing so, TL rectifies the faulty theory by restricting
it from applying to situations that TL's unrefuted theories imply would
surely disconfirm it.

4. Assurance Method: Ruling in situations that predictably assure the
theory's entailments. This method is analogous to the previous one. In
this case, the method modifies a refuted theory by incorporating prere-
quisites that insure the realizations of the theory's predicted effects. When
faced with a refuted theory, TL deduces from its other current theories an-
tecedents which seem to guarantee attainment of the predicted but discon-
firmed effect. These sufficient antecedents define situational predicates
that assure confirmation of the theory's predictions. TL then revises the
refuted theory by excluding from the theory's domain of application all
situations which do not exhibit these sufficient conditions. The simplest
operationalization of this method revises the theory by conjoining to its
prerequisites one of these predicates. By doing so, TL rectifies the faulty
theory by restricting its applications to those situations that TL's unrefuted
theories imply will guarantee successful outcomes.

5. Inclusion Method: Restricting the theory by ruling in confirming cases.
This method rectifies a faulty theory by specializing it to those few special
cases where it seems to make valid predictions. When faced with par-
ticular situations that refute a theory, TL may modify the theory to rule in
the numerous alternative situations in which the theory's predictions are
confirmed. In this manner, TL attempts to enumerate empirically the
situations in which the theory works. In the simplest operationalization of
this method, TL conjoins to the theory's planned actions a new set of alter-
native prerequisites or actions that TL believes correlate reliably with suc-
cessful outcomes. Based on empirical experience or simulated trials, TL
identifies those situations in which the theory's predictions do hold and
restricts the theory to apply to just these cases.
The remainder of the paper is organized as follows. In the next section, I

re-express the key definitions and learning methods symbolically. Subsequently,
the learning methods are illustrated by means of examples drawn from a simple
card game. In addition to exemplifying each of the five learning heuristics, I
show how rectifying theories produces new domain concepts. Problems of com-
putational approaches and implementation are discussed in the penultimate sec-
tion. In the last section, I attempt to explain the significance of this approach to
machine learning.

HAYES-ROTH 227

8.3.1 Symbolic Formulation of the Learning Problem and the Heuristics

I will attempt to formulate the learning heuristics as precisely as possible.
Both predicate calculus and lambda calculus help. However, the focus on ac-
tions and instrumental behaviors necessitates some underlying framework for
modeling time, causality, and the succession of states and situations. To avoid a
lengthy and complicated digression, I have chosen to adopt the simplest possible
framework as a foundation for defining the learning heuristics. These heuristics,
not the formalism for representing them, constitute the meat of this paper.

As a basis for the learning methods, I presuppose a real, observable,
dynamic world in which conditions vary continually. A time variable could be
used to index instantaneous world states if useful. A situation is a world state
spanning an interval of time during which observable events occur. A natural
ordering of situations arises from the temporal relationships among their con-
stituent events. In the ordinary way, I speak of one situation S' succeeding
another if its denoted world state immediately follows that denoted by S. The
prime symbol designates this successor relation.

Situations are abstractions conceived by an observer for pragmatic pur-
poses. Thus, I introduce distinguished situations as required. Typically, I speak
of a sequence of situations S, S', S", ... which represents a progression of world
states arising from events beyond TL's control. When TL actively affects
changes in world state, I will show TL's role by claiming that TL's performance
of some actions A brings about conditions E in the succeeding state S':

PERFORM(A,S) => E(S')
By assumption, predecessors and successors exist for all situations.

A theory T consists of (i) assumed conditions or prerequisites, denoted CT,
(ii) possibly some actions that TL is supposed to execute, which are denoted AT
and (Hi) some predicted effects or consequents, which are denoted ET. The
reader should interpret CT and ET as situational predicates and AT as a procedure
parameterized for a situation argument. If the theory specifies no actions, the
meaning of T is that, for all situations S, CT(S) => ET(S'). This type of theory
describes environmental events that do not depend on TL's own actions. When
AT is non-null, however, the theory represents the belief that successful execu-
tion of these actions in situations where CT(S) is true will guarantee the theory's
predicted effects, Ej(S'). We can denote this as, for all situations S:

CT(S) Λ PERFORM (AT, S) => ET(S') (1)
To justify a plan T, TL must prove the conditional expression in (1). TL does
this by assuming the validity of other theories and constructing a conventional
proof. Assumptions which are taken to be true without proof are degenerate
theories in which C and A are null. Every theory which is used to justify a
theory T is called a justification of T. Whenever a situation S satisfies the left-

228 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

hand side of (1), the theory's predicted effects are warranted expectations.3 If a
theory is justified and all of its justifications are satisfied by the current situation,
the theory's expectations are justified by that situation. In such a case, if the
situation denies the theory's expectations, the theory itself and at least one of its
justifications are refuted. That is, the theory and the corresponding justification
are faulty. The faulty justification can be identified by retracing the steps in the
proof to find one whose antecedents are satisfied but whose consequent is fal-
sified by the situation.4

To describe the learning heuristics, let's suppose the faulty theory is T,
such that (1) holds. Where no confusion arises, I will omit the subscript T from
the presentation. In particular, suppose that some situation S occurred that
satisfied the theory's left-hand side but where E(S) was false. I will denote by
D(S) a complete description of the situation S in which TL applied T, and denote
by D'(S') a complete description of the subsequent situation. Like C and E, D
and D' denote situational predicates. The five learning methods are operation-
alized as follows.

1. Retraction Method: Restricting the theory's predictions. To rectify T,
replace ET = (X (S) (E S)) by (X (S) (Ε' S)) where E' = a common
generalization of ET and D'. One specific way to compute E' is by form-
ing the lambda abstraction over constant S' of the maximal abstraction of
Er-(S') and D'(S') [Hayes-Roth & McDermott, 1978; Vere, 1975]. (X (S)
(E S)) is the LISP form for the predicate E with situation variable S.

2. Exclusion Method: Barring the theory from applying to the current situa-
tion. To rectify T, replace CT = (X (S) (C S)) by (X (S) (C S)) where C
= C Λ (~ D). This technique completely bars the current coun-
terexample. One could be less specific and bar any class of situations
analogous to that described by D. Any predicate d implied by D would
work as well. Specifically, an alternative rectification employs such a
weaker restriction to produce a more general theory. This is done by
making C ' = C A (~d) where D(S) Φ d(S).

3. Avoidance Method: Ruling out situations that predictably deny the
theory's predictions. To rectify T, replace CT = (X (S) (C S)) by (X (S)
(C S)) where C = C Λ P for some situation predicates P and Q,where
D(S) Φ Q(S) => -E(S ') and P(S) Φ ~Q(S). In words, TL must prevent
the theory from being applied when Q is satisfied, and prerequiring P is a

3Unwarranted expectations are predictions which lack this type of theory-based justification.

4This is the general problem of assigning "blame" in AI systems. The framework developed here
establishes sufficient conditions to insure that the problem is solvable. "Solving" the blame assign-
ment problem means making steady progress on improving faulty knowledge. The proposed methods
diagnose faulty theories effectively and generate refined theories that avoid making the same error
twice.

HAYES-ROTH 229

way to do that. To identify such a preventive predicate P, work backwards
from knowledge about Q(S), the feature known to deny ET(S')· If there is
a theory whose consequents include ~ Q , let its antecedent or left-hand side
(assumed conditions and actions) define P. Conversely, if some theory's
left-hand side is Q, let the negation of its right-hand side (R, its predicted
effects) define P. Because Q => R, ~R φ ~ Q , P = ~R φ ~Q as re-
quired.

4. Assurance Method: Ruling in situations that predictably assure the
theory's predictions. To rectify T, replace CT = (X(S) (C S)) by (X(S) (C
S)) where C = C Λ P for some P where D(S) => ~ET(S') Φ ~P(S) and
where CT(S) Λ PERFORM (AT, S) Λ P(S) => ET(S'), that is, conditional
on CT and AT, P should be sufficient for ET. As a simple variant of this
idea, TL can rectify T by adding actions to AT instead of, or in addition
to, adding to the assumed conditions. The performance of these additional
actions should be equivalent to guaranteeing P.

5. Inclusion Method: Restricting the theory by ruling in confirming cases.
To rectify T, replace CT = (λ (S) (C S)) by (λ (S) (C S)) where C is a
predicate that is satisfied by the descriptions of situations that confirmed T.
If these previous confirming situations are denoted Sj, S2, ..., Sn, the
simplest technique is to make C = C Λ (Dj V D2 V ... V Dn) where
each Dj is the situation description (predicate) of the corresponding Sj.
Subsequently, if the revised theory is refuted by S, a less general predicate
C" can be formed using either the version space method of Mitchell
[1978] or the counterfactual method of Vere [1980] to rule out the disaf-
firming S while ruling in the confirming situations Sj, ..., Sn.

8.3.2 Illustrating the Learning Heuristics

In this section, I illustrate the learning heuristics in a simple domain by
showing how TL rectifies an erroneous plan in a card game.

This example is drawn from the simple card game hearts. It illustrates a
bug which many players manifest in early stages of skill development. To un-
derstand the bug, the reader needs to understand a few rules of the game. The
game is played with three or four players who play clockwise around the table.
Initially, all the cards in the deck are divided among the players. The player
having the two of clubs plays first. The play consists of a sequence of tricks in
which each player plays one card in turn. Each player must play a card in the
same suit as the suit of the first card played in the trick, unless the player is void
in that suit. The player who plays the highest card in the suit led wins the trick
and leads the next trick. The player is charged for any points of the cards won
by that player. The queen of spades has 13 points and each heart has one. The
goal of the game is to take as few points as possible or to win all 26 possible
points (that is, "go low" or "shoot-the-moon").

The initial buggy plan TL developed is sketched below. Readers who

230 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

would like to see how this buggy plan can be operational ized automatically
should consult [Mostow, 1981].
Plan 1: Flush the queen of spades.
Effects: (1) I will force the player who has the

queen of spades to play that card.
(2) I will avoid taking 13 points.

Conditions: (1) I do not hold the queen of spades.
(2) The queen of spades has not been played.

Actions: First I win a trick to take the lead, and
whenever I lead a trick I play a spade.

8.3.3 Faults Revealed by the Violated Expectations of Plan 1

In the first plan, TL expects to force a player to play the queen of spades
and, thereby, avoid taking the queen. However, the following events occur:

TL plays the king of spades (KS).
Mary plays the queen of spades (QS).
John plays the three of spades (3S).

TL wins the trick.
TL takes 13 points.

The last event violates its expectation and reveals a faulty theory. The plan, as a
theory, is faulty. Its conditions and actions are satisfied, but one of its goal
assertions is denied. Each heuristic will now be illustrated as a method to im-
prove one of the theories originally used in deriving the unsuccessful plan.

1. Retraction Method: Restricting the theory's predictions. This method
prescribes amending the predicted effects of the plan. One simple way this
fix can be performed is by modifying the theory simply to exclude the
denied expectation. The amended theory is shown below. Underlines in-
dicate modified components of the plans.
Plan 2: Flush the queen of spades.
Effects: (1) I will force the player who has the

queen of spades to play it.
(2) ,., retracted ...

Conditions: (1) I do not hold the queen of spades.
(2) The queen of spades has not been played.

Actions: First I win a trick to take the lead, and
whenever I lead a trick I play a spade.

This particular plan plays a useful role in other strategic ways than those
for which the original plan was intended. For example, it would be useful
whenever TL wished to flush the queen, regardless of who takes the
points. Such a tactic is often used by a player who is willing to risk
shooting-the-moon if, and only if, he or she can win the queen of spades.

2. Exclusion Method: Barring the theory from applying to the current situa-
tion. This heuristic prescribes amending the conditions of the plan to ex-
clude the situation that revealed the bug. Perhaps, in this way the theory

HAYES-ROTH 231

can be incrementally refined to apply only when appropriate. In this case,
for example, TL can modify the previous plan to rule out the action it per-
formed. The revised plan in this case would be as follows:
Plan 3 : Flush the queen of spades .
E f f e c t s : (1) I w i l l force the p layer who has

the queen of spades to play i t .
(2) I w i l l avoid t ak ing 13 p o i n t s .

Condi t ions : (1) I do not hold the queen of spades .
(2) The queen of spades has not been played.
(3) I do not p lay the king of spades .

Act ions : F i r s t I win a t r i c k to take the l ead , and
whenever I l ead a t r i c k I play a spade.

Notice in this case the added condition (3) which bars TL from playing the
king of spades. This revised plan illustrates both the strengths and
weaknesses of this type of fix. This fix eliminates the particular problem
which motivated it, but the new plan is still faulty. Of course, if the same
type of disconfirmation arises later because TL plays an ace of spades, an
additional fix of the same type will lead to a bug-free plan. However, TL
is "lucky" to fix the plan in this way, because the fix has not been shown
to be causally connected to the denied assertion. For this reason, Lakatos
eschewed "monster-barring". Nevertheless, it can be quite constructive
and appropriate, as this example reveals.

3. Avoidance Method: Ruling out situations that predictably deny the
theory's predictions. This heuristic requires TL to reason about the prob-
able cause of the theory's failure. Why did the plan fail in this case? The
faulty assertion contended TL would avoid taking points. In the actual
situation, TL took 13 points because it won the trick and the queen of
spades was played in the trick. These events contributed to the denial of
the faulty assertion. From this, TL can infer at least two ways to preclude
this type of denial. One way prerequires that the queen is not played. The
other prerequires that TL does not win the trick. Given the overall objec-
tive of the plan, to flush the queen of spades, the first fix seems unproduc-
tive. So TL adopts the second fix, as shown below:
Plan 4: Flush the queen of spades .
E f f ec t s : (1) I w i l l force the p layer who has

the\queen of spades to play i t .
(2) I w i l l avoid t ak ing 13 p o i n t s .

Condi t ions : (1) I do not hold the queen of spades .
(2) The queen of spades has not been played.
(3) I do not win the t r i c k in which

the queen of spades i s p layed.
Act ions: F i r s t I win a t r i c k to take the lead , and

whenever I lead a t r i c k I play a spade.

In this case, TL has added another condition to exclude the misap-
plication of the earlier theory. TL can go farther however. Given the
rules of the game, which TL supposedly knows and represents as theories,

232 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

it can deduce sufficient conditions to achieve the new condition and posit
these as part of the theory.

This discussion presupposes non-trivial capabilities, including infer-
ring ways to preclude a denial and avoiding choices of fixes that interfere
with the plan objectives. I will defer these computational issues until Sec-
tion 8.4.

To deduce a sufficient condition of some proposition, deny that
proposition, deduce its consequents, and choose one of these. The nega-
tion of that consequent is a sufficient condition. That is, p is sufficient for
q means not q implies not p, hence not (not p) identifies a sufficient con-
dition. In this case, TL negates the new condition (3) to yield "I win the
trick in which the queen of spades is played". From this premise and the
rules of the game, it can infer that it must play the highest card in the suit
led. It negates this to produce the alternative plan shown below.
Plan 5: Flush the queen of spades.
Effects: (1) I will force the player who has

the queen of spades to play i t .
(2) I will avoid taking 13 points.

Conditions: (1) I do not hold the queen of spades.
(2) The queen of spades has not been played.

Actions: Firs t I win a t r ick to take the lead, and
whenever I lead a t r ick I play a spade
which i s not the highest spade.

The careful reader may have noticed that both illustrative fixes intro-
duced by method 3 have produced predicates that cannot be evaluated in
all situations. This helps motivate several observations. First, such in-
completely determinable predicates occur commonly in human knowledge.
Second, the knowledge produced by applying the method of avoidance is
both useful and vulnerable to refutation. The importance and frequent oc-
currence of this type of uncertain knowledge motivates other types of intel-
ligent planning, namely planning aimed at predicting the likely value of
uncertain predicates. For more on this subject, see [Mostow, 1981].
Assurance Method: Ruling in situations that predictably assure the
theory's predicted effects. This heuristic prescribes changing the erroneous
theory to insure that the disconfirmed expectation follows logically from
the assumptions. In this case, the disconfirmed expectation predicted that
TL would not take 13 points. However, TL did. Here, again, TL uses the
method of deducing sufficient conditions. It wants to find a sufficient con-
dition to guarantee "I will avoid taking 13 points". To do this, it negates
the assertions, infers consequents, and chooses one of these to negate and
prerequire. This leads to a chain of inferences as that shown below:
Premise: I do take 13 points.
Rule: The winner of the t r ick takes the

points in the t r ick .
Infer: I win the t r ick .

4.

HAYES-ROTH 233

Rule: The person who plays the highest card
in the suit led wins the trick.

Infer: I play highest card in the suit led.

Given: Mary plays the queen of spades.
Infer: I play a spade higher than the queen of

spades.

Negate: I play a spade lower than the queen of
spades.

As a consequence, TL can revise its theory as follows:
Plan 6: Flush the queen of spades .
E f f e c t s : (1) I w i l l force the p laye r who has

the queen of spades to play i t .
(2) I w i l l avoid t a k i n g 13 p o i n t s .

Condi t ions : (1) I do not hold the queen of spades .
(2) The queen of spades has not been played.

Act ions : F i r s t I win a t r i c k to take the l ead , and
whenever I l ead a t r i c k I play a spade
below the queen.

5. Inclusion Method: Restricting the theory by ruling in confirming cases.
This heuristic employs an empirical approach to plan debugging. It is
motivated by the possibility that an unfulfilled expectation may be caused
by one's own actions. In many cases, TL can experimentally or hypotheti-
cal^ evaluate the likely consequences of alternative actions to the ones it
actually performed when the counterexample arose. For example, it can
iteratively enumerate all possible actions it might have performed consis-
tent with its plan during the trick in which it took 13 points. Then, if any
of these alternatives avoids violating the expectation, it can modify its plan
to incorporate these alternatives as part of the plan.

For example, in this case, TL can enumerate all possible actions con-
sistent with its plan to lead spades. Suppose it had led the two of spades;
in this case, because Mary played the queen, TL would not have won the
trick or taken any points. Thus, the two of spades is an alternative that
insures the plan's assertions against denials arising from TL's own actions.
TL similarly evaluates all of the alternative spades, from two through ace,
consistent with its plan. Of these, ten alternatives avoid the refutation. So
the following plan is proposed.
Plan 7: Flush the queen of spades .
E f f e c t s : (1) I w i l l force the p laye r who has

the queen of spades to play i t .
(2) I w i l l avoid t ak ing 13 p o i n t s .

Condi t ions : (1) I do not hold the queen of spades .
(2) The queen of spades has not been p layed.

Act ions: F i r s t I win a t r i c k to take the l ead , and
whenever I l ead a t r i c k I p lay a spade
in {2S 1QS. jack of spades},

234 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

8.3.4 Rectified Theories Identify New Concepts

Concepts correspond to descriptive predicates, and many concepts arise be-
cause new predicates are needed to correctly specify theories. Much of our
knowledge corresponds to concepts identified in the process of rectifying faulty
theories. I point out two concepts among others that have emerged from the
rectifications of Plan 1 illustrated in the previous section. In Plans 6 and 7 these
concepts arose:

Concept 1: A spade below the queen.
Concept 2: A spade in the set {2S, 3S, ..., 10S, jack of spades}.

These two concepts were constructed because the faulty Plan 1 inadequately con-
strained its domain of applicability. These new concepts were synthesized by
different operational methods applied to existing knowledge. In fixing the plan
two different ways, TL characterized conditions under which the plan would
presumably work better than before. The two fixes both correspond to Lakatos'
notion of "lemma incorporation", because they make implicit assumptions ex-
plicit. What is interesting about these two fixes is that they are semantically
equivalent. The first corresponds to an intensional, non-enumerative definition
of the set which the second defines extensionally. The important thing is that
both concepts arose because of their instrumental value to the learner. The coin-
cidence in meaning between these two discoveries helps illuminate the tendency
of these different learning methods to converge on correct, useful characteriza-
tions of the domain.

The coincidence between these two new domain concepts helps convey
another aspect of discovery. Many coincidental relationships arise among con-
cepts in interesting domains. Lenat's AM program [Lenat, 1976] searches for
and exploits just such coincidences. The heuristics of AM provide additional
weak discovery methods that could be applied profitably to the concepts TL has
discovered. For example, generalizations of the concept "a spade below the
queen" will prove useful in the game of hearts. Among these I note "a card
below the highest point card in the current trick" and "a card below the highest
card in the current trick". Both of these concepts also happen to have instrumen-
tal value in this domain, and so will many others formed analogically from con-
cepts derived exclusively as a by-product of theory rectification.

8.4 COMPUTATIONAL PROBLEMS AND IMPLEMENTATION TECHNIQUES

A fully automated version of The Learner (TL) would require solutions to
several difficult computing problems. The perspective I have taken identifies
these five primary problems: (i) Operationalizing advice—TL must accept expert
advice and translate it into an initial working program; (ii) Justifying plans—TL
must record rationales for its initial operational plans along with expectations that

HAYES-ROTH 235

can trigger learning when violated; (Hi) Diagnosing faulty theories—TL must at-
tribute blame to specific theories and label those "faulty"; (iv) Rectifying
theories—TL must apply specific variants of the five learning heuristics to rectify
the faulty theories; (v) Assimilating new knowledge—TL must incorporate the
new theories into its knowledge base and reiterate the planning-performing-
learning cycle.

Full, effective solutions to all of these problems will require much ad-
ditional progress. My colleagues and I have attacked all of these tasks with
limited resources and have achieved limited results over the past few years. In
this section, I summarize our approaches and results. Where appropriate, I in-
dicate the most promising paths for additional research.

1. Operationalization. Most learning of interest to me begins when an in-
formed, experienced teacher (professional) advises a student (trainee). The
expert's knowledge is usually conveyed verbally. The learner receives a
string of verbal symbols that must be transformed into an executable
program. This can require many kinds of interpretive, heuristic, and
analytic techniques [Hayes-Roth, 1980, 1981; Mostow, 1981]. We have
called this transformation task operationalization. Operationalization is a
large, interesting problem that has barely been touched upon by previous
research.

In general, I suppose TL plans to achieve goals by performing
specific actions in particular circumstances. Each plan corresponds to one
of TL's theories and usually depends on subplans, which also correspond
to theories. During the process of operationalizing the initial advice, TL
generates these theory plans by reasoning about its current knowledge. By
reassembling existing theories, TL constructs plans that it expects to ach-
ieve goals. Only faulty reasoning or faulty theories will cause plan
failures, that is, failures to achieve goals of the plan.

Our previous approaches to operationalization still seem promising,
although the number and breadth of related tasks seems somewhat forbid-
ding. Because most expert knowledge consists of facts and heuristic rules,
operationalizing advice generally means understanding domain descriptions
and reasoning with these to fit heuristic rules into general problem-solving
methods. This requires an ability to analyze domain definitions and syn-
thesize heuristic computer programs consistent with these definitions.
During each analysis step, the operationalization process produces an inter-
mediate result that it can justify by citing the corresponding transformation
rule and the sources on which it operated. These justifications form the
rationale for the final, operational plans TL produces.

2. Justifying Plans and Generating Expectations. Operationalization and or-
dinary planning methods both can produce goal-seeking plans of the sort
TL uses. A plan rationale is a proof of the plan's apparent validity. Plan
proofs are typical by-products of planning efforts, but TL considers these

236 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

by-products as centrally important. While at Rand Corporation, I initiated
a project called the "Planners' Workbench" intended to develop a general
purpose system for recording plan rationales generated either by machine
or human planners.

Our approach to justifying plans involved a few basic insights. First,
recording plan rationales requires a language for plan elements, including
syntax, terms, expressions, and sentential operators. Through experimen-
tation, we found a variety of types of justifications arising in real planning
situations. The extensive variety raises doubts about the degree to which
human planning (or sophisticated machine planning) reduces to syntactic,
deductive reasoning. In general, human plans employ subjective justifica-
tions, frequently of the sort that several supporting reasons outweigh a set
of countervening arguments. Nevertheless, even these "mushy" arguments
could be formalized as assumptions which enter the plan rationale as
premises. While the extent of inductive and subjective reasoning surprised
everyone on our project, the learning methods proposed here could always
work effectively. However, the technical difficulty of recording plan
rationales emerged as a key problem.

Triggering plan diagnosis requires TL to recognize that outcomes vio-
late expectations and goal attainment, in particular. Thus, expected out-
comes must be articulated, and specific outcomes must be compared with
general expectations. Ordinarily, a plan addresses a particular goal which
TL can actively monitor. Often, too, plans participate in a hierarchical plan
structure. Each subplan's goal corresponds to an action or assumed con-
dition of its superior plan. Failing to achieve a subplan's goal causes a
breakdown during the plan's execution. A learning system needs to
monitor plan executions for such failures.

Expectations can be arbitrarily general, and the related task of
monitoring outcomes can be arbitrarily difficult. This highlights the impor-
tance of expectation-driven learning. The preceding paragraph cited one
example of a general sort of expectation monitoring, namely that failures in
plan execution implicate subplans for actions or prerequisites. The next
section discusses another type of useful, general expectation. That one
concerns a converse or dual of plan execution failures: goals should be
attained only when associated plans execute successfully.

3. Diagnosing Faulty Theories. TL needs to attribute blame to specific faulty
theories. This need motivates the whole approach of proofs, refutations,
and rectifications. TL uses a counterexample to an expected effect as a
basis for refuting the plan's rationale. Assuming (i) the rationale is or-
ganized as a syntactically valid proof and (ii) the predicates occurring in
the plan and its rationale can be evaluated, every counterexample impli-
cates one specific theory. This requires a systematic backchaining from
the faulty plan to the first inference in the proof with a disconfirmed con-
sequent in the presence of valid antecedent premises.

HAYES-ROTH 237

Computationally, this may be done in a variety of ways. The major
choice one faces is whether to precompute and store dependencies of
predicted effects upon antecedents or whether these dependencies should be
evaluated dynamically while monitoring plan outcomes.

The second assumption, that predicates permit accurate evaluation,
places a strong constraint on TL's capabilities. The earlier hearts examples
in this paper illustrate a variety of predicates that range from easily
evaluated to impossible to evaluate (at particular times). A predicate like
"the highest card in the suit led occurring in the current trick" generally
permits accurate evaluations only after all players play their cards in the
trick. Given the outcome of the trick, that predicate does permit evalua-
tion. Generally, we cannot know when the trick starts whether a particular
card will satisfy the predicate. Thus, TL must reason with uncertainty
while executing its plan. This in no way reduces the value of the proposed
learning methods. Uncertainty in action is a consequence of living with
incomplete knowledge in a dynamic world.

Of course, several means exist for reducing uncertainty and these
play major roles in intelligent behavior. A learner ought to recognize the
value of improving estimates of uncertain predicates and develop plans
toward that end. The steps of the learning cycle would apply to this type
of task, too.

4. Rectifying Theories. This paper has aimed at developing practical
procedures for fixing faulty theories. These heuristic methods presuppose
some computational capabilities which are not yet widely available in com-
ponent forms. As a result, it will take some effort to assemble a powerful
TL system. The primary capabilities required are symbolic deduction and
heuristic search. Many times, this paper has presupposed that TL em-
bodies these capabilities. That seems reasonable, because no new tech-
niques are required. On the other hand, experience in large AI applica-
tions shows repeatedly that considerable effort may be required to engineer
a practical solution using existing techniques. A practical application of
the five proposed learning heuristics will depend upon selection of a
specific problem domain and procedures tailored to the knowledge
representations and complexities of that domain.

A knowledge engineer who wants to build a version of TL for some
specific domain can choose from a variety of existing methods for the
deduction and heuristic search skills TL requires. As an example, consider
the third learning method discussed, avoidance. A TL program needs to
deduce sufficient conditions for plan failure and negate these by presup-
position. This deduction uses typical operators of predicate calculus,
general purpose program transformation rules, and possible domain-specific
transformations to reason from the description of the undesirable event to
its antecedents. The steps in this reasoning process reflect inferences of
both syntactic and semantic types, depending on whether domain-

238 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

independent or domain-dependent relationships are employed. When one
of TL's existing theories supports a reasoning step, the resulting rectifica-
tion depends on the supporting theory for its justification. Thus, the task
of producing a sufficient antecedent for a desired goal is best formulated as
a heuristic search with deductive and program transformational operators.
One path in this search tree eventually connects an antecedent clause to the
negated goal clause. Each link in this path reflects the application of a
transformation. Some of these transformations will introduce domain-
specific theories as a basis for relating adjacent clauses.

Rectification, because it is a heuristic search process, can produce al-
ternative fixes. Each alternative fix represents a plausible new theory.
Each new theory rests on other theories for its justification. Such a system
will require means for storing and applying alternatives and experimentally
evaluating them.

5. Assimilating New Knowledge. The proposed learning methods can
produce numerous fixes to each faulty theory. This will lead to a large
number of coexisting alternatives. This increases the complexity of all of
the five tasks in the learning cycle. Does this nullify the value of the
proposed methods? I don't think so, because this conclusion seems in-
evitable. No way exists which can reason with certainty about the best fix
to any faulty theory. Knowledge refinement is intrinsically a heuristic
problem.

Several familiar techniques could apply fruitfully to help control the
complexity which arises in this type of non-deterministic learning. These
techniques would reduce complexity by intelligently controlling the heuris-
tic search underlying knowledge refinement. A few pertinent examples in-
clude: (i) Preferring general theories to specific ones, because these have
greater utility; (ii) Seeking canonical representations of theories to reduce
duplication; (Hi) Testing new proposed theories by simulation prior to in-
corporating them into the knowledge base; (iv) Experimentally evaluating
alternative fixes in controlled situations to determine the most fruitful fix to
adopt; and (v) Preferring fixes with minimal intrinsic uncertainty, to min-
imize uncontrollable errors in application. I assume each of these heuris-
tics, as well as many others, can improve the performance of a TL system.
Without these types of restrictions, a TL system will almost certainly face
an uncontrollable combinatorial explosion.

8.5 CONCLUSIONS

The complexity of the real world precludes us from developing complete,
error-free, and consistent knowledge of any substantial domain. As a con-
sequence, we must always be learning. More specifically, we must always be
alert for opportunities to learn improved ways to predict the future and attain
goals. Opportunities arise whenever our current theories make refuted claims.

HAYES-ROTH 239

I have shown five heuristic methods for rectifying erroneous theories.
Each of these methods is an effective generator of new theories. Each refutation
leads to multiple new theories, and each method of fixing theories may be opera-
tionalized in more than one way. The proposed techniques constitute the first
practical operationalization of the method of proofs and refutations originally
suggested by Lakatos. In addition, I have shown how rectified theories manifest
new domain concepts, which can support other kinds of learning.

This framework suggests a potentially very important and practical ap-
proach to machine learning tasks. For machine learning, the proposed methods
provide a generator for improved theories and new concepts of instrumental
utility. As in other areas of AI, real success at a hard problem requires both a
generator and a good evaluator. This paper has provided an initial generator
without really contributing much to the problem of defining a good evaluator.
However, evaluation in this type of problem is inherently difficult, because one
can never know the value of a potential idea without employing it. This neces-
sitates either empirical or subjective approaches to evaluation. Because no
generally valid subjective scheme seems possible, an empirical approach to
evaluation seems unavoidable. Thus, learning and performance are of necessity
interwoven activities.

I have focused in this paper exclusively on things to be learned from
refutations of overly general theories with observable theoretical constructs. The
same methods, however, can be fruitfully applied to other types of learning
problems. In particular, I will describe briefly how these methods can rectify
overly specific theories.

An overly specific theory, by definition, fails to predict an event because
the theory's conditions bar the theory from applying to the current situation. In
short, the situation confirms the theory's predicted effects but not its conditions.
The learner can use the methods of proofs and rectifications here too. In this
case, a general expectation is violated that contends all events will accord with
some theory's expectations. That is, a theory's predicted outcomes should occur
only if the theory's conditions are satisfied. But this is equivalent to saying that
the theory's predicted effects (viewed as conditions) predict the theory's con-
ditions (viewed as expectations). Thus, each original theory is associated with a
second one, namely its converse.

When the five proposed heuristics are applied to refuted converses, they
rectify them and narrow their sufficient conditions. This has the dual effect of
narrowing the specification of the necessary conditions for the original theory.
Taken together, a theory and its converse define the necessary and sufficient con-
ditions for the theory's predicted effects.

In conclusion, it seems obvious that skill in learning, as is the case for so
many other types of expertise, depends heavily on the knowledge the learner al-
ready possesses. The methods discussed in this paper provide techniques for
using existing theories to construct better ones.

240 CHAPTER 8: LEARNING FROM PROOFS AND REFUTATIONS

ACKNOWLEDGMENTS

The author gratefully acknowledges the support of the National Science
Foundation and Rand's Project Air Force for the research upon which this paper
is based. Additional support has been provided by Teknowledge. I have
profited from collaborations with Jack Mostow and Phil Klahr and from con-
structive reviews by Barbara Hayes-Roth and the editors of this volume.

REFERENCES

Hayes-Roth, F. and McDermott, J., "An interference matching technique for inducing abstractions,"
CACM, Vol. 21, pp. 401-410, 1978.

Hayes-Roth, F., Klahr, P. and Mostow, D. J., "Knowledge acquisition, knowledge programming,
and knowledge refinement", Technical Report R-2540-NSF, The Rand Corporation, May
1980.

Hayes-Roth, F., Klahr, P., and Mostow, D. J., "Advice-taking and knowledge refinement: an
iterative view of skill acquisition," Skill Acquisition and Development, J. A. Anderson (Ed.),
Erlbaum, 1981.

Lakatos, I., Proofs and Refutations: The Logic of Mathematical Discovery, Cambridge University
Press, 1976.

Lenat, D. B., "AM: An artificial intelligence approach to discovery in mathematics as heuristic
search", Technical Report SAIL AIM-286, AI Lab, Stanford University, 1976.

Mitchell, T. M., Version spaces: an approach to concept learning, Ph.D. dissertation, Stanford
University, 1978.

Mostow, D. J., Mechanical transformation of task heuristics into operational procedures, Ph.D.
dissertation, Carnegie-Mellon University, Dept. of Computer Science, April 1981, (Available
asCMU-CS-81-113.).

♦

Vere, S. A., "Induction of concepts in the predicate calculus," Proceedings of the Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI, Tbilisi, USSR, 1975.

Vere, S. A., "Multilevel counterfactuals for generalizations of relational concepts and productions,"
Artificial Intelligence, Vol. 14, pp. 139-164, 1980.

9

THE ROLE OF HEURISTICS IN

LEARNING BY DISCOVERY:

THREE CASE STUDIES
Douglas B. Lenat

Stanford University

ABSTRACT

As artificial intelligence (AI) programs are called upon to exhibit increas-
ingly complex behaviors, their builders are faced with the growing task of insert-
ing more and more knowledge into the machine. One long-range solution is for
the program, by itself, to learn via discovery. The first case study presented,
AM, demonstrates that new domains of knowledge can be developed mechani-
cally by using heuristics. Yet as new domain concepts, facts, and conjectures
emerge, specific new heuristics, or informal judgmental rules, are needed. They
in turn can be discovered by using a body of heuristics for guidance. The
second case study, EURISKO, has already achieved some promising results in this
endeavor. If this process—using heuristics to guide "learning by discovery"—is
so powerful and simple, one wonders why, for instance, nature has not adopted
an analogous mechanism to guide evolution. Indeed, the final part of the article
is a speculation that evolution does function in that manner. In place of the
conventional Darwinian process of random mutation, we hypothesize a more
powerful plausible generation scheme.

9.1 MOTIVATION

The overall motivation of this paper comprises (i) a general interest in the
phenomena of learning and discovery, (ii) a specific concern that, as expert sys-
tems continue to increase in size and complexity, they must shoulder more of the
burden of their own organization, management, and content, and (Hi) a recog-
nition of the analogy between a machine learning and a species evolving. This
third point, the resemblance to biological evolution, is developed in Section 9.7.

243

244 CHAPTER 9: LEARNING BY DISCOVERY

Several recent programs in artificial intelligence (AI) perform complex
tasks demanding a large corpus of expert knowledge [Feigenbaum, 1977]. These
include, for example, the PROSPECTOR program for evaluating the mineral poten-
tial of a site, the MYCIN program for medical diagnosis, and the MOLGEN
program for planning experiments in molecular genetics. To construct such a
system, a knowledge engineer talks to a human expert, extracts domain-specific
knowledge, and adds it to a growing knowledge base usable by a computer
program (see Figure 9-1). The critical stage of this process, the limiting step, is
the transfer of expertise. From the program's point of view, the limitation is the
slow rate at which it acquires knowledge. This is the central problem facing
knowledge engineering today, the bottleneck of knowledge acquisition.

HUMAN
EXPERT

\ ^MblS6 E /KNOWLEDGE- BASED
/ ENG1NEER \PROGRAM

Figure 9-1: The bottleneck of knowledge acquisition is transfer of expertise. This comprises (i) the
expert's difficulty in articulating what he knows, and (ii) the impedance mismatch
between the concepts and vocabulary of the expert and the knowledge engineer.

Two possible solutions to this problem suggest themselves, although they
are not mutually exclusive. First, one might try somehow to widen the channel
joining expert to program, for example by building a sophisticated natural lan-
guage interface.

The difficulty with this is that the expert must communicate not merely the
"facts" of his field, but also the heuristics: the informal judgmental rules which
guide him. These are rarely thought about concretely, and almost never appear
in journal articles, textbooks or university courses. Thus, even with a wider
channel, the expert would have difficulty in verbalizing his heuristics.

The second possible solution is to sever the umbilicus entirely: eliminate
the knowledge engineer and the human expert, expose the program to the en-
vironment, and let it discover new knowledge on its own. Can this be done?
Since knowledge comprises both facts and heuristics, the question divides into
two parts: can new domain concepts and relationships be discovered, and can
new domain heuristics be discovered? This paper is addressed to these ques-
tions, and it presents evidence that the answers are affirmative.

Along the way, an elementary "theory of heuristics" accrues. Our initial
definition of a heuristic is: a piece of knowledge capable of suggesting plausible
actions to follow or implausible ones to avoid. In Section 9.3, it becomes ap-
parent that this is insufficient; for a body of heuristics to be effective (useful for
guiding rather than merely for rationalizing in hindsight), each heuristic must

file:///PROGRAM

LENAT 245

specify a situation or context in which its actions are especially appropriate or
inappropriate. The theory developed in Section 9.4 is based on this definition.

9.2 OVERVIEW

9.2.1 The Central Line of the Argument

1. New domains of knowledge δ can be developed by using heuristics.
Radically new concepts and relations connecting them can be discovered
by employing a large corpus of heuristics both to suggest plausible actions
and to prune implausible ones. To accomplish this requires heuristics of
varying levels of generality and power, an adequate representation for
knowledge, some initial hypotheses about the nature of domain δ, and the
ability to gather data and test conjectures about that domain.

2. As new domains of knowledge emerge and evolve, new heuristics are
needed. A field may change by the introduction of some new device,
theory, technique, paradigm, or observable phenomenon; each time it does
so, the corpus of heuristics useful for dealing with that field may also
change. Consider the body of heuristics useful in planning a trip from San
Francisco to London. Over the last century, many new ones have been
added, and many old ones have undergone revision.

3. New heuristics can be developed by using heuristics. The first two
points imply that new heuristics must be discovered. How is this done?
Since "heuristics" is a domain of knowledge, like electronics, or math-
ematics, or travel planning, perhaps all that is necessary is to set
δ = heuristics in point 1. That is, let the field of heuristics itself grow via
heuristic guidance. To do this would require many types of heuristics
(some quite general, some specific to dealing with other heuristics, etc.),
an adequate representation for heuristics, and some hypotheses about the
nature of heuristics.

4. As new domains of knowledge emerge and evolve, new representations
are needed. Just as the potency of a fixed body of heuristics decreases as
we move into new fields, so, too, does the potency of whatever scheme is
being used to represent knowledge. Representations must evolve as
domain knowledge accrues.

5. New representations can be developed by using heuristics. Points 1 and
4 imply that new representations for knowledge must be devised from time
to time, and that existing schemes must change. How can this happen?
Since "representation of knowledge" is a field, just as is mathematics, or
electronics, or heuristics, or travel planning, perhaps we can somehow set
δ = representation in point 1. That is, allow heuristics to manage the
development of new representations.
The final point is that there is no sixth point to make. The preceding five

246 CHAPTER 9: LEARNING BY DISCOVERY

statements comprise a research program to follow, one plan of attack upon the
central problem, the bottleneck of automatic knowledge acquisition.

Other directions of attack are promising, and are being pursued vigorously
by several AI researchers. For most fields, some necessary component required
by point 1 above is missing (for example, the automatic acquisition of data is
awkward or impossible). In such cases, the human expert must be preserved "in
the loop" of Figure 9-1. Any aids for interviewing the expert are then quite
important, tools which facilitate the manual knowledge acquisition process
depicted in Figure 9-1. Indeed, much recent AI activity focuses on developing
such tools: AGE, EMYCIN, EXPERT, HEARSAYIII, RLL, ROGET, ROSIE, and the

various knowledge representation languages.
This chapter presents work to date, by the author, along the research

program outlined in Table 9-1 Although the development parallels the ordering
given therein, the amount of space devoted to each point is not uniform. Much
of the paper is concerned with recounting the experience of building AM, a com-
puter program which searches for interesting new concepts and conjectures in
elementary mathematics (point 1; see Table 9-1). The analysis of AM's eventual
demise provides an illustration of 2. Much of the remainder is used to develop
the rudiments of a theory of heuristics, which theory is required for 3. The
second case study, EURISKO, is a program illustrating 3, 4, and 5.

The resemblance between a computer program attempting to learn about
and master its environment, and a species attempting to evolve viably, is quite
strong. DNA can be considered a program for producing and maintaining an
organism, in which case evolution is mapped into the process we call automatic
programming. Early experiences with automatic programming have shown just
how weak a method random mutation is for modifying large, complex programs.
Significant success was achieved only by incorporating a large amount of
knowledge, including much heuristic knowledge, to guide the mutation process.
The final case study of this paper enlarges this analogy, proposing that nature
may already have happened upon a heuristically-guided mechanism for guiding
evolution. By now, evolution may be a "plausible generate and test" process,
rather than the strict Darwinian "random generate and test". Drawing upon ex-
periences with EURISKO, we extend this to include the speculation that even the
mutation and development of new heuristics for evolution are by now under
heuristic control.

Table 9-1: Automatic knowledge acquisition via discovery: The Research Program.

1. New domains of knowledge can be developed by using heuristics.
2. As new domains of knowledge emerge and evolve, new heuristics are needed.
3. New heuristics can be developed by using heuristics.
4. As new domains of knowledge emerge and evolve, new representations are needed.
5. New representations can be developed by using heuristics.

LENAT 247

9.2.2 Controlling the Use of Heuristic4Knowledge

There is an implied "control structure" for the processes of using and ac-
quiring knowledge (solving and proposing problems, using and discovering
heuristics, choosing and changing representations, and so on). In fact, it is a
nontrivial assumption that a single control loop is powerful enough to manage
both types of processes. Why assume this? Our experiences with expert sys-
tems in the past [Feigenbaum, 1977] have taught us that the power lies in the
knowledge, not in the inference engine.

What is that topmost control loop? It assumes that there is a large corpus
of heuristics for choosing (and shifting between) representations. From time to
time, some of these heuristics evaluate how well the current representations are
performing; for example, is there now some operation which is performed very
frequently, but which is notoriously slow in the current representation? At any
moment, if the representations used seem to be performing suboptimally, some
attention will be focused on the problem of shifting to other ones, maintaining
the same knowledge simultaneously in multiple representations, devising whole
new systems of representation, etc. Similarly, we assume there are several
heuristics which monitor the adequacy of the existing stock of heuristics, and, as
need arises, formulate (and eventually work on and solve) tasks of the form,
"Diagonalization is used heavily, but has no heuristics associated with it; try to
find some new specific heuristics for dealing with diagonalization." A typical
rule for working on such a task might say, "To find heuristics specific to C, try
to analogize heuristics specific to concepts which were discovered the same way
that C was discovered."

It is assumed that these representation heuristics and heuristic heuristics
have run for a while, and the system is in a kind of equilibrium. The represen-
tations employed are well suited to the tasks being performed, and the heuristics
being followed serve as quite effective guides for "plausible move generation"
and "implausible move elimination". The system now proceeds for a while
along its object-level pursuits, whatever they may be—proving theorems in plane
geometry, discovering new concepts in programming, and so on. Gradually, the
object level may evolve; new concepts will be uncovered and focused upon, new
laboratory techniques will be discovered, long-standing open questions will be
answered, and so on. As this occurs, the old representations for knowledge, and
the old set of guiding heuristics, may become less ideal, less effective. This in
turn would be detected by some of the "meta"-heuristics discussed in the last
paragraph, and they would cause the system to recover its equilibrium, to search
for new representations and new heuristics to deal effectively once again with the
objects and operations at the object level (see Figure 9-2).

In other words, new concepts, conjectures, theorems, and so on, emerge
all the time; as they are investigated, some turn out to be useful and some turn
out to be dead ends. Using a fixed set of guiding heuristics, the rate at which
useful new discoveries are made will decline gradually over time; eventually it is

248 CHAPTER 9: LEARNING BY DISCOVERY

DEFINE NEW REPRESENTATIONS

AUGMENT THE REPRESENTATION

DEFINE AND STUDY HEURISTICS

DEFINE AND STUDY DOMAIN CONCEPTS

Figure 9-2: Implied control structure of discovery systems. As activities at one level decline in
efficacy, the system is forced to spend a little time at the next higher level before
proceeding.

worth pausing in the search for domain-specific knowledge, and turning instead
to the problem of finding new heuristics, perhaps by articulating and generalizing
from experiences in the task domain. The discoverer later returns to his original
task, armed with new and, he hopes, more powerful heuristics. This cycle of
looking for domain concepts, occasionally punctuated by an effort to find new
heuristics, continues until, gradually, it becomes harder and harder to find new
heuristics. At that point it becomes worthwhile to look for new kinds of slots,
attached procedures, assertions—in short, augmenting whatever the current
representation of knowledge is in the system. If even this begins to be inade-
quate, it may be worthwhile to explore for entirely new and different represen-
tations for knowledge, though this is an activity with which humans have had
very few successes to date.

The top level control structure is thus homeostatic, detecting and correcting
for any inappropriateness of representations employed or heuristics employed.
For these purposes, we believe it suffices to have (and use) a corpus of heuristics
for guidance. Of course that top level loop could itself be implicitly defined by
a set of heuristic rules, and we would expect such rules to change from time to
time, albeit very slowly. If, for example, no new concepts or operations were
defined at the object level for a long period of time, then the need for close
monitoring of the adequacy of the representations being employed would
evaporate. One important point is that it is not necessary to distinguish meta-
heuristics from object-level heuristics; they can be represented the same way,
they can be managed by the same interpreter, etc. For example, the very general

LENAT 249

recursive rule, "To specialize a complex construct, find the component using the
most resources, and replace it by several alternate specializations", applies to
specializing laboratory procedures, mathematical functions, heuristics (including
itself!), and representational schemes.

9.3 CASE STUDY 1 : THE AM PROGRAM; HEURISTICS USED TO DEVELOP
NEW KNOWLEDGE

9.3.1 How Discoveries Are Made

"How was X discovered?" When confronted with such a question, the
philosopher or scientist will often retreat behind the mystique of the all-seeing
I's: illumination, intuition and incubation. A different approach would be to
provide a rationalization, a scenario in which a researcher proceeds reasonably
from one step to the next, and ultimately synthesizes the discovery X. In order
for the scenario to be convincing, each step the researcher takes must be justified
as a plausible one. Such justifications are provided by citing heuristics, more or
less general rules of thumb, judgmental guides to what is and is not an ap-
propriate action in some situation.

For example, consider the heuristic in Table 9-2. It says that if a function
f takes a pair of A's as arguments, then it is often worth the time and energy to
define g(x) = f(x,x), that is, to see what happens when f s arguments coincide.
If f is multiplication, this new function turns out to be squaring; if f is addition,
g is doubling. If f is union or intersection, g is the identity function; if f is
subtraction or exclusive-or, g is identically zero. Thus we see how two useful
concepts (squaring, doubling) and four important conjectures might be discovered
by a researcher employing this simple heuristic.

Table 9-2: A heuristic which leads to useful concepts and conjectures.

IF f:AxA-> B,
THEN define g:A-> B as g(x) = f(x,x)

Can we apply this methodology to construct a computer program that at-
tempts to learn via discovery? To answer this, we present our first case study,
AM, a program which models one aspect of elementary mathematics research,
developing new concepts under the guidance of a large body of heuristic rules.
While finished, polished mathematics may look static and dry, mathematics "in
the making" is an empirical endeavor, fraught with search, uncertainty, massive
quantities of data, and the need for good judgment to guide the overall process.

The local heuristics communicate via an agenda mechanism, a global list
of tasks for the system to perform and reasons why each task is plausible. A
single task can direct AM to define a new concept, to explore some facet
(property, slot, attribute) of an existing concept, to examine some empirical data
for regularities, and so on. Repeatedly, the program selects from the agenda the
task having the best supporting reasons, and then executes it.

250 CHAPTER 9: LEARNING BY DISCOVERY

Each concept is represented internally as a data structure with a couple
dozen slots or facets, such as "Definition", "Examples" and "Worth"; see Tables
9-3 and 9-4 The notation "S: v" is used to indicate that the slot or property S has
value v. Thus "Extreme-ex: 2,3" in Table 9-3 means that 2 and 3 are extreme
examples of prime numbers. "Worth: 800" means that, on a scale of 0 to 1000,
the concept of prime numbers rates a value of 800. "Defined-using: Divisors-
of' means that the concept "Primes" was originally defined by using the pre-
existing concept "Divisors-of '.

Initially, most facets of most concepts are blank. There are 115 of these
structured modules provided initially, each one corresponding to an elementary
set-theoretic concept (for example, union). This provides a definite but immense
"space" which AM begins to explore, guided by a corpus of 250 heuristic rules.

Table 9-3: Frame-like representation for a static mathematical concept from AM. Note that of the
numbers examined for primeness so far, 840 satisfy the definition and 5000 do not.
Ten conjectures have been made about primes so far, and only three still appear to be
valid.

NAME: Primes
STATEMENT

English: Numbers with two divisors
SPECIALIZATIONS: Odd-primes, Small-primes, Pair-primes
GENERALIZATIONS: Positive-natural-numbers
IS-A: Set
EXAMPLES:

Extreme-exs: 2,3
Extreme-non-exs: 0,1
Typical-exs: 5,7,11,13,17,19
Typical-non-exs: 34, 100

CONJECTURES:
Good-Conjees: Unique-factorization, Formula-for-d(n)
Good-Conjec-Units: Times, Divisors-of, Exponentiate, Nos-with-3-divis, Squaring

ANALOGIES: Simple Groups
WORTH: 800
ORIGIN: Divisors-of-1 (Doubletons)

Defined-using: Divisors-of
Creation-date: 3/19/76 18:45

HISTORY:
N-Good-Examples: 840 N-Bad-Examples: 5000
N-Good-Conjectures: 3 N-Bad-Conjectures: 7

Some of the slots were filled in at the time the concept was created (for
example "Name", "Statement", "Is-a", "Worth" and "Origin"). Some of these
values changed with time ("Worth"). Other slots were incrementally updated to
reflect statistical records ("History"). Other slots were filled in only as the
results of AM executing a specific task ("Examples"), perhaps noticing a for-
tuitous regularity during that process ("Conjectures"). Some slots are
virtual—that is, they are not initially filled in; rather, they are defined in terms

LENAT 251

Table 9-4: Frame-like representation for a mathematical function from AM.

NAME: Compose
ABBREVIATION: - o -
STATEMENT

English: Compose two functions F and G into a new one FoG
DOMAIN: F, G are functions
IF-potentially-relevant: F, G are functions with known domain and range
IF-truly-relevant: Domain of F and Range of G have some intersection
IF-resources-available: at least 2 CPU seconds, at least 200 cells
THEN-add-task-to-agenda: Fill in entries for some slots of FoG
THEN-conjecture: Properties of F hold for FoG, Properties of G hold for FoG
THEN-modify-slots: Record FoG as an example of Compose
THEN-print-to-user: English(Compose)
THEN-define-new-concepts: Name FoG;

ORIGIN Compose F,G;
WORTH: Average(Worth(F),Worth(G))
DEFN: Append(Defn(G),Defn(F))
Avg-cpu-time: Plus(Avg-cpu(F),Avg-cpu(G))
IF-Potentially-Rele: If-Potentially-Rele(G)
IF-Truly-Rele: If-Truly-Rele(G)

CODED-IF-PART: \(F,G) ... <LISP code which carries out the 3 IF- tests>
CODED-THEN-PART: \(F,G) ... <LISP code which carries out the 5 THEN- actions>
CODED-IF-THEN-PARTS: X(F,G) ... <LISP code uniting previous 2 slots>
COMPILED-CODED-IF-THEN-PARTS: #30876 <compiled version of previous slot>
SPECIALIZATIONS: Composition-of-bijections
GENERALIZATIONS: Combine-concepts

Immediate-Generalizations: Combine-functions
IS-A: Function
EXAMPLES:

Good-Examples: Compose Count and Divisors
Bad-Examples: Compose Count and Count

CONJECTURES: Composing F and F is sometimes very good and usually bad
ANALOGIES : Sequence
WORTH: 700
VIEW: Append
ORIGIN: Specialization of Append-concepts with slot = Defn

Defined-Using: Specialize
Creation-date: 11/4/75 03:18

HISTORY:
N-Good-Examples: 14 N-Bad-Examples: 19
N-Good-Conjectures:2 N-Bad-Conjectures: 1
N-Good-Tasks-Added: 57 N-Bad-Tasks-Added: 34
Avg-Cpu-Time: 1.4 seconds Avg-List-Cells: 160

252 CHAPTER 9: LEARNING BY DISCOVERY

of other, more primitive slots, and their values will be filled in the first time they
are asked for. (For example, consider "Compiled-coded-if-then-parts". The first
time an interpreter calls for its value, it gets shunted to the definition of that slot,
which says to find the value for "Coded-if-then-parts" and run the compiler on it.
That in turns spawns requests for both "Coded-if-part" and "Coded-then-part",
which in turn spawn requests for the various "If-" and "Then-" slots, which
(finally!) do indeed exist on the "Compose" concept.)

AM extends its knowledge base, ultimately rediscovering hundreds of com-
mon concepts (such as, numbers) and theorems (such as, unique factorization).
Some heuristics are used to select which specific facet of which specific concept
to explore next, while others are used to actually find some appropriate infor-
mation about the chosen facet. Other rules prompt AM to notice simple relation-
ships between known concepts, to define promising new concepts to investigate,
and to estimate how interesting each concept is. The AM program is more fully
described in [Davis & Lenat, 1981], from which some of this section's material
has been excerpted.

Before discussing how to synthesize a new theory, consider briefly how to
analyze one, how to construct a plausible chain of reasoning which terminates in
a given discovery. One can do this by working backwards, by reducing the
creative act to simpler and simpler creative acts.

Consider, as our first example of a math heuristic, the following plausible
strategy:

"If f is a function which transforms elements of A into elements of
B, then consider just those members of A which are transformed into ex-
tremal elements of B. This set is an interesting subset of A."
If f is "Intersection", this heuristic says it is worth considering pairs of sets

which map into extremal kinds of sets. Well, what's an extremal kind of set?
Perhaps we already know about extremely small sets, such as the empty set.
Then the heuristic would cause us to define the relationship of two sets having
empty intersection—that is, disjointness. The heuristic also causes us to inves-
tigate the other extreme, where sets overlap as much as possible—namely, the
relation subset.

If f is "Employed-as", then the above heuristic says it is worth defining,
naming, and studying the group of people with no jobs (zero is an extremely
small number of jobs to hold), and the group of people who hold down more
than one job (two is an extremely large number of jobs to hold). So this heuris-
tic leads to the defining of the concepts of unemployment and moonlighting.

If f is "Divisors-of", then the heuristic would suggest defining the set of
numbers with no divisors, the set of numbers with one divisor, with two
divisors, and with three divisors. The third of these four sets is the concept of
prime numbers. Other heuristics cause us to gather data, to do that by dumping
each number from 1 to 1000 into the appropriate set(s), to reject the first two
sets as too small, to notice that every number in the fourth set is a perfect

LENAT 253

square, to take their square roots, and, finally, to notice that they then coincide
precisely with the third set of numbers. Now that we have the definition of
primes, and we have found a surprising conjecture involving them, we shall say
that we have discovered them. (Note that we are nowhere near a proof of that
conjecture.)

So, applying the above heuristic rule actually reduces the task of "how in
the world might someone have invented the concept of prime numbers" to the
more elementary problem of "how in the world might someone have invented
divisors-of".

But suppose we know this general rule: "If f is an interesting function,
consider its inverse." It reduces the task of discovering divisors-of to the simpler
task of discovering multiplication. Eventually, this task reduces to the discovery
of very basic notions, like substitution, set-union, and equality. To explain how
a given researcher might have made a given discovery, such an analysis can be
continued until that inductive task is reduced to "discovering" notions which the
researcher already knew, which were his conceptual primitives. (See Figure
9-3.)

Suppose a large collection of these heuristic strategies has been assembled
(for example, by analyzing a great many discoveries and writing down new
heuristic rules whenever necessary). Instead of using them to explain how a
given idea might have evolved, one can imagine starting from a basic core of
knowledge and "running" the heuristics to generate new concepts. We're talking
about reversing the process described in the last few paragraphs; not how to ra-
tionalize discoveries in hindsight, but how to make them.

PRIMES

I
DIVISORS-OF

I
TIMES

PLUS CARTESIAN PRODUCT

Figure 9-3: Reducing each concept's discovery to that of a simpler one. Note that multiplication
can be discovered if the researcher knows either addition of numbers or Cartesian
products of sets.

254 CHAPTER 9: LEARNING BY DISCOVERY

Why, then, is the act of creation so cherished? If some significant dis-
coveries are merely one or two "heuristic applications" away from known con-
cepts, why are even one-step discoveries worth communicating and getting ex-
cited about? The answer is that the discoverer is moving upward in the tree, not
downward. He is not rationalizing, in hindsight, how a given discovery might
have been made; rather, he is groping outward into the unknown for some new
concept which seems to be useful or interesting. The downward, analytic search
is much more constrained than the upward, synthetic one. Discoverers move
upward; colonizers (axiomatizers and pedagogues) move downward. (See Figure
9-4.) Even in this limited situation, the researcher might apply the "Repeat"
heuristic to multiplication, and go off along the vector containing exponentiation,
hyper-exponentiation, and so on. Or he might apply "look at inverse of
extrema" to Divisors-of in several ways, for example looking at numbers with
very many divisors.

Once a discovery has been made, it is much easier to rationalize it in
hindsight, to find some path downward from it to known concepts, than it was to
make that discovery initially. Analysis (Figure 9-3) is less branchy than syn-
thesis (Figure 9-4). That is the explanation of the phenomenon we have all ex-
perienced after working for a long time on a problem, the feeling, "Why didn't I
solve that sooner!" When the reporter is other than ourselves, the feeling is more
like "I could have done that, that wasn't so difficult!" It is the phenomenon of
wondering how a magic trick ever fooled us, after we're told how it was per-
formed. It enables us to follow mathematical proofs with a false sense of con-
fidence, being quite unable to prove similar theorems. It is the reason why we
can use Polya's heuristics [Polya, 1945] to parse a discovery, to explain a
plausible route to it, yet feel very little guidance from them when faced with a
problem and a blank piece of paper.

There is still that profusion of upward arrows to contend with. One of the
triumphs of AI has been finding the means to muffle a combinatorial explosion
of arrows. One must add some heuristic guidance criteria; that is, some ad-
ditional knowledge indicating which directions are expected to be the most
promising ones to follow, in any situation. So by a heuristic, from now on, we
shall mean a contingent piece of knowledge, such as the top entry in Table 9-5,
rather than an unconstrained Polya-esque maxim (Table 9-5b). The former is a
heuristic, the latter is an explosive.

There is a partial theory of intelligence here, which claims that discovery
can be adequately guided by a large collection of such heuristic rules.- It was to
test this hypothesis that we built and experimented with the AM program.

9.3.2 Constructing and Running the AM Program

AM consists of a large corpus of primitive mathematical concepts, each
with a few associated heuristics—situation/action rules which function as local
"plausible move generators". Some suggest tasks for the system to carry out,

LENAT 255

M/ \t/
PRIMES NUMBERS WITH MANY DIVISORS

DIVIS-OF EXPONENTIATION

PART TION TIMES

PLUS CARTESIAN PRODUCT

Figure 9-4: The more explosive upward search for new concepts.

Table 9-5: A contingent heuristic rule and an explosive one.

(a) IF the range of one operation has a large intersection with the domain of a second,
and they both have high worth,
and either there is a conjecture connecting them
or the range of the second operation has a large intersection

with the domain of the first,
THEN compose them and study the result.

(b) Compose two operations and study the result.

some suggest ways of satisfying a given task, and so on. AM's activities all
serve to expand AM itself, to enlarge upon a given body of mathematical
knowledge. To cope with the large size of the potential "search space" involved,
AM uses its heuristics as judgmental criteria to guide development in the most
promising direction. It appears that the process of inventing worthwhile, new (to
AM) concepts can be guided successfully using a collection of a few hundred
such heuristics.

Modular representation of concepts provides a convenient scheme for or-
ganizing the heuristics; for example, the following strategy fits into the
"Examples" facet of the "Predicate" concept:

"If, empirically, 10 times as many elements fail some predicate P, as
satisfy it, then some generalization (weakened version) of P might be more
interesting than P."

256 CHAPTER 9: LEARNING BY DISCOVERY

AM considers this suggestion after trying to fill in examples of each predicate
(function that always returns True or False). In fact, after AM attempts to find
examples of "Set-Equality", so few are found that AM decides to generalize that
predicate. The result is the creation of a new predicate which means "Has-the-
same-length-as"—that is, a rudimentary precursor to natural numbers.

AM is initially given a collection of 115 core concepts, with only a few
facets filled in for each concept. Its sole activity is to choose some facet of some
concept, and fill in that particular slot. In so doing, new notions will often
emerge. Uninteresting ones are forgotten, mildly interesting ones are kept as
parts of one facet of one concept, and very interesting ones are granted full
concept-module status. Each of these new modules has dozens of blank slots;
hence, the space of possible actions (blank facets to fill in) grows rapidly. The
same heuristics are used both to suggest new directions for investigation and to
limit attention, both to sprout and to prune.

The particular mathematical domains in which AM operates depend upon
the choice of initial concepts. Currently, AM begins with nothing but a scant
knowledge of concepts which Piaget might describe as prenumericah the set of
initially supplied concepts includes static structures (sets, bags, lists) and many
active operations (union, composition, canonize). Note that AM is not told any-
thing about proof, single-valued functions, or numbers. For each concept, we
supplied very little information besides its definition. In addition, AM contained
243 heuristic rules for proposing plausible new concepts, for filling in data about
concepts, and for evaluating concepts for "interestingness". Among them are the
two heuristics we saw earlier, for looking at the inverse of extrema and for look-
ing at the new function g(x) = d f f(x,x).

From this primitive basis, AM quickly discovered elementary numerical
concepts (corresponding to those we refer to as natural numbers, multiplication,
factors, and primes) and wandered around in the domain of elementary number
theory. "Discovering" a concept means that (i) AM recognized it as a distin-
guished entity (for example, by formulating its definition), and also (ii) AM
decided it was worth investigating, either because of the interesting way it was
formed, or because of surprising preliminary empirical results. AM was not
designed to prove anything, but it did conjecture many well-known relationships,
including de Morgan's laws and the unique factorization theorem.

AM was not able to discover any "new-to-mankind" mathematics purely on
its own, but has discovered several interesting notions hitherto unknown to the
author. A couple bits of new mathematics have been inspired by
AM—relationships involving highly composite numbers, which were noticed in
an unusual way by AM, which in turn led to dramatically shorter proofs of them.
AM also defined some well-known concepts in novel ways—for example, prime
pairs were defined by restricting addition to primes; that is, for which primes p,
q, r is it possible that p + q = r?

Everything that AM does can be viewed as testing its underlying body of
heuristic rules. Gradually, this knowledge becomes better organized, its implica-

LENAT 257

tions clearer. One benefit of actually constructing AM is that of using it as an
experimental vehicle upon which to test theories about learning and discovery;
one can vary the concepts AM starts with, vary the heuristics available, and so
on, and study the effects on AM's behavior. Several such experiments were per-
formed. One involved adding a couple dozen new concepts from an entirely
new domain, plane geometry. AM busied itself exploring elementary geometric
concepts, and was almost as productive there as in its original domain. New
geometric concepts were defined, and new conjectures formulated.

Perhaps the greatest difference between AM and typical heuristic search
procedures is that AM has no well-defined target concepts or target relationships.
Rather, its "goal criterion"—its sole aim—is to maximize the quality of the ac-
tivities it performs, the priority ratings of the top tasks on the agenda. It does
not matter precisely which definitions or conjectures AM discovers or misses, so
long as it spends its time on plausible tasks. For example, no stigma is attached
to the fact that AM never discovered real numbers; it was rather surprising that
AM managed to discover natural numbers! Even if it had not done that, it would
have been fine if AM had simply gone off and developed ideas in set theory.
The most similar phenomenon one can liken this "freedom from targets" to is
biological evolution. The latter parts of this chapter argue that this similarity is
neither coincidental nor merely metaphorical.

Let's take a moment to discuss the totality of the mathematics which AM
carried out. All of the discoveries mentioned below were made by AM working
by itself, with a human being observing its behavior. Most of the obvious set-
theory relations (for example, de Morgan's laws) were eventually uncovered.
AM never derived a formal notion of infinity, but it naively established conjec-
tures like "a set can never be a member of itself, and procedures for making
indefinitely large chains of new sets ("insert a set into itself). After this initial
period of exploration, AM decided that "equality" was worth generalizing, and
thereby discovered the relation "same-size-as". "Natural numbers" were based
on this, and soon most simple arithmetic operations were defined. Since ad-
dition arose as an analog to union, and multiplication as a repeated substitution
followed by a generalized kind of unioning, it came as quite a surprise when AM
noticed that they were related (namely, n + n = 2xn). AM later rediscovered mul-
tiplication in three other ways: as repeated addition, as the numeric analog of the
Cartesian product of sets, and by studying the cardinality of power sets. These
operations were defined in different ways, so it was an unexpected (to AM) dis-
covery when they all turned out to be equivalent. These surprises caused AM to
give the concept "Times" quite a high "Worth" rating. Exponentiation was
defined as repeated multiplication. AM never found any obvious properties of ex-
ponentiation, hence lost all interest in it.

Soon after defining multiplication, AM investigated the process of multiply-
ing a number by itself: squaring. The inverse of this turned out to be interesting,
and led to the definition of square-root. Perfect squares and perfect fourth-
powers were isolated. Many other numeric operations and kinds of numbers

258 CHAPTER 9: LEARNING BY DISCOVERY

were isolated: odds, evens, doubling, halving, and so on. The associativity and
commutativity of multiplication indicated that it could accept a "Bag" of numbers
as its argument. When AM defined the inverse operation corresponding to
"Times", this property allowed the definition to be, "any bag of numbers whose
product is rT. This was just the notion of factoring a number n. Minimally-
factorable numbers turned out to be what we call primes. Maximally-factorable
numbers were also thought to be interesting, and some astonishing properties
about them were conjectured, and ultimately proved by hand (by Knuth's hand).

AM conjectured the fundamental theorem of arithmetic (unique factorization
into primes) and Goldbach's conjecture (every even number greater than 2 is the
sum of two primes) in a surprisingly symmetric way. The unary representation
of numbers gave way to a representation as a bag of primes (based on unique
factorization), but AM never thought of exponential notation. Since the key con-
cepts of remainder, greater-than, greatest common divisor, and exponentiation
were never mastered, progress in number theory was arrested.

When a new base of geometric concepts was added, AM began finding
some additional general associations. In place of the strict definitions for the
equality of lines, angles, and triangles, came new definitions of concepts we
refer to as parallel, equal-measure, similar, congruent, translation, rotation, plus
many which have no common name (for example, the relationship of two tri-
angles sharing a common angle). An unexpected geometric interpretation of
Goldbach's conjecture was found: Given all angles of a prime number of
degrees, 0,1,2,3,5,7,11,...,179°, any angle between 0 and 180° can be ap-
proximated (to within 1°) as the sum of two of those angles.

During the course of its longest run (a couple hours), AM defined several
hundred concepts, about half of which were reasonable, and noticed hundreds of
simple relationships involving them, most of which were trivial. Each
"discovery" involved relying on over 30 heuristics, and almost all heuristics par-
ticipated in dozens of different discoveries; thus, the set of heuristics is not
merely "unwound" to produce the discoveries. Since the heuristics did lead to
the discoveries, they must in some sense be an encoding for them, but they are
not a conscious or (even in hindsight) obvious encoding. Skepticism of a
program's generality is necessary and healthy. Is AM's knowledge base "just
right"—that is, finely tuned to elicit this one chain of behaviors? The answer is
"No!" The whole point of this project is to show that a relatively small set of
general heuristics can guide a nontrivial discovery process. Each activity, each
task, was proposed by some heuristic rule, like "look for extreme cases of X,"
which was used time and time again, in many situations. It was not considered
fair to insert heuristic guidance which could "guide" only in a single situation.
Moreover, the set of heuristics, and the initial set of concepts, was decided upon
in advance, and there were very few additions or modifications to that
knowledge once we began to run the program.

To convey a bit of AM's flavor, we present an excerpt of the system run-
ning. It has been retouched, but less so than one might suppose (for example,

LENAT 259

AM actually printed out the font changing commands). It illustrates that AM is
not a theorem prover, nor is AM randomly manipulating entries in a knowledge
base, nor is it exhaustively searching any space. AM is carefully growing a net-
work of data structures representing mathematical concepts, by repeatedly using
heuristics both (i) for guidance in choosing a task to work on next, and (ii) for
providing methods to satisfy the chosen task. Although AM appears to have
reasonable natural language abilities, this is a typical AI illusion: most of the
phrases AM types are mere tokens, and the syntax which the user must obey is
unnaturally constrained. As a gauge of AM's abilities, the reader may be inter-
ested to know that Task 2 was to fill in examples of "Sets", AM defined "Natural
Numbers" during Task 32, and "Times" was defined during Task 122.

AM prints out phrases indicating what it is doing at each moment, and a
human being, referred to as the user, watches AM's activities. All the user's
comments are prefaced by "USER". Most of the concepts mentioned below are
self-explanatory. Potential jargon includes:

Bag: a multiset; a set which can have repeated elements.
Divisors-of: includes primes and nonprimes. Divisors-of(18) = {12 3 6 9 18}.
Task 65: F i l l i n g in examples of the fol lowing concept:

' D i v i s o r s - o f i
3 Reasons:
(1) No known examples for D iv i so r s -o f so f a r .
(2) Times, which i s r e l a t e d to Div i so r s -o f , i s now very i n t e r e s t i n g .
(3) Focus of a t t e n t i o n : AM r e c e n t l y def ined Div i so r s -o f .

26 examples found, in 9.2 seconds.
For i n s t a n c e : D iv i so r s -o f (6) ={1 2 3 6}.

Task 66: Considering numbers which have very small s e t s of
D iv i so r s -o f

2 Reasons:
(1) Worthwhile to look for extreme c a s e s .
(2) Focus of a t t e n t i o n : AM r e c e n t l y worked on Div i so r s -o f .

F i l l i n g in examples of numbers with 0 d i v i s o r s .
0 examples found, in 4 .0 seconds.
Conjecture: no numbers have 0 d i v i s o r s .

F i l l i n g in examples of numbers with 1 d i v i s o r s .
1 examples found, in 4 .0 seconds, e . g . : D i v i s o r s - o f (1) ={1}.
Conjecture: 1 i s the only number with 1 d i v i s o r .

F i l l i n g in examples of numbers with 2 d i v i s o r s .
24 examples found, in 4 .0 seconds, e . g . : D iv i so r s -o f (13) ={1 13}.
No obvious con j ec tu re . This kind of number mer i t s more s tudy .
Crea t ing a new concept: 'Numbers -wi th -2 -d iv i so r s . ι

F i l l i n g in examples of numbers with 3 d i v i s o r s .
11 examples found, in 4 .0 seconds, e . g . : D iv i so r s -o f (49) ={1 7 49}.
49 i s Odd and Per fec t Square. Checking i f e i t h e r always ho lds .

260 CHAPTER 9: LEARNING BY DISCOVERY

All numbers with 3 divisors are also Squares.! ! !
This kind of number merits more study.
Creating a new concept: 'Numbers-with-3-divisors.ι

Task 67: Considering the square-roots of
Numbers-with-3-divisors.

2 Reasons:
(1) Numbers-with-3-divisors are unexpectedly also perfect Squares.
(2) Focus of attention: AM recently worked on

Numbers-with-3-divisors.

All square-roots of Numbers-with-3-divisors seem to be
Numbers-with-2-divisors. For example,
Divisors-of (Square-root(169)) =Divisors-of(13) ={1 13}.

Formulating the converse to this statement.
Empirically, it seems to be true.
The square of each Number-with-2-divisors seems to be a
Number-with-3-divisors.
This is very unusual. (Chance of coincidence is < .001)
Boosting interestingness factor of the concepts involved:
Interestingness of 'Divisors-ofι raised from 300 to 400.
Interestingness of 'Numbers-with-2-divisorsi

raised from 100 to 600.
Interestingness of 'Numbers-with-3-divisorsi

raised from 200 to 700.

USER: Call the set of numbers with 2 divisors "Primes."

Task 68: Considering the squares of Numbers-with-3-divisors.
2 Reasons:

(1) Squares of Numbers-with-2-divisors were interesting.
(2) Focus of attention: AM recently worked on

Numbers-with-3-divisors.

The first task illustrated (Task 65) involves exploring the concept of
"divisors of a number". After tiring of finding examples of this relation, AM in-
vestigates extreme cases. That is, it wonders which numbers have very few or
very many divisors. Numbers with 0 or 1 divisor are essentially nonexistent, so
they're not found to be interesting. AM notices that numbers with 3 divisors
always seem to be squares of numbers with 2 divisors (primes). This raises the
interestingness of several concepts, including primes. Soon (Task 79), another
conjecture involving primes is noticed: many numbers seem to factor into
primes. This causes a new relation to be defined which associates, to a number
x, all prime factorizations of x. The first question AM asks about this relation is,
"Is it a function?" This question is the full statement of the unique factorization
conjecture: the fundamental theorem of arithmetic; namely, that each number has

LENAT 261

one, and only one, factorization into primes. AM recognized the value of this
relationship, and assigned it a high interestingness rating.

In a similar manner, though with lower hopes, it noticed some more
relationships involving primes, including Goldbach's conjecture. AM soon went
off examining cute but useless concepts such as "numbers which can be written
as the sum of a pair of primes, in only one way", "numbers which can be writ-
ten as the sum of a prime number of primes, in precisely a prime number of
ways", and "prime triples" (three consecutive odd numbers which are all prime).

As AM forayed into number theory, it had only heuristics from set theory
to guide it. For instance, when dealing with prime pairs (twin primes), there
were no specific heuristics relevant to them; they were defined in terms of
primes, which were defined in terms of divisors-of, which was defined in terms
of multiplication, which was defined in terms of addition, which was defined in
terms of set-union, which (finally!) had a few attached heuristics. Because it
lacked number theory heuristics embodying what we would call common sense
about arithmetic, AM's fraction of useless definitions went way up (numbers
which are both odd and even, prime triples, the conjecture that there is only one
prime triple (3,5,7) but without understanding why, and so on). Only the ad-
dition of specific number theory heuristics would forestall this type of collapse,
and even then merely temporarily.

There are two relevant conclusions from the AM research: (i) it is possible
for a body of heuristics to effectively guide a program in searching for new con-
cepts and conjectures involving them, and (ii) as new domains of knowledge
emerge, the old corpus of heuristics may not be adequate to serve as a guide in
those new domains; rather, new specific heuristics are necessary. Notice that
these are also the first two points in the argument of this paper (see Table 9-1).

9.3.3 As New Task Domains Emerge, So Too Do New Heuristics

Let's continue to explore the notion of a heuristic having a domain of
relevance. Consider the following very special situation: you are asked to guess
whether a conjecture is true or false. What heuristics are useful in guiding you
to a decision rapidly? If the conjecture is in the field of plane geometry, one
very powerful technique is to draw a diagram and see whether it holds in that
analogic model. But if the conjecture is in the field of point-set topology, or
real analysis, this is a terrible heuristic which will often lead you into error. For
instance, if the conjecture mentions a function, then any diagram you draw will
probably picture a function which is everywhere infinitely differentiable, even if
such is never stated in the conjecture's premises. As a result, many properties
will hold in your diagram that can never be proven from the conjecture's
premises. The appropriate technique in topology or analysis is to pull out your
book of 101 favorite counterexamples, and see whether any of them violate the
conjecture. If it passes all of them, then you may guess it is probably true.

This example dramatizes the idea that the power or utility of a heuristic

262 CHAPTER 9: LEARNING BY DISCOVERY

changes from domain to domain. Thus, as we move from one domain to another,
the set of heuristics which we should use for guidance changes. Many of them
have higher or lower utility, some entirely new heuristics may exist, and some of
the old ones may be actually detrimental if followed in the new domain. For
instance, the "If falling object, Then catch it" rule is useful for most situations,
but each year people are burned when they try to catch falling clothes irons and
soldering irons.

Heuristics are compiled hindsight; they are nuggets of wisdom which, if
only we'd had them sooner, would have led us to our present state much faster.
Even the synthesis of a new discovery via analogy, aesthetic criteria (symmetry),
or random combination, can be considered to be the result of employing
guidance heuristics—for example, "Analogies are useful in formulating biological
and sociological theories," "Symmetry is useful in postulating the existence of
fundamental particles in physics," "Randomly looking for regularities in elemen-
tary number theory and plane geometry may be profitable." Those guidance
heuristics were, in turn, based on several past episodes, and hence are them-
selves compiled hindsight. Nilsson and others have argued for the primacy of
search; we are simply stating a special case: the primacy of compiled experiential
knowledge. Instead of having the power to examine a search tree wherever we
please, we must sit and wait for time to present "event nodes" to us one after
another. We observe them, record them, digest them, abstract them. The
abstractions of past events provide us with very efficient judgmental knowledge
for governing our future actions—heuristics.

As new empirical evidence accumulates, it may be useful to recompile the
heuristics. Certainly by the time you have opened up a whole new field, you
must recompile them. Working in point-set topology with geometry heuristics is
not very efficient, nor was AM's working in number theory using only heuristics
from set theory. The set of heuristics must evolve as well; some old ones are no
longer useful, some must be refined to suit the new domain, and some entirely
new heuristics may be useful. As the task varies, or as time varies and one
gains new experiences, one's set of guiding heuristics is no longer optimal. The
utility of a heuristic will vary, then, both across tasks and across time, and this
variance is not necessarily continuous.

Exactly what kinds of changes can occur in a domain of knowledge that
might require you to alter your set of heuristics? In other words, what are the
sources of granularity in the space of "fields of knowledge"? First, there might
be the invention of a new piece of apparatus, yielding heuristics which tell you
how to use such a thing, when it is relevant, how to fix one, what kind to buy,
and so on. Second, there might be a new technique devised, one which does not
actually depend upon any new apparatus. Third, a new phenomenon may be
observed. Fourth, and most unusually, there may be a newly explicated or
newly isolated concept or field, one which was always around but never spoken
about explicitly. The notion of paradigms is such a concept, and the whole field
of heuristics itself is such a field. For example, there exist heuristics for when

LENAT 263

to apply heuristics, for whom to invite to talk about heuristics, for how to
evaluate a heuristic's worth, and so on.

In other words, "heuristics" itself is a field of study. It has some objects
of study (heuristics), a set of questions about phenomena involving those objects
(Where do heuristics come from? What is their source of power?), and some
methods for experimentally answering those questions (build large AI programs
guided by heuristics, and experiment with those programs).

As an analogy to "heuristics", consider the field of "grammars". It may be
discussed theoretically, independent of any particular language, yet to develop
that theory the researcher no doubt was always grounded in a context of some
language or other. Similarly, to develop a general theory of heuristics one must
constantly deal with heuristics for some specific field or task. Eventually the
theory of grammars advanced to the stage of formalization where it no longer
needed such grounding, but heuristics is far from there yet.

In brief, the sources of granularity in the space of "domains of knowledge"
are precisely those components which, if varied, lead to a new domain of
knowledge. In other words, they define what we mean by a domain of
knowledge or a paradigm: a set of phenomena to study, a body of specific
problems about those phenomena which are considered worth working on, and a
set of methods (both theoretical and experimental, mental and material) for at-
tacking such questions.

9.4 A THEORY OF HEURISTICS

9.4.1 Why Heuristics Work

Our remarks so far about heuristics actually sound more like 2nd-order cor-
rection terms to some as yet unstated more fundamental theory. What is that
basic Oth-order theory? What is the central assumption underlying heuristics? It
appears to be the following: "Appropriateness(action,situation) is continuous."
That is, Appropriateness, viewed as a function of actions and of situations, is a
continuous function of both variables.

Table 9-6: The central assumption underlying heuristics and two special cases.

0th : Appropriateness(action,situation) is a continuous function.

Corrolary 1: If action A is appropriate in situation S,
Then A is appropriate in most situations which are very similar to S.

Corrolary 2: If action A is appropriate in situation S,
Then so are most actions which are very similar to A.

264 CHAPTER 9: LEARNING BY DISCOVERY

Corollary 1: For a given action, its appropriateness is a continuous func-
tion of situation. Heuristics specify which actions are appropriate (or
inappropriate) in a given situation. One corollary of the central assumption is
that if the situation changes only slightly, then the judgment of which actions are
appropriate also changes only slightly. Thus, compiled hindsight is useful, be-
cause even though the world changes, what was useful in situation X will be
useful again sometime in situations similar to X. There are two special cases of
Corollary 1 worth mentioning.

The first of these, call it Corollary la, says that if the task appears to be
similar to one you have seen elsewhere, then many of the features of the task
environment will probably be very similar as well—for example, the kinds of
conjectures which might be found, the solvability and difficulty anticipated with
a task, the kinds of blind alleys which one might be trapped in, and so on, may
all be the same as they were in that earlier case. For instance, suppose that a
certain theorem, UFT, was useful in proving a result in number theory. Now
another task appears, again proving some number theory result. Because the
tasks are similar, Corollary la suggests that UFT be used to try to prove this
new result. This is the basic justification for using analogy as a reasoning
mechanism. A sentiment similar to this was voiced by Poincare' during the last
century: The whole idea of analogy is that 'Effects', viewed as a function of
situation, is a continuous function. The second special case of Corollary 1 says
that the world does not change much over time, and is the foundation for the
utility of memory. In a world changing radically and rapidly enough, memory
would be a useless frill; consider the plight of an individual atom in a gas.

Corollary 2: For a given situation, appropriateness is a continuous func-
tion of actions. This means that if a particular action was very useful (or
harmful) in some situation, it is likely that any very similar action would have
had similar consequences. Corollary 2 justifies the use of inexact reasoning, of
allocating resources toward finding an approximate answer, of satisficing. It is
the basis for employing "generalization" as a mechanism for coping with the
world; if the appropriateness function were not (usually) continuous as a function
of actions, then most generalizations would be false. The world changes slowly,
continuously, as a function of situation. McCarthy and Hayes' frame problem
[McCarthy & Hayes, 1969] may be viewed as the temptation to exploit this

regularity: Even though one cannot logically prove that action A (for example,
the reader sneezing now) has no effect on the truth or falsity of proposition P
(for example, that Reagan is still President after the sneeze), it is overwhelm-
ingly likely to be still true, and we wish to have some way of exploiting this
near-constancy.

If the central assumption holds, then the ideal interpreter for heuristics is
the one shown in Figure 9-5. Note that this is very similar to a pure production
system interpreter. In any given situation, some rules will be expected to be
relevant, because they were truly relevant in situations very similar to the present
one. One or more of them are chosen and applied (obeyed, evaluated, executed,

LENAT 265

fired, and so on). This action will change the situation, and the cycle begins
anew. Of course one can replace the "locate relevant heuristics" subtask by a
copy of this whole diagram; that is, it can be performed under the guidance of a
body of heuristics specially suited to the task of finding heuristics. Similarly,
the task of selecting which rule(s) to fire, and in what order, and with how much
of each resource available, can also be implemented as an entire heuristic rule
system procedure.

By examining the loop in Figure 9-5 we can quickly "read off the pos-
sible bugs in heuristics, the list of ways in which a heuristic can be "bad":

• It might not be interprétable at all.
• It might be interprétable but it might never even be potentially relevant.
• It might be potentially relevant but its " I f part might never be satisfied.
• It might trigger, but never be the rule actually selected for execution

(firing).
• It might fire, but its "Then" part might not produce any effect on the situa-

tion.
• It might produce a bad effect on the situation.
• It might produce a good effect, but take so long that it is not cost-

effective.
This is reminiscent of John Seely Brown's work on a generative theory of

bugs [Brown & VanLehn, 1980], and is meant to be. Perhaps by viewing heuris-
tics as performers, this approach can lead to an effective method for diagnosing
buggy heuristics, hence improving or eliminating them.

NEW SITUATION

/ \
CHANGES TO THE LOCATE RELEVANT
SITUATION HEURISTICS
(hopefully for the better)
(hopefully quickly)

\
APPLY CHOSEN

HEURISTIC(S)

Figure 9-5: The 0th-order interpreter for a body of heuristic rules.

;

266 CHAPTER 9: LEARNING BY DISCOVERY

There are several things wrong with the 0th order theory. The reader may
have noticed that the first of the two corollaries in Table 9-6 is almost precisely
the negation of an empirically-derived statement we made earlier, namely that
the space of task domains is inherently and profoundly quantized. Corollary 1,
on the other hand, claims that it is continuous. As we mentioned earlier, the
empirical observations appear to be 2nd-order correction terms to a theory of
heuristics, and Table 9-6 is a very simplified 0th-order theory. Intermediate be-
tween them lies a lst-order theory which interfaces to each.

That lst-order theory says that the 0th-order theory is often a very useful
fiction. It is cost-effective to behave as if it were true, if you are in a situation
where your state of knowledge is very incomplete, where there is nevertheless a
great quantity of knowledge already known, where the task is very complex, and
so on. At a much earlier stage, there may have been too little known to express
very many heuristics; much later, the environment may be well enough under-
stood to be algorithmized; in between, heuristic search is a useful paradigm.
Predicting eclipses has passed into this final stage of algorithmization; medical
diagnosis is in the middle stage where heuristics are useful; building programs to
search for new representations of knowledge is still pre-heuristic.

Table 9-7: The lst-order theory of heuristics: The 0th-order theory is a useful fiction.

1st : IF you are in a complex, knowledge-rich, incompletely-understood world,
THEN it is frequently useful to behave as though it were true
that appropriateness(action,situation) is continuous in both variables.

By making this lst-order theory explicit, some new 2nd-order corrections
become apparent. For instance, the adjective "frequently", used in Table 9-7,
can be replaced by a body of rules which govern when it is and is not useful to
behave so.

9.4.2 The Power of Each Individual Heuristic

We have'discussed the nature of using a corpus of heuristics, but what is
the nature of a single one? We have already said that it has some domain of
relevance. What does that mean? We have already spoken of "Appropriateness"
as a function of situation; perhaps we can extend this metaphor by imagining
graphs of "Appropriateness" of a heuristic. If we could somehow graph the
utility or power of the heuristic, as a function of task domain, we might expect
to see a curve resembling that of Figure 9-6. Namely, there is some range of
tasks for which the heuristic has positive value. Outside of this, it is often coun-
terproductive to use the heuristic, although the utility may drop to zero rather
than falling below zero as pictured. For tasks sufficiently far away, the utility
approaches zero, because the heuristic is never even considered potentially
relevant, and hence never fires. As one example, consider the heuristic that says
"If you want to test a conjecture, Then draw a diagram." As we have seen, this
has high utility within Euclidean plane geometry, but as the axioms of the theory

LENAT 267

are changed, its worth declines. By the time you reach point-set topology or real
analysis, its value is negative. Eventually, domains like philosophy are reached,
where drawing diagrams can rarely be done meaningfully. (As Figures
9-6 through 9-8 indicate, we hope that "draw a diagram" is a good heuristic for
the domain of "Heuristics".) As another example, consider the heuristic "If a
predicate rarely returns True, Then define new generalizations of it." This is use-
ful in set theory, worse than useless in number theory, and useless in domains
where "predicate" is undefined.

Figure 9-6: The graph of a heuristic's power as a function of the task it is applied to.

If we specialize the "Then-" part of a heuristic (see Figure 9-7), it will
typically have higher utility but only be relevant over a narrower domain. Con-
sider, for example, the case where "generalize a predicate" is specialized into
"generalize a predicate by eliminating one conjunct from its definition". The
latter is more powerful, but only applies to predicates defined conjunctively (see
"dropping condition generalization" in Chapter 4 of this book). Notice the area
under the curve appears to remain roughly constant; this is a geometric inter-
pretation of the trade-off between generality and power of heuristic rules. It is
also worth noticing that the new specialized heuristic may have negative utility in
regions where the old general one was still positive, and it will be meaningless
over a larger region as well.

By examining Figure 9-7 it is possible to generate a list of possible bugs
that may occur when the actions ("Then-" part) of a heuristic are specialized.
First, the domain of the new one may be so narrow that it is merely a spike, a

268 CHAPTER 9: LEARNING BY DISCOVERY

Figure 9-7: The change in power when a heuristic (*) has its "Then-" part specialized (+).

delta function. This is what happens when a general heuristic is replaced by a
table of specific values. Another bug is if the domain is not narrowed at all; in
such a case, one of the heuristics is probably completely dominated by the other.
A third type of bug appears when the new heuristic has no greater power than
the old one did. For example, "Smack a vu-graph projector if it makes noise"
has much narrower domain, but no higher utility, than the more general heuris-
tic, "Smack a device if it's acting up." Thus, the area under the curve is greatly
diminished. Being able to perform this kind of systematic analysis, just because
we visualized graphing "Appropriateness" as a mathematical function, justifies
our use of that metaphor.

While the last paragraph warned of some extreme bad cases of specializing
the "Then-" part of a heuristic, there are some extreme good cases which fre-
quently occur. The utility (power) axis may have some absolute desirable point
along it (for example, some guarantee of correctness or efficiency), and by
specializing the heuristic it may exceed that threshold, albeit over a narrow range
of tasks. In such a case, the way we qualitatively value that heuristic may alter,
and indeed we may term it "algorithmic" or "real-time". One way to rephrase
this is to say that algorithms are merely heuristics which are so powerful that
guarantees can be made about their use. Conversely, one can try to apply an
algorithm outside its region of applicability, in which case the result may be use-
ful and that algorithm is then being used as a heuristic. The latter is frequently
done in mathematics (for example, pretending one can differentiate power series
expansions to guess at the value of the series). Finally, note that the specializa-
tion of the heuristic to one which applies only on a set of measure zero is not
necessarily a bad thing; tables of values do have their uses.

LENAT 269

Specializing the "If-" part of a heuristic rule results in its having a smaller
region of non-zero utility. That is, it triggers less frequently. As Figure
9-8 shows, this is like placing a filter or window along the x-axis, outside of
which the power curve will be absolutely zero. In the best of cases, this
removes the negative-utility regions of the curve, and leaves the positive regions
untouched. For example, we might preface the "Draw a diagram" heuristic with
a new premise clause, "If you are asked to test a geometry conjecture". This
will cause us to use the rule only in geometry situations, a domain where it has
already been demonstrated to possess a high utility.

LU

s
Q. TASK

- y
Figure 9-8: The graph of a heuristic's power after its "If-" part has been optimally specialized.

By examining Figure 9-8 we can generate a list of possible bugs arising
from specializing the conditions ("If-" part) of a heuristic rule. The new window
may be narrowed to a spike, thus preventing the rule from almost ever firing ("...
and if you are working on problem 652 ..."). There may be no narrowing what-
soever; in that case, it would typically add a little to the time required to test the
"If-" part of the rule, while not raising the power at all ("... and if 37 is prime
..."). Of course the most serious error is if it clips away some—or all!—of the
positive region. Thus, we would not want to replace a general diagram-drawing
recommendation with one which advised us to do so only for real analysis con-
jectures.

The space of domains is granular, quantized; hence these power curves are
step-functions (or histograms) rather than smooth curves as we have drawn them.
One implication of this is that there is a very precise point along the task axis
where the utility drops from positive to negative (or zero). Often, this is a very
large, very sudden drop across a single discontinuity in the axis (for example,
when a new product is marketed, an expert dies, or a theorem is proved).

270 CHAPTER 9: LEARNING BY DISCOVERY

What are implications of this simple ''theory of heuristics"? One effect is
to determine in what order heuristics should be chosen for execution; this is dis-
cussed in the next paragraph. A second effect is to indicate some very useful
slots that each heuristic can and should have, attributes of a heuristic that can be
of crucial importance: the peak power of the rule, its average power, the sizes
of the positive and negative regions (both projections along the task axis (x-axis)
and the areas under the curves), the steepness with which the power curve ap-
proaches the x-axis, and so on. To illustrate, let us consider the latter attribute.
Why is it useful to know how steeply the power curve approaches Utility = 0 (the
x-axis)? If this is very steep, then it is worth investing a great amount of
resources determining whether the rule is truly relevant in any situation, for if it
is slightly irrelevant, then it may have a huge negative effect if used. Con-
versely, if the slope is very gentle, then very little harm will result from slightly
inappropriate applications of the rule. Hence, not much time need ever be spent
worrying about whether or not it is truly relevant to the situation at hand.

The whole process of drawing the power curves for heuristics is still con-
jectural. While a few such graphs have been sketched, there is no algorithm for
plotting them, no library of thousands of catalogued and plotted heuristics, not
even any agreement on what the various power and task axes should be.
Nevertheless, it has already proven to be a useful metaphor, and has suggested
some important properties of heuristics which should be estimated (such as the
just-mentioned downside risk of applying a heuristic in a slightly inappropriate
situation). It is a qualitative, empirical theory [Newell & Simon, 1976], and
predicts the form that a quantitative theory might assume.

How should heuristics be chosen for execution? In any given situation, we
will be at a point along the x-axis, and can draw a vertical line (in case of multi-
dimensional task axes, we can imagine a hyperplane). Any heuristics which
have positive power (utility) along that line are then useful ones to apply
(according to our theory of heuristics), and the ones with high power should be
applied before the ones with low power. Of course, it is unlikely we would
know the power of a heuristic precisely in each possible situation; although
diagrams such as Figures 9-6 through 9-8 may be suggestive, the data are almost
never available to draw them quantitatively for a given heuristic. It is more
likely that we would have some measure of the average power of each heuristic,
and would use that as a guess of how useful each one would be in the current
situation. Since there is a trade-off between generality and power, a gross
simplification of the preceding strategy is just to apply the most specific heuristic
first, and so on. This is the scheme AM used, with very few serious problems.
If all heuristics had precisely the same multiple integral of their power curves,
this would coincide with the previous scheme. Of course, there are always some
heuristics which, while being very general, are really the most important ones to
listen to if they ever trigger, for example, "If a conflagration breaks out, Then
escape it."

Notice that the "generality versus power" trade-off has turned into a state-

LENAT 271

ment about the conservation of volumes in nXm-dimensional space, when one
takes the multiple integral of all the power curves of a heuristic. In particular,
there are trade-offs among all the dimensions: a gain along some utility dimen-
sion (say, convincingness) can be paid for by a decrease along another (say,
efficiency) or by a decrease along a task dimension (a reduction of breadth of
applicability of the heuristic). One historically common bug has been over-
reliance upon, and glorification of, heuristics which are pathologically extreme
along some dimension (tables, algorithms, weak methods, and so on).

Heuristics are often spoken of as if they were incomplete, uncertain
knowledge, much like mathematical conjectures or scientific hypotheses. This is
not necessarily so. The epistemological status of a heuristic, its justification, can
be arbitrarily sound. For example, by analyzing the optimal play of Blackjack, a
rather complex table of appropriate actions (as a function of situation) is built up.
One can reduce this into a simplified "basic strategy" of just a few rules, and
know quite precisely just how well those rules should perform. That is, heuris-
tics may be built up from systematic, exhaustive search, from "complete"
hindsight. Another example of the formal, complete analysis of heuristic
methods is well known from physics, where Newtonian mechanics is known to
be only an approximation to the world we inhabit. Relativistic theories quantify
that deviation precisely. But rather than supplanting Newtonian physics, they
bolster its use in everyday situations, where its inadequacies can be quantitatively
shown to be too small to make worthwhile the additional computation required to
do relativistic calculations.

Many, nay most, heuristics are merely conjectural, empirical, aesthetic, or
in other ways epistemologically less secure than the basic strategy in Blackjack
and Newtonian physics. The standard use of heuristics is to pretend they are
true and let them guide your behavior; the standard use of a conjecture is to
guide you while you search for a proof of that conjecture. If a conjecture turns
out to be false, it may yet stand as a useful heuristic.

9.4.3 The Space of Heuristics

The utility of an entire set of heuristics could be graphed as a function of
the tasks that it is being applied to, and we would expect such a "mega-
heuristic" to produce a curve similar to the one in Figure 9-6. Hopefully, the set
of heuristics is more useful than any member, thus it is probably much broader
and taller (or less negative) than any single heuristic inside it. One cannot
simply "add" the curves of its members; the interactions among heuristics are
often quite strong, and independence is the exception rather than the rule. Of-
ten, two heuristics will be different methods for getting to the same place, or one
will be a generalization or isomorph of the other, and so on. As a result the set
will really not benefit very much from having both of them present. On the
other hand, sometimes heuristics interact synergistically, and the effects can be
much greater than simple superposition would have predicted. The opposite of

272 CHAPTER 9: LEARNING BY DISCOVERY

this sometimes happens: two experts have given you heuristics which separately
work, yet which contradict each other. Using either half-corpus would solve
your problem, but mixing them causes chaos. (For example, one mathematician
gives you heuristics for finding empirical examples and generalizing, while a
second gives you heuristics for formally axiomatizing the situation; either may
suffice, but trying to heed both causes their advice to cancel each other out, and
a third, much less desirable course of action is chosen instead.)

Just as a set of heuristics can be conceptually grouped into a large "mega-
heuristic", an individual heuristic may be atomized into a cloud of much smaller
heuristics. Much of the expertise we tap from human experts, when building
expert systems, is their feel for the proper level at which to state and use heuris-
tic knowledge. If the heuristics are too small, they stop being meaningful
chunks of wisdom to the human expert, and risk having many stray interactions.
Often, languages which enforce a small grain size for rules have facilities to
"chain" them together to prevent such crosstalk. If the heuristic rules are too
large, we begin to lose the benefits of taking a heuristic rule-guided approach:
additivity, synergy, ease of entry and explanation, and modifiability. Ultimately,
we are left with one heuristic which is an opaque lump of LISP code performing
the entire task.

No treatment of heuristics can be complete without some consideration of
the space of all the world's heuristics. By examining and generalizing heuristics
from a dozen disparate fields (including set theory, number theory, biological
evolution, evolution of naval fleets, LISP programming, game playing, and oil
spill cleanups), we have built up some data and conjectures involving heuristic-
space. Consider arranging all the world's heuristics in a
generalization/specialization hierarchy, with the most general ones at the top. At
that top level lie the so-called weak methods (generate and test, hill-climbing,
matching, means-ends analysis, and so on). At the bottom are millions of very
specific heuristics, involving domain-specific terms like "king-side" and
"Pittsburgh". One may picture a Christmas tree, with a pure angel at the top,
and the worthwhile gifts at the bottom.

In between are heuristics such as "Look for fixed points," "Examine ex-
treme cases," "See what happens when a process is repeated" and "Given f(x,y),
examine what happens when x = y." These are more specific than the weak
methods at the top of the tree, yet are far from domain-dependent heuristics
below them. Progressing downward, more and more conditions appear on the
left-hand sides of the heuristics ("If-" parts), and more specialized advice appears
on the right-hand sides ("Then-" parts).

A purely "legal-move" estimate of the size of this tree gives a huge final
number, based on the lengths and vocabularies of heuristic rules in AM; one may
suppose that in a typical heuristic there are about 20 blanks to be filled in and
about 100 possible entries for each blank (predicate, argument, action, and so
on) related to AM's math world. So there are 1040 syntactically well-formed
heuristics just in the elementary mathematics corner of the tree. Of course, most

LENAT 273

of these are (thankfully!) never going to fire, and almost all the rest will perform
irrelevant actions when they do fire. From now on, let's restrict our attention to
the tree of only those heuristics which have positive utility at least in some
domains.

What does that tree actually look like? One can take a specific heuristic
and generalize it gradually, in all possible ways, until all the generalizations col-
lapse into weak methods. Such a preliminary analysis led us to expect the tree
to be of depth about 50, and in the case of an expert system with a corpus of a
thousand rules, we might expect a picture of them arranged so to form an equi-
lateral triangle. But if one draws the power curves for the heuristics, it quickly
becomes apparent that most generalizations are no less powerful than the rule(s)
beneath them! Thus the specific rule can be eliminated from the tree. The
resulting tree has depth of roughly 3 or 4, and is thus incredibly shallow and
bushy. Professors Herbert Simon, Woody Bledsoe, and the author analyzed the
243 heuristics from AM, and were able to transform their deep tree (depth 12)
into an equivalent one containing less than fifty rules and having depth of only
four.

Looking at many heuristics arranged in a generalization/specialization
hierarchy, we observed that all but the top and bottom levels could usually be
eliminated. Consider this non-mathernatical heuristic: "Smack a vu-graph projec-
tor in case it acts up." It and several levels of its generalizations can be
eliminated, since they are no more powerful than the general "Smack a mal-
functioning device" heuristic. Some very specific rule, such as "Smack a
Omigawd 807 vu-graph projector on its right side if it hums," might embody
some new, powerful, specific knowledge (such as the location of the motor
mount and this brand's tendency to misalign), and thus need to stay around.

This "shallow tree" result should make advocates of weak methods happy,
because it means that there really is something special about that top level of the
hierarchy. Going even one \QVQ\ down (to more specific rules) means paying
attention not to an additional ten or twenty heuristics, but to hundreds. It should
also please the knowledge engineering advocates, since most of the very specific
domain-dependent rules also had to remain. It appears, however, to be a severe
blow to those of us who wish to automatically synthesize new heuristics via
specialization, since the result says that that process is usually going to produce
something no more useful than the rule you start with. Henceforth, we shall
term this the "shallow tree problem".

There are two ways out of this dilemma, however. Notice that "utility of a
heuristic" really has several distinct dimensions: efficiency, flexibility, power for
pedagogical purposes, usefulness in future specializations and generalizations,
and so on. Also, "task features" has several dimensions: subject matter,
resources allotted (for example, user's time, CPU time, and space), degree of
complexity (consider Knuth's numeric rating of his problems' difficulty), time
(that is, date in history), paradigm, and so on. If there are n utility dimensions
and m task dimensions, then there are actually nXm different power curves to be

274 CHAPTER 9: LEARNING BY DISCOVERY

drawn for each heuristic. Each of them may resemble the canonical one pictured
in Figure 9-6. If by specializing a heuristic we create one which has the ap-
pearance of Figure 9-7 in any one of these nXm graphs, then it is a useful
specialization.

Consider the "Focus of Attention" heuristic, that is, one which recom-
mends pursuing a course of action simply because it has been worked on
recently. Using this as one reason to support tasks on its agenda made AM ap-
pear more intelligent to human observers, yet actually take longer to make any
given discovery. Thus, it is useful in the "convincingness" dimension of utility,
but may be harmful vis-a-vis "efficiency".

As another example, consider the heuristics "Smack a vu-graph projector
that's acting up," "Smack a child who's acting up," and "Smack a vu-graph
projector or child that's acting up." There may be some utility dimensions in
which the third of those is best (for example, scope or humor). However, the
rationale or justification for the first two heuristics is quite different; random per-
turbation toward stable state versus reinforcement learning. Therefore, the third
heuristic is probably going to be deficient along other utility dimensions (clarity,
usefulness for analogizing).

But there is an even more basic way in which the "shallow tree problem"
goes away. There are really a hundred different useful relationships R that two
heuristics can have connecting them: "Possibly-triggers", "More-restrictive-IF-
part", "Faster", "My-average-power-higher-than-your-peak-power", "Asks-fewer-
questions-of-the-user", and so on. For each such relation, an entire graph—note
that even the generalization/specialization relation generated a graph, not a tree
(see Figure 9-9)—can be drawn of al the world's heuristics (or all those in some«
given program). In some of these trees or graphs, we will find the broad, shal-
low grouping that was found for the AM heuristics under
generalization/specialization. For others, such as "Possibly-Triggers", we may
find each rule pointing to a small collection of other rules, and hence the depth
would be quite large. There are still many difficult questions to study, even with
the theory in this primitive state; for example, how does the shape of the tree
(the graph of heuristics related by some attribute R) relate to the the ways in
which R ultimately proves itself to be useful or not useful? Already, one power-
ful correlation seems to be recognized: In cases where the depth of the tree (of
heuristics related by R) is great, that relation R is a good one to generalize and
specialize along; in cases where the resulting tree is very broad and shallow,
other methods (notably analogy) may be more productive ways of getting new
heuristics. For example, since the tree is broad under R = Generalization, anal-
ogy may be useful; since the tree is narrow under R = "Possibly-triggers",
generalization and specialization may be more useful there.

LENAT 275

if
Toward weak methods

IF f is a subset of ...Ax...xBx...,andR*.A-*B, and AcB,
THEN define <(...,a,...,R(a)l...)C Ù

R<- Equality

IF f isa subset of....Ax...xA...,andR:A->A,
THEN define <(...,a,..,R(a),...)et}

R* Equality

IFf c.AxH.xBx..,and AcB,
THEN define {(..,α,...a,..)£f>

IFf is a subset of.... Ax...xAx
THEN define {(. . ,a,. . ,a,. . .Uf}

Ax.xAx.. <-AxCxAxB v...Ax...xAx..*-AxCxA

IFf.AxCxA-*B
THEN defineg(x,y)=f(xly,x)

C is singleton

IFf :AxA->B
THEN define g(x)«f(x,x)

IFf!AxC->A
THEN define <(a,c)|f(a,c)=a>

C is singleton

IFf :A-*A
THEN define <a|f(a) = a}

Toward domain-specific heuristics

Figure 9-9: A tiny fragment of the graph of heuristics, related by generalization/specialization.
Note the similar derivation of Coalescing and Fixed-point heuristics.

276 CHAPTER 9: LEARNING BY DISCOVERY

9.5 CASE STUDY 2: THE EURISKO PROGRAM; HEURISTICS USED TO
DEVELOP NEW HEURISTICS

9.5.1 Meta-Heuristics are Just Heuristics

Assuming that "heuristics" is another field of knowledge, just like
electronics or mathematics, it should be possible to discover new ones and to
modify existing ones by employing a large corpus of heuristics. Is there some-
thing special about the heuristics which inspect, gather data about, modify, and
synthesize other heuristics? That is, should we distinguish "meta-heuristics"
from "domain heuristics"? According to our general theory, as presented in the
last section, domains of knowledge are granular but nearly continuous along
every significant axis (complexity of task, amount of quantification in the task,
degree of formalization, and so on). Thus, our first hypothesis should be that it
is not necessary to differentiate meta-level heuristics from object-level
heuristics—nay, that it may be artificial and counterproductive to do so.

Table 9-8 illustrates two heuristics which can deal with both heuristics and
mathematical functions. The first one says that if some concept f has always led
to bad results, then f should be marked as less valuable. If a mathematical
operation, like "Compose", has never led to any good new math concepts, then
this heuristic would lower the number stored on the "Worth" slot of the
"Compose" concept. Similarly, if a heuristic, like the one for drawing diagrams,
has never paid off, then its "Worth" slot would be decremented.

The second heuristic says that if some concept has been frequently worth-
less, yet occasionally useful, then it is cost-effective to seek new, specialized
versions of that concept, because some of them might be much more frequently
utile (albeit, in narrower domains of relevance). Composition of functions is
such a math concept—it has led AM to some of its biggest successes and most
explosive failures; this heuristic would add a task to AM's agenda, which said
"Find new specializations of 'Compose'." When it was eventually worked on, it
could result in the creation of new functions, such as "Composition of a function
with itself, "Composition resulting in a function whose domain and range are
equal", "Composition of two functions which were derived in the same way",
and so on. Incidentally, AM has produced these.

The same heuristic (Table 9-8, H20b) also applies to heuristics. In fact it
applies to itself. It is itself sometimes useful and sometimes not, and so fre-
quently it truly does pay to seek new, specialized variations of that heuristic.
Four possible specializations are heuristics which demand, for example, that f
has proven itself useful at least three times, that f be specialized in an extreme
way, that f has proven itself extraordinarily useful at least once, and that the
specializations still be capable of producing any of the successful past creations
off.

LENAT 277

Table 9-8: Two heuristics that are capable of working on heuristics, as well as on math concepts.

H20a: IF the results of performing f have always been numerous and worthless,
THEN lower the expected worth of f

H20b: IF the results of performing f are only occasionally useful,
THEN consider creating new specializations of f

9.5.2 Attributes of a Heuristic

In AM, heuristics examine existing frame-like concepts, and lead to new
and different concepts. To have heuristics operate on and produce heuristics, it
suffices to represent each heuristic as a full-fledged, frame-like concept. Let's
see an example of this. In order to "work", to be able to do something, heuristic
H20a needs to reset the value of the "Worth" slot of the concept f it operates on.
If each math concept has a "Worth" slot, then the rule can work on math con-
cepts. If each heuristic is represented as a unit, and has a "Worth" slot, then
H20a can also work on heuristics.

Similarly, a heuristic which referred to such slots as "Average-running-
time", "Date-created", "Is-a-kind-of, "Number-of-instances", and so on, could
only operate upon units (be they mathematical functions or heuristics) having
such slots. Table 9-9 illustrates (some of the slots from) a heuristic represented
in that way. Notice its similarity to the representation of a mathematical opera-
tion (Table 9-4). The heuristic resembles the function (compare Tables 9-9 and
9-4) much more than the math function resembles the static math concept
(compare Tables 9-3 and 9-4).

Earlier, we defined a heuristic to be a contingent piece of guidance
knowledge: in some situation, here are some actions that may be especially
fruitful, and here are some that may be extremely inappropriate. While some
heuristics have pathological formats (for example, algorithms which lack contin-
gency, or delta function spikes which can be succinctly represented as tables),
most heuristics seem to be naturally stated as rules having the format "If con-
ditions, Then actions". As the body of heuristics grows, the conditions fall into
a few common categories (testing whether the rule is potentially relevant, testing
whether there are enough available resources to expect the rule to work success-
fully to completion, and so on). The right hand sides (actions) of rules also
seem to fall into a few categories: add new tasks to the agenda, print explanatory
messages, define new concepts. Each of these categories is worth making into a
separate named attribute (slot) which heuristic rules can possess; Sections
9.5.3 and 9.6 will show the power which can arise from drawing such distinc-
tions. So instead of a heuristic having an " I f slot and a "Then" slot, it will
have a bundle of slots which together comprise the conditions of applicability of
the heuristic, and another bundle of slots which comprise the actions (see Table
9-9). It is also worth defining compound slots in terms of these: a composite

278 CHAPTER 9: LEARNING BY DISCOVERY

"If part, a composite "Then" part, a combined "If/Then" lump of LISP code, a
compiled version of the same, and so on. These are what were earlier termed
virtual slots.

All the attributes mentioned in the previous paragraph are effective, ex-
ecutable conditions and actions. These are paramount, since they serve to define
the heuristic—they are the criterial slots. Many non-effective, non-criterial slots
are important as well, for describing the heuristic. Some of these relate the
heuristic to other heuristics, such as generalizations, specializations, classes of
heuristics ("Is-a"), and non-heuristic concepts ("View"). Several slots record its
origins ("Defined-using", "Creation-date") and the case studies of its uses so far
("Examples"). *

Once a rich stock of slots (types of attributes) is present for heuristics,
several new ones can be derived from them in two ways. First, one can take a
slot and ask some questions about it: how does it evolve over time in length,
what relationships exist among entries that fill it, how useful are those values,
and so on. Each such question spawns a new kind of slot. For instance, after
considering the "Extreme-Examples" slot, EURISKO created several new kinds of
slots which looked at the values stored in "Extreme-Examples" and performed
some computations on them; three of them were "Avg-Number-Of-Extreme-
Examples", "Relns-Among-My-Extreme-Examples", "Avg-Worth-Of-Extreme-
Examples".

The second way to create new slots from old ones is to take a pair of slots
(say, "Then-Conjecture" and "If-Truly-Relevant") and a relation (such as,
"Implies") and define a new unary function F on heuristics—a new kind of slot
that any heuristic can have. F(hj) contains h2 (that is, h2 is a legal entry on the
F slot of hj) only if (in the present case) the "Then-Conjecture" slot of hj im-
plies the "If-Truly-Relevant" slot of h2. A good name for this new slot F might
be "Can-Trigger", because it lists some heuristics which might trigger when hj is
fired. Of course not all of the n2 "cross-term" type slots are going to be
useful—especially since every time you conceptualize them all, you have reset
the number of slots in the system from n to n2 and now you would have to
consider their cross-terms, and so on. Nevertheless, this provides a generator
for a large space of potentially worthwhile new slots. Some heuristics can guide
the system in selecting plausible ones to define, monitoring the utility of each
selection, and obliterating any which empirically appear to rarely lead to any sig-
nificant future solutions or discoveries. An example of such a process is given
in Section 9.7.

9.5.3 Discovering a New Heuristic

The AM heuristics create new concepts via specializing existing ones,
generalizing (either from existing ones or from newly gathered data), and
analogizing. These are the three directions new heuristics will come from. We
have exemplified specialization already. One point about generalization is worth

LENAT 279

Table 9-9: Frame-like representation for a heuristic rule from AM. The rule is composed of
nothing but attribute:value pairs. After each attribute or slot (often heavily hyphenated)
is a colon, and then a list of the entries or values for that attribute of the Generalize-
rare-predicate heuristic.

NAME: Generalize-rare-predicate
ABBREVIATION. GRP
STATEMENT

English: If a predicate is rarely true, Then create generalizations of it
IF-potentially-relevant
IF-just-finished-a-task-dealing-with: a predicate P
IF-about-to-work-on-task-dealing-with: an agenda A
IF-in-the-middie-of-a-task-dealing-with: *never*
IF-truly-relevant: P returns True less than 5% of Average Predicate
IF-resources-available: at least 10 CPU seconds, at least 300 cells
THEN-add-task-to-agenda: Fill in entries for Generalizations slot of P
THEN-conjecture: P is less interesting than expected

Generalizations of P may be better than P
Specializations of P may be very bad

THEN-modify-slots: Reduce Worth of P by 10%
Reduce Worth of Specializations(P) by 50%
Increase Worth of Generalizations(P) by 20%

THEN-print-to-user: English(GRP) with "a predicate" replaced by P
THEN-define-new-concepts:

CODED-IF-PART: λ(Ρ) ... <LISP function conjoining all the IF- parts>
CODED-THEN-PART:\(P) ... <LISP function appending all the THEN- parts>
C O D E D - I F - T H E N - P A R T S : A (P) ... <LISP function combining the previous 2 slots>
COMPILED-CODED-IF-THEN-PARTS: #30875
SPECIALIZATIONS: Generalize-rare-set-predicate

Boundary-Specializations: Enlarge-domain-of-predicate
GENERALIZATIONS: Modify-predicate, Generalize-concept

Immediate-Generalizations: Generalize-rare-contingent-piece-of-knowledge
Siblings: Generalize-rare-heuristic

IS-A: Heuristic
EXAMPLES:

Good-Examples: Generalize Set-Equality into Same-Length
Bad-Examples: Generalize Set-Equality into Same-First-Element

CONJECTURES: Special cases of this are more powerful than Generalizations
Good-Conjec-Units: Specialize, Generalize

ANALOGIES: Weaken-overconstrained-problem
WORTH: 600
VIEW: En large-structure
ORIGIN: Specialization of Modify-predicate via empirical induction

Defined-using: Specialize
Creation-date: 6/1/78 11:30

HISTORY:
N-Good-Examples: 1 N-Bad-Examples: 1
N-Good-Conjectures: 3 N-Bad-Conjectures: 1
N-Good-Tasks-Added: 2 N-Bad-Tasks-Added: 0
Avg-Cpu-Time: 9.4 seconds Avg-List-Cells: 200

280 CHAPTER 9: LEARNING BY DISCOVERY

making: heuristics which serve as plausible move generators originated by
generalizing from past successes; those heuristics which prune away implausible
moves originate by generalizing from past failures. Since successes are much
less common than failures, it is not surprising that most heuristics in most heuris-
tic search programs are of the pruning variety. In fact, many authors define
heuristic to mean nothing more than a pruning aid.

One of the typical "common sense number theory" heuristics which AM
lacked was the one which decides that the unique factorization theorem is prob-
ably more significant than Goldbach's conjecture, because the first has to do
with multiplication and division, while the latter deals with addition and subtrac-
tion, and "Primes" is inherently tied up with the former operations. How could
such a heuristic be discovered automatically? This is the starting point for the
example we will now begin, an example which concludes in the following sec-
tion, "Heuristics Used to Develop New Representations". Why should this be
so? What exactly does discovering heuristics have to do with representing
knowledge?

The connection between heuristics and representation is profound. Con-
sider even the special case where we restrict our representations to frame-like
ones. The larger the number of different kinds of slots that are known about, the
fewer keystrokes are required to type a given frame (concept, unit) into the sys-
tem. Thus, if "N-Good-Conjecs" were not known, it might take forty keystrokes
rather than one to assert that there were three good conjectures known involving
prime numbers. Moreover, no special-purpose machinery to process such an
assertion would be known to the system. The larger your vocabulary, the shorter
your messages can be.

This is akin to the power INTERLISP derives from the thickness of its
manual, from the huge number of useful predefined functions. A broad
vocabulary streamlines communication. Not only does a profusion of slot types
facilitate entering (typing in) a concept, it makes it easier to modify it once it is
entered. This is because (i) fewer keystrokes are needed in toto, and (ii) the
possible kinds of things you might need to type in are explicitly presented to you
(in a menu). Finally, the profusion of slots makes it easier to discover new
heuristics, because (i) it is a process of combining terms in a more powerful,
higher level language, and (ii) specialized knowledge may exist, rules which
refer to particular slots of heuristics, telling when and how the combination
process should be done.

So we see that the task of discovering heuristics can be profoundly ac-
celerated, or retarded, by the choice of slots we make for our representation. In
the case of an excellent choice of slots, a new heuristic is often simply a new
entry on one slot of some concept. Let's see how that can be. Recall that
primes were originally discovered by the system as extrema of the function
"Divisors-of". This was recorded by placing the entry "Divisors-of ' in the slot
called "Defined-using" on the concept called "Primes" (see Table 9-3). Later,
conjectures involving "Primes" were found, empirically-observed patterns con-

LENAT 281

necting "Primes" with several other concepts, such as "Times", "Divisors-of,
"Exponentiation", and "Numbers-with-3-divisors". This is recorded on the
"Good-Conjec-Units" slot of the "Primes" concept. Notice that all the entries on
the "Defined-Using" slot of "Primes" are also entries on its "Good-Conjec-Units"
slot. This recurred several times, that is for several concepts besides "Primes",
and ultimately the heuristic H9 (below) became relevant (its "If-" part became
satisfied):

H9: IF (for many units u) all of the entries on the r slot are also present on the s slot,
THEN-ASSERT that (with justification H9) r is always going to be a subslot of s.

This heuristic said that it would probably be productive to pretend that "Defined-
Using" was always a subslot of "Good-Conjec-Units". One slot is a subslot of
another if any legal entry for the former is presumed to be a legal entry for the
latter as well. Thus, "Extreme-Examples" is a subslot of "Examples", since any
extreme example of a concept u is certainly an example of u as well. So H9
applies in the current situation, with r = "Defined-Using" and s = "Good-Conjec-
Units". H9 created a new heuristic, whose effect was the following: "As soon as
EURISKO defines any new concept X in terms of Y, it should expect there to be
some interesting conjectures between X and Y." In our usual "If/Then" format
we might express this rule by saying:

H100: "IF a concept is created with a value in its "Defined-Using" slot,
THEN place that value in its "Good-Conjec-Units" slot, with justification H9."

There is already a very general rule in the system, which says to verify suspected
members of any slot (members whose justification is questionable). When HI00
appears in the system, and is used to add suspected entries to the "Good-Conjec-
Units" slots of units, this general rule will cause tasks to appear on the agenda,
tasks which try to confirm or deny whether they deserve to be there.

The main point here is that HI00 was not synthesized as a long, compli-
cated expression such as shown above. Rather, all EURISKO did was to go to the
concept called "Defined-Using" (the data structure which holds all the infor-
mation the program knows about that kind of slot in general), and record that
one of its superslots is "Good-Conjec-Units". In other words, it added one atom
to one list. We should also give this an explicit justification, namely H9, since
it is a heuristic, not a fact. That required a second trivial action at the LISP
level. Table 9-10 shows what this record looks like in our current program.
The new heuristic is simply the words which are emboldened there; all the non-
bold text was present in the program already (though most of it was written by
the program itself at earlier times, not filled in by human hands).

Thanks to the large number of useful specialized slots, large "If/Then"
rules can be compactly, conveniently and efficiently represented as simple links.
Some of these useful slots are very general, but many are domain dependent.

282 CHAPTER 9: LEARNING BY DISCOVERY

Thus, as new domains of knowledge emerge and evolve, new kinds of slots must
be devised if this powerful property is to be preserved. The next natural ques-
tion is, therefore, "How can useful new slots be found?" The last two sentences
are the final two points of our original five-point program (Table 9-1), and the
next section answers them by way of continuing the example we have begun in
this section.

Table 9-10: Part of the concept containing centralizing knowledge about all "Defined-Using"
slots.

NAME: Archetypical-"Defined-Using"-slot
SPECIALIZATIONS:

SubSlots: Really-Defined-Using, Could-Have-Defined-Using
GENERALIZATIONS:

SuperSlots: Origin, Good-Conjec-Units (Justif: H9)
IS-A: Kind of slot
WORTH: 300
ORIGIN: Specialization of Origin

Defined-using: Specialize
Creation-date: 9/18/79 15:43

AVERAGE-SIZE: 1
FORMAT: Set
FILLED-WITH: Concepts
CACHE? Always-Cache
MAKES-SENSE-FOR: Concepts

9.6 HEURISTICS USED TO DEVELOP NEW REPRESENTATIONS

The example here shows how new kinds of slots can be discovered and
used to advantage. This is just an extension of a given representation, rather
than true exploration in "the space of all representations of knowledge". I
believe the latter will someday be possible, using nothing more than a body of
heuristics for guidance, but we do not yet have enough experience to formulate
the necessary rules.

Each kind of representation makes some set of operations efficient, often at
the expense of other operations. Thus, an exploded-view diagram of a bicycle
makes it easy to see which parts touch each other, sequential verbal instructions
make it easy to assemble the bicycle, an axiomatic formulation makes it easy to
prove properties about it, and so on.

As a field matures, its goals vary, its paradigm shifts, the questions to in-
vestigate change, the heuristics and algorithms to bring to bear on those ques-
tions evolve. Therefore, the utility of a given representation is bound to vary
both from domain to domain and within a domain from time to time, much as
did that of a given corpus of heuristics. The representation of today must adapt
or give way to a new one—or the field itself is likely to stagnate and be sup-
planted.

LENAT 283

Where do these new representations come from? The most painless route
is to merely select a new one from the stock of existing representational
schemes. Choosing an appropriate representation means picking one which lets
you quickly carry out the operations you're now going to carry out most fre-
quently.

In case there is no adequate existing representation, you may try to extend
one, or devise a whole new one (good luck!), or (most frequently) simply
employ a set of known ones, whose union makes all the common operations
fast. Thus, when I buy a bicycle, I expect both diagrams and printed instruc-
tions to be provided. The carrying along of multiple representations simul-
taneously, and the concomitant need to shift from one to another, has not been
much studied, or attempted, in AI to date, except in very tiny worlds (for ex-
ample, the missionaries and cannibals puzzle).

There are several levels at which "new representations" can be found. At
the lowest level, one may say that AM changed its representation every time it
defined a new domain concept or predicate, thereby changing its vocabulary out
of which new ones could be built.

Much more significant would be the definition of new kinds of slots, typi-
cally ones specific to, and very useful for, some newly discovered field of
knowledge. For instance, when AM found the unique factorization conjecture, it
would have been good if it had defined a new kind of slot, Prime-Factors, that
every number could have had. A rule capable of this second-level representation
augmentation is the following one:

IF most units in the system have very large s slots (many entries therein),
THEN propose a new task: replace s by new specializations of s.

The vague terms in the rule would have specific computational interpreta-
tions, of course; for instance, "very large" might mean "more than ten", "more
than three times the average size of all slots", "larger than any other slot", or
(most useful from a computational efficiency viewpoint) "larger than the average
number of slots a unit has". It might cause the "Examples" slot to be broken
into several subslots, such as "Extreme-Examples", "Typical-Examples",
"Boundary-Examples", and so on. It might cause "Factors" to be split up into
"Prime-Factors", "Large-Factors", and so on. Note that the subslots will not, in
general, be disjoint.

The third and final level at which "new representations" can be interpreted
is as an actual shift from one entire scheme to another, perhaps novel, one. The
following two rules indicate when a certain type of shift is appropriate:

IF the problem is a geometric one,
THEN draw a diagram.

IF most units have most of their possible slots filled in,
THEN shift from property lists to record structures.

All the heuristics of this type are specializations of the general one which says:

284 CHAPTER 9: LEARNING BY DISCOVERY

IF some operation is performed frequently,
THEN shift to a representation in which it is very inexpensive to perform.

Let us continue our example. Here is a heuristic which is capable of reacting to
a situation by defining an entirely new slot, built up from old ones, which it
expects will be useful:

H10: IF a slot s is very important, and all its values are units,
THEN-CREATE-NEW-KIND-OF-SLOT containing "all relations among the

values of my s slot"

When the number stored in the "Worth" slot of the "Good-Conjec-Units"
concept is large enough, the system attends to the task of explicitly studying
"Good-Conjec-Units". Several heuristics are relevant and fire; among them is
H10, the rule shown above. It then synthesizes a whole new unit, calling it
"Relations-Among-Entries-On-My-'Good-Conjec-Units'Slot". Every known way
in which entries on the "Good-Conjec-Units" slot of a concept C relate to each
other will be recorded on this new slot of C.

For instance, take a look at the "Primes" concept (Table 9-3). Its "Good-
Conjec-Units" slot contains the following entries: "Times", "Divisors-of,
"Exponentiation", "Squaring" and "Numbers-with-three-divisors". The first two
of these entries are inverses of each other; that is, if you look over the Times
unit, you will see a slot called Inverse which is filled with names of concepts,
including Divisors-of. Similarly, still looking over the Times unit, one can see a
slot called Repeat which is filled with the entry Exponentiation, and one can see
a slot called Compose filled with Squaring. So Inverse and Repeat and Compose
are some of the relations connecting entries on the Good-Conjec-Units slot of
Primes, hence the program will record Inverse and Repeat and Compose as three
entries on the "Relations-Among-Entries-On-My-'Good-Conjec-Units'Slot" slot
of the Primes concept. Note that by a "unit" we mean a concept represented as
a full-fledged frame inside the program.

Now it so happens that several concepts wind up with "Compose" and
"Inverse" as entries on their "Relations-Among-Entries-On-My-'Good-Conjec-
Units'Slot" slot. The alert reader may suspect that this is no accident, and an
alert program should suspect that, too. Indeed, the following heuristic says that
it might be useful to behave as if "Compose" and "Inverse" were always going
to eventually appear there:

HI 1: IF (for many units u) the s slot of u contains the same values v{,
THEN-ADD-VALUE Vj to the "Expected-Entries" slot of the "Typical-s-slot" unit.

This causes the program to add "Compose" and "Inverse" to the slot called
"Expected-Entries" of the concept called "Relations-Among-Entries-On-
My-'Good-Conjee-Units'Slot". This one small act, the creation of a pair of
links, is in effect creating a new heuristic which says:

LENAT 285

IF a concept gets entries X and Y on its "Good-Conjec-Units" slot,
THEN predict that it will get "Inverse(X),,,"Inverse(Y)", and k'Compose(X,Y)" there as well.

How is this actually used? Consider what occurs when the program
defines a new concept C, which is defined using "Divisors-of. As soon as that
concept is formed, the heuristic link from "Defined-Using" to "Good-Conjec-
Units" automatically fills in "Divisors-of as an entry on the "Good-Conjec-
Units" slot of C. Next, the links just illustrated above come into action, and
place "Inverse" and "Compose" on the "Relations-Among-Entries-On-My-kGood-
Conjec-Units'Slot" slot of C. That in turn causes the inverse of "Divisors-of,
namely "Times", to be placed on the "Good-Conjec-Units" slot as well as the
already-present entry, "Divisors-of. Finally, that causes the program to go off
looking for conjectures between C and either multiplication or division. When a
conjecture comes in connecting C to one of them, it will get a higher initial es-
timated worth than one which does not connect to them.

If only we'd had the new heuristics back when Primes was first defined,
they would have therefore embodied enough "common sense" to prefer the
Unique Factorization Theorem to Goldbach's conjecture. If we'd had them ear-
lier, these heuristics would have led us to our present state much sooner. Be-
cause of our assumptions about the continuity of the world, such heuristics
should still be useful from time to time in the future.

There's nothing special about mathematics; the newly synthesized heuris-
tics have to do with very general slots, like "Defined-Using" and "Good-Conjec-
Units". As soon as a new concept (say, "Middle-Class") is defined using
"Income", the program immediately fills in this underlined information:

NAME: Middle-Class
Defined-using: Income
Relations-Among-Entries-On-My-"Good-Conjec-Units,,Slot: Inverse, Compose
Good-Conjec-Units: Income Spending, Earned-Interest

Thus, it goes off looking for (and will expect more from) conjectures between
"Middle-Class" and any of "Income", "Spending" and "Earned-Interest". Thus,
the new slot is useful, though it has a terrible name, and the new little heuristics
(which looked like little links or facts but were actually permission to make
"daring guesses") were powerful after all.

We have relied heavily on our representation being very structured; in a
very uniform one (say, a calculus of linear propositions, with the only operations
being assert and match) it would be difficult to obtain enough empirical data to
easily modify that representation. This is akin to the nature of discovering
domain facts and heuristics: if the domain is too simple, it is harder to find new
knowledge and, in particular, new heuristics. Heuristics for propositional cal-
culus are much fewer and weaker than those available for guiding work in predi-
cate calculus; they in turn pale before the rich variety available for guiding
theorem proving "the way mathematicians really do it". This is an argument for
attacking seemingly difficult problems which turn out to be lush with structure,
rather than working in worlds so constrained that their simplicity has sterilized
them of heuristic structure.

286 CHAPTER 9: LEARNING BY DISCOVERY

9.7 CASE STUDY 3: BIOLOGICAL EVOLUTION; HEURISTICS USED TO
GENERATE PLAUSIBLE MUTATIONS

9.7.1 The Overall Hypothesis

This section presents a speculative theory, based upon the metaphor of
DNA viewed as a "program" for constructing and maintaining an organism. The
field of Automatic Programming studies computer programs, such as AM and
EURISKO, which synthesize new and different programs, or which modify and
improve themselves. When DNA molecules do this, we call it evolution.
Biological research has to date identified several mechanisms which change DNA
(substitution, insertion, deletion, translocation, inversion, recombination,
segregation, transposition, and so on). Current theories assume the basic process
of evolution to be random mutation (using these mechanisms) followed by
natural selection, a paradigm of a weak generator and a rigorous test. Early
automatic programming systems were also built to work via this same "random
generate and test" process. But that mechanism failed, and we now recognize
the reasons for that failure and the prescription for success. To whit, the early
automatic programming programs lacked expert knowledge, knowledge about
programming in general and knowledge about the particular task domain their
target programs were to work in. Recent automatic programming programs em-
bodying such knowledge have begun to achieve reasonable performance.

These results lead us to hypothesize, by analogy, that the generation of
mutations may be highly non-random, that the dominant process of evolution in
higher organisms is by now "plausible generate and test". Long before our three
billion line genetic "program" evolved randomly, nature may have happened
upon a more powerful method of "automatic programming", such as heuristic
search: the accretion and use of knowledge to guide the mutation process.

The early (1958-70) researchers in automatic programming were confident
that they could succeed by having programs randomly mutate into desired new
ones. This hypothesis was simple, elegant, aesthetic, and incorrect. The
amount of time necessary to synthesize or modify a program was seen to in-
crease exponentially with its length. Switching to a higher-level language (the
analogue of recombination and gene duplication) merely chipped away somewhat
at the exponent, without muffling the combinatorial nature of the process. All
the attempts to get programs to "evolve" failed miserably, casualties of the com-
binatorial explosion.

During the last decade, significant progress has been made in automatic
programming, by providing such systems with great quantities of knowledge
about programming in general and knowledge about the specific field in which
the synthesized programs are supposed to operate. By employing this knowledge
to constrain and guide them in their search, programs have finally begun to syn-
thesize large new programs and modify themselves successfully. (See, for ex-
ample, [Green et al., 1974; Barstow, 1979; Lenat, 1975; Davis & Lenat, 1981].)

LENAT 287

A study of the earlier "random mutation" automatic programming work reveals
that only after some such knowledge was added were the systems capable of suc-
cessfully producing new programs or changes of more than a very few lines in
length.

The key to the solution (using knowledge to guide the code synthesizer)
appears quite simple in hindsight. How is such knowledge to be acquired? In
the case of most automatic programming systems, it is provided by human ex-
perts. In the case of some programs, including AM, EURISKO, and others
described elsewhere in this volume, it is discovered automatically. The neces-
sary machinery for learning from experience is not very complex: accumulate a
corpus of empirical data and make simple inductive generalizations from it. The
first requires some kind of memory, the second requires some kind of pattern-
matching ability. Processes similar to memory and matching are well known to
exist already at the molecular level (reliable information storage in nucleic acids,
reliable matching of tRNA to mRNA at ribosomes) and at higher levels as well
(memory in the brain, pattern matching by the immune system). Certainly the
complexity of the two processes required for empirical induction (memory and
pattern matching) are orders of magnitude more elementary than, say, the
functioning of our immune system or central nervous system.

From this we are led to hypothesize that the generation of mutations may
be highly non-random. Instead of "random generate and test", the dominant
mechanism of evolution in higher organisms today may be "plausible generate
and test".

Suppose one were given five years to build a large computer program to
forecast weather, and one knew little about programming or meteorology. Then
it is clearly cost effective to take a couple years to develop some expertise in
both fields. Similarly, while it is possible that nature evolved a three billion line
program using only recombination, gene duplication, and so on, it might be
much more efficient to record and use knowledge: general knowledge about
evolving and specific knowledge about the particular species itself and its genetic
ancestry. In the past billion years, nature may have happened upon this more
powerful method of "automatic programming": building up a body of knowledge
to guide the mutation process.

How might this work? Some of the organism's DNA records past states of
the genome (the DNA molecule) from earlier generations, and patterns in that
record may be noticed and exploited. For example, consider cephalo-pelvic
proportion (the relation between an infant's biparietal diameter and its mother's
pelvic diameter). If skull size of some species were to increase significantly, the
females would have great difficulty giving birth, and the members of the popula-
tion having such an increase would be selected against. The only exception is
when the species' mean pelvic diameter simultaneously and fortuitously in-
creases. Thus, if we could somehow look back over the genetic history of a
successful species such as homo sapiens, it would appear that increases in skull
size are almost always accompanied (or immediately preceded) by increases in

288 CHAPTER 9: LEARNING BY DISCOVERY

pelvic diameter. Once such a pattern is noticed, it can be used to guide future
mutation, to encourage specific related groupings of mutations. When an in-
crease in skull size is going to happen (a mutation occurs in the appropriate
genes of the DNA in a germ line cell), a simultaneous increase in pelvic
diameter should be made. A species would be better off if it could recognize
and use such patterns—such heuristics. In this case, the heuristic said "If
biparietal diameter is increasing, Then increase the chance of pelvic diameter
increasing."

Consider a species capable of storing its genetic history, noticing empirical
regularities in it, and using them to guide constellations of interrelated mutations
in the future. Its rate of evolution might dwarf that of species which had to rely
on fortuitous co-occurrences of random genetic events. Notice there is no in-
herent "direction" that such plausibility constraints are defining; rather, it is
simply a mechanism for avoiding what seems, empirically and historically, to be
deleterious, and for seeking what seems empirically to be advantageous. Cer-
tainly there is nothing surprising in this; many creatures compile their ex-
periences, in hindsight, into heuristic rules which guide their future behavior.
Herein we are suggesting that it may also be true of the DNA molecule itself.

Species whose evolution was guided by heuristics (compiled from the
species' genetic history) would be better adapted at evolving. Their rate of
evolution would be higher, but, more significantly, the fraction of offspring
having a favorable co-occurrence of mutations would be elevated. Their DNA
would be longer and largely unexpressed, containing much information which is
historical and useful for inferring regularities in evolution but not needed for the
maintenance of an adult organism. By also using this historical record for
developmental functions, its integrity would be assured over many generations;
ontogeny of such creatures would resemble a recapitulation of their phylogeny.
The obvious hypothesis that this is leading to is that while evolution began as
random generation, by now the evolution of most higher animals and plants may
be under the guidance of a large corpus of heuristics, judgmental rules abstract-
ing a billion years of experience into prescriptions and (much more rarely)
proscriptions regulating and coordinating clusters of simultaneous mutations.
Random mutation would still be present, but in higher organisms its effect might
be mere background noise.

9.7.2 Lessons from Automatic Programming

We begin by sketching the "DNA as program" analogy. Information in the
DNA molecule1 is essentially in secondary storage analogous to magnetic tapes

'Each nucleotide contains two bits of information, since there are four possible bases it could
contain. Three nucleotides in a row form an instruction or codon. A codon contains six bits of
information, so there are at most 64 possible instructions. The task of the program is to assemble a
sequence of amino-acids (a protein), and each codon specifies what the next amino-acid should be, or
else says STOP.

LENAT 289

or disks; it must be swapped into core, that is, copied from secondary storage
into main memory (by mRNA), and brought to a processor (ribosome) to be run.
The ribosome translating an mRNA into an amino-acid sequence resembles a
Turing machine reading along its input tape and writing out a new one. Feed-
back closes this loop (for example, via production of repressor proteins) and
raises the power of the mechanism to that of a universal Turing machine. The
sophistication of the system is best displayed during the development of the
fetus, when many delicate changes in gene expression must be coordinated.
Only about a tenth of the four million genes in human DNA code for known
proteins; the function of the other gene "subroutines" may include regulating
pathways: developmental, metabolic, and perhaps (we hypothesize) evolutionary
ones.

Early AI researchers quite naively but reasonably assumed that if you
wanted to tell a program what to do, without telling it precisely how, then you
would have to employ some kind of random program generator, and follow it up
with a test to see if the program was the desired one. As R. M. Friedberg
[1958] (then at IBM) said:

"Environment dictates what problems must be dealt with, but not
how to deal with them... It is difficult to see a way of telling it what with-
out telling it how, except by allowing it to try out procedures at random or
according to some unintelligent system and informing it constantly whether
or not it is doing what we wish."

That is, computer scientists' intuitions then were precisely in agreement with
biologists' today: the adequacy of random generate and test. Over the last
twenty years, several painful research experiences have changed those computer
science intuitions; we now sketch a few of them.

The first effort along these lines was Friedberg's [1959]. His program
searches through the space of all machine language programs containing 64 in-
structions. It replaces each instruction in turn, looking for a local maximum of
performance, and then repeats this procedure over and over again, a hundred
times a second on an IBM704. When the target program was a couple instruc-
tions long (for example, adding two 1-bit numbers), it took hundreds of
thousands of generations to evolve such a program. When the target program
was longer, say five or six lines long, it rarely had appeared even after millions
of generations.

But the immense number of generations required was not the biggest
surprise. To his shock, Friedberg found no stable islands in the search. Gradual
hill-climbing was no better than generating an entire program from scratch each
time. He built a system which tried completely new computer programs every
"generation", which simply put together a new, random sequence of machine
language instructions, ignoring the design of its "parents" completely no matter
how close their behavior was to that of the desired target program. This random
program generator out-performed his gradual hill-climbing program-evolver every
time.

290 CHAPTER 9: LEARNING BY DISCOVERY

The frequent local maxima upon which a hill-climber gets trapped proved
devastating. The only way that Friedberg was ever able to get any successes out
of the program-evolver was by building in some heuristic rules to guide its
search for new programs:

• Do local optimization of each instruction in turn.
• Partition a problem and deal with its parts in order of difficulty.
• Prime the system by telling it which data bits are the input, and which are

the output.
• If a program succeeds, reward all its component instructions; that is, in-

crease the chance of selecting a program with many of the same instruc-
tions in the same locations.

One trouble with machine language programs is that they are doubly un-
stable; a small change in their flowchart may engender an enormous number of
changes in which locations in memory contain which instructions; conversely, a
small change in the contents of some core locations may dramatically change the
function computed by the program. Maybe the right level to work at, then, is
that of flowcharts.

Fogel, Walsh and Owens decided in 1966 [Fogel et al., 1966] to attempt
something very much like this: their program roamed about in the space of finite
state automata, using operations close to those that we would have for mutating
flow charts—redirecting arrows, adding nodes, relabeling arcs, and so on. Each
generation, his program would select a mechanism of mutation and alter the
then-best finite state automaton.

As before, hill-climbing via random mutation seemed too slow, stagnating
at local maxima. Incremental approaches to competence didn't seem to be work-
ing, yet if Fogel allowed large simultaneous variations, he would have had even
worse behavior. He says:

"The efficiency of pure trial-and-error exploration is sharply reduced
with an increase in the dimensionality of the domain being explored. As
long as the investigator is interested only in a single aspect of his environ-
ment, random exploration may prove worthwhile, but as soon as he at-
tempts to map a domain of more practical interest he encounters so many
possibilities that only carefully-guided trial-and-error exploration is likely
to prove profitable... In man's initial exploration of the unknown, the scien-
tific method would have been a luxury; however, with the increased scope
and depth of his inquiry, use of the scientific method becomes an absolute
necessity."

What, then, is the solution being proposed? Flowchart modifying should be
guided by knowledge: knowledge about how to design and carry out telling ex-
periments rather than random modifications, and knowledge about whatever task
domain the synthesized program is supposed to perform in.

Consider the case of writing a program to test a number for primality.

LENAT 291

One general piece of programming knowledge is that a program should begin
with some initializations, enter a computational loop, and ultimately return some
value. Any flowchart not having that structure can be immediately eliminated
from consideration. A general piece of knowledge looks at the definition of
prime numbers, sees that it specifies "... whose only divisors are 1 and n", and
recognizes this as a constraint on the flowchart: the central loop should ter-
minate early with a "not-prime" answer sometimes, and if the loop runs to
completion then the answer should be "is-prime". A specific domain-dependent
piece of knowledge is that there are many primes and many non-primes, so any
flowchart which always returns 'Yes' (or always returns 4No\ as one of Fogel's
automata did) is bound to be wrong. Without such knowledge, it is hard to get
off the local maximum· that says "Always return 'No' to the question of n being
prime". By employing a collection of such pieces of knowledge, the space of
allowable flowcharts shrinks dramatically in size. The chances of finding a suc-
cessful flowchart are raised dramatically.

Arthur Samuel, working at about the same time as Fogel, wrote his famous
checker-playing program [Samuel, 1967]. It was designed to get better and bet-
ter over time, by gradually improving its scoring polynomial (a function that
evaluated the overall worth of a checkerboard position from, say, Red's point of
view). Samuel found it important to add several heuristics to guide the mutation
of his scoring polynomial, including: recall your earlier predictions, and rate
them in hindsight; artificially lower the coefficients of new terms to forestall wild
initial fluctuations; count a recent fluctuation more heavily than an old one; and
it is worth risking introducing a/<?w of the 38x38 cross-terms at any one time.

My own research in automatic programming recapitulated much the same
error. I began in 1972 with a program called PW1 [Green et ai, 1974], which
had a few templates or schemata for recursive LISP functions, and which had a
set of 10-20 functions it could plug in for each function mentioned in the
schema. One of the templates was:

F(x) =df [λ (χ) IFfl(x) = bl
THEN f2(x)
ELSE f5(f3(First-e!ement-of(x)), f4(All-but-lst-element-of(x)))]

The program picked a random instantiation and mutated it until its input/output
behavior agreed with the example input/output pairs which comprised the
specification of the desired program. For instance, suppose the desired target
program was one which found the smallest element of a list of numbers x. The
user would type in a few input/output pairs as examples, such as:

Input (1 3 5 0 8), Output 0
Input (9 8 7 6) , Output 6
Input (1 3 5 7), Output 1

PW1 randomly chose functions to substitute for fl, f2, and so on, until it found
an F whose input/output behavior agreed with all the examples.

The simple function schema above can be instantiated in many ways, to
yield definitions of "Largest-element-of", "Smallest-element-of, "Length",

292 CHAPTER 9: LEARNING BY DISCOVERY

"Has-odd-length", "Reverse", "Contains-repeated-elements", "Sort", and
(unfortunately) millions of others. The first attempts had to be halted after hours
of computer time had been extended fruitlessly seeking a valid definition of
"Smallest-element".

My first intuition was to fix this by having the definition gradually evolve.
To this end, several mutated versions were created simultaneously by the system,
and the one which had input/output results most closely matching the user-
provided examples was chosen as the survivor in the next generation. To my
surprise at the time, this was not noticeably better than the original, completely
random generation scheme.

PW1 did eventually synthesize several short target programs, but only after
I adopted the method of supplying it with some frequency hints (for example,
"first-element" is the most likely function to try for fl in the schema), some ap-
plicability constraints, and a few simple ways in which to look directly at the
input/output pairs in constraining which functions to try (for example, if the out-
puts are always members of the input lists, then f5 must be a function whose
output is always one of its inputs).

Recently, impressive synthesized programs have been produced from the
PSI system [Barstow, 1979] of Cordell Green et al. Their automatic program-
ming system is guided by hundreds of rules about programming in general and
about the task domain of the target program (the one being synthesized) in par-
ticular. PSI draws much of its power from a high-level abstract model of what
environment it is in (including what the user wants), what it has done in the
past, and so on.

All our experiences in AI research have led us to believe that for automatic
programming, the answer lies in knowledge, in adding a collection of expert
rules which will guide code synthesis and transformation. Each rule is a kind of
compiled search, a bit of condensed hindsight. While far from complete or
foolproof, they are far superior to blind changes in program instructions
(Friedberg) or flowcharts (Fogel) or even mutation of duplicated program chunks
(Lenat).

9.7.3 Idea #1 : Add Heuristics to DNA

Finally, we are ready to turn to the biological analogue of this idea. Just
as automatic programming taught us to guide program synthesis and transforma-
tion by heuristic rules, so it might be cost-effective for evolution of higher or-
ganisms to be guided by heuristic rules.

Consider extending the "DNA as program" analogy by somehow adding
knowledge to the DNA, knowledge about which kinds of mutations are
plausible, which kinds have been tried unsuccessfully, what combinations have
and have not performed well in the past, and so on. If there is a way to encode
such knowledge, such heuristic guidance rules, then we might expect that an or-
ganism with that kind of compiled hindsight would evolve in a much more

LENAT 293

regular, rapid fashion. The "test" would still be natural selection, but instead of
blind generation, the DNA would be conducting (and recording) plausible experi-
ments.

What would such heuristics look like? That is, how might they be
"implemented" in the DNA program? Almost surely they would be written in
the alphabet of bases, but their interpretation might not be as codons for proteins
(in which case their expression would have to be suppressed). At times of
reproduction, however, they would specify allowable (and prevent other) changes
to be made in the new copy of the DNA molecule. That is, heuristics would
sanction certain complex copying "errors" (for example, statically by inserting
noncoding sequences, or dynamically by interfering with the repair polymerases)
and prevent others (for example, via site-specific repair enzymes).

The "If-" parts of such heuristics could be almost completely specified by
position (proximity to genes to which the heuristic wishes to refer), and the start
of such a heuristic would have to be signalled by some special sequence of bases
(much like parentheses in LISP). Each heuristic could have some demarcated
domain or scope. Thus, "use a repressor/anti-repressor mechanism rather than an
induction mechanism" might hold true for a patch of DNA which synthesized the
organism's most important enzymes, and it would be easy to specify the scope
by placement along the genome. So-called mutation "hot-spots" are a unary ex-
ample of this kind of heuristic; heuristics taking more than one "argument"
would of course be much more powerful, just as the site-specific mutators are
more powerful than a global increase in the overall mutation rate could ever be.

The "Then-" part of a heuristic could direct gene rearrangement, duplica-
tion, placement of mutators and intervening sequences, and so on.

Perhaps more likely would be for each heuristic to code for a very rarely
expressed protein. The heuristic could code for (or regulate) an enzyme which
reentered the nucleus, "matched" against some number of patterns in the DNA,
bound itself to those regions (the "If-" part), and thereby increased the chance of
a certain type of mutation occurring at those regions (the "Then-" part). Such an
enzyme might be produced in such small quantities, and with such small fre-
quency, that it would be unlikely to be noticed in most cases. Its effects would
be felt only if it affected germ line cells, and it might only be expressed in them,
and rarely at that. A final possibility is that it would be expressed only during
embryogenesis, that each neonate's germ cells' DNA has already been altered,
thus determining (to within sexual recombination and random mutation) the
spectrum of changes which it might potentially pass along to its offspring.

9.7.4 Idea #2: They May Already Be There

Nature might already have become as good at programming in the last bil-
lion years as we have in the last forty. DNA might have already evolved from
random generate and test into an expert program (expert at mutating itself in
plausible coordinated ways, expert at designing improved progeny). Since the

294 CHAPTER 9: LEARNING BY DISCOVERY

heuristics deal with DNA subsequences, and they themselves are also DNA sub-
sequences, they (or at least some of them) might be able to modify, enlarge,
improve themselves and each other. That is, by now the heuristics themselves
may be developing under the guidance of heuristic rules, which encapsulate a
billion years of experience at devising and changing and using heuristics. This is
how EURISKO uses a set of heuristics to improve and extend itself.

What I conjecture is that nature (that is, natural selection) began with
primitive organisms and a random-mutation scheme for improving them. By this
weak method (random generation, followed by stringent testing), the first primi-
tive heuristics accidentally came into being. They immediately overshadowed
the less efficient random-mutation mechanism, much as oxidation dominated fer-
mentation once it evolved.

Each heuristic proposes a plausible change (call it D) in the DNA. The
progeny which incorporate D (call them PD) also get a new heuristic indicating
that that kind of change has been made and is good. This might be as simple as
adding one new noncoding sequence inside that mutated gene. It might be as
complex as producing a whole new mutated gene and keeping the old one around
as a pseudogene. The progeny P which do not incorporate D get no such heuris-
tic. If PD is viable, then the new heuristic it contains will have proven to be
correct. Incorrect heuristics die out with the organisms that contain them.

Consider a very simple example. Here is a mechanism which embodies
the heuristic "If a gene has mutated successfully several times in the recent past,
then increase its chance of mutating in the next generation, and conversely." All
we need to posit is that somehow a short, noncoding sequence—we'll call it an
asterisk—is added to a gene each time it mutates. To see how this would
operate, consider human DNA: any genes which have several such asterisks tes-
tify that they have been mutated successfully, advantageously, many times in the
past; genes with few or no asterisks suggest that modifying them has always led
to detrimental changes in the offspring. All we need now do is propose some
mechanism (for example, stereochemical) whereby genes with many asterisks are
more likely to be mutated, duplicated, and so on, than genes with few or none.
Since the asterisks provide no specific benefits to the individual, they will
gradually be lost over time, so that when a gene no longer should be mutated, its
asterisk count will slowly decline over several generations. Whether or not it
was ever actually adopted, the power of this simple mechanism is clear.

As the species evolves, so do the heuristics. One big lesson from the AM
program was the need for new heuristics to evolve continuously. Otherwise, as
animals got more and more sophisticated, they would begin to evolve more and
more slowly. Random mutations, or those guided by a fixed set of heuristics,
would become less and less frequently beneficial to the complex organism, less
frequently able even to form part of a new stable subassembly, as Simon sug-
gests [Simon, 1969].

Using a higher level language like gene duplication, rearrangement, and
recombination, instead of sequence mutation, would give only a constant factor

LENAT 295

of improvement (that is, as if we did automatic programming by random changes
in LISP programs instead of in assembly language programs), and this constant
must fight against the rapidly decreasing number of organisms born each year as
one ascends the evolutionary ladder. Thus we expect a phylogenetic increase in
the number of heuristics, the sophistication of those heuristics, and the relative
proportion of DNA devoted to heuristics.

Heuristics condense past history into judgmental rules. They are kernels of
knowledge which, if only they had been present earlier, would have gotten us to
our present state much faster. A heuristic prescribes some action which is ap-
propriate in a given kind of situation, or proscribes one which is dangerously
inappropriate. They are useful because the world is continuous: if several fea-
tures of the current situation are similar to some earlier one, then the set of ac-
tions which are, and are not, appropriate will probably also be similar. Thus it
is cost-effective to compile experiences into heuristics, and to then use the
heuristics for guidance. Even if the environment is rapidly changing, some use-
ful heuristics may be extractable, so long as there are some regularities to those
environmental changes. Physics equations are no less useful just because the
world is constantly changing; if anything, they are more useful than they would
be in a static world where abstraction would be a luxury. So it is with
bioheuristics for evolution: by embodying a deep enough model of the past, the
heuristics can cope with a diversity of future problems.

Until the EURISKO program was conceived, this would have been the end
of the story. We would guess that new heuristics evolve randomly, and in the
rare cases that they are improvements, they get perpetuated by the progeny
which have them. Thanks to EURISKO, we see that since the heuristics are
represented just like any other DNA, they can work on themselves as well: they
can suggest plausible (and/or warn of classes of implausible) changes to make in
both (i) the DNA which synthesizes proteins, and (ii) the DNA which serves as
heuristics.

There is a rapidly growing body of evidence of the ways in which DNA
sequences are found to guide the evolution of DNA sequences. For instance,
recombination among introns modulates the evolution of a gene. Let's look at
an example of this: it is extremely important to keep the a, b, and d globin
genes separate, but their internal structure is very similar. To inhibit recombina-
tion, the spacers between them can be made very different, and the introns
within them can diverge dramatically (since mutations in introns are not as
deleterious to the functioning of the gene as mutations to the coding regions). In
fact, there is evidence that both of these kinds of divergence do occur for the
globins.

Heuristics might be present at several levels. At the molecular level, rules
such as the following ones might be useful, and presently implemented:

1. If similar genes must be kept distinct,
THEN use very distinct spacers between them to inhibit recombination.

296 CHAPTER 9: LEARNING BY DISCOVERY

2. If similar genes must be kept distinct,
THEN insert many introns in them and let the introns mutate greatly.

3. If the amount of a gene is to be variable,
THEN tandemly repeat it, thereby enabling unequal sister chromatic exchange.

4. If a gene is to be tandemly repeated, for the very first time,
THEN duplicate a larger region via looping out, and then insert the loop

(a la Schimke).

5. If the overall rate of mutation is to be raised (or lowered) significantly,
THEN slightly increase the rate of (anti)mutator mutations, e.g. as m in T4.

6. If two genes are related functionally in development, i.e., expressed cotemporally,
THEN locate them near each other on the genome.

7. If two genes should be located near each other but for some reason can not
be moved,

THEN produce a repressor or activator gene to effect them both.

8. If a gene should be made (non)constitutive,
THEN move a transposable element in and then out, leaving a promoter

(repressor) behind.

Some comments are in order: Heuristic 4 is a rephrasing of one of
Schimke's ideas [Schimke, 1980]. Heuristic 6 would override the natural ten-
dency for genes which arose evolutionarily at the same time to be near each
other on the genome. Heuristic 8 refers to the residue of 200-500 b.p. LTR
which were at the end of a transposable element, but were left behind when it
moved. Each residue functions as a promoter or a repressor (depending upon the
polarity of the transposable element when it was adjacent to the gene). The se-
quence of such residues provides another kind of "history" data upon which
simple patterns may be induced.

Higher level heuristics may also be present. In fact, a quite sophisticated
model of the world might be built up by now, purely by the DNA making
guesses, designing progeny consonant with those guesses, and letting natural
selection rule out those based on false assumptions. Let's take an example.
There may be a body of heuristics related to an abstract entity S, which you and
I know as snow, perhaps more precisely as glaciation, and a concept H, which
we might take to mean heat, or perhaps body heat.

9. If there is more S in the world, then improve mechanisms to conserve H.

10. If H is to be dissipated, then evaporation is a good way to do it.

11. If a quantity must be conserved, then cut down on mechanisms which squander it.

12. If it is desired to cut down on a mechanism, then reduce features which facilitate it.

LENAT 297

13. If it is desired to facilitate evaporation, then increase body parts having large

surface areas.

14. If you want to conserve H, then increase sleep and dormancy.

15. If you increase sleep and dormancy, then you also increase passive vulnerability.

16. If you want to decrease passive vulnerability, then increase body armor.

17. If you want to decrease passive vulnerability, then increase perception skills.

18. If you want to conserve H, then increase subcutaneous fatty layer.

19. If there is more S in the world, then whitening of body parts is good.

20. If there is more S in the world, then glucose level is threatened.

21. If locomotive muscles are increased, then glucose level may rise.

22. If teeth and claws are sharpened and increased, then glucose level may rise.

23. If neck is lengthened, then glucose level may rise.

24. If neck is lengthened, then passive vulnerability may decrease.

25. If predators are declining, then increase passive vulnerability.

... and so on.

Even though most of the terms used in the heuristics are incomprehensible
to the DNA itself, it might nevertheless use these rules, carry out inference upon
them, and come up with a better-designed animal. The EURlSKO-simulated
animal became (in a single generation) smaller, whiter, lighter-boned, had bigger
and sharper teeth, larger jaw muscles, larger leg muscles, increased brain size,
slept more, sought safer burrows, had thicker and stiffer fur, an added layer of
subcutaneous fat, smaller ears, and one of a set of possible mechanisms to meta-
bolize lactic acid more effectively. The changes along any one parameter might
be tiny, but (i) they would all complement each other, some even compensating
for imbalances introduced by others, and (ii) the total of all these changes might
be a significant change in the ability of the organism to withstand colder environ-
ments.

If the rules were sophisticated enough, the modifications might not be
"hard-wired" in, but rather canalized to let the actual environment tune the de-
gree to which they took effect.

The offspring differs in perhaps thousands of small ways—a constellation
of related changes that mesh with each other, that accomplish some goals.
These are not the teleological goals of creationists—goals which were somehow
placed in DNA long ago; rather, they are short-term goals proposed by the DNA

298 CHAPTER 9: LEARNING BY DISCOVERY

itself, on the basis of its knowledge about evolution, the structure of the environ-
ment, and possibly some feedback on the changes occurring in that environment.

We are not supposing that there is any direct sensing of temperature,
snow, humidity, predators, and so on, by the DNA. Rather, the heuristics guide
the production of, say, two types of progeny: the first are slightly more cold
adapted, and the second more heat adapted. The first has an assertion that the
climate is getting snowier, the second that the climate is getting more tropical.
Initially, they are produced in equal numbers. If one group dominates, then its
assertion about the climate is probably the correct one. After a few generations,
if the deme is indeed entering a glacial age, the offspring will become skewed
(in almost every single litter) toward more and more cold-adaptedness. Each of
these offspring will in turn add an extra "very" to the genetic hypothesis that it is
growing very, very, ..., very cold out.

A sophisticated model of the physical environment may have been accreted
over many generations, many individuals, and many variables. By now a large
knowledge base may exist about ecology, geology, glaciation, seasons, gravity,
prédation, symbiosis, causality, conservation, behavior, evolution and knowledge
itself. In a small number of generations, man has managed to invalidate many
of these bits of knowledge, this model of the world. If the heuristics can trace
this breakdown to the increasing size of our brains, they might take quick correc-
tive action, preserving homeostasis and the validity of their knowledge base by
drastically decreasing human brain size over just a few generations. While this
is of course a fanciful tongue-in-cheek extreme case, it (and the longer example
above) demonstrates the power, the coordination, that a body of heuristics could
evince if it were guiding the process of evolution.

The nouns in the above rules (for example, "fatty layer") would point to
gene complexes responsible for morphological structure (such as, enzymes that
determine the thickness of the fatty layer) without comprehending why they had
such an effect. Of course the DNA molecule would not "understand" what a
predator was, or what fat was, or what snow was, but it would have a large
corpus of facts about each of those mysterious (to it) concepts, related changes to
make, frequency of their occurring, and so on. But then again, what more do
we as AI researchers mean when we say that one of our programs "understands"
a concept?

9.7.5 Idea #3: Heuristics Drive—And Are Preserved By—Embryogenesis

Joshua Lederberg raised the following difficulty with our ideas as presented
so far: even if heuristics would be induced, why aren't they lost rather quickly?
After all, in a few generations, some small error is bound to creep in, and would
probably garble the heuristic. Yet the individual would not be any less fit, only
the rate of evolution of the progeny would suffer, hence he would pass this
defect along. By now, for example, we might expect that most of the traces of
how homo sapiens evolved would have been obliterated from our DNA, even if
they had been originally stored there.

LENAT 299

The solution to this dilemma may be to overlay (i) the DNA corresponding
to the heuristics with (ii) some parts of the genome that are required for the sur-
vival of the individual organism. For example, the parts of a gene currently
separated by introns may each be meaningful "fossils" of older, smaller genes
(see point 4 in the next section).

An alternate way of overlaying heuristics with something indispensable
would be for the heuristics to form (part of) the developmental program of the
individual; if an important heuristic is lost, then the embryo may not develop
viably. This accounts for the old saw 'Ontogeny recapitulates Phylogeny".

Thirteen years ago Herbert Simon said that DNA was a recipe for produc-
ing an organism, not a blueprint; that human embryogenesis was the following of
a program, not a diagram of a finished product. We are adding that this
program is a production system and that it is built out of heuristic rules, such as,
"If an organism's body shape is X, then a tail should be added for stability."
Another rule firing later triggers the elimination of the tail, when it is no longer
needed. This is a symbiotic relationship: the heuristics enable embryogenesis to
take place without some horrendously complicated central control, and in return
they become indispensable.

In general, the rules will be ordered by the time they evolved, earliest ones
first. Sometimes, as we who work with production systems know, a later rule
will fire a bit early, and may change the world in such a way that some of the
intermediate rules will never be relevant; that is, several intermediate steps may
get skipped from time to time. The discrepancies between ontogeny and
phylogeny include this type, and other, more subtle ones [Gould, 1977].

The linkage between development genes and evolution heuristics need not
be so crude. It may be the sequence of gene expressions, the control pathways,
that are the ancient records, rather than the genes themselves. These pathways
may remain more stable than the gene sequences themselves, which more rapidly
evolve to suit their new environment. If this were true, the genes controlling the
expression of other genes would also in effect control the evolution of those
other genes.

9.7.6 Biological Phenomena Accounted For

The central hypothesis of Section 9.7 of this chapter has been that heuris-
tics may somehow already be guiding evolution of higher organisms. Specific
mechanisms for effecting this process have intentionally been omitted; a few
vague possibilities have been hinted at. Nevertheless, several biological
phenomena can be accounted for using this hypothesis; they are briefly listed
here. Certainly one can hypothesize some alternate explanations of every one of
them; definitive experiments must be designed and carried out to test the theory.

1. The rapid evolution of very complex organisms, organs, behavior patterns,
and so on. Controversy over the adequacy of the current stock of mutation
mechanisms is still raging [Duncan & Weston-Smith, 1977].

300 CHAPTER 9: LEARNING BY DISCOVERY

2. The rate of evolution is not slower for complex organisms than for simpler
ones. Not only is the absolute amount of time it took to evolve, say, the
human eye surprisingly brief, but the rate at which complex creatures
evolve seems to be, if anything, higher than the rate at which simple ones
do. Random generation processes are usually characterized by local max-
ima, by slowing down of the rate of improvement as the complexity of the
product increases. By contrast, heuristic search procedures speed up as
more and more heuristics are added.

3. The nonuniformities in the rate of evolution. Consistency, constancy,
regularity are attributes of stochastic processes. Uniformity is demanded
by unguided randomness, not by intelligent heuristic search. For example,
some proteins evolve at rates ten times as slow as others, yet the rate of
evolution is almost constant for proteins within certain classes. As Wilson
et al. say: "It has been hard to understand why the rate is steady within a
given class. As explanations involving natural selection did not seem satis-
factory, some workers proposed a non-Darwinian explanation... of the
evolutionary clock..." [Wilson et al., 1977] Heuristic learning programs like
AM and EURISKO generally do not exhibit smooth, gradual progress, but
rather more the nonuniform kinds of behaviors cited above.

4. The biological function of much of the unexpressed DNA in higher or-
ganisms. Some of this may be used to store the records of the species'
genetic evolution; some may be used to store condensations or abstractions
of that history, for example, in the form of very rarely expressed sequences
which produce enzymes that selectively mutate the genome.

5. The fraction of non-coding DNA increases phylogenetically. We expect
that the percentage of DNA which codes for heuristics rather than for
proteins would increase with the complexity and sophistication of the or-
ganism. Man should have more heuristics than chickens, which should
have more than E. coli. This is not because we're "better", but just be-
cause our DNA program is longer and more involved. If our ability to
adapt is to be anywhere near as good as bacteria's, we must compensate
for our unwieldy program size and long generation time by employing
powerful judgmental rules, heuristics which put each generation to max-
imum use.

6. The C-value problem (some very close species differ by a factor of 20 in
their amounts of DNA). This phenomenon has already been evinced by
EURISKO. What happens is that one of the new heuristics is bad, and it
generates large quantities of new genetic material (in EURlSKO's case, bad
new concepts and heuristics) before it is recognized as bad (by other
heuristics) and turned off. In EURISKO, one such heuristic was, "It is
worth composing every pair of operations now known, to form new opera-
tions, some of which might be very powerful." This initiated an exponen-
tial explosion in the number of operations defined in each successive

LENAT 301

generation. In nature, this would mean that the length of the genome
might increase very rapidly over a small number of generations, with no
apparent benefit to the individuals or the species. When the bad heuristic
is deactivated, the increase halts, but it may not be easy to track down all
the useless by-products produced by that heuristic. Slowly, over much,
much longer time scales, the extraneous material may be excised in the
usual garbage-collection manner, through accidental deletions which turn
out to be viable.

7. The large morphological advances of some species (like man) compared
with others (like chimps, frogs, and cockroaches), even though at the DNA
sequence level they both advanced an equal number of base mutations. As
Wilson, Carlson and White [1977] note, the speed at which an organism
morphologically evolves seems totally unrelated to the rate at which his in-
dividual proteins evolve: "In spite of having evolved at an unusually high
organismal rate, the human lineage does not appear to have undergone ac-
celerated sequence evolution... This result raises doubts about the relevance
of sequence evolution to the evolution of organisms." Our theory accounts
for this by simply noting that heuristic search is powerful, and its efficacy
is directly related to the number and quality of the heuristics available.
Programs with more heuristics can (often) get more done in N CPU cycles
(witness the recent successes of expert systems; see [Feigenbaum, 1977]).
The rate of evolution should depend more upon the number and quality of
heuristics than upon the raw number of changes in the DNA molecule
which occur. That is, a huge program can be improved more by adding a
few good heuristics than by allotting a few more CPU cycles.

8. The molecular basis for ontogeny recapitulating phylogeny. Insect larvae
resemble adult forms of lower articulate animals more than they resemble
their own parents; embryonic jellyfish look more like polyps than like adult
jellyfish; as they develop, human embryos resemble microorganisms, fish,
reptiles, and finally earlier mammals [Gould, 1977]. Our explanation is
that during embryogenesis, the fetus develops not via an algorithm (an ex-
plicit, fixed procedure), but via an extremely efficient set of heuristics for
guidance, heuristics which implicitly encode the blueprint for the final
neonate. One of them might say, "If you see the organism in state x, then
gills are a good improvement." Another might fire much later, after several
other developments have been made: "If the organism is in state y, then
gills are no longer needed." We are therefore postulating that the DNA
contains not a blueprint for the finished product, but rather a description
(compiled into heuristics) of the changes that were made over the eons in
the DNA, changes which led to the evolution of our species. Hence evolu-
tion and development are related processes (being guided by heuristic
rules) operating over very different time scales. As the organism develops,
the heuristics get relatively weaker and weaker, the rate of morphological
change declines to a point where it is called something else (development

302 CHAPTER 9: LEARNING BY DISCOVERY

into adulthood), then to a point where it is not even noticed (adulthood),
and finally perhaps is interpreted as senescence. Note we predict that an
individual's DNA will change slowly but continuously over its lifetime,
and that the mean rate of such changes should increase phylogenetically.

9. So-called parallel evolution. Before speciation, a body of more or less
general heuristics has evolved. After the species divide, they may differ
physiologically yet share the same heuristics. Thus their future mor-
phological evolution may seem surprisingly parallel. Parallel evolution is
no doubt due to several species being forced to cope with the same gross
environmental change; having some common heuristics increases the
likelihood of their finding the same solution.

10. The ABC result (mutation rate per gram of DNA is not constant, but
rather is proportional to the lengths of the DNA molecules making up the
sample) [Abrahamson et al., 1973]. Our explanation here is simply that
mutations are mediated by the heuristics, whose relative number increases
(roughly) in proportion to DNA length. One random change in a part of
the DNA which is a heuristic can be expected to have a more dramatic
influence than a random mutation somewhere in a coding region.
The foremost problem, of course, is cracking the "heuristic code". What

is the mechanism of the heuristics' functioning? Faith in unity and simplicity
can both guide our investigations and buoy our spirits with the hope that the
answer is not a convoluted one. Perhaps one can look at the changes when a
heuristic is transferred to various organisms, and induce what it says. How close
are the analogues between programming and genetics? If the heuristics truly are
"If/Then" type rules, what is the interpreter?

Even if it turns out that nature has not yet hit upon the mechanism of
heuristic search, there is still idea # 1 : design heuristics for plausible and im-
plausible mutations, for record-keeping, for dealing with other heuristics: syn-
thesizing, modifying and evaluating them. They will have to be non-coding se-
quences; there will have to be an interpretation mechanism for obeying them at
reproduction time. Using extant techniques (for example, plasmids), one could
synthesize such sequences and insert them into DNA and study the results,
thereby improving the entire process of evolution.

9.8 CONCLUSIONS

We began by noting that the limiting step in the construction of expert sys-
tems was building the knowledge base, and that one solution would be for the
program itself to automatically acquire new knowledge, to learn via discovery.

The heuristic search paradigm seems adequate to guide a program in for-
mulating useful new concepts, gathering data about them, and noticing relation-
ships connecting them. However, as the body of domain-specific facts grows,
the old set of heuristics becomes less and less relevant, less and less capable of

LENAT 303

guiding the discovery process effectively. New heuristics must also be dis-
covered.

Since heuristics is a domain of knowledge much like any other, one can
imagine an expert system that works in that field. That is, a corpus of heuristics
can grow and improve and gather data about itself. This process is very slow
and explosive, yet it can be greatly facilitated by having "the right
representation". In the case of a schematized representation, this means having
the right set of slots or attributes, the right set of attached procedures, and so on.
We saw how heuristics can lead to the development of useful new kinds of slots,
to improved representations of knowledge. It was hypothesized that the same
representation we use for attributes and values of object-level concepts could also
be used to represent heuristics and even to represent representation. To draw
some examples from the RLL system [Lenat & Greiner, 1980]: "Primes" (a set of
numbers), "Generalize-Rare-Predicate" (a heuristic), "Generalize-Rare-Heuristic"
(a meta-heuristic), and "Is-a" (a representation concept) are all represented ade-
quately as units with slots having values. A single interpreter runs both meta-
heuristics and heuristics, and is itself represented as a collection of units. While
meta-heuristics could be tagged to distinguish them from heuristics, the utility of
doing so rests on the existence of rules which genuinely treat them differently
somehow, and to date such rules have not been encountered.

One of the necessary steps in this research was the explication of at least a
rudimentary theory of heuristics, an analysis of their innate source of power,
their nature. This turned out to rest upon the continuity of our world; if the
situation is very similar, so is the set of (in)appropriate actions to take. Corol-
laries of this provide the justification for the use of analogy and even for the
utility of memory. The central assumption was seen to be just that—an assump-
tion which is often false in small ways, but which is nevertheless a useful fiction
to be guided by.

By graphing (in our mind's eye) the power curves of a heuristic (the utility
of that heuristic as a function of task being worked on), we were able to see the
gains, and dangers, of specializing and generalizing them to get new heuristics.
Such curves determine a preferred order for obeying relevant heuristics, and sug-
gest several specific new attributes worth measuring and recording for each
heuristic (for example, the sharpness with which it flips from useful to harmful,
as one leaves its domain of relevance).

By arranging all the world's heuristics (well, at least all of AM'S, and later
several more from chess, biological evolution, naval fleet design, device physics,
plumbing, game-playing and oil spills) into a hierarchy using the relation "More-
General-Than", we were surprised to find that hierarchy very shallow, thereby
implying that analogy would be more useful a method of generating new heuris-
tics than would specialization or generalization. By noting that both "Utility"
and "Task" have several dimensions, most of this problem went away. By
noting that two heuristics can have many important relations connecting them, of
which "More-General-Than" is just one example, the shallowness "problem"

304 CHAPTER 9: LEARNING BY DISCOVERY

turns into a powerful heuristic: if a new heuristic h is to differ from an old one
along some dimension (relation) r, then use analogy to get h if r's graph is shal-
low, and use generalization/specialization if r's graph is deep. We also discussed
some useful slots which heuristics can have, and a method for generating new
kinds of slots.

We then examined an application of this methodology to biology; namely,
the speculation that DNA has evolved into an expert program, that is, one with
heuristics for suggesting which (families of) mutations are plausible and im-
plausible. This process began as neo-Darwinistic "random generate and test",
but that process is not a fixed point: evolution itself has evolved by now into a
better process, one guided by past experiences, a "plausible generate and test".
Since the individual is viable today, his lineage is largely a series of successes;
occasionally, often indirectly, knowledge of failures can be present as well.
Plausible move suggesters, the bulwark of AM's successful behaviors, are thus
more frequent than implausible move pruners. Such bioheuristics depend
upon—nay, they embody—knowledge of the evolutionary history of the genome.
As a species evolves viably, its body of heuristics is gradually altered (by adding
new ones and modifying old ones) to capture the additional history, to compile
the new hindsight. Most of the "library of heuristics" are kept as unexpressed
DNA, though it may be that expression does occur briefly, during development.
This both ensures the preservation of the heuristics intact, and causes develop-
ment to resemble a reenactment of the evolution of the species.

But the analogy extends not merely from AM, but from EURISKO as well.
Since bioheuristics are necessarily encoded into the DNA sequence, they can
refer to (and operate on) themselves, in addition to referring to the other parts of
the DNA (the structural, protein-encoding DNA). While the first heuristics
originated fortuitously, the learning of new heuristics is itself by now probably
under strict heuristic control. Thus the heuristics gradually grow in such a way
as to better and better reflect the structure of the outer environment: the pres-
sures, the common modes of flux, the interrelations between components. The
species becomes better and better adapted to evolving in a complex, changing
environment. The "plausibility" with which mutations are skewed increases, and
this precisely counterbalances the natural deleterious effects of the combinatorial
explosion, the exponential growth in the amount of time it takes to improve a
program of a given length. In short, the growing "intelligence" of the mutation
process is just strong enough to match the need for such sophistication. These
are radical biological hypotheses, and Section 9.7 has justified them primarily by
analogy to the need for heuristics to guide automatic program synthesis. Of
course analogy is not proof nor foolproof. The purpose of that section has been
to suggest a potentially significant hypothesis for future investigation by
biologists.

Before the overall research program outlined in Table 9-1 can be com-
pleted, much more must be known about analogy, and more complete theories of
heuristics and of representation must exist. Toward that goal we must obtain

LENAT 305

more empirical results from programs trying to find useful new domain-specific
heuristics and representations.

ACKNOWLEDGMENTS

Productive discussions with John Seely Brown, Bruce Buchanan, Bill
Clancey, Johan deKleer, Jon Doyle, Russ Greiner, Mark Stefik and Mike Wil-
liams have heavily influenced this work. Section 9.3 summarizes the lessons
learned from AM, for which I thank Bruce Buchanan, Ed Feigenbaum, Cordell
Green, Don Knuth and Allen Ne we 11. The data for Section 9.4's "shallowness"
conclusion about the tree of heuristics was gathered while I was at CMU, with
the aid of Herb Simon and Woody Bledsoe. Much of Sections 9.5 and 9.6 rely
upon RLL, a self-describing and self-modifying representation language con-
structed by Russ Greiner, Greg Harris, and the author. The biological specula-
tion presented in Section 9.7 has been honed during discussions with Danny
Bobrow, John Seely-Brown, Doug Brutlag, L. Cavalli-Sforza, Lindley Darden,
Randy Davis, Ed Feigenbaum, Peter Friedland, Rick Hayes-Roth, Horace Jud-
son, Larry Kedes, Joshua Lederberg, Mark Stefik, Doug Wallace, Mike Wil-
liams and David Zipser. This does not, however, imply their approval or accep-
tance of the hypothesis. Encouragement to integrate these various themes was
provided by Jaime Carbonell, Richard Michalski and Tom Mitchell. Finally, I
wish to thank Xerox PARC's CIS and Stanford's HPP for providing superb en-
vironments (intellectual, physical and computational) in which to work. Finan-
cial support was provided by ONR (N00014-80-C-0609) and Xerox.

REFERENCES

Abrahamson, S., Bender, M. A., Conger, A. D. and Wolff, S., "Uniformity of radiation-induced
mutation rates among different species," Nature, pp. 460-462, October 1973.

Barstow, D., Knowledge Based Program Construction, Elsevier, 1979.

Brown, J. S. and VanLehn, K., "Repair theory: A generative theory of bugs in procedural skills,"
Journal of Cognitive Science, Vol. 4, No. 4, 1980.

Davis, R., "Applications of meta level knowledge to the construction and use of large knowledge
bases," Knowledge-Based Systems in Artificial Intelligence, Davis, R. and Lenat, D. (Eds.),
McGraw-Hill Book Company, New York, NY, 1981.

Davis, R. and Lenat, D. B., Knowledge Based Systems in Artificial Intelligence, McGraw Hill, New
York, 1981.

Duncan, R. and Weston-Smith, M. (eds.), The Encyclopedia of Ignorance: Everything you ever
wanted to know about the unknown, Pergamon Press, New York, 1977, (pages 205-411).

Feigenbaum, E. A., "The Art of Artificial Intelligence," IJCAI5, MÎT, IJCAI, Cambridge, 1977.

306 CHAPTER 9: LEARNING BY DISCOVERY

Fogel, L., Owens, A., and Walsh, M., Artificial Intelligence Through Simulated Evolution, John
Wiley and Sons, Inc., New York, 1966.

Friedberg, R. M., "A Learning Machine: Part I," IBM Journal of Research and Development, Vol.
2, No. 1, January 1958.

Friedberg, R. M., "A Learning Machine: Part II," IBM Journal of Research and Development, Vol.
3, No. 3, July 1959.

Gould, S. J., Ontogeny and Phylogeny, Belknap Press, Harvard University, Cambridge, 1977.

Green, C , Waldinger R., Barstow, D., Elschlager, R., Lenat, D., McCune, B., Shaw, D., and
Steinberg, L., "Progress Report on Program-Understanding Systems", Technical
Report AIM-240, STAN-CS-74-444, Stanford, 1974.

Lenat, D. B., "BEINGS: Knowledge as Interacting Experts," IJCAI4, IJCAI, Tbilisi, USSR, 1975.

Lenat, D. B., and Greiner, R. D., "RLL: A Representation Language Language," Proceedings of the
First Annual Meeting of the American Association for Artificial Intelligence, Stanford, August
1980.

McCarthy, J. and Hayes, P. J., "Some Philosophical Problems from Artificial Intelligence," Machine
Intelligence 6, B. Meltzer and D. Michie (Eds.), Edinburgh University Press, 1969.

Newell, A., and Simon, H. A., "Computer Science as Empirical Inquiry: Symbols and Search,"
CACM, Vol. 19, No. 3, March 1976.

Polya, G., How to Solve It, Princeton University Press, 1945.

Samuel, A., "Some Studies in Machine Learning in the Game of Checkers II," IBM Journal of
Research and Development, Vol. 11, No. 6, November 1967.

Schimke, R. T., "Gene Amplification and Drug Resistance," Scientific American, Vol. 243, No. 5,
November 1980.

Simon, H. A., The Science of the Artificial, MIT Press, 1969.

Wilson, A. C , Carlson, S. S., and White, T. J., "Biochemical Evolution," Am. Rev. Biochem., No.
46, pp. 573-639, 1977.

10

REDISCOVERING CHEMISTRY

WITH THE BACON SYSTEM

Pat Langley
Gary L. Bradshaw
Herbert A. Simon

Carnegie-Mellon University

ABSTRACT

BACON.4 is a production system that discovers empirical laws. The
program represents information at varying levels of description, with higher
levels summarizing the levels below them. BACON.4 employs a small set of data-
driven heuristics to detect regularities in numeric and nominal data. These
heuristics note constancies and trends, causing BACON.4 to formulate hypotheses,
to define theoretical terms, and to postulate intrinsic properties. The introduction
of intrinsic properties plays an important role in BACON.4's rediscovery of Ohm's
law for electric circuits and Archimedes' law of displacement. When augmented
with a heuristic for noting common divisors, the system is able to replicate a
number of early chemical discoveries, arriving at Proust's law of definite propor-
tions, Gay-Lussac's law of combining volumes, Cannizzaro's determination of
the relative atomic weights, and Prout's hypothesis. The BACON.4 heuristics, in-
cluding the new technique for finding common divisors, appear to be general
mechanisms applicable to discovery in diverse domains.

10.1 INTRODUCTION

The years between 1800 and 1860 were active ones for chemistry. They
saw the first quantitative measures of chemical reactions, the revival of the
atomic theory, the painstaking determination of atomic weights, and the crown-
ing success of the periodic table. The evolution of chemical thought has many
parallels to the development of early physics in the previous century, but many

307

308 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

differences may be found as well. These similarities and differences have led us
to apply our ideas about the discovery process, initially drawn from early
physics, to the domain of chemistry. In this paper we report the results of that
effort.

BACON.4 is the fourth in a line of discovery systems developed by the au-
thors. The earlier programs in this series merit some discussion, since their suc-
cesses and failures have led directly to the current system. The prototype sys-
tem, BACON.i [Langley, 1978], can be viewed as an implementation of the
General Rule Inducer proposed by Simon and Lea [1974]. The program showed
considerable generality by solving sequence extrapolation tasks, learning con-
junctive and disjunctive concepts, and discovering simple physical laws.
BACON.2 [Langley, 1979] included additional heuristics for dealing with sequen-
tial information; these let the program note recurring sequences of symbols and
discover complex polynomial functions (including Bode's law) by examining dif-
ferences. BACON.3 [Langley, 1981] represented information at increasing levels
of description, with higher levels describing more complex laws and accounting
for more of the original data. This extended representation enabled the system to
treat its hypotheses as new data, to which its heuristics could be applied recur-
sively. BACON.3 successfully rediscovered versions of the ideal gas law,
Coulomb's law, Kepler's third law, Ohm's law, and Galileo's laws for the pen-
dulum and constant acceleration.

Although successive versions of BACON have differed considerably, all
have incorporated similar data-driven heuristics to direct their search for inter-
esting laws. This places the BACON systems in sharp contrast with previous dis-
covery systems such as AM [Lenat, 1977] and meta-DENDRAL [Buchanan et
al., 1972], which incorporated theory-driven discovery techniques. A major goal
of our research has been the identification of general discovery mechanisms, and
we have focused on data-driven approaches because they seem more likely to
provide insight into general mechanisms than theory-driven ones.1 Below we
present the details of BACON.4, as well as some of its accomplishments. After
this, we summarize some early chemical discoveries, and then trace the path
traversed by the system in its rediscovery of these laws.

BACON.4 focuses on the process of descriptive discovery, in which one at-
tempts to describe a set of data in some succinct form. Of course, there are
many other aspects to the discovery process, such as determining what data to
gather, formulating explanatory theories, and making experimental predictions.
Thus, the current system addresses one important part of the scientific process,
while leaving other components for future research. In addition, we should note

•BACON.5 is a more recent version of the system [Langley et aL, 1981; Langley et al., 1982] that
incorporates expectation-driven heuristics in addition to the data-driven ones used in BACON.4.
However, these rules base their expectations on discoveries the system has made previously, so they
can be stated in a very general fashion, BACON.5 also includes a generalized version of the BACON.2
differencing heuristic.

LANGLEY, BRADSHAW, AND SIMON 309

that BACON.4 was not designed to replicate the historical details of the discovery
process, but is intended as a sufficient model of how discovery might occur.
The series of BACON programs are named after Sir Francis Bacon (1561-1626),
the early philosopher of science, because we think he would have found the data-
driven nature of the program's heuristics congenial.

10.2 AN OVERVIEW OF BACON.4

BACON.4 is a production system that discovers descriptive laws that sum-
marize data. The program incorporates a small set of heuristics for finding con-
stancies and trends in data, and for formulating hypotheses and defining theoreti-
cal terms based on these regularities. These heuristics are stated as condition-
action rules called productions, using Forgy's OPS4 programming language
[Forgy, 1979]. BACON.4 is intended to be a general discovery system; the data-

driven, Baconian nature of its heuristics were designed with this goal in mind.
In this section we discuss the details of BACON.4 and its organization. First

we describe the system's representation of hypotheses, and the conditions under
which they are proposed. Next we discuss the program's trend detectors, and
their responsibility for defining theoretical terms. Finally, we examine
BACON.4's ability to postulate new intrinsic properties which may be associated
with independent terms taking on nominal values.

10.2.1 Formulating Hypotheses

Standard analyses of the scientific method partition the world into data or
observations, and hypotheses or laws that explain or summarize those data. In
fact, an earlier version of our system, BACON, l [Langley, 1978], made just such
a distinction. BACON.4 replaces this dichotomy with a continuum along which
information is represented at varying levels of description. The lowest of these
levels may appropriately be called data, whereas the highest may be labeled
hypotheses. But the intermediate levels are actually hybrids of these two con-
cepts. A description at one level acts as an hypothesis with respect to the
descriptions below it, and as a datum for the description above it.

Consider some data obeying the ideal gas law. This law may be stated as
pV/nT = 8.32, where p is the pressure on a gas, n is the number of moles, T is
the temperature, and V is the volume of the gas. Suppose BACON.4 is given data
showing that when p is 1, n is 1, and T is 300, the value of V is 2496.0. If the
first three terms are under the system's control (independent variables), one can
think of their values as conditions on the value of V (the dependent variable).
Now suppose that after gathering additional data by varying p but holding n and
T constant, BACON.4 finds that pV is 2496.0 whenever n is 1 and T is 300. This
second level description summarizes all first level observations with similar con-
ditions, but it can be treated as data in turn. Upon varying T, the program
generates other second level summaries; taken together, these lead to the third

310 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

level summary that pV/T is 8.32 whenever n is 1. Continuing in this way, the
system arrives at the ideal gas law when the fourth level of description is
reached.

In determining when to generate a new description to summarize a set of
lower level descriptions, BACON.4 draws on a generalized version of the tradi-
tional inductive inference rule. This heuristic looks for recurring values of a de-
pendent variable. It may be stated as:

If you see a number of descriptions at level L
in which the dependent variable (D) has the same value (V),

then create a new description at level L + 1
in which the value of D is also V,
and which has all conditions common to the observed descriptions.

This production may detect constant dependent terms that take either numerical
or nominal (symbolic) values. BACON.4 has primitive facilities for ignoring small
amounts of noise in numerical data. However, it cannot deal with significant
deviations from regularity, nor can it recover from overgeneralizations once they
have been made. The conservative strategy of including all common conditions
serves to offset this latter limitation.

10.2.2 Defining Theoretical Terms

In the ideal gas example given above, the dependent terms (V, pV, pV/T,
etc.) about which generalizations were made became progressively more com-
plex. Values of V were used at the first level of description, while values of pV
were used for the second. In stating the final law, BACON.4 used the complex
arithmetic combination pV/nT. Such a combination of directly observable vari-
ables may be viewed as a type of theoretical term, a term that is not directly
observable but whose values are computable from observables [Tuomela, 1973].
Although a term like pV/nT may be replaced by its definition at any time,2 its
use can simplify the statement of a complex law considerably. How does the
program arrive at useful theoretical terms such as pV/nT?

BACON.4 uses a heuristic search method to explore the space of theoretical
terms, much as Lenat's AM program [Lenat, 1977] did for the space of math-
ematical concepts. We will call the heuristics for directing this search trend
detectors. These detectors note increasing and decreasing monotonie relations
between pairs of variables that take on numeric values. Consider the heuristic
for noting decreasing relations, which may be stated as:

2The definition of pV/nT would be stored simply as the ratio of pV/T and n; in turn, pV/T would be
defined as the ratio of pV and T, while pV would be stored as the product of its components.
BACON.4 cannot actually replace a term with its definition, but since there are no conceptual dif-
ficulties, we expect there would be no complications in implementation.

LANGLEY, BRADSHAW, AND SIMON 311

If the values of dependent variable a, increase as the corresponding values
of variable a2 decrease in a number of descriptions at level L,

then note a monotonie decreasing relation between a] and a2,
and calculate the slope of a, with respect to a2.

As this rule states, once a trend has been found, the system computes the slope
of the curve relating the two terms. If the slope is constant, then the system
creates two new theoretical terms defined as linear combinations of the related
variables.3 If the slope varies (the relation is not linear), then BACON.4 computes
the product or ratio of the related terms, depending on the direction of the rela-
tion and the signs of the numbers involved, and treats this product or ratio also
as a new theoretical term.

Once a theoretical term has been defined, no distinction is made between it
and directly observed dependent variables. Thus, the constancy detector may
produce generalizations about the values of theoretical terms like pV, leading to
descriptions such as those in the ideal gas example. In turn, numerical relations
may be found between the values of these newly derived theoretical terms, lead-
ing to complex combinations of directly observable variables, such as pV/nT.
This recursive ability to apply the same heuristics to progressively more complex
terms at higher levels of description gives BACON.4 considerable power in search-
ing for empirical laws.

10.2.3 Postulating Intrinsic Properties

Although BACON.4's trend detectors are useful for relating numeric vari-
ables, they prove ineffective when an independent nominal or symbolic variable
influences the values of a numeric dependent term—for example, when inserting
the different wires A, B, and C, into a circuit alters the current. In such cases,
the program calls on a heuristic for postulating an intrinsic property of the
nominal variable (such as conductance):

If a] is an independent nominal variable,
and a2 is a numeric dependent variable,
and the values of a] change when the values of a2 change
in a number of descriptions at level L,

then propose an intrinsic property
whose values are taken from the values of a2,
and associate these values with the conditions on the descriptions.

As the rule states, the values of this intrinsic property (which is a new theoretical
term) are set equal to the observed values of the numeric dependent term, and

3These terms represent the slope and intercept of the line. If y is found to be a linear function of x
with slope m and intercept i, BACON.4 creates a slope term defined as (y - i)/x and an intercept term
defined as y - mx. If the intercept is very close to zero, BACON.4 instead defines the ratio term y/x.

312 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

each value is associated with the conditions under which the observation was
made. The intrinsic values are retrieved whenever these conditions are met.

Upon defining an intrinsic property and specifying its values, BACON.4 also
defines a new variable which is the ratio of the values of the dependent variable
and the intrinsic property. Since this ratio, which we call a conjectured property,
is guaranteed to be 1.0 for the observations that led to its postulation, it does not
provide any new knowledge or have any immediate effect, beneficial or harmful.
However, if BACON generalizes the conditions under which the intrinsic values
are retrieved, then the conjectured property can take on values other than unity,
and the system may discover new empirical laws.

The generalization process operates in the following manner.4 When
BACON.4 varies a new independent variable (for example, the battery), the result-
ing values of the dependent variable (current) are compared to the original values
of the intrinsic property (conductance). If a linear relation is found between
these two sets of values, BACON.4 infers that the independent term just varied is
not associated with the intrinsic property (that is, that the conductance is inde-
pendent of which battery is in the circuit). Henceforth, the program will retrieve
the value of the intrinsic property regardless of the value of the irrelevant term.
This creates the possibility of discovering new empirical laws in which the con-
jectured property (current divided by conductance) takes on new values. This in
turn leads the system to postulate new intrinsic properties at higher levels of
description (in this case, associating a voltage with each battery). In contrast, if
no linear relation is found, BACON.4 infers that the value of the varied term is a
relevant condition on the retrieval of the intrinsic values. In the following sec-
tion, we discuss examples of each situation.

10.3 THE DISCOVERIES OF BACON.4

In this section, we present some of BACON.4's discoveries, focusing in par-
ticular upon its heuristic for postulating intrinsic properties and conjectured
properties. First, we show how the system arrives at the concepts of conduc-
tance and voltage along the path to rediscovering Ohm's law. This example
demonstrates in more detail the generalization technique that we outlined in the
previous section. Next, we trace the program's rediscovery of Archimedes' law
of displacement, along with the development of the notions of volume and den-
sity. Finally, we discuss briefly some other laws BACON.4 has rediscovered.

4An earlier version of the program [Bradshaw et al., 1980] generalized at the outset, assuming the
intrinsic term was associated only with the most recently varied independent variable. Although this
strategy worked well when a property was associated with a single variable, it led to disaster when
this was not the case. The more conservative approach avoids this difficulty.

LANGLEY, BRADSHAW, AND SIMON 313

10.3.1 Ohm, Voltage, and Resistance

Ohm's law relates the current I of an electric circuit to its voltage V and its
resistance R. The law may be stated as I = V/R. In physical terms, the voltage
is associated with the battery used in the circuit, while resistance is associated
with the wire. An earlier version of BACON, described by Langley
[1981], discovered a version of Ohm's law when given numeric information
about the wire, such as its length and diameter. However, BACON.4 can discover
a similar5 version of the law when it is provided with only nominal information
about the batteries and wires used.

In doing this, BACON.4 is given experimental control over two
variables—the battery and the wire—from which it can construct simple circuits.
These variables take on nominal values such as A, B, and C, and X, Y, and Z,
respectively. The program can tell when two of these symbols are the same or
different, but nothing more. The single dependent variable is the current I ob-
served in the circuit, which takes on numeric values. Table 10-1 presents some
data that might be observed for various combinations of batteries and wires.6

The values of I were calculated assuming voltages of 4.613 for battery A, 5.279
for B, and 7.382 for C, while the resistances were 1.327 for wire X, 0.946 for
Y, and 1.508 for Z. (Of course, BACON.4 was not provided with this infor-
mation, but only with the values of I for each battery-wire combination.)

Table 10-1: Postulating the property of conductance.

I
(CURRENT)

3.4763
4.8763
3.0590
3.9781

5.5803
3.5007

5.5629
7.8034

4.8952

C

(CONDUCTANCE)

3.4763
4.8763
3.0590
3.4763
4.8763
3.0590
3.4763
4.8763
3.0590

I/C
(VOLTAGE)

1.0000

I.0000
1.0000
1.1444
1.1444
1.1444

1.6003
1.6003
1.6003

5A more general version of the law distinguishes between the external resistance Re associated with
the wire and the internal resistance Rj associated with the battery. This version may be stated as I =
V/(Rj + Re). In this example, we assume the internal resistance of the battery is negligible. Given
numeric information about the wire, BACON can discover this more general version, but not when it is
given only nominal information.
6BACON.4 asks the user for the independent terms it should vary, the values it should use for them,
and the dependent variables it should examine. Once it has been given this information, the system
runs a complete factorial design experiment, examining the dependent values for every possible
combination of independent values. In other words, BACON.4 runs its own experiments, though it
does not design them.

314 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

Consider the first three rows of the table, which show the currents as-
sociated with various wires when the battery is held constant. Since the wire is
a nominal term that influences the values of I, BACON.4 postulates an intrinsic
property whose values are equal to the values of the current. We would interpret
this theoretical term as the conductance C of the wire, or the inverse of the resis-
tance. Initially, these values are associated with both the wire and the battery
with which they occurred. The program also calculates the values of the ratio
I/C, a conjectured property which must be 1.0 for these rows by definition.
Since I/C will subsequently be interpreted as an intrinsic property, that is, volt-
age, associated with the battery, we are by this procedure implicitly selecting the
voltage of the first battery tested, A, as the unit of measurement.

More interesting discoveries are made when the second three rows are ob-
served. Since the wires are the same as before but the battery differs, BACON.4
compares the newly observed values of I with the previously established values
of C. Because a linear relation is found, the system infers that the conductance is
associated only7 with the wire being used. The values of C associated with each
of the three wires are retrieved, and the values of the conjectured property, I/C,
are calculated; for these rows the values of I/C are 1.1444 rather than 1.0. When
the battery is varied again, BACON.4 retrieves the values of C immediately and
discovers that I/C is now 1.6003. Table 10-2 summarizes the values of I/C and
the conditions under which they occur.

Table 10-2: Postulating the property of voltage.

BATTERY

A

B

C

I/C

1.0000
1.1444
1.6003

VOLTAGE V

1.0000
1.1444
1.6003

I/CV

1.0000
1.0000
1.0000

At this point, BACON.4 is again forced to postulate an intrinsic term. The
values of the new term are associated only with the battery, since this is the only
condition on the value of I/C. We would call this property the voltage V of the
circuit. As before, the program also defines a new conjectured property, I/CV,
which is guaranteed to be 1.0 in the given situation by definition. BACON.4 stops
here, having found the relative conductance of each wire and the relative voltage
of each battery. Note that these values are not the ones used in generating the
data that were given initially to BACON.4, but are multiples of them, the mul-
tiplier being 1.327 for the conductances and 0.2168 for the voltages. BACON.4
has simply defined new units of conductance and voltage.

7If the internal resistance of the battery had been significant, a linear relation would not occur and
BACON.4 would take a more conservative path.

100.0

200.0

300.0

100.0

200.0

300.0

100.0

200.0

300.0

105.326

205.326

305.326

107.115

207.115

307.115

109.482

209.482

309.482

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

5.326

5.326

5.326

7.115

7.115

7.115

9.482

9.482

9.482

LANGLEY, BRADSHAW, AND SIMON 315

Table 10-3: First level data for the displacement law.

COMPOSITION OBJECT V C Sç^v Iç ,y

SILVER A

SILVER A

SILVER A

SILVER B

SILVER B

SILVER B

SILVER C

SILVER C

SILVER C

10.3.2 Archimedes, Volume, and Density

The legend behind Archimedes' discovery of the law of displacement is an
interesting one. As the story goes, the king of Syracuse had given a contractor
an exact amount of gold for the purpose of making a crown. After receiving the
crown, he heard a rumor that some of the gold had been replaced by an equal
weight of silver. The ruler was angry but unable to prove the contractor's guilt
without destroying the crown, so he gave the problem to Archimedes. The
mathematician went to take a bath while thinking about the matter, and as he
was entering the tub, he realized that the volume by which the water raised was
equal to the volume of his body which had submerged. Understanding that this
would provide a solution, he leaped from the tub and ran naked through the
streets, shouting, "Eureka, eureka!"

While Archimedes' insight is quite different in style from the systematic
summaries of BACON.4, the law of displacement provides another instance where
intrinsic properties prove useful. Suppose BACON.4 has experimental control
over two nominal variables—the object being examined and the composition of
that object—and one numeric variable—the volume v of liquid in an easily
measured container. As with Archimedes, BACON.4 does not initially know the
volumes of the objects because of their irregular shapes. However, the only ob-
servable dependent variable—the combined volume, C, of the object and the
liquid—will let the program devise a new measure.

The program begins by varying the volume of liquid into which a given
object is inserted. The results of a number of such observations are presented in
Table 10-3. Each row in this table corresponds to an observation, while each
column represents the observed values for a single variable. Two theoretical
terms, sc v and ic v, are defined when the program notes a linear relation between
the values of v and c. These correspond to the slope and intercept of the line,
respectively.

Table 10-4 summarizes the results of the first table along with additional
observations made when the composition is varied. Note that the slope of the
line sc v is invariant, while different values of ic v are associated with each
composition/object pair. Since BACON.4 has no numeric independent terms to re-
late to its dependent ones, it defines an intrinsic property whose values are as-

316 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

Table 10-4: Postulating the property of irregular volume.

COMPOS moN OBJECT Sçy i ç ^ ° iç,v/Q

SILVER A

SILVER B

SILVER C

GOLD D

GOLD E

GOLD F

LEAD G

LEAD H

LEAD I

sociated with each of these pairs. This term corresponds to the volume of the
object that was placed in the water, which we represent by the symbol o. The
system defines the ratio term ic v/o, a conjectured property, which has the con-
stant value 1.0 for all objects, but from this tautological relation nothing new is
learned. BACON.4 halts after assigning intrinsic values to each of the
object/composition pairs, having specified a new technique for measuring the
volumes of irregular objects.

Table 10-5: Relating weights to irregular volumes.

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

5.326
7.115
9.482
6.313
4.722
8.817
5.016
3.493
6.827

5.326
7.117
9.482
6.313
4.722
8.817
5.016
3.493
6.827

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

COMPOSITION

SILVER

SILVER

SILVER

GOLD

GOLD

GOLD

LEAD

LEAD

LEAD

OBJECT

A

B

C

D

E

F

G

H

I

w
55.923
74.708
99.561

121.841
91.135

170.168
57.182
39.820
77.828

O

5.326
7.115
9.482
6.313
4.722
8.817
5.016
3.493
6.827

W/O

10.5
10.5
10.5
19.3
19.3
19.3
11.4
11.4
11.4

Now suppose that later the program runs a different experiment in which
the independent variables are the object and the composition of the object, and
the dependent term is the weight w of the object. Table 10-5 gives some data
that might be observed in such an experiment. If the same objects are used as
before, the intrinsic value (volume o) associated with each will be retrieved and
BACON.4's trend detectors will note a linear relation between the values of w and
o. Since the intercept is zero, the ratio w/o is defined; this has recurring values
which lead to a number of higher-level descriptions. Table 10-6 summarizes
these results; note that a different value of w/o is associated with each value of
the composition. Again an intrinsic property, d, is proposed, this time based on
the values of w/o. BACON.4 formulates a final conjectured property, w/od, and
then quits, having discovered the relative densities for each of the elements it has
examined. (Of course, BACON.4 does not call the density d by this name, nor
does it attach the semantics to this term that the reader would.)

LANGLEY, BRADSHAW, AND SIMON 317

Table 10-6: Postulating the property of density.

COMPOSITION

SILVER

GOLD

LEAD

w/o
10.5
19.3
11.4

10.5 1.0
19.3 1.0
11.4 1.0

10.3.3 Additional BACON.4 Discoveries

We have just seen how BACON.4 has rediscovered Ohm's law and
Archimedes' law of displacement. In addition, the system8 has discovered four
other laws in which intrinsic properties play a role. These are:

Snell's law of refraction: This law relates the angle of incidence i and the angle
of refraction r of a ray of light as it passes from one medium
to another. The intrinsic properties are the indices of refrac-
tion of each medium, nj and n2, and the law may be stated
sine i/sine r = nj/n^ Here the input data consist of the sines
of the two angles along with the media through which the
light passes.

The law of conservation of momentum: This law relates the velocities vx and
v2 of two objects Oj and o2 to each other, independently of
the time they are observed. The intrinsic properties are the
inertial masses of the objects, mj and m2, while the law may
be stated as m^v{ = m2v2. Here the input data consist of the
names of objects, along with their velocities at various points
in time.

The law of gravitation: BACON.4 discovered an experimentally based version of
this law, which relates the attractive force F between two ob-
jects Oj and o2 to the distance d between them. The intrinsic
properties are the gravitational masses of the objects ml and
m2. The law may be stated as F = Gmjm^d2, where G is a
constant. In this case, the data consist of the object names,
the distance between them, and the resulting force.

Black's specific heat law: This law9 relates the temperatures t{ and t2 of two
liquids along with their masses mj and m2, to the final tem-
perature tf of the mixture. The intrinsic properties are the

8In fact, these discoveries were made by the earlier version of BACON.4, using its less conservative
strategy for retrieving intrinsic values. Although we have not actually run the current version on
these tasks, we anticipate no major difficulties.

9Because of the complexity of this law, BACON.4 was never run on the complete set of data. The
system used some two hours of CPU time in dealing with 1/12 of the 972 observations that it would
need to arrive at the final version of the law. This allowed it to discover the simplified relationship
that holds between c2, m2, t2, and tf when the other terms are held constant.

318 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

specific heats Cj and c2 of the two liquids, and the law may
be stated as Cjir^tj + c2 m2 t2 = (^πη + c2m2)tf. Here
the data consist of the names of the two liquids, their respec-
tive masses, their initial temperatures, and the resulting final
temperature.

These results provide further evidence of the general applicability of BACON.4's
heuristics to the discovery of physical laws and the ubiquity of intrinsic
properties in these laws.

The above four laws also point to a different means by which postulating
intrinsic terms can aid the discovery process. The reader may have noted that
each of these laws expresses a symmetric relation between two sets of variables.
For example, conservation of momentum relates the mass and velocity of one
object to the mass and velocity of another object. The law is equally applicable
whether A is the first object and B the second, or vice versa. In such cases,
BACON.4 is told that the nominal variables (in this instance the two objects) are
analogous, and that a value found for one is also a reasonable value for the
other. The system10 uses this information about analogous variables in assigning
intrinsic properties.

Suppose that BACON.4 has postulated an intrinsic property (such as πη) that
is associated with a set of nominal independent variables (such as Oj). If an
analogous set of independent terms is present (such as o2), then an analogous
intrinsic property (such as m2) is created and associated with this set. The
values of the new property are stored in such a way that they may be retrieved
either for this property or its analog if the appropriate conditions are met. The
effects of this strategy are best visualized in terms of the tables we have been
using for our examples. We have seen how the generalization process lets the
system retrieve intrinsic values and place them in new rows so they can lead to
new empirical laws. Similarly, reasoning by analogy lets the system retrieve
these same values and place them in new columns. If existing intrinsic
properties were not retrieved in these situations, BACON.4 would be forced to
postulate new terms, and these would lead to tautological laws that were much
less interesting than the symmetrical discoveries outlined above.

10Again, we should state what has actually been implemented. The earlier version of BACON.4 used
this technique to discover laws in which analogous terms were used. However, we have not yet
worked out the details of this method with respect to the more conservative retrieval strategies the
system now employs. We do not feel this is a major problem; it simply has not been the current
thrust of our research effort.

LANGLEY, BRADSHAW, AND SIMON 319

10.4 REDISCOVERING NINETEENTH CENTURY CHEMISTRY

One is convinced of a theory's generality not only by the number of
phenomena it explains, but by the diversity of those phenomena. As we showed
in the last section, BACON.4 has enjoyed considerable success in rediscovering
laws from physics, but since the program was designed with physical discovery
in mind this was not too surprising. We felt that early chemistry would provide
a challenging test for our theory of the discovery process, and in this section we
describe the results of that test.

We begin by summarizing the discoveries of chemists in the first half of
the nineteenth century. Although we have not attempted to replicate these dis-
coveries in detail, this should give the reader some idea of the task at hand.
After this, we describe an additional mechanism that the chemistry domain
forced us to introduce into BACON.4. We follow this with a summary of the
system's chemical discoveries, with special emphasis on the role of the new
technique. Finally, we show how BACON.4 can arrive at different representations
of the same chemical laws.

10.4.1 Chemistry from Proust to Cannizzaro

Quantitative chemistry had its origins in the 1790's, when experimenters
decided to focus their attention on the weight of objects instead of other at-
tributes, such as color, texture, or hardness.11 In 1797, J. L. Proust proposed
the law of definite proportions, which stated that a given element always con-
tributed the same percentage to the weight of a given compound. Berthollet
challenged this claim, pointing to counterexamples in which variable proportions
occurred, such as mixtures of sugar and water. However, chemists soon came to
distinguish between chemical and physical combinations (compounds and
mixtures), and Proust's law was generally accepted by 1807.

In 1808, John Dalton set forth the law of simple proportions. This law
related to situations in which a pair of elements A and B could combine to form
different compounds. Now the law of definite proportions predicted that for a
given compound, the elements A and B would combine with a constant weight
ratio, but it predicted nothing about the relation between these ratios for the
various compounds of A and B. Dalton discovered that although these ratios
differed for the various compounds, they always occurred in small integer mul-
tiples of the smallest ratio. For example, while 1.3 grams of oxygen combines
with 1.0 gram of carbon to form carbon monoxide, some 2.6 grams of oxygen
combines with the same amount of carbon to form carbon dioxide. The second
amount of oxygen is twice the first amount.

In explaining the law of simple proportions, Dalton invoked the notion of
atoms of elements combining to form particles of the resulting compound. Only

11 An excellent account of this history may be found in Chapters 28 and 29 of [Arons, 1965].

320 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

certain combinations of atoms could occur, leading to the integer relations that
had been observed. To determine the formula of the compound, Dalton used his
rule of greatest simplicity: if two elements combine in only a single way, as-
sume a binary compound (such as NO); if two combinations are known, assume
a binary and a ternary compound (for example, N0 2 or N20). Based on this
assumption, Dalton calculated the relative atomic weights of the elements. In
fact, the rule of greatest simplicity was wrong in a number of instances. Dalton
was aware of inconsistencies in his results (since in some cases different reac-
tions implied different atomic weights), but no better approach presented itself at
the time.

Meanwhile, Joseph Gay-Lussac was experimenting with chemical reactions
between gases. In 1809, he announced that he had found a law of definite
proportions for the volumes of gases. Moreover, he found that the volumes of
the materials contributing to and resulting from the combination always occurred
in small integer ratios with respect to each other. For example, 200 ml of
hydrogen and 100 ml of oxygen combined to form 200 ml of water vapor. Gay-
Lussac presented this as evidence for Dalton's atomic theory, as well as for the
hypothesis that equal volumes of a gas contain equal numbers of particles regard-
less of composition. However, Dalton rejected this proposal because it implied
that some compounds (such as water) were less dense than their components.
Since Dalton believed that elementary gases were monatomic, Gay-Lussac's
hypothesis implied for him that compounds must be denser than their com-
ponents, a contradiction with the evidence.

Only two years later, in 1811, Amadeo Avogadro suggested that some ele-
ments might be diatomic, that is, that in their isolated state they occurred as
pairs of atoms. This required a distinction between molecules, which satisfied
the equal-volumes/equal-numbers hypothesis, and atoms, which did not. Thus,
Avogadro postulated that hydrogen and oxygen were diatomic elements and that
water was the ternary compound H20. This interpretation also countered
Dalton's objection to Gay-Lussac, since a molecule of water could now, without
contradiction, be less dense than a molecule of oxygen. Unfortunately,
Avogadro's contemporaries paid little attention to his suggestion, and nearly fifty
years passed before its power was recognized.

In 1860, Stanislao Cannizzaro buttressed Avogadro's theory with a
straightforward method for determining molecular formulae and relative atomic
weights. Cannizzaro examined the percentage of the weight that an element
(e.g., hydrogen) contributed to a number of compounds (e.g., water, hydrogen
chloride). Upon multiplying these fractions by the density of the element at a
standard temperature and pressure, he found all of the resulting products to be
small integer multiples of the smallest of the set. These divisors corresponded to
the relative atomic weights of the elements, and Cannizzaro could derive the cor-
rect molecular formulae (for example, H20 for water) from his table.

Earlier, another possibly lawful regularity had been noted by William Prout
in 1815. Most of the computed atomic weights and combining ratios were very

LANGLEY, BRADSHAW, AND SIMON 321

nearly multiples of those for hydrogen. Prout hypothesized that the higher ele-
ments might consist of clusters of hydrogen atoms. But the relations were not
exact, and as better determinations of the atomic weights became available, it
was apparent that there were important exceptions (e.g., chlorine). Con-
sequently, Prout's hypothesis was rejected by most chemists, and was not
revived until, in the present century, the largest anomalies were explained by the
discovery of isotopes.

10.4.2 Finding Common Divisors

Dalton's, Guy-Lussac's, and Cannizzaro's discoveries involved more than
postulating intrinsic properties and noting recurring values. In addition, they
found in a number of cases that a set of values could be expressed as small in-
teger multiples of one another. As we have described it, BACON.4 has no heuris-
tics for discovering such relations. In order to replicate these discoveries,12 we
added a new heuristic that searched for common divisors in proposed intrinsic
values.

A common divisor for a set of values is a number that, when divided into
those values, generates a set of integers. The greatest common divisor of a set
of values is simply the largest common divisor. Note that the common divisor
itself need not be an integer, and will not be in the cases we examine. The
greatest common divisor of a numerical set may be found using an extension of
Euclid's algorithm.

First, select the smallest member in the set and divide it into all values in
the set, producing a revised set. If all members of the revised set are integers,
then stop since the smallest value in the set is the greatest common divisor.
Otherwise, find the smallest remainder in the revised set (for example, .0523 for
the set {12.0, 18.0523, 15.479}) and multiply the smallest value by this
remainder. Divide the original set by this product, producing still another set.
If all members of the new set are integral, then this product is the greatest com-
mon divisor. Otherwise, find the smallest remainder of the new set, multiply
this by the current product, and iterate. This method will eventually generate the
greatest common divisor of the original set; that is, when the set is divided by
this value, a set of integers will result.

However, scientists do not always postulate integer proportions for intrinsic
properties. For example, no one suggested that the specific heats of all liquids
were evenly divisible by some common divisor. Clearly, there must be some
criterion for determining when a "reasonable" common divisor has been found.
For instance, one might insist that the divisor be a member of the original set.

,2We have added new mechanisms to BACON cautiously, with the goal of keeping our theory of
discovery as simple as possible. Before introducing a new heuristic, we attempt to ensure its
generality by finding a number of cases in which it can be used. We discuss the generality of the
new mechanism in a later section.

322 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

We rejected this heuristic, since one can imagine a chemist arriving at Prout's
hypothesis without a familiarity with hydrogen.

A second approach would require that certain characteristics hold for the
resulting integers. Thus, one might accept a common divisor only if it led to
small integers, such as those less than 100. As soon as the method described
above generated a non-integral value greater than 100, the search would stop. A
less restrictive criterion,13 which includes smallness as a special case, requires
that the interval between the smallest and the largest integers fall below a
threshold. Thus, one would be as satisfied with integer values between 100 and
200 as with a set falling between 0 and 100. The search would then stop when
the method generated a non-integer set with too large an interval.

In addition, the system must have some means for distinguishing integers
from non-integers. This is required even in the absence of noise, since the cal-
culations will introduce roundoff errors. To deal with such situations, BACON.4
includes a user-modifiable parameter that determines the degree of acceptable
deviation from integer values. This parameter was set to 0.03 in the runs
described below. Thus, if the remainder of a number is less than 0.03 or greater
than 0.97, that number is considered to be an integer. If all numbers are deter-
mined to be integers, then the divisor has been found. If not, then some
remainder greater than 0.03 is selected as the new multiplier.

BACON.4 calls on this method for finding common divisors whenever a new
set of dependent values is about to be assigned to an intrinsic property.14 If a
reasonable divisor is found, then the values are divided by this number and the
resulting integers are associated with the nominal values instead. When the ratio
of the dependent term and the intrinsic property is computed (a conjectured
property), this will equal the divisor rather than 1.0. In cases where different
divisors are found under different circumstances, BACON.4 is able to relate the
values of the conjectured property to other terms even though the intrinsic values
themselves may never be retrieved. Thus, the discovery of a common divisor
may let the system break out of the tautological path that postulating conjectured
properties can produce. In the following section, we show the importance of this
technique in making a number of chemical discoveries.

10.4.3 BACON.4 on the Chemical Data

BACON.4 bases its understanding of chemistry on the results of various
chemical reactions. In examining the data derived from these reactions, the

l3This is the criterion currently implemented in BACON.4. We owe thanks to Marshall Atlas for
suggesting this idea.

14This property may have just been defined, or it may have been proposed many cycles before. In
the latter case, new values would be specified only if the old values could not be retrieved because
their relevant conditions were not met.

LANGLEY, BRADSHAW, AND SIMON 323

program treats three variables as independent—the element contributing to the
reaction, the resulting compound, and the weight of the element used, or we.
For each combination of independent values, BACON.4 examines the associated
values of three dependent terms—the weight of the compound resulting from the
reaction (wc), the volume of the element (ve), and the volume of the compound
(vc).15 Thus, one can imagine an early chemist measuring out a quantity of an
element by weight and combining it with others under conditions he knows will
lead to a certain compound. Having done this, he measures the weight of the
resulting compound, along with the volumes of both the compound and the ele-
ment.

Table 10-7 shows those data the program collects when the element is
hydrogen. (The system is also presented with similar data for the elements
oxygen and nitrogen.) Since the weight of the element is varied first, BACON.4
notes linear relations between we and each of wc, ve, and vc. Since the inter-
cepts of these lines are zero, only the ratio terms we/wc, we/ve, and we/vc are
defined. Each of these ratios has a constant value for a given element/compound
combination, leading to the second-level summaries presented in Tables 10-8 and
10-9.

Table 10-7: First level chemical data.

EMENT

hydrogen
hydrogen
hydrogen
hydrogen
hydrogen
hydrogen
hydrogen
hydrogen
hydrogen

COMPOUND

water
water
water

ammonia
ammonia
ammonia
ethylene
ethylene
ethylene

wE
10.0
20.0
30.0
10.0
20.0
30.0
10.0
20.0
30.0

wc
90.00

180.00
270.01
56.79

113.58
170.37
140.10
280.21
420.31

vE
112.08
224.16
336.25
112.08
224.16
336.25
112.08
224.16
336.25

vc
112.08
224.16
336.25
74.72

149.44
224.16
112.08
224.16
336.25

WE/WC

0.1111
0.II11
0.1111
0.1761
0.1761
0.1761
0.0714
0.0714
0.0714

WE/VE

0.0892
0.0892
0.0892
0.0892
0.0892
0.0892
0.0892
0.0892
0.0892

wE/vc

0.0892
0.0892
0.0892
0.1338
0.1338
0.1338
0.0892
0.0892
0.0892

Table 10-8 summarizes the values of we/wc for hydrogen, as well as the
results from later experiments in which the elements are oxygen and nitrogen.
Upon arriving at these second level descriptions, BACON.4 notes that it has only
nominal independent terms. This leads it to postulate the intrinsic property Ii =
we/wc. These values have no reasonable common divisor,16 so the values of
we/wc are used directly. Each intrinsic value is associated with a particular ele-
ment/compound pair; these numbers correspond to the constant weight ratios first
discovered by Proust. The program also defines the conjectured property
we/wcIi. This is guaranteed to be 1.0 for the cases used in assigning values to
Ij, but other values could occur in future experiments, leading the system to
propose a new intrinsic property at a higher level of description.

15All volumes are for the substances in gaseous form under standard conditions.
16In fact, the values for nitrogen in Table 10-8 are evenly divisible by 0.032. However, this is not a
general trend and its occurrence does not significantly affect the program's behavior.

324 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

Table 10-8: Second level summary for weight proportions.

ELEMENT

hydrogen
hydrogen
hydrogen
oxygen
oxygen
oxygen
nitrogen
nitrogen
nitrogen

COMPOUND

water
ammonia
ethylene

nitrous oxide
sulfur dioxide
carbon dioxide
nitrous oxide

ammonia
nitric oxide

wE/wc

0.1111
0.1761
0.0714
0.3648
0.5000
0.7396
0.6378
0.8224
0.4664

II

0.1111
0.1761
0.0714
0.3648
0.5000
0.7396
0.6378
0.8224
0.4664

WE/WCIJ

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

The values of we/vc for hydrogen, oxygen, and nitrogen are shown in Table
10-9. Here BACON.4 has defined the second intrinsic property I2, based on the
values of this ratio. However, this time useful common divisors are found; these
are 0.0446 for hydrogen, 0.715 for oxygen, and 0.625 for nitrogen. The values
of I2 shown in the table are simply the values of we/yc divided by these numbers.
Again, the values of the intrinsic property are associated with pairs of elements
and compounds.

One may interpret these numbers as the coefficients of the element in the
balanced equation for the chemical reaction determined by the pair. Thus, the
value of I2 for hydrogen and water would be 2, while that for oxygen and water
would be 1. These are identical with the numbers Cannizzaro found (by follow-
ing the same route) when he divided his products of densities and weight propor-
tions by their common divisors. The program also defines the ratio17 we/vcI2,
which has a constant value for each element; in fact, these values are precisely
the greatest common divisors found for these elements.

Table 10-9:

ELEMENT

hydrogen
hydrogen
hydrogen
oxygen
oxygen
oxygen
nitrogen
nitrogen
nitrogen

Second level summary

COMPOUND

water
ammonia
ethylene

nitrous oxide
sulfur dioxide
carbon dioxide
nitrous oxide

ammonia
nitric oxide

for Cannizzaro products.

wE/vc
0.0892
0.1338
0.0892
0.715
1.430
1.430
1.250
0.625
0.625

12

2.0
3.0
2.0
1.0
2.0
2.0
2.0
1.0
1.0

WE/VCI2

0.0446
0.0446
0.0446
0.715
0.715
0.715
0.625
0.625
0.625

At this point, BACON.4 has discovered three invariants dependent only on

17In fact, BACON.4 examines the ratio vc/we. In searching for common divisors, it considers both this
term and its inverse. In this case, common divisors are found for the inverse, so the product vcI2/we

is defined instead of the ratio shown. We have presented the simpler picture in the interests of
clarity.

LANGLEY, BRADSHAW, AND SIMON 325

the element; Table 10-10 summarizes these findings, to which we have also ad-
ded the corresponding values for sodium.18 The first of these invariants states
that the conjectured property, w ^ w ^ , is always 1.0; however, this rule intro-
duces no new information, since it is tautological. The second specifies the
values of we/vcI2 associated with ea ch element; since these are differentßACONU
proposes the higher level intrinsic term I3. The values of we/vcI2 are divisible by
0.0446, leading the program to assign values for I3 of 1.0 for hydrogen, 16.0 for
oxygen, 14.0 for nitrogen, and 23.0 for sodium. These are precisely the relative
atomic weights that Cannizzaro derived from his table of densities and propor-
tions. BACON.4 also defines the ratio we/vcI2l3 (a conjectured property with the
value 0.0446), but this generates no new knowledge.

Table 10-10: Relative atomic weights and densities of the elements.

ELEMENT

hydrogen
oxygen
nitrogen
sodium

WE/WCM

1.0
1.0
1.0
1.0

WE/VCI2

0.0446
0.715
0.625
1.027

13

1.0
16.0
14.0
23.0

WE/VCl2l3

0.0446
0.0446
0.0446
0.0446

WE/VE

0.0892
1.430
1.25
1.027

U
2.0

32.0
28.0
23.0

WE/VEI4

0.0446
0.0446
0.0446
0.0446

The third regularity relates to the values of we/ve. Earlier, BACON.4 had
found these values to be independent of the compound being considered, but de-
pendent on the element. Moreover, the recurring values are all divisible by
0.0446, so BACON.4 introduces yet another intrinsic property; this is called I4 and
its values are simply those of we/ve divided by 0.0446. This gives values of 2.0
for hydrogen, 32.0 for oxygen, 28.0 for nitrogen, but 23.0 again for sodium
which, unlike the others, is a monatomic gas. These ratios may be interpreted as
the relative densities of the elements in their gaseous form, which, according to
Gay-Lussac's principle, are proportional to the corresponding molecular weights.

10.4.4 Finding Alternate Frameworks

In the last section, we described BACON.4's chemical discoveries when it
exerted experimental control over the weight of an element, or we. However,
one can imagine scenarios in which a scientist varies the values of wc, ve, or vc
instead. For example, whether one controls the weight or the volume of an ele-
ment or compound is purely a matter of choice. And the characteristics of the
compound are easily viewed as the independent variables if the method of
electrolysis is used to break that compound into its components.

Replacing one independent term with another has an interesting effect on
BACON.4. In all cases, the system still finds linear relations between the inde-

,8BACON4 was not actually run with the sodium data. We add it here because the inclusion of a
monatomic gas makes clear the distinction that BACON.4 subsequently discovers between atomic and
molecular weight.

326 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

pendent variable and the three dependent ones. However, recall that the program
always relates dependent terms to independent or intrinsic ones rather than to one
another. As a result, BACON.4 defines different theoretical terms and finds dif-
ferent associated constancies in each of the four situations. That is, the system
arrives at different conceptual frameworks depending on the manner in which ex-
periments are run.

Table 10-11: Alternate chemical frameworks generated by BACON.4.

INDEPENDENT TERM

theoretical
terms

generated

WE

we/wc

we/ve

wc/vc

vE

Ve'Vc

Vve
wc/ve

wc
We/wc

wc/vc

wc/ve

vc
Ve/Vc

wc/vc

we/vc

Table 10-11 presents the theoretical terms resulting from the use of each
term as an independent variable. In each case, BACON.4 defines three ratio terms
and states the conditions under which these are constant. Each set of three laws
is equivalent to the others in the sense that any triple can be derived from any
other triple, though the program cannot actually carry out this derivation. Note
that six ratios exist,19 each occurring in two of the four possible combinations.

Three of these terms are especially interesting, since they did not occur in
the run described above. One of these is wc/vc, or the density of the compound.
Another is ve/vc, or the ratio of volumes for the element and the compound.
Stating that this term is constant is equivalent to Gay-Lussac's law of definite
proportions for volumes. Finally, the term wc/ve is simply the ratio of the two
previously mentioned ratios. These theoretical terms were not generated in the
above run for a simple reason; each of their components were treated as depend-
ent variables, and BACON.4 attempts to relate dependent terms to independent
terms, rather than to each other.

10.5 CONCLUSIONS

In this chapter, we described the BACON.4 system and summarized its redis-
covery of a number of empirical laws. Clearly, we have simplified BACON'S
discovery task along a number of dimensions, and these simplifications suggest
some important directions for future research. The first issue relates to noise in
the observed data. We know that both Dalton's and Gay-Lussac's data were
inexact, yet this did not prevent them from noting the relevant regularities. Al-
though BACON.4's heuristics can be generalized to allow for some variation, the
introduction of noise raises a more subtle problem. In its current form, BACON.4

19In fact, the inverses of these terms are sometimes defined. We have ignored this distinction for the
sake of comparison between the different situations.

LANGLEY, BRADSHAW, AND SIMON 327

can entertain only one hypothesis at a time. So far, this has been sufficient,
since in the absence of noise the system's heuristics have always been powerful
enough to direct search down useful paths. But before future versions of BACON
can deal with the increased search required to discover approximate laws, they
should be able to consider competing hypotheses, as well as design critical ex-
periments to distinguish between them.

A second issue relates to the presence of irrelevant variables. We know
that chemists made little progress until they decided to turn their attention to the
weights and volumes of elements and compounds. One can easily imagine a
BACON-like system methodically considering and rejecting variables in a noise-
free environment. However, the dual presence of irrelevant terms and noise
makes the task much more difficult, since one can never be entirely sure that an
independent variable is irrelevant. Future versions of BACON may simply have to
endure much more search than their predecessors, and this should not be overly
surprising, since the history of science tells us that discovery is often a slow and
tedious process.

A final issue concerns the relation between data-driven and theory-driven
discovery. The careful reader may have noted that although BACON.4's heuristics
are data-driven in spirit, they produce some theory-driven effects. For example,
once a theoretical term has been defined, it need not be redefined in other con-
texts; instead, the system immediately computes the values of the term, hoping
to find them constant. Similarly, after the conditions on an intrinsic property
have been sufficiently generalized, BACON.4 retrieves its values in new cases so
they may contribute to new laws. Future versions of BACON should explore
other possibilities for generating theory-driven behavior from data-driven heuris-
tics. Incorporating notions of symmetry would be one such possibility. Suppose
the system discovered a partial law (stated as a constant theoretical term) relating
variables associated with one object, but had not yet incorporated an analogous
set of terms associated with another object. If BACON hypothesized that the form
of the final law was symmetrical, it would immediately consider an analogous
theoretical term based on the original one; upon combining the two, it would
arrive at the final law.

Having considered the limitations of BACON.4, we should also say a few
words about the system's generality. As we stated earlier, the program was
designed with examples from early physics in mind, such as Snell's law and the
law of conservation of momentum. In our concern for generality, we gave the
program data from the new domain of chemistry. To our pleasure, we found
that we needed to introduce only a single new heuristic which (working in con-
junction with the existing heuristics) was able to replicate many of the early
chemical discoveries. However, the generality of a theory is a function of the
generality of its components. If a program contains ad hoc heuristics which are
used only once, one would not think that program very general.

For instance, how general is the heuristic for noting common divisors?
Within the chemistry domain, this heuristic was used in three instances; common

328 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM

divisors were found for the values of we/vc, we/ve, and for we/vcI2, with the last
of these leading to the relative atomic weights. Although BACON.4 arrives only
at summaries of data, one can imagine how the discovery of common divisors
might suggest explanations of those data as well. Upon finding that the relative
atomic weights were all nearly divisible by the weight of hydrogen, Prout sug-
gested that all atoms were composed of varying numbers of hydrogen atoms.
Using similar forms of reasoning, future versions of the program may move
beyond descriptive laws into the realm of explanation.

The notion of common divisors or integer ratios also occurs in some of the
more recent areas of physics. Millikan's oil drop experiment was an explicit
search for a common divisor, in that case interpreted as the charge on an
electron. Physicists searched the characteristic spectra of the elements for integer
proportions, discovering instead Balmer's formula for the lines of the hydrogen
spectrum and its generalizations. And the very basis of modern physics and
chemistry, the concept of the quantum, assumes that only integer values of cer-
tain properties can occur. Although we have not let BACON.4 attempt to deal
with these problems, they suggest that the heuristic for noting common divisors
is a general one which will continue to play an important role in our future
research on the discovery process.

ACKNOWLEDGMENTS

This research was supported by Grant MH-07722 from the National In-
stitutes of Mental Health, Grant F33615-78-C-1551 from the Advanced Research
Projects Agency of the Department of Defense, and a grant from the Alfred
P. Sloan Foundation.

The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the
US Government.

REFERENCES

Arons, A. B., Development of Concepts of Physics: The Rationalization of Mechanics to the First
Theory of Atomic Structure, Addison-Wesley, Reading, MA, 1965.

Bradshaw, G. L., Langley, P. and Simon, H. A., "BACON.4: The discovery of intrinsic properties,"
Proceedings of the Third National Conference of the Canadian Society for Computational
Studies of Intelligence, Victoria, pp. 19-25, May 1980.

Buchanan, B. G., Feigenbaum, E. A., and Sridharan, N. S., "Heuristic theory formation," Machine
Intelligence 7, D. Michie (Ed.), American Elsevier Publishing Co., New York, pp. 267-290,
1972.

LANGLEY, BRADSHAW, AND SIMON 329

Forgy, C. L., "OPS4 User's Manual", Technical Report CMU-CS-79-132, Carnegie-Mellon Univer-
sity, Dept. of Computer Science, July 1979.

Langley, P., "BACON. 1: A general discovery system," Proceedings of the Second National Con-
ference of the Canadian Society for Computational Studies in Intelligence, Toronto, pp.
173-180, July 1978.

Langley, P. W., Descriptive Discovery Processes: Experiments in Baconian Science, Ph.D. disser-
tation, Carnegie-Mellon University, Dept. of Psychology, December 1979.

Langley, P., "Data-driven discovery of physical laws," Cognitive Science, No. 5, pp. 31-54, 1981.

Langley, P., Bradshaw, G., and Simon, H. A., "BACON.5: The discovery of conservation laws,"
Proceedings of the Seventh International Joint Conference on Artificial Intelligence, Van-
couver, pp. 121-126, August 1981.

Langley, P., Bradshaw, G., and Simon, H. A., "Data-driven and expectation-driven discovery of
empirical laws," Proceedings of the Fourth National Conference of the Canadian Society for
Computational Studies of Intelligence, Saskatoon, pp. 137-143, May 1982.

Lenat, D. B., "Automated theory formation in mathematics," Proceedings of the Fifth International
Joint Conference on Artificial Intelligence, IJCAI, Cambridge, MA, pp. 833-842, August
1977.

Simon, H. A. and Lea, G., "Problem solving and rule induction: A unified view," Knowledge and
Cognition, L. Gregg (Ed.), Lawrence Erlbaum Associates, Hillsdale, N.J., 1974.

Tuomela, R., Theoretical Concepts, Springer-Verlag, New York, 1973.

11

LEARNING FROM OBSERVATION:

CONCEPTUAL CLUSTERING

Ryszard S. Michalski
Robert E. Stepp

University of Illinois
at Urbana-Champaign

ABSTRACT

An important form of learning from observation is constructing a classifica-
tion of given objects or situations. Traditional techniques for this purpose,
developed in cluster analysis and numerical taxonomy, are often inadequate be-
cause they arrange objects into classes solely on the basis of a numerical measure
of object similarity. Such a measure is a function only of compared objects and
does not take into consideration any global properties or concepts characterizing
object classes. Consequently, the obtained classes may have no simple concep-
tual description and may be difficult to interpret.

The above limitation is overcome by an approach called conceptual cluster-
ing, in which a configuration of objects forms a class only if it is describable by
a concept from a predefined concept class. This chapter gives a tutorial over-
view of conjunctive conceptual clustering, in which the predefined concept class
consists of conjunctive statements involving relations on selected object at-
tributes. The presented method arranges objects into a hierarchy of classes
closely circumscribed by such conjunctive descriptions. Descriptions stemming
from each node are logically disjoint, satisfy given background knowledge, and
optimize a certain global criterion.

The method is illustrated by an example in which the conjunctive concep-
tual clustering program CLUSTER/2 constructed a classification hierarchy of a large
collection of Spanish folk songs. The conclusion suggests some extensions of
the method and topics for further research.

331

332 CHAPTER 11: LEARNING FROM OBSERVATION

11.1 INTRODUCTION

An omnipresent problem in science is to construct meaningful classifica-
tions of observed objects or situations. Such classifications facilitate human
comprehension of the observations and the subsequent development of a scien-
tific theory. This problem is a form of the very general, well-known principle of
"divide and conquer" used in a variety of problem-solving situations. It is also
related to the problem of decomposing any large-scale engineering system (for
example, an AI system) into smaller components, in order to simplify its design
and implementation.

The nature of processes leading to useful classifications remains little un-
derstood, despite considerable effort in this direction. From the viewpoint of
machine learning, the process of constructing classifications is a form of
"learning from observation" ("learning without a teacher"). This form of
machine learning has been systematically studied in such areas as cluster analysis
and numerical taxonomy. The central notion used there for creating classes of
objects is a numerical measure of similarity of objects. Classes (clusters) are
collections of objects whose intra-class similarity is high and inter-class similarity
is low.

A measure of similarity is usually defined as a proximity measure in a
multi-dimensional space spanned by selected object attributes. Such a measure
is, therefore, meaningful only if the selected attributes are relevant for describing
perceived object similarity. The presence of irrelevant attributes will distort this
measure. Moreover, all attributes defining the description space are given equal
weight in the process of determining classes. The problem, then, becomes one
of structuring attributes into classes, in order to determine the most relevant at-
tributes. Factor analysis and multi-dimensional scaling have been used for this
purpose, but these methods were designed primarily for numerical variables.
They cannot adequately handle the many-valued, nominal (categorical) variables
which occur often in human classifications.

The use of numerical measures of similarity for constructing classifications
has other disadvantages. Such measures take into consideration only the
properties of compared objects without regard to any context or concepts useful
for characterizing object configurations. Consequently, the resulting classes do
not necessarily have any simple conceptual description and may be difficult to
interpret. The problem of determining the meaning of the obtained classes is
simply left to the researcher. This is a significant disadvantage of traditional
methods because a researcher analyzing data typically wants to create classes that
are not only mathematically well defined, but that also have a meaningful con-
ceptual interpretation.

This chapter describes an approach to the problem of automatic construc-
tion of classifications, in which a configuration of objects forms a class only if it
can be closely circumscribed by a conjunctive concept involving relations on
selected object attributes. The problem undertaken can be defined as follows:

MICHALSKI AND STEPP 333

Given:
• A set of objects (physical or abstract),
• A set of attributes to be used to characterize the objects,
• A body of background knowledge, which includes the problem con-

straints, properties of attributes, and a criterion for evaluating the
quality of constructed classifications.

Find:
• A hierarchy of object classes, in which each class is described by a

single conjunctive concept. Subclasses that are descendants of any
parent class should have logically disjoint descriptions and optimize
an assumed criterion (a clustering quality criterion).

Structuring objects into such conjunctive hierarchies is called conjunctive
conceptual clustering. It is a special case of conceptual clustering in general,
which we define as a process of constructing a concept network characterizing a
collection of objects, with nodes marked by concepts describing object classes,
and links marked by the relationships between the classes.

The idea of conceptual clustering and a general method for determining
conjunctive hierarchies was introduced by Michalski [1980a]. This chapter is a
tutorial overview of conjunctive conceptual clustering and the algorithm imple-
mented in the program CLUSTER/2 (a successor to the earlier program
CLUSTER/PAF [Michalski & Stepp, 1981]). The algorithm is illustrated by its ap-
plication to a practical problem in the area of musicology. The conclusion dis-
cusses some possible extensions of the method and suggests topics for future
research. To improve the readability of this chapter, Table 11-1 provides a list
of basic symbols and operators together with a short explanation.

11.2 CONCEPTUAL COHESIVENESS

In conventional data analysis, the similarity between any two objects is
characterized by a single number: the value of a similarity function applied to
symbolic descriptions of objects. These symbolic descriptions are vectors,
whose components are scores on selected object attributes.

Such measures of similarity are context-free, that is, the similarity between
any two objects A and B depends solely on the properties of the objects, and is
not influenced by any context (the "environment" surrounding the objects).
Some authors have introduced context-sensitive measures of similarity, where the
similarity between objects A and B depends not only on A and B, but also on
other objects in the collection to be clustered. One such similarity measure is
the reciprocal of mutual distance [Gowda & Krishna, 1978]. To determine the
mutual distance from object A to object B, objects in the collection are ranked
according to the Euclidean distance to A (the closest object gets rank 1) and then

334 CHAPTER 11 : LEARNING FROM OBSERVATION

Table 11-1: A Table of Basic Symbols and Operators

& conjunction (logical product)
V disjunction (logical sum)
ej an event (a description of an object)
LEF a lexicographical evaluation functional
DOM(p) the domain of variable p
ô(el5e2) the syntactic distance between events e, and e2

a a complex
f-complex a logical complex
s-complex a set complex
E the event space
s(a) number of unobserved events in complex a
p(a) number of observed events in complex a
t(a) total number of events in complex a
E an event set
k the number of clusters
RU(e,...,aj...) the refunion operator
GEN(a) a generalization of complex a
COV(E,IE2) a cover of event set Ej against E2

G(elE0) a star of event e against event set E0

RG(elE0) a reduced star of event e against event set E0

RG(elE0,m) a bounded reduced star with the bound m

according to the Euclidean distance to B. The mutual distance from object A to
object B is the sum of the rank of A with respect to B, and the rank of B with
respect to A. Thus the similarity between compared objects depends on their
relation to other objects.

Taking neighboring objects into consideration solves some clustering
problems, but in general is not sufficient. The difficulty lies in the fact that both
of the above types of similarity measures are concept-free, that is, depend only
on the properties of individual objects and not on any external concepts which
might be useful to characterize object configurations. Consequently, methods
that use such measures are fundamentally unable to capture the "Gestalt
properties" of object clusters, that is, properties that characterize a cluster as a
whole and are not derivable from properties of individual entities. In order to
detect such properties, the system must be equipped with the ability to recognize
configurations of objects that correspond to certain "concepts." To illustrate this
point, let us consider the problem of clustering the points in Figure 11-1.

A person considering Figure 11-1 would typically describe the observed
points as "arranged in two diamonds". Thus, the points A and B, although
closer to each other than to other points, are placed in separate clusters. Here,
human solution involves partitioning the points into groups not on the basis of
pairwise distance, but on the basis of concept membership. Points are placed in
the same cluster if collectively they represent the same concept. In our example,
the concept is "diamond".

This idea is the basis of conceptual clustering. From the viewpoint of con-
ceptual clustering, the "similarity" between two points A and B, which we shall

MICHALSKI AND STEPP 335

A B
• · · ·

• · · ·

Figure 11-1: An illustration of conceptual clustering.

call the conceptual cohesiveness of A and B, depends not only on those points
and surrounding points E, but also on a set of concepts C which are available for
describing A and B together:

Conceptual cohesiveness(A,B) = f(A,B,E,C)

To illustrate this measure, let us assume that the set of concepts C consists
of geometrical figures, such as sequences of straight lines, circles, rectangles,
triangles, etc. A measure of conceptual cohesiveness could be defined, for ex-
ample,1 as:

f(A,B,E,C) = maxj {#t^"1 }
area(i)

where,

i indexes all geometrical figures that are specified in C and that
cover points A and B,

#e(i) is the total number of data points from E covered by figure i,

and

area(i) is the area of figure i.

Note that the constant "-1" in the numerator assures that the conceptual
cohesiveness reduces to a conventional similarity measure (a reciprocal of
distance) when no context points in E are taken into consideration and C is a
straight line of unit thickness linking the data points.

1This measure is mentioned solely to illustrate the difference between traditional similarity and
conceptual cohesiveness. It is not used in the method of conceptual clustering described here.

336 CHAPTER 11: LEARNING FROM OBSERVATION

11.3 TERMINOLOGY AND BASIC OPERATIONS OF THE ALGORITHM

This section gives a brief overview of the terminology needed to describe
the conjunctive conceptual clustering method. This terminology was introduced
by Michalski [1980a].

11.3.1 Variables and Their Types

Let x1? x2,..., xn denote discrete variables that are selected to describe ob-
jects in the population to be analyzed. For each variable a domain is defined,
containing all possible values the variable can take. We shall assume that the
domains of variables Xj, i=l,2,...,n are finite, and therefore can be represented
as:

DOM(Xi) = {0,l,...,drl}, i = l,2,...,n

In general, the domains may differ not only with respect to their size, but
also with respect to the structure relating their elements. In the case of numeri-
cal variables, this structure is defined by the scale of measurement. We distin-
guish among nominal (categorical), linear (quantitative), and structured vari-
ables, whose domains are unordered, totally-ordered, and graph-ordered sets,
respectively. Structured variables represent generalization hierarchies of related
values. We distinguish between two types of generalization hierarchies for struc-
tured variables:

1. Unordered—when the leaf values in the hierarchy constitute an unordered
set.

2. Ordered—when the leaf values in the hierarchy constitute an ordered set.

Figures 11-2 and 11-3 present an example of an unordered and an ordered
generalization hierarchy, respectively. In Figure 11-2, the leaves represent
specific shapes, and the internal nodes ("polygon", "oval", "4-sided") represent
generalizations or linguistic equivalents of these shapes. In Figure 11-3, the
leaves represent specific quantities, and the internal nodes represent ordered
generalizations or linguistic equivalents of these quantities.

11.3.2 Event Space

An event is an object description in the form of a vector of values of the
assumed variables Xj, x2,...,xn. The event space is the space of all possible such
events.

11.3.3 Syntactic Distance

The syntactic distance δ ^ , e2) between two events ej and e2 is defined as
the sum of the syntactic distances between the values of each variable in the
events c{ and e2. As described by Michalski and Larson [1978], the syntactic
distance between two variable values is a number from 0 to 1, determined by a

MICHALSKI AND STEPP 337

shape

3-sided 4-sided circle ellipse

triangle rectangle square trapezoid

Figure 11-2: An example of an unordered generalization structure.

quantity

none

couple

2 3 4 5 6 7 8 9 12 13

Figure 11-3: An example of an ordered generalization structure.

measure which reflects the domain type of the variable. For a nominal variable,
the syntactic distance is either 0, if the values taken by the variable in each event
are identical, or 1, if the values are not identical. For a linear variable, the
syntactic distance is the ratio of the absolute difference between the values to the
total span of the domain of the variable. For a structured variable, the evalua-
tion of syntactic distance depends on the type of generalization hierarchy. Since
structured variable values in events are leaves of a generalization hierarchy, the

338 CHAPTER 11: LEARNING FROM OBSERVATION

syntactic distance between such values for unordered and ordered hierarchies is
evaluated the same way as for nominal and linear variables, respectively.

11.3.4 Relational Statements

A relational statement2 (or a selector) is a form:

[Xi # Ri]
where,

Rj, the reference, is a list of elements from the domain of variable xi?

linked by the internal disjunction, denoted by " V ".

stands for the relational operator " = " or "=/= ".
The selector [Xj = Rj] ([Xj Φ R(\) is interpreted as "value of xs is one of

the elements of Rj" ("value of Xj is not an element of Rj"). In the case of linear
variables, the notation of a selector can be simplified by using relational
operators > , > , < , < , and a range operator "..", as illustrated below. Here
are a few examples of a selector, in which variables and their values are
represented by linguistic terms:

[length > 2] (length is greater than 2)
[color ·= blue V red] (color is blue or red)
[size Φ medium] (size is not medium)
[weight = 2..5] (weight is between 2 and 5, inclusively)

11.3.5 Complexes

A logical product of selectors is called a logical complex (i-complex)
&id[Xj # RJ, where I C {l,2,...,n}. An event e is said to satisfy an Î-complex
if values of variables in e satisfy all the selectors in the complex.

For example, event e = (2, 7, 0, 1, 5, 4, 6) satisfies (-complex
[xj = 2 V 3][x3 < 3][x5 = 3..8] (concatenation of selectors denotes
conjunction). An B-complex can be viewed as an exact symbolic representation
of the events which satisfy it. For example, the above ί-complex is the symbolic
representation of all events for which Xj is 2 or 3, x3 is smaller than or equal to
3, and x5 is between 3 and 8.

A collection of events for which there exists an f-complex satisfied by
these events and only by these events is called a set complex (s-complex). If the
distinction between i- and s- complexes is not important, then we shall use
simply the term complex.

2This form is a special case of a referential selector defined in the annotated predicate calculus
(Chapter 4 of this book). This form was first introduced in the variable valued logic system one
(VL,), described by Michalski [1975a].

MICHALSKI AND STEPP 339

11.3.6 Sparseness

Let E be an event space, and E C E be a set of events representing ob-
jects to be clustered. The events in E are called observed events, and events in
E \ E are called unobserved events. Let a be a complex which covers (includes)
some observed events and some unobserved events. The number of observed
events (points) in a is denoted by p(a). The number of unobserved events in a
is called the absolute sparseness of a in E and denoted by s(a). The total num-
ber of events contained in a is thus t(a) = p(a) 4- s(a). The relative sparse-
ness of a complex is denoted by r(a) and is defined as the ratio of the absolute
sparseness of the complex to the total number of events covered by the complex,
in other words:

r(a) = 1 - Ρ<α>
t(a)

An t-complex is a generalized description of the observed events contained
in the corresponding s-complex. The relative sparseness of a complex can be
used as a very simple measure of the degree to which the (.-complex generalizes
over (or fits) the observed events. If the sparseness is zero, then the description
covers only observed events (has zero degree of generalization). As the relative
sparseness of the complex increases, so does the degree to which it generalizes
over the observed events. The maximum relative sparseness value of 1 is ach-
ieved when the complex covers only unobserved events.

The clustering algorithm presented in Section 11.5.1 generates a collection
of complexes that are pairwise disjoint. Such a collection, called a disjoint
clustering, describes a partition of all observed events into disjoint classes. The
fit between a disjoint clustering and the observed events can be measured by the
relative sparseness of the clustering, defined as the average of the relative spar-
senesses of the complexes in the clustering. Since the complexes in a clustering
are disjoint and the total number of observed events is constant, the ranking of
clusterings will not change if the relative sparseness measure is replaced by the
absolute sparseness measure (the sum of absolute sparsenesses of complexes).
The latter measure is much simpler computationally and, therefore, is used in the
presented clustering algorithm. Henceforth, we shall simply use the term sparse-
ness to denote this measure of fit.

An advantage of sparseness as a measure of fit is its simplicity. A dis-
advantage, however, is that it takes into consideration the whole event space, no
matter which variables spanning the space are actually present in the
β-complexes. Therefore, another measure is introduced, called projected sparse-
ness, which evaluates a clustering in a subspace of the original event space,
defined by specially selected "relevant" variables. To define this measure, let us
observe that complexes of a disjoint clustering may involve different subsets of
variables. Because complexes are pairwise disjoint, any pair of complexes must
contain at least one common variable with disjoint references in both complexes.
A variable with this property for any pair of complexes in a clustering is called a

340 CHAPTER 11: LEARNING FROM OBSERVATION

discriminant variable of the clustering. For example, Xj, x3, and x4 are dis-
criminant variables of the clustering:

{[X l >3][x 2 =l V 2] [x 3 = l] , [x1<3][x3 = 2 V 3] [x 4 = 3], [x2= 1] [x4<2]}.
The event space spanned over only the discriminant variables is called the

projected event space of the clustering. The projected sparseness of a clustering
is the sum of the absolute sparsenesses of complexes in the projected event
space.

11.3.7 Refunion Operator

The refunion operator RU transforms a set of events and/or complexes into
a single complex covering the events and/or complexes. For each variable, the
set of all values the variable takes, in all given events and complexes, is deter-
mined. These sets are used as the reference of the variable in the generated
complex. For example, given:

e, = (2,3,0,1)

e2 = (0,2,1,1) and

a = [x, = 2.3] [x2 = 4] [x3 = 0] [x4 - 2]

the refunion complex, RU(ei,e2,oi), denoted α', is:
a' = [x, = 0 V 2 V 3] [x2 = 2 V 3 V 4] [x3 = 0 V 1] [x4 = 1 V 2]

It can be shown that the refunion complex has the minimum sparseness
(absolute or relative) among all complexes covering the given events and/or com-
plexes [Michalski, 1980c].

11.3.8 GEN Operator

The generalizing operator GEN simplifies and generalizes any given com-
plex by applying an appropriate generalization rule (see Section 4.5 in Chapter 4
of this book) to each selector in the complex:

1. To linear selectors, the "closing the interval" rule is applied: The reference
is clustered into one or a few disjoint intervals, such that the ratio of the
number of unobserved values to the width of the enclosing interval is at or
below a certain sparseness threshold. For example, the reference
1 V 2 V 3 V 7 V 8 is turned into one interval 1..8, if the assumed
threshold is 3/8 or more. If the threshold is less than 3/8, the reference is
turned into two intervals 1..3 V 7..8.

2. To structured selectors, the "climbing the generalization hierarchy" rule is
applied: A reference with more than one value is replaced by the most
specific node in the generalization hierarchy which "covers" the reference.

3. After steps (1) and (2) are completed, the "dropping the condition" rule is
applied to all selectors: A selector is removed if the ratio of the number of

MICHALSKI AND STEPP 341

missing reference values to the number of values in the domain of the vari-
able is below a certain sparseness threshold.
To illustrate the GEN operator, consider the complex α', given above, and

assume that variables Xj and x2 are linear, variable x3 is structured, and variable
x4 is nominal, that the domain of x3 is a generalization hierarchy in which the
value "small" is the parent node of values 0 and 1, and that the domain of x4
contains values 0, 1,2. Assume also that the sparseness threshold for all vari-
ables is 0.5. Then we have:

GEN(a'): [xx < 3][x2 = 2..4][x3 = small]
where the references for Xj and x2 are generalized by closing the interval, the
reference for x3 is generalized by climbing the generalization tree, and the selec-
tor for variable x4 is removed by dropping the condition.

11.3.9 Cover

Let Ej and E2 be two disjoint event sets, that is, Ej Π E2 = 0 . A cover
COV(EjlE2) of E{ against E2 is any set of s-complexes {otj}jCj such that for each
event e £ Ej there is an s-complex a:, j £ J, covering it, and none of the com-
plexes Oj cover any event in E2:

Ej Ç U j d a j Ç E \ E 2

By representing complexes of the cover as B-complexes, a cover can be ex-
pressed as a logical disjunction of these complexes.

A cover in which all s-complexes are pairwise disjoint is called a disjoint
cover. If Ej is a collection to be clustered and E2 = 0 , then a disjoint cover
COV(Ejl0), or simply COV(Ej), represents a disjoint clustering of events. The
algorithm described in Section 11.5 generates a disjoint clustering of events by
repetitively constructing a special type of cover, called a star.

11.3.10 Star

The star G(elE0) of event e against event set E0 (e i E0) is the set of all
maximally general3 complexes covering the event e and not covering any event
in E0. Informally, it is the set of all maximally general descriptions of event e
which do not intersect with set E0. Figure 11-4 presents a star of event e against
events denoted by " · " in the two dimensional space spanned over linear vari-
ables. The star consists of complexes a1? a2, and a3. Complex a ' 3 is a
"reduced" complex a3, as explained below.

In the algorithm described in the next section, the "theoretical" stars
(defined above) are subjected to two major modifications. The first is to min-

3A complex a is maximally general with respect to a property P if there does not exist a complex a*
with property P such that a C a*.

342 CHAPTER 11 : LEARNING FROM OBSERVATION

a,

•

I
L +

•

•

«t,

Ύ

+

+
e

+

*

•

+

+

, * «,
**2

•

I

•

•

— <*3

è

Legend

• — elements of Ee

+ — observed events in
complexes of the star

Figure 11-4: An illustration of the star G(elE0).

imize the sparseness of complexes in the stars, and the second is to "bound" the
stars, that is, to select from them a certain number of "best" complexes, accord-
ing to a context-dependent criterion. The first modification is performed by pro-
cedure Redustar, described below, and the second by procedure Boundstar
described in Section 11.5.1.2.

11.3.11 Redustar Procedure

Complexes in stars G(elE0) are maximally general, and therefore may
describe objects in an overgeneralized way. The Redustar procedure generates a
star, and then maximally reduces the sparseness of each complex in it, while
preserving the coverage of observed events. For example, complex a ' 3 in
Figure 11-4 is such a reduced complex obtained from complex a3. The steps of
the procedure are:

1. Elementary stars, G(elej), ej £ E0, are determined.
To generate an elementary star G(elej) of an event e against another

event ei? all variables that have different values in e than in ej are iden-
tified. Suppose, with no loss of generality, that these variables are

MICHALSKI AND STEPP 343

Xi,x2,..-,Xg, and that ej = (rj,r2,..., rg,...,rn). The complexes of the star
G(elej) are then [Xj Φ rj], j=l,2,...,g, because these are the maximally
general complexes which cover e and do not cover tv The number of
complexes in an elementary star is at most n, and, because ^Φ e, at least
1.

2. The complete star G(elE0) is determined.

The star G(elE0) is generated by first setting up the logical product
& G'(elej), ej £ E0, where G'(elej) is the disjunction of complexes from
the elementary star G(elej). Next, the multiplication of complexes is per-
formed, using absorption laws, until a disjunction of nonredundant com-
plexes is obtained. This multiplication is carried out in steps, each step
being a multiplication of a disjunction of complexes by a disjunction of
selectors (the elements of consecutive elementary stars). The set of the
complexes in the resulting disjunction is G(elE0).

3. Complexes in G(elE0) are reduced and simplified.
The sparseness of each complex in the star is reduced as much as

possible without "uncovering" any of the observed events. This is done by
performing the refunion of all the observed events contained in each com-
plex. The complexes are then generalized and simplified by applying the
GEN operator. The resulting set of complexes is a reduced star RG(elE0).
The theoretical basis for the above algorithm generating the star G(elE0) is

described in Michalski [1975b].

11.3.12 NID Procedure

This procedure transforms a set of Nondisjoint complexes Into a set of Dis-
joint complexes (that is, a disjoint clustering). If input complexes to NID are
already disjoint, the procedure leaves them unchanged. The steps of the proce-
dure are:

1. "Core" complexes are determined.
Observed events covered by more than one complex from the given

set are placed on the multiply-covered event list (m-list). If the m-list is
empty, then the complexes are only weakly intersecting, that is, the inter-
section area contains only unobserved events. In this case, the procedure
terminates with an indication that the combination of complexes is a
weakly intersecting clustering. Otherwise, each complex is replaced by the
Refunion of the observed events contained in the complex that are not on
the m-list (i.e., that are singly covered). The obtained Refunions are
called "core" complexes.

2. A best "host" complex is determined for each event on the m-list.
An event is selected from the m-list and is "added" to each of the k

344 CHAPTER 11 : LEARNING FROM OBSERVATION

core complexes by generalizing each complex to the extent necessary to
cover the event. Such a generalization is performed by applying the
Refunion operator to the event and the complex. As a result, k modified
complexes are obtained. By replacing one of the core complexes in the
initial set with the corresponding modified complex, in k different ways, a
collection of clusterings is obtained. These clusterings are evaluated ac-
cording to the assumed clustering quality criterion (see the next section).
The best clustering is determined, and the complex in it that covers the
given event from the m-list is considered to be the best "host" for this
event. The best clustering is retained and the remaining ones are
eliminated. By repeating the above operation for every event on the m-
list, a set of k disjoint complexes is obtained whose union covers the same
observed events as the original set of nondisjoint complexes.

If an event cannot be "added" to any complex without causing the
result to intersect other complexes, then the event is placed on the excep-
tions list.

11.4 A CRITERION OF CLUSTERING QUALITY

The problem of how to judge the quality of a clustering is difficult, and
there seems to be no universal answer to it. One can, however, indicate two
major criteria. The first is that descriptions formulated for clusters (classes)
should be "simple", so that it is easy to assign objects to classes and to differen-
tiate between the classes. This criterion alone, however, could lead to trivial and
arbitrary classifications. The second criterion is that class descriptions should
"fit well" the actual data. To achieve a very precise "fit", however, a descrip-
tion may have to be complex. Consequently, the demands for simplicity and
good fit are conflicting, and the solution is to find a balance between the two.

A number of other measures can be introduced for evaluating clustering
quality. CLUSTER/2 uses a combined measure which can include any of the fol-
lowing elementary criteria:

• the fit between the clustering and the events
• the simplicity of cluster descriptions
• the inter-cluster difference
• the discrimination index
• the dimensionality reduction

The fit between a clustering and the data is computed in two different
ways, denoted as T and P. The T measure is the negative of the total sparseness
of the clustering, and the P measure is the negative of the sum of the projected
sparsenesses of the complexes. The reason for using the negative values is to
increase the degree of match as the sparseness decreases.

Simplicity of cluster descriptions is defined as the negative of the com-
plexity, which is the total number of selectors in all descriptions.

MICHALSKI AND STEPP 345

Inter-cluster difference is measured by the sum of the degrees of disjoint-
ness between every pair of complexes in the clustering. The degree of disjoint-
ness of a pair of complexes is the number of selectors in both complexes after
removing selectors that intersect. For example, the pair of complexes:

• [color = red] [size = small or medium] [shape = circle]
• [color = blue] [size = medium or large]

has the degree of disjointness 3, because 2 of the 5 selectors intersect
(intersecting selectors are italicized). This criterion promotes clusterings with
classes having many differing properties, and is analogous to the criterion of re-
quiring maximal distance between clusters, used in conventional methods of
clustering.

The discrimination index is the number of variables that singly discriminate
among all the clusters, that is, variables having different values in every cluster
description.

Dimensionality reduction is measured by the negative of the essential
dimensionality, defined as the minimum number of variables required to distin-
guish among all complexes in a clustering. It can be computed by applying to
the clustering the variable-valued logic minimization algorithm A% [Michalski,
1975b]. When the discrimination index is greater than zero, the essential dimen-
sionality is exactly one.

The definitions of the above criteria are such that the increase of any
criterion value improves the quality of the clustering. The relative influence of
each criterion is specified using the "Lexicographical Evaluation Functional with
tolerances" (LEF) [Michalski, 1980b]. The LEF is defined by a sequence of
criterion-tolerance pairs (c^Tj), (C2 ,T2), ..., where q is an elementary criterion
selected from the above list, and Tj is a tolerance threshold (τ £ [0..100%]). In
the first step, all clusterings are evaluated on the first criterion, Cj, and those that
score best or within the range defined by the threshold Tj are retained. Next, the
retained clusterings are evaluated on criterion c2 with threshold τ2 , similarly to
the above. This process continues until either the set of retained clusterings is
reduced to a singleton (the "best" clustering) or the sequence of criterion-
tolerance pairs is exhausted. In the latter case, the retained clusterings have
equivalent quality with respect to the given LEF, and any one may be chosen
arbitrarily. The selection of elementary criteria, their ordering, and the specifica-
tion of tolerances is made by a data analyst.

11.5 METHOD AND IMPLEMENTATION

This section describes the algorithm for conjunctive conceptual clustering
implemented in the program CLUSTER/2 (the successor to the program
CLUSTER/PAF [Michalski & Stepp, 1981]). The algorithm consists of a clustering
module and a hierarchy-building module, which are described in Sections

346 CHAPTER 11: LEARNING FROM OBSERVATION

11.5.1 and 11.5.2, respectively. Section 11.5.1.4 gives an example illustrating
the details of the clustering module.

11.5.1 The Clustering Module

11.5.1.1 The Full-search Version of the Algorithm

The basic algorithm underlying the implementation of the clustering
module was introduced in [Michalski, 1980a]. Its goal can be described as fol-
lows:

Given:
• A collection of events to be clustered, E
• The number of clusters desired, k, and
• The criterion of clustering quality, LEF

Find:
• A disjoint clustering of the collection of events that optimizes the

given criterion of clustering quality LEF.

We shall first describe a straightforward, exhaustive-search version of the
algorithm, and then show how this version is modified to increase efficiency.
The steps are:

1. Initial seeds are determined.
From the given collection of events E, k events (the initial seeds) are

selected. The seeds may be chosen randomly or according to some
criterion. (After this first step, seeds are always selected according to cer-
tain rules; see step 5).

2. Stars are constructed for seeds.
For each seed ei5 a reduced star RG(ejlE0) is constructed by proce-

dure Redustar, where E0 is the set of remaining seeds.
3. An optimized clustering (a disjoint cover of E) is built by selecting and

modifying complexes from stars.
Every combination of complexes, created by selecting one complex

from each star, is tested to see whether it contains intersecting complexes.
If so, the complexes are made disjoint by procedure NID.

4. A termination criterion is evaluated.
If this is the first iteration, the obtained clustering is stored. In sub-

sequent iterations the clustering is stored only if it scores better than
previously-stored clusterings according to the LEF (see Section 11.4). The
algorithm terminates when a specified number of iterations does not
produce a better clustering (this number is defined by a termination
criterion, described below).

MICHALSKI AND STEPP 347

5. New seeds are selected.

New seeds are selected from sets of observed events contained in
complexes of the generated clustering, one seed per complex. Two seed-
selection techniques are used. One technique selects "central" events,
defined as events nearest the geometrical centers of the complexes (as
determined by the syntactic distance). The other technique, stemming
from the "adversity principle4", selects "border" events, defined as events
farthest from the centers. Ties for central or border events are broken in
favor of events which have not been used recently as seeds. The technique
of selecting central events is used repetitively in consecutive iterations as
long as the clusterings improve. When the improvement ceases, border
events are selected.

After selecting seeds, a new iteration of the algorithm begins from
step 2.

The algorithm is summarized by the flow chart in Figure 11-5.
Along with a clustering, the algorithm generates k ß-complexes describing

individual clusters, and determines how these complexes score on the evaluation
criteria in the LEF. The algorithm stops when the termination criterion is
satisfied. The termination criterion is a pair of parameters (b,p), where b (the
base) is a standard number of iterations the algorithm always performs, and p
(the probe) is the number of additional iterations beyond b performed after each
iteration which produced an improved cover. The general structure of the algo-
rithm is based on the so-called dynamic clustering method [Diday & Simon,
1976].

The most computationally costly part of this algorithm is the construction
of an optimized clustering, given k seed events (step 3). For an illustration, let
us assume that k = 2 and that k "seeds", e! and e2, have been selected from the
collection E. In the first step, stars Gj = G(ej I remaining seeds) and G2 =
G(e21 remaining seeds) are generated. Figure 11-6 presents complexes of these
stars as branches of a search tree. Branches from the root represent complexes
of star G{ that are α π , α12, ...,otlm , and branches at the second level (repeated
mj times) represent complexes of star G2 that are ot21,a22,...,a2m2. Each com-
bination of complexes, containing one complex from each star, corresponds to
one path in the tree. Because any such combination may contain intersecting
complexes, procedure NID is applied to each, and the result is a disjoint cluster-
ing. These clusterings are ordered according to the quality criterion LEF, and
the best one is selected.

4This principle states that if a border, "near hit" event truly belongs to the given cluster, then when
selected as the seed it should produce the same clustering as when a central event is used as a seed.

348 CHAPTER 11 : LEARNING FROM OBSERVATION

Given:
E—a set of data events
k-the number of clusters

LEF—the clustering quality criterion

(1)
Choose initial"seed" events from E

(2)
Determine a star for each seed
against the other seed events

(3)
By appropriately modifying and
selecting complexes from stars,

construct a disjoint cover of
E that optimizes the criterion LEF

<

I
(4)

Is the termination
criterion satisfied?

I No

(5)
Is the clustering

quality improving?

Choose k new seeds which
are central events

Choose k new seeds which
are "border" events

Figure 11-5: The flow chart of the clustering module.

MICHALSKI AND STEPP 349

/ \

/ \

1 \ . / \ ..
/ i \

/■; 2m 0

Ctj denotes a complex j from star i.

Figure 11-6: The exhaustive-search search tree for k = 2.

©i

°<2-

0
24

°b\

22 40

a,, denotes complex j from star i. IntegersCiA\î) indicate the order

of expanding nodes. Integers 0, 1 , indicate the branch indices. Integers

indicate clustering evaluation scores for each path. 24 22

Figure 11-7: The Path-Rank-Ordered search tree for k = 2 used in CLUSTER/2.

11.5.1.2 Path-Rank-Ordered (PRO) Search Procedure Used in CLUSTER/2

The above strategy for determining a clustering from seeds is very simple,
but unfortunately too inefficient for solving any interesting practical problems.
This is due to the fact that the stars may contain very many complexes. When
there are n variables and k seeds, a star may contain up to nk_1 complexes (there
are at most n complexes in any of the k-1 elementary stars needed to compute
the complete star). Thus, when n = 30 and k = 3, there could be up to nk_1 =900

350 CHAPTER 11 : LEARNING FROM OBSERVATION

complexes, and the search tree could have up to 900-way branching at each
node, and up to 9003 = 729 million leaves. Absorption laws (as defined in
Boolean algebra) will usually eliminate many redundant complexes, but the star
may still be too large. Artificial intelligence research on various heuristic search
procedures offers various possibilities for reducing the search (for example,
Nilsson [1980] or Winston [1977]). To solve this problem, we have adopted
some of the known ideas and also developed some new ones. The result is a
search procedure called Path-Rank-Ordered (PRO) search that incorporates the
following four techniques:

1. Bounding the stars (procedure Boundstar).
The number of complexes in a star is bounded by a fixed integer m,

which assures that the search tree has at most m-way branching. A
bounded star contains not just m arbitrary complexes from the initial star,
but the m "best" ones.

At each step of star generation (a multiplication of a set of complexes
by the next elementary star; see the Redustar procedure in Section
11.3.11), complexes are first reduced and then arranged in descending or-
der according to the assumed clustering quality criterion LEF. Only the
first m complexes are retained for the next multiplication step. This opera-
tion is also performed at the end of star generation, so that the final star
has at most m complexes. The stars so obtained are called bounded
reduced stars and denoted RG(e!E0,m).

Some elementary criteria measure global properties of a clustering
rather than properties of just a single complex (such as the inter-cluster
differences). Consequently, when evaluating a complex descending from a
node in the search tree that is not the root, the complex is evaluated in the
context of complexes associated with the path from the root to this node.

By bounding the star we gain significantly in efficiency, but give up
the assurance that the obtained clustering will be optimal. This is not a
significant loss, however, because the clustering obtained at the end of
each iteration contributes only the seeds to the next iteration, and thus its
optimality is not very important.

2. Generating stars dynamically.
Because it is necessary to evaluate complexes in the context of

previously selected complexes, bounding a star has to be done differently
at each node of the search tree. CLUSTER/2 uses a "lazy" strategy, in which
a star is generated only when it is needed to expand a node on the path
being explored.

3. Searching in order of path rank.
As we mentioned above, complexes in a bounded star are arranged in

descending order according to the LEF. In the search tree, the branch to
the best complex is assigned the branch index 0, the branch to the next

MICHALSKI AND STEPP 351

best complex is assigned the branch index 1, and so on, up to the index
m-1. The path index of a path from the root to a leaf is the sum of the
branch indices along the path.

The paths from the root to a leaf represent potential clusterings and
are investigated in the ascending order of their path index. Thus, the first
path investigated is the one with path index 0, that is, the path containing
only the "best" complexes from each star. The next paths considered are
those with a path index of one. There are k such paths.

As paths of increasing path index are generated and evaluated, a
search termination criterion is applied. This criterion consists of two
parameters, search-base and search-pfobe. A search-base number of paths
is always expanded and evaluated. Then, a search-probe number of ad-
ditional paths is considered. Each path is processed by NID, and if some
complexes are transformed to make them disjoint, the clustering-quality
criterion is evaluated again. Whenever a new clustering is better than any
previous clustering, it is saved and another search-probe number of ad-
ditional paths is explored. If the above probing fails to find a better
clustering, the search terminates.

4. Tapering the search tree.

The bound of the stars, m, is decreased with the increase of the path
index. The search tree is, therefore, more fully developed on the side con-
taining the "higher quality" complexes.

Figure 11-7 shows an example of a search tree generated by CLUSTER/2.
The tree is a modification of the tree in Figure 11-6, resulting from the applica-
tion of the above efficiency-increasing techniques. In Figure 11-7, the maximum
value of bound m is set to 3. The root is expanded by constructing the star
Giseedjlother seeds,3), whose complexes are an, a12, and a13 (listed in
decreasing order of their "quality", as determined by the LEF). The branches
representing these complexes are assigned branch indices 0, 1, and 2, respec-
tively. The node attached to branch 0 is expanded next. The star G(seed2lother
seeds,3) is generated, creating complexes a21, a22, anc* «23· Branches cor-
responding to these complexes are assigned branch indices 0, 1, and 2, respec-
tively. The path 0-0 (having the lowest path index of 0, denoted by heavy lines
in Figure 11-7) is considered first. The associated clustering { a n , a21} is
processed by NID, and the result is saved as the best clustering so far. Next,
path 0-1 is considered. The associated clustering {an, a22} is processed by NID
and evaluated. If it is better than the previous clustering, it is saved. In order to
explore the path 1-0 (the second path with path index 1), the star G(seed2lother
seeds,2) is generated. The star contains complexes a'21 and a'22. The cluster-
ing {a12, a'21} associated with the currently investigated path is evaluated. As-
suming that the termination criterion has the parameters search-base = 2 and
search-probe = 2, and that the evaluation scores are as shown in Figure 11-7, the
tree search terminates after investigating the fourth path 0-2 (since this path ex-

352 CHAPTER 11: LEARNING FROM OBSERVATION

hausts the probing without finding a better clustering). Path 0-1, with the
evaluation score of 22, is the best clustering found.
11.5.1.3 Dynamic Modification of Classifications

The obtained clustering partitions all the observed events into disjoint
classes. The set-theoretic union of complexes in the clustering does not,
however, necessarily cover the whole event space. Consequently, when a given
classification is applied to a new event that is "outside" this union, it is not pos-
sible to assign this event to any class. In such a case, the classification
(clustering) is automatically adjusted to accommodate the new event. This is
done by applying the NID procedure (Section 11.3.12), modified as follows.
The complexes of the current clustering play the role of "core" complexes, and
the new event is treated as an element of the m-list. The event is incorporated
into the complex that is the best "host" for it, as determined by NID. As a
result, the original complex becomes the Refunion of itself and the event. This
way, the initial classification is modified to incorporate the new, unforeseen
event. Such a process has a psychological justification, as it is common for
people to modify their classifications when some object fails to fit them, by ap-
propriately perturbing the boundaries of the classes.

11.5.1.4 An Example Illustrating the Clustering Module

The following simple example illustrates some further details of the cluster-
ing module algorithm. There are ten objects, each described by four variables:
Xj, x2, X3, and x4, with three-valued domains, DOM(Xj) = {0,1,2}, i= 1,2,3,4.
Variables x^ and x3 are linear, variable x2 is structured, and variable x4 is
nominal. The generalization hierarchy of the domain of x2 is shown in Figure
11-8. Object descriptions (events in the population E) are presented in Figure
11-9. For simplicity, let us assume that the goal is to partition objects into only
two classes (k = 2) using a LEF in which the primary criterion (with tolerance of
0%) is to minimize the total sparseness, and the secondary criterion is to max-
imize the simplicity of the clustering, (that is, the negative of the number of
selectors). Figure 11-10 shows a geometrical representation of the events using a
generalized logic diagram [Michalski, 1978]. Each cell in the diagram is labeled
by the event it represents. Empty cells represent unobserved events.

The steps of the algorithm follow the diagram in Figure 11-5.

Iteration 1

Step 1 (Figure 11-5, block 1): A subset of k = 2 observed events (seeds) is
selected from the population E = {ej, i= 1,2,..., 10. The seeds can be
selected randomly, or they can be chosen as events which are most syn-
tactically distant from each other. In the latter case, as experiments
show, the algorithm will usually converge faster. For selecting such
"outstanding" events, program ESEL [Michalski & Larson, 1978] is
used. For the sample problem, let us make a "bad" choice and select
two events close to each other, such as ej and e2.

MICHALSKI AND STEPP 353

Figure 11-8: The generalization hierarchy of the domain of variable x2.

Event

"
β 2

β 3
β 4 '

β 5

β 6
β 7

β 8

e9

β10

Variable
Type:

(L: lines

x t

0
0
0
1

1

I 2

2
2
2
2

L

ir; N:

* ^_

a
b
c
a

c

a

b
b
c
c

S

nominal;

X 3

0
0
1
0
1
1
0
1
0
2

L

X 4

1
0
2
2
1
0
1
2
0
2

N

S: structured)

Figure 11-9: A data set describing ten objects, using four variables.

354 CHAPTER 11: LEARNING FROM OBSERVATION

a

b

c

a

b

c

a

b

c

w

β 9

0

(· .)

e 7

1

e 4

2

β 6

0

e 5

1

β 3

β 8

2 0 1

eio

2

Figure 11-10: A geometrical representation of events ej to ej0. Encircled events are initial seeds.

Step 2 (Figure 11-5, block 2): Bounded reduced stars RG(e1le2,m) and
RG(e2lei,m), with m = 5, are generated by procedure Boundstar
(described in Section 11.5.1.2):

RG(e1le2,m) = {[x2 = a][x3 = 0 V 1], [x4 = 1 V 2]}

RG^Ie^m) = {[x2 = b V c], [x4 = 0 V 2]}

These stars contain all possible complexes, because m>2. After
applying the closing the interval and climbing the hierarchy generaliza-
tion rules, the stars become:

RG(eile2,m) = {[x2 = a][x3 = <1], [x4 = 1 V 2]}

RG(e2le1,m) = {[x2 = f], [x4 = 0 V 2]}

The reference "b V c" in the selector for the structured variable x2

has been replaced by a more general value, f (Figure 11-8).

Step 3 (Figure 11-5, block 3): From each star a complex is selected and ap-

MICHALSKI AND STEPP 355

propriately modified, such that the resulting set of k = 2 complexes is a
disjoint cover of E, and is an optimal or suboptimal cover among all
possible such covers, according to the clustering quality criterion. There
are four combinations of complexes to consider:

complex 1:
complex 2\

complex 1:
complex 2:

complex 1:
complex 2:

complex 1:
complex 2:

[x2 = a][x3 < 1]

[x2 = fl

[x4 = 1 V 2]
[x2 = f]

[x2 = a][x3 < 1]
[x4 = 0 V 2]

[x4 = 1 V 2]
[x4 = 0 V 2]

Sparseness
15
42
62

These covers are not disjoint.
Procedure NID (Section
11.3.12) is applied to each cover,
but the sparseness of resulting

clusterings in each case is > 62
and their complexity is 3.

Complexity
2
1
3

(a)

(b)

(c)

(d)

Cover (a) is selected since it has the minimum total sparseness.

Step 4 (Figure 11-5, block 4): The termination criterion is tested. In our ex-
ample, the parameters of the termination criterion are: base = 2 and
probe = 2 (Section 11.4). The current iteration is the first of the two
base iterations.

Step 5 (Figure 11-5, block 5): A new set of seeds is determined. These new
seeds are central events, among the observed events covered by (a).
Complex [x2 = a][x3 < 1] covers the set {e^e^e^, and complex [x2

= f] covers the set {e2,e3,e5,e7,e8,e9,e10} (notice that value f of x2 is a
generalization of b and c according to Figure 11-8). The central events
(as determined by syntactic distance) in these sets are e4 and e8, respec-
tively, so they become new seeds.

Iteration 2

Step 2:
New stars RG(e4le8,m) and RG(e8le4,m) are generated:

RG(e4le8,m) = {[x2 = a][x3 < 1], [Xl < l][x3 < 1], [x3 = 0]}

RG(e8le4,m) = {[Xl = 2], [x2 = f], [x3 = >1]}

Step 3:
All combinations of complexes (obtained by selecting one complex from
each star) are subjected to procedure NID and then evaluated. The best
clustering is:

356 CHAPTER 11 : LEARNING FROM OBSERVATION

complex 1:
complex 2:

[x, < l][x3 < 1]
[x, = 2]

Sparseness
31
22
53

Complexity
2
1
3

Step 4:
This is the last of the base iterations.

Step 5:
Complex [\{ < l][x3 < 1] covers events {e1,e2,e3,e4,e5} and [xj = 2]
covers {e6,e7,e8,e9,e10}. Since this clustering is an improvement over the
previous one (since it has a lower sparseness), the new seeds selected are
central events: ej and e8.

Iteration 3

This iteration produces the same clustering as iteration 1.

Step 4: This is the first of the two "probe" iterations.

Step 5: Since the clustering obtained is not better than the previous one, border
events are selected as the new seeds: e2 and e6.

Iteration 4

This iteration produces a new clustering:

complex 1:
complex 2:

Sparseness
[x3 > 1] 49
[x3 = 0] 22

71

Complexity
1
1
2

It is the second "probe" iteration. If the obtained clustering was better than the
previous best clustering, another probe = 2 iterations would be scheduled. Since
the sparseness of the clustering obtained in this iteration (71) is not an improve-
ment over the previous best sparseness (53), the termination criterion is satisfied.
The best resulting clustering is the one produced in iteration 2:

[Xl < l][x3 < 1]

[Xl = 2]
Figure 11-11 shows the diagrammatic representation of this solution.

MICHALSKI AND STEPP 357

« ^ [x ^ H i x ^ U
*>

0

1

2

x2

a

b

c I

a

b

c

a

b

c I

l·2

k
0

e i

*?

1

β4

2

%

0

%

1

^ L .

s

%

2 I 0 1

Ü
2

« 2 = ^ = 2]

K

X 4

0 1 2 x,

Figure 11-11: A diagrammatic representation of the clustering {α,, α2}.

11.5.2 The Hierarchy-building Module

The hierarchy-building module uses the clustering module to determine a
hierarchy of clusters. It performs two loops, one iterative and one recursive.
The iterative loop repeats the clustering module for a sequence of values of k in
order to determine the value for which the most desirable clustering is obtained.
Such an approach is computationally acceptable because, in practical applica-
tions, most interesting hierarchies will have a relatively small number of
branches (that is, a small value of k) at each level.

The recursive loop applies the above iterative process at each node of the
hierarchy. In the first step, the process is executed for the root, representing the
initial event set E. Clusters of E and their conjunctive descriptions are deter-
mined. Consecutive steps repeat the same operation for the nodes representing
clusters obtained during the previous step. The hierarchy continues to grow from
the top down until the "continue-growth" criterion fails to be met. This criterion

358 CHAPTER 11: LEARNING FROM OBSERVATION

requires that the fit between the clusters and their descriptions at every level of
the hierarchy must be better than at the previous level.

In order to determine the optimal value of k, we must modify the cluster-
ing quality criterion so that it can be used to compare clusterings with different
numbers of complexes. Such a criterion must reflect the dependency of the fit
between the clustering and data on the value of k. As the number of clusters k
increases, the fit (measured by the negative of sparseness) will likely increase,
since smaller complexes will have smaller sparseness. On the other hand, in-
creasing k increases the complexity of the clustering and therefore is undesirable.
A simple criterion that takes into consideration the above trade-off is to require
the product

Total sparseness x (k + ß)

to achieve a minimum value, where ß is an experimentally determined parameter
balancing the relative effect of the sparseness and the number of clusters k on the
solution.

11.6 AN EXAMPLE OF A PRACTICAL PROBLEM: CONSTRUCTING A
CLASSIFICATION HIERARCHY OF SPANISH FOLK SONGS

This example presents an application of the above method to the develop-
ment of a classification hierarchy of 100 Spanish folk songs. The folk songs
were characterized by 22 musicological attributes, listed in Figure 11-12. These
attributes, as well as other relevant data, were provided by musicologist Pablo
Poveda, who studied this problem using traditional methods of numerical
taxonomy [Poveda, 1980]. The results obtained by using the traditional methods
were not very satisfying, because the generated clusters lacked descriptions, and
therefore were difficult to interpret.

The top five levels of the conjunctive hierarchy produced by CLUSTER/2 are
presented in Figure 11-13. The criterion of clustering quality was to "minimize
the total sparseness". The number of clusters (k) at each level was 2, to meet
the requirement of the musicologist.

The top node of the hierarchy corresponds to the whole collection of
songs. All the other nodes represent various classes (categories) of songs. The
description of each class is a conjunctive statement involving selected folk song
attributes. In Figure 11-13, instead of providing the whole cluster description
associated with each branch, we show, for simplicity, only the discriminant vari-
ables occurring in the given cluster. As it turned out, all nodes in the hierarchy
have only one discriminant variable. For example, at the first level, the dis-
criminant variable is the harmonic structure, which takes the value "monophonie"
in one cluster and "polyphonic" in the other cluster.

One interesting aspect of the generated hierarchy is that the value sets of
some variables have been split into ranges. These ranges can be considered as
new (generalized) values of variables. For example, while producing the second

MICHALSKI AND STEPP 359

xi
*2
χ3
X4

*5
*6
*7
*8
X9

XI0
Xll
*12
X|3
X|4

X|5
XI6
X|7
*!8
X|9
x20
*2I
*22

Tonal Range
Number of Tones
Degree of Rubato
Degree of Embellishment
Degree of Melisma
Number of Musical Phrases
Degree of Musical Tension
Degree of Melodic Line Blending
Harmonic Structure
Religious Setting
Sex of Singers
Rhythm
Harmony
Homophonie
Instrumental Accompaniment
Female singer
Accompanied by Dancing
A Serenade
A Love song
A Solo
Uses Phrygian Scale
Panegyric

»ure 11-12: Variables used to describe 100 Spanish folk s(

{1-11}
{1-10}
{0..5}
{0.-5}
{0.-5}
{0.-5}
{0-5}
{0-5}
{Monophonie, Polyphonic}
{Religious, Secular}
{Same Sex, Mixed Sexes}
{Weak, Strong, Triple-beat}
{None, Non-Phrygian, Phrygian}
{Yes, No}
{Yes, No}
{Yes, No}
{Yes, No}
{Yes, No}
{Yes, No}
{Yes, No}
{Yes, No}
{Yes, No}

>ngs.

level clustering of the monophonie folk songs (the left branch), the range of the
degree of "rubato" was split into two ranges 0..3 and 4..5, which can be charac-
terized as "low" and "high", respectively. Similar partitioning of value sets was
performed on the degree of embellishment, the degree of melisma, the tonal
range, and the number of tones in a song.

The leaf nodes in the hierarchy shown in Figure 11-13, marked by
cq,a2v.->aii represent groups of songs, whose complete description consists of
discriminant variables indicated along the path from the root to the leaf and some
additional properties generated by CLUSTER/2, but not shown in Figure 11-13.
For example, the group of songs represented by aj (8 songs) has the following
complete description:

OL] = [harmonic structure = monophonie] (discriminant variables
[rubato = low] [tonal range = low] along the path from
[type = secular][instruments used = no] the root to leaf aj)

&
[no. of distinct tones = 5..8][dance = no] (additional properties
[panegyric = no][no. of phrases = 1. .2] * generated by the program
[melisma = 0..2][tension = 1 ..3] at the leaf node)

The hierarchy in Figure 11-13 is a simple and meaningful classification of
the folk songs. The classes are easy to interpret due to the provided descrip-
tions. If the clustering quality criterion LEF is changed (by selecting different
elementary criteria, a different order of the criteria, and/or different tolerances for

360 CHAPTER 11: LEARNING FROM OBSERVATION

Monophonie I Polyphonic

Low
Rubato

0-3

Low
Tonal
Range

4-7

Secular

a1

No. of
Songs:

oil

9

High
Rubato
4-5

High
Tonal
Range
8 -11

Religious

Instruments?

No I Yes

n
otZ

5

«4

12

a5

17

Low
Embelishment

Low No.
of Tones

Low
Melisma j

0 - 1

5 - 7

0 - 1

High
Embelishment
2 - 4

I High No.
1 of Tones
I 8-10

High
Melisma
2 - 3

Same I Mixed I
Sex I Sexes I

(Singers) I

n I
«6 al OÎS a9

10 10 7 €

Low
Tonal
Range ι

5 - 6

High
Tonal
Range
7 -11

ΓΊ
«10 «11

5 15

Figure 11-13: A classification hierarchy of Spanish folk songs produced by CLUSTER/2.

them) the generated hierarchy may be different. This way the algorithm can
generate several alternative hierarchies. The ultimate judgment of which one is
the most appropriate for the given application is made by the data analyst.

CLUSTER/2 has also been applied to problems in other domains. One ex-
periment, in the field of agriculture, was to structure a collection of 47 cases of
soybean diseases. Each case was described by a vector of 35 components,
representing symptoms and characterizations of the diseased plants. CLUSTER/2
"re-discovered" disease classes known to plant pathologists, and provided a
description of each class which closely matched the known symptoms of the cor-
responding diseases [Michalski & Stepp, 1981].

11.7 SUMMARY AND SOME SUGGESTED EXTENSIONS OF THE METHOD

The described method for conjunctive conceptual clustering determines a
hierarchy of classes characterizing a collection of objects. Each class has a
description in the form of a single conjunctive statement, logically disjoint from

MICHALSKI AND STEPP 361

descriptions of other classes with the same parent node in the hierarchy, and op-
timized according to a certain clustering quality criterion. The major difference
between this method and methods of numerical taxonomy lies in its extension of
the concept of the measure of similarity into a more general notion of
"conceptual cohesiveness". Such a measure takes into consideration not only the
properties of individual objects, but also their relationship to other objects and,
most importantly, their relationship to some predetermined concepts characteriz-
ing object collections.

This work represents our early results on the subject of conceptual cluster-
ing, and, naturally, many problems remain to be solved. Here are some inter-
esting topics for further research:

• In this method, the variables for describing objects are assumed to be
determined a priori, and may not be the most appropriate ones for cluster-
ing the given objects. A desirable extension of the method would be to
implement constructive induction mechanisms able to determine new, more
relevant variables during clustering. The use of such variables could lead
to simpler and/or more interesting clusterings. A closely related problem
of deriving new variables for learning generalized descriptions of concepts
from their examples is discussed in Chapter 4.

• The presented method describes object classes solely by conjunctive state-
ments. Although a conjunctive statement is one of the most common
descriptive forms used by humans, it is nevertheless a quite limited form.
An interesting extension of the work would be to use descriptions which
involve additional operators, such as logical implication or equivalence.

• The purpose of building classifications is often to simplify decision making
by collecting into one class those situations, observations, or objects that
require a similar decision or action. To do this well, the criterion of
clustering quality should include knowledge of the goals, purposes, and in-
tentions associated with the problem under investigation.

• In the method described, the classes are organized into a hierarchy. The
links of the hierarchy represent just the generalization (set inclusion)
relationship between the parent and child nodes. The method could be ex-
tended to generate a graph structure (a "classification network") in which
links might also represent other relationships between classes. For ex-
ample, within such a graph, some links might denote properties that are
inherited from parent nodes, and other links might denote properties that
differentiate between sibling classes.

• For applications involving clustering visual information, an interesting ex-
tension would be to use as conceptual building blocks various standard
geometrical shapes, such as circles, ellipses, triangles, rectangles, and so
on, and to allow nondisjoint clusterings.

• The problems which are suitable to the CLUSTER/2 algorithm involve objects
which can be sufficiently described by variable-value pairs, which are

362 CHAPTER 11: LEARNING FROM OBSERVATION

those objects whose internal structure is irrelevant to the problem at hand.
When the internal structure of objects is to be considered (when relevant
variables include relationships between features of object subparts), the
techniques presented here are not adequate (although still applicable, by
transforming the structural properties into propositional attributes). An
adequate method for clustering such objects requires a richer descriptive
language, such as first-order predicate logic or its extension—for example,
the annotated predicate calculus described in Chapter 4 of this book.

ACKNOWLEDGMENTS

The authors thank Mr. Pablo Poveda for providing data used in the
musicological experiment, and Professor Richard Selander for providing the
numerical taxonomy program NUMTAX. Partial support of this research was
provided by the National Science Foundation under Grants Nos. MCS-79-06614
andMCS-82-05166.

REFERENCES

Diday, E. and Simon, J. C , "Clustering Analysis," Communication and Cybernetics 10, K. S. Fu
(Ed.), Springer Verlag, Heidelberg, New York, 1976.

Gowda, K. C , and Krishna, G., "Disaggregative clustering using the concept of mutual nearest
neighborhood," Man and Cybernetics, IEEE Transactions on Systems, pp. 888-894, Decem-
ber 1978, (Vol. SMC-8, No. 12).

Michalski, R. S., "A Planar Geometrical Model for Representing Multi-Dimensional Discrete Spaces
and Multiple-Valued Logic Function", Technical Report 897, Department of Computer
Science, University of Illinois, January 1978.

Michalski, R. S., "Variable-Valued Logic and Its Applications to Pattern Recognition and Machine
Learning," Multiple-Valued Logic and Computer Science, David Rine (Ed.), North-Holland,
1975a.

Michalski, R. S., "Synthesis of optimal and quasi-optimal variable-valued logic formulas," Proceed-
ings of the 1975 International Symposium on Multiple-Valued Logic, Bloomington, Indiana,
May 1975b.

Michalski, R. S., "Pattern Recognition as Rule-Guided Inductive Inference," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4, July 1980a.

Michalski, R. S., "Knowledge Acquisition Through Conceptual Clustering: A Theoretical Framework
and an Algorithm for Partitioning Data into Conjunctive Concepts," Policy Analysis and
Information Systems, Vol. 4, No. 3, pp. 219-244, 1980c, (A Special Issue on Knowledge
Acquisition and Induction).

MICHALSKI AND STEPP 363

Michalski, R. S. and Larson, J. B., "Selection of most representative training examples and in-
cremental generation of VLj hypotheses: the underlying methodology and the description of
programs ESEL and AQ11", Technical Report 867, Computer Science Department, University
of Illinois, 1978.

Michalski, R. S., and Stepp, R. E., "Concept-based Clustering versus Numerical Taxonomy", Tech-
nical Report 1073, Department of Computer Science, University of Illinois, 1981.

Nilsson, N. Priciples of Artificial Intelligence, Tioga Publishing Co., 1980.

Poveda, P., "Classification of Folksongs According to the Principles of Numerical Taxonomy",
(Unpublished Report, School of Music, University of Illinois at Urbana-Champaign).

Winston, P. H., Artificial Intelligence, Addison-Wesley, 1977.

12

MACHINE TRANSFORMATION OF

ADVICE INTO A HEURISTIC

SEARCH PROCEDURE
David Jack Mostow

USC Information Sciences Institute

ABSTRACT

A key problem in learning by being told is operationalization: the develop-
ment of procedures to implement advice that is not directly executable by the
learner, such as the advice "avoid taking points" in the card game hearts. One
way to operationalize such advice is to reformulate it in terms of a general "weak
method", such as heuristic%search. This chapter is a case study in the mechani-
cal mapping of domain-specific problems onto general methods, using as a
detailed example the derivation of a heuristic search procedure for the advice
"avoid taking points." The derivation consists of a series of problem transfor-
mations leading from the advice statement to an executable procedure. The
operators used to perform these transformations are implemented in a program
called FOO as domain-independent transformation rules that access a knowledge
base of task domain concepts. Some of the rules construct a crude generate-and-
test procedure; others improve it by deriving new heuristics based on domain
knowledge and problem analysis. To test its generality, FOO was also used to
operationalize a music composition task; many of the same rules proved ap-
plicable.

12.1 INTRODUCTION

There are many kinds of learning by being told, spanning a broad spectrum
of sophistication. A trivial way for a machine to "learn" a task is by reading in
a program to perform it. A potentially much more useful way is by accepting
high-level advice. For example, one might learn the card game hearts by being
told the rules of the game and some advice on how to win, such as "avoid taking

367

368 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

points." A central problem with this mode of learning arises when, owing to the
structure of the task and the environment in which it is performed, the advice is
non-operational—not directly executable by the learner. For example, the rules
of hearts make it illegal to avoid taking points by simply refusing to take tricks
with points; thus the advice must be incorporated into the choice of what card to
play. In order to be operational, advice must be executable using available data,
but taking points depends on the outcome of the trick, which is unknown at card-
choosing time. The process of making advice operational is called
operationalization, and is the topic of this chapter, which is based on a more
detailed discussion available in [Mostow, 1981].

The "advice" to be operationalized need not come solely from an external
tutor. It might be gleaned from experience and observation, as in the knowledge
refinement learning paradigm described in Chapter 8 of this book. To illustrate
this paradigm, consider how a hearts-playing program might be developed. The
heuristic "avoid taking points" is initially provided by an advisor, or perhaps dis-
covered by analyzing lost games and attributing the losses to having taken
points. The heuristic is converted into an operational plan, like "play a low
card", so it can be incorporated into the program. Experience with the revised
program reveals weaknesses in this plan, such as being forced to take lots of
points after playing all one's low cards in the first part of the game. Analysis of
cases where the plan failed to satisfy the advice suggests additional heuristics to
remedy bugs in the plan, such as "get rid of your high cards when it is safe to
do so." These heuristics are then operationalized, the iterative learning process
continues, and the program's performance improves.

Note that the task domain in this example has multiple agents, incomplete
information, and probabilistic processes; thus operationalization involves issues
not addressed in planners for domains with a single agent who has complete in-
formation about the state of the world. Moreover, it may be impossible to
produce a procedure that always satisfies the advice—there is no infallible way
to avoid taking points. Thus operationalization differs from conventional notions
of automatic programming by its heuristic nature: the procedures it produces
may not always work.

In general, operationalization converts knowledge about a task domain into
procedures useful in performing the task. In this sense, AI researchers are
engaged in operationalization when they convert domain knowledge into intel-
ligent programs. Typically this involves taking a problem expressed in the lan-
guage of a particular task domain, together with knowledge about the domain,
and reformulating them to fit a general computational method like heuristic
search. This process can be viewed as mapping the problem into a call on a
general procedure for the method, by finding suitable values for the arguments
(which may include generators, tests, and search orderings).

Previous research has made some progress toward getting computers to do
this automatically. Ne well [1969] formalized the "weak methods" of generate-
and-test, hill-climbing, heuristic search, matching, and means-end analysis as

MOSTOW 369

data-flow graphs composed of generators and tests. Moore [1971] encoded the
data-flow graph for heuristic search as a MERLIN schema and represented the
Logic Theorist program [Newell et al., 1957] as an operational "further
specification" of it (MERLIN could prove theorems by executing it), but the
generators and tests were derived from the LT specifications by hand. Tappel
[1980] used transformations on data-flow graphs to derive efficient algorithms for
generating prime numbers and finding shortest paths through a graph. Perhaps
the most advanced effort so far toward automatic application of AI techniques is
the UNDERSTAND program [Simon, 1977], which reads an English description of
the Tower of Hanoi problem and operationalizes it as a means-end analysis
problem by building an appropriate state space representation and operators.

The central motivation of this chapter is the mechanization of AI: how can
the "knowledge engineering" process of mapping a domain-specific problem onto
a general AI method be automated? This theme is illustrated by means of a
detailed example in which the hearts advice "avoid taking points in the current
trick" is operationalized as a heuristic search problem. This process is modeled
as a sequence of transformations leading from an initial representation of the ad-
vice to a heuristic search procedure that examines different scenarios for a trick
to see whether playing a given card might lead to taking points. The transfor-
mations are performed by some of over 200 rules implemented in a program
named FOO.1 (Note that "heuristic search" refers throughout the chapter to the
kind of procedure constructed using FOO, not to the process of finding the trans-
formation sequence!) A briefly-described second example tests the generality of
these rules by using them to operationalize a music composition task as a heuris-
tic search problem. (The dissertation on which this chapter is based [Mostow,
1981] contains details omitted here and treats several other operationalization
methods.) The emphasis is not on the heuristic search method itself (hereafter
abbreviated HSM), but on the process whereby advice is mapped onto the
method. In short, although learning is typically thought of as knowledge ac-
quisition, the learning problem treated in this chapter is knowledge transforma-
tion: the conversion of advice into an executable procedure.

The rest of the chapter is organized as follows. Section 12.2 discusses the
kinds of knowledge required to operationalize "avoid taking points" as a heuristic
search problem. Section 12.3 defines a generic heuristic search procedure and
its schematic representation in FOO. Slots in the schema correspond to problem-
specific components of this procedure, such as the tests used to prune paths.
Section 12.4 describes the instantiation of this schema for the "avoid taking
points" example, and the exhaustive search procedure it specifies. Section
12.5 shows how this procedure is refined by FOO using domain knowledge and
analysis. Section 12.5.7 presents highlights of the music example. Section
12.6 evaluates the generality of the approach. Section 12.7 summarizes the sig-

•For "First Operational Operationalizer".

370 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

nificance of the results and suggests areas for further research. The Appendix to
this chapter lists the rules mentioned in the example.

12.2 KINDS OF KNOWLEDGE USED

Reformulating "avoid taking points" as a heuristic search problem requires
several things. First, some problem representation is needed to represent the
initial and transformed versions of the advice. In FOO, "avoid taking points in
the current trick" is represented as

(AVOID (TAKE-POINTS ME) (TRICK))

This can be paraphrased as: "Avoid letting player ME (the recipient of the advice)
take points during the trick." Some constructs of this LiSP-like language are
defined below:

• (achieve P) denotes the goal of satisfying the predicate P.
• (during s e) is true if event e occurs during scenario s.
• (Φ P Q) is true if P implies Q.
• (exists x S Px) is true if S contains an element that satisfies P.
• (forall x S Px) is true if every element of S satisfies P.
• (set-of x S Px) denotes the set of elements of S that satisfy P.
• (the x S Px) denotes the unique element of S that satisfies P.
• (for-some x S Ex) denotes any event Ex such that x is in S.
• (each x S Ex) denotes the event sequence Ex l? ..., Exn, where S =

{χ,, ..., xn}.
• (choose x S Ex) denotes choosing an element x from S and doing Ex.
• (scenario ej ... en) denotes the sequence of events ej , ..., en.
• (project f S) denotes the sequence f(xj), ..., f(xn), where S = x l5 ..., xn.
• (first S) denotes Xj, where S = x1? ..., xn.
• (# S) denotes the size of the set S.
• (prefix S xk) denotes the sequence Xj, ..., xk, where S = x1? ..., xn.
• (prefixes-of S) denotes the set {(prefix S Xj), ..., (prefix S xn)}, where S =

X l » ···> x n -

Reasoning about the problem requires domain knowledge. To understand
hearts advice, one must understand the terms used to express it, the actions
available for implementing it, and the rules of the game. Most of FOO's
knowledge about hearts is encoded as definitions of concepts used in the game.
The concepts are represented as functions. Concepts used in the advice "avoid
taking points" and later in the chapter are defined below:

• "Avoid an event throughout a scenario means try not to let it occur during

MOSTOW 371

the scenario."2

AVOID = (LAMBDA (ES) (ACHIEVE (NOT (DURING S E))))

• "Take points means take a point card."

TAKE-POINTS = (LAMBDA (P)
(FOR-SOME C (POINT-CARDS) (TAKE PC)))

POINT-CARDS = (LAMBDA ()
(SET-OF C (CARDS) (HAS-POINTS C)))

• "A trick is a scenario in which each player plays a card and then the win-
ner takes the trick."

TRICK = (LAMBDA ()
(SCENARIO (EACH P (PLAYERS) (PLAY-CARD P))

(TAKE-TRICK (TRICK-WINNER))))

The PLAYERS function is defined as the sequence of players in the current
trick.

• "To play a card, a player chooses from his legal cards."

PLAY-CARD = (LAMBDA (P)
(CHOOSE (CARD-OF P) (LEGALCARDS P)

(PLAY P (CARD-OF P))))

The choice variable is named (CARD-OF P) to distinguish between
cards played by different players; this name is used in defining other con-
cepts, e.g., the cards played in the trick:

CARDS-PLAYED = (LAMBDA () (PROJECT CARD-OF (PLAYERS)))

• "The player leading a trick can play any non-heart in his hand, and can
lead a heart if hearts are broken or he has only hearts. The other players
must follow suit if they can."

LEGALCARDS = (LAMBDA (P) (SET-OF C (CARDS) (LEGAL P C)))

2This particular concept is of course not specific to hearts, but one might define it differently in
another domain.

372 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

LEGAL = (LAMBDA (P C)
(AND [HAS P C]

[Φ (LEADING P)
(OR [CAN-LEAD-HEARTS P]

[NOT (IN-SUIT C (HEARTS))]);
[Φ (FOLLOWING P)

(OR [VOID P (SUIT-LED)]
[IN-SUIT C (SUIT-LED)])]))

"The suit led is the suit of the first card played in the trick."

SUIT-LED = (LAMBDA () (SUIT-OF (FIRST (CARDS-PLAYED))))

• "Taking a trick means taking all the cards played in it."

TAKE-TRICK = (LAMBDA (P)
(EACH C (CARDS-PLAYED) (TAKE P C)) ;

• "The player of the highest card in the suit led takes the trick."

TRICK-WINNER =
(LAMBDA ()

(THE P (PLAYERS)
(= (CARD-OF P)

(HIGHEST-IN-SUIT-LED (CARDS-PLAYED)))))

HIGHEST-IN-SUIT-LED -
(LAMBDA (S)
(THE C S

(AND [IN-SUIT C (SUIT-LED)]
[NOT (EXISTS X S (HIGHER-IN-SUIT X C))])))

HIGHER-IN-SUIT = (LAMBDA (Cl C2)
(AND [HIGHER Cl C2]

[= (SUIT-OF Cl) (SUIT-OF C2)]))

• "A sequence of cards has points if it includes one or more point cards.'

HAVE-POINTS = (LAMBDA (S) (EXISTS C S (HAS-POINTS C))]

• "A card is out if an opponent has it."

OUT = (LAMBDA (C)
(EXISTS P (OPPONENTS-OF ME) (HAS P C)

MOSTOW 373

OPPONENTS-OF = (LAMBDA (PI)
(SET-OF P2 (PLAYERS) (NOT (= P2 P I))))

• "A player with no cards in a suit is void in that suit."

VOID = (LAMBDA (P SUIT)
(NOT (EXISTS C (CARDS-IN-HAND P)

(IN-SUIT C SUIT))))

CARDS-IN-HAND = (LAMBDA (P)
(SET-OF C (CARDS) (HAS P C)))

Inference methods are used to reason about the problem on the basis of
such domain knowledge. In FOO, these methods are represented as problem
transformation rules. Each rule has a left-hand pattern, a right-hand pattern, and
a condition. An expression that matches the left-hand pattern and satisfies the
condition can be rewritten by filling in the right-hand pattern. Some rule con-
ditions are tested by simple procedures; others generate subproblems which are
themselves solved by a sequence of rules. (The details of FOO's rule represen-
tation are given in [Mostow, 1981]; for readability, this chapter presents rules
informally.)

FOO's rules are general, but some of them access its domain knowledge,
for example:

RULE 124: (f e, ... en) —» e \ where f is defined as (lambda (x, ... xn) e)
and e' is the result of substituting e, ... en for x, ... xn throughout e

Unfold the definition of a concept in the problem. [Darlington & Burstall, 1976]

The notation (f tx ... en) —> e' denotes rewriting an expression of the form
(f ej ... en) as e', where (f ej ... en) denotes the function f applied to the ar-
guments ej ... en. RULE 124 is used to unfold the definition of AVOID in the
first step of the "avoid taking points" example:

(AVOID (TAKE-POINTS ME) (TRICK))
[UNFOLD by RULE124] >

(ACHIEVE (NOT (DURING (TRICK) (TAKE-POINTS ME))))

The resulting expression means "try not to let player ME take points during
the trick." Other rules are introduced later in the context of their use, and are
listed in the Appendix for reference.

I provided the control knowledge required for operationalization by hand-
guiding the process. Thus the example was generated interactively: I encoded
the initial advice and chose the sequence of rules that successively transformed it
into an operational procedure. At each point in the derivation, I selected a sub-
expression of the problem and a rule to apply to it, and FOO applied the rule. In

374 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

short, FOO provides a representation for operationalization problems, and a set of
problem transformation rules, but lacks a problem solver for solving
operationalization problems on its own. Given the complexity of such
problems—the "avoid taking points" example is over 100 steps long, and many
different rules could have been applied at each step—automating the control of
the operationalization process is a challenging problem. An approach to it is
proposed in [Mostow, 1981].

To map "avoid taking points" onto a general method like heuristic search,
we need (at least implicitly) some representation of the method. The heuristic
search method can be represented as a data-flow graph [Newell, 1969], in which
the boxes represent generators and tests to be filled in for the particular problem.
FOO's representation of HSM is described in more detail in the next section.

Finally, operationalizing a problem in terms of a method requires
knowledge about how to map the problem to the method. This kind of
knowledge is represented in FOO as transformation rules. Some of these rules
construct a crude generate-and-test search for a given problem by instantiating
components of the general data-flow graph. For example, the search space for
"avoid taking points in the current trick" is taken to be the set of possible card
sequences for the trick. The initial search procedure tests each of these se-
quences to see if it will cause player ME to take points. Other rules refine this
procedure into a more efficient one based on properties of the problem and the
task domain. For instance, sequences in which player ME's card is lower than an
opponent's need not be tested, since they cannot cause player ME to win the
trick. Applying FOO's instantiation and refinement rules requires both domain
knowledge and reasoning methods.

12.3 A SLIGHTLY NON-STANDARD DEFINITION OF HEURISTIC SEARCH

In order to formulate "avoid taking points" as a heuristic search problem,
FOO needs some representation of HSM. Newell [1969] described the general
problem statement for HSM as follows:

Given: a set {*}, the problem space;
a set of operators {q} with range and domain in {JC};
an initial element, x0;
a desired element, xd\

Find: a sequence of operators, q]9 q2, ..., qn, such that they
transform x0 into xd\

Intin-l [··· <1ι(*ο) -H = xd
He described the heuristic search procedure as follows:

The initial element x0 is the initial current position; operators are
selected and applied to it; each new element is compared with xd to see
whether the problem is solved; if not, it is added to a list of obtained posi-

MOSTOW 375

tions (also called the "try list" or the "subproblem list"); and one of these
positions is selected from which to continue the search... The search is
guided (the tree is pruned) by appropriate selection and rejection of
operators and elements.

In FOO's representation of HSM, everything is expressed in terms of
(operator) sequences, called paths; the search procedure extends a path by ex-
plicitly appending an operator to it. The fact that operators map one state to
another is implicit in the tests applied to paths. In other words, the search pro-
cedure does not apply operators to states; this eliminates the need to maintain an
explicit state description. This procedure can be described by modifying
NewelFs description (differences are underlined):

The null path is the initial current position; choice elements are
selected and appended to it; each new path is tested to see whether the
problem is solved; if not, it is added to a list of paths; and one of these
paths is selected from which to continue the search. The search is guided
by appropriate selection and rejection of choice elements and paths.

The choice elements need not be operators; this procedure applies to any
problem of the form:

Find a sequence of choices satisfying a given criterion.

As an example, consider how this procedure appHes to the "eight queens"
problem: place eight queens on a chess board in such a way that none of them
is attacking any of the others, that is, no two are on the same rank, file, or
diagonal.3 Here the choice elements are squares on a chess board. The null path
corresponds to a bare board. A path is a sequence of n squares corresponding to
the positions of the first n queens placed. A simple algorithm is as follows:

1. Initially the path set contains only the null path (empty board).
2. Choose a path from the path set.
3. Extend it by one square (that is, place another queen).
4. Test the path to see if the problem is solved (that is, if the path consists of

eight distinct squares, none of which are on the same rank, file, or
diagonal).

5. If not, add the path to the path set and go to step 2.
This crude generate-and-test algorithm has no heuristics: it just generates

sequences of squares and tests each sequence to see if it is a solution. The algo-
rithm can be made more efficient by incorporating various heuristics. Paths that
cannot lead to a solution can be pruned from the search. For example, a path
with two queens on the same rank, file, or diagonal can be pruned from the path
set, since it cannot possibly be extended into a solution. The search can be or-

3A program to solve this problem is derived by transformational implementation in [Balzer, 1981].

376 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

dered so as to find a solution faster. For example, one might try squares close
to the edge of the board before squares in the center, since the diagonals through
them contain fewer squares; this strategy leaves more squares legal for sub-
sequent queens. Finally, some of the solution constraints can be compiled out of
the search. For example, placing the nth queen on the nth rank guarantees that
no two queens will be placed on the same rank, and prevents generating the
same board configuration via more than one path, without eliminating any poten-
tial solution from the set of generated configurations.

In general, the first step in operationalizing a heuristic search problem is to
identify the sequence of choice points involved and the set of admissible alter-
natives at each one, and to express the solution criterion as a function of the
choice sequence. This provides enough information to specify an executable but
inefficient (combinatorially explosive) generate-and-test search procedure, whose
data-flow graph has the form shown in Figure 12-1. This procedure is then
refined into a genuine heuristic search, shown in Figure 12-2, by using con-
straints on the overall solution as early as possible in the search to order or reject
paths, to order or filter the alternatives at each choice point, and even to reduce
the depth or breadth of the search space itself.

♦ ■ INITIAL PATH

SOLUTION

TEST S solution

CHOICE SET
(function of path)

list _ _ _ _ _ ^

Figure 12-1: Generate-and-Test Procedure

The components of the generic heuristic search procedure that must be
filled in to solve a particular problem make up FOO's HSM schema and are
described below.

MOSTOW 377

♦ ■ INITIAL PATH

CHOICE SET
(function of path) [

Figure 12-2: Generic Heuristic Search Procedure

• The search starts with a single path, the initial-path, typically the null se-
quence.

• The alternative extensions for a path are given by the choice-set function.
Since the choice set may vary at different points in the search, the function
takes a choice point as its argument.

• The order in which alternative choice elements are generated is controlled
by a step-order predicate. Elements that satisfy this predicate are con-
sidered first. This order may vary at different choice points, so the predi-
cate takes a choice point index as a second argument.

• The choice set is filtered by a step-test predicate; thus the extensions to a
given path are enumerated by a generate-and-test process, with the choice-
set function as generator and the step-test predicate as test. The step-test
also takes a choice point index as a second argument.

• The order in which paths are selected for extension is controlled by a path-
order predicate on paths; paths satisfying this predicate are considered first.

• A newly generated path must satisfy a path-test in order to be added to the
active list.

• A solution path must satisfy both a solution-test based on the search
criterion, and a completion-test that checks if the path covers the complete
sequence of choice points.

378 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

12.4 INSTANTIATING THE HSM SCHEMA FOR A GIVEN PROBLEM

There are several steps involved in translating a particular problem like
"avoid taking points" into the language of the general HSM problem statement:

1. The problem must be recognized as one of finding a sequence of choices
satisfying some condition. If FOO's rule for recognizing such problems
does not match the initial problem description, the problem must be refor-
mulated to fit the rule.

2. To formulate the search space for the problem, it is necessary to recognize
that taking points in a trick depends on the cards chosen by all the players;
this choice sequence defines the search space.

3. The search criterion is then reformulated as a function of this sequence.
The reformulated criterion tests whether player ME's card is the highest
card in the suit led.

4. Given the choice sequence and search criterion for the problem, the HSM
schema can be instantiated to specify a generate-and-test search procedure.

5. The procedure must be made executable on the data available to player ME.

12.4.1 Mapping a Problem onto the HSM Problem Statement

The first step in mapping "avoid taking points" onto the HSM problem
statement is to reformulate it so the applicability of HSM can be recognized:

(AVOID (TAKE-POINTS ME) (TRICK))
[unfold definition of AVOID by RULE124] >

(ACHIEVE (NOT (DURING (TRICK) (TAKE-POINTS ME))))

This reformulated version means "try not to let player ME take points
during the trick." It fits FOO's rule for recognizing potential heuristic search
problems:

RULE306: Use heuristic search to evaluate predicate on a scenario where choices are made.

FOO is able to identify the expression (DURING (TRICK) (TAKE-
POINTS ME)) as such a predicate by examining the definition of the scenario
TRICK, which contains a sequence of PLAY-CARD events in which each player
chooses a legal card and plays it. FOO's actual rule for recognizing potential
HSM problems looks more like

RULE306: (P ... e ...)
—> (HSM with (problem : (P ... e ...))—predicate to be evaluated

(object : e)—scenario
(choice-seq : (choice-seq-of e)))—choices made in scenario

if e contains an event sequence with choices in it

RULE306 suggests using HSM to evaluate (DURING (TRICK)
(TAKE-POINTS ME)), that is, to try to find a sequence of choices satisfying
it:

MOSTOW 379

(DURING (TRICK) (TAKE-POINTS ME))
[by RULE306] >

HSM1
(HSM1 <- PROBLEM : (DURING (TRICK) (TAKE-POINTS ME)))
(HSM1 «- OBJECT : (TRICK))
(HSM1 <- CHOICE-SEQ : (CHOICE-SEQ-OF (TRICK)))

This notation means that the expression (DURING (TRICK) (TAKE-
POINTS ME)) is to be evaluated by HSH1, an instance of HSM; RULE306
fills in three of HSM1's components. The notation (X <— Y : Z) means "the
value for the Y component of schema X is filled in as Z."

12.4.2 Finding the Sequence of Choices that Affect the Predicate

To formulate a search procedure for the problem, we must identify the
search space: the points where choices are made, the alternatives at each point,
and the tests a solution path (sequence of choices) must satisfy. The sequence of
choice points is extracted from the definition of TRICK:

(CHOICE-SEQ-OF (TRICK)))
[by RULE124, analysis] >

(EACH PI (PLAYERS)
(CHOOSE (CARD-OF PI)

(LEGALCARDS PI)
(PLAY PI (CARD-OF PI))))

That is, the choices made in a trick consist of each player choosing a legal
card to play. Some other information about the search space can now be ex-
tracted from the choice sequence description:

(HSMl <e- CHOICES : (CARDS-PLAYED))
(HSM1 <- INDICES : (PLAYERS))
(HSMl <- INDEX : PI)
(HSMl <- CHOICE-SETS : (LAMBDA (PI) (LEGALCARDS PI)))
(HSMl <- INITIAL-PATH : NIL)
(HSMl «- COMPLETION-TEST :

(LAMBDA (PATH) (= (# PATH) (# (PLAYERS)))))

Some of the HSM components filled in here (CHOICES, INDICES, and
INDEX) are not used in the search procedure itself—they provide intermediate
information used by rules that instantiate other schema components. The value
(CARDS-PLAYED) of the CHOICES component defines the search space in
terms of a non-deterministic sequence of chosen objects, namely the sequence of
cards played. The choice points are indexed by player, and each player's
CHOICE-SET consists of his or her legal cards. The COMPLETION-TEST
specifies that a solution sequence must include a card for each player.

380 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

It remains to identify the test that a solution path must satisfy. That is,
which card sequences will cause player ME to take points? The next section
shows how this SOLUTION-TEST is found.

12.4.3 Reformulating the Search Criterion in Terms of the Choice Sequence

The search space has now been identified as the possible card sequences
for the trick. The problem of reformulating the search criterion as a test on such
sequences is represented as:

(REFORMULATE (DURING (TRICK) (TAKE-POINTS ME))
(CARDS-PLAYED))

It means answering the question, "How does my taking points depend on
the cards played in the trick?" Reformulating the search criterion as a function of
(CARDS-PLAYED) takes over 40 steps. This process, summarized below, il-
lustrates some of the reasoning methods encoded as rules in FOO.

First the search criterion is elaborated by unfolding the definition of
TRICK:

(DURING (TRICK) (TAKE-POINTS ME))
[UNFOLD by RULE124] >

(DURING (SCENARIO
(EACH PI (PLAYERS) (PLAY-CARD PI))
(TAKE-TRICK (TRICK-WINNER)))

(TAKE-POINTS ME))

This expression is analyzed to determine when player ME will take points.
Case analysis shows that if player ME takes points, it occurs either while cards
are being played or when the winner takes the trick. The first case—taking
points when cards are played—is eliminated by determining that a TAKE-
POINTS event cannot occur during a sequence of PLAY-CARD events. This is
accomplished by performing an intersection search through FOO's knowledge
base of concept definitions and finding that TAKE-POINTS and PLAY-CARD
have no sub-events in common. (The sub-events of an event are the action con-
cepts used to define it.) To simplify the second case—taking points when the
winner takes the trick—the definitions of TAKE-TRICK and TAKE-POINTS
are unfolded so as to express both arguments to DURING in terms of the same
function TAKE:

(DURING [TAKE-TRICK (TRICK-WINNER)] [TAKE-POINTS ME])
[by RULE124, analysis] >

(EXISTS Cl (CARDS-PLAYED)
(EXISTS C2 (POINT-CARDS)

(DURING [TAKE (TRICK-WINNER) Cl] [TAKE ME C2])))

MOSTOW 381

FOO can then partial-match (TAKE (TRICK-WINNER) Cl) against (TAKE
ME C2) by equating (TRICK-WINNER) = ME and Cl = C2. The latter
equality permits C2 to be eliminated, producing:

(AND [HAVE-POINTS (CARDS-PLAYED)]
[= (TRICK-WINNER) ME])

That is, player ME can take points only by taking a trick in which a point card is
played. The requirement that player ME take the trick is reformulated as a predi-
cate on (CARDS-PLAYED) by analyzing the definition of TRICK-WINNER:

(= (TRICK-WINNER) ME)
[by RULE124, analysis] >

(= (CARD-OF ME) (HIGHEST-IN-SUIT-LED (CARDS-PLAYED)))

That is, one wins a trick by playing the highest card in the suit led. At
this point, the original search criterion (DURING (TRICK) (TAKE-POINTS
ME)) has been re-expressed in terms of (CARDS-PLAYED) :

(AND [HAVE-POINTS (CARDS-PLAYED)]
[= (CARD-OF ME) (HIGHEST-IN-SUIT-LED (CARDS-PLAYED))])

The desired solution-test can now be filled in:

(HSM1 <- SOLUTION-TEST :
(LAMBDA (CARDS-PLAYED1)

(AND [HAVE-POINTS CARDS-PLAYED1]
[= (CARDS-PLAYED1 ME)

(HIGHEST-IN-SUIT-LED C A R D S - P L A Y E D 1)])))

This test is a predicate on a card sequence, denoted by the lambda variable
CARDS-PLAYED 1. A sequence is treated as a function from an index to a
value; thus (CARDS-PLAYED 1 ME) denotes the card played by player ME.
The test is satisfied if CARDS-PLAYED 1 includes one or more point cards and
player ME's card is the highest in the suit led in the sequence.

Default values for the step and path constraints are filled in at the same
time:

(HSMl <- PATH-TEST : (LAMBDA (CARDS-PLAYED1) T))
(HSM1 <- PATH-ORDER : (LAMBDA (CARDS-PLAYED1) N I L))
(HSMl <- STEP-TEST : (LAMBDA (P I C l) T))
(HSMl <- STEP-ORDER : (LAMBDA (P I C l) N I L))
(HSMl <- PATH : CARDS-PLAYED1)

These defaults provide conservative values that may be refined later based
on additional knowledge. Thus the path list and the choice sets are initially un-
pruned and unordered.

382 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

12.4.4 Making the Choice Set Evaluable

The HSM schema has so far been instantiated as follows (omitting com-
ponents used only during the instantiation process itself)·

(HSMl WITH
(INITIAL-PATH : NIL)
(CHOICE-SETS : (LAMBDA (PI) (LEGALCARDS PI)))
(STEP-ORDER : (LAMBDA (PI Cl) NIL))
(STEP-TEST : (LAMBDA (PI Cl) T))
(PATH-ORDER : (LAMBDA (CARDS-PLAYED1) NIL))
(PATH-TEST : (LAMBDA (CARDS-PLAYED1) T))
(SOLUTION-TEST :

(LAMBDA (CARDS-PLAYED1)
(AND [HAVE-POINTS CARDS-PLAYED1]

[= (CARDS-PLAYED1 ME)
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)])))

(COMPLETION-TEST :
(LAMBDA (PATH) (= (# PATH) (# (PLAYERS))))))

This defines a generate-and-test search. Repeatedly, a card sequence
(starting with the null INITIAL-PATH) is selected from the active path list and
extended by a card chosen from the legal cards of the next player in the se-
quence. A sequence that passes the COMPLETION-TEST and SOLUTION-
TEST satisfies the search criterion, since it will cause player ME to take points.

This generate-and-test search is not quite operational, because the generator
function (LAMBDA (PI) (LEGALCARDS P I))) is generally unevaluable:
player ME cannot enumerate an opponent's legal cards by direct observation.
(Detecting this problem automatically would require a model that predicts what
information will be available to player ME at a given point in the game.) The
problem is solved by expanding the choice set to the set of possibly legal cards,
where a card is "possibly legal" for PI unless player ME specifically knows
otherwise:

(LEGALCARDS PI)
[by RULE124, RULE318] >

(SET-OF Cl (CARDS) (POSSIBLE (LEGAL PI Cl)))

This transformation is made by
RULE318: P —> (possible P), where (possible P) is true unless P is known to be false.

The revised generator function is évaluable but too unconstrained: the en-
tire deck of cards will be considered as possible choices for each player unless
effective tests can be found that reject impossible choices. The more tests used,
the fewer impossible scenarios considered. Omitting a test may result in con-
sidering as "possible" a scenario that could be ruled out based on available data.
This could lead to the erroneous conclusion that playing a card could cause

MOSTOW 383

player ME to take points when in fact it could not.4

To find such tests, FOO first unfolds the definition of (LEGAL PI C l) ,
the first conjunct of which is (HAS PI C l) : PI must have Cl to be able to
play it. Since player ME cannot inspect opponents' hands, this conjunct is not
directly évaluable, so the following rule applies:

RULE319: P -* (P ; (φ Q when R)).
where Q is a necessary condition for P when R holds

This rule is useful when the condition P cannot be evaluated directly.
Here (P ; (Φ Q when R)) indicates an annotation (Φ Q when R) attached to the
expression P, meaning that Q is a necessary condition on P whenever R holds.
Such Q and R are found by the following strategy:

To find a necessary condition for P(ej ... en),
Find a predicate Q defined (directly or indirectly) in terms of P, and
Find Xj ... xk that reduce the expression P(ej ... en) Φ Q(xj ... xk) to a simple
condition R.

To find necessary conditions on (HAS PI C l) , FOO searches its knowledge
base for predicates defined in terms of HAS. One such predicate is OUT. The
expression (=> (HAS PI Cl) (OUT X)) reduces to (IN PI
(OPPONENTS-OF ME)) for X = Cl . That is, card Cl must be out in order
for an opponent PI to have it. Even if one cannot tell whether a specific op-
ponent has a given card, one can tell that the card is out if one does not have it
oneself and it has not been played. (This fact is derived in FOO using a
generalization of the pigeon-hole principle [Mostow, 1981].) Thus player ME
can evaluate (OUT Cl) and use it as a necessary condition for (HAS PI Cl)
whenever (IN PI (OPPONENTS-OF ME)) holds. This fact is attached to
(HAS PI Cl) as an annotation:

[by RULE319, a n a l y s i s] >
(HAS PI Cl) <-
; => (OUT Cl) WHEN (IN PI (OPPONENTS-OF ME))

I assume a run-time evaluation mechanism that uses such annotations. To
evaluate (HAS PI Cl) when PI Φ ME, player ME would check (OUT C l) .
If (OUT Cl) is false, PI does not have Cl and cannot play it. This prevents
consideration of scenarios in which an opponent plays a card held by player ME
or played earlier.

Another predicate defined (indirectly) in terms of HAS is VOID. This
leads to the observation that player PI cannot follow suit when void:

4The search could be constrained even further by considering only plausible scenarios rather than all
possible scenarios. This would require knowledge of other players' goals so as to predict their likely
behavior, but FOO lacks an explicit goal model.

384 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

[by RULE319, a n a l y s i s] >
(HAS PI Cl) <-
; Φ (NOT (VOID PI (SUIT-LED))) WHEN (IN-SUIT Cl (SUIT-LED))

If Cl is in the suit led and PI is known to be void in that suit (for example
when PI has previously failed to follow suit), (HAS PI Cl) must be false.
Checking this condition prevents consideration of scenarios where a player
known to be void follows suit.5

At this point, the previously non-operational LEGALCARDS generator has
been corrected to generate possibly legal cards, where "possible" means "violates
no known necessary conditions". The resulting executable generate-and-test pro-
cedure is shown as a data-flow graph in Figure 12-3.

♦ ■ INITIAL PATH nil

CHOICE SET
possibly légal cards

1 ·

■

select 1
card 1

path has points
my card highest in suit led
path length - S players

(that is, 1 take points)

Figure 12-3: Initial Search for "Avoid Taking Points".

12.5 REFINING HSM BY MOVING CONSTRAINTS BETWEEN CONTROL
COMPONENTS

A good way to design an efficient heuristic search procedure for a problem
like "avoid taking points" is to construct a simple procedure and then refine it

5Actually, this reasoning applies to any suit, not just the suit, led; a slightly modified RULE319
would derive this fact.

MOSTOW 385

INITIALIZED
VARIABLES

,Λ PRECOMPUTED
FUNCTIONS / \

S«
•a * U
is
s i

* î

Figure 12-4: HSM Refinement Rules

386 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

step by step into a more efficient one. The generate-and-test procedure derived
in the previous section exhaustively tests each possible complete card sequence
for the trick to see if it would cause player ME to take points. Such a procedure
can be refined into an efficient heuristic search by moving problem constraints
between components of the HSM data-flow graph so as to apply them earlier in
the search, as suggested in Figure 12-4. This can improve the search in various
ways:

• Pruning search paths that cannot lead to a solution reduces the branching
factor. (Section 12.5.1)

• Ordering the search to consider promising paths first finds a solution
faster. (Section 12.5.2)

• Compiling constraints out of the search reduces the depth of the search
space. (Section 12.5.3)

• Modifying the data-flow graph by splitting or adding components can im-
prove it. (Section 12.5.4)

• Collapsing equivalent choices into abstracted elements reduces the search
space. (Section 12.5.5)
Section 12.5.6 describes the procedure derived by applying FOO's rules for

some of these refinements.

12.5.1 Pruning the Search by Applying Tests Earlier

A general strategy for refining a search is to
Reduce the branching factor of the search by pruning partial paths

that cannot lead to a solution.

Clearly, the key to applying this strategy is to efficiently identify partial
paths that cannot lead to a solution, that is, cannot be extended into a complete
sequence of choices that satisfies the solution-test. Identifying such dead ends
by enumerating and testing all their extensions would defeat the purpose. Such
exhaustive search can be avoided by analysis of the solution-test P(s) to deter-
mine whether partial paths that do not satisfy P can be pruned without discarding
any potential solutions. Ideally, P is a monotonically necessary condition, that
is, if P(s) holds, then so does P(s') for every initial subsequence s' of s. If this
is the case, any partial path that does not satisfy P can be pruned safely from the
search, since it cannot possibly be extended into a solution path. This pruning is
accomplished by adding P to the path-test. In fact, this reasoning applies not
only to P itself but to any necessary condition on P, that is, to any predicate Q
such that P(s) implies Q(s') for every initial subsequence s' of s. For example,
if P is a conjunction, it is worth analyzing each of its conjuncts to see if it is
monotonically necessary.

Moreover, if a path-test can be reformulated as a property required of
every path element, it can be used to prune the choice elements for extending

MOSTOW 387

paths. That is, if a path-test P(s') implies (V c 6 s') Q(c), then Q can be incor-
porated into the step-test.

For example, consider the initial HSM formulation of "avoid taking
points," where the path-test is (LAMBDA (CARDS-PLAYED 1) T) and the
solution-test is:

(LAMBDA (CARDS-PLAYED1)
(AND [HAVE-POINTS CARDS-PLAYED1]

[= (CARDS-PLAYED1 ME)
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)]))

The first conjunct in this expression is not monotonically necessary, since a
card sequence that does not have points can be extended into one that does
simply by appending a point card to it. However, the second conjunct is
monotonically necessary, since in order to be the highest card for the whole
trick, player ME's card must be the highest at each point in the trick. Actually, a
slight qualification is required: this conjunct only makes sense for paths in
which player ME has already played a card. If P is the condition that player
ME's card be highest, and the predicate M characterizes those paths in which
player ME has already played, then (Φ M P) is monotonically necessary and can
be added to the path-test:

[by RULE323, a n a l y s i s] >
(HSM1 <- PATH-TEST :

(LAMBDA (CARDS-PLAYED1)
(Φ [IN ME (INDICES-OF CARDS-PLAYED1)]

[= (CARDS-PLAYED1 ME)
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)])))

The general rule used to make this refinement is
RULE323: (HSM with (solution-test : (lambda (s) (and ... Ps ...))

(path-test : (lambda (s) R))
-> (HSM with (path-test : (lambda (s) (and R (Φ M Ps)))))

where the monotonicity condition (forall s' (prefixes-of s) (Φ Ps Ps')) reduces to M
If the solution-test includes an (almost) monotonically necessary constraint P,
Then determine the condition M under which P is monotonically necessary,
And add (=> M P) to the path-test.6

In the above example, M is (IN ME (INDICES-OF CARDS-
PLAYED 1)). Note that RULE323 automatically catches (in M) the sort of ex-
ception a programmer might forget.

At this point, the highest-card constraint has been moved from the
solution-test, where it was only used to test complete card sequences, to the

6Since P will be used to prune only paths satisfying M, it is not safe to remove P from the
solution-test.

388 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

path-test, where it is used to test incomplete sequences, thereby pruning all paths
in which player ME plays a card lower than an opponent's or fails to follow suit.
However, further improvement is possible by moving the highest-card constraint
from the path-test to the step-test. While paths violating the highest-card con-
straint were previously pruned away, this refinement prevents their being
generated at all. That is, it restricts the generation of scenarios to those in which
player ME takes the trick. In general, this kind of refinement reformulates a path
constraint as a choice element constraint, presumably cheaper to test, since it
depends on a single element rather than a sequence. If choice elements that vio-
late this constraint are rejected as path extensions, fewer paths will be generated.
In effect, such a refinement reduces the branching factor of the search, that is,
the number of alternatives considered at each choice point.

The general rule for moving a constraint from path-test to step-test is
RULE327: (HSM with (path-test : (lambda (s) (and ... Ps...)) ...))

(step-test : (lambda (i c) R))
-► (HSM with (step-test : (lambda (i c) (and R Qc))))

if Ps can be reformulated as (forall i (indices-of s) Qsj)
If the path-test includes a constraint Ps,
And Ps is equivalent to (forall i (indices-of s) Qs^ for some predicate Q,
Then add the constraint Qc to the step-test.

RULE327 applies when a path-test predicate P on a path s = ct ... cn can
be recast as a conjunction of the form (and Qcj ... Qcn) for some predicate Q.
Here, s is CARDS-PLAYED1 and P is

(LAMBDA (CARDS-PLAYED1)
(=> [IN ME (INDICES-OF CARDS-PLAYED1)]

[= (CARDS-PLAYED1 ME)
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)]))

This condition means "if player ME's card has been played, it is the highest
so far in the suit led." Transformed into a universally quantified form by unfold-
ing HIGHEST-IN-SUIT-LED, it matches the rule:

[by RULE124, RULE327, a n a l y s i s] >
(HSM1 <- STEP-TEST :

(LAMBDA (PI Cl)
(Φ (NOT (AFTER ME P I))

(AND [= (SUIT-OF (CARDS-PLAYED1 ME)) (SUIT-LED)]
[NOT (HIGHER-IN-SUIT Cl (CARDS-PLAYED1 ME))]))))

The effect of this step-test when considering possible cards player PI
might play (assuming player ME has followed suit) is to ignore any card in the
suit led higher than player ME's card, since it cannot cause player ME to take
points. In short, the highest-card constraint has been moved from the solution-
test via the path-test to the step-test, where it reduces the search space to
scenarios in which player ME takes the trick.

MOSTOW 389

12.5.2 Ordering the Search by Predicting Success

The refinements just described prune branches of the search or eliminate
their generation in the first place. In contrast, the refinements described in this
section re-order the search to find a solution faster when one exists. The general
strategy is to

Order the search to consider first those paths most likely to lead to a
solution.

The key to applying this strategy is the efficient identification of promising
partial paths. Of course, trial and error is as inappropriate for identifying
promising paths as it was for identifying hopeless ones. As before, the remedy
is analysis of the solution-test, which in this example is

(LAMBDA (CARDS-PLAYED1)
(AND [HAVE-POINTS CARDS-PLAYED1]

[= (CARDS-PLAYED1 ME)
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)]))

Unlike the second conjunct, the first conjunct is not monotonically neces-
sary: although no point cards may have been played so far in a trick, a sub-
sequent player might play one. How then can this constraint be exploited earlier
in the search?

The answer lies in the fact that if a path has points, so do all its possible
extensions. Thus, other things being equal, a path with points is more likely to
lead to a solution than one without points, and a solution should be found faster
by considering such paths first. (Recall that a "solution" is a card sequence that
will cause player ME to take points.) In short, (HAVE-POINTS CARDS-
PLAYED 1) is monotonically sufficient and can therefore be used as a search-
ordering heuristic:

[by RULE335, a n a l y s i s] >
(HSM1 <- PATH-ORDER :

(LAMBDA (CARDS-PLAYED1) (HAVE-POINTS CARDS-PLAYED1)))

The general idea behind this refinement is expressed by
RULE335: (HSM with (solution-test : (lambda (s) (and ... Ps ...))))

-> (HSM with (path-order : (lambda (s) Ps)))
if P satisfies the monotonicity condition (forall s' (prefixes-of s) (Φ Ps' Ps)).
If the solution-test includes a monotonically sufficient constraint P,
Then move P to the path-order.

The points constraint can be further exploited by using it to control not
only the order in which existing paths are considered, but also the order in which
paths are generated to begin with. For example, paths with points can be
generated first by using point cards before non-point cards when extending paths
in which no points have yet been played:

390 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

[by RULE338, a n a l y s i s] >
(HSM1 <- STEP-ORDER :

(LAMBDA (PI Cl)
(OR [HAVE-POINTS CARDS-PLAYED1]

[HAS-POINTS C l])))

The general rule for this refinement is
RULE338: (HSM with (path-order : (lambda (s) Ps)))

-> (HSM with (step-order : (lambda (i c) Qc)))
where Qc is the result of simplifying P(s&c)
If the path-order contains a constraint P on paths Cj ... ck,
And P(cj ... ck) is equivalent to Q(ck),
Then add Q to the step-order.

Here s&c denotes the result of appending element c onto sequence s.
An extension to this approach would enhance the data structure represen-

tation of a path, s, to include an extra bit B(s), indicating whether s has points.
The value of B(s&c) would be computed solely as a function of B(s) and c with-
out re-examining the elements of s. Since FOO lacks an explicit representation
for describing data structures, this refinement was not implemented.

12.5.3 Reducing the Depth of the Search

Further improvements in the search procedure formulated thus far can be
made by exploiting assumptions about when and why the search will be per-
formed. For example, the purpose of the search is to help player ME choose a
card, not just to predict whether there exists some possible scenario in which ME
takes points. Thus player ME's card can be treated as an input parameter to the
search procedure; the procedure will be called for each of player ME's legal cards
to decide whether playing it can possibly cause player ME to take points.
Similarly, it is logical to assume that the search will be performed when it is
time for player ME to choose a card. This means the search can make use of any
data that will be known at that time, such as the cards played by player ME's
predecessors.

These refinements are effected by making player ME's card an input
parameter, named MY-CARDl, and changing the INITIAL-PATH from NIL to
the sequence of cards played in the current trick up to and including MY-
CARDl. These changes reduce the depth of the search space. Also, the expres-
sion (SUIT-LED) is replaced by the parameter SUIT-LED1, since the suit led
will be known at search time.

The details of how these refinements were made using FOO are given in
[Mostow, 1981]; they are less interesting than the refinements based on

monotonically necessary and sufficient conditions because they were made in a
somewhat ad hoc manner, due partly to difficulties in representing knowledge

MOSTOW 391

about choice and time. The general ideas underlying the refinements can be
stated as follows. First,

Reduce the depth of the search by eliminating one or more choice
points.

The key here is to use additional problem constraints to compile choices
out of the search, for example:

Start the search at the point following any choices already deter-
mined before search time.

This idea can be stated more precisely as:
RULE332: To analyze a property of a choice f(ct) in a choice sequence f(c}), ..., f(cn),
Use the search space formed by the choice sequence f(ci +]) ...f{cn),
Since at the time fic^ is chosen, f(cj) ...ßc^j) will already be known.

Another way to speed up a search is caching, discussed in [Lenat et al.,
1979]:

Cache a choice-sequence-dependent expression whose value will not
change during the search.

This strategy is used to speed up the step-test by replacing (SUIT-LED)
with a temporary variable SUIT-LEDl whose value is computed once at the
start of the search:

RULE333: If a sub-expression Pßs) of the step-test refers to the choice sequence, s,
[But the value offts) will have been determined by the time the search begins,]
Then rewrite Pßs) as Pv,
And cache the value off(s) in v at the beginning of the search.

As RULE333 is currently implemented, the bracketed clause is not tested,
since FOO lacks a model of what data will be available when.

12.5.4 Transforming the Data-Flow Graph Itself

Of course, the search procedure derived above could be improved in many
ways. For example, the revised step-test includes the condition (= (SUIT-
OF MY-CARDl) SUIT-LEDl). Since this condition is totally determined by
the search parameters MY-CARDl and SUIT-LEDl, it could be tested just once
at the beginning of the search, but doing so would require adding an INITIAL-
TEST (applied only to the INITIAL-PATH) to the generic heuristic search pro-
cedure in Figure 12-2. This illustrates a limitation of using a fixed set of HSM
components: one can always invent refinements that involve adding new com-
ponents. A more powerful approach allows refinement rules expressed as trans-
formations on data-flow graphs [Tappel, 1980].

To illustrate the potential usefulness of transformations on the data-flow
graph itself, consider the step-test, which restricts the generation of paths to
those where MY-CARDl is the highest card played in SUIT-LEDl:

392 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

(LAMBDA (PI Cl)
(Φ [= (SUIT-OF Cl) SUIT-LED1]

[NOT (HIGHER Cl MY-CARDl)]))

If player ME leads the trick, SUIT-LED1 must be bound to (SUIT-OF
MY-CARDl) before the search begins; otherwise it can be bound to the actual
suit led in the trick. A natural way to deal with this detail is to split the whole
search procedure into two copies, one for each case, and refine each one by ex-
ploiting the assumption on which it is based. However, this clone-and-specialize
transformation violates the fixed-graph limitation.

12.5.5 Moving to a Smaller Search Space

One way to reduce the branching factor of a search is to use a step-test to
filter the generation of alternatives at each choice point (Section 12.5.1). A
more sophisticated (but unimplemented) way is to move the search to an
abstracted version of the original search space:

To reduce a search space, suppress operator details irrelevant to the
search criterion, and use the resulting abstractions in place of the original
operators [Mostow & Hayes-Roth, 1979].

Operator abstraction has been used to reduce search in planning systems,
but the abstraction process has been limited: operators have been abstracted by
deleting some of their preconditions [Newell et al., 1960; Sacerdoti, 1977] or by
ignoring variable bindings [Sacerdoti, 1974; Klahr, 1978]. In contrast, the
abstractions proposed below would be synthesized based on analysis of the
search criterion and knowledge about the task domain.

For instance, from the point of view of avoiding taking points, certain
properties of the card played by an opponent are irrelevant. If the card has no
points and is not in the suit led, its suit and rank are unimportant. If it is in the
suit led, all that matters is whether it is higher or lower than player ME's card; its
exact rank is unimportant. This suggests reducing the choice set from a set of
cards to a set of abstract alternatives like {LOSING-CARD, HIGH-CARD-IN-
SUIT, POINT-CARD}. These alternatives represent equivalence classes of
cards, where the equivalence relation is strongly situation-dependent. For in-
stance, in some cases playing any heart will have the same impact on the out-
come of the trick, while in others the particular heart played might determine
who wins the trick. One might look dynamically for easily derived equivalences
and use them to reduce the search space for the particular situation at hand, ac-
cording to the heuristic:

Do not consider more than one alternative from a set of equivalent
ones.

Suppose an abstract alternative is defined as the set of all choices x satis-
fying some predicate P(x); for LOSING-CARD, P(x) means "card x will not take
the trick." Then:

MOSTOW 393

1. Look for sufficient conditions S(x, x') under which P(x) and P(x') are
equivalent. For example, if x and x' are in the same suit and held by the
same player, and nobody else holds any of the intervening cards, then x
can take the trick if and only if x' could.

2. Partition the choice set into equivalence classes Cx = {χ' I S(x, x')}· If
player ME holds the four, six, and seven of hearts, and the five has already
been played, these three cards are in the same equivalence class.

3. Replace the old choice set with a new one containing a single repre-
sentative of each class. Since the revised choice set generates cards (rather
than some kind of abstracted element), the other HSM components still
work.

4. Perform the search as usual. For example, test whether player ME can take
points by playing the four of hearts; the same answer will hold for the six
and seven.

A similar approach is to:

Consider an alternative only if it is optimal and no equivalent one
has been considered.

This approach is based on the concept of extreme cases [Lenat & Harris,
1978]:

1. Find a condition >(s, s') guaranteeing that s can be extended into a solu-
tion if s' can.

2. Define Dominates(s,s') as s ^ s' Λ ~ s' > s. This predicate can be used
to order paths by considering s before s' if s dominates s'.

3. Add a path-test Optimal(s) = ~ 3 s ' I Dominates(s', s): if a maximally
promising path s peters out, so will every less promising path s'.

4. Add a path-test ~ 3 s ' I s' > s Λ s' Φ s Λ Tried(s'): do not consider s if
you have already tried an equally promising path s'.

5. If either test can be reformulated as a function of the last choice alone,
make it a step-test.

This approach looks for sufficient conditions in each situation, rather than
doing a single analysis once and for all. This might capture an aspect of human
play—figuring out what will happen if player p plays card x, and then jumping
to the conclusion that the same thing will happen if p plays any other card in the
class Cx. The major obstacle in implementing this approach, of course, is to
automate the discovery of useful equivalence and domination conditions.

12.5.6 Heuristic Search Procedure for "Avoid Taking Points"

After the refinements performed by FOO, the HSM schema has been instan-
tiated as follows:

394 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

(HSM1 WITH
(VARIABLES : (SUIT-LED1 MY-CARD1))
(BINDINGS : ((SUIT-LED) (CARD-OF ME)))
(INITIAL-PATH : (PROJECT CARD-OF (PREFIX (PLAYERS) ME)))

(CHOICE-SETS :
(LAMBDA (PI)

(SET-OF Cl (CARDS)
(POSSIBLE

(AND [HAS PI Cl]
; φ (OUT Cl) WHEN (IN PI (OPPONENTS-OF ME))
; => (NON-VOID PI) WHEN (IN-SUIT Cl (SUIT-LED))

[Φ (LEADING PI)
(OR [CAN-LEAD-HEARTS PI]

[NEQ (SUIT-OF Cl) H])]
[Φ (FOLLOWING PI)

(OR [VOID PI (SUIT-LED)]
[IN-SUIT Cl (SUIT-LED)])])))))

(STEP-ORDER :
(LAMBDA (PI Cl)

(OR [HAVE-POINTS CARDS-PLAYEDl] [HAS-POINTS Cl])))

(STEP-TEST :
(LAMBDA (PI Cl)

(Φ [NOT (AFTER ME PI)]
[AND [= (SUIT-OF MY-CARD1) SUIT-LED1]

[=> [= (SUIT-OF Cl) SUIT-LED1]
[NOT (HIGHER Cl MY-CARD1)]]])))

(PATH-ORDER :
(LAMBDA (CARDS-PLAYEDl) (HAVE-POINTS CARDS-PLAYEDl)))

(PATH-TEST :
(LAMBDA (CARDS-PLAYEDl)

(Φ [IN ME (INDICES-OF CARDS-PLAYEDl)]
[= (CARDS-PLAYEDl ME)

(HIGHEST-IN-SUIT-LED CARDS-PLAYEDl)])))

(SOLUTION-TEST :
(LAMBDA (CARDS-PLAYEDl)

(AND [HAVE-POINTS CARDS-PLAYEDl]
[= (CARDS-PLAYEDl ME)

(HIGHEST-IN-SUIT-LED CARDS-PLAYEDl)])))

(COMPLETION-TEST :
(LAMBDA (PATH) (= (# ΡΑΉ) (# (PLAYERS))))))

The procedure thereby specified, shown as a data-flow graph in Figure
12-5, operates as follows:

The object of the search is to find a sequence of cards satisfying the

MOSTOW 395

♦ ■ INITIAL PATH cards played before mine INITIALIZED VARIABLES my card, suit led

PATH
TEST

highest in the
suit led is mine

CHOICE SET

possibly legal cards

♦■·■

♦■ ·

PATH ORDER

active
path

paths with

r points first
list ^ ^ ^ '

""" STEP ORDER

T - ^ us.
♦■·▲■
solution

path has points
my card highest in suit led
path length = S players

(that is, I take points)

point cards first
(f none in path

card is lower than mine
if both are in suit led

Figure 12-5: Refined search for "Avoid Taking Points".

solution-test and completion-test. The solution-test requires the sequence to con-
tain one or more point cards, with player ME's card the highest in the suit led.
The completion-test requires the sequence to contain a card for each player.
Together, they specify a sequence of cards that will cause player ME to take
points.

The choice set for player PI consists of those cards that might possibly be
legal for PI to play, according to the information available to player ME. For
example, in order to play a card Cl, PI must have Cl. Player ME may be
unable to test this directly, but can still check a couple of necessary conditions.
First, if PI Φ ME, Cl must be out, and in particular, cannot already have been
played. This prevents consideration of scenarios in which the same card is
played more than once, or in which a card taken in an earlier trick miraculously
reappears. Second, Cl cannot be in the suit led if PI is known to be void in
that suit.

The search conservatively takes as the choice set all cards satisfying the
known necessary conditions; the branching factor of the search could be reduced
by checking additional necessary conditions, or by considering only plausible
scenarios for the trick. The latter refinement would require a model of other
players' goals in order to predict their likely behavior.

The variables SUIT-LED1 and MY-CARD1, bound to values computed or
selected before the search, represent the suit led and a card player ME is con-
sidering playing.

396 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

The search proceeds by selecting a card sequence from the active path list,
appending a card, testing the new sequence to see if it is a solution, and deciding
whether to add it to the list. The INITIAL-PATH contains MY-CARD1 and the
cards already played in the trick.

The path-order gives priority to paths in which points have been played.
The step-test filters the generation of paths to those in which player ME

wins the trick.
The step-order gives priority to point cards when extending a sequence

with none.
The path-test prunes paths in which player ME cannot take the trick. Since

the step-test prevents the generation of such paths, the path-test need not really
be applied to any paths other than the initial-path. This could be accomplished
by adding an initial-test component to the HSM schema, and would terminate the
search immediately in cases where player ME does not follow suit.

The search procedure requires a run-time environment with several fea-
tures:

• 3-valued logic: unevaluable expressions return UNKNOWN without causing
run-time errors.

• Annotations: evaluation methods can be tried that do not always succeed.
• Simulation: the effects of an action can be predicted by modeling state

changes.
• Historical reference: expressions can be evaluated relative to past states or

events [Balzer & boldman, 1979].
These features seem reasonably straightforward to build into an evaluator,

but implementing them was beyond the scope of the research. Consequently the
search procedure was not implemented.

12.5.7 Another Example: Compose a Cantus Firmus

So far, FOO's HSM schema and its rules for instantiating and refining this
schema have been illustrated solely in terms of the "avoid taking points" ex-
ample. As a test of generality, I applied the same rules to a task from the
domain of music: "Compose a cantus firmus." A cantus firmus is a sequence of
musical tones of equal length satisfying certain aesthetic constraints. A program
to generate such sequences [Meehan, 1971] was based on aesthetic constraints
given in a textbook on counterpoint [Salzer & Schacter, 1969]. The goal of my
experiment was to use the rules from the hearts example, or similar ones, to
derive a heuristic search procedure for generating tone sequences satisfying four
constraints arbitrarily chosen from the textbook:

• Cl. "As a rule, the cantus will not contain fewer than eight or more than
sixteen tones."

• C2. "The cantus firmus should not contain intervals larger than an octave,
dissonant leaps, or chromatic half steps."

MOSTOW 397

• C3. "A tenth between the lowest and the highest tone is the maximum
range."

• C4. "Each cantus firmus must contain a climax or high point... The climax
tone should not be repeated."
The derivation of a heuristic search procedure for this problem has much in

common with the hearts example. The initial generate-and-test procedure simply
generates tone sequences and tests each one to see if it satisfies constraints Cl-
C4. The refined HSM procedure incorporates these constraints earlier in the
search. The same HSM rules were used to construct a generate-and-test search
from the problem description, and to move monotonically necessary constraints
from the solution-test to the path-test and step-test. Some highlights:

1. Constraint C4 was simplified by choosing a climax tone before generating
the cantus. The idea of restricting a problem by determining one of its
features a priori is expressed by

RULE256: (P ... (f s) ...) -> (and [= (f s) v] [P ... v ...])
where v is to be selected from (range f) before s is constructed
To construct an object s so as to satisfy a constraint P(s, f(s)),
Choose a value vforßs),
And solve the two subproblems P(s, v) andf(s) = v.

Before the search begins, a value CLIMAX1 is chosen to be the climax
tone of the cantus. This value could be generated randomly or, as in
[Meehan, 1971], supplied as an input; the point is that the decision to

select it before the search simplifies the operationalization of constraint C4.
2. A constraint that is not monotonically necessary or sufficient can some-

times be split into a conjunction of monotonie constraints, which can then
be moved earlier in the search. For example,

(LAMBDA (T0NE-SEQUENCE1)
(= (CLIMAX T0NE-SEQUENCE1) CLIMAX1))

is split into the monotonically sufficient

(IN CLIMAX1 T0NE-SEQUENCE1)

and the monotonically necessary

(FORALL XI T0NE-SEQUENCE1 (NOT (HIGHER XI CLIMAX1)))

3. The ideal refinement rule compiles a constraint out of the search al-
together. One such rule is:

398 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

RULE386: (HSM with (path : s)
(choice-sets : (... (set-of x S (P ... (g s)...)) ...)))

-► (HSM with (choice-sets : (f (g s))))
f <e- (lambda (y) (set-of x S (P ... y ...)))
if (P ...) is otherwise independent of s
/ / the choice set has the form {x in S I P(x, g(s))}
Where S and range(g) are small
And P does not otherwise depend on the path variable s,
Then define a new function fly) = {x in S I P(x,y)}
And change the choice set toflg(s)),
Where f is precomputed and stored in a table before the search begins.

RULE386 applies after the choice set for the next note has been restricted
to those tones separated from the previous note by an acceptable melodic
interval (constraint C2), computed by generating every tone and testing the
interval between it and the last note. RULE386 replaces this generate-and-
test loop with a precomputable table that lists all acceptable successors for
each tone. Instead of enumerating .the entire set of (TONES) when ex-
tending a tone sequence, the search will consider only acceptable successor
tones. This refinement effectively compiles C2 out of the search.

12.6 EVALUATION OF GENERALITY

The purpose of the cantus firmus example was to test the generality of
FOO's knowledge about heuristic search problems— its general schema represen-
tation of HSM, its instantiation rules for filling in this schema so as to constitute
a generate-and-test procedure, and its refinement rules for transforming this pro-
cedure into a genuine heuristic search.

The same HSM schema was general enough to cover both the hearts and
the music examples.

The process of formulating the initial generate-and-test procedure was very
similar in the two examples: the same HSM rules were applied in the same or-
der, even though the analysis rules used were quite different. This striking
parallelism supports the generality of the instantiation rules.

The refinement rules used in the hearts example were checked to see if
they could be applied to the music example. Some were directly applicable,
such as RULE323, which moves a constraint from the solution-test to the path-
test, and RULE327, which moves a constraint from the path-test to the step-test.
(Both these rules were used more than once in each example.) Other rules added
to cover the music example closely resembled rules used in the hearts example;
this suggests that it may be worthwhile to look for common generalizations or a
more fundamental rule-generating process.

In short, there was a great deal of overlap between the HSM rules used in
the two examples, even though different rules were required to solve the analysis
problems engendered by different uses of the same HSM rule. This suggests that
FOO does indeed have some general knowledge about operationalizing a problem
in terms of HSM.

MOSTOW 399

One would expect other examples to use additional rules. Some of these
rules might require changes to the schema or not fit any fixed schema, e.g.:

• Generalize the initial state to be a set of paths rather than a single path.
• Add a test applied only to the initial-path.
• Distinguish cheaply evaluated or highly constraining tests and put them

first in the data-flow graph.

• Split the data-flow graph into several copies and refine each one to fit a
different case.

12.7 CONCLUSION

The ultimate goal of this research is to automate the process of applying
general AI techniques to problems expressed in domain-specific terms. This
chapter has modeled this process as a series of problem transformations and has
described some general rules used to reformulate two dissimilar tasks as heuristic
search problems. Some of these rules recognize a potential HSM problem in a
task description and construct a generate-and-test procedure for it. Others refine
such a procedure into a true heuristic search by (unlike conventional optimizing
compilers) exploiting domain knowledge and analyzing problem constraints.

Much work remains to be done:

• FOO's rules should be tested on other domains, generalized, and extended.
• The same strategy should be used to apply other AI methods: construct a

simple procedure, then successively refine it based on domain knowledge
and analysis.

• FOO's fixed set of HSM components enables rules to refer to them by
name, at the cost of being unable to modify the basic heuristic search data-
flow graph to fit different problems. Graph-transforming refinement rules
[Tappel, 1980] should be developed to eliminate this inflexibility, but

referring to components of the changing graph will require a more complex
naming scheme.

• An automatic operationalizer would need a problem-solver to guide the
operationalization process and a model to predict which expressions will be
executable at run-time. The dissertation on which this chapter is based
[Mostow, 1981] outlines a means-end analysis approach to the problem-

solving issue.
• The lack of a built-in representation for opponents' goals was motivated by

the desire for generality but prevented refining the "avoid taking points"
search based on the relative plausibility of different scenarios for the trick.
A practical operationalizer would need to reason about the mental behavior
of agents in the task environment, including itself [Konolige & Nilsson,
1980].

400 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

• The purely analytic approach presented here attempts to design a search
procedure independent of any specific task situation. It should be com-
bined with empirical techniques for exploiting properties of particular task
situations (see Chapter 6 of this book) and improving a search procedure as
it executes [Lenat et al., 1979].
The central theme in current AI research is the exploitation of domain

knowledge to achieve high performance. Future research on the mechanical ap-
plication of AI techniques to real tasks must address this theme. The fundamen-
tal challenge in this work is to develop domain-independent techniques for ex-
ploiting domain-specific knowledge. Such techniques can be expected to play an
important role in future advice-taking systems that devise procedures to do what
they are told.

ACKNOWLEDGMENTS

I owe many ideas about operationalization to my dissertation committee:
Rick Hayes-Roth, Allen Newell, Jaime Carbonell, and Bob Balzer. I am grate-
ful to Jim Meehan for unearthing and documenting the awto-generating
program he wrote as an undergraduate. This chapter benefitted considerably
from helpful suggestions by the editors, insightful comments by Jim Bennett and
Steve Tappel, careful readings by Tom Dietterich, and useful criticisms by Bill
Swartout and Lee Erman. Of course, I alone am responsible for any errors.

This research was supported in part by a National Science Foundation
Graduate Fellowship, in part by the National Science Foundation under Grant
No. MCS77-03273 to the Rand Corporation, in part by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 3597, monitored by the
Air Force Avionics Laboratory under Contract F33615-78-C-1511, in part by the
Heuristic Programming Project at Stanford University, and in part by DARPA
Contract MDA-903-81-C-0335 to USC Information Sciences Institute.

The views and conclusions contained in this document are those of the au-
thor and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the National Science Foundation, the Rand Corporation,
the Defense Advanced Research Projects Agency, or the U.S. Government.

This chapter is a revised, condensed version of Chapter 3 of [Mostow,
1981], and describes dissertation research performed at Carnegie-Mellon Univer-
sity.

REFERENCES

Balzer, R., "Transformational implementation: an example," IEEE Transactions on Software En-
gineering, Vol. SE-7, No. 1, pp. 3-14, Jan. 1981.

MOSTOW 401

Balzer, R., and Goldman, N., "Principles of good software specification and their implications for
specification languages," Proc. Conf. Specifications Reliable Software, Boston, MA, pp.
58-67, 1979.

Darlington, J., and Bur s tall, R. M., "A system which automatically improves programs," Acta
Informatica, Vol. 6, pp. 41-60, 1976.

Klahr, P., "Partial proofs and partial answers", Technical Report P-6239, The Rand Corporation,
Santa Monica, CA, 1978, (Presented at 4th Workshop on Automated Deduction, University of
Texas, Austin, 1979).

Konolige, K., and Nilsson, N. J., "Multiple-agent planning systems," AAAI80, American Association
for Artificial Intelligence, Stanford University, pp. 138-142, 1980.

Lenat, D., and Harris, G., "Designing a rule system that searches for scientific discoveries,"
Pattern-Directed Inference Systems, D. A. Waterman and F. Hayes-Roth (Eds.), Academic
Press, New York, pp. 25-51, 1978.

Lenat, D. B., Hayes-Roth, F., and Klahr, P., "Cognitive economy in artificial intelligence systems,"
IJCAI-6, Tokyo, Japan, pp. 531-536, 1979.

Meehan, J., "CANTUS", (Computer program to generate cantus firmus. Senior undergraduate
honors project, Yale University).

Moore, J., The design and evaluation of a knowledge net for Merlin, Ph.D. dissertation, Carnegie-
Mellon University, 1971.

Mostow, D. J., Mechanical Transformation of Task Heuristics into Operational Procedures, Ph.D.
dissertation, Carnegie-Mellon University, 1981, (Available as CMU-CS-81-113).

Mostow, D. J. and F. Hayes-Roth, "Operationalizing heuristics: some AI methods for assisting AI
programming," IJCAI-5, Tokyo, Japan, pp. 601-609, 1979.

Newell, A., "Heuristic programming: Ill-structured problems," Progress in Operations Research,
J. Aronofsky (Ed.), Wiley, New York, pp. 363-414, 1969.

Newell, A., Shaw, J., and Simon. H. A., "Empirical explorations of the logic theory machine: A
case study in heuristics," Proceedings of the 1957 Western Joint Computer Conference,
Western Joint Computer Conference, pp. 218-230, 1957, (Reprinted in E. Feigenbaum and
J. Feldman (editors), Computers and Thought, McGraw-Hill, 1963).

Newell, A., Shaw, J., and Simon, H. A., "Report on a general problem-solving program for a
computer," Proceedings of the International Conference on Information Processing, UN-
ESCO, Paris, pp. 256-264, 1960.

Sacerdoti, E. D., "Planning in a hierarchy of abstraction spaces," Artificial Intelligence, Vol. 5, pp.
115-135, 1974.

Sacerdoti, E. D., A Structure for Plans and Behavior, Amsterdam: North-Holland, 1977.

Salzer, F., and Schacter, C , Counterpoint in Composition: the Study of Voice Leading, McGraw-
Hill, New York, 1969.

Simon, H. A., "Artificial intelligence systems that understand," IJCAI-5, Cambridge, MA, pp.
1059-1073, 1977.

402 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE

Tappel, S., "Some algorithm design methods," AAAI80, Stanford University, pp. 64-67, 1980.

MOSTOW 403

APPENDIX: INDEX OF RULES

RULE 124

RULE256

RULE306

RULE318

RULE319

RULE323
path-test

RULE327

RULE332
choices

RULE333
search

RULE335
path-order

RULE338

RULE386

(page 373): Unfold definition

(page 397): To achieve P(f(s)), choose f(s) = v and achieve P(v)

(page 378): Use HSM to evaluate predicate on scenario with choices

(page 382): P -► (possible P)

(page 383): Find necessary condition

(page 387): Move monotonically necessary constraint from solution-test to

(page 388): Move constraint from path-test to step-test

(page 391): Start the search at the point following any predetermined

(page 391): Cache expressions whose values stay constant during the

(page 389): Move monotonically sufficient constraint from solution-test to

(page 390): Move constraint from path-order to step-order

(page 398): Compile a constraint into a precomputable table

13

LEARNING BY BEING TOLD:

ACQUIRING KNOWLEDGE FOR

INFORMATION MANAGEMENT
Norman Haas

Gary G. Hendrix
SRI International

ABSTRACT

This chapter discusses machine-learning aspects of a project whose broad
goal is to create computer systems that can aid users in managing information.
The specific learning problem discussed is how to enable computer systems to
acquire information about domains with which they are unfamiliar from people
who are experts in those domains, but have little or no training in computer
science. The information to be acquired is that needed to support question-
answering or fact-retrieval tasks, and the type of learning to be employed is
learning by being told.

13.1 OVERVIEW

13.1.1 The KLAUS Concept

Our interest in knowledge acquisition is motivated by the desire to create
computer systems that can aid users in managing information. The core idea of
what we call a KLAUS1 system is that of a machine that can hold a conversation
with a user in English about his specific domain of interest, subsequently retrieve
and display information conveyed by the user, and apply various types of exter-
nal software systems to solve user problems. Such software would include data
base management systems, report generators, planners, simulators, and statistical
packages.

'"KLAUS" stands for Knowledge Learning And Using Systems.

405

406 CHAPTER 13: LEARNING BY BEING TOLD

Interactive dialogues in natural language appear to be a convenient means
for obtaining most of the application-specific knowledge needed by intelligent
systems for information management. But systems that acquire knowledge about
new domains through natural-language dialogues must possess some very special
capabilities.

KLAUS systems must support interactive, mixed-initiative dialogues. Be-
cause a user may provide new knowledge in an incremental and incomplete man-
ner, the system must keep track of what it has already been told, so that it can
deduce the existence of missing information and explicitly ask the user to supply
it. Moreover, it must carefully distinguish what it does not know from what it
knows to be false.

A primary requirement of a KLAUS system is that it be capable of simul-
taneously learning both new concepts and the linguistic constructions used to ex-
press them. KLAUS systems must acquire domain-specific language expertise,
not only to understand natural language statements formulated by the user about
his domain, but also for generating natural language responses to user requests.

The intimate connection between language and reasoning is reflected in the
need to acquire concepts and language simultaneously. This poses a great chal-
lenge in the task of creating KLAUS systems. Thus, this chapter is largely con-
cerned with the problems of learning concepts and language simultaneously.

13.1.2 Research Problems for KLAUS Systems

Before systems can be created that are capable of learning about new
domains through interactive dialogues in English, several fundamental research
problems must be resolved:

• A powerful natural language processing capability is required. Although
much progress has been made in recent years, previous work has presup-
posed a complete knowledge base. Knowledge acquisition dialogues re-
quire numerous adaptations and extensions to the technology.

• A structure for lexical entries must be specified so that the system can ac-
quire new lexical information. Because such information constitutes a key
link between surface linguistic form and underlying meaning, structural
specification is a challenging task for certain categories of words, par-
ticularly verbs.

• The linguistic constructions that people use in introducing new concepts
must be identified and analyzed, so they can be interpreted correctly by the
natural language processing system. Such constructions range from simple
syntactic patterns to complex analogies.

• Seed concepts and seed vocabulary must be identified for inclusion in a
core system. It is not obvious which words and concepts would be most
useful in helping users describe new domains.

• A flexible scheme of knowledge representation is necessary. Such a

HAAS AND HENDRIX 407

representation must have general expressive power, since it may be applied
to diverse domains and must support the addition of new information. It
should include inherent features that can aid in organizing knowledge and
supporting incremental acquisition.

• An efficient problem-solving capability is needed to answer questions and
draw inferences for integrating newly-acquired information. This
capability must be based on general principles, because no application-
specific problem-solving procedures will be included in the system. (How
to learn application-specific problem-solving procedures is a separate and
interesting research question.)

• A methodology is needed for integrating new concepts into the system's
knowledge base. Because users will often provide only partial descriptions
of new concepts, methods must be devised for ascertaining what additional
facts should be sought from the user to ensure proper linkage between the
new concepts and those previously acquired.

• A set of readily understandable questions is needed for eliciting infor-
mation from the user. The length and number of questions should be kept
to a minimum, so as not to impose an excessive burden on users.

• Facilities must be provided for allowing a user to change his mind about
what he has told the system. That is, users should be able to instruct the
system to modify, revise or refute information it has been told previously.

• Means are required for detecting and dealing with inconsistent data.
These problems must be dealt with in an integrated manner, balancing the

requirements of one facet of the system against those of other facets. Our initial
attempts to cope with this complex web of issues are described below.

13.1.3 Other Learning Systems

Our learning-by-being-told approach to learning is quite different from
other approaches studied in knowledge acquisition research. In particular, our
aim is to collect and organize aggregations of individual facts for use in
question-answering tasks. The collecting of individual facts contrasts with work
on the acquisition of rules for judgmental reasoning, as exemplified by the work
of Davis [1977]. In rule acquisition, knowledge is viewed not so much as a
collection of facts, but as a set of rules that in their aggregate comprise an algo-
rithm for making some type of decision. Learning by being told is also quite
different from approaches based on learning from examples [Dietterich &
Michalski, 1979] or learning by analogy (see Carbonell, Chapter 5, and Winston
[1975]).

408 CHAPTER 13: LEARNING BY BEING TOLD

13.2 TECHNICAL APPROACH: EXPERIMENTS WITH THE KLAUS CONCEPT

We have recently developed and tested a pilot KLAUS, called NANOKLAUS.
A sample transcript of interactions with this system is contained in the appendix
to this chapter. Readers are encouraged to glance through this transcript before
proceeding with the reading of this text.

The principal components of NANOKLAUS are a natural language processing
module, a formal deduction module that operates on a data base of well-formed
formulas (wffs) in first-order logic, and a number of support procedures that aid
in assimilating knowledge about new subject domains and in maintaining the data
base.

13.2.1 Seed Concepts

NANOKLAUS comes preprogrammed with a fixed set of syntactic and
semantic rules covering a small subset of English. It also comes with seed con-
cepts and a seed vocabulary, which are to be extended as the the system learns
about a new domain. For example, the system comes with a preliminary
taxonomy of concepts already encoded. This basic set includes such things as
PHYSICAL OBJECTS, PERSONS, MEASURES, and the like. NANOKLAUS
also has preset lexical entries for the basic function words of English, as well as
of such words as "unit", "kind", and "plural" that are used frequently in ar-
ticulating definitions of new words and concepts. These seed concepts allow the
untrained NANOKLAUS to "understand" inputs such as those of Interactions 3 and
4 of the transcript.

The choice of seed concepts for a system that must bootstrap its entry into
new domains is problematical. Most of the concepts we selected for
NANOKLAUS are classes of THINGs and RELATIONS. They have been included
in the system either simply to avoid forcing users to relate everything to the most
general concept (THING), or because they have a special status in English. For
example, because use of pronouns depends partially on gender, the class MALE
is included and associated with the pronoun "he".

It is important not to think of the seed concepts as a set of primitives, in
terms of which all other concepts must be defined. Concept acquisition in
NANOKLAUS is not based on definitions. Rather, new concepts are introduced by
the user and progressively refined by adding more and more facts connecting the
new concept to other concepts. English sentences introducing a new concept
simply place it in a relationship with old concepts. Each new fact acts as a
constraint that the concepts it mentions must satisfy. Thus, concept acquisition
is a process of pruning away possibilities, rather than building up from primi-
tives. For" arguments as to the general un workability of the latter approach, see
[Fodor, 1975].

To illustrate the notion of progressive refinement as opposed to definitions,
consider the simple statement "The JFK is a ship." This statement serves to in-
troduce the notion of the JFK, and to place it in a relationship to the concept of

HAAS AND HENDRIX 409

SHIP. But it does not define the notion of being the JFK, in that it does not
supply the necessary and sufficient conditions for being the JFK. Subsequent
facts learned about the JFK serve to further restrict, but not necessarily to define,
the concept.

NANOKLAUS uses seven principles of knowledge organization to integrate
new knowledge:

1. There are things.
2. There are subclasses of things. (Things can be classified taxonomically.)
3. There are relations among things.
4. There are subclasses of relations.
5. Some relations are functions (that is, n to 1 maps).
6. Sometimes a given set of constraints is sufficient to distinguish a unique

individual.
7. Equals are interchangeable.

NANOKLAUS is not programmed to hold explicit conversations about these prin-
ciples, but rather to utilize them in its internal operations.

13.2.2 NANOKLAUS's Natural Language Component

The natural language component of NANOKLAUS is based on LIFER
[Hendrix, 1977] and uses a pragmatic grammar in the style of LADDER [Hendrix

et al., 1978]. In particular, its grammar consists of a number of highly specific,
special-purpose rules for processing various types of sentences.2 For example,
the grammar may be thought of as including a rule of the form:

<SENTENCE> φ <PRESENT> THE <KN0WN-C0UNT-N0UN>
I (DISPLAY <KN0WN-C0UNT-N0UN>)

which is used to match such inputs as:
What are the ships?
Show me the officers.
List the carriers.
The metasymbol <PRESENT > matches the italicized portion of these in-

puts, THE matches "the", and <KN0WN-C0UNT-N0UN> matches the last word
in each of the examples. (Count nouns refer to discrete objects that can be
counted, such as ships and ports. NANOKLAUS does not deal with mass nouns,
for example, "steel" and "water".)

Whenever a sentence is found that matches this pattern, the function DIS-
PLAY is called with the value of <KN0WN-C0UNT-N0UN>. This function

2The rules used by NANOKLAUS are much more linguistically motivated than those used in LADDER. In
our discussion, we have suppressed the complexity of the rules and response functions actually used,
so as to characterize the essence of the methodology more succinctly.

410 CHAPTER 13: LEARNING BY BEING TOLD

thereupon retrieves from the data base and displays to the user all currently
known instances of objects that might be referred to by the <KNOWN-COUNT-
NOUN>.

Although most of the linguistic processing performed by the system fol-
lows fairly standard practice, the pragmatic grammar is distinguished by its ex-
plicit identification of a number of syntactic structures used principally to intro-
duce new concepts. As an oversimplified example, NANOKLAUS might be
thought of as looking for the syntactic pattern:

<SENTENCE> => <A> <NEW-W0RD> <BE> <A> <KN0WN-C0UNT-N0UN>

to account for such inputs as:
A CARRIER IS A SHIP.

The system's definition of the category <NEW-W0RD> allows <NEW-W0RD>
to match any LISP atom (or atom sequence). The syntactic category <KNOWN-
COUNT-NOUN> originally contains only count nouns associated with seed con-
cepts, such as "thing", "person", "physical object" and the like.

When one of NANOKLAUS's concept-defining patterns is recognized, an as-
similation procedure associated with the pattern is called. This procedure usually
adds new facts to the system's set of wffs and generates new entries in its lex-
icon. The various assimilation procedures also have provisions for interacting
with the user/teacher. Response generation is accomplished by means of
preprogrammed phrases and templates.

For example, when the routine associated with the last pattern shown
above is called, it first makes a new lexical entry in category <KNOWN-
COUNT-NOUN> for the atom matched by the <NEW-W0RD>. In this case,
"CARRIER" becomes a new <KN0WN-C0UNT-N0UN>. Then the routine
creates a new sort predicate3 for CARRIER in the system's knowledge base and
enters the assertion that "for every x, if x is a CARRIER then x is a SHIP".
Finally the routine asks questions of the user to determine relationships between
the sorts of objects that are CARRIERS and other sorts of objects that are
SHIPs. Interactions 7 and 23 of the transcript illustrate this interaction.

13.2.3 NANOKLAUS's Knowledge Base and Deduction Component

First-order logic was chosen as the basis for NANOKLAUS's knowledge
representation scheme because of its generality and because of the computational
soundness and power of problem-solving systems that use it.

3A sort predicate is a one-argument predicate that indicates what kind, class, or sort of thing an
object is. For example, CARRIER and SHIP are sort predicates in the formula (ALL X)
(CARRIER(X) => SHIP(X)). We use the word "sort" rather than "class" to avoid the connota-
tion that a sort predicate is associated with a set of objects, which could be extensionally defined.

HAAS AND HENDRIX 411

13.2.3.1 Typical Wffs Used by NANOKLAUS

The introduction of sort predicates mentioned above provides an example
of how NANOKLAUS makes use of constructs from first-order logic. Whenever
NANOKLAUS learns a new count noun, it creates a new single-place predicate to
characterize objects of the associated sort. For example, we have seen that,
upon learning the concept of a carrier, NANOKLAUS creates a predicate called
"CARRIER" and asserts the fact:

(ALL X) (CARRIER(X) φ SHIP(X)).

As another example of NANOKLAUS's use of formulas in logic, when
NANOKLAUS learns that carriers and submarines are distinct sorts of objects, it
effectively asserts the fact:

(ALL X) (NOT (CARRIER(X) AND SUBMARINE(X)).

When NANOKLAUS learns of a new individual, such as the JFK (see Inter-
action 26), it creates a new constant term in the logic system and relates it to one
of the sorts, namely:

KITTYHAWK(JFK).

Upon learning a new verb, such as "command" (see Interaction 18),
NANOKLAUS creates a new predicate with the proper number of argument posi-
tions and constrains the domains of those arguments by assertions such as:

(ALL X Y) (COMMANDfX Y) Φ (OFFICER(X) AND SHIP(Y))).

Most of the assertions made by a user are translated into propositions in a
straightforward manner. For example, "Brown commands the Saratoga" (see In-
teraction 43) produces:

COMMAND(BROWN SARATOGA).

13.2.3.2 Consistency

NANOKLAUS checks each new fact as it is asserted to determine whether it
is consistent with its previous knowledge. This gives rise to the behavior shown
in Interactions 27, 44 and 45 of the transcript. NANOKLAUS currently has no
provision for unlearning. Therefore, if a new assertion causes an inconsistency
because a previous assertion was not correct, there is no provision for withdraw-
ing the incorrect assertion.

13.2.3.3 More Reasons for Using First-Order Logic

The notion of using first-order logic in combination with automatic deduc-
tion as the basis of an intelligent system dates back to the very beginning of AI
research. Newell and Simon [1956] published a paper on "The Logical Theorist"
in 1956, and McCarthy, in his 1959 "Advice Taker" proposal (republished as
[McCarthy, 1968]), suggested using such a combination as the basis of a system

capable of commonsense reasoning.
Following a vigorous start, work on the use of logic as a basis for AI sys-

tems fell on hard times during the I960's and early 70's after experimentation by

412 CHAPTER 13: LEARNING BY BEING TOLD

Green [1969] and by others showed that the computational effort required to
solve problems in first-order logic using Robinson's [1965] resolution principle
grows exponentially with the number of wffs used in the axiomatization of a
domain. However, more recent work, such as [Hayes, 1973; Kowalski, 1974;
Moore, 1975] and [Weyhrauch, 1980], has suggested how control information
may be used to increase the efficiency of the deduction process.

But our main motivation for using first-order logic is that KLAUS systems
are incremental learning systems and therefore must be capable of dealing with
incomplete knowledge. As pointed out by Moore [1982]:

Any knowledge representation formalism that is capable of handling
the kinds of incomplete information people can understand must at least be
able to:

• Say that something has a certain property without saying which thing
has that property: (SOME X) P (X)

• Say that everything in a certain class has a certain property without
saying what everything in that class is: (ALL X) (P(X) Φ
Q(X))

• Say that at least one of two statements is true without saying which
statement is true: P OR Q

• Explicitly say that a statement is false, as distinguished from simply
not saying that it is true: NOT (P)

Any representation formalism that has these capabilities will be, at the very
least, an extension of classical first-order logic, and any inference system
that can deal adequately with these kinds of generalizations will have to
have at least the capabilities of an automatic deduction system.

13.2.4 Acquisition Procedures: Using Dialogue to Aid Assimilation

By and large, it is unreasonable to expect users to volunteer all the infor-
mation NANOKLAUS needs to assimilate a new concept. In particular, users can-
not be expected to know what conclusions NANOKLAUS will draw about a newly
taught concept from its previous knowledge, since they know neither the details
of its current state of knowledge nor the details of its assimilation procedures.
NANOKLAUS must ask the user explicitly for the information it needs. Therefore,
whenever a new concept (or word) is presented to NANOKLAUS, a special proce-
dure is called that temporarily assumes control of the dialogue, prompting the
user for whatever additional information it may require to assimilate the new
concept.

NANOKLAUS must phrase its questions so as to make them readily under-
standable by people unfamiliar with computers or linguistics. This introduces a
number of human engineering considerations. The acquisition of new verbs of-
fers a cogent illustration of the problem.

English verbs are highly idiosyncratic. Consequently, making proper

HAAS AND HENDRIX 413

entries for them in a lexicon is a formidable task. Among other criteria, one
must ascertain whether a verb is transitive, whether it can be used in the passive
voice, whether its indirect object can become the object of a FOR or TO preposi-
tional phrase, whether it is reflexive or nonreflexive, and how the syntactic cases
of its arguments may be "normalized" when the verb appears in different syntac-
tic constructions. NANOKLAUS's users cannot be expected to describe verbs in
linguistic terms; therefore, to elicit the same information, the system must ask a
series of questions that users can understand. Interactions 18 and 19 in the
transcript are typical verb acquisition exchanges. While the dialogue is
moderately natural and can be used by a nonlinguist, there is obviously con-
siderable room for improvement in its design.

13.2.5 Some Major Limitations of NANOKLAUS Technology

Many of the major limitations of NANOKLAUS can be seen simply by read-
ing through the transcript and noting that, although English is being used, the
conversation is nevertheless highly stylized and artificial. For the most part,
NANOKLAUS is limited to learning about very concrete types of objects and their
interrelations. It has no capacity to deal with time, process, causality, intent,
want, belief or judgment. This, of course, severely limits its range of applica-
tion.

Even when considering concrete objects and their interrelations,
NANOKLAUS can deal with only highly specific statements. For example,
NANOKLAUS has no capacity do deal with analogy, as in:

A SOFTBALL IS LIKE A BASEBALL, BUT BIGGER AND SOFTER.

In general, the interpretation of information volunteered by people about
new domains may necessitate deep reasoning and require information from other
domains. Much of the volunteered information may contain inconsistencies that
the user himself has no way (or particular reason) to resolve. The NANOKLAUS
system represents a starting point for work on learning by being told; still, it
barely scratches the surface of a vast body of difficult problems.

13.3 MORE TECHNICAL DETAILS

In this section we present additional details about some of the more inter-
esting aspects of the NANOKLAUS system.

13.3.1 NANOKLAUS's Sort Hierarchy

NANOKLAUS's knowledge representation system uses a many-sorted, first-
order logic that combines features from [Moore, 1975] and [Hendrix, 1979].
The backbone of the system is a treelike data structure reflecting the hierarchy of
sorts used by the system (see Figure 13-1). The data structure maintains infor-
mation about the immediate ancestors and descendants of each sort, including

414 CHAPTER 13: LEARNING BY BEING TOLD

whether an ancestor is exhausted (spanned) by some or all of its descendants,
and whether two or more sibling sorts are mutually exclusive. The sort hierarchy
is a "tangled" tree, where any given sort may have multiple ancestors. It is no
accident that a sort hierarchy should serve as the primary data structure for an
English-based acquisition system. "Is-a" hierarchies are used by many natural
language processing systems; it appears that something very similar to a sort
hierarchy plays a central role in the way humans organize their knowledge
[Lindsay & Norman, 1972].

the-jfk

(mutually exclusive)

(exhaustive)

PHYSICAL. OBJECT

4

SHIP
WS

LENGTH WEIGHT

MALE FEMALE

John WOMAN Baby-Philip

Figure 13-1: Typical Sort Hierarchy

Straightforward utilization of sort information is illustrated throughout the
transcript in the appendix, but especially in Interactions 7 to 14 and 25 to 29.

HAAS AND HENDRIX 415

The sort hierarchy is implemented by means of a special-purpose network
representation indicating entailments of systems of unary predicates. Facts stored
in this representation can be used exactly like the other facts in the fact store, but
are organized to support rapid access to sort information—which is used in the
language subsystem as well as in the deduction subsystem. Whenever syntactic
combinations are proposed, the parser uses sort information to determine if noun
phrases are valid arguments of verbs, adjectives, and relational nouns—thus
reducing ambiguity. The response generator consults the sort hierarchy when
selecting pronouns for anaphoric reference. If a referent is described as a MALE
or a FEMALE, the nominative singular pronoun chosen will be "he" or "she",
respectively; if not described as either, but known to be a member of the set of
PERSONS, the phrase "he or she" will be used, otherwise "it" will be selected.
This can be seen in Interactions 71 and 72 in the transcript.

Sort information is also used to assign default sorts to omitted arguments
of verbs. For instance, if an assertion is made that a particular officer com-
mands, NANOKLAUS knows from the acquisition dialogue it had with its teacher
that the officer commands something, and that that thing must be of sort SHIP
(see Interaction 45).

Measures, or dimensioned quantities, occupy a distinguished place in
NANOKLAUS's sort hierarchy; MEASURES are a distinct sort of THINGs, com-
prised of LENGTHS, WEIGHTS, PRICEs, etc. The user can introduce additional
sorts of measures. He can also tell the system about new UNITs in which
MEASURES are measured, as well as the conversion factors between different
units of the same measure (see Interaction 5). NANOKLAUS can perform conver-
sion when answering questions (compare Assertion 47 and Questions 58 and 59),
although its arithmetic capabilities are quite limited.

13.3.2 NANOKLAUS's Verb System

One of NANOKLAUS's strengths is its ability to deal with a large number of
syntactic variations in verb usage. For example, facts asserted in active voice
may be queried in both active and passive voice. In general, NANOKLAUS trans-
lates clauses into internal structures of the form:

(VERB-PREDICATE Argl Arg2 Arg3)

using information about permissible syntactic patterns in which the clause's verb
can occur.

The basic verb patterns handled by NANOKLAUS are summarized in Table
13-1. [NANOKLAUS does not handle modal verbs (for example, "want" and
"know"), or verbs with adverbial particles (for example, "pick up" and "preside
over"), or sentential objects (for example, "The captain requested that the ship
change course").] The objective of NANOKLAUS's verb acquisition dialogues
(Interactions 18 and 19) is primarily to determine which patterns may be used
with a new verb. The system does not need to ask about each pattern. For
example, if pattern A3 is not used with a given verb, patterns A3D, A3W, P3,
P3', and P3D are automatically ruled out.

416 CHAPTER 13: LEARNING BY BEING TOLD

Table 13-1: Verb Usage Patterns

Pattern

A3
A3D
A3W
P3
P3'
P3D

A2
A2'
A2D
P2
P2'

Al
Al'

Argl
(A)
Subj
Subj
Subj
(NPb)
(NPb)
(NPb)

Subj
Subj
Subj
(NPb)
(NPb)

Subj

-

Arg2
(B)
NPI
NPd
NP
NP
Subj
NPd

.
NP
NPd

-
Subj

.
-

Arg3

(C)
NP2
NP
NPw
Subj
NP
Subj

NP

-
-

Subj

-
.

Subj

Sample Sentence of this Pattern

A = Joe gave B = Sue C = a-ball.
A = Joe gave C = a-ball to B = Sue.
A = Joe supplied B = Sue with C = a-ball.
C = a-ball was given B = Sue (by A = Joe).
B = Sue was given C = a-ball (by A.= Joe).
C = a-ball was given to B = Sue (by A = Joe).

A = Joe wrote C = a-letter.
A = Joe wrote B = Sue.
A = Joe wrote to B = Sue.
C = a-Ietter was written (by A = Joe).
B = Sue was written (by A = Joe).

A = Joe wrote.
C = a-vase broke.

(from A2 of A » Joe broke C = a-vase.)

Pattern names indicate active (A) or passive (P) voice, the number of top-level noun phrases occurring in the sentence, and (in some
cases) an indication of a dative noun phrase (D) moved into a "to" or "for" prepositional phrase, or an indication of a "with" (W)
prepositional phrase.

Notation:
Subj = the surface subject of the sentence.
NPI = the first unmarked <NP> in the verb phrase.
NP2 = the second unmarked <NP> in the verb phrase.
NP = the only unmarked <NP> in the verb phrase.
NPb = <NP> marked by the preposition "by." May be omitted.
NPw = <NP> marked by the preposition "with", (not instrumental)
NPd = <NP> marked by either "to" or "for", (dative)

To appreciate the range of variation in English verbs, consider the follow-
ing sentences, each of which describes a situation using a ditransitive verb con-
struction (the A3 pattern of Table 13-1). The symbol '*' marks ungrammatical
sentences; '?' marks sentences whose grammaticality is questionable.

A3 John cooked Mary the fish.
?John supplied the school the books.
*John ran Mary the machine. (John ran it for Mary.)
John served Mary the fish.
John caught Mary the fish.

The following sentence sets are variations of the above, using the same
verbs but in different syntactic patterns. In each set the same pattern is used
throughout. Notice that not all verbs can be used grammatically in each pattern
and that, moreover, some patterns (those marked by '—') act to describe a dif-
ferent situation from the ones described above.

HAAS AND HENDRIX 417

A3w —John cooked Mary with the fish.
John supplied the school with the books.

—John ran Mary with the machine.
—John served Mary with the fish.
—John caught Mary with the fish.

A3d (for) John cooked the fish for Mary.
?John supplied the books for the school.
John ran the machine for Mary.

—John served the fish for Mary.
John caught the fish for Mary.

A3d (to) *John cooked the fish to Mary.
John supplied the books to the school.

*John ran the machine to Mary.
John served the fish to Mary.

*John caught the fish to Mary.

A2' —John cooked Mary.
John supplied the school.

—John ran Mary.
John served Mary.

—John caught Mary.

Al John cooked.
?John supplied.

—John ran.
John served.

?John caught.

ΑΓ The fish cooked.
*The books supplied.
The machine ran.

*The fish served.
*The fish caught.

There are two principal steps in the translation of a clause expressed in
English into a proposition in first-order logic. First, syntactic analysis recognizes
which of the various verb patterns is being used. Then syntactic cases (such as
SUBJ and NPl) are mapped into argument positions for the predicate associated
with the verb sense. For example:

JOHN GAVE SAM FIDO

is in the A3 pattern. According to Table 13-1, its subject JOHN is therefore
mapped to Argl, its indirect object (or NPl) to Arg2, and its direct object (or
NP2) to Arg3. The end result is the proposition:

(GAVE JOHN SAM FIDO)

The related sentence:
FIDO WAS GIVEN TO SAM

418 CHAPTER 13: LEARNING BY BEING TOLD

is in the P3D pattern, so the subject is mapped to Arg3 and the dative SAM to
Arg2, resulting in (GAVE _ SAM FIDO), which in turn is converted into
(EXIST X)(GAVE X SAM FIDO).

13.3.3 Relating KLAUS Systems to Conventional DBMSs

In several ways, basic KLAUS systems such as NANOKLAUS are similar to
conventional DBMSs (database management systems) in that they are intended to
file, sort, selectively recall, and display data in various formats. However,
DBMSs are systems for dealing with data structures through a formal
command/query language, whereas a KLAUS is a system for learning and
manipulating concepts through interactions in English. Furthermore, conven-
tional DBMSs store only single-fact sentences, such as:

THE KENNEDY IS OWNED BY THE U.S.
Facts involving logical connectives, such as "OR" in:

THE KENNEDY IS EITHER IN PORT OR AT SEA,
or involving quantification, such as:

ALL CARRIERS CARRY DOCTORS,

are not ground literals and cannot be represented explicitly in a conventional
DBMS. They can, however, be represented, discussed and reasoned about in the
first-order logic supporting a KLAUS.

13.4 CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

NANOKLAUS is best described as a fragile, proof-of-concept system that was
built to establish the feasibility of achieving the broader KLAUS goals. The
natural language research group at SRI International is now implementing a more
sophisticated KLAUS, called MICROKLAUS. MICROKLAUS will cover a broader
range of English constructions by replacing NANOKLAUS's LlFER-based pragmatic
grammar with Jane Robinson's [Robinson, 1980] DIAGRAM grammar.
MICROKLAUS will also feature a more efficient deduction system than the one
used by its predecessor.

Our work on the subject of knowledge acquisition has only recently begun
and there are many capabilities that we have yet to address. For example,
NANOKLAUS has no provision for learning by analogy, acquiring or reasoning
about the internal structures of processes, dealing with causality, handling mass
terms, allowing users to change their minds about previously asserted "facts", or
dealing with multiple senses of words.

The KLAUS project is not limited to the study of knowledge acquisition, but
is intended to provide technology for a system that combines a knowledge of
how to use various software packages with an ability to learn facts about new
domains. It is intended that an advanced KLAUS system act as a kind of broker
between multiple external agents, one of whom happens to be the user.

HAAS AND HENDRIX 419

The following deceptively simple hypothetical dialogue illustrates the value
and the basic characteristics of such an advanced KLAUS:

1. User: > DO I HAVE NEW MAIL?

2. KLAUS: You have one message

FROM: HENDRIX
SUBJECT: NSF funds have been cut by Congress

Do you want to read it now?

3 . User: > YES

4 . KLAUS: (Presents message about funding cuts at NSF.)

5. User: > WHO ARE THE PROJECT LEADERS ON OUR NSF GRANTS?

6. KLAUS: The following table presents the Pis of
NSF projects in the AI Center.

El

Fischler
Grosz
Robinson
Waldinger
Witkin

1202
6194
7483
7409
8682

7. User: > FORWARD THE MESSAGE TO THEM.

In this dialogue, the user first asks about his mail (Utterance l) . 4 Then the
user says he wants to read his message, whereupon KLAUS displays it. It is
about funding cuts at NSF. The user decides to find out who the project leaders
of the relevant projects are, so he asks Question 5. Subsequently, in Request 7,
he asks that the message be forwarded to these leaders.

Most of the capabilities required for this dialogue can be found in existing
systems. However, no system yet built is able to support the entire interaction
as shown, because all systems to date lack a controlling and coordinating top
level that would enable a single system to

• Interact with the user in natural language.
• Decide which of several subsystems should be invoked to meet the user's

needs.

4This dialogue does not require KLAUS to understand the title or body of the message; however,
KLAUS must understand that there was a message and that it was from Hendrix.

420 CHAPTER 13: LEARNING BY BEING TOLD

• Automatically create and execute the calling sequences to invoke those
subsystems.

• Maintain a dialogue context with the user that reflects and integrates the
various local contexts that have been established by and for the use of sub-
systems.
In other words, present systems lack a crucial level of awareness of the

interrelationships and potential interactions of the various software packages, the
user, and the domain of application. In short, processing the sample dialogue
requires knowledge of the domain of application and of available programs, as
well as knowledge of the way these pieces fit together in a larger framework.
How to acquire, represent, and apply such knowledge in a computer-based sys-
tem are major problems for future research.

ACKNOWLEDGMENTS

The deduction system supporting NANOKLAUS was developed in large part
by Mabry Tyson with Robert Moore, Nils Nilsson and Richard Waldinger as ad-
visors. Beth Levin made major contributions to NANOKLAUS's verb acquisition
algorithm. Barbara Grosz, Earl Sacerdoti, and Daniel Sagalowicz provided very
useful critiques of early drafts of this chapter. This research was supported by
the Defense Advanced Research Projects Agency with the Naval Electronic Sys-
tems Command under contracts N00039-79-C-0118 and N00039-80-C-0575.

REFERENCES

Davis, R., "Interactive transfer of Expertise: Acquisition of new inference rules," Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, IJCAI, Cambridge, MA, pp.
321-328, August 1977.

Dietterich, T. G. and Michalski, R. S., "Learning and generalization of characteristic descriptions:
Evaluation criteria and comparative review of selected methods," Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, IJCAI, Toyko, Japan, pp. 223-231,
August 1979, (see also chapter 3 of this book).

Fodor, J. A., The Language of Thought, Thomas Y. Crowell Company, New York, NY, 1975.

Green, C , "Theorem-proving by resolution as a basis for questioning-answering systems," Machine
Intelligence, Meltzer, B. and Michie, D. (Eds.), American Elsevier Publishing Company,
New York, NY, pp. 183-205, 1969.

Hayes, P. J., "Computation and deduction," Proc. 2nd Sym. on Mathematical Foundations of Com-
puter Science, Czechoslovak Academy of Sciences, pp. 105-116, 1973.

Hendrix, G. G., "The LIFER manual: A guide to building practical natural language interfaces",
Technical Report Technical Note 138, AI Center, Stanford Research Institute, February 1977.

HAAS AND HENDRIX 421

Hendrix, G. G., "Encoding knowledge in partitioned networks," Associative Networks: The
Representation and Use of Knowledge in Computers, Findler, N. V. (Ed.), Academic Press,
New York, NY, 1979.

Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D. S. and Slocum, J., "Developing a natural lan-
guage interface to complex data," ACM Transactions on Database Systems, Vol. 3, No. 2,
pp. 105-147, June 1978.

Kowalski, R., "Predicate Logic as a Programming Language," Information Processing 74, North-
Holland Publishing Company, Amsterdam, pp. 569-574, 1974.

Lindsay, P. H. and Norman, D. A., Human Information Processing, Academic Press, New York,
NY, 1972.

McCarthy, J., "Programs with common sense," Semantic Information Processing, Minsky, M. (Ed.),
MIT Press, Cambridge, MA, pp. 403-417, 1968.

Moore, R., "Reasoning from incomplete knowledge in a procedural deduction system", Technical
Report AI-TR-347, AI Lab, Massachusetts Institute of Technology, 1975.

Moore, R., "Automatic Deduction for Commonsense Reasoning: An Overview," The Handbook of
Artificial Intelligence, A. Barr and E. A. Feigenbaum (Ed.), William Kaufman, Inc., Los
Altos, California, 1982.

Newell, A. and Simon, H. A., "The logic theory machine," IRE Transactions on Information
Theory, Vol. IT-2, No. 3, pp. 61-79, September 1956.

Robinson, J. A., "A machine-oriented logic based on the resolution principle," Journal of the
Association for Computing Machinery, Vol. 12, No. 1, pp. 23-41, January 1965.

Robinson, J. J., "DIAGRAM: An extendable grammar for natural language dialogue", Technical
Report Technical Note 205, AI Center, Stanford Research Institute, February 1980.

Weyhrauch, R. W., "Prolegomena to a Theory of Mechanized Formal Reasoning," Artificial Intel-
ligence, Vol. 13, No. 1/2, pp. 133-170, April 1980.

Winston, P. H., "Learning structural descriptions from examples," The Psychology of Computer
Vision, Winston, P. H. (Ed.), McGraw-Hill Book Company, New York, NY, ch. 5, 1975,
(Original version published as a Ph.D. dissertation, MIT AI Lab, September, 1970).

422 CHAPTER 13: LEARNING BY BEING TOLD

APPENDIX: TRAINING NANOKLAUS ABOUT AIRCRAFT CARRIERS

What follows is a transcript of a dialogue with the NANOKLAUS system.
The consecutive numbers at the left of some lines are NANOKLAUS prompts. In-
puts typed by the user are italicized. Sentences in braces are descriptive annota-
tions. Some of the interaction has been deleted to shorten the transcript. A
graphical representation of the sort hierarchy produced by the dialogue is
presented in Figure 13-2.

@NANOKLAUS

Welcome to NANOKLAUS !

Just say lHelpi if you need help.

1_ What do you know about? {The u s e r a s k s NANOKLAUS
what c l a s s e s of t h i n g s

have b e e n d e s c r i b e d t o i t . }
I know a b o u t PHYSICAL OBJECTS, PEOPLE, MEN, WOMEN. MEASURES, and
THINGS (of c o u r s e) .
2_ A length is a measure {The u s e r i n t r o d u c e s LENGTH.}
Y o u ' r e s a y i n g t h a t a n y t h i n g t h a t i s a LENGTH i s a l s o a MEASURE.
Ok, now I u n d e r s t a n d LENGTH.
3 . A foot is a unit of length {The u s e r i n t r o d u c e s FOOT.}
FOOTS a r e t h e f i r s t u n i t s of LENGTH y o u ' v e d e f i n e d .
Now I u n d e r s t a n d FOOT.
4_ The plural of foot is feet
FEET - g o t i t . T h a n k s .
5_ A meter is a unit of length
How i s i t r e l a t e d t o FOOT? There are 33 feet in a meter.

{Whenever an a d d i t i o n a l u n i t of a
m e a s u r e i s d e c l a r e d , NANOKLAUS

r e q u e s t s t h e f a c t o r f o r c o n v e r s i o n
t o one of t h e p r e v i o u s l y d e c l a r e d

u n i t s . }
Now I understand METER.
6_ A physical object has a length {The user gives the domain over

which an attribute named LENGTH
may range, and implicitly

indicates that the value of this
attribute must be an element of the

set of lengths, declared in (2).}
So PHYSICAL OBJECTS have LENGTHS.
Must a PHYSICAL OBJECT have exactly one LENGTH? yes

{NANOKLAUS determines that the
relationship between physical objects

and lengths is functional.}
7_ A ship is a physical object
You're saying that anything that is a SHIP is also a PHYSICAL OBJECT.
Is PERSON a proper subclass of SHIP? no {When a new subset of an

existing set is created,
NANOKLAUS queries the user

to determine how it relates
to that set, as well as to

other previously introduced
subsets of that set.}

Is PERSON necessarily composed of entirely different members from
SHIP? yes
Do PERSON and SHIP span the set of all PHYSICAL OBJECTS? no
Ok, now I understand SHIP.
8_ A ship is a unit {Sets may be subsets of more than

one set.}

HAAS AND HENDRIX 423

You're saying that anything that is a SHIP is also an UNIT.
What is an UNIT? a thing {NANOKLAUS always wants to know

how the set and superset relate to
the existing taxonomy (the taxonomy
is always a connected graph). Note

that it generated the incorrect
indefinite article in the question,

but see Interaction 9 below.}
You're saying that anything that is an UNIT is also a THING.
Which of the following, if any, are proper subclasses of UNIT:
PHYSICAL OBJECT or MEASURE? neither of them
Which of the following classes, if any, could never have any members
in common with UNIT:
PHYSICAL OBJECT or MEASURE ? neither of them
Ok, now I understand UNIT.
Ok, now I understand SHIP.
9- A unit {The user corrects NANOKLAUS'S English.}
OK, A UNIT
10- A submarine is a ship {Feedback from NANOKLAUS, such as
11_ A destroyer is a ship seen in Interaction 8, is omitted
12- A carrier is a ship for the sake of brevity.}
13- A Kittyhawk is a carrier
14- A For restai is a carrier

You're saying that anything that is a KITTYHAWK is also a CARRIER.
Is KITTYHAWK a proper subclass of FORRESTAL? no
Is KITTYHAWK necessarily composed of entirely different
members from FORRESTAL? yes
Do KITTYHAWK and FORRESTAL span the set of all CARRIERS? no
Ok. now I understand KITTYHAWK.
15-/4 Hermes is a carrier

16- A task group is a unit
17_ An officer is a person

18_ An officer can command a ship {Here the verb COMMAND is

Give the -ed and -en forms of COMMAND introduced as mapping into
(for example, for GO: WENT GONE): a predicate over
commanded commanded (officer, ship) pairs.}
If an OFFICER can COMMAND a SHIP something , type in the most general
description of that thing, otherwise type <carriage return>

{NANOKLAUS tried to determine
if COMMAND doesn't in fact

take a third argument.}
If an OFFICER can COMMAND something a SHIP, then please type in
the most general description of that thing,
otherwise type <carriage return>
If an OFFICER can COMMAND something to a SHIP, then please type in
the most general description of that thing, otherwise <carriage return>

{In this context, itoi
marks an indirect object,
not the destination of a

verb of motion.}
If an OFFICER can COMMAND a SHIP to something, then please type in
the most general description of that thing, otherwise <carriage return>
Can a SHIP be COMMANDED by an OFFICER ? yes

{NANOKLAUS acquires informa-
tion enabling it to map

into a canonical predicate
calculus form from passive
occurrences of the verb and

occurrences in which some of
the noun phrases are

omitted.}
Can a SHIP COMMAND ? no
Can an OFFICER COMMAND ? yes
19- An officer can assign a task group a unit {Another example, this time

Give the -ed and -en forms of ASSIGN a ditransitive verb.}
(for example, for GO: WENT GONE):

424 CHAPTER 13: LEARNING BY BEING TOLD

assigned assigned
Can an OFFICER ASSIGN a UNIT TO a TASK GROUP ? yes
Could a UNIT be ASSIGNED a TASK GROUP by an OFFICER

Can an OFFICER ASSIGN a UNIT with a TASK GROUP ? no
Can an OFFICER ASSIGN a TASK GROUP ? no
Can an OFFICER ASSIGN ? yes
20_ Some ships can be nuclear

You're saying that at least one SHIP could be nuclear

21_ A nationality is a thing
22_ A ship has a nationality
So SHIPS have NATIONALITIES.

Must a SHIP have exactly one NATIONALITY?

23_ A rank is a thing
You're saying that anything that is a RANK

Which of the following, if any. are proper

PHYSICAL OBJECT, LEGAL PERSON, MEASURE.

Which of the following classes, if any,

in common with RANK:

PHYSICAL OBJECT, LEGAL PERSON, MEASURE,

Ok, now I understand RANK.

24_ An officer has a rank
25_ A carrier has a doctor who is a person
So CARRIERS have PEOPLE for DOCTORS.

Must a CARRIER have exactly one DOCTOR?

{NANOKLAUS is taught an adjective,

which it maps into a unary predicate

whose domain is ships.}

yes

is also a THING.

subclasses of RANK:

UNIT, or NATIONALITY? none of them
could never have any members

UNIT, or NATIONALITY ? all of them

26_ The JFK is a Kittyhawk
You're saying that JFK is one instance of a KITTYHAWK.

Ok, now I know about JFK.

27_ The JFK is a Forrestal
You're saying that JFK is one instance of a FORRESTAL.

Sorry, but JFK is an individual of the following types:

and one of them conflicts with FORRESTAL.

28_ The Saratoga is a Forrestal
29_ The Enterprise is a carrier
30_ The Bulwark is a Hermes
31_ US is a nationality
32_ UK is a nationality
3 3 . US is the nationality of the JFK
Proving (US is the nationality of JFK)

Asserting that (US is the nationality of JFK)

34_ The nationality of the Saratoga is US
35_ The nationality of the Enterprise is US
36_ The nationality of the Bulwark is UK
37_ Moffet is an officer
38_ Brown is an officer
39_ Captain is a rank
40_ The rank of Brown is captain
41_ Captain is the rank of Moffet
42_ The JFK is commanded by Moffet
P r o v i n g (MOFFET commanded JFK)
A s s e r t i n g t h a t (MOFFET commanded JFK)

43_ Brown commands the Saratoga
Proving (BROWN commanded SARATOGA)

Asserting that (BROWN commanded SARATOGA)

{Here the attribute named

DOCTOR takes values that

must be members of the set

of persons.}

{First introduction of an

individual.}

KITTYHAWK.

{NANOKLAUS used its knowledge of

subset relationships to discover

and then report an inconsistency

in its user's assertions.}

{Asserts the value of

an attribute. Note that,

instead of blindly entering

the fact in the fact store,

NANOKLAUS first checks as to

whether it already knows

the fact.}

{Uses verbs to describe an
event or situation. Note trans-
formation from passive to active

voice by NANOKLAUS.}

{NANOKLAUS employs an untensed logic;

its canonical expression of its

knowledge is always past tense.}

HAAS AND HENDRIX 425

44_ Moffet commands the JFK.
P r o v i n g (MOFFET commanded JFK)
I a l r e a d y knew t h a t . {NANOKLAUS d e t e c t e d t h a t i t had

p r e v i o u s l y been t o l d t h i s ,
a l t h o u g h i n a d i f f e r e n t v o i c e . }

45_ Brown commands.
P r o v i n g (BROWN commanded Some s h i p) {NANOKLAUS f i l l e d i n t h e o m i t t e d

a r g u m e n t and t h e n d e t e r m i n e d t h a t
i t had been t o l d of an e v e n t o r

s i t u a t i o n t h a t c o u l d c o n c e i v a b l y
have been a d e s c r i p t i o n of t h e

same e v e n t o r s i t u a t i o n . }
I s any one of t h e f o l l o w i n g s t a t e m e n t s t r u e c o n c e r n i n g t h i s e v e n t :
t h e SHIP i s SARATOGA ? Yes
46_ Brown commands a F or restai.
P r o v i n g (BROWN commanded Some f o r r e s t a l)
I s any one of t h e f o l l o w i n g s t a t e m e n t s t r u e c o n c e r n i n g t h i s e v e n t :
t h e FORRESTAL i s SARATOGA ? Yes.
4 7 . 1072 feet is the length of the JFK

A s s e r t i n g t h a t (1072 FEET i s [e q u a l t o] t h e LENGTH of JFK)
48_ The length of the Bulwark is 650 feet
49_ ctgl8 is a task group
50_ ctg36 is a task group.
51_ Moffet assigned the Saratoga to ctg36
P r o v i n g (MOFFET a s s i g n e d CTG36 SARATOGA)
A s s e r t i n g t h a t (MOFFET a s s i g n e d CTG36 SARATOGA)
52_ The Saratoga was assigned to ctg!8 by Brown
P r o v i n g (BROWN a s s i g n e d CTG18 SARATOGA)
A s s e r t i n g t h a t (BROWN a s s i g n e d CTG18 SARATOGA)
5 3 - The Enterprise is a nuclear ship {Uses a p r e d i c a t e a d j e c t i v e . }
54_ What are the ships? {The u s e r i n t e r r o g a t e s
ENTERPRISE, JFK, SARATOGA, AND BULWARK. NANOKLAUS t o v e r i f y t h a t i t

h a s a s s i m i l a t e d what i t
h a s b e e n t o l d . Note t h a t t h e u s e r h a s

n o t e x p l i c i t l y d e s c r i b e d any of t h e
a n s w e r s a s s h i p s . }

55_ Who commands the Kittyhawks?
(MOFFET J F K) .
56_ Who commands the JFK?
MOFFET.
57_ Brown commands what?
SARATOGA.
58 . What is the length of the JFK?
1072 FEET.
59_ How many meters is the length of the JFK?
P r o v i n g (Some l e n g t h i s [e q u a l t o] t h e LENGTH of JFK)
3 2 4 . 8 4 8 5 . {Using t h e u n i t c o n v e r s i o n f a c t o r . }
60_ What is the nationality of the Saratoga?
US.
62_ Brown assigned what ships?
P r o v i n g (BROWN a s s i g n e d Some t a s k g r o u p Some s h i p)
(CTG18 SARATOGA). { I . e . , Brown a s s i g n e d CTG18 S a r a t o g a . }
63_ Who assigned ships to ctg36?
P r o v i n g (Some o f f i c e r a s s i g n e d CTG36 Some s h i p)
(MOFFET SARATOGA).
64_ Who assigned ctg/8 the Saratoga?
P r o v i n g (Some o f f i c e r a s s i g n e d CTG18 SARATOGA)
BROWN.
65_ Who assigned the Saratoga?
P r o v i n g (Some o f f i c e r a s s i g n e d Some t a s k g r o u p SARATOGA)
(MOFFET CTG36) and (BROWN CTG18).
66_ Which ships are nuclear?
P r o v i n g (Some s h i p i s a n u c l e a r s h i p)
ENTERPRISE.
67_ What do you know about carriers?
US i s t h e n a t i o n a l i t y o f JFK. {NANOKLAUS h a s a c c e s s t o i t s

426 CHAPTER 13: LEARNING BY BEING TOLD

US is the nationality of SARATOGA.

US is the nationality of ENTERPRISE.

UK is the nationality of BULWARK.

MOFFET commanded JFK.

BROWN commanded SARATOGA.

1072 FEET is [equal to] the LENGTH of JFK.

the LENGTH of BULWARK is [equal to] 650 FEET.

MOFFET assigned CTG36 SARATOGA.

BROWN assigned CTG18 SARATOGA.

ENTERPRISE is a nuclear ship.

69_ Now describe ship
SHIP:
A SHIP is a PHYSICAL OBJECT and UNIT.

Therefore it is also a THING.

SUBMARINES and CARRIERS are SHIPS.

SUBMARINES and CARRIERS cannot have any members in common.

SHIP has the following attributes and types:

NATIONALITY.

SHIPS can be NUCLEAR.

71_ Please describe Moffet then describe Brown.

Moffet is an officer. His or her rank is CAPTAIN. MOFFET

commanded JFK. MOFFET assigned CTG36 SARATOGA.

fact store indexed by sort,

as well as by predicate.

Here it reports all the

atomic facts it has about

carriers.}

{Here it describes all the

generic and sort information

it has about a given sort.}

{In response to this

request. NANOKLAUS

displays all the facts it

knows about a particular

individual.}

Brown is an officer. His or her rank is CAPTAIN. BROWN commanded

SARATOGA. BROWN assigned CTG18 SARATOGA.

72_ Now tell me about Saratoga.
Saratoga is a forrestal. Its nationality is US. BROWN

commanded SARATOGA. MOFFET assigned CTG36 SARATOGA. BROWN assigned

CTG18 SARATOGA.

76_ Who commands what?
Proving (Some officer commanded Some ship)

(MOFFET JFK) and (BROWN SARATOGA).

77_ good bye
See you l a t e r

HAAS AND HENDRIX 427

THING

PHYSICAL OBJECTS UNITS LEGAL. PERSONS RANKS NATIONALITIES MEASURES

^ 4S 4l·

TASK GROUPS PEOPLE CAPTAIN U.S. U.K. LENGTHS

CTG18 CTG36

(mutually exclusive)

SUBMARINE DESTROYER CARRIER

(mutually exclusive)·

ENTERPRISE KITTYHAWK FORRESTAL HERMES
>fc 4t» /fc

FOOT METER

(mutually exclusive)

DOCTORS MEN WOMEN

BROWN MOFFETT

JFK SARATOGA BULWARK

Figure 13-2: Sort Hierarchy Produced by Transcript Dialogue

14

THE INSTRUCTIBLE

PRODUCTION SYSTEM:

A RETROSPECTIVE ANALYSIS
Michael D. Rychener

Carnegie-Mellon University

ABSTRACT

In building systems that acquire knowledge from tutorial instruction,
progress depends on determining certain functional requirements and ways for
them to be met. The Instructive Production System (IPS) project has explored
learning by building a series of experimental systems. These systems can be
viewed as being designed to explore the satisfaction of some of the requirements,
both by basic production system mechanisms and by features explicitly
programmed as rules. The explorations have brought out the importance of con-
sidering in advance (as part of the kernel design) certain functional components
rather than having them be filled in by instruction. The need for the following
functional components has been recognized:

• interaction language
• organization of procedural elements
• explanation of system behavior
• accommodation to new knowledge
• connection of goals with system capabilities
• reformulation (mapping) of knowledge
• evaluation of behavior
• compilation to achieve efficiency and automaticity

Since the experimental systems have varied in their effectiveness, some general
conclusions can be drawn about the relative merits of various approaches. Seven
such approaches are discussed here, with particular attention to the three whose
behavior can be most effectively compared, and which reflect the temporal
development of the project.

429

430 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

14.1 THE INSTRUCTIBLE PRODUCTION SYSTEM PROJECT

The Instructive Production System (IPS) project [Rychener & Newell,
1978] was begun in the fall of 1975 to study the construction and behavior of
large-scale systems of production rules. Our hypothesis, extrapolated from work
in cognitive psychology [Newell & Simon, 1972], was that intelligence would
result, as a system grew in size, from an ability to deal with more situations and
to apply more knowledge to solve problems. The motivation to use production
systems had the same source [Newell & Simon, 1972]. To increase the scien-
tific interest of building such systems, and ultimately to improve the chances of
continuing growth and viability, it was stipulated from the start that the system
was to be built by gradual "instruction" rather than by deliberate programming.1

The research evolved into a series of explorations of the design of a starting
system (KERNEL), from which the much larger system would be grown. The
explorations spanned a four-year time period, until mid-1979, and involved the
efforts of over a half dozen people.2

The setting in which instructional experiments took place was chosen to be
one of "learning by doing". In this paradigm, the instructor of the system
watches and advises the system while it is solving problems in its chosen domain
of expertise (see the work of Anzai and Simon [1979]). This is a good way to
study learning because it combines attributes of both learning by being told and
learning by independent exploration, while avoiding some of their drawbacks.
That is, the instructor still instructs by telling, but the fact that the system is
doing something at the same time allows the instructor to verify (partially) that
the new knowledge is appropriate to the system's current knowledge. In ad-
dition, the system is in a sense exploring in an environment that has new situa-
tions for it, under the guidance öf the instructor and in the framework of
problems posed by the instructor. When new knowledge interacts in some way
with the system's existing knowledge, that interaction has the greatest chance of
being understood in the context of a situation where that knowledge is being ap-
plied. The system is forced to deal with new situations in its own way, using its
own conceptual system, with the extra help of the instructor's advice. But ad-
vice to the system is often limited, in that the system's knowledge may not be
stored so as to be brought to bear in all appropriate situations, and in that the

•Actually, production systems are quite difficult to program, so an instruction mode has the potential
of bringing a large system into the realm of feasibility. What is desired is that the production system
itself be able to manage its knowledge, find interactions of new knowledge with old [Rychener,
1975], check consistency, formulate and select answers for questions that arise when new and old
knowledge statements are compared, and do assorted other tasks that can't even be predicted at this
time. To complete this knowledge management task would require a great deal of knowledge itself,
and the IPS project has only begun to realize what might be required for this much larger research
goal.

2See the Acknowledgments near the end of the paper.

RYCHENER 431

instructor can often see only the effects of the knowledge, rather than the
knowledge itself, depending on how well the system can describe itself.

More precisely, the dialogue between instructor and system is ruled by a
number of constraints:

• The instructor of the system gains all information about IPS by observing
its interactions with its environment (including the instructor).

• The dialogue takes place in (restricted) natural language.
• The dialogue is mixed initiative, with both participants free to try to in-

fluence the direction.
• Instruction may be about any topic or phenomenon in the system's external

or internal environment (subject to the other restrictions).
• Knowledge accumulates over the lifetime of the system.

These constraints are intended to embody the essence of instruction as it
occurs in a number of natural situations. At the same time, they tend to rule out
explicit "programming" by the instructor, and thus place a larger burden on the
system's learning abilities, and indeed on its general intelligence.

Throughout the IPS experiments, the underlying knowledge organization
was Production Systems (PS's) [Forgy & McDermott, 1977; Young, 1979; An-
derson, 1976; Rychener, 1976; Ne well & Simon, 1972], a form of rule-based
system in which learning is formulated as the addition to, and modification of,
an unstructured collection of production rules. As mentioned above, this as-
sumption of architecture has some support from psychological theory [Newell &
Simon, 1972]. Behavior is obtained through a simple recognize:act cycle with a
sophisticated set of principles for resolving conflicts among rules [McDermott &
Forgy, 1978; Rychener, 1977]. The dynamic short-term memory of the system
is the Working Memory (WM), whose contents are matched each cycle to the
conditions of rules in the long-term memory, Production Memory. As will be
explained in a later section, information transfer from the environment (including
instructor) to the system takes place by depositing conventionalized symbol struc-
tures into the WM. Those structures then become subject to manipulation by the
system's procedural methods expressed as rules (to be defined and illustrated
after the next subsection). The IPS project developed several dialects of the OPS
language [Forgy & McDermott, 1977; Forgy, 1979b; Rychener, 1980] to support
its experiments.

14.1.1 Relation to Other Learning Research

In terms of a model recently proposed for learning systems by Buchanan,
et al. [1979], the IPS work focused on certain aspects of the learning problem
while neglecting others. Their model consists of:

• A performance module that actually performs tasks.
• A critic that evaluates performance, locates errors, and recommends correc-

tive actions.

432 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

• A learning module that responds to the critic by modifying performance.
• An instance selector that poses training problems.
• A blackboard [Lesser & Erman, 1977] for globally modifiable data and in-

termodule communication.
• A world model for domain-specific knowledge and assumptions.

In all of the IPS explorations, both performance and learning modules were
embodied in the production memory, and were thus intermixed. This paper is
concerned principally with elaborating and refining the subcomponents of these
two modules. This emphasis is inherent to the instructional situation, where the
instructor plays the role of critic and t instance selector. WM functioned as the
blackboard, and world-model knowledge (usually minimal) was represented as
rules whose actions placed facts into WM and otherwise maintained consistency
with the domain's assumptions.

To further the comparison of the IPS project with other artificial intelligence
and psychology research, it is useful to discuss briefly our position with respect
to a number of current issues. The topic of instruction for an IPS can be charac-
terized as:

• self-contained procedures for specific tasks
• problem-solving operations within such procedures
• domain-specific heuristics, in the same context

rather than such things as:
• rules or heuristics that work only within the computational context of a

special-purpose control structure or mechanism different from the
recognize-act paradigm of PS's (as in various "expert" systems, for ex-
ample, those for medical diagnosis)

• causal models for explanation and prediction (as in attempts to model
physical devices, Socratic tutoring approaches, and so on)

• concepts (as in various pattern classification and concept formation studies)
• language grammars
• numerical functions and relationships

Thus, the IPS work was not concerned primarily with such mechanisms as
generalization, specialization, discrimination, property intersection, rule induc-
tion, and pattern induction. These mechanisms were considered to be second-
order refinements3 on what we gave an IPS by instruction; in fact, we expected
them to become more relevant as the basic problems with IPS were solved and
the system began to exhibit coherent and interesting task behavior. Also, they
are mechanisms that are best applied when much larger quantities of empirical

3This is not to say that they are second order in all knowledge domains and studies, but just in our
narrow focus. It is a matter of relative importance.

RYCHENER 433

data or knowledge are involved. In other words, the emphasis was on the
gradual transfer of knowledge from instructor to system, and our focus remained
the structure and content of a body of knowledge, and its effective use to obtain
behavior. This is in contrast to having the system develop the knowledge from
general axioms, from knowledge primitives, or from large bodies of unstructured
facts, which would involve abstract manipulations, inductions, and searches.
These would reduce the amount of interaction, and would require more searching
and intelligence on the part of the system. They would take place in large
spaces that would be distant from instructional and interactive situations, and
would thus be hard to formulate heuristics for. Similarly, because of our limited
understanding, we neglected such issues as credit and blame assignment, conver-
gence of learning over time, speed of convergence, and searching as an alter-
native to direct instruction. In fact, PS's as an architecture are amenable to a
number of interesting operations with regard to the above-mentioned topics, leav-
ing open many research avenues.4

To state the matter more positively, learning in an IPS was by accumulation
of fairly specific rules and methods. In many cases, the rules acquired could be
viewed within some well-known organization, such as means-ends analysis or
schémas, but usually this organization was not obtained from an act of specializ-
ing or instantiating an existing general knowledge structure. Rather, as discussed
in later sections of this paper, either the instructor or the system was oriented
towards maintaining a particular organization on the specific knowledge that it
received. The IPS work has a closer kinship to studies in intelligent computer-
aided instruction, and perhaps in educational psychology (particularly
programmed learning), than to other attempts at learning systems. (This kinship
will be discussed further in Section 14.4.) There is also a strong relation to the
construction of "expert" systems, involving accumulation of a body of specific
domain knowledge. More relationships are discussed at the end of the next sub-
section.

14.1.2 Basic Definitions and Discussion

There are a few key concepts whose definitions will clarify some issues
with respect to the IPS project's approach to encoding knowledge. These also
reveal a position on planning and other control structure topics.

A goal is a data structure that represents an external command, an internal
need to achieve some state, or a need to execute successfully some sequence of
actions. An example, taken from a simulated manufacturing domain, is:

Make a car for a customer's order.

where the customer's order is another data structure describing details of the item
to be made. In the OPS3 [Rychener, 1980] dialect of OPS, this might be
represented as:

4Anderson addresses such topics in Chapter 7 in this volume.

434 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

wsOll: (make car goal (order ws014))
ws014: (customer order data

(type car) (body sedan) (color blue)
(engine-size medium)
(accessories (radio a/c)))

These structures consist of an internal name, a three-element header, and then a
set of attribute-value pairs, where the value may be a set of items. Details of
this and other representations used within various versions of IPS are beyond the
scope of this paper. For the remainder of the introductory examples that follow,
a liberal English translation is used for readability.

A rule (that is, a production) in OPS consists of a number of conditions and
a number of actions. Each condition is a pattern that matches some element of
WM, such as a goal (in various states of activation: active, suspended, suc-
ceeded, failed), a structure describing something perceived in the environment,
or a data structure describing some internal state. The actions of a rule typically
assert new data structures or goals, and can also modify or delete existing struc-
tures.

A method in IPS is a set of rules that work together to satisfy a goal. It is
typically very specialized to a certain goal class, and usually consists of a num-
ber of steps, with various intermediate data generated to indicate the progress
towards completion. The following is a method for satisfying the above sample
goal. It is not meant to reflect accurately all of the details of actual IPS methods,
but just the general flavor of the approach.

Ml: If there is a goal to make a car for a customer's order
and the order specifies the car's body as some type,

then have the goal to make a body of that type for the car.

M2: If there is a goal to make a car for a customer's order
and the order specifies an engine of some size for the car
and the car's body has been made,

then have the goal to install an engine of that size in the
car.

M3: If there is a goal to make a car for a customer's order
and the order specifies accessories
and the car's engine has been installed,

then know that the car is ready for accessories.

M4: If there is a goal to make a car for a customer's order
and the order specifies a radio
and it is known that the car is ready for accessories,

then have the goal to install a radio in the car.

M5: If there is a goal to make a car for a customer's order
and the car has a body as specified in the order
and the car has an engine as specified in the order
and the car has all of its accessories installed,

then know that the goal to make a car has been satisfied.

RYCHENER 435

The first two rules, Ml and M2, generate subgoals for doing specific sub-
tasks of the main goal. The completion of one subgoal, in this method, triggers
the rule that generates the next. The rule M3 recognizes some conditions sig-
nifying a certain stage in the method's progress, and summarizes that in a new
data structure, so that later rules in the method don't need to make tests that are
overly specific or detailed or that would multiply the number of combinations of
conditions needed. M4 is an example of a rule that takes advantage of M3's
summarization, and M5 is a rule that recognizes the completion of the main goal
by testing each of the required aspects of the finished product. (An alternative,
but less reliable, test would involve simply knowing that each step in a process
was performed successfully.)

The total set of rules to perform the making of the car would, of course,
be much larger than is shown above, in order to specify the details of the various
subgoals of the above method. (Subgoals ultimately reduce to primitives such as
those described in a later section.) One rule from a method for one of the sub-
goals is the following:

SI: If there i s a goal to i n s t a l l a radio in a car,
then have the goal to move the car to the accessory assembler

and have the goal to get a radio to the accessory assembler
and have the goal to put the radio in the car using the

assembler.

As shown, rule SI asserts a number of subgoals. Though they are given in
a particular order, the first two apparently could be done without regard to their
order, and the last would probably make use of the results of the first two in
order to ensure that the "assembler" has been provided with all the necessary
inputs. The actual, detailed representations may include goal-subgoa} pointers
(for example, expressed as attribute-value pairs). All of the sequencing implied
by this discussion, though, would be readily implemented as the presence (or
absence) of conditions that would be recognized by rules. The generality of the
recognize-act computational paradigm, with its global WM holding goals and
data, relieves the rule encoder of some of the burden of specifying control infor-
mation. This facilitates both initial instruction and later elaboration of the
knowledge. As will be brought out further below, this ability to represent
procedural knowledge as collections of rules, such as the ones just given, is one
of the principal reasons for using PS's as a medium for instructible systems that
are to grow by gradually adding details.

It can now be pointed out that the work with IPS takes a peculiar position
on the central artificial intelligence topic of planning, differing from a number of
past approaches. The essence of the approach here is for the system to "muddle
through"5 tasks that are problematic, rather than doing a lot of planning, prepara-

5A system muddles through a problem when it engages in trial and error, without carefully the
considering consequences of its actions, relying instead on taking corrective actions after mistakes
occur.

436 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

tion, and anticipation of difficulties. A deliberate plan is never formulated and
stored in a data structure for analysis, but behavior simply unfolds in response to
changing conditions. Flaws or other interruptions in the flow of behavior are
treated as new subproblems, and resolved by calling forth applicable methods or
further instruction. It is not excluded that later on the system might be instructed
to plan ahead in some fashion, or to add a reflective capability that would allow
recognition of general classes of problems with known solutions and treat them
accordingly [Anzai & Simon, 1979].6 The main aim here is to understand the
basic goal structures and knowledge in a domain where many specific facts,
brought to bear appropriately, are sufficient to produce effective behavior. Cur-
rent general methods are unable to cope with such problems due to inability to
control the search in such a large space.

14.1.3 Overview

Through analysis of seven major attempts to build instructible PS's with
various orientations, there were gradually formulated eight main functional com-
ponents. Defining the eight components sharpened our understanding of the
problems of the performance and learning modules, making them amenable to
further research and design efforts. Beyond the narrow focus of the IPS project,
this clarification can perhaps contribute to research on learning systems in
general. After the eight components are listed in the next section, a broad over-
view of the IPS project is undertaken. The seven attempts, forming an evolu-
tionary sequence, are cast into the functional component framework. In the
process of doing this, lessons are extracted that apply to the whole enterprise as
well as to individual explorations.

Members of the IPS project are no longer working together intensively to
build an instructible PS, but individual studies that will add to our knowledge
about one or more of these components are continuing. Progress in developing
efficient PS's has been important to the IPS project [Forgy, 1979a], but will not
be discussed further here.

14.2 ESSENTIAL FUNCTIONAL COMPONENTS OF INSTRUCTIBLE SYSTEMS

The components listed in this section are to be interpreted loosely as
dimensions along which learning systems might vary.7 In constructing a par-
ticular system, a point in a design space is located and developed. It is assumed
that the mechanisms of a particular design embody approaches to several, or per-

6Carbonell, Chapter 5 in this volume, also bears on this topic.

7This approach owes a lot to Moore and Newell's [1973] dimensions for understanding systems.

RYCHENER 437

haps all, of these dimensions.8 Almost all of the systems discussed in the next
section, in fact, do not represent complete designs with respect to all functional
components, but rely to some extent on further instruction to fill them in (usually
this optimism was not justified). Also, as is the case in many design areas, a
single mechanism can serve to fulfill the demands of several components at
once. Observation of a system's behavior allows the formulation of the kinds of
modifications, with respect to the design space of components, that could lead to
improvement in the overall ability to build iPSs. To the extent that the functions
of these components are expressed by explicit goals in an IPS, there is oppor-
tunity to exercise the overall system in the improvement of particular com-
ponents.

14.2.1 Interaction

The content and form of communications between an instructor and an IPS
can have a lot to do with ease and effectiveness of instruction. In particular, it
is important to know how closely communications correspond to internal IPS
structures. Inputs from the instructor can be in the form of entire methods or
individual rules, in the form of more elementary WM units (whose composition
into rules is thus less prominent in the external interactions), or in some other
fragments even further removed from actual construction of rules. For example,
consider the following rule (which is taken from the example of the preceding
section):

M2: If there i s a goal to make a car for a customer's order and
the order specifies an engine of some size for the car
and the . ca r ' s body has been made,

then have the goal to i n s t a l l an engine of that size in the
car.

One approach might be to give the rule in its entirety. Alternatives that
make the interaction more fine grained would have the instructor saying things
like:

Note that the order specifies a medium-size engine for the car.
What size of engine does the order specify?
Test the previous result.
Try installing it.

With respect to the system-output direction of interaction, we must ask
how well the manifest behavior of an IPS indicates its progress on a task. This
issue is subject to considerations similar to those for input.

An IPS can have various orientations towards interactions, ranging from
passive acceptance to active scrutiny. For instance, it can attempt, with varying

8It is thus not considered fruitful to design systems that do each of these functions separately, or to
talk about the structure of one without considering the overall system structure and orientation.

438 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

degrees of effort, to maintain consistency and to assimilate new structures into
existing ones. An IPS will be most effective when its orientation is expressed as
goals, and thus subject to refinement by instruction.

14.2.2 Organization

Each version of IPS approaches the issue of obtaining correct and coherent
behavior by attempting to organize its "procedural" knowledge. The need for
such an attempt arises from two sources: one is to move the instructor away from
having to specify control constructs, that is, away from programming (which is
difficult and violates the idea of instruction); another is that some form of sys-
tematic approach to control is needed, due to the inherent weakness9 of produc-
tion systems in this area. This may involve such techniques as collecting sets of
rules into methods and using signal conventions for sequencing within methods.
Whether IPS can explain its static organization and whether the instructor can see
the details of procedural control are important subissues.

To illustrate some alternative organization approaches, recall the following
rule:

M2: I f t he re i s a goal to make a car for a cus tomer ' s order and
the order s p e c i f i e s an engine of some s i z e for the car
and the c a r ' s body has been made,

then have the goal to i n s t a l l an engine of t h a t s i z e in the
ca r .

In this rule, control is maintained by the third condition, which ensures
that the rule will not be activated until the preceding step of making the car's
body is finished. One imaginable alternative is simply to remove that condition,
and have the subgoal asserted potentially before it can be properly worked on.
In this case, of course, the method for the subgoal would be likely to stop,
blocked by the lack of a car body in which to install the engine. This shortened
version of M2 is probably easier to modify and more modular, but it may make
it more difficult for the instructor (for instance) to explain or coordinate the extra
unfinished goals in WM. Another alternative makes the local sequencing of M2
more explicit by a step "counter" that is common to all rules in a
method—knowing the current step is a way of knowing or summarizing the
method's progress:

M2s: I f i t i s s t ep 2 of a goal to make a car for a
cus tomer ' s order

and the order s p e c i f i e s an engine of some s i z e for
the car
then have the goal to i n s t a l l an engine of t h a t s i z e in
the ca r .

'Weakness" refers to lack of a definite theoretical position built into the language itself.

RYCHENER 439

M2t: I f i t i s s t e p 2 of a goal to make a car for a
cus tomer ' s order

and the c a r ' s engine has been i n s t a l l e d ,
then mark the s t e p of the goal to be 3 .

These examples bring out an important trade-off in control conventions: explicit
steps reduce the number and complexity of contextual conditions that a rule must
test, and thus simplify it, but they reduce the flexibility of control by locking the
system into some particular order of execution.

A key question facing the builders of IPS, and even of PS's more generally,
is whether a procedural organization can exploit the full flexibility that seems
inherent in PS architectures. Flexibility derives from having the control be open,
on each PS cycle, to global recognitions that can change the direction of process-
ing by noting new facts, eliminate unnecessary steps by recognizing the satis-
faction of the current goal or some higher one, and in general maintain the
ability to switch to more efficient means for satisfying a goal. Flexibility en-
hances adaptability to changes in the situation, to new knowledge or techniques
(acquired, perhaps, without regard for actual application situations), to recogniz-
able errors, and to new orderings of sequences of actions that might be ap-
propriate to different situations. Certainly PS's can be programmed like conven-
tional algorithmic languages, but there is potential for much more flexible,
"intelligent" procedures.

14.2.3 Explanation

A key operation in an instructive system is that of explaining how the sys-
tem has arrived at some behavior, whether correct or not. In the case of wrong
behavior, IPS must reveal enough of its processing to allow the more intelligent
instructor to determine what knowledge is missing, incorrect, or improperly
represented. In the case of correct behavior, the instructor may wish clarification
or elaboration on how it resulted. Ideally the explanation can occur at a point
where it is also possible to make necessary corrections and additions before IPS
gets too far off the track.

For example, the state of WM in the middle of executing the "make a car"
method might look like:

a goal to make a car for a cus tomer ' s o rde r ,
the c a r ' s body has been made,
the c a r ' s engine has been i n s t a l l e d ,
a goal to make a r a d i o ,
the c a r ' s l o c a t i o n i s L24,
the re i s junk a t l o c a t i o n L25.

The explanation component would have to be able to detect unfinished goals,
partially finished methods, unusual objects in the environment, and so on. This
would be facilitated, for instance, if goals and subgoals had pointers to each
other, if operators left some record of attempts, and so on—but too much of this
sort of information can degrade the system's performance. Another problem is

440 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

posed for the explanation component in selecting a small enough subset of criti-
cal items so that their communication is tolerable to the instructor.

14.2.4 Accommodation

When corrections to IPS's knowledge have been formulated by the instruc-
tor, the next step involves getting IPS to accommodate itself to new knowledge,
that is, to augment or modify itself, in response to the usual form of interactions
with the instructor. In the IPS framework, these modifications are taken to be
changes to the rules of the system, rather than changes to the less permanent
WM. As with interaction, IPS can assume a passive or active orientation toward
this process. A key problem in the process of accommodation is to properly
modify behavior in one situation while maintaining other correct behavior from
past instruction. One aspect of this is to find the location in the knowledge
structure of the system where the modification is to occur, so that related, inter-
acting knowledge can be taken into account.

Suppose, in the preceding (explanation) example, that a problem is caused
by a failure to satisfy the prerequisites for making a radio. Then a rule like the
following might suffice to fix the problem:

If there is a goal to make a radio
and there is a goal to start the radio machine
and there is not a power supply at L14

Then have the goal to get a power supply at L14.

Note that this patch rule has to have enough conditions in it so that it can win
the conflict resolution10 over another (incomplete) rule, especially the rule that
causes the starting of the radio machine without having all its requirements
filled. Presumably there would be a rule in the system to set up subgoals to
fulfill the prerequisites of making a radio, so that an alternative to the above
patch rule might be to find and edit that rule by adding another subgoal. The
deeper cause of why the rule was incorrect, for example, in analyzing the inputs
to the radio machine, is more difficult to deal with, but might be worth the extra
accommodation effort, as it might avoid future errors. One approach might be to
set up a rule as a monitor to watch for similar errors (that is, those that omit
some item of data) in the fulfilling of prerequisites.

14.2.5 Connection

This functional component and the ones that follow are considered
"advanced" as opposed to the preceding "basic" components: they are much
more difficult to formulate and implement.

l0The relevant conflict resolution principle here is specificity: a rule that matches more data, or more
specific (detailed) data, will be preferred; see [McDermott & Forgy, 1978; Rychener, 1977; Forgy &
McDermott, 1977] for details.

RYCHENER 441

Manifest errors are not the only way a system indicates a need for instruc-
tion: inability to connect a current problem with existing knowledge that might
help in solving it is perhaps a more fundamental and frequent failing. An IPS
needs ways both to assimilate problems into an existing knowledge framework
and to recognize the applicability of, and discriminate among, existing methods.
This concept of connection might also be termed "near contact", in that a close
(but not exact) match to existing methods is involved, with differences resolvable
by a few simple operations on the goal. An interesting issue revolves around
how actively IPS processes new problems for both present and future connection.
Connection abilities, particularly recognizing close or partial matches and trans-
forming goals [Mostow, 1981], are important due to the desirability of having
IPS know when it needs instruction versus when it can make use of existing
knowledge. The other side of this coin is the problem of discriminating among
several methods that appear to be appropriate to a given new problem.

As a simple example, suppose the familiar "make a car" goal had been
stated,

Make a sedan for a customer's order.

This can be readily transformed into the known form, if the possibility of map-
ping it is recognized. It might require noticing that sedan is a value of the
"body" attribute in "make car" goals. A definition of "sedan" might also provide
sufficient clues.

14.2.6 Reformulation

Another way that IPS can substitute for instruction is for it to reformulate
existing knowledge to apply in new circumstances. This can also be termed
mapping, analogy, transfer, serendipity, or "far contact". There are two aspects
to this function: finding knowledge that is potentially suitable for mapping, and
performing the actual mapping.11 In contrast to connection, this component in-
volves permanent transformation of knowledge in rules, either directly or by al-
tering rules' effects at each firing, dynamically.

For example, suppose the goal,
Make a truck for a customer's order.

were to come along and a method specifically for making trucks did not exist.
Then some kind of analogical process might be appropriate, given the existing
method for making a car. Namely, the goal might be transformed to "make a
car", with the proviso that when "make a car" ran into problems, control would
revert to an analogy method that would try to bridge the gap and fill in the miss-
ing step so that the "car" method could be resumed. This might be the case for
making the truck's body, which would require special action, but we can sup-

nCarbonell, Chapter 5 in this volume, does this using means-ends analysis.

442 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

pose that adding an engine and accessories might be nearly identical in cases of
truck and car.

14.2.7 Evaluation

Since the instructor has limited access to what IPS is doing, it is important
for IPS to be able to evaluate its own progress, recognizing deficiencies and er-
rors as they occur so that instruction can take place as closely as possible to the
dynamic point of error. Defining what progress is and formulating relevant
questions to ask in order to fill gaps in knowledge are two key issues. The as-
signment of blame for an error is the responsibility of the instructor in this IPS
framework, with the explanation component assisting in diagnosis. It can also
be helpful to include in evaluation some capabilities for having IPS produce ad-
ditional external behavior, as in a "monitoring" or "careful execution" mode of
operation.

The following rules illustrate the recognition of some possible error con-
ditions:

El: If an object with type junk is produced by a machine,
then have the goal of warning the instructor that

the machine has produced that object.

E2: If there is a goal to make a car for a customer's order
and more than 20 minutes have elapsed since the order

arrived
and there is not the result that the car's body has

been made,
then have the goal of warning the instructor that

progress is slow on the order.

14.2.8 Compilation

Rules initially formed as a result of the instructor's input may be amenable
to refinements that improve IPS's efficiency. This follows from several factors:
during instruction, IPS may be engaged in search or other "interpretive" execution
(including a richer goal structure); instruction may provide IPS with fragments
that can only be assembled into efficient form later; and IPS may form rules that
are either too general or too specific. Improvement with practice is the
psychological analog of this capability. Anderson et al. [1978] have formulated
several approaches to compilation, such as condensing, into a single rule, rules
that typically occur in a fixed sequence.

The improvement that can be obtained from compilation is illustrated by
the following rule, whose actions consist of direct environmental commands
rather than goals and subgoals:
Cl: If there is a goal to make a car for a customer's order

and the order specifies a sedan body and a medium
engine

then start the sedan machine

RYCHENER 443

and start the engine4 machine
and move an object from L22 to L23.

14.2.9 Discussion of Components

It is evident that realizing the components described in this section is made
difficult by the myriad combinations of knowledge that can occur. Because an
IPS is potentially working in various environments of different complexity, it is
difficult to take advantage of stereotypes in procedural forms. Others have in
fact made progress by assuming fixed-format rules (for example, transformational
grammars) or simplified execution schemes (such as backward chaining). Our
approach contrasts with those in avoiding any assumptions about the form of the
environment and in leaving the system architecture open for general procedures.

14.3 SURVEY OF APPROACHES

Each attempt to build an IPS has started with a hand-coded kernel system,
with enough structure in it to support all further growth by instruction. The ker-
nels established the internal representations and the overall approach to instruc-
tion. At the very least, such kernels require the ability to interact with the in-
structor and to construct new rules. Three properties are desired in such a kernel
system:

• It is to be hand coded, and as modular as possible.
• Everything in it is to be potentially modifiable by instruction. Usually it is

constructed as if it were acquired by instruction, that is, with rules of
similar form to those resulting from instruction.

• It is to be open to expansion in any of a number of directions, depending
on which problems the instructor wishes to explore.
Seven kernels or kernel approaches were studied during the history of the

IPS project, and they are presented below in roughly chronological order.
KERNELl, ANA, KERNEL2 and IPMSL were fully implemented. The remainder ei-
ther were suspended at various early stages of development (with their best fea-
tures incorporated into newer proposals) or are still being elaborated and
developed in the context of other research. Table 14-1, near the end of this
chapter, summarizes a number of attributes of the kernels.

14.3.1 The Abstract Job Shop Task Environment

The task domain for the IPS project was the manipulation of objects in a
symbolic task environment (TE), a simulated, simplified "factory", in which an
IPS system has a limited set of "sensory" and "motor" operators. A typical job
shop is shown in Figure 14-1. Each object in this toy environment is represented
as a LISP property list. The TE itself is an object with a particular set of com-

444 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION,SYSTEM

ponents, termed locations, arranged in an array and represented as rectangles in
Figure 14-1.

Moneyl
0rder4

Engin4
Engin6

Scrap
Clock

Coupe

Sedan

Manual

Auto

Red

Blue

Radio

Power

VC]

Asmblr

Figure 14-1: Abstract Job Shop

The entire ensemble, in the spirit of keeping it as an "external
environment", is separate from the processes and memories of the PS architec-
ture, except for the interface provided by the following operators:

• View. A representation of its argument, an object, is placed in WM (as if
obtained through an "eye").

• Scan. An object is sought in the TE containing a given attribute-value pair.
It is Viewed, if found.

• Trans. The top object at one location is transported to another location.
• Start. A machine (an object with a special set of properties) is started. It

goes through one cycle of its operation, which is all within the action cycle
of the rule containing the invocation.

• Compare. The values of a specified attribute of two objects are compared,
producing a difference according to the values' type.
Note that the above operators are invoked as actions in rules, making

modifications in the TE and reporting changes in the TE by asserting data into
WM. All of this occurs within a single recognize-act cycle of the PS. The most
important and complex operator is Start, which activates machines. A machine
is a special-format object that takes some objects as inputs (in some cases con-
suming them) and produces other objects as outputs. Usually constraints on the
machine's operation make problems in the domain more challenging.

Some sample problems, of varying difficulty, are the following:
• Examine the object at the top position of some location.

RYCHENER 445

• Examine the object at the top position of some location.
• Compare two objects.
• Find an object with a given set of properties.
• Transport an object with a given set of properties to a given location.
• Manufacture an object with a given set of properties, within some

budgetary and time limits.
The "find" class of task involves searching through the TE, Viewing ob-

jects and comparing them with the desired description. It is thus a prototypical
task of interest in instructional situations. "Transport" problems are complicated
by a feature of objects stored at a location: they are stacked on top of each other
such that to move one, it has to be at the top of a stack. Getting an object to the
top can involve moving objects elsewhere, with the potential for creating con-
flicts with other subgoals in a larger plan. While details of the pictured TE need
not be given, it can be described as an assembly line layout for making
automobiles. While this TE is straightforward, the language for defining TEs
can express great complexity.

14.3.2 KERNEL Version 1

The starting point for IPS was the adoption of a pure means-ends strategy:
given explicit goals, rules are the means to reducing or solving them. Four
classes of rules are distinguished:

• means rules
• recognizers of success
• recognizers of failure
• evocation of goals from goal-free data

The KERNELl [Rychener & Newell, 1978] approach goes further than this in its
organization component, which consists of ways for grouping rules into methods
(as defined and illustrated in Section 14.1). The main mechanism of grouping is
to have rules of the above types share a common goal pattern. The interaction
component consists of a straightforward processor for language strings that cor-
respond to methods and to system goals (among which are queries). Keywords
in the language are used to signal that the kernel is to insert method sequencing
tags. There are also keywords that delimit rule boundaries within methods. The
explanation component is unspecified at the start, leaving it to the instructor to
develop (and instruct) methods that could generate helpful information by piecing
together various goals and data in WM. This reliance on instruction turned out
to be a serious weakness, though a lot of the right kind of information was avail-
able in WM.

Although KERNELl was used as a basis for instruction, its effectiveness
was severely hampered by its weak or nonexistent components for explanation,
accommodation, connection and reformulation. Only small progress was made

446 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

in the areas of evaluation12 and compilation.13 Much of the flavor of the means-
ends approach was retained in later kernels.

KERNELI is illustrated in the protocol below; the objective is to instruct IPS
to perform the simple task of examining the top object at some location in the
TE. The method to be instructed can be summarized as follows: To examine
the top object at some location, first View the location, then test if any objects
are there; if so, find the first and use it as the result; otherwise, "nothing" is the
result. Note that the "test if any objects" part of this method is a subgoal, to be
instructed separately. The first clause of this method is given to KERNELl as
follows:14

To examine the object at the top pos i t ion (A)
of some l ocat ion ,

want view locat ion that locat ion in the TE (Φ B)
then want t e s t the s tatus of the value (C, (Ax))

of the composition of that l ocat ion ,

The marginal notations in the above indicate that the instruction gives rise
to a rule with a condition element 'Α', the main goal of the method, and two
action elements ('Β' and 4 C) , which are subgoals of the main goal. In addition,
there is a modification (indicated by the subscript 'Γ) to the goal element to
achieve sequencing to the next step of the method (not shown). The complete
input for this method involves four clauses of similar length and form to the one
given, all given without a break for system responses. KERNELI adds some se-
quencing control to other rules in the method by inserting the main goal as a
condition, suitably modified with step counters. These additions are one advan-
tage of using KERNELI over programming directly in OPS rules, although the dis-
tance between the two forms of coding is not conceptually large—they are both
forms of programming, as distinct from tutorial instruction.

While a large fraction of the rules of KERNELI are devoted to processing
the (admittedly clumsy) input language illustrated above, the main design objec-
tive and achievement was to embed simple means-ends connections, as expressed
by instruction text, in an organization that would ensure production of the
desired behavior; that is, organization, rather than interaction, was the main
focus. Unfortunately, two properties of the above style of interaction are very
detrimental to effectiveness. First, KERNELI accepts the input passively, with no

12Described briefly in an unpublished appendix to this chapter, available from the author.
13This consisted of recognizing the applicability of techniques such as those in [Anderson et al.t
1978], to our means-ends rules.

14An unpublished appendix (available from the author) to this chapter contains the full instruction
text, along with a more detailed explanation.

RYCHENER 447

interaction (for example, questioning) involved. Second, the instructor receives
no feedback on the correctness of the many parts until the entire method is tried.
KERNELl failed to provide an adequate basis for interaction, explanation, and
performance due to a number of practical considerations: difficulty in knowing
the side conditions of rules (those other than the main goal); lack of a
mechanism for constructing tests of proper goal satisfaction; lack of having goal-
subgoal links created automatically; and goal representation
deficiencies—particularly, failure to distinguish different occurrences of the same
goal (as in recursion) and to allow goals to be augmented with new information
as processing developed. The instructor was relied upon to provide too much
programming detail, in a situation where a programming approach is considered
harmful.

In spite of its shortcomings, KERNELl accomplished a few important tasks,
as far as overall IPS project goals were concerned. It established the basic
means-ends form for the organization component. It clarified the need for more
PS efficiency, and for improvement in the explanation, accommodation, and
other functional components. In short, it gave us a better appreciation of the
difficulty of the instruction task.

14.3.3 Additive Successive Approximations (ASA)

Some of the drawbacks of KERNEL l, especially those surrounding inter-
action, can be remedied15 by orienting instruction towards fragments of methods
that can be more readily refined at later times. Interaction consists of having the
instructor designate items in IPS's environment (especially WM) in four ways:
condition (for data or configurations that are important context to be taken into
account while working on a goal), action (for operators appropriate to solving a
goal), entity (to create a symbol and some associated knowledge about the
entity), and relevant (to associate one of the other three designated items with a
particular goal). The system is to respond to a 'relevant' designation by building
rules with the given conditions or actions, or by building rules that create or aug-
ment knowledge expressions. These designations result in methods that are very
loose collections of rules, each of which contributes some small amount towards
achieving the goal. Accommodation is done as post-modification of an existing
method in its dynamic execution context, through ten method-modification
methods. Some of these are: delay an action, advance an action, remove an
action, conditionalize an action, and put two actions into a strict sequence.

Though the ASA ideas were never implemented, some aspects of the ap-
proach were used in the KERNEL2 system, described in detail below. Probably
ASA would suffer from the same difficulties described in connection with
KERNEL2.

15These ideas were introduced by A. Newell in October, 1977.

448 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

14.3.4 Analogy (ANA)

A concerted attempt to deal with issues of connection and reformulation is
represented by McDermott's ANA program [McDermott, 1978]. Starting out
with the ability to solve a few very specific problems, it attacked subsequent
similar problems by analogizing from its known methods. Initial methods to
solve TE problems were hand coded, a deviation from the kernel constraints
given above. In ANA, connection is achieved by coding special method descrip-
tion rules, which recognize the class of goals that appear possible for a method
to deal with by analogy. The possibility that an analogy may work is discovered
by following taxonomic links originating at a given goal's actions and object ar-
guments. When a link is traversed, revealing the object (class) or action (class)
at the end of it, a method description rule may become satisfied, thus making a
connection on which an analogy can be based. A preliminary analogy is set up
using the discovered correspondence of objects or actions, the goal is modified
by substitution, and the method is started. As it executes, rules recognize points
where the analogy breaks down. General analogy methods are able either to
patch the method directly with specific substitutions or to query the instructor for
new means-ends rules.

In either case, reformulation occurs because rules record the patches for
use in later similar problems. Compilation occurs, with visible improvement in
performance, as fewer and fewer of the error recognition rules are brought into
play. Thus, ANA combines connection, reformulation, evaluation and compila-
tion components.16

14.3.5 KERNEL Version 2

With basic ideas similar to ASA and to Waterman's Exemplary Program-
ming [Waterman, 1978], the KERNEL2 approach [Rychener, 1979] focused on the
process of IPS interacting with the instructor to build rules in a dynamic execu-
tion context. The instructor essentially steps through the process of achieving a
goal, with IPS noting what is done and marking elements for inclusion in the
rules to be built when the goal is achieved. The organization of methods in
KERNEL2 is less adventurous than proposed in ASA, keeping more to the tradi-
tional control and means-ends concepts of KERNEL1. Similarly, it provides few
innovations with respect to accommodation, explanation, and the other IPS com-
ponents. KERNEL2 includes a semantic network of information about its
methods, for use as a "help" facility. It is the basis from which the IPMSL sys-
tem, below, is built.

Based on the preceding description, KERNEL2 would seem to offer little ad-
vance over KERNELI. However, the following protocol illustrates the large dif-
ference that occurs with the shift towards interaction that is more frequent and in

,6For another approach to learning by analogy, see Carbonell, Chapter 5, in this volume.

RYCHENER 449

I: Add: want test the status of the value of the (C)
composition of L23

K: Unable to do WS009: Test status of value of
composition of L23

I: L23 is a variable in P39

K: OK

I: Build P39 (rule: A => B, C)

K: OK

I: Goal of rule: WS009

K: OK, working on new rule P40

Expressions are given at the right margin to mark places in the text where
certain rule elements have been specified, in a way similar to the protocol for
KERNELl. The rule that is constructed as a result of this dialogue is, in fact,
almost identical to the one built by KERNELl. Of interest is what is happening at
the point where "Note / " occurs: here is an example of the utility of dynamic
context. At this point, KERNEL2 actually executes an operator on the TE, and
displays the result, so that the instructor can easily formulate what he wants done
with that result in the succeeding steps of the method being instructed.

To summarize the key aspects of KERNEL2, interaction happens in the con-

a dynamic method-execution context. The protocol below is not an actual inter-
action between instructor and KERNEL, due to a shift in the domain of IPS away
from the TE used for KERNELl. KERNEL2 was actually implemented, though,
and the following is representative of the style of instruction achieved. The ac-
tual interaction language has been smoothed out somewhat in this protocol. "I:"
precedes inputs from the instructor, and "K:", the outputs of KERNEL2.

I: Examine the object at the top position of L23

K: Unable to do WS003:
Examine object at top position of L23

I: Goal of rule: WS003

K: OK, working on new rule P39

I: Add: want view location L23 in the TE

K: View location result is L23 in the TE

K: L23 has member TE, composition (Ml M2 C5),
type stack

(A)

(=> B,)

[Note 1)

450 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

text of a concrete attempt at solving a goal. The effect of this immediate feed-
back is that the instructor can have a much better idea of how much the system
knows about the present context. Interactions are far removed from the con-
structed rules, corresponding both to small pieces of those rules and to inter-
active commands that might be given to the system to have it do something.
The dynamic context provides stimuli to the instructor, helping to avoid errors
and omissions, and placing less burden on the instructor's memory. When a
piece of a rule given by the instructor is a recognizable goal to the system, it
automatically tries to achieve the goal, and the instructor can watch this activity
and observe its results. KERNEL2 is much simpler in structure than KERNELl
(fewer rules, and more easily coded), due to radical simplification of its input
language. Instructions to KERNEL2 are much shorter, and feedback to the in-
structor is immediate.

14.3.6 Conclusions on Direct Approaches

The above approaches are all direct in the sense that the orientation is
towards rules and pieces of rules rather than towards knowledge that is structured
in some other more natural form. One conclusion from the direct approaches is
that instruction must be organized in units other than rules—rules are too large
and tend not to be a natural form for instruction, especially when various PS
control and supporting structures are taken into account. Also, rules tend to re-
quire a belabored, repetitious style of instruction, where the natural tendency is
to make assumptions about the capabilities of the receiver of instruction, and to
use various forms of ellipsis. The instructor should not be allowed to perceive
instruction as programming, as this is an unnatural mode of instruction.

In the higher-level approaches that follow, more is attempted in terms of
functional components for explanation, accommodation, and the advanced com-
ponents. Another common theme is the need for a more active, "agenda" orien-
tation, including system goals that are pursued along with those of the instructor.

14.3.7 Problem Spaces

Problem spaces [Newell, 1980]17 were proposed as a higher-level organiza-
tion for IPS, in which all behavior and interactions were to be embedded in
search. A problem space consists of a collection of knowledge elements that
compose states, plus a collection of operators that produce new states from
known ones. A problem consists of an initial state, a goal state, and possibly
path constraints. Control in a problem space organization is achieved through an
executive routine that maintains and directs the global state of ongoing searches.
Newell's problem space hypothesis claims that all goal-oriented cognitive activity
occurs in problem spaces, not just activity that is problematical.

,7This approach was formulated by A. Newell and J. Laird in October, 1978.

RYCHENER 451

According to the proposal, interaction would consist of giving IPS problems
(presumably WM structures) and search control knowledge (hints as to how to
search specific spaces, presumably expressed as rules). Every kernel component
would be a problem space too, and thus subject to the same modification
processes. The concrete proposal as it now stands concentrates on interaction,
explanation (which involves sources of knowledge about the present state of the
search), and organization.

14.3.8 Semantic Network (IPMSL)

The IPMSL (Instructive PMS Language, where PMS is a computer descrip-
tion formalism) system [Rychener, 1979] viewed accumulation of knowledge as
additions to a semantic network. In this view, interaction consists of definition
and modification of nodes in a net, where such nodes are PS rules. The network
stores four classes of attributes: taxonomic (classifying methods and objects),
functional (input-output relations for methods), structural (component parts of
methods and objects), and descriptive (various characteristics). Display and net
search facilities are provided as aids to explanation and accommodation, though
the instructor is responsible for storing the required information in the network in
the first place. The availability of traditional semantic network inferences makes
it possible for IPMSL to develop a more uniform approach to connection and
reformulation, since they provide a set of tools for relating and mapping
knowledge into more tractable expressions. Because IPMSL is a digression into a
task domain different from the Abstract Job Shop, emphasis was placed on
descriptive capabilities rather than on mechanisms for procedural organization.
Thus the semantic network orientation was not integrated with KERNEL2 ap-
proaches to the acquisition and description of procedural knowledge. The
remaining step towards integration would be to have KERNEL2 record information
in the network, as methods are built up using its interaction primitives.

14.3.9 Schemas

The use of schémas as a basis for an IPS kernel18 made slot filling the
primary information-gathering operation. A slot would be implemented as a set
of rules. The slots are: executable method; test of completion; assimilation
(connects present WM with the schema for a goal); initialization (gathers
operands for a method); model (records the instruction episode for later
reference); accommodation (records patches to the method); status (records gaps
in the knowledge); monitoring (allows careful execution); and organization
(records method structure). Orientation towards instruction would be active, as
in ASA. Explanation would consist of interpreting the model slot, and accom-
modation, of fitting additions into the model. Connection would use a dis-

18Schemas were first proposed for IPS by Rychener, May, 1978

452 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

K: Does t h i s r e s u l t d i f f e r from a view objec t in the
TE, because of ' a t the top p o s i t i o n i ?

I : Yes (ASSIMILATION)

K: Par t of the des i r ed information of the goal can be
obtained from a view opera t ion

K: To view r e q u i r e s an objec t or l o c a t i o n to
work on, which L23 seems to s a t i s f y

K: L23 has member TE, composition (Ml M2 C5),
type s tack

K: Viewing L23 did not produce the d e s i r e d a t t r i b u t e s

I : You need to view the objec t a t the top p o s i t i o n
of L23

K: I lack ob jec t s with p o s i t i o n 1 with member L23

I : Test the s t a t u s of the composition of L23 (C)

K: Unknown goal WS009: (r u l e : A => B, C)
t e s t s t a t u s of composition of L23 (Note 2)

K: What i s goal WS009 a t t empt ing to achieve?

(INIT)

(=> B)
(Note 1)

I: Whether the composition of L23 is empty or nonempty (TEST)

crimination network composed of the aggregated assimilation slots of all
schémas. Compilation would be needed here, to map model to method.

The following protocol illustrates the flavor of the proposed schema ap-
proach. A system based on this approach, but outside the IPS framework, is
currently under development, but for expository reasons, the protocol here is a
simulated one. There are notations similar to those for the KERNEL2 protocol
above. Notes in the right margin in some cases give the names of slots being
filled by the adjacent interactions. Other notes refer to explanations in the next
paragraph.

I : Examine the objec t a t the top p o s i t i o n of L23

K: Unknown goal WS003:
Examine object a t top p o s i t i o n of L23

(A)

K: What is the goal WS003 attempting to achieve?

(TEST) I: The name of some object,
the position of that object is 1,
the member of that object is L23

RYCHENER 453

K: I have nothing that produces that result

I: The composition of L23 is (Ml something),
so its status is nonempty

The most striking feature of this protocol is that IPS is taking much more
initiative in determining the direction of the dialogue. It is questioning the rela-
tion of new information to what already exists, and is actively trying to fill in
missing slots in its new schémas. At "Note 1" IPS tries an experiment with a TE
operator, to get at least a partial result that might aid in solving the goal. At
"Note 2", IPS is entering into the context of a new schema. Presumably, the
former schema will be reactivated at a later time when the subgoal's schema is
satisfactorily filled in.

The schémas approach as sketched here makes a few significant additions
to KERNEL2. The orientation towards filling slots is the primary source of the
improved, natural style of interaction. Schemas implemented as PS's are self-
activating and procedural. The slots can contain more than just stereotyped
values, namely arbitrary methods and structures of rules; and goals for filling
slots will reside in the global WM, and thus can be filled flexibly, and in a data-
dependent way (that is, as data become available that are recognized as relevant).

14.3.10 Conclusions on Higher-Level Approaches

The approaches discussed above illustrate the advantages of using higher-
level organizations for the overall instructional process. The importance of care-
fully attending to the style of instruction should be evident. Adopting these ap-
proaches has the two-fold benefit of providing a more natural communication
medium for the instructor of the system, and of providing goals and methods for
the system itself to mold new knowledge into well-organized, flexible, complete,
and reliable methods. The system can also be more free than before to experi-
ment for itself, given its agendas and search mechanisms. Higher-level ap-
proaches aid in developing effective versions of the more advanced functional
components, in that such components are natural consequences of adopting any
of the above specific approaches. The accompanying tables summarize the seven
approaches.

14.4 DISCUSSION

The IPS project has invented and explored the consequences of a number of
plausible learning system components in the "learning by being told" paradigm.
One contribution is the means-ends organization of KERNELl, along with its ap-
proach to debugging using a dynamic goal tree context, and compiling by
eliminating temporary goal structures. Means-ends also holds the promise of ex-
panding a system's abilities in directions where explicit goals can be formulated.

454 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

Table 14-1:

Component |"
Interaction 1

Organization 1

Explanation 1

Accommodation 1

Connection

Reformulation

Evaluation

Compilation

Implemented?

Reference

Failings

Starting size

Instruction

Final size

IPS: KERNEL 1

whole method
query
goal

sequenced
methods

(WM data)

whole rules
-blindly

(ad hoc means-
ends rules)

?

monitor of
goals

(compose out
goal

structures)

yes

[Rychener& Newell, 1978]

too much like
1 programming
1 poor goal repr.
1 overemph. language
1 instructions too long
1 weak explanation
1 no method-modif. methods
1 orientation too passive

1 325 rules, incl.
1 50 in monitor,
1 added later

1 9 elementary tasks
1 = 160 rules
1 485 rules

ASA

four desig.
forms

loose means-
ends links

?

method-modif.
methods

?

?

?

(needed even
more than

in KERNELi)

no

(see KERNEL2)

would control
work?

0

ANA

patch
goal

hand-coded
for analogy

?

(KERNELI)

(see Reform.)

method descr.
rules

taxonomy search

patch rules map
actions &

objects

recog. of*
break-down
of analogy

patch rules
analogize

faster

yes

[McDermott, 1978]

no approach to
instruction

295 rules,
incl. 55 in

TE methods

4 tasks
= 140 rules
435 rules

KERNEL2

many desig.
query
goal

sequenced
methods

help net of
functional

info

(KERNELI)

(KERNELI)

(KERNELI)

7

instructor,
in dynamic

context

(KERNELI)

yes

[Rychener, 1979]

too slow
task was
shifted

45 rules

Kernel grew
= 55 rules
100 rules

(see IPMSL)

Key: Potential or theoretical capabilities ("left to instruction") are in ()s; numbers of rules are rounded.

RYCHENER 455

Table 14-1, continued

Component

Interaction

Organization

Explanation

Accommodatior

Connection

Reformulation

Evaluation

Compilation

Implemented?

Reference

Failings

Instruction/

Testing

Start size

Final size

1 IPS: Problem Spaces

problems

search control

problem spaces

for all compon.

& methods

knowledge about

state of search

(problem space)

(problem space)

(problem space)

executive

specific, ad hoc

search control

no

[Ne well, 1980]

Semantic Net

(IPMSL)

KERNEL2 +

net defining,

updating

KERNEL2 +

network:

function,

taxonomy,

structure,

description

supported by

network info

supported by

network info

(net inferences

& searching)

(network info)

?

?

yes

[Rychener, 1979]

too big & slow

160 rules in net

450 rules =

100 KERNEL2 +

120 basic net +

230 advanced net

610 rules

Schemas

actively

fill slots

-1- KERNEL2

schémas with

9 types of

slots;

esp. method,

model,

init, test

(model slot

interp.)

(edit model)

(status sit)

discrim. net

?

monitor slot

(transform

model slot)

no

Key: Potential or theoretical capabilities ("left to instruction") are in ()s; numbers of rules are rounded.

In unimplemented proposals, ()s are reserved for very vague possibilities.

456 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

The use of explicit tests and failure recognizers can add reliability and robustness
to means-ends execution. A second contribution has been the study of
knowledge acquisition in a dynamic execution context (illustrated by the
KERNEL2 dialogue above). Other contributions include the development of the
problem space idea, the orientation of a learning system towards active assimila-
tion and accommodation (as in schémas), the ability to dynamically use
analogies, the use of rules to implement semantic networks, and the organization
of rules into schémas. This paper has tried to motivate the need for more study
of approaches to instruction and of ways of achieving the functional components,
by exhibiting an evolutionary sequence and by pointing out the deficiencies of
various partial designs. Our studies to date into these issues have been greatly
facilitated by the use of a flexible, expressive medium, the OPS PS architecture.

Two key problems remain unsolved and open for further research: achiev-
ing the kind of procedural flexibility and robustness that would seem to be in-
herent in the PS architecture; and devising ways for a system to effectively
manage its knowledge (however organized), that is, techniques for accommoda-
tion as defined above. Procedural flexibility has been discussed above in as-
sociation with the organization component. The ideal flexibility ought to derive
from the global recognize-act cycle, where heuristics and optimizations could be
applied at each step to guide and complete goal processing. For a system to
manage its knowledge, much more needs to be known about the structure of
methods and how they are modified and augmented. The IPS project has failed
to get beyond the most basic of method manipulations, partly due to its emphasis
on other aspects of the overall problem and partly due to the inherent difficulty
of the problem area.

Explorations within our particular framework can profit from and stimulate
research in information processing psychology. Of particular interest would be a
protocol analysis of instructional dialogues in an environment similar to our TE,
after the fashion of Newell and Simon [1972]. Additional information would be
provided by querying the subject to determine what rules have been learned,
after a session with an unknown problem environment. The structuring of the
instructional session by a human tutor with a human subject is important, as it
may give some indication of the underlying knowledge representations involved.
The best attempts by psychologists at studying instructional learning at this level
of detail seem to be found in work such as Klahr's collection [1976]. On the AI
side, the work of Collins [1978] seems to be the closest in spirit. It may be in
general that people do not require the painstaking explanations that seem to be
needed by PS's. At least, this holds for PS's with very little knowledge, as
discussed here. That is, humans are better learners because they know more and
can fill in gaps in the instructional interaction. Thus it may be that our PS work
must develop new techniques that haven't been necessary with human education.
On the other hand, humans' learning might improve if we knew better how to
organize instruction to suit their internal knowledge structures, or if we could

RYCHENER 457

train them to use a more efficient knowledge organization.19

ACKNOWLEDGMENTS

This research was sponsored by the Defense Advanced Research Projects
Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics
Laboratory Under Contract F33615-78-C-1551. The views and conclusions con-
tained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Ad-
vanced Research Projects Agency or the U.S. Government.

Much of the work sketched in this chapter has been done jointly over the
course of several years. Other project members are (in approximate order of
duration of commitment to it): Allen Newell, John McDermott, Charles
L. Forgy, Kamesh Ramakrishna, Pat Langley [1980] (see also Chapter 10 of this
volume), Paul Rosenbloom and John Laird. The present author's perspective,
emphasis, and statement of conclusions may differ considerably from those of
other project members; the broad scope of the IPS project fostered and en-
couraged a diversity of approaches. But much credit goes to the group as a
whole for the overall contributions of the research. Helpful comments on this
paper were made by Allen Newell, Jaime Carbonell, David Neves, Robert
Akscyn and Kamesh Ramakrishna. The editors and reviewers of this book have
also been very helpful.

REFERENCES

Anderson, J. R., Language, Memory, and Thought, Lawrence Erlbaum Associates, Hillsdale, NJ,
1976.

Anderson, J. R., Kline, P. J., and Beasley, C. M. Jr., "A Theory of the Acquisition of Cognitive
Skills", Technical Report 77-1, Yale University, Dept. of Psychology, January 1978.

Anzai, Y. and Simon, H. A., "The theory of learning by doing," Psychological Review, Vol. 86,
No. 2, pp. 124-140, 1979.

Buchanan, B. G., Mitchell, T. M., Smith, R. G. and Johnson, C. R. Jr., "Models of Learning
Systems", Technical Report STAN-CS-79-692, Stanford University, Computer Science Dept.,
January 1979.

Collins, A., "Explicating the Tacit Knowledge in Teaching and Learning", Technical Report 3889,
Bolt, Beranek and Newman, Inc., March 1978.

Forgy, C. L., On the Efficient Implementation of Production Systems, Ph.D. dissertation, Carnegie-
Mellon University, Dept. of Computer Science, February 1979.

19The author would appreciate references to current work along the lines discussed in this paragraph.

458 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM

Forgy, C. L., "OPS4 User's Manual", Technical Report CMU-CS-79-132, Carnegie-Mellon Univer-
sity, Dept. of Computer Science, July 1979.

Forgy, C. and McDermott, J., "OPS, a domain-independent production system language," Proceed-
ings of the Fifth International Joint Conference on Artificial Intelligence, IJCAI, Cambridge,
MA, pp. 933-939, August 1977.

Klahr, D., Cognition and Instruction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1976.

Langley, P. W., Descriptive Discovery Processes: Experiments in Baconian Science, Ph.D. disser-
tation, Carnegie-Mellon University, Dept. of Psychology, December 1979.

Lesser, V. R. and Erman, L. D., "A retrospective view of the HEARSAY-Π architecture," Proceed-
ings of the Fifth International Joint Conference on Artificial Intelligence, IJCAI, Cambridge,
MA, pp. 790-800, August 1977.

McDermott, J., "ANA: An Assimilating and Accommodating Production System", Technical
Report CMU-CS-78-156, Carnegie-Mellon University, Dept. of Computer Science, December
1978, (Also appeared in IJCAI-79, pp. 568-576).

McDermott, J. and Forgy, C , "Production system conflict resolution strategies," Pattern-Directed
Inference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press, New York,
NY, pp. 177-199, 1978.

Moore, J. and Newell, A., "How can MERLIN understand?," Knowledge and Cognition, Gregg,
L. W. (Ed.), Lawrence Erlbaum Associates, Potomac, MD, pp. 201-252, 1973.

Mostow, D. J., Mechanical transformation of task heuristics into operational procedures, Ph.D.
dissertation, Carnegie-Mellon University, Dept. of Computer Science, April 1981, (Available
asCMU-CS-81-113.).

Newell, A., "Reasoning, problem solving and decision processes: the problem space as a fundamen-
tal category," Attention and Performance VIII, Nickerson, R. (Ed.), Lawrence Erlbaum As-
sociates, Hillsdale, NJ, pp. 693-718, 1980.

Newell, A. and Simon, H. A., Human Problem Solving, Prentice-Hall, Englewood Cliffs, NJ, 1972.

Rychener, M. D., "The STUDNT production system: a study of encoding knowledge in production
systems", Technical Report, Carnegie-Mellon University, Dept. of Computer Science, Oc-
tober 1975.

Rychener, M. D., Production systems as a programming language for artificial intelligence applica-
tions, Ph.D. dissertation, Carnegie-Mellon University, Dept. of Computer Science, December
1976.

Rychener, M. D., "Control requirements for the design of production system architectures," SIGART
Newsletter, Vol. 64, pp. 37-44, August 1977, (ACM.).

Rychener, M. D., "A Semantic Network of Production Rules in a System for Describing Computer
Structures", Technical Report CMU-CS-79-130, Carnegie-Mellon University, Dept. of Com-
puter Science, June 1979, (Also appeared in IJCAI-79, pp. 738-743.).

Rychener, M. D., "OPS3 Production System Language Tutorial and Reference Manual", Technical
Report, Carnegie-Mellon University, Dept. of Computer Science, March 1980, (Internal
Working Paper.).

RYCHENER 459

Rychener, M. D. and Newell, A., "An instructable production system: basic design issues," Pattern-
Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press,
New York, NY, pp. 135-153, 1978.

Waterman, D. A., "Rule-Directed Interactive Transaction Agents: An Approach to Knowledge
Acquisition", Technical Report R-2171-ARPA, The Rand Corporation, February 1978.

Young, R. M., "Production systems for modelling human cognition," Expert Systems in the Micro
Electronic Age, Michie, D. (Ed.), Edinburgh University Press, Edinburgh, Scotland, pp.
35-45, 1979.

15

LEARNING EFFICIENT

CLASSIFICATION PROCEDURES

AND THEIR APPLICATION TO

CHESS END GAMES
J. Ross Quinlan

The Rand Corporation1

ABSTRACT

A series of experiments dealing with the discovery of efficient classifica-
tion procedures from large numbers of examples is described, with a case study
from the chess end game king-rook versus king-knight. After an outline of the
inductive inference machinery used, the paper reports on trials leading to correct
and very fast attribute-based rules for the relations lost 2-ply and lost 3-ply. On
another tack, a model of the performance of an idealized induction system is
developed and its somewhat surprising predictions compared with observed
results. The paper ends with a description of preliminary work on the automatic
specification of relevant attributes.

15.1 INTRODUCTION

This paper reports on experiments that recover valuable information from
large masses of low-grade data by a process of inductive inference. The data are
relatively unstructured examples and counterexamples of a concept of con-
siderable complexity. The information that is sought is a means of identifying
examples of the concept or, in other words, a classification rule. The distin-
guishing characteristics of this work are the large numbers of examples employed
in forming the concepts and the computational efficiency of the classification

Currently with The New South Wales Institute of Technology, Australia.

463

464 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

rules discovered in this way as compared with other classification methods for
the same task. (In one case, the classification rule is five times as fast as the
best alternative method that I could devise.)

The concepts to be developed have been drawn from the chess end game
king-rook versus king-knight, which can be difficult even for masters [Kopec &
Niblett, 1980]. This end game has proved to be an excellent testing ground,
providing classification tasks of a range of difficulties and a large underlying
universe of more than a million possible configurations, of pieces. However, it
should be noted that the inductive inference machinery that has been developed
is in no way tied to this application, and is currently being used by other workers
for a different aspect of chess [Shapiro & Niblett, 1982] and in a medical
domain [Bratko & Mulec, 1981].

The induction algorithm used for this project is called ID3. ID3 takes ob-
jects of a known class described in terms of a fixed collection of properties or
attributes, and produces a decision tree over these attributes that correctly clas-
sifies all the given objects. Two qualities differentiate it from other general-
purpose inference systems such as INDUCE [Michalski, 980a], SPROUTER
[Hayes-Roth & McDermott, 1977] and THOTH-P [Vere, 1978]. The first con-

cerns the way that the effort required to accomplish an induction task grows with
the difficulty of that task. ID3 was specifically designed to handle masses of
objects, and in fact its computation time increases only linearly with difficulty as
modeled by the product of:

• the number of given exemplary objects,
• the number of attributes used to describe objects, and
• the complexity of the concept to be developed (measured by the number of

nodes on the decision tree)
[Quinlan, 1979a]. On the negative side, this linearity is purchased at the cost of

descriptive power. The concepts developed by ID3 can only take the form of
decision trees based on the attributes given, and this "language" is much more
restrictive than the first-order or multivalued logic in which the above systems
express concepts. [Dietterich & Michalski, 1979] gives an analysis and survey of
inductive inference methodologies.

The main body of this report contains four sections. The first, Section
15.2, introduces ID3 as a descendant of Hunt's Concept Learning System (CLS).
Section 15.3 summarizes applications of ID3 to discovering decision trees for the
relations "knight's side is lost n-ply" where n is 2 or 3; detailed accounts appear
in [Quinlan, 1979b; Quinlan, 1980]. The last two sections deal with recent work
along different dimensions. Section 15.4 considers the question of discovering
approximate rather than exact rules. It develops a model of how an idealized
induction system might behave when shown only a fraction of all possible ob-
jects, and compares the predictions of this model to observed results. Section
15.5 tackles the problem of defining features used to describe objects, and out-
lines techniques aimed at automating the discovery of the attributes themselves.

QUINLAN 465

15.2 THE INDUCTIVE INFERENCE MACHINERY

ID3, a descendant of Hunt's CLS [Hunt et al., 1966], is a comparatively
simple mechanism for discovering a classification rule for a collection of objects
belonging to two classes. As mentioned above, each object must be described in
terms of a fixed set of attributes, each of which has its own (small) set of pos-
sible attribute values. As an illustration, "color" and "baud rate" might be at-
tributes with sets of possible values {red, green,blue} and
{110,300,1200,2400,4800} respectively.

A classification rule in the form of a decision tree can be constructed for
any such collection C of objects. If C is empty then we associate it arbitrarily
with either class. If all objects in C belong to the same class, then the decision
tree is a leaf bearing that class name. Otherwise C contains representatives of
both classes; we select an attribute and partition C into disjoint sets Cj, C2, ... ,
Cn where Cj contains those members of C that have the ith value of the selected
attribute. Each of these subcollections is then handled in turn by the same rule-
forming strategy. The eventual outcome is a tree in which each leaf carries a
class name, and each interior node specifies an attribute to be tested with a
branch corresponding to each possible value of that attribute.

To illustrate this process, consider the collection C below. Each object is
described in terms of three attributes: "height" with values {tall,short}, "hair"
with values {dark,red,blond} and "eyes" with values {blue,brown}, and is fol-
lowed by ' + ' or ' — ' to indicate the class to which it belongs.

C = short,blond,blue: + short,dark,blue:- tall,dark,brown: -
tall, blond, brown:- tall,dark,blue:- short, blond, brown : —
tall,red,blue: + tall,blond,blue: +

If the second attribute is selected to form the root of the decision tree, this yields
the tree shown in Figure 15-1. The subcollections corresponding to the values
'dark' and 'red' contain objects of only a single class, and so require no further
work. If we select the third attribute to test for the 'blond' branch, this yields
the tree in Figure 15-2. Now all subcollections contain objects of one class, so
we can replace each subcollection by the class name to get the decision tree
shown in Figure 15-3.

An object is classified by starting at the root of the decision tree, finding
the value of the tested attribute in the given object, taking the branch appropriate
to that value, and continuing in the same fashion until a leaf is reached. Notice
that classifying a particular object may involve evaluating only a small number
of the attributes depending on the length of the path from the root of the tree to
the appropriate leaf. In the above case, the first step is always to inquire about
the value of an object's "hair" attribute. If this value is "dark" or "red" the
object can be classified immediately without looking at its other attributes. If the
value is 'blond' then we must determine its value of "eyes" before classifying it.
We never need to determine the value of the "height" attribute.

466 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

hair

dark blond

short, dark,blue: -
tall, dark, blue: -
tall, dark, brown: -

{tall, red, blue: + } short, blond, blue: +
tall, blond, brown: -
tall, blond, blue: +
short, blond, brown: ■

Figure 15-1: One-level decision tree.

short, dark, blue: -
tall, dark, blue: -
tall, dark, brown: -

{tall, red, blue: + \ eyes

(short, blond, blue: + 1
tall, blond, blue: + J

brown

tall, blond, brown: -
short, blond, brown: ·

Figure 15-2: Two-level decision tree.

This rule-forming procedure will always work provided that there are not
two objects belonging to different classes but having identical values for each
attribute; in such cases the attributes are inadequate for the classification task.
However, it is generally desirable that the tree be able to classify objects which
were not used in its construction, and so the leaves corresponding to an empty
set of examples (where a class is chosen randomly) should be kept to a min-
imum. If we adopted the simple-minded algorithm:

"Select the first attribute for the root of the tree, the
second attribute for the next level, and so on."

the result would tend towards the complete tree with a leaf for each point in the
attribute space—clearly an unsatisfactory situation. The whole skill in this style
of induction lies in selecting a useful attribute to test for a given collection of

QUINLAN 467

hair

Figure 15-3: Decision tree with class names.

objects so that the final tree is in some sense minimal. Hunt's work used a
lookahead scheme driven by a system of measurement and misclassification costs
in an attempt to get minimal-cost trees. ID3 uses an information-theoretic ap-
proach aimed at minimizing the expected number of tests to classify an object

A decision tree may be regarded as an information source that, given an
object, generates a message which is the class of that object ("plus" or "minus",
say). The attribute selection part of ID3 is based on the plausible assumption that
the complexity of the decision tree is strongly related to the amount of infor-
mation conveyed by this message. If the probability of these messages is p +
and p~ respectively, the expected information content of the message is

" P + log2P+ - P" !<>g2P"
With a known set C of objects we can approximate these probabilities by relative
frequencies, so that p + becomes the proportion of objects in C with class "plus".
So we will write M(C) to denote this calculation of the expected information
content of a message from a decision tree for a set C of objects, and define M(
{}) = 0. Now consider as before the possible choice of A as the attribute to
test next. The partial decision tree is shown in Figure 15-4. The values Aj of
attribute A are mutually exclusive (even though different attributes may not be),
so the new expected information content will be:

B(C,A) = (probability that value of A is Aj) x M(Q)

where again we can replace the probabilities by relative frequencies. The sug-
gested choice of attribute to test next is that which gains the most information, in
other words, for which

M(C) - B(C,A)

is maximal.

468 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

attribute
A

Figure 15-4: Partial decision tree.

To illustrate the idea, consider the choice of the first attribute to test from
the example given earlier. The collection C of objects contains 3 in class ' + '
and 5 in ' - ', so

M(C) = - 3/8 log2 3/8 - 5/8 log2 5/8
= 0.954 bits

Testing the first attribute gives the results shown in Figure 15-5. The infor-
mation still needed for a rule for the "tall" branch is:

- 2/5 log2 2/5 - 3/5 log2 3/5 = 0.971 bits
and for the "short" branch:

- 1/3 log2 1/3 - 2/3 log2 2/3 = 0.918 bits
Thus the expected information content:

B(C,"height") = 5/8 * 0.971 + 3/8 * 0.918
= 0.951 bits

The information gained by testing this attribute is:
0.954 - 0.951 = 0.003 bits

which is negligible. The tree arising from testing the second attribute was given
previously. The branches for "dark" (with 3 objects) and "red" (1 object) require
no further information, while the branch for "blond" contained 2 "plus" and 2
"minus" objects and so requires 1 bit. We have:

B(C,"hair")= 3 / 8 * 0 + 1/8*0 + 4/8 * 1
= 0.5 bits

and the information gained by testing "hair" is 0.954 — 0.5 = 0.454 bits. In a
similar way the information gained by testing "eyes" comes to 0.347 bits. Thus
the principle of maximizing expected information gain would lead ID3 to select
"hair" as the attribute to form the root of the decision tree.

The procedure described above for constructing decision trees assumes that

QUINLAN 469

height

tall, blond, brown: - Ί [short, blond, blue: +
tall, red, blue: + | short, dark, blue:
tall, dark, blue: - \ | short, blond, brown:
tall, blond, blue: +
tall, dark, brown: -

Figure 15-5: Binary attribute discrimination.

counting operations on the set of objects C (such as determining the number of
"plus" objects with value Aj of attribute A) can be performed efficiently, which
means in practice that C has to be kept in fast memory. What happens if the
size of C precludes this? One way around the difficulty is given by the version
space strategy [Mitchell, 1979] in which C is digested one object at a time.
Such an approach depends on maintaining two sets S and G of maximally
specific and maximally general rules that could account for all objects seen so
far; these sets delimit all possible correct rules. However, when the rule is a
decision tree over a large attribute space, the sizes of S and G will also become
unmanageable. The line taken in ID3 is an iterative one which forms a succes-
sion of decision trees of (hopefully) increasing accuracy, until one is found that
is entirely accurate. The method can be summarized as:

• select at random a subset of the given instances (called the window)

• repeat

o form a rule to explain the current window
o find the exceptions to this rule in the remaining instances
o form a new window from the current window and the exceptions to

the rule generated from it
until there are no exceptions to the rule

The process ends when a rule is formed that has no exceptions and so is correct
for all of C. Two different ways of forming a new window have been tried. In
the first, the current window is enlarged by the addition of up to some specified
number of exceptions, and so the window grows. The second method attempts
to identify "key" objects in the current window and replace the rest with excep-
tions, thus keeping the window size constant. Both methods were explored in
trials with a non-trivial classification problem involving 14 attributes and nearly
2,000 objects for which a correct decision tree contained 48 nodes [Quinlan,
1979a]. The main findings were:

470 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

• The methods converge rapidly; typically only 4 iterations were required to
find a correct decision tree.

• It was possible to develop a correct tree from a final window containing
only a small fraction of the 2,000 objects.

• The process was not very sensitive to parameters such as the initial win-
dow size.

• The time to obtain a correct decision tree for a classification problem in-
creases linearly with the difficulty of the problem as defined by the simple
model given in the introduction.

These features, particularly the last, have enabled ID3 to discover correct decision
trees for some very large classification problems.

15.3 THE LOST N-PLY EXPERIMENTS

One application of ID3 has been to discover classification rules for part of
the end game (white) king-rook versus (black) king-knight. The relations com-
pleted are "knight's side is lost (in at most) n-ply" for n = 2 and n = 3; the 4-ply
case is currently being tackled. The formal definition of "lost n-ply" is:

1. A black-to-move position is lost 0-ply if and only if
a. the king is in checkmate, or
b. the knight has been captured, the position is not stalemate, the white

rook has not been captured and the black king cannot retaliate by
capturing it.

2. A white-to-move position is lost n-ply (n odd) iff there is a white move
giving a position that is lost n—1 ply.

3. A black-to-move position is lost n-ply (n even) iff all possible black moves
give positions that are lost n—1 ply.

These definitions ignore the repetition and 50-move rules of chess, but are quite
accurate for small values of n.

The obvious question is, why bother looking for classification rules when
simple algorithms such as minimax will decide whether a position is lost n-ply?
The answer is that a decision tree will classify a position in terms of its
properties rather than by exploring the game tree. If attributes can be found that
are adequate for this classification task and that are also relatively cheap to com-
pute, then the classification of a position in terms of these attributes might well
be faster than the minimax search of the game tree.

There are more than 11 million ways of placing the four pieces to form a
legal black-to-move position; the corresponding figure for white-to-move is more
than 9 million. (The difference arises because, for instance, the white king can-
not be in check in a black-to-move position.) These counts include many sym-
metric variants of essentially the same position, and when these are removed the

QU1NLAN 471

numbers become approximately 1.8 million and 1.4 million, respectively. About
69,000 of the 1.8 million black-to-move positions are lost 2-ply, while roughly
474,000 of the 1.4 million white-to-move positions are lost 3-ply.

The first attempt at the lost 2-ply relation was made with a set of 25 at-
tributes. 18 of these were low-level geometric properties of a position, such as:

the distance from the black king to the knight
with values " 1 " , "2" and ">2" king-moves, and:

the two kings are on opposite sides of and next to a row or column
occupied by the rook

with values "true" and "false". The remaining 7 attributes were somewhat
higher-level and involved more computation, for example:

the only move the black king can make creates a mating square for
the rook

The attribute space with 36 x 219 points was much larger than the number of
black-to-move positions. However, many different positions led to the same
vector of attribute values; and, in fact, the 1.8 million positions dwindled to just
under 30,000 distinct vectors. An implementation of ID3 coded in Pascal for a
DEC KL-10 found a correct decision tree of 334 nodes in 144 seconds.

A second attempt was made on this problem in order to try out a different
style of attribute, and to remove a minor inadequacy of the first set of attributes
affecting a handful of positions. Instead of being for the most part low-level and
geometric, the new attributes were all high-level, truth-valued features signaling
key patterns of pieces on the board. Each of the 23 attributes was meant to
capture some important mechanism of the lost 2-ply classification task. For ex-
ample, one of the attributes took the value "true" if the position was of one of
the forms shown in Figure 15-6. This attribute was intended to detect some
situations in which the black king cannot move safely. As expected, these new
attributes were more directly pertinent to the classification problem than were
their geometric predecessors. They had the effect of compressing all possible
positions into a smaller set of 428 distinct vectors. The same implementation of
ID3 found a decision tree containing 83 nodes in less than 3 seconds.

These trials resulted in two decision trees for classifying an arbitrary black-
to-move position as lost 2-ply or not. Their performance was then compared to
two other means of arriving at the same classification. The first of these was the
minimax search mentioned previously, which simply mirrors the definition of
lost n-ply. The second was a "smarter" classification method called specialized
search which examines only part of the game tree. For instance, to determine
whether a position is lost 1-ply we only have to consider white moves that cap-
ture the knight or white rook moves to the edge of the board (for a possible
mate). Specialized search thus employs domain knowledge; it is harder to write
and debug than minimax, but is much faster.

For the purposes of comparison, all methods were implemented in Pascal.

472 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

r&&

Φ

Roc >kin this row

Ί

Cfo Φ
Rook in this row

1 1

PS
cfe

o
o

g-

Ϊ,
<^ 1

■ C i

Φ

Figure 15-6: Chess board patterns used exemplifying classification attributes.

One thousand black-to-move positions were generated at random and each posi-
tion classified by each method. Table 15-1 shows the average time required by
each of them to classify a position on the DEC KL-10. Minimax was by far the
slowest method, followed by specialized search. Both decision trees gave faster
classifications, and the second significantly so—about 8 times faster than min-
imax. Given the relative sizes of the decision trees and the different styles of
attribute, their performance was quite similar.

Table 15-1: Comparison of classification methods for lost 2-ply.

Classification Method CPU Time (msec)

Minimax search
Specialized search
Using first decision tree
Using second decision tree

7.67
1.42
1.37
0.96

With these experiments complete, attention turned to the lost 3-ply rela-
tion. This was (as expected) harder than 2-ply because the patterns on the board
that are used as attributes are further removed from the final outcome, and,
whereas positions lost 2-ply make up less than 4% of all black-to-move posi-
tions, the 3-ply classes are more evenly balanced with 34% of all white-to-move
positions lost.

The 49 attributes developed for 3-ply included both the types used for

QUINLAN 473

\φ

*

\φ

X

φ

"κΊ

Figure 15-7: Instance of relevant classification pattern

2-ply. The majority of 35 were once more features signaling patterns on the
board of special relevance to the classification task. An example is shown in
Figure 15-7, where the white king could occupy either position shown, and the
rook can move to some square in the same row as the black king, other than
those marked X; this detects some cases in which the black king can be forced to
move away from its knight. Four more attributes were geometric, such as flag-
ging positions in which the white king is in check. The ten remaining attributes
were predicates that, although complex, were based on simplified sequences of
moves. For example, one of these predicates was:

white rook is safe from reprisal 2-ply by the black king if white king
takes the knight or threatens to do so

which was given by the approximation:

• the rook is more than two squares from the black king, or
• one blank square separates the rook from the black king, but the rook is

either next to or threatens the knight, or
• the rook is next to the black king, but either the knight is also next to it or

there is a square that is next to the white king, knight and rook.

The attributes were found to be adequate for the 3-ply classification task; in fact,
it was subsequently noticed that a subset of 39 of them was adequate. They
gave good compression, the 1.4 million white-to-move positions boiling down to
715 different vectors of attribute values. ID3 was run on a CDC Cyber 72 and
found a correct decision tree of 177 nodes in 34 seconds.

Again, a variety of classification technique's for lost 3-ply was tried. The
minimax search was similar to the previous one, and the specialized search was
built on the 2-ply specialized search using additional rules such as:

• To decide whether a position is lost (not more than) 3-ply it is advisable to
check first if it is lost 1-ply.

• In establishing whether a position is lost exactly 3-ply, white moves that
capture the knight need not be considered.

474 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

One thousand white-to-move positions were generated randomly, and the average
Cyber CPU time taken to classify them by the different methods appears in Table
15-2. Minimax search is now right out of contention, while the induction-
generated tree is five times faster than specialized search.

For the lost n-ply task, it seems clear that, as n increases, the advantage of
attribute-based classification over methods that search the game tree becomes
more pronounced. When an adequate set of attributes has been found for the
4-ply case, this approach should give a classification method that is 15-20 times
faster than specialized search.

Table 15-2: Comparison of classification methods for lost 3-ply.

Classification Method CPU Time (msec)

Minimax search 285.0
Specialized search 17.5
Using decision tree 3.4

15.4 APPROXIMATE CLASSIFICATION RULES

The experiments reported in the previous section were aimed at producing
decision trees covering the entire universe of possible positions. These decision
trees were exact since they will classify correctly each object used in forming
them, that is, each object in the universe. But what if size or the cost of ex-
amining it precludes the use of the entire universe in this way? This section
looks at the accuracy of rules formed from partial information. It develops a
model of the best performance that can be expected from any inductive inference
scheme, and compares the predictions of this model to some experimental obser-
vations.

For a classification problem over some universe U of objects we will
define "the" correct decision tree T to be one that classifies all objects in U with-
out error and which contains fewest nodes of all such correct trees. Recall that
an object x is classified by directing it to one of the leaves of the decision tree,
where this leaf is labeled with the class to which x belongs. Any object will be
directed to one and only one leaf, so we can denote by Bj the set of objects from
U that will be mapped to the ith leaf of the correct tree T. The set of blocks Bj
corresponding to the different leaves of T is then a partition of U.

Let us turn now to the problem of constructing an approximate decision
tree by examining only some subset of U (commonly referred to as the training
set). How much can we expect of whatever inductive inference system we use
to form the approximate tree? Each block Bj can be thought of as delineating
some subconcept in the classification. Clearly, no induction system can possibly
identify this subconcept unless it sees at least one instance of it, or in other

QUINLAN 475

words, unless at least one element of Bj is included in the training set. We say,
then, that an inductive inference system is perfect if, whenever the training set
contains at least one object from Bj, the approximate decision tree that the induc-
tion system arrives at will classify correctly all objects from Bj. As defined in
this way, perfection is indeed difficult to achieve.

Let a training set S containing N objects be selected at random (with
replacement) from the universe U. When this training set is fed to such a perfect
induction system, the output will be an approximate decision tree T*. We now
derive the probability P that an object x selected at random from U will be cor-
rectly classified by T*. This will occur under either of the following conditions:

1. The training set S contains at least one object from the block Bj to which x
belongs. By the perfection assumption T* will be correct for all Bj and
thus in particular for x.

2. The training set contains no such object. But each object will be assigned
to some class, and it may happen that T* fortuitously assigns x to its cor-
rect class, albeit for the wrong reason.

Let p(Bj) denote the probability that a randomly-chosen object belongs to block
Bj. The probability that S contains no object from the same block as x can be
written as:

?{ = X p(Bj) X (1 - p(Bj))N

where the summation is over all blocks. Again, let p(c;) denote the probability
that an object chosen at random will be assigned by T* to class Cj. We will
assume that T* is somehow representative of the universe U, in that the prob-
ability that an object chosen at random from U will belong to class Cj will also
be p(Cj). The probability that T* will "guess" the correct classification for object
x is then:

P2 = S p(Cj)2

Putting these together, the probability that an arbitrary object will be classified
correctly by T* is given by:

P = 1 - P{ + Px x P2

Unfortunately this expression uses information which depends on knowing the
correct decision tree T. The values of p(Cj) can be estimated from the training set
or by sampling, but the value of Pj depends on the distribution of p(Bj) over the
leaves of T. However, if we examine a term of Pf.

p(Bj) x (1 - p(Bj))N

we see that its value is small no matter what the value of p(Bj). In fact it
reaches its maximum value when:

- j ^ P W x (1 - P W = 0
which occurs when:

476 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

p(Bi) = 1 / (N+1)
So we can set an upper bound on Pj by replacing each term in the summation
with its- maximum possible value of:

N N / (N + 1) N + 1

For all but small N the value of:

N N / (N+1)N

approaches \/e, and so each term is approximately:
1 / (2.72 N)

The result is that
Pj = IBI / (2.72 N) - d

where IBI is the number of blocks Bj and d is a positive error term. Substituting
in the above expression for P gives:

P = 1 - (IBI / 2.72 N) x (1 - X p(Cj)2) + d'

where again d' is positive. Ignoring d' we have a lower bound on the prob-
ability that an arbitrary object will be classified by the approximate tree T*.
This expression still involves the number of blocks IBI, but this is the number of
leaves of T and can be estimated, for example, from the number of leaves on
rp*

The purpose of the preceding analysis is to establish a relationship between
the size of the training set and the accuracy of the approximate tree derived from
it, in a form that sidesteps the underlying structure of the universe—that is, the
way objects are organized into blocks. For small values of N the results are
unremarkable. The interest centers on cases where N is very large, even though
it may be only a small fraction of the size of the universe. Consider an example
of one million objects belonging to two equiprobable classes where the correct
tree contains 100 leaves. If 10,000 objects (only 1% of the universe) is given as
a training set to a perfect induction system, the analysis predicts that the result-
ing approximate tree will correctly classify more than 99% of all objects, no
matter how awkward the distribution of objects among the blocks B,. Moreover,
the model predicts that the error rate of the approximate tree is independent of
how many objects are in the universe!

A number of experiments was conducted to test the above results. These
consisted of forming approximate decision trees for the knight's side lost 3-ply
relation from training sets of various sizes. The universe was the set of canoni-
cal white-to-move positions numbering 1.4 million of which 474,000 belong to
the class "lost". The earlier experiments had produced an exact decision tree for
this problem which contained 88 leaves, so the number of leaves on "the" correct
tree was known to be at most 88. The constants relevant to the analysis were
thus:

QUINLAN 477

IBI < 88
and

X p(Cj)2 = 0.55
For each experiment, a training set of predetermined size was selected at random
from all possible white-to-move positions. The set of attribute vectors cor-
responding to these positions was then passed to ID3 which formed a decision
tree from them alone. This approximate tree was tested on a different set of
10,000 positions also selected at random. Each test position was classified by
both the correct and approximate decision trees and differences noted. The num-
ber of such errors detected was compared with the expected maximum number of
errors predicted by the model, i.e., (1— P) * 10,000. The figures appear in
Table 15-3. For example, the middle line concerns the case in which the train-
ing set contained 5,000 positions or 0.36% of the universe. The approximate
tree derived from these positions proved accurate for all but 8 of the 10,000 test
positions. The model predicts that the probability of a correct classification in
this case exceeds 0.9971 which would give an expected maximum of 29 errors
over the 10,000 trials. In each case in Table 15-3, the observed number of er-
rors was compatible with the predicted bound, although the bound is conser-
vative for smaller values of N. (For very large values of N, all distributions of
p(Bj) give a value of Pj which is near zero; the differences between the actual
distribution and the maximally unhelpful one used for the model result in smaller
variations of P, so the predicted bound might be expected to become tighter.)

As an aside, the fact that the observed error rates for approximate trees
found by ID3 are close to the bounds of the hypothetical perfect induction system
is indirect evidence that ID3 is not performing too badly!

Table 15-3: Comparison of observed and predicted error rates with different training set sizes.

Size of
training

set

Percentage
of whole
universe

Errors in
10,000
trials

Predicted
maximum

errors

200
1,000
5,000
25,000
125,000

0.01%
0.07%
0.36%
1.79%
8.93%

199
33
8
7
2

728
146
29
6
1

15.5 SOME THOUGHTS ON DISCOVERING ATTRIBUTES

The work on lost n-ply relations supports the view that almost all the effort
(for a non chess-player, at least) must be devoted to finding attributes that are

478 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

adequate for the classification problem being tackled. The second set for lost
2-ply required three weeks to define, while the 3-ply attributes consumed nearly
2 man-months. In either case, once the attributes had been specified and the
description of the positions in terms of them had been computed, ID3 made short
work of finding a correct decision tree.

An attempt is currently under way as part of the 4-ply work to find some
attributes automatically. In particular, a search is being made for attributes
based on patterns of pieces on the board, as two-thirds of the attributes used for
lost 3-ply are of this type. The hypothesis is that such patterns can be dis-
covered by generalizing on individual positions known to be lost 4-ply. The
method has been to select a single such seed position that is lost exactly 4-ply
and subject it to three forms of generalization.

*

Φ

rib jd
Figure 15-8: Exemplary winning position.

The first and most powerful form is to decide that one or more of the
pieces in the seed position are probably irrelevant to what is going on in that
position, and to discard them from the pattern. Consider, for example, the posi-
tion shown in Figure 15-8. There, the black king must move out of check, and
the rook can then skewer the king and knight, capturing the latter at its next
move. The whereabouts of the white king has no bearing on this outcome and
so that piece can be dropped from the pattern. The effect is to make this pattern
match any position with the rook, black king and knight as shown, no matter
where the white king happens to be. The method for deciding that this sort of
generalization is appropriate starts by looking in a file of positions lost exactly
4-ply for those that have three of the four pieces in the same places as they oc-
cupy in the seed position. For each such position F that has all pieces except p
occupying the same places, a set of places L(p) for p is augmented by adding the

QUINLAN 479

place occupied by p in F. After a complete scan of the file, L(knight) for ex-
ample contains a set of places the knight can occupy such that, if the other
pieces are unchanged the position will still be lost 4-ply. Now consider the
hypothesis that piece p is truly irrelevant to the fact that the seed position is lost.
From the piece p, the seed position, and the makeup of the file, it is possible to
estimate the number of positions that should have been found in the file under
this hypothesis. If the size of L(p) is sufficiently close to this number, then the
hypothesis is judged to have been confirmed and piece p is discarded from the
pattern. One very significant feature found in this way is shown in Figure 15-9,
where the rook and black king have been deemed irrelevant. This does not mean
that all such positions are lost 4-ply, but rather that the presence of this pattern is
a relevant indicator when classifying a position. In fact, more than 10% of all
positions lost exactly 4-ply are of this form, so it is a useful feature indeed!

\ *

«

Figure 15-9: Highly useful partial pattern.

The second form of generalization is to allow pieces to occupy one of a
number of places on the board. We know already that any one piece p can be at
any of the places in L(p) without affecting the lost status of the seed position.
The idea here is to check whether more than one piece can simultaneously be
treated in the same way, and is again determined by counting. Suppose for ex-
ample we find the number of positions in the file which have the two kings in
the same places as in the seed, but where the knight is anywhere in L(knight)
and the rook occupies any place in L(rook). If this number is close to the ex-
pected proportion of the product of the sizes of L(knight) and L(rook), the places
occupied by these pieces may both be generalized. One pattern found this way
is shown in Figure 15-10, where the white king has been dropped as before, and
the rook and black king may occupy any of the indicated places. This feature
accounts for nearly 4% of all positions lost exactly 4-ply.

The final generalization form is to allow patterns of pieces to be shifted
over the board, preserving their interrelationship rather than their actual places.
The shifting may or may not require that the pattern of pieces maintain some
constant distance from one edge of the board. We start with the seed position
from which the pieces thought to be irrelevant have been excluded, and see how

480 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

I^S? cfo €fe

cfo
efe
ffo
cfo

a "B

S

Figure 15-10: Feature indicating 4% of 4-ply losses by black.

often a similar configuration obtainable by a row or column shift occurs in the
file of positions. If the number of row-shifted alternatives found is comparable
with the number expected under the hypothesis that all such alternatives are also
lost 4-ply, the hypothesis is accepted; the case for columns is handled in the
same way. One attribute discovered by this means is the one shown in Figure
15-11, which can be slid along the edge, and accounts for about 1% of all lost
4-ply positions.

[¥
s

cSfo

Figure 15-11: Attribute accounting for 1% of 4-ply losses by black.

The major weaknesses of this approach to attribute generation come from
the way patterns are represented. There seems to be no easy method of combin-
ing the second and third forms of generalization, to allow for situations where
one or more pieces may occupy more than one place and where the whole pat-
tern can then be moved around the board. Nor is it possible yet to specify pat-
terns containing two separate interactions that can be shifted independently of
each other. An example would be those positions that contain both of the at-
tributes shown in Figure 15-12.

QUINLAN 481

ft
and

Figure 15-12: Possible disjunctive generalization.

Finally, the attributes of this pattern-based kind used in the 2-ply and 3-ply
work were each built up of a number of alternative patterns of the above kind.
No way has yet been devised of deciding that a set of discovered patterns are all
relevant to the same mechanism and thus ought to be amalgamated into a single
attribute.

15.6 CONCLUSION

The long-term goal for all this work is the discovery, with as little human
intervention as possible, of a very high-performance rule for a complex relation.
This process will commence with the derivation of powerful and relevant at-
tributes from an inspection of examples, and proceed to the development of an
exact decision tree couched in terms of these attributes. If the resulting tree can
be shown to provide a classification method that is orders of magnitude faster
than any alternative mechanism, these experiments will have established the
feasibility of a machine learning approach to at least some aspects of automatic
programming.

ACKNOWLEDGMENTS

I gratefully acknowledge the importance of suggestions made by Donald
Michie, and of the resources provided by Stanford and Sydney Universities.

REFERENCES

Bratko, I. and Mulec, P.
1981.

"An experiment in automatic learning of diagnostic rules," Informatika,

Dietterich, T. G. and Michalski, R. S., "Learning and generalization of characteristic descriptions:
evaluation criteria and comparative review of selected methods," Sixth International Joint
Conference on Artificial Intelligence, IJCAI, Tokyo, Japan, pp. 223-231, August 1979.

482 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

Hayes-Roth, F. and McDermott, J., "Knowledge acquisition from structural descriptions," Proceed-
ings of the Fifth International Joint Conference on Artificial Intelligence, IJCAI, Cambridge,
Mass., pp. 356-362, August 1977.

Hunt, E. B., Marin, J. and Stone, P. T., Experiments in Induction, Academic Press, New York,
1966.

Kopec, D. and Niblett, T., "How hard is the play of the King-Rook King-Knight ending?," Advances
in Computer Chess, volume 2, Clarke, M.R.B. (Ed.), Edinburgh University Press, 1980.

Michalski, R. S., "Pattern recognition as rule-guided inductive inference," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4, pp. 349-361, 1980a.

Mitchell, T. M., "An analysis of generalization as a search problem," Sixth International Joint
Conference on Artificial Intelligence, Tokyo, Japan, August 1979.

Quinlan, J. R., "Induction over large data bases", Technical Report Report HPP-79-14, Heuristic
Programming Project, Stanford University, 1979.

Quinlan, J. R., "Discovering rules from large collections of examples: a case study," Expert Systems
in the Micro Electronic Age, Michie, D. (Ed.), Edinburgh University Press, Edinburgh, 1979.

Quinlan, J. R., "Semi-autonomous acquisition of pattern-based knowledge," Australian Computer
Bulletin, April 1980, (also to appear in Michie, D. (ed.), Machine Intelligence 10, Halsted
Press, 1982).

Shapiro, A. and Niblett, T., "Automatic Induction of classification rules for a chess endgame,"
Advances in Computer Chess, volume 3, Clarke, M.R.B. (Ed.), Edinburgh University Press,
1982.

Vere, S. A., "Inductive learning of relational productions," Pattern-Directed Inference Systems,
Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press, New York, 1978.

16

INFERRING STUDENT

MODELS FOR INTELLIGENT

COMPUTER-AIDED INSTRUCTION
Derek H. Sleeman

University of Leeds, U.K.

ABSTRACT

The ability to formulate students' models automatically is a critical com-
ponent of intelligent teaching systems. This chapter reports current progress on
inducing models of simple algebraic skills from observed student performance in
the context of the Leeds Modeling System (LMS). A model consists of an or-
dered production system with potentially incorrect variants of some rules (called
mal-rules). Constraining the number of plausible models that account for the
observed student problem-solving behavior has proved to be a major undertaking.
First, the current rule-based formulation is presented. Its shortcomings are in-
dicated and a revised analysis is given which is demonstrated to create a com-
plete and non-redundant set of models. Second, the related issue of generating a
minimal problem template is discussed. Such a template represents the simplest
type of problem that insures all rules in a model are exercised. Finally, the sig-
nificance of this type of analysis for other areas of AI is indicated.

16.1 INTRODUCTION

The area of Intelligent Teaching Systems (ITS) has two major aims; the
practical aim of producing teaching systems that are truly responsive to the needs
of the student, and the theoretical (AI) interest involved in using algorithms to
formulate this activity. Hartley and Sleeman [1973] have argued that an intel-
ligent teaching system requires access to the following information:

• knowledge of the problem domain
• a student model

483

484 CHAPTER 16: INFERRING STUDENT MODELS

• a list of teaching operations
• means-ends guidance rules that relate teaching decisions to conditions in

the student model
In this chapter, I outline the issues involved in inferring a model which describes
a student's performance on a set of tasks, and then I discuss some of the
problems which have to be faced if the number of models generated is not to be
an exponential function of the number of rules in the model.

During the last decade a number of systems have been implemented that
include some or all of the above databases. In particular, during the last five
years a primary focus of ITS has been to provide supportive learning environ-
ments intended to facilitate learning-by-doing. These systems, which include
SOPHIE [Brown et al, 1982], GUIDON [Clancey, 1982], WEST [Burton & Brown,
1982], WUMPUS [Goldstein, 1982] PSM-NMR [Sleeman & Hendley, 1982],
provide problem-solving and tutoring capabilities. The above systems have been
developed and tested in the following areas: debugging electronic circuits; medi-
cal diagnosis; a game that draws upon the student's knowledge of arithmetic; a
game that similarly draws upon his power of logical inference; and a system that
gives practice with a non-deterministic (backtracking) algorithm. Each of these
systems has tended to emphasize some aspects of the whole design and to
neglect others. Thus it is not surprising that the designers have never been fully
satisfied with the performance of their systems; the following are some of the
acknowledged shortcomings:

• The instructional material produced in response to a student's query or mis-
take is often at the wrong level of detail, as the system assumes too much
or too little knowledge.

• Most tutoring systems are capable of solving problems in only one or two
prescribed ways. For instance GUIDON has to use the backchaining control
structure of MYCIN, rather than following other equally valid medical diag-
nosis procedures. As a result of this constraint, the system coerces a
user's performance into its own conceptual framework.

• The tutoring and critiquing strategies used by these systems are excessively
ad hoc, reflecting unprincipled intuitions about the role of a tutor. >

• User interaction remains too restrictive, thereby limiting the student's
ability to express himself (and thereby limiting the tutor's diagnostic
mechanisms).
In an attempt to design more powerful systems, researchers in the area of

intelligent teaching systems are now addressing the following issues:1

•For a more detailed discussion of these issues please see the introductory essay to Intelligent
Tutoring Systems [Sleeman & Brown, 1982]. Also note that many of the papers in that volume
address various aspects of the student modeling problem.

SLEEMAN 485

• Performing detailed protocol analysis of learning and mislearning.
• Developing representations of knowledge for use with ITS's which may

also provide psychological insights.
• Developing and evolving AI techniques, in particular:

o implementing friendly interfaces,
o handling incomplete/inconsistent databases, and
o inferring student models by "observing" the student's responses to

sets of problems.

In common with the BUGGY system [Brown & Burton, 1978], the Leeds
Modeling System, LMS, addresses the issue of inferring student models and uses
a generative mechanism to create hypotheses/models from primitives. Without a
generative facility, the ability of a system to model complex, and possibly error-
prone, behavior is severely limited; this point is well argued by Carbonell
[1970]. However, the use of such a mechanism also causes difficulties as such
an algorithm can readily lead to a combinatorial explosion, where given N primi-
tives, N! models are produced.2 BUGGY uses a collection of primitive bugs from
which to generate models; LMS uses domain rules and corresponding mal-rules,
(incorrect) rules, which have been observed in the analysis of earlier protocols.
On the other hand, whereas BUGGY uses a series of heuristics to limit the size of
its search space, a major feature of the LMS work has been the formulation of a
systematic search so as to focus on particular rule(s). As will be demonstrated,
this technique drastically reduces the number of models that must be considered
at each stage.3

LMS has been implemented as two subsystems. The first, the offline
phase, generates a complete set of models (using the algorithms discussed
below), and retains those models which give unique results with the predefined
problem sets. The second phase is the online modeling system which uses the
data generated by the offline phase to determine whether the student's behavior
falls within the space defined by the rules and mal-rules. (Students who display
inconsistent behavior or unanticipated "bugs", are not matched by this algorithm,
and are reported as exhibiting inconsistent behavior.) Usually students start at
the first level, and modeling continues until the problem sets are exhausted or the
number of correct solutions on a particular problem set falls below some
predefined threshold. (The "results" would be, respectively, a consistent model,
or a statement that the student's behavior was inconsistent. See [Sleeman, 1982]
for more details of the interactive phase and the results of an experiment.)

2This assumes that each model must contain N primitives; the number is much greater if all models
are generated.

initially, we made the assumption that the domain was hierarchical and so we have referred to the
stages as levels; and thus modeling proceeds by first considering level 1, then 2, and so on. Further,
the model at level N contains all the rules in the level N—1 model and the newly introduced rule.

486 CHAPTER 16: INFERRING STUDENT MODELS

LMS provides extensive data for the human teacher/tutor. Note that, in-
itially I was concerned with implementing a diagnostic system, namely a system
which provided diagnostic models, and only more recently have I asked whether
these models can provide insights into the cognitive processes used by the stu-
dent [Sleeman, unpublished, 1982].

In this paper I review the initial formulation of LMS-I [Sleeman & Smith,
1981], together with the results of an experiment which led to the discovery of
some inadequacies [Sleeman, 1982]; the body of the paper is taken up with the
reformulation of the search to accommodate these points. Before considering
details of these formulations, we briefly review the production system, PS,
representation which LMS uses for student models, and explain the main features
of the PS interpreter used to "execute" these models.

16.1.1 A Production System Representation for Domain Knowledge

Table 16-la gives a set of production rules which are sufficient to solve
linear algebraic equations. Table 16-lb gives a set of mal-rules for this domain
which have been observed in protocols analyzed earlier and Table 16-lc shows
pairs of correct and "buggy" models executing typical tasks.

In this work a model is an ordered list of rules. Order is significant be-
cause the interpreter executes the action of the first rule in the model whose con-
ditions are satisfied by the problem state. Moreover, the PS interpreter being
used searches from left to right; this search is terminated and the associated ac-
tion is carried out when a rule's conditions are satisfied. (Thus, if a problem
state was such that ADDSUB could fire twice, the interpreter always fires on the
left-hand pattern first.) In this way we are able to capture algebraic precedence.
The cycle of matching patterns and executing actions continues until no further
rules fire.

SLEEMAN 487

Table 16-1: Rules and mal-rules in student models.

RULE NAME

FIN2
SOLVE
ADDSUB
MULT
XADDSUB
NTORHS
REARRANGE
XTOLHS
BRA1
BRA2

LEVEL

1
2
3
4
5
6
7
8
9

10

CONDITION-SET

(SHD X = M/N)
(SHD M * X = N)
(lhs M + 1 - N rhs)
(Ihs M * N rhs)
(lhs M*X + 1 - N*X rhs)
(lhs + 1 - M = rhs)
(lhs + 1 - M + 1 - N*Xrhs)
(lhs = + 1 - M*X rhs)
(lhs < N > rhs)
(lhs M * <N*X + 1 - P> rhs)

ACTION

(SHD (M N)) or (SHD evaluated)
(SHD X = N/M) or (SHD INFINITY)
(lhs [evaluated] rhs)
(lhs [evaluated] rhs)
(lhs (M + 1 - N) * X rhs)
(lhs = rhs - 1 + M)
(lhs + 1 - N*X + 1 - M rhs)
(lhs - 1 + M*X = rhs)
(lhs N rhs)
(lhs M*N*X + 1 - M*Prhs)

M, N and P are integers, lhs, rhs, etc., are general patterns (which may be null), + 1 - means either +
indicates the String Head, and < and > represent standard "algebraic brackets".

or - may occur, SHD

a) Rules for the algebra domain (evaluative form and slightly stylized).

RULE NAME

MSOLVE
MNTORHS
M2NTORHS
M3NTORHS
MXTOLHS
M1BRA2
M2BRA2

LEVEL

2
6
6
6
8

10
10

CONDITION-SET

(SHD M*X = N)
(lhs +1 - M = rhs)
(Ihsl + 1 - M lhs2 = rhs)
(lhsl + 1 - M lhs2 = rhs)
(lhs = + 1 - M*Xrhs)
(lhs M * <N*X + 1 - P> rhs)
(lhs M * <N*X + 1 - P> rhs)

ACTION

(SHD X = M/N) or (SHD INFINITY)
(lhs = rhs + 1 - M)
(lhsl + 1 - lhs2 = rhs + 1 - M)
(lhsl + 1 - Ihs2 = rhs + 1 - M)
(lhs + 1 - M*X = rhs)
(lhs M*N*X + 1 - Prhs)
(lhs M*N*X + 1 - M + 1 - Prhs)

b) Some mal-rules for the domain (using the same conventions as above).

MULT
ADDSUB
SOLVE
FIN2

2X = 3 * 4 + 5
2X = 12 + 5
2X = 17
X = 17/2
(17/2)

ADDSUB
MULT
SOLVE
FIN2

2X = 3 * 4 + 5
2X = 3 * 9
2X = 27
X = 27/2
(27/2)

i) Shows (MULT ADDSUB SOLVE FIN2) and (ADDSUB MULT SOLVE FIN2) solving 2X

NTORHS
ADDSUB
SOLVE
FIN2

2X + 5 = 9
2X = 9 - 5
2X = 4
X = 2/1
(2)

MNTORHS
ADDSUB
SOLVE
FIN2

2X + 5 = 9
2X = 9 + 5
2X = 14
X = 7/1
(7)

ii) Shows (NTORHS ADDSUB SOLVE FIN2) and (MNTORHS ADDSUB SOLVE FIN2) solving 2X + 5 = 9.

c) Pairs of correct and "buggy" models executing typical tasks.
(The first line gives the initial state and all subsequent lines give the rule which fires, and the resulting state.)

488 CHAPTER 16: INFERRING STUDENT MODELS

16.2 GENERATING A COMPLETE AND NON-REDUNDANT SET OF MODELS

In order to generate a concise set of student models, Sleeman and Smith
[1981] developed the SELECTIVE algorithm. In this algorithm only one new
rule was added to a model at each stage, and further, it was assumed that if the
student used the "new" rule correctly when it was first introduced, then the stu-
dent would use it correctly with all subsequent problem types. In a recent field
trial using LMS [Sleeman, 1982], this assumption was often violated. Removing
this assumption involves only a minor change to LMS's code but means that the
search space of potential models increases substantially. Hence, I was forced to
reconsider the algorithm used to generate models at each level. I refer to the
revised modeler as LMS-ii.

The appendix presents several examples of the SELECTIVE algorithm; al-
though several heuristics were used, many of the models gave the same results
with many of their problem set. A more detailed analysis of the rules indicated
that it is possible to predict that different models will yield the same behavior,
and hence, in many instances, reduce the number of redundant models generated.
The following classification of the condition part of rules has been evolved.

Subsume. Rule Rl is said to subsume R2, if Rl 's condition set is an or-
dered subset of R2's conditions. The effect of Rl being placed before R2 is that
the production system would act as if R2 did not occur. Throughout this
analysis, the order of the conditions within the condition set is significant. For
example, whereas condition set [Cl C2] would subsume [Cl C2 C3], [C2 Cl]
would not.4 Condition sets for such a pair of rules from the arithmetic domain
are as follows:

ADD NUM + NUM
PADD < NUM + NUM

(where < is the usual left-hand "algebraic" bracket, used to change the order of
the evaluation of an algebraic expression). Similarly, in this domain ADDSUB
subsumes REARRANGE (see Table 16-1 and Table 16-5).

In practice, we need more complex conditions, like:
NUMBER BUT NOT 1
Such conditions further reduce the number of models generated, and so this

analysis gives an upper bound on the number of models to be considered.5

Potential Interaction Between Rules. Suppose the condition set of Rule

4Note carefully this use of "subsume". We are using "subsume" only to discuss static rule con-
ditions, not traces of the model.

5These redundancies and those caused by numerical degeneracy are picked up by the off-line phase
which evaluates all the generated models against the tasks for the various levels.

SLEEMAN 489

3, R3, is [C2 C3 C4 STR1], and the condition set of Rule 4, R4, is [STR2 C3
C4 C5] where the STRi are arbitrary strings of conditions, including null, then
both rules would be able to fire if the problem presented contained a pattern of
the form:

C2 C3 C4 C5
As I am dealing with production rules in which the order of the conditions is
significant, the order of the rules within the model determines which rule fires
first. Hence such a pattern would potentially discriminate between the models

(...R3...R4...) and (...R4...R3...). Whether or not the example problem dis-
criminates depends on the actions of the two rules. An example of such a pair
of rules is:

ADDSUB NUM + I - NUM
MULT NUM * NUM

The discriminatory patterns, which I shall also refer to as overlap patterns, in
this case are:

NUM + 1 - NUM* NUM
NUM* NUM 4-1- NUM

(As explained in Table 16-1, +1— matches either the literal ' + ' or the literal
' —', and NUM matches any integer.) A subalgorithm, called
INTERACT/SUBSUME applies the previous definitions to determine indepen-
dence, interaction or subsumption between ordered sets of rules.

Non-interacting, or Order-independent, Rules. Rules do not interact if
their ordered condition sets do not overlap. For example, if the conditions of R5
are Cl C2 C3 and of R6 are Cl C2 C4, then these would nbt fire on the same
input.

Note that subsumption, and failure to interact, can be determined by in-
spection of the condition parts of the rules. However, potential interaction or
conflict depends critically on the problem considered, and so must be decided
with respect to each problem type. I will now consider the algorithm based on
the above analysis.

16.2.1 An Algorithm for Generating Complete and Non-Redundant Models

The task of creating a complete and non-redundant set of models from
primitives is analogous to that performed by the DENDRAL algorithm that creates
a comprehensive and non-redundant set of isomers given a molecular formula
[Buchanan et al., 1971]. The algorithm for generating models has three parts.

1. Start with the set of rules that solve algebra problems correctly at a given
level, that is, the ideal student model for that level. Then add the

490 CHAPTER 16: INFERRING STUDENT MODELS

mal-rule6 variants to each rule in the model. For example, the ideal stu-
dent for level 4 is:

(MULT ADDSUB SOLVE FIN2)
When all the rules are retrieved this gives:

((MULT) (ADDSUB) (SOLVE MSOLVE) (FIN2))
2. Generate all configurations from this data structure:

(MULT ADDSUB SOLVE FIN2)
(MULT ADDSUB MSOLVE FIN2)

3. Apply the INTERACTION/SUBSUME subalgorithm to the configurations
generated in the previous step. The subalgorithm separates the rules in the
configuration into those which may interact and those which cannot. Next,
the subalgorithm returns a complete set of all relevant (interactive) rule or-
derings, to each of which is added the rules that do not interact. Finally,
the models are scanned to remove subsumed rules. For the configuration
we are considering, this algorithm returns four models:7

(MULT ADDSUB SOLVE FIN2)
(ADDSUB MULT SOLVE FIN2)
(MULT ADDSUB MSOLVE FIN2)
(ADDSUB MULT MSOLVE FIN2)

Table 16-2 demonstrates the enhanced modeler's ability to detect errors in rules
first introduced at "earlier" levels. (This table is purely illustrative and so there
is only a single problem per level.)

One of the major concerns in generating student models has been the size
of the search space. As Sleeman and Smith [1981] pointed out, the number of
potential combinations of rules is vast. In that paper we analyzed the size of the
search space in some detail; I provide a summary here, before discussing the
extensions. This original analysis considered all models containing from 1 to R
domain rules, and assumed that each rule had M erroneous alternatives, or mal-
rules. This is the basis for the EXHAUSTIVE algorithm that enumerates all pos-
sible models composed of R rules or mal-rule variants. The EXHAUSTIVE-
GROUPED algorithm assumes that one knows the grouping between the rules
and associated mal-rules, and hence this algorithm selects a rule, or one of the
associated mal-rules, and then creates all possible orderings. In the SELECTIVE
algorithm the models for the L+ 1th level are based on the model that is deemed
to explain the student's behavior at level L. (Recall that this formulation as-

6A mal-rule is an incorrect variant of a rule which has been noted in an earlier protocol. MSOLVE
is a mal-rule of SOLVE.

7 A rule set whose order does not have any significance is referred to as a configuration; whereas a
rule set whose order is significant is referred to as an ordered configuration, or model.

SLEEMAN 491

Table 16-2: A section of a student protocol with LMS-II where the mal-rules are "in scope" at
subsequent levels. (Explanatory comments are preceded by a semicolon.)

THIS IS THE ALGEBRA SYSTEM.

THE LEVEL IS 1
**ModeIing OK-AT THIS LEVEL

THE LEVEL IS 2
SOLVE (3 * X = 9)
> X = 3/9
IS THAT WHAT YOU INTENDED (Yes/No)> Yes
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT
**THE STUDENT BEHAVES AS MODEL ((MSOLVE FIN2))
;The student "inverted" the answer and hence behaved as predicted by MSOLVE.

THE LEVEL IS 3
SOLVE (5 * X = 8 + 2)
> X = 5/10
IS THAT WHAT YOU INTENDED (Yes/No)> Yes
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT
**THE STUDENT BEHAVES AS MODEL ((ADDSUB MSOLVE FIN2))
;The student "inverted" the answer and hence behaved as predicted by MSOLVE.

THE LEVEL IS 4
SOLVE (5 * X = 3 * 3 + 1)
> X = 5/12
IS THAT WHAT YOU INTENDED (Yes/No)> Yes
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT
**THE STUDENT BEHAVES AS MODEL ((ADDSUB MULT MSOLVE FIN2))
;The student appears to have both an error in his precedence rules and "inverted" the answer.

THE LEVEL IS 5
SOLVE (2 * X + 4 * X = 12)
> X = 6/12
IS THAT WHAT YOU INTENDED (Yes/No)> Yes
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT
**THE STUDENT BEHAVES AS MODEL ((MULT
;The student "inverted" the answer and hence behaved

THE LEVEL IS 6
SOLVE (2 * X + 4 * X + 4 = 16)
> X = 6/20
IS THAT WHAT YOU INTENDED (Yes/No)> Yes
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT
**THE STUDENT BEHAVES AS MODEL ((MULT ADDSUB MNTORHS XADDSUB MSOLVE FIN2))
;The student appears to have taken a number across to the RHS without changing the sign and "inverted" the answer.

THE LEVEL IS 7
SOLVE (4 + 2 * X + 2 * X = 16)
> X -2
IS THAT WHAT YOU INTENDED (Yes/No)> Yes
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT
**THE STUDENT BEHAVES AS MODEL ((ADDSUB MULT REARRANGE NTORHS
XADDSUB SOLVE FIN2))
;This answer can be explained if one assumes the student has processed 4 + 2 * X to give 6 * X.
;A naive explanation is that he accords ADDSUB too high a precedence.

ADDSUB XADDSUB MSOLVE FIN2))
as predicted by MSOLVE.

492 CHAPTER 16: INFERRING STUDENT MODELS

sûmes that if a student does not make an error with rule L at the level at which it
is introduced, then this rule will be used correctly at all subsequent levels.) In
[Sleeman & Smith, 1981] we compared the number of configurations generated

by the EXHAUSTIVE, the EXHAUSTIVE-GROUPED, and the SELECTIVE al-
gorithms. The number of configurations are not directly comparable, however,
for the following reasons:

1. The EXHAUSTIVE and EXHAUSTIVE-GROUPED algorithms allow mal-
rules to be in "scope"—that is, accessible at all subsequent levels, but the
SELECTIVE algorithm does not.

2. In all cases the number of mal-rules for each level is assumed to be con-
stant, that is, we quoted the number of configurations which arise when
M = 0, M= 1, M = 2, and so on, at all levels; but in practice, the value of
M varies at each level.

Taking these points into consideration for the EXHAUSTIVE algorithm at level
L gives:

(L + 2 Ms) ! : S Ms ! (1)

1 < s < L I < s < L

models, where Ms is the number of mal-rules at level s. For the
EXHAUSTIVE-GROUPED algorithm at level L there are

P (l+Ms)xL! (2)
models. (Note that in Equation (2) the first term gives the number of configura-
tions, whereas the whole expression gives the number of ordered configurations,
or models.) For the SELECTIVE algorithm at level L there are

Lx(l+M/) (3)
models.

The ANALYSIS-OF-CONDITIONS (global mal-rule) algorithm considers
all configurations in which rule order is significant and further allows mal-rules
to be in "scope" at the level at which the rule is first introduced and all sub-
sequent levels; the ANALYSIS-OF-CONDITIONS (local mal-rule) algorithm
again considers all possible interactions of the rules, but allows the mal-rules to
occur only at the level the rule is introduced. This latter variant is only really
included for completeness, since it has the disadvantage of having localized mal-
rules. Both the global and local ANALYSIS-OF-CONDITIONS algorithms use
the complete and non-redundant model-generation algorithm; indeed the latter
merely provide the appropriate data (the ideal student models, and the data on
rule interaction and subsumption) for the complete algorithm.

The analysis for the global ANALYSIS-OF-CONDITIONS algorithm is
somewhat more complex. From Equation (2), above we know there are:

, P a L (1 + M s) (4a)
or NM, configurations. To determine the number of models, the

SLEEMAN 493

INTERACTION/SUBSUME subalgorithm is applied to each of these configura-
tions. The number of models generated from a configuration is a function of the
number of interacting rule pairs, IP, and the number of rules involved in the
interacting pairs, IR; an algebraic expression for this function can be formulated
in some cases, but its value is always in the range 1 to IR!. (This formulation is
very general and allows both rules and their associated mal-rules to interact with
other rules or mal-rules.) The total number of models generated is thus:

1 <NM f(IPc, IRc)
1 < c ^ NM

Section 16.2.2 discusses the worst and best values for the function, f.
Equation (4a) corresponds to the second stage of the complete and non-redundant
model generation algorithm, and Equation (4b) to the third. Table 16-3 gives the
number of configurations which arise with the various algorithms.

As we can correlate the mal-rules together with the rules from which they
were derived, it is unlikely that the EXHAUSTIVE algorithm would ever be re-
quired. So far, the number of configurations for the SELECTIVE algorithm is
consistently the lowest at each level, but it should be remembered that this algo-
rithm allows mal-rules only to be available at the level they are first introduced.
On the other hand the global ANALYSIS-OF-CONDITIONS algorithm gives all
the non-redundant rules for a particular level and so a comparison between the
number of models created by the EXHAUSTIVE-GROUPED and ANALYSIS-
OF-CONDITIONS algorithms is pertinent. The large difference between the
number of models created by the EXHAUSTIVE-GROUPED and the global
ANALYSIS-OF-CONDITIONS algorithms results from the fact that the
EXHAUSTIVE-GROUPED algorithm generates many equivalent models. Two
models are said to be equivalent if they predict identical behavior. Applying the
INTERACTION/SUBSUME subalgorithm, we conclude that the ADDSUB and
the SOLVE rule are non-interacting, and so it is quite unnecessary to consider
both orderings of the rules. Such a simple observation reduces the size of the
search space in half. A similar observation for the MULT and SOLVE rules
reduces the search space yet again in half. At level 9, for example, the number
of models is reduced by a factor of 20160. Further, we note that the second and
third models for the

(MULT ADDSUB SOLVE FIN2)
configuration generated by the SELECTIVE algorithm (see the appendix) are
equivalent, whereas this same algorithm does not generate any of the models
containing the MSOLVE variant. On the other hand, the global ANALYSIS-
OF-CONDITIONS algorithm returns a complete and non-redundant set of four
models as discussed earlier in this section.

However, the number of configurations to be considered with the global
ANALYSIS-OF-CONDITIONS algorithm at and after level 6 begins to be siz-
able, and is likely to cause difficulty in a practical online modeling system. In
order to reduce the number of models further, the following approaches are sug-
gested:

(4b)

494 CHAPTER 16: INFERRING STUDENT MODELS

Table 16-3: Comparative size of the search space.

T2

FIN2

SOLVE

ADDSUB

MULT

XADDSUB

NTORHS

REARRANGE

XTOLHS

BRA1

BRA2

(FIN2)

(SOLVE FIN2)

(ADDSUB SOLVE FIN2)

(MULT ADDSUB SOLVE FIN2)

(MULT XADDSUB ADDSUB SOLVE FIN2)

(MULT XADDSUB ADDSUB NTORHS SOLVE FIN2)

(MULT REARRANGE XADDSUB ADDSUB NTORHS SOLVE FIN2)

(MULT REARRANGE XADDSUB ADDSUB NTORHS XTOLHS SOLVE FIN2)

(MULT REARRANGE BRA1 XADDSUB ADDSUB NTORHS XTOLHS SOLVE

FIN2)

(MULT REARRANGE BRA1 BRA2 XADDSUB ADDSUB NTORHS XTOLHS
SOLVE FIN2)

T7 T9 T10

1

2

3

4

5

6

7

8

9

10

0

1

0

0

0

3

0

1

0

2

1

6

24

120

720

151200

1663200

51891840

726485760

70572902300

1

4

12

48

240

5760

40320

645120

5806080

174182400

1

4

3

4

5

24

7

16

9

30

1

2

2

4

12

72

144

188

288

10368

1

2

1

2

6

36

12

24

12

432

1
2
6

12
20
80

280
2240

20160
16800

Captions for the column headings

Tl Rule concentrated on at this level
T2 Ideal model for this level
T3 Level number
T4 Number of mal-rules observed for that level
T5 Number of configurations generated by the EXHAUSTIVE algorithm
T6 Number of configurations generated by the EXHAUSTIVE-GROUPED algorithm
T7 Number of configurations generated by the SELECTIVE algorithm8

T8 Number of configurations generated by the global ANALYSIS-OF-CONDITIONS algorithm
T9 Number of configurations generated by the local ANALYSIS-OF-CONDITIONS algorithm
T10 Reduction factor for the EXHAUSTIVE-GROUPED/global ANALYSIS-OF-CONDITIONS algorithms

8Assumes for ease of calculation that all the rules are in different priority classes; so in practice it is
likely that these figures would be somewhat reduced.

SLEEMAN 495

1. Ensure that the problem set is discriminatory and hence stop the com-
parison between the student's answer and those obtained by executing the
potential models set as soon as a single model matches. (This would speed
up the matching process in the online modeling phase but would not
prevent the system from generating a large number of models.)

2. Introduce domain-specific heuristics such as those in the DEBUGGY system
[Burton, 1982]. For instance, if two rules are known not to coexist, en-

sure that no model incorporates both. So far it has not been necessary to
explore this possibility, but we accept that it might become necessary in
domains where there are substantially more rules.

3. Investigate whether or not it is possible to prevent the generation of further
models; this is discussed in the next section.

16.2.2 Further Reducing the Number of Irrelevant Models Generated

This section describes two situations where redundancy in models may be
reduced further. Some of the rules that were included in the models on the as-
sumption that algebra is a hierarchical domain are simply never used when the
models are run on the problems for the particular level, but they nevertheless
affect the size of the search space; this is discussed further in Section 16.2.2.1.
Furthermore, because of the nature of the problems presented, rules which can
potentially interact are unable to do so; yet, these rules must be present so that
the problems can be evaluated. This is discussed further in Section 16.2.2.2.

The issue of irrelevant models can also be considered from the viewpoint
of the analysis of the ANALYSIS-OF-CONDITIONS algorithm presented earlier.
Equation (4a) gives the number of configurations and (4b) gives the number of
models. From (4a) we know that the number of configurations generated can be
reduced if we eliminate rules with mal-rules. (Eliminating rules without mal-
rules does not affect the number of configurations generated, but it does reduce
the size of the models.) On the other hand, reducing the number of interacting
rules can have a major effect because the value of the function, f, is at worst IR!
and at best 1. That is, in the worst case all the rules interact and so the formula
reduces to that for the EXHAUSTIVE-GROUPED algorithm (Equation (2));
whereas in the best case the number of models equals the number of configura-
tions and is given by Equation (4a).
16.2.2.1 Algebra: A Non-hierarchical Domain

A principal objective for the SELECTIVE algorithm [Sleeman & Smith,
1981] was that it should concentrate on a single rule at each stage of the model-
ing. However, we assumed that the domain was hierarchical in that at level
L + 1 when we are concentrating on the new rule, the original L rules are present
and completely unchanged in both form and order. (The significance of rule
interaction is considered in Section 16.2.3.) An inspection of Table 16-2, for
instance, shows that at many levels a number of rules are not activated due to

496 CHAPTER 16: INFERRING STUDENT MODELS

the nature of the problems presented. For example, the sequence of rules that
solves the level-6 problem in Table 16-2 is:

MNTORHS, ADDSUB, XADDSUB, MSOLVE, FIN2,

that is, MULT is redundant. Similar redundancies are found in many other
levels. In Table 16-4 we give the minimal, non-redundant (and hence non-
hierarchical) rule sets and the corresponding number of models generated with
this data.9

16.2.2.2 Section Rules That Interact in a Predefined Problem Set

In Section 16.2, I outlined the enhanced algorithm for generating models,
but I have not indicated how to determine which domain rules interact. This can
be done by determining whether their conditions overlap. Interaction and other
information about the domain rules are given in Table 16-5. The number of
models quoted for the revised generation algorithm in Table 16-3 assumes that
all potentially significant interactions take place. However, a further inspection
of the problems presented in Table 16-2 shows that this is not true. For ex-
ample, at level 6 the ADDSUB, MULT and XADDSUB rules are unable to in-
teract because the problems do not contain the overlap patterns for these rule
pairs. In the next paragraph, we demonstrate the effects of these newly intro-
duced constraints.

In Table 16-4, rules not necessary for solving the particular set of problems
have been deleted from the rule sets. At level 6, for example, NTORHS is
being tested but as at level 8 and beyond, it is no longer necessary to solve the
problems, so it has been deleted. At level 6, the non-hierarchical ideal student
model is:

(NTORHS ADDSUB SOLVE FIN2)

If the problems presented permit interaction between all the rules that could
potentially interact, then there would be twelve models, as NTORHS has three
mal-rules, MNTORHS, M2NTORHS and M3NTORHS and the last two can in-
teract with ADDSUB, thus giving 6 (1 + 1 + 2 + 2) models. Further, SOLVE has
an associated mal-rule, MSOLVE, thus making twelve models in all. If the
problems were such that they did not allow the interaction between
M2NTORHS/M3NTORHS and ADDSUB to take place, then the number of
models would be eight. A second example in which the restricted interaction
can reduce the number of models occurs at level 9 where the reduced rule set is:

9I refer to this as being the non-hierarchical algorithm, but as noted above this would be more
accurately described as the COMPLETE and NON-REDUNDANT algorithm activated with non-
hierarchical data (namely, the reduced rule sets given in Table 16-4), whereas in ANALYSIS-OF-
CONDITIONS the same algorithm is applied to the hierarchical student models given in Table 16-3.

SLEEMAN 497

Table 16-4: The templates and size of the search space for the non-hierarchical algebra domain.

T l T2 T3 T7 T8 T9 T10

FIN2
SOLVE
ADDSUB
MULT
XADDSUB
NTORHS
REARRANGE
XTOLHS
BRA1
BRA2

1
2
3
4
5
6
7
8
9

10

0
1
0
0
0
3
0
1
0
2

1
4

12
48

240
5760

40320
645120

5806080
174182400

1
2
2
4

12
72

144
288
288

10368

1
2
2
2
2

12
32
4
4

12

1
2
2
2
2

12
32
4
2

12

1
4
3
4
5

24
7

16
9

30

1
2
6

12
20
80

280
2240

20160
16800

1
2
6

24
120
480

1260
161280

2903040
14515200

Til

(FIN2)
(SOLVE FIN2)
(ADDSUB SOLVE FIN2)
(MULT SOLVE FIN2)
(XADDSUB SOLVE FIN2)
(NTORHS ADDSUB SOLVE FIN2)
(REARRANGE ADDSUB NTORHS SOLVE FIN2)
(XADDSUB XTOLHS SOLVE FIN2)
(MULT ADDSUB BRA1 SOLVE FIN2)
(BRA2 XADDSUB XTOLHS SOLVE FIN2)

Captions for Column Headers

Tl Rule focused on
T2 Level number
T3 Number of mal-rules associated with the rule
T4 Number of models with the EXHAUSTIVE-GROUPED algorithm
T5 Number of models with the global ANALYSIS-OF-CONDITIONS algorithm
T6 Number of non-hierarchical models
T7 Number of non-hierarchical models when the interaction is reduced
T8 Number of models with the SELECTIVE algorithm
T9 Reduction ratio for EXHAUSTIVE-GROUPED/GLOBAL ANALYSIS-OF-CONDITIONS algorithms.
T10 Reduction ratio for EXHAUSTIVE-GROUPED/NON-HIERARCHICAL and REDUCED INTERACTION algorithms
Tl 1 The reduced rule sets

Note that at level 7 it is not possible to further reduce the number of models
because ADDSUB subsumes REARRANGE and because this problem template
allows M2NTORHS and M3NTORHS to interact with both ADDSUB and
REARRANGE.

498 CHAPTER 16: INFERRING STUDENT MODELS

Table 16-5:

This is a sample of the output from the program which reports the rules
which interact, subsume and are satisfied by other problem templates, together
with a summary of all the results from this analysis. Semantically meaningful
interactions are signaled by an asterisk.

* ADDSUB and MULT interact; the overlap is: ((NUM + 1 - NUM * NUM) (NUM * NUM + 1 - NUM))
* ADDSUB and XADDSUB interact; the overlap is: ((NUM + 1 - NUM * X + I - NUM * X))

ADDSUB and NTORHS interact; the overlap is: ((NUM + 1 - NUM =))
ADDSUB and MNTORHS interact; the overlap is: ((NUM + 1 - NUM =))

* ADDSUB and M2NTORHS interact; the overlap is: ((NUM + 1 - NUM !LN =))
* ADDSUB and M3NTORHS interact; the overlap is: ((NUM + 1 - NUM !LN =))

ADDSUB subsumes REARRANGE

* ADDSUB and REARRANGE interact; the overlap is: ((NUM + 1 - NUM * X))

* WARNING-RULE ADDSUB IS SATISFIED BY REARRANGE'S PT **

* ADDSUB and BRA2 interact; the overlap is: ((NUM + 1 - NUM * < NUM * X + 1 - NUM >))
* ADDSUB and MIBRA2 interact; the overlap is: ((NUM + i - NUM * < NUM * X + 1 - NUM >))
* ADDSUB and M2BRA2 interact; the overlap is: ((NUM + 1 - NUM * < NUM * X + 1 - NUM >))

Rephrased Summary of Complete Output

ADDSUB suDsumes REARRANGE.
ADDSUB and the following rules can interact significantly:

MULT, REARRANGE, XADDSUB, BRA2, M1BRA2, M2BRA2, M2NTORHS and M3NTORHS.
MULT and the following rules can interact significantly: XADDSUB, BRA2, M1BRA2 and M2BRA2.
REARRANGE and the following rules can interact significantly:

XADDSUB, M2NTORHS and M3NTORHS.
XADDSUB and the following rules can interact significantly: M2NTORHS and M3NTORHS.
M2NTORHS and M3NTORHS are satisfied by XADDSUBs and REARRANGE's problem templates.

(MULT ADDSUB BRA1 SOLVE FIN2)
Since MULT and ADDSUB can potentially interact and SOLVE has a mal-rule
alternative MSOLVE, the reduced rule set gives rise to four models. The
problem template for this level (see Table 16-9) is:

NUM * X = NUM * < NUM 4- NUM >
Since given this template MULT and ADDSUB cannot interact, it is only

necessary to consider two models. Table 16-4 also gives the number of models
generated when rule interactions are reduced to those possible for the problem
set.10

It can be seen that these additional constraints significantly reduce the
number of models to be considered. Several points should be made about the
reduced interaction results in Table 16-4.

10This algorithm is referred to as the non-hierarchical and reduced-interaction algorithm. That is, the
complete and non-redundant algorithm is activated with ideal student models that are non-
hierarchical, and where the interaction is reduced to that appropriate for the problem set.

SLEEMAN 499

1. Because ADDSUB subsumes REARRANGE it is never possible to create
problem sets requiring both rules where these rules do not interact.

2. Several of the problem templates,11 including those for level 7, also con-
tain the overlap pattern for ADDSUB and REARRANGE with
M2NTORHS/M3NTORHS, and this overlap pattern increases the number
of models to be considered.

3. As BRA2 partially evaluates its expressions, it is not necessary to include
MULT in the rule set. For example, given the expression:

2 * <3X - 4>

BRA2 returns:

6X - 8

Similarly, the mal-rule M2BRA2 evaluates its expressions, making
ADDSUB also redundant.12

16.2.3 The Significance of Rules Which Interact

Tasks, in which more than one rule can be applied, frequently cause dif-
ficulties for the student. (See the protocols reported in the earlier experiment
[Sleeman, 1982], and Matz's [1982] and Davis' [Davis et al, 1978] illustrations

for more examples.) In Table 16-5, the potential interactions between all the
domain's rules and mal-rules are given. In Table 16-6 we have gone one step
further and created a problem template that may be used to determine whether
the student has the correct precedence for particular interacting rules, such as
ADDSUB and MULT. However, because of the nature of the rule actions,
changing the relative order of the rules does not always produce a task which can
discriminate (for example, ADDSUB and NTORHS). Those pairs of rules in
Table 16-6 that are significant have been starred. The algorithm for generating
problem templates for interacting rules is given in Section 16.3.2. It should be
noted that in the early stages of teaching algebra, teachers frequently avoid un-
wanted interactions by introducing brackets. However, there are problem types
which are not normally disambiguated in this way, for example:

2 + 3X = 6

11 By this we mean an entity in which the variables are replaced by values in order to formulate a
problem. Table 16-6 gives a problem template for the ADDSUB/MULT rules as:

NUM * X = NUM -HI- NUM * NUM

One instantiation of this problem template is:

2 * X = 3 + 4 * 5

12Without this, the number of models generated for level 10 for both the non-hierarchical and the
reduced interaction rule sets would be much greater as BRA2 and its two mal-rules potentially
interact with both ADDSUB and MULT.

500 CHAPTER 16: INFERRING STUDENT MODELS

where in our notation it is possible for both ADDSUB and REARRANGE to
apply. In such examples the source of the error could be attributed to the student
having a non-standard representation for the task; for obvious reasons this has
been referred to as misparsing.

Rule interactions also influence the order in which topics should be
presented. For example, in this domain, examples that use the XADDSUB rule
should be seen before those that require the NTORHS rule, as such an order may
prevent the formation of the M2NTORHS and M3NTORHS rules. That is, by
presenting problems such as:

2X + 3X = 10
which is simplified by the teacher to:

5X = 10
It is hoped that the student would realize that the integer 3 cannot be detached
from the X. (Such an error is captured by the mal-rules M2NTORHS and
M3NTORHS.) This also means that at the stage of testing the NTORHS rules,
one must give examples for the XADDSUB rule, in order to determine whether
M2NTORHS or M3NTORHS is used by the student. These inferences are based
on the information provided in Table 16-5 that the problem template for XAD-
DSUB is satisfied by both M2NTORHS and M3NTORHS.

It should also be noted that the system has pointed out a problem template
for the MULT/BRA2 rules that violates the commonly-taught precedence rule for
arithmetic expressions.

Further, by an extension of these algorithms, it would be possible to
generate problem types that discriminate between three, four, and more rules.

In Section 16.3 we outline the algorithm that determines which rule inter-
actions are possible. In Table 16-7 we give the (non-hierarchical) rule sets
necessary to embody the interacting rule pairs reported in Table 16-5; the number
of models generated, assuming all the rules that can interact do so; and the num-
ber of models generated when interactions are restricted to those that can occur
with the actual templates.

16.2.4 Determining the Size of the Search Space

The type of production rules we have been considering here are very
reminiscent of formal grammars.13 Hence, the question about the size of the
production system search space could be said to be equivalent to asking whether
in a regular BNF grammar it is possible to calculate the number of terminal
strings. Hopcroft and Ullman [1969] show how to determine whether a grammar
is finite or infinite, but do not give a method for enumerating all terminal

13BNF rules that overlap partially are assigned to the "interactive" subgroup; all the remaining rules
are scanned and those that have identical condition parts are recorded as alternatives.

SLEEMAN 501

Table 16-6: The rules that can interact and the problem templates that the algorithm returns.
(Those that are discriminatory are starred, hence the problem template for
ADDSUB/MULT is significant, whereas that for ADDSUB/NTORHS is not.)

Now looking at ADDSUB and MULT overlap patterns exist:
((NUM + 1 - NUM * NUM) (NUM * NUM + 1 - NUM))

** The resulting templates are:
((NUM * X = NUM + 1 - NUM * NUM) (NUM * X = NUM * NUM + 1 - NUM))

Now looking at ADDSUB and XADDSUB overlap patterns exist:
((NUM + 1 - NUM * X + 1 - NUM * X))

** The resulting templates are: ((NUM + 1 - NUM * X + 1 - NUM * X = + 1 - NUM))

Now looking at ADDSUB and NTORHS overlap patterns exist: ((NUM +1 - NUM =))
The resulting templates are: ((+1 - NUM * X +1 - NUM +1 - NUM = +1 - NUM))

ADDSUB subsumes REARRANGE

Now looking at ADDSUB and REARRANGE overlap patterns exist: ((NUM + 1 - NUM * X))
** The resulting templates are: ((NUM + 1 - NUM * X = NUM))

Now looking at ADDSUB and BRA2 overlap patterns exist:
((NUM + 1 - NUM * < NUM * X + 1 - NUM >))

** The resulting templates are: ((NUM * X = NUM + 1 - NUM * < NUM * X + 1 - NUM>))

Now looking at MULT and XADDSUB overlap patterns exist: ((NUM * NUM * X + 1 - NUM * X))
** The resulting templates are: ((NUM * NUM * X + 1 - NUM * X = + 1 - NUM))

Now looking at MULT and REARRANGE overlap patterns exist: ((NUM * NUM + 1 - NUM * X))
The resulting templates are: ((NUM * NUM + 1 - NUM * X = NUM))

Now looking at MULT and BRA2 overlap patterns exist: ((NUM * NUM * <NUM * X + 1 - NUM >))
** The resulting templates are: ((NUM * X = NUM * NUM * < NUM * X + 1 - NUM >))

Now looking at XADDSUB and XTOLHS overlap patterns exist: ((= - I + NUM * X + I - NUM * X))
The resulting templates are: (NUM * X = - 1 + NUM * X + 1 - NUM * X + 1 - NUM)

Now looking at XADDSUB and REARRANGE overlap patterns exist:
((NUM + 1 - NUM * X + 1 - NUM * X))

The resulting templates are: ((NUM + 1 - NUM * X + 1 - NUM * X = NUM))

Now looking at NTORHS and XTOLHS overlap patterns exist: ((+ 1- NUM = + 1 - NUM * X))
The resulting templates are: ((NUM * X + 1 - NUM = + 1 - NUM * X))

502 CHAPTER 16: INFERRING STUDENT MODELS

strings. However, it is possible to calculate the maximum possible branching
factor for such a grammar or set of production rules, but only when parsing a
specific string can one calculate the actual branching factors and enumerate the
total number of leaves. (An upper bound on the number of terminal strings is
the maximal branching factor times the path length. Various evaluation al-
gorithms are possible, including a depth-first search which uses only N stack
cells, where N is the depth of the search tree.)

Table 16-7: These are all the significant interacting rule pairs reported in Table 16-6. The
non-hierarchical rule set is used for model generation.

Rules focused on
reduced rule set

ADDSUB/MULT

ADDSUB/XADDSUB

ADDSUB/REARRANGE

ADDSUB/BRA2

MULT/XADDSUB

MULT/BRA2

of models
assuming all
possible
interactions

4

72

32

96

4

48

of models
assuming only
interactions
in PT

4

72

32

48

4

24

Corresponding Rule Set

(MULT ADDSUB SOLVE FIN2)

(REARRANGE XADDSUB ADDSUB NTORHS SOLVE FIN2)

(REARRANGE ADDSUB NTORHS SOLVE FIN2)

(BRA2 REARRANGE ADDSUB XTOLHS XADDSUB SOLVE
FIN2)

(MULT XADDSUB SOLVE FIN2)

(MULT BRA2 XADDSUB XTOLHS SOLVE FIN2)

16.2.5 Nature of the Rules and the Type of Tasks Encoded

The task captured by such grammars is essentially that of transforming an
initial state by means of several transformations into a final state that is either
specified in detail or whose characteristics are predefined. In the analysis above
we have also assumed that a rule that fires modifies the state and hence is not
able to fire again on exactly the same data. Further, it is assumed that the model
is sufficient to evaluate all the intermediary states. (Section 16.3.1 discusses
how minimal models can be generated.) Finally, we have also assumed that the
matcher is deterministic and not influenced by the nature of a perceived goal.

SLEEMAN 503

16.3 PROCESSING DOMAIN KNOWLEDGE

We have implemented a separate program which performs the following
analysis on a domain's rules and mal-rules.

1. Checks that rules and mal-rules are distinct.
2. Creates problem templates for each rule (see Section 16.3.1) and then

checks that they are distinct.14

3. Reports subsumed and subsuming rule pairs.
4. Decides which pairs of domain rules are able to interact (see Section

16.3.2) and grows a template which discriminates between them (see Table
16-6).

5. Checks whether any of the rules and mal-rules are satisfied by templates
for any of the other rules or for any of the interacting rule pairs. If so,
report this; see Table 16-5 and Section 16.2.3. (Also note that if it is
found that a rule which is not contained in the minimal rule set is satisfied
by a problem template, then it is necessary to add the rule to the rule set
since the student might (incorrectly) use it. The interaction data for that
level must then be enhanced and the models regenerated.)

16.3.1 Generating a Minimal Problem Template

Generating a problem template is equivalent to specifying a problem type
in which each of the rules will be activated at least once. (Note that this problem
is closely related to that of generating a problem to discriminate between two
models; see [Sleeman, 1981].) Here I outline a rule-based problem generator,
specifically for use in this domain, but as indicated in Section 16.2.5 the ap-
proach has considerable generality.

In order to generate a type of problem that would allow a rule to fire, the
rules must be used in the opposite direction to which they are used to solve a
problem. For example, a slightly stylized "generative" form of the MULT rule
is:

(STRI NUM STR2) φ (STRI NUM * NUM STR2)

When using this form, the algorithm checks if NUM is contained in the input
string, and, if so, it returns separate lists for each occurrence of NUM, in which
NUM is replaced by the string NUM * NUM. (STRi are strings which can be
null.) To initiate the generation algorithm it is necessary to specify an initial
string corresponding to the problem solution, a set of rules which can be used in
generation mode and terminating conditions (number of iterations, rules which
the final pattern must contain, and so on). Table 16-8a shows the performance

14By definition, a mal-rule has the same template as its "parent" rule.

504 CHAPTER 16: INFERRING STUDENT MODELS

of the system when given the initial state (SHD NUM),15 rule set (MULT
SOLVE FIN2), and the criterion that MULT, SOLVE and FIN2 must be ac-
tivated in that order. In contrast, Table 16-8b and c illustrate the creation of the
same problem type in two stages; this approach greatly reduces the number of
redundant configurations generated. All the remaining templates have been
created from the result of the first stage rather than the basic form (SHD NUM)
for this reason. Table 16-8d shows the creation of a problem template to satisfy:

(MULT BRA1 SOLVE FIN2)

Several redundant configurations could have been avoided if this template had
been created from its immediate predecessor, namely:

(MULT SOLVE FIN2)

Hence, a sensible enhancement of this algorithm would be to use the problem
template of the immediate predecessor as the initial state.

Presently, several redundant templates must be discarded manually. This
process could be automated by applying the following rejection criteria:

1. If the problem template also satisfies a rule that is not in the model. For
example, the problem templates generated for (ADDSUB SOLVE FIN2)
are:

NUM +1- NUM * X = NUM and NUM * X = NUM +1- NUM

The first template also satisfies REARRANGE and hence should be
rejected.

2. If the problem template contains the overlap pattern for two rules that
should not interact, it can be discarded. On these grounds, too, the first
model above should be rejected, as it contains the overlap pattern for
ADDSUB and REARRANGE.

3. If the problems specified by the problem template cannot be solved by
using only the rules in the model.

Indeed, each template generated by the algorithm should be executed symboli-
cally and the above tests applied at each stage. Note that the algorithm produces
a problem template with the least number of rules, as it terminates as soon as the
criteria are satisfied.

Table 16-9 gives the problem templates for this domain that have been
selected by the experimenter from those generated by the algorithm. Two
qualifications must be made about the present implementation. First, we have
not so far implemented a template instantiator for this domain. This is not a
very demanding task, but neither is it a very rewarding one, as similar im-

15SHD is an abbreviation for String Head and is appended to the tasks to be executed in order to
reduce the complexity of the domain rules.

SLEEMAN 505

Table 16-8: Generating problem templates
— — — (SHD NUM) .

[MULT]

(SHD NUM.* NUM)

[MULT]

(SHD NUM.* NUM * NUM)

[MULT]

(SHD NUM * NUM * NUM * NUM)

(1)

(SHD 1

(SHD 1

[FIN2]

* X - NHM) ■ — — — —

[MULT] [SOLVE]

* X = NUM * NUM) (1)

[MULT]

(SHD 1 * X = NUM * NUM * NUM)

(SHD NUM * X = NUM)-

[MULT]

(SHD NUM * X = NUM * NUM)*

[MULT]

(SHD NUM * NUM * X = NUM)*

The names on the arcs show the rules used to create the next string. The starred configurations are returned by the system as ones
which meet the criterion specified. (NB: a slightly simplified version of FIN2 has been used.)

a) Generation of a problem for (MULT SOLVE FIN2) starting from the basic form (SHD NUM).

(SHD,

(SHD 1

.NUM)

[FIN2]

.X = NUM)

[SOLVE]

(SHD NUM * X = NUM)*

.(SHD NUM * X = NUM)

[MULT] [MULT]

(SHD NUM * NUM * X = NUM)* (SHD NUM * X = NUM * NUM)*
~ 1

b) Generation of a problem for (SOLVE FIN2)
starting from the basic form (SHD NUM).

i) Initial configuration
(SHD NUM * X = NUM)

ii) Level 1 configurations
(SHD NUM * X = < NUM >)
(SHD < NUM > * X = NUM)
(SHD NUM * X = NUM * NUM)
(SHD NUM * NUM * X = NUM)

iii) Level 2 configurations
(SHD NUM * X = < < NUM > >)
(SHD < NUM > * X = < NUM >)
(SHD NUM * X = < NUM * NUM >)
(SHD NUM * NUM * X = < NUM >)
(SHD < < NUM > > * X = NUM)
(SHD < NUM > * X = NUM * NUM)
(SHD < NUM * NUM > * X = NUM)

c) Generation of a problem for
(MULT SOLVE FIN2) starting from the
intermediary form (SHD NUM * X = NUM).

(SHD NUM * X = NUM * < NUM >)
(SHD NUM * X = < NUM > * NUM)
(SHD NUM * X = NUM * NUM * NUM)
(SHD NUM * NUM * X = NUM * NUM)
(SHD NUM * < NUM > * X = NUM)
(SHD < NUM > * NUM * X = NUM)
(SHD NUM * NUM * NUM * X = NUM)

iv) Level 2 configurations which satisfy
the specified criterion

(SHD NUM * NUM * X = < NUM >)
(SHD < NUM > * X = NUM * NUM)
(SHD NUM * X = NUM * < NUM >)
(SHD NUM * X = < NUM > * NUM)
(SHD NUM * < NUM > * X = NUM)
(SHD < NUM > * NUM * X = NUM)

d) Generation of a problem for (MULT BRAl SOLVE FIN2) starting from the intermediary form (SHD NUM * X = NUM)
given the criterion that the MULT, BRAl, SOLVE and FIN2 rules should be activated in that sequence. " < " and " > " are
the usual algebraic brackets.

506 CHAPTER 16: INFERRING STUDENT MODELS

Table 16-9: Stylized version of problem templates for the domain rules (the mal-rules using the
problem template of the "parent" rule).

FIN2 (1 * X = NUM//NUM)
SOLVE (NUM * X = NUM)
ADDSUB (NUM * X = NUM + 1 - NUM)
MULT (NUM * X = NUM * NUM)
XADDSUE (NUM * X + 1 - NUM * X = + 1 - NUM)
NTORHS (+ 1- NUM * X + 1 - NUM = + 1 - NUM)
XTOLHS (NUM * X = -NUM - NUM * X)
REARRANGE (NUM +1- NUM * X = NUM)
BRA1 (NUM * X = NUM * < NUM + NUM >)
BRA2 (NUM * X = NUM * < NUM * X +1- NUM >)

plementations have been done many times before. However, such an implemen-
tation is needed to take full advantage of LMS's online modeling capabilities.
Second, the experimenter currently decides which rules need to be included in
the reduced rule sets in order to activate the rules that are being focused on.
However, given the analysis above, it is possible to create the reduced rule sets
by growing the structure until the relevant rules have been activated. Such a
search would be broad and undirected (see Table 16-8d), and it is for this reason
that the algorithm has not been implemented. On the other hand, such an algo-
rithm would sometimes generate a number of significantly different rule sets.
For instance, for BRA2 there are essentially two rule sets, and hence problem
templates—namely, one where the bracket is on the left-hand side and one where
it is on the right-hand side of the expression. The minimal rule sets which
would both be generated by such an algorithm are:

(BRA2 ADDSUB NTORHS SOLVE FIN2)
(BRA2 XADDSUB XTOLHS SOLVE FIN2).

In this case the experimenter selected the latter, but it could be important
to present the student with problems based on the left-hand side form.

16.3.2 Problem Templates to Test Rule Ordering

Given rules Rj and Rj, and their associated problem templates PTj and PTj,
the following algorithm generates a template to discriminate between the two
rules.

1. Calculate the overlap OPy between the two rules Rj and Rj. If OPy is null,
then the problem templates should already discriminate. 16

2. If rule Rj is satisfied by PTj go to 6; else, set RESULT to PTj .

16If rule Rj has conditions Cl C2 C3 C4, and Rj has conditions Cl C3 C4, then PTj will already
discriminate between the two rules as Rj is activated by PTj, but R: is not.

SLEEMAN 507

3. Apply generate rule j to top-level elements of RESULT, store result in
RESULT.

4. If at least one item in RESULT satisfies Rj and Rj independently and con-
tains OPy, then go to 6.

5. If MAX-DEPTH is not reached, go to 3.
6. Repeat steps 2 to 5 of the above algorithm with i and j interchanged.

Table 16-6 shows the interactions that the algorithm has noted for this
domain and the templates that have been generated. Not all these templates are
capable of producing problems that discriminate between the order of two rules
in a model because of the semantics of their actions. In Table 16-6 we have
starred those templates that are discriminatory. Subsequently, we plan to use a
symbolic evaluator to automate the discrimination process. At present, it is done
manually.

16.4 SUMMARY

The student models generated by the revised algorithms are consistently
fewer in number than the redundant and incomplete set of models generated by
our earlier SELECTIVE algorithm (see Table 16-4). Moreover, the COMPLETE
and NON-REDUNDANT algorithm overcomes the difficulties arising from the
limitation noted in the earlier experiment by allowing mal-rules to be in "scope"
at all subsequent levels. The analysis carried out in Section 16.2.3 illustrates a
further assumption of the first formulation of LMS: namely, if the student accords
the correct precedence to two rules Rj and R; at level L, then the student con-
tinues to do so at all subsequent levels. More specifically, LMS-I assumes that if
Rj interacts with Rj and Rj with Rk, and if the student has the correct precedence
for both rule pairs, then he would be able to correctly work problems in which
all three rules interact. Such an assumption is not inherent in LMS-II. Given the
reduced size of the search space and the greater power of the revised algorithm,
it seems reasonable to conclude that the SELECTIVE algorithm has been super-
seded by the newer algorithms.

In addition, this paper formulates an algorithm that reports several types of
interaction that can occur between pairs of rules. A systematic investigation of
the domain rules is necessary to catalogue all the interactions. Without such an
investigation, one is merely considering interactions that one has happened to
notice. Burton [1982] has reported another systematic approach to determining
which subskills interact, but this is much more complex than the rule-based sys-
tem reported here.

We expect that this analysis, and the architecture of LMS-II described in
Section 16.3, could be used with any subject area in which it is possible to
represent domain knowledge as an ordered set of rules and to encode errors ob-
served in protocols as mal-rules. Indeed, this approach might also be applied to

508 CHAPTER 16: INFERRING STUDENT MODELS

other classes of problems. For instance, if a plan is conceived of as an ordered
set of rules, these algorithms can determine how many significant orderings there
are. (There are analogues in the planning domain to subsumption, interaction,
non-interaction and to alternatives.)

16.4.1 LMS and Related Work in Induction

LMS has been implemented as a two-stage system: first, the offline phase,
in which the models are generated and evaluated against the problem set; and
second, the online phase in which the student's performance is compared against
those models. This separation makes it clear that the inference problem has been
formulated as a search through a space predefined by rules and mal-rules, and as
such conforms to Buchanan's inference paradigm [Buchanan, 1974]. Michalski
[1980] has suggested that systems which perform data-driven inference may be
said to perform constructive inference and has reported several examples in
which his "enhanced" algorithm has produced composite descriptors. I wish to
point out that LMS carries out another form of constructive inference, namely rule
permutations based upon the domain's rules and mal-rules.

ACKNOWLEDGMENTS

I gratefully acknowledge the many helpful comments on earlier drafts of
this paper from Pat Langley, Allen Newell, Michael Rychener, N. S. Sridharan,
K. R. James and the editors, particularly Jaime Carbonell. In addition, I should
like to thank Carnegie-Mellon University for providing a very stimulating en-
vironment in which to complete this work, and the University of Leeds for grant-
ing sabbatical leave.

REFERENCES

Brown, J. S., and Burton, R. R., "Diagnostic Models for Procedural Bugs in Basic Mathematical
Skills," Cognitive Science, Vol. 2, No. 2, pp. 155-192, April-June 1978.

Brown, J. S., Burton, R. R., and deKleer, J., "Pedagogical, Natural Language, and Knowledge
Engineering Techniques in SOPHIE I, II, and III," Intelligent Tutoring Systems, D. H.
Sleeman and J. S. Brown (Ed.), Academic Press, New York, 1982.

Buchanan, B. G., "Scientific Theory Formation by Computer," Proceedings of the NATO Advanced
Study institute on Computer Orientated Learning Processes, 1974.

Buchanan, B. G., Duffield, A. M., and Robertson, A.V., "An Application of AI to the Inter-
pretation of Mass Spectra," Mass Spectrometry: Techniques and Appliances, C. W. A. Miline
(Ed.), Wiley, 1971.

Burton, R. R., "Diagnosing Bugs in a Simple Procedural Skill," intelligent Tutoring Systems, D. H.
Sleeman and J. S. Brown (Ed.), Academic Press, New York, 1982.

SLEEMAN 509

Burton, R. R., and Brown, J. S., "An Investigation of Computer Coaching for Informal Learning
Activities," Intelligent Tutoring Systems, D. H. Sleeman and J. S. Brown (Ed.), Academic
Press, New York, 1982.

Carbonell, J. R., Mixed-Initiative Man-Computer Instructional Dialogues, Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1971.

Clancey, W. J., "Tutoring Rules for Guiding a Case Method Dialogue," Intelligent Tutoring Systems,
D. H. Sleeman and J. S. Brown (Ed.), Academic Press, New York, 1982.

Davis, R., Jockusch, E., and McKnight, C , "Cognitive Processes in Learning Algebra," Journal of
Children's Mathematical Behavior, Vol. 2, No. 1, 1978.

Goldstein, I. P., "The Genetic Graph: A Representation for the Evolution of Procedural Knowledge,"
Intelligent Tutoring Systems, D. H. Sleeman and J. S. Brown (Ed.), Academic Press, New
York, 1982.

Hartley, J. R., and Sleeman, D. H., "Towards Intelligent Teaching Systems," International Journal
of Man-Machine Studies, Vol. 5, No. 2, pp. 215-236, April 1973.

Hopcroft, J. E., and Ullman, J. E., Formal Languages and their Relation to Automata, Addison-
Wesley, Reading, MA, 1969.

Matz, M., "Towards a Generative theory of High School Algebra Errors," Intelligent Tutoring
Systems, D. H. Sleeman, and Brown, J. S. (Ed.), Academic Press, New York, 1982.

Michalski., R. S., "Pattern Recognition as Rule-Guided Inductive Inference," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4, July 1980.

Sleeman, D. H., "A Rule-based Task System," Proceedings of the Seventh International Conference
on Artificial Intelligence, University of British Columbia, Vancouver, BC, pp. 882-887,
August 1981.

Sleeman, D. H., "Assessing Aspects of Competence in Basic Algebra," Intelligent Tutoring Systems,
D. H. Sleeman and J. S. Brown (Ed.), Academic Press, New York, pp. 185-199, 1982.

Sleeman, D. H., and J. S. Brown, "Intelligent Tutoring Systems: An Overview," Intelligent Tutoring
Systems, D. H. Sleeman and J. S. Brown (Ed.), Academic Press, New York, pp. 1-11, 1982.

Sleeman, D. H., and Hendley, R. J., "ACE: A System which Analyses Complex Explanations,"
Intelligent Tutoring Systems, D. H. Sleeman and J. S. Brown (Ed.), Academic Press, New
York, pp. 99-118, 1982.

Sleeman, D. H., and Smith, M. J., "Modelling Students' Problem Solving," Artificial Intelligence,
Vol. 16, No. 2, pp. 171-187, May 1981.

Sleeman, D. H., "An Attempt to Understand Pupils' Understanding of Basic Algebra",
(forthcoming).

510 CHAPTER 16: INFERRING STUDENT MODELS

APPENDIX: AN EXAMPLE OF THE SELECTIVE ALGORITHM: LMS-I'S MODEL
GENERATION ALGORITHM

The SELECTIVE algorithm added the new rule or one of its associated
mal-rules in all possible places. Thus, if the student model for level 3 was:

(ADDSUB SOLVE FIN2)

and if the ideal model at level 4 also contains MULT, then this algorithm would
create the following models:

(MULT ADDSUB SOLVE FIN2)
(ADDSUB MULT SOLVE F1N2)
(ADDSUB SOLVE MULT FIN2)

Note that no rule is added after the terminating FIN2 rule.
Similarly, if the ideal model for level 5 also contains NTORHS,

MNTORHS, M2NTORHS, or M3NTORHS, and assuming that the student be-
haved "correctly" at level 4, the algorithm would generate:

(NTORHS MULT ADDSUB SOLVE ΠΝ2)
(MULT NTORHS ADDSUB SOLVE FIN2)
(MULT ADDSUB NTORHS SOLVE FIN2)
(MULT ADDSUB SOLVE NTORHS FIN2)
(MNTORHS MULT ADDSUB SOLVE FIN2)
(MULT MNTORHS ADDSUB SOLVE FTN2)
(MULT ADDSUB MNTORHS SOLVE FIN2)
(MULT ADDSUB SOLVE MNTORHS FIN2)

and an additional eight models for the M2NTORHS and M3NTORHS rules.
With this algorithm, we used the following heuristics to reduce the number of
redundant models:

1. No rule should follow the terminating rule (quoted and used above).
2. If R2 is subsumed by Rl then it is possible to delete R2 in all models in

which Rl precedes R2 without altering the effect of the model.
3. "New" rules can only occur before or after members of a particular class.

The various domain rules were given an arbitrary priority number which
determined the class; an example of such a class in the arithmetic domain
is the add and subtract rules [Sleeman & Smith, 1981], and the two rules
in the algebra domain which process bracketed expressions, BRA1 and
BRA2. (That is, models in which the additional rule occurs between rules
in the same priority class are functionally equivalent to models in which
the rule occurs either before or after the class.)

COMPREHENSIVE BIBLIOGRAPHY

OF MACHINE LEARNING
Paul E. Utgoff
Bernard Nudel

Rutgers University

This chapter consists of a bibliography of the field of machine learning. The
sources of the references include bibliographies compiled by Saul Amarel, Dana
Angluin, Ryszard S. Michalski, Tom M. Mitchell, Carl Smith, and Bruce
G. Buchanan, as well as our own additions.

We define fourteen categories to classify the machine learning literature. For
each category, there is a list of reference numbers indicating which references
belong within that category. In addition, to the left of each reference is a list of
category code letters indicating the categories to which the reference belongs.

CATEGORIES

Category a. Analogy: Investigation of analogical reasoning in problem solving,
and the use of analogy as a learning method.

{92, 93, 94, 97, 100, 157, 274, 332, 333, 374, 472, 533, 563, 564, 565}

Category b. Background material: General background reading in areas of artifi-
cial intelligence, cognitive science, and related disciplines that lay the framework
for many of the machine learning methods. For overviews of work on machine
learning in particular, see category o.

{3, 4, 5, 16, 24, 29, 35, 38, 40, 51, 60, 61, 71, 75, 84, 90, 107, 111, 119,
129, 131, 132, 142, 148, 149, 153, 158, 160, 161, 166, 170, 171, 175,
176, 179, 180, 185, 205, 234, 237, 239, 252, 261, 270, 289, 292, 294,
320, 329, 330, 331, 334, 355, 358, 359, 362, 363, 369, 374, 391, 392,
393, 396, 397, 398, 400, 403, 413, 416, 429, 430, 441, 447, 448, 450,
463, 464, 467, 473, 486, 513, 523, 524, 525, 526, 544, 545, 546, 547,
559, 568}

511

512 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

Category c. Concept acquisition: Inductive inference of structural descriptions
from training examples.

{11, 13, 19, 28, 30, 31, 34, 36, 37, 38, 41, 66, 69, 70, 75, 77, 78, 80, 83,
96, 97, 106, 114, 115, 116, 117, 118, 135, 140, 141, 142, 143, 144, 145,
146, 150, 152, 172, 174, 189, 207, 209, 215, 216, 217, 218, 219, 220,
221, 222, 223, 226, 242, 247, 248, 249, 250, 251, 253, 263, 264, 273,
276, 277, 278, 283, 284, 285, 303, 304, 305, 306, 307, 322, 323, 335,
340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353,
354, 356, 357, 364, 365, 366, 367, 368, 373, 375, 376, 377, 394, 406,
412, 414, 415, 416, 420, 421, 426, 432, 439, 440, 455, 456, 457, 458,
469, 475, 476, 483, 503, 504, 506, 511, 515, 516, 517, 531, 534, 536,
537, 538, 539, 543, 562, 566, 567, 569, 571, 572}

Category d. Discovery and theory formation: Methods and systems that suggest
new concepts and explore relationships among them.

{68, 106, 187, 210, 211, 240, 288, 296, 297, 298, 300, 301, 302, 310, 312,
313, 316, 336, 338, 428, 526, 531, 570}

Category e. Education and Teaching: Intelligent Computer Aided Instruction.

{72, 73, 74, 87, 88, 112, 113, 214, 327, 457, 469, 492, 493, 494, 495, 496,
497, 498, 502, 533}

Category g. Grammatical Inference: Inferring grammars, formal languages,
finite state machines, and Turing machines from examples.

{1, 18, 20, 42, 43, 50, 52, 53, 54, 63, 89, 103, 107, 120, 121, 123, 125,
126, 127, 138, 147, 162, 163, 165, 181, 183, 185, 186, 188, 190, 191,
192, 232, 245, 246, 250, 271, 275, 326, 328, 410, 411, 479, 505, 532,
535, 550, 551, 557}

Category h. Learning in problem-solving and game playing: Includes self-
improving problem solvers, learning of heuristics and production rules, and shifts
in problem representation.

{5, 6, 14, 15, 21, 22, 23, 32, 34, 35, 49, 51, 64, 67, 69, 76, 77, 78, 79,
80, 82, 83, 84, 88, 92, 97, 104, 111, 130, 134, 151, 154, 156, 167, 169,
193, 194, 195, 201, 220, 223, 224, 226, 227, 228, 229, 254, 274, 282,
286, 287, 299, 314, 315, 316, 319, 323, 324, 332, 370, 371, 372, 378,
379, 380, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394,
395, 399, 401, 404, 405, 409, 417, 437, 443, 451, 458, 459, 460, 461,
474, 475, 481, 485, 488, 497, 498, 499, 502, 510, 518, 519, 522, 537,
538, 539, 542, 543, 544, 548, 549}

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 513

Category k. Knowledge acquisition for Expert Systems: Acquiring knowledge to
improve performance of Expert Systems.

{69, 78, 79, 80, 82, 83, 133, 136, 194, 196, 203, 204, 223, 224, 225, 226,
371, 372, 378, 379, 380, 427, 437, 438, 451, 452, 453, 489, 560}

Category 1. Language learning: Acquiring grammars, vocabularies, and other
aspects of natural language.

{9, 10, 12, 85, 89, 91, 93, 94, 107, 123, 129, 138, 159, 213, 219, 271,
284, 308, 407, 445, 465, 466, 471, 472, 479, 552}

Category m. Modeling of cognitive processes: Work in modeling human learn-
ing and inference processes.

{8, 9, 10, 11, 12, 13, 14, 15, 21, 23, 26, 61, 67, 72, 73, 74, 75, 93, 97,
102, 104, 128, 134, 159, 171, 227, 241, 242, 249, 250, 308, 309, 321,
331, 384, 385, 386, 387, 388, 389, 390, 399, 443, 447, 448, 449, 450,
465, 466, 470, 471, 473, 483, 497, 498, 553}

Category o. Overview: Summaries and surveys of work on machine learning.

{1, 11, 15, 17, 18, 27, 37, 38, 39, 46, 52, 60, 62, 63, 70, 71, 75, 81, 84,
95, 98, 99, 100, 101, 105, 109, 110, 118, 119, 122, 137, 142, 144, 146,
150, 168, 173, 177, 179, 181, 182, 183, 184, 189, 198, 201, 205, 206,
208, 230, 231, 234, 235, 236, 238, 239, 243, 244, 251, 252, 258, 259,
260, 266, 267, 268, 279, 290, 291, 292, 293, 294, 295, 311, 314, 315,
317, 318, 320, 325, 329, 335, 336, 337, 351, 355, 356, 360, 361, 362,
363, 366, 367, 368, 373, 376, 377, 381, 382, 394, 395, 402, 406, 408,
413, 415, 422, 425, 428, 429, 431, 433, 434, 435, 436, 442, 444, 453,
454, 467, 484, 485, 487, 490, 491, 500, 506, 507, 508, 509, 512, 514,
520, 525, 527, 529, 530, 540, 541, 558, 561}

Category p. Procedure learning and automatic programming: Inferring programs,
functions, or procedures from input-output pairs, traces, or high-level specifica-
tions.

{2, 4, 33, 43, 44, 45, 47, 48, 49, 55, 56, 57, 58, 59, 62, 86, 130, 155, 164,
200, 202, 212, 255, 256, 257, 262, 269, 272, 280, 281, 314, 389, 418,
419, 422, 423, 424, 425, 462, 475, 477, 480, 482, 501, 521, 548, 554,
555, 556}

Category q. Clustering: Learning from observation, unsupervised learning,
cluster analysis, and acquiring taxonomic classifications.

{7, 139, 150, 199, 353, 354, 446, 517}

514 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

Category r. Recognition of patterns: Inferring statistical or syntactic descriptions
of classes of objects from examples.

{25, 36, 65, 66, 85, 105, 108, 124, 139, 150, 177, 178, 179, 182, 183, 184,
197, 233, 258, 259, 260, 261, 265, 282, 338, 339, 343, 363, 402, 447
449, 460, 461, 463, 468, 470, 478, 503, 504, 528, 529, 530, 541, 569}

REFERENCES

gO 1. Adleman, L. and Blum, M., "Inductive Inference and Unsolvability", Technical
Report, Dept. Electrical Engineering and Computer Science and the Electronics
Research Lab., U. Calif, at Berkeley, 1975.

p 2 . Amarel, S., "On the Automatic Formation of a Computer Program which represents
a Theory", Self-Organizing Systems, Yovits, M., Jacobi, G. and Goldstein, G. (Eds.),
Spartan Books, Washington, D.C., pp. 107-175, 1962.

b 3 . Amarel, S., "On Representations of Problems of Reasoning about Actions", Machine
Intelligence, University of Edinburgh Press, Vol. 3, 1968.

b p 4 . Amarel, S., "Representations and Modeling in Problems of Program Formation",
Machine Intelligence, University of Edinburgh Press, Vol. 6, 1971.

b h 5 . Amarel, S., "Problems of Representation in Heuristic Problem Solving; Related
Issues in the Development of Expert Systems", Technical Report CBM-TR-118, Depart-
ment of Computer Science, Rutgers University, February 1981, (To be published in
Methods of Heuristics, Groner, Groner and Bischof, Eds., Lawrence Erlbaum As-
sociates, Hillsdale, N.J.).

h 6. Amarel, S., "Expert Behavior and Problem Representations", Human and Artificial

Intelligence, Elithorn, A. and Banerji, R. (Eds.), Erlbaum, 1982.

q 7 . Anderberg, M. R., Cluster Analysis for Applications, Academic Press, 1973.

Ill 8. Anderson, J. R. and Bower, G. H., Human Associative Memory, Winston & Sons,
Washington, D.C., 1973.

Im 9 . Anderson, J. R., Language, Memory, and Thought, Lawrence Erlbaum Associates,
Hillsdale, N.J., 1976.

lltl 10. Anderson, J. R., "Induction of Augmented Transition Networks", Cognitive Science,
Vol. 1, 1977.

Cmo 11. Anderson, J. R., Kline, P. J. and Beasley, C. M., "A General Learning Theory and
its Application to Schema Abstraction", The Psychology of Learning and Motivation,
Vol. 13, 1979.

lltl 12. Anderson, J. R., "A Theory of Language Acquisition Based on General Learning
Principles", Proceedings of the Seventh International Joint Conference on Artificial
Intelligence, Vancouver, pp. 97-103, August 1981.

Cul 13. Anderson, J. R. (Ed.), Cognitive Skills and their Acquisition, Erlbaum Associates,
Hillsdale, N.J., 1981.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 515

h m 14. Anderson, J. R., Greeno, J. G., Kline, P. J. and Neves, D. M., "Acquisition of
Problem-Solving Skill", Cognitive Skills and their Acquisition, Anderson, J. R. (Ed.),
Lawrence Erlbaum Associates, Hillsdale, N.J., ch. 6, pp. 191-230, 1981.

h m o 15 . Anderson, J. R., "Acquisition of Proof Skills in Geometry", Machine Learning,

Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga, 1983.

b 16. Andrae, J. H., Thinking with the Teachable Machine, Academic Press, 1977.

O 17. Andrews, A. M., "Learning Machines", Proceedings of the Symposium on the
Mechanization of Thought Processes, H.M. Stationary Office, London, England, 1959.

gO 18. Angluin, D., "On the Complexity of Minimum Inference of Regular Sets", Infor-
mation and Control, Vol. 39, No. 3, pp. 337-350, 1978.

C 19. Angluin, D., "Finding Patterns Common to a Set of Strings", Eleventh Annual AC M
Symposium on the Theory of Computing, pp. 130-141, May 1979.

g 20 . Angluin, D., "Inductive Inference of Formal Languages from Positive Data", Tech-
nical Report, Dept of Mathematics., U. Calif at Santa Barbara, 1979.

h m 2 1 . Anzai, Y., "How One Learns Strategies: Processes and Representation of Strategy
Acquisition", Proceedings of the 3rd conference on AISB, Hamburg, Gesellschaft fur
Informatik, 1978.

h 2 2 . Anzai, Y., "Learning Strategies by Computer", Proceedings of the Second National
Conference of the Canadian Society for Computational Studies of Intelligence, pp.
181-190, 1978.

h m 2 3 . Anzai, Y. and Simon, H., "The Theory of Learning by Doing", Psychological

Review, Vol. 36, No. 2, pp. 124-140, 1979.

b 2 4 . Arieti, S., Creativity, the Magic Synthesis, Basic Books, Inc., 1976.

Γ 2 5 . Arkadev, A. G. and Braverman, E. M., Learning in Pattern Classification
Machines, Nauka, Moscow, 1971.

m 26. Ashby, W. Ross, Design for a Brain, The Origin of Adaptive Behavior, John Wiley
and Sons, Inc., 1960.

O 2 7 . Asher, R. B., Andrisani II, D. and Dorato, P., "Bibliography on Adaptive Control
Systems", Proceedings IEEE, Vol. 64, No. 8, pp. 1226-1240, 1976.

C 2 8 . Aubin, R., "Strategies for Mechanizing Structural Induction", Fifth International
Joint Conference on Artificial Intelligence, Cambridge, Mass., pp. 363-369, August
1977.

b 2 9 . Banerji, R. B., "The Description List of Concepts", J.A.C.M, 1962.

C 30 . Banerji, R. B., "Computer Programs for the Generation of New Concepts from Old
Ones", Neure Ergebnisse der Kybernetik, Steinbuch, K. and Wagner, S. (Eds.),
Oldenberg-Verlag, Munich, pp. 336, 1964.

C 3 1 . Banerji, R. B., "A Language for Description of Concepts", General Systems, Vol.
9, 1964.

516 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

h 3 2 . Banerji, R. B. and Ernst, G. W., "Strategy Construction Using Homomorphisms
Between Games", Artificial Intelligence, Vol. 3, pp. 223-249, 1972.

p 33 . Banerji, R. B., "A Data Structure Which Can Learn Simple Programs from Ex-
amples of Input-Output", Pattern Recognition and Artificial Intelligence, Academic
Press, 1976.

ch 34 . Banerji, R. B., "Learning to Solve Games and Puzzles", Computer Oriented Learn-
ing Processes, Simon, J. C. (Ed.), Noordhoff, Leyden, 1976.

bh 35 . Banerji, R. B. and Ernst, C. W., "A Theory for the Complete Mechanization of a
GPS-Type Problem Solver", Fifth International Joint Conference on Artificial Intel-
ligence, Cambridge, Mass., pp. 450-456, 1977.

CF 3 6 . Banerji, R. B. , "Pattern Recognition: Structural Description Languages", En-

cyclopedia of Computer Science and Technology, Beizer, Holzman and Kent (Eds.),
Marcel Dekker, New York, pp. 1, 1979.

CO 3 7 . Banerji, R. B. and Mitchell, T. M., "Description Languages and Learning Al-

gorithms: a Paradigm for Comparison", International Journal of Policy Analysis and

Information Systems, Vol. 4, No. 2, June 1980.

bC0 3 8 . Banerji, R. B. , Artificial Intelligence: A Theoretical Perspective, Elsevier North

Holland, Inc., New York, 1980.

O 3 9 . Barnes, J., Aristotle's Posterior Analytics, Claredon Press, Oxford, 1975.

b 4 0 . Barr, A. and Feigenbaum, E. A. (Eds.), The Handbook of Artificial Intelligence,

William Kaufman Inc., Los Altos, Ca., 1981.

C 4 1 . Barrow, H. G. and Popplestone, R. J., "Relational Descriptions in Picture
Processing", Machine Intelligence, American Elsevier, Vol. 7, pp. 377-396, 1972.

g 4 2 . Barzdin, J. A. , "On Decoding Automata in the Absence of an Upper Bound on the
Number of States", Soviet Math Dokl, pp. 1084-1051, 1970.

g p 4 3 . Barzdin, J. A., "Prognostication of Automata and Functions", Information Process-
ings '71, Proceedings of the IFIP Congress I, pp. 81-84, 1971.

p 4 4 . Barzdin, J. A. and Freivald, R. V., "On the Prediction of General Recursive
Functions", Soviet Math Dokl, Vol. 13, pp. 1224-1228, 1972.

p 4 5 . Barzdin, J. A., "On Synthesizing Programs Given by Examples", Lecture Notes in
Computer Science, Springer-Verlag, Vol. 5, 1972.

O 46 . Barzdin, J. A. and Podnieks, K. M., "The Theory of Inductive Inference", Proceed-
ings of the Mathematical Foundations of Computer Science, pp. 9-15, 1973, (Russian).

p 47 . Barzdin, J. A., Kinber, E. B. and Podnieks, K. M., "Concerning Synthesis and
Prediction of Functions", Theory of Algorithms and Programs, Latvian State U., pp.
117-128, 1974.

p 4 8 . Barzdin, J. A. and Freivald, R. V., "Prediction and Limiting Synthesis of R.E.
Classes of Functions", Theory of Algorithms and Programs, Latvian State U., pp.
101-111, 1974.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 517

h p 49 . Bauer, M., "A Basis for the Acquisition of Procedures from Protocols", Fourth
International Joint Conference on Artificial Intelligence, Cambridge, Mass., pp.
226-231, September 1975.

g 50 . Berger, J. and Pair, C , "Inference for Regular Bi-Languages", J. Computer and
System Sciences, Vol. 15, pp. 100-122, 1978.

bh 5 1 . Berliner, H., "On the Construction of Evaluation Functions for Large Domains",
Sixth International Joint Conference on Artificial Intelligence, pp. 53-55, 1979.

gO 52 . Bierman, A. W. and Feldman, J. A., "A Survey of Results in Grammatical
Inference", Frontiers of Pattern Recognition, Watanabe, S. (Ed.), Academic Press,
New York, pp. 31-54, 1972.

g 5 3 . Bierman, A. W. and Feldman, J. A., "On the Synthesis of Finite-State Machines
from Samples of their Behavior", IEEE Transactions on Computers, Vol. C-21, pp.
592-597, 1972.

g 54 . Bierman, A. W., "On the Inference of Turing Machines from Sample
Computations", Artificial Intelligence, Vol. 3, pp. 181-198, 1972.

p 5 5 . Bierman, A. W., Baum, R. I. and Petry, F. E., "Speeding Up the Synthesis of
Programs from Traces", IEEE Transactions on Computers, Vol. C-24, pp. 122-136,
1975.

p 56 . Bierman, A. W., "Regular LISP Programs and their Automatic Synthesis from
Examples", Technical Report CS-1976-12, Duke University, 1976.

p 57 . Bierman, A. W. and Krishnaswamy, R., "Constructing Programs from Example
Computations", IEEE Transactions on Software Engineering, Vol. SE-2, pp. 141-153,
1976.

p 58 . Bierman, A. W. and Smith, D. R., "The Hierarchical Synthesis of LISP Scanning
Programs", Information Processing 77, B. Gilchrist (Ed.), North Holland, Amsterdam,
pp. 41-45, 1977.

p 59 . Bierman, A. W., "The inference of regular LISP programs from examples", IEEE
Transactions on Systems, Man, and Cybernetics, Vol. SMC-8, No. 8, pp. 585-600,
August 1978.

b o 60 . Blake, R. M., Ducasse, C. J. and Madden, E. H., Theories of Scientific Method:
The Renaissance through the Nineteenth Century, U. Washington Press, Seattle, 1960.

b m 6 1 . Block, H. D., 'The Perceptron: A Model of Brain Functioning, I", Rev. Math.
Physics, Vol. 34, No. 1, pp. 123-135, 1961.

Op 6 2 . Blum, L. and Blum, M., "Inductive Inference: A Recursive Theoretic Approach",
Memo ERL-M386, ERL, U. California at Berkeley, March 1973.

gO 6 3 . Blum, L. and Blum, M., "Toward a Mathematical Theory of Inductive Inference",
Information and Control, Vol. 28, pp. 125-155, 1975.

h 64 . Bond, A. H. and Mott, D. H., "Learning of Sensory-Motor Schemas in a Mobile
Robot", Proceedings of the Seventh International Joint Conference on Artificial Intel-
ligence, Vancouver, pp. 159-161, August 1981.

518 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

Γ 6 5 . Bongard, N., Pattern Recognition, Spartan Books, New York, 1970, (Translation
from Russian).

Cr 66 . Bonyant, M. M., Pattern Recognition, Spartan Books, New York, 1970, (Translated
from Russian).

h m 6 7 . Book, W. F., "The Psychology of Skill with Special Reference to its Acquisition in
Typewriting", Technical Report, University of Montana, 1908, (Facsimile in The
Psychology of Skill, Armo Press, New York, 1973).

d 6 8 . Bradshaw, G. L., Langley, P. and Simon, H. A., "BACON.4: The Discovery of
Intrinsic Properties", Proceedings of the Third National Conference of the Canadian
Society for Computational Studies of Intelligence, pp. 19-25, 1980.

chk 6 9 . Bratko, I. and Mulec, P., "An Experiment in Automatic Learning of Diagnostic
Rules", Informatika, 1981.

CO 7 0 . Brown, J. S., "Steps Toward Automatic Theory Formation", Third International
Joint Conference on Artificial Intelligence, Stanford University, pp. 20-23, 1973.

bo 7 1 . Brown, M. F. and Tarnlund, S-A., "Inductive Reasoning in Mathematics", Fifth
International Joint Conference on Artificial Intelligence, M.I.T., Cambridge, Mass.,
August 1977.

e m 72 . Brown, J. S. and Burton, R. B., "Diagnostic Models for Procedural Bugs in Basic
Mathematical Skills", Cognitive Science, Vol. 2, pp. 155-192, 1978.

e m 7 3 . Brown, J. S. and VanLehn, K., "Repair Theory: a Generative Theory of Bugs in
Procedural Skills", Cognitive Science, Vol. 4, No. 4, 1980.

e m 74 . Brown, J. S. and VanLehn, K., "Towards a Generative Theory of Bugs", Addition
and Subtraction: a developmental perspective, Carpenter, T., Moser, J. and Romberg,
T. (Eds.), Lawrence Erlbaum Associates, Hillsdale, N. J., 1981.

b c m o 7 5 . Bruner, J. S., Goodnow, J. J. and Austin, G. A., A Study of Thinking, Wiley, New
York, 1956.

h 76 . Buchanan, B. G., Feigenbaum, E. A. and Lederberg, J., "A Heuristic Programming
Study of Theory Formation in Sciences", Second International Joint Conference on
Artificial Intelligence, London, 1971.

Ch 7 7 . Buchanan, B. G. and Lederberg, J., "The Heuristic DENDRAL Program for Ex-
plaining Empirical Data", Proceedings of the IFIP-7I Congress, IFIP, 1971.

chk 7 8 . Buchanan, B. G., Feigenbaum, E. A. and Sridharan, N. S., "Heuristic Theory For-
mation: Data Interpretation and Rule Formation", Machine Intelligence, Halsted Press,
Wiley, Vol. 7, pp. 267-290, 1972.

hk 79 . Buchanan, B. G. and Sridharan, N. S., "Rule Formation on Non-Homogeneous
Classes of Objects", Third International Joint Conference on Artificial Intelligence,
Stanford U., Stanford, Calif., 1973.

Chk 80 . Buchanan, B. G., "Scientific Theory Formation by Computer", Computer Oriented
Learning Processes, Simon, J. C. (Ed.), Noordhoff, Leyden, 1976.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 519

0 8 1 . Buchanan, B. G., Mitchell, T. M., Smith, R. G. and Johnson, C. R. Jr., "Models
of Learning Systems", Encyclopedia of Computer Science and Technology, Dekker,
Vol. 11, 1978, (also Stanford report STAN-CS-79-692).

hk 82 . Buchanan, B. G. and Feigenbaum, E. A., "DENDRAL and META-DENDRAL:
their Applications Dimension", Artificial Intelligence, North-Holland, Vol. 11, pp.
5-24, 1978.

Chk 8 3 . Buchanan, B. G. and Mitchell, T. M., "Model-Directed Learning of Production
Rules", Pattern-Directed Inference Systems, Waterman, D. A. and Hayes-Roth,
F. (Eds.), Academic Press, New York, 1978.

b h o 8 4 . Bundy, A., Silver, B., "A Critical Survey of Rule Learning Programs", D.A.I.
Research Paper 169, Edinburgh, December 1981, (also in Proceedings of the European
Conference on Artificial Intelligence, Orsay, France, July 1982).

l r 8 5 . Bürge, J. and Hayes-Roth, F., "A Novel Pattern Learning and Recognition Proce-
dure Applied to the Learning of Vowels", Technical Report, Carnegie-Mellon Univer-
sity, 1976.

p 86 . Burstall, R. M. and Darlington, J., "A Transformation System for Developing
Recursive Programs", Journal of the ACM, Vol. 24, No. 1, pp. 44-67, 1977.

e 87 . Burton, R. R. and Brown, J. S., "An Investigation of Computer Coaching for Infor-
mal Learning Activities", Intelligent Tutoring Systems, Sleeman, D. and Brown, J. S.
(Eds.), Academic Press, New York, 1981.

e h 8 8 . Burton, R. R., "Diagnosing Bugs in a Simple Procedural Skill", Intelligent Tutoring
Systems, Sleeman, D. and Brown, J. S. (Eds.), Academic Press, New York, 1981.

gl 89 . Carbonell, J. G., "Towards a Self-Extending Parser", Proceedings of the 17th Meet-
ing of the Association for Computational Linguistics, pp. 3-7, 1979.

b 9 0 . Carbonell, J. G., "Δ-ΜΙΝ: a Search-Control Method for Information-Gathering
Problems", First National Conference on Artificial Intelligence, Stanford, CA., August
1980.

1 9 1 . Carbonell, J. G., "Metaphor - A Key to Extensible Semantic Analysis", Proceedings
of the 18th Meeting of the Association for Computational Linguistics, 1980.

ah 9 2 . Carbonell, J. G., "A Computational Model of Analogical Problem Solving",
Proceedings of the Seventh International Joint Conference on Artificial Intelligence,
Vancouver, pp. 147-152, August 1981.

a i m 9 3 . Carbonell, J. G., "Metaphor Comprehension", Knowledge Representation for Lan-
guage Processing Systems, Lehnert, W. and Ringle, M. (Eds.), Erlbaum, New Jersey,
1981, (also CMU Computer Science Tech. Report CMU-CS-81-115).

a im 9 4 . Carbonell, J. G., "Invariance Hierarchies in Metaphor Interpretation", Proceedings
of the Third Meeting of the Cognitive Science Society, Cognitive Science Society, pp.
292-295, August 1981.

O 9 5 . Carbonell, J. G., Michalski, R. S., and Mitchell, T. M., "An Overview of Machine
Learning", Machine Learning, Michalski, R. S., Carbonell, J. G., and Mitchell, T. M.
(Eds.), Tioga, 1983.

520 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

C 96 . Carbonell, J. G., "Bounded Generalization and Example Generation: Knowledge
Acquisition in a Reactive Environment", Technical Report, Carnegie-Mellon University,
1983, (to appear).

ahlllC 9 7 . Carbonell, J. G., "Learning by Analogy: Formulating and Generalizing Plans from
Past Experience", Machine Learning, Michalski, R. S., Carbonell, J. G. and Mitchell,
T. M. (Eds.), Tioga, 1983.

O 98 . Carnap, R., The Continuum of Inductive Methods, The U. of Chicago Press, Illinois,
1952.

0 99 . Carnap, R., "The Aim of Inductive Logic", Logic, Methodology and Philosophy of
Science, Nagel, E., Suppes, P. and Tarski, A. (Eds.), Stanford University Press, Stan-
ford, California, pp. 303-318, 1962.

a o 100. Carnap, R., "Variety, Analogy and Periodicity in Inductive Logic", Philosophy of
Science, Vol. 30, pp. 222-227, 1963.

O 101. Carnap, R. and Jeffrey, R., Studies in Inductive Logic and Probability, U. of Calif
Press, Berkeley, Calif, 1971.

m 102. Case, J. and Smith, C , "Anomaly Hierarchies of Mechanized Inductive Inference",
Proceedings of the 10-th Symposium on the Theory of Computing, pp. 314-319, 1978,
(is an preliminary version of Case and Smith 1981, below).

g 103 . Case, J. and Smith, C , "Comparison of Identification Criteria for Mechanized In-
ductive Inference", Technical Report 159, Department of Computer Science, SUNY
Buffalo, April 1979.

h m 104. Chase, W. G. and Simon, H. A., "Perception in Chess", Cognitive Psychology,
Vol. 4, pp. 55-81, 1974.

ΟΓ 105. Chen, C. H., "Statistical Pattern Recognition- Review and Outlook", IEEE Systems,
Man and Cybernetics Newsletter, Vol. 6, No. 4, pp. 7-8, 1977.

Cd 106. Chisolm, I. H. and Sleeman, D. H., "An Aide for Theory Formation", Expert
Systems in the Micro-Electronic Age, Michie, D. (Ed.), Edinburgh University Press, pp.
202-212, 1979.

bgl 107. Chomsky, N., Aspects of a Theory of Syntax, MIT Press, 1963.

Γ 108. Christensen, R., Foundations of Inductive Reasoning, Entropy Ltd., Berkeley,
California, 1964, (First Edition).

O 109. Churchman, C. W., Theory of Experimental Inference, Macmillan, New York,
1948.

O 110. Churchman, C. W. and Buchanan, B. G., "On the Design of Inductive Systems:
Some Philosophical Problems", British J. Phil. Science, Vol. 20, 1969.

bh 111. Citrenbaum, R., "Efficient Representation of Optimal Solutions for a Class of
Games", Technical Report SRC-69-5, Systems Research Center, Case Western Reserve
University, 1969.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 521

e 1 1 2 . Clancey, W. J., Shortliffe, E . H . and Buchanan, B . G., "Intelligent Computer-
Aided Instruction for Medical Diagnosis", Proceedings of the Third Annual Symposium

on Computer Applications in Medical Care, Silver Spring, Maryland, October 1979.

β 1 1 3 . Clancey, W. J., "Tutoring Rules for Guiding a Case Method Dialogue", Intelligent

Tutoring Systems, Sleeman, D. H. and Brown, J. S. (Eds.), Academic Press, New
York, 1981, (also International Journal of Man-Machine Studies, January 1979).

C 1 1 4 . Cohen, B. L. , "A Powerful and Efficient Structural Pattern Recognition System",
Artificial Intelligence, Vol. 9, No. 3 , December 1977.

C 1 1 5 . Cohen, B. L. and Sammut, C. A. , "Pattern Recognition and Learning with a Struc-
tural Description Language", Proceedings of the Fourth International Joint Conference

on Pattern Recognition, Kyoto, Japan, pp. 394, 1978.

C 1 1 6 . Cohen, B. L., A Theory of Structural Concept Formation and Pattern Recognition

Ph.D. dissertation, University of South Wales, 1978, (Department of Computer
Science).

C 1 1 7 . Cohen, B. L. , "CONFUCIUS, a Structural Pattern Recognition and Learning
System", Proceedings of the International Conference on Cybernetics and Society,

Tokyo-Kyoto, pp. 1443, 1978.

CO 1 1 8 . Cohen, D . , Knowledge Based Theorem Proving and Learning, UMI Research Press,

AI, 1981.

b o 119. Cohen, P. R. and Feigenbaum, E. A. (Eds.), The Handbook of Artificial Intel-
ligence, Kaufman, Los Altos, Ca., Vol. Ill, 1982.

g 120. Cook, C. M., Rosenfeld, A. and Aronson, A. R., "Grammatical Inference by Hill-
Climbing", Information Sciences, Vol. 10, pp. 59-80, 1976.

g 121. Cook, C. M. and Rosenfeld, A., "Some Experiments in Grammatical Inference",
Computer Oriented Learning Processes, Simon, J. C. (Ed.), Noordhoff, Leyden, 1976.

O 122. Coulon, D. and Kayser, D., "Learning Criterion and Inductive Behavior", Pattern

Recognition, Vol. 10, No. 1, pp. 19-25, 1978.

gl 123. Coulon, D. and Kayser, D., "Construction of Natural-Language Sentence Acceptors
by a Supervised Learning Technique", IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. P A M M , pp. 94-99, 1979.

Γ 1 2 4 . Cover, T. M. , "Geometrical and Statistical Properties of Systems of Linear In-
equalities with Applications in Pattern Recognition", IEEE Transactions on Electronic

Computers, Vol. EC, No. 14, pp. 326-344, 1965.

g 1 2 5 . Crespi-Reghizzi, S. , "Reduction of Enumeration in Grammar Acquisition", Second

International Joint Conference on Artificial Intelligence, British Computer Society,

London, 1971.

g 1 2 6 . Crespi-Reghizzi, S., "An Effective Model for Grammar Inference", Information

Processings 71, North-Holland, pp. 524-529, 1972.

522 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

g 127. Crespi-Reghizzi, S., Melkanoff, M. A. and Lichten, L., "The Use of Grammatical
Inference for Designing Programming Languages", Communications of the ACM, Vol.
16, No. 2, pp. 83-90, February 1973.

m 128. Culberson, J. T., The Minds of Robots, University of Illinois Press, Urbana, Illinois,
1963.

bl 129. Cullingford, R., Script Application: Computer Understanding of Newspaper Stories
Ph.D. dissertation, Yale University, September 1977.

h p 130. Darlington, J. and Burstall, R. M., "A System Which Automatically Improves
Programs", Acta Informatica, Vol. 6, pp. 41-60, 1976.

b 131. Davies, W. D. T., System identification for Self-Adaptive Control, Wiley-
Interscience, Wiley and Sons, Ltd., 1970.

b 132. Davis, R. and King, J., "An Overview of Production Systems", Report STAN-
CS-75-542, Computer Science Department, Stanford University, October 1975, (Also
Stanford AI Lab Memo #AIM-271).

k 133. Davis, R., "Interactive Transfer of Expertise: Acquisition of New Inference Rules",
Fifth International Joint Conference on Artificial Intelligence, pp. 321-328, August
1977.

h m 134. Davis, R., Jockusch, E. and McKnight, C , "Cognitive Processes in Learning
Algebra", Journal of Children's Mathematical Behavior, Vol. 2, No. 1, 1978.

C 135. Davis, J., "Convart: A Program for Constructive Induction on Time-Dependent
Data" Master's thesis, Department of Computer Science, University of Illinois, Septem-
ber 1981.

k 136. Davis, R., "Applications of Meta Level Knowledge to the Construction and Use of
Large Knowledge Bases", Knowledge-based Systems in Artificial Intelligence, Davis,
R. and Lenat, D. (Eds.), McGraw-Hill, New York, 1982, (also Stanford Technical
Report STAN-CS-76-552).

O 137. de Finetti, B., Probability, Induction, and Statistics - The Art of Guessing, John
Wiley and Sons, New York, 1972.

gl 138. Derwing, B. L., Transformational Grammar as a Theory of Language Acquisition,
Cambridge U. Press, Cambridge, England, 1973.

qr 139. Diday, E. and Simon, J. C , "Clustering Analysis", Communication and Cyber-
netics, Fu, K. S. (Ed.), Springer-Verlag, Berlin, Heidelberg, New York, 1976.

C 140. Dietterich, T., "Description of Inductive Program INDUCE 1.1", Internal Report,
Department of Computer Science, University of Illinois, October 1978.

C 141. Dietterich, T. G., "The Methodology of Knowledge Layers for Inducing Descrip-
tions of Sequentially Ordered Events" Master's thesis, University of Illinois, October
1979.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 523

bco 142. Dietterich, T. G. and Michalski, R. S., "Learning and Generalization of Charac-
teristic Descriptions: Evaluation Criteria and Comparative Review of Selected
Methods", Sixth International Joint Conference on Artificial Intelligence, Tokyo, Japan,
pp. 223-231, August 1979.

C 143 . Dietterich, T. G., "Applying General Induction Methods to the Card Game Eleusis",
First National Conference on Artificial Intelligence, Stanford University, pp. 218-220,
August 1980.

bC0 144. Dietterich, T. G. and Michalski, R. S., "Inductive Learning of Structural
Descriptions", Artificial Intelligence, Vol. 16, 1981.

C 145. Dietterich, T. G. and Buchanan, B. G., "The Role of the Critic in Learning
Systems", Report HPP-81-19, Stanford University, December 1981, (also STAN-
CS-81-891).

CO 146. Dietterich, T. G. and Michalski, R. S., "A Comparative Review of Selected
Methods for Learning Structural Descriptions", Machine Learning, Michalski, R. S.,
Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga, Palo Alto, 1983.

g 147. Doucet, P. G., "The Syntactic Inference Problem for DOL-Sequences", L-Systems.,
Lecture Notes in Computer Science, Springer-Verlag, Vol. 15, pp. 146-161, 1974.

b 148. Doyle, J., "A Truth Maintenance System", Artificial Intelligence, Vol. 12, No. 3,
1979.

b 149. Dreyfus, H. L., What Computers Can't Do: A Critique of Artificial Reason, Harper
& Row, 1972.

COqr 150. Duda, R. O. and Hart, P. E., Pattern Classification and Scene Analysis, Wiley,
New York, 1973.

h 151. Elcock, E. W. and Murray, A. M., "Experiments with a Learning Component in a
Go-Muku Playing Program", Machine Intelligence, Oliver & Boyd, Vol. 1, pp. 87-103,
1967.

C 152. Ernst, G. W. and Sherman, R., "Recognizing Concepts in Terms of Other
Concepts", Pattern Recognition, Vol. 2, pp. 301, 1969.

b 153 . Ernst, G. W. and Newell, A., GPS: A Case Study in Generality and Problem
Solving, Academic Press, New York, 1969.

h 154. Ernst, G. W., "Mechanical Discovery of Certain Heuristics", Report 113, Jennings
Computer Center, Case Western Reserve University, January 1974.

p 155. Ernst, G. W. and Hookway, R. J., "Formulating Inductive Assertions for Program
Verifications", Technical Report, Case Western Reserve University, 1975.

h 156. Ernst, G. W. and Goldstein, M. M., "Mechanical Discovery of Classes of Problem-
Solving Strategies", Journal of the ACM, Vol. 29, No. 1, January 1982.

a 157. Evans, T. G., "A Program for the Solution of a Class of Geometric Analogy
Intelligence Test Questions", Semantic Information Processing, Minsky, M. (Ed.), MIT
Press, Cambridge, Mass, pp. 271-253, 1968.

524 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

b 158. Feigenbaum, E. A. and Feldman, J. (Eds.), Computers and Thought, McGraw-Hill,
New York, 1963.

Im 159. Feigenbaum, E. A., "The Simulation of Verbal Learning Behavior", Computers and
Thought, Feigenbaum, E. A. and Feldman, J. (Eds.), McGraw-Hill, New York, pp.
297-309, 1963, (originally in Proceedings Western Joint Computer Conference, 1961).

b 160. Feigenbaum, E. A., Buchanan, B. G. and Lederberg, J., "On Generality and
Problem Solving: a Case Study using the DENDRAL Program", Machine Intelligence,
American Elsevier, Vol. 6, pp. 165-190, 1971.

b 161. Feigenbaum, E. A., "The Art of Artificial Intelligence: I. Themes and Case Studies
of Knowledge Engineering", Fifth International Joint Conference on Artificial Intel-
ligence, Cambridge, Mass., pp. 1014-1029, 1977.

g 162. Feldman, J. A., Gips, J., Horning, J. J. and Reder, S., "Grammatical Complexity
and Inference", Technical Report CS 125, Computer Science Department, Stanford
University, 1969.

g 163. Feldman, J. A., "Some Decidability Results on Grammatical Inference and
Complexity", information and Control, Vol. 20, pp. 244-262, 1972.

p 164. Feldman, J. and Shields, P., "Total Complexity and the Inference of Best
Programs", Math Systems Theory, Vol. 10, pp. 181-191, 1977.

g 165. Feliciangeli, H. and Herman, G. T., "Algorithms for Producing Grammars from
Sample Derivations: A Common Problem of Formal Language Theory and Develop-
mental Biology", Journal of Computer and System Sciences, Vol. 7, pp. 97-118, 1973.

b 166. Fikes, R. E. and Nilsson, N. J., "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving", Artificial Intelligence, Vol. 2, pp. 189-208,
1971.

h 167. Fikes, R. E., Hart, P. E. and Nilsson, N. J., "Learning and Executing Generalized
Robot Plans", Artificial Intelligence, Vol. 3, pp. 251-288, 1972.

O 168. Findler, N. V. and McKinsie, W. R., "Computer Simulation of a Self-Preserving
and Learning Organism", Bulletin Math. Biophysics, Vol. 31, pp. 247-253, 1969.

h 169. Findler, N. V., "Studies in Machine Cognition using the Game of Poker", CACM,
Vol. 20, No. 4, pp. 230-245, 1977.

b 170. Findler, N. V. (Ed.), Associative Networks - The Representation and Use of
Knowledge in Computers, Academic Press, New York, 1979.

b m 171. Fodor, J. A., The Language of Thought, Thomas Y. Crowell Co., New York, pp.
124-156, 1975.

C 172. Fox, M. S. and Hayes-Roth, F., "Approximation Techniques for the Learning of
Sequential Symbolic Patterns", Proceedings of the Third International Joint Conference
on Pattern Recognition, pp. 616-620, 1976.

O 173. Fox, M. S., "On Inheritance in Knowledge Representation", Sixth International
Joint Conference on Artificial Intelligence, Tokyo, Japan, 1979.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 525

C 174. Fredkin, E., "Techniques using LISP for Automatically Discovering Interesting Rela-
tions in Data", The Programming Language LISP, Berkeley and Bobrow (Eds.), Infor-
mation International, Cambridge, Mass., 1964.

b 175. Friedberg, R. M., "A Learning Machine: Part 1", IBM Journal, Vol. 2, pp. 2-13,
1958.

b 176. Friedberg, R., Dunham, B. and North, T., "A Learning Machine: Part 2", IBM
Journal of Research and Development, Vol. 3, No. 3, pp. 282-287, 1959.

ΟΓ 177. Fu, K. S., Sequential Methods in Pattern Recognition and Machine Learning,
Academic Press, New York, 1968.

Γ 178. Fu, K. S. (Ed.), Pattern Recognition and Machine Learning, Plenum Press, New
York, 1971.

bor 179. Fu, K. S., Syntactic Methods in Pattern Recognition, Academic Press, New York,
1974.

b 180. Fu, K. S. and Tou, J. T., Learning Systems and Intelligent Robots, Plenum Press,
1974.

gO 181. Fu, K. S. and Booth, T. L., "Grammatical Inference: Introduction and Survey-Part",
IEEE Transactions on SMC, Vol. 5, No. 1, 4, pp. 95-111, 409-423, 1975.

ΟΓ 182. Fu, K. S., Syntactic Pattern Recognition, Applications, Springer-Verlag, New York,
1977.

gor 183. Fu, K. S., "Pattern Recognition: Discriminant and Syntactic Methods", Encyclopedia
of Computer Science and Technology, Marcel Dekker, Vol. 12, 1979.

Or 184. Fukanaga, K., Introduction to Statistical Pattern Recognition, Academic Press,
1972.

bg 185. Gaines, B. R., "Behavior/Structure Transformations under Uncertainty", Inter-
national Journal of Man-Machine Studies, Vol. 8, pp. 337-365, 1976.

g 186. Gaines, B. R., "Maryanski's Grammatical Inferencer", IEEE Transactions on Com-
puters, Vol. C-28, pp. 62-64, 1979.

d 187. German, S. M. and Wegbreit, B., "A Synthesizer of Inductive Assertions", IEEE
Transactions on Software Engineering, Vol. SE-1, No. 1, pp. 68-75, March 1975.

g 188. Gill, A., "State-Identification Experiments in Finite Automata", Information and
Control, Vol. 4, pp. 132-154, 1961.

CO 189. Glanc, A., "Theory Formation by Machine: a General Framework of the GOLEM
System", IEEE Transactions on Systems, Man, and Cybernetics, pp. 342-343, 1973.

g 190. Gold, E. M., "Language Identification in the Limit", Information and Control, Vol.
10, pp. 447-474, 1967.

g 191. Gold, E. M., "System Identification via State Characterization", Automatica, Vol. 8,
pp. 621-636, 1972.

526 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

g 192. Gold, E. M., "Complexity of Automaton Identification from Given Data", Infor-
mation and Control, Vol. 37, pp. 302-320, 1978.

h 193. Goldin, S. E. and Klahr, P., "Learning and Abstraction in Simulation", Proceedings
of the Seventh International Joint Conference on Artificial Intelligence, Vancouver, pp.
212-214, August 1981.

hk 194. Goldstein, I. P. and Grissom, E., "Annotated Production Systems: a Model for Skill
Acquisition", Fifth International Joint Conference on Artificial Intelligence, Cambridge,
Mass., pp. 311-317, 1977.

h 195. Goldstein, M. M., "The Mechanical Discovery of Problem Solving Strategies",
Report ESCI-77-1, Case Institute of Technology, Case Western Reserve U., 1977.

k 196. Goldstein, I. P., "The Genetic Graph: a Representation for the Evolution of
Procedural Knowledge", Intelligent Tutoring Systems, Sleeman, D. H. and Brown, J. S.
(Eds.), Academic Press, New York, 1981.

Γ 197. Gonzalez, R. C. and Thomason, M. G., Syntactic Pattern Recognition, An Intro-
duction, Addison-Wesley, Reading, Mass., 1978.

O 198. Good, I., "The Probabilistic Explication of Information, Evidence, Surprise,
Causality, Explanation, and Utility", Foundations of statistical inference, Godambe and
Sprott (Eds.), Holt, Rinehart and Winston of Canada, Toronto, pp. 108-122, 1971.

q 199. Gowda, K. C. and Krishna, G., "Disaggregative Clustering using the Concept of
Mutual Nearest Neighborhood", IEEE Transactions on Systems, Man and Cybernetics,
Vol. SMC-8, No. 12, pp. 888-894, December 1978.

p 200 . Green, C. C , "The Design of the PSI Program Synthesis System", Proceedings of
the Second International Conference on Software Engineering, San Francisco, CA., pp.
4-18, October 1976.

h o 2 0 1 . Griffith, A. K., "A Comparison and Evaluation of Three Machine Learning
Procedures as Applied to the Game of Checkers", Artificial Intelligence, Vol. 5, pp.
137-148, 1974.

p 202 . Guiho, G. and Jouannaud, J. P., "Program Synthesis for a Simple Class of Non-
Loop Functions", Technical Report 6, Laboratoire de Recherche en Informatique.,
Universite de Paris-Sud, 1978,

k 203 . Haas, N. and Hendrix, G. G., "An Approach to Applying and Acquiring
Knowledge", First National Conference on Artificial Intelligence, Stanford, CA., pp.
235-239, August 1980.

k 204 . Haas, N. and Hendrix, G. G., "Learning by Being Told: Acquiring Knowledge for
Information Management", Machine Learning, Michalski, R. S., Carbonell, J. G. and
Mitchell, T. M. (Eds.), Tioga, 1980.

bo 205 . Hacking, I., Logic of Statistical Inference, Harvard University Press, Cambridge,
Mass., 1965.

O 206 . Hajek, P., "On Logics of Discovery", Lecture Notes in Computer Science, Springer-
Verlag, Vol. l ,pp. 30-45, 1975.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 527

C 2 0 7 . Hâjek, P. and Havrânek, T., "On Generation of Inductive Hypotheses", Inter-
nationaljournal on Man-Machine Studies, No. 9, pp. 415-438, 1977.

0 208 . Hâjek, P. and Havrânek, T., Mechanizing Hypothesis Formation: Mathematical
Foundations for a General Theory, Springer-Verlag, 1978.

C 209 . Hajek, P. and Havrânek, T., "The GUHA Method - its Aims and Techniques",
International Journal on Man-Machine Studies, No. 10, pp. 3-22, 1978.

d 210 . Hamacher, V. C , Langdon, G. G., Cantarella, R. G., English, W. and Losupovicz,
Theory of Adaptive Mechanisms, Management Information Services, Detroit, 1970.

d 2 1 1 . Hammond, P. H., "Theory of Self-Adaptive Control Systems", Proceedings of the
Second IF AC Symposium on the THeory of Self-Adapt ive Control Systems, Plenum
Press, New York, September 1966.

p 2 1 2 . Hardy, S., "Synthesis of LISP Functions from Examples", Fourth International Joint
Conference on Artificial Intelligence, Cambridge, Mass., pp. 240-245, September 1975.

1 2 1 3 . Harris, L. R., "A System for Primitive Natural Language Acquisition", International
Journal Man-Machine Studies, pp. 153-206, 1977.

e 214 . Hartley, J. R. and Sleeman, D. H., "Towards Intelligent Teaching Systems", Inter-
national Journal on Man-Machine Studies, Vol. 5, pp. 215-236, 1973.

C 215 . Hayes-Roth, F., "Schematic Classification Problems and their Solution", Pattern
Recognition, Vol. 6, pp. 105-113, 1974.

C 216 . Hayes-Roth, F. and Mostow, D., "An Automatically Compilable Recognition Net-
work for Structured Patterns", Fourth International Joint Conference on Artificial Intel-
ligence, Cambridge, Mass., pp. 356-362, September 1975.

C 2 1 7 . Hayes-Roth, F., "Patterns of Induction and Associated Knowledge Acquisition
Algorithms", Pattern Recognition and Artificial Intelligence, Chen, C. (Ed.), Academic
Press, New York, 1976.

C 2 1 8 . Hayes-Roth, F., "Representation of Structured Events and Efficient Procedures for
their Recognition", Pattern Recognition, Vol. 8, pp. 141, 1976.

cl 219 . Hayes-Roth, F. and Bürge, J., "Characterizing Syllables as Sequences of Machine-
Generated Labeled Segments of Connected Speech: a Study in Symbolic Pattern Learn-
ing using a Conjunctive Feature Learning and Classification System", Proceedings of
the Third International Joint Conference on Pattern Recognition, Coronado, Ca., pp.
431-436, 1976.

c h 220 . Hayes-Roth, F., "Uniform Representations of Structured Patterns and an Algorithm
for the Induction of Contingency-Response Rules", Information and Control » Vol. 33,
pp. 87-116, February 1977.

C 2 2 1 . Hayes-Roth, F. and McDermott, J., "Knowledge Acquisition from Structural
Descriptions", Fifth International Joint Conference on Artificial Intelligence,
Cambridge, Mass., pp. 356-362, August 1977.

C 2 2 2 . Hayes-Roth, F. and McDermott, J., "An Interference Matching Technique for Induc-
ing Abstractions", Communications of the ACM, Vol. 21, No. 5, pp. 401-410, 1978.

528 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

Chk 2 2 3 . Hayes-Roth, F., Klahr, P., Bürge, J. and Mostow, D. J., "Machine Methods for
Acquiring, Learning, and Applying Knowledge", Technical Report R-6241, The RAND
Corporation, 1978.

hk 224 . Hayes-Roth, F., Klahr, P. and Mostow, D. J., "Knowledge Acquisition, Knowledge
Programming, and Knowledge Refinement", Technical Report R-2540-NSF, The Rand
Corporation, May 1980.

k 2 2 5 . Hayes-Roth, F., Klahr, P. and Mostow, D. J., "Advice-Taking and Knowledge
Refinement: an Iterative View of Skill Acquisition", RAND Paper Series P-6517, The
RAND Corporation, 1980, (to appear in J. A. Anderson, Skill Acquisition and Develop-
ment, Erlbaum, 1981, in press).

chk 226 . Hayes-Roth, F., "Using Proofs and Refutations to Learn from Experience", Machine
Learning, Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga, Palo
Alto, 1983.

hill 227 . Hayes, J. R. and Simon, H. A., "Understanding Written Problem Instructions",
Knowledge and Cognition, Gregg, L. W. (Ed.), Erlbaum, Potomac, Md., 1974.

h 228 . Hedrick, C. L., A Computer Program to Learn Production Systems Using a Seman-
tic Net Ph.D. dissertation, Carnegie-Mellon University, July 1974, (Department of
Computer Science).

h 229 . Hedrick, C. L., "Learning Production Systems from Examples", Artificial Intel-

ligence, Vol. 7, No. 1, pp. 21-49, 1976.

O 230 . Hempel, C. G., "Inductive Inconsistencies", Synthese, Vol. 12, pp. 439-469, 1960.

O 2 3 1 . Hendel, R. J., "Mathematical Learning Theory: a Formalized, Axiomatic, Abstract
Approach", Information and Control, Vol. 41, pp. 67-117, 1979.

g 232 . Herman, G. T. and Walker, A. D., "The Syntactic Inference Problem Applied to
Biological Systems", Machine Intelligence, Edinburgh U. Press, Vol. 7, pp. 341-356,
1972.

Γ 2 3 3 . Highleyman, W. H., "Linear Decision Functions, with Applications to Pattern
Recognition", Proceedings of IRE, IRE, No. 50, pp. 1501-1504, 1967.

b o 234 . Hilgard, E. R. and Bower, G. H., Theories of Learning - Third Edition, Appleton-
Century-Grofts, New York, 1966.

O 2 3 5 . Hintikka, J., "On a Combined System of Inductive Logic", Acta Philosophica Fen-
nica, Vol. 18, pp. 21-30, 1965.

O 236 . Hintikka, J., "Towards a Theory of Inductive Generalization", Proceedings of the
1964 Congress for Logic, Methodology and Philosophy of Science, North Holland,
Amsterdam, pp. 274-288, 1965.

b 2 3 7 . Hintikka, J. and Suppes, P. (Eds.), Aspects of Inductive Logic, North-Holland,
Amsterdam, 1966.

O 238 . Hintikka, J. and Hilpinen, R., "Knowledge Acceptance and Inductive Logic",
Aspects of Inductive Logic, Hintikka, J. and Suppes, P. (Eds.), North-Holland, Amster-
dam, pp. 1-20, 1966.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 529

b o 239 . Hofstadter, D. R., Goedel, Escher, Bach: an Eternal Golden Braid, Basic Books
Inc., New York, 1979.

d 240 . Holland, J. H., Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, 1975.

HI 2 4 1 . Holland, T. H. and Reitman, J. S., Cognitive Systems Based on Adaptive Al-
gorithms, Academic Press, 1978.

Cm 242 . Holland, J. H., "Adaptive Algorithms for Discovering and Using General Patterns in
Growing Knowledge Bases", Policy Analysis and Information Systems, Vol. 4, No. 3,
September 1980.

O 2 4 3 . Hormann, A. M., "Programs for Machine Learning, Part 1", Information and Con-
trol, Vol. 5, pp. 347-367, 1962.

O 2 4 4 . Hormann, A. M., "Programs for Machine Learning, Part 2", Information and Con-
trol, Vol. 7, No. 1, pp. 55-77, 1964.

g 2 4 5 . Horning, J. J., A Study of Grammatical Inference Ph.D. dissertation, Stanford
University, August 1969, (also Department of Computer Science Technical Report
CS-139).

g 2 4 6 . Horning, J. J., "A Procedure for Grammatical Inference", Information Processing,
Vol. 71, pp. 519-523, 1972.

C 2 4 7 . Hubel, C. U. and Rollinger, C. R., "A Sketch on Acquisition of Higher Cognitive
Concepts", NATO Symposium on Human and Artificial Intelligence, Lyons, France,
October 1981.

C 248 . Hunt, E. B., Concept Learning: An Information Processing Problem, Wiley, New
York, 1962.

CHI 2 4 9 . Hunt, E. B. and Hovland, C. I., "Programming a Model of Human Concept
Formation", Computers and Thought, Feigenbaum, E. A. and Feldman, J. (Eds.),
McGraw-Hill, New York, pp. 310-325, 1963.

Cgm 2 5 0 . Hunt, E. B., "Selection and Reception Conditions in Grammar and Concept
Learning", J. Verbal Learning Verbal Behavior, Vol. 4, pp. 211-215, 1965.

CO 2 5 1 . Hunt, E. B., Marin, J. and Stone, P. T., Experiments in Induction, Academic Press,

New York, 1966.

b o 2 5 2 . Hunt, E. B., Artificial Intelligence, Academic Press, New York, 1975.

C 2 5 3 . Iba, G. A., "Learning Disjunctive Concepts from Examples" Master's thesis,
M.I.T., 1979, (also AI memo 548).

h 2 5 4 . Johnson, D. L. and Holden, D. C , "Computer Learning in Theorem Proving",
IEEE Transactions on Systems Science and Cybernetics, Vol. SSC-2, pp. 115-123,
1966.

p 2 5 5 . Jouannaud, J. P., Guiho, G. and Treuil, T. P., "SISP/1 An Interactive System Able
to Synthesize Functions from Examples", Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, pp. 412-418, 1977.

530 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

p 256 . Jouannaud, J. P. and Guiho, G., "Inference of Functions with an Interactive
System", Machine Intelligence, Ellis Horwood, Vol. 9, 1979.

p 257 . Jouannaud, J. P. and Kodratoff, Y., "Characterization of a Class of Functions Syn-
thesized from Examples by a Summers-Like Method using a B.M.W. Matching
Technique", Sixth International Joint Conference on Artificial Intelligence, Tokyo,
Japan, pp. 440-447, 1979.

ΟΓ 258 . Kanal, L. N., "Patterns in Pattern Recognition: 1968-1974", IEEE Transactions on
Information Theory, Vol. ΓΓ-20, No. 6, pp. 697-722, 1974.

ΟΓ 259 . Kanal, L. N., "Current Status, Problems and Prospects of Pattern Recognition",
IEEE Systems, Man and Cybernetics Newsletter, Vol. 6, No. 4, pp. 9-11, 1977.

Or 260 . Kanal, L. N., "Problem-Solving Models and Search Strategies for Pattern
Recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-1, No. 2, pp. 193-201, 1979.

br 2 6 1 . Kanal, L. N., Leveen, N., Rosenfeld, and Azriel, Progress in Pattern Recognition,
North-Holland, Vol. 1, 1981.

p 262 . Kant, E., "A Knowledge-Based Approach to Using Efficiency Estimation in
Program Synthesis", Sixth International Joint Conference on Artificial Intelligence,
Tokyo, pp. 457-462, 1979.

p 263 . Kant, E., "Efficiency in Program Synthesis", Ann Arbor, UMI Research Press, 1981

C 264 . Karpinski, J. and Michalski, R. S., "A Learning Recognition System for Hand-
written Alphanumeric Characters", Papers of the Institute of Automatic Control, No.
35, Polish Academy of Sciences, Warsaw, Poland, 1966, (In Polish).

Γ 265 . Kazmierczak, H. and Steinbuch, K., "Adaptive Systems in Pattern Recognition",
IEEE Transactions of Electronic Computers, IEEE, Vol. EC-12, No. 5, pp. 822-835,
1963.

O 266 . Kemeny, J. G., "The Use of Simplicity in Induction", Philosophical Review, Vol.
62, pp. 391-408, 1953.

O 267. Kilburn, T., Grimsdale, R. L. and Sumner, F. H., "Experiments in Machine Learn-
ing and Thinking", Information Processing oflCIP, 1959.

O 268 . Kinber, E. B., "On a Theory of Inductive Inference", Lecture Notes in Computer
Science, Springer-Verlag, Vol. 56, pp. 435-440, 1977.

p 269 . Kinber, E. B., "On Identification in the Limit of Minimal Numbers for Functions of
Effectively Enumerable Classes", Theory of Algorithms and Programs, Latvian State
U., pp. 35-56, 1977.

b 270 . Klahr, P., "Partial Proofs and Partial Answers", Technical Report P-6239, The Rand
Corporation, 1978, (presented at fourth Workshop on Automated Deduction, University
of Texas, Austin).

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 531

gl 2 7 1 . Klein, S. and Kuppon, M. A., "An Interactive Heuristic Program for Learning Tra-
nsformational Grammar", Technical Report, Computer Science Dept., U. Wisconsin,
1979.

p 2 7 2 . Klette, R., "Recognizing Algorithms for Recursive Functions", Elektronicshe Infor-
mationsverarbeitung und Kybernetik, Vol. 12, pp. 227-243, 1976, (in German).

C 2 7 3 . Kline, P. J., "The Superiority of Relative Criteria in Partial Matching and
Generalization", Proceedings of the Seventh International Joint Conference on Artificial
Intelligence, Vancouver, pp. 296-303, August 1981.

a h 274 . Kling, R. E., "A Paradigm for Reasoning by Analogy", Artificial Intelligence, Vol.
2, pp. 147-178, 1971.

g 2 7 5 . Knobe, B. and Knobe, K., "A Method for Inferring Context-Free Grammars", Infor-
mation and Control, Vol. 31, pp. 129-146, 1976.

C 276 . Kochen, M., "Experimental Study of Hypothesis Formation by Computer", Proceed-
ings 1960 London Symposium on Information Theory, 1960.

C 2 7 7 . Kochen, M., "An Experimental Program for the Selection of Disjunctive
Hypotheses", Proceedings Western Joint Computer Conference, pp. 571-578, 1961.

C 2 7 8 . Kochen, M., "Some Mechanisms in Hypothesis.Selection", Proceedings Symposium
on Mathematical Theory of Automata, N.Y. (1962), Polytechnic Press of the Polytechnic
Institute of Brooklyn, N.Y., 1963.

O 279 . Kochen, M., "Cognitive Learning Processes: an Explication", Artificial Intelligence
and Heuristic Programming, Findler and Meltzer (Eds.), Edinburgh U. Press, 1971.

p 2 8 0 . Kochen, M., "An Algorithm for Forming Hypotheses about Simple Functions",
Third Milwaukee Symposium on Automatic Computation and Control, Milwaukee, Wis-
consin, 1975.

p 2 8 1 . Kodratoff, Y., "A Class of Functions Synthesised from a Finite Number of Ex-
amples and a LISP Program Scheme", International Journal Computer and Information
Sciences, Vol. 8, No. 6, pp. 489-521, 1979.

h r 282 . Koffman, E. B., "Learning Games through Pattern Recognition", IEEE Transactions
on Systems Science and Cybernetics, Vol. SSC-4, No. 1, 1968.

C 2 8 3 . Koford, T. S. and Groner, G. F., "The Use of an Adaptive Threshold Element to
Design a Linear Optimal Pattern Classifier", IEEE Transactions-Information Theory,
IEEE, Vol. 1T-12, pp. 42-50, 1966.

Cl 284 . Kolodner, J. L., Retrieval and Organizational Strategies in Conceptual Memory: A
Computer Model Ph.D. dissertation, Yale University, November 1980.

C 2 8 5 . Konrad, E., Orlowska, E. and Pawlak, Z., "On Approximate Concept Learning",
Fachbereich 20, Informatik Technische Universität, Berlin, October 1981.

h 2 8 6 . Kopec, D. and Niblett, T., "How Hard is the Play of the King-Rook King-Knight
Ending?", Advances in Computer Chess, Clarke, M.R.B. (Ed.), Edinburgh University
Press, 1979.

532 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

h 2 8 7 . Korf, R. E., "Toward a Model of Representation Changes", Artificial Intelligence,
Vol. 14, No. 1, pp. 41-78, 1980.

d 2 8 8 . Kotovski, K. and Simon, H., "Empirical Tests of a Theory of Human Acquisition of
Concepts for Sequential Patterns", Cognitive Psychology, No. 4, pp. 399-424, 1973.

b 2 8 9 . Kowalski, R., "Predicate Logic as a Programming Language", information Process-
ing, Vol. 74, pp. 569-574, 1974.

O 290 . Kramer, "A Note on the Self-Consistency Definitions of Generalization and Induc-
tive Inference", JACM, pp. 280-281, 1962.

O 2 9 1 . Kugel, P., "Induction Pure and Simple", Information and Control, Vol. 35, pp.
276-336, 1977. *

b o 292 . Kuhn, T. S., The Structure of Scientific Revolutions, University of Chicago Press,
Chicago, 1970, (2nd edition).

O 2 9 3 . Kyburg, H., "Recent Work in Inductive Logic", American Philosophical Quarterly,
Vol. 1, pp. 249-287, 1964.

bo 294 . Lakatos, I., Proofs and Refutations: The Logic of Mathematical Discovery,
Cambridge University Press, Cambridge, 1976.

O 2 9 5 . Landan, I. D., "A Survey of Model Reference Adaptive Techniques-Theory and
Applications", Automatica, Vol. 10, No. 4, 1974.

d 296 . Langley, P. W., "BACON: A Production System that Discovers Empirical Laws",
Fifth International Joint Conference on Artificial Intelligence, Cambridge, Mass., pp.
344-346, August 1977.

d 2 9 7 . Langley, P., "BACON. 1: A General Discovery System", Proceedings of the Second
National Conference of the Canadian Society for Computational Studies in Intelligence,
pp. 173-180, 1978.

d 2 9 8 . Langley, P., "Rediscovering Physics with BACON.3", Sixth International Joint
Conference on Artificial Intelligence, Tokyo, pp. 505-507, 1979.

h 2 9 9 . Langley, P. W., Neches, R., Neves, D. and Anzai, Y., "A Domain-Independent
Framework for Procedure Learning", Journal of Policy Analysis and Information Sys-
tems, Vol. 4, No. 2, pp. 163-197, June 1980.

d 300 . Langley, P., Bradshaw, G. L. and Simon, H. A., "BACON.5: The Discovery of
Conservation Laws", Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, Vancouver, pp. 121-126, August 1981.

d 3 0 1 . Langley, P., "Data-Driven Discovery of Physical Laws", Cognitive Science, Vol. 5,
No. 1, pp. 31-54, 1981.

d 302 . Langley, P., Simon, H. A. and Bradshaw, G. L., "Rediscovering Chemistry with
the BACON System", Machine Learning, Michalski, R. S., Carbonell, J. G. and
Mitchell, T. M. (Eds.), Tioga, Palo Alto, 1982.

C 3 0 3 . Larson, J. and Michalski, R. S., "AQVAL/1 (AQ7) User's Guide and Program
Description", Technical Report 731, Dept. Computer Science., U. Illinois, 1975.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 533

C 304 . Larson, J., "INDUCE-1: An Interactive Inductive Inference Program in VL21 Logic
System", Technical Report UIUCDCS-R-77-876, Department of Computer Science,
University of Illinois, May 1977.

C 3 0 5 . Larson, J., Inductive Inference in the Variable-Valued Predicate Logic System VL21 :
Methodology and Computer Implementation Ph.D. dissertation, University of Illinois,
May 1977.

C 3 0 6 . Larson, J. and Michalski, R. S., "Inductive Inference of VL Decision Rules",
Proceedings of the Workshop on Pattern Directed Inference Systems, SIGART Newslet-
ter 63, 1977.

C 3 0 7 . Larson, J. and Michalski, R. S., "Inductive Inference of VL Decision Rules",
Pattern-Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.),
Academic Press, New York, 1978.

l m 308 . Lebowitz, M., Generalization and Memory in an Integrated Understanding System
Ph.D. dissertation, Yale University, October 1980.

Ill 309 . Lebowitz, M., "The Nature of Generalization in Understanding", Proceedings of the
Seventh International Joint Conference on Artificial Intelligence, Vancouver, pp.
348-353, August 1981.

d 3 1 0 . Lenat, D. B., AM: An Artificial Intelligence Approach to Discovery in Mathematics
as Heuristic Search Ph.D. dissertation, Stanford University, 1976.

O 3 1 1 . Lenat, D. B., "The Ubiquity of Discovery", Artificial Intelligence, Vol. 9, No. 3,
pp. 257-285, December 1977.

d 312 . Lenat, D. B., "Automated Theory Formation in Mathematics", Fifth International
Joint Conference on Artificial Intelligence, Cambridge, Mass., pp. 833-842, 1977.

d 3 1 3 . Lenat, D. and Harris, G., "Designing a Rule System that Searches for Scientific
Discoveries", Pattern-Directed Inference Systems, Waterman, D. A. and Hayes-Roth,
F. (Eds.), Academic Press, New York, pp. 25-51, 1978.

h o p 314 . Lenat, D. B., Hayes-Roth, F. and Klahr, P., "Cognitive Economy", RAND tech-
nical report N-1185-NSF, The RAND Corporation, June 1979.

ho 3 1 5 . Lenat, D. B., "The Nature of Heuristics", Technical Report HPP-80-26, Heuristic
Programming Project., Computer Science Dept., Stanford U., 1980.

d h 316 . Lenat, D. B., The Role of Heuristics in Learning by Discovery: Three Case Studies,
Tioga, Palo Alto, 1982.

O 3 1 7 . Levi, I., "Deductive Cogency in Inductive Inference", Journal of Philosophy, Vol.
62, pp. 68-77, 1965.

O 318 . Levi, I., Gambling with Truth: An Essay on Induction and the Aims of Science,
Alfred A. Knopf, Inc., New York, 1967.

h 319 . Lewis, C. H., Production System Models of Practice Effects Ph.D. dissertation,
University of Michigan, 1978, (unpublished).

534 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

bo 320 . Lindsay, P. H. and Norman, D. A., Human Information Processing, Academic
Press, New York, 1972.

m 3 2 1 . Logan, F. A. and Gordon, W. C , Fundamentals of Learning and Motivation,
W. C. Brown Company, 1981, (third edition).

C 322 . Loisel, R. and Kodratoff, Y., "Learning (Complex) Structural Descriptions from
Examples", Proceedings of the Seventh international Joint Conference on Artificial
Intelligence, Vancouver, pp. 141-143, August 1981.

ch 323 . Low, J. R., "Automatic Data Structure Selection: An Example and Overview",
Communications oftheACM, Vol. 21, No. 5, pp. 376-385, May 1978.

h 324 . Luchins, A. S., "Mechanization in Problem Solving", Psychological Monographs,
Vol. 54, No. 248, 1942.

O 325 . MacKay, D. M., "The Epistemological Problem for Automata", Automata Studies,
Shannan and McCarthy (Eds.), Princeton U. Press, Princeton, N.J., 1955.

g 326. Maryanski, F. J. and Booth, T. L., "Inference of Finite-State Probabilistic
Grammars", IEEE Transactions on Computers, Vol. C-26, pp. 521-536, 1977, (See
also Gaines 1979).

e 327 . Matz, M., "Towards a Generative Theory of High School Algebra Errors", Intel-
ligent Tutoring Systems, Sleeman, D. H. and Brown, J. S. (Eds.), Academic Press,
New York, 1981.

g 328 . McCarthy and Shannon (Eds.), Automata Studies, Princeton University Press, Prin-
ceton, 1955.

b o 329 . McCarthy, J., "Programs with Common Sense", Semantic Information Processing,
Minsky, M. (Ed.), M.I.T. Press, Cambridge, Mass., pp. 403-417, 1968.

b 330 . McCarthy, J., "First Order Theories of Individual Concepts and Propositions",
Machine Intelligence, Ellis Horwood, Vol. 9, 1979.

b m 3 3 1 . McCulloch, W. S. and Pitts, W., "A Logical Calculus of Ideas Imminent in Nervous
Activity", Bull. Math. Biophysics, Vol. 5, pp. 115-133, 1943.

ah 332 . McDermott, J., "ANA: An Assimilating and Accommodating Production System",
Technical Report CMU-CS-78-156, Carnegie-Mellon University, December 1978.

a 333 . McDermott, J., "Learning to Use Analogies", Sixth International Joint Conference
on Artificial Intelligence, 1979.

b 334 . Meehan, J. R., "An Artificial Intelligence Approach to Tonal Music Theory", Tech-
nical Report 124A, Department of Information and Computer Science, University of
California, Irvine, June 1979.

CO 3 3 5 . Meltzer, B. , "The Semantics of Induction and the Possibility of Complete Systems

of Inductive Inference", Artificial Intelligence, Vol. 1, pp. 189-192, 1970.

d o 336. Meltzer, B., "Generation of Hypotheses and Theories", Nature, March 1970.

O 337 . Meltzer, B., "The Programming of Deduction and Induction", Artificial and Human
Thinking, Elithorn, A. and Jones, D. (Eds.), San Francisco, pp. 19-33, 1973.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 535

dr 338 . Mendel, T. and Fu, K. S., Adaptive Learning and Pattern Recognition: Theory and
Applications, Spartan Books, New York, 1970.

Γ 339 . Michalski, R. S., "A Variable-Valued Logic System as Applied to Picture Descrip-
tion and Recognition", Graphic Languages, Nake, F. and Rosenfeld, A. (Eds.), North-
Holland, 1972.

C 340 . Michalski, R. S., "Discovering Classification Rules using Variable-Valued Logic
System VL1", Third International Joint Conference on Artificial Intelligence, pp.
162-172, 1973.

C 3 4 1 . Michalski, R. S., "AQVAL/1 - Computer Implementation of a Variable Valued
Logic System VL1 and Examples of its Application to Pattern Recognition", Proceed-
ings of the First International Joint Conference on Pattern Recognition, Washington,
D. C , pp. 3-17, 1973.

C 342 . Michalski, R. S., "Synthesis of Optimal and Quasi-Optimal Variable-Valued Logic
Formulas", Fifth International Symposium on Multiple-Valued Logic, Bloomington, In-
diana, 1975.

Cr 343 . Michalski, R. S., "Variable-Valued Logic and its Applications to Pattern Recog-
nition and Machine Learning", Computer Science and Multiple-Valued Logic Theory
and Applications, Rine, D. C. (Ed.), North-Holland, pp. 506-534, 1975.

C 344 . Michalski, R. S., "Learning by Inductive Inference", Computer Oriented Learning
Processes, Simon, J. C. (Ed.), Noordhoff, Leyden, Netherlands, pp. 321-337, 1976,
(Proceedings of the NATO Advanced Study Institute on Computer Oriented Learning
Processes., Bonas, France, 1974).

C 345 . Michalski, R. S., "A System of Programs for Computer-Aided Induction: A
Summary", Fifth International Joint Conference on Artificial Intelligence, Cambridge,
Mass., pp. 319-320, 1977.

C 346 . Michalski, R. S., "Pattern Recognition as Knowledge-Guided Induction", Technical
Report 927, Department of Computer Science, 1978.

C 347. Michalski, R. S. and Larson, J. B., "Selection of Most Representative Training
Examples and Incremental Generation of VL1 Hypotheses: The Underlying Methodol-
ogy and Description of Programs ESEL and AQ11", Report 867, University of Illinois,
1978.

Cd 348 . Michalski, R. S., "Pattern Recognition as Rule-Guided Inductive Inference", IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 2, 3, 4,
pp. 349-361, 1980.

Ck 349 . Michalski, R. S. and Chilausky, R. L., "Learning by Being Told and Learning from
Examples: An Experimental Comparison of the Two Methods of Knowledge Acquisition
in the Context of Developing an Expert System for Soybean Disease Diagnosis", Policy
Analysis and Information Systems, Vol. 4, No. 2, June 1980, (Special issue on
knowledge acquisition and induction).

Cq 350 . Michalski, R. S., "Knowledge Acquisition through Conceptual Clustering: A
Theoretical Framework and an Algorithm for Partitioning Data into Conjunctive
Concepts", Policy Analysis and Information Systems, Vol. 4, No. 3, September 1980.

536 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

CO 3 5 1 . Michalski, R. S., "Inductive Inference as Rule-Guided Transformation of Symbolic
Descriptions", International Workshop on Program Construction, Chateau de Bonas,
France, pp. 45 , September 1980, (also in Program Construction, Bierman (ed.)).

cq 352 . Michalski, R. S. and Stepp, R. E., "An Application of AI Techniques to Structuring
Objects into an Optimal Conceptual Hierarchy", Proceedings of the Seventh Inter-
national Joint Conference on Artificial Intelligence, Vancouver, pp. 460-465, August
1981.

Cq 3 5 3 . Michalski, R. S., Stepp, R. and Diday, E., "A Recent Advance in Data Analysis:
Conceptual Clustering", Recent Advances in Pattern Recognition, Rosenfeld, A. and
Kanal, L. (Eds.), North-Holland, Amsterdam, pp. 33-56, 1981

Cq 354 . Michalski, R. S. and Stepp, R., "Learning from Observation: Conceptual
Clustering", Machine Learning, Michalski, R. S., Carbonell, J. G. and Mitchell, T. M.
(Eds.), Tioga, Palo Alto, CA, 1982.

bo 3 5 5 . Michalski, R. S., Carbonell, R. S. and Mitchell, T. M. (Eds.), Machine Learning,
Tioga, Palo Alto, CA, 1982.

Cod 356 . Michalski, R. S., "A Theory and Methodology of Inductive Learning", Machine
Learning, Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga, Palo
Alto, 1982.

COd 357 . Michalski, R. S., "Unifying Principles and a Methodology for Inductive Learning",

Artificial Intelligence, 1983, (to appear).

b 3 5 8 . Michie, D., On Machine Intelligence, John Wiley & Sons, New York, 1974.

b 359 . Michie, D. (Ed.), Expert Systems in the Micro-Electronic Age, Redwood Burn
Limited, 1979.

O 360 . Michie, D., "The State of the Art in Machine Learning", Introductory Readings in
Expert Systems, D. Michie (Ed.), Gordon and Breach, UK, 1982.

O 3 6 1 . Minicozzi, E., "Some Natural Properties of Strong-Identification in Inductive
Inference", Theoretical Computer Science, Vol. 2, pp. 345-360, 1976.

bo 362 . Minsky, M., "Steps Toward Artificial Intelligence", Computers and Thought,
Feigenbaum, E. A. and Feldman, J. (Eds.), McGraw-Hill, New York, pp. 406-450,
1963.

bor 3 6 3 . Minsky, M. and Papert, S., Perceptrons, MIT Press, Cambridge, Mass., 1969.

C 364 . Mitchell, T. M., "Version Spaces: A Candidate Elimination Approach to Rule
Learning", Fifth International Joint Conference on Artificial Intelligence, Cambridge,
Mass., pp. 305-310, 1977.

C 365 . Mitchell, T. M., Version Spaces: An Approach to Concept Learning Ph.D. disser-
tation, Stanford University, December 1978, (also Stanford CS report STAN-
CS-78-711, HPP-79-2).

CO 3 6 6 . Mitchell, T. M. and Utgoff, P. E . , "Improving Problem Solving Strategies by Ex-
perimentation: A Proposal", Technical Report CBM-TR-106, Department of Computer
Science, Rutgers University, December 1979.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 537

CO 3 6 7 . Mitchell, T. M., "An Analysis of Generalization as a Search Problem", Sixth Inter-

national Joint Conference on Artificial Intelligence, Tokyo, Japan, August 1979.

CO 3 6 8 . Mitchell, T. M., "The Need for Biases in Learning Generalizations", Technical

Report CBM-TR-117, Department of Computer Science, Rutgers University, May 1980.

b 3 6 9 . Mitchell, T., Carbone», J. and Michalski, R. (Eds.), Sigart Newsletter, ACM Spe-

cial Interest Group on Artificial Intelligence, April 1981, (Special Section on Machine
Learning).

h 3 7 0 . Mitchell, T. M., Utgoff, P. E., Nudel, B. and Banerji, R., "Learning Problem-

Solving Heuristics through Practice", Proceedings of the Seventh International Joint

Conference on Artificial Intelligence, Vancouver, pp. 127-134, August 1981.

hk 3 7 1 . Mitchell, T. M., Utgoff, P. E. and Banerji, R. B., "Learning by Experimentation:
Acquiring and Refining Problem-Solving Heuristics", Machine Learning, Michalski,
R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga, 1983.

hk 372 . Mitchell, T. M., "Toward Combining Empirical and Analytic Methods for Learning
Heuristics", Human and Artificial Intelligence, Elithorn, A. and Banerji, R. (Eds.),
Erlbaum, 1982.

CO 3 7 3 . Mitchell, T. M., "Generalization as Search", Artificial Intelligence, Vol. 18, No. 2,
pp. 203-226, March 1982.

a b 374 . Moore, J. and Newell, A., "How Can MERLIN Understand?", Knowledge and
Cognition, Gregg, L. (Ed.), Erlbaum Associates, Hillsdale, N.J., pp. 253-285, 1974.

C 375 . Moraya, C , "A Didactic Experiment in Pattern Recognition", Report AIUD-
PR-8101, Informatik, Der Universität Dortmund, 1981.

CO 3 7 6 . Morgan, C. G., "Hypothesis Generation by Machine", Artificial Intelligence, North-

Holland, Vol. 2, pp. 179-187, 1971.

CO 3 7 7 . Morgan, C. G., "Automated Hypothesis Generation using Extended Inductive
Resolution", Advance Papers of Fourth International Joint Conference on Artificial

Intelligence, Tbilisi, USSR, pp. 351-356, September 1975.

hk 378 . Mostow, D. J. and Hayes-Roth, F., "Operationalizing Heuristics: Some AI Methods
for Assisting AI Programming", Sixth International Joint Conference on Artificial Intel-
ligence, Tokyo, pp. 601-609, 1979.

hk 379 . Mostow, D. J. and Hayes-Roth, F., "Machine-Aided Heuristic Programming: A
Paradigm for Knowledge Engineering", Technical Report N-1007-NSF, The Rand Cor-
poration, February 1979.

hk 380 . Mostow, D. J., Mechanical Transformation of Task Heuristics into Operational
Procedures Ph.D. dissertation, Carnegie-Mellon University, 1981.

O 3 8 1 . Mostow, D. J., "Transforming Declarative Advice into Effective Procedures: A
Heuristic Search Example", Machine Learning, Michalski, R. S., Carbonell, J. G. and
Mitchell, T. M. (Eds.), Tioga Press, Palo Alto, 1982.

O 382 . Nagel, E., "Carnap's Theory of Induction", The Philosophy of Rudolf Carnap,
Schilpp, P. A. (Ed.), Open Court Publishing Co., La Salle, Illinois, pp. 785-825, 1963.

538 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

h 3 8 3 . Narendra, K. S. and Thathachar, M. A. L., "Learning Automata - A Survey", IEEE
Transaction on Systems, Man, and Cybernetics, Vol. SMC-4, No. 4, pp. 323-333,
1974.

h m 384 . Neches, R. and Hayes, J. R., "Progress Towards a Taxonomy of Strategy
Transformations", Cognitive Psychology and Instruction, Lesgold, A. M., Pellegrino,
J. W., Fokkema, S. and Glaser, R. (Eds.), Plenum Books, New York, 1978.

hltl 3 8 5 . Neches, R., "Promoting Self-Discovery of Improved Strategies", Annual conference
of the American Educational Research Association, San Francisco, CA., April 1979,
(also report CIP 398, Psychology Department, Carnegie-Mellon).

h m 386 . Neches, R., Heuristic Procedure Modification, Ph.D. dissertation, Carnegie-Mellon
University, 1980, (in preparation, date approximate).

h m 387 . Neves, D. M., "A Computer Program that Learns Algebraic Procedures", Proceed-
ings of the 2nd Conference on Computational Studies of Intelligence, Toronto, 1978.

h m 3 8 8 . Neves, D. and Anderson, J. R., "Becoming Expert at a Cognitive Skill", Technical
Report, Carnegie-Mellon University, 1980, (in preparation, date approximate).

h m p 389 . Neves, D. M., "Learning procedures from examples", Proceedings of the Workshop
on Machine Learning, Carnegie-Mellon University, Pittsburgh, PA., July 1980.

h m 390 . Neves, D. and Anderson, J. R., "Knowledge Compilation: Mechanisms for the
Automatization of Cognitive Skills", Cognitive Skills and their Acquisition, Anderson,
J. R. (Ed.), Lawrence Erlbaum Associates, Hillsdale, N.J., 1981.

b h 3 9 1 . Newell, A. and Simon, H. A., "The Logic Theory Machine", IRE Transactions on
Information Theory, Vol. IT-2, No. 3, pp. 61-79, 1956.

b h 392 . Newell, A., Shaw, J. and Simon, H., "Empirical explorations of the logic theory
machine: A case study in heuristics", Proceedings of the 1957 Western Joint Computer
Conference, pp. 218-230, 1957, (Reprinted in Computers and Thought, McGraw-Hill).

b h 3 9 3 . Newell, A., Shaw, J. and Simon, H., "Report on a General Problem-Solving
Program for a Computer", Proceedings of the International Conference on Information
Processing, UNESCO, Paris, 1960.

Cho 394 . Newell, A., "Learning, Generality and Problem Solving", Proceedings of the IFIP
Congress 62, North-Hoi land, Amsterdam, pp. 407-412, 1962.

h o 3 9 5 . Newell, A., Shaw, J. C. and Simon, H. A., "A Variety of Intelligent Learning in a
General Problem Solver", Self Organizing Systems, Yovits and Cameron (Eds.), Per-
gamon Press, New York, 1969.

b 396 . Newell, A., "Heuristic Programming: Ill-Structured Problems", Progress in Opera-
tions Research, Aronofsky, J. (Ed.), Wiley, New York, pp. 363-414, 1969.

b 397 . Newell, A. and Simon, H., Human Problem Solving, Prentice-Hall, Englewood
Cliffs, N.J., 1972.

b 3 9 8 . Newell, A., "Production Systems: Models of Control Structures", Visual Information
Processing, Chase, W. G. (Ed.), Academic Press, New York, 1973.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 539

h m 399 . Newell, A. and Rosenbloom, P., "Mechanisms of Skill Acquisition and the Law of
Practice", Cognitive Skills and Their Acquisition, Anderson, J. R. (Ed.), Erlbaum As-
sociates, Hillsdale, New Jersey, 1981.

b 4 0 0 . Newell, A., "The Knowledge Level", Technical Report CMU-CS-81-131, Depart-
ment of Computer Science, Carnegie-Mellon University, July 1981.

h 4 0 1 . Newman, C. and Uhr, L., "BOGART: A Discovery and Induction Program for

Games", Twentieth National Conference of the ACM, pp. 176, 1965.

ΟΓ 4 0 2 . Nilsson, N. J., Learning Machines, McGraw-Hill, New York, 1965.

b 4 0 3 . Nilsson, N. J., Principles of Artificial Intelligence, Tioga, Palo Alto, 1980.
h 4 0 4 . Novak, G., "Representations of Knowledge in a Program for Solving Physics

Problems", Fifth International Joint Conference on Artificial Intelligence, Cambridge,
Mass., pp. 286-291, 1977.

h 4 0 5 . Novak, G. S. Jr. and Araya, A., "Research on Expert Problem Solving in Physics",
First National Conference on Artificial Intelligence, Stanford University, pp. 178-180,
August 1980.

CO 4 0 6 . O'Rorke, P., "A Comparative Study of Two Inductive Learning Systems AQ11 and
ID3 Using a Chess Endgame Test Problem", Internal Report 82-2, Department of
Computer Science, University of Illinois, September 1982.

1 4 0 7 . Oakey, S. and Cawthorn, R. C , "Inductive Learning of Pronunciation Rules by
Hypothesis Testing and Correction", Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, Vancouver, pp. 109-114, August 1981.

O 4 0 8 . Oettinger, A. G., "Programming a Digital Computer to Learn", Philosophy
Magazine, Vol. 43, pp. 1243-1263, 1952.

h 4 0 9 . Oyen, R. A., "Mechanical Discovery of Invariances for Problem Solving", Tech-
nical Report 1168, Computer Engineering Department, Case Western Reserve Univer-
sity, 1975.

g 4 1 0 . Pao, T. W. L., "A Solution of the Syntactical Induction-Inference Problem for a
Non-Trivial Subset of Context-Free Language", Technical Report 70-19, The Moore
School of Electrical Engineering., U. Pennsylvania, 1969.

g 4 1 1 . Pao, T. and Carr, J. W., "A Solution of the Syntactical Induction-Inference Problem
for Regular Languages", Computer Languages, Vol. 3, pp. 53-64, 1978.

C 4 1 2 . Pao, Y. and Hu, C. H., "Methods for Manipulating Pattern Information", Technical
Report MI-101-82, Case Western Reserve University, 1982.

b o 4 1 3 . Pao, Y. and Ernst, G. W., Context-Directed Pattern Recognition and Machine Intel-
ligence Techniques for Information Processing: a Tutorial, IEEE Computer Society
Press, 1982.

C 4 1 4 . Pawlak, Z., "Classification of Objects by Means of Attributes", Report 423, Institute
of Computer Science, Polish Academy of Sciences, 1981.

540 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

CO 4 1 5 . Pearl, J., "On the Connection between the Complexity and Credibility of Inferred
Models", International Journal General Systems, Gordon and Breach Science Publishers
Ltd., Vol. 4, pp. 255-264, 1978.

b e 416 . Pikas, A., Abstraction and Concept Formation, Harvard University Press,
Cambridge, Mass., 1966.

h 4 1 7 . Pitrat, J., "Realization of a Program Learning to Find Combinations at Chess",
Computer Oriented Learning Processes, Simon, J. C. (Ed.), Noordhoff, Leyden, pp.
397-423, 1974.

p 4 1 8 . Pivar, M. and Gord, E., "The LISP Program for Inductive Inference on Sequences",
The Programming Language LISP: its Operation and Applications, Berkeley and
Bobrow (Eds.), MIT Press, Cambridge, Mass, pp. 260-289, 1964.

p 4 1 9 . Pivar, M. and Finkelstein, M., "Automation, Using LISP, of Inductive Inference on
Sequences", The Programming Language LISP: fts Operation and Applications,
Berkeley and Bobrow (Eds.), MIT Press, Cambridge, Mass, pp. 125-136, 1964.

C 4 2 0 . Plotkin, G. D., "A Note on Inductive Generalization", Machine Intelligence, Edin-
burgh University Press, Vol. 5, pp. 153-163, 1970.

C 4 2 1 . Plotkin, G. D., "A Further Note on Inductive Generalization", Machine Intelligence,
Edinburgh University Press, Vol. 6, pp. 101-124, 1971.

Op 4 2 2 . Podnieks, K. M., "Comparing Various Concepts of Function Prediction, Part 1",
Theory of Algorithms and Programs, Latvian State U., pp. 68-81, 1974, (Part 2, 1975,
pp. 35-44).

p 4 2 3 . Podnieks, K. M., "Probabilistic Synthesis of Enumerated Classes of Functions",
Soviet Math Dokl, Vol. 16, pp. 1042-1045, 1975.

p 4 2 4 . Podnieks, K. M., "Probabilistic Program Synthesis", Theory of Algorithms and
Programs, Latvian State U., pp. 57-88, 1977.

Op 4 2 5 . Podnieks, K. M., "Computational Complexity of Prediction Strategies", Theory of
Algorithms and Programs, Latvian State U., 1977.

C 4 2 6 . Pokorny, D., "Knowledge Acquisition by the GUHA Method", Journal of Policy
Analysis and Information Systems, Vol. 4, No. 4, 1980.

k 4 2 7 . Politakis, P., Weiss, S. and Kulikowski, C , "Designing Consistent Knowledge
Bases for Expert Consultation Systems", Technical Report DCS-TR-100, Department of
Computer Science, Rutgers University, 1979, (also 13th Annual Hawaii International
Conference on System Sciences).

d o 4 2 8 . Polya, G., Mathematics and Plausible Reasoning, Princeton University Press, Prin-
ceton, N.J., 1954.

b o 4 2 9 . Polya, G., How to Solve It, Doubleday, New York, 1957, (second edition).

b 4 3 0 . Pople, H., "The Formation of Composite Hypotheses in Diagnostic Problem
Solving", Fifth International Joint Conference on Artificial Intelligence, pp. 1030-1037,
1977.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 541

O 4 3 1 . Popper, K., The Logic of Scientific Discovery, Harper and Row, New York, 1968,
(2nd edition).

C 4 3 2 . Popplestone, R. J., "An Experiment in Automatic Induction", Machine Intelligence,
Edinburgh University Press, Vol. 5, pp. 204-215, 1970.

O 4 3 3 . Pudlak, P., "Polynomially Complete Problems in the Logic of Automated
Discovery", Lecture Notes in Computer Science, Springer-Verlag, Vol. 32, pp.
358-361, 1975.

O 4 3 4 . Pudlak, P. and Springsteen F. N., "Complexity in Mechanized Hypothesis
Formation", Theoretical Computer Science, Vol. 8, pp. 203-225, 1979.

O 4 3 5 . Putnam, H., "Degree of Confirmation and Inductive Logic", The Philosophy of
Rudolph Carnap, Schilpp, P. A. (Ed.), Open Court Publishing Co., La Salle, Illinois,
pp. 761-783, 1963.

O 4 3 6 . Putnam, H., "Probability and Confirmation", Mathematics, Matter and Method,
Cambridge U. Press, 1975, (Originally appeared in 1963 as a Voice of America
lecture).

h k 4 3 7 . Quinlan, J. R., "Discovering Rules from Large Collections of Examples: A Case
Study", Expert Systems in the Micro Electronic Age, Michie, D. (Ed.), Edinburgh
University Press, Edinburgh, 1979.

k 4 3 8 . Quinlan, J. R., "Induction over Large Data Bases", Technical Report HPP-79-14,
Heuristic Programming Project, Stanford University, 1979.

C 4 3 9 . Quinlan, J. R., "Semi-Autonomous Acquisition of Pattern-Based Knowledge",
Australian Computer Bulletin, April 1980, (also to appear in Infotech State of the Art
Report on Expert Systems).

C 4 4 0 . Quinlan, J. R., "Learning Efficient Classification Procedures and their Application to
Chess End-Games", Machine Learning, Michalski, R. S., Carbonell, J. G. and
Mitchell, T. M. (Eds.), Tioga, Palo Alto, 1982.

b 4 4 1 . Rashevsky, N., Mathematical Biophysics, University of Chicago Press, Chicago, IL,
1948.

O 4 4 2 . Rescher, N., Scientific Explanation, The Free Press, New York, 1970.

h m 4 4 3 . Riesbeck, C. K., "Failure-Driven Reminding for Incremental Learning", Proceedings
of the Seventh International Joint Conference on Artificial Intelligence, Vancouver, pp.
115-120, August 1981.

0 4 4 4 . Rissland, E. L. and Soloway, E. M., "Constrained Example Generation: A Testbed
for Studying Issues in Learning", Proceedings of the Seventh International Joint Con-
ference on Artificial Intelligence, Vancouver, pp. 162-164, August 1981.

1 4 4 5 . Robinson, J. J., "DIAGRAM: An Extendible Grammar for Natural Language
Dialogue", Technical Note 205, Artificial Intelligence Center, SRI International,
February 1980.

542 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

q 446 . Roche, C , "Application of Multilevel Clustering to the Automatic Generation of
Recognition Operators: A Link between Feature Extraction and Classification",
Proceedings of the First International Joint Conference on Pattern Recognition, Copen-
hagen, pp. 540-546, August 1974.

bltir 447 . Rosenblatt, F., "The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain", Psychological Review, Vol. 65, pp. 386-407, 1958.

b m 448 . Rosenblatt, F., "The Perceptron: A Theory of Statistical Separability in Cognitive
Systems", Technical Report VG-1196-G-1, Cornell Aeronautical Lab., 1958.

m r 449 . Rosenblatt, F., "Perceptual Generalization over Transformation Groups", Self Or-
ganizing Systems, Permagon Press, London, 1959.

b m 450 . Rosenblatt, F., Principles of Neurodynamics and the Theory of Brain Mechanisms,
Spartan Books, Washington, D. C , 1962.

h k 4 5 1 . Rychener, M. D. and Newell, A., "An Instructable Production System: Basic Design
Issues", Pattern-Directed Inference Systems, Waterman, D. A. and Hayes-Roth,
F. (Eds.), Academic Press, New York, 1978.

k 4 5 2 . Rychener, M. D., "Approaches to Knowledge Acquisition: The Instructable Produc-
tion System Project", First National Conference on Artificial Intelligence, Stanford,
CA., pp. 228-230, August 1980, (expanded version in preparation).

k o 4 5 3 . Rychener, M. D., "The Instructable Production System: A Retrospective Analysis",
Machine Learning, Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.),
Tioga, Palo Alto, 1982.

O 454 . Salmon, W. C , The Foundations of Scientific Inference, University of Pittsburgh
Press, Pittsburgh, PA., 1966.

C 455 . Salveter, S. C , "Inferring Conceptual Graphs", Cognitive Science, Vol. 3, No. 2,
pp. 141-166, 1979.

C 456 . Sammut, C , "Concept Learning by Experiment", Proceedings of the Seventh Inter-
national Joint Conference on Artificial Intelligence, Vancouver, pp. 104-105, August
1981.

C0 457 . Sammut, C , Learning Concepts by Performing Experiments Ph.D. dissertation,
University of New South Wales, November 1981.

c h 458 . Samuel, A. L., "Some Studies in Machine Learning Using the Game of Checkers",
IBM Journal of Research and Development, No. 3, pp. 211-229, 1959.

h 4 5 9 . Samuel, A. L., Programming Computers to Play Games, Academic Press, pp.
165-192, 1960.

h r 460 . Samuel, A. L., "Some Studies in Machine Learning using the Game of Checkers",
Computers and Thought, Feigenbaum, E. A. and Feldman, J. (Eds.), McGraw-Hill,
New York, pp. 71-105, 1963.

h r 4 6 1 . Samuel, A. L., "Some Studies in Machine Learning using the Game of Checkers II
- Recent Progress", IBM Journal of Research and Development, Vol. 11, No. 6, pp.
601-617, 1967.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 543

p 4 6 2 . Sato, M., "Towards a Mathematical Theory of Program Synthesis", Proceedings of
the Sixth International Joint Conference on Artificial Intelligence, pp. 7'57'-762, 1979.

b r 4 6 3 . Savage, L., The Foundations of Statistics, Dover Publications, New York, 1972,
(second edition).

b 4 6 4 . Schank, R. C. and Abelson, R. P., Scripts, Goals, Plans and Understanding,
Erlbaum Associates, Hillsdale, N.J., 1977.

Im 4 6 5 . Schank, R. C , "Reminding and Memory Organization: An Introduction to MOPS",
Technical Report 170, Computer Science Department, Yale University, 1979.

Im 4 6 6 . Schank, R. C , "Language and Memory", Cognitive Science, Vol. 4, No. 3, pp.
243-284, 1980.

bo 467 . Schilpp, P., Library of Living Philosophers: The Philosophy of Rudolph Carnap,
Open Court Publishing Co., LaSalle, IL, 1963.

Γ 4 6 8 . Sebestyen, G. S., Decision-Making Processes in Pattern Recognition, Macmillan,
New York, 1962.

Ce 4 6 9 . Self, J. A., "Concept Teaching", Artificial Intelligence, North-Holland, Vol. 9, pp.
197-221, April 1977.

m r 4 7 0 . Selfridge, O. G., "Pandemonium: A Paradigm for Learning", Proceedings of the
Symposium on Mechanization of Thought Processes, Blake, D. and Uttley, A. (Eds.),
HMSO, London, pp. 511-529, 1959.

Im 4 7 1 . Selfridge, M., "A Computer Model of Child Language Acquisition", Proceedings of
the Seventh International Joint Conference on Artificial Intelligence, Vancouver, pp.
92-95, August 1981.

a l 4 7 2 . Sembugamoorthy, V., "Analogy-Based Acquisition of Utterances Relating to Tem-
poral Aspects", Proceedings of the Seventh International Joint Conference on Artificial
Intelligence, Vancouver, pp. 106-108, August 1981.

bin 4 7 3 . Schank, R. C , Looking at Learning, Proceedings of the European Conference on
Artificial Intelligence, Orsay, France, July, 1982.

h 4 7 4 . Shapiro, A. and Niblett, T., "Automatic Induction of Classification Rules for a
Chess Endgame", Advances in Computer Chess, Clarke, M.R.B. (Ed.), Edinburgh
University Press, 1981.

Chp 4 7 5 . Shapiro, E. Y., "An Algorithm that Infers Theories from Facts", Proceedings of the
Seventh International Joint Conference on Artificial intelligence, Vancouver, pp.
446-451, August 1981.

C 4 7 6 . Shapiro, Ehud Y., "Inductive Inference of Theories From Facts", Research Report
192, Yale University, February 1981.

p 4 7 7 . Shaw, D. E., Swartout, W. R. and Green, C. C , "Inferring LISP Programs from
Examples", Fourth International Joint Conference on Artificial Intelligence, Tbilisi,
USSR, pp. 351-356, September 1975.

544 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

Γ 4 7 8 . Shimura, M., "Learning Procedures in Pattern Classifiers- Introduction and Survey",
Proceedings of the Fourth International Joint Conference on Pattern Recognition, pp.
125-138, 1978.

gl 479 . Siklossy, L., "Natural Language Learning by Computer", Representations and
Meanings: Experiments with information Processing, 1972.

p 480 . Siklossy, L., "The Synthesis of Programs from their Properties, and the Insane
Heuristic", Proceedings of the Third Texas Conference on Computer Systems, 1974.

h 4 8 1 . Siklossy, L., "Procedural Learning in Worlds of Robots", Computer Oriented Learn-
ing Processes, Simon, J. C. (Ed.), Noordhoff, Leyden, pp. 427-440, 1974.

p 4 8 2 . Siklossy, L. and Sykes, D., "Automatic Program Synthesis from Example
Problems", Fourth international Joint Conference on Artificial intelligence, pp.
268-273, 1975.

CHI 4 8 3 . Simon, H. A. and Kotovsky, K., "Human Acquisition of Concepts for Sequential
Patterns", Psychological Review, Vol. 70, pp. 534-546, 1963.

O 484 . Simon, H. A., "Scientific Discovery and the Psychology of Problem Solving", Mind
and Cosmos, Colodny, R. G. (Ed.), University of Pittsburgh Press, Pittsburgh, pp.
22-40, 1966.

h o 485 . Simon, H. A. and Lea, G., "Problem Solving and Rule Induction: A Unified View",
Knowledge and Cognition, Gregg, L. W. (Ed.), Lawrence Erlbaum Associates,
Potomac, Maryland, pp. 105-127, 1974.

b 486 . Simon, J. C , Computer Oriented Learning Processes, Noordhoff, Leyden, Nato
Advanced Study Institutes Series, Series E, 1976, (Applied Science 14).

O 487 . Simon, H. A., "Models of Scientific Discovery", Synthese Library, Hintikka,
J. (Ed.), Reidel Pub. Co., 1977.

h 488 . Simon, H. A., "Artificial Intelligence Systems that Understand", Fifth International
Joint Conference on Artificial Intelligence, Cambridge, Mass., pp. 1059-1073, 1977.

k 4 8 9 . Simon, H. A., Carbonell, J. G. and Reddy, R., "Research in Automated Knowledge
Acquisition", Research Proposal to the Office of Naval Research, Carnegie-Mellon
Computer Science Department, 1979.

O 490 . Simon, H. A., "Why Should Machines Learn?", Machine Learning, Michalski,
R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga, 1983.

O 4 9 1 . Sklansky, J., "Adaptation, Learning, Self-Repair, and Feedback", IEEE Spectrum,
Vol. 1, No. 5, pp. 172-174, 1964.

e 4 9 2 . Sleeman, D. H., "Assessing Aspects of Competence in Basic Algebra", Intelligent
Tutoring Systems, Sleeman, D. H. and Brown, J. S. (Eds.), Academic Press, New
York, 1981.

e 4 9 3 . Sleeman, D. H., "A Rule-Based Task Generator", Seventh International Joint Con-
ference on Artificial Intelligence, Vancouver, 1981.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 545

e 4 9 4 . Sleeman, D. H. and Brown, J. S., "Intelligent Tutoring Systems: An Overview",
Intelligent Tutoring Systems, Sleeman, D. H. and Brown, J. S. (Eds.), Academic Press,
New York, 1981.

e 4 9 5 . Sleeman, D. H. and Hendley, R. J., "ACE: A System which Analyses Complex
Explanations", Intelligent Tutoring Systems, Sleeman, D. H. and Brown, J. S. (Eds.),
Academic Press, New York, 1981.

e 496 . Sleeman, D. H., "Can Student Models Give Insights into Cognitive Processes?",
Technical Report, Computer Science Department, Carnegie-Mellon University, 1981.

e h m 497 . Sleeman, D. H. and Smith, M. J., "Modeling Student's Problem solving", Artificial
Intelligence, Vol. 16, No. 2, pp. 171-187, 1981.

e h m 4 9 8 . Sleeman, D. H., "Inferring Student Models for Intelligent Computer-Aided
Instruction", Machine Learning, Michalski, R. S., Carbonell, J. G. and Mitchell, T. M.
(Eds.), Tioga, Palo Alto, 1982.

h 4 9 9 . Smith, M. H., "A Learning Program which Plays Partnership Dominoes", Com-
munications of the ACM, Vol. 16, pp. 462-467, August 1973.

O 5 0 0 . Smith, R. G., Mitchell, T. M., Chestek, R. A. and Buchanan, B. G., "A Model for
Learning Systems", Fifth International Joint Conference on Artificial Intelligence,
Cambridge, Mass., pp. 338-343, 1977.

p 5 0 1 . Smith, D. R., "A Survey of the Synthesis of LISP Programs from Examples",
Technical Report, Duke University, September 1980.

eh 5 0 2 . Smith, R. L. Jr., "Modeling Student Acquisition of Problem Solving Skills", First
National Conference on Artificial Intelligence, pp. 221-223, August 1980.

c r 5 0 3 . Sobolewski, M., "Tree Structured Attribute Pattern Recognition Systems", Proceed-
ings of Conference Informatica, Bled, Yugoslavia, 1975.

Cr 504 . Sobolewski, M., Classes of Languages and Models for Pattern Recognition Ph.D.
dissertation, Institute for Biocybernetics and Biomédical Engineering, Polish Academy
of Sciences, 1977 (in Polish).

g 5 0 5 . Solomonoff, R. J., "A New Method for Discovering the Grammars of Phrase Struc-
tured Languages", Transactions International Conference on Information Processing,
UNESCO House, Paris, 1959.

CO 5 0 6 . Solomonoff, R. J., "Training Sequences for Mechanized Induction", S elf-organizing
Systems, Yovits, M., Jacobi, G. and Goldstein, G. (Eds.), Spartan Books, Washington,
D.C., pp. 425-434, 1962.

O 5 0 7 . Solomonoff, R. J., "A Formal Theory of Inductive Inference", Information and
Control, Vol. 7, pp. 1-22, 224-254, 1964.

O 5 0 8 . Solomonoff, R. J., "Inductive Inference Theory- A Unified Approach to Problems in
Pattern Recognition and Artificial Intelligence", Fourth International Joint Conference
on Artificial Intelligence, pp. 274-280, 1975.

546 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

O 509 . Solomonoff, R. J., "Complexity-Based Induction Systems: Comparisons and Conver-
gence Theorems", IEEE Transactions on Information Theory, Vol. IT-24, No. 4, pp.
422-432, 1978.

h 510 . Soloway, E. M. and Riseman, E. M., "Mechanizing the Common-Sense Inference
of Rules which Direct Behavior", Proceedings AISB Summer Conference,
U. Edinburgh, 1976.

C 5 1 1 . Soloway, E. M. and Riseman, E. M., "Levels of Pattern Description in Learning",
Fifth International Joint Conference on Artificial Intelligence, Cambridge, Mass., pp.
801-811, 1977.

O 512 . Soloway, E. M., Learning Interpretation + Generalization: A Case Study in
Knowledge-Directed Learning Ph.D. dissertation, University of Massachusetts at Am-
herst, 1978, (Computer and Information Science Report COINS TR-78-13).

b 513 . Stefik, M. J., "Inferring DNA Structures from Segmentation Data", Artificial Intel-
ligence, Vol. 11, pp. 85-114, August 1978.

O 514 . Stegmuller, W., The Structure and Dynamics of Theories, Springer-Verlag, 1976.

C 515 . Stepp, R., "The Investigation of the UNICLASS Inductive Program AQ7UNI and
User's Guide", Technical Report 949, Department of Computer Science, University of
Illinois, November 1978.

C 516 . Stepp, R., "Learning without Negative Examples via Variable Valued Logic Charac-
terizations: The Uniclass Inductive Program AQ7UNI", Technical Report UIUCDCS-
R-79-982, Dept. Computer Science., U. Illinois, 1979.

cq 517. Stepp, R., "A Description and User's Guide for CLUSTER/PAF - A Program for
Conjunctive Conceptual Clustering", Technical Report, Department of Computer
Science, University of Illinois, 1982.

h 518 . Stolfo, S. J. and Harrison, M. C , "Automatic Discovery of Heuristics for Non-
Deterministic Programs", Technical Report 007, Courant Institute, January 1979.

h 519 . Stolfo, S. J. and Harrison, M. C , "Automatic Discovery of Heuristics for Nondeter-
ministic Programs", Sixth International Joint Conference on Artificial Intelligence,
Tokyo, pp. 853-855, August 1979.

O 520 . Strong, J., "The Infinite Ballot Box of Nature: De Morgan, Boole, and Jevons on
Probability and the Logic of Induction", Philosophy of Science Association-1976, pp.
197-211, 1976.

p 5 2 1 . Summers, P. D., "A Methodology for LISP Program Construction from Examples",
JournaloftheACM, Vol. 24, pp. 161, 1977.

h 522 . Sussman, G. J., A Computer Model of Skill Acquisition, American Elsevier, New
York, 1975.

b 523 . Trakhtenbrot, B., "On Problems Solvable by Successive Trials", Lecture Notes in
Computer Science, Springer-Verlag, Vol. 32, pp. 125-137, 1975.

b 524 . Truxal, T. G., Automatic Feedback Control System Synthesis, McGraw-Hill, New
York, 1955, (New York).

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 547

bo 525 . Tsypkin, Y. Z., "Self Learning - What is it?", IEEE Transactions on Automatic
Control, Vol. AC-18, No. 2, pp. 109-117, 1968.

b d 526 . Tsypkin, Ya Z., Adaptation and Learning in Automatic Systems, Academic Press,
New York, 1971.

O 527 . Tsypkin, Y. Z., Foundations of the Theory of Learning Systems, Academic Press,
New York, 1973, (Translated by Z. L. Nikolic).

Γ 528 . Uhr, L. and Vossler, C , "A Pattern-Recognition Program that Generates, Evaluates,
and Adjusts its Own Operators", Computers and Thought, Feigenbaum, E. A. and
Feldman, J. (Eds.), Mc-Graw Hill, New York, pp. 251-268, 1963.

ΟΓ 529 . Uhr, L., Pattern Recognition, John Wiley and Sons, New York, 1966.

ΟΓ 5 3 0 . Uhr, L., Pattern Recognition, Learning and Thought, Prentice-Hall, Englewood
Cliffs, New Jersey, 1973.

Cd 5 3 1 . Utgoff, P. E. and Mitchell, T. M., "Acquisition of Appropriate Bias for Inductive
Concept Learning", Proceedings of the Second National Conference on Artificial Intel-
ligence, Pittsburgh, August 1982.

g 532 . Van der Müde, A. and Walker, A., "On the Inference of Stochastic Regular
Grammars", Information and Control, Vol. 38, pp. 310-329, 1978.

ae 5 3 3 . VanLehn, K., Brown, J. S., "Planning Nets: A Representation for Formalizing
Analogies and Semantic Models of Procedural Skills", Aptitude Learning and Instruc-
tion: Cognitive Process Analyses, Snow, R. E., Frederico, P. A. and Montague, W. E.
(Eds.), Lawrence Erlbaum Associates, 1978.

C 534 . VanLehn, K., "Algorithms for Learning by Examples", Technical Report, Xerox
Palo Alto Research Center, 1980, (forthcoming, date approximate).

g 535 . Veelenturf, L. P. J., "Inference of Sequential Machines from Sample
Computations", IEEE Transactions on Computers, Vol. C-27, pp. 167-170, 1978.

C 536 . Vere, S. A., "Induction of Concepts in the Predicate Calculus", Fourth International
Joint Conference on Artificial Intelligence, Tbilisi, USSR, pp. 281-287, 1975.

ch 537 . Vere, S. A., "Induction of Relational Productions in the Presence of Background
Information", Fifth International Joint Conference on Artificial Intelligence, Cambridge,
Mass., pp. 349-355, 1977.

Ch 538 . Vere, S. A., "Inductive Learning of Relational Productions", Pattern-Directed In-
ference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press, New
York, 1978.

ch 539 . Vere, S. A., "Multilevel Counterfactuals for Generalizations of Relational Concepts
and Productions", Artificial Intelligence, Vol. 14, No. 2, pp. 138-164, September 1980.

O 540 . Watanabe, S., "Information-Theoretic Aspects of Inductive and Deductive
Inference", IBM Journal of Research and Development, Vol. 4, No. 2, pp. 208-231,
I960.

548 COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING

ΟΓ 5 4 1 . Watanabe, S., Pattern Recognition as an Inductive Process, Methodologies of Pat-
tern Recognition, Academic Press, 1968.

h 542 . Waterman, D., Machine Learning of Heuristics Ph.D. dissertation, Stanford Univer-
sity, 1968, (also report CS118, AI 74).

ch 543 . Waterman, D. A., "Generalization Learning Techniques for Automating the Learn-
ing of Heuristics", Artificial Intelligence, Vol. 1, No. 1/2, pp. 121-170, 1970.

bh 544 . Waterman, D. A., "Adaptive Production Systems", Fourth International Joint Con-
ference on Artificial Intelligence, MIT, pp. 296-303, 1975.

b 545 . Waterman, D. A. and Hayes-Roth, F. (Eds.), Pattern-Directed Inference Systems,
Academic Press, New York, 1978.

b 546 . Waterman, D. A. and Hayes-Roth, F. (Eds.), Pattern-Directed Inference Systems,
Academic Press, New York, 1978.

b 547 . Waterman, D. A., "Exemplary Programming in RITA", Academic Press, 1978.

h p 548 . Waterman, D. A., Faught, W. S., Klahr, P., Rosenschein, S. J. and Wesson, R.,
"Design Issues for Exemplary Programming", RAND note N-1484-RC, The Rand Cor-
poration, April 1980.

h 549 . Wesley, L. P., "Learning Racquetball by Constrained Example Generation",
Proceedings of the Seventh International Joint Conference on Artificial Intelligence,
Vancouver, pp. 144-146, August 1981.

g 550 . Wharton, R. M., "Approximate Language Identification", Information and Control,
Vol. 26, pp. 236-255, 1974.

g 5 5 1 . Wharton, R. M., "Grammar Enumeration and Inference", Information and Control,
Vol. 33, pp. 253-272, 1977.

1 552 . White, G. M., "Machine Learning through Signature Trees: Application to Human
Speech", AI Memo 136 (CS-183), Stanford AI Laboratory, October 1970, (AD-717
600).

m 553 . Widrow, B., Generalization and Information Storage in Networks of Adelaine
'Neurons,' Self Organizing Systems, Spartan Books, Washington, D. C , pp. 435-461,
1962, (Yovitz, M. C ; Jacobi, G. T.; Goldstein, G. D., editors).

p 554 . Wiehagen, R., "Inductive Inference of Recursive Functions", Lecture Notes in Com-
puter Science, Springer-Verlag, Vol. 32, pp. 462-464, 1974.

p 555 . Wiehagen, R. and Liepe, W., "Characteristic Properties of Recognizable Classes of
Recursive Functions", Elektronische Informationsverarbeitung und Kybernetik, Vol. 12,
pp. 421-438, 1974, (in German).

p 556 . Wiehagen, R. and Jung, H., "Rekursionstheoretische Charakterisierung von erken-
nbaren Klassen Rekursiver Funktionen", Elektronische Informationsverarbeitung und
Kybernetik, Vol. 13, pp. 385-397, 1977.

g 557 . Wiehagen, R., "Identification of Formal Languages", Lecture Notes in Computer
Science, Springer-Verlag, Vol. 53, pp. 571-579, 1977.

COMPREHENSIVE BIBLIOGRAPHY OF MACHINE LEARNING 549

O 5 5 8 . Wiehagen, R., "Characterization Problems in the Theory of Inductive Inference",
Lecture Notes in Computer Science, Springer-Verlag, Vol. 62, pp. 494-508, 1978.

b 5 5 9 . Wiener, N., Cybernetics, New York, 1948.

k 5 6 0 . Wilczynski, D., "Knowledge Acquisition in the Consul System", Proceedings of the
Seventh International Joint Conference on Artificial Intelligence, Vancouver, pp.
135-140, August 1981.

O 5 6 1 . Windeknecht, T. G., A Theory of Simple Concepts with Applications Ph.D. disser-
tation, Case Institute of Technology, 1964.

C 5 6 2 . Winston, P. H., "Learning Structural Descriptions from Examples", The Psychology
of Computer Vision, Winston, P. H. (Ed.), McGraw Hill, New York, ch. 5, 1975.

a 5 6 3 . Winston, P. H., "Learning by Understanding Analogies", Memo 520, M.I.T. AI
Lab, 1979.

a 5 6 4 . Winston, P. H., "Learning and Reasoning by Analogy", CACM, Vol. 23, No. 12,
pp. 689-703, 1979.

a 5 6 5 . Winston, P. H., "Learning New Principles from Precedents and Exercises", AIM
632, MIT, May 1981.

C 5 6 6 . Wysotzki, F., Kolbe, W. and Selbig, J., "Concept Learning by Structured Examples
- An Algebraic Approach", Proceedings of the Seventh International Joint Conference
on Artificial Intelligence, Vancouver, pp. 153-158, August 1981.

C 5 6 7 . Young, R. M., Plotkin, G. D. and Linz, R. F., "Analysis of an Extended Concept-
Learning Task", Fifth International Joint Conference on Artificial Intelligence, pp. 285,
August 1977.

b 5 6 8 . Yovits, M. C , Jacobi, G. T. and Goldstein, G. D. (Eds.), Self-Organizing Systems,
Spartan Books, Washington, D. C , 1962.

Cr 5 6 9 . Zagoruiko, N. G., "Recognition Methods and their Application", Sovietskoie Radio,
1972.

d 5 7 0 . Zagoruiko, N. G., "Artificial Intelligence and Empirical Prediction", Technical
Report, Gosudarstviennyi Universitiet, 1975, (in Russian).

C 5 7 1 . Zagoruiko, N., "Empirical Prediction Algorithms", Computer Oriented Learning
Processes, Simon, J. C. (Ed.), Noordhoff, Leyden, pp. 581-595, 1976.

C 5 7 2 . Zhuruvliev, J. I., Kuminov, M, M. and Tuliagunov, S. E., "Algorithms for Com-
puting Estimates and their Application", Publ. FUN, 1974.

GLOSSARY OF SELECTED TERMS

IN MACHINE LEARNING

This glossary was prepared by the editors as an attempt to systematize the
meaning of some basic terms used in machine learning and closely related areas.
The angle brackets "< > " indicate that a given term used in a definition is itself
an entry in the glossary.

Adaptive Control Systems: Feedback control systems that adjust parameters to
maintain desired performance despite external or internal disturbances.

Advice Taking: A form of learning in which the learner modifies its behavior to
satisfy the advice given by an instructor. An example of <Learning from
Instruction > .

Analogical Means-ends Analysis: A problem-solving process operating in the
<Analogical Problem Space> akin to <Means-ends Analysis>. A new
problem is solved by transforming the solution of a similar old problem into
a solution for the new problem using operators that reduce differences be-
tween corresponding solution descriptions.

Analogical Inference: Mapping information from a known object or process
description into a less-known, but similar one.

Analogical Problem Space: A problem space whose states are descriptions of
problem solutions, and whose operators transform one problem solution into
a closely-related one.

Attribute: A variable or one-argument <Descriptor> used in asserting a
property of an object or situation.

Caching (Memo Functions): Storing the answer to frequently-occurring ques-
tions (problems) in order to avoid a replication of past efforts. An example
of <Rote Learning>.

551

552 GLOSSARY OF SELECTED TERMS IN MACHINE LEARNING

Causal Analysis: Tracing the probable causes of observed events, occasionally
used in <Credit (Blame) Assignments

Composition: Grouping a sequence of <Production Rules> or <Operators>
into a single rule or operator.

Computer Assisted Instruction (CAI): The study of computer-based teaching
and testing.

Concept Acquisition: See <Learning from Examples>.

Concept Attainment: See <Learning from Examples>.

Concept Description (also Description, Generalization): A symbolic data struc-
ture used to describe a concept (that is, to describe a class of instances in the
domain under consideration).

Concept Formation: See <Learning from Examples>.

Conceptual Clustering: Arranging objects (observations, facts, and so on) into
classes corresponding to certain descriptive concepts rather than classes of
objects that are similar according to some mathematical measure.

Constraint: A fact that restricts the possible solutions to a problem.

Credit (Blame) Assignment: Identifying the steps (decisions, operators, and so
on) chiefly responsible for a success (failure) in the overall process of achiev-
ing a goal.

Decision Tree: A <Discrimination Network> having a tree structure.

Deductive Inference: In formal logic—the derivation of a logical consequence
from a given set of premises. Informally, a mode of reasoning using
<Deductive Inference Rules>, to derive new facts that contain no more in-
formation than those from which they are derived.

Deductive Inference Rule: An <Inference Rule> that, given one or more asser-
tions, concludes a logically equivalent or more specific assertion. A deduc-
tive inference is a truth-preserving transformation of assertions.

Descriptor: A variable, function, or predicate used as an elementary concept for
describing objects or situations.

Discrimination: See <Specialization>

Discrimination Network: A network encoding a set of tests to classify a collec-

GLOSSARY OF SELECTED TERMS IN MACHINE LEARNING 553

tion of objects (situations, events, and so on) into fixed categories according
to predetermined features of the objects.

Domain of a descriptor (also value set of a descriptor): The set of possible
values that a <Descriptor> may take as part of a <Concept Description^

Expert System: A computer program that achieves performance comparable to a
human expert at solving problems in some task domain by utilizing a large
amount of domain-specific knowledge. Because of the substantial amounts
of knowledge required, the <Knowledge Acquisition> task assumes major
proportions.

Expertise Acquisition: See <Knowledge Acquisition^

Feature: See <Attribute>.

Generalization: Extending the scope of a concept description to include more
instances (the opposite of <Specialization^. This term is sometimes also
used as a noun, synonymous with <Concept Description^

Generalization Rule: An <Inference Rule> that transforms one or more
premise assertions into an assertion logically implying them.

Grammatical Inference: Inferring the grammar of a language, given a set of
sentences labeled "grammatically correct", and a second (optional) set labeled
"grammatically incorrect".

Heuristics: Imperfect but useful knowledge employed in many reasoning tasks,
such as <Plausible Inference>, discovery, and so on, where precise
knowledge is lacking.

Heuristic Search: A problem-solving method for finding a sequence of operators
that transforms an initial state into a desired goal state. <Heuristics> are
used to generate, test and prune operator sequences.

Incremental Learning: Multistage learning, in which information learned at one
stage is modified to accommodate new facts provided in subsequent stages.

Inductive Inference: A mode of reasoning that starts with specific facts and
concludes general hypotheses or theories (from which the initial facts can be
rederived via <Deductive Inference>).

Inductive Learning: Learning by generalizing facts and observations obtained
from a teacher or environment (that is, learning by <Inductive Inference>).

Inference Rule: A rule that concludes new facts from old, either by the applica-

554 GLOSSARY OF SELECTED TERMS IN MACHINE LEARNING

tion of strict logical principles or by more imperfect, plausible methods. (See
also <Inductive Inference> and <Deductive Inference>.)

Intelligent CAI (ICAI): Refers to the application of AI techniques in building
<Computer Assisted Instruction> systems.

Knowledge Acquisition (also expertise acquisition): A form of machine learning
concerned with transferring knowledge from humans or a task environment
into computers. Often associated with constructing or augmenting the
knowledge-base of an <Expert System>.

Knowledge Compilation (also operationalization of knowledge): Translating
knowledge from a declarative form which cannot be used directly into an ef-
fective procedural form. For example, converting the advice "Don't get wet"
into specific instructions that recommend how to avoid getting wet in a given
situation. (See also <Skill Acquisition>.)

Learning by Being Told: See <Learning from Instruction^

Learning from Examples: Inferring a general <Concept Description> from ex-
amples and (optionally) counter-examples of that concept. This is a form of
<Inductive Learning>.

Learning from Instruction (also advice taking, and learning by being told): The
process of transforming and integrating instructions from an external source
(such as a teacher) into an internally usable form.

Learning from Observation (also learning without a teacher, and unsupervised
learning): Constructing descriptions, hypotheses or theories about a given col-
lection of facts or observations. In this form of learning there is no a priori
classification of observations into sets exemplifying desired concepts.

Macrooperator: An operator composed of a sequence of more primitive
operators. Appropriate macrooperators can simplify problem-solving by al-
lowing a more "coarse grain" problem-solving search.

Means-ends Analysis: A problem-solving method which at each step searches
for operators that maximally reduce the difference between the current state
and a known goal state.

Near-miss: A counter-example of a concept that is quite similar to positive ex-
amples of this concept. Near-misses are very useful in isolating significant
features in <Learning from Examples>.

Near-miss Analysis: The process of exploiting <Near-misses> to bound the
scope of <Generalization> in learning from examples.

GLOSSARY OF SELECTED TERMS IN MACHINE LEARNING 555

Negative example: In <Learning from Examples>, a counter-example of a
concept that may bound the scope of <Generalization>.

Operationatization: See <Knowledge Compilation^

Parameter Adjustment: Changing the relative weight of different terms in a
mathematical expression, as a function of credit (blame) for past successes
(failures). A kind of incremental curve fitting.

Partially Learned Concept: In concept learning, an underdetermined concept;
that is, a concept whose precise description cannot be inferred based on the
learner's current data, knowledge, and assumptions. (See also incremental
Learning> and <Version Space>.)

Partial Matching: A technique for comparing structural descriptions by identify-
ing their corresponding components. Useful in various kinds of inference,
such as <Analogical Inference>.

Path constraint: In problem solving, a <Predicate> on partial solution se-
quences. A type of <Constraint>.

Plausible Inference: A derivation of likely conclusions from incomplete, imper-
fect or indirectly relevant premises. This includes <Inductive>, ap-
proximate, default, and <Analogical Inference>.

Positive Example: In <Learning from Examples>, a correct instance of a con-
cept that may result in <Generalization>.

Predicate: A statement that is either true or false; a basic building block of
predicate logic.

Problem Reformulation: Translating a problem statement into an alternative
statement so that an appropriate solution method can be applied. This may
include reformulating data representations and restating problem constraints.

Production Rule: A condition-action pair, where the action is performed if the
condition is matched.

Production System: An inference system comprised of a large set of
<Production Rules>, a working memory against which productions are
matched, and the control structure to apply the productions to working
memory.

Proceduralization: Converting declarative knowledge into procedural form (see
also <Knowledge Compilation>).

556 GLOSSARY OF SELECTED TERMS IN MACHINE LEARNING

Rote Learning: Learning by direct memorization of facts, without generalization
(see also <Caching>).

Schema: A symbolic structure that can be filled in by specific information
("instantiated") to denote an instance of the generic concept represented by
the structure.

Similarity Metric: Either' (i) a context-free mathematical measure on properties
of object descriptions used in clustering—minimized for objects within a
cluster and maximized for objects spanning clusters, or (ii) a context-sensitive
symbolic expression capturing relevant similarities between two object or
process descriptions—used to establish mappings in <Analogical Inference>.

Skill Acquisition (and refinement): Acquiring or improving a procedural skill
(such as touch typing) by <Knowledge Compilation> and repeated practice.

Specialization: Narrowing the scope of a <Concept Description>, thus reducing
the sets of instances it describes (opposite of <Generalization>).

Structural Description: A symbolic representation for objects and concepts,
based on descriptions of their parts and the relationships among them.

Unsupervised Learning: See <Learning from Observations

Version Space (of a concept): The set of alternative plausible <Concept
Descriptions> that are consistent with the training data, knowledge, and as-
sumptions of the concept learner. This set defines a <Partially Learned
Concept>, and can be represented in terms of its maximally general and
maximally specific members.

Weak Methods: General methods useful for problem solving in the absence of
specific knowledge required for more direct or efficient algorithmic solutions.
For example, see <Means-ends Analysis> and <Heuristic Search>.

ABOUT THE AUTHORS

John Anderson is a Professor of Psychology and Computer Science at Carnegie-
Mellon University. He received his B.A. from the University of British Colum-
bia in 1968 and his Ph.D. from Stanford University in 1972. Before joining the
faculty at CMU, Dr. Anderson was a Professor at Yale University. His research
interests are in human learning and memory, computer simulation, and artificial
intelligence. He is author of numerous journal articles and chapters. His books
include Human Associative Memory (with G. Bower, Erlbaum, 1973), Lan-
guage, Memory, and Thought (Erlbaum, 1976), Cognitive Psychology and its
Implications (Freeman, 1980), Cognitive Skills and Their Acquisition (Erlbaum,
1981), and The Architecture of Cognition (Harvard, 1983). His current address
is: Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA
15213.

Ranan B. Banerji is a Professor of Mathematics and Computer Science at St.
Joseph's University. He received his Ph.D. from the University of Calcutta in
Physics and has worked on Ionospheric Physics and Propagation, Coding
Theory, Languages and Automata Theory prior to his present research in AI.
His major interest is in mathematical models of problems and inductive logic in-
volved in learning heuristics for problem-solving. He is the author of two books
on the subject. His current address is: Department of Mathematics and Com-
puter Science, St. Joseph's University, 5600 City Avenue, Philadelphia, PA
19131.

Gary L. Bradshaw is a graduate student in Psychology at Carnegie-Mellon
University. He received his B.A. and M.A. degrees in Psychology from the
University of Missouri, Columbia. His interests include Cognitive Psychology,
Artificial Intelligence, and Cognitive Science. Current work centers around three
research projects: psychological investigations of human inference processes and
memory retrieval phenomena, learning and discovery mechanisms in machine
speech recognition, and computational models of scientific discovery (e.g., the

557

558 ABOUT THE AUTHORS

BACON project). His current address is: Department of Psychology, Carnegie-
Mellon University, Pittsburgh, PA 15213.

Jaime G. Carbonell is an Associate Professor in Computer Science at Carnegie-
Mellon University, where he has taught since 1979. Born in Montevideo,
Uruguay, he was educated at the Massachusetts Institute qf Technology (B.S.
Mathematics 1975, B.S. Physics 1975) and Yale University (M.S. Computer
Science 1976, Ph.D. Computer Science 1979). Dr. Carbonell's research inter-
ests span several areas of Artificial Intelligence and Cognitive Science, including:
Natural Language Processing, Machine Learning, Analogical Reasoning, Man-
Machine Interfaces, Expert Systems, and Knowledge Representation. He has au-
thored or co-authored some 50 technical papers, reports and monographs, includ-
ing a book titled Subjective Understanding: Computer Models of Belief Systems.
His current address is: Computer Science Department, Carnegie-Mellon Univer-
sity, Pittsburgh, PA 15213.

Thomas G. Dietterich is a doctoral candidate at Stanford University pursuing
research on machine learning and the formalization of scientific inference. He
received his A.B. from Oberlin College in 1977 and his M.S. from the Univer-
sity of Illinois in 1979. His M.S. thesis included the construction of a program
for playing the induction card game Eleusis, a game that simulates the scientific
discovery process. He has written a number of articles on machine learning in-
cluding a survey entitled "Learning and Inductive Inference," which constitutes
Chapter XIV of Volume III of the Handbook of Artificial Intelligence
(Kaufmann, 1982). His current address is: Department of Computer Science,
Stanford University, Stanford, CA 94305.

Norman Haas is a Senior Computer Scientist at Symantec, Inc. He received his
M.S. in Computer Science in 1978 from Stanford University and his B.S. in
Physics from the State University of New York at Stony Brook in 1970. He was
a member of the robotics group at the Stanford Artificial Intelligence Lab., and
later joined the natural language research program at SRI. His current address
is: Symantec, 306 Potrero Avenue, Sunnyvale, CA 94086.

Frederick Hayes-Roth is Executive Vice-President of Teknowledge, Inc. He
received his Ph.D. from the University of Michigan. Prior to joining
Teknowledge, he was on the Computer Science faculty at Carnegie-Mellon
University and a scientist at the Information Science Department of the Rand
Corporation. He was one of the designers of Hearsay-II, the first 1000-word
continuous speech understanding system, the ROSIE system for programming
knowledge systems, and many knowledge systems for military decision-making.
He is the co-editor of Pattern-Directed Inference Systems. In addition, he has
published numerous articles and technical reports. His current address is:
Teknowledge, 525 University Avenue, Palo Alto, CA 94301.

ABOUT THE AUTHORS 559

Gary G. Hendrix is the President of Symantec, Inc. Dr. Hendrix attended the
University of Texas at Austin (B.A. 1970, M.S. 1970, Ph.D. 1975). Prior to
founding Symantec, he was Director of the Natural Language Research Program
at SRI International and Manager of Natural Language Research Development at
Machine Intelligence. His research efforts include investigations of natural lan-
guage semantics, parsing systems, pragmatic and linguistically motivated gram-
mars, knowledge representation structures (particularly semantic networks) and
computational systems for knowledge acquisition and question answering. His
current address is: Symantec, 306 Potrero Avenue, Sunnyvale, CA 94086.

Patrick W. Langley is a Research Scientist in the Robotics Institute at Carnegie-
Mellon University. He received a B.A. in Mathematics and Psychology from
Texas Christian University in 1975, and an M.S. (1976) and Ph.D. (1979) from
Carnegie-Mellon in Psychology. Dr. Langley's research focuses on the ways in
which intelligent systems acquire knowledge through interaction with their en-
vironment. He has done work in the areas of scientific discovery, language ac-
quisition, strategy learning, and concept formation in the framework of adaptive
production systems. He has authored or co-authored some 20 technical papers
on these topics. His current address is: Robotics Institute, Carnegie-Mellon
University, Pittsburgh, PA 15213.

Douglas B. Lenat is an Assistant Professor in the Computer Science Department
at Stanford University. He was born in Philadelphia (Sept. 13, 1950), and at-
tended the University of Pennsylvania, where he received B.A. degrees in math-
ematics and physics, and an M.S. in applied mathematics. His graduate training
was in computer science at Stanford University, where he received his Ph.D. in
1976. His thesis was a demonstration that certain kinds of "creative discoveries"
in mathematics could be produced by a computer program (a theorem proposer,
rather than a theorem prover). Prior to joining the faculty at Stanford, Dr. Lenat
was an Assistant Professor of Computer Science at Carnegie-Mellon University.
In August, 1977, he was awarded the biannual Computers & Thought Award by
the International Joint Committee on Artificial Intelligence. His current research
deals with the question of how to discover not merely mathematical conjectures,
but informal rules of thumb as well. His current address is: Department of Com-
puter Science, Stanford University, Stanford, CA 94305.

Ryszard S. Michalski is a Professor of Computer Science and Medical Infor-
mation Science, and the Director of the Artificial Intelligence Laboratory at the
University of Illinois at Urbana-Champaign. He studied at the Cracow and War-
saw Technical Universities, received his M.S. degree from the Leningrad
Polytechnic Insitute and his Ph.D. degree from the University of Silesia. Prior to
coming to the U.S.A. in 1970, he was a Research Scientist at the Polish
Academy of Sciences in Warsaw. His research interests include inductive in-
ference, knowledge acquisition, expert systems, databases, modeling of human

560 ABOUT THE AUTHORS

plausible reasoning, automated pattern discovery, classification theory, many-
valued logics and application of computer science to life sciences, particularly to
medicine and agriculture. Dr. Michalski has published some 70 research and
technical papers on these topics. In 1982 he was appointed as an Associate in the
Center of Advance Study at the University of Illinois. His current address is:
Department of Computer Science, University of Illinois, 1304 W. Springfield,
Urbana, IL 61801.

Tom M. Mitchell is an Associate Professor of Computer Science at Rutgers
University. He received his B.S. degree (1973) in Electrical Engineering from
Massachusetts Institute of Technology, and his M.S. (1975) and Ph.D. (1978)
degrees in Electrical Engineering from Stanford University. Dr. Mitchell's cur-
rent research on learning focuses on machine learning of heuristics and problem-
solving strategies, and on knowledge acquisition for expert systems. In addition,
his current research interests include applications of artificial intelligence to
computer-aided circuit design, and applications of VLSI technology to problems
in artificial intelligence. His current address is: Department of Computer
Science, Rutgers University, New Brunswick, NJ 08903.

Jack Mostow is a Research Scientist at the Information Sciences Institute,
University of Southern California. He received his A.B in Applied Mathematics
from Harvard College in 1974 and his Ph.D. in Computer Science from
Carnegie-Mellon University in 1981. Dr Mostow is interested in heuristic
program synthesis (in both senses: synthesizing programs heuristically, and syn-
thesizing heuristic programs). His dissertation, Machine Transformation of Task
Heuristics into Operational Procedures, models the domain-knowledge-intensive
process by which problems are reformulated in terms of AI methods. He is cur-
rently working on machine transformation of behavioral specifications into
register-transfer level VLSI designs. His current address is: USC Information
Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90291.

Bernard Nudel is a doctoral candidate in the Department of Computer Science
at Rutgers University. He received a B.Sc. Honors degree in Physics from
Monash University, Melbourne, Australia, and an M.Sc. in Bio-Engineering
from the University of Tel Aviv. His interests in artificial intelligence include
learning theory and designing algorithms for general constraint satisfaction
problems. His current address is: Department of Computer Science, Rutgers
University, New Brunswick, NJ 08903.

J. Ross Quinlan is the Head of the School of Computing Sciences at the New
South Wales Institute of Technology in Australia. He obtained his B.Sc. from
the University of Sydney in 1965, and his Ph.D. from the newly-formed Com-
puter Science Group at the University of Washington in 1968. Dr. Quinlan
spent the 1968-69 academic year as a Visiting Assistant Professor at Carnegie-
Mellon University and the 1970-80 period in the Basser Department of Computer

ABOUT THE AUTHORS dei

Science at the University of Sydney. Prior to his current position he was a Com-
puter Scientist in the Information Sciences Department of the Rand Corporation.
Dr. Quinlan has worked in the area of artificial intelligence since 1965, first in
problem-solving and learning, and more recently, in expert systems, inductive
inference and plausible reasoning. His current address is: School of Computing
Sciences, New South Wales Institute of Technology, New South Wales,
Australia.

Michael D. Rychener is a Research Associate in the Department of Computer
Science at Carnegie-Mellon University. His current research interest is in artifi-
cial intelligence systems that can adapt to changing environments and learn from
instruction. He holds degrees from Oberlin College, Stanford University, and
Carnegie-Mellon University. His doctoral research included design of, and ex-
perimentation with, production-rule systems. Applications for such systems in-
clude intelligent (personalized) user interfaces to computer systems, computer-
aided engineering design, knowledge-based expert systems, and intelligent
computer-aided instruction. He is author or principal co-author of ten reports
and articles. His current address is: Design Research Center, Doherty Hall,
Carnegie-Mellon University, Pittsburgh, PA 15213.

Herbert A. Simon, born (1916) in Milwaukee, Wisconsin, is a Professor of
Computer Science and Psychology at Carnegie-Mellon University, where he has
taught since 1949. Educated at the University of Chicago (B.A. 1936, Ph.D.
1943), he is a member of the National Academy of Sciences, and has received
awards for distinguished research from the American Psychological Association,
the Association for Computing Machinery, and the American Economic Associa-
tion. In 1978, he received the Alfred Nobel Memorial Prize in Economics. His
books include Administrative Behavior, Human Problem Solving (with Allen
Ne well), The New Science of Management Decision (rev. ed.), The Sciences of
the Artificial, and Models of Thought. His current address is: Department of
Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213.

Derek H. Sleeman is a Senior Research Associate in the Department of Com-
puter Science at Stanford University. Prior to his current position he was a
Professor of Computer Science at Leeds University where he co-founded the
Computer Based Learning Project. Recently he has been involved in
applying/evolving AI techniques to intelligent teaching systems and expert sys-
tems set within the physical sciences. His current work involves the analysis of
pupils' solving of algebraic problems, with a view to understanding the processes
involved, and producing a practical micro-based system to diagnose pupils' dif-
ficulties. During the 1980-81 academic year he was a Visiting Scientist at
Carnegie-Mellon University. Dr. Sleeman is the author of numerous papers, and
co-editor (with Dr. John Brown) of Intelligent Tutoring Systems. Currently he is
Secretary of the European Artificial Intelligence and Simulation of Behavior

562 ABOUT THE AUTHORS

(AISB). His address is: Computer Science Department, Stanford University,
Stanford CA 94305.

Robert E. Stepp III is a doctoral candidate in the Department of Computer
Science at the University of Illinois, Urbana-Champaign. He received his A.B.
and M.Sc. degree from the University of Nebraska, and is expected to receive
his Ph.D. in 1983. Mr. Stepp authored or co-authored several publications in
the area of inductive learning, conceptual data clustering and distributed net-
works. His interests include machine learning, conceptual data analysis,
software systems and applications of personal computers for helping the blind.
His current address is: Department of Computer Science, University of Illinois,
1304 W. Springfield, Urbana, IL 61801.

Paul E. Utgoff is a doctoral candidate in the Computer Science Department at
Rutgers University. His dissertation is being written under the direction of Dr.
Tom Mitchell, with whom he has co-authored several publications. His disser-
tation, in the area of machine learning, explores methods for improving the bias
which drives a generalization process. He received his B.Mus. from Oberlin Col-
lege in 1974, and an M.S. from Rutgers University in 1979. His current ad-
dress is: Siemens Corp., 105 College Rd. East, Princeton, N.J. 08540.

AUTHOR INDEX

Abelson, R. P., 147, 149
Abrahamson, S., 302
Amarel, S., 85
Anderson, J. R., 155, 192, 202, 205, 206,

208,431,442,446
Anzai, Y., 138, 139, 164, 430, 436
Aristotle, 83
Arkadev, A. G., 15
Arons, A. B., 319
Ashby, W. R., 14

Balzer, R., 375, 396
Banerji, R. B., 85, 95
Barstow, D., 286, 292
Berliner, H., 156
Biermann, A. W., 77, 86
Block, H. D., 14
Bobrow, D. G., 33
Bongard, N., 15, 85, 90
Brachman, R. J., 84
Bradshaw, G. L., 18, 312
Bratko, I., 464
Brown, J. S., 265,484,485
Bruner, J. S., 85
Buchanan, B. G., 15, 42, 49, 66, 69, 85, 164,

308, 431,489, 508
Burstall, R. M., 86, 373
Burton, R. R., 484, 485, 495, 507

Carbonell, J. G., 137, 142, 146, 155, 407, 485
Carlson, S. S., 301
Carnap, R., 88
Case, J., 86
Chang, C , 109
Chase, W. G., 218
Chilausky, R. L., 84, 85
Clancey, W. J., 484

Cohen, B. L., 77, 90
Collins, A., 456
Coulon, D., 102
Culberson, J. T., 14
Cullingford, R., 147, 149, 152

Darlington, J., 86, 373
Davies, W. D. T., 15
Davis, R., 32, 84, 93, 164, 252, 286, 407, 499
Diday, E., 347
Dietterich, T. G., 42, 90, 116, 138, 152, 407,

464
Donnelly, A. J., 195, 201
Doyle, J., 157
Duda, R. O., 15
Duncan, R., 299

Erman, L. D., 432

Feigenbaum, E. A., 15, 31, 32, 85, 244, 247,
301

Feldman, J., 86
Fikes, R. E., 95, 138, 139, 141, 151, 183
Fodor, J. A., 408
Fogel, L., 290
Forgy, C. L., 309, 431, 436, 440
Friedberg, R. M., 14, 289
Fu, K. S., 15, 32, 86
Fukananga, K., 15

Gaines, B. R., 86
Gaschnig, J., 84
Gilmartin, K., 218
Goldman, N., 396
Goldstein, I. P., 484
Gould, S. J., 299, 301
Gowda, K. C , 333

563

564 AUTHOR INDEX

Green, C. C , 286, 291,412
Greeno, J. G., 155
Greiner, R. D., 303

Hâjek, P., 85, 86, 91
Harris, G., 393
Hartley, J. R., 483
Havrânek, T., 86, 91
Hayes, J. R., 33
Hayes, P. J., 264,412
Hayes-Roth, F., 15, 42, 47, 60, 61, 85, 90,

93, 138, 152, 183, 228, 235, 392, 464
Hedrick, C. L., 95, 107
Hendley, R. J., 484
Hendrix, G. G., 409, 413
Highleyman, W. H., 14
Hilgard, E. R., 15
Hintzman, D. L., 94
Hoff, B., 116
Holland, J. H., 14
Hopcroft, J. E., 500
Hovland, C. I., 15, 85
Hunt, E. B., 15, 47, 71, 85, 95, 465

Iba, G. A., 60, 176

Jouannaud, J. P., 86
Jurgenson, R. C , 195, 201

Kanal, L., 15
Karpinsk, J., 15
Kayser, D., 102
Kazmierczak, H., 14
Kemeni, T. G., 102
Klahr, D., 456
Klahr, P., 392
Kline, P. J., 192, 210
Kling, R. E., 137, 159
Knapman, J., 52, 54
Kochen, M., 85
Kodratoff, Y., 86
Koford, T. S., 14
Kolodner, J. L., 155
Konolige, K., 399
Kopec, D., 464
Korf, R. E., 137
Kotovsky, K.,85, 90
Kowalski, R., 412
Krishna, G., 333

Lakatos, I., 222
Langley, P. W., 98, 308, 309, 313
Larson, J. B., 45, 47, 49, 70, 75, 85, 86, 93,

97, 98, 109, 114, 116, 336, 352

Lea, G., 15, 85, 308
Lebowitz, M., 155
Lee, R. C , 109
Lenat, D. B., 16, 31, 44, 49, 84, 86, 91, 93,

107, 111, 138, 159, 234, 252, 286, 303,
308, 310, 391, 393,400

Lesser, V. R., 432
Lindsay, P. H., 414

McCarthy, J., 264,411
McCullough, W. S., 14
McDermott, D. V., 157
McDermott, J., 15, 60, 61, 90, 93, 138, 152,

228,431,440,448,454,464
Maier, J. E., 195, 201,
Matz, M., 499
Meehan, J., 396, 397
Mendel, T., 15
Michalski, R. S., 15, 42, 45, 47, 49, 70, 72,

75, 84, 85, 86, 89, 90, 91, 93, 95, 97, 98,
102, 109, 114, 116, 123, 138, 152, 333,
336, 338, 340, 343, 345, 346, 352, 360,
407, 464, 508

Michie, D., 94
Minsky, M., 11, 14, 15,94
Mitchell, T. M., 15, 43, 47, 48, 69, 85, 89,

90, 138, 152, 164, 170, 176, 177, 181,
229, 469

Moore, J., 137, 369,436
Moore, R., 412,413
Moraga, C , 85
Morgan, C. G., 95, 109
Mostow, D. J., 230, 232, 235, 368, 369, 373,

374, 383, 390, 392, 399, 400, 441
Mulec, P., 464

Negri, P., 84
Neves, D., 164, 202, 205, 206, 208
Newell, A., 6, 29, 85, 137, 138, 139, 140,

270, 368, 369, 374, 392, 411, 430, 431,
436, 445, 447, 450, 454, 455, 456,

Niblett, T., 84,464
Nilsson, N. J., 14, 103, 138, 139, 141, 151,

186, 350, 399
Norman, D. A., 414
Novak, G. S., 32

O'Rorke, P., 84, 97
Owens, A., 290

Papert, S., 14, 15
Pettorossi, A., 86
Pitts, W., 14
Plotkin, G. D., 44, 95

AUTHOR INDEX 565

Pokorny, D., 86, 91
Politakis, P., 164
Polya, G., 88, 254
Pople, H., 32
Popper, K., 87, 102
Post, H. R., 102
Poveda, P., 358

Quinlan, J. R., 48, 84, 85, 90, 95, 464, 469

Rashevsky, N., 14
Reddy, R., 72
Riseman, E. M., 91
Rising, G. R., 195, 201
Robinson, J. A., 412
Robinson, J. J., 418
Rosenblatt, F., 11, 14, 32
Rosenbloom, P., 6, 138
Rubin, S. M., 72
Russell, B., 87
Rychener, M. D., 430, 431, 433, 440, 445,

448,451,454,455

Sacerdoti, E. D., 70, 139, 145, 392
Salzer, F., 396
Sammut, C. A., 77, 95, 110
Samuel, A. L., 14, 30, 157, 291
Schacter, C , 396
Schank, R. C , 137, 147, 149, 152, 155
Schimke, R. T., 296
Schwenzer, G. M., 69
Sebestyen, G. S., 14
Selfridge, O. G., 14
Shapiro, A., 84, 464
Shapiro, E. Y., 86
Shaw, D. E., 86
Shortliffe, E., 32, 84
Simon, H. A., 15, 29, 33, 85, 90, 138, 139,

140, 218, 270, 294, 308, 347, 369, 411,
430,431,436,456

Sleeman, D. H., 483, 484, 485, 486, 488, 490,
492, 495, 499, 503, 510

Smith, C , 86
Smith, D. R., 86
Smith, M. J., 486, 488, 490, 492, 495, 510
Solomonoff, R. J., 86
Soloway, E. M., 47, 91
Stepp, R. E., 48, 90, 93, 333, 345, 360
Stoffel, J. C , 85, 90
Suppes, P., 105

Tappel, S., 369, 391, 399
Truxal, T. G., 15
Tsypkin, Y. Z., 15

Tuomela, R., 310

Uhr, L., 14, 15
Ullman, J. E., 500
Utgoff, P. E., 164, 181

VanLehn, K., 265
Vere, S. A., 15, 42, 47, 63, 65, 85, 90, 93,

95, 176, 228, 229, 464

Walsh, M., 290
Watanabe, S., 15
Waterman, D. A., 85, 95, 138, 152, 164, 448
Weston-Smith, M., 299
Weyhrauch, R. W., 412
White, T. J., 301
Widrow, B., 14
Wilson, A. C , 300, 301
Winston, P. H., 9, 15, 16, 42, 44, 45, 51, 52,

54, 55, 60, 77, 85, 90, 93, 107, 137, 138,
139, 152, 153, 159, 350, 407

Yau, K. C.,86
Young, R. M.,431
Yovits, M. C , 14

Zagoruiko, N. G., 86, 91, 95

SUBJECT INDEX

Accommodation, 440, 447
ACT, 191-218

human behavior versus, 201
search strategies, 195-200

Adaptive control systems, 15
Adel ai ne, 15
Adding alternative rule, 105-106
Additive successive approximations (ASA),

447,448
Advice taking

see Learning from instruction
AM, 246, 249-263, 308, 310

constructive induction in, 98
discoveries, 252-254, 256-261
goal criterion, 257
representation, 250-252, 279
research conclusions, 261

ANA, 448
Analogical problem solving, 137-159

evaluation of, 149-151
means-end analysis in, 148-149
planning in, 147, 151-155
similarity/difference metric, 142, 145-146,

153-154, 156-157
transform-operators, 144-145, 146, 157-159
transform-space, 143-146

Analogy, 137-159, 209-211, 278, 441, 448
see also Analogical problem solving

AQ11,93, 97
AQVAL/1,93
Archimedes' law of displacement, 315-317
Artificial intelligence, goals of, 27-28
Assurance (heuristic learning method), 226,

229, 232-233
Attribute descriptions, 42, 70-71
Attributes, automatic discovery of, 187-189,

477-481

Automatic programming, 30, 288-292
Avoidance (heuristic learning method),

225-226, 228-229, 231-232

Backward search, 201
combined with forward search, 194-201

Bacon, Sir Francis, 309
BACON.4, 307-328

constructive induction in, 98
defining new terms, 310-312
discoveries, 312-318, 322-326
earlier versions, 308
formulating hypotheses, 309-310
postulating properties, 311-312

BASEBALL system, 47
Beam search, 72-73
Black's specific heat law, 317-318
Bottom-up methods

see Data-driven methods
BUGGY, 265, 485
Bugs in modelling students, 485-500

Caching, 391
Cantus firmus, 396-398
Characteristic description, 44-45, 90, 92,

122-123
Checker-playing program, 14, 30-31, 291
Chemistry, discovery in, 307-328

history of, 319-321
Chess endgame, 84, 470-474

approximate decision trees, 474-477
automatic discovery of attributes, 477-481
benefit of decision tree, 470-474

Climbing generalization tree rule, 53, 107, 340
Closing the interval rule, 106-107, 340
CLUSTER/2, 331-362

classification of folksongs, 358-360

567

568 SUBJECT INDEX

full search algorithm, 346-349
hierarchy building algorithm, 357-358
path-rank-ordered search, 349-352
suggested extensions, 360-362

Clustering
see Conceptual clustering

Common divisors, 321-322, 327-328
Composition of production rules, 12, 141,

205-207, 215-217
Concept learning, 15

application of incompletely learned concepts,
171-172

multiple concept learning, 93
representation of incompletely learned con-

cepts, 168-170
see also Learning from examples

Conceptual clustering, 45, 158, 331-362
algorithm for, 340-344, 345-352
criteria for clustering quality, 344-345
definition, 333
examples, 352-357, 358-360
generalization rules, 340-341
hierarchy building in, 357-358

Conjunctive generalization, 42-43, 62-63, 331
maximally general, 168-170
maximally specific, 43, 51, 60, 63-65, 70-73,

92, 168-170
Constructive induction, 46, 47-48, 60, 78, 98,

508
rules for, 74

Counting arguments rule, 110-111
Credit assignment, 172-173

Data base management systems
KLAUS and, 405-406, 418
machine learning in, 405-427

Data-driven methods, 48, 51-65, 308-309, 327
Data-flow graphs, 374

transformations on, 391-392
Decision-theoretic approach to learning, 14
Decision tree, 11, 463-481

approximate trees, 474-477
relationship to training set, 474-477
versus other search methods, 471-472

Descriptive discovery, 308
Descriptive generalization

see Learning from observation
Descriptors

relationships among, 99-100
types of, 99

Detecting descriptor interdependence rule,
111-112

Difference metric

see Similarity/difference metric
Discovery and learning, 10-11, 29, 234
Discovery of attributes

see Attributes, automatic discovery of
Discovery systems, 10-11, 249-263, 276-282,

307-328
control structure, 247-249
data-driven, 308, 327
descriptive, 308
theory-driven, 308, 327

Discriminant description, 45, 90, 92
in STAR, 122

Discrimination, 214-215
see also Specialization rules

Discrimination network, 31-32
see also Decision tree; Taxonomic description

Divisors of a number, 259-261
DNA as program, 286-292

heuristics in, 292-302
Dropping condition rule, 46, 59, 63, 65, 105,

340-341

Eight Queens problem, 375-376
Episodic memory

organization, 155
reminding process in, 142, 155-157
restructuring, 155-157

EURISKO, 276-282
Evolution, simulation of, 14

as heuristic search, 286-302
Exclusion (heuristic learning method), 225,

228, 230-231
Exemplary programming, 448
Expectation-driven learning, 221-239
Experimenter and bananas problem, 139,

148-149
Expert systems, knowledge acquisition for, 6,

84, 164, 244, 369, 405
Expertise acquisition

see Knowledge acquisition
Extending reference rule, 106
Extending the quantification domain rule, 108
Extension against rule, 109

Find extrema of partial orders rule, 46-48
First order logic, 12, 70-73, 95-96, 130-134,

410-412
history of use in intelligent systems, 411-412

FOO, 367-403
altering the search space, 392-393
domain knowledge in, 370-373
future work, 399-400

SUBJECT INDEX 569

heuristic search in, 374-400
problem representation, 370
problem transformation rule, 373, 403
search refinement methods, 378-400

Forward search, 171-172, 195
combined with backward search, 194-201

Frame-like representation, 12, 250-252
see also Schemas

Generalization rules, 46-47, 59, 104-112
constructive, 46, 109-112
selective, 46-47, 105-109

Generalizing from examples
see Learning from examples

Generate and test algorithms, refinement into
heuristic search, 375-377, 384-396

Generating chain properties rule, 111
Geometry proofs, 191-218

knowledge schémas for, 203-205
learning strategies for, 201-203, 217-218
stages in generation of, 193

Goldbach's conjecture, 258, 261
Graph-matching, 12, 54

Hearts game, 229-234, 367-396
Heuristic problem solving, learning in,

151-159, 163-189, 201-218, 221-239,
249-285, 367-396, 429-456

Heuristic search method
automatic refinement of, 378-400
definition, 374-377
instantiating, 378-384
problem mapping, 378-379
use in discovery systems, 243-305, 307-328

Heuristics
attributes of, 277-278
shallow tree problem, 273-274
space of, 271-275
theory of, 263-275
utility of individual, 266-271

Human learning, computer modelling of, 192

ID3, 463-481
automatic discovery of attributes, 477-481
classification rule, 465-467
compared to other inference systems, 463-464
decision trees in, 463-481
experimental results, 470-474
rule forming procedure, 465-470
selective induction, 97

Ideal gas law, 309-311
Inclusion (heuristic learning method), 226, 229,

233

INDUCE-1, 47-48, 49, 114-116, 464
INDUCE 1.2,70-75

compared with other learning methods, 76-77
constructive induction in, 98
evaluation, 73-75
generalization process, 70-73
representation, 70-73

Induction methods, 48-51
evaluation criteria, 49-51
general versus specific, 49

Inductive inference
completeness condition, 91-92
consistency condition, 91-92
definition of, 88-90

Inductive learning, 83-124
definition of, 84
description languages, 94-96
types, 85-93

Inductive resolution rule, 108-109
Information management

see Data base management systems
Instructable Production System, 429-457

dialog constraints, 431
explanation capability, 439-440
functional components, 436-443
kernel systems, 443, 445-453
learning research, relationship to, 431-433
planning in, 435-436
summary table, 454-455
terminology, 433-436

Intelligent CAI, 433, 483-508
aims, 483-484
research issues, 485-486
shortcomings, 484

Interference matching, 61-62
Intrinsic properties

common divisors in, 321-322
discovery of, 311-312, 315-317

Introducing exception rule, 47, 59
IPMSL, 451
ISA hierarchies, 52-53, 166, 337, 413-415, 427

see also Semantic network
ISAAC, 32-34

KLAUS system, 405-427
data base management systems and, 405-406,

418
requirements, 406
research problems, 406-407

Knowledge acquisition, 6, 84, 164, 244, 369,
405

dialogues for, 406-407, 412-413
research plan for automatic, 244-246

570 SUBJECT INDEX

Knowledge compilation, 202-217, 235,
367-403, 442-443

review of previous research, 368-369
Knowledge intensive learning, 15, 181-189,

221-239, 370-374
Knowledge refinement learning paradigm,

221-239, 368
Knowledge representation

see Representation

Law of conservation of momentum, 317
Law of gravitation, 317
Learning

basic forms, 4-6
definition of, 28
discovery and, 29
research priorities, 3-4, 35-36
see also Machine learning

Learning Blocks World Concepts (Winston),
15, 51-60

compared with other learning methods, 76-77
evaluation, 57-60
learning algorithm, 53-57
network representation, 52-53

Learning by analogy, 8, 137-159, 209-211,
278, 441-442

Learning by being told
see Learning from instruction

Learning by doing, 430
Learning by experimentation, 10-11, 163-189,

249-285, 503-507
Learning from examples, 9-10, 43-78, 85-86,

90, 168-170, 173-178,463-481
comparison of methods, 76-77
descriptions, 44-45, 90
generalization rules, 46-47
in plan generation, 151-155
representation in, 44
sources of examples, 9
types of examples, 9-10

Learning from instruction, 8, 367-403,
405-427, 429-457

compared to other research, 407
Learning from observation, 10, 45, 86, 91,

331-362
Learning in problem solving, 151-155

see also Heuristic problem solving, learning
in

Learning to plan, 137-159, 221-239
Learning without teacher

see Learning from observation
Leeds Modelling System, 483-508

model generation algorithm, 488-502

model representation, 486-487
Lemma incorporation, 234
LEX, 85, 163-189

credit assignment (Poslnst), 164, 171,
172-173, 181-187

critic, 167, 172-173
experimental results, 176-178
generalizer, 168, 173-178
knowledge driven learning in, 181-189
limitations, 180-181
major components, 167-168
problem generator, 168, 178-180
problem solver, 167, 171-172
representation languages, 165-166
vocabulary extension, 187-189

LMS
see Leeds Modelling System

Logic Theorist, 29, 369

Machine learning
application domains, 13
comprehensibility postulate, 94
history of research, 14-16
objectives, 3-6
taxonomy of systems, 7-13, 87-93

Macrooperators, 12, 141, 205-207, 215-217
Mal-rules, 489-490
Mathematical discovery, 249-263
Maximally-specific conjunctive generalization,

43, 51, 60, 63-65, 70-73, 92, 168-170
Means-ends analysis, 139-141, 148-149, 445,

453, 456
MERLIN, 369
Meta-DENDRAL, 66-69, 85, 170, 308

compared with other learning methods, 76-77,
308

evaluation, 68-69
generalization process, 67-68
INTSUM algorithm, 67, 69
RULGEN algorithm, 67-69
RULMOD algorithm, 67-68

Meta-knowledge, 182, 247, 276-277
Minimal discriminant descriptions, 92
Minimax search, decision tree versus, 471-472
Model-driven methods, 48, 65-75
Monkey and bananas problem, 139, 148
Monster-barring, 231
MSC-generalization

see Maximally-specific conjunctive
generalization

NANOKLAUS
knowledge acquisition, 412-413

SUBJECT INDEX 571

knowledge organization, 409
knowledge representation, 410-412
limitations, 413
natural language component, 409-410,

413-418
seed concepts, 408-409
seed vocabulary, 408-409
sort hierarchy, 413-415
verbs, 415-418

Natural language processing
in IPS, 431
in NANOKLAUS, 409-410, 413-418

"Near-miss" negative examples, 52, 153
Neural modelling, 14-15
Neural nets, 14-15

Ohm's law, 313-314
Operationalization

see Knowledge compilation
OPS language, 309, 431

Pandemonium, 14
Parameter learning, 11, 156-157
Pattern recognition, 14-15
Perceptrons, 14, 32
Physics

discovery in, 309-318
problem solving in, 32-34

Plan generalization, 151-155
Planners Workbench, 236
Planning, 147, 151-155, 222-225, 435-436
PLANTS/DS, 84
Predicate calculus

see First order logic
Prime numbers, 259-261
Problem net, 195-197
Problem solving, 139-140

see also Analogical problem solving; Heuris-
tic problem solving, learning in

Problem spaces, 450-451
Proceduralization, 205, 207-209
Production rules, 11-12, 196, 434-436, 486-487
Production systems, 309, 429-457, 486-487

recognize-act cycle, 431, 456
Proof tree, 193-195
PSI system, 292
PW1, 291-292

Reducing search depth, 390-391
Representation, 44, 49, 75-78

classification according to types of
knowledge, 11-12

of incompletely learned concepts, 168-170

self-modification of, 187-189, 282-285,
310-312, 407, 477-481

see also specific kinds of representation, e.g.,
Production rules

Retraction (heuristic learning method), 225,
228, 230

RLL, 303
Rote learning, 8

Samuel's checker-playing program, 14, 30-31,
291

Schemas, 203-205, 250-252, 451-453
for heuristic search, 374-377

Search
see Heuristic search method

Selective induction, 46-47, 97
Self-monitoring, 248, 442, 448
Self-organizing systems, 14-15
Semantic network, 52-53, 451

see also ISA hierarchies
Shallow tree problem, 273-274
Similarity/difference metric, 142, 145-146,

153-154, 156-157, 332, 333-335
tuning, 156-157

Skill refinement, 6
Snell's law of refraction, 317
Sort hierarchies, 413-415
Spanish folksongs, classification for, 358-360
Specialization rules, 47
Specialized search, 471

decision tree versus, 471-472
SPROUTER, 60-63

compared with other learning methods, 76-77,
464

evaluation, 62-63
STAR methodology, 49, 112-124, 341-343

algorithm, 113-114
definition of, 112-113
example, 116-123
problem background knowledge, 96-103

STRIPS with MACROPS, 141
Structural descriptions, 42, 70-71
STUDENT, 33
Student modelling in CAI, 483-508

model generation algorithm, 488-502
model representation, 486-487

Symbolic integration, 164-166
Syntactic distance, 336-338

Tabula rasa approach, 14
Taxonomic description, 12-13, 45, 67

algorithm for inferring, 357-358
TEIRESIAS, 32

572

Theory-driven learning methods, 181-189,
221-239, 308, 327

Theory rectification
heuristics (general), 225-226
heuristics in TL, 228-229, 230-234

Thoth, 63-65
compared with other learning methods, 76-77,

464
evaluation, 64-65
representation, 64-65

TL, 221-239
computational problems, 234-238
heurisitcs for learning, 225-234
learning cycle, 222-225
planning in, 222-225

Top-down methods
see Model-driven methods

Transform operators, 144-145, 146, 157-159
Trend detectors, 310-311
Triangle table, 141
Tuning of search strategies, 156-157, 209-217
Turning conjunction into disjunction rule, 108
Turning constants to variables rule, 63, 65,

107-108

UNDERSTAND, 33-34, 369
Unsupervised learning

see Learning from observation

Version space, 168-172, 469
refinement of, 173-178
representation of, 168-170

Vocabulary extension, 187-189, 477-481
VL2I,70

SUBJECT INDEX

