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PREFACE 

The ability to learn is one of the most fundamental attributes of intelligent 
behavior. Consequently, progress in the theory and computer modeling of learn-
ing processes is of great significance to fields concerned with understanding in-
telligence. Such fields include cognitive science, artificial intelligence, infor-
mation science, pattern recognition, psychology, education, epistemology, 
philosophy, and related disciplines. 

The recent observance of the silver anniversary of artificial intelligence has 
been heralded by a surge of interest in machine learning—both in building 
models of human learning and in understanding how machines might be endowed 
with the ability to learn. This renewed interest has spawned many new research 
projects and resulted in an increase in related scientific activities. In the summer 
of 1980, the First Machine Learning Workshop was held at Carnegie-Mellon 
University in Pittsburgh. In the same year, three consecutive issues of the Inter-
national Journal of Policy Analysis and Information Systems were specially 
devoted to machine learning (No. 2, 3 and 4, 1980). In the spring of 1981, a 
special issue of the SIGART Newsletter No. 76 reviewed current research projects 
in the field. 

This book contains tutorial overviews and research papers representative of 
contemporary trends in the area of machine learning as viewed from an artificial 
intelligence perspective. As the first available text on this subject, it is intended 
to fulfill several needs. For researchers in artificial intelligence, computer 
science, and cognitive psychology, it provides an easily accessible collection of 
state-of-the-art papers presenting current results, which will hopefully spur fur-
ther research. For students in artificial intelligence and related disciplines, this 
volume may serve as a supplementary textbook for a course in artificial intel-
ligence, or as a primary text for a specialized course devoted to machine learn-
ing. Finally, due to the potential impact of machine learning on a variety of 
disciplines, this book may be of interest to a diverse range of readers, including 
computer scientists, robotics experts, knowledge engineers, educators, 
philosophers, data analysts, psychologists and electronic engineers. 
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vi PREFACE 

The major contemporary research directions in machine learning covered in 
this book include: learning from examples, modeling human learning strategies, 
knowledge acquisition for expert systems, learning heuristics, learning from in-
struction, learning by analogy, discovery systems, and conceptual data analysis. 
A glossary of selected terminology and an extensive up-to-date bibliography are 
provided to facilitate instruction and suggest further reading. 

—Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell 
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AN OVERVIEW OF 

MACHINE LEARNING 

Jaime G. Carbonell 
Carnegie-Mellon University 

Ryszard S. Michalski 
University of Illinois 

at Urbana-Champaign 

Tom M. Mitchell 
Rutgers University 

1.1 INTRODUCTION 

Learning is a many-faceted phenomenon. Learning processes include the 
acquisition of new declarative knowledge, the development of motor and cog-
nitive skills through instruction or practice, the organization of new knowledge 
into general, effective representations, and the discovery of new facts and 
theories through observation and experimentation. Since the inception of the 
computer era, researchers have been striving to implant such capabilities in com-
puters. Solving this problem has been, and remains, a most challenging and fas-
cinating long-range goal in artificial intelligence (AI). The study and computer 
modeling of learning processes in their multiple manifestations constitutes the 
subject matter of machine learning. 

1.2 THE OBJECTIVES OF MACHINE LEARNING 

At present, the field of machine learning is organized around three primary 
research foci: 

• Task-Oriented Studies—the development and analysis of learning systems 
to improve performance in a predetermined set of tasks (also known as the 
"engineering approach") 

3 



4 CHAPTER 1 : AN OVERVIEW OF MACHINE LEARNING 

• Cognitive Simulation—the investigation and computer simulation of 
human learning processes 

• Theoretical Analysis—the theoretical exploration of the space of possible 
learning methods and algorithms independent of application domain 
Although many research efforts strive primarily towards one of these objec-

tives, progress towards one objective often leads to progress towards another. 
For instance, in order to investigate the space of possible learning methods, a 
reasonable starting point may be to consider the only known example of robust 
learning behavior, namely humans (and perhaps other biological systems). 
Similarly, psychological investigations of human learning may be helped by 
theoretical analysis that may suggest various plausible learning models. The 
need to acquire a particular form of knowledge in some task-oriented study may 
itself spawn new theoretical analysis or pose the question: "How do humans ac-
quire this specific skill (or knowledge)?" This trichotomy of mutually challenging 
and supportive objectives is a reflection of the entire field of artificial intel-
ligence, where expert systems research, cognitive simulation, and theoretical 
studies provide cross-fertilization of problems and ideas. 

1.2.1 Applied Learning Systems: A Practical Necessity 

At present, instructing a computer or a computer-controlled robot to per-
form a task requires one to define a complete and correct algorithm for that task, 
and then laboriously program the algorithm into a computer. These activities 
typically involve a tedious and time-consuming effort by specially trained person-
nel. 

Present-day computer systems cannot truly learn to perform a task through 
examples or by analogy to a similar, previously-solved task. Nor can they im-
prove significantly on the basis of past mistakes, or acquire new abilities by ob-
serving and imitating experts. Machine learning research strives to open the pos-
sibility of instructing computers in such new ways, and thereby promises to ease 
the burden of hand-programming growing volumes of increasingly complex in-
formation into the computers of tomorrow. The rapid expansion of applications 
and availability of computers today makes this possibility even more attractive 
and desirable. 

When approaching a task-oriented knowledge acquisition task, one must be 
aware that the resultant computer systems must interact with humans, and there-
fore should closely parallel human abilities. The traditional argument that an 
engineering approach need not reflect human or biological performance is not 
truly applicable to machine learning. Since airplanes, a successful result of an 
almost pure engineering approach, bear little resemblance to their biological 
counterparts, one may argue that applied knowledge acquisition systems should 
be equally divorced from any consideration of human capabilities. This argument 
does not apply here because airplanes need not interact with or understand birds. 
Learning machines, on the other hand, will have to interact with the people who 
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make use of them, and consequently the concepts and skills they acquire—if not 
necessarily their internal mechanisms—must be understandable to humans. 

1.2.2 Machine Learning as a Science 

The question of what are the genetically-endowed abilities in a biological 
system (versus environmentally-acquired skills or knowledge) has fascinated 
biologists, psychologists, philosophers and artificial intelligence researchers 
alike. A clear candidate for a cognitive invariant in humans is the learning 
mechanism—the innate ability to acquire facts, skills and more abstract concepts. 
Therefore, understanding human learning well enough to reproduce aspects of 
that learning behavior in a computer system is, in itself, a worthy scientific goal. 
Moreover, the computer can render substantial assistance to cognitive psychol-
ogy, in that it may be used to test the consistency and completeness of learning 
theories, and enforce a commitment to fine-structure process-level detail that 
precludes meaningless, tautological or untestable theories. 

The study of human learning processes is also of considerable practical sig-
nificance. Gaining insights into the principles underlying human learning abilities 
is likely to lead to more effective educational techniques. Thus, it is not surpris-
ing that research into intelligent computer-assisted instruction, which attempts to 
develop computer-based tutoring systems, shares many of the goals and perspec-
tives with machine learning research. One particularly interesting development is 
that computer tutoring systems are starting to incorporate abilities to infer models 
of student competence from observed performance. Inferring the scope of a 
student's knowledge and skills in a particular area allows much more effective 
and individualized tutoring of the student. 

An equally basic scientific objective of machine learning is the exploration 
of alternative learning mechanisms, including the discovery of different induction 
algorithms, the scope and limitations of certain methods, the information that 
must be available to the learner, the issue of coping with imperfect training data, 
and the creation of general techniques applicable in many task domains. There 
is no reason to believe that human learning methods are the only possible means 
of acquiring knowledge and skills. In fact, common sense suggests that human 
learning represents just one point in an uncharted space of possible learning 
methods—a point that through the evolutionary process is particularly well suited 
to cope with the general physical environment in which we exist. Most theoreti-
cal work in machine learning has centered on the creation, characterization and 
analysis of general learning methods, with the major emphasis on analyzing 
generality and performance rather than psychological plausibility. 

Whereas theoretical analysis provides a means of exploring the space of 
possible learning methods, the task-oriented approach provides a vehicle to test 
and improve the performance of functional learning systems. By constructing 
and testing applied learning systems, one can determine the cost-effectiveness 
trade-offs and limitations of particular approaches to learning. In this way, in-
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dividual data points in the space of possible learning systems are explored, and 
the space itself becomes better understood. Many of the chapters of this book 
can be viewed from this perspective. 

1.2.3 Knowledge Acquisition versus Skill Refinement 

There are two basic forms of learning: knowledge acquisition and skill 
refinement. When we say that someone learned physics, we mean that this per-
son acquired significant concepts of physics, understood their meaning, and un-
derstood their relationship to each other and to the physical world. The essence 
of learning in this case is the acquisition of new knowledge, including descrip-
tions and models of physical systems and their behaviors, incorporating a variety 
of representations—from simple intuitive mental models, examples and images, 
to completely tested mathematical equations and physical laws. A person is said 
to have learned more if his knowledge explains a broader scope of situations, is 
more accurate, and is better able to predict the behavior of the physical world. 
This form of learning is typical in a large variety of situations and is generally 
termed knowledge acquisition. Hence, knowledge acquisition is defined as learn-
ing new symbolic information coupled with the ability to apply that information 
in an effective manner. 

A second kind of learning is the gradual improvement of motor and cog-
nitive skills through practice, such as learning to ride a bicycle or to play the 
piano. Acquiring textbook knowledge on how to perform these activities 
represents only the initial phase in developing the requisite skills. The bulk of 
the learning process consists of refining the learned skills, whether mental or 
motor coordination, by repeated practice and by correcting deviations from 
desired behavior. This form of learning, often called skill refinement, differs in 
many ways from knowledge acquisition. Whereas the essence of knowledge ac-
quisition may be a conscious process whose result is the creation of new sym-
bolic knowledge structures and mental models, skill refinement occurs at a sub-
conscious level by virtue of repeated practice. Most human learning appears to 
be a mixture of both activities, with intellectual endeavors favoring the former, 
and motor coordination tasks favoring the latter. 

This book focuses on the knowledge acquisition aspect of learning, al-
though some chapters, specifically those concerned with learning in problem-
solving and transforming declarative instructions into effective actions, touch on 
aspects of both types of learning. Whereas knowledge acquisition clearly 
belongs in the realm of artificial intelligence research, a case could be made that 
skill refinement comes closer to non-symbolic processes, such as those studied in 
adaptive control systems. It may indeed be the case that skill acquisition is in-
herently non-symbolic in biological systems, but an interesting symbolic model 
capable of simulating gradual skill improvement through practice has been 
proposed recently by Ne well and Rosenbloom [Ne well, 1981]. Hence, perhaps 
both forms of learning can be captured in artificial intelligence models. 
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1.3 A TAXONOMY OF MACHINE LEARNING RESEARCH 

This section presents a taxonomic road map to the field of machine learn-
ing with a view towards presenting useful criteria for classifying and comparing 
most artificial intelligence-based machine learning investigations. Later sections 
survey the main directions actually taken by research in machine learning over 
the past twenty years, and introduce each major research approach corresponding 
to subsequent chapters in this book. 

One may classify machine learning systems along many different dimen-
sions. We have chosen three dimensions as particularly meaningful: 

• Classification on the basis of the underlying learning strategies used. The 
processes themselves are ordered by the amount of inference the learning 
system performs on the available information. 

• Classification on the basis of the representation of knowledge or skill ac-
quired by the learner. 

• Classification in terms of the application domain of the performance sys-
tem for which knowledge is acquired. 
Each point in the space defined by the above dimensions corresponds to a 

particular learning strategy, employing a particular knowledge representation, ap-
plied to a particular domain. Since existing learning systems employ multiple 
representations and processes, and many have been applied to more than one 
domain, such learning systems are characterized by several points in the space. 

The subsections below describe explored values along each of these dimen-
sions. Future research may well reveal new values and dimensions. Indeed, the 
larger space of all possible learning systems is still only sparsely explored and 
partially understood. Existing learning systems correspond to only a small por-
tion of the space because they represent only a small number of possible com-
binations of the values. 

1.3.1 Classification Based on the Underlying Learning Strategy 

Since we distinguish learning strategies by the amount of inference the 
learner performs on the information provided, we first consider the two extremes: 
performing no inference, and performing a substantial amount of inference. If a 
computer system is programmed directly, its knowledge increases, but it per-
forms no inference whatsoever; all cognitive effort is on the part of the program-
mer. Conversely, if a system independently discovers new theories or invents 
new concepts, it must perform a very substantial amount of inference; it is deriv-
ing organized knowledge from experiments and observations. An intermediate 
point in the spectrum would be a student determining how to solve a math-
ematics problem by analogy to worked-out examples in the textbook—a process 
that requires inference, but much less than discovering a new branch of math-
ematics without guidance from teacher or textbook. 

As the amount of inference that the learner is capable of performing in-
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creases, the burden placed on the teacher or external environment decreases. It is 
much more difficult to teach a person by explaining each step in a complex task 
than by showing that person the way that similar tasks are usually handled. It is 
more difficult yet to program a computer to perform a complex task than to in-
struct a person to perform the task; as programming requires explicit specifica-
tion of all requisite detail, whereas a person receiving instruction can use prior 
knowledge and common sense to fill in most mundane details. The taxonomy 
below captures this notion of trade-offs in the amount of effort required of the 
learner and of the teacher. 

1. Rote learning and direct implanting of new knowledge—No inference or 
other transformation of the knowledge is required on the part of the 
learner. Variants of this knowledge acquisition method include: 

• Learning by being programmed, constructed or modified by an exter-
nal entity, requiring no effort on the part of the learner (for example, 
the usual style of computer programming). 

• Learning by memorization of given facts and data with no inferences 
drawn from the incoming information (for example, as performed by 
primitive database systems). The term "rote learning" is used 
primarily in this context. 

2. Learning from instruction (or, learning by being told)—Acquiring 
knowledge from a teacher or other organized source, such as a textbook, 
requiring that the learner transform the knowledge from the input language 
to an internally-usable representation, and that the new information be in-
tegrated with prior knowledge for effective use. Hence, the learner is re-
quired to perform some inference, but a large fraction of the burden 
remains with the teacher, who must present and organize knowledge in a 
way that incrementally augments the student's existing knowledge. Learn-
ing from instruction parallels most formal education methods. Therefore, 
the machine learning task is one of building a system that can accept in-
struction or advice and can store and apply this learned knowledge effec-
tively. This form of learning is discussed in Chapters 12, 13 and 14. 

3. Learning by analogy—Acquiring new facts or skills by transforming and 
augmenting existing knowledge that bears strong similarity to the desired 
new concept or skill into a form effectively useful in the new situation. 
For instance, a person who has never driven a small truck, but who drives 
automobiles, may well transform his existing skill (perhaps imperfectly) to 
the new task. Similarly, a learning-by-analogy system might be applied to 
convert an existing computer program into one that performs a closely-
related function for which it was not originally designed. Learning by 
analogy requires more inference on the part of the learner than does rote 
learning or learning from instruction. A fact or skill analogous in relevant 
parameters must be retrieved from memory; then the retrieved knowledge 
must be transformed, applied to the new situation, and stored for future 
use. This form of learning is discussed in Chapters 5 and 7. 
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4. Learning from examples (a special case of inductive learning)—Given a 
set of examples and counterexamples of a concept, the learner induces a 
general concept description that describes all of the positive examples and 
none of the counterexamples. Learning from examples is a method that has 
been heavily investigated in artificial intelligence. The amount of in-
ference performed by the learner is much greater than in learning from in-
struction, as no general concepts are provided by a teacher, and is some-
what greater than in learning by analogy, as no similar concepts are 
provided as "seeds" around which the new concept may be grown. Learn-
ing from examples can be subcategorized according to the source of the 
examples: 

• The source is a teacher who knows the concept and generates se-
quences of examples that are meant to be as helpful as possible. If 
the teacher also knows (or, more typically, infers) the knowledge 
state of the learner, the examples can be selected to optimize conver-
gence on the desired concept (as in Winston's system [Winston, 
1975]). 

• The source is the learner itself. The learner typically knows its own 
knowledge state, but clearly does not know the concept to be ac-
quired. Therefore, the learner can generate instances (and have an 
external entity such as the environment or a teacher classify them as 
positive or negative examples) on the basis of the information it 
believes necessary to discriminate among contending concept descrip-
tions. For instance, a learner trying to acquire the concept of 
"ferromagnetic substance", may generate as a possible candidate "all 
metals". Upon testing copper and other metals with a magnet, the 
learner will then discover that copper is a counterexample, and there-
fore the concept of ferromagnetic substance should not be generalized 
to include all metals. 

• The source is the external environment. In this case the example 
generation process is operationally random, as the learner must rely 
on relatively uncontrolled observations. For example, an astronomer 
attempting to infer precursors to supernovas must rely mainly upon 
unstructured data presentation. (Although the astronomer knows the 
concept of a supernova, he cannot know a priori where and when a 
supernova will occur, nor can he cause one to exist.) 
One can also classify learning from examples by the type of ex-

amples available to the learner: 
• Only positive examples available. Whereas positive examples provide 

instances of the concept to be acquired, they do not provide infor-
mation for preventing overgeneralization of the inferred concept. In 
this kind of learning situation, overgeneralization might be avoided 
by considering only the minimal generalizations necessary, or by 
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relying upon a priori domain knowledge to constrain the concept to 
be inferred. 

• Positive and negative examples available. In this kind of situation, 
positive examples force generalization whereas negative examples 
prevent overgeneralization (the induced concept should never be so 
general as to include any of the negative examples). This is the most 
typical form of learning from examples. 
Learning from examples may be one-trial or incremental. In the 

former case, all examples are presented at once. In the latter case, the sys-
tem must form one or more hypotheses of the concept (or range of 
concepts) consistent with the available data, and subsequently refine the 
hypotheses after considering additional examples. The incremental ap-
proach more closely parallels human learning, allows the learner to use 
partially learned concepts (for performance, or to guide the example 
generation process), and enables a teacher to focus on the basic aspects of 
a new concept before attempting to impart less central details. On the other 
hand, the one-step approach is less apt to lead one down garden paths by 
an injudicious choice of initial examples in formulating the kernel of the 
new concept. Various aspects of learning from examples are discussed in 
Chapters 3, 4, 5, 6, 7, 8, 15 and 16. 

5. Learning from observation and discovery (also called unsupervised 
learning)—This is a very general form of inductive learning that includes 
discovery systems, theory-formation tasks, the creation of classification 
criteria to form taxonomic hierarchies, and similar tasks without benefit of 
an external teacher. This form of unsupervised learning requires the 
learner to perform more inference than any approach thus far discussed. 
The learner is not provided with a set of instances of a particular concept, 
nor is it given access to an oracle that can classify internally-generated in-
stances as positive or negative instances of any given concept. Moreover, 
rather than focusing on a single concept at a time, the observations may 
span several concepts that need to be acquired, thus introducing a severe 
focus-of-attention problem. One may subclassify learning from observation 
according to the degree of interaction with an external environment. The 
extreme points in this dimension are: 

• Passive observation, where the learner classifies and taxonomizes ob-
servations of multiple aspects of the environment. 

• Active experimentation, where the learner perturbs the environment to 
observe the results of its perturbations. Experimentation may be ran-
dom, dynamically focused according to general criteria of interesting-
ness, or strongly guided by theoretical constraints. As a system ac-
quires knowledge, and hypothesizes theories it may be driven to con-
firm or disconfirm its theories, and hence explore its environment ap-
plying different observation and experimentation strategies as the 
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need arises. Often this form of learning involves the generation of 
examples to test hypothesized or partially acquired concepts. 

Learning from observation is discussed in Chapters 4, 9, 10 and 11. 
The above classification of learning strategies helps one to compare various 

learning systems in terms of their underlying mechanisms, in terms of the avail-
able external source of information, and in terms of the degree to which they 
rely on pre-organized knowledge. 

1.3.2 Classification According to the Type of Knowledge Acquired 

A learning system may acquire rules of behavior, descriptions of physical 
objects, problem-solving heuristics, classification taxonomies over a sample 
space, and many other types of knowledge useful in the performance of a wide 
variety of tasks. The list below spans types of knowledge acquired, primarily as 
a function of the representation of that knowledge. 

1. Parameters in algebraic expressions—Learning in this context consists of 
adjusting numerical parameters or coefficients in algebraic expressions of a 
fixed functional form so as to obtain desired performance. For instance, 
perceptrons [Rosenblatt, 1958; Minsky & Papert, 1969] adjust weighting 
coefficients for threshold logic elements when learning to recognize two-
dimensional patterns. 

2. Decision trees—Some systems acquire decision trees to discriminate 
among classes of objects. The nodes in a decision tree correspond to 
selected object attributes, and the edges correspond to predetermined alter-
native values for these attributes. Leaves of the tree correspond to sets of 
objects with an identical classification. 

3. Formal grammars—In learning to recognize a particular (usually 
artificial) language, formal grammars are induced from sequences of ex-
pressions in the language. These grammars are typically represented as 
regular expressions, finite-state automata, context-free grammar rules, or 
transformation rules. 

4. Production rules—A production rule is a condition-action pair {C => A}, 
where C is a set of conditions and A is a sequence of actions. If all the 
conditions in a production rule are satisfied, then the sequence of actions is 
executed. Due to their simplicity and ease of interpretation, production 
rules are a widely-used knowledge representation in learning systems. The 
four basic operations whereby production rules may be acquired and 
refined are: 

• Creation: A new rule is constructed by the system or acquired from 
an external entity. 

• Generalization: Conditions are dropped or made less restrictive, so 
that the rule applies in a larger number of situations. 
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• Specialization: Additional conditions are added to the condition set, 
or existing conditions made more restrictive, so that the rule applies 
to a smaller number of specific situations. 

• Composition: Two or more rules that were applied in sequence are 
composed into a single larger rule, thus forming a "compiled" 
process and eliminating any redundant conditions or actions. 

5. Formal logic-based expressions and related formalisms—These general-
purpose representations have been used to formulate descriptions of in-
dividual objects (input to a learning system) and to formulate resultant con-
cept descriptions (output from a learning system). They take the form of 
formal logic expressions whose components are propositions, arbitrary 
predicates, finite-valued variables, statements restricting ranges of variables 
(such as "a number between 1 and 9"), or embedded logical expressions. 

6. Graphs and Networks—In many domains graphs and networks provide a 
more convenient and efficient representation than logical expressions, al-
though the expressive power of network representations is comparable to 
that of formal logic expressions. Some learning techniques exploit graph-
matching and graph-transformation schemes to compare and index 
knowledge efficiently. 

7. Frames and schémas—These provide larger units of representation than 
single logical expressions or production rules. Frames and schémas can be 
viewed as collections of labeled entities ("slots"), each slot playing a cer-
tain prescribed role in the representation. They have proven quite useful in 
many artificial intelligence applications. For instance, a system that ac-
quires generalized plans must be able to represent and manipulate such 
plans as units, although their internal structure may be arbitrarily complex. 
Moreover, in experiential learning, past successes, untested alternatives, 
causes of failure, and other information must be recorded and compared in 
inducing and refining various rules of behavior (or entire plans). Schema 
representations provide an appropriate formalism. 

8. Computer programs and other procedural encodings—The objective of 
several learning systems is to acquire an ability to carry out a specific 
process efficiently, rather than to reason about the internal structure of the 
process. Most automatic programming systems fall in this general cate-
gory. In addition to computer programs, procedural encodings include 
human motor skills (such as knowing how to ride a bicycle), instruction 
sequences to robot manipulators, and other "compiled" human or machine 
skills. Unlike logical descriptions, networks or frames, the detailed inter-
nal structure of the resultant procedural encodings need not be comprehen-
sible to humans, or to automated reasoning systems. Only the external be-
havior of acquired procedural skills become directly available to the 
reasoning system. 

9. Taxonomies—Learning from observation may result in global structuring 
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of domain objects into a hierarchy or taxonomy. Clustering object descrip-
tions into newly-proposed categories, and forming hierarchical classifica-
tions require the system to formulate relevant criteria for classification. 

10. Multiple representations—Some knowledge acquisition systems use 
several representation schemes for the newly-acquired knowledge. Most 
notably, some discovery and theory-formation systems that acquire con-
cepts, operations on those concepts, and heuristic rules for a new domain 
must select appropriate combinations of representation schemes applicable 
to the different forms of knowledge acquired. 

1.3.3 Classification by Domain of Application 

A useful dimension for classifying learning systems is their area of applica-
tion. The list below specifies application areas to which various existing learn-
ing systems have been applied. Application areas are presented in alphabetical 
order, not reflecting the relative effort or significance of the resultant machine 
learning system. 

1. Agriculture 
2. Chemistry 
3. Cognitive Modeling (simulating human learning processes) 
4. Computer Programming 
5. Education 
6. Expert Systems (high-performance, domain-specific AI programs) 
7. Game Playing (chess, checkers, poker, and so on) 
8. General Methods (no specific domain) 
9. Image Recognition 
10. Mathematics 
11. Medical Diagnosis 
12. Music 
13. Natural Language Processing 
14. Physical Object Characterizations 
15. Physics 
16. Planning and Problem-solving 
17. Robotics 
18. Sequence Prediction 
19. Speech Recognition 

The Bibliography provides an index to the literature organized around 
several criteria including some of the more commonly explored application areas. 
Now that we have a basis for classifying and comparing learning systems, we 
turn to a brief historical outline of machine learning. 
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1.4 AN HISTORICAL SKETCH OF MACHINE LEARNING 

Over the years, research in machine learning has been pursued with vary-
ing degrees of intensity, using different approaches and placing emphasis on dif-
ferent aspects and goals. Within the relatively short history of this discipline, 
one may distinguish three major periods, each centered around a different 
paradigm: 

• neural modeling and decision-theoretic techniques 
• symbolic concept-oriented learning 
• knowledge-intensive learning systems exploring various learning tasks 

The distinguishing feature of the first paradigm was the interest in building 
general purpose learning systems that start with little or no initial structure or 
task-oriented knowledge. The major thrust of research based on this tabula rasa 
approach involved constructing a variety of neural model-based machines, with 
random or partially random initial structure. These systems were generally 
referred to as neural nets or self-organizing systems. Learning in such systems 
consisted of incremental changes in the probabilities that neuron-like elements 
(typically threshold logic units) would transmit a signal. 

Due to the primitive nature of computer technology at that time, most of 
the research under this paradigm was either theoretical or involved the construc-
tion of special purpose experimental hardware systems, such as perceptrons 
[Rosenblatt, 1958], pandemonium [Selfridge, 1959] and adelaine [Widrow, 

1962]. The groundwork for this paradigm was laid in the forties by Rashevsky 
and his followers working in the area of mathematical biophysics [Rashevsky, 
1948], and by McCulloch and Pitts [1943], who discovered the applicability of 
symbolic logic to modeling nervous system activities. Among the large number 
of research efforts in this area, one may mention works such as [Ashby, 1960; 
Rosenblatt, 1958, 1962; Minsky & Papert, 1969; Block, 1961; Yovits, 1962, 
Widrow, 1962; Culberson, 1963; Kazmierczak, 1963]. Related research in-
volved the simulation of evolutionary processes, that through random mutation 
and "natural" selection might create a system capable of some intelligent be-
havior (for example, [Friedberg, 1958, 1959; Holland, 1980]). 

Experience in the above areas spawned the new discipline of pattern recog-
nition and led to the development of a decision-theoretic approach to machine 
learning. In this approach, learning is equated with the acquisition of linear, 
polynomial, or related forms of discriminant functions from a given set of train-
ing examples (for example, [Nilsson, 1965; Koford, 1966; Uhr, 1966; High-
leyman, 1967] ). One of the best known successful learning systems utilizing 
such techniques (as well as some original new ideas involving non-linear 
transformations) was Samuel's checkers program [Samuel, 1959, 1963]. This 
program was able to acquire through learning a master level of performance. 
Somewhat different, but closely related, techniques utilized methods of statistical 
decision theory for learning pattern recognition rules (for example, [Sebestyen, 
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1962; Fu, 1968; Watanabe, I960; Arkadev, 1971; Fukananga, 1972; Duda & 
Hart, 1973; Kanal, 1974]). 

In parallel to research on neural modeling and decision-theoretic tech-
niques, researchers in control theory developed adaptive control systems able to 
adjust automatically their parameters in order to maintain stable performance in 
the presence of various disturbances (for example, [Truxal, 1955; Davies, 1970; 
Mendel, 1970; Tsypkin, 1968, 1971, 1973; Fu, 1971, 1974]). 

Practical results sought by the neural modeling and decision theoretic ap-
proaches met with limited success. High expectations articulated in various early 
works were not realized, and research under this paradigm began to decline. 
Theoretical studies have revealed strong limitations of the "knowledge-free" 
perceptron-type learning systems [Minsky & Papert, 1969]. 

A second major paradigm started to emerge in the early sixties stemming 
from the work of psychologists and early AI researchers on models of human 
learning [Hunt et al., 1963, 1966]. The paradigm utilized logic or graph struc-
ture representations rather than numerical or statistical methods. Systems learned 
symbolic descriptions representing higher level knowledge and made strong 
structural assumptions about the concepts to be acquired. 

Examples of work in this paradigm include research on human concept ac-
quisition (for example, [Hunt & Hovland, 1963; Feigenbaum, 1963; Hunt et al., 
1966; Hilgard, 1966; Simon & Lea, 1974]), and various applied pattern recog-
nition systems ( [Bongard, 1970; Uhr, 1966; Karpinski & Michalski, 1966]). 

Some researchers constructed task-oriented specialized systems that would 
acquire knowledge in the context of a practical problem. For instance, the 
META-DENDRAL program [Buchanan, 1978] generates rules explaining mass 
spectrometry data for use in the DENDRAL system [Buchanan et al., 1971]. 

An influential development in this paradigm was Winston's structural 
learning system [Winston, 1975]. In parallel with Winston's work, different ap-
proaches to learning structural concepts from examples emerged, including a 
family of logic-based inductive learning programs (AQVAL) [Michalski, 1972, 
1973, 1978], and related work by Hayes-Roth [1974], Hayes-Roth & McDermott 
[1978], Vere [1975], and Mitchell [1978]. More details on this paradigm are in-
cluded in Chapters 3, 4 and 6. (See also [Michie, 1982].) 

The third paradigm represents the most recent period of research starting in 
the mid-seventies. Researchers have broadened their interest beyond learning 
isolated concepts from examples, and have begun investigating a wide spectrum 
of learning methods, most based upon knowledge-rich systems. Specifically, 
this paradigm can be characterized by several new trends, including: 

1. Knowledge-Intensive Approaches: Researchers are strongly emphasizing 
the use of task-oriented knowledge and the constraints it provides in guid-
ing the learning process. One lesson from the failures of earlier tabula 
rasa and knowledge-poor learning systems is that to acquire new 
knowledge a system must already possess a great deal of initial knowledge. 
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2. Exploration of alternative methods of learning: In addition to the earlier 
research emphasis on learning from examples, researchers are now inves-
tigating a wider variety of learning methods such as learning from instruc-
tion (Chapters 12, 13, and 14 in this book), learning by analogy 
( [Winston, 1979], and Chapter 5 of this book), and discovery of concepts 
and classifications ( [Lenat, 1976] and Chapters 4, 10, and 11 of this 
book). 

3. Incorporating abilities to generate and select learning tasks: In contrast 
to previous efforts, a number of current systems incorporate heuristics to 
control their focus of attention by generating learning tasks, proposing ex-
periments to gather training data, and choosing concepts to acquire 
( [Lenat, 1976] and Chapter 6 of this book). 

The research presented in this book is concerned primarily with the last, 
knowledge-intensive paradigm of learning. 

1.5 A BRIEF READER'S GUIDE 

The chapters in this book are organized according to the major thrust of 
each investigation, whether that thrust is the development of a general method, 
the application of various learning techniques to a particular domain, or the 
theoretical analysis of existing methods. The progression of chapters roughly 
corresponds to the sequence: 

• Basic principles 
• General-purpose systems 
• Task-oriented applications 

Although there is much overlap among the objectives of different chapters, the 
specific content differs substantially. For instance, the four papers listed under 
the general category "Learning in problem-solving and planning," share a com-
mon top-level objective, but differ substantially in terms of the learning methods 
employed, the type of knowledge acquired, and the range of applicability of the 
described systems. 

The reader not familiar with the field of machine learning is encouraged to 
read the first few chapters, omitting technical detail, in order to acquire a general 
understanding. Later, these chapters and any others that are of special interest 
may be studied in more detail with an appropriate perspective on the field as a 
whole. Readers are encouraged to use our chapter descriptions below, as well as 
the abstracts in the individual chapters, to focus on areas of interest. The topics 
of the individual chapters range from cognitive modeling and discussion of un-
derlying principles to applications in general problem-solving, chemistry, math-
ematics, music, education and game playing. 

At the Carnegie-Mellon Machine Learning Workshop in July, 1980, Her-
bert Simon was asked to deliver the keynote address, where he chose to play the 
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role of devil's advocate and ask the question "Why Should Machines Learn?" 
His analysis concluded that, with the exception of cognitive modeling, some 
rethinking of long-term objectives was in order. After dispelling some common 
myths, Simon concluded with a clarified and more appropriate set of reasons 
why one ought to pursue machine learning research. Chapter 2 is based almost 
entirely on that rather controversial keynote address. 

In Chapter 3, Dietterich and Michalski analyze some well-known work in 
concept acquisition from a unified perspective. After developing some requisite 
formalism, they examine the range of possible concept descriptions that may be 
acquired via a set of basic generalization and discrimination operators applied to 
logic-based representations of instances and concepts. Then, they describe the 
work of Winston, Hayes-Roth, Vere, and Michalski's earlier work as particular 
combinations of learning operators applied to different restriction0 on the 
representation language. Chapter 3, therefore, provides a general framework for 
comparison of different concept-acquisition systems. 

In Chapter 4, Michalski describes a general theory and methodology for 
inductive learning of structural descriptions from examples. The theory unif;es 
and clarifies various types of inductive learning, and demonstrates that such 
learning can be viewed as a process of applying generalization inference rules 
(and conventional deductive inference rules) to initial and intermediate descrip-
tions. This process is guided by problem-oriented background knowledge 
provided to the learning system. Various generalization rules are presented and 
discussed. The methodology developed is illustrated by a problem from the area 
of conceptual data analysis. 

In Chapter 5, Carbonell examines the issue of learning from experience, a 
common phenomenon among humans, but heretofore a nemesis to machines that 
could not transfer planning knowledge to new but similar situations, or otherwise 
analyze their past behavior. A general planning and problem-solving paradigm is 
proposed based on a computationally-effective model of analogical reasoning. In 
essence, the planner exploits prior experience in solving new problems that bear 
strong similarity to past situations by transforming solutions of past problems 
into potential plans that solve new, externally or internally generated problems. 
The analogical paradigm interfaces with a learning-from-examples method, ena-
bling the learner to formulate generalized plans for recurring situations, as well 
as to accumulate and classify more specific experiences for less common situa-
tions. 

In Chapter 6, Mitchell, Utgoff and Banerji investigate the issue of acquir-
ing and refining problem-solving heuristics by examining solutions to symbolic 
integration problems. Like Carbonell's approach, learning is based on past 
problem-solving experience, but Mitchell et al. focus on acquiring heuristics for 
applying known strategies, rather than generalizing recurring behaviors into reus-
able plans. Their approach also generates problems internally for the purpose of 
testing and refining existing heuristics, and uses the version-space approach to 
keep track of viable generalizations of current heuristics. Unlike Carbonell's 
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analogical approach to problem-solving, Mitchell et al. rely on heuristic search 
guided by the constantly updated domain heuristics to solve new problems. 
After describing the LEX program for learning heuristics, they consider ways in 
which the system's learning abilities could be improved by giving it new 
knowledge about heuristic search, the problem domain, and the goals of the 
learner. 

In Chapter 7, Anderson examines human problem-solving in the context of 
providing justifications to geometric proofs. He relies entirely upon a production 
system framework to encode domain knowledge, learning heuristics, and 
problem-solving strategies. Anderson reviews the basic mechanisms for 
production-rule knowledge acquisition and demonstrates how they apply to a 
progression of tasks in Geometry. The major significance of this chapter is the 
explanation and illustration of learning methods in the context of a performance 
system implemented as a set of production rules. 

In Chapter 8, Hayes-Roth investigates the issue of improving flawed or in-
complete theories that guide plan formation in a given domain. His primary 
thrust is on refining and restructuring theories based upon the way in which ob-
served consequences of one's behavior differ from theoretical predictions. In 
short, Hayes-Roth views empirical disconfirmation not as a mechanism for 
rejecting existing theories, but rather as input to various methods of modifying 
theoretical concepts to accord with past and present observations. He presents 
five heuristic methods and applies them to problem-solving in playing the card 
game hearts. 

In Chapter 9, Lenat focuses on methods for learning from observation and 
discovery. He analyzes three domains in which heuristics play a dominant role in 
guiding search through the space of possible concepts or processes one may ac-
quire. First, Lenat examines his AM system, where heuristic rules that measure 
intrinsic "interestingness" help the system rediscover essential concepts in num-
ber theory, such as the notion of a prime number. Then, the EURISKO system is 
discussed, which acquires and modifies learning heuristics, as well as formulat-
ing task-specific heuristics and concept representations. Finally, Lenat discusses 
the conjecture that evolution is a heuristically-driven learning engine in constant 
operation. 

In Chapter 10, Langley, Simon and Bradshaw discuss their BACON system 
and its application to rediscovering some basic laws of Chemistry. BACON ap-
plies the principles of scientific inquiry first elucidated by Sir Francis Bacon to 
find the simplest numerical relations that hold invariant across sets of measure-
ments. In this manner, it postulates meaningful combinations of independent 
measurements and intrinsic properties of objects (such as specific heat), and 
searches for the simplest relationship among measured and derived quantities that 
summarizes all observations. Although not able to design its own experiments, 
given the unanalyzed results of appropriate chemical experiments, BACON has 
rediscovered such laws as Gay-Lussac's law and Proust's law of definite propor-
tions. 



CARBONELL, MICHALSKI AND MITCHELL 19 

In Chapter 11, Michalski and Stepp investigate the problem of automated 
construction of taxonomies of observed events in a manner that is meaningful to 
a human. That is, given sets of object or process descriptions, plus an a priori 
set of descriptive concepts, they develop a method of grouping observations into 
meaningful classes that represent selected concepts. They present an algorithm 
that implements this "conceptual clustering" operation and demonstrate its utility 
for the tasks of formulating descriptions of plant diseases from observed 
symptoms and taxonomizing Spanish songs in a manner meaningful to 
musicologists. In contrast with statistical clustering techniques, the conceptual 
clustering algorithm produces characteristic descriptions of the concepts defined 
by each cluster. Both the Michalski and Stepp approach and the Langley et al. 
approach exemplify learning from passive observations, whereas Lenat's ap-
proach stresses the role of active experimentation. 

In Chapter 12, Mostow discusses the process of learning by taking advice. 
Declaratively stated advice must be transformed into operational procedures ef-
fective in a given task domain. The transformation process can be quite complex, 
as implicit domain knowledge must be accessed, the advice must be restated in 
terms consistent with the existing procedural knowledge base, and plausible 
reasoning heuristics must be consulted in deciding how to make best use of the 
incoming advice. Mostow focuses on the general issue of providing advice to a 
heuristic search mechanism, as applied to playing the game of hearts and com-
posing a cantus firmus. 

In Chapter 13, Haas and Hendrix investigate the issue of automatically ex-
tending a natural language interface by acquiring domain semantics, dictionary 
entries and syntactic patterns from the user. The most significant aspect of their 
KLAUS system is that the user need not be a computational linguist, but rather is 
guided by the system into providing exemplary information that is later trans-
formed into effective grammar and dictionary representations. This form of learn-
ing by being told, where the student (that is, the KLAUS system) is in control and 
the teacher provides information only when asked, constitutes an interesting 
variation on more traditional versions of the learning-from-instruction paradigm. 

In Chapter 14, Rychener provides a retrospective analysis of the instruct-
able production system project, in which many different instructional techniques 
for learning by being told were tried, different organizations of the knowledge 
were considered, and different problem-solving strategies were investigated. Al-
though many combinations of representational schemes and instructional methods 
proved infeasible, other approaches proved much more promising. Hence the 
field of machine learning can learn from its own experience—false starts as well 
as successful approaches. Rychener concludes his chapter with an analysis of the 
organizational and instructional principles that a production-system based instruc-
tional learner should adhere to in order to maximize chances for successful 
knowledge acquisition. 

In Chapter 15, Quinlan presents a method for generating efficient decision 
trees for classifying given exemplars, and applies his method to the analysis of 
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king-and-rook versus king-and-knight chess endgames. Chess authorities had 
previously believed that all but a few special positions of this type were in-
herently drawn (with best play for both sides). Due to the size of the search 
space, a systematic analysis was not performed until Quinlan applied his efficient 
method of learning classifications, whereupon it became clear that a very large 
fraction of king-and-rook versus king-and-knight positions were forced wins for 
the side with the rook. Therefore, the Quinlan paper illustrates not only an ef-
ficient classification method, but demonstrates the utility of at least one applica-
tion of machine learning. 

In Chapter 16, Sleeman investigates the application of machine learning to 
infer models of students learning algebra. Student modeling is becoming a recog-
nized necessity in intelligent computer-assisted instruction (ICAI). The difficult 
task of formulating viable student models requires that the system infer a 
student's knowledge from his performance (plus general knowledge of the in-
structional material). A general model must be inferred that can generate all ob-
served student behavior, as well as account for the lack of any expected but un-
observed behavior. The search space of possible student models is large, and the 
number of trials one may require of each student is proportionately small. There-
fore the problem becomes one of searching this space quickly and without requir-
ing large amounts of student testing. Sleeman provides and analyzes algorithms 
that fit these requirements. An interesting aspect of Sleeman's work is that the 
teacher, in order to be effective, must learn to adapt to the student's needs, in-
dicating that machine learning can help to make computer-assisted human educa-
tion more effective. 

Finally, the book concludes with a comprehensive bibliography of past and 
present research in machine learning, a glossary of selected terms, and a brief 
note about each author. The bibliography is indexed according to several criteria 
(methods, applications, and so on) in order to provide guidance to the reader 
who desires additional background in the field. 
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2 

WHY SHOULD 

MACHINES LEARN? 

Herbert A. Simon 
Carnegie-Me lion University 

2.1 INTRODUCTION 

When I agreed to write this chapter, I thought I could simply expand a 
paper that I wrote for the Carnegie Symposium on Cognition, since the topic of 
that symposium was also learning. The difficulty with plagiarizing that paper is 
that it was really about psychology, whereas this book is concerned with 
machine learning. Now although we all believe machines can simulate human 
thought—unless we're vitalists, and there aren't any of those around any 
more—still, I didn't think that was what was intended by the title of the book. I 
didn't think it was appropriate to write about psychology. 

When my chapter finally was outlined and written, it surprised me a bit; 
whether it will surprise you or not, we can leave to the event. My chapter 
turned out to propose a thesis to which perhaps the other chapters in this volume 
will serve as antitheses. That will allow us to arrive at the great Hegelian syn-
thesis that we all wish for. 

2.2 HUMAN LEARNING AND MACHINE LEARNING 

I must begin, after all, by saying something about human learning, because 
I want to compare and contrast what is involved in human learning with what is 
involved in machine learning. Out of the synthesis of that contrast—in itself a 
thesis and antithesis—will come my thesis. 

25 
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2.2.1 Tediousness of Human Learning 

The first obvious fact about human learning is that it's horribly slow. It 
takes decades for human beings to learn anything. It took all of us six years just 
to get up to starting speed for school, and then twenty more years to become 
cognitive scientists or computer scientists. That is the minimum—some of us 
took even longer than that. So, we're terribly slow learners. We maintain big 
expensive educational systems that are supposed to make the process effective, 
but with all we've been able to do with them—to say nothing of computer aided 
instruction—it remains a terribly slow process. 

I can still remember, although it was 45 years ago, trying to learn how to 
do multiple regressions by the Gauss-Doolittle method with the aid of a desk 
calculator. There's nothing complicated about the method except when you're 
learning it. And then it seems terribly mysterious. You wonder why this gets 
multiplied by that, and after a long while it gradually dawns on you. As a mat-
ter of fact you can carry out the calculations long before you understand the 
rationale for the procedure. 

Learning the linear programming simplex method also illustrates this point 
and another one as well. Even after you've learned it, even after you've under-
stood it, even after (in principle) you can do it, you still can't really do it be-
cause you can't compute fast enough. I don't know of any humans who cal-
culate solutions of LP problems by the simplex method; as far as I know it's all 
done by computers. The human doesn't even have to know the simplex method; 
he just has to know the program library—cookbook statistics, or cookbook com-
puting, which we all do most of the time. 

So human learning is a long, slow process. It should give us some pause, 
when we build machine learning systems, to imagine what can possibly be going 
on during all the time a human being is mastering a "simple" skill. We should 
ask whether we really want to make the computer go through that tedious 
process, or whether machines should be programmed directly to perform tasks, 
avoiding humanoid learning entirely. 

Of course we might discover a trick: a method of machine learning that 
was orders of magnitude faster than human learning. Whether such tricks exist 
depend on whether the inefficiencies of human learning derive from peculiar 
properties of the human information processing system or whether they will be 
present in any system that tries to extract patterns or other kinds of information 
from complex, noisy situations and to retain those patterns in a manner that 
makes them available for later use. The search for such tricks that manage to 
escape the tediousness of human learning, however, provides a strong motivation 
for research in machine learning. 
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2.2.2 Learning and Copying 

The second distinctive feature about human learning is that there's no copy 
process. In contrast, once you get a debugged program in the computer you can 
have as many copies as you want (given equivalence in operating systems and 
hardware). You can have these copies free, or almost free. When one computer 
has learned it, they've all learned it—in principle. An algorithm only has to be 
invented once—not a billion times. 

I've been involved a little bit in tutoring someone during the last few 
weeks in beginning calculus. I think I know the calculus pretty well—I haven't 
used it much for years, but it comes back. Yet I find it terribly frustrating trying 
to transfer my knowledge and skill to another human head. I'd like to open the 
lid and stuff the program in. But for one thing, I don't know where it is in my 
head, I don't even know what language it's encoded in. For another thing, I 
have no way of transferring it to the other head. That, of course, is why we 
humans go through the slow learning process—because we can't copy and trans-
fer programs. 

2.2.3 Why Machine Learning? 

Contrast this with the machine learning task. In machine learning, the 
minute you have the debugged program you read it into the computer and it 
runs. The computer does what the psychologists call "one-trial learning". And, 
as I've already indicated, what is learned can be copied ad nauseam. So, if one 
thinks about that a little, one says, "What's all this about machine learning? 
Why are we interested in it—if by machine learning we mean anything that's at 
all like human learning? Who—what madman—would put a computer through 
twenty years of hard labor to make a cognitive scientist or a computer scientist 
out of it? Let's forget this nonsense—just program it." It would appear that, 
now that we have computers, the whole topic of learning has become just one 
grand irrelevancy—for computer science. 

I have already qualified that conclusion in one respect: we do have reason 
to search for machine learning programs that will avoid the inefficiencies of 
human learning, although we must be alert to the possibility that such programs 
cannot, in principle, be constructed. The difficulty may be intrinsic in the task; 
human learning, though slow, may be close to optimally efficient. 

I must also enter another caveat because you'll ask me, "What were you 
saying in that talk you gave two months ago? Why were you talking about 
learning?" The caveat is: Even in a world in which there are lots of computers it 
still may be important for us to understand human learning. Artificial intel-
ligence has two goals. First, AI is directed toward getting computers to be smart 
and do smart things so that human beings don't have to do them. And second, 
AI (sometimes called cognitive simulation, or information processing 
psychology) is also directed at using computers to simulate human beings, so 
that we can find out how humans work and perhaps can help them to be a little 
better in their work. 
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None of the doubts I have just raised about computer learning apply to this 
second application of AI. Anybody who is interested in machine learning be-
cause he wants to simulate human learning—because he wants to understand 
human learning and thinking, and perhaps improve it—can pursue his interest in 
good conscience. But what about those who have other goals? 

2.3 WHAT IS LEARNING? 

When I had arrived at this point and surprised myself by writing down 
these notes, I asked myself, "What can we talk about legitimately for the next 
three days, other than cognitive psychology?" But I looked at the names of the 
people who were going to be here and at some of the titles of papers in the 
program, and I decided that a good deal of what we were talking about wasn't 
really learning anyway, so it was all right. 

Let me elaborate on that remark. The term "learning", like a lot of other 
everyday terms, is used broadly and vaguely in the English language, and we 
carry those broad and vague usages over to technical fields, where they often 
cause confusion. I just saw a notice of a proposed special issue of SIGART, 
with a list of kinds of learning. It's a long list, and I'd be astonished if all of 
the items on it denote the same thing. Maybe it is just a list of the different 
species of learning, but I suspect that it also reflects the great ambiguity of the 
term "learning". 

2.3.1 A Definition of Learning 

The only partially satisfactory definition I've been able to find is that learn-
ing is any change in a system that allows it to perform better the second time on 
repetition of the same task or on another task drawn from the same population. 
The change should be more or less irreversible—not irreversible in the sense that 
you can't unlearn (although that sometimes is hard, especially unlearning bad 
habits) but irreversible in that the learning doesn't go away rapidly and 
autonomously. Learning denotes changes in the system that are adaptive in the 
sense that they enable the system to do the same task or tasks drawn from the 
same population more efficiently and more effectively the next time. 

Since we may want the same task done over and over and over again, 
tuning a system so that it runs very fast is a great thing. Human beings seem to 
have some tuning capabilities, often called automating task performance. But 
more often, particularly in the university, we're interested in learning, not so that 
the same task can be done over and over again, but so that we acquire the ability 
to perform a wide range of tasks (for example, solving problems that appear on 
examinations, or performing similar tasks that may occur afterwards in real life). 
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2.3.2 Learning and Discovery 

There are relations between learning and some other activities. For one 
thing, learning is related to discovery. By discovery I mean finding new things. 
Very little human learning is discovery. Most of what we know somebody told 
us about or we found in a textbook. At the very best we acquired it by working 
out some very carefully selected exercises, which guided us nicely in the right 
direction and provided most of the selective heuristics for our search. There can 
be all kinds of learning without discovery, and there usually are. Most of the 
things we know were discovered by other people before we knew them, and only 
a few were even reinvented by us. 

Nevertheless, there is a relation between learning and discovery, because if 
you do discover something and it's good, you'd like to retain it. So, if you have 
a discovery system, you would like (somehow or other) to associate a learning 
system with it, even a simple memorization and indexing scheme. That doesn't 
quite get us off the hook. If you have a computer that discovers the proof for 
Goldbach's Theorem or the Four Color Theorem, you don't have to have a 
separate learning program, for you can simply get the proof out of the computer 
and transport it around on paper in the usual way. But, it would be very con-
venient if the computer could store the proof so that it could be used in sub-
sequent work. 

One of the first learning programs for computers was the little learning 
routine in the Logic Theorist (LT) [Newell & Simon, 1956]. When the Logic 
Theorist had the good fortune to prove a theorem in Principia Mathematica it 
had the good sense to keep the theorem around. On the next problems, it didn't 
start from the axioms alone but could use the new theorem along with the 
axioms. It wasn't any great feat to program this learning program. It did what 
we teachers call (pejoratively) "rote learning"—just memorizing. LT memorized 
only the theorem, not the proof; but giving it the latter capability also would 
have been a trivial matter. 

In the Artificial Intelligence literature, the distinction I have been main-
taining here between discovery and learning is not usually observed. That is to 
say, a great many machine "learning" systems are also discovery systems; they 
discover new knowledge that they subsequently retain. Most of the skeptical ar-
guments I have raised about machine learning do not apply to the discovery 
process. Hence, I think it quite appropriate that a large part of the research ef-
fort in the domain of "machine learning" is really directed at "machine 
discovery". As long as we are not ourselves confused by the terminology, I do 
not even see a strong reason to object to this substitution of terms. 

2.3.3 Learning and Understanding Natural Language 

So, there's a connection here between learning and discovery. There is 
also a connection between learning and understanding. Understanding includes 
the whole natural language problem. In human life (and I'll try later to connect 
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this up with computers) most of what we learn we get from other people, com-
municated to us in natural language. A good many of the tasks that people have 
undertaken for machine learning have involved a natural language front end as an 
important part of the task. It is also a very annoying part of the task, eating up 
all of your time and energy when you wish you were doing something else. 

2.3.4 Learning and Problem-Solving 

Additionally, some things we might call "learning" could also be called 
"problem-solving". I've heard "automatic programming" called "learning". The 
aim of automatic programming is to be able to say the same brief vague things to 
a computer you'd say to a good human programmer in defining a task for him 
and to come out with a program on the other end. What the automatic program-
ming program does is not really learning; it is solving the problem of getting 
from the sloppy ill-structured input statement of the programming problem to a 
well-structured program in the programming language. This kind of "learning" 
could readily come under the usual heading of "problem-solving". 

Nevertheless, traditionally at least, the tasks of discovery, of natural lan-
guage understanding, and of self-programming have often been intermingled 
with, or even identified as, learning tasks. If you want to call it learning you 
won't get an argument from me. It really isn't learning but... 

2.4 SOME LEARNING PROGRAMS 

I'm going to back off one step further from my unkind words about 
machine learning and look at some "classical" examples ("classical" in the field 
of computer science is anything twenty years old) of learning programs, to see 
whether they really justify my harsh judgment. 

2.4.1 Learning to Play Checkers 

The first that I ought to mention is surely Arthur Samuel's checker 
program [Samuel, 1959]. Here was a program that, in the morning, wasn't very 
much of a checker player. But after you switched on its learning process and 
gave it games to play and other training exercises, by evening it was a State-
champion-level checker player. That is a lot better than any of us could do. So 
there's a very impressive example of a learning program going back twenty-five 
years. 

Let me submit that however fine this program was from an AI standpoint, 
it only made sense if we really didn't understand checkers. If Samuel had un-
derstood checkers well, he could have put the final evaluation function in right at 
the beginning. (You may recall that he used two kinds of learning, but the only 
one I want to mention at the moment is tuning the evaluation function for posi-
tions on the basis of outcomes. When good things happened, items that were 
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heavily weighted in the evaluation function got additional weight, and when bad 
things happened they lost some of their weight.) If Samuel had known the right 
evaluation function at the outset, he would have put it in the program; he would 
not have gone through all the learning rigamarole. It cost only one day of com-
puting time, to be sure, but computers were expensive then, even for one day. 

It does make sense to provide for such learning in a task where you don't 
know enough to do the fine tuning. We might think of this as an area of 
machine learning (or, more accurately, machine discovery) where we can get the 
system to behave better than it would behave if we just sat down and 
programmed it. Nobody writing chess programs has had this feeling yet. They 
all think they know more chess than a computer could acquire just by tuning 
itself. As far as I know, none of the successful chess-playing programs have had 
any learning ability. 

So there are cases where the computer can learn some things that we didn't 
know when we programmed it. But if you survey the fields of AI and 
knowledge engineering today, you will find very few cases where people have 
had the feeling this could or should be done, or have had any ideas of how to do 
it. Nevertheless, this potential application of learning procedures is certainly one 
further qualification on my general stricture against such programs. 

I've already mentioned learning by the Logic Theorist, but that was just 
convenience, unless LT had reached the point where it was discovering 
genuinely new things. If Doug Lenat had let AM [Lenat, 1977] run for another 
two hours—as I kept telling him he should—and it had discovered something 
completely new, then the learning would make sense, for you would want to 
save what had been discovered. 

2.4.2 Automatic Indexing 

There's something to be said (again, largely on convenience grounds) for 
systems that are capable at least of learning discrimination nets—EPAM nets, if 
you like [Feigenbaum, 1963]. If you're building up a big data base and adding 
information to it all the time, you want easy access to that information, and so 
you want an index. It's a lot more convenient to have the system index itself as 
it goes along, than to index it by hand.1 Or if you're building a large production 
system and don't want to search it linearly, you're going to incorporate an index 
in the production system to select the order in which it performs the tests. There 
is no difficulty in automating that; we have known for twenty-five years how to 
do it. So why not? 

So there's some room for learning there. I don't know whether there's 
much room for learning research, since the technology of growing discrimination 

•By "indexing" I mean building up a tree or network of tests so that you can access a data store in 
ways other than by linear search. 
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nets, alias indexes, is already pretty well developed, but someone may find a 
great new way of doing it. 

2.4.3 Perceptrons 

A final "classical" example (this is a negative example to prove my point) 
is the whole line of Perceptron research and nerve net learning [Rosenblatt, 
1958]. A Perceptron is a system for classifying objects (that is, a discovery and 
learning system) that computes features of the stimulus display, then attempts to 
discriminate among different classes of displays by computing linear additive 
functions of these features. Functions producing correct choices are reinforced 
(receive increased weight), those producing incorrect choices have their weights 
reduced. I have to conclude (and here I don't think I am in the minority) that 
this line of research didn't get anywhere. The discovery task was just so horren-
dous for those systems that they never learned anything that people didn't al-
ready know. So they should again strengthen our skepticism that the problems 
of AI are to be solved solely by building learning systems. 

2.5 GROWTH OF KNOWLEDGE IN LARGE SYSTEMS 

In the remainder of my remarks, I would like to focus attention on large 
knowledge-based AI systems, particularly systems that can be expected to con-
tinue to grow and accumulate over a period of years of use. We may find in 
such systems some reasons to qualify a general skepticism about the role of 
learning in applied AI. Medical diagnosis systems like INTERNIST [Pople, 1977] 
and MYCIN [Shortliffe, 1976], and the venerable DENDRAL program [Feigenbaum 
et al., 1971] are examples of the kinds of systems I have in mind. 

There has been attention (as in TEIRESIAS [Davis, 1981] and other such 
efforts) to designing an effective programming interface between these 
knowledge-based systems and the humans who are supposed to improve them, 
and you can call that learning (or instruction). Most of the work has been aimed 
at making the job of the human easier. (Perhaps that's unfair, for it's a mutual 
job for the two of them.) So one might think of the man-machine interface as a 
good locus for learning research. 

2.5.1 The ISAAC Program 

To make my remarks more concrete, I would like to discuss for a bit Gor-
don Novak's well-known ISAAC system, which solves English-language college 
physics problems of the sorts found in textbooks [Novak, 1977]. Although 
ISAAC is primarily a performance or problem-solving program, one can think of 
some interesting ways of complementing it with a learning program. 

ISAAC has a data bank containing schémas that describe various kinds of 
simple objects that physicists talk about—levers, masses, pivots, surfaces, and 
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the like. A schema is just what you'd expect—a description list of an object 
with slots that you can fill in with information about its characteristics. In ad-
dition, ISAAC has, of course, some productions and a control structure. 

When you give ISAAC a physics problem in natural language out of the 
physics textbook, it uses its schémas and productions to produce an internal 
representation of the problem. The representation is another node-link structure, 
which you can think of as a super-schema made up by assembling and instan-
tiating some of the basic schémas. ISAAC will assemble some levers, and some 
masses, and a pivot or two, and a surface in the way the problem tells it, and 
make a problem schema out of them. At the outset it parses the sentences stat-
ing the problem, using its schémas to extract structure and meaning from them, 
and builds its internal representation, a problem schema. 

This internal representation contains so much information about the 
problem that ISAAC uses a little subsidiary program to depict the problem scene 
on a CRT. Of course the real reason ISAAC wants this internal representation is 
not to draw a picture on a scope, but to use it to set up an appropriate set of 
equations and solve them. 

Notice that ISAAC doesn't try to translate the natural language problem 
directly into equations, as Bobrow's STUDENT program did for algebra [Bobrow, 
1968]. It first builds up an internal representation—what I think a physicist 
would call a physical representation (a "mental picture") of the situation. It then 
uses that intermediate representation to build the equations, which it ultimately 
solves. The internal representation does a lot of work for ISAAC because it iden-
tifies the points where forces have to be equilibrated and therefore identifies 
which equations have to be set up. 

2.5.2 A Learning Extension of ISAAC 

We can enlarge ISAAC by adding to it an UNDERSTAND program [Hayes & 
Simon, 1974]. Now you're going to say, "Ah ha! ISAAC already has an under-
standing program, because ISAAC can understand the problems it is given." That 
is true. But to do this, ISAAC must already have in memory a rich set of 
schémas describing physical devices, and it must already have the set of produc-
tions that allow it to organize these schémas into an internal representation. So 
ISAAC already knows all the physics it's going to know. While it understands 
problems, how about understanding physics? This would require the ability to 
use natural language information to construct new schémas and new productions. 
This is what the UNDERSTAND program does—not for physics, but for slightly 
simpler domains, UNDERSTAND creates, from the natural language, schémas for 
the kinds of objects being talked about and their relations. (In fact, Novak is 
presently exploring similar lines of investigation.) 

What I want to ask about this whole amalgam of ISAAC and UNDERSTAND 

is, what is the place here for learning research in AI? (I know what the place is 
here for learning research in psychology. I think this is a very important area. 



34 CHAPTER 2: WHY SHOULD MACHINES LEARN? 

But let's continue to talk about the AI side of it.) If we understand the domain 
ourselves, if we understand physics, why don't we just choose an internal 
representation and provide the problems to the system in that internal represen-
tation? What's all this learning and natural language understanding about? Or, 
if we still want to give the system a capability of doing the problems in the back 
of the textbook, which are in natural language, then-lets build Novak's ISAAC 
system. Why go through all the rigamarole of an UNDERSTAND program to learn 
the schémas and the productions painstakingly instead of just programming 
them? Before you launch into such a project as an AI effort (as distinct from a 
psychological research project), you have to answer that question. 

2.6 A ROLE FOR LEARNING 

Since you have listened very patiently to my skeptical challenge to learning 
as the road to the future in AI, I think I should own up to one more important 
qualification that needs to be attached to my thesis—a little fragment of the more 
complete antithesis that the other papers of this volume develop. 

I began by running down the human species—emphasizing how stupid we 
all are as revealed by our agonizingly slow rates of learning. It is just possible 
that the complexity of the learning process is not an accident but is, instead, an 
adaptive product of evolution. The human brain is a very large collection of 
programs that cumulates over a lifetime or a large part of a lifetime. Suppose 
that we were allowed to open up the lid and program ourselves directly. In or-
der to write debugged programs, modifications of our present programs, we 
would have to learn a lot about the internal code, the internal representations of 
the knowledge and skills we already possess. 

Perhaps you know how knowledge is organized in your brain; I don't know 
how it is organized in mine. As a consequence, I think it would be exceedingly 
difficult for me to create a new, debugged code that would be compatible with 
what is already stored. This is, of course, a problem that we already encounter 
with our time-shared computers today. As we add new utility programs, or 
modify the monitors or operating systems, we encounter all sorts of interactions 
that make these modifications cumulatively harder to effect. At best, we encap-
sulate knowledge in hosts of separate programs that can operate independently of 
each other, but by the same token, cannot cooperate and share their knowledge 
effectively. Old programs do not learn, they simply fade away. So do human 
beings, their undebuggable programs replaced by younger, possibly less tangled, 
ones in other human heads. But at least until the state of undebuggability is 
reached, human programs are modified adaptively and repeatedly by learning 
processes that don't require a knowledge of the internal representation. 

It may be that for this kind of system (a human brain or the memory of a 
very large time-shared computing system) the only way to bring about continual 
modification and improvement of the program is by means of learning 
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procedures that don't involve knowing the detail of the internal languages and 
programs. It is a salient characteristic of human learning procedures that neither 
teacher nor learner has a detailed knowledge of the internal representation of data 
or process. It may turn out that there aren't procedures more efficient than these 
very slow ones that human beings use. That's just a speculation, but we ought 
to face the grim possibilities as well as the cheery possibilities in the world. 

Even if we had to accomplish our complex programming in this indirect 
way, through learning, computers still would have a compensation—the costless 
copying mechanism that is not shared by human beings. Only one computer 
would have to learn; not every one would have to go to school. 

2.7 CONCLUDING REMARKS 

By now you are aware that my case against AI research in learning is a 
very qualified case with several important exceptions—exceptions you may be 
able to stretch until they become the rule. Let me put the matter in a positive 
way, and rephrase these exceptions as priorities for learning research. They are 
five in number. 

1. I would give a very high priority to research aimed at simulating, and 
thereby understanding, human learning. It may be objected that such 
research is not AI but cognitive psychology or cognitive science or some-
thing else. I don't really care what it is called; it is of the greatest impor-
tance that we deepen our understanding of human learning, and the AI 
community possesses a large share of the talent that can advance us toward 
this goal. 

2. I would give a high priority, also, to basic research aimed at understanding 
why human learning is so slow and inefficient, and correspondingly, at ex-
amining the possibility that machine learning schemes can be devised that 
will avoid, for machines as well as people, some of the tediousness of 
learning. 

3. I would give a high priority to research on the natural language interface 
between computer systems and human users. Again, it does not matter 
whether you call it research on learning or research on understanding. We 
do want systems, particularly in the knowledge engineering area, in which 
we don't have to know the internal language or representation in order to 
interact with them. This is especially true, as I have just argued, if the 
systems are to be cumulative over many years. 

4. I think there is an important place for research on programming from in-
complete instructions (automatic programming), which is not unrelated to 
the preceding item. Giving instructions to a skilled programmer is dif-
ferent from writing the program yourself—else why hire the programmer? 
It is a very important research question to ask whether we can get the com-
puter to be the skilled programmer. 
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5. My final priority is research on discovery programs—programs that dis-
cover new things. We may regard discovery itself as a form of learning, 
but in addition we will want to give a discovery system learning 
capabilities because we will want it to preserve and to be able to use all 
the new things it finds. 
So now, I guess, I have come full circle, and have made a strong case for 

machine learning. But I do not think the effort in addressing my initial skep-
ticism has been wasted. Research done in the right area for the wrong reasons 
seldom achieves its goals. To do good research on machine learning, we must 
have clear targets to aim at. In my view, the usual reasons given for AI learning 
research are too vague to provide good targets, and do not discriminate with suf-
ficient care the learning requirements for people and computers, respectively. 

Perhaps the deepest legitimate reason for doing machine learning research 
is that, in the long run for big knowledge-based systems, learning will turn out 
to be more efficient than programming, however inefficient such learning is. 
Gaining a deeper understanding of human learning will continue to provide im-
portant clues about what to imitate and what to avoid in machine learning 
programs. If this is true, then it follows that among the most important kinds of 
learning research to carry out in AI are those that are oriented toward under-
standing human learning. Here as elsewhere, Man seems to be the measure of 
all things. 
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ABSTRACT 

Research in the area of learning structural descriptions from examples is 
reviewed, giving primary attention to methods of learning characteristic descrip-
tions of single concepts. In particular, we examine methods for finding the 
maximally-specific conjunctive generalizations (MSC-generalizations) that cover 
all of the training examples of a given concept. Various important aspects of 
structural learning in general are examined, and several criteria for evaluating 
structural learning methods are presented. Briefly, these criteria include (i) ade-
quacy of the representation language, (ii) generalization rules employed, (Hi) 
computational efficiency, and (iv) flexibility and extensibility. Selected learning 
methods developed by Buchanan, et al., Hayes-Roth, Vere, Winston, and the 
authors are analyzed according to these criteria. Finally, some goals are sug-
gested for future research. 

3.1 INTRODUCTION 

3.1.1 Motivation and Scope of Chapter 

The purpose of this chapter is to introduce some of the important issues 
affecting the design of learning programs—particularly programs that learn from 
examples. This chapter begins with a survey of these issues. From the survey, 
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four criteria are developed for evaluating learning methods. The remainder of 
the chapter describes and evaluates five existing learning systems according to 
these criteria. 

We do not attempt to review all of the work on learning from examples 
(also known as learning by induction). Instead, we focus on one particular 
problem: the problem of learning structural descriptions from a set of positive 
training instances. Specifically, we survey methods for finding the maximally-
specific conjunctive generalizations (called MSC-generalizations) that charac-
terize a given class of entities. This is one of the simplest learning problems that 
has been addressed by AI researchers. The problem of finding MSC-
generalizations lends itself to comparative analysis because several different 
methods have been developed. This is unusual in current research on machine 
learning, which is currently investigating a wide variety of learning problems and 
learning methods. Particular methods reviewed in this chapter include those 
developed by Buchanan et al. [1971, 1976, 1978], , Hayes-Roth [1976a, 1976b, 
1977, 1978] Vere [1975, 1977, 1978, 1980], Winston [1970, 1975], and the au-
thors. This chapter is based on the article by Dietterich and Michalski [1981]. 

Before proceeding any further, let us explain our terminology. The chapter 
deals first of all with structural descriptions. Structural descriptions portray ob-
jects as composite structures consisting of various components. For instance, a 
structural description of a building could represent the building in terms of the 
floors, the walls, the ceilings, the hallways, the roof, and so forth, along with 
the relations that hold among these various components. Structural descriptions 
can be contrasted with attribute descriptions, which specify only global 
properties of an object. An attribute description of a building might list its cost, 
architect, height, total square-footage and so forth. No internal structure is 
represented. Attribute descriptions can be expressed using propositional 
logic—that is, null-ary predicates.1 Structural descriptions, however, must be ex-
pressed in predicate logic. Each subcomponent is described globally using vari-
ables and unary predicates, and relations between components are expressed as 
k-ary predicates and functions.2 In this chapter, variables, predicates, and func-
tions are all referred to as descriptors. 

The second item of terminology that requires explanation is the notion of a 
maximally-specific conjunctive generalization. A conjunctive generalization is a 
description of a class of objects obtained by forming the conjunction (AND) of a 
group of primitive statements. For example, the class of houses might be 
described as the set of all objects such that: 

'This is a slight simplification. With multi-valued attributes such as color, one must either create a 
separate predicate for each color, or else employ some form of multiple-valued logic, such as VL,. 
2This is also a slight simplification. In principle, it is always possible to convert a structural 
description into an attribute description, but such a conversion leads to a combinatorial explosion in 
the number of attributes. 
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the number of floors is less than four AND the purpose of the 
building is to be used as a dwelling 

We write this symbolically as a VI^ expression: 
[#-of-floors < 4] & [purpose-of-building = dwelling] 

An example of a description that is not conjunctive is the definition of "not 
married for tax purposes" as: 

[marital status = single] V [marital status = married] [filing status = separate returns] 

This is a disjunctive description. 
A maximally-specific conjunctive generalization is the most detailed (most 

specific) description that is true of all of the known objects in the class. Since 
specific descriptions list many facts about the class, the maximally-specific con-
junctive generalization is the longest conjunctive generalization that still 
describes all of the training instances. 

Now that we have described the scope of this chapter, we introduce several 
issues that are important in learning from examples. From these issues, we will 
later develop four criteria for evaluating learning systems and apply these criteria 
to the comparison of five existing learning methods. 

3.1.2 Important Aspects of Learning From Examples 

The process of inductive learning can be viewed as a search for plausible 
general descriptions (inductive assertions) that explain the given input data and 
are useful for predicting new data. In order for a computer program to formulate 
such descriptions, an appropriate description language must be used. For any set 
of input data and any non-trivial description language, a large number of induc-
tive assertions can be formulated. These assertions form a set of descriptions 
partially ordered by the relation of relative generality [Mitchell, 1977]. The min-
imal elements of this set are the most specific descriptions of the input data in 
the given language, and the maximal elements are the most general descriptions 
of these data. The elements of this set can be generated by starting with the 
most specific descriptions and repeatedly applying rules of generalization to 
produce more general descriptions. 

The view of induction as a search through a space of generalized descrip-
tions draws attention to the following aspects of learning: 

• Representation. What description language is employed for expressing the 
input examples and formulating the inductive assertions? What are the 
possible forms of assertions that a method is able to learn? What operators 
are used in these forms? 

• Type of description sought. For what purpose are the inductive assertions 
being formulated? What assumptions does the induction method make 
about the underlying process(es) that generated the data? 

• Rules of generalization. What kinds of transformations are performed on 
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the input data and intermediate descriptions in order to produce the induc-
tive assertions? 

• Constructive induction. Does the induction process change the description 
space; that is, does it produce new descriptors that were not present in the 
input events? 

• Control strategy. What is the strategy used to search the description 
space: bottom-up (data-driven), top-down (model-driven), or mixed? 

• General versus problem-oriented approach. Is the method oriented 
toward solving a general class of problems, or is it oriented toward 
problems in some specific application domain? 
We now discuss each of these aspects in more detail. 

3.1.3 Representation Issues 

Many representational systems can be used to represent events and 
generalizations of events—for example, predicate calculus, production rules, 
hierarchical descriptions, semantic nets, frames, and scripts. Much AI work on 
inductive learning (the exceptions include the AM system [Lenat, 1976], and 
work by Winston [1970]) has employed predicate calculus (or some closely re-
lated system), because of its well-defined syntax and semantics. (An important 
study of theoretical problems of induction in the context of predicate calculus 
was undertaken by Plotkin [1970, 1971].) 

The mere statement that some learning method "uses predicate calculus" 
does not tell us very much about that method. Most learning methods place fur-
ther restrictions on the forms of inductive assertions. For example, although a 
learning system might in principle be able to represent disjunctive descriptions, 
in practice it may have no mechanisms for actually discovering such descrip-
tions. One way to capture this distinction between "representable forms" and 
"learnable forms" is to indicate which operators can actually be used in each. 
The most common operators are conjunction (&), disjunction (V), exception, 
and the existential and universal quantifiers. 

3.1.4 Types of Descriptions 

Since induction is a search through a description space, one must specify 
the goal of this search—that is, one must provide criteria that define the goal 
description. These criteria depend upon the specific domain in question, but 
some regularities are evident. We distinguish among characteristic, discriminant, 
and taxonomic descriptions. 

A characteristic description is a description of a class of objects (or situa-
tions, events, and so on) that states facts that are true of all objects in the class. 
It is usually intended to discriminate objects in the given class from objects in all 
other possible classes. For example, a characteristic description of the set of all 
tables would discriminate any table from all things that are non-tables. In this 
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way, the description characterizes the concept of a table. The task of discover-
ing a characteristic description is a single-concept acquisition task (see Chapter 
4 of this book). Since it is impossible to examine all objects in a given class (or 
not in a given class), a characteristic description is usually developed by specify-
ing all characteristics that are true for all known objects of the class (positive 
examples). In some problems, negative examples (counterexamples) are avail-
able that represent objects known to be outside the class. Negative examples can 
greatly help to circumscribe the desired conceptual class. Even more helpful are 
counterexamples that are "near misses"—that is, negative examples that just 
barely fail to be positive examples (see Winston [1970, 1975]). 

A discriminant description is a description of a class of objects in the con-
text of a fixed set of other classes of objects. It states only those properties of 
the objects in the given class that are necessary to distinguish them from the ob-
jects in the other classes. A characteristic description can be viewed as an ex-
treme kind of discriminant description in which the given class is discriminated 
against infinitely many alternative classes. 

A taxonomic description is a description of a class of objects that sub-
divides the class into subclasses. In constructing such a description, it is as-
sumed that the input data are not necessarily members of a single conceptual 
class. Rather it is assumed that they are members of several different classes (or 
produced by several different processes). An important kind of taxonomic 
description is a description that determines a conceptual clustering—a structuring 
of the data into object classes corresponding to distinct concepts. Taxonomic 
descriptions can be "flat"—with all object classes stated at the same level of 
abstraction—or hierarchical—with object classes arranged in an abstraction tree. 
A taxonomic description is fundamentally disjunctive. The overall class is 
described by the disjunction of the subclass descriptions. Taxonomic description 
is a kind of descriptive generalization rather than concept acquisition (see Chap-
ter 4 of this book). 

Determination of characteristic and discriminant descriptions is the subject 
of learning from (pre-classified) examples, while determination of taxonomic 
descriptions (conceptual clustering) is the subject of learning from observation or 
"learning without teacher". This distinction between these two forms of learning 
is examined in detail in Chapter 4 of this book. 

In this chapter we restrict ourselves to the problem of determining charac-
teristic descriptions. The problem of determining discriminant descriptions has 
been studied by Michalski and his collaborators [Larson & Michalski, 1977; Lar-
son, 1977; Michalski, 1973, 1975, 1977, 1980a, 1980b] (see also Chapters 4 and 
15 of this book.). A general method and computer program, CLUSTER/2, for con-
ceptual clustering is described by Michalski and Stepp in Chapter 11 of this 
book. 
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3.1.5 Rules of Generalization 

The partially-ordered space of descriptions of different levels of generality 
can be described by indicating what transformations are being applied to change 
less general descriptions into more general ones. Consequently, determination of 
inductive assertions can be viewed as a process of consecutive application of cer-
tain "generalization rules" to initial and intermediate descriptions. A generaliza-
tion rule is a transformation rule that, when applied to a classification rule 
Si ::> K , produces a more general classification rule S2 ::> K .3 

This means that the implication Sj => S2 holds. A generalization rule is called 
selective if S2 involves no descriptors other than those used in Sj. If S2 does 
contain new descriptors, then the rule is called constructive (see section 3.1.6). 
Selective rules of generalization do not change the space of possible inductive 
assertions, while constructive rules do change it. 

The concept of rules of generalization provides further insight into the view 
of induction as a heuristic search of description space. The rules of generaliza-
tion specify the operators that the search uses to move from one node to another 
in this space. The concept of generalization rules is also useful for comparing 
different learning methods because these rules abstract from the particular 
description languages used in the methods. In this chapter, we briefly outline 
the concept of a generalization rule and present a few examples. Chapter 
4 presents a much more detailed discussion of the subject and an extensive list of 
generalization rules. 

One of the simplest generalization rules is the dropping condition rule, 
which states that to generalize a conjunction, you may drop any of its conjunc-
tive conditions. For example, the class K of "red apples" can be generalized to 
the class of all "apples" of any color by dropping the "red" condition. This can 
be written as: 

red(v) & apple(v) ::> K can generalize to apple(v) ::> K 

This is a selective rule of generalization because it does not introduce any 
new descriptors. An example of a constructive rule is the find extrema of partial 
orders rule. This rule augments a structural description by adding new descrip-
tors for objects that are at the end points of ordered chains. For example, in a 
description of a four-storey office building, we might have the statement that 
"the second floor is on top of the first floor, the third floor is on top of the 
second, and so on." The find extrema rule would generate the fact that "the first 
floor is the bottom-most and the fourth floor is the top-most floor." The "on top 
o f relations form an ordered chain. Symbolically, this is written as: 

ontop(f2,fl) & ontop(f3,f2) & ontop(f4,f3) l< most-ontop(f4) & least-ontop(f 1 ) 

3The notation Sj ::> K means that all objects for which S, is true are classified as belonging to 
class K. 
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where the l< sign is interpreted as "can be generalized to". Other selective 
rules of generalization needed for this chapter include: 

• the turning constants to variables rule 
• the adding internal disjunction rule 
• the closing interval rule 
• the climbing generalization tree rule 

These rules are explained in Chapter 4 of this book. 
We also employ one rule of specialization. Any of the above rules of 

generalization can become rules of specialization by using them in reverse. 
However, one important rule of specialization is the introducing exception rule. 
It can be applied to a description in order to specialize it to take into account a 
counterexample. Suppose, for example, that a program is attempting to learn the 
concept of a "fish". Its initial hypothesis might be that a fish is anything that 
swims. However, it then is told about a dolphin that swims and breathes air but 
is not a fish. At this point, the program might guess that a fish is anything that 
swims and does not breathe air. This can be written as: 

> swims(v) & —breathes-air(v) ::> K 
current description: swims(v) ::> K 

negative example: swims(v) & breathes-air(v) ::> ~K 

The l> sign is interpreted as meaning "can be specialized to". 

3.1.6 Constructive Induction 

As we have mentioned above, constructive induction is any form of induc-
tion that generates new descriptors not present in the input data. It is important 
for learning programs to be able to perform constructive induction, since it is 
well known that many AI problems cannot be solved without a change of 
representation. Many existing methods of induction (for example, [Hunt et al., 
1966; Hayes-Roth, 1976a, 1976b; Vere, 1975, 1980; Mitchell, 1977, 1978] ) do 
not perform constructive induction. We say that these methods perform selective 
induction, since the descriptors present in the generalizations produced by the 
program are selected from those present in the input data. 

There are several existing systems that perform some form of constructive 
induction. Soloway's BASEBALL system [Soloway, 1978], for example, applies 
several rules of constructive induction to convert raw snapshots of a simulated 
baseball game into high-level episode descriptions that can be generalized to dis-
cover such concepts as "run", "hit", and "out". In this system, the constructive 
induction takes place first, followed by selective induction. 

Larson's INDUCE-I system [Larson, 1977; Larson & Michalski, 1977], on 
the other hand, performs constructive and selective induction simultaneously. 
INDUCE-1 implements the "find extrema of partial orders" rule of generalization 
described above, along with a few other constructive induction rules. New 
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descriptors are tested for discriminatory ability before they are added to all of the 
training instances. 

Unfortunately, most existing systems have not implemented constructive 
induction rules in any general way. Instead, specific procedures are written to 
generate the new descriptors. This is an important problem for future research. 
In Chapter 4 of this book, Michalski presents more rules of constructive induc-
tion. 

3.1.7 Control Strategy 

Induction methods can be divided into bottom-up (data-driven), top-down 
(model-driven), and mixed methods depending on the strategy that they employ 
during the search for generalized descriptions. Bottom-up methods process the 
input events one at a time, gradually generalizing the current set of descriptions* 
until a final conjunctive generalization is computed: 

G2 is the set of conjunctive generalizations of E, and E2. G, is the set of con-
junctive generalizations obtained by taking each element of G,_, and generalizing 
it with E,. 

Methods described by Winston, Hayes-Roth, and Vere are reviewed in this 
chapter. Other bottom-up methods include the candidate elimination approach 
described by Mitchell [1977, 1978], the ID3 technique of Quinlan [1979a, 
1979b] (see also Chapter 15 of this book), and the Uniclass method described by 
Stepp [1970]. 

Top-down methods search a set of possible generalizations in an attempt to 
find a few "best" hypotheses that satisfy certain requirements. The two methods 
discussed in this chapter (Buchanan, et al. and Michalski) search for a small 
number of conjunctions that together cover all of the input events. The search 
proceeds by choosing as the initial working hypotheses some elements from the 
partially-ordered set of all possible descriptions. If the working hypotheses 
satisfy certain criteria, then the search halts. Otherwise, the current hypotheses 
are modified by slightly generalizing or specializing them. These new 
hypotheses are then checked to see if they satisfy the termination criteria. The 
process of modifying and checking continues until the criteria are met. Top-
down techniques typically have better noise immunity and can be easily extended 
to discover disjunctions. The principal disadvantage of these techniques is that 
the working hypotheses must be checked repeatedly to determine whether they 
subsume all of the input events. 
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3.1.8 General versus Problem-oriented Methods 

It is a common view that general methods of formal induction, although 
mathematically elegant and theoretically applicable to many problems, are in 
practice very inefficient and rarely lead to any interesting solutions. This 
opinion has led certain workers to abandon (at least temporarily) work on general 
methods and concentrate on learning problems in some specific domains (for ex-
ample, Buchanan, et al. [1978] in chemistry or Lenat [1976] in elementary num-
ber theory). Such an approach can produce novel and practical solutions. On 
the other hand, it is difficult to extract general principles of induction from such 
problem-specific work. It is also difficult to apply such special-purpose 
programs to new areas. 

An attractive possibility for solving this dilemma is to develop methods 
that incorporate various general principles of induction (including constructive 
induction) together with mechanisms for using exchangeable packages of 
problem-specific knowledge. This idea underlies the development of the INDUCE 
programs [Larson, 1977; Larson & Michalski, 1977; Michalski, 1980a] and the 
Star methodology described by Michalski in Chapter 4 of this book. 

3.2 COMPARATIVE REVIEW OF SELECTED METHODS 

3.2.1 Evaluation Criteria 

The selected methods of induction are evaluated in terms of several criteria 
considered especially important in view of our discussion in Section 3.1. 

1. Adequacy of the representation language: The language used to represent in-
put data and output generalizations determines to a large extent the quality and 
utility of the output descriptions. Although it is difficult to assess the adequacy 
of a representation language out of the context of some specific problem, recent 
work in AI has shown that languages that treat all phenomena uniformly must 
sacrifice descriptive precision. For example, researchers who are attempting to 
build systems for understanding natural language prefer rich knowledge represen-
tations, such as frames, scripts, and semantic nets, to more uniform and less 
structured representations, such as attribute-value lists and PLANNER-style 
representations. Although languages with many syntactic forms do provide 
greater descriptive precision, they also lead to combinatorial increases in the 
complexity of the induction process. In order to control this complexity, a com-
promise must be sought between uniformity and richness of representational 
forms. In the evaluation of each method, a review of the operators and syntactic 
forms of each description language is provided. 

2. Rules of generalization implemented: The generalization rules implemented in 
each algorithm are listed. 
3. Computational efficiency: To get some approximate measure of computational 
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efficiency, we have hand simulated each algorithm on the test problem shown in 
Figure 3-2. In the simulation, we have measured the total number of times an 
inductive description was generated and the total number of times one inductive 
description was compared to another (or compared to a training instance). These 
provide good measures of computational effort, since generation and comparison 
of structural descriptions are expensive operations. We have also computed the 
ratio of the number of final descriptions output by the algorithm to the total num-
ber of descriptions generated by the algorithm. This provides a measure of over-
all efficiency, since a ratio of 1 indicates that every description generated by the 
algorithm was correct, while a ratio of 0 indicates that none of the generated 
descriptions were correct. 

Our evaluation of these induction methods is not based entirely on these 
numerical measures, however (particularly since they are derived from only one 
test problem). An additional value of the simulation is that it gives some general 
idea of how the algorithms behave and shows the kinds of descriptions that the 
algorithms are able to discover. The reader is admonished to treat the efficiency 
measurements as highly approximate. 
4. Flexibility and extensibility: Programs that can only discover conjunctive 
characteristic descriptions have limited practical application. In particular, they 
are inadequate in situations involving noisy data or in which no single conjunc-
tive description can describe the phenomena of interest. Consequently, as one of 
the evaluation criteria, we consider the ease with which each method could be 
extended to: 

• discover descriptions with forms other than conjunctive generalizations, for 
example, disjunctions and exceptions (see Section 3.1.4) 

• include mechanisms that facilitate the detection of errors in the input data 
• provide a general facility for incorporating externally-specified domain 

knowledge into the induction process as an exchangeable package 
• perform constructive induction 

Two sample learning problems will be used to explain these methods. The 
first problem (Figure 3-1) is made up of two examples (El and E2). Each ex-
ample consists of objects (geometrical figures) that can be described by: 

• attributes size (small or large) and shape (circle or square) 
• relationships ontop (which indicates that one object is above another) and 

inside (which indicates that one object lies inside another) 
The second sample problem (Figure 3-2) contains three examples of con-

structions made of simple geometrical objects. These objects can be described 
by: 

• attributes shape (box, triangle, rectangle, ellipse, circle, square, or 
diamond), size (small, medium, or large), and texture (blank or shaded) 

• relationships ontop and inside (the same as in the first sample problem) 
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fi H a n 
El E2 

Figure 3-1: Sample problem for illustrating representation languages. 

El E2 E3 
Figure 3-2: Sample problem for comparing the performance of the methods. 

In each sample problem, the task is to determine a set of maximally-
specific conjunctive generalizations (MSC-generalizations) of the examples. No 
negative examples are supplied in either problem. In the discussion below, the 
first problem is used to illustrate the representational formalism and the 
generalization process implemented in each method. The second, more complex, 
problem is used to compare the computational efficiency and representational 
adequacy of each method. This comparison is based on a hand simulation of 
each method. 

3.2.2 Data-driven Methods: Winston, Hayes-Roth, and Vere 

3.2.2.1 Winston: Learning Blocks World Concepts 

Winston's well known work [Winston, 1970, 1975] deals with learning 
concepts that characterize simple toy block constructions. Although his method 
uses no precise criterion to define the goal description, the method usually 
develops MSC-generalizations of the input examples. The method assumes that 
the examples are provided to the program by an intelligent teacher who carefully 
chooses both the kinds of examples used and their order of presentation. The 
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program uses so-called "near miss" negative examples to rapidly determine the 
correct generalized description of the concept. A near-miss example is a nega-
tive example that differs from the desired concept in only one significant at-
tribute. Winston also uses the near-misses to develop "emphatic" conditions 
such as "must support" or "must not support". These Must- type descriptors in-
dicate which conditions in the concept description are necessary to eliminate 
negative examples. 

As Knapman has pointed out in his review of Winston's work [Knapman, 
1978], many parts of the exposition in Winston's thesis [Winston, 1970] and 
subsequent publication [Winston, 1975] are not entirely clear. Although the 
general ideas in the thesis are well-explained, the exact implementation of these 
ideas is difficult to extract from these publications. Consequently, our descrip-
tion of Winston's method is necessarily a reconstruction. We begin by discuss-
ing the knowledge representation employed by Winston. Then, we turn our at-
tention to his learning algorithm. 

A semantic network is used to represent the input events, the background 
blocks-world knowledge, and the concept descriptions generated by the program 
(see Figures 3-3 and 3-4). The representation is quite general although the im-
plemented programs appear to process the network in domain-specific ways (see 
Knapman [1978]; Winston [1970, page 196]). 

Nodes in the network are used for several different purposes. We will il-
lustrate these purposes by referring to the corresponding concepts in first-order 
predicate logic (FOPL). The first use of nodes is to represent various primitive 
concepts that are properties of objects or their parts (such as small, size, circle, 
shape). Nodes in this case correspond to constants in first-order predicate logic 
expressions. There is no distinction between attributes and values of attributes in 
Winston's network representation, and consequently, there is no representational 
equivalent of the one-argument predicates and functions of FOPL. 

Another use of nodes is to represent individual examples and their parts. 
Thus, in Figure 3-3, we have the node El and two nodes A and B that make up 
El. These can be regarded as quantified variables in predicate calculus. Dis-
tinct variable nodes are created for each training example. 

Labeled links connecting these nodes represent various binary relationships 
among the nodes. The links correspond to two-argument predicates. The first 
two uses of nodes as constants and variables, plus the standard use of links as 
predicates, constitute the basic semantic network representation used by Winston. 

There is, however, a third use of nodes. Each link type (analogous to a 
predicate symbol) is also represented in the network as a node. Thus, in ad-
dition to the numerous On-Top links that may appear in the network, there is an 
On-Top node that describes the link type On-Top and its relationship to other 
link types. For example, there might be a Negative-Satellite link that joins the 
On-Top node to the Beneath node. Such a link indicates that On-Top and 
Beneath are semantically opposite predicates. Similarly, there is a Must-be-
Satellite link connecting the Must-Be-On-Top node to the On-Top node. 
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HAS-PROPERTY-OF 
HAS-AS-PART 

ON-TOP 

BF:NF:ATH 

A-KIND-OF 

Figure 3-3: Network representing example El in Figure 3-1. 

All of the nodes in the network are joined into one generalization hierarchy 
through the A-Kind-Of links. This hierarchy is used to implement the climbing 
generalization tree rule. 

Now that we have described the network representation, we turn our atten-
tion to the learning algorithm. The learning algorithm proceeds in two steps. 
First, the current concept description is compared to the next example, and a 
difference description is developed. Then this difference description is processed 
to obtain a new, generalized concept description. Often, the second step results 
in several possible generalized concept descriptions. In such a case, one general-
ized concept is selected for further refinement and the remaining possibilities are 
placed on a backtrack list. The program backtracks when it is unable to consis-
tently generalize its current concept description. 

The first step of the algorithm (the development of the difference 
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Figure 3-4: Network representing example E2 in Figure 3-1. 

description) is accomplished by graph-matching the current concept description 
against the example supplied by the teacher, and annotating this match with com-
ment notes (C-NOTES). These C-NOTES describe conditions in the concept 
description and example that partially matched or did not match. Winston's 
description of the graph-matching algorithm is sketchy [Knapman, 1978; 
Winston, 1970, pages 254-263]. The algorithm apparently finds one "best" 
match between the training example and the current concept description. The 
method does not address the important problem of multiple graph sub-
isomorphisms, that is, the problem arising when the training example matches 
the current concept description in more than one way. This problem was ap-
parently avoided by assuming that the teacher will present training instances that 
can be unambiguously matched to the current concept description. 
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Once this match between the concept description and the example is ob-
tained, a generalized skeleton is created containing only those links and nodes 
that matched exactly. The C-NOTES are then attached to this skeleton. Each 
C-NOTE is a sub-network of nodes and links that describes a particular type of 
match. There are several types of C-NOTES corresponding to partially-matching 
or mismatching nodes and partially-matching or mismatching links. The dif-
ferent types are summarized in Table 3-1. In detail, there are the following 
types of C-NOTES: 

• For nodes: 

o Intersection C-NOTES indicate that two nodes match exactly. 
o A-Kind-of-Merge and A-Kind-Of-Chain C-NOTES indicate that two 

nodes match partially. The A-Kind-Of-Merge C-NOTE handles the 
case when two nodes are different but share a common A-Kind-Of 
link, for example, when square partially matches triangle (since they 
are both polygons). The A-Kind-Of-Chain C-NOTE handles the case 
when a node matches a more general node, for example, when 
square matches polygon. 

o Exit C-NOTES indicate that two nodes do not match at all. 
• For links: 

o Negative-Satellite-Pair C-NOTES indicate that two semantically op-
posite links mismatched, for example, Marries and Does-Not-Marry. 

o Must-Be-Satellite-Pair C-NOTES indicate that a normal link, such as 
Supports, matches an emphatic link, such as Must-Support. 

o Must-Not-Be-Satellite-Pair C-NOTES indicate that a normal link 
matches a Must-Not form of the same link. 

o Supplementary Pointer C-NOTES indicate that two links do not 
match at all. 

Table 3-1: Winston's CNOTK Categories 

Match Partially match Mismatch 
Node Intersection A-Kind-Of-Merge Exit 

A-Kind-Of Chain 

Link Negative-Satellite-Pair Supplementary pointer 
Must-Not-Be-Satellite-pair 

The network diagram of Figure 3-5 shows the difference description that 
results from matching the two networks of Figures 3-3 and 3-4 to each other. 

The generalization phase of the algorithm is fairly simple. Each C-NOTE is 
handled in a way determined by the C-NOTE type and whether the example is a 
positive or negative training example. Winston provides a table that indicates 
what actions his program takes in each case [Winston, 1970, pages 145-146]. 
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Figure 3-5: Difference description obtained by comparing El and E2 from Figure 3-1 and annotat-
ing the comparison with two C-NOTES. 

Some C-NOTES can be handled in multiple ways. For positive examples, 
only one C-NOTE causes problems: the A-Kind-Of-Merge. In this case, the 
program can either climb the A-Kind-Of generalization tree or else drop the con-
dition altogether. The program develops both possibilities but only pursues the 
former (leaving the latter on the backtrack list). The concept description that 
results from generalizing the difference description of Figure 3-5 is shown in 
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Figure 3-6. The alternative generalization would drop the Has-Property link 
from node b. 

HAS-PROPHRTY-OF 
HAS-AS-PART 

ON-TOP 

ΒΚΝΚΛΤΗ 

A-K1ND-OF 

Figure 3-6: Network representing the generalized concept resulting from generalizing the dif-
ference description of Figure 3-5. 

Evaluation: 

1. Representational adequacy. The semantic network is used to represent 
properties, object hierarchies (using A-Kind-Of), and binary relationships. As in 
most semantic networks, n-ary relationships cannot be represented directly. The 
conjunction operator is implicit in the structure of the network, since all of the 
conditions represented in the network are assumed to hold simultaneously. There 
is no mechanism indicated for representing disjunction or internal disjunction. 
The Not and Must-Not links implement a form of the exception operator. An 
interesting feature of Winston's work is the use of the emphatic Must- relation-
ships. 
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The program works in a depth-first fashion and produces only one general-
ized concept description for any given order of the training examples. Permuting 
the training examples may lead to a different generalization. Two generaliza-
tions obtained by simulating Winston's learning algorithm on the examples of 
Figure 3-2 are shown in Figures 3-7 and 3-8. 

Figure 3-7: The first generalization obtained by simulating Winston's learning algorithm on the 
examples of Figure 3-2 (in the order E3, El , E2). An English paraphrase is: "There is 
a medium, blank polygon on top of another object that has a size and texture. There is 
also another object with size and texture." 

The second generalization (Figure 3-8) is not maximally specific since it 
does not mention the fact that all training examples also contain a small- or 
medium-sized shaded object. The algorithm cannot discover this generalization 
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Figure 3-8: The second generalization obtained by simulating Winston's learning algorithm on the 
examples of Figure 3-2 (in the order El , E2, E3). An English paraphrase is: "There is 
a large, blank object." 

due to the fact that the graph-matcher finds the "best" match of the current con-
cept with the example. When the order of presentation of the examples is El 
followed by E2 followed by E3, the "best" match of the first two examples 
eliminates the possibility of discovering the maximally-specific conjunctive 
generalization when the third example is matched. 
2. Rules of Generalization. The program uses the dropping condition rule (for 
generalizing exit C-NOTES), the turning constants to variables rule (when creat-
ing the generalized skeleton), and the climbing generalization tree rule (for the 
A-Kind-Of-Merge). It also uses the introducing exception specialization rule (for 
the A-Kind-Of-Merge C-NOTE with negative examples). 
3. Computational efficiency. The algorithm is quite fast: it requires only two 
graph comparisons to handle the examples of Figure 3-2. However, the algo-
rithm does use a lot of memory to store intermediate descriptions. The first 
graph comparison produces eight alternatives, of which only one is pursued. 
The second graph comparison leads to four more alternatives from which one is 
selected as the "best" concept description. This inefficient use of memory is 
reflected in our figure for computational efficiency (the number of output 
descriptions / the number of examined descriptions), which is 1/11 or 9%. 



60 CHAPTER 3: A COMPARATIVE REVIEW 

The performance of the algorithm can be much worse in certain situations. 
When "poor" negative examples are used—those which do not match the current 
concept description well—the number of intermediate descriptions explodes com-
binatorially. Such situations are also likely to cause extensive backtracking. 

Since the algorithm produces only one generalization for any given order 
of the input examples, it must be executed repeatedly if several alternative 
generalizations are desired. 
4. Flexibility and Extensibility. Iba [1979] has successfully extended this algo-
rithm to discover some disjunctive descriptions. His solution is not entirely 
general, however. The main difficulty seems to be that Winston's algorithm 
operates under the assumption that there is one conjunctive concept characteriz-
ing the examples, so the development of disjunctive concepts is not consistent 
with the spirit of the work. 

Since the program behaves in a depth-first manner, noisy training events 
cause it to make serious errors from which it cannot recover without extensive 
backtracking. This is not surprising since Winston assumes that the teacher is 
intelligent and does not make any mistakes in training the student. It seems to 
be very difficult to extend this method to handle noisy input data. 

The inductive generalization portion of the program does not contain much 
problem-specific knowledge. However, many of the techniques used in the 
program, such as building complete difference descriptions and using a back-
tracking search, may become combinatorially infeasible in real-world problem 
domains. The A-Kind-Of generalization hierarchy can be used to represent 
problem-specific knowledge. 

The system of programs described by Winston performs some types of 
constructive induction. The original inputs to the system are noise-free line 
drawings. Some knowledge-based algorithms convert these line drawings into 
the network representation. Winston describes an algorithm for combining a 
group of objects into a single concept and subsequently using this concept in 
other descriptions. The "arcade" concept ( [Winston, 1970], page 183) is a good 
example of such a constructive induction process. 
3.2.2.2 Hayes-Roth: Program SPROUTER 

Hayes-Roth's work on inductive learning [Hayes-Roth, 1976a, 1976b; 
Hayes-Roth & McDermott, 1977, 1978] is concerned with finding MSC-
generalizations of a set of input positive examples (he calls such generalizations 
maximal abstractions or interference matches). Parameterized structural 
representations (PSR's) are used to represent both the input events and their 
generalizations. The PSR's for the two events of Figure 3-1 are: 

El: {{circle:a}{square:b}{small:a} 
{small:b}{ontop:a, undenb}} 

E2: {{circle:c}{square:d}{circle:e} 
{small:c}{large:d}{small:e} 
{ontopx, under:d}{inside:e, outside:d}} 
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El: {{circle:aHsquare:b}{small:a} 
{small:b}{ontop:a, under:b}} 

E2: {{circle:c}{square:d}{circle:e} 
{small:c}{large:d}{small:e} 
{ontopx, under:d}{inside:e, outside:d}} 

In Hayes-Roth's terminology, the expressions such as {small:a} are called 
case frames. They are composed of case labels (such as small, circle) and 
parameters (such as a, b, c, d). The PSR can be interpreted as a conjunction of 
predicates of the form case-label(parameter-list). For example, {smallia} can be 
interpreted as small(a), and {ontopx, under:d} can be interpreted as ontop(c,d). 
The parameters can be viewed as existentially-quantified variables denoting dis-
tinct objects. 

The induction algorithm works in a purely bottom-up fashion. The first set 
of conjunctive generalizations, Gj, is initialized to contain only the first input 
example. Given a new example and the set of generalizations, Gj, obtained in 
the ith step, a new set of generalizations, Gj + j , is obtained by performing a par-
tial match between each element in Gj and the current training example. It is not 
clear from publications [Hayes-Roth, 1976b; Hayes-Roth, 1976a; Hayes-Roth & 
McDermott, 1977; Hayes-Roth & McDermott, 1978] whether or not these sets Gj 
are pruned during this process. Hayes-Roth calls each of the partial-matching 
operations an interference match. 

The interference match attempts to find the longest one-to-one match of 
parameters and case frames (that is, the longest common subexpression). This is 
accomplished in two steps. First the case frames in El and E2 are matched in 
all possible ways to obtain the set M. Two case frames match if all of their case 
labels match. Each element of M is a case frame and a list of parameter cor-
respondences that permit that case frame to match in both events: 

M = {{circle:((a/c)(a/e))}, 
{square:((b/d))}, 
{small:((a/c)(b/c)(a/e)(b/e))}, 
{ontop,under:((a/c b/d))}} 

The second step involves selecting a subset of the parameter correspon-
dences in M such that all parameters can be bound consistently. This is con-
ducted by a breadth-first search of the space of possible bindings with pruning of 
unpromising nodes. The search can be visualized as a node-building process. 
Here is one such (pruned) search graph: 
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M Interference match 

{circle} 
a/c 
a/e 

{square} 
b/d 

{small} 
a/c 
b/c 
a/e — — 
b/e 

{ontop, under} 
a/c b/d 

The nodes are numbered in order of their generation. One at a time, a pair 
of corresponding parameters is selected from M and a new node is created for 
them. Then this new node is compared with all previously generated nodes. 
Additional nodes are created for each case in which the new parameter cor-
respondence node can be consistently merged with a previously existing node. 
In the search graph above, when the parameter binding {small: (a/c)} is selected, 
node 6 is created. Then node 6 is compared to nodes 1 through 5 and two new 
nodes are created: node 7, which is created by merging node 6 (a/c) with node 2 
(b/e), and node 8, which is created by merging node 6 (a/c) with node 1 (a/c b/d). 
Node 6 cannot be merged with node 3, for instance, because parameter a would 
be inconsistently bound to both parameters c and e. 

When the search is completed, nodes 7, 12, and 14 are bindings that lead 
to conjunctive generalizations. Node 14, for example, binds a to c (to give vl) 
and b to d (to give v2) to produce the conjunction: 

{{circle:vlXsquare:v2Hsmall:vl}{ontop:vl y under:v2}} 

The node-building process is guided by computing a utility value for each 
candidate node to be built. The nodes are pruned by setting an upper limit on 
the total number of possible nodes and pruning nodes of low utility when that 
limit is reached. 

Evaluation: 

1. Representational adequacy. The algorithm discovers the following conjunc-
tive generalizations of the example in Figure 3-2: 

a. {{ontop:vl, under:v2}{medium:vl}{blank:vl}} 
There is a medium blank object ontop of something. 

b. {{ontop:vl, under:v2}{medium:vlKlarge:v2}{blank:v2}} 
There is a medium object ontop of a large, blank object. 

c. {{medium:v 1 Hblank: v 1 Klarge:v3}{blank:v3}{shaded:v2}} 
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There is a medium sized blank object, a large sized blank object, and 
a shaded object. 
PSR's provide two symbolic forms: parameters and case labels. The case 

labels can express ordinary predicates and relations easily. Symmetric relations 
may be expressed by using the same label twice as in {same!size:a, same!size:b}. 
The only operator is the conjunction. The language has no disjunction or inter-
nal disjunction. As a result, the fact that each event in Figure 3-2 contains a 
polygon on top of a circle or rectangle cannot be discovered. 
2. Rules of generalization. The method uses the dropping condition and turning 
constants to variables rules. 
3. Computational efficiency. On our test example, the algorithm requires 22 ex-
pression comparisons and generates 20 candidate conjunctive generalizations of 
which 6 are retained. This gives a figure of 6/20 or 30% for computational ef-
ficiency. Four separate interference matches are required since the first match of 
El and E2 produces three possible conjunctive generalizations. 
4. Flexibility and extensibility. An attempt has been made (Hayes-Roth, personal 
communication) to extend this method to produce disjunctive generalizations and 
to detect errors in data. Hayes-Roth has applied this method to various problems 
in the design of the speech understanding system HEARSAY II. However, no 
facility has been developed for incorporating domain-specific knowledge into the 
generalization process. 

Also, no facility for constructive induction has been incorporated although 
Hayes-Roth has developed a technique for converting a PSR to a lower-level, 
finer-grained uniform PSR. This transformation permits the program to develop 
descriptions that involve a many-to-one binding of parameters. 
3.2.2.3 Vere: Program Thoth 

Vere's earlier work on inductive learning [Vere, 1975] was also directed at 
finding the MSC-generalizations of a set of input positive examples (in his work 
such generalizations are called maximal conjunctive generalizations or maximal 
unifying generalizations). Each example is represented as a conjunction of 
literals. A literal is a list of constants called terms enclosed in parentheses. For 
example, the objects in Figure 3-1 would be described as: 

El: (circle a)(square b)(small a)(small b)(ontop a b) 

E2: (circle c)(square d)(circle e)(small c) (large d)(small e)(ontop c d)(inside e d) 

Although these resemble Hayes-Roth's PSR's, they are quite different. 
There are no distinguished symbols. All terms (such as "small" and "e") are 
treated uniformly. 

As in Hayes-Roth's work, Vere's method operates in a purely bottom-up 
fashion in which the input examples are processed one at a time in order to build 
the set of conjunctive generalizations. The algorithm for generalizing a pair of 
events operates in four steps. First, the literals in each of the two events are 
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matched in all possible ways to generate the set of matching pairs MP. Two 
literals match if they contain the same number of constants and they share at 
least one common term in the same position. For the sample problem of Figure 
3-2, we have: 

MP= {((circle a),(circle c)), 
((circle a),(circle e)), 
((square b),(square d)), 
((small a),(small c)), 
((small a),(small e)), 
((small b),(small c)), 
((small b),(small e)), 
((ontop a b),(ontop c d))} 

The second step involves selecting all possible subsets of MP such that no 
single literal of one event is paired with more than one literal in another event. 
Each of these subsets eventually forms a new generalization of the original 
events. 

In the third step, each subset of matching pairs selected in step 2 is ex-
tended by adding to the subset additional pairs of literals that did not previously 
match. A new pair p is added to a subset S of MP if each literal in p is related 
to some other pair q in S by a common constant in a common position. For 
example, if S contained the pair ((square b),(square d)) then we could add to S 
the pair ((ontop a b),(inside e d)) because the third element of (ontop a b) is the 
second element of (square b) and the third element of (inside e d) is the second 
element of (square d) (Vere calls this a 3-2 relationship). New indirectly-related 
pairs are merged into S until no more can be added. 

In the fourth, and final, step, the resulting set of pairs is converted into a 
new conjunction of literals by merging each pair to form a single literal. Terms 
that do not match are turned into new terms, which may be viewed formally as 
variables. For example, ((circle a),(circle c)) would be converted to (circle vl). 

Evaluation: 
1. Representational adequacy. When applied to the test example (Figure 3-2) 
this algorithm produces many generalizations. A few of the significant ones are 
listed below: 

• (ontop vl v2)(medium vl)(large v2)(blank v2)(blank v3)(shaded v4) 
(v5 v4) 

There is a medium object on top of a large blank object. Another 
object is blank. There is a shaded object. (The literal (v5 v4) is vacuous 
since it contains only variables. Variable v5 was derived by unifying 
circle and triangle). 

• (ontop vl v2)(blank vl)(medium vl)(v9 vl)(v5 v3 v4)(shaded v3) 
(v7 v3)(v6 v3)(blank v4)(large v4)(v8 v4) 

There is a medium, blank object on top of some other object and 
there are two objects related in some way (v5) such that one is shaded and 
the other is large and blank. 
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• (ontop vl v2)(medium vl)(blank v2)(large v2)(v5 v2)(shaded v3)(v7 v3) 
(blank v4)(v6 v4) 

There is a medium object on top of a large blank object. There is a 
shaded object and there is a blank object. 
The representation is basically an uninterpreted list structure and, con-

sequently, has very little logical structure. By convention the first symbol of a 
literal can be interpreted as a predicate symbol. The algorithm, however, treats 
all terms uniformly. This absence of semantic constraints creates difficulties. 
One difficulty is that the algorithm generates vacuous literals in certain situa-
tions. For instance, step 3 of the algorithm allows (circle a) to be paired with 
(triangle b) to produce the vacuous literal (v5 v4) as in generalization 1 above. 
Although these vacuous literals could easily be removed after being generated, 
the algorithm would perform more efficiently if it did not generate them in the 
first place. A second difficulty resulting from the relaxation of semantic con-
straints is that the algorithm creates generalizations involving a many-to-one 
binding of variables. While such generalizations may be desirable in some situa-
tions, they are usually meaningless, and their uncontrolled generation is com-
putationally expensive. 

The description language contains only the conjunction operator. No dis-
junction or internal disjunction is included. 
2. Rules of generalization. The algorithm implements the dropping condition 
rule and the turning constants to variables rule. 
3. Computational efficiency. From the published articles [Vere, 1975, 1977, 
1978, 1980] it is not clear how to perform steps 2 and 3. The space of possible 
subsets of MP (computed in step 2) is very large, and the space of possible ex-
tensions to that set (computed in step 3) is even larger. An exhaustive search 
could not possibly give the computation times that Vere has published. 
4. Flexibility and extensibility. Vere has published algorithms that discover 
descriptions with disjunctions [Vere, 1978] and exceptions (which he calls coun-
terfactuals, see [Vere, 1980]). He has also developed techniques to generalize 
relational production rules [Vere, 1977, 1978]. The method has been 
demonstrated using the traditional AI toy problems of IQ analogy tests and 
blocks-world sequences. A facility for using background information to assist 
the induction process has also been developed. It uses a spreading activation 
technique to extract relevant relations from a knowledge base and add them to 
the input examples prior to generalizing them. The method has been extended to 
discover disjunctions and exceptions. It is not clear how well the method would 
work in noisy environments. 

3.2.3 Model-driven Methods: Buchanan, et a/., and Michalski 

In addition to acquiring context-free concept descriptions, some systems 
use models of the underlying domain to constrain the search for viable structural 
descriptions. 
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3.2.3.1 Buchanan, etal.: Program META-DENDRAL 

META-DENDRAL is a program that discovers cleavage rules to explain the 
operation of a mass spectrometer. A mass spectrometer is a device that bom-
bards small chemical samples with accelerated electrons, causing the molecules 
of the sample to break apart into many charged fragments. The masses of these 
fragments can then be measured to produce a mass spectrum—a histogram of the 
number of fragments (also called the intensity) plotted against their mass-to-
charge ratio. 

Analytic chemists can use the mass spectrum to guess the three-
dimensional structure of the molecules in the sample. An expert system has 
been developed—the Heuristic DENDRAL program—that can also perform this 
structure elucidation task. It is supplied with the chemical formula (but not the 
three-dimensional structure) of the sample and its mass spectrum. Heuristic 
DENDRAL first examines the spectrum to obtain a set of constraints. These con-
straints are then given to CONGEN, a program that can generate all possible 
chemical structures satisfying the constraints. Finally, each of these generated 
structures is tested by running it through a mass-spectrometer simulator. The 
simulator applies a set of cleavage rules to predict which bonds in the proposed 
structure will be broken. The result is a simulated mass spectrum for each can-
didate structure. The simulated spectra are compared with the actual spectrum, 
and the structure whose simulated spectrum best matches the actual spectrum is 
ranked as the most likely structure for the unknown sample. The purpose of the 
META-DENDRAL system is to learn cleavage rules for use by the mass-
spectrometer simulator. 

The cleavage rules employed by the simulator are written as condition-
action rules in which the condition part describes—in common ball-and-stick 
language—a portion of the molecular structure, and the action part indicates (by 
**) one or more bonds that will break (see Figure 3-9). The simulator applies 
these rules by matching the condition part against the molecular structure of the 
molecule being bombarded. Whenever the condition part matches, the simulator 
predicts that the bonds corresponding to those mentioned in the action part will 
break. 

Figure 3-9 shows a typical cleavage rule. The atom descriptors have the 
following meanings. Type is the atomic element of the atom. Nhs is the number 
of hydrogen atoms bound to that atom. Nbrs is the number of non-hydrogen 
atoms bound to the atom. Dots counts the number of unsaturated valence 
electrons of the atom. This rule says that whenever a molecule containing the 
four atoms w, x, y, and z (connected as shown in the molecule graph and with 
the indicated atom descriptors) is placed in a mass spectrometer, then the bond 
joining w to x will be broken. 

How can META-DENDRAL discover these rules? META-DENDRAL is given as 
input a set of molecules whose three-dimensional structures and mass spectra are 
known. We can view these training instances as condition-action rules of the 
form: 
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CONDITION PART (BOND ENVIRONMENT): 

Molecule graph: w—x—y—z— 
Atom descriptors: atom type nhs nbrs dots 

w carbon 3 1 0 
x carbon 2 2 0 
y nitrogen 1 2 0 
z carbon 2 2 0 

ACTION PART (CLEAVAGE PREDICTION): 

w ** χ y Z 

Figure 3-9: Typical Cleavage Rule. 

<whole molecular structure> φ <mass spectrum> 

The first step in META-DENDRAL (carried out by subprogram INTSUM) is to 
apply background knowledge and rules of constructive induction to convert these 
training instances into the form of highly-specific cleavage rules: 

<whole molecular structure> => <one designated broken bond> 

To achieve this transformation, INTSUM must hypothesize, for each frag-
ment appearing in the mass spectrum, which bonds could have broken to produce 
that fragment. INTSUM employs a very simple theory of mass spectrometry (the 
so-called half-order theory) to propose these hypotheses. The result is one or 
more highly-specific cleavage rules for every fragment that appeared in any of 
the mass spectra in the original training instances. 

These highly-specific cleavage rules are given to the second and third sub-
programs in the META-DENDRAL system: RULEGEN and RULEMOD. These two 
programs seek to find a small set of generalized cleavage rules that cover most of 
these highly-specific training rules. Notice that in this learning problem, no 
single generalized cleavage rule (or equivalently, no conjunctive generalization) 
can be expected to explain all of the training rules. In fact, since the INTSUM 
interpretation process can produce incorrect training instances, there is no reason 
to expect that even a set of cleavage rules will cover all of the training rules. 
Consequently, RULEGEN and RULEMOD do not search for MSC-generalizations. 
Instead, they develop a taxonomic description of the mass spectrometry data in 
the form of a set of cleavage rules that together cover the most important of the 
training rules. 

The generalization process is done in two steps. First, RULEGEN conducts 
a model-driven generate-and-test search of the space of possible cleavage rules. 
This is a fairly coarse search from which redundant and approximate rules may 
result. The second phase of the search is conducted by the RULEMOD program, 
which cleans up the rules developed by RULEGEN to make them more precise and 
less redundant. We will concentrate on the description of the RULEGEN program, 
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since it employs a top-down, model-driven algorithm that can be compared, in 
part, to the other learning methods described in this chapter. 

The RULEGEN algorithm chooses as its starting point the most general 
cleavage pattern (x ** y) with no properties specified for either atom. Since this 
pattern matches every bond in every molecule, it predicts that every bond will 
break. RULEGEN generates successively more refined rules by specializing this 
pattern. The algorithm performs a sort of breadth-first search. At each iteration 
(each level of the search tree) it specializes a parent cleavage pattern by making 
a change to all atoms at a specified distance (radius) from the ** bond—the bond 
designated to break. The change can involve either adding new neighbor atoms 
or specifying an atom feature. All possible specializations are made for which 
there are supporting training instances. The technique of modifying all atoms at 
a particular radius causes the RULEGEN search to be coarse. 

After each cycle of specialization, the resulting bond patterns are tested 
against the training instances, and a heuristic measure of "improvement" is com-
puted that indicates whether a newly specialized bond pattern is more plausible 
than its parent pattern. If a pattern is determined to be an improvement, it is 
retained, and the specialization process continues. If all specializations of a 
parent pattern are less plausible than their parent, the parent pattern is output as a 
new cleavage rule, and no more specializations of that pattern are considered. 

The improvement criterion states that a child pattern graph is more 
plausible than its parent if: 

• It predicts fewer fragmentations per training molecule (that is, it is more 
specific). 

• It still predicts fragmentations for at least half of all of the training 
molecules (that is, it is sufficiently general). 

• It predicts fragmentations for as many molecules as its parent—unless the 
parent graph was "too general" in the sense that the parent predicts more 
than 2 fragmentations in some single training molecule or on the average it 
predicts more than 1.5 fragmentations per molecule. 
Thus, RULEGEN can be viewed as following paths of increasing specializa-

tion through the space of possible bond patterns until the improvement criterion 
achieves a local maximum. The result of this process is a set of such plausible 
bond patterns. RULEMOD improves this set by performing detailed hill-climbing 
searches in the region immediately around each generated bond pattern. For the 
detailed searches, negative training instances are employed as part of the 
plausibility criterion. Negative training instances are bond patterns for which the 
actual spectrum shows that the designated bond did not break. RULEMOD also 
compares the generated bond patterns with one another and removes bond pat-
terns that are redundant. The result of the RULEMOD processing is a smaller set 
of more precise bond patterns. Each of these bond patterns is converted into a 
cleavage rule and printed out. 

Evaluation: 
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It is somewhat difficult to compare META-DENDRAL to the other methods 
described in this chapter since it is such a complex system and since even the 
RULEGEN subprogram is not searching for MSG-generalizations. However, we 
have included META-DENDRAL because it is such an important and powerful 
learning system. 

1. Representational adequacy. The bond-pattern representation was adequate for 
the task of developing cleavage rules. It was specifically designed for use in 
chemical domains and is not general. The descriptions can be viewed as con-
junctions. Individual rules developed by the program can be considered to be 
linked by disjunction. 
2. Rules of generalization. The dropping condition and turning constants to vari-
ables rules are used "in reverse" during the specialization process. 
META-DENDRAL also uses the generalization by internal disjunction rule. For ex-
ample, it can learn that the number of non-hydrogen neighbors (nbrs) of an atom 
is "greater-than one." In related work on nuclear magnetic resonance (NMR), 
Schwenzer and Mitchell [1977] present an example in which the value of nhs is 
listed as "greater than or equal to one" (which indicates an internal disjunction). 
3. Computational efficiency. The comparison of computational efficiency is not 
provided for META-DENDRAL because it is not possible to hand simulate its opera-
tion on the sample problem of Figure 3-2. First of all, it is impossible to 
represent the sample problem as a chemical graph because the problem uses two 
different connecting relationships (ontop and inside) whereas META-DENDRAL 
only allows one (chemical bonding). Secondly, as mentioned above, the algo-
rithm seeks a taxonomic—not characteristic—description of the input examples. 
Thirdly, the termination criteria for the RULEGEN algorithm are stated in purely 
chemical terms that have no counterpart in the domain of geometric figures. The 
current program is considered to be relatively inefficient [Buchanan et al., 1976]. 
4. Flexibility and extensibility. META-DENDRAL has been extended to handle 
NMR spectra [Schwenzer & Mitchell, 1977]. The program works well in an 
error-laden environment. It uses domain-specific knowledge extensively. 
However, there is no strict separation between a general-purpose induction com-
ponent and a special-purpose knowledge component. It is not clear whether the 
methods developed for META-DENDRAL could be easily applied to any non-
chemical domain. 
5. META-DENDRAL has extensive constructive induction facilities. In particular, 
program INTSUM performs sophisticated transformations of the input spectrum in 
order to develop the bond-environment descriptions. Unfortunately, this part of 
the program is highly procedural. None of the rules of constructive induction 
have been made explicit nor is there a general facility for accepting additional 
rules of constructive induction from the user. The user can alter some of the 
parameters of the half-order theory, however. 
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3.2.3.2 Michalski and Dietterich: Program INDUCE 1.2 

Michalski and his collaborators have worked on many aspects of inductive 
learning. Most relevant here are works by Larson and Michalski [Larson & 
Michalski, 1977; Larson, 1977; Michalski, 980a]. These articles describe a 
general method (and program) for determining disjunctive structural descriptions 
that can also be used (somewhat inefficiently) to discover MSC-generalizations. 
The method presented here is different from previous work and is specially 
designed for finding MSC-generalizations. 

The language used to describe the input events is VL2i [Michalski, 980a], 
an extension to first-order predicate logic (FOPL) that was developed specifically 
for use in inductive inference.4 Each event is represented as a conjunction of 
selectors. A selector is a relational statement that typically contains a function 
or predicate descriptor (with variables as arguments) and a list of values that the 
descriptor may assume. For example, the selector [size(vl) = small, medium] as-
serts that the size of vl may take the values small or medium. Another form of 
selector is an n-ary predicate in brackets, which is interpreted in the same way as 
in FOPL. For example, the selector [ontop(vl,v2)] asserts that object vl is on-
top of object v2. A conjunction of selectors is denoted by their concatenation. 
The events in Figure 3-1 are represented as: 

El: 3v l , v2 [size(vl) = small][size(v2) = small] & 
[shape( v 1 ) = circle] [shape(v2) = square] [ontop(v 1, v2)] 

E2: 3vl , v2, v3 [size(vl) = small][size(v2) = large] & 
[size(v3) = small][shape(v 1 ) = circle] & 
[shape(v2) = square][shape(v3) = circle] & 
[ontop(vl ,v2)][inside(v3,v2)] 

In this method, we attempt to accelerate the search for plausible generaliza-
tions by using techniques similar to those of hierarchical planning [Sacerdoti, 
1973] . First, we separate all descriptors into two classes, unary and non-unary. 
We call the unary descriptors attribute descriptors since they are typically used 
to represent attributes such as size or shape. Non-unary descriptors are called 
structure-specifying descriptors since they are typically used to specify structural 
information (for example, relationships ontop and inside). 

The basic idea of the method is to first search the description space that is 
defined by the structure-specifying descriptors. Once plausible generalizations 
are found in this abstract structure-only space, attribute descriptor space is 
searched to fill out the detailed generalizations. There are several advantages to 
this two-phase approach as compared to a standard search of the entire descrip-
tion space: 

The first is representational. As we have seen above, it is usually neces-

4A somewhat modified and generalized form of VL2i, called the annotated predicated calculus, is 
described in Chapter 4 of this book. 
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sary to use a graph (or equivalent data structure) to represent an event in a struc-
tural learning problem. This is due to the fact that a graph is the most compact 
way to represent binary relationships among n objects when the number of such 
relationships is substantially less than the n(n-l) possible relationships (that is, 
when the relationship matrix is sparse). Thus, in our method, the structure-only 
events are represented as graphs. But once we have located plausible points in 
this structure-only space, we can continue the search in attribute space. Attribute 
(or unary) descriptors can be represented as vectors that are substantially more 
compact and more efficiently manipulated than graphs. 

The second advantage of this hierarchical approach is computational. The 
task of comparing two graph structures is NP-complete. Any decrease in the 
size of these graph structures leads to large decreases in the cost of a graph com-
parison. Furthermore, we can confine graph comparisons to the first phase of 
the algorithm. 

A third advantage of this approach is that we can take "large steps" during 
the search for plausible descriptions by conducting much of the search in a 
sparse, abstract space. This is similar in spirit to the coarse search employed in 
RULEGEN. 

There are also several disadvantages to this approach. Firstly, no speedup 
will be obtained unless the learning problem uses both unary and non-unary 
descriptors. There are some learning problems in which attributes play almost 
no role at all. In such cases, the structure-only search space is the same as the 
complete search space, so no computational savings will be obtained. There are 
also learning problems that require only unary descriptors (as in [Hunt et al., 
1966]). These are not structural learning problems, and the structure-only space 
is empty. 

A second disadvantage of this approach involves the problem of defining 
"plausible" descriptions in structure-only space. One fact that can be used is the 
following: If g is a MSC-generalization in structure-only space, then there exists 
a full description G, such that g is the structure-only portion of G and G is a 
MSC-generalization in the complete space. 

Thus, if we find all MSC-generalizations of the input events in structure-
only space, then we can use these to find MSC-generalizations in the complete 
space. However, we will not necessarily find all possible MSC-generalizations 
in this fashion, since there may exist MSC-generalizations in the complete space 
whose structure-only component is not maximally specific in structure-only 
space. To avoid this problem, the algorithm may accept less than maximally-
specific generalizations in the structure-only space (that is, more general 
descriptions) and terminate the search using some problem-oriented knowledge. 

Another difficulty concerns how to conduct the attribute search once 
plausible structure-only descriptions have been located. Our approach is to use 
each structure-only description to define a new attribute-only space into which all 
of the input events are translated. Unfortunately, an input event can be mapped 
to more than one attribute-only description as shown below. This complicates 
the search. 
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The algorithm searches structure-only space using a "beam search"—a 
form of best-first search in which a set of best candidate descriptions is main-
tained during the search (see [Rubin & Reddy, 1977]). First, all unary descrip-
tors are removed from the input events (thus abstracting them into structure-only 
space). Then a random sample of these events is taken to form set B0, the in-
itial set of generalizations (the initial beam set). In each step, B, is first pruned 
to a fixed sized beam width by removing unpromising generalizations. (Promise 
is determined by the application of the heuristic evaluation functions described 
below). Then B7 is checked to see if any of its generalizations covers all of the 
input examples. If any do, they are removed from B, and placed in the set C of 
candidate conjunctive generalizations. Lastly, B/ is generalized to form B/ + / by 
taking each element of B, and generalizing it in all possible ways by dropping 
single selectors. When the set of candidates C reaches a prespecified size, the 
search halts. The set C contains conjunctive generalizations of the input data, 
some of which are maximally specific. The size limit on C determines how 
deeply the algorithm searches. 

The program allows the user to employ simultaneously several criteria for 
evaluating the promise of intermediate generalizations. These criteria are com-
bined to form a lexicographic evaluation functional with tolerances [Michalski, 
1973]. Some of the criteria presently included in the program are: 

• maximize the number of input events covered by a generalization. 
• maximize the number of selectors in a generalization. 
• minimize the total "cost" of the descriptors in a generalization. Different 

descriptors can be given costs according to their difficulty of measurement 
and other domain-dependent properties. 
The user creates the evaluation functional by selecting criteria from a list 

of available criteria and ordering them in decreasing order of importance. Each 
criterion is accompanied by a tolerance that specifies the allowed departure of the 
associated criterion from the optimum value (see [Michalski, 1973]). 

Once the structure-only candidate set C has been built, each candidate 
generalization in C must be filled out by finding values for its attribute descrip-
tors. Each candidate generalization g in C is used to define an attribute-only 
space that is then searched using a beam search technique similar to that used to 
search the structure-only space. The attribute-only space is defined as follows. 
Let {vy, v2, ..., vk} be the existentially quantified variables used in the candidate 
structure-only generalization g. The attribute-only space generated by g is the 
space of all mx£-tuples consisting of the values of the m attributes describing the 
k objects denoted by the quantified variables {vh v2, ..., v j . In cases where 
some of the m attributes are not applicable to some of the objects, the attribute-
only space will be correspondingly smaller. 

In order to search this space, all of the input events must first be translated 
into this attribute-only space. This is accomplished by matching g against all 
input events and extracting the attributes of the variables in the input events that 
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match Vy, v2, ..., ν^ in g. The values of these attributes form a single wxfc-tuple. 
For example, if g = [ontop(vl, v2)] and the variables vl and v2 have two at-
tributes, size and shape, then the attribute-only space generated by g is the space 
of all 4-tuples of the form: 

< size(vl), size(v2), shape(vl), shape(v2) > 

Let Ej be the following input event: 
E,: 3pl , p2, p3 [ontop(pl, p2)][ontop(p2, p3)] & 

[size(pl)= I][size(p2) = 3][size(p3) = 5] & 
[color(p 1 ) = red] [color(p2) = green] [color(p3) = blue] 

Then we can translate E, into this attribute-only space in two different 
ways—since g matches E, in two distinct ways. 

When g is matched to E, so that vl is matched with pi and v2 with p2, 
the resulting attribute-only 4-tuple is: 

< 1, 3, red, green > 

When vl is matched to p2 and v2 to p3, then the resulting event is: 
< 3, 5, green, blue > 

During the search of this attribute-only space, the goal is to find an MSC-
generalization that covers at least one of these two translated events (and thus 
covers E,). Such an MSC-generalization is in the form of an raxfc-tuple as 
above, except that each position in the tuple may contain a set of values of the 
corresponding attribute. This set of values is expressed by an internal disjunc-
tion in the final corresponding formula. 

The beam search of attribute-only space is similar to the search of 
structure-only space. A random sample of events is selected and generalized 
step-by-step by extending the internal disjunctions in the events. The generaliza-
tion process is guided by a means-ends analysis to detect relevant differences be-
tween the current generalizations and events that have not yet been covered. 
Heuristic criteria are used to prune the beam set to a fixed beam width. Can-
didate generalizations that cover all of the input events (that is, at least one of 
the attribute-only events translated from each input event) are removed from the 
beam set and added to the candidate set C . Each candidate in C provides pos-
sible settings of the attribute descriptors that, when combined with the structure-
specifying descriptors in g, produces an output conjunctive generalization G. 

Among all conjunctive generalizations produced by this algorithm, there 
may be some that are not maximally specific. This occurs when the search of 
structure-only space is permitted to produce candidate structure-only generaliza-
tions that are not maximally specific. In most observed cases such candidate 
generalizations become maximally specific when their attribute descriptors are 
filled in during the second phase of the algorithm. 

Evaluation: 
1. Representational adequacy. Using only selective rules of generalization, the 
algorithm discovers, among others, the following generalizations of the events in 
Figure 3-2: 
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• 3v l , v2 [ontop(vl,v2)] [size(vl) = medium] 
[shape(v 1 ) = polygon] [texture(v 1 ) = blank] 
[size(v2) = mediumVlarge] [shape(v2) = rectangleVcircle] 

There exist two objects (in each event), such that one is a blank, 
medium-sized polygon on top of the other, a medium or large circle or 
rectangle. 

• 3v l , v2 [ontop(vl,v2)] [size(vl) = medium] 
[shape(v 1 ) = circleVsquareVrectangle] [size(v2) = large] 
[shape(v2) = boxVrectangleVellipse] [texture(v2) = blank] 

There exist two objects such that one of them is a medium-sized 
circle, rectangle, or square on top of the other, a large, blank box, rec-
tangle, or ellipse. 

• 3v l , v2 [ontop(vl,v2)] [size(vl) = medium] [shape(vl) = polygon] 
[size(v2) = mediumVlarge] [shape(v2) = rectangleVellipseVcircle] 
v 

There exist two objects such that one of them is a medium-sized 
polygon on top of the other, a large or medium rectangle, ellipse, or circle. 

• 3vl [size(vl) = smallVmedium] 
[shape(v 1 ) = circleVrectangle] [texture(v 1 ) = shaded] 

There exists one object, a medium or small shaded circle or rec-
tangle. 
A few simple constructive induction rules have been incorporated into the 

current implementation. These include rules that count the number of objects 
possessing certain characteristics and rules that locate the top-most and bottom-
most parts of an object (or more generally, extremal elements in a linearly-
ordered set defined by any transitive relation, such as On-top). Other construc-
tive induction rules can be specified by the user. Using the built-in constructive 
induction rules, the program produces the following conjunctive generalization of 
the input events in Figure 3-2: 

• [# v's = 3,4] [# v's with texture blank = 2] & 
3v l , v2 [top-most(vl)] [ontop(vl,v2)] 
[size(v 1 ) = medium] [shape(v 1 ) = polygon] 
[texture(v 1 ) = clear] [size(v2) = medium, large] 
[shape(v2) = circle, rectangle] 

There are either three or four objects in each event. Exactly two of 
these objects are blank. The top-most object is a medium-sized, clear 
polygon and it is on top of a large or medium-sized circle or rectangle. 
This algorithm implements the conjunction, disjunction, and internal dis-

junction operators. The representation distinguishes among descriptors, vari-
ables, and values. Descriptors are further divided into structure-specifying 
descriptors and attribute descriptors. The current method discriminates among 
three types of descriptors: 
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• nominal—which have unordered value sets 
• linear—which have linearly ordered value sets 
• structured—which have tree-ordered value sets 

This variety of possible representational forms is intended to provide a bet-
ter "fit" between the description language and any specific problem. 
2. Rules of generalization. The algorithm uses all rules of generalization men-
tioned in Section 3.1.5 and also a few constructive induction rules. It does not 
implement the introducing exception specialization rule. The effect of the turn-
ing constants to variables rule is achieved as a special case of the generalization 
by internal disjunction rule. 
3. Computational efficiency. The algorithm requires 28 comparisons and builds 
13 rules during the search to develop the descriptions listed above. Four rules 
are retained so this gives an efficiency ratio of 4/13 or 30%. 
4. Flexibility and extensibility. The algorithm can be modified to discover dis-
junctions by altering the termination criteria for the search of structure-only space 
to accept structure conjuncts that do not necessarily cover all of the input events. 
The same general two-phase approach can also be applied to problems of deter-
mining discriminant descriptions. (See papers by Larson and Michalski [1977], 
Larson [1977], Michalski [1975, 1980a,b] and Chapter 4 of this book.) 

The algorithm has good noise immunity. Noise events can be discovered 
because the algorithm tends to place them in separate terms of a disjunction. 

Domain-specific knowledge can be incorporated into the program by defin-
ing the types and domains of descriptors, specifying the structures of these 
domains, specifying certain simple production rules (for domain constraints on 
legal combinations of variables), specifying the evaluation functional, and by 
providing constructive induction rules. These forms of knowledge representation 
are not always convenient, however. Further work should provide other facilities 
for knowledge representation. 

As mentioned above, this method does perform a few general kinds of con-
structive induction. The method provides mechanisms for adding more rules of 
constructive induction. 

The comparison of the above methods in terms of the criteria of Section 
3.2.1 is summarized in Table 3-2. 

3.3 CONCLUSION 

This chapter has discussed various aspects of inductive learning of struc-
tural descriptions and has presented several criteria for evaluating learning 
methods. These criteria have been applied to the evaluation of five selected 
methods for learning structural descriptions. The main features revealed by this 
analysis are: 
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• Top-down and bottom-up methods present a trade-off between computa-
tional efficiency on the one hand, and flexibility and extensibility on the 
other. Bottom-up methods tend to be faster, but have lower noise im-
munity and less flexibility. Top-down methods have good noise immunity 
and can be easily modified to discover disjunctive and other forms of 
generalization. They do tend to be computationally more expensive. 

• The description language employed by a learning method is critically im-
portant. A learning method that uses a language with little structure (that 
is, that has few operators and few types of operands) tends to be relatively 
efficient and easy to implement but may not be able to learn descriptions 
that are most useful in real-world applications. On the other hand, a 
method that uses a language that is too rich will lead to enormous im-
plementation problems that will be detrimental to successful research in 
machine learning. 

• A significant problem in current research on inductive learning is that each 
research group is using a different notation and terminology. This not only 
makes the exchange of research results difficult, but it also makes it hard 
for new researchers to enter the field. This chapter has attempted to devel-
op a set of concepts and criteria that abstract from these differences in 
notation and terminology. 

The analysis raises some important problems to be addressed in future 
research: 

• Further work on representations. Present learning programs are limited by 
the kinds of operators and variable types they allow, and also by the forms 
of descriptions they can produce. Methods for handling additional 
operators, variable types, and forms of descriptions need to be designed 
and implemented. Rules of generalization corresponding to these 
operators, types, and forms should also be developed. Among the forms 
that are particularly desirable are hierarchical and related forms in which a 
name of one description is used to build other, more complex descriptions. 
Some initial work in this area has been done by Winston [1970, 1975], 
Cohen and Sammut [1978], and in the area of grammatical inference in 
general (for example, Biermann [1972]). 

• The Principle of Comprehensibility. In applications where people will 
need to use the generalizations produced by a learning program, it is im-
portant that the learning method produce generalizations that are easy to 
understand and close to corresponding natural language descriptions. This 
means that the descriptions developed by an inductive method must be 
structured to take into consideration human information processing limita-
tions. As a rough guideline, conjunctions should involve no more than 
three or four conditions, full descriptions should involve only two or three 
disjunctive terms, and there should be no more than two quantifiers in the 
description. Descriptions should correspond to single "chunks" of infor-
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mation. Hierarchically-structured descriptions may provide a way to meet 
these guidelines. For more details, see Chapter 4 of this book. 

• Constructive induction. The constructive induction techniques developed to 
date are very limited. New rules of constructive induction need to be iden-
tified and implemented. An important problem is the development of ef-
ficient mechanisms for guiding the process of constructive induction 
through the potentially immense space of possible derived descriptors. 

• Integration of problem-specific knowledge. Further work should be done 
on the problem of when and how to use problem-specific knowledge in a 
general induction method. The use of typed variables is a good example 
of a general way to incorporate problem-specific knowledge. 

• Extension to discriminant and taxonomic descriptions. Much work has 
been done on characteristic generalization. Discriminant and taxonomic 
descriptions are very important, especially in noisy environments. More 
work on this subject is needed. 

• User interface. As AI learning programs become more powerful, their 
functions will become more opaque. Learning programs should provide 
explanation facilities for justifying their generalizations. 

• Handling errors and missing data. Very little attention has been paid to the 
problem of developing methods that work well in noisy environments. 
There is need for research on methods of learning from uncertain input in-
formation, from incomplete information, and from information containing 
errors. 
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ABSTRACT 

The presented theory views inductive learning as a heuristic search through 
a space of symbolic descriptions, generated by an application of various in-
ference rules to the initial observational statements. The inference rules include 
generalization rules, which perform generalizing transformations on descriptions, 
and conventional truth-preserving deductive rules. The application of the in-
ference rules to descriptions is constrained by problem background knowledge, 
and guided by criteria evaluating the "quality" of generated inductive assertions. 

Based on this theory, a general methodology for learning structural descrip-
tions from examples, called Star, is described and illustrated by a problem from 
the area of conceptual data analysis. 

4.1 INTRODUCTION 

"...Scientific knowledge through demonstration1 is impossible unless a 
man knows the primary immediate premises ... We must get to know the 
primary premises by induction; for the method by which even sense-
perception implants the universal is inductive..!'—Aristotle, Posterior 
Analytics, Book II, Chapter 19 (circa 330 B.C.) 
The ability of people to make accurate generalizations from a few scattered 

•That is, what we now call "deduction". 
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facts or to discover patterns in seemingly chaotic collections of observations is a 
fascinating research topic of long-standing interest. The understanding of this 
ability is now also of growing practical importance, as it holds the key to an 
improvement of methods by which computers can acquire knowledge. A need 
for such an improvement is evidenced by the fact that knowledge acquisition is 
presently the most limiting "bottleneck" in the development of modern 
knowledge-intensive artificial intelligence systems. 

The above ability is achieved by a process called inductive learning, that 
is, inductive inference from facts provided by a teacher or the environment. The 
study and modeling of this form of learning is one of the central topics of 
machine learning. This chapter outlines a theory of inductive learning and then 
presents a methodology for acquiring general concepts from examples. 

Before going further into this topic, let us first discuss the potential for 
applications of inductive learning systems. One such application is an automated 
construction of knowledge bases for expert systems. The present approach to 
constructing knowledge bases involves a tedious process of formalizing experts' 
knowledge and encoding it in some knowledge representation system, such as 
production rules [Shortliffe, 1976; Davis & Lenat, 1981] or a semantic network 
[Brachman, 1979; Gaschnig, 1980]. Inductive learning programs could provide 

both an improvement of the current techniques and a basis for developing alter-
native knowledge acquisition methods. 

In appropriately selected small domains, inductive programs are already 
able to determine decision rules by induction from examples of expert decisions. 
This process greatly simplifies the transfer of knowledge from an expert into a 
machine. The feasibility of such inductive knowledge acquisition has been 
demonstrated in the expert system PLANT/DS, for the diagnosis of soybean dis-
eases. In this system, the diagnostic rules were developed in two ways: by 
formalizing experts' diagnostic processes and by induction from examples. In an 
experiment where both types of diagnostic rules were tested on a few hundred 
disease cases, the inductively-derived rules outperformed the expert-derived ones 
[Michalski & Chilausky, 1980]. Another example is an inductive acquisition of 

decision rules for a chess end-game [Michalski & Negri, 1977; Quinlan, 1979; 
Shapiro & Niblett, 1982; O'Rorke, 1982]. (See also Chapter 15 of this book.) 

A less direct, but potentially promising, use of inductive learning is for the 
refinement of knowledge-bases initially developed by human experts. Here, in-
ductive learning programs could be used to detect and rectify inconsistencies, to 
remove redundancies, to cover gaps, and to simplify expert-derived decision 
rules. By applying an inductive inference program to the data, consisting of 
original rules and examples of correct and incorrect results of these rules' perfor-
mance in new situations, the rules could be incrementally improved with little or 
no human assistance. 

Another important application of inductive programs is in various ex-
perimental sciences, such as biology, chemistry, psychology, medicine, and 
genetics. Here they could assist a user in detecting interesting conceptual pat-
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terns or in revealing structure in collections of observations. The widely used 
traditional mathematical and statistical data analysis techniques, such as regres-
sion analysis, numerical taxonomy, or factor analysis, are not sufficiently power-
ful for this task. Methods for conceptual data analysis are needed, that generate 
not merely mathematical formulas but logic-style descriptions, characterizing data 
in terms of high-level, human-oriented concepts and relationships. An early ex-
ample of such an application is the META-DENDRAL program [Buchanan & 
Feigenbaum, 1978], which infers cleavage rules for mass-spectrometer simula-
tion. (See its analysis in Chapter 3 of this book.) 

There are two basic modes in which inductive programs can be utilized: as 
interactive tools for acquisition of knowledge from specific facts or examples, or 
as parts of machine-learning systems. In the first mode, a user supplies learning 
examples and exercises strong control over the way the program is used (for ex-
ample, [Michalski, 975a; Quinlan, 1979; Michalski & Chilausky, 1980] and 
Chapter 15 of this book). 

In the second mode, an inductive program is a component of an integrated 
learning system whose other components generate the needed learning examples 
[Buchanan et al., 1979]. Such examples—positive and negative—constitute the 

feedback from the system's attempts to perform a desired task. An example of 
the second mode is the learning system LEX for symbolic integration (see Chap-
ter 6 of this book), where a "generalizer" module performs inductive inference 
on instances provided by a "critic" module. Another example is discussed in 
Chapter 5 of this book, in the context of analogy-based learning. 

From the viewpoint of applications, such as aiding the construction of ex-
pert systems or conceptual analysis of experimental data, the most relevant is 
conceptual inductive learning. We use this term to designate a type of inductive 
learning whose final products are symbolic descriptions expressed in high-level, 
Human-oriented terms and forms (more details are given in Section 4.3.1). The 
descriptions typically apply to real world objects or phenomena, rather than 
abstract mathematical concepts or computations. This paper is concerned specifi-
cally with conceptual inductive learning. 

The most frequently studied type of such learning is concept learning from 
examples (called also concept acquisition), whose task is to induce general 
descriptions of concepts from specific instances of these concepts. The early 
studies of this subject go back to the fifties, for example, [Hovland, 1952; 
Bruner et al., 1956; Newell et al., 1960; Amarel, 1960; Feigenbaum, 1963; 
Kochen, 1960; Banerji, 1962; Simon & Kotovsky, 1963; Hunt et al., 1966; 
Hàjek et al., 1966; Bongard, 1970]. Among more recent contributions there are, 
for instance, [Winston, 1970; Waterman, 1970; Michalski, 1972; Hayes-Roth, 
1973; Simon & Lea, 1974; Stoffel, 1974; Vere, 1975; Larson & Michalski, 
1977; Mitchell, 1978; Quinlan, 1979; Moraga, 1981]. An important variant of 
concept learning from examples is the incremental concept refinement, where the 
input information includes, in addition to the training examples, previously-
learned hypotheses, or human-provided initial hypotheses that may be partially 
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incorrect or incomplete [Michalski & Larson, 1978]. Chapter 3 of this book dis-
cusses various evaluation criteria and several methods for concept learning from 
examples. 

Another type of conceptual inductive learning is concept learning from ob-
servation (or descriptive generalization), concerned with establishing new con-
cepts or theories characterizing given facts. This area includes such topics as 
automated theory formation (for example, [Lenat, 1976] and Chapter 9 of this 
book), discovery of relationships in data (for example, [Hajek & Havrânek, 
1978; Pokorny, 1980; Zagoruiko, 1981] and Chapter 10 of this book), or an 
automatic construction of taxonomies (for example, Chapter 11 of this book). 
Differences between concept learning from examples and concept learning from 
observation are discussed in more detail in the next section. 

Conceptual inductive learning has a strong cognitive science flavor. Its 
emphasis on inducing human-oriented, rather than machine-oriented descriptions, 
and its primary interest in nonmathematical domains distinguishes it from other 
types of inductive learning, such as grammatical inference and program syn-
thesis. In grammatical inference, the task is to determine a formal grammar that 
can generate a given set of symbol strings (for example, [Solomonoff, 1964; 
Biermann & Feldman, 1972; Yau & Fu, 1978; Gaines, 1979]). In program syn-
thesis the objective is to construct a computer program from I/O pairs or com-
putational traces, or to transform a program from one form to another by apply-
ing correctness-preserving transformation rules (for example, [Shaw et al., 1975; 
Burstall & Darlington, 1977; Case & Smith, 1981; Biermann, 1978; Jouannaud 
& Kodratoff, 1980; Smith, 1980; Pettorossi, 1980]). The final result of such 
learning is a computer program, in an assumed programming language, destined 
for machine rather than human "consumption". For example, the method of 
"model inference" by Shapiro [1981] constructs a PROLOG program characterizing 
a given set of mathematical facts. 

Recent years have witnessed the development of a number of task-oriented 
inductive learning systems that have demonstrated an impressive performance in 
their specific domain of application. Major weaknesses, however, persist in 
much of the research in this area. Most systems lack generality and exten-
sibility. The theoretical principles upon which they are built are rarely well ex-
plained. Lack of common terminology and an adequate formal theory makes it 
difficult to compare different learning methods. 

In the following sections we formulate logical foundations of inductive 
learning, define various types of such learning, present inference rules for 
generalizing concept descriptions, and finally describe a general methodology, 
called Star, for learning structural descriptions from examples. To improve the 
readability of this chapter, Table 4-1 provides a list of basic symbols used, with 
a short explanation. The Appendix gives the details of the description language 
used (the annotated predicate calculus). 
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Table 4-1: A Table of Basic Symbols 

~ 

& 
V 
Φ 
<=> 
<-» 
\ 
F 
H 
l> 
l< 
1 = 
3 V i 

3(1) Vj 
Vv, 
Dj 
Kj 
::> 
ej 
Ei 
xi 
LEF 
DOM(p) 

negation 
conjunction (logical product) 
disjunction (logical sum) 
implication 
logical equivalence 
term rewriting 
exception (symmetric difference) 
a set of facts (formally, a predicate that is true for all the facts) 
a hypothesis (an inductive assertion) 
specialization 
generalization 
reformulation 
existential quantifier over Vj 
numerical quantifier over Vj (I is a set of integers) 
universal quantifier over Vj 
a concept description 
a predicate asserting the name of a concept (a class) 
the implication linking a concept description with a concept name 
an event (a description of an object or a situation) 
a predicate that is true only for the training events of concept Kj 
an attribute (zero- or one-argument descriptor) 
a lexicographic evaluation functional 
the domain of descriptor p 

4.2 TYPES OF INDUCTIVE LEARNING 

4.2.1 Inductive Paradigm 

As mentioned before, inductive learning is a process of acquiring 
knowledge by drawing inductive inferences from teacher- or 
environment- provided facts. Such a process involves operations of generalizing, 
specializing, transforming, correcting and refining knowledge representations. 
Although it is one of the most common forms of learning, it has one fundamen-
tal weakness: except for special cases, the acquired knowledge cannot, in prin-
ciple, be completely validated. This predicament, observed by the Scottish 
philosopher David Hume in the 18th century, is due to the fact that inductively-
acquired assertions are hypotheses with a potentially infinite number of con-
sequences, while only a finite number of confirming tests can be performed. 

Traditional inquiries into inductive inference have therefore dealt with 
questions of what are the best criteria for guiding the selection of inductive asser-
tions, and how these assertions can be confirmed. These are difficult problems, 
permeating all scientific activities. The search for answers has turned inductive 
inference into a battlefield of philosophers and logicians. There was even doubt 
whether it would ever be possible to formalize inductive inference and perform it 
on a machine. For example, philosopher Karl Popper [1968] believed that in-
ductive inference requires an irrational element. Bertrand Russell [1946] stated: 
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"So far no method has been found which would make it possible to invent 
hypotheses by rule." George Polya [1954] in his pioneering and now classic 
treatise on plausible inference (of which inductive inference is a special case) 
observed: "A person has a background, a machine has not; indeed, you can 
build a machine to draw demonstrative conclusions for you, but I think you can 
never build a machine that will draw plausible inferences." 

The above pessimistic prospects are now being revised. With the develop-
ment of modern computers and subsequent advances in artificial intelligence 
research, it is now possible to provide a machine with a significant amount of 
background information. Also, the problem of automating inductive inference 
can be simplified by concentrating on the subject of hypothesis generation, while 
ascribing to humans the question of how to adequately validate them. Some suc-
cessful inductive inference systems have already been built and a body of 
knowledge is emerging about the nature of this inference. The rest of this sec-
tion will analyze the logical basis for inductive inference, and then Section 
4.5 will present various generalization rules, which can be viewed as inductive 
inference rules. 

In contrast to deduction, the starting premises of induction are specific 
facts rather than general axioms. The goal of inference is to formulate plausible 
general assertions that explain the given facts and are able to predict new facts. 
In other words, inductive inference attempts to derive a complete and correct 
description of a given phenomenon from specific observations of that 
phenomenon or of parts of it. As mentioned earlier, of the two aspects of induc-
tive inference—the generation of plausible hypotheses and their validation (the 
establishment of their truth status)—only the first is of primary interest to induc-
tive learning research. The problem of hypothesis validation, a subject of 
various philosophical inquiries (for example, [Carnap, 1962]) is considered to be 
of lesser importance, because it is assumed that the generated hypotheses are 
judged by human experts, and tested by known methods of deductive inference 
and statistics. 

As described in Chapter 1 of this book, there are several different methods 
by which a human (or a machine) can acquire knowledge, such as rote learning 
(or learning by being programmed), learning from instruction (or learning by 
being told), learning from teacher-provided examples (concept acquisition), and 
learning by observing the environment and making discoveries (learning from ob-
servation and discovery). 

Although all of these ways except the first involve some amount of induc-
tive inference, in the last two, that is, in learning from examples and in learning 
from observation, this inference is the central operation. These two forms are 
therefore considered to be the major forms of inductive learning. In order to 
explain them, let us formulate a general paradigm for inductive inference: 

Given: 
• Observational statements (facts), F, that represent specific 

knowledge about some objects, situations, processes, and so on, 
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• A tentative inductive assertion (which may be null), 
• Background knowledge that defines the assumptions and constraints 

imposed on the observational statements and generated candidate in-
ductive assertions, and any relevant problem domain knowledge. 
The last includes the preference criterion characterizing the desirable 
properties of the sought inductive assertion. 

Find: 
• An inductive assertion (hypothesis), H, that tautologically or weakly 

implies the observational statements, and satisfies the background 
knowledge. 

A hypothesis H tautologically implies facts F if F is a logical consequence 
of H, that is, if the expression H φ F is true under all interpretations ("=>" 
denotes logical implication). This is expressed as follows: 

H l> F (read: H specializes to F) (1) 
or 

F l< H (read: F generalizes to H) (2) 
Symbols l> and l< are called the specialization and generalization 

symbols, respectively. If H => F is valid, and H is true, then by the law of 
detachment (modus ponens) F must be true. Deriving F from H (deductive 
inference), is, therefore, truth-preserving. In contrast, deriving H from F 
(inductive inference) is not truth-preserving, but falsity-preserving; that is, if 
some facts falsify F, then they also must falsify H. (More explanation on this 
topic is given in Section 4.5.) 

The condition that H weakly implies F means that facts F are not certain 
but only plausible or partial consequences of H. By allowing weak implication, 
this paradigm includes methods for generating "soft" hypotheses, which hold 
only probabilistically, and partial hypotheses, which account for some but not all 
of the facts (for example, hypotheses representing "dominant patterns" or charac-
terizing inconsistent data). In the following we will limit our attention to 
hypotheses that tautologically imply facts. 

For any given set of facts, a potentially infinite number of hypotheses can 
be generated that imply these facts. Background knowledge is therefore neces-
sary to provide the constraints and a preference criterion for reducing the infinite 
choice to one hypothesis or a few most preferable ones. 

A typical way of defining such a criterion is to specify the preferable 
properties of the hypothesis—for example, to require that the hypothesis is the 
shortest or the most economical description consistent with all the facts (as, for 
example, in [Michalski, 1973]). Such a "biased-choice" criterion is necessary 
when the description language is complete, that is, able to express any possible 
hypothesis. An alternative is to use a "biased-language" criterion [Mitchell, 
1978], restricting the description language in which hypotheses are expressed 
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(that is, to use an incomplete description language). Although in many methods 
the background knowledge is not explicitly stated, the authors make implicit as-
sumptions serving the same purpose. More details on the criteria for selecting 
hypotheses are given in Section 4.4.7. 

4.2.2 Concept Acquisition versus Descriptive Generalization 

As mentioned in the Introduction, one can distinguish between two major 
types of inductive learning: learning from examples (concept acquisition) and 
learning from observation (descriptive generalization). In concept acquisition, 
the observational statements are characterizations of some objects (situations, 
processes, and so on) preclassified by a teacher into one or more classes 
(concepts). The induced hypothesis can be viewed as a concept recognition rule, 
such that if an object satisfies this rule, then it represents the given concept. For 
example, a recognition rule for the concept "philosopher" might be: 

"A person who pursues wisdom and gains the knowledge of underlying 
reality by intellectual means and moral self-discipline is a philosopher." 

In descriptive generalization the goal is to determine a general description (a law, 
a theory) characterizing a collection of observations. For example, observing 
that the philosophers Aristotle, Plato, and Socrates were Greek, but that Spencer 
was British, one might conclude: 

"Most philosophers were Greek." 
Thus, in contrast to concept acquisition that produces descriptions for clas-

sifying objects into classes on the basis of the objects' properties, descriptive 
generalization produces descriptions specifying properties of objects belonging to 
a certain class. Here are some example problems belonging to the above two 
categories: 

1. Concept Acquisition: 
• Learning a characteristic description of a class of objects, that 

specifies all common properties of known objects in the class, and by 
that defines the class in the context of an unlimited number of other 
object classes (for example, [Bongard, 1967; Winston, 1970; Stoffel, 
1974; Vere, 1975; Cohen, 1977; Hayes-Roth & McDermott, 1978; 
Mitchell, 1978; Stepp, 1978; Michalski, 1980a] and Chapter 3 of this 
book). 

• Learning a discriminant description of a class of objects that distin-
guishes the given class from a limited number of other classes (for 
example, [Michalski, 1973; Quinlan, 1979; Michalski, 1980a] and 
Chapter 15 of this book). 

• Inferring sequence extrapolation rules (for example, [Simon & 
Kotovsky, 1963; Dietterich, 1979]) able to predict the next element 
(a symbol, a number, an object, and so on) in a given sequence. 
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2. Descriptive Generalization: 
• Formulating a theory characterizing a collection of entities (for ex-

ample, a number theory, as in [Lenat, 1976] and Chapter 9 of this 
book). 

• Discovering patterns in observational data (for example, [Soloway & 
Riseman, 1977; Hajek & Havrânek, 1978; Pokorny, 1980; Zago-
ruiko, 1981] and Chapter 10 of this book). 

• Determining a taxonomic description (classification) of a collection of 
objects (for example, [Michalski, 980c; Michalski et al.9 1981] and 
Chapter 11 of this book). 

This paper is concerned primarily with problems of concept acquisition. In 
this case, the set of observational statements F can be viewed as a collection of 
implications: 

F : {eik ::> Kj}, i € I (3) 

where eik (a training event) denotes a description of the kth example of concept 
(class) asserted by predicate Kj (for short, class Kj) and I is a set indexing 
classes Kv It is assumed here that any given event represents only one concept. 
Symbol ::> is used here, and will be used henceforth, to denote the implica-
tion linking a concept description with a predicate asserting the concept name (in 
order to distinguish this implication from the implication between arbitrary 
descriptions). The inductive assertion H can be characterized as a set of concept 
recognition rules: 

H : {^ ::> KJ, i c i (4) 
where Dj is a concept description of class Kj, that is, an expression of con-
ditions, such that when they are satisfied by an object, the object is considered 
an instance of class Kj. 

According to the definition of inductive assertion, we must have: 
H l> F (5) 

By substituting (3) and (4) for F and H, respectively, in (5), and making ap-
propriate transformations, one can derive the following conditions to be satisfied 
in order that (5) holds: 

V i € I (Ej Φ Dj) (6) 
and 

Vi,j c K D i ^ - E p . i f j Φ i (7) 
where Ej, i £ I, is a description satisfied by all training events of class Kj, and 
only by such events (the logical disjunction of training events). 

Expression (6) is called the completeness condition, and (7) the consistency 
condition. These two conditions are the requirements that must be satisfied for 
an inductive assertion to be acceptable as a concept recognition rule. The com-
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pleteness condition states that every training event of some class must satisfy the 
description Dj of the same class (since the opposite does not have to hold, Dj is 
equivalent to, or more general than, Ej). The consistency condition states that if 
an event satisfies a description of some class, then it cannot be a member of a 
training set of any other class. In learning a concept from examples and counter-
examples, the latter constitute the "other" class. 

The completeness and consistency conditions provide the logical foundation 
of algorithms for concept learning from examples. We will see in Section 4.5 
that to derive Dj satisfying the completeness condition one can adopt some in-
ference rules of formal logic. 

4.2.3 Characteristic versus Discriminant Descriptions 

The completeness and consistency conditions allow us to clearly explain 
the distinction between the previously mentioned characteristic and discriminant 
descriptions. A characteristic description of a class of objects (also known as 
conjunctive generalization) is an expression that satisfies the completeness con-
dition or is the logical product of such expressions. It is typically a conjunction 
of some simple properties common to all objects in the class. From the applica-
tions viewpoint, the most interesting are maximal characteristic descriptions 
(maximal conjunctive generalizations) that are the most specific (that is, the 
longest) logical products characterizing all objects in the given class, using terms 
of the given language. Such descriptions are intended to discriminate the given 
class from all other possible classes (for illustration see Section 4.7.2). 

A discriminant description is an expression that satisfies the completeness 
and consistency condition, or is the logical disjunction of such expressions. It 
specifies one or more ways to distinguish the given class from a fixed number of 
other classes. The most interesting are minimal discriminant descriptions that 
are the shortest (that is, have the minimum number of descriptors) expressions 
distinguishing all objects in the given class from objects of the other classes. 
Such descriptions are intended to specify the minimum information sufficient to 
identify the given class among a fixed number of other classes (for illustration 
see Section 4.7.1). 

4.2.4 Single- versus Multiple-concept Learning 

It is instructive to distinguish between learning a single concept, and learn-
ing a collection of concepts. In single concept learning, one can distinguish two 
cases: (i) when observational statements are just examples of the concept to be 
learned (learning from "positive" instances only); and (ii) when they are ex-
amples and counter-examples of the concept (learning from "positive" and 
"negative" instances). 

In the first case, because of the lack of counter-examples, the consistency 
condition (7) is not applicable, and there is no natural limit to which description 
Dj (here, i= 1) can be generalized. One way to impose such a limit is to specify 
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restrictions on the form and properties of the sought description. For example, 
one may require that it be the maximal characteristic description, that is, the 
longest conjunctive statement satisfying the completeness condition (for example, 
[Vere, 1975; Hayes-Roth & McDermott, 1978]). Another way is to require that 

the description not exceed a given degree of generality, measured, for example, 
by the ratio of the number of all distinct events which could potentially satisfy 
the description to the number of training instances [Stepp, 1978]. 

In the second case, when the teacher also provides counter-examples of the 
given concept, the learning process is considerably simplified. These counter-
examples can be viewed as representing a "different class", and the consistency 
condition (7) provides an obvious limit on the extent to which a hypothesis can 
be generalized. The most useful counter-examples are the so-called "near 
misses" that only slightly differ from positive examples [Winston, 1970, 1977]. 
Such examples place stronger constraints on the generalization process than 
randomly-generated examples. 

In multiple-concept learning one can also distinguish two cases: (i) when 
descriptions Dj of different classes are required to be mutually disjoint, that is, 
no event can satisfy more than one description; and (ii) when they are overlap-
ping. In an overlapping generalization an event may satisfy more than one 
description. In some situations this is desirable. For example, if a patient has 
two diseases, his symptoms should satisfy the descriptions of both diseases, and 
in this case the consistency condition is not applicable. 

An overlapping generalization can be interpreted in such a way that it al-
ways indicates only one decision class. For example, the concept recognition 
rules, Dj ::> Kj, can be applied in a linear order, and the first rule satisfied 
generates the decision. In this case, if a concept description Dj for class Kj con-
tains a conjunctively-linked condition A, and precedes the rule for class K: that 
contains condition ~A, then the condition ~A is superfluous and can be 
removed. As a result, the linearly-ordered recognition rules can be significantly 
simplified. For example, the set of linearly-ordered rules: 

D, ::> K, 
Ό-, ::> K2 
DJ ::> K3 

is logically equivalent to the set of (unordered) rules: 
D, ::> K, 

- D j & D2 ::> K2 
~Dj & ~ D 2 & D3 ::> K3 

There are also other ways to derive a single decision from overlapping rules, 
such as those given in [Davis & Lenat, 1981]. 

The above forms of multiple-concept learning have been implemented in 
inductive programs AQVAL/1 [Michalski, 1973] and AQ11 [Michalski & Larson, 
1978]. 
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4.3 DESCRIPTION LANGUAGE 

4.3.1 Bias Toward Comprehensibility 

In concept acquisition, the main interest is in derivation of symbolic 
descriptions that are human-oriented, that is, that are easy to understand and easy 
to use for creating mental models of the "information they convey. A tentative 
criterion for judging inductive assertions from such a viewpoint is provided by 
the following comprehensibility postulate: 

The results of computer induction should be symbolic descrip-
tions of given entities, semantically and structurally similar to those 
a human expert might produce observing the same entities. Com-
ponents of these descriptions should be comprehensible as single 
"chunks" of information, directly interprétable in natural language, 
and should relate quantitative and qualitative concepts in an in-
tegrated fashion. 

As a practical guide, one can assume that the components of descriptions 
(single sentences, rules, labels on nodes in a hierarchy, and so on) should be 
expressions that contain only a few (say, less than five) conditions in a conjunc-
tion, few single conditions in a disjunction, at most one level of bracketing, at 
most one implication, no more than two quantifiers, and no recursion (the exact 
numbers may be disputed,2 but the principle is clear). Sentences are kept within 
such limits by substituting names for appropriate subcomponents. Any operators 
used in descriptions should have a simple intuitive interpretation. Conceptually 
related sentences are organized into a simple data structure, preferably a shallow 
hierarchy or a linear list, such as a frame [Minsky, 1975]. (See also Chapter 
9 of this book.) 

The rationale behind this postulate is to ensure that descriptions generated 
by inductive inference bear similarity to human knowledge representations 
[Hintzman, 1978], and therefore, are easy to comprehend. This requirement is 

very important for many applications. For example, in developing knowledge 
bases for expert systems, it is important that human experts can easily and reli-
ably verify the inductive assertions and relate them to their own domain 
knowledge. Satisfying the comprehensibility postulate will also facilitate debug-
ging or improving the inductive programs themselves. When the complexity of 
problems undertaken by computer induction becomes very great, the comprehen-
sibility of the generated descriptions will likely be a crucial criterion. This 
research orientation fits well within the role of artificial intelligence envisaged by 
Michie [1977] to study and develop methods for man-machine conceptual inter-
face and knowledge refinement. 

2The numbers mentioned seem to apply to the majority of human descriptive sentences. 
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4.3.2 Language of Assertions 

One of the difficulties with inductive inference is its open-endedness. This 
means that when one makes an inductive assertion about some aspect of reality 
there is no natural limit to the level of detail in which this reality may be 
described, or to the richness of forms in which this assertion can be expressed. 
Consequently, when conducting research in this area, it is necessary to cir-
cumscribe very carefully the goals and the problem to be solved. This includes 
defining the language and the scope of allowed forms in which assertions will be 
expressed, as well as the modes of inference which will be used. The descrip-
tion language should be chosen so that crucial features can be easily encoded 
while peripheral or irrelevant information ignored. 

An instructive criterion for classifying inductive learning methods is there-
fore the type of language used to express inductive assertions. Many authors use 
a restricted form of predicate calculus or closely related notation (for example, 
[Plotkin, 1971; Fikes et al., 1972; Morgan, 1975; Vere, 1975; Banerji, 1980; 
Michalski, 1980a; Sammut, 1981; Zagoruiko, 1981]). Some other formalisms 
include decision trees [Hunt et al., 1966; Quinlan, 1979] (see also Chapter 15 of 
this book), production rules (for example, [Waterman, 1970; Hedrick, 1974] (see 
also Chapter 16 of this book), semantic nets (Chapter 13), and frames (Chapter 
9). In his earlier work (for example, [Michalski, 1972, 1973, 1975a, 1975b] 
this author used a multiple-valued logic propositional calculus with typed vari-
ables, called VLj (the variable-valued logic system one). Later on an extension 
of the predicate calculus, called VL2, was developed, that was especially 
oriented to facilitate inductive inference [Michalski, 980a]. 

Here we will use a somewhat modified and extended version of the latter 
language, to be called the annotated predicate calculus (APC). The APC adds 
to predicate calculus additional forms and new concepts that increase its expres-
sive power and facilitate inductive inference. The major differences between the 
annotated predicate calculus and the conventional predicate calculus can be sum-
marized as follows: 

1. Each predicate, variable and function (referred to collectively as a 
descriptor) is assigned an annotation that contains relevant 
problem- oriented information. The annotation may contain the definition 
of the concept represented by a descriptor, a characterization of its relation-
ship to other concepts, a specification of the set over which the descriptor 
ranges (when it is a variable or a function), a characterization of the struc-
ture of this set, and so on (see Section 4.4). 

2. In addition to predicates, the APC also includes compound predicates. Ar-
guments of such predicates can be compound terms, composed of two or 
more ordinary terms. 

3. Predicates that express relations = , Φ , > , > , < and < between terms or 
between compound terms are expressed explicitly as relational statements, 
also called selectors. 
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4. In addition to the universal and existential quantifiers, there is also a 
numerical quantifier that expresses quantitative information about the ob-
jects satisfying an expression. 
The concept of annotation is explained in more detail in the next section. 

Other aspects of the language are described in the Appendix. (The reader inter-
ested in a thorough understanding of this work is encouraged to read the Appen-
dix at this point.) 

4.4 PROBLEM BACKGROUND KNOWLEDGE 

4.4.1 Basic Components 

As we mentioned earlier, given a set of observational statements, one may 
construct a potentially infinite number of inductive assertions that imply these 
statements. It is therefore necessary to use some additional information, problem 
background knowledge, to constrain the space of possible inductive assertions 
and locate the most desirable one(s). In this section, we shall look at various 
components of the problem background knowledge employed in the inductive 
learning methodology called Star, described in Section 4.6. These components 
include: 

• Information about descriptors (i.e., predicates, variables, or functions) used 
in observational statements. This information is provided by an annotation 
assigned to each descriptor (Section 4.4.3). 

• Assumptions about the form of observational and inductive assertions. 
• A preference criterion that specifies the desirable properties of inductive 

assertions sought. 
• A variety of inference rules, heuristics, and specialized procedures, general 

and problem-dependent, that allow a learning system to generate logical 
consequences of given assertions and new descriptors. 
Before we examine these components in greater detail, let us first consider 

the problem of how the choice of descriptors in the observational statements af-
fects the generated inductive assertions. 

4.4.2 Relevance of the Initial Descriptors 

A fundamental problem underlying any machine inductive learning task is 
that of what information is provided to the machine and what information the 
machine is expected to produce or learn. As specified in the inductive paradigm, 
the major component of the input to a learning system is a set of observational 
statements. The descriptors used in those statements are observable characteris-
tics and available measurements of objects under consideration. These descrip-
tors are selected as relevant to the learning task by a teacher specifying the 
problem. 
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Determining these descriptors is a major part of any inductive learning 
problem. If they capture the essential properties of the objects, the role of the 
learning process is simply to arrange these descriptors into an expression con-
stituting an appropriate inductive assertion. If the selected descriptors are com-
pletely irrelevant to the learning task (as the color, weight, or shape of men in 
chess is irrelevant to deciding the right move), no learning system will be able to 
construct a meaningful inductive assertion. 

There is a range of intermediate possibilities between the above two ex-
tremes. Consequently, learning methods can be characterized on the basis of the 
degree to which the initial descriptors are relevant to the learning problem. 

Three cases can be distinguished: 
1. Complete relevance—In this case all descriptors in the observational state-

ments are assumed to be directly relevant to the learning task. The task of 
the learning system is to formulate an inductive assertion that is a math-
ematical or logical expression of some assumed general form that properly 
relates these descriptors (for example, a regression polynomial). 

2. Partial relevance—Observational statements may contain a large number 
of irrelevant or redundant descriptors. Some of the descriptors, however, 
are relevant. The task of the learning system is to select the most relevant 
ones and construct from them an appropriate inductive assertion. 

3. Indirect relevance—Observational statements may contain no directly-
relevant descriptors. However, among the initial descriptors there are 
some that can be used to construct derived descriptors that are directly 
relevant. The task of the learning system is to construct those derived 
descriptors and formulate an appropriate inductive assertion. A simple 
form of this case occurs, for example, when a relevant descriptor is the 
volume of an object, but the observational statements contain only the in-
formation about the object's dimensions (and various irrelevant facts). 

The above three cases represent problem statements that put progressively 
less demand on the relevance of the initial descriptors (that is, that require less 
work from the person defining the problem) and more demand on the learning 
system. Early work on adaptive control systems and concept formation 
represents case 1. More recent research has dealt with case 2, which is ad-
dressed in selective inductive learning. A method of such learning must possess 
efficient mechanisms for determining combinations of descriptors that are 
relevant and sufficient for the learning task. Formal logic provides such 
mechanisms, and therefore it has become the major underlying formalism for 
selective methods. 

An example of a selective learning method is the one implemented in 
program AQll [Michalski & Larson, 1978] that inductively determined soybean 
disease diagnostic rules for the system PLANT/DS, mentioned in the Introduction. 
A different type of selective method was implemented in program ID3 (Chapter 
15) that determines a decision tree for classifying a large number of events. A 
comparison between these two programs is described by O'Rorke [1982]. 
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Case 3 represents the task of constructive inductive learning. Here, a 
method must be capable of formulating new descriptors (that is, new concepts, 
new variables, and the like), of evaluating their relevance to the learning task 
and of using them to construct inductive assertions. There has been relatively 
little done in this area. The "automated mathematician" program AM (Chapter 9) 
can be classified as a domain-specific system of this category. Some construc-
tive learning capabilities have been incorporated in system BACON that automati-
cally formulates mathematical expressions encapsulating chemical and other laws 
[Langley et al., 1980] (see also Chapter 10). The general-purpose INDUCE 

program for learning structural descriptions from examples incorporates several 
constructive generalization techniques [Larson, 1977; Michalski, 1980a]. Sec-
tions 4.5 and 4.6 give more details on this subject. 

4.4.3 Annotation of Descriptors 

An annotation of a descriptor (that is, of a predicate, variable, or function) 
is a store of background information about this descriptor tailored to the learning 
problem under consideration. It may include: 

• A specification of the domain and the type of the descriptor (see below). 
• A specification of operators applicable to it. 
• A specification of the constraints and the relationships between the descrip-

tor and other descriptors. 
• For numerical descriptors, the mean, the variance, or the complete prob-

ability distribution of values for the problem under consideration. 
• A characterization of objects to which the descriptor is applicable (such as 

a characterization of its possible arguments). 
• A specification of a descriptor class containing the given descriptor, that is, 

the parent node in a generalization hierarchy of descriptors (for example, 
for descriptors "length", "width", and "height", the parent node would be 
the "dimensions"). 

• Synonyms that can be used to denote the descriptor. 
• A definition of a descriptor (when it is derived from some other 

descriptors). 
• If a descriptor denotes a class of objects, typical examples of this class can 

be specified. 
Let us consider some of the above components of the annotation in greater 

detail. 

4.4.4 The Domain and Type of a Descriptor 

Given a specific problem, it is usually possible to specify the set of values 
each descriptor could potentially adopt in characterizing any object in the popula-
tion under consideration. Such a set is called the domain (or the value set) of 
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the descriptor. The domain is used to constrain the extent to which a descriptor 
can be generalized. For example, the information that the temperature of a 
living human being may vary, say, only between 34°C and 44°C prevents the 
system from considering inductive assertions in which the descriptor "body 
temperature" would assume values beyond these limits. 

Other important information for conducting the generalization process is 
concerned with the structure of the domain, that is, with the relationship existing 
among the elements of the domain. For numerical descriptors, such relationships 
are specified by the measurement scale. Depending on the structure of the 
descriptor domain, we distinguish among three basic types of descriptors: 

1. Nominal (categorical) descriptors—The value set of such descriptors con-
sists of independent symbols or names, that is, no structure is assumed to 
relate the values in the domain. For example, "blood-type(person)" and 
"name(person)" are unary nominal descriptors. Predicates, that is, descrip-
tors with the value set {True, False}, and n-ary functions whose ranges are 
unordered sets, are also nominal descriptors. An example of a two-
argument nominal descriptor is "license-plate-number(car, owner)", which 
denotes a function assigning to a specific car of the given owner a license 
plate number. 

2. Linear descriptors—The value set of linear descriptors is a totally ordered 
set. For example, a person's military rank or the temperature, weight, or 
number of items in a set is such a descriptor. Variables measured on or-
dinal, interval, ratio, and absolute scales are special cases of a linear 
descriptor. Functions that map a set into a totally-ordered set are also 
linear descriptors, for example, "distance(Pj,P2)". 

3. Structured descriptors—The value set of such descriptors has a tree-
oriented graph structure that reflects the generalization relation between the 
values, that is, is a generalization hierarchy. A parent node in such a 
structure represents a more general concept than the concepts represented 
by its children nodes. For example, in the value set of descriptor "place", 
"U.S.A." would be a parent node of the nodes "Indiana", "Illinois", 
"Iowa", and so on. The domain of structured descriptors is defined by a 
set of inference rules specified in the problem background knowledge (see, 
for example, descriptor "shape(Bj)" in Section 4.7. 

Structured descriptors can be further subdivided into ordered and unordered 
structured descriptors (see Chapter 11). 

Sometimes, descriptors themselves can also be organized into a generaliza-
tion hierarchy. For example, as already mentioned, the descriptors "length", 
"width", and "depth" belong to a class of "dimensions". Information about the 
type of a descriptor is useful as it determines the operations applicable to a 
descriptor. 
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4.4.5 Constraints on the Description Space 

For a given induction problem there may exist a variety of constraints on 
the space of the acceptable concept descriptions, due to the specific properties 
and relationships among descriptors. Here are a few examples of such relation-
ships: 

• Interdependence among values—In many practical problems some vari-
ables specify a state of an object, and some other variables characterize the 
state. Depending on the values of the state-specifying variables, the vari-
ables characterizing a state may or may not be needed. For example, if a 
descriptor "state(plant's leaf)" takes on value "diseased", then a descriptor 
"leaf discoloration" will be used to characterize the change of the leafs 
color. When the descriptor "state(plant's leaf)" takes on value "normal", 
then obviously the "leaf discoloration" descriptor is irrelevant. Such infor-
mation can be represented by an implication: 

[state(plant's leaf) = normal] Φ [discoloration(plant's leaf) = NA] 
where NA is a special value meaning "not applicable". 

• Properties of descriptors—Descriptors that are relations between objects 
may have certain general properties—they can be reflexive, symmetric, 
transitive, and so on. All such properties are defined as assertions in the 
annotated predicate calculus (see the Appendix). For example, the tran-
sitivity of relation "above(Pj ,P2)" can be defined as: 

V Pi,P2,P3, (above(P!,P2) & above(P2,P3)) Φ above(Pj,P3) 
• Interrelationships among descriptors—In some problems there may exist 

relationships between descriptors that constrain their values. For example, 
the length of an object is assumed always to be greater than or equal to its 
width: 

V P, length(P) > width(P) 
Also, descriptors may be related by known equations. For example, the 
area of a rectangle is the arithmetic product of its length and width: 

V P, ([shape(P) = rectangle] Φ [area(P) = length(P) x width(P)]) 
The infix operator " x " is used to simplify notation of the term 
multiply(length(P), width(P)). 

4.4.6 The Form of Observational and Inductive Assertions 

The basic form of assertions in the Star methodology is a c-expression, 
defined as a conjunctive statement: 

<quantifier form><conjunction of relational statements> (8) 
where <quantifier form> stands for zero or more quantifiers, and <relational 
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statements> are predicates in a special form, as defined in the Appendix. The 
following is an example of a c-expression: 

3.P0,P1,P2,P3([contains(P0,P1,P2,P3)][ontop(P1&P2,P3)][length(P1) = 3..5] 
[weight^) > weight(P2][color(P1) = red V blueHshapeiPj & P2 & P3) = box] 

that can be paraphrased in English: 

An object P0 contains parts Pj, P2 and P3 and only these parts. Parts 
Pj & P2 are on top of part P3, length of Pj is between 3 and 5, the weight 
of P{ is greater than that of P2, the color of Px is red or blue, and the 
shape of all three parts is box. 

An important special case of a c-expression is an a-expression (an atomic 
expression), in which there is no "internal disjunction" (see the Appendix). 

Note that due to the use of internal disjunction a c-expression represents a 
more general concept than a universally quantified conjunction of predicates, 
used in typical production rules. 

Progressively more complex forms of expressions are described below: 

• A case expression is a logical product of implications: 

[L = aj => Expj, i = 1,2,... 

where a, are single elements or disjoint subsets of elements from the 
domain of descriptor L, and Expj are c-expressions. 

A case expression describes a class of objects by splitting it into 
separate cases, each represented by a different value(s) of a certain descrip-
tor. 

• An implicative expression (i-expression): 

C & (Cx => C2) (9) 

where C, Cx and C2 are c-expressions. 
This form of description is very useful when the occurrence of some 

properties (defined in C2) depends on the occurrence of some other 
properties (defined in C{). Typical production rules used in expert systems 
are a special case of (9), where C is omitted and no internal logical 
operators are used. When (Cj φ C2) is omitted, then the conditional ex-
pression becomes a c-expression. 

• A disjunctive expression (d-expression), defined as a disjunction of im-
plicative expressions. 

• An exception-based expression (e-expression). In some situations it is 
simpler to formulate a somewhat overgeneralized statement and indicate 
exceptions than to formulate a precise statement. The following form is 
used for such purposes: 

Dj \ D 2 

where Dj and D2 are d-expressions. This expression is equivalent to 
(~D2 φ Di) & (D2 φ -DO. 
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Observational assertions are formulated as a set of rules: 
{a-expression ::> Kj} (10) 
Inductive assertions are expressed as a set of rules: 
{EXP ::> c-expression} (11) 

where EXP is a c-expression or any of the more complex expressions 
described above. It is also assumed that the left side and the right side of 
(11) satisfy the principle of comprehensibility described in Section 4.2. 

4.4.7 The Preference Criterion 

In spite of the constraints imposed by the above components of the back-
ground knowledge, the number of inductive assertions consistent with obser-
vational statements may still be unlimited. The problem then arises of choosing 
the most desirable inductive assertion(s). In making such a choice, one must 
take into consideration the aspects of the particular inductive learning problem; 
therefore the definition of a "preference criterion" for selecting a hypothesis is a 
part of the problem background knowledge. Typically, the inductive assertions 
are chosen on the basis of some simplicity criterion (such as given in [Kemeni, 
1953; Post, I960]). 

In the context of scientific discovery, philosopher Karl Popper [1968] has 
advocated constructing hypotheses that are both simple and easy to refute. By 
generating such hypotheses and conducting experiments aimed at refuting them, 
he argues, one has the best chance of ultimately formulating the true hypothesis. 
In order to use this criterion for automated inductive inference, it is necessary to 
define it formally. This, however, is not easy because there does not seem to 
exist any universal measure of hypothesis simplicity and refutability. 

Among more specific measures for evaluating the "quality" of inductive 
assertions one may list: 

• An overall simplicity for human comprehension, measured, for example, 
by the number of descriptors and number of operators used in an inductive 
assertion. 

• The degree of "fit" between the inductive and observational assertions 
(measured, for example, by the degree of generalization, defined as the 
amount of uncertainty that any given description satisfying the inductive 
assertion corresponds to some observational statement [Michalski, 980c]). 

• The cost of measuring values of descriptors used in the inductive assertion. 
• The computational cost of evaluating the inductive assertion. 
• The memory required for storing the inductive assertion. 
• The amount of information needed for encoding the assertion using 

predefined operators [Coulon & Kayser, 1978]. 
The importance given to each such measure depends on the ultimate pur-
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pose of constructing the inductive assertions. For that reason, the Star methodol-
ogy allows a user to build a global preference criterion as a function of such 
measures, tailored to a specific inductive problem. Since some of the above 
measures are computationally costly, simpler measures are used, called elemen-
tary criteria. Among such criteria are: the number of c-expressions in the asser-
tion, the total number of relational statements, the ratio of possible but unseen 
events implied by an assertion to the total number of training events (a simple 
measure of generalization), and the total number of different descriptors. The 
global preference criterion is formulated by selecting from the above list those 
elementary criteria that are most relevant to the problem, and then arranging 
them into a lexicographic evaluation functional (LEF). A LEF is defined as a 
sequence of criterion-tolerance pairs: 

L E F : ( C , , T , ) , (C2,T2)... (12) 

where Cj is an elementary criterion selected from the available "menu", and η is 
a tolerance threshold for criterion Cj (Tj 6 [0..100%]). 

Given a set of inductive assertions, the LEF determines the most preferable 
one(s) in the following way: 

In the first step, all assertions are evaluated from the viewpoint of criterion 
Cj, and those which score best, or within the range defined by the threshold Tj 
from the best, are retained. Next the retained assertions are evaluated from the 
viewpoint of criterion c2 and reduced similarly as above, using tolerance τ2. 
This process continues until either the subset of retained assertions contains only 
one assertion (the "best" one) or the sequence of criterion-tolerance pairs is ex-
hausted. In the latter case, the retained set contains assertions that are equivalent 
from the viewpoint of the LEF. 

An important and somewhat surprising property of such an approach is that 
the same learning system can generate either characteristic or discriminant 
descriptions of object classes by properly defining the preference criterion (see 
Section 4.7). 

4.5 GENERALIZATION RULES 

4.5.1 Definitions and an Overview 

Constructing an inductive assertion from observational statements can be 
conceptually characterized as a heuristic state-space search [Nilsson, 1980], 
where: 

• states are symbolic descriptions; the initial state is the set of observational 
statements. 

• operators are inference rules, specifically, generalization, specialization 
and reformulation rules, as defined below. 

• the goal state is an inductive assertion that implies the observational state-
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ments, satisfies the problem background knowledge and maximizes the 
given preference criterion. 
A generalization rule is a transformation of a description into a more 

general description, one that tautologically implies the initial description. A 
specialization rule makes an opposite transformation: given a description, it 
generates a logical consequence of it. A reformulation rule transforms a descrip-
tion into another, logically-equivalent description. A reformulation rule can be 
viewed as a special case of a generalization and a specialization rule. 

Specialization and reformulation rules are the conventional truth-preserving 
inference rules used in deductive logic. In contrast to them, the generalization 
rules are not truth-preserving but falsity preserving. This means that if an event 
falsifies some description, then it also falsifies a more general description. This 
is immediately seen by observing that H φ F is equivalent to ~F φ ~Η (the 
law of contraposition). To illustrate this point, suppose that a statement "some 
water birds in this lake are swans" has been generalized to "all water birds in 
this lake are swans." If there are no water birds in the lake that are swans, then 
this fact falsifies not only the first statement but also the second. Falsifying the 
second statement, however, does not imply the falsification of the first. 

In concept acquisition, as explained in Section 4.2.2, transforming a rule 
E ::> K into a more general rule D ::> K means that description E must 
imply description D: 

E=>D (13) 
(recall expression (6)). Thus, to obtain a generalization rule for concept acquisi-
tion, one may use a tautological implication of formal logic. The premise and 
consequence of such an implication must, however, be interprétable as a descrip-
tion of a class of objects. For example, the known law of simplification: 

P & Q ^ P (14) 
can be turned into a generalization rule: 

P & Q ::> K K P ::> K (15) 
If P stands for "round objects", Q for "brown objects" and K for "balls", 

then rule (15) states that the expression "round and brown objects are balls" can 
be generalized to "round objects are balls." Thus, in concept acquisition, the 
generalization operation has a simple set-theoretical interpretation: a description 
is more general if it is satisfied by a larger number of objects. (Such an inter-
pretation does not apply, however, to descriptive generalization, as shown 
below.) 

In order to obtain a rule for descriptive generalization, implication (14) is 
reversed, and P and Q are interpreted as properties of objects of some class K: 

P(K) l< P(K)&Q(K) (16) 
If P(K) stands for "balls are round" and Q(K) for "balls are brown," then 

according to rule (16), the statement "balls are round and brown" is a generaliza-
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tion of the statement "balls are round" (because from the former one can deduce 
the latter). We can see that the notion "the number of objects satisfying a 
description" is not applicable here. Generalizing means here adding 
(hypothesizing) properties that are ascribed to a class of objects. 

After this informal introduction we shall now present various fypes of 
generalization rules, concentrating primarily on the rules for concept acquisition. 
These rules will be expressed using the notation of the annotated predicate cal-
culus (see the Appendix). The reverse of these rules are specialization rules and, 
as special cases, reformulation rules. With regard to other specialization and 
reformulation rules we shall refer the reader to a standard book on predicate cal-
culus (such as [Suppes, 1957]). Some reformulation rules of the annotated 
predicate calculus that do not occur in ordinary predicate calculus are given in 
the Appendix. 

We will restrict our attention to generalization rules that transform one or 
more statements into a single more general statement: 

{Di ::> K } i € l l< D ::> K (17) 
Such a rule states that if an event (a symbolic description of an object or 

situation) satisfies any description Dv i £ I, then it also satisfies description D 
(the reverse may not be true). A basic property of the generalization transfor-
mation is that the resulting description has "unknown" truth-status, that is, is a 
hypothesis that must be tested on new data. A generalization rule does not 
guarantee that the obtained description is useful or plausible. 

We distinguish between two types of generalization rules, selective and 
constructive. If every descriptor used in the generated concept description D is 
among descriptors occurring in the initial concept descriptions Dj, i= 1,2,..., then 
the rule is selective, otherwise it is constructive. 

4.5.2 Selective Generalization Rules 

In the rules presented below, CTX, CTXj and CTX2 stand for some ar-
bitrary expressions (context descriptions) that are augmented by additional com-
ponents to formulate a concept description. 
• The dropping condition rule—This rule is a generalized version of the 
previously described rule (15): 

CTX & S ::> K l< CTX ::> K (18) 
where S is an arbitrary predicate or logical expression. 

This rule states that a concept description can be generalized by simply 
removing a conjunctively-linked expression. This is one of the most commonly-
used rules for generalizing information. 
• The adding alternative rule: 

CTXj ::> K K CTX! V CTX2 ::> K (19) 
A concept description can be generalized by adding, through the use of 
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logical disjunction, an alternative to it. An especially useful form of this rule is 
when the alternative is added by extending the scope of permissible values of 
one specific descriptor. Such an operation can be expressed very simply by 
using the internal disjunction operator of the annotated predicate calculus. For 
example, suppose that a concept description is generalized by allowing objects to 
be not only red but also blue. This can be expressed as follows: 

CTX& [color = red] ::> K l< CTX&[color = red V blue] ::> K (20) 
(Forms in brackets are selectors; the expressions on the right of ' = ' are called 
references—see the Appendix) · 

Because of the importance of this special case, it will be presented as a 
separate general rule. 
• The extending reference rule: 

CTX&[L = R!] ::> K K CTX & [L = R2] ::> K (21) 
where Rj Ç R 2 Ç DOM(L) and DOM(L) denotes the domain of L. 

In this rule, L is a term, and Rj and R2 (references) are internal disjunc-
tions of values of L. References Rj and R2 can be interpreted as sets of values 
that descriptor L can take in order to satisfy the concept description. 

The rule states that a concept description can be generalized by enlarging 
the reference of a descriptor (R2 3 Rj). The elements added to R2 must, 
however, be from the domain of L. 

If R2 is extended to be the whole domain, that is, R2 = DOM(L), then the 
selector [L = DOM(L)] is always true, and therefore can be removed. In this 
case, the extending reference rule becomes the dropping condition rule. There 
are two other special cases of the extending reference rule. They take into con-
sideration the type of the descriptor L [defined by the structure of DOM(L)]. 
They are presented as separate rules below. 
• The closing interval rule: 

CTX&[L = a] ::> K I 
< CTX& [L = a..b] ::> K (22) 

CTX&[L = b] ::> K | 
where L is a linear descriptor, and a and b are some specific values of descriptor 
L. The two premises are assumed to be connected by the logical conjunction 
(this convention holds for the remaining rules as well). 

The rule states that if two descriptions of the same class (the premises of 
the rule) differ in the values of only one linear descriptor, then the descriptions 
can be replaced by a single description in which the reference of the descriptor is 
the interval linking these two values. 

To illustrate this rule, consider as objects two states of a machine, and K 
as a class of normal states. The rule says that if a machine is in the normal state 
for two different temperatures, say a and b, then a hypothesis is made that all 
states in which the temperature falls into the interval [a,b] are also normal. 
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Thus, this rule is not only a logically-valid generalization rule, but expresses also 
some aspect of plausibility. 
• The climbing generalization tree rule 

< C T X & [ L = s] ::> K (23) 

CTX&[L = a] ::> K 

CTX&[L = b] ::> K 
(one or 
more 
statements) 

CTX&[L = i] ::> K 
where L is a structured descriptor, and s represents the lowest parent node whose 
descendants include nodes a, b, ... and i, in the generalization tree domain of L. 

The rule is applicable only to descriptions involving structured descriptors, 
and is used in various forms in, for example [Winston, 1977; Hedrick, 1974; 
Lenat, 1976] (see also Chapters 11 and 6 of this book). The following example 
illustrates the rule: 

< 3 P, CTX& [shape(P) = polygon] ::> K 
3 P, CTX & [shape(P) = triangle] ::> 

3 P, CTX & [shape(P) = rectangle] ::> 

Paraphrasing this rule in English: if an object of class K is triangular and 
another object of this class is rectangular, then the rule generates a statement that 
objects of class k are polygonal. 
• The turning constraints into variables rule—This rule is best known for the 
case of descriptive generalization: 

(one or 
more 
statements) 

FM 
F[&] 

F[/] 

< V v, F[v] (24) 

where F[v] stands for some description (formula) dependent on variable v, and a, 
b, ... are constants. 

If some description F[v] holds for v being a constant a or constant b, and 
so on, then the rule generalizes these observations into a statement that F[v] 
holds for every value of v. This is the rule used most often in methods of induc-
tive inference employing predicate calculus. 

A corresponding rule for concept acquisition is: 

F[a] & ¥[b] & ... ::> K K 3 v, F[v] ::> K (25) 
To illustrate this version, assume that a, b, and so on, are parts of an ob-

ject of class K that have a property F. Rule (25) generalizes these facts into an 
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assertion that if any part of an object has property F then the object belongs to 
class K. 
• The turning conjunction into disjunction rule: 

F, & F2 ::> K l< F, V F2 ::> K (26) 
where Fj and F2 are arbitrary descriptions. 

A concept description can be generalized by replacing the conjunction 
operator by the disjunction operator. 
• The extending the quantification domain rule—In the simplest case, the rule 
changes the universal quantifier into the existential quantifier: 

V v, F[x] ::> K K 3 v, F[v] ::> K (27) 
This rule can be viewed as a generalization of the previous rule (26). 

Using the concept of numerical quantifier (see the Appendix) this rule can be 
expressed in an even more general way: 

3(l!)v, F[v] ::> K K 3 (I2)v, F[v] ::> K (28) 
where Ij , I2 are the quantification domains (sets of integers) satisfying relation Ij 

For example, the statement "if an object has two parts (Ij={2}) with 
property F, then it belongs to class K" can be generalized by rule (28) to a state-
ment "if an object has two or more parts (I2 = {2,3,...}) with property F then it 
belongs to class K." 
• The inductive resolution rule 

(i) As applied to concept acquisition 
The deductive inference rule, called the resolution principle, widely 

used in automatic theorem proving, can be adopted as a rule of generaliza-
tion for concept acquisition. In propositional form, the resolution principle 
can be expressed as: 

(P φ F,) & (~P φ F2) l> ¥x V F2 (29) 
where P is a predicate and Fl and F2 are arbitrary formulas. By inter-
preting both sides of (29) as concept descriptions, and making appropriate 
transformations we obtain: 

P & F , ::> K I 
< Fj V F 2 ::> K (30) 

~ P & F 2 ::> K | 
To illustrate this rule, assume that K is the set of situations when 

John goes to a movie. Suppose that it has been observed that he goes to a 
movie when he has company (P) and the movie has high rating (Fj), or 
when he does not have company (~P), but has plenty of time (F2). Rule 
(30) generalizes these two observations to a statement "John goes to a 
movie when either the movie has high rating or he has plenty of time." 
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(ii) As applied to descriptive generalization 
By applying logical equivalence (Q l> P) <=> (~P l> ~Q) (the 

law of contraposition) to expression (29), then reversing the obtained rule 
and substituting the negative literals by the positive, we obtain: 

P&Fj V ~P & F2 l< Fj & F2 (31) 
This version has been formulated by Morgan (1975). 
Both versions, (i) and (ii), can be generalized by applying the full-fledged 

resolution principle that uses predicates with arguments, and the unification algo-
rithm to unify these arguments (for example, [Chang & Lee, 1973]). 
• The extension against rule: 

C T X j & t l ^ R i ] ::> K 
< [L^R 2 ] ::> K (32) 

CTX 2 &[L = R2] ::> ~K 
where sets Rj and R2 are assumed to be disjoint. 

Given a description of an object belonging to class K (a positive example), 
and a description of an object not belonging to this class (a negative example), 
the rule produces the most general statement consistent with these two descrip-
tions. It is an assertion that classifies an object as belonging to class K if 
descriptor L does not take any value from the set R2, thus ignoring context 
descriptions CTXj and CTX2. This rule is the basic rule for learning dis-
criminant descriptions from examples used in the previously-mentioned inductive 
program AQii [Michalski & Larson, 1978]. Various modifications of this rule 
can be obtained by replacing reference R2 in the output assertion by some super-
set of it that does not intersect with Rj. 

4.5.3 Constructive Generalization Rules 

Constructive generalization rules generate inductive assertions that use 
descriptors not present in the original observational statements. This means that 
the rules perform a transformation of the original representation space. The fol-
lowing is a general constructive rule that makes such a transformation by apply-
ing the knowledge of a relationship between different concepts. It is assumed 
that this relationship is known to the learning system as background knowledge, 
as a previously-learned concept, or that it is computed according to user-defined 
procedures. 

CTX & F! ::> K I 
< CTX & F2 ::> K (33) 

Fi => F 2 I 
The rule states that if a concept description contains a part Fj (a concept, a 

subdescription, and so on) that is known to imply some other concept F2, then a 
more general description is obtained by replacing Fj by F2. For example, sup-
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pose a learning system is told that if an object is black, wide and long, then it 
belongs to class K (for example, it is a blackboard). This can be expressed in 
the annotated predicate calculus: 

3 P, [color(P) = black][width(P) & length(P) = large] ::> K 
Suppose the learner already knows that: 

V P, ([width(P) & length(P) = large] => [area(P) = large]) 

Then rule (33) produces a generalization: 

3 P, [color(P) = black][area(P) = large] ::> K 
As another example, suppose the system is given a description of an object 

classified as an arch. This description states that a horizontal bar is on top of 
two equal objects placed apart, B{ and B2, having certain color, weight, shape, 
and so on. Suppose now that characterizations of Bj and B2 in this description 
satisfy a previously-learned concept of a block. Then rule (33) generates an 
assertion that an arch is a bar on top of two blocks placed apart. This rule is the 
basis for an interactive concept learning system developed by Sammut [1981]. 

Specific constructive generalization rules can be obtained from (33) by 
evoking procedures computing new descriptors in expression F2 as functions of 
initial or previously-derived descriptors (contained in Fj). Here are some ex-
amples of rules for generating new descriptors. 
• Counting arguments rules 

(i) The CQ rule (count quantified variables)—If a concept description is in the 
form: 

3 . V!,v2,...,vk, F[v,,v2,...,vk] 
then the rule generates descriptors "#v-COND" representing the number of 
Vj's that satisfy some condition COND. This condition expresses selected 
properties of Vj's specified in the concept description. Since many such 
COND's can usually be formulated, the rule allows the system to generate 
a large number of such descriptors. 

For example, if the COND is "[attribute{(ν{) = R]", then the 
generated descriptor will be '^Vj-attributepR" counting the number of Vj's 
that satisfy this condition. If the attributej is, for instance, length, and R 
is [2..4], then the derived descriptor is "#vrlength-2..4" (that is, it 
measures the number of Vj's whose length is between 2 and 4, inclusively). 

(ii) The CA-rule (count arguments of a predicate)—If a descriptor in a 
description is a relation with several arguments, REL(vj,v2,...), the rule 
generates descriptors "#v-COND", measuring the number of arguments in 
REL that satisfy some condition COND. As above, many such descriptors 
can be generated, each with different COND. 

The annotation of a descriptor provides information about its 
properties. Such a property may be that a descriptor is, for instance, a 
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transitive relation, such as relation "above", "inside", "left-of", and 
"before". For example, if the relation is "contains(A,Bj,B2,...)", stating 
that object A contains objects Bl,B2,.., and COND is "large and red", then 
the derived descriptor "#B-large-red-A-contains" measures the number of 
Brs contained in A that are large and red. 

• The generating chain properties rule—If the arguments of different occur-
rences of a transitive, relation in a concept description form a chain (that is, form 
a sequence of consecutive objects ordered by this relation), the rule generates 
descriptors characterizing some specific objects in the chain. Such objects may 
be: 

LST-object the "least object",or the object at the beginning of the chain (for 
example, the bottom object in the case of the relation "above"). 

MST-object the object at the end of the chain (for example, the top object). 
MID-object the objects in the middle of the chain. 
Nth-object the object in the Nth position in the chain (starting from LST-

object). 

After identifying these objects, the rule investigates all known properties of them 
(as specified in the observational statements) in order to determine potentially 
relevant new descriptors. The rule also generates a descriptor characterizing the 
chain itself, namely: 

REL-chain-length: the length of the chain defined by relation REL. 
For example, if the REL is ON-TOP, then descriptor ON-TOP-chain-length 
would specify the height of a stack of objects. When a new description is 
generated and adopted, an annotation for it is also generated and filled out, as in 
Lenat [1976]. This rule can be extended to a partial order relation. In such a 
case it becomes the "find extrema of a partial order" rule. 
• The detecting descriptor interdependence rule—Suppose that given is a set of 
objects exemplifying some concept, and that attribute descriptions are used to 
characterize these objects. Such descriptions specify only attribute values of the 
objects; they do not characterize the objects' structure. Suppose that the values a 
linear descriptor x takes on in all descriptions (events) are ordered in increasing 
order. If the corresponding values of another linear descriptor y exhibit an in-
creasing or decreasing order, then a two-place descriptor: 

M(x,y) 
is created, signifying that x and y have a monotonie relationship. This descriptor 
has value f when y values are increasing and value I when they are decreas-
ing. 

The idea of the above M-descriptor can be extended in two directions. 
The first is to create M-descriptors dependent on some condition COND that 
must be satisfied by the events under consideration: 
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M(x,y)-COND 
For example, descriptor: 

M(length ,weight)-red 
states that length and weight have a monotonie relationship for red objects. 

The second direction of extension is to relax the requirement for the 
monotonie relationship; that is, not to require that the order of y values is strictly 
increasing (or decreasing), but only approximately increasing (or decreasing). 
For example, the coefficient of statistical correlation between x and y can be 
measured, and when its absolute value is above a certain threshold, a descriptor 
R(x,y) is created. The domain of this R- descriptor can also be { f , J, }, in-
dicating the positive or negative correlation, respectively, or it can have values 
representing several subranges of the correlation coefficient. Similarly, as in the 
case of M- descriptors, R-descriptors can be extended to R-COND descriptors. 

The M- or R-descriptors can be used to generate new descriptors. For ex-
ample, if [M(x,y) = Î ], then a new descriptor z = x/y can be generated. If z 
assumes a constant or nearly-constant value, then an important relationship has 
been discovered. Similarly, if [M(x,y) = I ] then a new descriptor z = xXy 
can be generated. These two techniques for generating new descriptors have 
been successfully used in the BACON system for discovering mathematical ex-
pressions representing physical or chemical laws, as described in Chapter 10 of 
this book. 

The above ideas can be extended to structural descriptions. Such descrip-
tions involve not only global properties of objects, but also properties of objects' 
parts and the relationships among the parts. Suppose that in a structural descrip-
tion of an object, existentially-quantified variables Pj,P2,...,Pm denote its parts. 
If x(Pj) and y(Pj) are linear descriptors of Pj (for example, numerical attributes 
characterizing parts Pj, i=l,2,...), the above-described techniques for generating 
M- and R- descriptors can be applied. 

4.6 THE STAR METHODOLOGY 

4.6.1 The Concept of a Star 

The methodology presented here for learning structural descriptions from 
examples receives its name from the major concept employed in it, that of a 
star. In the most general sense, a star of an event e under constraints E is a set 
of all possible alternative non-redundant descriptions of event e that do not vio-
late constraints E. A somewhat more restrictive definition of a star will be used 
here. Let e be an example of a concept to be learned and E be a set of some 
counterexamples of this concept. A star of the event e against the event set E, 
denoted G(elE), is defined as the set of all maximally general c-expressions that 
cover (that is, are satisfied by) event e and that do not cover any of the negative 
events in E. 
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The c-expressions in a star may contain derived descriptors, that is, 
descriptors not present in the observational statements. In such a case, testing 
whether event e satisfies a given description requires that appropriate transfor-
mations be applied to the event. Such a process can be viewed as proving that 
the event implies the description, and therefore methods of automatic theorem 
proving could be used. 

In practical problems, a star of an event may contain a very large number 
of descriptions. Consequently, such a theoretical star is replaced by a bounded 
star G(elE,m) that contains no more than a fixed number, m, of descriptions. 
These m descriptions are selected as the m most preferable descriptions, among 
the remaining ones, according to the preference criterion defined in the problem 
background knowledge. Variable m is a parameter of the learning program, 
defined either by the user or by the program itself, as a function of the available 
computational resources. 

Chapter 11 of this book gives an illustration and an algorithm for generat-
ing a bounded star with c-expressions restricted to attribute expressions (that 
is,expressions involving only object attributes). Section 4.6.3 presents an algo-
rithm for generating a bounded star consisting of regular c-expressions. The 
concept of a star is useful because it reduces the problem of finding a complete 
description of a concept to subproblems of finding consistent descriptions of 
single positive examples of the concept. 

Since any single example of a concept can always be characterized by a 
conjunctive expression (a logical product of some predicates), elements of a star 
can always be represented by conjunctive descriptions. One should also notice 
that if the concept to be learned is describable by a c-expression, then this 
description clearly will be among the elements of a (non-bounded) star of any 
single positive example of the concept. Consequently, if there exists a positive 
example not covered by any description of such a star, then the complete concept 
description must be disjunctive, that is, must include more than one c-
expression. 

4.6.2 Outline of the General Algorithm 

It is assumed that every observational statement is in the form: 
a-expression ::> K (34) 

where a-expression is an atomic expression describing an object (recall Section 
4.4.6) and K is the concept exemplified by this object. 

It is also assumed that inductive assertions are in the form of a single c-
expression or the disjunction of c-expressions. For simplicity we will restrict our 
attention to only single-concept learning. In the case of multiple-concept learn-
ing, the algorithm is repeated for each concept with modifications depending on 
the assumed interdependence among the concept descriptions (Section 4.2.4). 

Let POS and NEG denote sets of events representing positive and negative 
examples of a concept, respectively. A general and simplified version of the 
Star methodology can be described as follows: 
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1. Randomly select an event e from POS. 
2. Generate a bounded star, G(elNEG,m), of the event e against the set of 

negative examples NEG, with no more than m elements. In the process of 
star generation apply generalization rules (both selective and constructive), 
task-specific rules, heuristics for generating new descriptors supplied by 
problem background knowledge, and definitions of previously-learned con-
cepts. 

3. In the obtained star, find a description D with the highest preference ac-
cording to the assumed preference criterion LEF. 

4. If description D covers set POS completely, then go to step 6. 
5. Otherwise, reduce the set POS to contain only events not covered by D, 

and repeat the whole process from step l. 
6. The disjunction of all generated descriptions D is a complete and consistent 

concept description. As a final step, apply various reformulation rules 
(defined in the problem background knowledge) and "contracting" rules 
[equations (8) and (9) in the Appendix] in order to obtain a possibly 
simpler expression. 

This algorithm is a simplified version of the general covering algorithm AQ 
[Michalski, 1975b]. The main difference is that algorithm A 9 selects the initial 
events (if possible) from events not covered by any of the descriptions of 
generated stars, rather than not covered by only the selected descriptions D. This 
way the algorithm is able to determine a bound on the maximum number of 
separate descriptions in a disjunction needed to define the concept. Such a 
process may, however, be computationally costly. 

The above algorithm describes only single-step learning. If, after generat-
ing a concept description, a newly-presented training event contradicts it, 
specialization or generalization rules are applied to generate a new consistent 
concept description. A method for such incremental learning is described in 
[Michalski & Larson, 1978]. (See also Chapter 8 of this book.) 

The central step in the above methodology is the generation of a bounded 
star. This can be done using a variety of methods. Thus, the above Star 
methodology can be viewed as a general schema for implementing various learn-
ing methods and strategies. The next section describes one specific method of 
star generation. 

4.6.3 Star Generation: The INDUCE Method 

This method generates a bounded star G(elNEG,m) by starting with a set 
of expressions that are single selectors, either extracted from the event for which 
the star is generated or inferred from the event by applying constructive 
generalization rules or inference rules provided by background knowledge. 
These expressions are then specialized by adding other selectors until consistency 
is achieved (that is, until each expression does not intersect with set NEG). 
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Next, the obtained consistent expressions are generalized so that each achieves 
the maximum coverage of the remaining positive training examples. The best 
consistent m so obtained and the generalized c-expressions (if some are also 
complete, then they are alternative solutions) constitute the bounded star sought, 
G(elNEG,m). Specifically, the steps of the procedure are: 

1. In the first step individual selectors of event e are put on the list called PS. 
This list is called a partial star, because its elements may cover some 
events in NEG. These initial elements of PS (single selectors from e) can 
be viewed as generalizations of event e obtained by applying in all possible 
ways the dropping condition generalization rule (each application drops all 
selectors except one). Elements of the partial star PS are then ordered 
from the most to the least preferred according to a preference criterion: 

LEFj = <(-negcov,Tj), (poscov, τ2)> (35) 
where negcov and poscov are numbers of negative and positive examples, 
respectively, covered by an expression in the star, and Tj and τ2 are 
tolerances (recall Section 4.4.7). 

The LEFj minimizes the negcov (by maximizing the -negcov) and 
maximizes poscov. 

2. The list PS is then expanded by adding new selectors obtained by applying 
the following inference rules to the event e: 

a. the constructive generalization rules (Section 4.5.3) 
b. the problem-specific heuristics defined in the background knowledge 
c. the definitions of the previously-learned concepts (to determine 

whether parts of e satisfy some already known concepts) 
3. Each new selector is inserted in the appropriate place in list PS, according 

to preference criterion LEFj. The size of PS is kept within the limit 
defined by parameter m by removing from PS all but the m most preferred 
selectors. 

4. Descriptions in PS are tested for consistency and completeness. A descrip-
tion is consistent if negcov = 0 (that is, if it covers no events in NEG) 
and is complete if poscov is equal to the total number of positive ex-
amples. Consistent and complete descriptions are removed from PS and 
put on the list called SOLUTIONS. If the size of the list SOLUTIONS is 
greater than a parameter #SOL, then the algorithm stops. Parameter 
#SOL determines the number of desired alternative concept descriptions. 
Incomplete but consistent descriptions are removed from the list PS and put 
on the list called CONSISTENT. If the size of the CONSISTENT list is 
greater than a parameter #CONS, then control is transferred to step 6. 

5. Each expression in PS is specialized in various ways by appending to it a 
single selector from the original list PS. Appended selectors must be of 
lower preference than the last selector in the conjunctive expression 
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(initially, the expression has only one selector). Parameter %BRANCH 
specifies the percentage of the selectors ranked lower (by the preference 
criterion) than the last selector in the current conjunction. If %BRANCH 
= 100%, all lower preference selectors are singly appended—that is, the 
number of new expressions generated from this conjunction will be equal 
to the total number of selectors having lower preference than the last selec-
tor in the conjunction. All newly-obtained expressions are ranked by LEFj 
and only the m best are retained. This "expression growing" process is 
illustrated in Figure 4-1. 

Steps 4 and 5 are repeated until the CONSISTENT list contains the number of 
expressions specified by parameter #CONS, or until the time allocated for this 
process is exhausted. 

6. Each expression on the CONSISTENT list is generalized by applying the 
extension against, closing the interval, and climbing generalization tree 
generalization rules. An efficient way to implement such a process is to 
transform the original structural-description space into an attribute-
description space. Attributes (that is, descriptions with zero arguments) 
defining this space are created from the descriptors in the given expression 
on the CONSISTENT list in a manner such as that described in Section 
3.2.3.2 of Chapter 3 in this book. The generalization of the obtained at-
tribute descriptions is accomplished by the star generation procedure, 
analogous to the one described in Chapter 11 of this book. Details of this 
process of transforming structural descriptions into attribute descriptions are 
described by Larson [1977]. The reason for such a transformation is that 
structural descriptions are represented as labeled graphs while attribute 
descriptions are represented as binary strings. It is computationally much 
more economical to handle binary strings than labeled graphs. 

7. The obtained generalizations are ranked according to the global preference 
criterion LEF defined in the background knowledge. To obtain a dis-
criminant description, a typical LEF is to maximize the number of events 
covered in POS set and to minimize the complexity of the expression 
(measured, for example, by the number of selectors it contains). The m 
best expressions so determined constitute the bounded star G(elNEG,m). 
The Star algorithm and a somewhat restricted version of the above-

described star generation algorithm has been implemented in various incarnations 
of the INDUCE learning program [Larson, 1977; Dietterich, 1978; Michalski, 
1980a; Hoff et al, 1982]. 

4.7 AN EXAMPLE 

To illustrate the inductive learning methodology just presented, let us con-
sider a simple problem in the area of conceptual data analysis. Suppose we are 



MICHALSKI 117 

JA, - a disregarded rule 
9 - an active rule 
£ - a terminal node denoting a consistent c-expression 
^ - a terminal node denoting a consistent and complete c-expression (a 

solution) 
The nodes in the first column are selectors extracted from the event e or 
derived from e by applying inference rules. Each arc represents an 
operation of adding a new selector to the current c-expression. 
Figure 4-1: Illustration of the process of generating a reduced star RG(elNEG,m). 
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DNC DNN 

Figure 4-2: "Cancerous" and "Normal" cells. 
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given examples of "cancerous" and "normal" cells, denoted DNC and DNN, 
respectively, in Figure 4-2, and the task of the analysis is: 

• to determine properties differentiating the two classes of cells (that is, to 
find discriminant descriptions of each class) 

• to determine important common properties of the cancerous and the normal 
cells (that is, to find characteristic descriptions of each class). 
An assumption is made that the properties to be discovered may involve 

both quantitative information about the cells and their components, and qualita-
tive information, expressed by nominal variables and relationships existing 
among the components. 

The solution to the problem posed (or similar problems) can be obtained by 
a successive repetition of the "focus attention—»hypothesize—»test" cycle 
described below. 

The "focus attention" phase is concerned with defining the scope of the 
problem under consideration. This includes selecting descriptors appearing to be 
relevant, specifying underlying assumptions, and formulating the relevant 
problem knowledge. This first phase is performed by a researcher; it involves 
his/her technical knowledge and informal intuitions. The third, the "test" phase, 
examines the hypotheses and tests them on new data. This phase may require 
collecting new samples, performing laboratory experiments, and/or critically 
analyzing the hypotheses. This phase is likely to involve knowledge and abilities 
that go beyond currently-feasible computer systems. 

It is the second, the "hypothesize" phase, in which an inductive learning 
system may play a useful role: the role of an assistant for conducting a search for 
the most plausible and/or most interesting hypotheses. This search may be a for-
midable combinatorial task for a researcher, if the data sample is large and if 
each item of the data (in this case, a cell) is described by many variables and/or 
relations. 

Individual steps are as follows: 
1. The user determines the set of initial descriptors and provides an annotation 
for each descriptor. We will assume that the annotation specifies the type, the 
domain, and any special properties of each descriptor (for example, the tran-
sitivity of a relation). In the case of structured descriptors, the annotation also 
specifies the structure of the domain. The specification of the annotation con-
stitutes the first part of the problem background knowledge. 

Suppose that for our simple example problem, the following descriptors are 
selected: 

a. Global descriptors (those characterizing a whole cell) 
• circ—the number of segments in the circumference of the cell 

Type: linear Domain: {1..10} 

• pplasm—the type of protoplasm in the cell (marked by encircled 
capital letters in Figure 4-2) 
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Type: nominal Domain: {A,B,C,D} 

Local descriptors (those characterizing cell bodies and their relationships) 

• shape (Bj)—the shape of body Bj 

Type: structured 
Domain: a tree structure with a set of leaves {triangle, circle, ellipse, 

heptagon, square, boat, spring} 
Non-leaf nodes are defined by rules: 

[shape = circle V ellipse] Φ [shape = oval] 
[shape = triangle V square V heptagon] Φ [shape = polygon] 
[shape = oval V polygon] Φ [shape = regular] 
[shape = spring V boat] Φ [shape = irregular] 

• texture(Bj)—the texture of body Bj 

Type: nominal 
Domain: {blank, shaded, solid-black, solid-grey, stripes, crossed, 

wavy} 

• weight (Bj)—the weight of body Bj 

Type: linear Domain: {1,2,...,5} 

• orient (Bj)—the orientation of Bj 

Type: linear-cyclic (the last element is followed by the first) 
Domain: {N, NE, E, SE, S, SW, W, NW} 
Condition of applicability: if [shape (Bj) = boat] 

• contains (C, Bj, B2, ...)—C contains Bj, B2, ... 

Type: nominal Domain: {True,False} 

Properties: transitive relation 

• hastails (B, Llf L2, ...)—a body B has tails Llf L2, ... 

Type: nominal Domain: {True,False} 
Condition of applicability: if [shape (B) = boat] 

Note that the descriptors "contains" and "hastails" are predicates with a 
variable number of arguments. Descriptor "contains" is characterized as a tran-
sitive relation. Descriptors "hastails" and "orient" are applicable only under cer-
tain conditions. 

2. The user formulates observational statements which describe cells in terms of 
selected descriptors and specify the class to which each cell belongs. For ex-
ample, the following is an observational statement for the DNC cell 1: 
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3.CELL,, B,,B2....,B6 [contains(CELL!,Bi,...,B6)] [circ(CELL!) = 8] & 
[pplasm(CELLI) = A][shape(BI) = ellipse] [texture(Bj) = stripes] & 
[weight^) = 4] [orient(Bl) = NW][shape(B2) = circle] & 
[contains(B2,B3)][texture(B2) = blank][weight(B2) = 3]... & 
[shape(B6) = circle] [texture(B6) = shaded] [weight(B6) = 5] 

::> [class = DNC] 
3. To specify the second part of the problem background knowledge the user 
indicates which general rules of constructive induction (Section 4.5.3) are ap-
plicable, and also formulates any problem-specific rules. 

The constructive rules will generate various derived descriptors. For ex-
ample, the counting rule CQ will generate, among others, a descriptor: 

• #B-black-boat—the number of bodies whose shape is "boat" and texture is 
"solid-black" (that is, assuming COND: 
[texture(B) = solid-black] & [shape(B) = boat]) 
(For simplicity of notation, the name of this descriptor, as well as other 

descriptors below, has been abbreviated, so it does not follow strictly the naming 
convention described in Section 4.5.3.) The counting rule CA will generate such 
descriptors as: 

• total-B—the total number of bodies in a cell (no COND is used) 
• indep-B—the number of independent bodies in a cell (assuming the COND 

"bodies not contained in another body") 
• #contained-in-B—the number of smaller bodies contained in the body B 
• #tails-boat-B—the number of tails in a body B, whose shape is "boat" 

As advice to the system, the user may formulate arbitrary arithmetic ex-
pressions for generating possibly relevant descriptors. For example, the user 
may suggest a descriptor: 

weight(CELL) = % weight(Bj) 
where Bj, i = 1,2,... denote bodies in a cell. 

The background knowledge may also contain special concepts, such as 
even or odd numbers, the definitions of the area and perimeter of a circle or 
rectangle, and so on. 
4. Finally, as the last part of the background knowledge, the user specifies the 
type of description sought and the hypothesis preference criterion. Let us as-
sume that both characteristic descriptions and discriminant descriptions are 
sought. We therefore choose as the preference criterion for constructing charac-
teristic descriptions "maximize the length of the complete c-expressions," and for 
constructing discriminant descriptions, "minimize the length of consistent and 
complete c-expressions." 

As illustration, we shall present here samples of discriminant descriptions 
and characteristic descriptions of the DNC "cells", obtained by the INDUCE 
program. 
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4.7.1 Discriminant Descriptions of DNC Cells 

Each of these descriptions is sufficient to discriminate all DNC cells from 
DNN cells. A concept description for class DNC can thus be any one of these 
descriptions or the disjunction of two or more of these descriptions. 

• 3(1)B [texture(B) = shaded][weight(B) > 3] 
Paraphrasing in English: "Every DNC cell, as opposed to DNN, has ex-
actly one body with 'shaded' texture and weight at least 3." 

• [circ = even] 
"The number of segments in the circumference of every DNC cell is 
even." (The concept of "even" was determined by "climbing the 
generalization tree" rule.) 

• 3 (> 1)B [shape(B) = boat][orient(B) = N V NE] 
"Every DNC cell has at least one 'boat' shape body with orientation N or 
NE." 

• 3 (> 1)B [#tails-boat-B = 1] 
"Every DNC cell has at least one body with number of tails equal to 1." 

• 3(1)B [shape(B) = circle][#contains-B = 1] 
"Every DNC cell has a circle containing a single object." 
Underscored descriptors are derived descriptors obtained through construc-

tive generalization rules. 

4.7.2 Characteristic Descriptions of DNC Cells 

Every description below is a characterization of some pattern common to 
all DNC cells. Some of these patterns taken separately may cover one or more 
DNN cells. The length of each description has been maximized, rather than 
minimized, as in the case of discriminant descriptions. 

• 3(1)B [weight(B) = 5] 
Paraphrasing in English: "In every DNC cell there is one and only one 
body with weight 5." 

• 3 .Bj , B2 [contains^, B2)] [shape(Bj) & shape(B2) = circle] & 
[texture(B j) = blank] [weight(B j) = odd] [texture(B2) = solid-black] & 
[weight(B2) = even] [#contained-in-B1 = 1] 
"In every cell there are two bodies of circle shape, one contained in 
another, of which the outside circle is blank and has Odd' weight, the in-
side circle is solid-black and has 'even' weight. The number of bodies in 
the outside circle is only one." (This is also a non-minimal discriminant 
description.) 

• 3(1)B [shape(B) = circle][texture(B) = shaded][weight(B) > 3] 
"Every cell contains a circle with 'shaded' texture, whose weight is at least 
3." (This is also a non-minimal discriminant description.) 
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• 3 ( > 1)B [shape(B) = boat][orient(B) = N V NE][#tails-boat(B^= 1] 
"Every cell has at least one body of 'boat' shape with N or NE orientation, 
which has one tail." (This is also a non-minimal discriminant description.) 

• 3(2)B [shape(B) = circle] [texture(B) = solid-black], or, alternatively, 
[#B-cirde-SQlid-black = 2] 
"Each cell has exactly two bodies that are solid black circles." (This is also 
a non-minimal discriminant description.) 

• [pplasm = A V D] 
"The protoplasm of every cell is of type A or D." 

The above example is too simple for really unexpected patterns to be dis-
covered. But it illustrates well the potential of the learning program as a tool for 
searching for patterns in complex data, especially when the relevant properties 
involve both numerical and structural information about the objects under con-
sideration. An application of this program to a more complex problem 
[Michalski, 980a] did generate unexpected patterns. 

4.8 CONCLUSION 

A theory of inductive learning has been presented that views such learning 
as a heuristic search through a space of symbolic descriptions, generated by an 
application of certain inference rules to the initial observational statements 
(teacher-generated examples of some concepts or environment-provided facts). 
The process of generating the goal description—the most preferred inductive 
assertion—relies on the universally intertwined and complementary operations of 
specializing or generalizing the currently-held assertion in order to accommodate 
new facts. The domain background knowlege has been shown to be a necessary 
component of inductive learning, which provides constraints, guidance, and a 
criterion for selecting the most preferred assertion. 

Such a characterization of inductive learning is conceptually simple, and 
constitutes a theoretical framework for describing and comparing learning 
methods, as well as developing new methods. The Star methodology for learn-
ing structural descriptions from examples, described in the second part of this 
chapter, represents a general approach to concept acquisition which can be im-
plemented in a variety of ways and applied to different problem domains. 

There are many important topics of inductive learning that have not been 
covered here. Among them is learning from incomplete or uncertain infor-
mation, learning from descriptions containing errors, learning with a multitude of 
forms of observational statements, as well as multimodel-based inductive asser-
tions, and learning general rules with exceptions. The problem of discovering 
new concepts, descriptors and, generally, various many-level transformations of 
the initial description space (that is, the problem of constructive inductive 
learning) has been covered only very superficially. 



124 CHAPTER 4: INDUCTIVE LEARNING 

These and related topics have been given little attention so far in the field 
of machine learning. There is no doubt, however, that as the understanding of 
the fundamental problems in the field matures, these challenging topics will be 
given increasing attention. 
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APPENDIX: ANNOTATED PREDICATE CALCULUS (APC) 

This appendix presents definitions of the basic components of the annotated 
predicate calculus and some rules for equivalence-preserving transformations of 
APC expressions (rules that are nonexistent in the ordinary calculus). 
1. Elementary and Compound Terms—Terms can be elementary or compound. 
An elementary term (an eterm) is the same as a term in predicate calculus, that 
is, a constant, a variable, or a function symbol followed by a list of arguments 
that are eterms. A compound term {cterm) is a composite of elementary terms or 
is an eterm in which one or more arguments are such composites. The com-
posite of eterms is defined as the internal conjunction (&) or internal disjunction 
(V) of eterms. (The meaning of these operators is explained later.) The follow-
ing are examples of compound terms: 

RED V BLUE (l) 
height(BOX, & BOX2) (2) 

where RED, BLUE, BOXj, BOX2 are constants. Expression (l) and the form 
in parentheses in (2) are composites. Note that expressions (l) and (2) are not 
logical expressions that have a truth-status (that is, can be true or false); they are 
terms to be used only as arguments of predicates. A compound term in which 
arguments are composites can be transformed (expanded) into a composite of 
elementary terms. Let f be an n-argument function whose n-l arguments are 
represented by list A, and let tj and t2 be elementary terms. The rules for per-
forming such a transformation, that is, term rewriting rules, are: 

f(t, Vt2 ,A) <r> f(t,,A)Vf(t,,A) (3) 
f(t, &t2,A) <r> f(t,,A)&f(t2,A) (4) 

Thus, term (2) can be transformed into a composite: 
height(BOX,) & height(BOX2) (5) 
If list A itself contains composites, then it is assumed that the internal dis-

junction is expanded first, followed by the internal conjunction (that is, the con-
junction binds stronger than the disjunction). 
2. Elementary and Compound Predicates—Predicates also can be elementary 
or compound. An elementary predicate is the same as a predicate in the predi-
cate calculus, that is, a predicate symbol followed by a list of arguments that are 
eterms. In a compound predicate one or more arguments is a compound term. 
For example, the following are compound predicates: 

Went(Mary & Mother(Stan),Movie V Theater) (6) 
Inside(Key, Drawer(Desk, V Desk2)) (7) 
The meaning of a compound predicate is defined by rules for transforming 

it into an expression made of elementary predicates and ordinary "external" logic 
operators of conjunction (&) and disjunction (V). We denote the internal and 
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external operators identically, because they can be easily distinguished by the 
context (note that there is no distinction between them in natural language). If 
an operator connects predicates, then it is an external operator; if it connects 
terms, then it is an internal operator. 

Let tj and t2 be eterms and P an n-ary predicate whose last n-1 arguments 
are represented by a list A. We have the following reformulation rules (that is, 
equivalence-preserving transformations of descriptions): 

P( t ,Vt 2 ,A) 1= P(t„A)VP(t2 ,A) (8) 
P(t!&t2,A) 1= Ρ α ^ & Ρ ^ , Α ) (9) 
If an argument of a predicate is a compound term that is not a composite 

of elementary terms, then it is transformed first into a composite by rules (3) and 
(4). If A contains a composite of terms, then the disjunction is expanded first 
before conjunction (similarly as in expanding compound terms). 

Rules (3), (4), (8) and (9) can be used as bidirectional transformation 
rules. By applying them forward (from left to right), a compound predicate can 
be expanded into an expression containing only elementary predicates, and by 
applying them backward, an expression with elementary predicates can be con-
tracted into a compound predicate. 

For example, by applying forward rule (8) and then (9), one can expand 
the compound predicate (6) into 

Went(Mary,movie) & Went(Mother(Stan),movie) V 
Went(Mary,theater) & Went(Mother(Stan),theater) (10) 

Comparing logically-equivalent expressions (6) and (10), one can notice 
that expression (6) is considerably shorter than (10), and in contrast to (10), 
represents explicitly the fact that Mary & Mother(Stan) went to the same place. 
Also, the structure of (6) is more similar to the structure of the corresponding 
natural language expression. 
3. Relational Statements—A simple and often used way of describing objects 
or situations is to state the values of selected attributes applied to these objects or 
situations. Although such information can be represented by predicates, this is 
not the most readable or natural way. The APC uses for this purpose a state-
ment: 

etermj = a (11) 
stating that etermj evaluates to a constant a. Such a statement is called an atomic 
relational statement (or an atomic selector). Expression (11) is a special case of 
a relational statement (also called selector), defined as: 

Term! rel Term2 (12) 
where Termj and Term2 are elementary or compound terms, and rel stands for 
one of the relational symbols: = , > , > , < , < . 

If Ternij and Term2 are both elementary, then expression (12) states that 
the value of the function represented by Termj is in relation rel to the value of 
function represented by Term2. For example, the expression: 
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distance(Boston,Tampa) = distance(Washington,Dallas) (13) 
states that the distance between Boston and Tampa is the same as the distance 
between Washington and Dallas. If Term2 is a constant, then it evaluates to 
itself. 

Expression (12) can be represented by a predicate: 
ré?/(Term,, Term2) (14) 
If Termj and/or Term2 is compound, then the meaning of expression (12) 

is defined by expanding it into a form containing only relational statements with 
elementary terms. The expansion is performed by transforming expression (12) 
into (14), applying transformation rules (3), (4), (8), and (9), and then convert-
ing the elementary predicates into relational statements. 

For example, a relational statement: 

color(Pj V P2) = Red V Blue (15) 
can be expanded into an expression: 

(color(Pj) = Red V Blue) V (color(P2) = Red V Blue) (16) 
and finally to an expression consisting of only atomic selectors: 

(color(Pj) = Red) V (color(Pj) = Blue) V 
(color(P2) = Red) V (color(P2) = Blue) (17) 

The two selectors in the disjunction (16) are examples of a referential 
selector, defined as a form: 

Termj rel Term2 (18) 
where Termj (called referee) is a nonconstant elementary term and Term2 (called 
reference) is a constant or the internal disjunction of constants from the domain 
of Termj. If relation rel is " = " and Term2 is the disjunction of some constants, 
then the referential selector (18) states that the function represented by Termj 
evaluates to one of the constants in Term2. The referential selector is very use-
ful for representing concept descriptions. 

If the reference of a referential selector contains a sequence of consecutive 
constants from the domain of a linear descriptor, then the range operator ".." is 
used to simplify the expression. For example: 

size (P) = 2 V 3 V 4 
can be written: 

size (P) = 2..4 
The negation of a selector: 

—(Termj = Term2) 
can be equivalently written: 

Termj Φ Term2 (20) 
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An arbitrary predicate P(ti,t2,...) can be written in the form of a referential selec-
tor: 

P(t!,t2,...) = True . 
Therefore, for the uniformity of terminology, a predicate will be considered a 
special form of a selector. 

To facilitate the interpretation and readability of individual selectors in ex-
pressions, they are usually surrounded by square brackets and their conjunction is 
expressed by concatenating the bracketed forms (see Section 4.7). 

APC expressions are created from selectors (relational statements) in the 
same way as predicate calculus expressions are created from predicates, that is, 
by using logic connectives (~, &, V, =>, <=> ) and quantifiers. One additional 
useful connective is the exception operation ("\"), defined as: 

S , \ S 2 l= (~S2 φ S,) & (S2 Φ ~ S,) (21) 
where Sj and S2 are APC expressions. (Sj \ S2 reads: S\ except when S2.) It 
is easy to see that the exception operator is equivalent to the symmetrical dif-
ference. 

In addition to ordinary quantifiers there is also a numerical quantifier, ex-
pressed in the form: 

3(1) v, S[v] (22) 
where I, the index set, denotes a set of integers, and S[v] is an APC expression 
having v as a free variable. 

Sentence (22) evaluates as true if the number of values of v for which ex-
pression S[v] is true is an element of the set I. For example, formula: 

3(2..8) v, S[v] (23) 
states that there are two to eight values of v for which the expression S[v] is 
true. The following equivalences hold: 

3v, S[v] is equivalent to 3(>1) v, S[v] 
and 

Vv, S[v] is equivalent to 3(k) v, S[v] 
where k is the number of possible values of variable v. 

To state that there are k and only k distinct values for variables Vj,v2,...,vk 
for which expression S[V|,v2,...,vk] is true, we write: 

3.v,,v2v..,vk, S[v,...,vk] (24) 
For example, the expression: 

3.P0,P!,P2 [contains(P0,P!&P2)] & [color(Pj&P2) = red]=> 
[two-red-parts(Pq)] 

states that predicate two-red-parts(P0) holds if P0 has two, and only two, distinct 
parts in it that are red. 
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Section 4.7 presents an example of the usage of the APC for formulating 
observational statements and concept descriptions. 
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ABSTRACT 

Analogical reasoning is a powerful mechanism for exploiting past ex-
perience in planning and problem solving. This chapter outlines a theory of 
analogical problem solving based on an extension to means-ends analysis. An 
analogical transformation process is developed to extract knowledge from past 
successful problem-solving situations that bear a strong similarity to the current 
problem. Then, the investigation focuses on exploiting and extending the 
analogical reasoning model to generate useful exemplary solutions to related 
problems from which more general plans can be induced and refined. Starting 
with a general analogical inference engine, problem-solving experience is, in es-
sence, compiled incrementally into effective procedures that solve various classes 
of problems in an increasingly reliable and direct manner. 

5.1 INTRODUCTION 

Analogical reasoning has been a sparsely-investigated phenomenon in ar-
tificial intelligence [Kling, 1971; Moore & Newell, 1974; Korf, 1980; Winston, 
1979]. Nonetheless, analogy is one of the central inference methods in human 
cognition as well as a powerful computational mechanism. This chapter dis-
cusses a computational model of problem-solving by analogy based on an exten-
sion of means-ends analysis (MEA). My central hypothesis (based in part on 
Schank's theory of memory organization [Schank, 1980; Schank & Carbonell, 
1979; Schank, 1979]) is the following: When encountering a new problem situa-
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tion, a person is reminded of past situations that bear strong similarity to the 
present problem (at different levels of abstraction). This type of reminding ex-
perience serves to retrieve behaviors that were appropriate in earlier problem-
solving episodes, whereupon past behavior is adapted to meet the demands of the 
current situation. 

Commonalities among previous and current situations, as well as successful 
applications of modified plans can serve as the basis for generalization. 
Similarly, performing an inappropriate action in a new situation can provide in-
formation useful in reorganizing episodic memory. If the inappropriate action 
resulted from the application of a recently-acquired general plan, an analysis of 
the type of error may trigger a discrimination process that constrains the range of 
applicability for that plan. In either case, a reactive environment that informs 
the problem solver of success, failure, or partial success is an absolute require-
ment for any generalization or discrimination process to apply. 

Whereas humans exhibit a universal ability to learn from experience no 
matter what the task [Newell & Rosenbloom, 1981], AI systems are seldom 
designed to model this adaptive quality. Concept acquisition, that is, inducing 
structural or attribute descriptions of non-procedural objects from examples, has 
received substantial attention in the AI literature [Hayes-Roth & McDermott, 
1977; Dietterich & Michalski, 1981; Mitchell, 1978; Waterman & Hayes-Roth, 
1978; Winston, 1970], but with few exceptions, the techniques developed therein 
have not been transferred to learning in problem-solving scenarios.1 Since the 
process of acquiring and refining problem-solving and planning skills is indis-
putably a central component in human cognition, its investigation from an AI 
perspective is clearly justified. 

This chapter presents an analogical inference engine and investigates two 
fundamental hypotheses: 

Hypothesis: Problem-solving and learning are inalienable aspects 
of a unified cognitive mechanism. 

In other words, one cannot acquire the requisite cognitive skills without solving 
problems—and, the very process of solving problems provides the information 
necessary to acquire and tune problem-solving skills. The second hypothesis 
postulates a unified learning mechanism. 

Hypothesis: The same learning mechanisms that account for con-
cept formation in declarative domains, operate in acquiring problem-
solving skills and formulating generalized plans. 

One method of verifying the second hypothesis is to develop a problem-solving 
mechanism into which one can integrate the techniques developed in concept 

exceptions include Anzai and Simon's Learning-by-Doing Paradigm [Anzai & Simon, 1979], 
Mitchell's LEX system (Chapter 6 of this book), STRIPS with MACROPS [Fikes & Nilsson, 1971], and 
indirectly Lenat's AM [Lenat, 1977]. 
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formation—with a resultant system that learns from problem-solving experience. 
The analogical problem-solving method discussed below provides a framework 
for automated example generation that enables one to apply learning-from-
examples techniques in order to acquire generalized plans. In essence, the objec-
tive is akin to Anzai and Simon's learning-by-doing method [Anzai & Simon, 
1979]. First, the basic analogical problem-solving method is discussed, and sub-
sequently an experiential learning component is incorporated as an integral part 
of the general analogical inference process. 

5.2 PROBLEM-SOLVING BY ANALOGY 

Traditional AI models of problem-solving (such as GPS [Newell & Simon, 
1972], STRIPS [Fikes & Nilsson, 1971], and NOAH [Sacerdoti, 1977]) approach 
every problem almost without benefit of prior experience in solving other 
problems in the same or similar problem spaces.2 Consider, for instance, two 
related problems: 

The monkey-and-bananas problem: A (hungry) monkey is placed 
in a room with bananas suspended from the ceiling beyond its reach. 
A wooden box of sufficient size to serve as a platform from which 
the monkey can reach up to the bananas is placed elsewhere in the 
room. 
The experimenter-and-bananas problem: An experimenter wishes 
to set up the monkey-and-bananas problem. He has some bananas, a 
hook in the ceiling just beyond his reach, and a wooden box else-
where in the experimental room, and, of course, a monkey. 

A means-ends analysis problem solver, such as GPS, will solve either problem, 
given sufficient time and a reasonable encoding of the permissible actions and 
their consequences. However, solving one problem does not provide any infor-
mation useful in solving the other. One would think that practice solving a 
given type of problem should help in solving similar future problems. For in-
stance, an intelligent monkey observing the experimenter move the box beneath 
the hook, hang the bananas, and return the box to its original location, may infer 
which parts of the experimenter's behavior it should replicate in order to reach 
the bananas. Similarly, if the experimenter tires of watching an unenlightened 

2A problem space encodes the information necessary to solve a problem, including goals, initial 
state, and legal actions that may be taken in solution attempts. Means-ends analysis is a problem-
solving method that consists of selecting actions that reduce known differences between the current 
situation and a desired state. Both of these concepts are elaborated in the course of the present 
discussion. However, the reader not familiar with means-ends analysis is encouraged to review the 
technique in any standard AI text, such as Winston's Artificial Intelligence [Winston, 1977] or 
Nilsson's Principles of Artificial intelligence [Nilsson, 1980], or read the much more thorough 
treatment in [Newell & Simon, 1972]. 
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monkey repeatedly fail in its attempts to solve the problem, he should know how 
to take down the bananas by modifying parts of his earlier plan, rather than 
replanning from ground zero. In general, transfer of experience among related 
problems appears to be a theoretically significant phenomenon, as well as a prac-
tical necessity in acquiring the task:dependent expertise necessary to solve more 
complex real-world problems. Indeed, the premise that humans transfer 
problem-solving expertise between closely related situations is inextricably 
woven into the pedagogical practices of our educational institutions. 

The bulk of human problem-solving takes place in problem spaces that are 
either well known or vary only slightly from familiar situations. It is rare for a 
person to encounter a problem that bears no relation to similar problems solved 
or observed in past experience. New abstract puzzles (such as Rubik's magic 
cube) are such exceptional problems, where initially the only tractable solution 
procedure is the application of standard weak methods [Newell & Simon, 1972] 
without benefit of (non-existent) past experience. Therefore, my investigations 
center on simplified versions of real-world problems, rather than more abstract, 
self-contained puzzles. 

Now, let us turn to problem-solving in familiar problem spaces. What 
makes a problem space "familiar"? Clearly, a major aspect consists of memory 
of past problems and their corresponding solutions that bear strong similarity to 
the new problem. Such knowledge, once acquired, can be exploited in the 
problem-solving process. There is no other way to account for the fact that 
humans solve problems in familiar situations much faster, and with more self-
assurance than in unfamiliar abstract situations. A computer model should exhibit 
the same skill-acquisition process; that is, it should learn to adapt its problem-
solving behavior by relying on past experience when available—falling back on 
the application of standard weak methods when more direct recall-and-
modification of existing solutions fails to provide an answer. How might a 
problem solver be augmented to exhibit such adaptive behavior? First, let us 
review the standard MEA process; then we will see how the analogical transfor-
mation process augments MEA to exploit prior experience. 

5.2.1 The Plan-Transformation Problem Space 

Consider a traditional means-ends analysis (MEA) problem space [Newell 
& Simon, 1972], consisting of: 

• A set of possible problem states. 
• One state designated as the Initial State 

• One or more state(s) designated as goal states—for simplicity, assume 
there is only one goal state. 

• A set of operators with known preconditions that transform one state into 
another state in the space. 

• A difference function that computes differences between two states 
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(typically applied to compute the difference between the current state and 
the goal state). 

• A method for indexing operators as a function of the difference(s) they 
reduce (such as the table of differences in GPS). 

• A set of global path constraints that must be satisfied in order for a solu-
tion to be viable.3 A path constraint is essentially a predicate on a partial 
solution sequence, rather than on a single state or operator. The introduc-
tion of path constraints in this manner constitutes a slight modification of 
the standard ME A problem space. 

Problem-solving in this space consists of standard MEA: 
1. Compare the current state to the goal state 
2. Choose an operator that reduces the difference 
3. Apply the operator if possible—if not, save the current state and apply 

MEA to the subproblem of establishing the unsatisfied precondition(s) of 
that operator. 

4. When a subproblem is solved, restore the saved state and resume work on 
the original problem. 
How can one exploit knowledge of solutions to previous problems in this 

type of problem space? First, consider the simplest case: knowledge consists 
only of solutions to previous problems. Each solution consists of a sequence of 
operators and intermediate states, including the initial and final states, together 
with the path constraints that the solution was designed to satisfy. One rather 
simple idea is to create macro-operators from sequences and sub-sequences of 
atomic operators that have proven useful as solutions to earlier problems. For 
instance, STRIPS with MACROPS exploited this idea [Fikes & Nilsson, 1971] using 
its triangle table to store all partial sequences of operators encountered in a solu-
tion to a previous problem. However, the simple creation of macro-operators suf-
fers three serious shortcomings. First, the combinatorics involved in storing and 
searching all possible subsequences of all solutions ever encountered becomes 
rapidly unmanageable. Searching for applicable macro-operators can become a 
more costly process than applying MEA to the original problem. Second, path 
constraints are ignored in this process. If the new problem must satisfy a dif-
ferent set of path constraints, most previous macro-operators may prove invalid. 
Third, no provision is made for substituting, deleting, or inserting additional 
operators into recalled solution sequences. These operations prove crucial in the 
analogical transform process described below. Therefore, let us think not in 
terms of creating more and more powerful operators that apply to fewer and 

3For instance, a path constraint may disallow particular subsequences of operators, or prevent an 
operator that consumes K amount of a resource from applying more than N times, if there is only 
NxK amount of the resource available to the problem solver. 
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fewer situations, but rather think in terms of gradually transforming an existing 
solution into one that satisfies the requirements of the new problem. 

Consider a reminding process (a search for solutions to problems similar to 
the one at hand) that compares differences among the following: 

1. The initial state of the new problem and the initial state of previously-
solved problems 

2. The final state of the new problem and the final state of previously-solved 
problems 

3. The path constraints under which the new problem must be solved and path 
constraints present when previous similar problems were solved. 

4. The proportion of operator preconditions of the retrieved operator sequence 
satisfied in the new problem situation. This measure is called the ap-
plicability of a candidate solution. 
The difference function used in comparing initial and final states may be 

the very same function used for difference reduction in standard ME A. Here, I 
advocate using the difference function as a similarity metric to retrieve the solu-
tion of a previously-solved problem closely resembling the present problem. The 
difference function applied to path constraints is an augmented version of the 
problem-state difference function, as it must address operator-sequence dif-
ferences in addition to state information. Hence, reminding in our problem-
solving context consists of recalling a previously-solved problem whose solution 
may transfer to the new problem under consideration. A more sophisticated 
method of computing similarities among episodic memory structures is based on 
a relative-invariance hierarchy among different components of recalled problem 
solutions, as discussed in [Carbonell, 1982a]. 

Reminding is only the first phase in analogical problem-solving. The 
second phase consists of transforming the old solution sequence into one satis-
fying the criteria for the new problem. How does this transformation process 
proceed? I submit that it is equivalent to problem-solving in the space of 
solutions.4 

Finding an appropriate analogical transformation is itself a problem-solving 
process, but in a different problem space. The states of the transform problem 
space are solutions to problems in the original problem space. Thus, the initial 
state in the transform space is the retrieved solution to a similar problem, and the 
goal state is a solution satisfying the criteria for the new problem. The operators 
in the transform problem space are the atomic components of all solution trans-

4Here I apply my previous definition of a solution to be a sequence of operators and intermediate 
states together with the set of path constraints that sequence is known to satisfy. Thus, I advocate 
applying MEA to the space of potential solution sequences rather than the original problem space. 
However, the reminding process should generate an initial solution sequence close to the goal 
solution sequence, where closeness is determined by the difference metric above. 
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Original Space T- Space 
(Retrieved Solution) 

Figure 5-1: A solution path in the original problem space becomes a state in the analogy 
transform problem space. 

formations (for example, substitute an operator in the solution sequence for 
another operator that reduces the same difference, but requires a different set of 
preconditions or entails different side effects, and so on—see below). The dif-
ferences that the problem solver attempts to reduce in the new problem space are 
precisely those computed by the similarity metric in the reminding process. In 
other words, progress towards a goal is determined by transitions in the solution 
space towards "solution sequences" corresponding to problems increasingly 
similar to the new problem. Intermediate states in the transform space need not 
correspond to viable solutions in tfie original (object) space, in that intermediate 
solution sequences may not be executable due to unsatisfied operator precon-
ditions. The diagram in Figure 5-1 gives an intuitive flavor of this problem-
solving process. More precisely, the analogy transform problem space (T-space) 
is defined as follows: 

• States in the transform space are potential solutions to problems in the 
original problem space (that is, sequences of states and operators including 
the initial and final states, plus the path constraints under which those solu-
tions were computed.) 

• The initial state in the transform space is the solution to a similar problem 
retrieved by the reminding process. 

• A goal state in the transform space is the specification of a solution that 
solves the new problem, satisfying its path constraints. 
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• An operator in the transform space (labeled a 'T-operator" to avoid 
confusion) maps an entire solution sequence into another potential solution 
sequence. The following is a list of the most useful T-operators: 

o General Insertion. Insert a new operator into the solution sequence. 
o General deletion. Delete an operator from the solution sequence. 
o Subsequence Splicing. Splice a solution to a new subproblem into 

the larger established solution sequence. This T-operator is useful in 
the following situation: If an operator in the original problem se-
quence cannot be applied under the new problem specification be-
cause one of its preconditions is not satisfied, solve the subproblem 
of establishing that precondition. This subproblem may be solved ei-
ther in T-space or in the original (object) space. If successful, splice 
the precondition-fulfilling subsequence into the original solution se-
quence. 

o Subgoal-preserving substitution. Substitute an operator in the 
original solution sequence by another operator (or sequence of 
operators) that reduces the same difference. This T-operator is par-
ticularly useful if either a precondition of an operator in the original 
sequence cannot be satisfied, or if the presence of a particular 
operator in the solution sequence violates a path constraint.5 

o Final-segment concatenation. Treat the solution sequence as a 
macro-operator in the original problem space and apply MEA to 
reduce the difference between the old final state and the new final 
state. If successful, concatenate the solution to this subproblem at the 
end of the original solution sequence. 

o Initial-segment concatenation. Apply the process above to find a 
path in the original problem space from the new initial state to the 
old initial state. If successful, concatenate the solution to this sub-
problem at the beginning of the original solution. (Note that in this 
case we start with the initial state for the new problem and seek a 
path to the initial state for the retrieved solution, whereas in the final 
segment-concatenation operator the inverse process applies.) 

o Sequence meshing. Merge the operator sequences of two com-
plementary solutions retrieved in the reminding process. The resul-
tant solution sequence should differ from a complete solution to the 
new problem by the intersection of the differences between each 

5Note that a subgoal-preserving substitution is much more restrictive than a general delete T-operator 
followed by a general insert T-operator. Therefore, this T-operator is more apt to yield useful 
transformations, a fact reflected in the ordering of operators under each appropriate entry in the 
difference table. 
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retrieved solution and the new problem specification.6 If the dif-
ferences between the two retrieved solutions and the new problem 
specification form disjoint sets, sequence meshing yields a complete 
solution. 

o Operator reordering. Reorder the operators in a solution sequence. 
Often a path constraint in the new problem specification can be 
satisfied by simple reordering of operators (when allowed by their 
preconditions) in the retrieved solution. 

o Parameter substitution. Substitute the objects to which operators 
were applied in the retrieved solution by the corresponding objects in 
the new problem specification. 

o Solution-sequence truncation. Eliminate unnecessary operators. 
Two significant special cases of this T-operator are initial-segment 
truncation and final-segment truncation. For instance, if the final 
state of an operator subsequence of the retrieved solution exhibits a 
smaller difference to a goal state of the new problem, use this sub-
sequence as the new basis for mapping into the desired solution se-
quence. 

o Sequence inversion. Reverse the operator sequence, inverting each 
individual operator, if a problem formulation is such that its goal 
state matches the initial state of a solved problem, and its initial state 
matches the goal state of that same previously solved problem. In-
verting a process is not always possible, and seldom directly achiev-
able. In the present case, the inverse of each operator must be found, 
and its preconditions satisfied, in order to apply global inversion. 
However, the general notion is attractive—consider solving the 
problem of driving between two points in an unknown city. Once this 
problem is solved, the subsequent problem of returning to the depar-
ture site is easily solved by operator sequence inversion (barring 
travel on one-way streets and other non-invertible operations). 

• The difference metric in the transform space (DT) is a combination of the 
difference measures between initial states (of the retrieved and desired 
solution sequences), final states, path constraints, and degree of ap-
plicability of the retrieved solution in the new problem scenario. Hence, 
the values of DT are 4-vectors, with the interpretation that all four com-
ponent differences must be reduced (independently or jointly) in the trans-
form space (T-space) problem-solving process. 

6Merging two partial operator sequences is an interesting and potentially complex problem in itself. 
Procedural networks, developed in the NOAH system [Sacerdoti, 1977], facilitate computations of 
operator interactions when meshing two plans. It is not always the case that two partial solution 
sequences can be merged effectively (for example, each subsequence may violate necessary precon-
ditions for the other subsequence). Non-algorithmic T-operators, such as sequence meshing, define 
their own internal problem space. 
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DT = <Do(SIfl,SIf2),Do(SF>,,SFf2), 
Dp(PC!,PC2), DA(SOL,,SOL2)> 

o D 0 is the difference function between states in the original space. 
o Dp computes differences between path constraints (PC's). 
o DA measures the applicability of the old solution in the new scenario 

by determining the fraction of operators in the initial solution se-
quence (SOLj) whose preconditions are not satisfied under the new 
problem specification. 

o Sj denotes an initial state. 
o Sp denotes a final (goal) state. 
o The subscript l indexes the retrieved solution. 
o The subscript 2 indexes the specifications on the desired solution to 

the new problem. 
DT is reduced when any of its four components is independently reduced. 
The problem-solving process in T-space succeeds when 
DT = <NIL, NIL, NIL, NIL>. Interesting search problems occur when, 
in order to reduce one component in the difference vector, one or more of 
the other components must be increased. For example, the insertion of 
new operators into the solution sequence may have the unfortunate side-
effect of violating an established precondition of an operator in the original 
sequence. In this case, reducing DQ(I) or DQ(F) results in increasing DA. 
Our first-pass solution is to define a (linear) combination of the four com-
ponents and choose the operator that maximally reduces this value, back-
tracking when necessary. Fortunately, it is often the case that differences in 
the 4-vector can be reduced in a componentwise-independent manner. 
Moreover, a modified version of the Δ-ΜΙΝ method [Carbonell, 1980] 
may apply, focusing the backtracking process when backtracking proves 
necessary. 

• A difference table for indexing the T-operators is needed. Entries in the 
difference table take the form "To reduce <DIFFERENCE>, apply a 
member of <T-OPERATOR-SET>". The operators in the applicable set 
are usually ordered as a function of the heuristic measure of their utility in 
reducing the given difference. A sample difference table entry would be: 

o If the preconditions to an operator in SOL] are not satisfied (that is, 
DA is non-null), try subgoal-preserving substitution on the in-
applicable operator, or try solution-sequence splicing to satisfy the 
violated preconditions. 

• There are no path constraints in the transform space. Since we are mapping 
from one solution sequence to another, the intermediate states and T-
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operators do not necessarily correspond to actual operations performed on 
an external world, and therefore are not subject to its restrictions. This 
simplification is offset by the more complex difference metric in T-space. 

5.2.2 Some Examples 

Consider a simple problem where analogical problem-solving may prove 
quite appropriate: 

John is located in Pittsburgh and must travel to New York City. 
However, when he called the airlines, he discovered that all the 
flights were booked. John never took the intercity train (Amtrak) be-
fore, but knows it is a possible means of long-distance travel. 

John's plan might be the following: Call Amtrak to make a reservation. 
Make sure he has sufficient money for the ticket. Find out where to buy the 
ticket; buy it; and later go to the station and board the train. Why is this a 
reasonable plan? How could John have synthesized his plan? We cannot really 
say that John had a "script"7 for taking trains, as he had not previously traveled 
by train, nor had he acquired the requisite, detailed information enabling him to 
do so. 

A reasonable way of formulating the plan is by analogy with taking an 
airplane (or perhaps an intercity bus). The first step is for John to be reminded of 
taking an airplane (thus recalling: making reservations, tickets being costly, of-
ten purchasing the tickets in advance, later traveling to the airport, and so on). 
Note that it is crucial for John to be reminded of an experience (or a general 
procedure) where he was fulfilling a similar goal (intercity travel) and not one 
where superficial similarities abound (such as taking a subway, where both 
means of conveyance are called "trains", they travel on tracks, have many stops, 
and so on). Subway travel would not suggest the potential necessity of making a 
reservation, nor would it suggest the requirement for a reasonable sum of money 
to purchase the ticket. Hence, a comparison of goal states, as suggested in our 
general method, is indeed a crucial component in the similarity judgments neces-
sary for modeling a reasonable reminding process. 

The solution transformation process proceeds by applying the subgoal-
preserving substitution T-operator, substituting TRAIN-TRAVEL for AIR-
TRAVEL, as both operators reduce the same difference. Then, the parameter-
substitution T-operator replaces "airport" by "train station", "airline ticket" by 
"train ticket", and so on. John must rely on his knowledge of how to satisfy the 
preconditions of AIR-TRAVEL, and hope that the same methods apply to 
TRAIN-TRAVEL. If this were not the case, further problem-solving would be 
necessary. 

7By "script" I mean a slight variation of Schank and Abelson's terminology [Schank & Abelson, 
1977; Cullingford, 1977], that is, a frozen plan: one or more normative sequences of planned actions 
whose purpose is to satisfy the preconditions of (and carry out) a high-level operator. 
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Now, let us reconsider the monkey-and-bananas and experimenter-and-
bananas problems, in light of the analogical problem-solving model. 

A monkey watches a behavioral psychologist (that is, the 
experimenter) pick up a wooden box and place it under a hook in the 
ceiling. Next, the experimenter climbs on the box, places some 
bananas on the hook, climbs off the box, and returns it to its original 
location. Then, the experimenter releases the (hungry) monkey and 
leaves the room. How does the monkey plan to reach the bananas? 
Can he benefit from having observed the experimenter? 

As we mentioned earlier, a "smart monkey" ought to learn from his obser-
vations of the experimenter. Let us see how analogical problem-solving applies 
here. For simplicity, assume the monkey does not have prior experience solving 
similar problems beyond his recent observation of the experimenter. The 
monkey's problem is: initial state = monkey on the floor, bananas on the ceil-
ing, box in the room; final state = monkey in possession of the bananas; path 
constraints = physical abilities of the monkey. However, the solution to the 
experimenter's problem cannot be applied directly. (His problem was initial 
state = possession of the bananas, box in the room, experimenter on the floor; 
final state = Bananas on the ceiling, box not under the bananas; path con-
straints = physical abilities of the experimenter.) 

Assuming the path constraints match, the differences between the initial 
states (and the differences between the final states) are so large as to preclude 
any reasonable attempt at direct analogical transformation. Therefore, the 
monkey must resort to standard MEA (in the original problem space). He selects 
the operator GET-OBJECT (applied to bananas). This operator suffers an un-
satisfied precondition: The monkey cannot reach the bananas. Therefore, the ac-
tive subgoal becomes: Reach the ceiling where the bananas are located. How 
may the monkey proceed at this juncture? 

The entire problem can, of course, be solved by recursively applying stan-
dard MEA. However, there is a more direct solution method. If the monkey 
recalls his observation of the experimenter, he may realize that the problem of 
reaching the ceiling has already been solved (by the experimenter, as a subgoal 
to placing the bananas there—although the monkey need not understand the 
experimenter's higher-level goals). The monkey can apply the parameter-
substitution T-operator (substituting "monkey" for "experimenter"), and option-
ally the solution-sequence truncation T-operator (eliminating the need to return 
the box to its original location after having used it). This problem-solving 
process in T-space results in a plan that the monkey can apply directly to reach 
the bananas, and thus achieve his original goal of having them. 

The significant aspect of the experimenter-monkey-and-bananas example is 
that standard MEA and T-space MEA were combined into a uniform problem-
solving process where standard MEA calls on analogical problem-solving to 
solve a subproblem more directly. The converse process is also possible, and 
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potentially significant. For instance, in the Amtrak example, if John could not 
have satisfied one of the preconditions for taking the train by analogy with the 
corresponding AIR-TRAVEL precondition, he could have resorted to standard 
MEA to solve this subproblem. Hence, analogical reasoning adds a powerful 
dimension to standard problem-solving when prior experience can be brought to 
bear, but remains largely unobstrusive when no relevant prior knowledge sug-
gests itself. 

It would be useful for the problem solver to remember his new problem-
solving experiences to use as a basis for future analogical reasoning. These could 
be remembered directly or abstracted into episodic traces, much like Schank and 
Abelson's scripts [Schank & Abelson, 1977; Cullingford, 1977], and hierarchi-
cally organized as a function of the goals they fulfill. 

An interesting observation concerns the recursive closure of analogical 
MEA.8 If the T-operator sequence of an analogical problem-solving transforma-
tion is remembered, the analogical MEA process can be applied to these transfor-
mations themselves. That is, one can construct an analogical mapping between 
two solution sequences by recycling a past analogical mapping among similar 
solutions, or by transforming a past, almost usable mapping by recursive applica-
tion of analogical MEA to the analogical mapping itself. A significant point is 
that no infinite regress requiring new "hyper-analogical" methods occurs. The 
same analogical transformation process that applies to object-level solution se-
quences applies directly to transforming analogical mappings. 

5.3 EVALUATING THE ANALOGICAL REASONING PROCESS 

In an informal experiment, not meant to withstand statistical significance 
tests, I gave the following problem to five undergraduate history and art students: 

Prove that the product of two even numbers is even. 

Somewhat to my surprise and dismay, none of the five was able to solve this 
simple algebraic problem, although all five made serious attempts. I had in-
tended to give the subjects similar but more difficult problems in subsequent 
stages of the experiment, measuring whether they improved in speed or accuracy 
from their recently-acquired experience solving analogically-related problems. 
Nevertheless, the experiment proved useful in demonstrating the reliance of 
human problem solvers on analogical mechanisms, as discussed below. Continu-
ing with the experiment, I explained the proof process carefully enough to insure 
that all five subjects understood it: 

1. Recall the definition of an even number: a number that is divisible by 2. 
2. Write down an expression that represents an even number: You may write 

"2N" where N is any integer, to represent a number divisible by 2. 

8This observation is due in part to Mitchell, personal communication. 
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3. Multiply two even numbers, writing: 2N x 2M, where M is also any in-
teger. Multiplying we get 4NM. 

4. Recall the representation of an even number: 2 x any integer. Therefore 
you can write 4NM = 2 x 2NM, which by closure of integers under mul-
tiplication matches the representation of an even number. Hence, the 
product of two even numbers is even. 
At this point, all five subjects claimed they understood the proof, and 

moreover expressed some feeling of embarrassment for not having derived such 
an "obvious" proof themselves. Then, I suggested they try the following 
problem: 

Prove that the product of two odd numbers is odd. 

With grim determination to redeem their previous poor performance all five at-
tempted the problem and three of them succeeded. Briefly: 

5. Odd numbers can be represented as "even + 1" = 2N+ 1 for any integer 
N. 

6. The product is: (2N+1) x (2M+1) = 4NM + 2N + 2M + 1 = 
2(2NM + N + M) + 1, which is the representation of an odd number.9 

This informal experiment strongly indicates that the second problem was 
solved by analogy from the solution to the first problem. The scratch papers 
collected from the subjects suggest direct attempts at transferring and modifying 
steps of the first solution. The insertion of an extra algebraic step10 illustrates an 
application of the subsequence splicing T-operator. The global substitution of a 
representation for odd numbers in place of a representation for even numbers 
strongly suggests parameter substitution. Moreover, the mere fact that three of 
five subjects were able to solve a problem more complex than the one where all 
five failed previously, argues very convincingly for an analogical process exploit-
ing the previous solution (or some abstraction thereof). However, it should be 
noted that this type of experiment does not, in itself, demonstrate dominance of 
analogical reasoning in human problem-solving, but rather it provides strong 
evidence for the existence of analogical processes in cognitive activities. 
Demonstrating the conjecture that analogy is the central inference mechanism for 

interestingly, one subject chose to represent odd numbers as 2N + 3, which is correct but requires a 
bit of additional algebraic manipulation. When asked why she chose such a representation, her reply 
was "4 is a nice even number, and 7 is a nice odd number. The difference between them is 3. The 
next even number is 6; the next odd is 9; and the difference is always 3. So, I took 2N and added 
3." What a graphic illustration of means-ends analysis to solve the subproblem of mapping from a 
representation of even numbers to a representation of odd numbers! Of the two subjects who did not 
present an adequate proof, one erred in an algebraic manipulation step, the other erroneously chose 
3N as his representation for odd numbers. 

,0That is, distributing the product of the two odd numbers is required to fulfill a precondition for 
factoring the constant "2" from three of the four terms in: 4NM + 2N + 2M + 1. 
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human problem-solving would require a much more thorough (and perhaps more 
controlled) set of psychological observations. 

As a test of the computational feasibility of the analogical problem-solving 
process, a simple version of MEA was programmed to operate on the transform 
space, and given a subset of the T-operators with a corresponding difference 
table. It solved the product-of-two-odds problem starting from the solution for 
two even numbers.11 The initial computer implementation of analogical MEA is 
not of particular interest—it demonstrates that the analogical problem-solving 
process actually works, but does little else. The truly interesting issues will arise 
when: 

• a much fuller implementation is available allowing comparisons among dif-
ferent problem-solving methods over a representative corpus of problems, 

• the learning from experience process discussed in the following section is 
fully integrated with the analogical transform process, 

• and the analogical problem solver is integrated with a dynamically-
changing long-term memory model. 

5.4 LEARNING GENERALIZED PLANS 

The analogical transformation process provides a method of exploiting 
prior experience in a flexible manner. That is, it requires only that the new 
problem be structurally similar, rather than identical, to one or .more previously-
solved problems.12 Hence, simply storing solutions to new problems constitutes 
a form of learning—as these can serve as a basis from which solutions to yet 
newer problems may be analogized. However, there are other aspects to learn-
ing that present more interesting challenges. To wit, if a type of problem recurs 
with sufficient frequency, a human planner is apt to formulate a generalized plan 
for dealing with future instances of that problem, rather than reasoning analogi-

11 The program used 2N-1 to represent an odd number, since the SUBI operator was inadvertently 
listed before ADD1 in the object-space difference table, and therefore the program had to splice in an 
additional algebraic step in the solution: (2N-1)(2M-1) = 2(2NM - N - M) + 1, which does 
not correspond to the 2N-1 representation for odd numbers, and therefore had to apply subsequence 
splicing to add two algebraic operators that transformed the expression into 
2(2NM - N - M + 1 ) - 1. In fact, most of the computational effort was spent finding those two 
operators (adding and subtracting the same quantity, and «factoring the expression). This allocation 
of effort roughly corresponds to the substantial time spent by the subject who chose 2N + 3 as a 
representation with the resultant product being 2(2NM + 3N + 3M) + 9, which did not exactly 
match the original representation, and was eventually refactored into 
2(2NM + 3N + 3M + 3) + 3. 
12The MACROPS facility in STRIPS required corresponding initial states and goal states to be identical 
modulo parameterization of operators in order to reuse portions of past solution sequences [Fikes & 
Nilsson, 1971]. 
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cally from a particular member of that cluster of similar experiences. A general-
ized plan is, in essence, similar to Schank's notion of a script [Schank & Abel-
son, 1977; Schank, 1980; Cullingford, 1977], that is, a parameterized branching 
sequence of events with expected goals and default actions. 

5.4.1 Acquiring Generalized Solution Procedures 

How is a generalized plan acquired from past problem-solving experience? 
Consider an inductive engine, such as those developed to formulate generalized 
concepts from sequences of positive and negative exemplars of the target con-
cept, as discussed in Chapters 3 and 4 of this book and in [Hayes-Roth & 
McDermott, 1977; Waterman & Hayes-Roth, 1978; Winston, 1970; Dietterich & 
Michalski, 1981; Mitchell, 1978]. Instead of acquiring disembodied concepts 
from an external teacher providing training sequences of exemplars labeled 
"positive" or "negative", in experiential learning the exemplars consist of past 
problems and their respective solutions. These solutions are grouped together as 
exemplars of a generalized plan by virtue of being derived from a common an-
cestor in the analogical transform process. Thus, as in learning from observation, 
the concepts to be acquired are not known a priori by an external teacher, but 
correspond to clusters of expferientially-related solutions to a common type of 
problem. The "type" is not artificially defined, but depends on the actual ex-
perience of the individual problem solver. More specifically, generalized plans 
are acquired by the following process: 

• Whenever the analogical problem solver generates a solution to a new 
problem, that solution is tested in the external world. If it works, it be-
comes a member of the positive exemplar set, together with the prior solu-
tion from which it was analogized and other successful solutions to 
problems from the same analogical root. 

• If the analogized solution fails to work when applied in the external world, 
the cause of the failure is stored and this solution becomes a member of 
the corresponding negative exemplar set. 

• The positive and negative exemplar sets are given to an induction engine 
that generates a plan encompassing all the successful solutions and none of 
the unsuccessful ones. Thus, the training sequence is provided by past ex-
perience solving similar problems, rather than by an external teacher. And, 
the concept acquired is a generalized solution procedure rather than the 
description of a static object, as is typically the case in the concept acquisi-
tion literature. If the description language for the object-space operators is 
extended, additional generalization can occur (for example, in selecting 
more general operators that cover disjunctive subsequences in the general-
ized solution plan). 
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• Moreover, negative exemplars are near-misses,13 since the analogical 
process generated them by making a small number of changes to known 
positive instances (that is, transformations to past solutions of the same 
general problem type, retaining the bulk of the solution structure invariant). 
Hence, near-miss analysis can point out the relevant discriminant features 
between positive and negative exemplars of the general planning structure 
under construction. In other words, the problem solver serves as an 
automated example generator, producing near-misses as a side effect when 
failing to generate an effective plan. 

• Finally, in cases where the analogical problem solver fails to generate a 
solution for the new problem (as opposed to generating an erroneous solu-
tion that becomes a negative exemplar for the generalized plan formation 
process), different information can be acquired. The situations where a 
solution was recalled and a plan was formed analogically (independent of 
whether the plan worked) serve as positive exemplars to reinforce and per-
haps generalize the similarity metric used to search memory. The cases 
where a recalled solution could not be analogized into a candidate plan for 
the new problem suggest that the old and new problems differed in some 
crucial aspect not adequately taken into account in the similarity metric, 
and thus serve as negative reinforcement to refine and constrain the 
similarity criterion. 

Graphically, the information flow in the learning process is illustrated in 
Figure 5-2. The formula 

Analogy: P/Ci -> P/Cj 
should be interpreted as "The analogical transform process maps plan Pj ap-
plicable under conditions Cj into plan Pj applicable under conditions Cj." And, 
the formula 

Environment: Pj/C —> + (or — ) 
should read as "Plan Pj succeeded (or failed) when executed in the external en-
vironment under conditions G." 

Figure 5-2 summarizes the process of acquiring generalized plans and up-
dating the similarity criterion from experience. The analogized plans along with 
their conditions of applicability, form the input to a learning-from-examples en-
gine. Successful solutions are classified as positive exemplars; unsuccessful ones 
are classified as near-miss negative exemplars. Moreover, the cases where the 
analogy transform process failed to yield a candidate plan become negative rein-
forcement instances to a parameter-tuning process, which is positively reinforced 

,3Winston [1970] defines a near-miss as a negative exemplar that differs from positive exemplars in a 
small number of significant features. Near misses are crucial in isolating defining characteristics of a 
concept in the learning-from-examples paradigm. 
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The analogical problem-solving process 

P2/C2 Environment: P2/C2 -» + 
P3/C3 Environment: P3/C3 —> + 
P4/C4 Environment: P4/C4 —► -
P5/C5 Environment: Ps/C5 —> -

<no-plan>/C6 

<no-plan>/C7 

Acquiring generalized plans 
from solutions attempts to similar problems 

Input to a learning-from-examples process 
Positive exemplars: P,/C,, P2/C2, P3/C3 

Negative exemplars: P4/C4, P5/C5 (near misses) 

Output from the learning-from-examples process 
Generalized plan: PQ/C G 

Updating the similarity criterion 
used to recall relevant prior experience 

Input to a parameter-tuning process 
Present similarity metric 
Positive reinforcement trials: Cj, C2, C3, C4, C5 

Negative reinforcement trials: C6, C7 

Output from the parameter-tuning process 
Updated similarity metric 

Figure 5-2: Acquiring generalized plans and updating the similarity metric. 

by those cases where a (successful or unsuccessful) plan was formulated. Updat-
ing the similarity criterion should make future memory searches for solutions to 
similar problems more responsive to the features that enable the analogical trans-
form system to map a recalled solution into a potential solution for the new 
problem. Thus, we see that analogical problem-solving interfaces naturally with 
a learning-from-examples method in that it provides an internal example gener-
ator requiring no external teacher. 

Presently, I am extending the problem-solving engine to extract and use 
information from the planning process itself (not just problem descriptions and 
corresponding solutions), such as viable alternatives not chosen, causes of failure 
to be wary of in similar situations, and so on. The objective of this endeavor is 
to enable the learning-from-examples component to learn, or at least refine, the 
problem-solving strategies themselves, in addition to forming generalized plans. 

Analogy: P,/C, 
Analogy: P2/C2 

Analogy: P,/C, 
Analogy: P3/C3 

Analogy: P3/C3 

Analogy: P,/C, 
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Thus, general patterns of inference may be acquired from experience [Carbonell, 
1982b]. 

Parts of the plan generalization process are currently being implemented to 
test the viability of the proposed knowledge-acquisition method, and preliminary 
results are encouraging. Although much of the theoretical and experimental 
work in acquiring problem-solving skills is still ahead of us, there is sufficient 
evidence to support the two original hypotheses: the integration of learning and 
problem-solving methods into a unified cognitive mechanism, and the utility of 
the learning-from-examples technique for acquiring planning skills as well as ac-
quiring more static concepts. 

As our discussion has demonstrated, learning can occur in both phases of 
analogical problem-solving: (i) the reminding process that organizes and 
searches past experience, and (ii) the analogical transformation process itself. 
Additional issues in the experiential adaptation of the reminding process are dis-
cussed below.14 

5.4.2 Episodic Memory Organization 

Memory of solutions to previous problems, whether observed or directly 
experienced, must be organized by similarities in goal states, initial states, means 
available, and path constraints present. Otherwise, there can be no reasonable 
reminding process when solving future problems of a similar nature. Hence, a 
hierarchical indexing structure on an episodic memory must be constructed 
dynamically and extended as the system gradually accumulates new experience. 
Given an effective memory model, the process of continuously expanding and 
structuring past experience becomes a relatively simple, but absolutely essential, 
aspect of learning that proceeds concurrently with analogical reasoning. 
Moreover, the memory model should retrieve general plans when these have 
proven reliable to the exclusion of the original episodic memory traces, which 
then effectively "fade" from memory. "Fading" means that the memory indexing 
structure is altered so they are no longer easily recalled in the reminding process. 
(This notion is akin to Schank's "mushing" process [Schank, 1979] and 
Anderson's masking by declining relative activation [Anderson & Greeno, 
1981].) 

5.4.3 Episodic Memory Restructuring 

It is conceivable that in the lifetime of an adaptive problem solver, the na-
ture of the problems it is called upon to solve may change gradually. The change 

14The reader is referred to Schank [Schank & Carbonell, 1979; Schank, 1980], Lebowitz [1980] and 
Kolodner [1980] for various discussions on the type of basic episodic memory model implicit in this 
chapter. The memory organization scheme must be structured according to similarity criteria in-
strumental to the task of indexing and recalling past problem-solving experience [Carbonell, 1982a]. 
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may manifest itself as decreased reliability of the difference function comparing 
new and old problem specifications, causing the reminding process to retrieve 
inappropriate solutions, or to miss relevant past experiences. Hence, a means of 
tuning the difference metric in a failure-driven manner is a requisite process for 
long-term adaptive behavior. 

More specifically, the heuristic combining the four values in the DT 4-
vector may be tuned to yield appropriate values for certain classes of problems 
most commonly encountered. For instance, differences in path constraints are 
less meaningful to a problem-solver who has ample resources than to a more 
spartanly-endowed problem solver. If a graduate student later becomes a mil-
lionaire, the fact that he then commands more substantial resources should lessen 
the impact of resource-based path constraints in his problem-solving. Con-
sequently, the similarity metric will cease to consider past solutions of otherwise 
similar problems that were solved when operating under more severe resource 
constraints. This is not a particularly desirable state of affairs, as resource-limited 
solutions are certainly viable, if not always desirable, to a problem solver com-
manding more resources. Therefore, the reminding heuristic should no longer 
weigh path-constraint differences as heavily. (Note that reminding is a con-
strained search process, whereas analogical mapping or instantiating a general 
solution pattern are generative processes. Hence, the reminding process need 
only retrieve approximate, plausible solutions.) Returning to our example, if 
that same millionaire later files for bankruptcy, the relevance of resource-based 
path constraints assumes significant proportions once again. A pauper will not be 
able to solve most problems by emulating a millionaire. Thus, the path-constraint 
component of the similarity/difference metric should reestablish its central role in 
the reminding heuristic. In this manner, the relevance of each component in the 
similarity measure is subject to long-term fluctuation.15 

How can the relative weights in the similarity heuristic be tuned? When 
the reminding process fails to retrieve a viable initial state to the T-space 
problem solver, but the problem is later solved in the original problem space, the 
solution can be compared to episodic memory. If a solution to a previous 
problem is found to be very similar, then the problem descriptions should also 
have been found similar by the reminding heuristic. The component contributing 
the largest difference is then reduced in importance. The converse process also 
applies. If a solution retrieved as similar does not lead to a solution in T-space, 
the difference(s) that could not be reduced by the T-space problem solver are 
assigned more importance in the difference heuristic. These complementary 

l5This process is analogous to Berliner's application coefficients in SNAC [Berliner, 1979], whose 
values change gradually over the course of a game. Here change occurs more gradually over the 
lifetime of the problem solver, but I am proposing an adaptive rather than a pre-programmed 
contextual-weighting process. Note that whereas individual path constraints differ from problem to 
problem, I am discussing gradual changes in the relative significance of path constraints vis a vis 
other criteria in the similarity metric on average over many individual problem-solving episodes. 
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processes regulating the difference metric are designed to make all changes very 
gradually to insure against potentially unstable behavior. This form of experien-
tial parameter tuning is a new application of a credit assignment technique dating 
back to Samuel [1963] . 

5.4.4 T-Operator Refinement 

If episodic memory is extended to contain T-space problem-solving traces, 
in addition to experienced events and solutions to past problems, then learning 
can occur in the T-operator domain. For instance, consider a T-operator present 
with high frequency in unsuccessful T-space ^plution attempts. It is conceivable 
that the entry (or entries) in the difference table indexing that T-operator are in-
sufficiently constrained, suggesting the need for a discrimination process such as 
the following: 

1. Compare T-space solution attempts where the T-operator in question was 
present only in failure paths, with solution attempts where it was present in 
successful solution paths. 

2. If there are multiple entries in the difference table for that T-operator, and 
some entries correspond only to failure instances of the operator, delete 
these entries, as the operator is being applied to reduce a difference it 
proved incapable of reducing. 

3. If a single entry corresponds to many more failures than successes, the 
description of the difference being reduced may be too general and ought 
to be factored into a disjunctive set of more specific differences. Later ex-
perience can help isolate which of these sub-differences the T-operator is 
actually capable of reducing. Then, the more specific differences (those 
that the T-operator in question proved capable of reducing) replace the pre-
vious more general entry in the difference table. Other differences in the 
factored disjunctive set that (as experience shows) cannot be reduced by 
the T-operator are discarded. It should be noted that the operation of fac-
toring an arbitrary concept into a disjunctive set of sub-concepts is, in 
general, not a tractable process. However, given a hierarchical memory 
model and a non-monotonic inference capability,16 approximately correct 
factorings can be achieved. 

5.4.5 The Acquisition of New T-Operators 

If the reminding process retrieved one or more solutions, but the analogy 
transform process failed to map these into a solution satisfying the specifications 

16Non-monotonic inference is a plausible inference technique based on tentative deductions and 
assumptions that may prove invalid as additional knowledge is acquired [McDermott & Doyle, 
1980]. 
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of the new problem, and the original-problem-space problem solver found a solu-
tion, then we have a clear indication that the T-space problem solver is missing 
some essential T-operators. One approach to remedy this situation is the follow-
ing process: 

1. Compare the solution computed by the problem solver in the untransformed 
space with the various attempted transformations in T-space. 

2. Find the intermediate state in the failed T-space solution attempt that min-
imizes the difference metric (DT) to the solution computed by standard 
ME A. 

3. Hypothesize a T-operator instance to be the transformation from the closest 
state (reached in the T-space solution attempts) to the actual solution. 
Save this T-operator instance. 

4. If later problem-solving impasses cause failure-driven creation of more T-
operator instances, then the application of a learning-from-observations 
technique, such as the conceptual clustering method presented in Chapter 
11, may prove fruitful. If the exemplars are sufficiently similar, or form 
clusters of closely similar exemplars, new T-operators can be hypothesized 
according to the characteristic description of each conceptual cluster. 
"Sufficiently similar" in this context means that the common structure 
shared by the cluster of T-operator instances is not present in other active 
T-operators. Hence, the new operator will perform transformations dif-
ferent from those of any previously existing T-operator—that is, the new 
operator may prove generatively useful. 

5. The newly-created T-operator may then be added to the set of active T-
operators (subject to the refinement process above if the new operator 
proves unreliable). 

6. The entry in the difference table indexing the new T-operator is a bounded 
generalization of the differences that each T-operator instance reduced at 
the time it was created. If these differences do not share a common com-
ponent not present in other entries, more than one (disjunctive) entry must 
be made in the difference table. 
Thus, new T-operators can be acquired if the problem solver is given a set 

of problems for which the same (previously unknown), general T-space transfor-
mation was required. Moreover, the operator acquisition and discrimination 
processes are equally applicable to refining and extending sets of operators in the 
original untransformed problem space (if the problem solver can tap an external 
source of knowledge upon failure, or relax processing constraints upon resource-
limited failure). Acquiring T-operators, however, requires learning from obser-
vation, rather than the better understood and generally simpler process of learn-
ing from examples used to acquire generalized plans. 

The learning mechanisms discussed in this section can prove effective if, 
and only if, the reasoning system is capable of remembering, indexing and 
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retrieving past experience, including aspects of its internal processing in previous 
problem-solving attempts (such as hypothesized T-operator instances). Therefore, 
the necessity for both dynamic memory organization processes and a problem-
solving mechanism capable of exploiting episodic memory is clearly manifest. 

5.5 CONCLUDING REMARK 

The primary objective of this paper has been to lay a uniform framework 
for analogical problem-solving capable of integrating skill refinement and plan-
acquisition processes. Most work in machine learning has not addressed the 
issue of integrating learning and problem-solving into a unified process. 
(However, Chapter 6 of this book and Lenat [1977] are partial counter-
examples.) Past and present investigations of analogical reasoning have focused 
on disjoint aspects of the problem. For instance, Winston [1980] investigated 
analogy as a powerful mechanism for classifying and structuring episodic 
descriptions. Kling [1971] studied analogy as a means of reducing the set of 
axioms and formulae that a theorem prover must consider when deriving new 
proofs to theorems similar to those encountered previously. In his own words, 
his system "...derives the analogical relationship between two [given] problems 
and outputs the kind of information that can be usefully employed by a problem-
solving system to expedite its search." However, analogy takes no direct part in 
the problem-solving process itself. Hence, the extension of means-ends analysis 
to an analogy transform space is, in itself, a new, potentially-significant 
problem-solving method, in addition to supporting various learning mechanisms 
in an integrated manner. 
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ABSTRACT 

This chapter concerns learning heuristic problem-solving strategies through 
experience. In particular, we focus on the issue of learning heuristics to guide a 
forward-search problem solver, and describe a computer program called LEX, 
which acquires problem-solving heuristics in the domain of symbolic integration. 
LEX acquires and modifies heuristics by iteratively applying the following 
process: (i) generate a practice problem; (ii) use available heuristics to solve this 
problem; (Hi) analyze the search steps performed in obtaining the solution; and 
(iv) propose and refine new domain-specific heuristics to improve performance 
on subsequent problems. We describe the methods currently used by LEX, 
analyze strengths and weaknesses of these methods, and discuss our current 
research toward more powerful approaches to learning heuristics. 

6.1 INTRODUCTION 

Efforts to build powerful, specialized, heuristic problem solvers have met 
with increasing success over the past decade. However, identifying and encod-
ing the domain-specific heuristics necessary for high performance of these sys-
tems is a painstaking, difficult process. As the complexity of a heuristic 
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program grows, it becomes increasingly difficult for the system builder to predict 
how the addition of a particular new heuristic or operator will affect overall sys-
tem performance. In response to this problem, there has been increased interest 
over the past several years in developing semi-automated and fully-automated 
methods to help construct expert heuristic problem solvers [Waterman, 1970; 
Davis, 1981; Buchanan, 1978; Politakis, 1979] (See also Chapter 7 of this 
book). At the same time, in the Cognitive Psychology literature there have been 
several attempts to model acquisition of problem-solving skills in humans 
[Anzai, 1979; Neves, 1978] (See also Chapter 7 of this book). 

The research presented here is directed toward devising methods by which 
heuristic problem-solving programs improve their problem-solving expertise 
through experience, by generating selected problems in the domain, solving 
them, and learning by analyzing their solutions. As part of this research we 
have designed and constructed a computer program, called LEX, that incorporates 
general methods for discovering domain-dependent problem-solving heuristics. 

The organization of this chapter is as follows. The learning problem con-
sidered by LEX is described, followed by a discussion of the methods employed 
by the current system. This includes methods for (i) solving practice problems, 
(ii) performing the credit assignment task of isolating appropriate and in-
appropriate search steps, (Hi) proposing and generalizing heuristics, and (iv) 
generating new practice problems with which to experiment. The final sections 
of the chapter discuss augmenting the system by giving it knowledge to conduct 
detailed analyses of problem solutions. This knowledge can be used to provide 
strong guidance for the generalization process, and to generate new terms in the 
language with which heuristics are described. Some of the material from this 
chapter is drawn from a collection of previously published articles, including 
[Mitchell, 1981; Mitchell, 1982a; Mitchell, 1982b; Utgoff, 1982]. 

6.2 THE PROBLEM 

LEX begins with a heuristic search problem solver without the heuristics. It 
is given a set of operators for solving problems in symbolic integration, and it 
learns a set of heuristics that recommend in which situations the various 
operators should be applied. Whereas each operator given to LEX contains a set 
of preconditions that characterize a class of problem states to which that operator 
can validly be applied, learned heuristics characterize the more restrictive sub-
class of problem states to which the operator should be applied; that is, the sub-
class of problem states for which application of the operator leads to an accept-
able solution. Heuristics are learned by generalizing from examples of problem 
states to which the operator is applied in solving practice problems. These train-
ing examples are generated by the program, by proposing, solving, and analyz-
ing practice problems. 

LEX operates in the domain of symbolic integration. It solves integration 
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problems by searching through a space of mathematical expressions containing 
indefinite integrals. The operators for traversing the search space are the stan-
dard rules of integration (for instance, integration by parts) as well as transfor-
mations that characterize algebraic equivalence of expressions (such as the as-
sociative and distributive laws). The problem-solving goal is to derive a problem 
state that contains no integrals. 

0P1 S r - f (x) dx —> r S f (x) dx 

0P2 Integration by parts: 
S u dv «■*· uv - J v du 

(the precondition is internally represented 
as J f 1 (x) f2(x) dx, where f 1 (x) corresponds 
to u and f2(x)dx corresponds to dv) 

0P3 1-f (x) · -* f (x) 

OPk J f1 (x)+f2(x) dx -> S f1(x) dx + J f2 (x) dx 

0P5 S sin(x) dx -> -cos (x) + C 

0P6 J cos(x) dx -> sin(x) + C 

0P7 S xAr dx -* [xA(r+1)]/(r+1) + C 

Figure 6-1: Some of the operators for symbolic integration. 

Over 40 problem-solving operators are currently provided to LEX, some of 
which are shown in Figure 6-1. Each operator is interpreted as follows: If the 
general pattern on the left hand side of the operator is found within the problem 
state, then that pattern may be replaced by the pattern specified on the right hand 
side of the operator. For example, opl indicates that if the problem state con-
tains a subexpression of the form " / r-f(x) dx" (here "r" stands for any real num-
ber, and "f(x)" for any function of x), then that subexpression may be rewritten 
with the real number outside the integral. 

In addition to its problem solver, representation for problem states, and 
problem-solving operators, LEX also begins with a language for describing 
heuristics. Each heuristic learned by LEX is of the form: 

IF the current problem state matches the applicability condition P, 
THEN apply operator O, with variable binding B. 
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Thus, the generalization task that LEX faces is that of determining the ap-
propriate applicability condition, P, for each heuristic. Learning this ap-
plicability condition corresponds to learning the concept "situations in which 
operator O should be applied, with variable binding B." 

The language for describing generalizations, or applicability conditions, of 
heuristics is based on a grammar for algebraic expressions containing indefinite 
integrals. The sentences derivable by this grammar are the expressions that form 
legal problem states. The sentential forms derivable by the grammar constitute 
legal generalizations. Briefly, the grammar contains non-terminal symbols that 
correspond to classes of functions (for example, trigonometric, polynomial) and 
classes of operators (such as function composition, multiplication, integration). 
These can be combined to form generalized algebraic expressions. Figure 
6-2 shows this grammar in the form of a hierarchy. Each node in the hierarchy 
represents some substring of a sentential form, and each edge corresponds to a 
rule in the grammar. 

expr 

...-1.5 -1 0 1 2.5 5 6 7 

sin cos tan In exp id r (Λ id k) (* r id) (* r (Λ id k) ) 

Figure 6-2: A grammar for a concept description language for symbolic integration. 

Below is an example of the kind of heuristics that LEX can describe and 
learn. This heuristic may be interpreted as "//"the current problem state contains 
an integrand which is the product of x and any transcendental function of x, 
Then try integration by parts, with u and dv bound to the indicated 
subexpressions." 

/ x transc(x) dx Φ op2 (Integration by parts), 
with u = x 
and dv = transc(x) dx 

The language used to describe applicability conditions of heuristics deter-
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mines, to a great extent, the range of heuristics that can be learned by the sys-
tem. In the current system, this language is fixed. Section 6.4 discusses an 
approach to dynamically altering the language when necessary. 

6.3 DESIGN OF LEX 

PROBLEM 
I GENERATOR 

practi ce 
problem 

partial1y 
learned 
heur i sties 

Figure 6-3: The major components of LEX. 

LEX is based on four program modules, as shown in Figure 6-3. These 
modules are summarized below, and described in more detail in the following 
subsections. 

1. Problem Solver— This module utilizes whatever operators and heuristics 
are currently available, to solve a given practice problem. The output of 
this module is a solution to the given problem, along with a detailed trace 
of the search performed in attempting to solve the problem. 

2. Critic—This module analyzes the search performed by the Problem Solver. 
The output of this module is a set of positive and negative training in-
stances from which heuristics will be inferred. Positive instances cor-
respond to desirable search steps executed in solving the problem, whereas 
negative instances correspond to undesirable steps. 
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3. Generalizer—This module proposes and refines general heuristics intended 
to produce more effective problem-solving behavior on subsequent 
problems. It formulates heuristics by generalizing from the training in-
stances provided by the Critic. 

4. Problem Generator—This module generates practice problems to be con-
sidered by the other modules. It attempts to generate practice problems 
that will be informative (that is, problems that will lead to training data 
useful for proposing and refining heuristics), yet easy enough to be solved 
using existing heuristics. 

6.3.1 Representing Incompletely-learned Heuristics 

LEX learns heuristics incrementally, requiring many positive and negative 
training instances before converging to a final definition of any given heuristic. 
Therefore, at any given stage in the system's development, there are typically 
many partially-learned heuristics whose exact description is underdetermined by 
the data, knowledge, and assumptions currently held by the system. It is essen-
tial that the system have a way of describing what the system does and does not 
know about each such partially-learned heuristic. This information is important 
(i) to the Problem Solver, which must use the partially-learned heuristics in try-
ing to solve problems, (ii) to the Generalizer, which must revise partially-learned 
heuristics as new training data become available, and (Hi) to the Problem Gener-
ator, which must choose practice problems that will lead to refinements of 
partially-learned heuristics. 

LEX represents each partially-learned heuristic by representing the range of 
all alternative plausible descriptions of the heuristic. A description is considered 
plausible if it applies to all the known positive instances associated with the 
heuristic, but to none of the negative instances. Thus, for each partially-learned 
heuristic, we refer to the set of all plausible descriptions of the heuristic as the 
version space of the partially-learned heuristic, relative to the observed instances 
and the language in which heuristics are described. 

While, in principle, the version space of a partially-learned heuristic could 
be represented by listing all of its members, there are typically far too many 
plausible descriptions of a heuristic for this to be feasible. Fortunately, a much 
more compact method for representing version spaces is possible. Any version 
space can be represented compactly by storing only its maximally-specific and 
maximally-general elements, according to the following definition of "more 
specific". 
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Heuristic Hl is more specific than or equal to heuristic H2 if and only if 
both of the following conditions hold: 

1. The applicability condition of H2 matches every instance matched by the applicability 
condition of HI (that is, the applicability condition of HI is more specific than or 
equal to the applicability condition of HI). 

2. In each case where both HI and H2 apply, their recommendations are identical (that 
is, they recommend the same operator and the same binding of operator arguments). 

S: S 3x cos(x) dx - * Apply 0P2 

S kx cos (x) dx —* Apply 0P2 S 3x trig(x) dx -*· Apply 0P2 

S rx cos (x) dx -* Apply 0P2 f kx trig(x) dx -*· Apply 0P2 

S poly(x) f (x) dx -* Apply 0P2 

- ^ 

S f (x) transe (x) dx ^> Apply 0P2 

G: S f1(x) f2(x) dx -* Apply 0P2 

Figure 6-4: Representing a version space. 

We will refer to the maximally-specific members of a version space as the 
subset S of the version space, and to the maximally-general (minimally-specific) 
members of the version space as the subset G. LEX represents the version space 
of each partially-learned heuristic by storing the subsets S and G of that version 
space, as illustrated in Figure 6-4. In this figure, some of the members of a 
particular version space are shown, with the more-specific-than relationship 
among them indicated. While there are very many plausible heuristic descrip-
tions in this version space, the (singleton) sets S and G completely determine the 
version space by the following rule: a heuristic description is contained in the 
version space if and only if it is both (i) more specific than or equal to some 
member of G, and (ii) more general than or equal to some member of S. 

This representation and use of version spaces for generalizing from ex-
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amples has been used previously in the META-DENDRAL program for inferring 
rules of mass spectroscopy, and is described more fully in [Mitchell, 1978] and 
[Mitchell, 1982a]. In [Mitchell, 1978] a more formal definition of version 

spaces is given, along with proofs that the algorithm for incrementally updating 
the sets S and G is correct. 

3x sin(x) - 3 S sin (x) d 

0P5 

3x sin(x) + 3cos (x) + C 

Version space of a proposed heuristic 
S: S 3x cos (x) dx -> Apply 0P2 

wi th u * 3x. and 
dv « cos (x) dx 

G: S f1(x) f2(x) dx -> Apply 0P2 
with u « f1 (x) 
and dv « f2 

One of the suggested 
positive training instances: 

S 3x cos (x) dx -> Apply 0P2 
with u - 3*» and 
dv « cos (x) dx 

Figure 6-5: The learning cycle in LEX. 

The remainder of this section presents the methods used by the four 
modules of LEX, in formulating and refining heuristics. The discussion centers 
around the example shown in Figure 6-5, which illustrates one particular practice 
problem considered by LEX, and the resulting version space of one heuristic. 
This figure shows the search tree generated by the Problem Solver, one of the 
training instances produced by the Critic, and the sets S and G computed by the 
Generalizer to describe the resulting proposed heuristic. 
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6.3.2 The Problem Solver 

The Problem Solver uses a forward-search strategy guided by whatever 
heuristics are available during the current propose-solve-criticize-generalize 
cycle. The Problem Solver accepts as input a problem to be solved, along with 
a resource limit on the CPU time and memory space that it may expend in at-
tempting to solve that problem. If the problem is not solved within the allocated 
resources, the Problem Solver stops and waits for a new problem, unsolved 
problems do not lead to any learning, because the credit assignment strategy of 
the Critic depends upon knowing the problem solution. 

The Problem Solver generates a search tree, repeatedly choosing a node to 
expand and an operator with which to expand it, as shown below. 

DO UNTIL problem is solved OR resource allocation is expended 

BEGIN 

IF no heuristics are applicable to any open node 

THEN expand the lowest cost open node, using any applicable operator 

ELSE IF exactly one heuristic applies to exactly one open node, 

THEN execute the step recommended by that heuristic, 

ELSE follow the recommendation of one of the applicable heuristics, 
choosing that heuristic which applies with the highest estimated 
degree of match (see explanation below). 

END. 

Here, the "cost" of a node refers to the sum of CPU time expended for 
each step leading from the root of the tree to that node. An open node refers to 
any node in the search tree with at least one applicable operator that has not yet 
been applied. The notion of "estimated degree of match" of a heuristic to a node 
is introduced to allow using partially-learned heuristics in a reasonable fashion. 
Notice that for a given partially-learned heuristic and search node, it is possible 
that some of the alternative plausible descriptions of the heuristic will match the 
node while others will not. Because of this we define the degree of match of a 
partially-learned heuristic to a given node as the proportion of the members of its 
version space that match the node. Because the degree of match is difficult to 
compute exactly, it is estimated by the proportion of members in the union of S 
and G that match the given problem state. 

The ability of the Problem Solver to use partially-learned heuristics to con-

*LEX makes no distinction between problems that are unsolvable in principle, and those that are 
solvable in principle but unsolvable within the given resource limits. 
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trol search is important in allowing it to solve problems that will provide ad-
ditional training data. In experiments with LEX, it has typically been the case 
that the majority of available heuristics are only partially learned. Even so, it is 
quite common that a partially-learned heuristic will apply to a particular node 
with a degree of match of 1. In such cases, even though the exact identity of 
the heuristic is not yet determined, the applicability of the heuristic to this par-
ticular node is fully determined (that is, it does not matter which of the alter-
native heuristic descriptions is correct, since they all apply to the node in 
question). The ability to distinguish such cases from those in which there is 
ambiguity regarding the heuristic recommendation is an important capability in 
the Problem Solver's use of partially-learned heuristics. 

6.3.3 The Critic 

After a solution has been determined, the Critic faces the task of assigning 
credit (or blame) to individual search steps for their role in leading to (or away 
from) a solution. The Critic examines the detailed search trace recorded by the 
Problem Solver, and selects certain search steps to be classified as positive or 
negative training instances for forming general heuristics. Each training instance 
corresponds to a single search step; that is, the application of a single operator to 
a given problem state, with a particular binding of operator arguments. 

Figure 6-5 illustrates part of the search tree generated by the Problem Sol-
ver for a given practice problem, and one of the associated positive training in-
stances produced by the Critic. The positive instance shown there corresponds to 
the first step along the path to the solution. 

The criterion used by the Critic to produce training instances may be sum-
marized as follows: 

1. The Critic labels as a positive instance every search step along the lowest 
cost solution path found. Here, the cost of a solution is taken to be the 
sum of the execution times of all operators applied along the solution path. 

2. The Critic labels as a negative instance every search step that (i) leads 
away from a node on the lowest cost solution path found, to a node not on 
this path, and (ii) when its resulting problem state is given anew to the 
Problem Solver, leads either to no solution or to a higher cost solution. 
Here a solution is considered higher cost if its cost is more than a certain 
factor times the cost of the lowest cost known solution (currently this fac-
tor is set to 1.15). The resource allocation given to the Problem Solver in 
this case is equal to the resources spent in obtaining the known solution. 

Notice that the Critic is not infallible. It is possible for the Critic to 
produce positive training instances that are not on the minimum cost solution 
path, but are rather on the lowest cost solution path found by the Problem Sol-
ver. Also, it is possible for the Critic to label as negative a search step that is in 
fact part of the true (but never discovered) minimum cost solution path. Both 
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kinds of errors can arise because the heuristic Problem Solver is not assured of 
finding the minimum cost solution. Criterion 2(ii) above is included in order to 
reduce the likelihood that such errors will occur. Here, the Critic reinvokes the 
Problem Solver, giving it a problem state associated with a potential negative 
instance, in order to explore a portion of the problem space that may not have 
been sufficiently considered during the solution of the original problem. If the 
Problem Solver is unable to find an appropriate solution from the given state 
within the specified resource limits, the confidence that this is a negative in-
stance is increased. If the Problem Solver finds a lower cost solution when it is 
reinvoked, this new solution is used in determining positive training instances. 
Of course, the only completely error-free strategy for labeling training instances 
requires a full breadth-first or uniform-cost search, which is usually prohibitively 
time consuming. 

The Critic typically produces between two and twenty training instances 
from each solved problem, depending upon the length of the problem solution 
and the branching factor of the search (the search trees produced by the Problem 
Solver typically contain from a few to a few hundred search nodes). We have 
found empirically that even though the Critic cannot guarantee correct classifica-
tions, it rarely produces incorrect training instances. We have also found that in 
a significant number of cases, when the Critic calls the Problem Solver to con-
sider a possible negative instance (see criterion 2(ii) above) an improved solution 
is found. For example, in one run of LEX for a sequence of 12 training 
problems, this occurred 4 times. In those cases in which the Problem Solver 
does not find the best solution during its first attempt, the cause is usually a 
misleading recommendation by an incompletely-learned heuristic. 

6.3.4 The Generalizer 

The Generalizer considers the positive and negative training instances sup-
plied by the Critic within the current learning cycle, in order to propose and 
refine heuristics to improve problem-solving performance. The generalization 
problem faced by this module is one of learning from examples. Given a se-
quence of training instances corresponding to search steps involving a given 
operator, the generalization problem here is to infer the general class of problem 
states for which this operator will be useful, along with the range of appropriate 
bindings for operator variables. 

The Generalizer describes the version space for each proposed heuristic, by 
computing the sets S and G that delimit the plausible versions of that heuristic. 
For example, Figure 6-5 shows a positive training instance associated with op2 
as input to the Generalizer. The output of the Generalizer in this case is a ver-
sion space corresponding to a partially-learned heuristic, and represented by the 
(singleton) sets S and G shown in Figure 6-5. This partially-learned heuristic is 
proposed on the basis of the single training instance shown, and will be refined 
as subsequent instances become available. Below, we describe the procedures 
for proposing and refining problem-solving heuristics in LEX. 
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Proposing a new heuristic—When the Generalizer is given a new positive 
instance, it determines whether any member of the version space of any current 
heuristic applies to this instance. If not, a new heuristic is formed to cover the 
positive instance. This is the case in the example of Figure 6-5. In forming a 
new heuristic, the set S is initialized to the very specific version of the heuristic, 
that applies only to the current positive training instance (this is the most specific 
possible version consistent with the single observed training instance). G is in-
itialized to the version of the heuristic that suggests the operator will prove use-
ful in every situation where it can validly be applied; that is, it is initialized to 
the given precondition of the operator being recommended. Thus, in the ex-
ample of Figure 6-5, G is initialized to the version whose precondition is the 
precondition for op2. Here, / fl(x) f2(x) dx represents the integral of the 
product of any two real functions of x, and corresponds to the precondition / u 
dv as it is stated in the system's generalization language. 

At this point, S and G delimit a broad range of alternative versions of the 
proposed heuristic, corresponding to all the generalizations expressible in the 
given language that are consistent with this single training instance. As sub-
sequent positive instances are considered, S becomes more general to include 
newly-observed instances in which op2 is found to be useful. Likewise, as sub-
sequent negative instances are considered, G becomes more specific in order to 
exclude negative instances in which op2 may validly be applied, but in which it 
does not lead to an acceptable solution path. Thus, the range of alternative 
plausible versions of the heuristic delimited by S and G will narrow as new in-
formation is acquired through subsequent practice problems, and the uncertainty 
regarding the correct description of the heuristic is thereby reduced. 

Refining incompletely-learned heuristics—If the Generalizer finds that an 
existing heuristic applies to a newly-presented positive or negative instance (that 
is, if its degree of match to the instance is nonzero), then that heuristic is revised 
by eliminating from its version space any version that is inconsistent with this 
training instance. In the current example, the next practice problem that is con-
sidered is / 3x sin(x) dx (the following section explains why). The solution to 
this problem leads to both a positive and a negative training instance for the 
heuristic from Figure 6-5. Figure 6-6 shows these two new training instances, 
and the way in which they lead to a refinement of the version space of this 
heuristic. In the revised version space shown there, the most specific version, S, 
of the heuristic has been generalized just enough to allow it to apply to the new 
positive training instance. Here trig(x) replaces cos(x) so that the heuristic will 
apply to integrals containing any trigonometric function of x. The program deter-
mines this revision by first noting that the term cos(x) in the old S prevents that 
generalization from applying to the new instance. It then consults the grammar 
for expressing heuristics (shown in Figure 6-2) to determine the next more 
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Version Space 

New 

Rev 

S: 

G: 

Traini ng 

! of Heuristic 

S 3* cos ( K) dx -> 

S f1 (x) f2(x) dx 

Instances: 

Positive training 

S 3x 

Negative training 

sed Versi 

S: 

G: 

S 3x 

on Space: 

S 3x trig 

g1 : S poly (: 

g2: S f1 (x) 

instance 

sin (x) 

instance 

sin (x) 

(x) dx -

0 f2(x) 

transe ( 

Apply 0P2 wi th 
u * 3x» and 
dv = cos (x) dx 

-> Apply 0P2 wi th 
u = f 1 (x) , and 
dv = f2(x)dx 

: 

dx -> Apply 0P2 wi 
u = 3x» and 
dv = sin (x) 

: 

dx -> Apply 0P2 wi 
u « si n (x) , 
dv s 3x dx 

> Apply 0P2 with 
u = 3x» and 
dv - trig (x) dx 

th 

dx 

th 
and 

dx -> Apply 0P2 wi th 
u ■ poly (x), and 
dv = f2(x) dx 

x) dx -> Apply 0P2 
with u s f 1 (x) , 
dv « transe (x) 

and 
dx 

Figure 6-6: Revising the version space of a heuristic. 
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general term that can be substituted in order to include this new instance.2 

The general boundary of the revised version space of Figure 6-6 has also 
been altered so that it does not apply to the new negative training instance. In 
this case, there are two maximally-general versions (gl and g2) of the heuristic 
consistent with the three observed training instances. Here, "poly(x)" refers to 
any polynomial function of x, and "transc(x)" denotes any transcendental func-
tion of x. As with revising the set S, revisions to G depend upon the generaliza-
tion language being used. For instance, gl is computed by replacing fl(x) 
(which represents "any real-valued function") by the next more specific accept-
able expression. Notice in the hierarchy of Figure 6-2, this expression is "poly". 

As subsequent training instances are considered, this partially-learned 
heuristic is further refined, and S and G converge to the heuristic description 
shown below. Notice that this description is contained in the version space 
represented in Figure 6-6, since it is more general than the S boundary set and 
more specific than the G boundary set of the version space. 

/ rx transc(x) dx => apply op2 with u = rx, and dv = transc(x) dx 

Although the Generalizer attempts to form a single conjunctive heuristic for 
each operator known to the system, sometimes it is not possible to cover all the 
positive instances and exclude all the negative instances with a single conjunctive 
generalization. The Generalizer deals with learning disjunctions in the following 
straightforward manner: if a positive instance associated with operator O is not 
consistent with any current heuristic that recommends operator O, then it 
proposes a new heuristic (that is, disjunct) for operator O that covers this in-
stance. This new heuristic will be updated by all subsequent negative instances 
associated with operator O, and by any subsequent positive instances associated 
with operator O and to which at least some member of its version space applies. 
This technique for learning disjunctive concepts is similar to several described 
previously (for example, [Mitchell, 1978; Iba, 1979; Vere, 1978]). 

How effective is the Generalizer at producing useful heuristics? One way 
to answer this question is to measure the improvement in problem-solving perfor-
mance due to learned heuristics. In one experiment that illustrates typical be-
havior of LEX, a sequence of twelve hand-selected3 training problems was 
presented to the Problem Solver, Critic, and Generalizer, and performance of the 
Problem Solver was measured at various stages in the training sequence. Perfor-

2Although the disjunction "cos(x) OR sin(x)" would be a more specific generalization than "trig", this 
disjunction is not currently in the generalization language, and therefore cannot be stated by the 
program. Of course if this disjunction were defined a priori as a separate term in the language, then 
it would be considered by the Generalizer. 

3At the time that this experiment was conducted, we had not implemented the Problem Generator 
module. 
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Total 
Search 
Steps 
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Solvi ng 

Set of Test 
Problems 

200 + 

100 + 

1—i- 10 12 

Number of Training Problems Completed 

Figure 6-7: Performance Results 

mance was measured by testing the Problem Solver on a set of five test problems 
before any training had occurred, and again after every second training problem. 
The five test problems were different from the set of twelve training problems, 
though the two sets were chosen to be similar enough that learned heuristics 
would be relevant to the test problems. This experiment is reported in greater 
detail in [Mitchell, 1981], and is summarized in Figure 6-7. 

Fourteen heuristics were formed by LEX during this training session, cover-
ing thirteen of the 32 operators available to the system at that time. Twelve of 
these fourteen heuristics remained incompletely learned at the end of the training 
sequence (that is, their version space still contained multiple plausible descrip-
tions of the heuristic). 

Figure 6-7 shows the improvement in problem-solving performance 
(roughly two orders of magnitude) for this experiment, as measured by the total 
number of search steps required in attempting to solve the five test problems. At 
certain points during the training, the Problem Solver could not solve all five test 
problems within the given resource allocation.4 Such points are shown as a "*" 
in Figure 6-7, and the number of search steps recorded in those cases is the num-
ber of steps executed before the solution attempt was aborted. While the exact 
values of the points on this curve would be different for different sets of training 
and test problems, the general form of the curve is quite repeatable, given 
reasonable test problems and a well-chosen sequence of training problems. 

In addition to observing that problem-solving performance improved sig-
nificantly using the learned heuristics, it is interesting to note that problem-
solving performance did not improve monotonically as a function of training. In 
particular, while all five test problems could be solved following the fourth train-

4The Problem Solver was allowed four CPU minutes and 800,000 cons cells per test problem, 
running in RUCILISP on a DEC2060. 
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ing problem, only four of the test problems could be solved after the sixth train-
ing problem. This phenomenon was due to the proposal of new, partially-
learned heuristics that led the Problem Solver to consider new (and not very 
useful) branches of the search in one of the test problems. Subsequent training 
refined these heuristics and the Problem Solver became able again to solve (this 
time more efficiently) all five test problems by the completion of the eighth 
training problem. 

6.3.5 The Problem Generator 

After a practice problem has been solved and analyzed, and the resulting 
training data has been used to propose and refine heuristics, the Problem Gener-
ator must propose a new practice problem. This module is responsible for focus-
ing the system's efforts on useful activity, by choosing useful experiments. Its 
task is very different from that of a teacher of symbolic integration, or an outside 
trainer in most work on learning from examples. In contrast to an expert tea-
cher, the Problem Generator must choose appropriate practice problems without 
knowing the heuristics that it is trying to teach. While the Problem Generator 
lacks this important information, it has other information that an expert teacher 
may not have: very detailed knowledge about the learner's current state 
(including knowledge of alternative versions of heuristics under consideration). 
As a result of these characteristics, the experimentation strategy of the Problem 
Generator is based primarily on generating problems designed to eliminate 
known ambiguities in LEX's heuristic knowledge. 

The major criteria for generating problems are (i) to generate training 
problems whose solutions will provide informative new training data, and (ii) to 
generate training problems that can be solved using the available operators and 
current set of heuristics. The current implementation of the Problem Generator 
is based mainly on the first of these considerations, and consists of two different 
problem generation tactics. 

The first problem generation tactic is to produce problems that will allow 
refinement of existing, partially-learned heuristics. This is done by selecting a 
partially-learned heuristic, then generating a problem state that matches some, 
but not all, of the members of the version space of that heuristic. For example, 
consider the partially-learned heuristic described by the version space at the top 
of Figure 6-6. The problem state / 3x sin(x) dx matches some, but not all, of 
the alternative generalizations in this version space, and is therefore a useful 
problem to attempt to solve. By solving the problem, LEX will find out whether 
or not the heuristic should cover this problem state. If the answer is yes, a posi-
tive instance will be produced for this heuristic, and the S boundary of the ver-
sion space will be generalized. If the answer is no, a negative instance will be 
produced, and the G boundary of the version space will be specialized. As it 
turns out, this problem leads to both a positive and a negative instance 
(corresponding to different bindings of operator arguments), and both version 
space boundaries are refined as shown in Figure 6-6. 
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How does the Problem Generator create a problem that matches part of a 
given version space? It begins by selecting a single member, si, of the S 
boundary, and a more general member, gl , of the G boundary. (In the version 
space at the top of Figure 6-6 both boundary sets happen to be singleton sets.) It 
then creates, as follows, a problem state that matches gl, but does not match si. 
One term in the generalization si is selected (in this case cos(x)), and the cor-
responding term in gl is found (in this case f2(x)). The generalization hierarchy 
(see Figure 6-2) is then examined to determine a sibling of the term from si, that 
is more specific than the corresponding term from gl. In this case, sin(x) is a 
sibling of cos(x) that is more specific than f2(x). This sibling is then substituted 
into si, and the resulting generalization is fully instantiated to produce a problem 
state that matches gl, but not the original si. In the current example, this leads 
to the problem state / 3x sin(x) dx. Notice that if the term 3x were chosen, 
rather than cos(x), as the basis for forming a new problem state, the new 
problem might instead be / 7x cos(x) dx. Furthermore, both of these terms 
could be replaced to produce the problem state / 7x sin(x) dx. Because of the 
need to create a problem that can be solved, the Problem Generator attempts to 
create a problem that is very similar to the most recently encountered positive 
instance for the heuristic. Therefore, only a single term from si is altered, and 
the resulting generalization is instantiated to correspond as closely as possible to 
the most recently encountered positive instance (a known solvable problem). 

The second tactic for problem generation is to create a problem that will 
lead to proposing a new heuristic. This is accomplished by looking for pairs of 
operators whose preconditions intersect, but for which there is no current heuris-
tic. Should a problem be encountered for which both operators apply, a heuristic 
will be needed to choose which of the two to apply. For example, consider opl 
and op3 from Figure 6-1. The intersection of the preconditions of these 
operators is / l-f(x) dx; that is, both opl and op3 will apply to any problem that 
matches this applicability condition. This applicability condition is therefore in-
stantiated to produce a specific problem state (such as / l-cos(x) dx) which is 
then output by the Problem Generator. When the Problem Solver, Critic, and 
Generalizer consider this problem, a new heuristic will be proposed which will 
be useful in selecting between opl and op3 in cases where they are both ap-
plicable. 

The current Problem Generator incorporates the above two tactics for creat-
ing practice problems, and can employ any of several strategies for determining 
which tactic to apply at any given step. One such experimentation strategy is to 
apply the first tactic (refine an existing heuristic) whenever possible, and to ap-
ply the second tactic only when the first cannot be applied (for example, when 
the system begins operation and has no heuristics at all). While we have not yet 
done extensive testing of this module, it has been used to generate sequences of 
practice problems that lead to useful heuristics. The main observations that have 
come out of our preliminary experiments with this module are given below. 

• It will be useful to extend the other system modules so that they can take 
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into account the reason why the current problem has been suggested, and 
focus their activity accordingly. For example, if a problem is suggested in 
order to refine a particular heuristic, then the Problem Solver and Critic 
should be sure to consider the search steps that become training instances 
for that heuristic, and the Critic might allocate greater resources to obtain a 
reliable classification of that training instance. 

• While the tactics described above are generally successful at creating infor-
mative problems to consider, they are not always successful at creating 
solvable problems. Some problems that are generated are simply not solv-
able with the set of operators known to the system. Other generated 
problems are solvable in principle, but cannot be solved within the al-
located CPU time and space resources, using existing heuristics. In our 
initial experiments, more than half the generated problems turned out to be 
solved by the Problem Solver. Both of the current tactics produce a 
generalization which can be instantiated in any fashion to produce an infor-
mative problem. The instantiation is then controlled by a single heuristic: 
try to create a problem state that is as similar as possible to a previously-
solved problem. More reliable methods for creating solvable instances of 
problems may require that the system have (or acquire) more appropriate 
knowledge about the characteristics of solvable problems. 

• It may be useful to introduce a new tactic that produces problems that are 
guaranteed to be solvable, by beginning with a goal state, then applying 
inverses of the known operators to produce a problem state with a known 
solution. While the solution produced along with the problem will not 
necessarily be the optimal solution, it will provide an upper bound on the 
cost of the optimal solution. For this tactic to be useful, there must be a 
way of selecting sequences of operators that produce informative as well as 
solvable problems. 

• There are also interesting questions to be considered regarding global 
strategies for exploring the problem domain. For example, should the 
Problem Generator focus first on refining existing heuristics, and then sug-
gest problems that lead to new heuristics? Or is it better to build up a 
more broad set of heuristics, focusing at each step on problem types for 
which no heuristics yet exist, leaving refinement of these heuristics until a 
broad set of incompletely-determined heuristics are proposed? 

6.4 NEW DIRECTIONS: ADDING KNOWLEDGE TO AUGMENT LEARNING 

The current LEX system, as described in the previous section, is able to 
learn useful problem-solving heuristics in the domain of symbolic integration, by 
generalizing from self-generated examples. There are several features of the 
design of LEX that have an important impact on its capabilities. The ability to 
represent incompletely-learned heuristics is crucial; to the Problem Solver that 
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must use these partially-learned heuristics in order to solve additional practice 
problems to obtain additional training data; to the Generalizer that must refine 
these heuristics; and to the Problem Generator that must be able to consider alter-
native plausible descriptions of a heuristic in order to suggest an informative 
practice problem. The ability of the Critic to produce reliable training instances 
is also crucial to system performance. In spite of the heuristic nature of the 
Critic's credit assignment method (following from the fact that only part of the 
search space is explored by the Problem Solver), the Critic in fact performs quite 
well in producing reliable classifications of training instances. Its ability to call 
the Problem Solver in a controlled manner to explore selected portions of the 
search space is important to increasing the reliability of its classifications of 
training instances. The Generalizer's use of the version space method for 
generalizing from examples is also a major feature of LEX, which gives it the 
capability to incrementally converge on heuristics consistent with a sequence of 
training instances observed over the course of many practice problems. 

While LEX is able to learn useful heuristics, it also has significant limita-
tions. One of the most fundamental difficulties is that learning is strongly tied to 
the language used to describe heuristics—the system can only learn heuristics 
that it can represent in the provided language. It is difficult to manually select 
an appropriate language before learning occurs, and LEX often fails to converge 
on an acceptable heuristic for a given set of training instances, simply because it 
does not have the appropriate vocabulary for stating the heuristic. For example, 
we have found that the addition of terms such as "odd integer" and "twice in-
tegrate function" to the language shown in Figure 6-2, would allow LEX to 
describe (and therefore learn) heuristics that it cannot currently represent. This 
constraint imposed by a fixed representation language is one of the most fun-
damental difficulties associated with this and some other approaches to learning 
from examples. 

A second deficiency of LEX is its failure to take advantage of an important 
source of information for chosing an appropriate generalization: analysis of why a 
particular search step was useful in the context of the overall problem solution. 
By analyzing the role of a particular search step in leading to a problem solution, 
it is sometimes possible for humans to determine a very good general heuristic 
after observing only a single training instance. If LEX were to conduct such an 
analysis, it would converge much more quickly on appropriate heuristics, pos-
sibly with less sensitivity to classification errors by the Critic. 

In this section, we describe our current research toward giving LEX new 
knowledge and reasoning capabilities to overcome the above limitations. In par-
ticular, we consider how knowledge about heuristic search and about the in-
tended purpose of learned heuristics could allow LEX to (i) derive justifiable 
generalizations of heuristics via analysis of individual training instances, and (ii) 
respond to situations' in which the vocabulary for describing heuristics is insuf-
ficient to characterize a given set of training instances. More detailed discus-
sions of this material can be found in [Mitchell, 1982b] and [Utgoff, 1982]. The 
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kind of knowledge considered here, regarding the intended purpose of learned 
heuristics, is one kind of meta-knowledge that can be useful in acquiring 
problem-solving strategies. The importance of meta-knowledge in acquiring 
problem-solving strategies is also discussed in other chapters of this book, such 
as Chapters 9 and 12. 

6.4.1 Describing the Learner's Goal 

In order to reason about why a given training instance is positive, and to 
determine which features of the training instance are relevant, it is necessary that 
the system have a definition of the criterion by which the instance is labeled as 
positive (that is, the criterion that determines the goal of its learning activity). 
LEX is intended to learn heuristics that lead the Problem Solver to minimum cost 
solutions of symbolic integration problems. This goal is implicit in the credit 
assignment procedure used by the Critic, which attempts to classify individual 
search steps as positive or negative according to this criterion. While this 
criterion is currently defined procedurally within the Critic, it is not defined 
declaratively, and the system therefore cannot reason symbolically about its 
learning goal. Here we present a declarative representation of this credit assign-
ment criterion, then discuss in subsequent subsections how this knowledge 
provides the starting point for analyzing training instances, and extending the 
vocabulary of the language for describing heuristics. 

To simplify the examples and discussion here, we assume a slightly 
modified credit assignment criterion, for which the goal of LEX is to learn heuris-
tics that recommend problem-solving steps that lead to any solution (rather than 
the minimum cost solution). In this case, any search step that applies some 
operator, op, to some problem state, state, is a positive instance, provided it 
satisfies the predicate Poslnst defined as follows: 

PosInst(op, state) <=> 
-Goal(state) Λ [ Goal( Apply (op, state)) V Solvable(Apply(op, state))]. 

Here, Goal is the predicate for recognizing solution states, Apply is the 
function for applying operators to states, and Solvable is the predicate that tests 
whether a state can be transformed to a Goal state with the available operators. 

Solvable is defined as follows: 
Solvable(state) <=> 

(3 op) [Goal( Apply (op, state)) V Solvable(Apply(op,state))] 

6.4.2 Analyzing Training Instances to Guide Generalization 

This section suggests how the declarative representation of the credit as-
signment criterion, Poslnst, could be used by LEX to produce a justifiable 
generalization of a heuristic based on analysis of a single training instance. The 
key idea here is that by analyzing why the observed positive instance is classified 
as positive, in the context of the overall problem solution, it is possible to deter-
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mine a logically sufficient condition for satisfying Poslnst. Such an analysis 
leads to a justifiable generalization of the heuristic, that follows from the credit 
assignment criterion, together with knowledge about search and the represen-
tation of operators and problem states. This process is related to the process of 
operationalizing advice, as discussed by Mostow in Chapter 12 of this book and 
by [Hayes-Roth, 1980]. The particular method for analyzing solution traces is a 
generalization of the method of solution analysis presented in [Fikes et al., 
1972]. 

As an example, suppose that the system has just produced the problem 
solution tree shown in Figure 6-8, and the generalizer is now considering the 
first step along the solution path as a positive training instance for a heuristic that 
is to recommend opl. Assuming no heuristic yet exists for opl, the empirical 
generalization method described earlier will produce the following version space 
for the new heuristic: 

S: / 7 (x2)dx => use opl 

G: / r f(x) dx => use opl 

In this example, analysis of how this training instance satisfies the credit 
assignment criterion will lead to additional information for refining the above 
version space of alternative hypotheses. The trace of this arialysis is broken into 
four main stages, which attempt to determine some property of the integrand in 
the training instance which is sufficient to assure that the credit assignment 
criteria will be met. This sufficient condition for satisfying Poslnst can then be 
used to further generalize the S boundary of the version space for this heuristic. 
The four main stages are (i) Generate an explanation that shows how the current 
positive instance satisfies Poslnst, (ii) Extract from this explanation a sufficient 
condition for satisfying Poslnst, (Hi) Restate the sufficient condition in terms of 
the generalization language (that is, the language of applicability conditions for 
heuristics), as restrictions on various problem states in the solution tree, and (iv) 
Propagate the restrictions on various problem states through the solution tree, and 
combine them into a generalization that corresponds to a sufficient condition for 
assuring Poslnst will be satisfied. 

Stage 1: Produce an explanation of how the current training instance 
satisfies Poslnst. This explanation is produced by instantiating the definition of 
Poslnst for the positive instance in question. By determining which disjunctive 
clauses in the definition of Poslnst are satisfied by the current training instance, 
and then by further expanding those clauses by instantiating predicates to which 
they refer, a proof is produced that PosInst(opl, State 1). The result of this stage 
is an And/Or proof tree, which we shall call the explanation tree for the training 
instance. The tip nodes in the explanation tree are known to be satisfied because 
of the observed solution tree to which the training instance belongs. This ex-
planation tree indicates how the training instance satisfies Poslnst, and forms the 
basis for generalization by inferring sufficient conditions for satisfying Poslnst. 

The explanation tree for the positive training instance <opl , State 1> is 
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statel: S 7 (xA2) dx 

0P1 
J r f (x) dx -> r Jf (x) dx 

state2: 7J"UA2) dx 

0P9: 
S (xMr NEQ -1}) -* (xMr+D)/(r+D 

s t a t e 3 : 7. (xA3)/3 

Figure 6-8: The solution tree for example 1. 

Poslnst(0P1, Statel) 

Solvable (Apply(0P1, Statel)) ~ (Goal(Statel)) 

(3 op) (Solvable(Apply(op,(Apply 0P1, Statel)))) 

Goal(Apply(0P9, Apply (0P1, Statel))) 

Figure 6-9: The explanation tree for PosInst(opl, Statel). 

shown in Figure 6-9. Nodes in the explanation tree correspond to statements 
about various problem states and operators in the associated solution tree. The 
explanation tree for the current example indicates that <opl , Statel > is a Posi-
tive instance because (i) Statel is not a Goal state, and (ii) by applying op9 to 
the state resulting from the positive instance step, it is possible to reach a goal 
state. Subsequent stages of analysis of this explanation tree, shown below, ex-
tract this explanation (at an appropriate level of generality), and to restate it in 
the generalization language in which heuristics are expressed. 

Stage 2: Extract a sufficient condition for satisfying Poslnst. If the ex-
planation tree is viewed as a proof that Poslnst is satisfied by the current training 



MITCHELL, UTGOFF AND BANERJI 185 

instance, then it is clear that any set of nodes that satisfy this And/Or tree cor-
respond to a sufficient condition for satisfying Poslnst. In the current example, 
for instance, if all the tip nodes of the explanation tree are satisfied by a given 
state, s, then Poslnst will be satisfied by the training instance <opl , s>. In this 
stage, a set of nodes that satisfy the And/Or tree is selected, and the correspond-
ing sufficient condition for Poslnst is formulated by replacing the problem state 
from the training instance by a universally-quantified variable. In the current 
example, if the tip nodes of the explanation tree are selected, then the resulting 
sufficient condition for Poslnst may be stated as follows: 

(Vs) PosInst(opl, s) <: (~Goal(s) Λ Goal(Apply(op9, Apply(opl, s)))) 

Notice that there are many possible choices of sets of nodes to satisfy the 
And/Or tree, and correspondingly many sufficient conditions. This choice of 
nodes is one of the major control issues in the analysis of the training instance. 
Generally, nodes close to the root of the explanation tree lead to more general 
sufficient conditions. However, since the sufficient conditions formulated in this 
stage must be transformed by subsequent stages to statements in the generaliza-
tion language for heuristics, the choice of covering nodes from the explanation 
tree must trade off (i) the generality of the corresponding sufficient condition, 
with (ii) the loss in generality that is likely when this sufficient condition is 
transformed into the generalization language for heuristics. As an example, con-
sider the alternative choice of the two nodes at the second level of the explana-
tion tree. This set of nodes leads to the following sufficient condition for 
Poslnst: 

(Vs) PosInst(opl, s) <= (~Goal(s) Λ Solvable( Apply (op 1, s))) 

While this sufficient condition on satisfying Poslnst is more general than 
the earlier sufficient condition, it turns out that this added generality will be lost 
when attempting to redescribe the sufficient condition in terms of the generaliza-
tion language. The difficulty in this case stems from the fact that there is no 
straightforward translation from the predicate "Solvable" to a statement in the 
generalization language of LEX. In contrast, the sufficient condition correspond-
ing to the tip nodes of the explanation tree involves only the predicate "Goal", 
which is easily characterized in terms of the generalization language. 

Stage 3: Restate the sufficient condition in terms of the generalization 
language, as restrictions on various problem states involved in the solution 
tree. In the current example, the sufficient condition corresponding to the tip 
nodes of the explanation tree can be restated as follows: 

(Vs)PosInst(opl, s) <= 
(Match( /f(x)dx, s) Λ Match( f(x), Apply(op9, Apply(opl, s)))) 

The predicate "Match" corresponds to the matching procedure used to com-
pare applicability conditions, or generalizations, with problem states (that is, it 
tests whether the applicability conditions are satisfied in the problem state). The 
first conjunct above expresses the fact that "s" is not a Goal state ("s" contains 
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an integral), and the second conjunct expresses the fact that Apply(op9, 
Apply (op 1, s)) is a goal state (it is some expression that does not contain an 
integral sign). This second conjunct corresponds to a restriction on the state 
labeled State3 in Figure 6-8. 

In general, the goal of this stage is to translate the sufficient condition into 
a conjunctive set of statements of the form Match(<generalization>, <problem-
state>), where <generalization> can be any statement in the generalization lan-
guage used by the system, and <problem-state> can be any expression that cor-
responds to a particular problem state in the solution tree for the current ex-
ample. 

The translation of sufficient conditions into the generalization language re-
quires knowledge about the correspondence between the representation language 
in which the analysis is being done, and the generalization language used to 
describe heuristics. For instance, in the current example the following 
knowledge is used in the translation: 

(Vs) ~Goal(s) <̂> Match( /f(x)dx, s) 
and 
(Vs) Goal(s) <=> Match( f(x)dx, s) 

Unfortunately, some expressions generated by analyzing the explanation 
tree may have no corresponding expression in the generalization language. For 
example, in the current LEX generalization language, there is no way of charac-
terizing all "Solvable" functions. In this case, translating the sufficient condition 
corresponding to the second level nodes in the explanation tree may require fur-
ther specializing the sufficient condition, by replacing Solvable(x) by sufficient 
conditions for Solvable. An example of such knowledge is the knowledge that 
all polynomial integrands are solvable. It is important to note that even if no 
such knowledge is available, it will always be possible to translate the sufficient 
condition into some weaker condition describable in the generalization language. 
This can always be accomplished by using the fact that the solution tree provides 
at least one problem state which satisfies the predicate, and the problem state is 
itself describable in the generalization language. Thus, for example, the con-
dition Sol vable( Apply (op 1, s)) may, if no other relevant knowledge is available, 
be weakened and replaced by Match( 7/(x2)dx, Apply (op 1, s)). 

Stage 4: Propagate the restrictions on various problem states through 
the solution tree to determine equivalent conditions on the problem state in-
volved in the current training instance. By examining the definitions of the 
operators involved in reaching a given state, x, it is possible to propagate restric-
tions on x through the solution tree to deduce the corresponding constraints on an 
earlier problem state. This back propagation of restrictions is necessary in order 
to restate the sufficient condition on Poslnst in terms of a generalization that ap-
plies to the training instance. This propagation requires using the operators in a 
way different from the way in which they are used during forward search 
problem-solving, and is similar to the process of goal regression discussed in the 
literature on means-ends problem-solving and planning [Nilsson, 1980]. 
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As an example, consider the second expression in the sufficient condition 
from stage 3: Match( f(x), Apply(op9, Apply(opl, s))). This condition, when 
back propagated through op9 becomes Match( f(x)/(x | (r=£ -l)dx), Apply (op 1, 
s)). The new generalization corresponds to the class of problem states which can 
be transformed using op9 into an expression that satisfies the original condition. 
Similarly, this new expression can be propagated back through opl to yield an 
equivalent condition on State 1: Match( / r(x f {τΦ -l})dx, s). Thus, the suf-
ficient condition from stage 3 can be restated as: 

(Vs) PosInst(opl, s) <= 
(Match( /f(x)dx, s) Λ Match( / r(x | {r Φ -l})dx, s)) 

Since the second conjunct is more specific than the first, the above expres-
sion can be simplified to: 

(Vs) [PosInst(opl, s) φ Match( / r(x ] {r Φ -l})dx, s)] 

Finally, we have found sufficient conditions for PosInst(opl, s) which are 
stated as a generalization that must match State 1. While the sufficient condition 
determined by the above analysis is not the most general sufficient condition pos-
sible, it is satisfied by the current training instance and follows naturally from 
analyzing that instance. If this training instance were the first instance encoun-
tered for this particular heuristic, the resulting version space would reflect the 
extra information extracted from analyzing this instance, as shown below. 

S : / r [ x t ( r Φ -1)] dx => Apply opl 

G: / r f(x) dx Φ Apply opl 

6.4.3 Automatically Extending the Vocabulary for Describing Heuristics 

One of the most fundamental difficulties associated with current approaches 
to machine learning is the problem of acquiring an appropriate vocabulary with 
which to describe learned concepts. Nearly all existing systems assume some 
fixed vocabulary of terms with which to represent learned concepts (for instance, 
the LEX terms trigonometric, polynomial, exponential, and so on, as shown in 
Figure 6-2). In cases where this vocabulary is inappropriate, it will be impos-
sible to describe (and hence to learn) the desired concept. In the LEX system, we 
have found that there are many cases where the current language for describing 
heuristics is insufficient to correctly characterize sets of training instances 
produced by the Critic. 

As an example, consider the solution path shown in Figure 6-10, and the 
positive training instance corresponding to the first step of this solution path. If 
this positive training instance is observed, together with the positive training in-
stance Jcos7(x)dx, and the negative training instance /cos6(x)dx, then LEX will 
be unable to produce a heuristic that matches these two positive instances, and 
excludes the negative instance. The problem here is that the language in Figure 
6-2 for describing heuristics has no term that includes both 5 and 7 while exclud-
ing 6. 
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state l: Jcos7(x)dx 

opl: fHx)=>flMJ(x)f(x) 

state2: /cos6(x)cos(x)dx 

op2: fr(x)^(f2(x))lr/2l 
Ψ 

state3: /(cos2(x))3cos(x)dx 

op3: cos2(x)^(l-sin2(x)) 

state4: /(l-sin2(x))3cos(x)dx 

op4: /g(f(x))f(x)dx^/g(u)du, u = f(x) 

state5: J(l-u2)3du, u = sin(x) 

op5: polyk(x)^[poly(x)*|...*kpoly(x)] 

stateo: Jl-3u2 + 3u4-u6du, u = sin(x) 

Figure 6-10: Solution path for Jcos7(x)dx. 

In this case, a solution analysis similar to that described in the previous 
section can lead to the generation of a new term to be added to the language of 
Figure 6-2. As in the previous case, the solution trace analysis first produces a 
set of statements about various nodes in the search tree, which characterize why 
the training instance is positive. These statements are then propagated through 
the problem-solving operators in the search tree to determine which features of 
the training instance were necessary to satisfy these statements. It is during this 
propagation and combination of constraints that new descriptive terms may be 
suggested. 

For example, in the case of the solution path shown in Figure 6-10, sup-
pose that the analysis first determines that the solution path leads to a solution 
because State6 is of the following form, which we assume satisfies the system's 
definition of a solvable state. 

/poly(x)*,...*kpoly(x)dx 

Then the set of states, X], for which application of op5 leads to such a solvable 
state can be computed as: 

X, φ op5-'(/poly(x)*,...*kpoly(x)dx) 

giving 
X, = Jpolyk(x)dx 

In turn, we can compute the set of states, X2, for which application of op4 
leads to such a solvable state, as shown below. Here, "range(op4)" indicates the 
set of all problem states that can be reached by applying op4 to some other 
problem state. 
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X2 Φ op4-,(intersection(range(op4),X1)). 

By this repeated backward propagation of constraints through the solution 
tree, it can be determined that application of the solution method of Figure 
6-10 leads to a solvable state when the initial state (in this case State 1) is of the 
form /cosc(x)dx where c is constrained to satisfy the predicate "real(c) Λ 
integer((c-l)/2)", better known as "odd integer". Thus, detailed analysis of the 
solution path can suggest the need for new predicate terms in the language for 
describing heuristics. These terms (such as "odd integer") arise from combina-
tions of existing terms, composed in a way that is determined by the particular 
operator sequence in the solution path being analyzed. 

6.5 SUMMARY 

The LEX system is an experiment in learning by experimentation. The cur-
rent system, based on a generator of practice problems, problem solver, critic, 
and generalizer, indicates that useful problem-solving heuristics can be learned 
by employing empirical methods for generalizing from examples. It also in-
dicates that more powerful and more general approaches to learning will be 
needed before practical systems can be built that improve their strategies in sig-
nificant ways. One way of augmenting empirical learning methods by analytical 
methods has been discussed, which is based on giving the system the ability to 
reason about its goals, heuristic search, and the task domain. This research and 
the research of others (for example, that described in Chapters 8, 9, and 12 of 
this book) suggests that the addition of such meta-knowledge about the goals, the 
learner, and the problem-solving methods in the domain, is a promising area for 
further research. 
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ACQUISITION OF PROOF SKILLS 

IN GEOMETRY 

John R. Anderson 
Carnegie-Mellon University 

ABSTRACT 

The ACT theory of learning is applied to the domain of high school 
geometry. The concern is with how students become skilled at planning a proof 
of a geometry problem. A general control structure is proposed for integrating 
backward and forward search in proof planning. This is embodied in a produc-
tion system framework. Two types of learning are described. Knowledge com-
pilation is concerned with how students transit from a declarative characterization 
of the domain to a set of operators for performing a specific task in that domain. 
Tuning is concerned with how students learn which problem features are predic-
tive of the success of which operators. 

7.1 INTRODUCTION 

Much of my research has been concerned with the refinement of skills 
from general methods. I have developed a theory of learning called ACT which 
involves a set of mechanisms by which skills can be refined. These include 
knowledge compilation mechanisms for converting from declarative represen-
tation of a skill to a procedural representation. They also include a set of 
mechanisms for learning which problem features are predictive of the success of 
problem-solving operators. Much of the later discussion in this chapter is con-
cerned with describing these mechanisms and their application to acquisition of 
proof skills in geometry. First, however, I will discuss the nature of the empiri-
cal phenomena that we are trying to simulate with our learning system and how 
our performance theory goes about organizing search for geometry proofs. 

We have been studying how high school students learn to generate proofs 
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in geometry and how they get better at generating proofs through practice. A 
major empirical base for this work comes from protocols of thirty 45-minute ses-
sions that we had with one of our students (Subject R). In these sessions the 
student read textbook instructions and worked out textbook problems. We tried 
to confine our interruptions to clearing up serious misconceptions. R did all of 
his work in these sessions; his textbook and notes were taken away from him, 
and he was encouraged not to think about geometry between sessions. Thus, we 
have a more or less complete record of the learning that occurs in the first part 
of geometry. In the thirty sessions he worked through two column proofs, a 
section about angles, to where he was generating non-trivial proofs about triangle 
congruence. A substantial amount of learning occurs after this initial period. 
Therefore, we have supplemented our data base with spot protocols from more 
advanced high school students and from various adults who are relatively expert 
at generating geometry proofs. 

Our goal has been to generate a computer simulation of the learning 
processes in geometry. The ultimate test of this program is that it be given 
textbook instruction and have a learning history like that of our high school stu-
dent. The dimensions of this ultimate test are, of course, a little overwhelming. 
For the time being we have contented ourselves with simulating learning on frag-
ments of the geometry text. A major concern in this research has been the so-
called "sufficiency condition" for a psychological theory—that is proposing 
mechanisms powerful enough to produce the observed learning of the necessary 
skills. 

The constraint that the behavior of the system be such that it corresponds 
to human behavior is a severe one but not one that is orthogonal to the frequent 
AI goal of getting a system capable of intelligent behavior. We have argued 
elsewhere [Anderson & Kline, 1977] that the psychological constraint may 
facilitate ultimately achieving a robust intelligent system, particularly if the goal 
is machine learning. Therefore, I would commend to the reader the learning 
proposal contained in here as a viable scheme for skill acquisition by a machine. 

The simulation has been worked out in the context of the ACT system 
[Anderson, 1976] which is a simulation system based on hypotheses about the 

basic mechanisms of human cognition. The procedural knowledge of the ACT 
system is based on a production system architecture and the declarative com-
ponent in ACT is based on a semantic network. The productions use the infor-
mation in the semantic network as a working memory to match against. The 
learning investigations discussed in this chapter are principally focused on how 
new productions are developed in acquiring a skill. The ACT theory has been 
tested out on a wide variety of empirical domains including memory and inferen-
tial processes [Anderson, 1976], language acquisition and processing [Anderson 
et al., 1977], [Anderson, 1981], and schema abstraction and prototype formation 
[Anderson et al., 1979]. 
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7.2 A MODEL OF THE SKILL UNDERLYING PROOF GENERATION 

Most successful attempts at proof generation can be divided into two major 
episodes—an episode in which a student attempts to find a plan for the proof and 
an episode in which the student translates that plan into an actual proof. The 
first stage we call planning and the second execution. It is true that actual proof 
generation behavior often involves alternation back and forth between the two 
modes—with the student doing a little planning, writing portions of the proof, 
running into trouble, planning some more, writing some more, and so on. 
However, we believe that planning exists as a logically and empirically separable 
component of proof generation. Moreover, we believe that planning is the more 
significant aspect where the interesting learning occurs. Execution, while not 
necessarily trivial, is more "mechanical". 

A plan, in the sense we are using it here, is an outline for action—the 
action in this case being proof execution. We believe that the plan students 
emerge with is a specification of a set of geometric rules that allows one to get 
from the givens of the problem, through intermediate levels of statements, to the 
to-be-proven statement. We call such a plan a proof tree. 

Figure 7-1 illustrates (a) an example geometry problem and (b) a proof 
tree. In the tree, the goal to prove two angles congruent leads to the subgoal of 
proving the triangles AXVZ and AWVY congruent. This goal is achieved by 
the side-angle-side (SAS) postulate. The first side VX = VW is gotten directly 
from the givens. Since these sides form an isosceles triangle, they also imply 
ZVXZ = Z-VWY, the second part of the SAS congruence pattern. The third 
part XZ = WY can be gotten from the other given that XY = WZ. A proof can 
be obtained from Figure 7-1 by unpacking various links in the proof tree. Such 
a proof is given below. The reader should be noted that some of these links map 
into multiple lines of proof. The link connecting XY = WZ to XZ = WY, for 
instance, maps into the 9 lines 4—12 in the proof. This is one of the important 
reasons why we characterize the proof tree as an abstract specification of a 
proof. 

The proof tree is, of course, not something that students typically draw out 
for themselves. Rather it is a knowledge structure in the head. Various remarks 
of students suggest to us that it is a real knowledge structure, not just a product 
of our theoretical fantasies. For instance, one student described a proof as "an 
upside down pyramid". 

Statement 

1. VX = VW 
2. XY = WZ 
3. ΔΧΥΖ is isosceles 
4. Z-VXZ = Z.VWY 
5. XY = WZ 
6. YZ = YZ 

Reason 

given 
given 
definition 
base Z-'s of isosceles 
def. of = 
symmetric property of equality 
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Given: VX^VW, XY^WZ, XYZW 
Prove i ^XVZ^Z-WVY 

( b) P L A N 

Z_XVZ=OVVY 

ΔΖΥΧ SAWVY 

fcvXZ^Z.VWY XZ^WY 

vx^vw XYSWZ 
Figure 7-1: A problem with its proof tree and detailed proof. 

7. XY + YZ = YZ + WZ addition property of equality 
8. XY = ZW given 
9. XZ = XY + YZ segment addition 
10. WY = YZ + WZ segment addition 
11. XZ = _WY substitution 
12. XZ = WY def. of = 
13. AXVZ = AWVY SAS 
14. Z.XVZ = ^WVY corresponding parts of congruent A's 

Creating a proof tree is not a trivial problem. The student must either try 
to search forward from the givens trying to find some set of paths that converge 
satisfactorily on the statement to be proven, or he must try to search backward 
from the statement to be proven, trying to find some set of dependencies that 
lead back to the givens. Using unguided forward or backward search, it is easy 
to become lost in the combinatorial possibilities. We will argue that students use 
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a mixture of forward and backward search. This mixture, along with various 
search heuristics they acquire, enables students to deal with the search demands 
of proof problems found in high school geometry texts. 

7.2.1 An Example of Planning 

Before discussing the learning processes, I would like to discuss how our 
simulation organizes its search for a proof tree. I will discuss an example 
problem derived from Chapter 4 of Jurgensen, Donnelly, Maier and Rising 
[1975]. This problem is illustrated in Figure 7-2. It is among the most difficult 
problems found in that chapter. We would first like to discuss how our ACT 
simulation performed on this problem. 

Given : M is the midpoint of AE3 and CD 
Prove: M is the midpoint of EF 

Figure 7-2: Problem for simulation of planning. 

ACT's search for a proof tree involves simultaneously searching backward 
from the to-be-proven statement and searching forward from the givens. We see 
our students combine forward and backward search. An attempt is made to try 
to bring these two searches together. This search process creates a network of 
logical dependencies. When successful ACT will eventually find in its search 
some set of logical dependencies that defines a satisfactory proof tree. This 
proof tree will be embedded within the search network. This larger network we 
call the problem net. 
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Figure 7-3 illustrates the problem net at an early state of its development 
for the problem in Figure 7-2. The first two reasoning forward productions1 to 
apply are 

PI: IF X, Y, and Z are on a line 
and U, Y, and V are on a line 

THEN ^XYU = ^ZYU because they are vertical angles 

P2: IF Y_is the_midpoint of XZ 
THEN XY = YZ by definition 

The first production, for vertical angles, generates from the diagram in 
Figure 7-2 that zLAMC = ZBMD and that ^CME = ZDMF. This is indicated 
in Figure 7-3 by arrows leading from the vertical angles' reason to the angle con-
gruences. The second production translates the two givens about midpoints into 
inferences about line congruence. 

With this information in hand the following working forward production 
can apply: 

P3: IF ΧΫ=_ϋΫ 
and ZY = WV 
and ^XYZ = Z.UVW 

THEN ΔΧΥΖ = AUVW because of SAS 

This production embodies the side-angle-side rule (SAS). Applied to the first 
level of forward inferences in Figure 7-3 it adds the inference that AAMC = 
ABMD. It has been our experience that almost everyone presented with this 
problem works forward to this particular inference as the first step to solving the 
problem. 

Meanwhile ACT has begun to unwind a plan of backward inferences to 
achieve the goal. It has translated the midpoint goal to a goal of proving the 
congruence EM = FM. This is accomplished by the following production rule: 

P4: IF the goal is to prove that Y is the midpoint of XZ 
THEN set as the subgoal to prove XY = YZ 

This in turn is translated by the following production: 

!Both of these productions and the others in this paper are given in a considerably more informal 
syntax than what is implemented in the ACT production system. However, it is our judgment that 
the renditions above are considerably more intelligible and do not omit much that is essential. 
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Goal M is midpoint 

of ÊF 
y 

EM = FM 

I 
ACME=ADMF 

ΔΑΜΟ=ΔΒΜΟ 

t 
ÄM=MB CM = MD ZAMC=Z.BMD ZCMESZ.DMF 

î Î X X 
M midpoint M midpoint vertical angles 

ofAF of CD 

Figure 7-3: Problem network early in planning. 

P5: IF the goal is to prove XY = UV 
and XY is part of triangle 1 
and UV is part of triangle 2 

THEN set as the subgoal to prove that triangle 1 is congruent to triangle 2 

Matching this production to the diagram, ACT determines that ACME con-
tains ËM and that ADMF contains FM. This leads to the subgoal of proving 
ACME = ADMF. 

Note that the forward inferences have progressed much more rapidly than 
the backward inferences. This is because backward inferences, manipulating a 
single goal, are inherently serial, whereas the forward inferences can apply in the 
ACT simulation in parallel. With respect to the serial-parallel issue it should be 
noted that the backward and forward search progress in parallel. 

Figure 7-3 illustrates the limit to the forward inferences that ACT 
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generates. While there are, of course, more forward inferences that could be 
made, this is the limit to the inferences for which ACT has productions avail-
able. 

Figure 7-4 illustrates the history of ACT's reasoning backward efforts to 
establish that ACME = ADMF. ACT first attempts to achieve this by the side-
side-side (SSS) postulate. This subgoal is set by the following production: 

P6: IF the goal is to prove that ΔΧΥΖ = AUVW 
THEN try to use SSS by proving XY = UV, YZ = VW, and ZX = WU 

This effort is doomed to failure because the triangle congruence has been set as a 
subgoal of proving one of the sides congruent. When ACT gets to the goal of 
establishing EM = FM it recognizes the problem and backs away. Our subject, 
like ACT, had a certain propensity to plunge into hopeless paths. Presumably 
one component of learning is to stop setting such hopeless subgoals. 

I will skip over ACT's unsuccessful attempt to achieve the triangle con-
gruence by side-angle-side (SAS) and look in detail at its efforts with the angle-
side-angle (ASA) postulate. Two of the three pieces required for this, 
ZCME = ZDMF and CM = MD, have already been established by forward in-
ferences. This leaves the third piece to be established—that zlECM = AFDM. 
This can be inferred by supplementary angles from something that is already 
known—that AAMC = ΔΒΜΟ. However, ACT does not have available the 
postulate for making this inference. This corresponds to a blindness of our sub-
ject with respect to using the supplementary rule. Although the opportunity did 
not arise in this problem because he was following a different path to solution, 
many times he overlooked opportunities to achieve his goals by the supplemen-
tary angle rule. 

Having failed the three available methods for proving triangle congruence, 
ACT backed up and found a different pair of triangles, ΔΑΜΕ and ABMF, 
whose triangle congruence would establish the higher goal that EM = FM. (It 
turns out that, by failing on the supplementary angle needed to establish 
ACME = ADMF and trying ΔΑΜΕ = ABMF, ACT finds the shorter proof.) 

Fortuitously, ACT chooses ASA as its first method. The attempt to apply 
this method is illustrated in Figure 7-5. One of the angle congruences is ob-
tained by the following working backward rule: 

P7: IF the goal is to prove that ^XYZ = ^UYW 
and X, Y, and W are on a line 
and Z, Y, and W are on a line 

THEN the goal can be inferred because of vertical angles 

Note that this inference was not made by the forward-reasoning, vertical-angle 
production. This turns out to be due to a difficulty that the ACT pattern matcher 
has in seeing lines define multiple angles. The segments AM and ME that 
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Goal M is midpoint 

of EF 

_ * _ 
EM = FM 

I 
B ACME= ADMF 

I 
SAS 

CMS DM ME=MFFC*FD 

ZCME^DMF CM^MD ZECM^FDM 

AM^MB 

t 
M midpoint 

of AB 

CM=MD 

t 
M midpoint 

of CD 

LAMC=Z_BMD LCME-LDMF 

X t 
vertical angles 

Figure 7-4: Trace of backward-chaining efforts by ACT. 

define ^AME were already used in extracting the angles /-MAC and Z CME for 
use by the forward-reasoning vertical angle postulate. 

ACT is also able to get the other parts of the ASA pattern. The side AM 
= BM has already been gotten by forward inference. The fact that ZEAM = 
Z.FBM can be inferred from the fact that AAMC = ΔΒΜΟ since he angles are 
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Goal M is midpoint 
of ËF 

EM = FM 
F D Θ 

ACME=ADMF 

SSS SAS ASA 

AAME=ABMF 

ASA 

LAME^Z-BMF AM^BM LEAM=Z_FBM 

AM=MB CM^MD LAMC=LBMD \ZLCME=/LDMF 

M=midpoint M=midpoint \ \ , / 
of AB of CD vertical angles 

Figure 7-5: Application of ASA method by ACT. 

corresponding parts of congruent triangles. With this ACT has found its proof 
tree embedded within the search net. That proof tree is highlighted in Figure 
7-5. 
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7.2.2 Comparison of ACT to Subject R 

It is of interest to see how ACT's behavior compares to that of a typical 
student. We have gathered extensive protocols from one subject, R. R took 
geometry from us in grade 7 as a special enrichment opportunity one year before 
he would normally take geometry in school. We have a more or less complete 
record of all his learning and work at geometry through Chapter 4 of Jurgensen, 
Donnelly, Maier, and Rising [1975]. In particular, we have a record of his per-
formance on the critical problem in Figure 7-2. 

Subject R's performance did not correspond to that of ACT in all details. 
This is to be expected because ACT s choices about what productions to apply 
have an important probabilistic component to them. However, one can still ask 
whether ACT and subject R have the same character to their inferences. One 
way of defining this is whether ACT could have produced R's protocol if the 
probabilities came out correct. By this criterion ACT is compatible with much 
of R's protocol. 

Like ACT, R began by making the forward inferences necessary to con-
clude AAMC = ABMD and then making this conclusion. Like ACT these in-
ferences were made with little idea for how they would be used. Then like 
ACT, R_began to reason backward from his goal to prove that M was the mid-
point of EF to the goal of proving triangle congruence. However, unlike ACT 
he was lucky and chose the triangle ΔΑΜΕ = ABMF first. Unlike ACT again, 
but this time unlucky, he first chose SAS as his method for establishing the tri-
angle congruence. He got AM = MB from previous forward inference and the 
ZEAM = ZFBM from the fact that AAMC = ABMD—just as ACT obtained 
this in trying to use ASA. However, he then had to struggle with the goal of 
proving AE = BF. Unlike ACT, subject R is reluctant to back up and he tena-
ciously tried to find some way of achieving his goal. He was finally told by the 
instructor to try some other method. Then he turned to ASA. He already had 
two pieces of the rule by his efforts with SAS and quickly got the third com-
ponent ZAME = ZBMF from the fact that they were vertical angles. Note that 
subject R also failed to make this vertical angle inference in forward mode and 
only made it in backward mode. 

In conclusion, R's behavior is very similar in character to that of ACT. 
The only major exception is R's reluctance to back up when a particular method 
is not working out. 

7.3 LEARNING 

What has been described so far is a general framework in which a student 
can plan proofs. I believe that much of the basic architecture is a reflection of 
general reasoning methods the student brings to geometry for solving problems. 
However, the basic architecture is not enough to enable the student to be suc-
cessful and facile at planning proofs in geometry. The student obviously must 
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learn things specific to geometry. I will now discuss two stages of learning that 
are important to geometry. The first stage involves creating production embodi-
ments of the basic search operators that make forward and backward inferences. 
Once the student has these operators he must tune them so that they will be 
selected in the appropriate situations and not selected in situations where they 
will not achieve the goals. 

7.4 KNOWLEDGE COMPILATION 

Knowledge compilation [Neves & Anderson, 1981] is the process by which 
subjects go from a declarative representation of a skill to a procedural represen-
tation. The declarative representation is applied to the task by means of general 
interpretive productions. After achieving a procedural form, in contrast, the 
knowledge applies directly because it is encoded in production form. In recog-
nition of the obvious analogy, we call this process knowledge compilation. 
However, unlike computer compilation, this process in ACT is gradual and oc-
curs through practice. 

When students read a definition, postulate, or theorem, it seems unreason-
able to suppose that they immediately convert it into a procedural form such as 
the productions presented in the discussion of Figures 7-3 through 7-5. One 
reason that it is unreasonable is that the same fact of geometry can give rise to a 
great many possible productions reflecting various ways that the information can 
be used. For instance, consider the textbook definition of supplementary angles: 

"Supplementary angles are two angles whose measures have sum 180." 
Below are productions that embody just some of the ways in which this 
knowledge can be used. These productions differ in terms of whether one is 
reasoning forward or backward, what the current goal is, and what is known. 

P8: IF m^A + mZ.B = 180° 
THEN Lk and LB are supplementary 

P9: IF the goal is to prove ΔΑ and Δ.Β are supplementary 
THEN set as a subgoal to prove Z.A + ΔΒ = 180° 

P10: IF Z.A and ΔΒ are supplementary 
THEN τηΔΑ + τηΔΒ = 180° 

Pli: IF Z.A and Δ.Β are supplementary 
and mZLA = X 

THEN π\ΔΒ = 180° - X 

PI2: IF ΔΑ and Δ.Β are supplementary 
and the goal is to find mZA 

THEN set as a subgoal to find mZLB 
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P13: IF the goal is to prove ZA = ΔΒ 
and ΔΑ is supplementary to LQ 
and Δ.Β is supplementary to ZD 

THEN set as a subgoal to prove Z.C = ΔΌ 

A basic point is that the definition of supplementary angles is fundamen-
tally declarative in the sense that it can be used in multiple ways and does not 
contain a commitment to how it will be used. It is unreasonable to suppose that, 
in encoding the definition, the system anticipates all the uses to which it might 
be put and creates a procedural structure for each. 

Rather than assuming students directly encode this textbook information 
into procedures, I assume that they first encode this information declaratively. 
In the ACT system encoding information declaratively amounts to growing new 
semantic network structure. General interpretive procedures then use this infor-
mation according to the features of the particular circumstance. When declara-
tive knowledge is used multiple times in a particular way, automatic learning 
processes in the ACT theory will begin to create new procedures that directly 
apply the knowledge without the interpretive step. This kind of learning is 
called procedural compilation. 

In individual subjects we see a gradual shift in performance which we 
would like to put into correspondence with this compilation from the interpretive 
application of declarative knowledge to direct application of procedures. After 
reading, say, a particular postulate, students' applications of that postulate is 
both slow and halting. Students will often recite to themselves the postulate be-
fore trying to apply it—or even go back and reread it. It seems that they need to 
activate the declarative representation in their working memory so that interpre-
tive procedures can apply to the data of this representation. They typically 
match separately fragments of the postulate to the problem. We will see that 
such fragmentary application is typical of a general knowledge interpreter apply-
ing to a declarative representation. With repeated use, however, application of 
the postulate smoothes out. It is no longer explicitly recalled and it is no longer 
possible as observer or subject to discriminate separate steps in the application of 
the procedure. It certainly has the appearance of the postulate being embodied in 
separate pattern recognition productions such as those described with respect to 
Figures 7-3 through 7-5. 

7.4.1 Knowledge Schemas 

We have found a schema-like representation to be very useful for struc-
turing the initial declarative encoding of a geometry fact. Table 7-1 illustrates a 
schema encoding for the SAS postulate which is stated in the text as: 

"If two sides and the included angle of one triangle are congruent to 
the corresponding parts of another triangle, the triangles are congruent." 

The diagram in Figure 7-6 accompanied this statement. The postulate schema in 
Table 7-1 is divided into background, hypothesis, conclusion, and comment. 
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The hypothesis and conclusion reflect the if/then structure of the condition, which 
our subject was fairly facile at extracting. The background information amounts 
to a description of the diagram and contains the constraints which allow the vari-
ables (sides and angles) to be properly bound. The comment contains additional 
information relevant to its use. Here we have the name of the postulate which 
prescribes what the student should write as a reason. 

Table 7-1: SAS Schema 

Background 
si is a side of ΔΧΥΖ 
s2 is a side of ΔΧΥΖ 
Al is an angle of ΔΧΥΖ 
Al is included by si and s2 
s3 is a side of AUVW 
s4 is a side of AUVW 
A2 is an angle of AUVW 
A2 is included by s3 and s4 

Hypothesis 
si is congruent to s3 
s2 is congruent to s4 
Al is congruent to A2 

Conclusion 
ΔΧΥΖ is congruent to AUVW 

Comment 
This is the side-angle-side postulate 

Figure 7-6: Diagram accompanying the SAS postulate. 

I regard the knowledge structure in Table 7-1 to be schema-like; it is a unit 
organized into parts according to "slots" such as background, hypothesis, conclu-
sion, and comment. The knowledge structure is declarative in that it can be used 
in multiple ways by interpretive procedures. For instance, the following produc-
tion would be evoked to apply that knowledge in a working backwards manner: 
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P14: IF the goal is to prove a statement 
and there is a schema that has this statement as conclusion 

THEN set as subgoals to match the background of the schema 
and after that to prove the hypothesis of the schema 

If the schema is in working memory and its conclusion matches the current goal, 
this production will start up the application of the schema to the current problem. 
First the background is matched to bind the variables and then the hypotheses are 
checked. 

To appreciate how learning switches the student from the initial piecemeal 
interpretive application to direct, unitary procedures, it would be useful to sketch 
out a few more of the productions that are used in the initial interpretive applica-
tion. Let us consider some of the productions involved in working backwards. 
After production PI4, which starts things, the next production to apply would be 

PI6: IF the goal is to match a set of statements 
THEN match the first statement in the set 

Production PI4 had set the subgoal of matching the statements in the back-
ground. This production above starts that process going by focusing on the first 
statement in the background. This production is followed by a production which 
iterates through the statements of the background. 

PI7: IF the goal is to match a statement in a set 
and the problem contains a match to the statement 

THEN go on to match the next statement in the set 

(Actually, there is a call to a subroutine of productions which execute the 
matches to each statement. See [Neves & Anderson, 1981].) After all state-
ments in the background have been matched, the following production sets the 
goal to prove the hypotheses: 

PI8: IF the goal is to match a set of statements 
and the last statement in that set has been matched 

THEN go on to the goal that follows 

Note productions P14, P16, P17, and PI8 are sufficiently general that it is 
reasonable to propose that even a novice in geometry has them Jrom prior skills. 

7.4.2 Composition 

There are two major processes in knowledge compilation—composition and 
proceduralization. When a series of productions apply in a fixed order, com-
position will create a new production that accomplishes the effect of the se-
quence in a single step (see [Neves & Anderson, 1981]). Composition, operat-
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ing on the sequence of P14, P16, and P17, applied to the SAS schema, would 
put forth the production 

PI9: IF the goal is to prove a statement 
and there is a schema that has this statement as conclusion 
and the schema has a statement as the first member of its background 
and the problem contains a match to the statement 

THEN set as subgoal s to match the background 
and within this subgoal to match the next statement of the background 
and after that to prove the hypotheses of the schema 

This production only applies in the circumstance that the sequence P14, PI6, and 
PI7 applied and has the same effect in terms of changes to the data base. The 
details underlying composition are discussed in [Neves & Anderson, 1981], but 
the gist of the process is easy to describe. The composed production collects in 
its condition all those clauses from the individual productions' conditions except 
those that are the product of the actions of earlier productions in the sequence. 
As an example of this exception, PI6 has in its condition that the goal is to 
match the set of statements. Since this goal was set by PI4 earlier in the se-
quence, it is not mentioned in the condition of the composed production P19. 
Thus, the condition is a test of whether the circumstances are right for the full 
sequence of productions to execute. The action of the composed production col-
lects all actions of the individual productions except those involved in setting 
transitory goals that are finished with by the end of the sequence. As an ex-
ample of this exception, PI6 sets the subgoal of matching the first statement of 
the background but PI7 meets this subgoal. Therefore, the subgoal is not men-
tioned in the action of the composed production PI9. 

This composition process can apply to the product of earlier compositions. 
Although there is nothing special about compositions of three, consider what the 
resulting production would be like if PI9 were composed with two successive 
iterative applications of PI7: 

P20: IF the goal is to prove a statement 
and there is a schema that has this statement as conclusion 
and the schema has a statement as the first member of the background 
and the problem contains a match to this statement 
and the schema has another statement as the next member of its background 
and the problem contains a match to this statement 
and the schema has another statement as the next member of its background 
and the problem contains a match to this statement 

THEN set as subgoal s to match the background 
and within this the next statement of the background 
and after that to prove the hypotheses of the schema 

It should be noted that such productions are not really specific to the SAS 
schema. Indeed, productions such as PI9 and P20 might have been formed from 
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compositions derived from the productions applying to other, earlier schemata. 
If so, these composed productions would be ready to apply to the current 
schema. Thus, there can be some general transfer of practice through composi-
tion. However, there is a limit on how large such composed productions can 
become. As they get larger they require more information in the schema be 
retrieved from long-term memory and held active in working memory. Limits 
on the capacity of working memory imply limits on the size of the general, in-
terpretive conditions that can successfully match. 

7.4.3 Proceduralization 

Proceduralization is a process that builds specialized versions of produc-
tions by eliminating retrieval of information from long-term memory. Rather the 
information that would have been retrieved from long-term memory is encoded 
directly into the specialized version of the production. To illustrate the process 
of proceduralization, consider its application to the production P20. This state-
ment contains in its condition four clauses that require retrieval of information 
from long-term memory: 

1. There is a schema that has this statement as conclusion. 
2. The schema has a statement as the first member of its background. 
3. The schema has another statement as the next member of its background. 
4. The schema has another statement as the next member of its background. 

Applied to the SAS schema these statements match the following infor-
mation: 

1. The SAS schema has as its conclusion "ΔΧΥΖ = AUVW". 
2. The first statement of its background is "SI is a side of ΔΧΥΖ". 
3. The next statement of its background is "S2 is a side of ΔΧΥΖ". 
4. The next statement of its background is "Al is an angle of ΔΧΥΖ". 

What is accomplished by matching these statements in P20 is to identify the SAS 
schema, its conclusion, and the first three statements of its background. A spe-
cialized production can be built which contains this information and does not re-
quire the long-term memory retrievals: 

P21: IF the goal is to prove that ΔΧΥΖ = AUVW 
and SI is a side of ΔΧΥΖ 
and S2 is a side of ΔΧΥΖ 
and A1 is an angle of ΔΧΥΖ 

THEN set as subgoals to match the background of the SAS schema 
and within this to match the next statement in the schema 
and after that to prove the hypothesis of the schema 

This production is now specialized to the SAS schema and does not require any 
long-term memory retrieval. Rather, built into its condition are the patterns 
retrieved from long-term memory. 
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The effect of this proceduralization process is to enable larger composed 
productions to apply because the proceduralized productions are not limited by 
the need to retrieve information into working memory. This in turn allows still 
larger compositions to be formed. The eventual product of the composition 
process applied to the top-down evocation of the SAS schema, initially via 
productions P14, P16, P17, and P18 would be: 

P22: IF the goal is to prove that ΔΧΥΖ is congruent to AUVW 
and SI is a side of ΔΧΥΖ 
and S2 is a side of ΔΧΥΖ 
and A1 is an angle of ΔΧΥΖ 
and Al is included by SI and S2 
and S3 is a side of AUVW 
and S4 is a side of AUVW 
and A2 is an angle of AUVW 
and A2 is included by S3 and S4 

THEN set as subgoals to prove: 
51 is congruent to S3 
52 is congruent to S4 
Al is congruent to A2 

This production serves to apply the SAS postulate in working backward mode. 
When the knowledge reaches this state the complete SAS postulate has been put 
into a single production. 

As will be discussed in later portions of the paper, composition need not 
stop when the postulate has been completely incorporated into a single produc-
tion. It can continue to merge productions to compress even longer sequences of 
actions into a single production. 

In the ACT implementation, composition works on pairs of productions 
that fire in succession. It operates every opportunity it gets. There are two fac-
tors that limit the size of the eventual productions. First, too large productions 
will not match to working memory. Second, the composition is specific to the 
particular production sequence. The larger the production sequence the less 
likely that the opportunity for that exact sequence will be repeated on another 
problem. If the opportunity for the sequence is not repeated, the composed 
production will not fire and so cannot enter into further compositions. It should 
be noted in this regard that composed productions do not replace the components 
from which they were composed. So, if a problem appears that requires a novel 
combination of the components inconsistent with the higher compositions, the in-
dividual component productions are available. 

The proceduralization step occurs in ACT at the first opportunity. This 
means that proceduralized versions of productions are quickly built. In this fea-
ture ACT is probably too fast a learner for a human simulation. In applying 
proceduralization to account for a number of phenomena from the psychological 
literature, Neves and Anderson [1981] had to assume that proceduralization 
progressed relatively slowly. This could be achieved in the current program by 



ANDERSON 209 

making proceduralization probabilistic or by requiring a production fire a number 
of times in the same way before it can be proceduralized. 

7.4.4 Tuning the Search for a Proof 

Having operators proceduralized is not enough to guarantee successful 
proof generation. There is still a potentially very large search space of forward 
and backward inferences. Finding the proof tree in this net would often be in-
feasible without some search heuristics that cause the system to try the right in-
ferences first. 

A heuristic in this discussion amounts to adding some discriminative con-
ditions to a production to restrict its applicability. While satisfying these con-
ditions does not guarantee success of the operator, it does make it more likely. 
This is the nature of a heuristic—to select operators on the basis of tests that 
suggest higher than average probability of success. 

It is interesting to note that novices do not deal with proofs by plunging 
into endless search. They are very restrictive in what paths they attempt and are 
quite unwilling to consider all the paths that are legally possible. The problem 
is, of course, that the paths they select are often non-optimal or just plain dead-
ends. Thus, at a general level, expertise does not develop by becoming more 
restrictive in search, rather it develops by becoming more appropriately restric-
tive. 

I have been able to discover four ways by which subjects can learn to 
make better choices in searching for a proof tree. One is by analogy to prior 
problems—using with the current problem methods that succeeded in similar past 
problems. The second, related technique is to generalize from specific problems 
operators that capture what the solutions to these specific problems have in com-
mon. The third is a discrimination process by which restrictions are added to the 
applicability of more general operators. These restrictions are derived from a 
comparison of where the general operators succeeded and failed. The fourth 
process is a composition process by which sequences of operators become col-
lapsed into single operators that apply in more restrictive situations. I will dis-
cuss each of these methods of learning search heuristics in turn. 

7.4.4.1 Learning by Analogy 

The process of using analogy to past problems can, in some ways, be 
characterized as a degenerate learning process. Figure 7-7 illustrates an early 
opportunity for analogy in the chapter on triangles. The student has just seen a 
solution to the problem in part (a) and then is presented with the problem in part 
(b). Our subject R noticed the similarity between the two problems, went back 
to the first, and almost copied over the solution. 

Analogy of this sort is an interesting kind of learning in that it amounts to 
learning very specific operators. (See Chapter 5 of this book for a more general 
method of learning by analogy.) For example, for the problem in part (a) we 
would have a schema that described the specific problem and its solution: 



210 CHAPTER 7: ACQUISITION OF PROOF SKILLS IN GEOMETRY 

GIVEN : XY=WY 
XZ2WZ 

PROVE :AXYZ = AWYZ 

GIVEN: AB=DB _ 
BC Bisects AD 

PROVE :AABC=ADBC 

Figure 7-7: Two problems with obvious similarity. 

PROBLEM SCHEMA 
Background 

There is a triangle ΔΧΥΖ 
There is a triangle AWYZ 

Givens 
XY = WY 
xz = wz 

Goal 
ΔΧΥΖ = AWYZ 

Method 
YZ = YZ by reflexivity 
ΔΧΥΖ = AWYZ by SSS 

To account for the effectiveness of analogy we must assume that the stu-
dent has a facility to partially match the background and givens of one problem 
to the background and given of another problem. This is because there is not a 
perfect match between the two problems. We have recently developed such par-
tial matching facilities for the ACT theory [Kline, 1981], 

One problem with analogy to specific problems is that it appears to be ef-
fective only in the short run because students' memory for specific problems 
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tends to be short-lived. All examples of analogy in R's protocols come within 
the same section of a chapter. There are no examples of problems in one section 
reminding R of problems in an early section. Therefore, it seems that pure anal-
ogy tends to produce no permanent benefits. 

A second problem with pure analogy is that it is superficial. Any point of 
similarity between two problems increases the partial match. It is no accident 
that the two pairs of triangles in Figure 7-7 are oriented in the same direction, 
although this is completely irrelevant for the success of the analogy. 

In ACT analogy depends on partial matching processes which are quite 
"syntactic" in character. That is, the partial match process just counts up the 
degree of overlap in the problem description without really evaluating whether 
the overlaps are essential to the appropriateness of the solution or not. In myself 
I note a tendency to respond to overlap between problems in this same super-
ficial way. Consider the three problems in Figure 7-8. At a deep level the first 
two problems are really quite similar. Larger triangles contain smaller triangles. 
To prove the containing triangles congruent it is first necessary to prove the con-
tained triangles congruent. The contained triangles in the two problems are con-
gruent in basically the same way and they overlap with the containing triangles 
in basically the same way. However, on first glance the two problems seem 
quite different. In contrast, on first glance, the two problems in parts (a) and (c) 
of Figure 7-8 appear to have much in common. Now it is true that upon careful 
inspection one can determine that the first pair provides a more useful analogy 
than the second pair. However, it seems that analogy in problem-solving of this 
sort is to serve a noticing function. Similar problems spontaneously come to 
mind as possible models for solutions. If the superficial similarity between 
problems (a) and (b) is not sufficient for the analogy to be noticed there will 
never be the opportunity for careful inspection to realize how good the deep cor-
respondence is. 

There is one very nice illustration of the problem with the superficiality of 
analogy in the protocol of R. This concerns a pair of problems that come in the 
first chapter. Figure 7-9 illustrates the two problems. Part (a) illustrates the 
initial problem R studied along with an outline of the proof. Later in the section 
R came across problem (b) and immediately noticed the analogy. He tried to use 
the first proof as a model for how the second should be structured. Analogous 
to the line RO = NY he wrote down the line AB > CD. Then analogous to the 
second line ON = ON he wrote down BC > BC! His semantic sensitivities 
caught this before he went on and he abandoned the attempt to use the analogy. 
7.4.4.2 Generalization 

I have characterized solving problems by analogy as superficial. Part of 
what is superficial about the approach is that the analogy is based only on the 
statement of the problems, not on the structures of their solution. Analogy, in 
the sense discussed, cannot use the structure of the solution, because the proof 
for the second problem is not available yet. Analogy is being used in service of 
finding the second proof. 
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GIVEN: AE^EC 
ZBEA=ZBEC 

PROVE: AABD=ACBD 

GIVEN 

GIVEN ; 

PROVE: 
A F D G C 

QNSfOR 
Z.QON-Z.RON 
MN^ÖP 

PROVE. AMQOSAPRN 

AB=BC 
ZBE_F_5ZBEG 
ABIIFE 

BC^ËG 
AABD=ACBD 

Figure 7-8: Problems illustrating the limited validity of superficial analogy. 

Generalization, on the other hand, is based on a comparison between two 
problems and their solutions. By using the structure of the solution, it is pos-
sible to select the relevant aspects of the problem statement. A rule is for-
mulated by the generalization process which tries to formulate what the two 
problems and their solutions have in common. That t rule can then be used 
should similar problems appear. For instance, consider the first two problems in 
Figure 7-8. The generalization process applied to these two examples would en-
code what they have in common by the following schema: 
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(α) 
N 

0. 

GIVEN :R0 NY, RONY GIVEN! AB>CD,ÄBCD 
PROVE ! RN =0Y PROVE! A O B D 

R0 = NY 
0N=0N 

R0+0N=0N+NY 

AB>CD 
B O B C 

RONY I | 
R0+0N=RN 
0N+NY=0Y 
RN=0Y 

Figure 7-9: A problem where superficial analogy goes wrong. 

GENERALIZED SCHEMA: 

Background 
ΔΧΥΖ contains ASYZ 
AUVW contains ATVW 

Givens 
SY = TV 
^YSZ = Z-VTW 

Goal 
ΔΧΥΖ = AUVW 

Method 
ASYZ = ATVW by SAS 
YZ = VW by corresponding parts 
Z.XYZ = /LUYW by corresponding parts 
ΔΧΥΖ = AUVW by SAS 

These generalizations are based on the same partial matching process that 
underlies analogy. However, the partial matching occurs between solved 
problems not just between problem statements. Because the product of the par-
tial match is a fairly general problem description, it is likely to apply to many 
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problems. Thus it is likely to be strengthened and become a permanent part of 
the student's repertoire for searching for proofs. This contrasts to the specific 
examples that serve as the basis for analogy. These specific examples are likely 
to be forgotten. 
7.4.4.3 Discrimination 

Discrimination provides a complementary process to generalization. It 
takes operators that are too general and thus are applied in incorrect situations 
and places restrictions on their range of applicability. If the operator to be dis-
criminated is embodied as a production, discrimination adds an additional clause 
to restrict the range of situations where the production condition will match. 
ACT determines what additional clauses to add by comparing the difference be-
tween successful and unsuccessful applications of the rule. 

GIVEN: Z.landZ_2 
are right angles 
JS = KS 

PROVE: ARSJSARSK 

(b) 

GOAL. ARSJ=ARSK 

RS = RS ^JS^KS 
St 

reflexivity 

RK=RJ Z.lfZ.2 

right angles 

Figure 7-10: Problem leading to a discrimination. 

Figure 7-10 illustrates an analysis of a problem which led subject R to 
form a discrimination. In part (a) I have a representation of the problem and in 
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part (b) I have indicated in search net form R's attempt to solve the problem. 
First he tried to use SSS, a method which had worked on a previous problem 
that had a great deal of superficial similarity to this problem. However, he was 
not able to get the sides RK and RS congruent. Then he switched to SAS, the 
other method he had at the time for proving triangles congruent. Interestingly, it 
was only in the context of this goal that he recognized the right angles were 
congruent. After he had finished with this problem, he verbally announced the 
rules to use SSS only if there was no angle mentioned. This can be seen to be 
the product of discrimination. The "don't use SSS if angle" comes from a com-
parison of the previous problem in which no angle was mentioned with the cur-
rent problem that did mention angles. 

Discrimination requires that the system determine when a production has 
made an error. This is not easy in all domains, but fortunately it is fairly easy in 
the proof planning domain. After ACT has completed a proof plan it has a 
structure like that in Figure 7-5 illustrating the logical connections among the 
inferences required to derive the proof. This is the proof tree embedded in the 
search net. Any planning production that contributed to the creation of the proof 
tree is regarded as successful. Productions that led to the creation of irrelevant 
portions of the search net are regarded as misfirings. These are the ones that are 
subject to discrimination. These are not all of the unsuccessful productions. To 
see that this is so, consider an example: Suppose that a goal is set to prove two 
angles congruent by showing they are corresponding parts of congruent triangles. 
Suppose all methods tried for proving congruent triangles fail and the angle con-
gruence is eventually proven by resorting to the supplementary angle postulate. 
The mistake is not in the productions that proposed methods for proving the tri-
angles congruent. These would receive a neutral evaluation. The mistake was 
in the production that set the subgoal of triangle congruence. 

As in the composition case, generalization and discrimination are invoked 
whenever possible in the ACT simulation. Whenever the program solves a new 
problem it compares its solution to past solutions to check for generalization. 
Similarly, whenever an error is made in the use of a production a comparison is 
made to the last successful operation of that production and a discrimination is 
formed. This undoubtedly implies a better memory for past instances than is 
realistic psychologically. 
7.4.4.4 Composition 

I feel that composition has an important role to play in forming multiple 
operator sequences just as it played an important role in the initial proceduraliza-
tion of operators. Figure 7-11 illustrates an example where composition can ap-
ply. The first production to apply in solving this problem would be: 
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P24: IF the goal is to prove ΔΧ = ZU 
and ΔΧ is part of ΔΧΥΖ 
and ZU is part of AUVW 

THEN the subgoal is to prove ΔΧΥΖ = AUVW 

This production would set as a subgoal to prove AABC = ADBC. At this point 
the following production might apply: 

P25: IF the goal is to prove ΔΧΥΖ = AUVW 
and XY = UV 
and ZX = WU 

THEN the subgoal is to prove YZ = VW 

GIVEN: AB SDB 
CA-CD 

PROVE Z-A-Z-D 

C 

Figure 7-11: Problem leading to a composition. 

This production, applied to the situation in Figure 7-11, would set as the 
subgoal to prove BC = BC as a step on the way to using SSS. At this point, 
the following production would apply: 

P26: IF the goal is to prove ΧΫ = ΧΫ 
THEN this may be concluded by reflexivity 

This production would add BC = BC and allow the following production to ap-
ply: 

P27: IF the goal is to prove ΔΧΥΖ = AUVW 
and XY s UV 
and YZ as VW 
and ZX = WU 

THEN the goal may be concluded by SSS 
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where XY = AB, UV = DB, YZ = BC, VW = BC, ZX = CA, and WU = 
CD. This adds the information that AABC = ADBC. Finally, the following 
production will apply which recognizes that the desired conclusion is now es-
tablished: 

P28: IF the goal to prove Z.X = /-\J 
and ΔΧΥΖ = AUVW 

THEN the goal may be concluded because of congruent parts of congruent triangles 

The composition process, operating on this sequence of productions, would even-
tually produce a production of the form: 

P29: IF the goal is to prove Lk = ΔΌ 
and ΔΑ is part of AABC 
and £ D is part of ADBC 
and AB = DB 
and CA = DC 

THEN conclude AB = AB by reflexivity 
and conclude AABC = ADBC by SSS 
and conclude the goal because of congruent parts of congruent triangles 

The variables in this production have been named to correspond to the terms in 
Figure 7-11 for purposes of readability. This production would immediately 
recognize the solution to a problem like that in Figure 7-11. 

7.5 SUMMARY OF GEOMETRY LEARNING 

It would be useful to summarize the student's progress as he gathers more 
experience and becomes more expert at generating proofs in geometry. There 
are two initial sources of information. There are the postulates, theorems, and 
definitions that he reads in the textbook instructions. The second source is the 
examples of worked out problems (either solved in the text or by the student 
himself). The rules are declaratively encoded into a schema-like form to which 
general problem-solving productions can apply. As discussed, the rules in this 
form are applied in a piecemeal way. The twin processes of knowledge compila-
tion, composition and proceduralization, eventually transform each rule into a 
procedural form in which each rule is embodied by a production. 

The examples can be used through analogy to guide the solution of 
problems. Solution by analogy involves interpretive processing of the examples 
much as the initial use of the general rules. However, as noted, specific ex-
amples are very limited in their range of applicability. The processes of com-
pilation and generalization applied to these examples can lead the student to the 
same kind of general, proceduralized, unitary operators as can compilation ap-
plied to the rules. To the extent that generalization leaves in features of the 
original problems, the operators from this source might not be as general as the 
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operators derived directly from the rules, but rather will remain tuned to specific 
problem characteristics. 

Finally, the processes of discrimination and composition create larger 
multiple-inference operators which are much more discriminant in their range of 
applicability. In the extreme, special rules could evolve that outline full proof 
trees for certain kinds of problems. To the extent that new problems fit the 
specifications of these advanced operators, solution will be quick and efficient. 
However, to the extent that new problems pose novel configurations of features 
not covered by the advanced operators, the student will have to fall back to the 
slower and more general operators for working backwards. The view of exper-
tise developed here, then, is very much the one that was developed for chess 
[Chase & Simon, 1973; Simon & Gilmartin, 1973]; that is, experts in geometry 

proof generation have simply encoded many special case rules. 
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USING PROOFS AND 

REFUTATIONS TO 

LEARN FROM EXPERIENCE 
Frederick Hayes-Roth 

Teknowledge Inc. 

ABSTRACT 

To learn, a learner needs to formulate plans, monitor the plan execution to 
detect violated expectations, and then diagnose and rectify errors which the dis-
continuing data reveal. In this paper, five heuristic methods are presented for 
repairing flawed beliefs. These beliefs are considered as theories that predict 
effects of actions. Theories presuppose particular structural characteristics. 
When data disconfirm a theory, the heuristics proposed suggest specific ways to 
remedy the theory, including restricting the conditions for invoking the theory 
and weakening the theory's predictions. The five methods accomplish retraction, 
exclusion, avoidance, assurance and inclusion of outcomes that disconfirm a 
theory's predictions. Each proposed theory fix produces as a by-product new 
domain concepts that capture environmental characteristics of instrumental value 
to the learner. The techniques proposed here provide the first analytical methods 
for constructing new knowledge. They extend and make practical the ideas of 
proofs and refutations originally introduced by Lakatos. 

8.1 INTRODUCTION 

Much of what we call "intelligence" has evolved so that creatures who pos-
sess it can plan successfully to achieve goals. Goal attainment requires an ability 
to deduce a plan of action that should achieve the goal and an ability to carry out 
planned actions. Ordinary creatures must acquire at least some of these abilities 
during their lifetimes because they do not possess them at birth. This acquisition 
process is what we call "learning". Intelligent creatures learn to plan effectively. 

Learning to plan effectively is difficult, because the learner possesses in-

221 
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complete knowledge. The learner's knowledge of the world evolves gradually in 
response to its experiences. At any stage in its cognitive development, the 
learner possesses a limited set of beliefs about the world; an accurate and com-
prehensive characterization of the world would require vastly more. Unless the 
learner's environment adheres to a small number of simple laws, the learner can 
only develop an approximate understanding of environmental behavior. Since no 
natural habitat satisfies this constraint, natural learning systems always produce 
incomplete and error-ridden knowledge. The learner cannot avoid occasional 
mistakes. 

In this paper, I describe learning methods that can rectify error-ridden 
knowledge and extend the range of its applicability by generating new concepts. 
In response to a failed plan, these methods suggest ways to diagnose and correct 
problematic beliefs. These corrections generally improve the learner's 
knowledge by eliminating sources of error. Each proposed modification changes 
some aspect of the learner's erroneous knowledge so that similar plan failures do 
not recur. Five different ways to repair knowledge will be described. 

Henceforth, we will focus on machine learning and refer to a learning 
program, rather than a natural organism. The learning entity we will consider is 
called TL (the learner). TL plans to achieve its goals and employs heuristic 
methods to rectify its erroneous knowledge. This paper focuses on TL's learning 
heuristics. The proposed heuristics extend and operationalize earlier, related 
ideas developed by Lakatos [1976]. Lakatos describes how mathematicians itera-
tively formulate concepts, prove theorems about these concepts, and confront 
refutations that force them to revise their concepts and theorems. His narrative 
account illuminates only the most superficial features of this learning cycle. By 
contrast, the heuristic methods discussed in this paper provide mechanizable 
procedures to reformulate concepts as needed in order to rectify and salvage dis-
confirmed theories. 

8.2 THE LEARNING CYCLE 

The learning cycle consists of several phases (see Figure 8-1). First, TL 
formulates a plan to achieve some goal. In this phase, TL uses its knowledge to 
develop causal chains from starting conditions to goal attainment. I will call the 
plan justified if, according to TL's assumptions and theories, TL's planned ac-
tions logically entail attainment of the goal. If TL can "prove" that the planned 
actions will achieve the plan's goals conditional only upon TL's assumptions and 
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theories, I will say TL has "justified" its plan.1 

Environment 

Goals-
Planning 

and 
projection 

-► Plans 

- ♦ ' Expectations 

■♦· Plan rationales 

Theories 

Theory 
Rectification 

Plan 
execution ► Outcomes 

Buggy 
theories 

Plan 
diagnosis 

Figure 8-1: The Learning Cycle 

The failure of a justified plan to achieve its goal reveals an error in TL's 
knowledge. In particular, a disconfirmed plan reveals a localized fault in the 

'One reviewer felt that this definition, although informal, nonetheless was too strong. It seemed to 
preclude his informal approach, which often justifies a plan by noting it "worked once or twice" 
before. However, even such a "weak" justification fits the scheme employed in this paper. The 
reviewer's theory and its proof are shown below: 

Theory: If I execute plan P, I will achieve goal G. 

Proof: 

1. Plan P has achieved goal G once or twice before (given, 
assumption). 

2. Any plan which has achieved a goal once or twice before will 
work successfully again (given, theory). 

3. If I execute plan P, I will achieve goal G (follows from 1 and 
2). 
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plan's "proof, that is, a bug in the plan's rationale (or justification). The 
methods proposed in this paper localize the fault within the rationale and debug 
the plan by fixing the unit of knowledge responsible for the fault. 

Theory T 

Has Parts: 

Assumed Conditions (Prerequisites) 
Planned Actions 
Predicted Effects (Consequents) 

Relations: 

For all situations s, there exists a subsequent situation s \ 
where CT(s) Λ Perform(AT, s) Φ ET(s') 

Figure 8-2: A unit of knowledge, called a "theory". 

Each unit of TL's knowledge is modeled in a uniform and simple way, as 
indicated in Figure 8-2. Each knowledge unit contains three parts: assumed con-
ditions which the unit prerequires, planned actions for TL, and predicted effects 
of the plan. When the theory includes no planned actions, its predicted effects 
correspond to theoretical consequents of the theory's antecedents. In essence, a 
knowledge unit predicts the effects of actions which are conditional on some 
prerequisites. Because of their predictiveness, I refer to all such units of 
knowledge as theories.2 By definition, TL acts in accordance with its theories. 
TL plans to make desired outcomes predictable. TL justifies its plans by 
developing rationales that support the expectation of goal attainment. As long as 
the environment satisfies the prerequisites of TL's plans, TL rationally expects to 
achieve its goals by following its plans. 

Inevitably, plans fail. Failures derive from several different sources: (i) a 
plan may actually be unjustifiable with respect to TL's current theories; (H) a 
previously justified plan may not have adapted to subsequent changes in theories 
on which it depends; or (Hi) the plan's current rationale is faulty. In the first 
case, to repair the faulty plan, TL should develop a plan rationale that shows 
how the goals of the plan derive from the plan's assumed conditions and actions. 
Thus, learning in this case requires only ordinary methods of problem-solving 
and deduction. In the second case, TL should revise the plan's rationale to con-
form to TL's current theories. In case (Hi), however, TL must recognize that the 

2I realize that this terminology conflicts with conventional usage of the word theory. However, none 
of the alternatives seems more desirable. These include belief, conjecture, hypothesis, supposition, 
assumption, heuristic, conditional, and unit. The proposed term theory captures the central feature of 
this type of belief: it is part of à systematic body of knowledge supporting a wide class of inferences. 

AT 

ET 
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plan's failure refutes one or more of TL's theories. TL must identify the impli-
cated theory, analyze the possible theoretical flaws, and formulate and adopt one 
or more theory repairs that circumvent the flaws. How this may be done is the 
subject of the next section. 

8.3 FIVE HEURISTICS FOR RECTIFYING REFUTED THEORIES 

In this section, I describe five heuristics for rectifying refuted theories. 
The five learning methods will be described first in general terms, and later in 
more detail. Each technique prescribes one way to modify a theory which has 
proved faulty; the theory's faultiness is manifested by the fact that although its 
assumed conditions were satisfied and TL successfully executed its prescribed ac-
tions, if any, the theory predicted some effects that failed to materialize. Any 
situation which exhibits these features refutes the theory and is called a coun-
terexample. The proposed learning methods presuppose that every theory's con-
ditions are accurately observable, which is a strong assumption. Learning in 
situations that violate this assumption lies beyond the scope of this paper. A 
brief description of each learning method follows. 

1. Retraction Method: Restricting the theory's predictions to be consistent 
with observations. This method revises the theory so it no longer predicts 
those effects that were empirically disconfirmed. One specific, operational 
implementation of this method replaces the current theory's predicted ef-
fects by predictions which generalize both the original predicted effects and 
the empirically observed, disconfirming effects. Thus, this method rec-
tifies a theory by retracting those predictions which do not conform with 
observations. 

2. Exclusion Method: Barring the theory from applying to the current situa-
tion. This method revises a faulty theory so its prerequisites exclude the 
theory from applying in situations like the current one. This is the 
"Monster-barring" method of Lakatos. TL chooses a feature that charac-
terizes the disconfirming situation and disallows the theory's application in 
future situations with that feature. The simplest operational implemen-
tation of this method revises the theory by conjoining to its prerequisites 
the negated description of the disconfirming situation. This method rec-
tifies a theory by preventing it from making the same error in similar fu-
ture situations. 

3. Avoidance Method: Ruling out situations that predictably deny the 
theory's predictions. This method modifies a refuted theory by incorporat-
ing prerequisites that preclude theory disconfirmations like the current one. 
When faced with a refuted theory, TL deduces from its other current 
theories sufficient antecedents of the situational events that empirically dis-
confirmed the theory's expectations. These sufficient antecedents define 
situation predicates which TL believes can guarantee the theory will make 
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faulty predictions. TL then revises the refuted theory by excluding from 
the theory's domain of applicability all situations that exhibit these suf-
ficient conditions. The simplest operational implementation of this method 
revises the theory by conjoining to its prerequisites the negation of one of 
these predicates. In doing so, TL rectifies the faulty theory by restricting 
it from applying to situations that TL's unrefuted theories imply would 
surely disconfirm it. 

4. Assurance Method: Ruling in situations that predictably assure the 
theory's entailments. This method is analogous to the previous one. In 
this case, the method modifies a refuted theory by incorporating prere-
quisites that insure the realizations of the theory's predicted effects. When 
faced with a refuted theory, TL deduces from its other current theories an-
tecedents which seem to guarantee attainment of the predicted but discon-
firmed effect. These sufficient antecedents define situational predicates 
that assure confirmation of the theory's predictions. TL then revises the 
refuted theory by excluding from the theory's domain of application all 
situations which do not exhibit these sufficient conditions. The simplest 
operationalization of this method revises the theory by conjoining to its 
prerequisites one of these predicates. By doing so, TL rectifies the faulty 
theory by restricting its applications to those situations that TL's unrefuted 
theories imply will guarantee successful outcomes. 

5. Inclusion Method: Restricting the theory by ruling in confirming cases. 
This method rectifies a faulty theory by specializing it to those few special 
cases where it seems to make valid predictions. When faced with par-
ticular situations that refute a theory, TL may modify the theory to rule in 
the numerous alternative situations in which the theory's predictions are 
confirmed. In this manner, TL attempts to enumerate empirically the 
situations in which the theory works. In the simplest operationalization of 
this method, TL conjoins to the theory's planned actions a new set of alter-
native prerequisites or actions that TL believes correlate reliably with suc-
cessful outcomes. Based on empirical experience or simulated trials, TL 
identifies those situations in which the theory's predictions do hold and 
restricts the theory to apply to just these cases. 
The remainder of the paper is organized as follows. In the next section, I 

re-express the key definitions and learning methods symbolically. Subsequently, 
the learning methods are illustrated by means of examples drawn from a simple 
card game. In addition to exemplifying each of the five learning heuristics, I 
show how rectifying theories produces new domain concepts. Problems of com-
putational approaches and implementation are discussed in the penultimate sec-
tion. In the last section, I attempt to explain the significance of this approach to 
machine learning. 
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8.3.1 Symbolic Formulation of the Learning Problem and the Heuristics 

I will attempt to formulate the learning heuristics as precisely as possible. 
Both predicate calculus and lambda calculus help. However, the focus on ac-
tions and instrumental behaviors necessitates some underlying framework for 
modeling time, causality, and the succession of states and situations. To avoid a 
lengthy and complicated digression, I have chosen to adopt the simplest possible 
framework as a foundation for defining the learning heuristics. These heuristics, 
not the formalism for representing them, constitute the meat of this paper. 

As a basis for the learning methods, I presuppose a real, observable, 
dynamic world in which conditions vary continually. A time variable could be 
used to index instantaneous world states if useful. A situation is a world state 
spanning an interval of time during which observable events occur. A natural 
ordering of situations arises from the temporal relationships among their con-
stituent events. In the ordinary way, I speak of one situation S' succeeding 
another if its denoted world state immediately follows that denoted by S. The 
prime symbol designates this successor relation. 

Situations are abstractions conceived by an observer for pragmatic pur-
poses. Thus, I introduce distinguished situations as required. Typically, I speak 
of a sequence of situations S, S', S", ... which represents a progression of world 
states arising from events beyond TL's control. When TL actively affects 
changes in world state, I will show TL's role by claiming that TL's performance 
of some actions A brings about conditions E in the succeeding state S': 

PERFORM(A,S) => E(S') 
By assumption, predecessors and successors exist for all situations. 

A theory T consists of (i) assumed conditions or prerequisites, denoted CT, 
(ii) possibly some actions that TL is supposed to execute, which are denoted AT 
and (Hi) some predicted effects or consequents, which are denoted ET. The 
reader should interpret CT and ET as situational predicates and AT as a procedure 
parameterized for a situation argument. If the theory specifies no actions, the 
meaning of T is that, for all situations S, CT(S) => ET(S'). This type of theory 
describes environmental events that do not depend on TL's own actions. When 
AT is non-null, however, the theory represents the belief that successful execu-
tion of these actions in situations where CT(S) is true will guarantee the theory's 
predicted effects, Ej(S'). We can denote this as, for all situations S: 

CT(S) Λ PERFORM (AT, S) => ET(S') (1) 
To justify a plan T, TL must prove the conditional expression in (1). TL does 
this by assuming the validity of other theories and constructing a conventional 
proof. Assumptions which are taken to be true without proof are degenerate 
theories in which C and A are null. Every theory which is used to justify a 
theory T is called a justification of T. Whenever a situation S satisfies the left-
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hand side of (1), the theory's predicted effects are warranted expectations.3 If a 
theory is justified and all of its justifications are satisfied by the current situation, 
the theory's expectations are justified by that situation. In such a case, if the 
situation denies the theory's expectations, the theory itself and at least one of its 
justifications are refuted. That is, the theory and the corresponding justification 
are faulty. The faulty justification can be identified by retracing the steps in the 
proof to find one whose antecedents are satisfied but whose consequent is fal-
sified by the situation.4 

To describe the learning heuristics, let's suppose the faulty theory is T, 
such that (1) holds. Where no confusion arises, I will omit the subscript T from 
the presentation. In particular, suppose that some situation S occurred that 
satisfied the theory's left-hand side but where E(S) was false. I will denote by 
D(S) a complete description of the situation S in which TL applied T, and denote 
by D'(S') a complete description of the subsequent situation. Like C and E, D 
and D' denote situational predicates. The five learning methods are operation-
alized as follows. 

1. Retraction Method: Restricting the theory's predictions. To rectify T, 
replace ET = (X (S) (E S)) by (X (S) (Ε' S)) where E' = a common 
generalization of ET and D'. One specific way to compute E' is by form-
ing the lambda abstraction over constant S' of the maximal abstraction of 
Er-(S') and D'(S') [Hayes-Roth & McDermott, 1978; Vere, 1975]. (X (S) 
(E S)) is the LISP form for the predicate E with situation variable S. 

2. Exclusion Method: Barring the theory from applying to the current situa-
tion. To rectify T, replace CT = (X (S) (C S)) by (X (S) (C S)) where C 
= C Λ (~ D). This technique completely bars the current coun-
terexample. One could be less specific and bar any class of situations 
analogous to that described by D. Any predicate d implied by D would 
work as well. Specifically, an alternative rectification employs such a 
weaker restriction to produce a more general theory. This is done by 
making C ' = C A (~d) where D(S) Φ d(S). 

3. Avoidance Method: Ruling out situations that predictably deny the 
theory's predictions. To rectify T, replace CT = (X (S) (C S)) by (X (S) 
(C S)) where C = C Λ P for some situation predicates P and Q,where 
D(S) Φ Q(S) => -E(S ' ) and P(S) Φ ~Q(S). In words, TL must prevent 
the theory from being applied when Q is satisfied, and prerequiring P is a 

3Unwarranted expectations are predictions which lack this type of theory-based justification. 

4This is the general problem of assigning "blame" in AI systems. The framework developed here 
establishes sufficient conditions to insure that the problem is solvable. "Solving" the blame assign-
ment problem means making steady progress on improving faulty knowledge. The proposed methods 
diagnose faulty theories effectively and generate refined theories that avoid making the same error 
twice. 
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way to do that. To identify such a preventive predicate P, work backwards 
from knowledge about Q(S), the feature known to deny ET(S')· If there is 
a theory whose consequents include ~ Q , let its antecedent or left-hand side 
(assumed conditions and actions) define P. Conversely, if some theory's 
left-hand side is Q, let the negation of its right-hand side (R, its predicted 
effects) define P. Because Q => R, ~R φ ~ Q , P = ~R φ ~Q as re-
quired. 

4. Assurance Method: Ruling in situations that predictably assure the 
theory's predictions. To rectify T, replace CT = (X(S) (C S)) by (X(S) (C 
S)) where C = C Λ P for some P where D(S) => ~ET(S') Φ ~P(S) and 
where CT(S) Λ PERFORM (AT, S) Λ P(S) => ET(S'), that is, conditional 
on CT and AT, P should be sufficient for ET. As a simple variant of this 
idea, TL can rectify T by adding actions to AT instead of, or in addition 
to, adding to the assumed conditions. The performance of these additional 
actions should be equivalent to guaranteeing P. 

5. Inclusion Method: Restricting the theory by ruling in confirming cases. 
To rectify T, replace CT = (λ (S) (C S)) by (λ (S) (C S)) where C is a 
predicate that is satisfied by the descriptions of situations that confirmed T. 
If these previous confirming situations are denoted Sj, S2, ..., Sn, the 
simplest technique is to make C = C Λ (Dj V D2 V ... V Dn) where 
each Dj is the situation description (predicate) of the corresponding Sj. 
Subsequently, if the revised theory is refuted by S, a less general predicate 
C" can be formed using either the version space method of Mitchell 
[1978] or the counterfactual method of Vere [1980] to rule out the disaf-
firming S while ruling in the confirming situations Sj, ..., Sn. 

8.3.2 Illustrating the Learning Heuristics 

In this section, I illustrate the learning heuristics in a simple domain by 
showing how TL rectifies an erroneous plan in a card game. 

This example is drawn from the simple card game hearts. It illustrates a 
bug which many players manifest in early stages of skill development. To un-
derstand the bug, the reader needs to understand a few rules of the game. The 
game is played with three or four players who play clockwise around the table. 
Initially, all the cards in the deck are divided among the players. The player 
having the two of clubs plays first. The play consists of a sequence of tricks in 
which each player plays one card in turn. Each player must play a card in the 
same suit as the suit of the first card played in the trick, unless the player is void 
in that suit. The player who plays the highest card in the suit led wins the trick 
and leads the next trick. The player is charged for any points of the cards won 
by that player. The queen of spades has 13 points and each heart has one. The 
goal of the game is to take as few points as possible or to win all 26 possible 
points (that is, "go low" or "shoot-the-moon"). 

The initial buggy plan TL developed is sketched below. Readers who 
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would like to see how this buggy plan can be operational ized automatically 
should consult [Mostow, 1981]. 
Plan 1: Flush the queen of spades. 
Effects: (1) I will force the player who has the 

queen of spades to play that card. 
(2) I will avoid taking 13 points. 

Conditions: (1) I do not hold the queen of spades. 
(2) The queen of spades has not been played. 

Actions: First I win a trick to take the lead, and 
whenever I lead a trick I play a spade. 

8.3.3 Faults Revealed by the Violated Expectations of Plan 1 

In the first plan, TL expects to force a player to play the queen of spades 
and, thereby, avoid taking the queen. However, the following events occur: 

TL plays the king of spades (KS). 
Mary plays the queen of spades (QS). 
John plays the three of spades (3S). 

TL wins the trick. 
TL takes 13 points. 

The last event violates its expectation and reveals a faulty theory. The plan, as a 
theory, is faulty. Its conditions and actions are satisfied, but one of its goal 
assertions is denied. Each heuristic will now be illustrated as a method to im-
prove one of the theories originally used in deriving the unsuccessful plan. 

1. Retraction Method: Restricting the theory's predictions. This method 
prescribes amending the predicted effects of the plan. One simple way this 
fix can be performed is by modifying the theory simply to exclude the 
denied expectation. The amended theory is shown below. Underlines in-
dicate modified components of the plans. 
Plan 2: Flush the queen of spades. 
Effects: (1) I will force the player who has the 

queen of spades to play it. 
(2) ,., retracted ... 

Conditions: (1) I do not hold the queen of spades. 
(2) The queen of spades has not been played. 

Actions: First I win a trick to take the lead, and 
whenever I lead a trick I play a spade. 

This particular plan plays a useful role in other strategic ways than those 
for which the original plan was intended. For example, it would be useful 
whenever TL wished to flush the queen, regardless of who takes the 
points. Such a tactic is often used by a player who is willing to risk 
shooting-the-moon if, and only if, he or she can win the queen of spades. 

2. Exclusion Method: Barring the theory from applying to the current situa-
tion. This heuristic prescribes amending the conditions of the plan to ex-
clude the situation that revealed the bug. Perhaps, in this way the theory 
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can be incrementally refined to apply only when appropriate. In this case, 
for example, TL can modify the previous plan to rule out the action it per-
formed. The revised plan in this case would be as follows: 
Plan 3 : Flush the queen of spades . 
E f f e c t s : (1) I w i l l force the p layer who has 

the queen of spades to play i t . 
(2) I w i l l avoid t ak ing 13 p o i n t s . 

Condi t ions : (1) I do not hold the queen of spades . 
(2) The queen of spades has not been played. 
(3) I do not p lay the king of spades . 

Act ions : F i r s t I win a t r i c k to take the l ead , and 
whenever I l ead a t r i c k I play a spade. 

Notice in this case the added condition (3) which bars TL from playing the 
king of spades. This revised plan illustrates both the strengths and 
weaknesses of this type of fix. This fix eliminates the particular problem 
which motivated it, but the new plan is still faulty. Of course, if the same 
type of disconfirmation arises later because TL plays an ace of spades, an 
additional fix of the same type will lead to a bug-free plan. However, TL 
is "lucky" to fix the plan in this way, because the fix has not been shown 
to be causally connected to the denied assertion. For this reason, Lakatos 
eschewed "monster-barring". Nevertheless, it can be quite constructive 
and appropriate, as this example reveals. 

3. Avoidance Method: Ruling out situations that predictably deny the 
theory's predictions. This heuristic requires TL to reason about the prob-
able cause of the theory's failure. Why did the plan fail in this case? The 
faulty assertion contended TL would avoid taking points. In the actual 
situation, TL took 13 points because it won the trick and the queen of 
spades was played in the trick. These events contributed to the denial of 
the faulty assertion. From this, TL can infer at least two ways to preclude 
this type of denial. One way prerequires that the queen is not played. The 
other prerequires that TL does not win the trick. Given the overall objec-
tive of the plan, to flush the queen of spades, the first fix seems unproduc-
tive. So TL adopts the second fix, as shown below: 
Plan 4: Flush the queen of spades . 
E f f ec t s : (1) I w i l l force the p layer who has 

the\queen of spades to play i t . 
(2) I w i l l avoid t ak ing 13 p o i n t s . 

Condi t ions : (1) I do not hold the queen of spades . 
(2) The queen of spades has not been played. 
(3) I do not win the t r i c k in which 

the queen of spades i s p layed. 
Act ions: F i r s t I win a t r i c k to take the lead , and 

whenever I lead a t r i c k I play a spade. 

In this case, TL has added another condition to exclude the misap-
plication of the earlier theory. TL can go farther however. Given the 
rules of the game, which TL supposedly knows and represents as theories, 
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it can deduce sufficient conditions to achieve the new condition and posit 
these as part of the theory. 

This discussion presupposes non-trivial capabilities, including infer-
ring ways to preclude a denial and avoiding choices of fixes that interfere 
with the plan objectives. I will defer these computational issues until Sec-
tion 8.4. 

To deduce a sufficient condition of some proposition, deny that 
proposition, deduce its consequents, and choose one of these. The nega-
tion of that consequent is a sufficient condition. That is, p is sufficient for 
q means not q implies not p, hence not (not p) identifies a sufficient con-
dition. In this case, TL negates the new condition (3) to yield "I win the 
trick in which the queen of spades is played". From this premise and the 
rules of the game, it can infer that it must play the highest card in the suit 
led. It negates this to produce the alternative plan shown below. 
Plan 5: Flush the queen of spades. 
Effects: (1) I will force the player who has 

the queen of spades to play i t . 
(2) I will avoid taking 13 points. 

Conditions: (1) I do not hold the queen of spades. 
(2) The queen of spades has not been played. 

Actions: Firs t I win a t r ick to take the lead, and 
whenever I lead a t r ick I play a spade 
which i s not the highest spade. 

The careful reader may have noticed that both illustrative fixes intro-
duced by method 3 have produced predicates that cannot be evaluated in 
all situations. This helps motivate several observations. First, such in-
completely determinable predicates occur commonly in human knowledge. 
Second, the knowledge produced by applying the method of avoidance is 
both useful and vulnerable to refutation. The importance and frequent oc-
currence of this type of uncertain knowledge motivates other types of intel-
ligent planning, namely planning aimed at predicting the likely value of 
uncertain predicates. For more on this subject, see [Mostow, 1981]. 
Assurance Method: Ruling in situations that predictably assure the 
theory's predicted effects. This heuristic prescribes changing the erroneous 
theory to insure that the disconfirmed expectation follows logically from 
the assumptions. In this case, the disconfirmed expectation predicted that 
TL would not take 13 points. However, TL did. Here, again, TL uses the 
method of deducing sufficient conditions. It wants to find a sufficient con-
dition to guarantee "I will avoid taking 13 points". To do this, it negates 
the assertions, infers consequents, and chooses one of these to negate and 
prerequire. This leads to a chain of inferences as that shown below: 
Premise: I do take 13 points. 
Rule: The winner of the t r ick takes the 

points in the t r ick . 
Infer: I win the t r ick . 

4. 
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Rule: The person who plays the highest card 
in the suit led wins the trick. 

Infer: I play highest card in the suit led. 

Given: Mary plays the queen of spades. 
Infer: I play a spade higher than the queen of 

spades. 

Negate: I play a spade lower than the queen of 
spades. 

As a consequence, TL can revise its theory as follows: 
Plan 6: Flush the queen of spades . 
E f f e c t s : (1) I w i l l force the p laye r who has 

the queen of spades to play i t . 
(2) I w i l l avoid t a k i n g 13 p o i n t s . 

Condi t ions : (1) I do not hold the queen of spades . 
(2) The queen of spades has not been played. 

Act ions : F i r s t I win a t r i c k to take the l ead , and 
whenever I l ead a t r i c k I play a spade 
below the queen. 

5. Inclusion Method: Restricting the theory by ruling in confirming cases. 
This heuristic employs an empirical approach to plan debugging. It is 
motivated by the possibility that an unfulfilled expectation may be caused 
by one's own actions. In many cases, TL can experimentally or hypotheti-
cal^ evaluate the likely consequences of alternative actions to the ones it 
actually performed when the counterexample arose. For example, it can 
iteratively enumerate all possible actions it might have performed consis-
tent with its plan during the trick in which it took 13 points. Then, if any 
of these alternatives avoids violating the expectation, it can modify its plan 
to incorporate these alternatives as part of the plan. 

For example, in this case, TL can enumerate all possible actions con-
sistent with its plan to lead spades. Suppose it had led the two of spades; 
in this case, because Mary played the queen, TL would not have won the 
trick or taken any points. Thus, the two of spades is an alternative that 
insures the plan's assertions against denials arising from TL's own actions. 
TL similarly evaluates all of the alternative spades, from two through ace, 
consistent with its plan. Of these, ten alternatives avoid the refutation. So 
the following plan is proposed. 
Plan 7: Flush the queen of spades . 
E f f e c t s : (1) I w i l l force the p laye r who has 

the queen of spades to play i t . 
(2) I w i l l avoid t ak ing 13 p o i n t s . 

Condi t ions : (1) I do not hold the queen of spades . 
(2) The queen of spades has not been p layed. 

Act ions: F i r s t I win a t r i c k to take the l ead , and 
whenever I l ead a t r i c k I p lay a spade 
in {2S 1QS. jack of spades}, 
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8.3.4 Rectified Theories Identify New Concepts 

Concepts correspond to descriptive predicates, and many concepts arise be-
cause new predicates are needed to correctly specify theories. Much of our 
knowledge corresponds to concepts identified in the process of rectifying faulty 
theories. I point out two concepts among others that have emerged from the 
rectifications of Plan 1 illustrated in the previous section. In Plans 6 and 7 these 
concepts arose: 

Concept 1: A spade below the queen. 
Concept 2: A spade in the set {2S, 3S, ..., 10S, jack of spades}. 

These two concepts were constructed because the faulty Plan 1 inadequately con-
strained its domain of applicability. These new concepts were synthesized by 
different operational methods applied to existing knowledge. In fixing the plan 
two different ways, TL characterized conditions under which the plan would 
presumably work better than before. The two fixes both correspond to Lakatos' 
notion of "lemma incorporation", because they make implicit assumptions ex-
plicit. What is interesting about these two fixes is that they are semantically 
equivalent. The first corresponds to an intensional, non-enumerative definition 
of the set which the second defines extensionally. The important thing is that 
both concepts arose because of their instrumental value to the learner. The coin-
cidence in meaning between these two discoveries helps illuminate the tendency 
of these different learning methods to converge on correct, useful characteriza-
tions of the domain. 

The coincidence between these two new domain concepts helps convey 
another aspect of discovery. Many coincidental relationships arise among con-
cepts in interesting domains. Lenat's AM program [Lenat, 1976] searches for 
and exploits just such coincidences. The heuristics of AM provide additional 
weak discovery methods that could be applied profitably to the concepts TL has 
discovered. For example, generalizations of the concept "a spade below the 
queen" will prove useful in the game of hearts. Among these I note "a card 
below the highest point card in the current trick" and "a card below the highest 
card in the current trick". Both of these concepts also happen to have instrumen-
tal value in this domain, and so will many others formed analogically from con-
cepts derived exclusively as a by-product of theory rectification. 

8.4 COMPUTATIONAL PROBLEMS AND IMPLEMENTATION TECHNIQUES 

A fully automated version of The Learner (TL) would require solutions to 
several difficult computing problems. The perspective I have taken identifies 
these five primary problems: (i) Operationalizing advice—TL must accept expert 
advice and translate it into an initial working program; (ii) Justifying plans—TL 
must record rationales for its initial operational plans along with expectations that 
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can trigger learning when violated; (Hi) Diagnosing faulty theories—TL must at-
tribute blame to specific theories and label those "faulty"; (iv) Rectifying 
theories—TL must apply specific variants of the five learning heuristics to rectify 
the faulty theories; (v) Assimilating new knowledge—TL must incorporate the 
new theories into its knowledge base and reiterate the planning-performing-
learning cycle. 

Full, effective solutions to all of these problems will require much ad-
ditional progress. My colleagues and I have attacked all of these tasks with 
limited resources and have achieved limited results over the past few years. In 
this section, I summarize our approaches and results. Where appropriate, I in-
dicate the most promising paths for additional research. 

1. Operationalization. Most learning of interest to me begins when an in-
formed, experienced teacher (professional) advises a student (trainee). The 
expert's knowledge is usually conveyed verbally. The learner receives a 
string of verbal symbols that must be transformed into an executable 
program. This can require many kinds of interpretive, heuristic, and 
analytic techniques [Hayes-Roth, 1980, 1981; Mostow, 1981]. We have 
called this transformation task operationalization. Operationalization is a 
large, interesting problem that has barely been touched upon by previous 
research. 

In general, I suppose TL plans to achieve goals by performing 
specific actions in particular circumstances. Each plan corresponds to one 
of TL's theories and usually depends on subplans, which also correspond 
to theories. During the process of operationalizing the initial advice, TL 
generates these theory plans by reasoning about its current knowledge. By 
reassembling existing theories, TL constructs plans that it expects to ach-
ieve goals. Only faulty reasoning or faulty theories will cause plan 
failures, that is, failures to achieve goals of the plan. 

Our previous approaches to operationalization still seem promising, 
although the number and breadth of related tasks seems somewhat forbid-
ding. Because most expert knowledge consists of facts and heuristic rules, 
operationalizing advice generally means understanding domain descriptions 
and reasoning with these to fit heuristic rules into general problem-solving 
methods. This requires an ability to analyze domain definitions and syn-
thesize heuristic computer programs consistent with these definitions. 
During each analysis step, the operationalization process produces an inter-
mediate result that it can justify by citing the corresponding transformation 
rule and the sources on which it operated. These justifications form the 
rationale for the final, operational plans TL produces. 

2. Justifying Plans and Generating Expectations. Operationalization and or-
dinary planning methods both can produce goal-seeking plans of the sort 
TL uses. A plan rationale is a proof of the plan's apparent validity. Plan 
proofs are typical by-products of planning efforts, but TL considers these 
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by-products as centrally important. While at Rand Corporation, I initiated 
a project called the "Planners' Workbench" intended to develop a general 
purpose system for recording plan rationales generated either by machine 
or human planners. 

Our approach to justifying plans involved a few basic insights. First, 
recording plan rationales requires a language for plan elements, including 
syntax, terms, expressions, and sentential operators. Through experimen-
tation, we found a variety of types of justifications arising in real planning 
situations. The extensive variety raises doubts about the degree to which 
human planning (or sophisticated machine planning) reduces to syntactic, 
deductive reasoning. In general, human plans employ subjective justifica-
tions, frequently of the sort that several supporting reasons outweigh a set 
of countervening arguments. Nevertheless, even these "mushy" arguments 
could be formalized as assumptions which enter the plan rationale as 
premises. While the extent of inductive and subjective reasoning surprised 
everyone on our project, the learning methods proposed here could always 
work effectively. However, the technical difficulty of recording plan 
rationales emerged as a key problem. 

Triggering plan diagnosis requires TL to recognize that outcomes vio-
late expectations and goal attainment, in particular. Thus, expected out-
comes must be articulated, and specific outcomes must be compared with 
general expectations. Ordinarily, a plan addresses a particular goal which 
TL can actively monitor. Often, too, plans participate in a hierarchical plan 
structure. Each subplan's goal corresponds to an action or assumed con-
dition of its superior plan. Failing to achieve a subplan's goal causes a 
breakdown during the plan's execution. A learning system needs to 
monitor plan executions for such failures. 

Expectations can be arbitrarily general, and the related task of 
monitoring outcomes can be arbitrarily difficult. This highlights the impor-
tance of expectation-driven learning. The preceding paragraph cited one 
example of a general sort of expectation monitoring, namely that failures in 
plan execution implicate subplans for actions or prerequisites. The next 
section discusses another type of useful, general expectation. That one 
concerns a converse or dual of plan execution failures: goals should be 
attained only when associated plans execute successfully. 

3. Diagnosing Faulty Theories. TL needs to attribute blame to specific faulty 
theories. This need motivates the whole approach of proofs, refutations, 
and rectifications. TL uses a counterexample to an expected effect as a 
basis for refuting the plan's rationale. Assuming (i) the rationale is or-
ganized as a syntactically valid proof and (ii) the predicates occurring in 
the plan and its rationale can be evaluated, every counterexample impli-
cates one specific theory. This requires a systematic backchaining from 
the faulty plan to the first inference in the proof with a disconfirmed con-
sequent in the presence of valid antecedent premises. 
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Computationally, this may be done in a variety of ways. The major 
choice one faces is whether to precompute and store dependencies of 
predicted effects upon antecedents or whether these dependencies should be 
evaluated dynamically while monitoring plan outcomes. 

The second assumption, that predicates permit accurate evaluation, 
places a strong constraint on TL's capabilities. The earlier hearts examples 
in this paper illustrate a variety of predicates that range from easily 
evaluated to impossible to evaluate (at particular times). A predicate like 
"the highest card in the suit led occurring in the current trick" generally 
permits accurate evaluations only after all players play their cards in the 
trick. Given the outcome of the trick, that predicate does permit evalua-
tion. Generally, we cannot know when the trick starts whether a particular 
card will satisfy the predicate. Thus, TL must reason with uncertainty 
while executing its plan. This in no way reduces the value of the proposed 
learning methods. Uncertainty in action is a consequence of living with 
incomplete knowledge in a dynamic world. 

Of course, several means exist for reducing uncertainty and these 
play major roles in intelligent behavior. A learner ought to recognize the 
value of improving estimates of uncertain predicates and develop plans 
toward that end. The steps of the learning cycle would apply to this type 
of task, too. 

4. Rectifying Theories. This paper has aimed at developing practical 
procedures for fixing faulty theories. These heuristic methods presuppose 
some computational capabilities which are not yet widely available in com-
ponent forms. As a result, it will take some effort to assemble a powerful 
TL system. The primary capabilities required are symbolic deduction and 
heuristic search. Many times, this paper has presupposed that TL em-
bodies these capabilities. That seems reasonable, because no new tech-
niques are required. On the other hand, experience in large AI applica-
tions shows repeatedly that considerable effort may be required to engineer 
a practical solution using existing techniques. A practical application of 
the five proposed learning heuristics will depend upon selection of a 
specific problem domain and procedures tailored to the knowledge 
representations and complexities of that domain. 

A knowledge engineer who wants to build a version of TL for some 
specific domain can choose from a variety of existing methods for the 
deduction and heuristic search skills TL requires. As an example, consider 
the third learning method discussed, avoidance. A TL program needs to 
deduce sufficient conditions for plan failure and negate these by presup-
position. This deduction uses typical operators of predicate calculus, 
general purpose program transformation rules, and possible domain-specific 
transformations to reason from the description of the undesirable event to 
its antecedents. The steps in this reasoning process reflect inferences of 
both syntactic and semantic types, depending on whether domain-
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independent or domain-dependent relationships are employed. When one 
of TL's existing theories supports a reasoning step, the resulting rectifica-
tion depends on the supporting theory for its justification. Thus, the task 
of producing a sufficient antecedent for a desired goal is best formulated as 
a heuristic search with deductive and program transformational operators. 
One path in this search tree eventually connects an antecedent clause to the 
negated goal clause. Each link in this path reflects the application of a 
transformation. Some of these transformations will introduce domain-
specific theories as a basis for relating adjacent clauses. 

Rectification, because it is a heuristic search process, can produce al-
ternative fixes. Each alternative fix represents a plausible new theory. 
Each new theory rests on other theories for its justification. Such a system 
will require means for storing and applying alternatives and experimentally 
evaluating them. 

5. Assimilating New Knowledge. The proposed learning methods can 
produce numerous fixes to each faulty theory. This will lead to a large 
number of coexisting alternatives. This increases the complexity of all of 
the five tasks in the learning cycle. Does this nullify the value of the 
proposed methods? I don't think so, because this conclusion seems in-
evitable. No way exists which can reason with certainty about the best fix 
to any faulty theory. Knowledge refinement is intrinsically a heuristic 
problem. 

Several familiar techniques could apply fruitfully to help control the 
complexity which arises in this type of non-deterministic learning. These 
techniques would reduce complexity by intelligently controlling the heuris-
tic search underlying knowledge refinement. A few pertinent examples in-
clude: (i) Preferring general theories to specific ones, because these have 
greater utility; (ii) Seeking canonical representations of theories to reduce 
duplication; (Hi) Testing new proposed theories by simulation prior to in-
corporating them into the knowledge base; (iv) Experimentally evaluating 
alternative fixes in controlled situations to determine the most fruitful fix to 
adopt; and (v) Preferring fixes with minimal intrinsic uncertainty, to min-
imize uncontrollable errors in application. I assume each of these heuris-
tics, as well as many others, can improve the performance of a TL system. 
Without these types of restrictions, a TL system will almost certainly face 
an uncontrollable combinatorial explosion. 

8.5 CONCLUSIONS 

The complexity of the real world precludes us from developing complete, 
error-free, and consistent knowledge of any substantial domain. As a con-
sequence, we must always be learning. More specifically, we must always be 
alert for opportunities to learn improved ways to predict the future and attain 
goals. Opportunities arise whenever our current theories make refuted claims. 
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I have shown five heuristic methods for rectifying erroneous theories. 
Each of these methods is an effective generator of new theories. Each refutation 
leads to multiple new theories, and each method of fixing theories may be opera-
tionalized in more than one way. The proposed techniques constitute the first 
practical operationalization of the method of proofs and refutations originally 
suggested by Lakatos. In addition, I have shown how rectified theories manifest 
new domain concepts, which can support other kinds of learning. 

This framework suggests a potentially very important and practical ap-
proach to machine learning tasks. For machine learning, the proposed methods 
provide a generator for improved theories and new concepts of instrumental 
utility. As in other areas of AI, real success at a hard problem requires both a 
generator and a good evaluator. This paper has provided an initial generator 
without really contributing much to the problem of defining a good evaluator. 
However, evaluation in this type of problem is inherently difficult, because one 
can never know the value of a potential idea without employing it. This neces-
sitates either empirical or subjective approaches to evaluation. Because no 
generally valid subjective scheme seems possible, an empirical approach to 
evaluation seems unavoidable. Thus, learning and performance are of necessity 
interwoven activities. 

I have focused in this paper exclusively on things to be learned from 
refutations of overly general theories with observable theoretical constructs. The 
same methods, however, can be fruitfully applied to other types of learning 
problems. In particular, I will describe briefly how these methods can rectify 
overly specific theories. 

An overly specific theory, by definition, fails to predict an event because 
the theory's conditions bar the theory from applying to the current situation. In 
short, the situation confirms the theory's predicted effects but not its conditions. 
The learner can use the methods of proofs and rectifications here too. In this 
case, a general expectation is violated that contends all events will accord with 
some theory's expectations. That is, a theory's predicted outcomes should occur 
only if the theory's conditions are satisfied. But this is equivalent to saying that 
the theory's predicted effects (viewed as conditions) predict the theory's con-
ditions (viewed as expectations). Thus, each original theory is associated with a 
second one, namely its converse. 

When the five proposed heuristics are applied to refuted converses, they 
rectify them and narrow their sufficient conditions. This has the dual effect of 
narrowing the specification of the necessary conditions for the original theory. 
Taken together, a theory and its converse define the necessary and sufficient con-
ditions for the theory's predicted effects. 

In conclusion, it seems obvious that skill in learning, as is the case for so 
many other types of expertise, depends heavily on the knowledge the learner al-
ready possesses. The methods discussed in this paper provide techniques for 
using existing theories to construct better ones. 
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LEARNING BY DISCOVERY: 

THREE CASE STUDIES 
Douglas B. Lenat 
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ABSTRACT 

As artificial intelligence (AI) programs are called upon to exhibit increas-
ingly complex behaviors, their builders are faced with the growing task of insert-
ing more and more knowledge into the machine. One long-range solution is for 
the program, by itself, to learn via discovery. The first case study presented, 
AM, demonstrates that new domains of knowledge can be developed mechani-
cally by using heuristics. Yet as new domain concepts, facts, and conjectures 
emerge, specific new heuristics, or informal judgmental rules, are needed. They 
in turn can be discovered by using a body of heuristics for guidance. The 
second case study, EURISKO, has already achieved some promising results in this 
endeavor. If this process—using heuristics to guide "learning by discovery"—is 
so powerful and simple, one wonders why, for instance, nature has not adopted 
an analogous mechanism to guide evolution. Indeed, the final part of the article 
is a speculation that evolution does function in that manner. In place of the 
conventional Darwinian process of random mutation, we hypothesize a more 
powerful plausible generation scheme. 

9.1 MOTIVATION 

The overall motivation of this paper comprises (i) a general interest in the 
phenomena of learning and discovery, (ii) a specific concern that, as expert sys-
tems continue to increase in size and complexity, they must shoulder more of the 
burden of their own organization, management, and content, and (Hi) a recog-
nition of the analogy between a machine learning and a species evolving. This 
third point, the resemblance to biological evolution, is developed in Section 9.7. 

243 
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Several recent programs in artificial intelligence (AI) perform complex 
tasks demanding a large corpus of expert knowledge [Feigenbaum, 1977]. These 
include, for example, the PROSPECTOR program for evaluating the mineral poten-
tial of a site, the MYCIN program for medical diagnosis, and the MOLGEN 
program for planning experiments in molecular genetics. To construct such a 
system, a knowledge engineer talks to a human expert, extracts domain-specific 
knowledge, and adds it to a growing knowledge base usable by a computer 
program (see Figure 9-1). The critical stage of this process, the limiting step, is 
the transfer of expertise. From the program's point of view, the limitation is the 
slow rate at which it acquires knowledge. This is the central problem facing 
knowledge engineering today, the bottleneck of knowledge acquisition. 

HUMAN 
EXPERT 

\ ^MblS6 E /KNOWLEDGE- BASED 
/ ENG1NEER \PROGRAM 

Figure 9-1: The bottleneck of knowledge acquisition is transfer of expertise. This comprises (i) the 
expert's difficulty in articulating what he knows, and (ii) the impedance mismatch 
between the concepts and vocabulary of the expert and the knowledge engineer. 

Two possible solutions to this problem suggest themselves, although they 
are not mutually exclusive. First, one might try somehow to widen the channel 
joining expert to program, for example by building a sophisticated natural lan-
guage interface. 

The difficulty with this is that the expert must communicate not merely the 
"facts" of his field, but also the heuristics: the informal judgmental rules which 
guide him. These are rarely thought about concretely, and almost never appear 
in journal articles, textbooks or university courses. Thus, even with a wider 
channel, the expert would have difficulty in verbalizing his heuristics. 

The second possible solution is to sever the umbilicus entirely: eliminate 
the knowledge engineer and the human expert, expose the program to the en-
vironment, and let it discover new knowledge on its own. Can this be done? 
Since knowledge comprises both facts and heuristics, the question divides into 
two parts: can new domain concepts and relationships be discovered, and can 
new domain heuristics be discovered? This paper is addressed to these ques-
tions, and it presents evidence that the answers are affirmative. 

Along the way, an elementary "theory of heuristics" accrues. Our initial 
definition of a heuristic is: a piece of knowledge capable of suggesting plausible 
actions to follow or implausible ones to avoid. In Section 9.3, it becomes ap-
parent that this is insufficient; for a body of heuristics to be effective (useful for 
guiding rather than merely for rationalizing in hindsight), each heuristic must 
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specify a situation or context in which its actions are especially appropriate or 
inappropriate. The theory developed in Section 9.4 is based on this definition. 

9.2 OVERVIEW 

9.2.1 The Central Line of the Argument 

1. New domains of knowledge δ can be developed by using heuristics. 
Radically new concepts and relations connecting them can be discovered 
by employing a large corpus of heuristics both to suggest plausible actions 
and to prune implausible ones. To accomplish this requires heuristics of 
varying levels of generality and power, an adequate representation for 
knowledge, some initial hypotheses about the nature of domain δ, and the 
ability to gather data and test conjectures about that domain. 

2. As new domains of knowledge emerge and evolve, new heuristics are 
needed. A field may change by the introduction of some new device, 
theory, technique, paradigm, or observable phenomenon; each time it does 
so, the corpus of heuristics useful for dealing with that field may also 
change. Consider the body of heuristics useful in planning a trip from San 
Francisco to London. Over the last century, many new ones have been 
added, and many old ones have undergone revision. 

3. New heuristics can be developed by using heuristics. The first two 
points imply that new heuristics must be discovered. How is this done? 
Since "heuristics" is a domain of knowledge, like electronics, or math-
ematics, or travel planning, perhaps all that is necessary is to set 
δ = heuristics in point 1. That is, let the field of heuristics itself grow via 
heuristic guidance. To do this would require many types of heuristics 
(some quite general, some specific to dealing with other heuristics, etc.), 
an adequate representation for heuristics, and some hypotheses about the 
nature of heuristics. 

4. As new domains of knowledge emerge and evolve, new representations 
are needed. Just as the potency of a fixed body of heuristics decreases as 
we move into new fields, so, too, does the potency of whatever scheme is 
being used to represent knowledge. Representations must evolve as 
domain knowledge accrues. 

5. New representations can be developed by using heuristics. Points 1 and 
4 imply that new representations for knowledge must be devised from time 
to time, and that existing schemes must change. How can this happen? 
Since "representation of knowledge" is a field, just as is mathematics, or 
electronics, or heuristics, or travel planning, perhaps we can somehow set 
δ = representation in point 1. That is, allow heuristics to manage the 
development of new representations. 
The final point is that there is no sixth point to make. The preceding five 
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statements comprise a research program to follow, one plan of attack upon the 
central problem, the bottleneck of automatic knowledge acquisition. 

Other directions of attack are promising, and are being pursued vigorously 
by several AI researchers. For most fields, some necessary component required 
by point 1 above is missing (for example, the automatic acquisition of data is 
awkward or impossible). In such cases, the human expert must be preserved "in 
the loop" of Figure 9-1. Any aids for interviewing the expert are then quite 
important, tools which facilitate the manual knowledge acquisition process 
depicted in Figure 9-1. Indeed, much recent AI activity focuses on developing 
such tools: AGE, EMYCIN, EXPERT, HEARSAYIII, RLL, ROGET, ROSIE, and the 

various knowledge representation languages. 
This chapter presents work to date, by the author, along the research 

program outlined in Table 9-1 Although the development parallels the ordering 
given therein, the amount of space devoted to each point is not uniform. Much 
of the paper is concerned with recounting the experience of building AM, a com-
puter program which searches for interesting new concepts and conjectures in 
elementary mathematics (point 1; see Table 9-1). The analysis of AM's eventual 
demise provides an illustration of 2. Much of the remainder is used to develop 
the rudiments of a theory of heuristics, which theory is required for 3. The 
second case study, EURISKO, is a program illustrating 3, 4, and 5. 

The resemblance between a computer program attempting to learn about 
and master its environment, and a species attempting to evolve viably, is quite 
strong. DNA can be considered a program for producing and maintaining an 
organism, in which case evolution is mapped into the process we call automatic 
programming. Early experiences with automatic programming have shown just 
how weak a method random mutation is for modifying large, complex programs. 
Significant success was achieved only by incorporating a large amount of 
knowledge, including much heuristic knowledge, to guide the mutation process. 
The final case study of this paper enlarges this analogy, proposing that nature 
may already have happened upon a heuristically-guided mechanism for guiding 
evolution. By now, evolution may be a "plausible generate and test" process, 
rather than the strict Darwinian "random generate and test". Drawing upon ex-
periences with EURISKO, we extend this to include the speculation that even the 
mutation and development of new heuristics for evolution are by now under 
heuristic control. 

Table 9-1: Automatic knowledge acquisition via discovery: The Research Program. 

1. New domains of knowledge can be developed by using heuristics. 
2. As new domains of knowledge emerge and evolve, new heuristics are needed. 
3. New heuristics can be developed by using heuristics. 
4. As new domains of knowledge emerge and evolve, new representations are needed. 
5. New representations can be developed by using heuristics. 
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9.2.2 Controlling the Use of Heuristic4Knowledge 

There is an implied "control structure" for the processes of using and ac-
quiring knowledge (solving and proposing problems, using and discovering 
heuristics, choosing and changing representations, and so on). In fact, it is a 
nontrivial assumption that a single control loop is powerful enough to manage 
both types of processes. Why assume this? Our experiences with expert sys-
tems in the past [Feigenbaum, 1977] have taught us that the power lies in the 
knowledge, not in the inference engine. 

What is that topmost control loop? It assumes that there is a large corpus 
of heuristics for choosing (and shifting between) representations. From time to 
time, some of these heuristics evaluate how well the current representations are 
performing; for example, is there now some operation which is performed very 
frequently, but which is notoriously slow in the current representation? At any 
moment, if the representations used seem to be performing suboptimally, some 
attention will be focused on the problem of shifting to other ones, maintaining 
the same knowledge simultaneously in multiple representations, devising whole 
new systems of representation, etc. Similarly, we assume there are several 
heuristics which monitor the adequacy of the existing stock of heuristics, and, as 
need arises, formulate (and eventually work on and solve) tasks of the form, 
"Diagonalization is used heavily, but has no heuristics associated with it; try to 
find some new specific heuristics for dealing with diagonalization." A typical 
rule for working on such a task might say, "To find heuristics specific to C, try 
to analogize heuristics specific to concepts which were discovered the same way 
that C was discovered." 

It is assumed that these representation heuristics and heuristic heuristics 
have run for a while, and the system is in a kind of equilibrium. The represen-
tations employed are well suited to the tasks being performed, and the heuristics 
being followed serve as quite effective guides for "plausible move generation" 
and "implausible move elimination". The system now proceeds for a while 
along its object-level pursuits, whatever they may be—proving theorems in plane 
geometry, discovering new concepts in programming, and so on. Gradually, the 
object level may evolve; new concepts will be uncovered and focused upon, new 
laboratory techniques will be discovered, long-standing open questions will be 
answered, and so on. As this occurs, the old representations for knowledge, and 
the old set of guiding heuristics, may become less ideal, less effective. This in 
turn would be detected by some of the "meta"-heuristics discussed in the last 
paragraph, and they would cause the system to recover its equilibrium, to search 
for new representations and new heuristics to deal effectively once again with the 
objects and operations at the object level (see Figure 9-2). 

In other words, new concepts, conjectures, theorems, and so on, emerge 
all the time; as they are investigated, some turn out to be useful and some turn 
out to be dead ends. Using a fixed set of guiding heuristics, the rate at which 
useful new discoveries are made will decline gradually over time; eventually it is 



248 CHAPTER 9: LEARNING BY DISCOVERY 

DEFINE NEW REPRESENTATIONS 

AUGMENT THE REPRESENTATION 

DEFINE AND STUDY HEURISTICS 

DEFINE AND STUDY DOMAIN CONCEPTS 

Figure 9-2: Implied control structure of discovery systems. As activities at one level decline in 
efficacy, the system is forced to spend a little time at the next higher level before 
proceeding. 

worth pausing in the search for domain-specific knowledge, and turning instead 
to the problem of finding new heuristics, perhaps by articulating and generalizing 
from experiences in the task domain. The discoverer later returns to his original 
task, armed with new and, he hopes, more powerful heuristics. This cycle of 
looking for domain concepts, occasionally punctuated by an effort to find new 
heuristics, continues until, gradually, it becomes harder and harder to find new 
heuristics. At that point it becomes worthwhile to look for new kinds of slots, 
attached procedures, assertions—in short, augmenting whatever the current 
representation of knowledge is in the system. If even this begins to be inade-
quate, it may be worthwhile to explore for entirely new and different represen-
tations for knowledge, though this is an activity with which humans have had 
very few successes to date. 

The top level control structure is thus homeostatic, detecting and correcting 
for any inappropriateness of representations employed or heuristics employed. 
For these purposes, we believe it suffices to have (and use) a corpus of heuristics 
for guidance. Of course that top level loop could itself be implicitly defined by 
a set of heuristic rules, and we would expect such rules to change from time to 
time, albeit very slowly. If, for example, no new concepts or operations were 
defined at the object level for a long period of time, then the need for close 
monitoring of the adequacy of the representations being employed would 
evaporate. One important point is that it is not necessary to distinguish meta-
heuristics from object-level heuristics; they can be represented the same way, 
they can be managed by the same interpreter, etc. For example, the very general 
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recursive rule, "To specialize a complex construct, find the component using the 
most resources, and replace it by several alternate specializations", applies to 
specializing laboratory procedures, mathematical functions, heuristics (including 
itself!), and representational schemes. 

9.3 CASE STUDY 1 : THE AM PROGRAM; HEURISTICS USED TO DEVELOP 
NEW KNOWLEDGE 

9.3.1 How Discoveries Are Made 

"How was X discovered?" When confronted with such a question, the 
philosopher or scientist will often retreat behind the mystique of the all-seeing 
I's: illumination, intuition and incubation. A different approach would be to 
provide a rationalization, a scenario in which a researcher proceeds reasonably 
from one step to the next, and ultimately synthesizes the discovery X. In order 
for the scenario to be convincing, each step the researcher takes must be justified 
as a plausible one. Such justifications are provided by citing heuristics, more or 
less general rules of thumb, judgmental guides to what is and is not an ap-
propriate action in some situation. 

For example, consider the heuristic in Table 9-2. It says that if a function 
f takes a pair of A's as arguments, then it is often worth the time and energy to 
define g(x) = f(x,x), that is, to see what happens when f s arguments coincide. 
If f is multiplication, this new function turns out to be squaring; if f is addition, 
g is doubling. If f is union or intersection, g is the identity function; if f is 
subtraction or exclusive-or, g is identically zero. Thus we see how two useful 
concepts (squaring, doubling) and four important conjectures might be discovered 
by a researcher employing this simple heuristic. 

Table 9-2: A heuristic which leads to useful concepts and conjectures. 

IF f:AxA-> B, 
THEN define g:A-> B as g(x) = f(x,x) 

Can we apply this methodology to construct a computer program that at-
tempts to learn via discovery? To answer this, we present our first case study, 
AM, a program which models one aspect of elementary mathematics research, 
developing new concepts under the guidance of a large body of heuristic rules. 
While finished, polished mathematics may look static and dry, mathematics "in 
the making" is an empirical endeavor, fraught with search, uncertainty, massive 
quantities of data, and the need for good judgment to guide the overall process. 

The local heuristics communicate via an agenda mechanism, a global list 
of tasks for the system to perform and reasons why each task is plausible. A 
single task can direct AM to define a new concept, to explore some facet 
(property, slot, attribute) of an existing concept, to examine some empirical data 
for regularities, and so on. Repeatedly, the program selects from the agenda the 
task having the best supporting reasons, and then executes it. 
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Each concept is represented internally as a data structure with a couple 
dozen slots or facets, such as "Definition", "Examples" and "Worth"; see Tables 
9-3 and 9-4 The notation "S: v" is used to indicate that the slot or property S has 
value v. Thus "Extreme-ex: 2,3" in Table 9-3 means that 2 and 3 are extreme 
examples of prime numbers. "Worth: 800" means that, on a scale of 0 to 1000, 
the concept of prime numbers rates a value of 800. "Defined-using: Divisors-
of' means that the concept "Primes" was originally defined by using the pre-
existing concept "Divisors-of '. 

Initially, most facets of most concepts are blank. There are 115 of these 
structured modules provided initially, each one corresponding to an elementary 
set-theoretic concept (for example, union). This provides a definite but immense 
"space" which AM begins to explore, guided by a corpus of 250 heuristic rules. 

Table 9-3: Frame-like representation for a static mathematical concept from AM. Note that of the 
numbers examined for primeness so far, 840 satisfy the definition and 5000 do not. 
Ten conjectures have been made about primes so far, and only three still appear to be 
valid. 

NAME: Primes 
STATEMENT 

English: Numbers with two divisors 
SPECIALIZATIONS: Odd-primes, Small-primes, Pair-primes 
GENERALIZATIONS: Positive-natural-numbers 
IS-A: Set 
EXAMPLES: 

Extreme-exs: 2,3 
Extreme-non-exs: 0,1 
Typical-exs: 5,7,11,13,17,19 
Typical-non-exs: 34, 100 

CONJECTURES: 
Good-Conjees: Unique-factorization, Formula-for-d(n) 
Good-Conjec-Units: Times, Divisors-of, Exponentiate, Nos-with-3-divis, Squaring 

ANALOGIES: Simple Groups 
WORTH: 800 
ORIGIN: Divisors-of-1 (Doubletons) 

Defined-using: Divisors-of 
Creation-date: 3/19/76 18:45 

HISTORY: 
N-Good-Examples: 840 N-Bad-Examples: 5000 
N-Good-Conjectures: 3 N-Bad-Conjectures: 7 

Some of the slots were filled in at the time the concept was created (for 
example "Name", "Statement", "Is-a", "Worth" and "Origin"). Some of these 
values changed with time ("Worth"). Other slots were incrementally updated to 
reflect statistical records ("History"). Other slots were filled in only as the 
results of AM executing a specific task ("Examples"), perhaps noticing a for-
tuitous regularity during that process ("Conjectures"). Some slots are 
virtual—that is, they are not initially filled in; rather, they are defined in terms 
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Table 9-4: Frame-like representation for a mathematical function from AM. 

NAME: Compose 
ABBREVIATION: - o -
STATEMENT 

English: Compose two functions F and G into a new one FoG 
DOMAIN: F, G are functions 
IF-potentially-relevant: F, G are functions with known domain and range 
IF-truly-relevant: Domain of F and Range of G have some intersection 
IF-resources-available: at least 2 CPU seconds, at least 200 cells 
THEN-add-task-to-agenda: Fill in entries for some slots of FoG 
THEN-conjecture: Properties of F hold for FoG, Properties of G hold for FoG 
THEN-modify-slots: Record FoG as an example of Compose 
THEN-print-to-user: English(Compose) 
THEN-define-new-concepts: Name FoG; 

ORIGIN Compose F,G; 
WORTH: Average(Worth(F),Worth(G)) 
DEFN: Append(Defn(G),Defn(F)) 
Avg-cpu-time: Plus(Avg-cpu(F),Avg-cpu(G)) 
IF-Potentially-Rele: If-Potentially-Rele(G) 
IF-Truly-Rele: If-Truly-Rele(G) 

CODED-IF-PART: \(F,G) ... <LISP code which carries out the 3 IF- tests> 
CODED-THEN-PART: \(F,G) ... <LISP code which carries out the 5 THEN- actions> 
CODED-IF-THEN-PARTS: X(F,G) ... <LISP code uniting previous 2 slots> 
COMPILED-CODED-IF-THEN-PARTS: #30876 <compiled version of previous slot> 
SPECIALIZATIONS: Composition-of-bijections 
GENERALIZATIONS: Combine-concepts 

Immediate-Generalizations: Combine-functions 
IS-A: Function 
EXAMPLES: 

Good-Examples: Compose Count and Divisors 
Bad-Examples: Compose Count and Count 

CONJECTURES: Composing F and F is sometimes very good and usually bad 
ANALOGIES : Sequence 
WORTH: 700 
VIEW: Append 
ORIGIN: Specialization of Append-concepts with slot = Defn 

Defined-Using: Specialize 
Creation-date: 11/4/75 03:18 

HISTORY: 
N-Good-Examples: 14 N-Bad-Examples: 19 
N-Good-Conjectures:2 N-Bad-Conjectures: 1 
N-Good-Tasks-Added: 57 N-Bad-Tasks-Added: 34 
Avg-Cpu-Time: 1.4 seconds Avg-List-Cells: 160 
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of other, more primitive slots, and their values will be filled in the first time they 
are asked for. (For example, consider "Compiled-coded-if-then-parts". The first 
time an interpreter calls for its value, it gets shunted to the definition of that slot, 
which says to find the value for "Coded-if-then-parts" and run the compiler on it. 
That in turns spawns requests for both "Coded-if-part" and "Coded-then-part", 
which in turn spawn requests for the various "If-" and "Then-" slots, which 
(finally!) do indeed exist on the "Compose" concept.) 

AM extends its knowledge base, ultimately rediscovering hundreds of com-
mon concepts (such as, numbers) and theorems (such as, unique factorization). 
Some heuristics are used to select which specific facet of which specific concept 
to explore next, while others are used to actually find some appropriate infor-
mation about the chosen facet. Other rules prompt AM to notice simple relation-
ships between known concepts, to define promising new concepts to investigate, 
and to estimate how interesting each concept is. The AM program is more fully 
described in [Davis & Lenat, 1981], from which some of this section's material 
has been excerpted. 

Before discussing how to synthesize a new theory, consider briefly how to 
analyze one, how to construct a plausible chain of reasoning which terminates in 
a given discovery. One can do this by working backwards, by reducing the 
creative act to simpler and simpler creative acts. 

Consider, as our first example of a math heuristic, the following plausible 
strategy: 

"If f is a function which transforms elements of A into elements of 
B, then consider just those members of A which are transformed into ex-
tremal elements of B. This set is an interesting subset of A." 
If f is "Intersection", this heuristic says it is worth considering pairs of sets 

which map into extremal kinds of sets. Well, what's an extremal kind of set? 
Perhaps we already know about extremely small sets, such as the empty set. 
Then the heuristic would cause us to define the relationship of two sets having 
empty intersection—that is, disjointness. The heuristic also causes us to inves-
tigate the other extreme, where sets overlap as much as possible—namely, the 
relation subset. 

If f is "Employed-as", then the above heuristic says it is worth defining, 
naming, and studying the group of people with no jobs (zero is an extremely 
small number of jobs to hold), and the group of people who hold down more 
than one job (two is an extremely large number of jobs to hold). So this heuris-
tic leads to the defining of the concepts of unemployment and moonlighting. 

If f is "Divisors-of", then the heuristic would suggest defining the set of 
numbers with no divisors, the set of numbers with one divisor, with two 
divisors, and with three divisors. The third of these four sets is the concept of 
prime numbers. Other heuristics cause us to gather data, to do that by dumping 
each number from 1 to 1000 into the appropriate set(s), to reject the first two 
sets as too small, to notice that every number in the fourth set is a perfect 
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square, to take their square roots, and, finally, to notice that they then coincide 
precisely with the third set of numbers. Now that we have the definition of 
primes, and we have found a surprising conjecture involving them, we shall say 
that we have discovered them. (Note that we are nowhere near a proof of that 
conjecture.) 

So, applying the above heuristic rule actually reduces the task of "how in 
the world might someone have invented the concept of prime numbers" to the 
more elementary problem of "how in the world might someone have invented 
divisors-of". 

But suppose we know this general rule: "If f is an interesting function, 
consider its inverse." It reduces the task of discovering divisors-of to the simpler 
task of discovering multiplication. Eventually, this task reduces to the discovery 
of very basic notions, like substitution, set-union, and equality. To explain how 
a given researcher might have made a given discovery, such an analysis can be 
continued until that inductive task is reduced to "discovering" notions which the 
researcher already knew, which were his conceptual primitives. (See Figure 
9-3.) 

Suppose a large collection of these heuristic strategies has been assembled 
(for example, by analyzing a great many discoveries and writing down new 
heuristic rules whenever necessary). Instead of using them to explain how a 
given idea might have evolved, one can imagine starting from a basic core of 
knowledge and "running" the heuristics to generate new concepts. We're talking 
about reversing the process described in the last few paragraphs; not how to ra-
tionalize discoveries in hindsight, but how to make them. 

PRIMES 

I 
DIVISORS-OF 

I 
TIMES 

PLUS CARTESIAN PRODUCT 

Figure 9-3: Reducing each concept's discovery to that of a simpler one. Note that multiplication 
can be discovered if the researcher knows either addition of numbers or Cartesian 
products of sets. 
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Why, then, is the act of creation so cherished? If some significant dis-
coveries are merely one or two "heuristic applications" away from known con-
cepts, why are even one-step discoveries worth communicating and getting ex-
cited about? The answer is that the discoverer is moving upward in the tree, not 
downward. He is not rationalizing, in hindsight, how a given discovery might 
have been made; rather, he is groping outward into the unknown for some new 
concept which seems to be useful or interesting. The downward, analytic search 
is much more constrained than the upward, synthetic one. Discoverers move 
upward; colonizers (axiomatizers and pedagogues) move downward. (See Figure 
9-4.) Even in this limited situation, the researcher might apply the "Repeat" 
heuristic to multiplication, and go off along the vector containing exponentiation, 
hyper-exponentiation, and so on. Or he might apply "look at inverse of 
extrema" to Divisors-of in several ways, for example looking at numbers with 
very many divisors. 

Once a discovery has been made, it is much easier to rationalize it in 
hindsight, to find some path downward from it to known concepts, than it was to 
make that discovery initially. Analysis (Figure 9-3) is less branchy than syn-
thesis (Figure 9-4). That is the explanation of the phenomenon we have all ex-
perienced after working for a long time on a problem, the feeling, "Why didn't I 
solve that sooner!" When the reporter is other than ourselves, the feeling is more 
like "I could have done that, that wasn't so difficult!" It is the phenomenon of 
wondering how a magic trick ever fooled us, after we're told how it was per-
formed. It enables us to follow mathematical proofs with a false sense of con-
fidence, being quite unable to prove similar theorems. It is the reason why we 
can use Polya's heuristics [Polya, 1945] to parse a discovery, to explain a 
plausible route to it, yet feel very little guidance from them when faced with a 
problem and a blank piece of paper. 

There is still that profusion of upward arrows to contend with. One of the 
triumphs of AI has been finding the means to muffle a combinatorial explosion 
of arrows. One must add some heuristic guidance criteria; that is, some ad-
ditional knowledge indicating which directions are expected to be the most 
promising ones to follow, in any situation. So by a heuristic, from now on, we 
shall mean a contingent piece of knowledge, such as the top entry in Table 9-5, 
rather than an unconstrained Polya-esque maxim (Table 9-5b). The former is a 
heuristic, the latter is an explosive. 

There is a partial theory of intelligence here, which claims that discovery 
can be adequately guided by a large collection of such heuristic rules.- It was to 
test this hypothesis that we built and experimented with the AM program. 

9.3.2 Constructing and Running the AM Program 

AM consists of a large corpus of primitive mathematical concepts, each 
with a few associated heuristics—situation/action rules which function as local 
"plausible move generators". Some suggest tasks for the system to carry out, 



LENAT 255 

M/ \t/ 
PRIMES NUMBERS WITH MANY DIVISORS 

DIVIS-OF EXPONENTIATION 

PART TION TIMES 

PLUS CARTESIAN PRODUCT 

Figure 9-4: The more explosive upward search for new concepts. 

Table 9-5: A contingent heuristic rule and an explosive one. 

(a) IF the range of one operation has a large intersection with the domain of a second, 
and they both have high worth, 
and either there is a conjecture connecting them 
or the range of the second operation has a large intersection 

with the domain of the first, 
THEN compose them and study the result. 

(b) Compose two operations and study the result. 

some suggest ways of satisfying a given task, and so on. AM's activities all 
serve to expand AM itself, to enlarge upon a given body of mathematical 
knowledge. To cope with the large size of the potential "search space" involved, 
AM uses its heuristics as judgmental criteria to guide development in the most 
promising direction. It appears that the process of inventing worthwhile, new (to 
AM) concepts can be guided successfully using a collection of a few hundred 
such heuristics. 

Modular representation of concepts provides a convenient scheme for or-
ganizing the heuristics; for example, the following strategy fits into the 
"Examples" facet of the "Predicate" concept: 

"If, empirically, 10 times as many elements fail some predicate P, as 
satisfy it, then some generalization (weakened version) of P might be more 
interesting than P." 
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AM considers this suggestion after trying to fill in examples of each predicate 
(function that always returns True or False). In fact, after AM attempts to find 
examples of "Set-Equality", so few are found that AM decides to generalize that 
predicate. The result is the creation of a new predicate which means "Has-the-
same-length-as"—that is, a rudimentary precursor to natural numbers. 

AM is initially given a collection of 115 core concepts, with only a few 
facets filled in for each concept. Its sole activity is to choose some facet of some 
concept, and fill in that particular slot. In so doing, new notions will often 
emerge. Uninteresting ones are forgotten, mildly interesting ones are kept as 
parts of one facet of one concept, and very interesting ones are granted full 
concept-module status. Each of these new modules has dozens of blank slots; 
hence, the space of possible actions (blank facets to fill in) grows rapidly. The 
same heuristics are used both to suggest new directions for investigation and to 
limit attention, both to sprout and to prune. 

The particular mathematical domains in which AM operates depend upon 
the choice of initial concepts. Currently, AM begins with nothing but a scant 
knowledge of concepts which Piaget might describe as prenumericah the set of 
initially supplied concepts includes static structures (sets, bags, lists) and many 
active operations (union, composition, canonize). Note that AM is not told any-
thing about proof, single-valued functions, or numbers. For each concept, we 
supplied very little information besides its definition. In addition, AM contained 
243 heuristic rules for proposing plausible new concepts, for filling in data about 
concepts, and for evaluating concepts for "interestingness". Among them are the 
two heuristics we saw earlier, for looking at the inverse of extrema and for look-
ing at the new function g(x) = d f f(x,x). 

From this primitive basis, AM quickly discovered elementary numerical 
concepts (corresponding to those we refer to as natural numbers, multiplication, 
factors, and primes) and wandered around in the domain of elementary number 
theory. "Discovering" a concept means that (i) AM recognized it as a distin-
guished entity (for example, by formulating its definition), and also (ii) AM 
decided it was worth investigating, either because of the interesting way it was 
formed, or because of surprising preliminary empirical results. AM was not 
designed to prove anything, but it did conjecture many well-known relationships, 
including de Morgan's laws and the unique factorization theorem. 

AM was not able to discover any "new-to-mankind" mathematics purely on 
its own, but has discovered several interesting notions hitherto unknown to the 
author. A couple bits of new mathematics have been inspired by 
AM—relationships involving highly composite numbers, which were noticed in 
an unusual way by AM, which in turn led to dramatically shorter proofs of them. 
AM also defined some well-known concepts in novel ways—for example, prime 
pairs were defined by restricting addition to primes; that is, for which primes p, 
q, r is it possible that p + q = r? 

Everything that AM does can be viewed as testing its underlying body of 
heuristic rules. Gradually, this knowledge becomes better organized, its implica-
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tions clearer. One benefit of actually constructing AM is that of using it as an 
experimental vehicle upon which to test theories about learning and discovery; 
one can vary the concepts AM starts with, vary the heuristics available, and so 
on, and study the effects on AM's behavior. Several such experiments were per-
formed. One involved adding a couple dozen new concepts from an entirely 
new domain, plane geometry. AM busied itself exploring elementary geometric 
concepts, and was almost as productive there as in its original domain. New 
geometric concepts were defined, and new conjectures formulated. 

Perhaps the greatest difference between AM and typical heuristic search 
procedures is that AM has no well-defined target concepts or target relationships. 
Rather, its "goal criterion"—its sole aim—is to maximize the quality of the ac-
tivities it performs, the priority ratings of the top tasks on the agenda. It does 
not matter precisely which definitions or conjectures AM discovers or misses, so 
long as it spends its time on plausible tasks. For example, no stigma is attached 
to the fact that AM never discovered real numbers; it was rather surprising that 
AM managed to discover natural numbers! Even if it had not done that, it would 
have been fine if AM had simply gone off and developed ideas in set theory. 
The most similar phenomenon one can liken this "freedom from targets" to is 
biological evolution. The latter parts of this chapter argue that this similarity is 
neither coincidental nor merely metaphorical. 

Let's take a moment to discuss the totality of the mathematics which AM 
carried out. All of the discoveries mentioned below were made by AM working 
by itself, with a human being observing its behavior. Most of the obvious set-
theory relations (for example, de Morgan's laws) were eventually uncovered. 
AM never derived a formal notion of infinity, but it naively established conjec-
tures like "a set can never be a member of itself, and procedures for making 
indefinitely large chains of new sets ("insert a set into itself). After this initial 
period of exploration, AM decided that "equality" was worth generalizing, and 
thereby discovered the relation "same-size-as". "Natural numbers" were based 
on this, and soon most simple arithmetic operations were defined. Since ad-
dition arose as an analog to union, and multiplication as a repeated substitution 
followed by a generalized kind of unioning, it came as quite a surprise when AM 
noticed that they were related (namely, n + n = 2xn). AM later rediscovered mul-
tiplication in three other ways: as repeated addition, as the numeric analog of the 
Cartesian product of sets, and by studying the cardinality of power sets. These 
operations were defined in different ways, so it was an unexpected (to AM) dis-
covery when they all turned out to be equivalent. These surprises caused AM to 
give the concept "Times" quite a high "Worth" rating. Exponentiation was 
defined as repeated multiplication. AM never found any obvious properties of ex-
ponentiation, hence lost all interest in it. 

Soon after defining multiplication, AM investigated the process of multiply-
ing a number by itself: squaring. The inverse of this turned out to be interesting, 
and led to the definition of square-root. Perfect squares and perfect fourth-
powers were isolated. Many other numeric operations and kinds of numbers 
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were isolated: odds, evens, doubling, halving, and so on. The associativity and 
commutativity of multiplication indicated that it could accept a "Bag" of numbers 
as its argument. When AM defined the inverse operation corresponding to 
"Times", this property allowed the definition to be, "any bag of numbers whose 
product is rT. This was just the notion of factoring a number n. Minimally-
factorable numbers turned out to be what we call primes. Maximally-factorable 
numbers were also thought to be interesting, and some astonishing properties 
about them were conjectured, and ultimately proved by hand (by Knuth's hand). 

AM conjectured the fundamental theorem of arithmetic (unique factorization 
into primes) and Goldbach's conjecture (every even number greater than 2 is the 
sum of two primes) in a surprisingly symmetric way. The unary representation 
of numbers gave way to a representation as a bag of primes (based on unique 
factorization), but AM never thought of exponential notation. Since the key con-
cepts of remainder, greater-than, greatest common divisor, and exponentiation 
were never mastered, progress in number theory was arrested. 

When a new base of geometric concepts was added, AM began finding 
some additional general associations. In place of the strict definitions for the 
equality of lines, angles, and triangles, came new definitions of concepts we 
refer to as parallel, equal-measure, similar, congruent, translation, rotation, plus 
many which have no common name (for example, the relationship of two tri-
angles sharing a common angle). An unexpected geometric interpretation of 
Goldbach's conjecture was found: Given all angles of a prime number of 
degrees, 0,1,2,3,5,7,11,...,179°, any angle between 0 and 180° can be ap-
proximated (to within 1°) as the sum of two of those angles. 

During the course of its longest run (a couple hours), AM defined several 
hundred concepts, about half of which were reasonable, and noticed hundreds of 
simple relationships involving them, most of which were trivial. Each 
"discovery" involved relying on over 30 heuristics, and almost all heuristics par-
ticipated in dozens of different discoveries; thus, the set of heuristics is not 
merely "unwound" to produce the discoveries. Since the heuristics did lead to 
the discoveries, they must in some sense be an encoding for them, but they are 
not a conscious or (even in hindsight) obvious encoding. Skepticism of a 
program's generality is necessary and healthy. Is AM's knowledge base "just 
right"—that is, finely tuned to elicit this one chain of behaviors? The answer is 
"No!" The whole point of this project is to show that a relatively small set of 
general heuristics can guide a nontrivial discovery process. Each activity, each 
task, was proposed by some heuristic rule, like "look for extreme cases of X," 
which was used time and time again, in many situations. It was not considered 
fair to insert heuristic guidance which could "guide" only in a single situation. 
Moreover, the set of heuristics, and the initial set of concepts, was decided upon 
in advance, and there were very few additions or modifications to that 
knowledge once we began to run the program. 

To convey a bit of AM's flavor, we present an excerpt of the system run-
ning. It has been retouched, but less so than one might suppose (for example, 
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AM actually printed out the font changing commands). It illustrates that AM is 
not a theorem prover, nor is AM randomly manipulating entries in a knowledge 
base, nor is it exhaustively searching any space. AM is carefully growing a net-
work of data structures representing mathematical concepts, by repeatedly using 
heuristics both (i) for guidance in choosing a task to work on next, and (ii) for 
providing methods to satisfy the chosen task. Although AM appears to have 
reasonable natural language abilities, this is a typical AI illusion: most of the 
phrases AM types are mere tokens, and the syntax which the user must obey is 
unnaturally constrained. As a gauge of AM's abilities, the reader may be inter-
ested to know that Task 2 was to fill in examples of "Sets", AM defined "Natural 
Numbers" during Task 32, and "Times" was defined during Task 122. 

AM prints out phrases indicating what it is doing at each moment, and a 
human being, referred to as the user, watches AM's activities. All the user's 
comments are prefaced by "USER". Most of the concepts mentioned below are 
self-explanatory. Potential jargon includes: 

Bag: a multiset; a set which can have repeated elements. 
Divisors-of: includes primes and nonprimes. Divisors-of(18) = {12 3 6 9 18}. 
***Task 65***: F i l l i n g in examples of the fol lowing concept: 

' D i v i s o r s - o f i 
3 Reasons: 
(1) No known examples for D iv i so r s -o f so f a r . 
(2) Times, which i s r e l a t e d to Div i so r s -o f , i s now very i n t e r e s t i n g . 
(3) Focus of a t t e n t i o n : AM r e c e n t l y def ined Div i so r s -o f . 

26 examples found, in 9.2 seconds. 
For i n s t a n c e : D iv i so r s -o f (6 ) ={1 2 3 6}. 

***Task 66***: Considering numbers which have very small s e t s of 
D iv i so r s -o f 

2 Reasons: 
(1) Worthwhile to look for extreme c a s e s . 
(2) Focus of a t t e n t i o n : AM r e c e n t l y worked on Div i so r s -o f . 

F i l l i n g in examples of numbers with 0 d i v i s o r s . 
0 examples found, in 4 .0 seconds. 
Conjecture: no numbers have 0 d i v i s o r s . 

F i l l i n g in examples of numbers with 1 d i v i s o r s . 
1 examples found, in 4 .0 seconds, e . g . : D i v i s o r s - o f ( 1 ) ={1}. 
Conjecture: 1 i s the only number with 1 d i v i s o r . 

F i l l i n g in examples of numbers with 2 d i v i s o r s . 
24 examples found, in 4 .0 seconds, e . g . : D iv i so r s -o f (13 ) ={1 13}. 
No obvious con j ec tu re . This kind of number mer i t s more s tudy . 
Crea t ing a new concept: 'Numbers -wi th -2 -d iv i so r s . ι 

F i l l i n g in examples of numbers with 3 d i v i s o r s . 
11 examples found, in 4 .0 seconds, e . g . : D iv i so r s -o f (49 ) ={1 7 49}. 
49 i s Odd and Per fec t Square. Checking i f e i t h e r always ho lds . 
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All numbers with 3 divisors are also Squares.! ! ! 
This kind of number merits more study. 
Creating a new concept: 'Numbers-with-3-divisors.ι 

***Task 67***: Considering the square-roots of 
Numbers-with-3-divisors. 

2 Reasons: 
(1) Numbers-with-3-divisors are unexpectedly also perfect Squares. 
(2) Focus of attention: AM recently worked on 

Numbers-with-3-divisors. 

All square-roots of Numbers-with-3-divisors seem to be 
Numbers-with-2-divisors. For example, 
Divisors-of (Square-root(169) ) =Divisors-of(13) ={1 13}. 

Formulating the converse to this statement. 
Empirically, it seems to be true. 
The square of each Number-with-2-divisors seems to be a 
Number-with-3-divisors. 
This is very unusual. (Chance of coincidence is < .001) 
Boosting interestingness factor of the concepts involved: 
Interestingness of 'Divisors-ofι raised from 300 to 400. 
Interestingness of 'Numbers-with-2-divisorsi 

raised from 100 to 600. 
Interestingness of 'Numbers-with-3-divisorsi 

raised from 200 to 700. 

USER: Call the set of numbers with 2 divisors "Primes." 

***Task 68***: Considering the squares of Numbers-with-3-divisors. 
2 Reasons: 

(1) Squares of Numbers-with-2-divisors were interesting. 
(2) Focus of attention: AM recently worked on 

Numbers-with-3-divisors. 

The first task illustrated (Task 65) involves exploring the concept of 
"divisors of a number". After tiring of finding examples of this relation, AM in-
vestigates extreme cases. That is, it wonders which numbers have very few or 
very many divisors. Numbers with 0 or 1 divisor are essentially nonexistent, so 
they're not found to be interesting. AM notices that numbers with 3 divisors 
always seem to be squares of numbers with 2 divisors (primes). This raises the 
interestingness of several concepts, including primes. Soon (Task 79), another 
conjecture involving primes is noticed: many numbers seem to factor into 
primes. This causes a new relation to be defined which associates, to a number 
x, all prime factorizations of x. The first question AM asks about this relation is, 
"Is it a function?" This question is the full statement of the unique factorization 
conjecture: the fundamental theorem of arithmetic; namely, that each number has 
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one, and only one, factorization into primes. AM recognized the value of this 
relationship, and assigned it a high interestingness rating. 

In a similar manner, though with lower hopes, it noticed some more 
relationships involving primes, including Goldbach's conjecture. AM soon went 
off examining cute but useless concepts such as "numbers which can be written 
as the sum of a pair of primes, in only one way", "numbers which can be writ-
ten as the sum of a prime number of primes, in precisely a prime number of 
ways", and "prime triples" (three consecutive odd numbers which are all prime). 

As AM forayed into number theory, it had only heuristics from set theory 
to guide it. For instance, when dealing with prime pairs (twin primes), there 
were no specific heuristics relevant to them; they were defined in terms of 
primes, which were defined in terms of divisors-of, which was defined in terms 
of multiplication, which was defined in terms of addition, which was defined in 
terms of set-union, which (finally!) had a few attached heuristics. Because it 
lacked number theory heuristics embodying what we would call common sense 
about arithmetic, AM's fraction of useless definitions went way up (numbers 
which are both odd and even, prime triples, the conjecture that there is only one 
prime triple (3,5,7) but without understanding why, and so on). Only the ad-
dition of specific number theory heuristics would forestall this type of collapse, 
and even then merely temporarily. 

There are two relevant conclusions from the AM research: (i) it is possible 
for a body of heuristics to effectively guide a program in searching for new con-
cepts and conjectures involving them, and (ii) as new domains of knowledge 
emerge, the old corpus of heuristics may not be adequate to serve as a guide in 
those new domains; rather, new specific heuristics are necessary. Notice that 
these are also the first two points in the argument of this paper (see Table 9-1). 

9.3.3 As New Task Domains Emerge, So Too Do New Heuristics 

Let's continue to explore the notion of a heuristic having a domain of 
relevance. Consider the following very special situation: you are asked to guess 
whether a conjecture is true or false. What heuristics are useful in guiding you 
to a decision rapidly? If the conjecture is in the field of plane geometry, one 
very powerful technique is to draw a diagram and see whether it holds in that 
analogic model. But if the conjecture is in the field of point-set topology, or 
real analysis, this is a terrible heuristic which will often lead you into error. For 
instance, if the conjecture mentions a function, then any diagram you draw will 
probably picture a function which is everywhere infinitely differentiable, even if 
such is never stated in the conjecture's premises. As a result, many properties 
will hold in your diagram that can never be proven from the conjecture's 
premises. The appropriate technique in topology or analysis is to pull out your 
book of 101 favorite counterexamples, and see whether any of them violate the 
conjecture. If it passes all of them, then you may guess it is probably true. 

This example dramatizes the idea that the power or utility of a heuristic 
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changes from domain to domain. Thus, as we move from one domain to another, 
the set of heuristics which we should use for guidance changes. Many of them 
have higher or lower utility, some entirely new heuristics may exist, and some of 
the old ones may be actually detrimental if followed in the new domain. For 
instance, the "If falling object, Then catch it" rule is useful for most situations, 
but each year people are burned when they try to catch falling clothes irons and 
soldering irons. 

Heuristics are compiled hindsight; they are nuggets of wisdom which, if 
only we'd had them sooner, would have led us to our present state much faster. 
Even the synthesis of a new discovery via analogy, aesthetic criteria (symmetry), 
or random combination, can be considered to be the result of employing 
guidance heuristics—for example, "Analogies are useful in formulating biological 
and sociological theories," "Symmetry is useful in postulating the existence of 
fundamental particles in physics," "Randomly looking for regularities in elemen-
tary number theory and plane geometry may be profitable." Those guidance 
heuristics were, in turn, based on several past episodes, and hence are them-
selves compiled hindsight. Nilsson and others have argued for the primacy of 
search; we are simply stating a special case: the primacy of compiled experiential 
knowledge. Instead of having the power to examine a search tree wherever we 
please, we must sit and wait for time to present "event nodes" to us one after 
another. We observe them, record them, digest them, abstract them. The 
abstractions of past events provide us with very efficient judgmental knowledge 
for governing our future actions—heuristics. 

As new empirical evidence accumulates, it may be useful to recompile the 
heuristics. Certainly by the time you have opened up a whole new field, you 
must recompile them. Working in point-set topology with geometry heuristics is 
not very efficient, nor was AM's working in number theory using only heuristics 
from set theory. The set of heuristics must evolve as well; some old ones are no 
longer useful, some must be refined to suit the new domain, and some entirely 
new heuristics may be useful. As the task varies, or as time varies and one 
gains new experiences, one's set of guiding heuristics is no longer optimal. The 
utility of a heuristic will vary, then, both across tasks and across time, and this 
variance is not necessarily continuous. 

Exactly what kinds of changes can occur in a domain of knowledge that 
might require you to alter your set of heuristics? In other words, what are the 
sources of granularity in the space of "fields of knowledge"? First, there might 
be the invention of a new piece of apparatus, yielding heuristics which tell you 
how to use such a thing, when it is relevant, how to fix one, what kind to buy, 
and so on. Second, there might be a new technique devised, one which does not 
actually depend upon any new apparatus. Third, a new phenomenon may be 
observed. Fourth, and most unusually, there may be a newly explicated or 
newly isolated concept or field, one which was always around but never spoken 
about explicitly. The notion of paradigms is such a concept, and the whole field 
of heuristics itself is such a field. For example, there exist heuristics for when 
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to apply heuristics, for whom to invite to talk about heuristics, for how to 
evaluate a heuristic's worth, and so on. 

In other words, "heuristics" itself is a field of study. It has some objects 
of study (heuristics), a set of questions about phenomena involving those objects 
(Where do heuristics come from? What is their source of power?), and some 
methods for experimentally answering those questions (build large AI programs 
guided by heuristics, and experiment with those programs). 

As an analogy to "heuristics", consider the field of "grammars". It may be 
discussed theoretically, independent of any particular language, yet to develop 
that theory the researcher no doubt was always grounded in a context of some 
language or other. Similarly, to develop a general theory of heuristics one must 
constantly deal with heuristics for some specific field or task. Eventually the 
theory of grammars advanced to the stage of formalization where it no longer 
needed such grounding, but heuristics is far from there yet. 

In brief, the sources of granularity in the space of "domains of knowledge" 
are precisely those components which, if varied, lead to a new domain of 
knowledge. In other words, they define what we mean by a domain of 
knowledge or a paradigm: a set of phenomena to study, a body of specific 
problems about those phenomena which are considered worth working on, and a 
set of methods (both theoretical and experimental, mental and material) for at-
tacking such questions. 

9.4 A THEORY OF HEURISTICS 

9.4.1 Why Heuristics Work 

Our remarks so far about heuristics actually sound more like 2nd-order cor-
rection terms to some as yet unstated more fundamental theory. What is that 
basic Oth-order theory? What is the central assumption underlying heuristics? It 
appears to be the following: "Appropriateness(action,situation) is continuous." 
That is, Appropriateness, viewed as a function of actions and of situations, is a 
continuous function of both variables. 

Table 9-6: The central assumption underlying heuristics and two special cases. 

0th : Appropriateness(action,situation) is a continuous function. 

Corrolary 1: If action A is appropriate in situation S, 
Then A is appropriate in most situations which are very similar to S. 

Corrolary 2: If action A is appropriate in situation S, 
Then so are most actions which are very similar to A. 
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Corollary 1: For a given action, its appropriateness is a continuous func-
tion of situation. Heuristics specify which actions are appropriate (or 
inappropriate) in a given situation. One corollary of the central assumption is 
that if the situation changes only slightly, then the judgment of which actions are 
appropriate also changes only slightly. Thus, compiled hindsight is useful, be-
cause even though the world changes, what was useful in situation X will be 
useful again sometime in situations similar to X. There are two special cases of 
Corollary 1 worth mentioning. 

The first of these, call it Corollary la, says that if the task appears to be 
similar to one you have seen elsewhere, then many of the features of the task 
environment will probably be very similar as well—for example, the kinds of 
conjectures which might be found, the solvability and difficulty anticipated with 
a task, the kinds of blind alleys which one might be trapped in, and so on, may 
all be the same as they were in that earlier case. For instance, suppose that a 
certain theorem, UFT, was useful in proving a result in number theory. Now 
another task appears, again proving some number theory result. Because the 
tasks are similar, Corollary la suggests that UFT be used to try to prove this 
new result. This is the basic justification for using analogy as a reasoning 
mechanism. A sentiment similar to this was voiced by Poincare' during the last 
century: The whole idea of analogy is that 'Effects', viewed as a function of 
situation, is a continuous function. The second special case of Corollary 1 says 
that the world does not change much over time, and is the foundation for the 
utility of memory. In a world changing radically and rapidly enough, memory 
would be a useless frill; consider the plight of an individual atom in a gas. 

Corollary 2: For a given situation, appropriateness is a continuous func-
tion of actions. This means that if a particular action was very useful (or 
harmful) in some situation, it is likely that any very similar action would have 
had similar consequences. Corollary 2 justifies the use of inexact reasoning, of 
allocating resources toward finding an approximate answer, of satisficing. It is 
the basis for employing "generalization" as a mechanism for coping with the 
world; if the appropriateness function were not (usually) continuous as a function 
of actions, then most generalizations would be false. The world changes slowly, 
continuously, as a function of situation. McCarthy and Hayes' frame problem 
[McCarthy & Hayes, 1969] may be viewed as the temptation to exploit this 

regularity: Even though one cannot logically prove that action A (for example, 
the reader sneezing now) has no effect on the truth or falsity of proposition P 
(for example, that Reagan is still President after the sneeze), it is overwhelm-
ingly likely to be still true, and we wish to have some way of exploiting this 
near-constancy. 

If the central assumption holds, then the ideal interpreter for heuristics is 
the one shown in Figure 9-5. Note that this is very similar to a pure production 
system interpreter. In any given situation, some rules will be expected to be 
relevant, because they were truly relevant in situations very similar to the present 
one. One or more of them are chosen and applied (obeyed, evaluated, executed, 
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fired, and so on). This action will change the situation, and the cycle begins 
anew. Of course one can replace the "locate relevant heuristics" subtask by a 
copy of this whole diagram; that is, it can be performed under the guidance of a 
body of heuristics specially suited to the task of finding heuristics. Similarly, 
the task of selecting which rule(s) to fire, and in what order, and with how much 
of each resource available, can also be implemented as an entire heuristic rule 
system procedure. 

By examining the loop in Figure 9-5 we can quickly "read off the pos-
sible bugs in heuristics, the list of ways in which a heuristic can be "bad": 

• It might not be interprétable at all. 
• It might be interprétable but it might never even be potentially relevant. 
• It might be potentially relevant but its " I f part might never be satisfied. 
• It might trigger, but never be the rule actually selected for execution 

(firing). 
• It might fire, but its "Then" part might not produce any effect on the situa-

tion. 
• It might produce a bad effect on the situation. 
• It might produce a good effect, but take so long that it is not cost-

effective. 
This is reminiscent of John Seely Brown's work on a generative theory of 

bugs [Brown & VanLehn, 1980], and is meant to be. Perhaps by viewing heuris-
tics as performers, this approach can lead to an effective method for diagnosing 
buggy heuristics, hence improving or eliminating them. 

NEW SITUATION 

/ \ 
CHANGES TO THE LOCATE RELEVANT 
SITUATION HEURISTICS 
(hopefully for the better) 
(hopefully quickly) 

\ 
APPLY CHOSEN 

HEURISTIC(S) 

Figure 9-5: The 0th-order interpreter for a body of heuristic rules. 

; 
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There are several things wrong with the 0th order theory. The reader may 
have noticed that the first of the two corollaries in Table 9-6 is almost precisely 
the negation of an empirically-derived statement we made earlier, namely that 
the space of task domains is inherently and profoundly quantized. Corollary 1, 
on the other hand, claims that it is continuous. As we mentioned earlier, the 
empirical observations appear to be 2nd-order correction terms to a theory of 
heuristics, and Table 9-6 is a very simplified 0th-order theory. Intermediate be-
tween them lies a lst-order theory which interfaces to each. 

That lst-order theory says that the 0th-order theory is often a very useful 
fiction. It is cost-effective to behave as if it were true, if you are in a situation 
where your state of knowledge is very incomplete, where there is nevertheless a 
great quantity of knowledge already known, where the task is very complex, and 
so on. At a much earlier stage, there may have been too little known to express 
very many heuristics; much later, the environment may be well enough under-
stood to be algorithmized; in between, heuristic search is a useful paradigm. 
Predicting eclipses has passed into this final stage of algorithmization; medical 
diagnosis is in the middle stage where heuristics are useful; building programs to 
search for new representations of knowledge is still pre-heuristic. 

Table 9-7: The lst-order theory of heuristics: The 0th-order theory is a useful fiction. 

1st : IF you are in a complex, knowledge-rich, incompletely-understood world, 
THEN it is frequently useful to behave as though it were true 
that appropriateness(action,situation) is continuous in both variables. 

By making this lst-order theory explicit, some new 2nd-order corrections 
become apparent. For instance, the adjective "frequently", used in Table 9-7, 
can be replaced by a body of rules which govern when it is and is not useful to 
behave so. 

9.4.2 The Power of Each Individual Heuristic 

We have'discussed the nature of using a corpus of heuristics, but what is 
the nature of a single one? We have already said that it has some domain of 
relevance. What does that mean? We have already spoken of "Appropriateness" 
as a function of situation; perhaps we can extend this metaphor by imagining 
graphs of "Appropriateness" of a heuristic. If we could somehow graph the 
utility or power of the heuristic, as a function of task domain, we might expect 
to see a curve resembling that of Figure 9-6. Namely, there is some range of 
tasks for which the heuristic has positive value. Outside of this, it is often coun-
terproductive to use the heuristic, although the utility may drop to zero rather 
than falling below zero as pictured. For tasks sufficiently far away, the utility 
approaches zero, because the heuristic is never even considered potentially 
relevant, and hence never fires. As one example, consider the heuristic that says 
"If you want to test a conjecture, Then draw a diagram." As we have seen, this 
has high utility within Euclidean plane geometry, but as the axioms of the theory 
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are changed, its worth declines. By the time you reach point-set topology or real 
analysis, its value is negative. Eventually, domains like philosophy are reached, 
where drawing diagrams can rarely be done meaningfully. (As Figures 
9-6 through 9-8 indicate, we hope that "draw a diagram" is a good heuristic for 
the domain of "Heuristics".) As another example, consider the heuristic "If a 
predicate rarely returns True, Then define new generalizations of it." This is use-
ful in set theory, worse than useless in number theory, and useless in domains 
where "predicate" is undefined. 

Figure 9-6: The graph of a heuristic's power as a function of the task it is applied to. 

If we specialize the "Then-" part of a heuristic (see Figure 9-7), it will 
typically have higher utility but only be relevant over a narrower domain. Con-
sider, for example, the case where "generalize a predicate" is specialized into 
"generalize a predicate by eliminating one conjunct from its definition". The 
latter is more powerful, but only applies to predicates defined conjunctively (see 
"dropping condition generalization" in Chapter 4 of this book). Notice the area 
under the curve appears to remain roughly constant; this is a geometric inter-
pretation of the trade-off between generality and power of heuristic rules. It is 
also worth noticing that the new specialized heuristic may have negative utility in 
regions where the old general one was still positive, and it will be meaningless 
over a larger region as well. 

By examining Figure 9-7 it is possible to generate a list of possible bugs 
that may occur when the actions ("Then-" part) of a heuristic are specialized. 
First, the domain of the new one may be so narrow that it is merely a spike, a 
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Figure 9-7: The change in power when a heuristic (*) has its "Then-" part specialized ( + ). 

delta function. This is what happens when a general heuristic is replaced by a 
table of specific values. Another bug is if the domain is not narrowed at all; in 
such a case, one of the heuristics is probably completely dominated by the other. 
A third type of bug appears when the new heuristic has no greater power than 
the old one did. For example, "Smack a vu-graph projector if it makes noise" 
has much narrower domain, but no higher utility, than the more general heuris-
tic, "Smack a device if it's acting up." Thus, the area under the curve is greatly 
diminished. Being able to perform this kind of systematic analysis, just because 
we visualized graphing "Appropriateness" as a mathematical function, justifies 
our use of that metaphor. 

While the last paragraph warned of some extreme bad cases of specializing 
the "Then-" part of a heuristic, there are some extreme good cases which fre-
quently occur. The utility (power) axis may have some absolute desirable point 
along it (for example, some guarantee of correctness or efficiency), and by 
specializing the heuristic it may exceed that threshold, albeit over a narrow range 
of tasks. In such a case, the way we qualitatively value that heuristic may alter, 
and indeed we may term it "algorithmic" or "real-time". One way to rephrase 
this is to say that algorithms are merely heuristics which are so powerful that 
guarantees can be made about their use. Conversely, one can try to apply an 
algorithm outside its region of applicability, in which case the result may be use-
ful and that algorithm is then being used as a heuristic. The latter is frequently 
done in mathematics (for example, pretending one can differentiate power series 
expansions to guess at the value of the series). Finally, note that the specializa-
tion of the heuristic to one which applies only on a set of measure zero is not 
necessarily a bad thing; tables of values do have their uses. 
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Specializing the "If-" part of a heuristic rule results in its having a smaller 
region of non-zero utility. That is, it triggers less frequently. As Figure 
9-8 shows, this is like placing a filter or window along the x-axis, outside of 
which the power curve will be absolutely zero. In the best of cases, this 
removes the negative-utility regions of the curve, and leaves the positive regions 
untouched. For example, we might preface the "Draw a diagram" heuristic with 
a new premise clause, "If you are asked to test a geometry conjecture". This 
will cause us to use the rule only in geometry situations, a domain where it has 
already been demonstrated to possess a high utility. 

LU 

s 
Q. TASK 

- y 
Figure 9-8: The graph of a heuristic's power after its "If-" part has been optimally specialized. 

By examining Figure 9-8 we can generate a list of possible bugs arising 
from specializing the conditions ("If-" part) of a heuristic rule. The new window 
may be narrowed to a spike, thus preventing the rule from almost ever firing ("... 
and if you are working on problem 652 ..."). There may be no narrowing what-
soever; in that case, it would typically add a little to the time required to test the 
"If-" part of the rule, while not raising the power at all ("... and if 37 is prime 
..."). Of course the most serious error is if it clips away some—or all!—of the 
positive region. Thus, we would not want to replace a general diagram-drawing 
recommendation with one which advised us to do so only for real analysis con-
jectures. 

The space of domains is granular, quantized; hence these power curves are 
step-functions (or histograms) rather than smooth curves as we have drawn them. 
One implication of this is that there is a very precise point along the task axis 
where the utility drops from positive to negative (or zero). Often, this is a very 
large, very sudden drop across a single discontinuity in the axis (for example, 
when a new product is marketed, an expert dies, or a theorem is proved). 
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What are implications of this simple ''theory of heuristics"? One effect is 
to determine in what order heuristics should be chosen for execution; this is dis-
cussed in the next paragraph. A second effect is to indicate some very useful 
slots that each heuristic can and should have, attributes of a heuristic that can be 
of crucial importance: the peak power of the rule, its average power, the sizes 
of the positive and negative regions (both projections along the task axis (x-axis) 
and the areas under the curves), the steepness with which the power curve ap-
proaches the x-axis, and so on. To illustrate, let us consider the latter attribute. 
Why is it useful to know how steeply the power curve approaches Utility = 0 (the 
x-axis)? If this is very steep, then it is worth investing a great amount of 
resources determining whether the rule is truly relevant in any situation, for if it 
is slightly irrelevant, then it may have a huge negative effect if used. Con-
versely, if the slope is very gentle, then very little harm will result from slightly 
inappropriate applications of the rule. Hence, not much time need ever be spent 
worrying about whether or not it is truly relevant to the situation at hand. 

The whole process of drawing the power curves for heuristics is still con-
jectural. While a few such graphs have been sketched, there is no algorithm for 
plotting them, no library of thousands of catalogued and plotted heuristics, not 
even any agreement on what the various power and task axes should be. 
Nevertheless, it has already proven to be a useful metaphor, and has suggested 
some important properties of heuristics which should be estimated (such as the 
just-mentioned downside risk of applying a heuristic in a slightly inappropriate 
situation). It is a qualitative, empirical theory [Newell & Simon, 1976], and 
predicts the form that a quantitative theory might assume. 

How should heuristics be chosen for execution? In any given situation, we 
will be at a point along the x-axis, and can draw a vertical line (in case of multi-
dimensional task axes, we can imagine a hyperplane). Any heuristics which 
have positive power (utility) along that line are then useful ones to apply 
(according to our theory of heuristics), and the ones with high power should be 
applied before the ones with low power. Of course, it is unlikely we would 
know the power of a heuristic precisely in each possible situation; although 
diagrams such as Figures 9-6 through 9-8 may be suggestive, the data are almost 
never available to draw them quantitatively for a given heuristic. It is more 
likely that we would have some measure of the average power of each heuristic, 
and would use that as a guess of how useful each one would be in the current 
situation. Since there is a trade-off between generality and power, a gross 
simplification of the preceding strategy is just to apply the most specific heuristic 
first, and so on. This is the scheme AM used, with very few serious problems. 
If all heuristics had precisely the same multiple integral of their power curves, 
this would coincide with the previous scheme. Of course, there are always some 
heuristics which, while being very general, are really the most important ones to 
listen to if they ever trigger, for example, "If a conflagration breaks out, Then 
escape it." 

Notice that the "generality versus power" trade-off has turned into a state-
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ment about the conservation of volumes in nXm-dimensional space, when one 
takes the multiple integral of all the power curves of a heuristic. In particular, 
there are trade-offs among all the dimensions: a gain along some utility dimen-
sion (say, convincingness) can be paid for by a decrease along another (say, 
efficiency) or by a decrease along a task dimension (a reduction of breadth of 
applicability of the heuristic). One historically common bug has been over-
reliance upon, and glorification of, heuristics which are pathologically extreme 
along some dimension (tables, algorithms, weak methods, and so on). 

Heuristics are often spoken of as if they were incomplete, uncertain 
knowledge, much like mathematical conjectures or scientific hypotheses. This is 
not necessarily so. The epistemological status of a heuristic, its justification, can 
be arbitrarily sound. For example, by analyzing the optimal play of Blackjack, a 
rather complex table of appropriate actions (as a function of situation) is built up. 
One can reduce this into a simplified "basic strategy" of just a few rules, and 
know quite precisely just how well those rules should perform. That is, heuris-
tics may be built up from systematic, exhaustive search, from "complete" 
hindsight. Another example of the formal, complete analysis of heuristic 
methods is well known from physics, where Newtonian mechanics is known to 
be only an approximation to the world we inhabit. Relativistic theories quantify 
that deviation precisely. But rather than supplanting Newtonian physics, they 
bolster its use in everyday situations, where its inadequacies can be quantitatively 
shown to be too small to make worthwhile the additional computation required to 
do relativistic calculations. 

Many, nay most, heuristics are merely conjectural, empirical, aesthetic, or 
in other ways epistemologically less secure than the basic strategy in Blackjack 
and Newtonian physics. The standard use of heuristics is to pretend they are 
true and let them guide your behavior; the standard use of a conjecture is to 
guide you while you search for a proof of that conjecture. If a conjecture turns 
out to be false, it may yet stand as a useful heuristic. 

9.4.3 The Space of Heuristics 

The utility of an entire set of heuristics could be graphed as a function of 
the tasks that it is being applied to, and we would expect such a "mega-
heuristic" to produce a curve similar to the one in Figure 9-6. Hopefully, the set 
of heuristics is more useful than any member, thus it is probably much broader 
and taller (or less negative) than any single heuristic inside it. One cannot 
simply "add" the curves of its members; the interactions among heuristics are 
often quite strong, and independence is the exception rather than the rule. Of-
ten, two heuristics will be different methods for getting to the same place, or one 
will be a generalization or isomorph of the other, and so on. As a result the set 
will really not benefit very much from having both of them present. On the 
other hand, sometimes heuristics interact synergistically, and the effects can be 
much greater than simple superposition would have predicted. The opposite of 
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this sometimes happens: two experts have given you heuristics which separately 
work, yet which contradict each other. Using either half-corpus would solve 
your problem, but mixing them causes chaos. (For example, one mathematician 
gives you heuristics for finding empirical examples and generalizing, while a 
second gives you heuristics for formally axiomatizing the situation; either may 
suffice, but trying to heed both causes their advice to cancel each other out, and 
a third, much less desirable course of action is chosen instead.) 

Just as a set of heuristics can be conceptually grouped into a large "mega-
heuristic", an individual heuristic may be atomized into a cloud of much smaller 
heuristics. Much of the expertise we tap from human experts, when building 
expert systems, is their feel for the proper level at which to state and use heuris-
tic knowledge. If the heuristics are too small, they stop being meaningful 
chunks of wisdom to the human expert, and risk having many stray interactions. 
Often, languages which enforce a small grain size for rules have facilities to 
"chain" them together to prevent such crosstalk. If the heuristic rules are too 
large, we begin to lose the benefits of taking a heuristic rule-guided approach: 
additivity, synergy, ease of entry and explanation, and modifiability. Ultimately, 
we are left with one heuristic which is an opaque lump of LISP code performing 
the entire task. 

No treatment of heuristics can be complete without some consideration of 
the space of all the world's heuristics. By examining and generalizing heuristics 
from a dozen disparate fields (including set theory, number theory, biological 
evolution, evolution of naval fleets, LISP programming, game playing, and oil 
spill cleanups), we have built up some data and conjectures involving heuristic-
space. Consider arranging all the world's heuristics in a 
generalization/specialization hierarchy, with the most general ones at the top. At 
that top level lie the so-called weak methods (generate and test, hill-climbing, 
matching, means-ends analysis, and so on). At the bottom are millions of very 
specific heuristics, involving domain-specific terms like "king-side" and 
"Pittsburgh". One may picture a Christmas tree, with a pure angel at the top, 
and the worthwhile gifts at the bottom. 

In between are heuristics such as "Look for fixed points," "Examine ex-
treme cases," "See what happens when a process is repeated" and "Given f(x,y), 
examine what happens when x = y." These are more specific than the weak 
methods at the top of the tree, yet are far from domain-dependent heuristics 
below them. Progressing downward, more and more conditions appear on the 
left-hand sides of the heuristics ("If-" parts), and more specialized advice appears 
on the right-hand sides ("Then-" parts). 

A purely "legal-move" estimate of the size of this tree gives a huge final 
number, based on the lengths and vocabularies of heuristic rules in AM; one may 
suppose that in a typical heuristic there are about 20 blanks to be filled in and 
about 100 possible entries for each blank (predicate, argument, action, and so 
on) related to AM's math world. So there are 1040 syntactically well-formed 
heuristics just in the elementary mathematics corner of the tree. Of course, most 
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of these are (thankfully!) never going to fire, and almost all the rest will perform 
irrelevant actions when they do fire. From now on, let's restrict our attention to 
the tree of only those heuristics which have positive utility at least in some 
domains. 

What does that tree actually look like? One can take a specific heuristic 
and generalize it gradually, in all possible ways, until all the generalizations col-
lapse into weak methods. Such a preliminary analysis led us to expect the tree 
to be of depth about 50, and in the case of an expert system with a corpus of a 
thousand rules, we might expect a picture of them arranged so to form an equi-
lateral triangle. But if one draws the power curves for the heuristics, it quickly 
becomes apparent that most generalizations are no less powerful than the rule(s) 
beneath them! Thus the specific rule can be eliminated from the tree. The 
resulting tree has depth of roughly 3 or 4, and is thus incredibly shallow and 
bushy. Professors Herbert Simon, Woody Bledsoe, and the author analyzed the 
243 heuristics from AM, and were able to transform their deep tree (depth 12) 
into an equivalent one containing less than fifty rules and having depth of only 
four. 

Looking at many heuristics arranged in a generalization/specialization 
hierarchy, we observed that all but the top and bottom levels could usually be 
eliminated. Consider this non-mathernatical heuristic: "Smack a vu-graph projec-
tor in case it acts up." It and several levels of its generalizations can be 
eliminated, since they are no more powerful than the general "Smack a mal-
functioning device" heuristic. Some very specific rule, such as "Smack a 
Omigawd 807 vu-graph projector on its right side if it hums," might embody 
some new, powerful, specific knowledge (such as the location of the motor 
mount and this brand's tendency to misalign), and thus need to stay around. 

This "shallow tree" result should make advocates of weak methods happy, 
because it means that there really is something special about that top level of the 
hierarchy. Going even one \QVQ\ down (to more specific rules) means paying 
attention not to an additional ten or twenty heuristics, but to hundreds. It should 
also please the knowledge engineering advocates, since most of the very specific 
domain-dependent rules also had to remain. It appears, however, to be a severe 
blow to those of us who wish to automatically synthesize new heuristics via 
specialization, since the result says that that process is usually going to produce 
something no more useful than the rule you start with. Henceforth, we shall 
term this the "shallow tree problem". 

There are two ways out of this dilemma, however. Notice that "utility of a 
heuristic" really has several distinct dimensions: efficiency, flexibility, power for 
pedagogical purposes, usefulness in future specializations and generalizations, 
and so on. Also, "task features" has several dimensions: subject matter, 
resources allotted (for example, user's time, CPU time, and space), degree of 
complexity (consider Knuth's numeric rating of his problems' difficulty), time 
(that is, date in history), paradigm, and so on. If there are n utility dimensions 
and m task dimensions, then there are actually nXm different power curves to be 
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drawn for each heuristic. Each of them may resemble the canonical one pictured 
in Figure 9-6. If by specializing a heuristic we create one which has the ap-
pearance of Figure 9-7 in any one of these nXm graphs, then it is a useful 
specialization. 

Consider the "Focus of Attention" heuristic, that is, one which recom-
mends pursuing a course of action simply because it has been worked on 
recently. Using this as one reason to support tasks on its agenda made AM ap-
pear more intelligent to human observers, yet actually take longer to make any 
given discovery. Thus, it is useful in the "convincingness" dimension of utility, 
but may be harmful vis-a-vis "efficiency". 

As another example, consider the heuristics "Smack a vu-graph projector 
that's acting up," "Smack a child who's acting up," and "Smack a vu-graph 
projector or child that's acting up." There may be some utility dimensions in 
which the third of those is best (for example, scope or humor). However, the 
rationale or justification for the first two heuristics is quite different; random per-
turbation toward stable state versus reinforcement learning. Therefore, the third 
heuristic is probably going to be deficient along other utility dimensions (clarity, 
usefulness for analogizing). 

But there is an even more basic way in which the "shallow tree problem" 
goes away. There are really a hundred different useful relationships R that two 
heuristics can have connecting them: "Possibly-triggers", "More-restrictive-IF-
part", "Faster", "My-average-power-higher-than-your-peak-power", "Asks-fewer-
questions-of-the-user", and so on. For each such relation, an entire graph—note 
that even the generalization/specialization relation generated a graph, not a tree 
(see Figure 9-9)—can be drawn of al the world's heuristics (or all those in some« 
given program). In some of these trees or graphs, we will find the broad, shal-
low grouping that was found for the AM heuristics under 
generalization/specialization. For others, such as "Possibly-Triggers", we may 
find each rule pointing to a small collection of other rules, and hence the depth 
would be quite large. There are still many difficult questions to study, even with 
the theory in this primitive state; for example, how does the shape of the tree 
(the graph of heuristics related by some attribute R) relate to the the ways in 
which R ultimately proves itself to be useful or not useful? Already, one power-
ful correlation seems to be recognized: In cases where the depth of the tree (of 
heuristics related by R) is great, that relation R is a good one to generalize and 
specialize along; in cases where the resulting tree is very broad and shallow, 
other methods (notably analogy) may be more productive ways of getting new 
heuristics. For example, since the tree is broad under R = Generalization, anal-
ogy may be useful; since the tree is narrow under R = "Possibly-triggers", 
generalization and specialization may be more useful there. 
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Toward weak methods 

IF f is a subset of ...Ax...xBx...,andR*.A-*B, and AcB, 
THEN define <( ...,a,...,R(a)l...)C Ù 

R<- Equality 

IF f isa subset of....Ax...xA...,andR:A->A, 
THEN define <(...,a,..,R(a),...)et} 

R* Equality 

IFf c.AxH.xBx..,and AcB, 
THEN define {(..,α,...a,..)£f> 

IFf is a subset of.... Ax...xAx 
THEN define {(. . ,a,. . ,a,. . .Uf} 

Ax.xAx.. <-AxCxAxB v...Ax...xAx..*-AxCxA 

IFf.AxCxA-*B 
THEN defineg(x,y)=f(xly,x) 

C is singleton 

IFf :AxA->B 
THEN define g(x)«f(x,x) 

IFf!AxC->A 
THEN define <(a,c)|f(a,c)=a> 

C is singleton 

IFf :A-*A 
THEN define <a|f(a) = a} 

Toward domain-specific heuristics 

Figure 9-9: A tiny fragment of the graph of heuristics, related by generalization/specialization. 
Note the similar derivation of Coalescing and Fixed-point heuristics. 
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9.5 CASE STUDY 2: THE EURISKO PROGRAM; HEURISTICS USED TO 
DEVELOP NEW HEURISTICS 

9.5.1 Meta-Heuristics are Just Heuristics 

Assuming that "heuristics" is another field of knowledge, just like 
electronics or mathematics, it should be possible to discover new ones and to 
modify existing ones by employing a large corpus of heuristics. Is there some-
thing special about the heuristics which inspect, gather data about, modify, and 
synthesize other heuristics? That is, should we distinguish "meta-heuristics" 
from "domain heuristics"? According to our general theory, as presented in the 
last section, domains of knowledge are granular but nearly continuous along 
every significant axis (complexity of task, amount of quantification in the task, 
degree of formalization, and so on). Thus, our first hypothesis should be that it 
is not necessary to differentiate meta-level heuristics from object-level 
heuristics—nay, that it may be artificial and counterproductive to do so. 

Table 9-8 illustrates two heuristics which can deal with both heuristics and 
mathematical functions. The first one says that if some concept f has always led 
to bad results, then f should be marked as less valuable. If a mathematical 
operation, like "Compose", has never led to any good new math concepts, then 
this heuristic would lower the number stored on the "Worth" slot of the 
"Compose" concept. Similarly, if a heuristic, like the one for drawing diagrams, 
has never paid off, then its "Worth" slot would be decremented. 

The second heuristic says that if some concept has been frequently worth-
less, yet occasionally useful, then it is cost-effective to seek new, specialized 
versions of that concept, because some of them might be much more frequently 
utile (albeit, in narrower domains of relevance). Composition of functions is 
such a math concept—it has led AM to some of its biggest successes and most 
explosive failures; this heuristic would add a task to AM's agenda, which said 
"Find new specializations of 'Compose'." When it was eventually worked on, it 
could result in the creation of new functions, such as "Composition of a function 
with itself, "Composition resulting in a function whose domain and range are 
equal", "Composition of two functions which were derived in the same way", 
and so on. Incidentally, AM has produced these. 

The same heuristic (Table 9-8, H20b) also applies to heuristics. In fact it 
applies to itself. It is itself sometimes useful and sometimes not, and so fre-
quently it truly does pay to seek new, specialized variations of that heuristic. 
Four possible specializations are heuristics which demand, for example, that f 
has proven itself useful at least three times, that f be specialized in an extreme 
way, that f has proven itself extraordinarily useful at least once, and that the 
specializations still be capable of producing any of the successful past creations 
off. 
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Table 9-8: Two heuristics that are capable of working on heuristics, as well as on math concepts. 

H20a: IF the results of performing f have always been numerous and worthless, 
THEN lower the expected worth of f 

H20b: IF the results of performing f are only occasionally useful, 
THEN consider creating new specializations of f 

9.5.2 Attributes of a Heuristic 

In AM, heuristics examine existing frame-like concepts, and lead to new 
and different concepts. To have heuristics operate on and produce heuristics, it 
suffices to represent each heuristic as a full-fledged, frame-like concept. Let's 
see an example of this. In order to "work", to be able to do something, heuristic 
H20a needs to reset the value of the "Worth" slot of the concept f it operates on. 
If each math concept has a "Worth" slot, then the rule can work on math con-
cepts. If each heuristic is represented as a unit, and has a "Worth" slot, then 
H20a can also work on heuristics. 

Similarly, a heuristic which referred to such slots as "Average-running-
time", "Date-created", "Is-a-kind-of, "Number-of-instances", and so on, could 
only operate upon units (be they mathematical functions or heuristics) having 
such slots. Table 9-9 illustrates (some of the slots from) a heuristic represented 
in that way. Notice its similarity to the representation of a mathematical opera-
tion (Table 9-4). The heuristic resembles the function (compare Tables 9-9 and 
9-4) much more than the math function resembles the static math concept 
(compare Tables 9-3 and 9-4). 

Earlier, we defined a heuristic to be a contingent piece of guidance 
knowledge: in some situation, here are some actions that may be especially 
fruitful, and here are some that may be extremely inappropriate. While some 
heuristics have pathological formats (for example, algorithms which lack contin-
gency, or delta function spikes which can be succinctly represented as tables), 
most heuristics seem to be naturally stated as rules having the format "If con-
ditions, Then actions". As the body of heuristics grows, the conditions fall into 
a few common categories (testing whether the rule is potentially relevant, testing 
whether there are enough available resources to expect the rule to work success-
fully to completion, and so on). The right hand sides (actions) of rules also 
seem to fall into a few categories: add new tasks to the agenda, print explanatory 
messages, define new concepts. Each of these categories is worth making into a 
separate named attribute (slot) which heuristic rules can possess; Sections 
9.5.3 and 9.6 will show the power which can arise from drawing such distinc-
tions. So instead of a heuristic having an " I f slot and a "Then" slot, it will 
have a bundle of slots which together comprise the conditions of applicability of 
the heuristic, and another bundle of slots which comprise the actions (see Table 
9-9). It is also worth defining compound slots in terms of these: a composite 
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"If part, a composite "Then" part, a combined "If/Then" lump of LISP code, a 
compiled version of the same, and so on. These are what were earlier termed 
virtual slots. 

All the attributes mentioned in the previous paragraph are effective, ex-
ecutable conditions and actions. These are paramount, since they serve to define 
the heuristic—they are the criterial slots. Many non-effective, non-criterial slots 
are important as well, for describing the heuristic. Some of these relate the 
heuristic to other heuristics, such as generalizations, specializations, classes of 
heuristics ("Is-a"), and non-heuristic concepts ("View"). Several slots record its 
origins ("Defined-using", "Creation-date") and the case studies of its uses so far 
("Examples"). * 

Once a rich stock of slots (types of attributes) is present for heuristics, 
several new ones can be derived from them in two ways. First, one can take a 
slot and ask some questions about it: how does it evolve over time in length, 
what relationships exist among entries that fill it, how useful are those values, 
and so on. Each such question spawns a new kind of slot. For instance, after 
considering the "Extreme-Examples" slot, EURISKO created several new kinds of 
slots which looked at the values stored in "Extreme-Examples" and performed 
some computations on them; three of them were "Avg-Number-Of-Extreme-
Examples", "Relns-Among-My-Extreme-Examples", "Avg-Worth-Of-Extreme-
Examples". 

The second way to create new slots from old ones is to take a pair of slots 
(say, "Then-Conjecture" and "If-Truly-Relevant") and a relation (such as, 
"Implies") and define a new unary function F on heuristics—a new kind of slot 
that any heuristic can have. F(hj) contains h2 (that is, h2 is a legal entry on the 
F slot of hj) only if (in the present case) the "Then-Conjecture" slot of hj im-
plies the "If-Truly-Relevant" slot of h2. A good name for this new slot F might 
be "Can-Trigger", because it lists some heuristics which might trigger when hj is 
fired. Of course not all of the n2 "cross-term" type slots are going to be 
useful—especially since every time you conceptualize them all, you have reset 
the number of slots in the system from n to n2 and now you would have to 
consider their cross-terms, and so on. Nevertheless, this provides a generator 
for a large space of potentially worthwhile new slots. Some heuristics can guide 
the system in selecting plausible ones to define, monitoring the utility of each 
selection, and obliterating any which empirically appear to rarely lead to any sig-
nificant future solutions or discoveries. An example of such a process is given 
in Section 9.7. 

9.5.3 Discovering a New Heuristic 

The AM heuristics create new concepts via specializing existing ones, 
generalizing (either from existing ones or from newly gathered data), and 
analogizing. These are the three directions new heuristics will come from. We 
have exemplified specialization already. One point about generalization is worth 
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Table 9-9: Frame-like representation for a heuristic rule from AM. The rule is composed of 
nothing but attribute:value pairs. After each attribute or slot (often heavily hyphenated) 
is a colon, and then a list of the entries or values for that attribute of the Generalize-
rare-predicate heuristic. 

NAME: Generalize-rare-predicate 
ABBREVIATION. GRP 
STATEMENT 

English: If a predicate is rarely true, Then create generalizations of it 
IF-potentially-relevant 
IF-just-finished-a-task-dealing-with: a predicate P 
IF-about-to-work-on-task-dealing-with: an agenda A 
IF-in-the-middie-of-a-task-dealing-with: *never* 
IF-truly-relevant: P returns True less than 5% of Average Predicate 
IF-resources-available: at least 10 CPU seconds, at least 300 cells 
THEN-add-task-to-agenda: Fill in entries for Generalizations slot of P 
THEN-conjecture: P is less interesting than expected 

Generalizations of P may be better than P 
Specializations of P may be very bad 

THEN-modify-slots: Reduce Worth of P by 10% 
Reduce Worth of Specializations(P) by 50% 
Increase Worth of Generalizations(P) by 20% 

THEN-print-to-user: English(GRP) with "a predicate" replaced by P 
THEN-define-new-concepts: 

CODED-IF-PART: λ(Ρ) ... <LISP function conjoining all the IF- parts> 
CODED-THEN-PART:\(P) ... <LISP function appending all the THEN- parts> 
C O D E D - I F - T H E N - P A R T S : A ( P ) ... <LISP function combining the previous 2 slots> 
COMPILED-CODED-IF-THEN-PARTS: #30875 
SPECIALIZATIONS: Generalize-rare-set-predicate 

Boundary-Specializations: Enlarge-domain-of-predicate 
GENERALIZATIONS: Modify-predicate, Generalize-concept 

Immediate-Generalizations: Generalize-rare-contingent-piece-of-knowledge 
Siblings: Generalize-rare-heuristic 

IS-A: Heuristic 
EXAMPLES: 

Good-Examples: Generalize Set-Equality into Same-Length 
Bad-Examples: Generalize Set-Equality into Same-First-Element 

CONJECTURES: Special cases of this are more powerful than Generalizations 
Good-Conjec-Units: Specialize, Generalize 

ANALOGIES: Weaken-overconstrained-problem 
WORTH: 600 
VIEW: En large-structure 
ORIGIN: Specialization of Modify-predicate via empirical induction 

Defined-using: Specialize 
Creation-date: 6/1/78 11:30 

HISTORY: 
N-Good-Examples: 1 N-Bad-Examples: 1 
N-Good-Conjectures: 3 N-Bad-Conjectures: 1 
N-Good-Tasks-Added: 2 N-Bad-Tasks-Added: 0 
Avg-Cpu-Time: 9.4 seconds Avg-List-Cells: 200 
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making: heuristics which serve as plausible move generators originated by 
generalizing from past successes; those heuristics which prune away implausible 
moves originate by generalizing from past failures. Since successes are much 
less common than failures, it is not surprising that most heuristics in most heuris-
tic search programs are of the pruning variety. In fact, many authors define 
heuristic to mean nothing more than a pruning aid. 

One of the typical "common sense number theory" heuristics which AM 
lacked was the one which decides that the unique factorization theorem is prob-
ably more significant than Goldbach's conjecture, because the first has to do 
with multiplication and division, while the latter deals with addition and subtrac-
tion, and "Primes" is inherently tied up with the former operations. How could 
such a heuristic be discovered automatically? This is the starting point for the 
example we will now begin, an example which concludes in the following sec-
tion, "Heuristics Used to Develop New Representations". Why should this be 
so? What exactly does discovering heuristics have to do with representing 
knowledge? 

The connection between heuristics and representation is profound. Con-
sider even the special case where we restrict our representations to frame-like 
ones. The larger the number of different kinds of slots that are known about, the 
fewer keystrokes are required to type a given frame (concept, unit) into the sys-
tem. Thus, if "N-Good-Conjecs" were not known, it might take forty keystrokes 
rather than one to assert that there were three good conjectures known involving 
prime numbers. Moreover, no special-purpose machinery to process such an 
assertion would be known to the system. The larger your vocabulary, the shorter 
your messages can be. 

This is akin to the power INTERLISP derives from the thickness of its 
manual, from the huge number of useful predefined functions. A broad 
vocabulary streamlines communication. Not only does a profusion of slot types 
facilitate entering (typing in) a concept, it makes it easier to modify it once it is 
entered. This is because (i) fewer keystrokes are needed in toto, and (ii) the 
possible kinds of things you might need to type in are explicitly presented to you 
(in a menu). Finally, the profusion of slots makes it easier to discover new 
heuristics, because (i) it is a process of combining terms in a more powerful, 
higher level language, and (ii) specialized knowledge may exist, rules which 
refer to particular slots of heuristics, telling when and how the combination 
process should be done. 

So we see that the task of discovering heuristics can be profoundly ac-
celerated, or retarded, by the choice of slots we make for our representation. In 
the case of an excellent choice of slots, a new heuristic is often simply a new 
entry on one slot of some concept. Let's see how that can be. Recall that 
primes were originally discovered by the system as extrema of the function 
"Divisors-of". This was recorded by placing the entry "Divisors-of ' in the slot 
called "Defined-using" on the concept called "Primes" (see Table 9-3). Later, 
conjectures involving "Primes" were found, empirically-observed patterns con-
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necting "Primes" with several other concepts, such as "Times", "Divisors-of, 
"Exponentiation", and "Numbers-with-3-divisors". This is recorded on the 
"Good-Conjec-Units" slot of the "Primes" concept. Notice that all the entries on 
the "Defined-Using" slot of "Primes" are also entries on its "Good-Conjec-Units" 
slot. This recurred several times, that is for several concepts besides "Primes", 
and ultimately the heuristic H9 (below) became relevant (its "If-" part became 
satisfied): 

H9: IF (for many units u) all of the entries on the r slot are also present on the s slot, 
THEN-ASSERT that (with justification H9) r is always going to be a subslot of s. 

This heuristic said that it would probably be productive to pretend that "Defined-
Using" was always a subslot of "Good-Conjec-Units". One slot is a subslot of 
another if any legal entry for the former is presumed to be a legal entry for the 
latter as well. Thus, "Extreme-Examples" is a subslot of "Examples", since any 
extreme example of a concept u is certainly an example of u as well. So H9 
applies in the current situation, with r = "Defined-Using" and s = "Good-Conjec-
Units". H9 created a new heuristic, whose effect was the following: "As soon as 
EURISKO defines any new concept X in terms of Y, it should expect there to be 
some interesting conjectures between X and Y." In our usual "If/Then" format 
we might express this rule by saying: 

H100: "IF a concept is created with a value in its "Defined-Using" slot, 
THEN place that value in its "Good-Conjec-Units" slot, with justification H9." 

There is already a very general rule in the system, which says to verify suspected 
members of any slot (members whose justification is questionable). When HI00 
appears in the system, and is used to add suspected entries to the "Good-Conjec-
Units" slots of units, this general rule will cause tasks to appear on the agenda, 
tasks which try to confirm or deny whether they deserve to be there. 

The main point here is that HI00 was not synthesized as a long, compli-
cated expression such as shown above. Rather, all EURISKO did was to go to the 
concept called "Defined-Using" (the data structure which holds all the infor-
mation the program knows about that kind of slot in general), and record that 
one of its superslots is "Good-Conjec-Units". In other words, it added one atom 
to one list. We should also give this an explicit justification, namely H9, since 
it is a heuristic, not a fact. That required a second trivial action at the LISP 
level. Table 9-10 shows what this record looks like in our current program. 
The new heuristic is simply the words which are emboldened there; all the non-
bold text was present in the program already (though most of it was written by 
the program itself at earlier times, not filled in by human hands). 

Thanks to the large number of useful specialized slots, large "If/Then" 
rules can be compactly, conveniently and efficiently represented as simple links. 
Some of these useful slots are very general, but many are domain dependent. 
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Thus, as new domains of knowledge emerge and evolve, new kinds of slots must 
be devised if this powerful property is to be preserved. The next natural ques-
tion is, therefore, "How can useful new slots be found?" The last two sentences 
are the final two points of our original five-point program (Table 9-1), and the 
next section answers them by way of continuing the example we have begun in 
this section. 

Table 9-10: Part of the concept containing centralizing knowledge about all "Defined-Using" 
slots. 

NAME: Archetypical-"Defined-Using"-slot 
SPECIALIZATIONS: 

SubSlots: Really-Defined-Using, Could-Have-Defined-Using 
GENERALIZATIONS: 

SuperSlots: Origin, Good-Conjec-Units (Justif: H9) 
IS-A: Kind of slot 
WORTH: 300 
ORIGIN: Specialization of Origin 

Defined-using: Specialize 
Creation-date: 9/18/79 15:43 

AVERAGE-SIZE: 1 
FORMAT: Set 
FILLED-WITH: Concepts 
CACHE? Always-Cache 
MAKES-SENSE-FOR: Concepts 

9.6 HEURISTICS USED TO DEVELOP NEW REPRESENTATIONS 

The example here shows how new kinds of slots can be discovered and 
used to advantage. This is just an extension of a given representation, rather 
than true exploration in "the space of all representations of knowledge". I 
believe the latter will someday be possible, using nothing more than a body of 
heuristics for guidance, but we do not yet have enough experience to formulate 
the necessary rules. 

Each kind of representation makes some set of operations efficient, often at 
the expense of other operations. Thus, an exploded-view diagram of a bicycle 
makes it easy to see which parts touch each other, sequential verbal instructions 
make it easy to assemble the bicycle, an axiomatic formulation makes it easy to 
prove properties about it, and so on. 

As a field matures, its goals vary, its paradigm shifts, the questions to in-
vestigate change, the heuristics and algorithms to bring to bear on those ques-
tions evolve. Therefore, the utility of a given representation is bound to vary 
both from domain to domain and within a domain from time to time, much as 
did that of a given corpus of heuristics. The representation of today must adapt 
or give way to a new one—or the field itself is likely to stagnate and be sup-
planted. 
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Where do these new representations come from? The most painless route 
is to merely select a new one from the stock of existing representational 
schemes. Choosing an appropriate representation means picking one which lets 
you quickly carry out the operations you're now going to carry out most fre-
quently. 

In case there is no adequate existing representation, you may try to extend 
one, or devise a whole new one (good luck!), or (most frequently) simply 
employ a set of known ones, whose union makes all the common operations 
fast. Thus, when I buy a bicycle, I expect both diagrams and printed instruc-
tions to be provided. The carrying along of multiple representations simul-
taneously, and the concomitant need to shift from one to another, has not been 
much studied, or attempted, in AI to date, except in very tiny worlds (for ex-
ample, the missionaries and cannibals puzzle). 

There are several levels at which "new representations" can be found. At 
the lowest level, one may say that AM changed its representation every time it 
defined a new domain concept or predicate, thereby changing its vocabulary out 
of which new ones could be built. 

Much more significant would be the definition of new kinds of slots, typi-
cally ones specific to, and very useful for, some newly discovered field of 
knowledge. For instance, when AM found the unique factorization conjecture, it 
would have been good if it had defined a new kind of slot, Prime-Factors, that 
every number could have had. A rule capable of this second-level representation 
augmentation is the following one: 

IF most units in the system have very large s slots (many entries therein), 
THEN propose a new task: replace s by new specializations of s. 

The vague terms in the rule would have specific computational interpreta-
tions, of course; for instance, "very large" might mean "more than ten", "more 
than three times the average size of all slots", "larger than any other slot", or 
(most useful from a computational efficiency viewpoint) "larger than the average 
number of slots a unit has". It might cause the "Examples" slot to be broken 
into several subslots, such as "Extreme-Examples", "Typical-Examples", 
"Boundary-Examples", and so on. It might cause "Factors" to be split up into 
"Prime-Factors", "Large-Factors", and so on. Note that the subslots will not, in 
general, be disjoint. 

The third and final level at which "new representations" can be interpreted 
is as an actual shift from one entire scheme to another, perhaps novel, one. The 
following two rules indicate when a certain type of shift is appropriate: 

IF the problem is a geometric one, 
THEN draw a diagram. 

IF most units have most of their possible slots filled in, 
THEN shift from property lists to record structures. 

All the heuristics of this type are specializations of the general one which says: 
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IF some operation is performed frequently, 
THEN shift to a representation in which it is very inexpensive to perform. 

Let us continue our example. Here is a heuristic which is capable of reacting to 
a situation by defining an entirely new slot, built up from old ones, which it 
expects will be useful: 

H10: IF a slot s is very important, and all its values are units, 
THEN-CREATE-NEW-KIND-OF-SLOT containing "all relations among the 

values of my s slot" 

When the number stored in the "Worth" slot of the "Good-Conjec-Units" 
concept is large enough, the system attends to the task of explicitly studying 
"Good-Conjec-Units". Several heuristics are relevant and fire; among them is 
H10, the rule shown above. It then synthesizes a whole new unit, calling it 
"Relations-Among-Entries-On-My-'Good-Conjec-Units'Slot". Every known way 
in which entries on the "Good-Conjec-Units" slot of a concept C relate to each 
other will be recorded on this new slot of C. 

For instance, take a look at the "Primes" concept (Table 9-3). Its "Good-
Conjec-Units" slot contains the following entries: "Times", "Divisors-of, 
"Exponentiation", "Squaring" and "Numbers-with-three-divisors". The first two 
of these entries are inverses of each other; that is, if you look over the Times 
unit, you will see a slot called Inverse which is filled with names of concepts, 
including Divisors-of. Similarly, still looking over the Times unit, one can see a 
slot called Repeat which is filled with the entry Exponentiation, and one can see 
a slot called Compose filled with Squaring. So Inverse and Repeat and Compose 
are some of the relations connecting entries on the Good-Conjec-Units slot of 
Primes, hence the program will record Inverse and Repeat and Compose as three 
entries on the "Relations-Among-Entries-On-My-'Good-Conjec-Units'Slot" slot 
of the Primes concept. Note that by a "unit" we mean a concept represented as 
a full-fledged frame inside the program. 

Now it so happens that several concepts wind up with "Compose" and 
"Inverse" as entries on their "Relations-Among-Entries-On-My-'Good-Conjec-
Units'Slot" slot. The alert reader may suspect that this is no accident, and an 
alert program should suspect that, too. Indeed, the following heuristic says that 
it might be useful to behave as if "Compose" and "Inverse" were always going 
to eventually appear there: 

HI 1: IF (for many units u) the s slot of u contains the same values v{, 
THEN-ADD-VALUE Vj to the "Expected-Entries" slot of the "Typical-s-slot" unit. 

This causes the program to add "Compose" and "Inverse" to the slot called 
"Expected-Entries" of the concept called "Relations-Among-Entries-On-
My-'Good-Conjee-Units'Slot". This one small act, the creation of a pair of 
links, is in effect creating a new heuristic which says: 
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IF a concept gets entries X and Y on its "Good-Conjec-Units" slot, 
THEN predict that it will get "Inverse(X),,,"Inverse(Y)", and k'Compose(X,Y)" there as well. 

How is this actually used? Consider what occurs when the program 
defines a new concept C, which is defined using "Divisors-of. As soon as that 
concept is formed, the heuristic link from "Defined-Using" to "Good-Conjec-
Units" automatically fills in "Divisors-of as an entry on the "Good-Conjec-
Units" slot of C. Next, the links just illustrated above come into action, and 
place "Inverse" and "Compose" on the "Relations-Among-Entries-On-My-kGood-
Conjec-Units'Slot" slot of C. That in turn causes the inverse of "Divisors-of, 
namely "Times", to be placed on the "Good-Conjec-Units" slot as well as the 
already-present entry, "Divisors-of. Finally, that causes the program to go off 
looking for conjectures between C and either multiplication or division. When a 
conjecture comes in connecting C to one of them, it will get a higher initial es-
timated worth than one which does not connect to them. 

If only we'd had the new heuristics back when Primes was first defined, 
they would have therefore embodied enough "common sense" to prefer the 
Unique Factorization Theorem to Goldbach's conjecture. If we'd had them ear-
lier, these heuristics would have led us to our present state much sooner. Be-
cause of our assumptions about the continuity of the world, such heuristics 
should still be useful from time to time in the future. 

There's nothing special about mathematics; the newly synthesized heuris-
tics have to do with very general slots, like "Defined-Using" and "Good-Conjec-
Units". As soon as a new concept (say, "Middle-Class") is defined using 
"Income", the program immediately fills in this underlined information: 

NAME: Middle-Class 
Defined-using: Income 
Relations-Among-Entries-On-My-"Good-Conjec-Units,,Slot: Inverse, Compose 
Good-Conjec-Units: Income Spending, Earned-Interest 

Thus, it goes off looking for (and will expect more from) conjectures between 
"Middle-Class" and any of "Income", "Spending" and "Earned-Interest". Thus, 
the new slot is useful, though it has a terrible name, and the new little heuristics 
(which looked like little links or facts but were actually permission to make 
"daring guesses") were powerful after all. 

We have relied heavily on our representation being very structured; in a 
very uniform one (say, a calculus of linear propositions, with the only operations 
being assert and match) it would be difficult to obtain enough empirical data to 
easily modify that representation. This is akin to the nature of discovering 
domain facts and heuristics: if the domain is too simple, it is harder to find new 
knowledge and, in particular, new heuristics. Heuristics for propositional cal-
culus are much fewer and weaker than those available for guiding work in predi-
cate calculus; they in turn pale before the rich variety available for guiding 
theorem proving "the way mathematicians really do it". This is an argument for 
attacking seemingly difficult problems which turn out to be lush with structure, 
rather than working in worlds so constrained that their simplicity has sterilized 
them of heuristic structure. 



286 CHAPTER 9: LEARNING BY DISCOVERY 

9.7 CASE STUDY 3: BIOLOGICAL EVOLUTION; HEURISTICS USED TO 
GENERATE PLAUSIBLE MUTATIONS 

9.7.1 The Overall Hypothesis 

This section presents a speculative theory, based upon the metaphor of 
DNA viewed as a "program" for constructing and maintaining an organism. The 
field of Automatic Programming studies computer programs, such as AM and 
EURISKO, which synthesize new and different programs, or which modify and 
improve themselves. When DNA molecules do this, we call it evolution. 
Biological research has to date identified several mechanisms which change DNA 
(substitution, insertion, deletion, translocation, inversion, recombination, 
segregation, transposition, and so on). Current theories assume the basic process 
of evolution to be random mutation (using these mechanisms) followed by 
natural selection, a paradigm of a weak generator and a rigorous test. Early 
automatic programming systems were also built to work via this same "random 
generate and test" process. But that mechanism failed, and we now recognize 
the reasons for that failure and the prescription for success. To whit, the early 
automatic programming programs lacked expert knowledge, knowledge about 
programming in general and knowledge about the particular task domain their 
target programs were to work in. Recent automatic programming programs em-
bodying such knowledge have begun to achieve reasonable performance. 

These results lead us to hypothesize, by analogy, that the generation of 
mutations may be highly non-random, that the dominant process of evolution in 
higher organisms is by now "plausible generate and test". Long before our three 
billion line genetic "program" evolved randomly, nature may have happened 
upon a more powerful method of "automatic programming", such as heuristic 
search: the accretion and use of knowledge to guide the mutation process. 

The early (1958-70) researchers in automatic programming were confident 
that they could succeed by having programs randomly mutate into desired new 
ones. This hypothesis was simple, elegant, aesthetic, and incorrect. The 
amount of time necessary to synthesize or modify a program was seen to in-
crease exponentially with its length. Switching to a higher-level language (the 
analogue of recombination and gene duplication) merely chipped away somewhat 
at the exponent, without muffling the combinatorial nature of the process. All 
the attempts to get programs to "evolve" failed miserably, casualties of the com-
binatorial explosion. 

During the last decade, significant progress has been made in automatic 
programming, by providing such systems with great quantities of knowledge 
about programming in general and knowledge about the specific field in which 
the synthesized programs are supposed to operate. By employing this knowledge 
to constrain and guide them in their search, programs have finally begun to syn-
thesize large new programs and modify themselves successfully. (See, for ex-
ample, [Green et al., 1974; Barstow, 1979; Lenat, 1975; Davis & Lenat, 1981].) 



LENAT 287 

A study of the earlier "random mutation" automatic programming work reveals 
that only after some such knowledge was added were the systems capable of suc-
cessfully producing new programs or changes of more than a very few lines in 
length. 

The key to the solution (using knowledge to guide the code synthesizer) 
appears quite simple in hindsight. How is such knowledge to be acquired? In 
the case of most automatic programming systems, it is provided by human ex-
perts. In the case of some programs, including AM, EURISKO, and others 
described elsewhere in this volume, it is discovered automatically. The neces-
sary machinery for learning from experience is not very complex: accumulate a 
corpus of empirical data and make simple inductive generalizations from it. The 
first requires some kind of memory, the second requires some kind of pattern-
matching ability. Processes similar to memory and matching are well known to 
exist already at the molecular level (reliable information storage in nucleic acids, 
reliable matching of tRNA to mRNA at ribosomes) and at higher levels as well 
(memory in the brain, pattern matching by the immune system). Certainly the 
complexity of the two processes required for empirical induction (memory and 
pattern matching) are orders of magnitude more elementary than, say, the 
functioning of our immune system or central nervous system. 

From this we are led to hypothesize that the generation of mutations may 
be highly non-random. Instead of "random generate and test", the dominant 
mechanism of evolution in higher organisms today may be "plausible generate 
and test". 

Suppose one were given five years to build a large computer program to 
forecast weather, and one knew little about programming or meteorology. Then 
it is clearly cost effective to take a couple years to develop some expertise in 
both fields. Similarly, while it is possible that nature evolved a three billion line 
program using only recombination, gene duplication, and so on, it might be 
much more efficient to record and use knowledge: general knowledge about 
evolving and specific knowledge about the particular species itself and its genetic 
ancestry. In the past billion years, nature may have happened upon this more 
powerful method of "automatic programming": building up a body of knowledge 
to guide the mutation process. 

How might this work? Some of the organism's DNA records past states of 
the genome (the DNA molecule) from earlier generations, and patterns in that 
record may be noticed and exploited. For example, consider cephalo-pelvic 
proportion (the relation between an infant's biparietal diameter and its mother's 
pelvic diameter). If skull size of some species were to increase significantly, the 
females would have great difficulty giving birth, and the members of the popula-
tion having such an increase would be selected against. The only exception is 
when the species' mean pelvic diameter simultaneously and fortuitously in-
creases. Thus, if we could somehow look back over the genetic history of a 
successful species such as homo sapiens, it would appear that increases in skull 
size are almost always accompanied (or immediately preceded) by increases in 
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pelvic diameter. Once such a pattern is noticed, it can be used to guide future 
mutation, to encourage specific related groupings of mutations. When an in-
crease in skull size is going to happen (a mutation occurs in the appropriate 
genes of the DNA in a germ line cell), a simultaneous increase in pelvic 
diameter should be made. A species would be better off if it could recognize 
and use such patterns—such heuristics. In this case, the heuristic said "If 
biparietal diameter is increasing, Then increase the chance of pelvic diameter 
increasing." 

Consider a species capable of storing its genetic history, noticing empirical 
regularities in it, and using them to guide constellations of interrelated mutations 
in the future. Its rate of evolution might dwarf that of species which had to rely 
on fortuitous co-occurrences of random genetic events. Notice there is no in-
herent "direction" that such plausibility constraints are defining; rather, it is 
simply a mechanism for avoiding what seems, empirically and historically, to be 
deleterious, and for seeking what seems empirically to be advantageous. Cer-
tainly there is nothing surprising in this; many creatures compile their ex-
periences, in hindsight, into heuristic rules which guide their future behavior. 
Herein we are suggesting that it may also be true of the DNA molecule itself. 

Species whose evolution was guided by heuristics (compiled from the 
species' genetic history) would be better adapted at evolving. Their rate of 
evolution would be higher, but, more significantly, the fraction of offspring 
having a favorable co-occurrence of mutations would be elevated. Their DNA 
would be longer and largely unexpressed, containing much information which is 
historical and useful for inferring regularities in evolution but not needed for the 
maintenance of an adult organism. By also using this historical record for 
developmental functions, its integrity would be assured over many generations; 
ontogeny of such creatures would resemble a recapitulation of their phylogeny. 
The obvious hypothesis that this is leading to is that while evolution began as 
random generation, by now the evolution of most higher animals and plants may 
be under the guidance of a large corpus of heuristics, judgmental rules abstract-
ing a billion years of experience into prescriptions and (much more rarely) 
proscriptions regulating and coordinating clusters of simultaneous mutations. 
Random mutation would still be present, but in higher organisms its effect might 
be mere background noise. 

9.7.2 Lessons from Automatic Programming 

We begin by sketching the "DNA as program" analogy. Information in the 
DNA molecule1 is essentially in secondary storage analogous to magnetic tapes 

'Each nucleotide contains two bits of information, since there are four possible bases it could 
contain. Three nucleotides in a row form an instruction or codon. A codon contains six bits of 
information, so there are at most 64 possible instructions. The task of the program is to assemble a 
sequence of amino-acids (a protein), and each codon specifies what the next amino-acid should be, or 
else says STOP. 
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or disks; it must be swapped into core, that is, copied from secondary storage 
into main memory (by mRNA), and brought to a processor (ribosome) to be run. 
The ribosome translating an mRNA into an amino-acid sequence resembles a 
Turing machine reading along its input tape and writing out a new one. Feed-
back closes this loop (for example, via production of repressor proteins) and 
raises the power of the mechanism to that of a universal Turing machine. The 
sophistication of the system is best displayed during the development of the 
fetus, when many delicate changes in gene expression must be coordinated. 
Only about a tenth of the four million genes in human DNA code for known 
proteins; the function of the other gene "subroutines" may include regulating 
pathways: developmental, metabolic, and perhaps (we hypothesize) evolutionary 
ones. 

Early AI researchers quite naively but reasonably assumed that if you 
wanted to tell a program what to do, without telling it precisely how, then you 
would have to employ some kind of random program generator, and follow it up 
with a test to see if the program was the desired one. As R. M. Friedberg 
[1958] (then at IBM) said: 

"Environment dictates what problems must be dealt with, but not 
how to deal with them... It is difficult to see a way of telling it what with-
out telling it how, except by allowing it to try out procedures at random or 
according to some unintelligent system and informing it constantly whether 
or not it is doing what we wish." 

That is, computer scientists' intuitions then were precisely in agreement with 
biologists' today: the adequacy of random generate and test. Over the last 
twenty years, several painful research experiences have changed those computer 
science intuitions; we now sketch a few of them. 

The first effort along these lines was Friedberg's [1959]. His program 
searches through the space of all machine language programs containing 64 in-
structions. It replaces each instruction in turn, looking for a local maximum of 
performance, and then repeats this procedure over and over again, a hundred 
times a second on an IBM704. When the target program was a couple instruc-
tions long (for example, adding two 1-bit numbers), it took hundreds of 
thousands of generations to evolve such a program. When the target program 
was longer, say five or six lines long, it rarely had appeared even after millions 
of generations. 

But the immense number of generations required was not the biggest 
surprise. To his shock, Friedberg found no stable islands in the search. Gradual 
hill-climbing was no better than generating an entire program from scratch each 
time. He built a system which tried completely new computer programs every 
"generation", which simply put together a new, random sequence of machine 
language instructions, ignoring the design of its "parents" completely no matter 
how close their behavior was to that of the desired target program. This random 
program generator out-performed his gradual hill-climbing program-evolver every 
time. 
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The frequent local maxima upon which a hill-climber gets trapped proved 
devastating. The only way that Friedberg was ever able to get any successes out 
of the program-evolver was by building in some heuristic rules to guide its 
search for new programs: 

• Do local optimization of each instruction in turn. 
• Partition a problem and deal with its parts in order of difficulty. 
• Prime the system by telling it which data bits are the input, and which are 

the output. 
• If a program succeeds, reward all its component instructions; that is, in-

crease the chance of selecting a program with many of the same instruc-
tions in the same locations. 

One trouble with machine language programs is that they are doubly un-
stable; a small change in their flowchart may engender an enormous number of 
changes in which locations in memory contain which instructions; conversely, a 
small change in the contents of some core locations may dramatically change the 
function computed by the program. Maybe the right level to work at, then, is 
that of flowcharts. 

Fogel, Walsh and Owens decided in 1966 [Fogel et al., 1966] to attempt 
something very much like this: their program roamed about in the space of finite 
state automata, using operations close to those that we would have for mutating 
flow charts—redirecting arrows, adding nodes, relabeling arcs, and so on. Each 
generation, his program would select a mechanism of mutation and alter the 
then-best finite state automaton. 

As before, hill-climbing via random mutation seemed too slow, stagnating 
at local maxima. Incremental approaches to competence didn't seem to be work-
ing, yet if Fogel allowed large simultaneous variations, he would have had even 
worse behavior. He says: 

"The efficiency of pure trial-and-error exploration is sharply reduced 
with an increase in the dimensionality of the domain being explored. As 
long as the investigator is interested only in a single aspect of his environ-
ment, random exploration may prove worthwhile, but as soon as he at-
tempts to map a domain of more practical interest he encounters so many 
possibilities that only carefully-guided trial-and-error exploration is likely 
to prove profitable... In man's initial exploration of the unknown, the scien-
tific method would have been a luxury; however, with the increased scope 
and depth of his inquiry, use of the scientific method becomes an absolute 
necessity." 

What, then, is the solution being proposed? Flowchart modifying should be 
guided by knowledge: knowledge about how to design and carry out telling ex-
periments rather than random modifications, and knowledge about whatever task 
domain the synthesized program is supposed to perform in. 

Consider the case of writing a program to test a number for primality. 
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One general piece of programming knowledge is that a program should begin 
with some initializations, enter a computational loop, and ultimately return some 
value. Any flowchart not having that structure can be immediately eliminated 
from consideration. A general piece of knowledge looks at the definition of 
prime numbers, sees that it specifies "... whose only divisors are 1 and n", and 
recognizes this as a constraint on the flowchart: the central loop should ter-
minate early with a "not-prime" answer sometimes, and if the loop runs to 
completion then the answer should be "is-prime". A specific domain-dependent 
piece of knowledge is that there are many primes and many non-primes, so any 
flowchart which always returns 'Yes' (or always returns 4No\ as one of Fogel's 
automata did) is bound to be wrong. Without such knowledge, it is hard to get 
off the local maximum· that says "Always return 'No' to the question of n being 
prime". By employing a collection of such pieces of knowledge, the space of 
allowable flowcharts shrinks dramatically in size. The chances of finding a suc-
cessful flowchart are raised dramatically. 

Arthur Samuel, working at about the same time as Fogel, wrote his famous 
checker-playing program [Samuel, 1967]. It was designed to get better and bet-
ter over time, by gradually improving its scoring polynomial (a function that 
evaluated the overall worth of a checkerboard position from, say, Red's point of 
view). Samuel found it important to add several heuristics to guide the mutation 
of his scoring polynomial, including: recall your earlier predictions, and rate 
them in hindsight; artificially lower the coefficients of new terms to forestall wild 
initial fluctuations; count a recent fluctuation more heavily than an old one; and 
it is worth risking introducing a/<?w of the 38x38 cross-terms at any one time. 

My own research in automatic programming recapitulated much the same 
error. I began in 1972 with a program called PW1 [Green et ai, 1974], which 
had a few templates or schemata for recursive LISP functions, and which had a 
set of 10-20 functions it could plug in for each function mentioned in the 
schema. One of the templates was: 

F(x) =df [ λ (χ) IFfl(x) = bl 
THEN f2(x) 
ELSE f5( f3(First-e!ement-of(x)), f4(All-but-lst-element-of(x)) ) ] 

The program picked a random instantiation and mutated it until its input/output 
behavior agreed with the example input/output pairs which comprised the 
specification of the desired program. For instance, suppose the desired target 
program was one which found the smallest element of a list of numbers x. The 
user would type in a few input/output pairs as examples, such as: 

Input (1 3 5 0 8), Output 0 
Input ( 9 8 7 6 ) , Output 6 
Input (1 3 5 7), Output 1 

PW1 randomly chose functions to substitute for fl, f2, and so on, until it found 
an F whose input/output behavior agreed with all the examples. 

The simple function schema above can be instantiated in many ways, to 
yield definitions of "Largest-element-of", "Smallest-element-of, "Length", 
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"Has-odd-length", "Reverse", "Contains-repeated-elements", "Sort", and 
(unfortunately) millions of others. The first attempts had to be halted after hours 
of computer time had been extended fruitlessly seeking a valid definition of 
"Smallest-element". 

My first intuition was to fix this by having the definition gradually evolve. 
To this end, several mutated versions were created simultaneously by the system, 
and the one which had input/output results most closely matching the user-
provided examples was chosen as the survivor in the next generation. To my 
surprise at the time, this was not noticeably better than the original, completely 
random generation scheme. 

PW1 did eventually synthesize several short target programs, but only after 
I adopted the method of supplying it with some frequency hints (for example, 
"first-element" is the most likely function to try for fl in the schema), some ap-
plicability constraints, and a few simple ways in which to look directly at the 
input/output pairs in constraining which functions to try (for example, if the out-
puts are always members of the input lists, then f5 must be a function whose 
output is always one of its inputs). 

Recently, impressive synthesized programs have been produced from the 
PSI system [Barstow, 1979] of Cordell Green et al. Their automatic program-
ming system is guided by hundreds of rules about programming in general and 
about the task domain of the target program (the one being synthesized) in par-
ticular. PSI draws much of its power from a high-level abstract model of what 
environment it is in (including what the user wants), what it has done in the 
past, and so on. 

All our experiences in AI research have led us to believe that for automatic 
programming, the answer lies in knowledge, in adding a collection of expert 
rules which will guide code synthesis and transformation. Each rule is a kind of 
compiled search, a bit of condensed hindsight. While far from complete or 
foolproof, they are far superior to blind changes in program instructions 
(Friedberg) or flowcharts (Fogel) or even mutation of duplicated program chunks 
(Lenat). 

9.7.3 Idea #1 : Add Heuristics to DNA 

Finally, we are ready to turn to the biological analogue of this idea. Just 
as automatic programming taught us to guide program synthesis and transforma-
tion by heuristic rules, so it might be cost-effective for evolution of higher or-
ganisms to be guided by heuristic rules. 

Consider extending the "DNA as program" analogy by somehow adding 
knowledge to the DNA, knowledge about which kinds of mutations are 
plausible, which kinds have been tried unsuccessfully, what combinations have 
and have not performed well in the past, and so on. If there is a way to encode 
such knowledge, such heuristic guidance rules, then we might expect that an or-
ganism with that kind of compiled hindsight would evolve in a much more 
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regular, rapid fashion. The "test" would still be natural selection, but instead of 
blind generation, the DNA would be conducting (and recording) plausible experi-
ments. 

What would such heuristics look like? That is, how might they be 
"implemented" in the DNA program? Almost surely they would be written in 
the alphabet of bases, but their interpretation might not be as codons for proteins 
(in which case their expression would have to be suppressed). At times of 
reproduction, however, they would specify allowable (and prevent other) changes 
to be made in the new copy of the DNA molecule. That is, heuristics would 
sanction certain complex copying "errors" (for example, statically by inserting 
noncoding sequences, or dynamically by interfering with the repair polymerases) 
and prevent others (for example, via site-specific repair enzymes). 

The "If-" parts of such heuristics could be almost completely specified by 
position (proximity to genes to which the heuristic wishes to refer), and the start 
of such a heuristic would have to be signalled by some special sequence of bases 
(much like parentheses in LISP). Each heuristic could have some demarcated 
domain or scope. Thus, "use a repressor/anti-repressor mechanism rather than an 
induction mechanism" might hold true for a patch of DNA which synthesized the 
organism's most important enzymes, and it would be easy to specify the scope 
by placement along the genome. So-called mutation "hot-spots" are a unary ex-
ample of this kind of heuristic; heuristics taking more than one "argument" 
would of course be much more powerful, just as the site-specific mutators are 
more powerful than a global increase in the overall mutation rate could ever be. 

The "Then-" part of a heuristic could direct gene rearrangement, duplica-
tion, placement of mutators and intervening sequences, and so on. 

Perhaps more likely would be for each heuristic to code for a very rarely 
expressed protein. The heuristic could code for (or regulate) an enzyme which 
reentered the nucleus, "matched" against some number of patterns in the DNA, 
bound itself to those regions (the "If-" part), and thereby increased the chance of 
a certain type of mutation occurring at those regions (the "Then-" part). Such an 
enzyme might be produced in such small quantities, and with such small fre-
quency, that it would be unlikely to be noticed in most cases. Its effects would 
be felt only if it affected germ line cells, and it might only be expressed in them, 
and rarely at that. A final possibility is that it would be expressed only during 
embryogenesis, that each neonate's germ cells' DNA has already been altered, 
thus determining (to within sexual recombination and random mutation) the 
spectrum of changes which it might potentially pass along to its offspring. 

9.7.4 Idea #2: They May Already Be There 

Nature might already have become as good at programming in the last bil-
lion years as we have in the last forty. DNA might have already evolved from 
random generate and test into an expert program (expert at mutating itself in 
plausible coordinated ways, expert at designing improved progeny). Since the 
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heuristics deal with DNA subsequences, and they themselves are also DNA sub-
sequences, they (or at least some of them) might be able to modify, enlarge, 
improve themselves and each other. That is, by now the heuristics themselves 
may be developing under the guidance of heuristic rules, which encapsulate a 
billion years of experience at devising and changing and using heuristics. This is 
how EURISKO uses a set of heuristics to improve and extend itself. 

What I conjecture is that nature (that is, natural selection) began with 
primitive organisms and a random-mutation scheme for improving them. By this 
weak method (random generation, followed by stringent testing), the first primi-
tive heuristics accidentally came into being. They immediately overshadowed 
the less efficient random-mutation mechanism, much as oxidation dominated fer-
mentation once it evolved. 

Each heuristic proposes a plausible change (call it D) in the DNA. The 
progeny which incorporate D (call them PD) also get a new heuristic indicating 
that that kind of change has been made and is good. This might be as simple as 
adding one new noncoding sequence inside that mutated gene. It might be as 
complex as producing a whole new mutated gene and keeping the old one around 
as a pseudogene. The progeny P which do not incorporate D get no such heuris-
tic. If PD is viable, then the new heuristic it contains will have proven to be 
correct. Incorrect heuristics die out with the organisms that contain them. 

Consider a very simple example. Here is a mechanism which embodies 
the heuristic "If a gene has mutated successfully several times in the recent past, 
then increase its chance of mutating in the next generation, and conversely." All 
we need to posit is that somehow a short, noncoding sequence—we'll call it an 
asterisk—is added to a gene each time it mutates. To see how this would 
operate, consider human DNA: any genes which have several such asterisks tes-
tify that they have been mutated successfully, advantageously, many times in the 
past; genes with few or no asterisks suggest that modifying them has always led 
to detrimental changes in the offspring. All we need now do is propose some 
mechanism (for example, stereochemical) whereby genes with many asterisks are 
more likely to be mutated, duplicated, and so on, than genes with few or none. 
Since the asterisks provide no specific benefits to the individual, they will 
gradually be lost over time, so that when a gene no longer should be mutated, its 
asterisk count will slowly decline over several generations. Whether or not it 
was ever actually adopted, the power of this simple mechanism is clear. 

As the species evolves, so do the heuristics. One big lesson from the AM 
program was the need for new heuristics to evolve continuously. Otherwise, as 
animals got more and more sophisticated, they would begin to evolve more and 
more slowly. Random mutations, or those guided by a fixed set of heuristics, 
would become less and less frequently beneficial to the complex organism, less 
frequently able even to form part of a new stable subassembly, as Simon sug-
gests [Simon, 1969]. 

Using a higher level language like gene duplication, rearrangement, and 
recombination, instead of sequence mutation, would give only a constant factor 
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of improvement (that is, as if we did automatic programming by random changes 
in LISP programs instead of in assembly language programs), and this constant 
must fight against the rapidly decreasing number of organisms born each year as 
one ascends the evolutionary ladder. Thus we expect a phylogenetic increase in 
the number of heuristics, the sophistication of those heuristics, and the relative 
proportion of DNA devoted to heuristics. 

Heuristics condense past history into judgmental rules. They are kernels of 
knowledge which, if only they had been present earlier, would have gotten us to 
our present state much faster. A heuristic prescribes some action which is ap-
propriate in a given kind of situation, or proscribes one which is dangerously 
inappropriate. They are useful because the world is continuous: if several fea-
tures of the current situation are similar to some earlier one, then the set of ac-
tions which are, and are not, appropriate will probably also be similar. Thus it 
is cost-effective to compile experiences into heuristics, and to then use the 
heuristics for guidance. Even if the environment is rapidly changing, some use-
ful heuristics may be extractable, so long as there are some regularities to those 
environmental changes. Physics equations are no less useful just because the 
world is constantly changing; if anything, they are more useful than they would 
be in a static world where abstraction would be a luxury. So it is with 
bioheuristics for evolution: by embodying a deep enough model of the past, the 
heuristics can cope with a diversity of future problems. 

Until the EURISKO program was conceived, this would have been the end 
of the story. We would guess that new heuristics evolve randomly, and in the 
rare cases that they are improvements, they get perpetuated by the progeny 
which have them. Thanks to EURISKO, we see that since the heuristics are 
represented just like any other DNA, they can work on themselves as well: they 
can suggest plausible (and/or warn of classes of implausible) changes to make in 
both (i) the DNA which synthesizes proteins, and (ii) the DNA which serves as 
heuristics. 

There is a rapidly growing body of evidence of the ways in which DNA 
sequences are found to guide the evolution of DNA sequences. For instance, 
recombination among introns modulates the evolution of a gene. Let's look at 
an example of this: it is extremely important to keep the a, b, and d globin 
genes separate, but their internal structure is very similar. To inhibit recombina-
tion, the spacers between them can be made very different, and the introns 
within them can diverge dramatically (since mutations in introns are not as 
deleterious to the functioning of the gene as mutations to the coding regions). In 
fact, there is evidence that both of these kinds of divergence do occur for the 
globins. 

Heuristics might be present at several levels. At the molecular level, rules 
such as the following ones might be useful, and presently implemented: 

1. If similar genes must be kept distinct, 
THEN use very distinct spacers between them to inhibit recombination. 



296 CHAPTER 9: LEARNING BY DISCOVERY 

2. If similar genes must be kept distinct, 
THEN insert many introns in them and let the introns mutate greatly. 

3. If the amount of a gene is to be variable, 
THEN tandemly repeat it, thereby enabling unequal sister chromatic exchange. 

4. If a gene is to be tandemly repeated, for the very first time, 
THEN duplicate a larger region via looping out, and then insert the loop 

(a la Schimke). 

5. If the overall rate of mutation is to be raised (or lowered) significantly, 
THEN slightly increase the rate of (anti)mutator mutations, e.g. as m in T4. 

6. If two genes are related functionally in development, i.e., expressed cotemporally, 
THEN locate them near each other on the genome. 

7. If two genes should be located near each other but for some reason can not 
be moved, 

THEN produce a repressor or activator gene to effect them both. 

8. If a gene should be made (non)constitutive, 
THEN move a transposable element in and then out, leaving a promoter 

(repressor) behind. 

Some comments are in order: Heuristic 4 is a rephrasing of one of 
Schimke's ideas [Schimke, 1980]. Heuristic 6 would override the natural ten-
dency for genes which arose evolutionarily at the same time to be near each 
other on the genome. Heuristic 8 refers to the residue of 200-500 b.p. LTR 
which were at the end of a transposable element, but were left behind when it 
moved. Each residue functions as a promoter or a repressor (depending upon the 
polarity of the transposable element when it was adjacent to the gene). The se-
quence of such residues provides another kind of "history" data upon which 
simple patterns may be induced. 

Higher level heuristics may also be present. In fact, a quite sophisticated 
model of the world might be built up by now, purely by the DNA making 
guesses, designing progeny consonant with those guesses, and letting natural 
selection rule out those based on false assumptions. Let's take an example. 
There may be a body of heuristics related to an abstract entity S, which you and 
I know as snow, perhaps more precisely as glaciation, and a concept H, which 
we might take to mean heat, or perhaps body heat. 

9. If there is more S in the world, then improve mechanisms to conserve H. 

10. If H is to be dissipated, then evaporation is a good way to do it. 

11. If a quantity must be conserved, then cut down on mechanisms which squander it. 

12. If it is desired to cut down on a mechanism, then reduce features which facilitate it. 
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13. If it is desired to facilitate evaporation, then increase body parts having large 

surface areas. 

14. If you want to conserve H, then increase sleep and dormancy. 

15. If you increase sleep and dormancy, then you also increase passive vulnerability. 

16. If you want to decrease passive vulnerability, then increase body armor. 

17. If you want to decrease passive vulnerability, then increase perception skills. 

18. If you want to conserve H, then increase subcutaneous fatty layer. 

19. If there is more S in the world, then whitening of body parts is good. 

20. If there is more S in the world, then glucose level is threatened. 

21. If locomotive muscles are increased, then glucose level may rise. 

22. If teeth and claws are sharpened and increased, then glucose level may rise. 

23. If neck is lengthened, then glucose level may rise. 

24. If neck is lengthened, then passive vulnerability may decrease. 

25. If predators are declining, then increase passive vulnerability. 

... and so on. 

Even though most of the terms used in the heuristics are incomprehensible 
to the DNA itself, it might nevertheless use these rules, carry out inference upon 
them, and come up with a better-designed animal. The EURlSKO-simulated 
animal became (in a single generation) smaller, whiter, lighter-boned, had bigger 
and sharper teeth, larger jaw muscles, larger leg muscles, increased brain size, 
slept more, sought safer burrows, had thicker and stiffer fur, an added layer of 
subcutaneous fat, smaller ears, and one of a set of possible mechanisms to meta-
bolize lactic acid more effectively. The changes along any one parameter might 
be tiny, but (i) they would all complement each other, some even compensating 
for imbalances introduced by others, and (ii) the total of all these changes might 
be a significant change in the ability of the organism to withstand colder environ-
ments. 

If the rules were sophisticated enough, the modifications might not be 
"hard-wired" in, but rather canalized to let the actual environment tune the de-
gree to which they took effect. 

The offspring differs in perhaps thousands of small ways—a constellation 
of related changes that mesh with each other, that accomplish some goals. 
These are not the teleological goals of creationists—goals which were somehow 
placed in DNA long ago; rather, they are short-term goals proposed by the DNA 
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itself, on the basis of its knowledge about evolution, the structure of the environ-
ment, and possibly some feedback on the changes occurring in that environment. 

We are not supposing that there is any direct sensing of temperature, 
snow, humidity, predators, and so on, by the DNA. Rather, the heuristics guide 
the production of, say, two types of progeny: the first are slightly more cold 
adapted, and the second more heat adapted. The first has an assertion that the 
climate is getting snowier, the second that the climate is getting more tropical. 
Initially, they are produced in equal numbers. If one group dominates, then its 
assertion about the climate is probably the correct one. After a few generations, 
if the deme is indeed entering a glacial age, the offspring will become skewed 
(in almost every single litter) toward more and more cold-adaptedness. Each of 
these offspring will in turn add an extra "very" to the genetic hypothesis that it is 
growing very, very, ..., very cold out. 

A sophisticated model of the physical environment may have been accreted 
over many generations, many individuals, and many variables. By now a large 
knowledge base may exist about ecology, geology, glaciation, seasons, gravity, 
prédation, symbiosis, causality, conservation, behavior, evolution and knowledge 
itself. In a small number of generations, man has managed to invalidate many 
of these bits of knowledge, this model of the world. If the heuristics can trace 
this breakdown to the increasing size of our brains, they might take quick correc-
tive action, preserving homeostasis and the validity of their knowledge base by 
drastically decreasing human brain size over just a few generations. While this 
is of course a fanciful tongue-in-cheek extreme case, it (and the longer example 
above) demonstrates the power, the coordination, that a body of heuristics could 
evince if it were guiding the process of evolution. 

The nouns in the above rules (for example, "fatty layer") would point to 
gene complexes responsible for morphological structure (such as, enzymes that 
determine the thickness of the fatty layer) without comprehending why they had 
such an effect. Of course the DNA molecule would not "understand" what a 
predator was, or what fat was, or what snow was, but it would have a large 
corpus of facts about each of those mysterious (to it) concepts, related changes to 
make, frequency of their occurring, and so on. But then again, what more do 
we as AI researchers mean when we say that one of our programs "understands" 
a concept? 

9.7.5 Idea #3: Heuristics Drive—And Are Preserved By—Embryogenesis 

Joshua Lederberg raised the following difficulty with our ideas as presented 
so far: even if heuristics would be induced, why aren't they lost rather quickly? 
After all, in a few generations, some small error is bound to creep in, and would 
probably garble the heuristic. Yet the individual would not be any less fit, only 
the rate of evolution of the progeny would suffer, hence he would pass this 
defect along. By now, for example, we might expect that most of the traces of 
how homo sapiens evolved would have been obliterated from our DNA, even if 
they had been originally stored there. 
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The solution to this dilemma may be to overlay (i) the DNA corresponding 
to the heuristics with (ii) some parts of the genome that are required for the sur-
vival of the individual organism. For example, the parts of a gene currently 
separated by introns may each be meaningful "fossils" of older, smaller genes 
(see point 4 in the next section). 

An alternate way of overlaying heuristics with something indispensable 
would be for the heuristics to form (part of) the developmental program of the 
individual; if an important heuristic is lost, then the embryo may not develop 
viably. This accounts for the old saw 'Ontogeny recapitulates Phylogeny". 

Thirteen years ago Herbert Simon said that DNA was a recipe for produc-
ing an organism, not a blueprint; that human embryogenesis was the following of 
a program, not a diagram of a finished product. We are adding that this 
program is a production system and that it is built out of heuristic rules, such as, 
"If an organism's body shape is X, then a tail should be added for stability." 
Another rule firing later triggers the elimination of the tail, when it is no longer 
needed. This is a symbiotic relationship: the heuristics enable embryogenesis to 
take place without some horrendously complicated central control, and in return 
they become indispensable. 

In general, the rules will be ordered by the time they evolved, earliest ones 
first. Sometimes, as we who work with production systems know, a later rule 
will fire a bit early, and may change the world in such a way that some of the 
intermediate rules will never be relevant; that is, several intermediate steps may 
get skipped from time to time. The discrepancies between ontogeny and 
phylogeny include this type, and other, more subtle ones [Gould, 1977]. 

The linkage between development genes and evolution heuristics need not 
be so crude. It may be the sequence of gene expressions, the control pathways, 
that are the ancient records, rather than the genes themselves. These pathways 
may remain more stable than the gene sequences themselves, which more rapidly 
evolve to suit their new environment. If this were true, the genes controlling the 
expression of other genes would also in effect control the evolution of those 
other genes. 

9.7.6 Biological Phenomena Accounted For 

The central hypothesis of Section 9.7 of this chapter has been that heuris-
tics may somehow already be guiding evolution of higher organisms. Specific 
mechanisms for effecting this process have intentionally been omitted; a few 
vague possibilities have been hinted at. Nevertheless, several biological 
phenomena can be accounted for using this hypothesis; they are briefly listed 
here. Certainly one can hypothesize some alternate explanations of every one of 
them; definitive experiments must be designed and carried out to test the theory. 

1. The rapid evolution of very complex organisms, organs, behavior patterns, 
and so on. Controversy over the adequacy of the current stock of mutation 
mechanisms is still raging [Duncan & Weston-Smith, 1977]. 
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2. The rate of evolution is not slower for complex organisms than for simpler 
ones. Not only is the absolute amount of time it took to evolve, say, the 
human eye surprisingly brief, but the rate at which complex creatures 
evolve seems to be, if anything, higher than the rate at which simple ones 
do. Random generation processes are usually characterized by local max-
ima, by slowing down of the rate of improvement as the complexity of the 
product increases. By contrast, heuristic search procedures speed up as 
more and more heuristics are added. 

3. The nonuniformities in the rate of evolution. Consistency, constancy, 
regularity are attributes of stochastic processes. Uniformity is demanded 
by unguided randomness, not by intelligent heuristic search. For example, 
some proteins evolve at rates ten times as slow as others, yet the rate of 
evolution is almost constant for proteins within certain classes. As Wilson 
et al. say: "It has been hard to understand why the rate is steady within a 
given class. As explanations involving natural selection did not seem satis-
factory, some workers proposed a non-Darwinian explanation... of the 
evolutionary clock..." [Wilson et al., 1977] Heuristic learning programs like 
AM and EURISKO generally do not exhibit smooth, gradual progress, but 
rather more the nonuniform kinds of behaviors cited above. 

4. The biological function of much of the unexpressed DNA in higher or-
ganisms. Some of this may be used to store the records of the species' 
genetic evolution; some may be used to store condensations or abstractions 
of that history, for example, in the form of very rarely expressed sequences 
which produce enzymes that selectively mutate the genome. 

5. The fraction of non-coding DNA increases phylogenetically. We expect 
that the percentage of DNA which codes for heuristics rather than for 
proteins would increase with the complexity and sophistication of the or-
ganism. Man should have more heuristics than chickens, which should 
have more than E. coli. This is not because we're "better", but just be-
cause our DNA program is longer and more involved. If our ability to 
adapt is to be anywhere near as good as bacteria's, we must compensate 
for our unwieldy program size and long generation time by employing 
powerful judgmental rules, heuristics which put each generation to max-
imum use. 

6. The C-value problem (some very close species differ by a factor of 20 in 
their amounts of DNA). This phenomenon has already been evinced by 
EURISKO. What happens is that one of the new heuristics is bad, and it 
generates large quantities of new genetic material (in EURlSKO's case, bad 
new concepts and heuristics) before it is recognized as bad (by other 
heuristics) and turned off. In EURISKO, one such heuristic was, "It is 
worth composing every pair of operations now known, to form new opera-
tions, some of which might be very powerful." This initiated an exponen-
tial explosion in the number of operations defined in each successive 
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generation. In nature, this would mean that the length of the genome 
might increase very rapidly over a small number of generations, with no 
apparent benefit to the individuals or the species. When the bad heuristic 
is deactivated, the increase halts, but it may not be easy to track down all 
the useless by-products produced by that heuristic. Slowly, over much, 
much longer time scales, the extraneous material may be excised in the 
usual garbage-collection manner, through accidental deletions which turn 
out to be viable. 

7. The large morphological advances of some species (like man) compared 
with others (like chimps, frogs, and cockroaches), even though at the DNA 
sequence level they both advanced an equal number of base mutations. As 
Wilson, Carlson and White [1977] note, the speed at which an organism 
morphologically evolves seems totally unrelated to the rate at which his in-
dividual proteins evolve: "In spite of having evolved at an unusually high 
organismal rate, the human lineage does not appear to have undergone ac-
celerated sequence evolution... This result raises doubts about the relevance 
of sequence evolution to the evolution of organisms." Our theory accounts 
for this by simply noting that heuristic search is powerful, and its efficacy 
is directly related to the number and quality of the heuristics available. 
Programs with more heuristics can (often) get more done in N CPU cycles 
(witness the recent successes of expert systems; see [Feigenbaum, 1977]). 
The rate of evolution should depend more upon the number and quality of 
heuristics than upon the raw number of changes in the DNA molecule 
which occur. That is, a huge program can be improved more by adding a 
few good heuristics than by allotting a few more CPU cycles. 

8. The molecular basis for ontogeny recapitulating phylogeny. Insect larvae 
resemble adult forms of lower articulate animals more than they resemble 
their own parents; embryonic jellyfish look more like polyps than like adult 
jellyfish; as they develop, human embryos resemble microorganisms, fish, 
reptiles, and finally earlier mammals [Gould, 1977]. Our explanation is 
that during embryogenesis, the fetus develops not via an algorithm (an ex-
plicit, fixed procedure), but via an extremely efficient set of heuristics for 
guidance, heuristics which implicitly encode the blueprint for the final 
neonate. One of them might say, "If you see the organism in state x, then 
gills are a good improvement." Another might fire much later, after several 
other developments have been made: "If the organism is in state y, then 
gills are no longer needed." We are therefore postulating that the DNA 
contains not a blueprint for the finished product, but rather a description 
(compiled into heuristics) of the changes that were made over the eons in 
the DNA, changes which led to the evolution of our species. Hence evolu-
tion and development are related processes (being guided by heuristic 
rules) operating over very different time scales. As the organism develops, 
the heuristics get relatively weaker and weaker, the rate of morphological 
change declines to a point where it is called something else (development 
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into adulthood), then to a point where it is not even noticed (adulthood), 
and finally perhaps is interpreted as senescence. Note we predict that an 
individual's DNA will change slowly but continuously over its lifetime, 
and that the mean rate of such changes should increase phylogenetically. 

9. So-called parallel evolution. Before speciation, a body of more or less 
general heuristics has evolved. After the species divide, they may differ 
physiologically yet share the same heuristics. Thus their future mor-
phological evolution may seem surprisingly parallel. Parallel evolution is 
no doubt due to several species being forced to cope with the same gross 
environmental change; having some common heuristics increases the 
likelihood of their finding the same solution. 

10. The ABC result (mutation rate per gram of DNA is not constant, but 
rather is proportional to the lengths of the DNA molecules making up the 
sample) [Abrahamson et al., 1973]. Our explanation here is simply that 
mutations are mediated by the heuristics, whose relative number increases 
(roughly) in proportion to DNA length. One random change in a part of 
the DNA which is a heuristic can be expected to have a more dramatic 
influence than a random mutation somewhere in a coding region. 
The foremost problem, of course, is cracking the "heuristic code". What 

is the mechanism of the heuristics' functioning? Faith in unity and simplicity 
can both guide our investigations and buoy our spirits with the hope that the 
answer is not a convoluted one. Perhaps one can look at the changes when a 
heuristic is transferred to various organisms, and induce what it says. How close 
are the analogues between programming and genetics? If the heuristics truly are 
"If/Then" type rules, what is the interpreter? 

Even if it turns out that nature has not yet hit upon the mechanism of 
heuristic search, there is still idea # 1 : design heuristics for plausible and im-
plausible mutations, for record-keeping, for dealing with other heuristics: syn-
thesizing, modifying and evaluating them. They will have to be non-coding se-
quences; there will have to be an interpretation mechanism for obeying them at 
reproduction time. Using extant techniques (for example, plasmids), one could 
synthesize such sequences and insert them into DNA and study the results, 
thereby improving the entire process of evolution. 

9.8 CONCLUSIONS 

We began by noting that the limiting step in the construction of expert sys-
tems was building the knowledge base, and that one solution would be for the 
program itself to automatically acquire new knowledge, to learn via discovery. 

The heuristic search paradigm seems adequate to guide a program in for-
mulating useful new concepts, gathering data about them, and noticing relation-
ships connecting them. However, as the body of domain-specific facts grows, 
the old set of heuristics becomes less and less relevant, less and less capable of 
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guiding the discovery process effectively. New heuristics must also be dis-
covered. 

Since heuristics is a domain of knowledge much like any other, one can 
imagine an expert system that works in that field. That is, a corpus of heuristics 
can grow and improve and gather data about itself. This process is very slow 
and explosive, yet it can be greatly facilitated by having "the right 
representation". In the case of a schematized representation, this means having 
the right set of slots or attributes, the right set of attached procedures, and so on. 
We saw how heuristics can lead to the development of useful new kinds of slots, 
to improved representations of knowledge. It was hypothesized that the same 
representation we use for attributes and values of object-level concepts could also 
be used to represent heuristics and even to represent representation. To draw 
some examples from the RLL system [Lenat & Greiner, 1980]: "Primes" (a set of 
numbers), "Generalize-Rare-Predicate" (a heuristic), "Generalize-Rare-Heuristic" 
(a meta-heuristic), and "Is-a" (a representation concept) are all represented ade-
quately as units with slots having values. A single interpreter runs both meta-
heuristics and heuristics, and is itself represented as a collection of units. While 
meta-heuristics could be tagged to distinguish them from heuristics, the utility of 
doing so rests on the existence of rules which genuinely treat them differently 
somehow, and to date such rules have not been encountered. 

One of the necessary steps in this research was the explication of at least a 
rudimentary theory of heuristics, an analysis of their innate source of power, 
their nature. This turned out to rest upon the continuity of our world; if the 
situation is very similar, so is the set of (in)appropriate actions to take. Corol-
laries of this provide the justification for the use of analogy and even for the 
utility of memory. The central assumption was seen to be just that—an assump-
tion which is often false in small ways, but which is nevertheless a useful fiction 
to be guided by. 

By graphing (in our mind's eye) the power curves of a heuristic (the utility 
of that heuristic as a function of task being worked on), we were able to see the 
gains, and dangers, of specializing and generalizing them to get new heuristics. 
Such curves determine a preferred order for obeying relevant heuristics, and sug-
gest several specific new attributes worth measuring and recording for each 
heuristic (for example, the sharpness with which it flips from useful to harmful, 
as one leaves its domain of relevance). 

By arranging all the world's heuristics (well, at least all of AM'S, and later 
several more from chess, biological evolution, naval fleet design, device physics, 
plumbing, game-playing and oil spills) into a hierarchy using the relation "More-
General-Than", we were surprised to find that hierarchy very shallow, thereby 
implying that analogy would be more useful a method of generating new heuris-
tics than would specialization or generalization. By noting that both "Utility" 
and "Task" have several dimensions, most of this problem went away. By 
noting that two heuristics can have many important relations connecting them, of 
which "More-General-Than" is just one example, the shallowness "problem" 
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turns into a powerful heuristic: if a new heuristic h is to differ from an old one 
along some dimension (relation) r, then use analogy to get h if r's graph is shal-
low, and use generalization/specialization if r's graph is deep. We also discussed 
some useful slots which heuristics can have, and a method for generating new 
kinds of slots. 

We then examined an application of this methodology to biology; namely, 
the speculation that DNA has evolved into an expert program, that is, one with 
heuristics for suggesting which (families of) mutations are plausible and im-
plausible. This process began as neo-Darwinistic "random generate and test", 
but that process is not a fixed point: evolution itself has evolved by now into a 
better process, one guided by past experiences, a "plausible generate and test". 
Since the individual is viable today, his lineage is largely a series of successes; 
occasionally, often indirectly, knowledge of failures can be present as well. 
Plausible move suggesters, the bulwark of AM's successful behaviors, are thus 
more frequent than implausible move pruners. Such bioheuristics depend 
upon—nay, they embody—knowledge of the evolutionary history of the genome. 
As a species evolves viably, its body of heuristics is gradually altered (by adding 
new ones and modifying old ones) to capture the additional history, to compile 
the new hindsight. Most of the "library of heuristics" are kept as unexpressed 
DNA, though it may be that expression does occur briefly, during development. 
This both ensures the preservation of the heuristics intact, and causes develop-
ment to resemble a reenactment of the evolution of the species. 

But the analogy extends not merely from AM, but from EURISKO as well. 
Since bioheuristics are necessarily encoded into the DNA sequence, they can 
refer to (and operate on) themselves, in addition to referring to the other parts of 
the DNA (the structural, protein-encoding DNA). While the first heuristics 
originated fortuitously, the learning of new heuristics is itself by now probably 
under strict heuristic control. Thus the heuristics gradually grow in such a way 
as to better and better reflect the structure of the outer environment: the pres-
sures, the common modes of flux, the interrelations between components. The 
species becomes better and better adapted to evolving in a complex, changing 
environment. The "plausibility" with which mutations are skewed increases, and 
this precisely counterbalances the natural deleterious effects of the combinatorial 
explosion, the exponential growth in the amount of time it takes to improve a 
program of a given length. In short, the growing "intelligence" of the mutation 
process is just strong enough to match the need for such sophistication. These 
are radical biological hypotheses, and Section 9.7 has justified them primarily by 
analogy to the need for heuristics to guide automatic program synthesis. Of 
course analogy is not proof nor foolproof. The purpose of that section has been 
to suggest a potentially significant hypothesis for future investigation by 
biologists. 

Before the overall research program outlined in Table 9-1 can be com-
pleted, much more must be known about analogy, and more complete theories of 
heuristics and of representation must exist. Toward that goal we must obtain 
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more empirical results from programs trying to find useful new domain-specific 
heuristics and representations. 
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ABSTRACT 

BACON.4 is a production system that discovers empirical laws. The 
program represents information at varying levels of description, with higher 
levels summarizing the levels below them. BACON.4 employs a small set of data-
driven heuristics to detect regularities in numeric and nominal data. These 
heuristics note constancies and trends, causing BACON.4 to formulate hypotheses, 
to define theoretical terms, and to postulate intrinsic properties. The introduction 
of intrinsic properties plays an important role in BACON.4's rediscovery of Ohm's 
law for electric circuits and Archimedes' law of displacement. When augmented 
with a heuristic for noting common divisors, the system is able to replicate a 
number of early chemical discoveries, arriving at Proust's law of definite propor-
tions, Gay-Lussac's law of combining volumes, Cannizzaro's determination of 
the relative atomic weights, and Prout's hypothesis. The BACON.4 heuristics, in-
cluding the new technique for finding common divisors, appear to be general 
mechanisms applicable to discovery in diverse domains. 

10.1 INTRODUCTION 

The years between 1800 and 1860 were active ones for chemistry. They 
saw the first quantitative measures of chemical reactions, the revival of the 
atomic theory, the painstaking determination of atomic weights, and the crown-
ing success of the periodic table. The evolution of chemical thought has many 
parallels to the development of early physics in the previous century, but many 
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differences may be found as well. These similarities and differences have led us 
to apply our ideas about the discovery process, initially drawn from early 
physics, to the domain of chemistry. In this paper we report the results of that 
effort. 

BACON.4 is the fourth in a line of discovery systems developed by the au-
thors. The earlier programs in this series merit some discussion, since their suc-
cesses and failures have led directly to the current system. The prototype sys-
tem, BACON.i [Langley, 1978], can be viewed as an implementation of the 
General Rule Inducer proposed by Simon and Lea [1974]. The program showed 
considerable generality by solving sequence extrapolation tasks, learning con-
junctive and disjunctive concepts, and discovering simple physical laws. 
BACON.2 [Langley, 1979] included additional heuristics for dealing with sequen-
tial information; these let the program note recurring sequences of symbols and 
discover complex polynomial functions (including Bode's law) by examining dif-
ferences. BACON.3 [Langley, 1981] represented information at increasing levels 
of description, with higher levels describing more complex laws and accounting 
for more of the original data. This extended representation enabled the system to 
treat its hypotheses as new data, to which its heuristics could be applied recur-
sively. BACON.3 successfully rediscovered versions of the ideal gas law, 
Coulomb's law, Kepler's third law, Ohm's law, and Galileo's laws for the pen-
dulum and constant acceleration. 

Although successive versions of BACON have differed considerably, all 
have incorporated similar data-driven heuristics to direct their search for inter-
esting laws. This places the BACON systems in sharp contrast with previous dis-
covery systems such as AM [Lenat, 1977] and meta-DENDRAL [Buchanan et 
al., 1972], which incorporated theory-driven discovery techniques. A major goal 
of our research has been the identification of general discovery mechanisms, and 
we have focused on data-driven approaches because they seem more likely to 
provide insight into general mechanisms than theory-driven ones.1 Below we 
present the details of BACON.4, as well as some of its accomplishments. After 
this, we summarize some early chemical discoveries, and then trace the path 
traversed by the system in its rediscovery of these laws. 

BACON.4 focuses on the process of descriptive discovery, in which one at-
tempts to describe a set of data in some succinct form. Of course, there are 
many other aspects to the discovery process, such as determining what data to 
gather, formulating explanatory theories, and making experimental predictions. 
Thus, the current system addresses one important part of the scientific process, 
while leaving other components for future research. In addition, we should note 

•BACON.5 is a more recent version of the system [Langley et aL, 1981; Langley et al., 1982] that 
incorporates expectation-driven heuristics in addition to the data-driven ones used in BACON.4. 
However, these rules base their expectations on discoveries the system has made previously, so they 
can be stated in a very general fashion, BACON.5 also includes a generalized version of the BACON.2 
differencing heuristic. 
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that BACON.4 was not designed to replicate the historical details of the discovery 
process, but is intended as a sufficient model of how discovery might occur. 
The series of BACON programs are named after Sir Francis Bacon (1561-1626), 
the early philosopher of science, because we think he would have found the data-
driven nature of the program's heuristics congenial. 

10.2 AN OVERVIEW OF BACON.4 

BACON.4 is a production system that discovers descriptive laws that sum-
marize data. The program incorporates a small set of heuristics for finding con-
stancies and trends in data, and for formulating hypotheses and defining theoreti-
cal terms based on these regularities. These heuristics are stated as condition-
action rules called productions, using Forgy's OPS4 programming language 
[Forgy, 1979]. BACON.4 is intended to be a general discovery system; the data-

driven, Baconian nature of its heuristics were designed with this goal in mind. 
In this section we discuss the details of BACON.4 and its organization. First 

we describe the system's representation of hypotheses, and the conditions under 
which they are proposed. Next we discuss the program's trend detectors, and 
their responsibility for defining theoretical terms. Finally, we examine 
BACON.4's ability to postulate new intrinsic properties which may be associated 
with independent terms taking on nominal values. 

10.2.1 Formulating Hypotheses 

Standard analyses of the scientific method partition the world into data or 
observations, and hypotheses or laws that explain or summarize those data. In 
fact, an earlier version of our system, BACON, l [Langley, 1978], made just such 
a distinction. BACON.4 replaces this dichotomy with a continuum along which 
information is represented at varying levels of description. The lowest of these 
levels may appropriately be called data, whereas the highest may be labeled 
hypotheses. But the intermediate levels are actually hybrids of these two con-
cepts. A description at one level acts as an hypothesis with respect to the 
descriptions below it, and as a datum for the description above it. 

Consider some data obeying the ideal gas law. This law may be stated as 
pV/nT = 8.32, where p is the pressure on a gas, n is the number of moles, T is 
the temperature, and V is the volume of the gas. Suppose BACON.4 is given data 
showing that when p is 1, n is 1, and T is 300, the value of V is 2496.0. If the 
first three terms are under the system's control (independent variables), one can 
think of their values as conditions on the value of V (the dependent variable). 
Now suppose that after gathering additional data by varying p but holding n and 
T constant, BACON.4 finds that pV is 2496.0 whenever n is 1 and T is 300. This 
second level description summarizes all first level observations with similar con-
ditions, but it can be treated as data in turn. Upon varying T, the program 
generates other second level summaries; taken together, these lead to the third 
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level summary that pV/T is 8.32 whenever n is 1. Continuing in this way, the 
system arrives at the ideal gas law when the fourth level of description is 
reached. 

In determining when to generate a new description to summarize a set of 
lower level descriptions, BACON.4 draws on a generalized version of the tradi-
tional inductive inference rule. This heuristic looks for recurring values of a de-
pendent variable. It may be stated as: 

If you see a number of descriptions at level L 
in which the dependent variable (D) has the same value (V), 

then create a new description at level L + 1 
in which the value of D is also V, 
and which has all conditions common to the observed descriptions. 

This production may detect constant dependent terms that take either numerical 
or nominal (symbolic) values. BACON.4 has primitive facilities for ignoring small 
amounts of noise in numerical data. However, it cannot deal with significant 
deviations from regularity, nor can it recover from overgeneralizations once they 
have been made. The conservative strategy of including all common conditions 
serves to offset this latter limitation. 

10.2.2 Defining Theoretical Terms 

In the ideal gas example given above, the dependent terms (V, pV, pV/T, 
etc.) about which generalizations were made became progressively more com-
plex. Values of V were used at the first level of description, while values of pV 
were used for the second. In stating the final law, BACON.4 used the complex 
arithmetic combination pV/nT. Such a combination of directly observable vari-
ables may be viewed as a type of theoretical term, a term that is not directly 
observable but whose values are computable from observables [Tuomela, 1973]. 
Although a term like pV/nT may be replaced by its definition at any time,2 its 
use can simplify the statement of a complex law considerably. How does the 
program arrive at useful theoretical terms such as pV/nT? 

BACON.4 uses a heuristic search method to explore the space of theoretical 
terms, much as Lenat's AM program [Lenat, 1977] did for the space of math-
ematical concepts. We will call the heuristics for directing this search trend 
detectors. These detectors note increasing and decreasing monotonie relations 
between pairs of variables that take on numeric values. Consider the heuristic 
for noting decreasing relations, which may be stated as: 

2The definition of pV/nT would be stored simply as the ratio of pV/T and n; in turn, pV/T would be 
defined as the ratio of pV and T, while pV would be stored as the product of its components. 
BACON.4 cannot actually replace a term with its definition, but since there are no conceptual dif-
ficulties, we expect there would be no complications in implementation. 
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If the values of dependent variable a, increase as the corresponding values 
of variable a2 decrease in a number of descriptions at level L, 

then note a monotonie decreasing relation between a] and a2, 
and calculate the slope of a, with respect to a2. 

As this rule states, once a trend has been found, the system computes the slope 
of the curve relating the two terms. If the slope is constant, then the system 
creates two new theoretical terms defined as linear combinations of the related 
variables.3 If the slope varies (the relation is not linear), then BACON.4 computes 
the product or ratio of the related terms, depending on the direction of the rela-
tion and the signs of the numbers involved, and treats this product or ratio also 
as a new theoretical term. 

Once a theoretical term has been defined, no distinction is made between it 
and directly observed dependent variables. Thus, the constancy detector may 
produce generalizations about the values of theoretical terms like pV, leading to 
descriptions such as those in the ideal gas example. In turn, numerical relations 
may be found between the values of these newly derived theoretical terms, lead-
ing to complex combinations of directly observable variables, such as pV/nT. 
This recursive ability to apply the same heuristics to progressively more complex 
terms at higher levels of description gives BACON.4 considerable power in search-
ing for empirical laws. 

10.2.3 Postulating Intrinsic Properties 

Although BACON.4's trend detectors are useful for relating numeric vari-
ables, they prove ineffective when an independent nominal or symbolic variable 
influences the values of a numeric dependent term—for example, when inserting 
the different wires A, B, and C, into a circuit alters the current. In such cases, 
the program calls on a heuristic for postulating an intrinsic property of the 
nominal variable (such as conductance): 

If a] is an independent nominal variable, 
and a2 is a numeric dependent variable, 
and the values of a] change when the values of a2 change 
in a number of descriptions at level L, 

then propose an intrinsic property 
whose values are taken from the values of a2, 
and associate these values with the conditions on the descriptions. 

As the rule states, the values of this intrinsic property (which is a new theoretical 
term) are set equal to the observed values of the numeric dependent term, and 

3These terms represent the slope and intercept of the line. If y is found to be a linear function of x 
with slope m and intercept i, BACON.4 creates a slope term defined as (y - i)/x and an intercept term 
defined as y - mx. If the intercept is very close to zero, BACON.4 instead defines the ratio term y/x. 
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each value is associated with the conditions under which the observation was 
made. The intrinsic values are retrieved whenever these conditions are met. 

Upon defining an intrinsic property and specifying its values, BACON.4 also 
defines a new variable which is the ratio of the values of the dependent variable 
and the intrinsic property. Since this ratio, which we call a conjectured property, 
is guaranteed to be 1.0 for the observations that led to its postulation, it does not 
provide any new knowledge or have any immediate effect, beneficial or harmful. 
However, if BACON generalizes the conditions under which the intrinsic values 
are retrieved, then the conjectured property can take on values other than unity, 
and the system may discover new empirical laws. 

The generalization process operates in the following manner.4 When 
BACON.4 varies a new independent variable (for example, the battery), the result-
ing values of the dependent variable (current) are compared to the original values 
of the intrinsic property (conductance). If a linear relation is found between 
these two sets of values, BACON.4 infers that the independent term just varied is 
not associated with the intrinsic property (that is, that the conductance is inde-
pendent of which battery is in the circuit). Henceforth, the program will retrieve 
the value of the intrinsic property regardless of the value of the irrelevant term. 
This creates the possibility of discovering new empirical laws in which the con-
jectured property (current divided by conductance) takes on new values. This in 
turn leads the system to postulate new intrinsic properties at higher levels of 
description (in this case, associating a voltage with each battery). In contrast, if 
no linear relation is found, BACON.4 infers that the value of the varied term is a 
relevant condition on the retrieval of the intrinsic values. In the following sec-
tion, we discuss examples of each situation. 

10.3 THE DISCOVERIES OF BACON.4 

In this section, we present some of BACON.4's discoveries, focusing in par-
ticular upon its heuristic for postulating intrinsic properties and conjectured 
properties. First, we show how the system arrives at the concepts of conduc-
tance and voltage along the path to rediscovering Ohm's law. This example 
demonstrates in more detail the generalization technique that we outlined in the 
previous section. Next, we trace the program's rediscovery of Archimedes' law 
of displacement, along with the development of the notions of volume and den-
sity. Finally, we discuss briefly some other laws BACON.4 has rediscovered. 

4An earlier version of the program [Bradshaw et al., 1980] generalized at the outset, assuming the 
intrinsic term was associated only with the most recently varied independent variable. Although this 
strategy worked well when a property was associated with a single variable, it led to disaster when 
this was not the case. The more conservative approach avoids this difficulty. 
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10.3.1 Ohm, Voltage, and Resistance 

Ohm's law relates the current I of an electric circuit to its voltage V and its 
resistance R. The law may be stated as I = V/R. In physical terms, the voltage 
is associated with the battery used in the circuit, while resistance is associated 
with the wire. An earlier version of BACON, described by Langley 
[1981], discovered a version of Ohm's law when given numeric information 
about the wire, such as its length and diameter. However, BACON.4 can discover 
a similar5 version of the law when it is provided with only nominal information 
about the batteries and wires used. 

In doing this, BACON.4 is given experimental control over two 
variables—the battery and the wire—from which it can construct simple circuits. 
These variables take on nominal values such as A, B, and C, and X, Y, and Z, 
respectively. The program can tell when two of these symbols are the same or 
different, but nothing more. The single dependent variable is the current I ob-
served in the circuit, which takes on numeric values. Table 10-1 presents some 
data that might be observed for various combinations of batteries and wires.6 

The values of I were calculated assuming voltages of 4.613 for battery A, 5.279 
for B, and 7.382 for C, while the resistances were 1.327 for wire X, 0.946 for 
Y, and 1.508 for Z. (Of course, BACON.4 was not provided with this infor-
mation, but only with the values of I for each battery-wire combination.) 

Table 10-1: Postulating the property of conductance. 

I 
(CURRENT) 

3.4763 
4.8763 
3.0590 
3.9781 

5.5803 
3.5007 

5.5629 
7.8034 

4.8952 

C 

(CONDUCTANCE) 

3.4763 
4.8763 
3.0590 
3.4763 
4.8763 
3.0590 
3.4763 
4.8763 
3.0590 

I/C 
(VOLTAGE) 

1.0000 

I.0000 
1.0000 
1.1444 
1.1444 
1.1444 

1.6003 
1.6003 
1.6003 

5A more general version of the law distinguishes between the external resistance Re associated with 
the wire and the internal resistance Rj associated with the battery. This version may be stated as I = 
V/(Rj + Re). In this example, we assume the internal resistance of the battery is negligible. Given 
numeric information about the wire, BACON can discover this more general version, but not when it is 
given only nominal information. 
6BACON.4 asks the user for the independent terms it should vary, the values it should use for them, 
and the dependent variables it should examine. Once it has been given this information, the system 
runs a complete factorial design experiment, examining the dependent values for every possible 
combination of independent values. In other words, BACON.4 runs its own experiments, though it 
does not design them. 
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Consider the first three rows of the table, which show the currents as-
sociated with various wires when the battery is held constant. Since the wire is 
a nominal term that influences the values of I, BACON.4 postulates an intrinsic 
property whose values are equal to the values of the current. We would interpret 
this theoretical term as the conductance C of the wire, or the inverse of the resis-
tance. Initially, these values are associated with both the wire and the battery 
with which they occurred. The program also calculates the values of the ratio 
I/C, a conjectured property which must be 1.0 for these rows by definition. 
Since I/C will subsequently be interpreted as an intrinsic property, that is, volt-
age, associated with the battery, we are by this procedure implicitly selecting the 
voltage of the first battery tested, A, as the unit of measurement. 

More interesting discoveries are made when the second three rows are ob-
served. Since the wires are the same as before but the battery differs, BACON.4 
compares the newly observed values of I with the previously established values 
of C. Because a linear relation is found, the system infers that the conductance is 
associated only7 with the wire being used. The values of C associated with each 
of the three wires are retrieved, and the values of the conjectured property, I/C, 
are calculated; for these rows the values of I/C are 1.1444 rather than 1.0. When 
the battery is varied again, BACON.4 retrieves the values of C immediately and 
discovers that I/C is now 1.6003. Table 10-2 summarizes the values of I/C and 
the conditions under which they occur. 

Table 10-2: Postulating the property of voltage. 

BATTERY 

A 

B 

C 

I/C 

1.0000 
1.1444 
1.6003 

VOLTAGE V 

1.0000 
1.1444 
1.6003 

I/CV 

1.0000 
1.0000 
1.0000 

At this point, BACON.4 is again forced to postulate an intrinsic term. The 
values of the new term are associated only with the battery, since this is the only 
condition on the value of I/C. We would call this property the voltage V of the 
circuit. As before, the program also defines a new conjectured property, I/CV, 
which is guaranteed to be 1.0 in the given situation by definition. BACON.4 stops 
here, having found the relative conductance of each wire and the relative voltage 
of each battery. Note that these values are not the ones used in generating the 
data that were given initially to BACON.4, but are multiples of them, the mul-
tiplier being 1.327 for the conductances and 0.2168 for the voltages. BACON.4 
has simply defined new units of conductance and voltage. 

7If the internal resistance of the battery had been significant, a linear relation would not occur and 
BACON.4 would take a more conservative path. 



100.0 

200.0 

300.0 

100.0 

200.0 

300.0 

100.0 

200.0 

300.0 

105.326 

205.326 

305.326 

107.115 

207.115 

307.115 

109.482 

209.482 

309.482 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

5.326 

5.326 

5.326 

7.115 

7.115 

7.115 

9.482 

9.482 

9.482 
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Table 10-3: First level data for the displacement law. 

COMPOSITION OBJECT V C Sç^v Iç ,y 

SILVER A 

SILVER A 

SILVER A 

SILVER B 

SILVER B 

SILVER B 

SILVER C 

SILVER C 

SILVER C 

10.3.2 Archimedes, Volume, and Density 

The legend behind Archimedes' discovery of the law of displacement is an 
interesting one. As the story goes, the king of Syracuse had given a contractor 
an exact amount of gold for the purpose of making a crown. After receiving the 
crown, he heard a rumor that some of the gold had been replaced by an equal 
weight of silver. The ruler was angry but unable to prove the contractor's guilt 
without destroying the crown, so he gave the problem to Archimedes. The 
mathematician went to take a bath while thinking about the matter, and as he 
was entering the tub, he realized that the volume by which the water raised was 
equal to the volume of his body which had submerged. Understanding that this 
would provide a solution, he leaped from the tub and ran naked through the 
streets, shouting, "Eureka, eureka!" 

While Archimedes' insight is quite different in style from the systematic 
summaries of BACON.4, the law of displacement provides another instance where 
intrinsic properties prove useful. Suppose BACON.4 has experimental control 
over two nominal variables—the object being examined and the composition of 
that object—and one numeric variable—the volume v of liquid in an easily 
measured container. As with Archimedes, BACON.4 does not initially know the 
volumes of the objects because of their irregular shapes. However, the only ob-
servable dependent variable—the combined volume, C, of the object and the 
liquid—will let the program devise a new measure. 

The program begins by varying the volume of liquid into which a given 
object is inserted. The results of a number of such observations are presented in 
Table 10-3. Each row in this table corresponds to an observation, while each 
column represents the observed values for a single variable. Two theoretical 
terms, sc v and ic v, are defined when the program notes a linear relation between 
the values of v and c. These correspond to the slope and intercept of the line, 
respectively. 

Table 10-4 summarizes the results of the first table along with additional 
observations made when the composition is varied. Note that the slope of the 
line sc v is invariant, while different values of ic v are associated with each 
composition/object pair. Since BACON.4 has no numeric independent terms to re-
late to its dependent ones, it defines an intrinsic property whose values are as-
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Table 10-4: Postulating the property of irregular volume. 

COMPOS moN OBJECT Sçy i ç ^ ° iç,v/Q 

SILVER A 

SILVER B 

SILVER C 

GOLD D 

GOLD E 

GOLD F 

LEAD G 

LEAD H 

LEAD I 

sociated with each of these pairs. This term corresponds to the volume of the 
object that was placed in the water, which we represent by the symbol o. The 
system defines the ratio term ic v/o, a conjectured property, which has the con-
stant value 1.0 for all objects, but from this tautological relation nothing new is 
learned. BACON.4 halts after assigning intrinsic values to each of the 
object/composition pairs, having specified a new technique for measuring the 
volumes of irregular objects. 

Table 10-5: Relating weights to irregular volumes. 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

5.326 
7.115 
9.482 
6.313 
4.722 
8.817 
5.016 
3.493 
6.827 

5.326 
7.117 
9.482 
6.313 
4.722 
8.817 
5.016 
3.493 
6.827 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

COMPOSITION 

SILVER 

SILVER 

SILVER 

GOLD 

GOLD 

GOLD 

LEAD 

LEAD 

LEAD 

OBJECT 

A 

B 

C 

D 

E 

F 

G 

H 

I 

w 
55.923 
74.708 
99.561 

121.841 
91.135 

170.168 
57.182 
39.820 
77.828 

O 

5.326 
7.115 
9.482 
6.313 
4.722 
8.817 
5.016 
3.493 
6.827 

W/O 

10.5 
10.5 
10.5 
19.3 
19.3 
19.3 
11.4 
11.4 
11.4 

Now suppose that later the program runs a different experiment in which 
the independent variables are the object and the composition of the object, and 
the dependent term is the weight w of the object. Table 10-5 gives some data 
that might be observed in such an experiment. If the same objects are used as 
before, the intrinsic value (volume o) associated with each will be retrieved and 
BACON.4's trend detectors will note a linear relation between the values of w and 
o. Since the intercept is zero, the ratio w/o is defined; this has recurring values 
which lead to a number of higher-level descriptions. Table 10-6 summarizes 
these results; note that a different value of w/o is associated with each value of 
the composition. Again an intrinsic property, d, is proposed, this time based on 
the values of w/o. BACON.4 formulates a final conjectured property, w/od, and 
then quits, having discovered the relative densities for each of the elements it has 
examined. (Of course, BACON.4 does not call the density d by this name, nor 
does it attach the semantics to this term that the reader would.) 
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Table 10-6: Postulating the property of density. 

COMPOSITION 

SILVER 

GOLD 

LEAD 

w/o 
10.5 
19.3 
11.4 

10.5 1.0 
19.3 1.0 
11.4 1.0 

10.3.3 Additional BACON.4 Discoveries 

We have just seen how BACON.4 has rediscovered Ohm's law and 
Archimedes' law of displacement. In addition, the system8 has discovered four 
other laws in which intrinsic properties play a role. These are: 

Snell's law of refraction: This law relates the angle of incidence i and the angle 
of refraction r of a ray of light as it passes from one medium 
to another. The intrinsic properties are the indices of refrac-
tion of each medium, nj and n2, and the law may be stated 
sine i/sine r = nj/n^ Here the input data consist of the sines 
of the two angles along with the media through which the 
light passes. 

The law of conservation of momentum: This law relates the velocities vx and 
v2 of two objects Oj and o2 to each other, independently of 
the time they are observed. The intrinsic properties are the 
inertial masses of the objects, mj and m2, while the law may 
be stated as m^v{ = m2v2. Here the input data consist of the 
names of objects, along with their velocities at various points 
in time. 

The law of gravitation: BACON.4 discovered an experimentally based version of 
this law, which relates the attractive force F between two ob-
jects Oj and o2 to the distance d between them. The intrinsic 
properties are the gravitational masses of the objects ml and 
m2. The law may be stated as F = Gmjm^d2, where G is a 
constant. In this case, the data consist of the object names, 
the distance between them, and the resulting force. 

Black's specific heat law: This law9 relates the temperatures t{ and t2 of two 
liquids along with their masses mj and m2, to the final tem-
perature tf of the mixture. The intrinsic properties are the 

8In fact, these discoveries were made by the earlier version of BACON.4, using its less conservative 
strategy for retrieving intrinsic values. Although we have not actually run the current version on 
these tasks, we anticipate no major difficulties. 

9Because of the complexity of this law, BACON.4 was never run on the complete set of data. The 
system used some two hours of CPU time in dealing with 1/12 of the 972 observations that it would 
need to arrive at the final version of the law. This allowed it to discover the simplified relationship 
that holds between c2, m2, t2, and tf when the other terms are held constant. 



318 CHAPTER 10: REDISCOVERING CHEMISTRY WITH THE BACON SYSTEM 

specific heats Cj and c2 of the two liquids, and the law may 
be stated as Cjir^tj + c2 m2 t2 = (^πη + c2m2)tf. Here 
the data consist of the names of the two liquids, their respec-
tive masses, their initial temperatures, and the resulting final 
temperature. 

These results provide further evidence of the general applicability of BACON.4's 
heuristics to the discovery of physical laws and the ubiquity of intrinsic 
properties in these laws. 

The above four laws also point to a different means by which postulating 
intrinsic terms can aid the discovery process. The reader may have noted that 
each of these laws expresses a symmetric relation between two sets of variables. 
For example, conservation of momentum relates the mass and velocity of one 
object to the mass and velocity of another object. The law is equally applicable 
whether A is the first object and B the second, or vice versa. In such cases, 
BACON.4 is told that the nominal variables (in this instance the two objects) are 
analogous, and that a value found for one is also a reasonable value for the 
other. The system10 uses this information about analogous variables in assigning 
intrinsic properties. 

Suppose that BACON.4 has postulated an intrinsic property (such as πη) that 
is associated with a set of nominal independent variables (such as Oj). If an 
analogous set of independent terms is present (such as o2), then an analogous 
intrinsic property (such as m2) is created and associated with this set. The 
values of the new property are stored in such a way that they may be retrieved 
either for this property or its analog if the appropriate conditions are met. The 
effects of this strategy are best visualized in terms of the tables we have been 
using for our examples. We have seen how the generalization process lets the 
system retrieve intrinsic values and place them in new rows so they can lead to 
new empirical laws. Similarly, reasoning by analogy lets the system retrieve 
these same values and place them in new columns. If existing intrinsic 
properties were not retrieved in these situations, BACON.4 would be forced to 
postulate new terms, and these would lead to tautological laws that were much 
less interesting than the symmetrical discoveries outlined above. 

10Again, we should state what has actually been implemented. The earlier version of BACON.4 used 
this technique to discover laws in which analogous terms were used. However, we have not yet 
worked out the details of this method with respect to the more conservative retrieval strategies the 
system now employs. We do not feel this is a major problem; it simply has not been the current 
thrust of our research effort. 
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10.4 REDISCOVERING NINETEENTH CENTURY CHEMISTRY 

One is convinced of a theory's generality not only by the number of 
phenomena it explains, but by the diversity of those phenomena. As we showed 
in the last section, BACON.4 has enjoyed considerable success in rediscovering 
laws from physics, but since the program was designed with physical discovery 
in mind this was not too surprising. We felt that early chemistry would provide 
a challenging test for our theory of the discovery process, and in this section we 
describe the results of that test. 

We begin by summarizing the discoveries of chemists in the first half of 
the nineteenth century. Although we have not attempted to replicate these dis-
coveries in detail, this should give the reader some idea of the task at hand. 
After this, we describe an additional mechanism that the chemistry domain 
forced us to introduce into BACON.4. We follow this with a summary of the 
system's chemical discoveries, with special emphasis on the role of the new 
technique. Finally, we show how BACON.4 can arrive at different representations 
of the same chemical laws. 

10.4.1 Chemistry from Proust to Cannizzaro 

Quantitative chemistry had its origins in the 1790's, when experimenters 
decided to focus their attention on the weight of objects instead of other at-
tributes, such as color, texture, or hardness.11 In 1797, J. L. Proust proposed 
the law of definite proportions, which stated that a given element always con-
tributed the same percentage to the weight of a given compound. Berthollet 
challenged this claim, pointing to counterexamples in which variable proportions 
occurred, such as mixtures of sugar and water. However, chemists soon came to 
distinguish between chemical and physical combinations (compounds and 
mixtures), and Proust's law was generally accepted by 1807. 

In 1808, John Dalton set forth the law of simple proportions. This law 
related to situations in which a pair of elements A and B could combine to form 
different compounds. Now the law of definite proportions predicted that for a 
given compound, the elements A and B would combine with a constant weight 
ratio, but it predicted nothing about the relation between these ratios for the 
various compounds of A and B. Dalton discovered that although these ratios 
differed for the various compounds, they always occurred in small integer mul-
tiples of the smallest ratio. For example, while 1.3 grams of oxygen combines 
with 1.0 gram of carbon to form carbon monoxide, some 2.6 grams of oxygen 
combines with the same amount of carbon to form carbon dioxide. The second 
amount of oxygen is twice the first amount. 

In explaining the law of simple proportions, Dalton invoked the notion of 
atoms of elements combining to form particles of the resulting compound. Only 

11 An excellent account of this history may be found in Chapters 28 and 29 of [Arons, 1965]. 
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certain combinations of atoms could occur, leading to the integer relations that 
had been observed. To determine the formula of the compound, Dalton used his 
rule of greatest simplicity: if two elements combine in only a single way, as-
sume a binary compound (such as NO); if two combinations are known, assume 
a binary and a ternary compound (for example, N0 2 or N20). Based on this 
assumption, Dalton calculated the relative atomic weights of the elements. In 
fact, the rule of greatest simplicity was wrong in a number of instances. Dalton 
was aware of inconsistencies in his results (since in some cases different reac-
tions implied different atomic weights), but no better approach presented itself at 
the time. 

Meanwhile, Joseph Gay-Lussac was experimenting with chemical reactions 
between gases. In 1809, he announced that he had found a law of definite 
proportions for the volumes of gases. Moreover, he found that the volumes of 
the materials contributing to and resulting from the combination always occurred 
in small integer ratios with respect to each other. For example, 200 ml of 
hydrogen and 100 ml of oxygen combined to form 200 ml of water vapor. Gay-
Lussac presented this as evidence for Dalton's atomic theory, as well as for the 
hypothesis that equal volumes of a gas contain equal numbers of particles regard-
less of composition. However, Dalton rejected this proposal because it implied 
that some compounds (such as water) were less dense than their components. 
Since Dalton believed that elementary gases were monatomic, Gay-Lussac's 
hypothesis implied for him that compounds must be denser than their com-
ponents, a contradiction with the evidence. 

Only two years later, in 1811, Amadeo Avogadro suggested that some ele-
ments might be diatomic, that is, that in their isolated state they occurred as 
pairs of atoms. This required a distinction between molecules, which satisfied 
the equal-volumes/equal-numbers hypothesis, and atoms, which did not. Thus, 
Avogadro postulated that hydrogen and oxygen were diatomic elements and that 
water was the ternary compound H20. This interpretation also countered 
Dalton's objection to Gay-Lussac, since a molecule of water could now, without 
contradiction, be less dense than a molecule of oxygen. Unfortunately, 
Avogadro's contemporaries paid little attention to his suggestion, and nearly fifty 
years passed before its power was recognized. 

In 1860, Stanislao Cannizzaro buttressed Avogadro's theory with a 
straightforward method for determining molecular formulae and relative atomic 
weights. Cannizzaro examined the percentage of the weight that an element 
(e.g., hydrogen) contributed to a number of compounds (e.g., water, hydrogen 
chloride). Upon multiplying these fractions by the density of the element at a 
standard temperature and pressure, he found all of the resulting products to be 
small integer multiples of the smallest of the set. These divisors corresponded to 
the relative atomic weights of the elements, and Cannizzaro could derive the cor-
rect molecular formulae (for example, H20 for water) from his table. 

Earlier, another possibly lawful regularity had been noted by William Prout 
in 1815. Most of the computed atomic weights and combining ratios were very 
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nearly multiples of those for hydrogen. Prout hypothesized that the higher ele-
ments might consist of clusters of hydrogen atoms. But the relations were not 
exact, and as better determinations of the atomic weights became available, it 
was apparent that there were important exceptions (e.g., chlorine). Con-
sequently, Prout's hypothesis was rejected by most chemists, and was not 
revived until, in the present century, the largest anomalies were explained by the 
discovery of isotopes. 

10.4.2 Finding Common Divisors 

Dalton's, Guy-Lussac's, and Cannizzaro's discoveries involved more than 
postulating intrinsic properties and noting recurring values. In addition, they 
found in a number of cases that a set of values could be expressed as small in-
teger multiples of one another. As we have described it, BACON.4 has no heuris-
tics for discovering such relations. In order to replicate these discoveries,12 we 
added a new heuristic that searched for common divisors in proposed intrinsic 
values. 

A common divisor for a set of values is a number that, when divided into 
those values, generates a set of integers. The greatest common divisor of a set 
of values is simply the largest common divisor. Note that the common divisor 
itself need not be an integer, and will not be in the cases we examine. The 
greatest common divisor of a numerical set may be found using an extension of 
Euclid's algorithm. 

First, select the smallest member in the set and divide it into all values in 
the set, producing a revised set. If all members of the revised set are integers, 
then stop since the smallest value in the set is the greatest common divisor. 
Otherwise, find the smallest remainder in the revised set (for example, .0523 for 
the set {12.0, 18.0523, 15.479}) and multiply the smallest value by this 
remainder. Divide the original set by this product, producing still another set. 
If all members of the new set are integral, then this product is the greatest com-
mon divisor. Otherwise, find the smallest remainder of the new set, multiply 
this by the current product, and iterate. This method will eventually generate the 
greatest common divisor of the original set; that is, when the set is divided by 
this value, a set of integers will result. 

However, scientists do not always postulate integer proportions for intrinsic 
properties. For example, no one suggested that the specific heats of all liquids 
were evenly divisible by some common divisor. Clearly, there must be some 
criterion for determining when a "reasonable" common divisor has been found. 
For instance, one might insist that the divisor be a member of the original set. 

,2We have added new mechanisms to BACON cautiously, with the goal of keeping our theory of 
discovery as simple as possible. Before introducing a new heuristic, we attempt to ensure its 
generality by finding a number of cases in which it can be used. We discuss the generality of the 
new mechanism in a later section. 
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We rejected this heuristic, since one can imagine a chemist arriving at Prout's 
hypothesis without a familiarity with hydrogen. 

A second approach would require that certain characteristics hold for the 
resulting integers. Thus, one might accept a common divisor only if it led to 
small integers, such as those less than 100. As soon as the method described 
above generated a non-integral value greater than 100, the search would stop. A 
less restrictive criterion,13 which includes smallness as a special case, requires 
that the interval between the smallest and the largest integers fall below a 
threshold. Thus, one would be as satisfied with integer values between 100 and 
200 as with a set falling between 0 and 100. The search would then stop when 
the method generated a non-integer set with too large an interval. 

In addition, the system must have some means for distinguishing integers 
from non-integers. This is required even in the absence of noise, since the cal-
culations will introduce roundoff errors. To deal with such situations, BACON.4 
includes a user-modifiable parameter that determines the degree of acceptable 
deviation from integer values. This parameter was set to 0.03 in the runs 
described below. Thus, if the remainder of a number is less than 0.03 or greater 
than 0.97, that number is considered to be an integer. If all numbers are deter-
mined to be integers, then the divisor has been found. If not, then some 
remainder greater than 0.03 is selected as the new multiplier. 

BACON.4 calls on this method for finding common divisors whenever a new 
set of dependent values is about to be assigned to an intrinsic property.14 If a 
reasonable divisor is found, then the values are divided by this number and the 
resulting integers are associated with the nominal values instead. When the ratio 
of the dependent term and the intrinsic property is computed (a conjectured 
property), this will equal the divisor rather than 1.0. In cases where different 
divisors are found under different circumstances, BACON.4 is able to relate the 
values of the conjectured property to other terms even though the intrinsic values 
themselves may never be retrieved. Thus, the discovery of a common divisor 
may let the system break out of the tautological path that postulating conjectured 
properties can produce. In the following section, we show the importance of this 
technique in making a number of chemical discoveries. 

10.4.3 BACON.4 on the Chemical Data 

BACON.4 bases its understanding of chemistry on the results of various 
chemical reactions. In examining the data derived from these reactions, the 

l3This is the criterion currently implemented in BACON.4. We owe thanks to Marshall Atlas for 
suggesting this idea. 

14This property may have just been defined, or it may have been proposed many cycles before. In 
the latter case, new values would be specified only if the old values could not be retrieved because 
their relevant conditions were not met. 
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program treats three variables as independent—the element contributing to the 
reaction, the resulting compound, and the weight of the element used, or we. 
For each combination of independent values, BACON.4 examines the associated 
values of three dependent terms—the weight of the compound resulting from the 
reaction (wc), the volume of the element (ve), and the volume of the compound 
(vc).15 Thus, one can imagine an early chemist measuring out a quantity of an 
element by weight and combining it with others under conditions he knows will 
lead to a certain compound. Having done this, he measures the weight of the 
resulting compound, along with the volumes of both the compound and the ele-
ment. 

Table 10-7 shows those data the program collects when the element is 
hydrogen. (The system is also presented with similar data for the elements 
oxygen and nitrogen.) Since the weight of the element is varied first, BACON.4 
notes linear relations between we and each of wc, ve, and vc. Since the inter-
cepts of these lines are zero, only the ratio terms we/wc, we/ve, and we/vc are 
defined. Each of these ratios has a constant value for a given element/compound 
combination, leading to the second-level summaries presented in Tables 10-8 and 
10-9. 

Table 10-7: First level chemical data. 

EMENT 

hydrogen 
hydrogen 
hydrogen 
hydrogen 
hydrogen 
hydrogen 
hydrogen 
hydrogen 
hydrogen 

COMPOUND 

water 
water 
water 

ammonia 
ammonia 
ammonia 
ethylene 
ethylene 
ethylene 

wE 
10.0 
20.0 
30.0 
10.0 
20.0 
30.0 
10.0 
20.0 
30.0 

wc 
90.00 

180.00 
270.01 
56.79 

113.58 
170.37 
140.10 
280.21 
420.31 

vE 
112.08 
224.16 
336.25 
112.08 
224.16 
336.25 
112.08 
224.16 
336.25 

vc 
112.08 
224.16 
336.25 
74.72 

149.44 
224.16 
112.08 
224.16 
336.25 

WE/WC 

0.1111 
0.II11 
0.1111 
0.1761 
0.1761 
0.1761 
0.0714 
0.0714 
0.0714 

WE/VE 

0.0892 
0.0892 
0.0892 
0.0892 
0.0892 
0.0892 
0.0892 
0.0892 
0.0892 

wE/vc 

0.0892 
0.0892 
0.0892 
0.1338 
0.1338 
0.1338 
0.0892 
0.0892 
0.0892 

Table 10-8 summarizes the values of we/wc for hydrogen, as well as the 
results from later experiments in which the elements are oxygen and nitrogen. 
Upon arriving at these second level descriptions, BACON.4 notes that it has only 
nominal independent terms. This leads it to postulate the intrinsic property Ii = 
we/wc. These values have no reasonable common divisor,16 so the values of 
we/wc are used directly. Each intrinsic value is associated with a particular ele-
ment/compound pair; these numbers correspond to the constant weight ratios first 
discovered by Proust. The program also defines the conjectured property 
we/wcIi. This is guaranteed to be 1.0 for the cases used in assigning values to 
Ij, but other values could occur in future experiments, leading the system to 
propose a new intrinsic property at a higher level of description. 

15All volumes are for the substances in gaseous form under standard conditions. 
16In fact, the values for nitrogen in Table 10-8 are evenly divisible by 0.032. However, this is not a 
general trend and its occurrence does not significantly affect the program's behavior. 
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Table 10-8: Second level summary for weight proportions. 

ELEMENT 

hydrogen 
hydrogen 
hydrogen 
oxygen 
oxygen 
oxygen 
nitrogen 
nitrogen 
nitrogen 

COMPOUND 

water 
ammonia 
ethylene 

nitrous oxide 
sulfur dioxide 
carbon dioxide 
nitrous oxide 

ammonia 
nitric oxide 

wE/wc 

0.1111 
0.1761 
0.0714 
0.3648 
0.5000 
0.7396 
0.6378 
0.8224 
0.4664 

II 

0.1111 
0.1761 
0.0714 
0.3648 
0.5000 
0.7396 
0.6378 
0.8224 
0.4664 

WE/WCIJ 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

The values of we/vc for hydrogen, oxygen, and nitrogen are shown in Table 
10-9. Here BACON.4 has defined the second intrinsic property I2, based on the 
values of this ratio. However, this time useful common divisors are found; these 
are 0.0446 for hydrogen, 0.715 for oxygen, and 0.625 for nitrogen. The values 
of I2 shown in the table are simply the values of we/yc divided by these numbers. 
Again, the values of the intrinsic property are associated with pairs of elements 
and compounds. 

One may interpret these numbers as the coefficients of the element in the 
balanced equation for the chemical reaction determined by the pair. Thus, the 
value of I2 for hydrogen and water would be 2, while that for oxygen and water 
would be 1. These are identical with the numbers Cannizzaro found (by follow-
ing the same route) when he divided his products of densities and weight propor-
tions by their common divisors. The program also defines the ratio17 we/vcI2, 
which has a constant value for each element; in fact, these values are precisely 
the greatest common divisors found for these elements. 

Table 10-9: 

ELEMENT 

hydrogen 
hydrogen 
hydrogen 
oxygen 
oxygen 
oxygen 
nitrogen 
nitrogen 
nitrogen 

Second level summary 

COMPOUND 

water 
ammonia 
ethylene 

nitrous oxide 
sulfur dioxide 
carbon dioxide 
nitrous oxide 

ammonia 
nitric oxide 

for Cannizzaro products. 

wE/vc 
0.0892 
0.1338 
0.0892 
0.715 
1.430 
1.430 
1.250 
0.625 
0.625 

12 

2.0 
3.0 
2.0 
1.0 
2.0 
2.0 
2.0 
1.0 
1.0 

WE/VCI2 

0.0446 
0.0446 
0.0446 
0.715 
0.715 
0.715 
0.625 
0.625 
0.625 

At this point, BACON.4 has discovered three invariants dependent only on 

17In fact, BACON.4 examines the ratio vc/we. In searching for common divisors, it considers both this 
term and its inverse. In this case, common divisors are found for the inverse, so the product vcI2/we 

is defined instead of the ratio shown. We have presented the simpler picture in the interests of 
clarity. 
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the element; Table 10-10 summarizes these findings, to which we have also ad-
ded the corresponding values for sodium.18 The first of these invariants states 
that the conjectured property, w ^ w ^ , is always 1.0; however, this rule intro-
duces no new information, since it is tautological. The second specifies the 
values of we/vcI2 associated with ea ch element; since these are differentßACONU 
proposes the higher level intrinsic term I3. The values of we/vcI2 are divisible by 
0.0446, leading the program to assign values for I3 of 1.0 for hydrogen, 16.0 for 
oxygen, 14.0 for nitrogen, and 23.0 for sodium. These are precisely the relative 
atomic weights that Cannizzaro derived from his table of densities and propor-
tions. BACON.4 also defines the ratio we/vcI2l3 (a conjectured property with the 
value 0.0446), but this generates no new knowledge. 

Table 10-10: Relative atomic weights and densities of the elements. 

ELEMENT 

hydrogen 
oxygen 
nitrogen 
sodium 

WE/WCM 

1.0 
1.0 
1.0 
1.0 

WE/VCI2 

0.0446 
0.715 
0.625 
1.027 

13 

1.0 
16.0 
14.0 
23.0 

WE/VCl2l3 

0.0446 
0.0446 
0.0446 
0.0446 

WE/VE 

0.0892 
1.430 
1.25 
1.027 

U 
2.0 

32.0 
28.0 
23.0 

WE/VEI4 

0.0446 
0.0446 
0.0446 
0.0446 

The third regularity relates to the values of we/ve. Earlier, BACON.4 had 
found these values to be independent of the compound being considered, but de-
pendent on the element. Moreover, the recurring values are all divisible by 
0.0446, so BACON.4 introduces yet another intrinsic property; this is called I4 and 
its values are simply those of we/ve divided by 0.0446. This gives values of 2.0 
for hydrogen, 32.0 for oxygen, 28.0 for nitrogen, but 23.0 again for sodium 
which, unlike the others, is a monatomic gas. These ratios may be interpreted as 
the relative densities of the elements in their gaseous form, which, according to 
Gay-Lussac's principle, are proportional to the corresponding molecular weights. 

10.4.4 Finding Alternate Frameworks 

In the last section, we described BACON.4's chemical discoveries when it 
exerted experimental control over the weight of an element, or we. However, 
one can imagine scenarios in which a scientist varies the values of wc, ve, or vc 
instead. For example, whether one controls the weight or the volume of an ele-
ment or compound is purely a matter of choice. And the characteristics of the 
compound are easily viewed as the independent variables if the method of 
electrolysis is used to break that compound into its components. 

Replacing one independent term with another has an interesting effect on 
BACON.4. In all cases, the system still finds linear relations between the inde-

,8BACON4 was not actually run with the sodium data. We add it here because the inclusion of a 
monatomic gas makes clear the distinction that BACON.4 subsequently discovers between atomic and 
molecular weight. 
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pendent variable and the three dependent ones. However, recall that the program 
always relates dependent terms to independent or intrinsic ones rather than to one 
another. As a result, BACON.4 defines different theoretical terms and finds dif-
ferent associated constancies in each of the four situations. That is, the system 
arrives at different conceptual frameworks depending on the manner in which ex-
periments are run. 

Table 10-11: Alternate chemical frameworks generated by BACON.4. 

INDEPENDENT TERM 

theoretical 
terms 

generated 

WE 

we/wc 

we/ve 

wc/vc 

vE 

Ve'Vc 

Vve 
wc/ve 

wc 
We/wc 

wc/vc 

wc/ve 

vc 
Ve/Vc 

wc/vc 

we/vc 

Table 10-11 presents the theoretical terms resulting from the use of each 
term as an independent variable. In each case, BACON.4 defines three ratio terms 
and states the conditions under which these are constant. Each set of three laws 
is equivalent to the others in the sense that any triple can be derived from any 
other triple, though the program cannot actually carry out this derivation. Note 
that six ratios exist,19 each occurring in two of the four possible combinations. 

Three of these terms are especially interesting, since they did not occur in 
the run described above. One of these is wc/vc, or the density of the compound. 
Another is ve/vc, or the ratio of volumes for the element and the compound. 
Stating that this term is constant is equivalent to Gay-Lussac's law of definite 
proportions for volumes. Finally, the term wc/ve is simply the ratio of the two 
previously mentioned ratios. These theoretical terms were not generated in the 
above run for a simple reason; each of their components were treated as depend-
ent variables, and BACON.4 attempts to relate dependent terms to independent 
terms, rather than to each other. 

10.5 CONCLUSIONS 

In this chapter, we described the BACON.4 system and summarized its redis-
covery of a number of empirical laws. Clearly, we have simplified BACON'S 
discovery task along a number of dimensions, and these simplifications suggest 
some important directions for future research. The first issue relates to noise in 
the observed data. We know that both Dalton's and Gay-Lussac's data were 
inexact, yet this did not prevent them from noting the relevant regularities. Al-
though BACON.4's heuristics can be generalized to allow for some variation, the 
introduction of noise raises a more subtle problem. In its current form, BACON.4 

19In fact, the inverses of these terms are sometimes defined. We have ignored this distinction for the 
sake of comparison between the different situations. 
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can entertain only one hypothesis at a time. So far, this has been sufficient, 
since in the absence of noise the system's heuristics have always been powerful 
enough to direct search down useful paths. But before future versions of BACON 
can deal with the increased search required to discover approximate laws, they 
should be able to consider competing hypotheses, as well as design critical ex-
periments to distinguish between them. 

A second issue relates to the presence of irrelevant variables. We know 
that chemists made little progress until they decided to turn their attention to the 
weights and volumes of elements and compounds. One can easily imagine a 
BACON-like system methodically considering and rejecting variables in a noise-
free environment. However, the dual presence of irrelevant terms and noise 
makes the task much more difficult, since one can never be entirely sure that an 
independent variable is irrelevant. Future versions of BACON may simply have to 
endure much more search than their predecessors, and this should not be overly 
surprising, since the history of science tells us that discovery is often a slow and 
tedious process. 

A final issue concerns the relation between data-driven and theory-driven 
discovery. The careful reader may have noted that although BACON.4's heuristics 
are data-driven in spirit, they produce some theory-driven effects. For example, 
once a theoretical term has been defined, it need not be redefined in other con-
texts; instead, the system immediately computes the values of the term, hoping 
to find them constant. Similarly, after the conditions on an intrinsic property 
have been sufficiently generalized, BACON.4 retrieves its values in new cases so 
they may contribute to new laws. Future versions of BACON should explore 
other possibilities for generating theory-driven behavior from data-driven heuris-
tics. Incorporating notions of symmetry would be one such possibility. Suppose 
the system discovered a partial law (stated as a constant theoretical term) relating 
variables associated with one object, but had not yet incorporated an analogous 
set of terms associated with another object. If BACON hypothesized that the form 
of the final law was symmetrical, it would immediately consider an analogous 
theoretical term based on the original one; upon combining the two, it would 
arrive at the final law. 

Having considered the limitations of BACON.4, we should also say a few 
words about the system's generality. As we stated earlier, the program was 
designed with examples from early physics in mind, such as Snell's law and the 
law of conservation of momentum. In our concern for generality, we gave the 
program data from the new domain of chemistry. To our pleasure, we found 
that we needed to introduce only a single new heuristic which (working in con-
junction with the existing heuristics) was able to replicate many of the early 
chemical discoveries. However, the generality of a theory is a function of the 
generality of its components. If a program contains ad hoc heuristics which are 
used only once, one would not think that program very general. 

For instance, how general is the heuristic for noting common divisors? 
Within the chemistry domain, this heuristic was used in three instances; common 
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divisors were found for the values of we/vc, we/ve, and for we/vcI2, with the last 
of these leading to the relative atomic weights. Although BACON.4 arrives only 
at summaries of data, one can imagine how the discovery of common divisors 
might suggest explanations of those data as well. Upon finding that the relative 
atomic weights were all nearly divisible by the weight of hydrogen, Prout sug-
gested that all atoms were composed of varying numbers of hydrogen atoms. 
Using similar forms of reasoning, future versions of the program may move 
beyond descriptive laws into the realm of explanation. 

The notion of common divisors or integer ratios also occurs in some of the 
more recent areas of physics. Millikan's oil drop experiment was an explicit 
search for a common divisor, in that case interpreted as the charge on an 
electron. Physicists searched the characteristic spectra of the elements for integer 
proportions, discovering instead Balmer's formula for the lines of the hydrogen 
spectrum and its generalizations. And the very basis of modern physics and 
chemistry, the concept of the quantum, assumes that only integer values of cer-
tain properties can occur. Although we have not let BACON.4 attempt to deal 
with these problems, they suggest that the heuristic for noting common divisors 
is a general one which will continue to play an important role in our future 
research on the discovery process. 
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ABSTRACT 

An important form of learning from observation is constructing a classifica-
tion of given objects or situations. Traditional techniques for this purpose, 
developed in cluster analysis and numerical taxonomy, are often inadequate be-
cause they arrange objects into classes solely on the basis of a numerical measure 
of object similarity. Such a measure is a function only of compared objects and 
does not take into consideration any global properties or concepts characterizing 
object classes. Consequently, the obtained classes may have no simple concep-
tual description and may be difficult to interpret. 

The above limitation is overcome by an approach called conceptual cluster-
ing, in which a configuration of objects forms a class only if it is describable by 
a concept from a predefined concept class. This chapter gives a tutorial over-
view of conjunctive conceptual clustering, in which the predefined concept class 
consists of conjunctive statements involving relations on selected object at-
tributes. The presented method arranges objects into a hierarchy of classes 
closely circumscribed by such conjunctive descriptions. Descriptions stemming 
from each node are logically disjoint, satisfy given background knowledge, and 
optimize a certain global criterion. 

The method is illustrated by an example in which the conjunctive concep-
tual clustering program CLUSTER/2 constructed a classification hierarchy of a large 
collection of Spanish folk songs. The conclusion suggests some extensions of 
the method and topics for further research. 

331 
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11.1 INTRODUCTION 

An omnipresent problem in science is to construct meaningful classifica-
tions of observed objects or situations. Such classifications facilitate human 
comprehension of the observations and the subsequent development of a scien-
tific theory. This problem is a form of the very general, well-known principle of 
"divide and conquer" used in a variety of problem-solving situations. It is also 
related to the problem of decomposing any large-scale engineering system (for 
example, an AI system) into smaller components, in order to simplify its design 
and implementation. 

The nature of processes leading to useful classifications remains little un-
derstood, despite considerable effort in this direction. From the viewpoint of 
machine learning, the process of constructing classifications is a form of 
"learning from observation" ("learning without a teacher"). This form of 
machine learning has been systematically studied in such areas as cluster analysis 
and numerical taxonomy. The central notion used there for creating classes of 
objects is a numerical measure of similarity of objects. Classes (clusters) are 
collections of objects whose intra-class similarity is high and inter-class similarity 
is low. 

A measure of similarity is usually defined as a proximity measure in a 
multi-dimensional space spanned by selected object attributes. Such a measure 
is, therefore, meaningful only if the selected attributes are relevant for describing 
perceived object similarity. The presence of irrelevant attributes will distort this 
measure. Moreover, all attributes defining the description space are given equal 
weight in the process of determining classes. The problem, then, becomes one 
of structuring attributes into classes, in order to determine the most relevant at-
tributes. Factor analysis and multi-dimensional scaling have been used for this 
purpose, but these methods were designed primarily for numerical variables. 
They cannot adequately handle the many-valued, nominal (categorical) variables 
which occur often in human classifications. 

The use of numerical measures of similarity for constructing classifications 
has other disadvantages. Such measures take into consideration only the 
properties of compared objects without regard to any context or concepts useful 
for characterizing object configurations. Consequently, the resulting classes do 
not necessarily have any simple conceptual description and may be difficult to 
interpret. The problem of determining the meaning of the obtained classes is 
simply left to the researcher. This is a significant disadvantage of traditional 
methods because a researcher analyzing data typically wants to create classes that 
are not only mathematically well defined, but that also have a meaningful con-
ceptual interpretation. 

This chapter describes an approach to the problem of automatic construc-
tion of classifications, in which a configuration of objects forms a class only if it 
can be closely circumscribed by a conjunctive concept involving relations on 
selected object attributes. The problem undertaken can be defined as follows: 
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Given: 
• A set of objects (physical or abstract), 
• A set of attributes to be used to characterize the objects, 
• A body of background knowledge, which includes the problem con-

straints, properties of attributes, and a criterion for evaluating the 
quality of constructed classifications. 

Find: 
• A hierarchy of object classes, in which each class is described by a 

single conjunctive concept. Subclasses that are descendants of any 
parent class should have logically disjoint descriptions and optimize 
an assumed criterion (a clustering quality criterion). 

Structuring objects into such conjunctive hierarchies is called conjunctive 
conceptual clustering. It is a special case of conceptual clustering in general, 
which we define as a process of constructing a concept network characterizing a 
collection of objects, with nodes marked by concepts describing object classes, 
and links marked by the relationships between the classes. 

The idea of conceptual clustering and a general method for determining 
conjunctive hierarchies was introduced by Michalski [1980a]. This chapter is a 
tutorial overview of conjunctive conceptual clustering and the algorithm imple-
mented in the program CLUSTER/2 (a successor to the earlier program 
CLUSTER/PAF [Michalski & Stepp, 1981]). The algorithm is illustrated by its ap-
plication to a practical problem in the area of musicology. The conclusion dis-
cusses some possible extensions of the method and suggests topics for future 
research. To improve the readability of this chapter, Table 11-1 provides a list 
of basic symbols and operators together with a short explanation. 

11.2 CONCEPTUAL COHESIVENESS 

In conventional data analysis, the similarity between any two objects is 
characterized by a single number: the value of a similarity function applied to 
symbolic descriptions of objects. These symbolic descriptions are vectors, 
whose components are scores on selected object attributes. 

Such measures of similarity are context-free, that is, the similarity between 
any two objects A and B depends solely on the properties of the objects, and is 
not influenced by any context (the "environment" surrounding the objects). 
Some authors have introduced context-sensitive measures of similarity, where the 
similarity between objects A and B depends not only on A and B, but also on 
other objects in the collection to be clustered. One such similarity measure is 
the reciprocal of mutual distance [Gowda & Krishna, 1978]. To determine the 
mutual distance from object A to object B, objects in the collection are ranked 
according to the Euclidean distance to A (the closest object gets rank 1) and then 
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Table 11-1: A Table of Basic Symbols and Operators 

& conjunction (logical product) 
V disjunction (logical sum) 
ej an event (a description of an object) 
LEF a lexicographical evaluation functional 
DOM(p) the domain of variable p 
ô(el5e2) the syntactic distance between events e, and e2 

a a complex 
f-complex a logical complex 
s-complex a set complex 
E the event space 
s(a) number of unobserved events in complex a 
p(a) number of observed events in complex a 
t(a) total number of events in complex a 
E an event set 
k the number of clusters 
RU(e,...,aj...) the refunion operator 
GEN(a) a generalization of complex a 
COV(E,IE2) a cover of event set Ej against E2 

G(elE0) a star of event e against event set E0 

RG(elE0) a reduced star of event e against event set E0 

RG(elE0,m) a bounded reduced star with the bound m 

according to the Euclidean distance to B. The mutual distance from object A to 
object B is the sum of the rank of A with respect to B, and the rank of B with 
respect to A. Thus the similarity between compared objects depends on their 
relation to other objects. 

Taking neighboring objects into consideration solves some clustering 
problems, but in general is not sufficient. The difficulty lies in the fact that both 
of the above types of similarity measures are concept-free, that is, depend only 
on the properties of individual objects and not on any external concepts which 
might be useful to characterize object configurations. Consequently, methods 
that use such measures are fundamentally unable to capture the "Gestalt 
properties" of object clusters, that is, properties that characterize a cluster as a 
whole and are not derivable from properties of individual entities. In order to 
detect such properties, the system must be equipped with the ability to recognize 
configurations of objects that correspond to certain "concepts." To illustrate this 
point, let us consider the problem of clustering the points in Figure 11-1. 

A person considering Figure 11-1 would typically describe the observed 
points as "arranged in two diamonds". Thus, the points A and B, although 
closer to each other than to other points, are placed in separate clusters. Here, 
human solution involves partitioning the points into groups not on the basis of 
pairwise distance, but on the basis of concept membership. Points are placed in 
the same cluster if collectively they represent the same concept. In our example, 
the concept is "diamond". 

This idea is the basis of conceptual clustering. From the viewpoint of con-
ceptual clustering, the "similarity" between two points A and B, which we shall 
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A B 
• · · · 

• · · · 

Figure 11-1: An illustration of conceptual clustering. 

call the conceptual cohesiveness of A and B, depends not only on those points 
and surrounding points E, but also on a set of concepts C which are available for 
describing A and B together: 

Conceptual cohesiveness(A,B) = f(A,B,E,C) 

To illustrate this measure, let us assume that the set of concepts C consists 
of geometrical figures, such as sequences of straight lines, circles, rectangles, 
triangles, etc. A measure of conceptual cohesiveness could be defined, for ex-
ample,1 as: 

f(A,B,E,C) = maxj {#t^"1 } 
area(i) 

where, 

i indexes all geometrical figures that are specified in C and that 
cover points A and B, 

#e(i) is the total number of data points from E covered by figure i, 

and 

area(i) is the area of figure i. 

Note that the constant "-1" in the numerator assures that the conceptual 
cohesiveness reduces to a conventional similarity measure (a reciprocal of 
distance) when no context points in E are taken into consideration and C is a 
straight line of unit thickness linking the data points. 

1This measure is mentioned solely to illustrate the difference between traditional similarity and 
conceptual cohesiveness. It is not used in the method of conceptual clustering described here. 
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11.3 TERMINOLOGY AND BASIC OPERATIONS OF THE ALGORITHM 

This section gives a brief overview of the terminology needed to describe 
the conjunctive conceptual clustering method. This terminology was introduced 
by Michalski [1980a]. 

11.3.1 Variables and Their Types 

Let x1? x2,..., xn denote discrete variables that are selected to describe ob-
jects in the population to be analyzed. For each variable a domain is defined, 
containing all possible values the variable can take. We shall assume that the 
domains of variables Xj, i=l,2,...,n are finite, and therefore can be represented 
as: 

DOM(Xi) = {0,l,...,drl}, i = l,2,...,n 

In general, the domains may differ not only with respect to their size, but 
also with respect to the structure relating their elements. In the case of numeri-
cal variables, this structure is defined by the scale of measurement. We distin-
guish among nominal (categorical), linear (quantitative), and structured vari-
ables, whose domains are unordered, totally-ordered, and graph-ordered sets, 
respectively. Structured variables represent generalization hierarchies of related 
values. We distinguish between two types of generalization hierarchies for struc-
tured variables: 

1. Unordered—when the leaf values in the hierarchy constitute an unordered 
set. 

2. Ordered—when the leaf values in the hierarchy constitute an ordered set. 

Figures 11-2 and 11-3 present an example of an unordered and an ordered 
generalization hierarchy, respectively. In Figure 11-2, the leaves represent 
specific shapes, and the internal nodes ("polygon", "oval", "4-sided") represent 
generalizations or linguistic equivalents of these shapes. In Figure 11-3, the 
leaves represent specific quantities, and the internal nodes represent ordered 
generalizations or linguistic equivalents of these quantities. 

11.3.2 Event Space 

An event is an object description in the form of a vector of values of the 
assumed variables Xj, x2,...,xn. The event space is the space of all possible such 
events. 

11.3.3 Syntactic Distance 

The syntactic distance δ ^ , e2) between two events ej and e2 is defined as 
the sum of the syntactic distances between the values of each variable in the 
events c{ and e2. As described by Michalski and Larson [1978], the syntactic 
distance between two variable values is a number from 0 to 1, determined by a 
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shape 

3-sided 4-sided circle ellipse 

triangle rectangle square trapezoid 

Figure 11-2: An example of an unordered generalization structure. 

quantity 

none 

couple 

2 3 4 5 6 7 8 9 12 13 

Figure 11-3: An example of an ordered generalization structure. 

measure which reflects the domain type of the variable. For a nominal variable, 
the syntactic distance is either 0, if the values taken by the variable in each event 
are identical, or 1, if the values are not identical. For a linear variable, the 
syntactic distance is the ratio of the absolute difference between the values to the 
total span of the domain of the variable. For a structured variable, the evalua-
tion of syntactic distance depends on the type of generalization hierarchy. Since 
structured variable values in events are leaves of a generalization hierarchy, the 
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syntactic distance between such values for unordered and ordered hierarchies is 
evaluated the same way as for nominal and linear variables, respectively. 

11.3.4 Relational Statements 

A relational statement2 (or a selector) is a form: 

[Xi # Ri] 
where, 

Rj, the reference, is a list of elements from the domain of variable xi? 

linked by the internal disjunction, denoted by " V ". 

# stands for the relational operator " = " or "=/= ". 
The selector [Xj = Rj] ([Xj Φ R(\) is interpreted as "value of xs is one of 

the elements of Rj" ("value of Xj is not an element of Rj"). In the case of linear 
variables, the notation of a selector can be simplified by using relational 
operators > , > , < , < , and a range operator "..", as illustrated below. Here 
are a few examples of a selector, in which variables and their values are 
represented by linguistic terms: 

[length > 2] (length is greater than 2) 
[color ·= blue V red] (color is blue or red) 
[size Φ medium] (size is not medium) 
[weight = 2..5] (weight is between 2 and 5, inclusively) 

11.3.5 Complexes 

A logical product of selectors is called a logical complex (i-complex) 
&id[Xj # RJ, where I C {l,2,...,n}. An event e is said to satisfy an Î-complex 
if values of variables in e satisfy all the selectors in the complex. 

For example, event e = (2, 7, 0, 1, 5, 4, 6) satisfies (-complex 
[xj = 2 V 3][x3 < 3][x5 = 3..8] (concatenation of selectors denotes 
conjunction). An B-complex can be viewed as an exact symbolic representation 
of the events which satisfy it. For example, the above ί-complex is the symbolic 
representation of all events for which Xj is 2 or 3, x3 is smaller than or equal to 
3, and x5 is between 3 and 8. 

A collection of events for which there exists an f-complex satisfied by 
these events and only by these events is called a set complex (s-complex). If the 
distinction between i- and s- complexes is not important, then we shall use 
simply the term complex. 

2This form is a special case of a referential selector defined in the annotated predicate calculus 
(Chapter 4 of this book). This form was first introduced in the variable valued logic system one 
(VL,), described by Michalski [1975a]. 
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11.3.6 Sparseness 

Let E be an event space, and E C E be a set of events representing ob-
jects to be clustered. The events in E are called observed events, and events in 
E \ E are called unobserved events. Let a be a complex which covers (includes) 
some observed events and some unobserved events. The number of observed 
events (points) in a is denoted by p(a). The number of unobserved events in a 
is called the absolute sparseness of a in E and denoted by s(a). The total num-
ber of events contained in a is thus t(a) = p(a) 4- s(a). The relative sparse-
ness of a complex is denoted by r(a) and is defined as the ratio of the absolute 
sparseness of the complex to the total number of events covered by the complex, 
in other words: 

r(a) = 1 - Ρ<α> 
t(a) 

An t-complex is a generalized description of the observed events contained 
in the corresponding s-complex. The relative sparseness of a complex can be 
used as a very simple measure of the degree to which the (.-complex generalizes 
over (or fits) the observed events. If the sparseness is zero, then the description 
covers only observed events (has zero degree of generalization). As the relative 
sparseness of the complex increases, so does the degree to which it generalizes 
over the observed events. The maximum relative sparseness value of 1 is ach-
ieved when the complex covers only unobserved events. 

The clustering algorithm presented in Section 11.5.1 generates a collection 
of complexes that are pairwise disjoint. Such a collection, called a disjoint 
clustering, describes a partition of all observed events into disjoint classes. The 
fit between a disjoint clustering and the observed events can be measured by the 
relative sparseness of the clustering, defined as the average of the relative spar-
senesses of the complexes in the clustering. Since the complexes in a clustering 
are disjoint and the total number of observed events is constant, the ranking of 
clusterings will not change if the relative sparseness measure is replaced by the 
absolute sparseness measure (the sum of absolute sparsenesses of complexes). 
The latter measure is much simpler computationally and, therefore, is used in the 
presented clustering algorithm. Henceforth, we shall simply use the term sparse-
ness to denote this measure of fit. 

An advantage of sparseness as a measure of fit is its simplicity. A dis-
advantage, however, is that it takes into consideration the whole event space, no 
matter which variables spanning the space are actually present in the 
β-complexes. Therefore, another measure is introduced, called projected sparse-
ness, which evaluates a clustering in a subspace of the original event space, 
defined by specially selected "relevant" variables. To define this measure, let us 
observe that complexes of a disjoint clustering may involve different subsets of 
variables. Because complexes are pairwise disjoint, any pair of complexes must 
contain at least one common variable with disjoint references in both complexes. 
A variable with this property for any pair of complexes in a clustering is called a 
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discriminant variable of the clustering. For example, Xj, x3, and x4 are dis-
criminant variables of the clustering: 

{[ X l >3][x 2 =l V 2 ] [ x 3 = l ] , [x1<3][x3 = 2 V 3 ] [ x 4 = 3], [x2= 1] [x4<2]}. 
The event space spanned over only the discriminant variables is called the 

projected event space of the clustering. The projected sparseness of a clustering 
is the sum of the absolute sparsenesses of complexes in the projected event 
space. 

11.3.7 Refunion Operator 

The refunion operator RU transforms a set of events and/or complexes into 
a single complex covering the events and/or complexes. For each variable, the 
set of all values the variable takes, in all given events and complexes, is deter-
mined. These sets are used as the reference of the variable in the generated 
complex. For example, given: 

e, = (2,3,0,1) 

e2 = (0,2,1,1) and 

a = [x, = 2.3] [x2 = 4] [x3 = 0] [x4 - 2] 

the refunion complex, RU(ei,e2,oi), denoted α', is: 
a' = [x, = 0 V 2 V 3] [x2 = 2 V 3 V 4] [x3 = 0 V 1] [x4 = 1 V 2] 

It can be shown that the refunion complex has the minimum sparseness 
(absolute or relative) among all complexes covering the given events and/or com-
plexes [Michalski, 1980c]. 

11.3.8 GEN Operator 

The generalizing operator GEN simplifies and generalizes any given com-
plex by applying an appropriate generalization rule (see Section 4.5 in Chapter 4 
of this book) to each selector in the complex: 

1. To linear selectors, the "closing the interval" rule is applied: The reference 
is clustered into one or a few disjoint intervals, such that the ratio of the 
number of unobserved values to the width of the enclosing interval is at or 
below a certain sparseness threshold. For example, the reference 
1 V 2 V 3 V 7 V 8 is turned into one interval 1..8, if the assumed 
threshold is 3/8 or more. If the threshold is less than 3/8, the reference is 
turned into two intervals 1..3 V 7..8. 

2. To structured selectors, the "climbing the generalization hierarchy" rule is 
applied: A reference with more than one value is replaced by the most 
specific node in the generalization hierarchy which "covers" the reference. 

3. After steps (1) and (2) are completed, the "dropping the condition" rule is 
applied to all selectors: A selector is removed if the ratio of the number of 
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missing reference values to the number of values in the domain of the vari-
able is below a certain sparseness threshold. 
To illustrate the GEN operator, consider the complex α', given above, and 

assume that variables Xj and x2 are linear, variable x3 is structured, and variable 
x4 is nominal, that the domain of x3 is a generalization hierarchy in which the 
value "small" is the parent node of values 0 and 1, and that the domain of x4 
contains values 0, 1,2. Assume also that the sparseness threshold for all vari-
ables is 0.5. Then we have: 

GEN(a'): [xx < 3][x2 = 2..4][x3 = small] 
where the references for Xj and x2 are generalized by closing the interval, the 
reference for x3 is generalized by climbing the generalization tree, and the selec-
tor for variable x4 is removed by dropping the condition. 

11.3.9 Cover 

Let Ej and E2 be two disjoint event sets, that is, Ej Π E2 = 0 . A cover 
COV(EjlE2) of E{ against E2 is any set of s-complexes {otj}jCj such that for each 
event e £ Ej there is an s-complex a:, j £ J, covering it, and none of the com-
plexes Oj cover any event in E2: 

Ej Ç U j d a j Ç E \ E 2 

By representing complexes of the cover as B-complexes, a cover can be ex-
pressed as a logical disjunction of these complexes. 

A cover in which all s-complexes are pairwise disjoint is called a disjoint 
cover. If Ej is a collection to be clustered and E2 = 0 , then a disjoint cover 
COV(Ejl0), or simply COV(Ej), represents a disjoint clustering of events. The 
algorithm described in Section 11.5 generates a disjoint clustering of events by 
repetitively constructing a special type of cover, called a star. 

11.3.10 Star 

The star G(elE0) of event e against event set E0 (e i E0) is the set of all 
maximally general3 complexes covering the event e and not covering any event 
in E0. Informally, it is the set of all maximally general descriptions of event e 
which do not intersect with set E0. Figure 11-4 presents a star of event e against 
events denoted by " · " in the two dimensional space spanned over linear vari-
ables. The star consists of complexes a1? a2, and a3. Complex a ' 3 is a 
"reduced" complex a3, as explained below. 

In the algorithm described in the next section, the "theoretical" stars 
(defined above) are subjected to two major modifications. The first is to min-

3A complex a is maximally general with respect to a property P if there does not exist a complex a* 
with property P such that a C a*. 
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Figure 11-4: An illustration of the star G(elE0). 

imize the sparseness of complexes in the stars, and the second is to "bound" the 
stars, that is, to select from them a certain number of "best" complexes, accord-
ing to a context-dependent criterion. The first modification is performed by pro-
cedure Redustar, described below, and the second by procedure Boundstar 
described in Section 11.5.1.2. 

11.3.11 Redustar Procedure 

Complexes in stars G(elE0) are maximally general, and therefore may 
describe objects in an overgeneralized way. The Redustar procedure generates a 
star, and then maximally reduces the sparseness of each complex in it, while 
preserving the coverage of observed events. For example, complex a ' 3 in 
Figure 11-4 is such a reduced complex obtained from complex a3. The steps of 
the procedure are: 

1. Elementary stars, G(elej), ej £ E0, are determined. 
To generate an elementary star G(elej) of an event e against another 

event ei? all variables that have different values in e than in ej are iden-
tified. Suppose, with no loss of generality, that these variables are 
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Xi,x2,..-,Xg, and that ej = (rj,r2,..., rg,...,rn). The complexes of the star 
G(elej) are then [Xj Φ rj], j=l,2,...,g, because these are the maximally 
general complexes which cover e and do not cover tv The number of 
complexes in an elementary star is at most n, and, because ^Φ e, at least 
1. 

2. The complete star G(elE0) is determined. 

The star G(elE0) is generated by first setting up the logical product 
& G'(elej), ej £ E0, where G'(elej) is the disjunction of complexes from 
the elementary star G(elej). Next, the multiplication of complexes is per-
formed, using absorption laws, until a disjunction of nonredundant com-
plexes is obtained. This multiplication is carried out in steps, each step 
being a multiplication of a disjunction of complexes by a disjunction of 
selectors (the elements of consecutive elementary stars). The set of the 
complexes in the resulting disjunction is G(elE0). 

3. Complexes in G(elE0) are reduced and simplified. 
The sparseness of each complex in the star is reduced as much as 

possible without "uncovering" any of the observed events. This is done by 
performing the refunion of all the observed events contained in each com-
plex. The complexes are then generalized and simplified by applying the 
GEN operator. The resulting set of complexes is a reduced star RG(elE0). 
The theoretical basis for the above algorithm generating the star G(elE0) is 

described in Michalski [1975b]. 

11.3.12 NID Procedure 

This procedure transforms a set of Nondisjoint complexes Into a set of Dis-
joint complexes (that is, a disjoint clustering). If input complexes to NID are 
already disjoint, the procedure leaves them unchanged. The steps of the proce-
dure are: 

1. "Core" complexes are determined. 
Observed events covered by more than one complex from the given 

set are placed on the multiply-covered event list (m-list). If the m-list is 
empty, then the complexes are only weakly intersecting, that is, the inter-
section area contains only unobserved events. In this case, the procedure 
terminates with an indication that the combination of complexes is a 
weakly intersecting clustering. Otherwise, each complex is replaced by the 
Refunion of the observed events contained in the complex that are not on 
the m-list (i.e., that are singly covered). The obtained Refunions are 
called "core" complexes. 

2. A best "host" complex is determined for each event on the m-list. 
An event is selected from the m-list and is "added" to each of the k 
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core complexes by generalizing each complex to the extent necessary to 
cover the event. Such a generalization is performed by applying the 
Refunion operator to the event and the complex. As a result, k modified 
complexes are obtained. By replacing one of the core complexes in the 
initial set with the corresponding modified complex, in k different ways, a 
collection of clusterings is obtained. These clusterings are evaluated ac-
cording to the assumed clustering quality criterion (see the next section). 
The best clustering is determined, and the complex in it that covers the 
given event from the m-list is considered to be the best "host" for this 
event. The best clustering is retained and the remaining ones are 
eliminated. By repeating the above operation for every event on the m-
list, a set of k disjoint complexes is obtained whose union covers the same 
observed events as the original set of nondisjoint complexes. 

If an event cannot be "added" to any complex without causing the 
result to intersect other complexes, then the event is placed on the excep-
tions list. 

11.4 A CRITERION OF CLUSTERING QUALITY 

The problem of how to judge the quality of a clustering is difficult, and 
there seems to be no universal answer to it. One can, however, indicate two 
major criteria. The first is that descriptions formulated for clusters (classes) 
should be "simple", so that it is easy to assign objects to classes and to differen-
tiate between the classes. This criterion alone, however, could lead to trivial and 
arbitrary classifications. The second criterion is that class descriptions should 
"fit well" the actual data. To achieve a very precise "fit", however, a descrip-
tion may have to be complex. Consequently, the demands for simplicity and 
good fit are conflicting, and the solution is to find a balance between the two. 

A number of other measures can be introduced for evaluating clustering 
quality. CLUSTER/2 uses a combined measure which can include any of the fol-
lowing elementary criteria: 

• the fit between the clustering and the events 
• the simplicity of cluster descriptions 
• the inter-cluster difference 
• the discrimination index 
• the dimensionality reduction 

The fit between a clustering and the data is computed in two different 
ways, denoted as T and P. The T measure is the negative of the total sparseness 
of the clustering, and the P measure is the negative of the sum of the projected 
sparsenesses of the complexes. The reason for using the negative values is to 
increase the degree of match as the sparseness decreases. 

Simplicity of cluster descriptions is defined as the negative of the com-
plexity, which is the total number of selectors in all descriptions. 
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Inter-cluster difference is measured by the sum of the degrees of disjoint-
ness between every pair of complexes in the clustering. The degree of disjoint-
ness of a pair of complexes is the number of selectors in both complexes after 
removing selectors that intersect. For example, the pair of complexes: 

• [color = red] [size = small or medium] [shape = circle] 
• [color = blue] [size = medium or large] 

has the degree of disjointness 3, because 2 of the 5 selectors intersect 
(intersecting selectors are italicized). This criterion promotes clusterings with 
classes having many differing properties, and is analogous to the criterion of re-
quiring maximal distance between clusters, used in conventional methods of 
clustering. 

The discrimination index is the number of variables that singly discriminate 
among all the clusters, that is, variables having different values in every cluster 
description. 

Dimensionality reduction is measured by the negative of the essential 
dimensionality, defined as the minimum number of variables required to distin-
guish among all complexes in a clustering. It can be computed by applying to 
the clustering the variable-valued logic minimization algorithm A% [Michalski, 
1975b]. When the discrimination index is greater than zero, the essential dimen-
sionality is exactly one. 

The definitions of the above criteria are such that the increase of any 
criterion value improves the quality of the clustering. The relative influence of 
each criterion is specified using the "Lexicographical Evaluation Functional with 
tolerances" (LEF) [Michalski, 1980b]. The LEF is defined by a sequence of 
criterion-tolerance pairs (c^Tj), (C2 ,T2), ..., where q is an elementary criterion 
selected from the above list, and Tj is a tolerance threshold (τ £ [0..100%]). In 
the first step, all clusterings are evaluated on the first criterion, Cj, and those that 
score best or within the range defined by the threshold Tj are retained. Next, the 
retained clusterings are evaluated on criterion c2 with threshold τ2 , similarly to 
the above. This process continues until either the set of retained clusterings is 
reduced to a singleton (the "best" clustering) or the sequence of criterion-
tolerance pairs is exhausted. In the latter case, the retained clusterings have 
equivalent quality with respect to the given LEF, and any one may be chosen 
arbitrarily. The selection of elementary criteria, their ordering, and the specifica-
tion of tolerances is made by a data analyst. 

11.5 METHOD AND IMPLEMENTATION 

This section describes the algorithm for conjunctive conceptual clustering 
implemented in the program CLUSTER/2 (the successor to the program 
CLUSTER/PAF [Michalski & Stepp, 1981]). The algorithm consists of a clustering 
module and a hierarchy-building module, which are described in Sections 



346 CHAPTER 11: LEARNING FROM OBSERVATION 

11.5.1 and 11.5.2, respectively. Section 11.5.1.4 gives an example illustrating 
the details of the clustering module. 

11.5.1 The Clustering Module 

11.5.1.1 The Full-search Version of the Algorithm 

The basic algorithm underlying the implementation of the clustering 
module was introduced in [Michalski, 1980a]. Its goal can be described as fol-
lows: 

Given: 
• A collection of events to be clustered, E 
• The number of clusters desired, k, and 
• The criterion of clustering quality, LEF 

Find: 
• A disjoint clustering of the collection of events that optimizes the 

given criterion of clustering quality LEF. 

We shall first describe a straightforward, exhaustive-search version of the 
algorithm, and then show how this version is modified to increase efficiency. 
The steps are: 

1. Initial seeds are determined. 
From the given collection of events E, k events (the initial seeds) are 

selected. The seeds may be chosen randomly or according to some 
criterion. (After this first step, seeds are always selected according to cer-
tain rules; see step 5). 

2. Stars are constructed for seeds. 
For each seed ei5 a reduced star RG(ejlE0) is constructed by proce-

dure Redustar, where E0 is the set of remaining seeds. 
3. An optimized clustering (a disjoint cover of E) is built by selecting and 

modifying complexes from stars. 
Every combination of complexes, created by selecting one complex 

from each star, is tested to see whether it contains intersecting complexes. 
If so, the complexes are made disjoint by procedure NID. 

4. A termination criterion is evaluated. 
If this is the first iteration, the obtained clustering is stored. In sub-

sequent iterations the clustering is stored only if it scores better than 
previously-stored clusterings according to the LEF (see Section 11.4). The 
algorithm terminates when a specified number of iterations does not 
produce a better clustering (this number is defined by a termination 
criterion, described below). 
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5. New seeds are selected. 

New seeds are selected from sets of observed events contained in 
complexes of the generated clustering, one seed per complex. Two seed-
selection techniques are used. One technique selects "central" events, 
defined as events nearest the geometrical centers of the complexes (as 
determined by the syntactic distance). The other technique, stemming 
from the "adversity principle4", selects "border" events, defined as events 
farthest from the centers. Ties for central or border events are broken in 
favor of events which have not been used recently as seeds. The technique 
of selecting central events is used repetitively in consecutive iterations as 
long as the clusterings improve. When the improvement ceases, border 
events are selected. 

After selecting seeds, a new iteration of the algorithm begins from 
step 2. 

The algorithm is summarized by the flow chart in Figure 11-5. 
Along with a clustering, the algorithm generates k ß-complexes describing 

individual clusters, and determines how these complexes score on the evaluation 
criteria in the LEF. The algorithm stops when the termination criterion is 
satisfied. The termination criterion is a pair of parameters (b,p), where b (the 
base) is a standard number of iterations the algorithm always performs, and p 
(the probe) is the number of additional iterations beyond b performed after each 
iteration which produced an improved cover. The general structure of the algo-
rithm is based on the so-called dynamic clustering method [Diday & Simon, 
1976]. 

The most computationally costly part of this algorithm is the construction 
of an optimized clustering, given k seed events (step 3). For an illustration, let 
us assume that k = 2 and that k "seeds", e! and e2, have been selected from the 
collection E. In the first step, stars Gj = G(ej I remaining seeds) and G2 = 
G(e21 remaining seeds) are generated. Figure 11-6 presents complexes of these 
stars as branches of a search tree. Branches from the root represent complexes 
of star G{ that are α π , α12, ...,otlm , and branches at the second level (repeated 
mj times) represent complexes of star G2 that are ot21,a22,...,a2m2. Each com-
bination of complexes, containing one complex from each star, corresponds to 
one path in the tree. Because any such combination may contain intersecting 
complexes, procedure NID is applied to each, and the result is a disjoint cluster-
ing. These clusterings are ordered according to the quality criterion LEF, and 
the best one is selected. 

4This principle states that if a border, "near hit" event truly belongs to the given cluster, then when 
selected as the seed it should produce the same clustering as when a central event is used as a seed. 
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Given: 
E—a set of data events 
k-the number of clusters 

LEF—the clustering quality criterion 

(1) 
Choose initial"seed" events from E 

(2) 
Determine a star for each seed 
against the other seed events 

(3) 
By appropriately modifying and 
selecting complexes from stars, 

construct a disjoint cover of 
E that optimizes the criterion LEF 

< 

I 
(4) 

Is the termination 
criterion satisfied? 

I No 

(5) 
Is the clustering 

quality improving? 

Choose k new seeds which 
are central events 

Choose k new seeds which 
are "border" events 

Figure 11-5: The flow chart of the clustering module. 
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Figure 11-6: The exhaustive-search search tree for k = 2. 
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Figure 11-7: The Path-Rank-Ordered search tree for k = 2 used in CLUSTER/2. 

11.5.1.2 Path-Rank-Ordered (PRO) Search Procedure Used in CLUSTER/2 

The above strategy for determining a clustering from seeds is very simple, 
but unfortunately too inefficient for solving any interesting practical problems. 
This is due to the fact that the stars may contain very many complexes. When 
there are n variables and k seeds, a star may contain up to nk_1 complexes (there 
are at most n complexes in any of the k-1 elementary stars needed to compute 
the complete star). Thus, when n = 30 and k = 3, there could be up to nk_1 =900 
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complexes, and the search tree could have up to 900-way branching at each 
node, and up to 9003 = 729 million leaves. Absorption laws (as defined in 
Boolean algebra) will usually eliminate many redundant complexes, but the star 
may still be too large. Artificial intelligence research on various heuristic search 
procedures offers various possibilities for reducing the search (for example, 
Nilsson [1980] or Winston [1977]). To solve this problem, we have adopted 
some of the known ideas and also developed some new ones. The result is a 
search procedure called Path-Rank-Ordered (PRO) search that incorporates the 
following four techniques: 

1. Bounding the stars (procedure Boundstar). 
The number of complexes in a star is bounded by a fixed integer m, 

which assures that the search tree has at most m-way branching. A 
bounded star contains not just m arbitrary complexes from the initial star, 
but the m "best" ones. 

At each step of star generation (a multiplication of a set of complexes 
by the next elementary star; see the Redustar procedure in Section 
11.3.11), complexes are first reduced and then arranged in descending or-
der according to the assumed clustering quality criterion LEF. Only the 
first m complexes are retained for the next multiplication step. This opera-
tion is also performed at the end of star generation, so that the final star 
has at most m complexes. The stars so obtained are called bounded 
reduced stars and denoted RG(e!E0,m). 

Some elementary criteria measure global properties of a clustering 
rather than properties of just a single complex (such as the inter-cluster 
differences). Consequently, when evaluating a complex descending from a 
node in the search tree that is not the root, the complex is evaluated in the 
context of complexes associated with the path from the root to this node. 

By bounding the star we gain significantly in efficiency, but give up 
the assurance that the obtained clustering will be optimal. This is not a 
significant loss, however, because the clustering obtained at the end of 
each iteration contributes only the seeds to the next iteration, and thus its 
optimality is not very important. 

2. Generating stars dynamically. 
Because it is necessary to evaluate complexes in the context of 

previously selected complexes, bounding a star has to be done differently 
at each node of the search tree. CLUSTER/2 uses a "lazy" strategy, in which 
a star is generated only when it is needed to expand a node on the path 
being explored. 

3. Searching in order of path rank. 
As we mentioned above, complexes in a bounded star are arranged in 

descending order according to the LEF. In the search tree, the branch to 
the best complex is assigned the branch index 0, the branch to the next 
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best complex is assigned the branch index 1, and so on, up to the index 
m-1. The path index of a path from the root to a leaf is the sum of the 
branch indices along the path. 

The paths from the root to a leaf represent potential clusterings and 
are investigated in the ascending order of their path index. Thus, the first 
path investigated is the one with path index 0, that is, the path containing 
only the "best" complexes from each star. The next paths considered are 
those with a path index of one. There are k such paths. 

As paths of increasing path index are generated and evaluated, a 
search termination criterion is applied. This criterion consists of two 
parameters, search-base and search-pfobe. A search-base number of paths 
is always expanded and evaluated. Then, a search-probe number of ad-
ditional paths is considered. Each path is processed by NID, and if some 
complexes are transformed to make them disjoint, the clustering-quality 
criterion is evaluated again. Whenever a new clustering is better than any 
previous clustering, it is saved and another search-probe number of ad-
ditional paths is explored. If the above probing fails to find a better 
clustering, the search terminates. 

4. Tapering the search tree. 

The bound of the stars, m, is decreased with the increase of the path 
index. The search tree is, therefore, more fully developed on the side con-
taining the "higher quality" complexes. 

Figure 11-7 shows an example of a search tree generated by CLUSTER/2. 
The tree is a modification of the tree in Figure 11-6, resulting from the applica-
tion of the above efficiency-increasing techniques. In Figure 11-7, the maximum 
value of bound m is set to 3. The root is expanded by constructing the star 
Giseedjlother seeds,3), whose complexes are an, a12, and a13 (listed in 
decreasing order of their "quality", as determined by the LEF). The branches 
representing these complexes are assigned branch indices 0, 1, and 2, respec-
tively. The node attached to branch 0 is expanded next. The star G(seed2lother 
seeds,3) is generated, creating complexes a21, a22, anc* «23· Branches cor-
responding to these complexes are assigned branch indices 0, 1, and 2, respec-
tively. The path 0-0 (having the lowest path index of 0, denoted by heavy lines 
in Figure 11-7) is considered first. The associated clustering { a n , a21} is 
processed by NID, and the result is saved as the best clustering so far. Next, 
path 0-1 is considered. The associated clustering {an, a22} is processed by NID 
and evaluated. If it is better than the previous clustering, it is saved. In order to 
explore the path 1-0 (the second path with path index 1), the star G(seed2lother 
seeds,2) is generated. The star contains complexes a'21 and a'22. The cluster-
ing {a12, a'21} associated with the currently investigated path is evaluated. As-
suming that the termination criterion has the parameters search-base = 2 and 
search-probe = 2, and that the evaluation scores are as shown in Figure 11-7, the 
tree search terminates after investigating the fourth path 0-2 (since this path ex-
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hausts the probing without finding a better clustering). Path 0-1, with the 
evaluation score of 22, is the best clustering found. 
11.5.1.3 Dynamic Modification of Classifications 

The obtained clustering partitions all the observed events into disjoint 
classes. The set-theoretic union of complexes in the clustering does not, 
however, necessarily cover the whole event space. Consequently, when a given 
classification is applied to a new event that is "outside" this union, it is not pos-
sible to assign this event to any class. In such a case, the classification 
(clustering) is automatically adjusted to accommodate the new event. This is 
done by applying the NID procedure (Section 11.3.12), modified as follows. 
The complexes of the current clustering play the role of "core" complexes, and 
the new event is treated as an element of the m-list. The event is incorporated 
into the complex that is the best "host" for it, as determined by NID. As a 
result, the original complex becomes the Refunion of itself and the event. This 
way, the initial classification is modified to incorporate the new, unforeseen 
event. Such a process has a psychological justification, as it is common for 
people to modify their classifications when some object fails to fit them, by ap-
propriately perturbing the boundaries of the classes. 

11.5.1.4 An Example Illustrating the Clustering Module 

The following simple example illustrates some further details of the cluster-
ing module algorithm. There are ten objects, each described by four variables: 
Xj, x2, X3, and x4, with three-valued domains, DOM(Xj) = {0,1,2}, i= 1,2,3,4. 
Variables x^ and x3 are linear, variable x2 is structured, and variable x4 is 
nominal. The generalization hierarchy of the domain of x2 is shown in Figure 
11-8. Object descriptions (events in the population E) are presented in Figure 
11-9. For simplicity, let us assume that the goal is to partition objects into only 
two classes (k = 2) using a LEF in which the primary criterion (with tolerance of 
0%) is to minimize the total sparseness, and the secondary criterion is to max-
imize the simplicity of the clustering, (that is, the negative of the number of 
selectors). Figure 11-10 shows a geometrical representation of the events using a 
generalized logic diagram [Michalski, 1978]. Each cell in the diagram is labeled 
by the event it represents. Empty cells represent unobserved events. 

The steps of the algorithm follow the diagram in Figure 11-5. 

Iteration 1 

Step 1 (Figure 11-5, block 1): A subset of k = 2 observed events (seeds) is 
selected from the population E = {ej, i= 1,2,..., 10. The seeds can be 
selected randomly, or they can be chosen as events which are most syn-
tactically distant from each other. In the latter case, as experiments 
show, the algorithm will usually converge faster. For selecting such 
"outstanding" events, program ESEL [Michalski & Larson, 1978] is 
used. For the sample problem, let us make a "bad" choice and select 
two events close to each other, such as ej and e2. 
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Figure 11-8: The generalization hierarchy of the domain of variable x2. 
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Figure 11-9: A data set describing ten objects, using four variables. 



354 CHAPTER 11: LEARNING FROM OBSERVATION 

a 

b 

c 

a 

b 

c 

a 

b 

c 

w 

β 9 

0 

( · . ) 

e 7 

1 

e 4 

2 

β 6 

0 

e 5 

1 

β 3 

β 8 

2 0 1 

eio 

2 

Figure 11-10: A geometrical representation of events ej to ej0. Encircled events are initial seeds. 

Step 2 (Figure 11-5, block 2): Bounded reduced stars RG(e1le2,m) and 
RG(e2lei,m), with m = 5, are generated by procedure Boundstar 
(described in Section 11.5.1.2): 

RG(e1le2,m) = {[x2 = a][x3 = 0 V 1], [x4 = 1 V 2]} 

RG^Ie^m) = {[x2 = b V c], [x4 = 0 V 2]} 

These stars contain all possible complexes, because m>2. After 
applying the closing the interval and climbing the hierarchy generaliza-
tion rules, the stars become: 

RG(eile2,m) = {[x2 = a][x3 = <1], [x4 = 1 V 2]} 

RG(e2le1,m) = {[x2 = f], [x4 = 0 V 2]} 

The reference "b V c" in the selector for the structured variable x2 

has been replaced by a more general value, f (Figure 11-8). 

Step 3 (Figure 11-5, block 3): From each star a complex is selected and ap-
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propriately modified, such that the resulting set of k = 2 complexes is a 
disjoint cover of E, and is an optimal or suboptimal cover among all 
possible such covers, according to the clustering quality criterion. There 
are four combinations of complexes to consider: 

complex 1: 
complex 2\ 

complex 1: 
complex 2: 

complex 1: 
complex 2: 

complex 1: 
complex 2: 

[x2 = a][x3 < 1] 

[x2 = fl 

[x4 = 1 V 2] 
[x2 = f] 

[x2 = a][x3 < 1] 
[x4 = 0 V 2] 

[x4 = 1 V 2] 
[x4 = 0 V 2] 

Sparseness 
15 
42 
62 

These covers are not disjoint. 
Procedure NID (Section 
11.3.12) is applied to each cover, 
but the sparseness of resulting 

clusterings in each case is > 62 
and their complexity is 3. 

Complexity 
2 
1 
3 

(a) 

(b) 

(c) 

(d) 

Cover (a) is selected since it has the minimum total sparseness. 

Step 4 (Figure 11-5, block 4): The termination criterion is tested. In our ex-
ample, the parameters of the termination criterion are: base = 2 and 
probe = 2 (Section 11.4). The current iteration is the first of the two 
base iterations. 

Step 5 (Figure 11-5, block 5): A new set of seeds is determined. These new 
seeds are central events, among the observed events covered by (a). 
Complex [x2 = a][x3 < 1] covers the set {e^e^e^, and complex [x2 

= f] covers the set {e2,e3,e5,e7,e8,e9,e10} (notice that value f of x2 is a 
generalization of b and c according to Figure 11-8). The central events 
(as determined by syntactic distance) in these sets are e4 and e8, respec-
tively, so they become new seeds. 

Iteration 2 

Step 2: 
New stars RG(e4le8,m) and RG(e8le4,m) are generated: 

RG(e4le8,m) = {[x2 = a][x3 < 1], [Xl < l][x3 < 1], [x3 = 0]} 

RG(e8le4,m) = {[Xl = 2], [x2 = f], [x3 = >1]} 

Step 3: 
All combinations of complexes (obtained by selecting one complex from 
each star) are subjected to procedure NID and then evaluated. The best 
clustering is: 
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complex 1: 
complex 2: 

[x, < l][x3 < 1] 
[x, = 2] 

Sparseness 
31 
22 
53 

Complexity 
2 
1 
3 

Step 4: 
This is the last of the base iterations. 

Step 5: 
Complex [\{ < l][x3 < 1] covers events {e1,e2,e3,e4,e5} and [xj = 2] 
covers {e6,e7,e8,e9,e10}. Since this clustering is an improvement over the 
previous one (since it has a lower sparseness), the new seeds selected are 
central events: ej and e8. 

Iteration 3 

This iteration produces the same clustering as iteration 1. 

Step 4: This is the first of the two "probe" iterations. 

Step 5: Since the clustering obtained is not better than the previous one, border 
events are selected as the new seeds: e2 and e6. 

Iteration 4 

This iteration produces a new clustering: 

complex 1: 
complex 2: 

Sparseness 
[x3 > 1] 49 
[x3 = 0] 22 

71 

Complexity 
1 
1 
2 

It is the second "probe" iteration. If the obtained clustering was better than the 
previous best clustering, another probe = 2 iterations would be scheduled. Since 
the sparseness of the clustering obtained in this iteration (71) is not an improve-
ment over the previous best sparseness (53), the termination criterion is satisfied. 
The best resulting clustering is the one produced in iteration 2: 

[Xl < l][x3 < 1] 

[Xl = 2] 
Figure 11-11 shows the diagrammatic representation of this solution. 
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Figure 11-11: A diagrammatic representation of the clustering {α,, α2}. 

11.5.2 The Hierarchy-building Module 

The hierarchy-building module uses the clustering module to determine a 
hierarchy of clusters. It performs two loops, one iterative and one recursive. 
The iterative loop repeats the clustering module for a sequence of values of k in 
order to determine the value for which the most desirable clustering is obtained. 
Such an approach is computationally acceptable because, in practical applica-
tions, most interesting hierarchies will have a relatively small number of 
branches (that is, a small value of k) at each level. 

The recursive loop applies the above iterative process at each node of the 
hierarchy. In the first step, the process is executed for the root, representing the 
initial event set E. Clusters of E and their conjunctive descriptions are deter-
mined. Consecutive steps repeat the same operation for the nodes representing 
clusters obtained during the previous step. The hierarchy continues to grow from 
the top down until the "continue-growth" criterion fails to be met. This criterion 
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requires that the fit between the clusters and their descriptions at every level of 
the hierarchy must be better than at the previous level. 

In order to determine the optimal value of k, we must modify the cluster-
ing quality criterion so that it can be used to compare clusterings with different 
numbers of complexes. Such a criterion must reflect the dependency of the fit 
between the clustering and data on the value of k. As the number of clusters k 
increases, the fit (measured by the negative of sparseness) will likely increase, 
since smaller complexes will have smaller sparseness. On the other hand, in-
creasing k increases the complexity of the clustering and therefore is undesirable. 
A simple criterion that takes into consideration the above trade-off is to require 
the product 

Total sparseness x (k + ß) 

to achieve a minimum value, where ß is an experimentally determined parameter 
balancing the relative effect of the sparseness and the number of clusters k on the 
solution. 

11.6 AN EXAMPLE OF A PRACTICAL PROBLEM: CONSTRUCTING A 
CLASSIFICATION HIERARCHY OF SPANISH FOLK SONGS 

This example presents an application of the above method to the develop-
ment of a classification hierarchy of 100 Spanish folk songs. The folk songs 
were characterized by 22 musicological attributes, listed in Figure 11-12. These 
attributes, as well as other relevant data, were provided by musicologist Pablo 
Poveda, who studied this problem using traditional methods of numerical 
taxonomy [Poveda, 1980]. The results obtained by using the traditional methods 
were not very satisfying, because the generated clusters lacked descriptions, and 
therefore were difficult to interpret. 

The top five levels of the conjunctive hierarchy produced by CLUSTER/2 are 
presented in Figure 11-13. The criterion of clustering quality was to "minimize 
the total sparseness". The number of clusters (k) at each level was 2, to meet 
the requirement of the musicologist. 

The top node of the hierarchy corresponds to the whole collection of 
songs. All the other nodes represent various classes (categories) of songs. The 
description of each class is a conjunctive statement involving selected folk song 
attributes. In Figure 11-13, instead of providing the whole cluster description 
associated with each branch, we show, for simplicity, only the discriminant vari-
ables occurring in the given cluster. As it turned out, all nodes in the hierarchy 
have only one discriminant variable. For example, at the first level, the dis-
criminant variable is the harmonic structure, which takes the value "monophonie" 
in one cluster and "polyphonic" in the other cluster. 

One interesting aspect of the generated hierarchy is that the value sets of 
some variables have been split into ranges. These ranges can be considered as 
new (generalized) values of variables. For example, while producing the second 
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xi 
*2 
χ3 
X4 

*5 
*6 
*7 
*8 
X9 

XI0 
Xll 
*12 
X|3 
X|4 

X|5 
XI6 
X|7 
*!8 
X|9 
x20 
*2I 
*22 

Tonal Range 
Number of Tones 
Degree of Rubato 
Degree of Embellishment 
Degree of Melisma 
Number of Musical Phrases 
Degree of Musical Tension 
Degree of Melodic Line Blending 
Harmonic Structure 
Religious Setting 
Sex of Singers 
Rhythm 
Harmony 
Homophonie 
Instrumental Accompaniment 
Female singer 
Accompanied by Dancing 
A Serenade 
A Love song 
A Solo 
Uses Phrygian Scale 
Panegyric 

»ure 11-12: Variables used to describe 100 Spanish folk s( 

{1-11} 
{1-10} 
{0..5} 
{0.-5} 
{0.-5} 
{0.-5} 
{0-5} 
{0-5} 
{Monophonie, Polyphonic} 
{Religious, Secular} 
{Same Sex, Mixed Sexes} 
{Weak, Strong, Triple-beat} 
{None, Non-Phrygian, Phrygian} 
{Yes, No} 
{Yes, No} 
{Yes, No} 
{Yes, No} 
{Yes, No} 
{Yes, No} 
{Yes, No} 
{Yes, No} 
{Yes, No} 

>ngs. 

level clustering of the monophonie folk songs (the left branch), the range of the 
degree of "rubato" was split into two ranges 0..3 and 4..5, which can be charac-
terized as "low" and "high", respectively. Similar partitioning of value sets was 
performed on the degree of embellishment, the degree of melisma, the tonal 
range, and the number of tones in a song. 

The leaf nodes in the hierarchy shown in Figure 11-13, marked by 
cq,a2v.->aii represent groups of songs, whose complete description consists of 
discriminant variables indicated along the path from the root to the leaf and some 
additional properties generated by CLUSTER/2, but not shown in Figure 11-13. 
For example, the group of songs represented by aj (8 songs) has the following 
complete description: 

OL] = [harmonic structure = monophonie] (discriminant variables 
[rubato = low] [tonal range = low] along the path from 
[type = secular][instruments used = no] the root to leaf aj) 

& 
[no. of distinct tones = 5..8][dance = no] (additional properties 
[panegyric = no][no. of phrases = 1. .2] * generated by the program 
[melisma = 0..2][tension = 1 ..3] at the leaf node) 

The hierarchy in Figure 11-13 is a simple and meaningful classification of 
the folk songs. The classes are easy to interpret due to the provided descrip-
tions. If the clustering quality criterion LEF is changed (by selecting different 
elementary criteria, a different order of the criteria, and/or different tolerances for 
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Figure 11-13: A classification hierarchy of Spanish folk songs produced by CLUSTER/2. 

them) the generated hierarchy may be different. This way the algorithm can 
generate several alternative hierarchies. The ultimate judgment of which one is 
the most appropriate for the given application is made by the data analyst. 

CLUSTER/2 has also been applied to problems in other domains. One ex-
periment, in the field of agriculture, was to structure a collection of 47 cases of 
soybean diseases. Each case was described by a vector of 35 components, 
representing symptoms and characterizations of the diseased plants. CLUSTER/2 
"re-discovered" disease classes known to plant pathologists, and provided a 
description of each class which closely matched the known symptoms of the cor-
responding diseases [Michalski & Stepp, 1981]. 

11.7 SUMMARY AND SOME SUGGESTED EXTENSIONS OF THE METHOD 

The described method for conjunctive conceptual clustering determines a 
hierarchy of classes characterizing a collection of objects. Each class has a 
description in the form of a single conjunctive statement, logically disjoint from 
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descriptions of other classes with the same parent node in the hierarchy, and op-
timized according to a certain clustering quality criterion. The major difference 
between this method and methods of numerical taxonomy lies in its extension of 
the concept of the measure of similarity into a more general notion of 
"conceptual cohesiveness". Such a measure takes into consideration not only the 
properties of individual objects, but also their relationship to other objects and, 
most importantly, their relationship to some predetermined concepts characteriz-
ing object collections. 

This work represents our early results on the subject of conceptual cluster-
ing, and, naturally, many problems remain to be solved. Here are some inter-
esting topics for further research: 

• In this method, the variables for describing objects are assumed to be 
determined a priori, and may not be the most appropriate ones for cluster-
ing the given objects. A desirable extension of the method would be to 
implement constructive induction mechanisms able to determine new, more 
relevant variables during clustering. The use of such variables could lead 
to simpler and/or more interesting clusterings. A closely related problem 
of deriving new variables for learning generalized descriptions of concepts 
from their examples is discussed in Chapter 4. 

• The presented method describes object classes solely by conjunctive state-
ments. Although a conjunctive statement is one of the most common 
descriptive forms used by humans, it is nevertheless a quite limited form. 
An interesting extension of the work would be to use descriptions which 
involve additional operators, such as logical implication or equivalence. 

• The purpose of building classifications is often to simplify decision making 
by collecting into one class those situations, observations, or objects that 
require a similar decision or action. To do this well, the criterion of 
clustering quality should include knowledge of the goals, purposes, and in-
tentions associated with the problem under investigation. 

• In the method described, the classes are organized into a hierarchy. The 
links of the hierarchy represent just the generalization (set inclusion) 
relationship between the parent and child nodes. The method could be ex-
tended to generate a graph structure (a "classification network") in which 
links might also represent other relationships between classes. For ex-
ample, within such a graph, some links might denote properties that are 
inherited from parent nodes, and other links might denote properties that 
differentiate between sibling classes. 

• For applications involving clustering visual information, an interesting ex-
tension would be to use as conceptual building blocks various standard 
geometrical shapes, such as circles, ellipses, triangles, rectangles, and so 
on, and to allow nondisjoint clusterings. 

• The problems which are suitable to the CLUSTER/2 algorithm involve objects 
which can be sufficiently described by variable-value pairs, which are 
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those objects whose internal structure is irrelevant to the problem at hand. 
When the internal structure of objects is to be considered (when relevant 
variables include relationships between features of object subparts), the 
techniques presented here are not adequate (although still applicable, by 
transforming the structural properties into propositional attributes). An 
adequate method for clustering such objects requires a richer descriptive 
language, such as first-order predicate logic or its extension—for example, 
the annotated predicate calculus described in Chapter 4 of this book. 
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ABSTRACT 

A key problem in learning by being told is operationalization: the develop-
ment of procedures to implement advice that is not directly executable by the 
learner, such as the advice "avoid taking points" in the card game hearts. One 
way to operationalize such advice is to reformulate it in terms of a general "weak 
method", such as heuristic%search. This chapter is a case study in the mechani-
cal mapping of domain-specific problems onto general methods, using as a 
detailed example the derivation of a heuristic search procedure for the advice 
"avoid taking points." The derivation consists of a series of problem transfor-
mations leading from the advice statement to an executable procedure. The 
operators used to perform these transformations are implemented in a program 
called FOO as domain-independent transformation rules that access a knowledge 
base of task domain concepts. Some of the rules construct a crude generate-and-
test procedure; others improve it by deriving new heuristics based on domain 
knowledge and problem analysis. To test its generality, FOO was also used to 
operationalize a music composition task; many of the same rules proved ap-
plicable. 

12.1 INTRODUCTION 

There are many kinds of learning by being told, spanning a broad spectrum 
of sophistication. A trivial way for a machine to "learn" a task is by reading in 
a program to perform it. A potentially much more useful way is by accepting 
high-level advice. For example, one might learn the card game hearts by being 
told the rules of the game and some advice on how to win, such as "avoid taking 
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points." A central problem with this mode of learning arises when, owing to the 
structure of the task and the environment in which it is performed, the advice is 
non-operational—not directly executable by the learner. For example, the rules 
of hearts make it illegal to avoid taking points by simply refusing to take tricks 
with points; thus the advice must be incorporated into the choice of what card to 
play. In order to be operational, advice must be executable using available data, 
but taking points depends on the outcome of the trick, which is unknown at card-
choosing time. The process of making advice operational is called 
operationalization, and is the topic of this chapter, which is based on a more 
detailed discussion available in [Mostow, 1981]. 

The "advice" to be operationalized need not come solely from an external 
tutor. It might be gleaned from experience and observation, as in the knowledge 
refinement learning paradigm described in Chapter 8 of this book. To illustrate 
this paradigm, consider how a hearts-playing program might be developed. The 
heuristic "avoid taking points" is initially provided by an advisor, or perhaps dis-
covered by analyzing lost games and attributing the losses to having taken 
points. The heuristic is converted into an operational plan, like "play a low 
card", so it can be incorporated into the program. Experience with the revised 
program reveals weaknesses in this plan, such as being forced to take lots of 
points after playing all one's low cards in the first part of the game. Analysis of 
cases where the plan failed to satisfy the advice suggests additional heuristics to 
remedy bugs in the plan, such as "get rid of your high cards when it is safe to 
do so." These heuristics are then operationalized, the iterative learning process 
continues, and the program's performance improves. 

Note that the task domain in this example has multiple agents, incomplete 
information, and probabilistic processes; thus operationalization involves issues 
not addressed in planners for domains with a single agent who has complete in-
formation about the state of the world. Moreover, it may be impossible to 
produce a procedure that always satisfies the advice—there is no infallible way 
to avoid taking points. Thus operationalization differs from conventional notions 
of automatic programming by its heuristic nature: the procedures it produces 
may not always work. 

In general, operationalization converts knowledge about a task domain into 
procedures useful in performing the task. In this sense, AI researchers are 
engaged in operationalization when they convert domain knowledge into intel-
ligent programs. Typically this involves taking a problem expressed in the lan-
guage of a particular task domain, together with knowledge about the domain, 
and reformulating them to fit a general computational method like heuristic 
search. This process can be viewed as mapping the problem into a call on a 
general procedure for the method, by finding suitable values for the arguments 
(which may include generators, tests, and search orderings). 

Previous research has made some progress toward getting computers to do 
this automatically. Ne well [1969] formalized the "weak methods" of generate-
and-test, hill-climbing, heuristic search, matching, and means-end analysis as 
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data-flow graphs composed of generators and tests. Moore [1971] encoded the 
data-flow graph for heuristic search as a MERLIN schema and represented the 
Logic Theorist program [Newell et al., 1957] as an operational "further 
specification" of it (MERLIN could prove theorems by executing it), but the 
generators and tests were derived from the LT specifications by hand. Tappel 
[1980] used transformations on data-flow graphs to derive efficient algorithms for 
generating prime numbers and finding shortest paths through a graph. Perhaps 
the most advanced effort so far toward automatic application of AI techniques is 
the UNDERSTAND program [Simon, 1977], which reads an English description of 
the Tower of Hanoi problem and operationalizes it as a means-end analysis 
problem by building an appropriate state space representation and operators. 

The central motivation of this chapter is the mechanization of AI: how can 
the "knowledge engineering" process of mapping a domain-specific problem onto 
a general AI method be automated? This theme is illustrated by means of a 
detailed example in which the hearts advice "avoid taking points in the current 
trick" is operationalized as a heuristic search problem. This process is modeled 
as a sequence of transformations leading from an initial representation of the ad-
vice to a heuristic search procedure that examines different scenarios for a trick 
to see whether playing a given card might lead to taking points. The transfor-
mations are performed by some of over 200 rules implemented in a program 
named FOO.1 (Note that "heuristic search" refers throughout the chapter to the 
kind of procedure constructed using FOO, not to the process of finding the trans-
formation sequence!) A briefly-described second example tests the generality of 
these rules by using them to operationalize a music composition task as a heuris-
tic search problem. (The dissertation on which this chapter is based [Mostow, 
1981] contains details omitted here and treats several other operationalization 
methods.) The emphasis is not on the heuristic search method itself (hereafter 
abbreviated HSM), but on the process whereby advice is mapped onto the 
method. In short, although learning is typically thought of as knowledge ac-
quisition, the learning problem treated in this chapter is knowledge transforma-
tion: the conversion of advice into an executable procedure. 

The rest of the chapter is organized as follows. Section 12.2 discusses the 
kinds of knowledge required to operationalize "avoid taking points" as a heuristic 
search problem. Section 12.3 defines a generic heuristic search procedure and 
its schematic representation in FOO. Slots in the schema correspond to problem-
specific components of this procedure, such as the tests used to prune paths. 
Section 12.4 describes the instantiation of this schema for the "avoid taking 
points" example, and the exhaustive search procedure it specifies. Section 
12.5 shows how this procedure is refined by FOO using domain knowledge and 
analysis. Section 12.5.7 presents highlights of the music example. Section 
12.6 evaluates the generality of the approach. Section 12.7 summarizes the sig-

•For "First Operational Operationalizer". 
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nificance of the results and suggests areas for further research. The Appendix to 
this chapter lists the rules mentioned in the example. 

12.2 KINDS OF KNOWLEDGE USED 

Reformulating "avoid taking points" as a heuristic search problem requires 
several things. First, some problem representation is needed to represent the 
initial and transformed versions of the advice. In FOO, "avoid taking points in 
the current trick" is represented as 

(AVOID (TAKE-POINTS ME) (TRICK)) 

This can be paraphrased as: "Avoid letting player ME (the recipient of the advice) 
take points during the trick." Some constructs of this LiSP-like language are 
defined below: 

• (achieve P) denotes the goal of satisfying the predicate P. 
• (during s e) is true if event e occurs during scenario s. 
• (Φ P Q) is true if P implies Q. 
• (exists x S Px) is true if S contains an element that satisfies P. 
• (forall x S Px) is true if every element of S satisfies P. 
• (set-of x S Px) denotes the set of elements of S that satisfy P. 
• (the x S Px) denotes the unique element of S that satisfies P. 
• (for-some x S Ex) denotes any event Ex such that x is in S. 
• (each x S Ex) denotes the event sequence Ex l? ..., Exn, where S = 

{χ,, ..., xn}. 
• (choose x S Ex) denotes choosing an element x from S and doing Ex. 
• (scenario ej ... en) denotes the sequence of events ej , ..., en. 
• (project f S) denotes the sequence f(xj), ..., f(xn), where S = x l5 ..., xn. 
• (first S) denotes Xj, where S = x1? ..., xn. 
• (# S) denotes the size of the set S. 
• (prefix S xk) denotes the sequence Xj, ..., xk, where S = x1? ..., xn. 
• (prefixes-of S) denotes the set {(prefix S Xj), ..., (prefix S xn)}, where S = 

X l » ···> x n -

Reasoning about the problem requires domain knowledge. To understand 
hearts advice, one must understand the terms used to express it, the actions 
available for implementing it, and the rules of the game. Most of FOO's 
knowledge about hearts is encoded as definitions of concepts used in the game. 
The concepts are represented as functions. Concepts used in the advice "avoid 
taking points" and later in the chapter are defined below: 

• "Avoid an event throughout a scenario means try not to let it occur during 
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the scenario."2 

AVOID = (LAMBDA (ES) (ACHIEVE (NOT (DURING S E)))) 

• "Take points means take a point card." 

TAKE-POINTS = (LAMBDA (P) 
(FOR-SOME C (POINT-CARDS) (TAKE PC))) 

POINT-CARDS = (LAMBDA () 
(SET-OF C (CARDS) (HAS-POINTS C))) 

• "A trick is a scenario in which each player plays a card and then the win-
ner takes the trick." 

TRICK = (LAMBDA ( ) 
(SCENARIO (EACH P (PLAYERS) (PLAY-CARD P) ) 

(TAKE-TRICK (TRICK-WINNER)))) 

The PLAYERS function is defined as the sequence of players in the current 
trick. 

• "To play a card, a player chooses from his legal cards." 

PLAY-CARD = (LAMBDA (P) 
(CHOOSE (CARD-OF P) (LEGALCARDS P) 

(PLAY P (CARD-OF P ) ) ) ) 

The choice variable is named ( CARD-OF P ) to distinguish between 
cards played by different players; this name is used in defining other con-
cepts, e.g., the cards played in the trick: 

CARDS-PLAYED = (LAMBDA () (PROJECT CARD-OF (PLAYERS))) 

• "The player leading a trick can play any non-heart in his hand, and can 
lead a heart if hearts are broken or he has only hearts. The other players 
must follow suit if they can." 

LEGALCARDS = (LAMBDA (P) (SET-OF C (CARDS) (LEGAL P C ) ) ) 

2This particular concept is of course not specific to hearts, but one might define it differently in 
another domain. 
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LEGAL = (LAMBDA ( P C ) 
(AND [HAS P C] 

[Φ (LEADING P) 
(OR [CAN-LEAD-HEARTS P] 

[NOT (IN-SUIT C (HEARTS))]); 
[Φ (FOLLOWING P) 

(OR [VOID P (SUIT-LED)] 
[IN-SUIT C (SUIT-LED)])])) 

"The suit led is the suit of the first card played in the trick." 

SUIT-LED = (LAMBDA () (SUIT-OF (FIRST (CARDS-PLAYED)))) 

• "Taking a trick means taking all the cards played in it." 

TAKE-TRICK = (LAMBDA (P) 
(EACH C (CARDS-PLAYED) (TAKE P C ) ) ; 

• "The player of the highest card in the suit led takes the trick." 

TRICK-WINNER = 
(LAMBDA () 

(THE P (PLAYERS) 
( = (CARD-OF P) 

(HIGHEST-IN-SUIT-LED (CARDS-PLAYED))))) 

HIGHEST-IN-SUIT-LED -
(LAMBDA (S) 
(THE C S 

(AND [IN-SUIT C (SUIT-LED)] 
[NOT (EXISTS X S (HIGHER-IN-SUIT X C))]))) 

HIGHER-IN-SUIT = (LAMBDA (Cl C2) 
(AND [HIGHER Cl C2] 

[= (SUIT-OF Cl) (SUIT-OF C2)])) 

• "A sequence of cards has points if it includes one or more point cards.' 

HAVE-POINTS = (LAMBDA (S) (EXISTS C S (HAS-POINTS C)) ] 

• "A card is out if an opponent has it." 

OUT = (LAMBDA (C) 
(EXISTS P (OPPONENTS-OF ME) (HAS P C) 
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OPPONENTS-OF = (LAMBDA (PI) 
(SET-OF P2 (PLAYERS) (NOT ( = P2 P I ) ) ) ) 

• "A player with no cards in a suit is void in that suit." 

VOID = (LAMBDA (P SUIT) 
(NOT (EXISTS C (CARDS-IN-HAND P) 

(IN-SUIT C SUIT)))) 

CARDS-IN-HAND = (LAMBDA (P) 
(SET-OF C (CARDS) (HAS P C ) ) ) 

Inference methods are used to reason about the problem on the basis of 
such domain knowledge. In FOO, these methods are represented as problem 
transformation rules. Each rule has a left-hand pattern, a right-hand pattern, and 
a condition. An expression that matches the left-hand pattern and satisfies the 
condition can be rewritten by filling in the right-hand pattern. Some rule con-
ditions are tested by simple procedures; others generate subproblems which are 
themselves solved by a sequence of rules. (The details of FOO's rule represen-
tation are given in [Mostow, 1981]; for readability, this chapter presents rules 
informally.) 

FOO's rules are general, but some of them access its domain knowledge, 
for example: 

RULE 124: (f e, ... en) —» e \ where f is defined as (lambda (x, ... xn) e) 
and e' is the result of substituting e, ... en for x, ... xn throughout e 

Unfold the definition of a concept in the problem. [Darlington & Burstall, 1976] 

The notation (f tx ... en) —> e' denotes rewriting an expression of the form 
(f ej ... en) as e', where (f ej ... en) denotes the function f applied to the ar-
guments ej ... en. RULE 124 is used to unfold the definition of AVOID in the 
first step of the "avoid taking points" example: 

(AVOID (TAKE-POINTS ME) (TRICK)) 
[UNFOLD by RULE124] > 

(ACHIEVE (NOT (DURING (TRICK) (TAKE-POINTS ME)))) 

The resulting expression means "try not to let player ME take points during 
the trick." Other rules are introduced later in the context of their use, and are 
listed in the Appendix for reference. 

I provided the control knowledge required for operationalization by hand-
guiding the process. Thus the example was generated interactively: I encoded 
the initial advice and chose the sequence of rules that successively transformed it 
into an operational procedure. At each point in the derivation, I selected a sub-
expression of the problem and a rule to apply to it, and FOO applied the rule. In 
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short, FOO provides a representation for operationalization problems, and a set of 
problem transformation rules, but lacks a problem solver for solving 
operationalization problems on its own. Given the complexity of such 
problems—the "avoid taking points" example is over 100 steps long, and many 
different rules could have been applied at each step—automating the control of 
the operationalization process is a challenging problem. An approach to it is 
proposed in [Mostow, 1981]. 

To map "avoid taking points" onto a general method like heuristic search, 
we need (at least implicitly) some representation of the method. The heuristic 
search method can be represented as a data-flow graph [Newell, 1969], in which 
the boxes represent generators and tests to be filled in for the particular problem. 
FOO's representation of HSM is described in more detail in the next section. 

Finally, operationalizing a problem in terms of a method requires 
knowledge about how to map the problem to the method. This kind of 
knowledge is represented in FOO as transformation rules. Some of these rules 
construct a crude generate-and-test search for a given problem by instantiating 
components of the general data-flow graph. For example, the search space for 
"avoid taking points in the current trick" is taken to be the set of possible card 
sequences for the trick. The initial search procedure tests each of these se-
quences to see if it will cause player ME to take points. Other rules refine this 
procedure into a more efficient one based on properties of the problem and the 
task domain. For instance, sequences in which player ME's card is lower than an 
opponent's need not be tested, since they cannot cause player ME to win the 
trick. Applying FOO's instantiation and refinement rules requires both domain 
knowledge and reasoning methods. 

12.3 A SLIGHTLY NON-STANDARD DEFINITION OF HEURISTIC SEARCH 

In order to formulate "avoid taking points" as a heuristic search problem, 
FOO needs some representation of HSM. Newell [1969] described the general 
problem statement for HSM as follows: 

Given: a set {*}, the problem space; 
a set of operators {q} with range and domain in {JC}; 
an initial element, x0; 
a desired element, xd\ 

Find: a sequence of operators, q]9 q2, ..., qn, such that they 
transform x0 into xd\ 

Intin-l [··· <1ι(*ο) -H = xd 
He described the heuristic search procedure as follows: 

The initial element x0 is the initial current position; operators are 
selected and applied to it; each new element is compared with xd to see 
whether the problem is solved; if not, it is added to a list of obtained posi-
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tions (also called the "try list" or the "subproblem list"); and one of these 
positions is selected from which to continue the search... The search is 
guided (the tree is pruned) by appropriate selection and rejection of 
operators and elements. 

In FOO's representation of HSM, everything is expressed in terms of 
(operator) sequences, called paths; the search procedure extends a path by ex-
plicitly appending an operator to it. The fact that operators map one state to 
another is implicit in the tests applied to paths. In other words, the search pro-
cedure does not apply operators to states; this eliminates the need to maintain an 
explicit state description. This procedure can be described by modifying 
NewelFs description (differences are underlined): 

The null path is the initial current position; choice elements are 
selected and appended to it; each new path is tested to see whether the 
problem is solved; if not, it is added to a list of paths; and one of these 
paths is selected from which to continue the search. The search is guided 
by appropriate selection and rejection of choice elements and paths. 

The choice elements need not be operators; this procedure applies to any 
problem of the form: 

Find a sequence of choices satisfying a given criterion. 

As an example, consider how this procedure appHes to the "eight queens" 
problem: place eight queens on a chess board in such a way that none of them 
is attacking any of the others, that is, no two are on the same rank, file, or 
diagonal.3 Here the choice elements are squares on a chess board. The null path 
corresponds to a bare board. A path is a sequence of n squares corresponding to 
the positions of the first n queens placed. A simple algorithm is as follows: 

1. Initially the path set contains only the null path (empty board). 
2. Choose a path from the path set. 
3. Extend it by one square (that is, place another queen). 
4. Test the path to see if the problem is solved (that is, if the path consists of 

eight distinct squares, none of which are on the same rank, file, or 
diagonal). 

5. If not, add the path to the path set and go to step 2. 
This crude generate-and-test algorithm has no heuristics: it just generates 

sequences of squares and tests each sequence to see if it is a solution. The algo-
rithm can be made more efficient by incorporating various heuristics. Paths that 
cannot lead to a solution can be pruned from the search. For example, a path 
with two queens on the same rank, file, or diagonal can be pruned from the path 
set, since it cannot possibly be extended into a solution. The search can be or-

3A program to solve this problem is derived by transformational implementation in [Balzer, 1981]. 



376 CHAPTER 12: MACHINE TRANSFORMATION OF ADVICE 

dered so as to find a solution faster. For example, one might try squares close 
to the edge of the board before squares in the center, since the diagonals through 
them contain fewer squares; this strategy leaves more squares legal for sub-
sequent queens. Finally, some of the solution constraints can be compiled out of 
the search. For example, placing the nth queen on the nth rank guarantees that 
no two queens will be placed on the same rank, and prevents generating the 
same board configuration via more than one path, without eliminating any poten-
tial solution from the set of generated configurations. 

In general, the first step in operationalizing a heuristic search problem is to 
identify the sequence of choice points involved and the set of admissible alter-
natives at each one, and to express the solution criterion as a function of the 
choice sequence. This provides enough information to specify an executable but 
inefficient (combinatorially explosive) generate-and-test search procedure, whose 
data-flow graph has the form shown in Figure 12-1. This procedure is then 
refined into a genuine heuristic search, shown in Figure 12-2, by using con-
straints on the overall solution as early as possible in the search to order or reject 
paths, to order or filter the alternatives at each choice point, and even to reduce 
the depth or breadth of the search space itself. 

♦ ■ INITIAL PATH 

SOLUTION 

TEST S solution 

CHOICE SET 
(function of path) 

list _ _ _ _ _ ^ 

Figure 12-1: Generate-and-Test Procedure 

The components of the generic heuristic search procedure that must be 
filled in to solve a particular problem make up FOO's HSM schema and are 
described below. 
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♦ ■ INITIAL PATH 

CHOICE SET 
(function of path) [ 

Figure 12-2: Generic Heuristic Search Procedure 

• The search starts with a single path, the initial-path, typically the null se-
quence. 

• The alternative extensions for a path are given by the choice-set function. 
Since the choice set may vary at different points in the search, the function 
takes a choice point as its argument. 

• The order in which alternative choice elements are generated is controlled 
by a step-order predicate. Elements that satisfy this predicate are con-
sidered first. This order may vary at different choice points, so the predi-
cate takes a choice point index as a second argument. 

• The choice set is filtered by a step-test predicate; thus the extensions to a 
given path are enumerated by a generate-and-test process, with the choice-
set function as generator and the step-test predicate as test. The step-test 
also takes a choice point index as a second argument. 

• The order in which paths are selected for extension is controlled by a path-
order predicate on paths; paths satisfying this predicate are considered first. 

• A newly generated path must satisfy a path-test in order to be added to the 
active list. 

• A solution path must satisfy both a solution-test based on the search 
criterion, and a completion-test that checks if the path covers the complete 
sequence of choice points. 
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12.4 INSTANTIATING THE HSM SCHEMA FOR A GIVEN PROBLEM 

There are several steps involved in translating a particular problem like 
"avoid taking points" into the language of the general HSM problem statement: 

1. The problem must be recognized as one of finding a sequence of choices 
satisfying some condition. If FOO's rule for recognizing such problems 
does not match the initial problem description, the problem must be refor-
mulated to fit the rule. 

2. To formulate the search space for the problem, it is necessary to recognize 
that taking points in a trick depends on the cards chosen by all the players; 
this choice sequence defines the search space. 

3. The search criterion is then reformulated as a function of this sequence. 
The reformulated criterion tests whether player ME's card is the highest 
card in the suit led. 

4. Given the choice sequence and search criterion for the problem, the HSM 
schema can be instantiated to specify a generate-and-test search procedure. 

5. The procedure must be made executable on the data available to player ME. 

12.4.1 Mapping a Problem onto the HSM Problem Statement 

The first step in mapping "avoid taking points" onto the HSM problem 
statement is to reformulate it so the applicability of HSM can be recognized: 

(AVOID (TAKE-POINTS ME) (TRICK)) 
[unfold definition of AVOID by RULE124] > 

(ACHIEVE (NOT (DURING (TRICK) (TAKE-POINTS ME)))) 

This reformulated version means "try not to let player ME take points 
during the trick." It fits FOO's rule for recognizing potential heuristic search 
problems: 

RULE306: Use heuristic search to evaluate predicate on a scenario where choices are made. 

FOO is able to identify the expression (DURING (TRICK) (TAKE-
POINTS ME) ) as such a predicate by examining the definition of the scenario 
TRICK, which contains a sequence of PLAY-CARD events in which each player 
chooses a legal card and plays it. FOO's actual rule for recognizing potential 
HSM problems looks more like 

RULE306: (P ... e ...) 
—> (HSM with (problem : (P ... e ...))—predicate to be evaluated 

(object : e)—scenario 
(choice-seq : (choice-seq-of e)))—choices made in scenario 

if e contains an event sequence with choices in it 

RULE306 suggests using HSM to evaluate (DURING (TRICK) 
(TAKE-POINTS ME) ), that is, to try to find a sequence of choices satisfying 
it: 



MOSTOW 379 

(DURING (TRICK) (TAKE-POINTS ME)) 
[by RULE306] > 

HSM1 
(HSM1 <- PROBLEM : (DURING (TRICK) (TAKE-POINTS ME))) 
(HSM1 «- OBJECT : (TRICK)) 
(HSM1 <- CHOICE-SEQ : (CHOICE-SEQ-OF (TRICK))) 

This notation means that the expression (DURING (TRICK) (TAKE-
POINTS ME) ) is to be evaluated by HSH1, an instance of HSM; RULE306 
fills in three of HSM1's components. The notation (X <— Y : Z) means "the 
value for the Y component of schema X is filled in as Z." 

12.4.2 Finding the Sequence of Choices that Affect the Predicate 

To formulate a search procedure for the problem, we must identify the 
search space: the points where choices are made, the alternatives at each point, 
and the tests a solution path (sequence of choices) must satisfy. The sequence of 
choice points is extracted from the definition of TRICK: 

(CHOICE-SEQ-OF (TRICK))) 
[by RULE124, analysis] > 

(EACH PI (PLAYERS) 
(CHOOSE (CARD-OF PI) 

(LEGALCARDS PI) 
(PLAY PI (CARD-OF PI)))) 

That is, the choices made in a trick consist of each player choosing a legal 
card to play. Some other information about the search space can now be ex-
tracted from the choice sequence description: 

(HSMl <e- CHOICES : (CARDS-PLAYED)) 
(HSM1 <- INDICES : (PLAYERS)) 
(HSMl <- INDEX : PI) 
(HSMl <- CHOICE-SETS : (LAMBDA (PI) (LEGALCARDS PI))) 
(HSMl <- INITIAL-PATH : NIL) 
(HSMl «- COMPLETION-TEST : 

(LAMBDA (PATH) (= (# PATH) (# (PLAYERS))))) 

Some of the HSM components filled in here (CHOICES, INDICES, and 
INDEX) are not used in the search procedure itself—they provide intermediate 
information used by rules that instantiate other schema components. The value 
(CARDS-PLAYED) of the CHOICES component defines the search space in 
terms of a non-deterministic sequence of chosen objects, namely the sequence of 
cards played. The choice points are indexed by player, and each player's 
CHOICE-SET consists of his or her legal cards. The COMPLETION-TEST 
specifies that a solution sequence must include a card for each player. 
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It remains to identify the test that a solution path must satisfy. That is, 
which card sequences will cause player ME to take points? The next section 
shows how this SOLUTION-TEST is found. 

12.4.3 Reformulating the Search Criterion in Terms of the Choice Sequence 

The search space has now been identified as the possible card sequences 
for the trick. The problem of reformulating the search criterion as a test on such 
sequences is represented as: 

(REFORMULATE (DURING (TRICK) (TAKE-POINTS ME)) 
(CARDS-PLAYED)) 

It means answering the question, "How does my taking points depend on 
the cards played in the trick?" Reformulating the search criterion as a function of 
(CARDS-PLAYED) takes over 40 steps. This process, summarized below, il-
lustrates some of the reasoning methods encoded as rules in FOO. 

First the search criterion is elaborated by unfolding the definition of 
TRICK: 

(DURING (TRICK) (TAKE-POINTS ME)) 
[UNFOLD by RULE124] > 

(DURING (SCENARIO 
(EACH PI (PLAYERS) (PLAY-CARD PI)) 
(TAKE-TRICK (TRICK-WINNER))) 

(TAKE-POINTS ME)) 

This expression is analyzed to determine when player ME will take points. 
Case analysis shows that if player ME takes points, it occurs either while cards 
are being played or when the winner takes the trick. The first case—taking 
points when cards are played—is eliminated by determining that a TAKE-
POINTS event cannot occur during a sequence of PLAY-CARD events. This is 
accomplished by performing an intersection search through FOO's knowledge 
base of concept definitions and finding that TAKE-POINTS and PLAY-CARD 
have no sub-events in common. (The sub-events of an event are the action con-
cepts used to define it.) To simplify the second case—taking points when the 
winner takes the trick—the definitions of TAKE-TRICK and TAKE-POINTS 
are unfolded so as to express both arguments to DURING in terms of the same 
function TAKE: 

(DURING [TAKE-TRICK (TRICK-WINNER)] [TAKE-POINTS ME]) 
[by RULE124, analysis] > 

(EXISTS Cl (CARDS-PLAYED) 
(EXISTS C2 (POINT-CARDS) 

(DURING [TAKE (TRICK-WINNER) Cl] [TAKE ME C2]))) 
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FOO can then partial-match (TAKE (TRICK-WINNER) Cl) against (TAKE 
ME C2) by equating (TRICK-WINNER) = ME and Cl = C2. The latter 
equality permits C2 to be eliminated, producing: 

(AND [HAVE-POINTS (CARDS-PLAYED)] 
[= (TRICK-WINNER) ME]) 

That is, player ME can take points only by taking a trick in which a point card is 
played. The requirement that player ME take the trick is reformulated as a predi-
cate on ( CARDS-PLAYED ) by analyzing the definition of TRICK-WINNER: 

( = (TRICK-WINNER) ME) 
[by RULE124, analysis] > 

(= (CARD-OF ME) (HIGHEST-IN-SUIT-LED (CARDS-PLAYED))) 

That is, one wins a trick by playing the highest card in the suit led. At 
this point, the original search criterion (DURING (TRICK) (TAKE-POINTS 
ME ) ) has been re-expressed in terms of ( CARDS-PLAYED ) : 

(AND [HAVE-POINTS (CARDS-PLAYED)] 
[= (CARD-OF ME) (HIGHEST-IN-SUIT-LED (CARDS-PLAYED))]) 

The desired solution-test can now be filled in: 

(HSM1 <- SOLUTION-TEST : 
(LAMBDA (CARDS-PLAYED1) 

(AND [HAVE-POINTS CARDS-PLAYED1] 
[ = (CARDS-PLAYED1 ME) 

(HIGHEST-IN-SUIT-LED C A R D S - P L A Y E D 1 ) ] ) ) ) 

This test is a predicate on a card sequence, denoted by the lambda variable 
CARDS-PLAYED 1. A sequence is treated as a function from an index to a 
value; thus ( CARDS-PLAYED 1 ME) denotes the card played by player ME. 
The test is satisfied if CARDS-PLAYED 1 includes one or more point cards and 
player ME's card is the highest in the suit led in the sequence. 

Default values for the step and path constraints are filled in at the same 
time: 

(HSMl <- PATH-TEST : (LAMBDA (CARDS-PLAYED1) T ) ) 
(HSM1 <- PATH-ORDER : (LAMBDA (CARDS-PLAYED1) N I L ) ) 
(HSMl <- STEP-TEST : (LAMBDA ( P I C l ) T) ) 
(HSMl <- STEP-ORDER : (LAMBDA ( P I C l ) N I L ) ) 
(HSMl <- PATH : CARDS-PLAYED1 ) 

These defaults provide conservative values that may be refined later based 
on additional knowledge. Thus the path list and the choice sets are initially un-
pruned and unordered. 
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12.4.4 Making the Choice Set Evaluable 

The HSM schema has so far been instantiated as follows (omitting com-
ponents used only during the instantiation process itself)· 

(HSMl WITH 
(INITIAL-PATH : NIL) 
(CHOICE-SETS : (LAMBDA (PI) (LEGALCARDS PI))) 
(STEP-ORDER : (LAMBDA (PI Cl) NIL)) 
(STEP-TEST : (LAMBDA (PI Cl) T)) 
(PATH-ORDER : (LAMBDA (CARDS-PLAYED1) NIL)) 
(PATH-TEST : (LAMBDA (CARDS-PLAYED1) T)) 
(SOLUTION-TEST : 

(LAMBDA (CARDS-PLAYED1) 
(AND [HAVE-POINTS CARDS-PLAYED1] 

[= (CARDS-PLAYED1 ME) 
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)]))) 

(COMPLETION-TEST : 
(LAMBDA (PATH) (= (# PATH) (# (PLAYERS)))))) 

This defines a generate-and-test search. Repeatedly, a card sequence 
(starting with the null INITIAL-PATH) is selected from the active path list and 
extended by a card chosen from the legal cards of the next player in the se-
quence. A sequence that passes the COMPLETION-TEST and SOLUTION-
TEST satisfies the search criterion, since it will cause player ME to take points. 

This generate-and-test search is not quite operational, because the generator 
function (LAMBDA (PI) (LEGALCARDS P I ) ) ) is generally unevaluable: 
player ME cannot enumerate an opponent's legal cards by direct observation. 
(Detecting this problem automatically would require a model that predicts what 
information will be available to player ME at a given point in the game.) The 
problem is solved by expanding the choice set to the set of possibly legal cards, 
where a card is "possibly legal" for PI unless player ME specifically knows 
otherwise: 

(LEGALCARDS PI) 
[by RULE124, RULE318] > 

(SET-OF Cl (CARDS) (POSSIBLE (LEGAL PI Cl))) 

This transformation is made by 
RULE318: P —> (possible P), where (possible P) is true unless P is known to be false. 

The revised generator function is évaluable but too unconstrained: the en-
tire deck of cards will be considered as possible choices for each player unless 
effective tests can be found that reject impossible choices. The more tests used, 
the fewer impossible scenarios considered. Omitting a test may result in con-
sidering as "possible" a scenario that could be ruled out based on available data. 
This could lead to the erroneous conclusion that playing a card could cause 
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player ME to take points when in fact it could not.4 

To find such tests, FOO first unfolds the definition of (LEGAL PI C l ) , 
the first conjunct of which is (HAS PI C l ) : PI must have Cl to be able to 
play it. Since player ME cannot inspect opponents' hands, this conjunct is not 
directly évaluable, so the following rule applies: 

RULE319: P -* (P ; (φ Q when R)). 
where Q is a necessary condition for P when R holds 

This rule is useful when the condition P cannot be evaluated directly. 
Here (P ; (Φ Q when R)) indicates an annotation (Φ Q when R) attached to the 
expression P, meaning that Q is a necessary condition on P whenever R holds. 
Such Q and R are found by the following strategy: 

To find a necessary condition for P(ej ... en), 
Find a predicate Q defined (directly or indirectly) in terms of P, and 
Find Xj ... xk that reduce the expression P(ej ... en) Φ Q(xj ... xk) to a simple 
condition R. 

To find necessary conditions on (HAS PI C l ) , FOO searches its knowledge 
base for predicates defined in terms of HAS. One such predicate is OUT. The 
expression (=> (HAS PI Cl ) (OUT X)) reduces to (IN PI 
(OPPONENTS-OF ME) ) for X = Cl . That is, card Cl must be out in order 
for an opponent PI to have it. Even if one cannot tell whether a specific op-
ponent has a given card, one can tell that the card is out if one does not have it 
oneself and it has not been played. (This fact is derived in FOO using a 
generalization of the pigeon-hole principle [Mostow, 1981].) Thus player ME 
can evaluate ( OUT Cl ) and use it as a necessary condition for (HAS PI Cl ) 
whenever (IN PI (OPPONENTS-OF ME) ) holds. This fact is attached to 
(HAS PI Cl) as an annotation: 

[by RULE319, a n a l y s i s ] > 
(HAS PI Cl) <-
; => (OUT Cl) WHEN (IN PI (OPPONENTS-OF ME)) 

I assume a run-time evaluation mechanism that uses such annotations. To 
evaluate (HAS PI Cl) when PI Φ ME, player ME would check (OUT C l ) . 
If (OUT Cl) is false, PI does not have Cl and cannot play it. This prevents 
consideration of scenarios in which an opponent plays a card held by player ME 
or played earlier. 

Another predicate defined (indirectly) in terms of HAS is VOID. This 
leads to the observation that player PI cannot follow suit when void: 

4The search could be constrained even further by considering only plausible scenarios rather than all 
possible scenarios. This would require knowledge of other players' goals so as to predict their likely 
behavior, but FOO lacks an explicit goal model. 
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[by RULE319, a n a l y s i s ] > 
(HAS PI Cl) <-
; Φ (NOT (VOID PI (SUIT-LED))) WHEN (IN-SUIT Cl (SUIT-LED)) 

If Cl is in the suit led and PI is known to be void in that suit (for example 
when PI has previously failed to follow suit), (HAS PI Cl) must be false. 
Checking this condition prevents consideration of scenarios where a player 
known to be void follows suit.5 

At this point, the previously non-operational LEGALCARDS generator has 
been corrected to generate possibly legal cards, where "possible" means "violates 
no known necessary conditions". The resulting executable generate-and-test pro-
cedure is shown as a data-flow graph in Figure 12-3. 

♦ ■ INITIAL PATH nil 

CHOICE SET 
possibly légal cards 

1 · 

■ 

select 1 
card 1 

path has points 
my card highest in suit led 
path length - S players 

(that is, 1 take points) 

Figure 12-3: Initial Search for "Avoid Taking Points". 

12.5 REFINING HSM BY MOVING CONSTRAINTS BETWEEN CONTROL 
COMPONENTS 

A good way to design an efficient heuristic search procedure for a problem 
like "avoid taking points" is to construct a simple procedure and then refine it 

5Actually, this reasoning applies to any suit, not just the suit, led; a slightly modified RULE319 
would derive this fact. 
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Figure 12-4: HSM Refinement Rules 
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step by step into a more efficient one. The generate-and-test procedure derived 
in the previous section exhaustively tests each possible complete card sequence 
for the trick to see if it would cause player ME to take points. Such a procedure 
can be refined into an efficient heuristic search by moving problem constraints 
between components of the HSM data-flow graph so as to apply them earlier in 
the search, as suggested in Figure 12-4. This can improve the search in various 
ways: 

• Pruning search paths that cannot lead to a solution reduces the branching 
factor. (Section 12.5.1) 

• Ordering the search to consider promising paths first finds a solution 
faster. (Section 12.5.2) 

• Compiling constraints out of the search reduces the depth of the search 
space. (Section 12.5.3) 

• Modifying the data-flow graph by splitting or adding components can im-
prove it. (Section 12.5.4) 

• Collapsing equivalent choices into abstracted elements reduces the search 
space. (Section 12.5.5) 
Section 12.5.6 describes the procedure derived by applying FOO's rules for 

some of these refinements. 

12.5.1 Pruning the Search by Applying Tests Earlier 

A general strategy for refining a search is to 
Reduce the branching factor of the search by pruning partial paths 

that cannot lead to a solution. 

Clearly, the key to applying this strategy is to efficiently identify partial 
paths that cannot lead to a solution, that is, cannot be extended into a complete 
sequence of choices that satisfies the solution-test. Identifying such dead ends 
by enumerating and testing all their extensions would defeat the purpose. Such 
exhaustive search can be avoided by analysis of the solution-test P(s) to deter-
mine whether partial paths that do not satisfy P can be pruned without discarding 
any potential solutions. Ideally, P is a monotonically necessary condition, that 
is, if P(s) holds, then so does P(s') for every initial subsequence s' of s. If this 
is the case, any partial path that does not satisfy P can be pruned safely from the 
search, since it cannot possibly be extended into a solution path. This pruning is 
accomplished by adding P to the path-test. In fact, this reasoning applies not 
only to P itself but to any necessary condition on P, that is, to any predicate Q 
such that P(s) implies Q(s') for every initial subsequence s' of s. For example, 
if P is a conjunction, it is worth analyzing each of its conjuncts to see if it is 
monotonically necessary. 

Moreover, if a path-test can be reformulated as a property required of 
every path element, it can be used to prune the choice elements for extending 
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paths. That is, if a path-test P(s') implies (V c 6 s') Q(c), then Q can be incor-
porated into the step-test. 

For example, consider the initial HSM formulation of "avoid taking 
points," where the path-test is (LAMBDA ( CARDS-PLAYED 1 ) T) and the 
solution-test is: 

(LAMBDA (CARDS-PLAYED1) 
(AND [HAVE-POINTS CARDS-PLAYED1] 

[= (CARDS-PLAYED1 ME) 
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)])) 

The first conjunct in this expression is not monotonically necessary, since a 
card sequence that does not have points can be extended into one that does 
simply by appending a point card to it. However, the second conjunct is 
monotonically necessary, since in order to be the highest card for the whole 
trick, player ME's card must be the highest at each point in the trick. Actually, a 
slight qualification is required: this conjunct only makes sense for paths in 
which player ME has already played a card. If P is the condition that player 
ME's card be highest, and the predicate M characterizes those paths in which 
player ME has already played, then (Φ M P) is monotonically necessary and can 
be added to the path-test: 

[by RULE323, a n a l y s i s ] > 
(HSM1 <- PATH-TEST : 

(LAMBDA (CARDS-PLAYED1) 
(Φ [IN ME (INDICES-OF CARDS-PLAYED1)] 

[ = (CARDS-PLAYED1 ME) 
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)]))) 

The general rule used to make this refinement is 
RULE323: (HSM with (solution-test : (lambda (s) (and ... Ps ...)) 

(path-test : (lambda (s) R)) 
-> (HSM with (path-test : (lambda (s) (and R (Φ M Ps))))) 

where the monotonicity condition (forall s' (prefixes-of s) (Φ Ps Ps')) reduces to M 
If the solution-test includes an (almost) monotonically necessary constraint P, 
Then determine the condition M under which P is monotonically necessary, 
And add (=> M P) to the path-test.6 

In the above example, M is ( IN ME (INDICES-OF CARDS-
PLAYED 1)). Note that RULE323 automatically catches (in M) the sort of ex-
ception a programmer might forget. 

At this point, the highest-card constraint has been moved from the 
solution-test, where it was only used to test complete card sequences, to the 

6Since P will be used to prune only paths satisfying M, it is not safe to remove P from the 
solution-test. 
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path-test, where it is used to test incomplete sequences, thereby pruning all paths 
in which player ME plays a card lower than an opponent's or fails to follow suit. 
However, further improvement is possible by moving the highest-card constraint 
from the path-test to the step-test. While paths violating the highest-card con-
straint were previously pruned away, this refinement prevents their being 
generated at all. That is, it restricts the generation of scenarios to those in which 
player ME takes the trick. In general, this kind of refinement reformulates a path 
constraint as a choice element constraint, presumably cheaper to test, since it 
depends on a single element rather than a sequence. If choice elements that vio-
late this constraint are rejected as path extensions, fewer paths will be generated. 
In effect, such a refinement reduces the branching factor of the search, that is, 
the number of alternatives considered at each choice point. 

The general rule for moving a constraint from path-test to step-test is 
RULE327: (HSM with (path-test : (lambda (s) (and ... Ps...)) ...)) 

(step-test : (lambda (i c) R)) 
-► (HSM with (step-test : (lambda (i c) (and R Qc)))) 

if Ps can be reformulated as (forall i (indices-of s) Qsj) 
If the path-test includes a constraint Ps, 
And Ps is equivalent to (forall i (indices-of s) Qs^ for some predicate Q, 
Then add the constraint Qc to the step-test. 

RULE327 applies when a path-test predicate P on a path s = ct ... cn can 
be recast as a conjunction of the form (and Qcj ... Qcn) for some predicate Q. 
Here, s is CARDS-PLAYED1 and P is 

(LAMBDA (CARDS-PLAYED1) 
(=> [IN ME (INDICES-OF CARDS-PLAYED1)] 

[ = (CARDS-PLAYED1 ME) 
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)])) 

This condition means "if player ME's card has been played, it is the highest 
so far in the suit led." Transformed into a universally quantified form by unfold-
ing HIGHEST-IN-SUIT-LED, it matches the rule: 

[by RULE124, RULE327, a n a l y s i s ] > 
(HSM1 <- STEP-TEST : 

(LAMBDA (PI Cl) 
(Φ (NOT (AFTER ME P I ) ) 

(AND [= (SUIT-OF (CARDS-PLAYED1 ME)) (SUIT-LED)] 
[NOT (HIGHER-IN-SUIT Cl (CARDS-PLAYED1 ME))])))) 

The effect of this step-test when considering possible cards player PI 
might play (assuming player ME has followed suit) is to ignore any card in the 
suit led higher than player ME's card, since it cannot cause player ME to take 
points. In short, the highest-card constraint has been moved from the solution-
test via the path-test to the step-test, where it reduces the search space to 
scenarios in which player ME takes the trick. 
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12.5.2 Ordering the Search by Predicting Success 

The refinements just described prune branches of the search or eliminate 
their generation in the first place. In contrast, the refinements described in this 
section re-order the search to find a solution faster when one exists. The general 
strategy is to 

Order the search to consider first those paths most likely to lead to a 
solution. 

The key to applying this strategy is the efficient identification of promising 
partial paths. Of course, trial and error is as inappropriate for identifying 
promising paths as it was for identifying hopeless ones. As before, the remedy 
is analysis of the solution-test, which in this example is 

(LAMBDA (CARDS-PLAYED1) 
(AND [HAVE-POINTS CARDS-PLAYED1] 

[= (CARDS-PLAYED1 ME) 
(HIGHEST-IN-SUIT-LED CARDS-PLAYED1)])) 

Unlike the second conjunct, the first conjunct is not monotonically neces-
sary: although no point cards may have been played so far in a trick, a sub-
sequent player might play one. How then can this constraint be exploited earlier 
in the search? 

The answer lies in the fact that if a path has points, so do all its possible 
extensions. Thus, other things being equal, a path with points is more likely to 
lead to a solution than one without points, and a solution should be found faster 
by considering such paths first. (Recall that a "solution" is a card sequence that 
will cause player ME to take points.) In short, (HAVE-POINTS CARDS-
PLAYED 1) is monotonically sufficient and can therefore be used as a search-
ordering heuristic: 

[by RULE335, a n a l y s i s ] > 
(HSM1 <- PATH-ORDER : 

(LAMBDA (CARDS-PLAYED1) (HAVE-POINTS CARDS-PLAYED1))) 

The general idea behind this refinement is expressed by 
RULE335: (HSM with (solution-test : (lambda (s) (and ... Ps ...)))) 

-> (HSM with (path-order : (lambda (s) Ps))) 
if P satisfies the monotonicity condition (forall s' (prefixes-of s) (Φ Ps' Ps)). 
If the solution-test includes a monotonically sufficient constraint P, 
Then move P to the path-order. 

The points constraint can be further exploited by using it to control not 
only the order in which existing paths are considered, but also the order in which 
paths are generated to begin with. For example, paths with points can be 
generated first by using point cards before non-point cards when extending paths 
in which no points have yet been played: 
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[by RULE338, a n a l y s i s ] > 
(HSM1 <- STEP-ORDER : 

(LAMBDA (PI Cl) 
(OR [HAVE-POINTS CARDS-PLAYED1] 

[HAS-POINTS C l ] ) ) ) 

The general rule for this refinement is 
RULE338: (HSM with (path-order : (lambda (s) Ps))) 

-> (HSM with (step-order : (lambda (i c) Qc))) 
where Qc is the result of simplifying P(s&c) 
If the path-order contains a constraint P on paths Cj ... ck, 
And P(cj ... ck) is equivalent to Q(ck), 
Then add Q to the step-order. 

Here s&c denotes the result of appending element c onto sequence s. 
An extension to this approach would enhance the data structure represen-

tation of a path, s, to include an extra bit B(s), indicating whether s has points. 
The value of B(s&c) would be computed solely as a function of B(s) and c with-
out re-examining the elements of s. Since FOO lacks an explicit representation 
for describing data structures, this refinement was not implemented. 

12.5.3 Reducing the Depth of the Search 

Further improvements in the search procedure formulated thus far can be 
made by exploiting assumptions about when and why the search will be per-
formed. For example, the purpose of the search is to help player ME choose a 
card, not just to predict whether there exists some possible scenario in which ME 
takes points. Thus player ME's card can be treated as an input parameter to the 
search procedure; the procedure will be called for each of player ME's legal cards 
to decide whether playing it can possibly cause player ME to take points. 
Similarly, it is logical to assume that the search will be performed when it is 
time for player ME to choose a card. This means the search can make use of any 
data that will be known at that time, such as the cards played by player ME's 
predecessors. 

These refinements are effected by making player ME's card an input 
parameter, named MY-CARDl, and changing the INITIAL-PATH from NIL to 
the sequence of cards played in the current trick up to and including MY-
CARDl. These changes reduce the depth of the search space. Also, the expres-
sion (SUIT-LED) is replaced by the parameter SUIT-LED1, since the suit led 
will be known at search time. 

The details of how these refinements were made using FOO are given in 
[Mostow, 1981]; they are less interesting than the refinements based on 

monotonically necessary and sufficient conditions because they were made in a 
somewhat ad hoc manner, due partly to difficulties in representing knowledge 
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about choice and time. The general ideas underlying the refinements can be 
stated as follows. First, 

Reduce the depth of the search by eliminating one or more choice 
points. 

The key here is to use additional problem constraints to compile choices 
out of the search, for example: 

Start the search at the point following any choices already deter-
mined before search time. 

This idea can be stated more precisely as: 
RULE332: To analyze a property of a choice f(ct) in a choice sequence f(c}), ..., f(cn), 
Use the search space formed by the choice sequence f(ci + ]) ...f{cn), 
Since at the time fic^ is chosen, f(cj) ...ßc^j) will already be known. 

Another way to speed up a search is caching, discussed in [Lenat et al., 
1979]: 

Cache a choice-sequence-dependent expression whose value will not 
change during the search. 

This strategy is used to speed up the step-test by replacing (SUIT-LED) 
with a temporary variable SUIT-LEDl whose value is computed once at the 
start of the search: 

RULE333: If a sub-expression Pßs) of the step-test refers to the choice sequence, s, 
[But the value offts) will have been determined by the time the search begins,] 
Then rewrite Pßs) as Pv, 
And cache the value off(s) in v at the beginning of the search. 

As RULE333 is currently implemented, the bracketed clause is not tested, 
since FOO lacks a model of what data will be available when. 

12.5.4 Transforming the Data-Flow Graph Itself 

Of course, the search procedure derived above could be improved in many 
ways. For example, the revised step-test includes the condition ( = (SUIT-
OF MY-CARDl ) SUIT-LEDl ). Since this condition is totally determined by 
the search parameters MY-CARDl and SUIT-LEDl, it could be tested just once 
at the beginning of the search, but doing so would require adding an INITIAL-
TEST (applied only to the INITIAL-PATH) to the generic heuristic search pro-
cedure in Figure 12-2. This illustrates a limitation of using a fixed set of HSM 
components: one can always invent refinements that involve adding new com-
ponents. A more powerful approach allows refinement rules expressed as trans-
formations on data-flow graphs [Tappel, 1980]. 

To illustrate the potential usefulness of transformations on the data-flow 
graph itself, consider the step-test, which restricts the generation of paths to 
those where MY-CARDl is the highest card played in SUIT-LEDl: 
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(LAMBDA (PI Cl) 
(Φ [= (SUIT-OF Cl) SUIT-LED1] 

[NOT (HIGHER Cl MY-CARDl)])) 

If player ME leads the trick, SUIT-LED1 must be bound to (SUIT-OF 
MY-CARDl ) before the search begins; otherwise it can be bound to the actual 
suit led in the trick. A natural way to deal with this detail is to split the whole 
search procedure into two copies, one for each case, and refine each one by ex-
ploiting the assumption on which it is based. However, this clone-and-specialize 
transformation violates the fixed-graph limitation. 

12.5.5 Moving to a Smaller Search Space 

One way to reduce the branching factor of a search is to use a step-test to 
filter the generation of alternatives at each choice point (Section 12.5.1). A 
more sophisticated (but unimplemented) way is to move the search to an 
abstracted version of the original search space: 

To reduce a search space, suppress operator details irrelevant to the 
search criterion, and use the resulting abstractions in place of the original 
operators [Mostow & Hayes-Roth, 1979]. 

Operator abstraction has been used to reduce search in planning systems, 
but the abstraction process has been limited: operators have been abstracted by 
deleting some of their preconditions [Newell et al., 1960; Sacerdoti, 1977] or by 
ignoring variable bindings [Sacerdoti, 1974; Klahr, 1978]. In contrast, the 
abstractions proposed below would be synthesized based on analysis of the 
search criterion and knowledge about the task domain. 

For instance, from the point of view of avoiding taking points, certain 
properties of the card played by an opponent are irrelevant. If the card has no 
points and is not in the suit led, its suit and rank are unimportant. If it is in the 
suit led, all that matters is whether it is higher or lower than player ME's card; its 
exact rank is unimportant. This suggests reducing the choice set from a set of 
cards to a set of abstract alternatives like {LOSING-CARD, HIGH-CARD-IN-
SUIT, POINT-CARD}. These alternatives represent equivalence classes of 
cards, where the equivalence relation is strongly situation-dependent. For in-
stance, in some cases playing any heart will have the same impact on the out-
come of the trick, while in others the particular heart played might determine 
who wins the trick. One might look dynamically for easily derived equivalences 
and use them to reduce the search space for the particular situation at hand, ac-
cording to the heuristic: 

Do not consider more than one alternative from a set of equivalent 
ones. 

Suppose an abstract alternative is defined as the set of all choices x satis-
fying some predicate P(x); for LOSING-CARD, P(x) means "card x will not take 
the trick." Then: 
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1. Look for sufficient conditions S(x, x') under which P(x) and P(x') are 
equivalent. For example, if x and x' are in the same suit and held by the 
same player, and nobody else holds any of the intervening cards, then x 
can take the trick if and only if x' could. 

2. Partition the choice set into equivalence classes Cx = {χ' I S(x, x')}· If 
player ME holds the four, six, and seven of hearts, and the five has already 
been played, these three cards are in the same equivalence class. 

3. Replace the old choice set with a new one containing a single repre-
sentative of each class. Since the revised choice set generates cards (rather 
than some kind of abstracted element), the other HSM components still 
work. 

4. Perform the search as usual. For example, test whether player ME can take 
points by playing the four of hearts; the same answer will hold for the six 
and seven. 

A similar approach is to: 

Consider an alternative only if it is optimal and no equivalent one 
has been considered. 

This approach is based on the concept of extreme cases [Lenat & Harris, 
1978]: 

1. Find a condition >(s, s') guaranteeing that s can be extended into a solu-
tion if s' can. 

2. Define Dominates(s,s') as s ^ s' Λ ~ s' > s. This predicate can be used 
to order paths by considering s before s' if s dominates s'. 

3. Add a path-test Optimal(s) = ~ 3 s ' I Dominates(s', s): if a maximally 
promising path s peters out, so will every less promising path s'. 

4. Add a path-test ~ 3 s ' I s' > s Λ s' Φ s Λ Tried(s'): do not consider s if 
you have already tried an equally promising path s'. 

5. If either test can be reformulated as a function of the last choice alone, 
make it a step-test. 

This approach looks for sufficient conditions in each situation, rather than 
doing a single analysis once and for all. This might capture an aspect of human 
play—figuring out what will happen if player p plays card x, and then jumping 
to the conclusion that the same thing will happen if p plays any other card in the 
class Cx. The major obstacle in implementing this approach, of course, is to 
automate the discovery of useful equivalence and domination conditions. 

12.5.6 Heuristic Search Procedure for "Avoid Taking Points" 

After the refinements performed by FOO, the HSM schema has been instan-
tiated as follows: 
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(HSM1 WITH 
(VARIABLES : (SUIT-LED1 MY-CARD1)) 
(BINDINGS : ((SUIT-LED) (CARD-OF ME))) 
(INITIAL-PATH : (PROJECT CARD-OF (PREFIX (PLAYERS) ME))) 

(CHOICE-SETS : 
(LAMBDA (PI) 

(SET-OF Cl (CARDS) 
(POSSIBLE 

(AND [HAS PI Cl] 
; φ (OUT Cl) WHEN (IN PI (OPPONENTS-OF ME)) 
; => (NON-VOID PI) WHEN (IN-SUIT Cl (SUIT-LED)) 

[Φ (LEADING PI) 
(OR [CAN-LEAD-HEARTS PI] 

[NEQ (SUIT-OF Cl) H])] 
[Φ (FOLLOWING PI) 

(OR [VOID PI (SUIT-LED)] 
[IN-SUIT Cl (SUIT-LED)])]))))) 

(STEP-ORDER : 
(LAMBDA (PI Cl) 

(OR [HAVE-POINTS CARDS-PLAYEDl] [HAS-POINTS Cl]))) 

(STEP-TEST : 
(LAMBDA (PI Cl) 

(Φ [NOT (AFTER ME PI)] 
[AND [= (SUIT-OF MY-CARD1) SUIT-LED1] 

[=> [= (SUIT-OF Cl) SUIT-LED1] 
[NOT (HIGHER Cl MY-CARD1)]]]))) 

(PATH-ORDER : 
(LAMBDA (CARDS-PLAYEDl) (HAVE-POINTS CARDS-PLAYEDl))) 

(PATH-TEST : 
(LAMBDA (CARDS-PLAYEDl) 

(Φ [IN ME (INDICES-OF CARDS-PLAYEDl)] 
[= (CARDS-PLAYEDl ME) 

(HIGHEST-IN-SUIT-LED CARDS-PLAYEDl)]))) 

(SOLUTION-TEST : 
(LAMBDA (CARDS-PLAYEDl) 

(AND [HAVE-POINTS CARDS-PLAYEDl] 
[= (CARDS-PLAYEDl ME) 

(HIGHEST-IN-SUIT-LED CARDS-PLAYEDl)]))) 

(COMPLETION-TEST : 
(LAMBDA (PATH) (= (# ΡΑΉ) (# (PLAYERS)))))) 

The procedure thereby specified, shown as a data-flow graph in Figure 
12-5, operates as follows: 

The object of the search is to find a sequence of cards satisfying the 
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♦ ■ INITIAL PATH cards played before mine INITIALIZED VARIABLES my card, suit led 

PATH 
TEST 

highest in the 
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possibly legal cards 
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♦■ · 

PATH ORDER 
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paths with 

r points first 
list ^ ^ ^ ' 

""" STEP ORDER 
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(that is, I take points) 
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card is lower than mine 
if both are in suit led 

Figure 12-5: Refined search for "Avoid Taking Points". 

solution-test and completion-test. The solution-test requires the sequence to con-
tain one or more point cards, with player ME's card the highest in the suit led. 
The completion-test requires the sequence to contain a card for each player. 
Together, they specify a sequence of cards that will cause player ME to take 
points. 

The choice set for player PI consists of those cards that might possibly be 
legal for PI to play, according to the information available to player ME. For 
example, in order to play a card Cl, PI must have Cl. Player ME may be 
unable to test this directly, but can still check a couple of necessary conditions. 
First, if PI Φ ME, Cl must be out, and in particular, cannot already have been 
played. This prevents consideration of scenarios in which the same card is 
played more than once, or in which a card taken in an earlier trick miraculously 
reappears. Second, Cl cannot be in the suit led if PI is known to be void in 
that suit. 

The search conservatively takes as the choice set all cards satisfying the 
known necessary conditions; the branching factor of the search could be reduced 
by checking additional necessary conditions, or by considering only plausible 
scenarios for the trick. The latter refinement would require a model of other 
players' goals in order to predict their likely behavior. 

The variables SUIT-LED1 and MY-CARD1, bound to values computed or 
selected before the search, represent the suit led and a card player ME is con-
sidering playing. 
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The search proceeds by selecting a card sequence from the active path list, 
appending a card, testing the new sequence to see if it is a solution, and deciding 
whether to add it to the list. The INITIAL-PATH contains MY-CARD1 and the 
cards already played in the trick. 

The path-order gives priority to paths in which points have been played. 
The step-test filters the generation of paths to those in which player ME 

wins the trick. 
The step-order gives priority to point cards when extending a sequence 

with none. 
The path-test prunes paths in which player ME cannot take the trick. Since 

the step-test prevents the generation of such paths, the path-test need not really 
be applied to any paths other than the initial-path. This could be accomplished 
by adding an initial-test component to the HSM schema, and would terminate the 
search immediately in cases where player ME does not follow suit. 

The search procedure requires a run-time environment with several fea-
tures: 

• 3-valued logic: unevaluable expressions return UNKNOWN without causing 
run-time errors. 

• Annotations: evaluation methods can be tried that do not always succeed. 
• Simulation: the effects of an action can be predicted by modeling state 

changes. 
• Historical reference: expressions can be evaluated relative to past states or 

events [Balzer & boldman, 1979]. 
These features seem reasonably straightforward to build into an evaluator, 

but implementing them was beyond the scope of the research. Consequently the 
search procedure was not implemented. 

12.5.7 Another Example: Compose a Cantus Firmus 

So far, FOO's HSM schema and its rules for instantiating and refining this 
schema have been illustrated solely in terms of the "avoid taking points" ex-
ample. As a test of generality, I applied the same rules to a task from the 
domain of music: "Compose a cantus firmus." A cantus firmus is a sequence of 
musical tones of equal length satisfying certain aesthetic constraints. A program 
to generate such sequences [Meehan, 1971] was based on aesthetic constraints 
given in a textbook on counterpoint [Salzer & Schacter, 1969]. The goal of my 
experiment was to use the rules from the hearts example, or similar ones, to 
derive a heuristic search procedure for generating tone sequences satisfying four 
constraints arbitrarily chosen from the textbook: 

• Cl. "As a rule, the cantus will not contain fewer than eight or more than 
sixteen tones." 

• C2. "The cantus firmus should not contain intervals larger than an octave, 
dissonant leaps, or chromatic half steps." 
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• C3. "A tenth between the lowest and the highest tone is the maximum 
range." 

• C4. "Each cantus firmus must contain a climax or high point... The climax 
tone should not be repeated." 
The derivation of a heuristic search procedure for this problem has much in 

common with the hearts example. The initial generate-and-test procedure simply 
generates tone sequences and tests each one to see if it satisfies constraints Cl-
C4. The refined HSM procedure incorporates these constraints earlier in the 
search. The same HSM rules were used to construct a generate-and-test search 
from the problem description, and to move monotonically necessary constraints 
from the solution-test to the path-test and step-test. Some highlights: 

1. Constraint C4 was simplified by choosing a climax tone before generating 
the cantus. The idea of restricting a problem by determining one of its 
features a priori is expressed by 

RULE256: (P ... (f s) ...) -> (and [ = (f s) v] [P ... v ...]) 
where v is to be selected from (range f) before s is constructed 
To construct an object s so as to satisfy a constraint P(s, f(s)), 
Choose a value vforßs), 
And solve the two subproblems P(s, v) andf(s) = v. 

Before the search begins, a value CLIMAX1 is chosen to be the climax 
tone of the cantus. This value could be generated randomly or, as in 
[Meehan, 1971], supplied as an input; the point is that the decision to 

select it before the search simplifies the operationalization of constraint C4. 
2. A constraint that is not monotonically necessary or sufficient can some-

times be split into a conjunction of monotonie constraints, which can then 
be moved earlier in the search. For example, 

(LAMBDA (T0NE-SEQUENCE1) 
( = (CLIMAX T0NE-SEQUENCE1) CLIMAX1)) 

is split into the monotonically sufficient 

(IN CLIMAX1 T0NE-SEQUENCE1) 

and the monotonically necessary 

(FORALL XI T0NE-SEQUENCE1 (NOT (HIGHER XI CLIMAX1))) 

3. The ideal refinement rule compiles a constraint out of the search al-
together. One such rule is: 
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RULE386: (HSM with (path : s) 
(choice-sets : (... (set-of x S (P ... (g s)...)) ...))) 

-► (HSM with (choice-sets : (f (g s)))) 
f <e- (lambda (y) (set-of x S (P ... y ...))) 
if (P ...) is otherwise independent of s 
/ / the choice set has the form {x in S I P(x, g(s))} 
Where S and range(g) are small 
And P does not otherwise depend on the path variable s, 
Then define a new function fly) = {x in S I P(x,y)} 
And change the choice set toflg(s)), 
Where f is precomputed and stored in a table before the search begins. 

RULE386 applies after the choice set for the next note has been restricted 
to those tones separated from the previous note by an acceptable melodic 
interval (constraint C2), computed by generating every tone and testing the 
interval between it and the last note. RULE386 replaces this generate-and-
test loop with a precomputable table that lists all acceptable successors for 
each tone. Instead of enumerating .the entire set of (TONES) when ex-
tending a tone sequence, the search will consider only acceptable successor 
tones. This refinement effectively compiles C2 out of the search. 

12.6 EVALUATION OF GENERALITY 

The purpose of the cantus firmus example was to test the generality of 
FOO's knowledge about heuristic search problems— its general schema represen-
tation of HSM, its instantiation rules for filling in this schema so as to constitute 
a generate-and-test procedure, and its refinement rules for transforming this pro-
cedure into a genuine heuristic search. 

The same HSM schema was general enough to cover both the hearts and 
the music examples. 

The process of formulating the initial generate-and-test procedure was very 
similar in the two examples: the same HSM rules were applied in the same or-
der, even though the analysis rules used were quite different. This striking 
parallelism supports the generality of the instantiation rules. 

The refinement rules used in the hearts example were checked to see if 
they could be applied to the music example. Some were directly applicable, 
such as RULE323, which moves a constraint from the solution-test to the path-
test, and RULE327, which moves a constraint from the path-test to the step-test. 
(Both these rules were used more than once in each example.) Other rules added 
to cover the music example closely resembled rules used in the hearts example; 
this suggests that it may be worthwhile to look for common generalizations or a 
more fundamental rule-generating process. 

In short, there was a great deal of overlap between the HSM rules used in 
the two examples, even though different rules were required to solve the analysis 
problems engendered by different uses of the same HSM rule. This suggests that 
FOO does indeed have some general knowledge about operationalizing a problem 
in terms of HSM. 
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One would expect other examples to use additional rules. Some of these 
rules might require changes to the schema or not fit any fixed schema, e.g.: 

• Generalize the initial state to be a set of paths rather than a single path. 
• Add a test applied only to the initial-path. 
• Distinguish cheaply evaluated or highly constraining tests and put them 

first in the data-flow graph. 

• Split the data-flow graph into several copies and refine each one to fit a 
different case. 

12.7 CONCLUSION 

The ultimate goal of this research is to automate the process of applying 
general AI techniques to problems expressed in domain-specific terms. This 
chapter has modeled this process as a series of problem transformations and has 
described some general rules used to reformulate two dissimilar tasks as heuristic 
search problems. Some of these rules recognize a potential HSM problem in a 
task description and construct a generate-and-test procedure for it. Others refine 
such a procedure into a true heuristic search by (unlike conventional optimizing 
compilers) exploiting domain knowledge and analyzing problem constraints. 

Much work remains to be done: 

• FOO's rules should be tested on other domains, generalized, and extended. 
• The same strategy should be used to apply other AI methods: construct a 

simple procedure, then successively refine it based on domain knowledge 
and analysis. 

• FOO's fixed set of HSM components enables rules to refer to them by 
name, at the cost of being unable to modify the basic heuristic search data-
flow graph to fit different problems. Graph-transforming refinement rules 
[Tappel, 1980] should be developed to eliminate this inflexibility, but 

referring to components of the changing graph will require a more complex 
naming scheme. 

• An automatic operationalizer would need a problem-solver to guide the 
operationalization process and a model to predict which expressions will be 
executable at run-time. The dissertation on which this chapter is based 
[Mostow, 1981] outlines a means-end analysis approach to the problem-

solving issue. 
• The lack of a built-in representation for opponents' goals was motivated by 

the desire for generality but prevented refining the "avoid taking points" 
search based on the relative plausibility of different scenarios for the trick. 
A practical operationalizer would need to reason about the mental behavior 
of agents in the task environment, including itself [Konolige & Nilsson, 
1980]. 
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• The purely analytic approach presented here attempts to design a search 
procedure independent of any specific task situation. It should be com-
bined with empirical techniques for exploiting properties of particular task 
situations (see Chapter 6 of this book) and improving a search procedure as 
it executes [Lenat et al., 1979]. 
The central theme in current AI research is the exploitation of domain 

knowledge to achieve high performance. Future research on the mechanical ap-
plication of AI techniques to real tasks must address this theme. The fundamen-
tal challenge in this work is to develop domain-independent techniques for ex-
ploiting domain-specific knowledge. Such techniques can be expected to play an 
important role in future advice-taking systems that devise procedures to do what 
they are told. 
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APPENDIX: INDEX OF RULES 
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RULE386 

(page 373): Unfold definition 

(page 397): To achieve P(f(s)), choose f(s) = v and achieve P(v) 

(page 378): Use HSM to evaluate predicate on scenario with choices 

(page 382): P -► (possible P) 

(page 383): Find necessary condition 

(page 387): Move monotonically necessary constraint from solution-test to 

(page 388): Move constraint from path-test to step-test 

(page 391): Start the search at the point following any predetermined 

(page 391): Cache expressions whose values stay constant during the 

(page 389): Move monotonically sufficient constraint from solution-test to 

(page 390): Move constraint from path-order to step-order 

(page 398): Compile a constraint into a precomputable table 
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ABSTRACT 

This chapter discusses machine-learning aspects of a project whose broad 
goal is to create computer systems that can aid users in managing information. 
The specific learning problem discussed is how to enable computer systems to 
acquire information about domains with which they are unfamiliar from people 
who are experts in those domains, but have little or no training in computer 
science. The information to be acquired is that needed to support question-
answering or fact-retrieval tasks, and the type of learning to be employed is 
learning by being told. 

13.1 OVERVIEW 

13.1.1 The KLAUS Concept 

Our interest in knowledge acquisition is motivated by the desire to create 
computer systems that can aid users in managing information. The core idea of 
what we call a KLAUS1 system is that of a machine that can hold a conversation 
with a user in English about his specific domain of interest, subsequently retrieve 
and display information conveyed by the user, and apply various types of exter-
nal software systems to solve user problems. Such software would include data 
base management systems, report generators, planners, simulators, and statistical 
packages. 

'"KLAUS" stands for Knowledge Learning And Using Systems. 

405 
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Interactive dialogues in natural language appear to be a convenient means 
for obtaining most of the application-specific knowledge needed by intelligent 
systems for information management. But systems that acquire knowledge about 
new domains through natural-language dialogues must possess some very special 
capabilities. 

KLAUS systems must support interactive, mixed-initiative dialogues. Be-
cause a user may provide new knowledge in an incremental and incomplete man-
ner, the system must keep track of what it has already been told, so that it can 
deduce the existence of missing information and explicitly ask the user to supply 
it. Moreover, it must carefully distinguish what it does not know from what it 
knows to be false. 

A primary requirement of a KLAUS system is that it be capable of simul-
taneously learning both new concepts and the linguistic constructions used to ex-
press them. KLAUS systems must acquire domain-specific language expertise, 
not only to understand natural language statements formulated by the user about 
his domain, but also for generating natural language responses to user requests. 

The intimate connection between language and reasoning is reflected in the 
need to acquire concepts and language simultaneously. This poses a great chal-
lenge in the task of creating KLAUS systems. Thus, this chapter is largely con-
cerned with the problems of learning concepts and language simultaneously. 

13.1.2 Research Problems for KLAUS Systems 

Before systems can be created that are capable of learning about new 
domains through interactive dialogues in English, several fundamental research 
problems must be resolved: 

• A powerful natural language processing capability is required. Although 
much progress has been made in recent years, previous work has presup-
posed a complete knowledge base. Knowledge acquisition dialogues re-
quire numerous adaptations and extensions to the technology. 

• A structure for lexical entries must be specified so that the system can ac-
quire new lexical information. Because such information constitutes a key 
link between surface linguistic form and underlying meaning, structural 
specification is a challenging task for certain categories of words, par-
ticularly verbs. 

• The linguistic constructions that people use in introducing new concepts 
must be identified and analyzed, so they can be interpreted correctly by the 
natural language processing system. Such constructions range from simple 
syntactic patterns to complex analogies. 

• Seed concepts and seed vocabulary must be identified for inclusion in a 
core system. It is not obvious which words and concepts would be most 
useful in helping users describe new domains. 

• A flexible scheme of knowledge representation is necessary. Such a 
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representation must have general expressive power, since it may be applied 
to diverse domains and must support the addition of new information. It 
should include inherent features that can aid in organizing knowledge and 
supporting incremental acquisition. 

• An efficient problem-solving capability is needed to answer questions and 
draw inferences for integrating newly-acquired information. This 
capability must be based on general principles, because no application-
specific problem-solving procedures will be included in the system. (How 
to learn application-specific problem-solving procedures is a separate and 
interesting research question.) 

• A methodology is needed for integrating new concepts into the system's 
knowledge base. Because users will often provide only partial descriptions 
of new concepts, methods must be devised for ascertaining what additional 
facts should be sought from the user to ensure proper linkage between the 
new concepts and those previously acquired. 

• A set of readily understandable questions is needed for eliciting infor-
mation from the user. The length and number of questions should be kept 
to a minimum, so as not to impose an excessive burden on users. 

• Facilities must be provided for allowing a user to change his mind about 
what he has told the system. That is, users should be able to instruct the 
system to modify, revise or refute information it has been told previously. 

• Means are required for detecting and dealing with inconsistent data. 
These problems must be dealt with in an integrated manner, balancing the 

requirements of one facet of the system against those of other facets. Our initial 
attempts to cope with this complex web of issues are described below. 

13.1.3 Other Learning Systems 

Our learning-by-being-told approach to learning is quite different from 
other approaches studied in knowledge acquisition research. In particular, our 
aim is to collect and organize aggregations of individual facts for use in 
question-answering tasks. The collecting of individual facts contrasts with work 
on the acquisition of rules for judgmental reasoning, as exemplified by the work 
of Davis [1977]. In rule acquisition, knowledge is viewed not so much as a 
collection of facts, but as a set of rules that in their aggregate comprise an algo-
rithm for making some type of decision. Learning by being told is also quite 
different from approaches based on learning from examples [Dietterich & 
Michalski, 1979] or learning by analogy (see Carbonell, Chapter 5, and Winston 
[1975]). 
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13.2 TECHNICAL APPROACH: EXPERIMENTS WITH THE KLAUS CONCEPT 

We have recently developed and tested a pilot KLAUS, called NANOKLAUS. 
A sample transcript of interactions with this system is contained in the appendix 
to this chapter. Readers are encouraged to glance through this transcript before 
proceeding with the reading of this text. 

The principal components of NANOKLAUS are a natural language processing 
module, a formal deduction module that operates on a data base of well-formed 
formulas (wffs) in first-order logic, and a number of support procedures that aid 
in assimilating knowledge about new subject domains and in maintaining the data 
base. 

13.2.1 Seed Concepts 

NANOKLAUS comes preprogrammed with a fixed set of syntactic and 
semantic rules covering a small subset of English. It also comes with seed con-
cepts and a seed vocabulary, which are to be extended as the the system learns 
about a new domain. For example, the system comes with a preliminary 
taxonomy of concepts already encoded. This basic set includes such things as 
PHYSICAL OBJECTS, PERSONS, MEASURES, and the like. NANOKLAUS 
also has preset lexical entries for the basic function words of English, as well as 
of such words as "unit", "kind", and "plural" that are used frequently in ar-
ticulating definitions of new words and concepts. These seed concepts allow the 
untrained NANOKLAUS to "understand" inputs such as those of Interactions 3 and 
4 of the transcript. 

The choice of seed concepts for a system that must bootstrap its entry into 
new domains is problematical. Most of the concepts we selected for 
NANOKLAUS are classes of THINGs and RELATIONS. They have been included 
in the system either simply to avoid forcing users to relate everything to the most 
general concept (THING), or because they have a special status in English. For 
example, because use of pronouns depends partially on gender, the class MALE 
is included and associated with the pronoun "he". 

It is important not to think of the seed concepts as a set of primitives, in 
terms of which all other concepts must be defined. Concept acquisition in 
NANOKLAUS is not based on definitions. Rather, new concepts are introduced by 
the user and progressively refined by adding more and more facts connecting the 
new concept to other concepts. English sentences introducing a new concept 
simply place it in a relationship with old concepts. Each new fact acts as a 
constraint that the concepts it mentions must satisfy. Thus, concept acquisition 
is a process of pruning away possibilities, rather than building up from primi-
tives. For" arguments as to the general un workability of the latter approach, see 
[Fodor, 1975]. 

To illustrate the notion of progressive refinement as opposed to definitions, 
consider the simple statement "The JFK is a ship." This statement serves to in-
troduce the notion of the JFK, and to place it in a relationship to the concept of 
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SHIP. But it does not define the notion of being the JFK, in that it does not 
supply the necessary and sufficient conditions for being the JFK. Subsequent 
facts learned about the JFK serve to further restrict, but not necessarily to define, 
the concept. 

NANOKLAUS uses seven principles of knowledge organization to integrate 
new knowledge: 

1. There are things. 
2. There are subclasses of things. (Things can be classified taxonomically.) 
3. There are relations among things. 
4. There are subclasses of relations. 
5. Some relations are functions (that is, n to 1 maps). 
6. Sometimes a given set of constraints is sufficient to distinguish a unique 

individual. 
7. Equals are interchangeable. 

NANOKLAUS is not programmed to hold explicit conversations about these prin-
ciples, but rather to utilize them in its internal operations. 

13.2.2 NANOKLAUS's Natural Language Component 

The natural language component of NANOKLAUS is based on LIFER 
[Hendrix, 1977] and uses a pragmatic grammar in the style of LADDER [Hendrix 

et al., 1978]. In particular, its grammar consists of a number of highly specific, 
special-purpose rules for processing various types of sentences.2 For example, 
the grammar may be thought of as including a rule of the form: 

<SENTENCE> φ <PRESENT> THE <KN0WN-C0UNT-N0UN> 
I (DISPLAY <KN0WN-C0UNT-N0UN>) 

which is used to match such inputs as: 
What are the ships? 
Show me the officers. 
List the carriers. 
The metasymbol <PRESENT > matches the italicized portion of these in-

puts, THE matches "the", and <KN0WN-C0UNT-N0UN> matches the last word 
in each of the examples. (Count nouns refer to discrete objects that can be 
counted, such as ships and ports. NANOKLAUS does not deal with mass nouns, 
for example, "steel" and "water".) 

Whenever a sentence is found that matches this pattern, the function DIS-
PLAY is called with the value of <KN0WN-C0UNT-N0UN>. This function 

2The rules used by NANOKLAUS are much more linguistically motivated than those used in LADDER. In 
our discussion, we have suppressed the complexity of the rules and response functions actually used, 
so as to characterize the essence of the methodology more succinctly. 
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thereupon retrieves from the data base and displays to the user all currently 
known instances of objects that might be referred to by the <KNOWN-COUNT-
NOUN>. 

Although most of the linguistic processing performed by the system fol-
lows fairly standard practice, the pragmatic grammar is distinguished by its ex-
plicit identification of a number of syntactic structures used principally to intro-
duce new concepts. As an oversimplified example, NANOKLAUS might be 
thought of as looking for the syntactic pattern: 

<SENTENCE> => <A> <NEW-W0RD> <BE> <A> <KN0WN-C0UNT-N0UN> 

to account for such inputs as: 
A CARRIER IS A SHIP. 

The system's definition of the category <NEW-W0RD> allows <NEW-W0RD> 
to match any LISP atom (or atom sequence). The syntactic category <KNOWN-
COUNT-NOUN> originally contains only count nouns associated with seed con-
cepts, such as "thing", "person", "physical object" and the like. 

When one of NANOKLAUS's concept-defining patterns is recognized, an as-
similation procedure associated with the pattern is called. This procedure usually 
adds new facts to the system's set of wffs and generates new entries in its lex-
icon. The various assimilation procedures also have provisions for interacting 
with the user/teacher. Response generation is accomplished by means of 
preprogrammed phrases and templates. 

For example, when the routine associated with the last pattern shown 
above is called, it first makes a new lexical entry in category <KNOWN-
COUNT-NOUN> for the atom matched by the <NEW-W0RD>. In this case, 
"CARRIER" becomes a new <KN0WN-C0UNT-N0UN>. Then the routine 
creates a new sort predicate3 for CARRIER in the system's knowledge base and 
enters the assertion that "for every x, if x is a CARRIER then x is a SHIP". 
Finally the routine asks questions of the user to determine relationships between 
the sorts of objects that are CARRIERS and other sorts of objects that are 
SHIPs. Interactions 7 and 23 of the transcript illustrate this interaction. 

13.2.3 NANOKLAUS's Knowledge Base and Deduction Component 

First-order logic was chosen as the basis for NANOKLAUS's knowledge 
representation scheme because of its generality and because of the computational 
soundness and power of problem-solving systems that use it. 

3A sort predicate is a one-argument predicate that indicates what kind, class, or sort of thing an 
object is. For example, CARRIER and SHIP are sort predicates in the formula (ALL X) 
(CARRIER(X) => SHIP(X) ). We use the word "sort" rather than "class" to avoid the connota-
tion that a sort predicate is associated with a set of objects, which could be extensionally defined. 
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13.2.3.1 Typical Wffs Used by NANOKLAUS 

The introduction of sort predicates mentioned above provides an example 
of how NANOKLAUS makes use of constructs from first-order logic. Whenever 
NANOKLAUS learns a new count noun, it creates a new single-place predicate to 
characterize objects of the associated sort. For example, we have seen that, 
upon learning the concept of a carrier, NANOKLAUS creates a predicate called 
"CARRIER" and asserts the fact: 

(ALL X) (CARRIER(X) φ SHIP(X)). 

As another example of NANOKLAUS's use of formulas in logic, when 
NANOKLAUS learns that carriers and submarines are distinct sorts of objects, it 
effectively asserts the fact: 

(ALL X) (NOT (CARRIER(X) AND SUBMARINE(X)). 

When NANOKLAUS learns of a new individual, such as the JFK (see Inter-
action 26), it creates a new constant term in the logic system and relates it to one 
of the sorts, namely: 

KITTYHAWK(JFK). 

Upon learning a new verb, such as "command" (see Interaction 18), 
NANOKLAUS creates a new predicate with the proper number of argument posi-
tions and constrains the domains of those arguments by assertions such as: 

(ALL X Y) (COMMANDfX Y) Φ (OFFICER(X) AND SHIP(Y))). 

Most of the assertions made by a user are translated into propositions in a 
straightforward manner. For example, "Brown commands the Saratoga" (see In-
teraction 43) produces: 

COMMAND(BROWN SARATOGA). 

13.2.3.2 Consistency 

NANOKLAUS checks each new fact as it is asserted to determine whether it 
is consistent with its previous knowledge. This gives rise to the behavior shown 
in Interactions 27, 44 and 45 of the transcript. NANOKLAUS currently has no 
provision for unlearning. Therefore, if a new assertion causes an inconsistency 
because a previous assertion was not correct, there is no provision for withdraw-
ing the incorrect assertion. 

13.2.3.3 More Reasons for Using First-Order Logic 

The notion of using first-order logic in combination with automatic deduc-
tion as the basis of an intelligent system dates back to the very beginning of AI 
research. Newell and Simon [1956] published a paper on "The Logical Theorist" 
in 1956, and McCarthy, in his 1959 "Advice Taker" proposal (republished as 
[McCarthy, 1968]), suggested using such a combination as the basis of a system 

capable of commonsense reasoning. 
Following a vigorous start, work on the use of logic as a basis for AI sys-

tems fell on hard times during the I960's and early 70's after experimentation by 
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Green [1969] and by others showed that the computational effort required to 
solve problems in first-order logic using Robinson's [1965] resolution principle 
grows exponentially with the number of wffs used in the axiomatization of a 
domain. However, more recent work, such as [Hayes, 1973; Kowalski, 1974; 
Moore, 1975] and [Weyhrauch, 1980], has suggested how control information 
may be used to increase the efficiency of the deduction process. 

But our main motivation for using first-order logic is that KLAUS systems 
are incremental learning systems and therefore must be capable of dealing with 
incomplete knowledge. As pointed out by Moore [1982]: 

Any knowledge representation formalism that is capable of handling 
the kinds of incomplete information people can understand must at least be 
able to: 

• Say that something has a certain property without saying which thing 
has that property: ( SOME X ) P ( X ) 

• Say that everything in a certain class has a certain property without 
saying what everything in that class is: (ALL X) (P(X) Φ 
Q(X)) 

• Say that at least one of two statements is true without saying which 
statement is true: P OR Q 

• Explicitly say that a statement is false, as distinguished from simply 
not saying that it is true: NOT ( P ) 

Any representation formalism that has these capabilities will be, at the very 
least, an extension of classical first-order logic, and any inference system 
that can deal adequately with these kinds of generalizations will have to 
have at least the capabilities of an automatic deduction system. 

13.2.4 Acquisition Procedures: Using Dialogue to Aid Assimilation 

By and large, it is unreasonable to expect users to volunteer all the infor-
mation NANOKLAUS needs to assimilate a new concept. In particular, users can-
not be expected to know what conclusions NANOKLAUS will draw about a newly 
taught concept from its previous knowledge, since they know neither the details 
of its current state of knowledge nor the details of its assimilation procedures. 
NANOKLAUS must ask the user explicitly for the information it needs. Therefore, 
whenever a new concept (or word) is presented to NANOKLAUS, a special proce-
dure is called that temporarily assumes control of the dialogue, prompting the 
user for whatever additional information it may require to assimilate the new 
concept. 

NANOKLAUS must phrase its questions so as to make them readily under-
standable by people unfamiliar with computers or linguistics. This introduces a 
number of human engineering considerations. The acquisition of new verbs of-
fers a cogent illustration of the problem. 

English verbs are highly idiosyncratic. Consequently, making proper 
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entries for them in a lexicon is a formidable task. Among other criteria, one 
must ascertain whether a verb is transitive, whether it can be used in the passive 
voice, whether its indirect object can become the object of a FOR or TO preposi-
tional phrase, whether it is reflexive or nonreflexive, and how the syntactic cases 
of its arguments may be "normalized" when the verb appears in different syntac-
tic constructions. NANOKLAUS's users cannot be expected to describe verbs in 
linguistic terms; therefore, to elicit the same information, the system must ask a 
series of questions that users can understand. Interactions 18 and 19 in the 
transcript are typical verb acquisition exchanges. While the dialogue is 
moderately natural and can be used by a nonlinguist, there is obviously con-
siderable room for improvement in its design. 

13.2.5 Some Major Limitations of NANOKLAUS Technology 

Many of the major limitations of NANOKLAUS can be seen simply by read-
ing through the transcript and noting that, although English is being used, the 
conversation is nevertheless highly stylized and artificial. For the most part, 
NANOKLAUS is limited to learning about very concrete types of objects and their 
interrelations. It has no capacity to deal with time, process, causality, intent, 
want, belief or judgment. This, of course, severely limits its range of applica-
tion. 

Even when considering concrete objects and their interrelations, 
NANOKLAUS can deal with only highly specific statements. For example, 
NANOKLAUS has no capacity do deal with analogy, as in: 

A SOFTBALL IS LIKE A BASEBALL, BUT BIGGER AND SOFTER. 

In general, the interpretation of information volunteered by people about 
new domains may necessitate deep reasoning and require information from other 
domains. Much of the volunteered information may contain inconsistencies that 
the user himself has no way (or particular reason) to resolve. The NANOKLAUS 
system represents a starting point for work on learning by being told; still, it 
barely scratches the surface of a vast body of difficult problems. 

13.3 MORE TECHNICAL DETAILS 

In this section we present additional details about some of the more inter-
esting aspects of the NANOKLAUS system. 

13.3.1 NANOKLAUS's Sort Hierarchy 

NANOKLAUS's knowledge representation system uses a many-sorted, first-
order logic that combines features from [Moore, 1975] and [Hendrix, 1979]. 
The backbone of the system is a treelike data structure reflecting the hierarchy of 
sorts used by the system (see Figure 13-1). The data structure maintains infor-
mation about the immediate ancestors and descendants of each sort, including 
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whether an ancestor is exhausted (spanned) by some or all of its descendants, 
and whether two or more sibling sorts are mutually exclusive. The sort hierarchy 
is a "tangled" tree, where any given sort may have multiple ancestors. It is no 
accident that a sort hierarchy should serve as the primary data structure for an 
English-based acquisition system. "Is-a" hierarchies are used by many natural 
language processing systems; it appears that something very similar to a sort 
hierarchy plays a central role in the way humans organize their knowledge 
[Lindsay & Norman, 1972]. 

the-jfk 

(mutually exclusive) 

(exhaustive) 

PHYSICAL. OBJECT 

4 

SHIP 
WS 

LENGTH WEIGHT 

MALE FEMALE 

John WOMAN Baby-Philip 

Figure 13-1: Typical Sort Hierarchy 

Straightforward utilization of sort information is illustrated throughout the 
transcript in the appendix, but especially in Interactions 7 to 14 and 25 to 29. 
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The sort hierarchy is implemented by means of a special-purpose network 
representation indicating entailments of systems of unary predicates. Facts stored 
in this representation can be used exactly like the other facts in the fact store, but 
are organized to support rapid access to sort information—which is used in the 
language subsystem as well as in the deduction subsystem. Whenever syntactic 
combinations are proposed, the parser uses sort information to determine if noun 
phrases are valid arguments of verbs, adjectives, and relational nouns—thus 
reducing ambiguity. The response generator consults the sort hierarchy when 
selecting pronouns for anaphoric reference. If a referent is described as a MALE 
or a FEMALE, the nominative singular pronoun chosen will be "he" or "she", 
respectively; if not described as either, but known to be a member of the set of 
PERSONS, the phrase "he or she" will be used, otherwise "it" will be selected. 
This can be seen in Interactions 71 and 72 in the transcript. 

Sort information is also used to assign default sorts to omitted arguments 
of verbs. For instance, if an assertion is made that a particular officer com-
mands, NANOKLAUS knows from the acquisition dialogue it had with its teacher 
that the officer commands something, and that that thing must be of sort SHIP 
(see Interaction 45). 

Measures, or dimensioned quantities, occupy a distinguished place in 
NANOKLAUS's sort hierarchy; MEASURES are a distinct sort of THINGs, com-
prised of LENGTHS, WEIGHTS, PRICEs, etc. The user can introduce additional 
sorts of measures. He can also tell the system about new UNITs in which 
MEASURES are measured, as well as the conversion factors between different 
units of the same measure (see Interaction 5). NANOKLAUS can perform conver-
sion when answering questions (compare Assertion 47 and Questions 58 and 59), 
although its arithmetic capabilities are quite limited. 

13.3.2 NANOKLAUS's Verb System 

One of NANOKLAUS's strengths is its ability to deal with a large number of 
syntactic variations in verb usage. For example, facts asserted in active voice 
may be queried in both active and passive voice. In general, NANOKLAUS trans-
lates clauses into internal structures of the form: 

(VERB-PREDICATE Argl Arg2 Arg3) 

using information about permissible syntactic patterns in which the clause's verb 
can occur. 

The basic verb patterns handled by NANOKLAUS are summarized in Table 
13-1. [NANOKLAUS does not handle modal verbs (for example, "want" and 
"know"), or verbs with adverbial particles (for example, "pick up" and "preside 
over"), or sentential objects (for example, "The captain requested that the ship 
change course").] The objective of NANOKLAUS's verb acquisition dialogues 
(Interactions 18 and 19) is primarily to determine which patterns may be used 
with a new verb. The system does not need to ask about each pattern. For 
example, if pattern A3 is not used with a given verb, patterns A3D, A3W, P3, 
P3', and P3D are automatically ruled out. 
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Table 13-1: Verb Usage Patterns 

Pattern 

A3 
A3D 
A3W 
P3 
P3' 
P3D 

A2 
A2' 
A2D 
P2 
P2' 

Al 
Al' 

Argl 
(A) 
Subj 
Subj 
Subj 
(NPb) 
(NPb) 
(NPb) 

Subj 
Subj 
Subj 
(NPb) 
(NPb) 

Subj 

-

Arg2 
(B) 
NPI 
NPd 
NP 
NP 
Subj 
NPd 

. 
NP 
NPd 

-
Subj 

. 
-

Arg3 

(C) 
NP2 
NP 
NPw 
Subj 
NP 
Subj 

NP 

-
-

Subj 

-
. 

Subj 

Sample Sentence of this Pattern 

A = Joe gave B = Sue C = a-ball. 
A = Joe gave C = a-ball to B = Sue. 
A = Joe supplied B = Sue with C = a-ball. 
C = a-ball was given B = Sue (by A = Joe). 
B = Sue was given C = a-ball (by A.= Joe). 
C = a-ball was given to B = Sue (by A = Joe). 

A = Joe wrote C = a-letter. 
A = Joe wrote B = Sue. 
A = Joe wrote to B = Sue. 
C = a-Ietter was written (by A = Joe). 
B = Sue was written (by A = Joe). 

A = Joe wrote. 
C = a-vase broke. 

(from A2 of A » Joe broke C = a-vase.) 

Pattern names indicate active (A) or passive (P) voice, the number of top-level noun phrases occurring in the sentence, and (in some 
cases) an indication of a dative noun phrase (D) moved into a "to" or "for" prepositional phrase, or an indication of a "with" (W) 
prepositional phrase. 

Notation: 
Subj = the surface subject of the sentence. 
NPI = the first unmarked <NP> in the verb phrase. 
NP2 = the second unmarked <NP> in the verb phrase. 
NP = the only unmarked <NP> in the verb phrase. 
NPb = <NP> marked by the preposition "by." May be omitted. 
NPw = <NP> marked by the preposition "with", (not instrumental) 
NPd = <NP> marked by either "to" or "for", (dative) 

To appreciate the range of variation in English verbs, consider the follow-
ing sentences, each of which describes a situation using a ditransitive verb con-
struction (the A3 pattern of Table 13-1). The symbol '*' marks ungrammatical 
sentences; '?' marks sentences whose grammaticality is questionable. 

A3 John cooked Mary the fish. 
?John supplied the school the books. 
*John ran Mary the machine. (John ran it for Mary.) 
John served Mary the fish. 
John caught Mary the fish. 

The following sentence sets are variations of the above, using the same 
verbs but in different syntactic patterns. In each set the same pattern is used 
throughout. Notice that not all verbs can be used grammatically in each pattern 
and that, moreover, some patterns (those marked by '—') act to describe a dif-
ferent situation from the ones described above. 
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A3w —John cooked Mary with the fish. 
John supplied the school with the books. 

—John ran Mary with the machine. 
—John served Mary with the fish. 
—John caught Mary with the fish. 

A3d (for) John cooked the fish for Mary. 
?John supplied the books for the school. 
John ran the machine for Mary. 

—John served the fish for Mary. 
John caught the fish for Mary. 

A3d (to) *John cooked the fish to Mary. 
John supplied the books to the school. 

*John ran the machine to Mary. 
John served the fish to Mary. 

*John caught the fish to Mary. 

A2' —John cooked Mary. 
John supplied the school. 

—John ran Mary. 
John served Mary. 

—John caught Mary. 

Al John cooked. 
?John supplied. 

—John ran. 
John served. 

?John caught. 

ΑΓ The fish cooked. 
*The books supplied. 
The machine ran. 

*The fish served. 
*The fish caught. 

There are two principal steps in the translation of a clause expressed in 
English into a proposition in first-order logic. First, syntactic analysis recognizes 
which of the various verb patterns is being used. Then syntactic cases (such as 
SUBJ and NPl) are mapped into argument positions for the predicate associated 
with the verb sense. For example: 

JOHN GAVE SAM FIDO 

is in the A3 pattern. According to Table 13-1, its subject JOHN is therefore 
mapped to Argl, its indirect object (or NPl) to Arg2, and its direct object (or 
NP2) to Arg3. The end result is the proposition: 

(GAVE JOHN SAM FIDO) 

The related sentence: 
FIDO WAS GIVEN TO SAM 
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is in the P3D pattern, so the subject is mapped to Arg3 and the dative SAM to 
Arg2, resulting in (GAVE _ SAM FIDO), which in turn is converted into 
(EXIST X)(GAVE X SAM FIDO). 

13.3.3 Relating KLAUS Systems to Conventional DBMSs 

In several ways, basic KLAUS systems such as NANOKLAUS are similar to 
conventional DBMSs (database management systems) in that they are intended to 
file, sort, selectively recall, and display data in various formats. However, 
DBMSs are systems for dealing with data structures through a formal 
command/query language, whereas a KLAUS is a system for learning and 
manipulating concepts through interactions in English. Furthermore, conven-
tional DBMSs store only single-fact sentences, such as: 

THE KENNEDY IS OWNED BY THE U.S. 
Facts involving logical connectives, such as "OR" in: 

THE KENNEDY IS EITHER IN PORT OR AT SEA, 
or involving quantification, such as: 

ALL CARRIERS CARRY DOCTORS, 

are not ground literals and cannot be represented explicitly in a conventional 
DBMS. They can, however, be represented, discussed and reasoned about in the 
first-order logic supporting a KLAUS. 

13.4 CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 

NANOKLAUS is best described as a fragile, proof-of-concept system that was 
built to establish the feasibility of achieving the broader KLAUS goals. The 
natural language research group at SRI International is now implementing a more 
sophisticated KLAUS, called MICROKLAUS. MICROKLAUS will cover a broader 
range of English constructions by replacing NANOKLAUS's LlFER-based pragmatic 
grammar with Jane Robinson's [Robinson, 1980] DIAGRAM grammar. 
MICROKLAUS will also feature a more efficient deduction system than the one 
used by its predecessor. 

Our work on the subject of knowledge acquisition has only recently begun 
and there are many capabilities that we have yet to address. For example, 
NANOKLAUS has no provision for learning by analogy, acquiring or reasoning 
about the internal structures of processes, dealing with causality, handling mass 
terms, allowing users to change their minds about previously asserted "facts", or 
dealing with multiple senses of words. 

The KLAUS project is not limited to the study of knowledge acquisition, but 
is intended to provide technology for a system that combines a knowledge of 
how to use various software packages with an ability to learn facts about new 
domains. It is intended that an advanced KLAUS system act as a kind of broker 
between multiple external agents, one of whom happens to be the user. 
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The following deceptively simple hypothetical dialogue illustrates the value 
and the basic characteristics of such an advanced KLAUS: 

1. User: > DO I HAVE NEW MAIL? 

2. KLAUS: You have one message 

FROM: HENDRIX 
SUBJECT: NSF funds have been cut by Congress 

Do you want to read it now? 

3 . User: > YES 

4 . KLAUS: (Presents message about funding cuts at NSF.) 

5. User: > WHO ARE THE PROJECT LEADERS ON OUR NSF GRANTS? 

6. KLAUS: The following table presents the Pis of 
NSF projects in the AI Center. 

El 

Fischler 
Grosz 
Robinson 
Waldinger 
Witkin 

1202 
6194 
7483 
7409 
8682 

7. User: > FORWARD THE MESSAGE TO THEM. 

In this dialogue, the user first asks about his mail (Utterance l) . 4 Then the 
user says he wants to read his message, whereupon KLAUS displays it. It is 
about funding cuts at NSF. The user decides to find out who the project leaders 
of the relevant projects are, so he asks Question 5. Subsequently, in Request 7, 
he asks that the message be forwarded to these leaders. 

Most of the capabilities required for this dialogue can be found in existing 
systems. However, no system yet built is able to support the entire interaction 
as shown, because all systems to date lack a controlling and coordinating top 
level that would enable a single system to 

• Interact with the user in natural language. 
• Decide which of several subsystems should be invoked to meet the user's 

needs. 

4This dialogue does not require KLAUS to understand the title or body of the message; however, 
KLAUS must understand that there was a message and that it was from Hendrix. 
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• Automatically create and execute the calling sequences to invoke those 
subsystems. 

• Maintain a dialogue context with the user that reflects and integrates the 
various local contexts that have been established by and for the use of sub-
systems. 
In other words, present systems lack a crucial level of awareness of the 

interrelationships and potential interactions of the various software packages, the 
user, and the domain of application. In short, processing the sample dialogue 
requires knowledge of the domain of application and of available programs, as 
well as knowledge of the way these pieces fit together in a larger framework. 
How to acquire, represent, and apply such knowledge in a computer-based sys-
tem are major problems for future research. 
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APPENDIX: TRAINING NANOKLAUS ABOUT AIRCRAFT CARRIERS 

What follows is a transcript of a dialogue with the NANOKLAUS system. 
The consecutive numbers at the left of some lines are NANOKLAUS prompts. In-
puts typed by the user are italicized. Sentences in braces are descriptive annota-
tions. Some of the interaction has been deleted to shorten the transcript. A 
graphical representation of the sort hierarchy produced by the dialogue is 
presented in Figure 13-2. 

@NANOKLAUS 

Welcome to NANOKLAUS ! 

Just say lHelpi if you need help. 

1_ What do you know about? {The u s e r a s k s NANOKLAUS 
what c l a s s e s of t h i n g s 

have b e e n d e s c r i b e d t o i t . } 
I know a b o u t PHYSICAL OBJECTS, PEOPLE, MEN, WOMEN. MEASURES, and 
THINGS (of c o u r s e ) . 
2_ A length is a measure {The u s e r i n t r o d u c e s LENGTH.} 
Y o u ' r e s a y i n g t h a t a n y t h i n g t h a t i s a LENGTH i s a l s o a MEASURE. 
Ok, now I u n d e r s t a n d LENGTH. 
3 . A foot is a unit of length {The u s e r i n t r o d u c e s FOOT.} 
FOOTS a r e t h e f i r s t u n i t s of LENGTH y o u ' v e d e f i n e d . 
Now I u n d e r s t a n d FOOT. 
4_ The plural of foot is feet 
FEET - g o t i t . T h a n k s . 
5_ A meter is a unit of length 
How i s i t r e l a t e d t o FOOT? There are 33 feet in a meter. 

{Whenever an a d d i t i o n a l u n i t of a 
m e a s u r e i s d e c l a r e d , NANOKLAUS 

r e q u e s t s t h e f a c t o r f o r c o n v e r s i o n 
t o one of t h e p r e v i o u s l y d e c l a r e d 

u n i t s . } 
Now I understand METER. 
6_ A physical object has a length {The user gives the domain over 

which an attribute named LENGTH 
may range, and implicitly 

indicates that the value of this 
attribute must be an element of the 

set of lengths, declared in (2).} 
So PHYSICAL OBJECTS have LENGTHS. 
Must a PHYSICAL OBJECT have exactly one LENGTH? yes 

{NANOKLAUS determines that the 
relationship between physical objects 

and lengths is functional.} 
7_ A ship is a physical object 
You're saying that anything that is a SHIP is also a PHYSICAL OBJECT. 
Is PERSON a proper subclass of SHIP? no {When a new subset of an 

existing set is created, 
NANOKLAUS queries the user 

to determine how it relates 
to that set, as well as to 

other previously introduced 
subsets of that set.} 

Is PERSON necessarily composed of entirely different members from 
SHIP? yes 
Do PERSON and SHIP span the set of all PHYSICAL OBJECTS? no 
Ok, now I understand SHIP. 
8_ A ship is a unit {Sets may be subsets of more than 

one set.} 
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You're saying that anything that is a SHIP is also an UNIT. 
What is an UNIT? a thing {NANOKLAUS always wants to know 

how the set and superset relate to 
the existing taxonomy (the taxonomy 
is always a connected graph). Note 

that it generated the incorrect 
indefinite article in the question, 

but see Interaction 9 below.} 
You're saying that anything that is an UNIT is also a THING. 
Which of the following, if any, are proper subclasses of UNIT: 
PHYSICAL OBJECT or MEASURE? neither of them 
Which of the following classes, if any, could never have any members 
in common with UNIT: 
PHYSICAL OBJECT or MEASURE ? neither of them 
Ok, now I understand UNIT. 
Ok, now I understand SHIP. 
9- A unit {The user corrects NANOKLAUS'S English.} 
OK, A UNIT 
10- A submarine is a ship {Feedback from NANOKLAUS, such as 
11_ A destroyer is a ship seen in Interaction 8, is omitted 
12- A carrier is a ship for the sake of brevity.} 
13- A Kittyhawk is a carrier 
14- A For restai is a carrier 

You're saying that anything that is a KITTYHAWK is also a CARRIER. 
Is KITTYHAWK a proper subclass of FORRESTAL? no 
Is KITTYHAWK necessarily composed of entirely different 
members from FORRESTAL? yes 
Do KITTYHAWK and FORRESTAL span the set of all CARRIERS? no 
Ok. now I understand KITTYHAWK. 
15-/4 Hermes is a carrier 

16- A task group is a unit 
17_ An officer is a person 

18_ An officer can command a ship {Here the verb COMMAND is 

Give the -ed and -en forms of COMMAND introduced as mapping into 
(for example, for GO: WENT GONE): a predicate over 
commanded commanded (officer, ship) pairs.} 
If an OFFICER can COMMAND a SHIP something , type in the most general 
description of that thing, otherwise type <carriage return> 

{NANOKLAUS tried to determine 
if COMMAND doesn't in fact 

take a third argument.} 
If an OFFICER can COMMAND something a SHIP, then please type in 
the most general description of that thing, 
otherwise type <carriage return> 
If an OFFICER can COMMAND something to a SHIP, then please type in 
the most general description of that thing, otherwise <carriage return> 

{In this context, itoi 
marks an indirect object, 
not the destination of a 

verb of motion.} 
If an OFFICER can COMMAND a SHIP to something, then please type in 
the most general description of that thing, otherwise <carriage return> 
Can a SHIP be COMMANDED by an OFFICER ? yes 

{NANOKLAUS acquires informa-
tion enabling it to map 

into a canonical predicate 
calculus form from passive 
occurrences of the verb and 

occurrences in which some of 
the noun phrases are 

omitted.} 
Can a SHIP COMMAND ? no 
Can an OFFICER COMMAND ? yes 
19- An officer can assign a task group a unit {Another example, this time 

Give the -ed and -en forms of ASSIGN a ditransitive verb.} 
(for example, for GO: WENT GONE): 
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assigned assigned 
Can an OFFICER ASSIGN a UNIT TO a TASK GROUP ? yes 
Could a UNIT be ASSIGNED a TASK GROUP by an OFFICER 

Can an OFFICER ASSIGN a UNIT with a TASK GROUP ? no 
Can an OFFICER ASSIGN a TASK GROUP ? no 
Can an OFFICER ASSIGN ? yes 
20_ Some ships can be nuclear 

You're saying that at least one SHIP could be nuclear 

21_ A nationality is a thing 
22_ A ship has a nationality 
So SHIPS have NATIONALITIES. 

Must a SHIP have exactly one NATIONALITY? 

23_ A rank is a thing 
You're saying that anything that is a RANK 

Which of the following, if any. are proper 

PHYSICAL OBJECT, LEGAL PERSON, MEASURE. 

Which of the following classes, if any, 

in common with RANK: 

PHYSICAL OBJECT, LEGAL PERSON, MEASURE, 

Ok, now I understand RANK. 

24_ An officer has a rank 
25_ A carrier has a doctor who is a person 
So CARRIERS have PEOPLE for DOCTORS. 

Must a CARRIER have exactly one DOCTOR? 

{NANOKLAUS is taught an adjective, 

which it maps into a unary predicate 

whose domain is ships.} 

yes 

is also a THING. 

subclasses of RANK: 

UNIT, or NATIONALITY? none of them 
could never have any members 

UNIT, or NATIONALITY ? all of them 

26_ The JFK is a Kittyhawk 
You're saying that JFK is one instance of a KITTYHAWK. 

Ok, now I know about JFK. 

27_ The JFK is a Forrestal 
You're saying that JFK is one instance of a FORRESTAL. 

Sorry, but JFK is an individual of the following types: 

and one of them conflicts with FORRESTAL. 

28_ The Saratoga is a Forrestal 
29_ The Enterprise is a carrier 
30_ The Bulwark is a Hermes 
31_ US is a nationality 
32_ UK is a nationality 
3 3 . US is the nationality of the JFK 
Proving (US is the nationality of JFK) 

Asserting that (US is the nationality of JFK) 

34_ The nationality of the Saratoga is US 
35_ The nationality of the Enterprise is US 
36_ The nationality of the Bulwark is UK 
37_ Moffet is an officer 
38_ Brown is an officer 
39_ Captain is a rank 
40_ The rank of Brown is captain 
41_ Captain is the rank of Moffet 
42_ The JFK is commanded by Moffet 
P r o v i n g (MOFFET commanded JFK) 
A s s e r t i n g t h a t (MOFFET commanded JFK) 

43_ Brown commands the Saratoga 
Proving (BROWN commanded SARATOGA) 

Asserting that (BROWN commanded SARATOGA) 

{Here the attribute named 

DOCTOR takes values that 

must be members of the set 

of persons.} 

{First introduction of an 

individual.} 

KITTYHAWK. 

{NANOKLAUS used its knowledge of 

subset relationships to discover 

and then report an inconsistency 

in its user's assertions.} 

{Asserts the value of 

an attribute. Note that, 

instead of blindly entering 

the fact in the fact store, 

NANOKLAUS first checks as to 

whether it already knows 

the fact.} 

{Uses verbs to describe an 
event or situation. Note trans-
formation from passive to active 

voice by NANOKLAUS.} 

{NANOKLAUS employs an untensed logic; 

its canonical expression of its 

knowledge is always past tense.} 
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44_ Moffet commands the JFK. 
P r o v i n g (MOFFET commanded JFK) 
I a l r e a d y knew t h a t . {NANOKLAUS d e t e c t e d t h a t i t had 

p r e v i o u s l y been t o l d t h i s , 
a l t h o u g h i n a d i f f e r e n t v o i c e . } 

45_ Brown commands. 
P r o v i n g (BROWN commanded Some s h i p ) {NANOKLAUS f i l l e d i n t h e o m i t t e d 

a r g u m e n t and t h e n d e t e r m i n e d t h a t 
i t had been t o l d of an e v e n t o r 

s i t u a t i o n t h a t c o u l d c o n c e i v a b l y 
have been a d e s c r i p t i o n of t h e 

same e v e n t o r s i t u a t i o n . } 
I s any one of t h e f o l l o w i n g s t a t e m e n t s t r u e c o n c e r n i n g t h i s e v e n t : 
t h e SHIP i s SARATOGA ? Yes 
46_ Brown commands a F or restai. 
P r o v i n g (BROWN commanded Some f o r r e s t a l ) 
I s any one of t h e f o l l o w i n g s t a t e m e n t s t r u e c o n c e r n i n g t h i s e v e n t : 
t h e FORRESTAL i s SARATOGA ? Yes. 
4 7 . 1072 feet is the length of the JFK 

A s s e r t i n g t h a t (1072 FEET i s [ e q u a l t o ] t h e LENGTH of JFK) 
48_ The length of the Bulwark is 650 feet 
49_ ctgl8 is a task group 
50_ ctg36 is a task group. 
51_ Moffet assigned the Saratoga to ctg36 
P r o v i n g (MOFFET a s s i g n e d CTG36 SARATOGA) 
A s s e r t i n g t h a t (MOFFET a s s i g n e d CTG36 SARATOGA) 
52_ The Saratoga was assigned to ctg!8 by Brown 
P r o v i n g (BROWN a s s i g n e d CTG18 SARATOGA) 
A s s e r t i n g t h a t (BROWN a s s i g n e d CTG18 SARATOGA) 
5 3 - The Enterprise is a nuclear ship {Uses a p r e d i c a t e a d j e c t i v e . } 
54_ What are the ships? {The u s e r i n t e r r o g a t e s 
ENTERPRISE, JFK, SARATOGA, AND BULWARK. NANOKLAUS t o v e r i f y t h a t i t 

h a s a s s i m i l a t e d what i t 
h a s b e e n t o l d . Note t h a t t h e u s e r h a s 

n o t e x p l i c i t l y d e s c r i b e d any of t h e 
a n s w e r s a s s h i p s . } 

55_ Who commands the Kittyhawks? 
(MOFFET J F K ) . 
56_ Who commands the JFK? 
MOFFET. 
57_ Brown commands what? 
SARATOGA. 
58 . What is the length of the JFK? 
1072 FEET. 
59_ How many meters is the length of the JFK? 
P r o v i n g (Some l e n g t h i s [ e q u a l t o ] t h e LENGTH of JFK) 
3 2 4 . 8 4 8 5 . {Using t h e u n i t c o n v e r s i o n f a c t o r . } 
60_ What is the nationality of the Saratoga? 
US. 
62_ Brown assigned what ships? 
P r o v i n g (BROWN a s s i g n e d Some t a s k g r o u p Some s h i p ) 
(CTG18 SARATOGA). { I . e . , Brown a s s i g n e d CTG18 S a r a t o g a . } 
63_ Who assigned ships to ctg36? 
P r o v i n g (Some o f f i c e r a s s i g n e d CTG36 Some s h i p ) 
(MOFFET SARATOGA). 
64_ Who assigned ctg/8 the Saratoga? 
P r o v i n g (Some o f f i c e r a s s i g n e d CTG18 SARATOGA) 
BROWN. 
65_ Who assigned the Saratoga? 
P r o v i n g (Some o f f i c e r a s s i g n e d Some t a s k g r o u p SARATOGA) 
(MOFFET CTG36) and (BROWN CTG18). 
66_ Which ships are nuclear? 
P r o v i n g (Some s h i p i s a n u c l e a r s h i p ) 
ENTERPRISE. 
67_ What do you know about carriers? 
US i s t h e n a t i o n a l i t y o f JFK. {NANOKLAUS h a s a c c e s s t o i t s 
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US is the nationality of SARATOGA. 

US is the nationality of ENTERPRISE. 

UK is the nationality of BULWARK. 

MOFFET commanded JFK. 

BROWN commanded SARATOGA. 

1072 FEET is [equal to] the LENGTH of JFK. 

the LENGTH of BULWARK is [equal to] 650 FEET. 

MOFFET assigned CTG36 SARATOGA. 

BROWN assigned CTG18 SARATOGA. 

ENTERPRISE is a nuclear ship. 

69_ Now describe ship 
SHIP: 
A SHIP is a PHYSICAL OBJECT and UNIT. 

Therefore it is also a THING. 

SUBMARINES and CARRIERS are SHIPS. 

SUBMARINES and CARRIERS cannot have any members in common. 

SHIP has the following attributes and types: 

NATIONALITY. 

SHIPS can be NUCLEAR. 

71_ Please describe Moffet then describe Brown. 

Moffet is an officer. His or her rank is CAPTAIN. MOFFET 

commanded JFK. MOFFET assigned CTG36 SARATOGA. 

fact store indexed by sort, 

as well as by predicate. 

Here it reports all the 

atomic facts it has about 

carriers.} 

{Here it describes all the 

generic and sort information 

it has about a given sort.} 

{In response to this 

request. NANOKLAUS 

displays all the facts it 

knows about a particular 

individual.} 

Brown is an officer. His or her rank is CAPTAIN. BROWN commanded 

SARATOGA. BROWN assigned CTG18 SARATOGA. 

72_ Now tell me about Saratoga. 
Saratoga is a forrestal. Its nationality is US. BROWN 

commanded SARATOGA. MOFFET assigned CTG36 SARATOGA. BROWN assigned 

CTG18 SARATOGA. 

76_ Who commands what? 
Proving (Some officer commanded Some ship) 

(MOFFET JFK) and (BROWN SARATOGA). 

77_ good bye 
See you l a t e r 
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THING 

PHYSICAL OBJECTS UNITS LEGAL. PERSONS RANKS NATIONALITIES MEASURES 

^ 4S 4l· 

TASK GROUPS PEOPLE CAPTAIN U.S. U.K. LENGTHS 

CTG18 CTG36 

(mutually exclusive) 

SUBMARINE DESTROYER CARRIER 

(mutually exclusive)· 

ENTERPRISE KITTYHAWK FORRESTAL HERMES 
>fc 4t» /fc 

FOOT METER 

(mutually exclusive) 

DOCTORS MEN WOMEN 

BROWN MOFFETT 

JFK SARATOGA BULWARK 

Figure 13-2: Sort Hierarchy Produced by Transcript Dialogue 



14 

THE INSTRUCTIBLE 

PRODUCTION SYSTEM: 

A RETROSPECTIVE ANALYSIS 
Michael D. Rychener 

Carnegie-Mellon University 

ABSTRACT 

In building systems that acquire knowledge from tutorial instruction, 
progress depends on determining certain functional requirements and ways for 
them to be met. The Instructive Production System (IPS) project has explored 
learning by building a series of experimental systems. These systems can be 
viewed as being designed to explore the satisfaction of some of the requirements, 
both by basic production system mechanisms and by features explicitly 
programmed as rules. The explorations have brought out the importance of con-
sidering in advance (as part of the kernel design) certain functional components 
rather than having them be filled in by instruction. The need for the following 
functional components has been recognized: 

• interaction language 
• organization of procedural elements 
• explanation of system behavior 
• accommodation to new knowledge 
• connection of goals with system capabilities 
• reformulation (mapping) of knowledge 
• evaluation of behavior 
• compilation to achieve efficiency and automaticity 

Since the experimental systems have varied in their effectiveness, some general 
conclusions can be drawn about the relative merits of various approaches. Seven 
such approaches are discussed here, with particular attention to the three whose 
behavior can be most effectively compared, and which reflect the temporal 
development of the project. 

429 
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14.1 THE INSTRUCTIBLE PRODUCTION SYSTEM PROJECT 

The Instructive Production System (IPS) project [Rychener & Newell, 
1978] was begun in the fall of 1975 to study the construction and behavior of 
large-scale systems of production rules. Our hypothesis, extrapolated from work 
in cognitive psychology [Newell & Simon, 1972], was that intelligence would 
result, as a system grew in size, from an ability to deal with more situations and 
to apply more knowledge to solve problems. The motivation to use production 
systems had the same source [Newell & Simon, 1972]. To increase the scien-
tific interest of building such systems, and ultimately to improve the chances of 
continuing growth and viability, it was stipulated from the start that the system 
was to be built by gradual "instruction" rather than by deliberate programming.1 

The research evolved into a series of explorations of the design of a starting 
system (KERNEL), from which the much larger system would be grown. The 
explorations spanned a four-year time period, until mid-1979, and involved the 
efforts of over a half dozen people.2 

The setting in which instructional experiments took place was chosen to be 
one of "learning by doing". In this paradigm, the instructor of the system 
watches and advises the system while it is solving problems in its chosen domain 
of expertise (see the work of Anzai and Simon [1979]). This is a good way to 
study learning because it combines attributes of both learning by being told and 
learning by independent exploration, while avoiding some of their drawbacks. 
That is, the instructor still instructs by telling, but the fact that the system is 
doing something at the same time allows the instructor to verify (partially) that 
the new knowledge is appropriate to the system's current knowledge. In ad-
dition, the system is in a sense exploring in an environment that has new situa-
tions for it, under the guidance öf the instructor and in the framework of 
problems posed by the instructor. When new knowledge interacts in some way 
with the system's existing knowledge, that interaction has the greatest chance of 
being understood in the context of a situation where that knowledge is being ap-
plied. The system is forced to deal with new situations in its own way, using its 
own conceptual system, with the extra help of the instructor's advice. But ad-
vice to the system is often limited, in that the system's knowledge may not be 
stored so as to be brought to bear in all appropriate situations, and in that the 

•Actually, production systems are quite difficult to program, so an instruction mode has the potential 
of bringing a large system into the realm of feasibility. What is desired is that the production system 
itself be able to manage its knowledge, find interactions of new knowledge with old [Rychener, 
1975], check consistency, formulate and select answers for questions that arise when new and old 
knowledge statements are compared, and do assorted other tasks that can't even be predicted at this 
time. To complete this knowledge management task would require a great deal of knowledge itself, 
and the IPS project has only begun to realize what might be required for this much larger research 
goal. 

2See the Acknowledgments near the end of the paper. 
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instructor can often see only the effects of the knowledge, rather than the 
knowledge itself, depending on how well the system can describe itself. 

More precisely, the dialogue between instructor and system is ruled by a 
number of constraints: 

• The instructor of the system gains all information about IPS by observing 
its interactions with its environment (including the instructor). 

• The dialogue takes place in (restricted) natural language. 
• The dialogue is mixed initiative, with both participants free to try to in-

fluence the direction. 
• Instruction may be about any topic or phenomenon in the system's external 

or internal environment (subject to the other restrictions). 
• Knowledge accumulates over the lifetime of the system. 

These constraints are intended to embody the essence of instruction as it 
occurs in a number of natural situations. At the same time, they tend to rule out 
explicit "programming" by the instructor, and thus place a larger burden on the 
system's learning abilities, and indeed on its general intelligence. 

Throughout the IPS experiments, the underlying knowledge organization 
was Production Systems (PS's) [Forgy & McDermott, 1977; Young, 1979; An-
derson, 1976; Rychener, 1976; Ne well & Simon, 1972], a form of rule-based 
system in which learning is formulated as the addition to, and modification of, 
an unstructured collection of production rules. As mentioned above, this as-
sumption of architecture has some support from psychological theory [Newell & 
Simon, 1972]. Behavior is obtained through a simple recognize:act cycle with a 
sophisticated set of principles for resolving conflicts among rules [McDermott & 
Forgy, 1978; Rychener, 1977]. The dynamic short-term memory of the system 
is the Working Memory (WM), whose contents are matched each cycle to the 
conditions of rules in the long-term memory, Production Memory. As will be 
explained in a later section, information transfer from the environment (including 
instructor) to the system takes place by depositing conventionalized symbol struc-
tures into the WM. Those structures then become subject to manipulation by the 
system's procedural methods expressed as rules (to be defined and illustrated 
after the next subsection). The IPS project developed several dialects of the OPS 
language [Forgy & McDermott, 1977; Forgy, 1979b; Rychener, 1980] to support 
its experiments. 

14.1.1 Relation to Other Learning Research 

In terms of a model recently proposed for learning systems by Buchanan, 
et al. [1979], the IPS work focused on certain aspects of the learning problem 
while neglecting others. Their model consists of: 

• A performance module that actually performs tasks. 
• A critic that evaluates performance, locates errors, and recommends correc-

tive actions. 
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• A learning module that responds to the critic by modifying performance. 
• An instance selector that poses training problems. 
• A blackboard [Lesser & Erman, 1977] for globally modifiable data and in-

termodule communication. 
• A world model for domain-specific knowledge and assumptions. 

In all of the IPS explorations, both performance and learning modules were 
embodied in the production memory, and were thus intermixed. This paper is 
concerned principally with elaborating and refining the subcomponents of these 
two modules. This emphasis is inherent to the instructional situation, where the 
instructor plays the role of critic and t instance selector. WM functioned as the 
blackboard, and world-model knowledge (usually minimal) was represented as 
rules whose actions placed facts into WM and otherwise maintained consistency 
with the domain's assumptions. 

To further the comparison of the IPS project with other artificial intelligence 
and psychology research, it is useful to discuss briefly our position with respect 
to a number of current issues. The topic of instruction for an IPS can be charac-
terized as: 

• self-contained procedures for specific tasks 
• problem-solving operations within such procedures 
• domain-specific heuristics, in the same context 

rather than such things as: 
• rules or heuristics that work only within the computational context of a 

special-purpose control structure or mechanism different from the 
recognize-act paradigm of PS's (as in various "expert" systems, for ex-
ample, those for medical diagnosis) 

• causal models for explanation and prediction (as in attempts to model 
physical devices, Socratic tutoring approaches, and so on) 

• concepts (as in various pattern classification and concept formation studies) 
• language grammars 
• numerical functions and relationships 

Thus, the IPS work was not concerned primarily with such mechanisms as 
generalization, specialization, discrimination, property intersection, rule induc-
tion, and pattern induction. These mechanisms were considered to be second-
order refinements3 on what we gave an IPS by instruction; in fact, we expected 
them to become more relevant as the basic problems with IPS were solved and 
the system began to exhibit coherent and interesting task behavior. Also, they 
are mechanisms that are best applied when much larger quantities of empirical 

3This is not to say that they are second order in all knowledge domains and studies, but just in our 
narrow focus. It is a matter of relative importance. 
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data or knowledge are involved. In other words, the emphasis was on the 
gradual transfer of knowledge from instructor to system, and our focus remained 
the structure and content of a body of knowledge, and its effective use to obtain 
behavior. This is in contrast to having the system develop the knowledge from 
general axioms, from knowledge primitives, or from large bodies of unstructured 
facts, which would involve abstract manipulations, inductions, and searches. 
These would reduce the amount of interaction, and would require more searching 
and intelligence on the part of the system. They would take place in large 
spaces that would be distant from instructional and interactive situations, and 
would thus be hard to formulate heuristics for. Similarly, because of our limited 
understanding, we neglected such issues as credit and blame assignment, conver-
gence of learning over time, speed of convergence, and searching as an alter-
native to direct instruction. In fact, PS's as an architecture are amenable to a 
number of interesting operations with regard to the above-mentioned topics, leav-
ing open many research avenues.4 

To state the matter more positively, learning in an IPS was by accumulation 
of fairly specific rules and methods. In many cases, the rules acquired could be 
viewed within some well-known organization, such as means-ends analysis or 
schémas, but usually this organization was not obtained from an act of specializ-
ing or instantiating an existing general knowledge structure. Rather, as discussed 
in later sections of this paper, either the instructor or the system was oriented 
towards maintaining a particular organization on the specific knowledge that it 
received. The IPS work has a closer kinship to studies in intelligent computer-
aided instruction, and perhaps in educational psychology (particularly 
programmed learning), than to other attempts at learning systems. (This kinship 
will be discussed further in Section 14.4.) There is also a strong relation to the 
construction of "expert" systems, involving accumulation of a body of specific 
domain knowledge. More relationships are discussed at the end of the next sub-
section. 

14.1.2 Basic Definitions and Discussion 

There are a few key concepts whose definitions will clarify some issues 
with respect to the IPS project's approach to encoding knowledge. These also 
reveal a position on planning and other control structure topics. 

A goal is a data structure that represents an external command, an internal 
need to achieve some state, or a need to execute successfully some sequence of 
actions. An example, taken from a simulated manufacturing domain, is: 

Make a car for a customer's order. 

where the customer's order is another data structure describing details of the item 
to be made. In the OPS3 [Rychener, 1980] dialect of OPS, this might be 
represented as: 

4Anderson addresses such topics in Chapter 7 in this volume. 
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wsOll: (make car goal (order ws014)) 
ws014: (customer order data 

(type car) (body sedan) (color blue) 
(engine-size medium) 
(accessories (radio a/c))) 

These structures consist of an internal name, a three-element header, and then a 
set of attribute-value pairs, where the value may be a set of items. Details of 
this and other representations used within various versions of IPS are beyond the 
scope of this paper. For the remainder of the introductory examples that follow, 
a liberal English translation is used for readability. 

A rule (that is, a production) in OPS consists of a number of conditions and 
a number of actions. Each condition is a pattern that matches some element of 
WM, such as a goal (in various states of activation: active, suspended, suc-
ceeded, failed), a structure describing something perceived in the environment, 
or a data structure describing some internal state. The actions of a rule typically 
assert new data structures or goals, and can also modify or delete existing struc-
tures. 

A method in IPS is a set of rules that work together to satisfy a goal. It is 
typically very specialized to a certain goal class, and usually consists of a num-
ber of steps, with various intermediate data generated to indicate the progress 
towards completion. The following is a method for satisfying the above sample 
goal. It is not meant to reflect accurately all of the details of actual IPS methods, 
but just the general flavor of the approach. 

Ml: If there is a goal to make a car for a customer's order 
and the order specifies the car's body as some type, 

then have the goal to make a body of that type for the car. 

M2: If there is a goal to make a car for a customer's order 
and the order specifies an engine of some size for the car 
and the car's body has been made, 

then have the goal to install an engine of that size in the 
car. 

M3: If there is a goal to make a car for a customer's order 
and the order specifies accessories 
and the car's engine has been installed, 

then know that the car is ready for accessories. 

M4: If there is a goal to make a car for a customer's order 
and the order specifies a radio 
and it is known that the car is ready for accessories, 

then have the goal to install a radio in the car. 

M5: If there is a goal to make a car for a customer's order 
and the car has a body as specified in the order 
and the car has an engine as specified in the order 
and the car has all of its accessories installed, 

then know that the goal to make a car has been satisfied. 
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The first two rules, Ml and M2, generate subgoals for doing specific sub-
tasks of the main goal. The completion of one subgoal, in this method, triggers 
the rule that generates the next. The rule M3 recognizes some conditions sig-
nifying a certain stage in the method's progress, and summarizes that in a new 
data structure, so that later rules in the method don't need to make tests that are 
overly specific or detailed or that would multiply the number of combinations of 
conditions needed. M4 is an example of a rule that takes advantage of M3's 
summarization, and M5 is a rule that recognizes the completion of the main goal 
by testing each of the required aspects of the finished product. (An alternative, 
but less reliable, test would involve simply knowing that each step in a process 
was performed successfully.) 

The total set of rules to perform the making of the car would, of course, 
be much larger than is shown above, in order to specify the details of the various 
subgoals of the above method. (Subgoals ultimately reduce to primitives such as 
those described in a later section.) One rule from a method for one of the sub-
goals is the following: 

SI: If there i s a goal to i n s t a l l a radio in a car, 
then have the goal to move the car to the accessory assembler 

and have the goal to get a radio to the accessory assembler 
and have the goal to put the radio in the car using the 

assembler. 

As shown, rule SI asserts a number of subgoals. Though they are given in 
a particular order, the first two apparently could be done without regard to their 
order, and the last would probably make use of the results of the first two in 
order to ensure that the "assembler" has been provided with all the necessary 
inputs. The actual, detailed representations may include goal-subgoa} pointers 
(for example, expressed as attribute-value pairs). All of the sequencing implied 
by this discussion, though, would be readily implemented as the presence (or 
absence) of conditions that would be recognized by rules. The generality of the 
recognize-act computational paradigm, with its global WM holding goals and 
data, relieves the rule encoder of some of the burden of specifying control infor-
mation. This facilitates both initial instruction and later elaboration of the 
knowledge. As will be brought out further below, this ability to represent 
procedural knowledge as collections of rules, such as the ones just given, is one 
of the principal reasons for using PS's as a medium for instructible systems that 
are to grow by gradually adding details. 

It can now be pointed out that the work with IPS takes a peculiar position 
on the central artificial intelligence topic of planning, differing from a number of 
past approaches. The essence of the approach here is for the system to "muddle 
through"5 tasks that are problematic, rather than doing a lot of planning, prepara-

5A system muddles through a problem when it engages in trial and error, without carefully the 
considering consequences of its actions, relying instead on taking corrective actions after mistakes 
occur. 



436 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION SYSTEM 

tion, and anticipation of difficulties. A deliberate plan is never formulated and 
stored in a data structure for analysis, but behavior simply unfolds in response to 
changing conditions. Flaws or other interruptions in the flow of behavior are 
treated as new subproblems, and resolved by calling forth applicable methods or 
further instruction. It is not excluded that later on the system might be instructed 
to plan ahead in some fashion, or to add a reflective capability that would allow 
recognition of general classes of problems with known solutions and treat them 
accordingly [Anzai & Simon, 1979].6 The main aim here is to understand the 
basic goal structures and knowledge in a domain where many specific facts, 
brought to bear appropriately, are sufficient to produce effective behavior. Cur-
rent general methods are unable to cope with such problems due to inability to 
control the search in such a large space. 

14.1.3 Overview 

Through analysis of seven major attempts to build instructible PS's with 
various orientations, there were gradually formulated eight main functional com-
ponents. Defining the eight components sharpened our understanding of the 
problems of the performance and learning modules, making them amenable to 
further research and design efforts. Beyond the narrow focus of the IPS project, 
this clarification can perhaps contribute to research on learning systems in 
general. After the eight components are listed in the next section, a broad over-
view of the IPS project is undertaken. The seven attempts, forming an evolu-
tionary sequence, are cast into the functional component framework. In the 
process of doing this, lessons are extracted that apply to the whole enterprise as 
well as to individual explorations. 

Members of the IPS project are no longer working together intensively to 
build an instructible PS, but individual studies that will add to our knowledge 
about one or more of these components are continuing. Progress in developing 
efficient PS's has been important to the IPS project [Forgy, 1979a], but will not 
be discussed further here. 

14.2 ESSENTIAL FUNCTIONAL COMPONENTS OF INSTRUCTIBLE SYSTEMS 

The components listed in this section are to be interpreted loosely as 
dimensions along which learning systems might vary.7 In constructing a par-
ticular system, a point in a design space is located and developed. It is assumed 
that the mechanisms of a particular design embody approaches to several, or per-

6Carbonell, Chapter 5 in this volume, also bears on this topic. 

7This approach owes a lot to Moore and Newell's [1973] dimensions for understanding systems. 
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haps all, of these dimensions.8 Almost all of the systems discussed in the next 
section, in fact, do not represent complete designs with respect to all functional 
components, but rely to some extent on further instruction to fill them in (usually 
this optimism was not justified). Also, as is the case in many design areas, a 
single mechanism can serve to fulfill the demands of several components at 
once. Observation of a system's behavior allows the formulation of the kinds of 
modifications, with respect to the design space of components, that could lead to 
improvement in the overall ability to build iPSs. To the extent that the functions 
of these components are expressed by explicit goals in an IPS, there is oppor-
tunity to exercise the overall system in the improvement of particular com-
ponents. 

14.2.1 Interaction 

The content and form of communications between an instructor and an IPS 
can have a lot to do with ease and effectiveness of instruction. In particular, it 
is important to know how closely communications correspond to internal IPS 
structures. Inputs from the instructor can be in the form of entire methods or 
individual rules, in the form of more elementary WM units (whose composition 
into rules is thus less prominent in the external interactions), or in some other 
fragments even further removed from actual construction of rules. For example, 
consider the following rule (which is taken from the example of the preceding 
section): 

M2: If there i s a goal to make a car for a customer's order and 
the order specifies an engine of some size for the car 
and the . ca r ' s body has been made, 

then have the goal to i n s t a l l an engine of that size in the 
car. 

One approach might be to give the rule in its entirety. Alternatives that 
make the interaction more fine grained would have the instructor saying things 
like: 

Note that the order specifies a medium-size engine for the car. 
What size of engine does the order specify? 
Test the previous result. 
Try installing it. 

With respect to the system-output direction of interaction, we must ask 
how well the manifest behavior of an IPS indicates its progress on a task. This 
issue is subject to considerations similar to those for input. 

An IPS can have various orientations towards interactions, ranging from 
passive acceptance to active scrutiny. For instance, it can attempt, with varying 

8It is thus not considered fruitful to design systems that do each of these functions separately, or to 
talk about the structure of one without considering the overall system structure and orientation. 
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degrees of effort, to maintain consistency and to assimilate new structures into 
existing ones. An IPS will be most effective when its orientation is expressed as 
goals, and thus subject to refinement by instruction. 

14.2.2 Organization 

Each version of IPS approaches the issue of obtaining correct and coherent 
behavior by attempting to organize its "procedural" knowledge. The need for 
such an attempt arises from two sources: one is to move the instructor away from 
having to specify control constructs, that is, away from programming (which is 
difficult and violates the idea of instruction); another is that some form of sys-
tematic approach to control is needed, due to the inherent weakness9 of produc-
tion systems in this area. This may involve such techniques as collecting sets of 
rules into methods and using signal conventions for sequencing within methods. 
Whether IPS can explain its static organization and whether the instructor can see 
the details of procedural control are important subissues. 

To illustrate some alternative organization approaches, recall the following 
rule: 

M2: I f t he re i s a goal to make a car for a cus tomer ' s order and 
the order s p e c i f i e s an engine of some s i z e for the car 
and the c a r ' s body has been made, 

then have the goal to i n s t a l l an engine of t h a t s i z e in the 
ca r . 

In this rule, control is maintained by the third condition, which ensures 
that the rule will not be activated until the preceding step of making the car's 
body is finished. One imaginable alternative is simply to remove that condition, 
and have the subgoal asserted potentially before it can be properly worked on. 
In this case, of course, the method for the subgoal would be likely to stop, 
blocked by the lack of a car body in which to install the engine. This shortened 
version of M2 is probably easier to modify and more modular, but it may make 
it more difficult for the instructor (for instance) to explain or coordinate the extra 
unfinished goals in WM. Another alternative makes the local sequencing of M2 
more explicit by a step "counter" that is common to all rules in a 
method—knowing the current step is a way of knowing or summarizing the 
method's progress: 

M2s: I f i t i s s t ep 2 of a goal to make a car for a 
cus tomer ' s order 

and the order s p e c i f i e s an engine of some s i z e for 
the car 
then have the goal to i n s t a l l an engine of t h a t s i z e in 
the ca r . 

'Weakness" refers to lack of a definite theoretical position built into the language itself. 
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M2t: I f i t i s s t e p 2 of a goal to make a car for a 
cus tomer ' s order 

and the c a r ' s engine has been i n s t a l l e d , 
then mark the s t e p of the goal to be 3 . 

These examples bring out an important trade-off in control conventions: explicit 
steps reduce the number and complexity of contextual conditions that a rule must 
test, and thus simplify it, but they reduce the flexibility of control by locking the 
system into some particular order of execution. 

A key question facing the builders of IPS, and even of PS's more generally, 
is whether a procedural organization can exploit the full flexibility that seems 
inherent in PS architectures. Flexibility derives from having the control be open, 
on each PS cycle, to global recognitions that can change the direction of process-
ing by noting new facts, eliminate unnecessary steps by recognizing the satis-
faction of the current goal or some higher one, and in general maintain the 
ability to switch to more efficient means for satisfying a goal. Flexibility en-
hances adaptability to changes in the situation, to new knowledge or techniques 
(acquired, perhaps, without regard for actual application situations), to recogniz-
able errors, and to new orderings of sequences of actions that might be ap-
propriate to different situations. Certainly PS's can be programmed like conven-
tional algorithmic languages, but there is potential for much more flexible, 
"intelligent" procedures. 

14.2.3 Explanation 

A key operation in an instructive system is that of explaining how the sys-
tem has arrived at some behavior, whether correct or not. In the case of wrong 
behavior, IPS must reveal enough of its processing to allow the more intelligent 
instructor to determine what knowledge is missing, incorrect, or improperly 
represented. In the case of correct behavior, the instructor may wish clarification 
or elaboration on how it resulted. Ideally the explanation can occur at a point 
where it is also possible to make necessary corrections and additions before IPS 
gets too far off the track. 

For example, the state of WM in the middle of executing the "make a car" 
method might look like: 

a goal to make a car for a cus tomer ' s o rde r , 
the c a r ' s body has been made, 
the c a r ' s engine has been i n s t a l l e d , 
a goal to make a r a d i o , 
the c a r ' s l o c a t i o n i s L24, 
the re i s junk a t l o c a t i o n L25. 

The explanation component would have to be able to detect unfinished goals, 
partially finished methods, unusual objects in the environment, and so on. This 
would be facilitated, for instance, if goals and subgoals had pointers to each 
other, if operators left some record of attempts, and so on—but too much of this 
sort of information can degrade the system's performance. Another problem is 
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posed for the explanation component in selecting a small enough subset of criti-
cal items so that their communication is tolerable to the instructor. 

14.2.4 Accommodation 

When corrections to IPS's knowledge have been formulated by the instruc-
tor, the next step involves getting IPS to accommodate itself to new knowledge, 
that is, to augment or modify itself, in response to the usual form of interactions 
with the instructor. In the IPS framework, these modifications are taken to be 
changes to the rules of the system, rather than changes to the less permanent 
WM. As with interaction, IPS can assume a passive or active orientation toward 
this process. A key problem in the process of accommodation is to properly 
modify behavior in one situation while maintaining other correct behavior from 
past instruction. One aspect of this is to find the location in the knowledge 
structure of the system where the modification is to occur, so that related, inter-
acting knowledge can be taken into account. 

Suppose, in the preceding (explanation) example, that a problem is caused 
by a failure to satisfy the prerequisites for making a radio. Then a rule like the 
following might suffice to fix the problem: 

If there is a goal to make a radio 
and there is a goal to start the radio machine 
and there is not a power supply at L14 

Then have the goal to get a power supply at L14. 

Note that this patch rule has to have enough conditions in it so that it can win 
the conflict resolution10 over another (incomplete) rule, especially the rule that 
causes the starting of the radio machine without having all its requirements 
filled. Presumably there would be a rule in the system to set up subgoals to 
fulfill the prerequisites of making a radio, so that an alternative to the above 
patch rule might be to find and edit that rule by adding another subgoal. The 
deeper cause of why the rule was incorrect, for example, in analyzing the inputs 
to the radio machine, is more difficult to deal with, but might be worth the extra 
accommodation effort, as it might avoid future errors. One approach might be to 
set up a rule as a monitor to watch for similar errors (that is, those that omit 
some item of data) in the fulfilling of prerequisites. 

14.2.5 Connection 

This functional component and the ones that follow are considered 
"advanced" as opposed to the preceding "basic" components: they are much 
more difficult to formulate and implement. 

l0The relevant conflict resolution principle here is specificity: a rule that matches more data, or more 
specific (detailed) data, will be preferred; see [McDermott & Forgy, 1978; Rychener, 1977; Forgy & 
McDermott, 1977] for details. 



RYCHENER 441 

Manifest errors are not the only way a system indicates a need for instruc-
tion: inability to connect a current problem with existing knowledge that might 
help in solving it is perhaps a more fundamental and frequent failing. An IPS 
needs ways both to assimilate problems into an existing knowledge framework 
and to recognize the applicability of, and discriminate among, existing methods. 
This concept of connection might also be termed "near contact", in that a close 
(but not exact) match to existing methods is involved, with differences resolvable 
by a few simple operations on the goal. An interesting issue revolves around 
how actively IPS processes new problems for both present and future connection. 
Connection abilities, particularly recognizing close or partial matches and trans-
forming goals [Mostow, 1981], are important due to the desirability of having 
IPS know when it needs instruction versus when it can make use of existing 
knowledge. The other side of this coin is the problem of discriminating among 
several methods that appear to be appropriate to a given new problem. 

As a simple example, suppose the familiar "make a car" goal had been 
stated, 

Make a sedan for a customer's order. 

This can be readily transformed into the known form, if the possibility of map-
ping it is recognized. It might require noticing that sedan is a value of the 
"body" attribute in "make car" goals. A definition of "sedan" might also provide 
sufficient clues. 

14.2.6 Reformulation 

Another way that IPS can substitute for instruction is for it to reformulate 
existing knowledge to apply in new circumstances. This can also be termed 
mapping, analogy, transfer, serendipity, or "far contact". There are two aspects 
to this function: finding knowledge that is potentially suitable for mapping, and 
performing the actual mapping.11 In contrast to connection, this component in-
volves permanent transformation of knowledge in rules, either directly or by al-
tering rules' effects at each firing, dynamically. 

For example, suppose the goal, 
Make a truck for a customer's order. 

were to come along and a method specifically for making trucks did not exist. 
Then some kind of analogical process might be appropriate, given the existing 
method for making a car. Namely, the goal might be transformed to "make a 
car", with the proviso that when "make a car" ran into problems, control would 
revert to an analogy method that would try to bridge the gap and fill in the miss-
ing step so that the "car" method could be resumed. This might be the case for 
making the truck's body, which would require special action, but we can sup-

nCarbonell, Chapter 5 in this volume, does this using means-ends analysis. 
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pose that adding an engine and accessories might be nearly identical in cases of 
truck and car. 

14.2.7 Evaluation 

Since the instructor has limited access to what IPS is doing, it is important 
for IPS to be able to evaluate its own progress, recognizing deficiencies and er-
rors as they occur so that instruction can take place as closely as possible to the 
dynamic point of error. Defining what progress is and formulating relevant 
questions to ask in order to fill gaps in knowledge are two key issues. The as-
signment of blame for an error is the responsibility of the instructor in this IPS 
framework, with the explanation component assisting in diagnosis. It can also 
be helpful to include in evaluation some capabilities for having IPS produce ad-
ditional external behavior, as in a "monitoring" or "careful execution" mode of 
operation. 

The following rules illustrate the recognition of some possible error con-
ditions: 

El: If an object with type junk is produced by a machine, 
then have the goal of warning the instructor that 

the machine has produced that object. 

E2: If there is a goal to make a car for a customer's order 
and more than 20 minutes have elapsed since the order 

arrived 
and there is not the result that the car's body has 

been made, 
then have the goal of warning the instructor that 

progress is slow on the order. 

14.2.8 Compilation 

Rules initially formed as a result of the instructor's input may be amenable 
to refinements that improve IPS's efficiency. This follows from several factors: 
during instruction, IPS may be engaged in search or other "interpretive" execution 
(including a richer goal structure); instruction may provide IPS with fragments 
that can only be assembled into efficient form later; and IPS may form rules that 
are either too general or too specific. Improvement with practice is the 
psychological analog of this capability. Anderson et al. [1978] have formulated 
several approaches to compilation, such as condensing, into a single rule, rules 
that typically occur in a fixed sequence. 

The improvement that can be obtained from compilation is illustrated by 
the following rule, whose actions consist of direct environmental commands 
rather than goals and subgoals: 
Cl: If there is a goal to make a car for a customer's order 

and the order specifies a sedan body and a medium 
engine 

then start the sedan machine 
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and start the engine4 machine 
and move an object from L22 to L23. 

14.2.9 Discussion of Components 

It is evident that realizing the components described in this section is made 
difficult by the myriad combinations of knowledge that can occur. Because an 
IPS is potentially working in various environments of different complexity, it is 
difficult to take advantage of stereotypes in procedural forms. Others have in 
fact made progress by assuming fixed-format rules (for example, transformational 
grammars) or simplified execution schemes (such as backward chaining). Our 
approach contrasts with those in avoiding any assumptions about the form of the 
environment and in leaving the system architecture open for general procedures. 

14.3 SURVEY OF APPROACHES 

Each attempt to build an IPS has started with a hand-coded kernel system, 
with enough structure in it to support all further growth by instruction. The ker-
nels established the internal representations and the overall approach to instruc-
tion. At the very least, such kernels require the ability to interact with the in-
structor and to construct new rules. Three properties are desired in such a kernel 
system: 

• It is to be hand coded, and as modular as possible. 
• Everything in it is to be potentially modifiable by instruction. Usually it is 

constructed as if it were acquired by instruction, that is, with rules of 
similar form to those resulting from instruction. 

• It is to be open to expansion in any of a number of directions, depending 
on which problems the instructor wishes to explore. 
Seven kernels or kernel approaches were studied during the history of the 

IPS project, and they are presented below in roughly chronological order. 
KERNELl, ANA, KERNEL2 and IPMSL were fully implemented. The remainder ei-
ther were suspended at various early stages of development (with their best fea-
tures incorporated into newer proposals) or are still being elaborated and 
developed in the context of other research. Table 14-1, near the end of this 
chapter, summarizes a number of attributes of the kernels. 

14.3.1 The Abstract Job Shop Task Environment 

The task domain for the IPS project was the manipulation of objects in a 
symbolic task environment (TE), a simulated, simplified "factory", in which an 
IPS system has a limited set of "sensory" and "motor" operators. A typical job 
shop is shown in Figure 14-1. Each object in this toy environment is represented 
as a LISP property list. The TE itself is an object with a particular set of com-



444 CHAPTER 14: THE INSTRUCTIBLE PRODUCTION,SYSTEM 

ponents, termed locations, arranged in an array and represented as rectangles in 
Figure 14-1. 

Moneyl 
0rder4 

Engin4 
Engin6 

Scrap 
Clock 

Coupe 

Sedan 

Manual 

Auto 

Red 

Blue 

Radio 

Power 

VC ] 

Asmblr 

Figure 14-1: Abstract Job Shop 

The entire ensemble, in the spirit of keeping it as an "external 
environment", is separate from the processes and memories of the PS architec-
ture, except for the interface provided by the following operators: 

• View. A representation of its argument, an object, is placed in WM (as if 
obtained through an "eye"). 

• Scan. An object is sought in the TE containing a given attribute-value pair. 
It is Viewed, if found. 

• Trans. The top object at one location is transported to another location. 
• Start. A machine (an object with a special set of properties) is started. It 

goes through one cycle of its operation, which is all within the action cycle 
of the rule containing the invocation. 

• Compare. The values of a specified attribute of two objects are compared, 
producing a difference according to the values' type. 
Note that the above operators are invoked as actions in rules, making 

modifications in the TE and reporting changes in the TE by asserting data into 
WM. All of this occurs within a single recognize-act cycle of the PS. The most 
important and complex operator is Start, which activates machines. A machine 
is a special-format object that takes some objects as inputs (in some cases con-
suming them) and produces other objects as outputs. Usually constraints on the 
machine's operation make problems in the domain more challenging. 

Some sample problems, of varying difficulty, are the following: 
• Examine the object at the top position of some location. 
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• Examine the object at the top position of some location. 
• Compare two objects. 
• Find an object with a given set of properties. 
• Transport an object with a given set of properties to a given location. 
• Manufacture an object with a given set of properties, within some 

budgetary and time limits. 
The "find" class of task involves searching through the TE, Viewing ob-

jects and comparing them with the desired description. It is thus a prototypical 
task of interest in instructional situations. "Transport" problems are complicated 
by a feature of objects stored at a location: they are stacked on top of each other 
such that to move one, it has to be at the top of a stack. Getting an object to the 
top can involve moving objects elsewhere, with the potential for creating con-
flicts with other subgoals in a larger plan. While details of the pictured TE need 
not be given, it can be described as an assembly line layout for making 
automobiles. While this TE is straightforward, the language for defining TEs 
can express great complexity. 

14.3.2 KERNEL Version 1 

The starting point for IPS was the adoption of a pure means-ends strategy: 
given explicit goals, rules are the means to reducing or solving them. Four 
classes of rules are distinguished: 

• means rules 
• recognizers of success 
• recognizers of failure 
• evocation of goals from goal-free data 

The KERNELl [Rychener & Newell, 1978] approach goes further than this in its 
organization component, which consists of ways for grouping rules into methods 
(as defined and illustrated in Section 14.1). The main mechanism of grouping is 
to have rules of the above types share a common goal pattern. The interaction 
component consists of a straightforward processor for language strings that cor-
respond to methods and to system goals (among which are queries). Keywords 
in the language are used to signal that the kernel is to insert method sequencing 
tags. There are also keywords that delimit rule boundaries within methods. The 
explanation component is unspecified at the start, leaving it to the instructor to 
develop (and instruct) methods that could generate helpful information by piecing 
together various goals and data in WM. This reliance on instruction turned out 
to be a serious weakness, though a lot of the right kind of information was avail-
able in WM. 

Although KERNELl was used as a basis for instruction, its effectiveness 
was severely hampered by its weak or nonexistent components for explanation, 
accommodation, connection and reformulation. Only small progress was made 
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in the areas of evaluation12 and compilation.13 Much of the flavor of the means-
ends approach was retained in later kernels. 

KERNELI is illustrated in the protocol below; the objective is to instruct IPS 
to perform the simple task of examining the top object at some location in the 
TE. The method to be instructed can be summarized as follows: To examine 
the top object at some location, first View the location, then test if any objects 
are there; if so, find the first and use it as the result; otherwise, "nothing" is the 
result. Note that the "test if any objects" part of this method is a subgoal, to be 
instructed separately. The first clause of this method is given to KERNELl as 
follows:14 

To examine the object at the top pos i t ion (A) 
of some l ocat ion , 

want view locat ion that locat ion in the TE (Φ B) 
then want t e s t the s tatus of the value (C, (Ax)) 

of the composition of that l ocat ion , 

The marginal notations in the above indicate that the instruction gives rise 
to a rule with a condition element 'Α', the main goal of the method, and two 
action elements ('Β' and 4 C) , which are subgoals of the main goal. In addition, 
there is a modification (indicated by the subscript 'Γ ) to the goal element to 
achieve sequencing to the next step of the method (not shown). The complete 
input for this method involves four clauses of similar length and form to the one 
given, all given without a break for system responses. KERNELI adds some se-
quencing control to other rules in the method by inserting the main goal as a 
condition, suitably modified with step counters. These additions are one advan-
tage of using KERNELI over programming directly in OPS rules, although the dis-
tance between the two forms of coding is not conceptually large—they are both 
forms of programming, as distinct from tutorial instruction. 

While a large fraction of the rules of KERNELI are devoted to processing 
the (admittedly clumsy) input language illustrated above, the main design objec-
tive and achievement was to embed simple means-ends connections, as expressed 
by instruction text, in an organization that would ensure production of the 
desired behavior; that is, organization, rather than interaction, was the main 
focus. Unfortunately, two properties of the above style of interaction are very 
detrimental to effectiveness. First, KERNELI accepts the input passively, with no 

12Described briefly in an unpublished appendix to this chapter, available from the author. 
13This consisted of recognizing the applicability of techniques such as those in [Anderson et al.t 
1978], to our means-ends rules. 

14An unpublished appendix (available from the author) to this chapter contains the full instruction 
text, along with a more detailed explanation. 
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interaction (for example, questioning) involved. Second, the instructor receives 
no feedback on the correctness of the many parts until the entire method is tried. 
KERNELl failed to provide an adequate basis for interaction, explanation, and 
performance due to a number of practical considerations: difficulty in knowing 
the side conditions of rules (those other than the main goal); lack of a 
mechanism for constructing tests of proper goal satisfaction; lack of having goal-
subgoal links created automatically; and goal representation 
deficiencies—particularly, failure to distinguish different occurrences of the same 
goal (as in recursion) and to allow goals to be augmented with new information 
as processing developed. The instructor was relied upon to provide too much 
programming detail, in a situation where a programming approach is considered 
harmful. 

In spite of its shortcomings, KERNELl accomplished a few important tasks, 
as far as overall IPS project goals were concerned. It established the basic 
means-ends form for the organization component. It clarified the need for more 
PS efficiency, and for improvement in the explanation, accommodation, and 
other functional components. In short, it gave us a better appreciation of the 
difficulty of the instruction task. 

14.3.3 Additive Successive Approximations (ASA) 

Some of the drawbacks of KERNEL l, especially those surrounding inter-
action, can be remedied15 by orienting instruction towards fragments of methods 
that can be more readily refined at later times. Interaction consists of having the 
instructor designate items in IPS's environment (especially WM) in four ways: 
condition (for data or configurations that are important context to be taken into 
account while working on a goal), action (for operators appropriate to solving a 
goal), entity (to create a symbol and some associated knowledge about the 
entity), and relevant (to associate one of the other three designated items with a 
particular goal). The system is to respond to a 'relevant' designation by building 
rules with the given conditions or actions, or by building rules that create or aug-
ment knowledge expressions. These designations result in methods that are very 
loose collections of rules, each of which contributes some small amount towards 
achieving the goal. Accommodation is done as post-modification of an existing 
method in its dynamic execution context, through ten method-modification 
methods. Some of these are: delay an action, advance an action, remove an 
action, conditionalize an action, and put two actions into a strict sequence. 

Though the ASA ideas were never implemented, some aspects of the ap-
proach were used in the KERNEL2 system, described in detail below. Probably 
ASA would suffer from the same difficulties described in connection with 
KERNEL2. 

15These ideas were introduced by A. Newell in October, 1977. 
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14.3.4 Analogy (ANA) 

A concerted attempt to deal with issues of connection and reformulation is 
represented by McDermott's ANA program [McDermott, 1978]. Starting out 
with the ability to solve a few very specific problems, it attacked subsequent 
similar problems by analogizing from its known methods. Initial methods to 
solve TE problems were hand coded, a deviation from the kernel constraints 
given above. In ANA, connection is achieved by coding special method descrip-
tion rules, which recognize the class of goals that appear possible for a method 
to deal with by analogy. The possibility that an analogy may work is discovered 
by following taxonomic links originating at a given goal's actions and object ar-
guments. When a link is traversed, revealing the object (class) or action (class) 
at the end of it, a method description rule may become satisfied, thus making a 
connection on which an analogy can be based. A preliminary analogy is set up 
using the discovered correspondence of objects or actions, the goal is modified 
by substitution, and the method is started. As it executes, rules recognize points 
where the analogy breaks down. General analogy methods are able either to 
patch the method directly with specific substitutions or to query the instructor for 
new means-ends rules. 

In either case, reformulation occurs because rules record the patches for 
use in later similar problems. Compilation occurs, with visible improvement in 
performance, as fewer and fewer of the error recognition rules are brought into 
play. Thus, ANA combines connection, reformulation, evaluation and compila-
tion components.16 

14.3.5 KERNEL Version 2 

With basic ideas similar to ASA and to Waterman's Exemplary Program-
ming [Waterman, 1978], the KERNEL2 approach [Rychener, 1979] focused on the 
process of IPS interacting with the instructor to build rules in a dynamic execu-
tion context. The instructor essentially steps through the process of achieving a 
goal, with IPS noting what is done and marking elements for inclusion in the 
rules to be built when the goal is achieved. The organization of methods in 
KERNEL2 is less adventurous than proposed in ASA, keeping more to the tradi-
tional control and means-ends concepts of KERNEL1. Similarly, it provides few 
innovations with respect to accommodation, explanation, and the other IPS com-
ponents. KERNEL2 includes a semantic network of information about its 
methods, for use as a "help" facility. It is the basis from which the IPMSL sys-
tem, below, is built. 

Based on the preceding description, KERNEL2 would seem to offer little ad-
vance over KERNELI. However, the following protocol illustrates the large dif-
ference that occurs with the shift towards interaction that is more frequent and in 

,6For another approach to learning by analogy, see Carbonell, Chapter 5, in this volume. 
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I: Add: want test the status of the value of the (C) 
composition of L23 

K: Unable to do WS009: Test status of value of 
composition of L23 

I: L23 is a variable in P39 

K: OK 

I: Build P39 (rule: A => B, C) 

K: OK 

I: Goal of rule: WS009 

K: OK, working on new rule P40 

Expressions are given at the right margin to mark places in the text where 
certain rule elements have been specified, in a way similar to the protocol for 
KERNELl. The rule that is constructed as a result of this dialogue is, in fact, 
almost identical to the one built by KERNELl. Of interest is what is happening at 
the point where "Note / " occurs: here is an example of the utility of dynamic 
context. At this point, KERNEL2 actually executes an operator on the TE, and 
displays the result, so that the instructor can easily formulate what he wants done 
with that result in the succeeding steps of the method being instructed. 

To summarize the key aspects of KERNEL2, interaction happens in the con-

a dynamic method-execution context. The protocol below is not an actual inter-
action between instructor and KERNEL, due to a shift in the domain of IPS away 
from the TE used for KERNELl. KERNEL2 was actually implemented, though, 
and the following is representative of the style of instruction achieved. The ac-
tual interaction language has been smoothed out somewhat in this protocol. "I:" 
precedes inputs from the instructor, and "K:", the outputs of KERNEL2. 

I: Examine the object at the top position of L23 

K: Unable to do WS003: 
Examine object at top position of L23 

I: Goal of rule: WS003 

K: OK, working on new rule P39 

I: Add: want view location L23 in the TE 

K: View location result is L23 in the TE 

K: L23 has member TE, composition (Ml M2 C5), 
type stack 

(A) 

(=> B,) 

[Note 1) 
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text of a concrete attempt at solving a goal. The effect of this immediate feed-
back is that the instructor can have a much better idea of how much the system 
knows about the present context. Interactions are far removed from the con-
structed rules, corresponding both to small pieces of those rules and to inter-
active commands that might be given to the system to have it do something. 
The dynamic context provides stimuli to the instructor, helping to avoid errors 
and omissions, and placing less burden on the instructor's memory. When a 
piece of a rule given by the instructor is a recognizable goal to the system, it 
automatically tries to achieve the goal, and the instructor can watch this activity 
and observe its results. KERNEL2 is much simpler in structure than KERNELl 
(fewer rules, and more easily coded), due to radical simplification of its input 
language. Instructions to KERNEL2 are much shorter, and feedback to the in-
structor is immediate. 

14.3.6 Conclusions on Direct Approaches 

The above approaches are all direct in the sense that the orientation is 
towards rules and pieces of rules rather than towards knowledge that is structured 
in some other more natural form. One conclusion from the direct approaches is 
that instruction must be organized in units other than rules—rules are too large 
and tend not to be a natural form for instruction, especially when various PS 
control and supporting structures are taken into account. Also, rules tend to re-
quire a belabored, repetitious style of instruction, where the natural tendency is 
to make assumptions about the capabilities of the receiver of instruction, and to 
use various forms of ellipsis. The instructor should not be allowed to perceive 
instruction as programming, as this is an unnatural mode of instruction. 

In the higher-level approaches that follow, more is attempted in terms of 
functional components for explanation, accommodation, and the advanced com-
ponents. Another common theme is the need for a more active, "agenda" orien-
tation, including system goals that are pursued along with those of the instructor. 

14.3.7 Problem Spaces 

Problem spaces [Newell, 1980]17 were proposed as a higher-level organiza-
tion for IPS, in which all behavior and interactions were to be embedded in 
search. A problem space consists of a collection of knowledge elements that 
compose states, plus a collection of operators that produce new states from 
known ones. A problem consists of an initial state, a goal state, and possibly 
path constraints. Control in a problem space organization is achieved through an 
executive routine that maintains and directs the global state of ongoing searches. 
Newell's problem space hypothesis claims that all goal-oriented cognitive activity 
occurs in problem spaces, not just activity that is problematical. 

,7This approach was formulated by A. Newell and J. Laird in October, 1978. 
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According to the proposal, interaction would consist of giving IPS problems 
(presumably WM structures) and search control knowledge (hints as to how to 
search specific spaces, presumably expressed as rules). Every kernel component 
would be a problem space too, and thus subject to the same modification 
processes. The concrete proposal as it now stands concentrates on interaction, 
explanation (which involves sources of knowledge about the present state of the 
search), and organization. 

14.3.8 Semantic Network (IPMSL) 

The IPMSL (Instructive PMS Language, where PMS is a computer descrip-
tion formalism) system [Rychener, 1979] viewed accumulation of knowledge as 
additions to a semantic network. In this view, interaction consists of definition 
and modification of nodes in a net, where such nodes are PS rules. The network 
stores four classes of attributes: taxonomic (classifying methods and objects), 
functional (input-output relations for methods), structural (component parts of 
methods and objects), and descriptive (various characteristics). Display and net 
search facilities are provided as aids to explanation and accommodation, though 
the instructor is responsible for storing the required information in the network in 
the first place. The availability of traditional semantic network inferences makes 
it possible for IPMSL to develop a more uniform approach to connection and 
reformulation, since they provide a set of tools for relating and mapping 
knowledge into more tractable expressions. Because IPMSL is a digression into a 
task domain different from the Abstract Job Shop, emphasis was placed on 
descriptive capabilities rather than on mechanisms for procedural organization. 
Thus the semantic network orientation was not integrated with KERNEL2 ap-
proaches to the acquisition and description of procedural knowledge. The 
remaining step towards integration would be to have KERNEL2 record information 
in the network, as methods are built up using its interaction primitives. 

14.3.9 Schemas 

The use of schémas as a basis for an IPS kernel18 made slot filling the 
primary information-gathering operation. A slot would be implemented as a set 
of rules. The slots are: executable method; test of completion; assimilation 
(connects present WM with the schema for a goal); initialization (gathers 
operands for a method); model (records the instruction episode for later 
reference); accommodation (records patches to the method); status (records gaps 
in the knowledge); monitoring (allows careful execution); and organization 
(records method structure). Orientation towards instruction would be active, as 
in ASA. Explanation would consist of interpreting the model slot, and accom-
modation, of fitting additions into the model. Connection would use a dis-

18Schemas were first proposed for IPS by Rychener, May, 1978 
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K: Does t h i s r e s u l t d i f f e r from a view objec t in the 
TE, because of ' a t the top p o s i t i o n i ? 

I : Yes (ASSIMILATION) 

K: Par t of the des i r ed information of the goal can be 
obtained from a view opera t ion 

K: To view r e q u i r e s an objec t or l o c a t i o n to 
work on, which L23 seems to s a t i s f y 

K: L23 has member TE, composition (Ml M2 C5), 
type s tack 

K: Viewing L23 did not produce the d e s i r e d a t t r i b u t e s 

I : You need to view the objec t a t the top p o s i t i o n 
of L23 

K: I lack ob jec t s with p o s i t i o n 1 with member L23 

I : Test the s t a t u s of the composition of L23 (C) 

K: Unknown goal WS009: ( r u l e : A => B, C) 
t e s t s t a t u s of composition of L23 (Note 2) 

K: What i s goal WS009 a t t empt ing to achieve? 

(INIT) 

(=> B) 
(Note 1) 

I: Whether the composition of L23 is empty or nonempty (TEST) 

crimination network composed of the aggregated assimilation slots of all 
schémas. Compilation would be needed here, to map model to method. 

The following protocol illustrates the flavor of the proposed schema ap-
proach. A system based on this approach, but outside the IPS framework, is 
currently under development, but for expository reasons, the protocol here is a 
simulated one. There are notations similar to those for the KERNEL2 protocol 
above. Notes in the right margin in some cases give the names of slots being 
filled by the adjacent interactions. Other notes refer to explanations in the next 
paragraph. 

I : Examine the objec t a t the top p o s i t i o n of L23 

K: Unknown goal WS003: 
Examine object a t top p o s i t i o n of L23 

(A) 

K: What is the goal WS003 attempting to achieve? 

(TEST) I: The name of some object, 
the position of that object is 1, 
the member of that object is L23 
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K: I have nothing that produces that result 

I: The composition of L23 is (Ml something), 
so its status is nonempty 

The most striking feature of this protocol is that IPS is taking much more 
initiative in determining the direction of the dialogue. It is questioning the rela-
tion of new information to what already exists, and is actively trying to fill in 
missing slots in its new schémas. At "Note 1" IPS tries an experiment with a TE 
operator, to get at least a partial result that might aid in solving the goal. At 
"Note 2", IPS is entering into the context of a new schema. Presumably, the 
former schema will be reactivated at a later time when the subgoal's schema is 
satisfactorily filled in. 

The schémas approach as sketched here makes a few significant additions 
to KERNEL2. The orientation towards filling slots is the primary source of the 
improved, natural style of interaction. Schemas implemented as PS's are self-
activating and procedural. The slots can contain more than just stereotyped 
values, namely arbitrary methods and structures of rules; and goals for filling 
slots will reside in the global WM, and thus can be filled flexibly, and in a data-
dependent way (that is, as data become available that are recognized as relevant). 

14.3.10 Conclusions on Higher-Level Approaches 

The approaches discussed above illustrate the advantages of using higher-
level organizations for the overall instructional process. The importance of care-
fully attending to the style of instruction should be evident. Adopting these ap-
proaches has the two-fold benefit of providing a more natural communication 
medium for the instructor of the system, and of providing goals and methods for 
the system itself to mold new knowledge into well-organized, flexible, complete, 
and reliable methods. The system can also be more free than before to experi-
ment for itself, given its agendas and search mechanisms. Higher-level ap-
proaches aid in developing effective versions of the more advanced functional 
components, in that such components are natural consequences of adopting any 
of the above specific approaches. The accompanying tables summarize the seven 
approaches. 

14.4 DISCUSSION 

The IPS project has invented and explored the consequences of a number of 
plausible learning system components in the "learning by being told" paradigm. 
One contribution is the means-ends organization of KERNELl, along with its ap-
proach to debugging using a dynamic goal tree context, and compiling by 
eliminating temporary goal structures. Means-ends also holds the promise of ex-
panding a system's abilities in directions where explicit goals can be formulated. 
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Table 14-1: 

Component |" 
Interaction 1 

Organization 1 

Explanation 1 

Accommodation 1 

Connection 

Reformulation 

Evaluation 

Compilation 

Implemented? 

Reference 

Failings 

Starting size 

Instruction 

Final size 

IPS: KERNEL 1 

whole method 
query 
goal 

sequenced 
methods 

(WM data) 

whole rules 
-blindly 

(ad hoc means-
ends rules) 

? 

monitor of 
goals 

(compose out 
goal 

structures) 

yes 

[Rychener& Newell, 1978] 

too much like 
1 programming 
1 poor goal repr. 
1 overemph. language 
1 instructions too long 
1 weak explanation 
1 no method-modif. methods 
1 orientation too passive 

1 325 rules, incl. 
1 50 in monitor, 
1 added later 

1 9 elementary tasks 
1 = 160 rules 
1 485 rules 

ASA 

four desig. 
forms 

loose means-
ends links 

? 

method-modif. 
methods 

? 

? 

? 

(needed even 
more than 

in KERNELi) 

no 

(see KERNEL2) 

would control 
work? 

0 

ANA 

patch 
goal 

hand-coded 
for analogy 

? 

(KERNELI) 

(see Reform.) 

method descr. 
rules 

taxonomy search 

patch rules map 
actions & 

objects 

recog. of* 
break-down 
of analogy 

patch rules 
analogize 

faster 

yes 

[McDermott, 1978] 

no approach to 
instruction 

295 rules, 
incl. 55 in 

TE methods 

4 tasks 
= 140 rules 
435 rules 

KERNEL2 

many desig. 
query 
goal 

sequenced 
methods 

help net of 
functional 

info 

(KERNELI) 

(KERNELI) 

(KERNELI) 

7 

instructor, 
in dynamic 

context 

(KERNELI) 

yes 

[Rychener, 1979] 

too slow 
task was 
shifted 

45 rules 

Kernel grew 
= 55 rules 
100 rules 

(see IPMSL) 

Key: Potential or theoretical capabilities ("left to instruction") are in ()s; numbers of rules are rounded. 
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Table 14-1, continued 

Component 

Interaction 

Organization 

Explanation 

Accommodatior 

Connection 

Reformulation 

Evaluation 

Compilation 

Implemented? 

Reference 

Failings 

Instruction/ 

Testing 

Start size 

Final size 

1 IPS: Problem Spaces 

problems 

search control 

problem spaces 

for all compon. 

& methods 

knowledge about 

state of search 

(problem space) 

(problem space) 

(problem space) 

executive 

specific, ad hoc 

search control 

no 

[Ne well, 1980] 

Semantic Net 

(IPMSL) 

KERNEL2 + 

net defining, 

updating 

KERNEL2 + 

network: 

function, 

taxonomy, 

structure, 

description 

supported by 

network info 

supported by 

network info 

(net inferences 

& searching) 

(network info) 

? 

? 

yes 

[Rychener, 1979] 

too big & slow 

160 rules in net 

450 rules = 

100 KERNEL2 + 

120 basic net + 

230 advanced net 

610 rules 

Schemas 

actively 

fill slots 

-1- KERNEL2 

schémas with 

9 types of 

slots; 

esp. method, 

model, 

init, test 

(model slot 

interp.) 

(edit model) 

(status sit) 

discrim. net 

? 

monitor slot 

(transform 

model slot) 

no 

Key: Potential or theoretical capabilities ("left to instruction") are in ()s; numbers of rules are rounded. 

In unimplemented proposals, ()s are reserved for very vague possibilities. 
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The use of explicit tests and failure recognizers can add reliability and robustness 
to means-ends execution. A second contribution has been the study of 
knowledge acquisition in a dynamic execution context (illustrated by the 
KERNEL2 dialogue above). Other contributions include the development of the 
problem space idea, the orientation of a learning system towards active assimila-
tion and accommodation (as in schémas), the ability to dynamically use 
analogies, the use of rules to implement semantic networks, and the organization 
of rules into schémas. This paper has tried to motivate the need for more study 
of approaches to instruction and of ways of achieving the functional components, 
by exhibiting an evolutionary sequence and by pointing out the deficiencies of 
various partial designs. Our studies to date into these issues have been greatly 
facilitated by the use of a flexible, expressive medium, the OPS PS architecture. 

Two key problems remain unsolved and open for further research: achiev-
ing the kind of procedural flexibility and robustness that would seem to be in-
herent in the PS architecture; and devising ways for a system to effectively 
manage its knowledge (however organized), that is, techniques for accommoda-
tion as defined above. Procedural flexibility has been discussed above in as-
sociation with the organization component. The ideal flexibility ought to derive 
from the global recognize-act cycle, where heuristics and optimizations could be 
applied at each step to guide and complete goal processing. For a system to 
manage its knowledge, much more needs to be known about the structure of 
methods and how they are modified and augmented. The IPS project has failed 
to get beyond the most basic of method manipulations, partly due to its emphasis 
on other aspects of the overall problem and partly due to the inherent difficulty 
of the problem area. 

Explorations within our particular framework can profit from and stimulate 
research in information processing psychology. Of particular interest would be a 
protocol analysis of instructional dialogues in an environment similar to our TE, 
after the fashion of Newell and Simon [1972]. Additional information would be 
provided by querying the subject to determine what rules have been learned, 
after a session with an unknown problem environment. The structuring of the 
instructional session by a human tutor with a human subject is important, as it 
may give some indication of the underlying knowledge representations involved. 
The best attempts by psychologists at studying instructional learning at this level 
of detail seem to be found in work such as Klahr's collection [1976]. On the AI 
side, the work of Collins [1978] seems to be the closest in spirit. It may be in 
general that people do not require the painstaking explanations that seem to be 
needed by PS's. At least, this holds for PS's with very little knowledge, as 
discussed here. That is, humans are better learners because they know more and 
can fill in gaps in the instructional interaction. Thus it may be that our PS work 
must develop new techniques that haven't been necessary with human education. 
On the other hand, humans' learning might improve if we knew better how to 
organize instruction to suit their internal knowledge structures, or if we could 
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train them to use a more efficient knowledge organization.19 
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ABSTRACT 

A series of experiments dealing with the discovery of efficient classifica-
tion procedures from large numbers of examples is described, with a case study 
from the chess end game king-rook versus king-knight. After an outline of the 
inductive inference machinery used, the paper reports on trials leading to correct 
and very fast attribute-based rules for the relations lost 2-ply and lost 3-ply. On 
another tack, a model of the performance of an idealized induction system is 
developed and its somewhat surprising predictions compared with observed 
results. The paper ends with a description of preliminary work on the automatic 
specification of relevant attributes. 

15.1 INTRODUCTION 

This paper reports on experiments that recover valuable information from 
large masses of low-grade data by a process of inductive inference. The data are 
relatively unstructured examples and counterexamples of a concept of con-
siderable complexity. The information that is sought is a means of identifying 
examples of the concept or, in other words, a classification rule. The distin-
guishing characteristics of this work are the large numbers of examples employed 
in forming the concepts and the computational efficiency of the classification 
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rules discovered in this way as compared with other classification methods for 
the same task. (In one case, the classification rule is five times as fast as the 
best alternative method that I could devise.) 

The concepts to be developed have been drawn from the chess end game 
king-rook versus king-knight, which can be difficult even for masters [Kopec & 
Niblett, 1980]. This end game has proved to be an excellent testing ground, 
providing classification tasks of a range of difficulties and a large underlying 
universe of more than a million possible configurations, of pieces. However, it 
should be noted that the inductive inference machinery that has been developed 
is in no way tied to this application, and is currently being used by other workers 
for a different aspect of chess [Shapiro & Niblett, 1982] and in a medical 
domain [Bratko & Mulec, 1981]. 

The induction algorithm used for this project is called ID3. ID3 takes ob-
jects of a known class described in terms of a fixed collection of properties or 
attributes, and produces a decision tree over these attributes that correctly clas-
sifies all the given objects. Two qualities differentiate it from other general-
purpose inference systems such as INDUCE [Michalski, 980a], SPROUTER 
[Hayes-Roth & McDermott, 1977] and THOTH-P [Vere, 1978]. The first con-

cerns the way that the effort required to accomplish an induction task grows with 
the difficulty of that task. ID3 was specifically designed to handle masses of 
objects, and in fact its computation time increases only linearly with difficulty as 
modeled by the product of: 

• the number of given exemplary objects, 
• the number of attributes used to describe objects, and 
• the complexity of the concept to be developed (measured by the number of 

nodes on the decision tree) 
[Quinlan, 1979a]. On the negative side, this linearity is purchased at the cost of 

descriptive power. The concepts developed by ID3 can only take the form of 
decision trees based on the attributes given, and this "language" is much more 
restrictive than the first-order or multivalued logic in which the above systems 
express concepts. [Dietterich & Michalski, 1979] gives an analysis and survey of 
inductive inference methodologies. 

The main body of this report contains four sections. The first, Section 
15.2, introduces ID3 as a descendant of Hunt's Concept Learning System (CLS). 
Section 15.3 summarizes applications of ID3 to discovering decision trees for the 
relations "knight's side is lost n-ply" where n is 2 or 3; detailed accounts appear 
in [Quinlan, 1979b; Quinlan, 1980]. The last two sections deal with recent work 
along different dimensions. Section 15.4 considers the question of discovering 
approximate rather than exact rules. It develops a model of how an idealized 
induction system might behave when shown only a fraction of all possible ob-
jects, and compares the predictions of this model to observed results. Section 
15.5 tackles the problem of defining features used to describe objects, and out-
lines techniques aimed at automating the discovery of the attributes themselves. 
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15.2 THE INDUCTIVE INFERENCE MACHINERY 

ID3, a descendant of Hunt's CLS [Hunt et al., 1966], is a comparatively 
simple mechanism for discovering a classification rule for a collection of objects 
belonging to two classes. As mentioned above, each object must be described in 
terms of a fixed set of attributes, each of which has its own (small) set of pos-
sible attribute values. As an illustration, "color" and "baud rate" might be at-
tributes with sets of possible values {red, green,blue} and 
{110,300,1200,2400,4800} respectively. 

A classification rule in the form of a decision tree can be constructed for 
any such collection C of objects. If C is empty then we associate it arbitrarily 
with either class. If all objects in C belong to the same class, then the decision 
tree is a leaf bearing that class name. Otherwise C contains representatives of 
both classes; we select an attribute and partition C into disjoint sets Cj, C2, ... , 
Cn where Cj contains those members of C that have the ith value of the selected 
attribute. Each of these subcollections is then handled in turn by the same rule-
forming strategy. The eventual outcome is a tree in which each leaf carries a 
class name, and each interior node specifies an attribute to be tested with a 
branch corresponding to each possible value of that attribute. 

To illustrate this process, consider the collection C below. Each object is 
described in terms of three attributes: "height" with values {tall,short}, "hair" 
with values {dark,red,blond} and "eyes" with values {blue,brown}, and is fol-
lowed by ' + ' or ' — ' to indicate the class to which it belongs. 

C = short,blond,blue: + short,dark,blue:- tall,dark,brown: -
tall, blond, brown:- tall,dark,blue:- short, blond, brown : — 
tall,red,blue: + tall,blond,blue: + 

If the second attribute is selected to form the root of the decision tree, this yields 
the tree shown in Figure 15-1. The subcollections corresponding to the values 
'dark' and 'red' contain objects of only a single class, and so require no further 
work. If we select the third attribute to test for the 'blond' branch, this yields 
the tree in Figure 15-2. Now all subcollections contain objects of one class, so 
we can replace each subcollection by the class name to get the decision tree 
shown in Figure 15-3. 

An object is classified by starting at the root of the decision tree, finding 
the value of the tested attribute in the given object, taking the branch appropriate 
to that value, and continuing in the same fashion until a leaf is reached. Notice 
that classifying a particular object may involve evaluating only a small number 
of the attributes depending on the length of the path from the root of the tree to 
the appropriate leaf. In the above case, the first step is always to inquire about 
the value of an object's "hair" attribute. If this value is "dark" or "red" the 
object can be classified immediately without looking at its other attributes. If the 
value is 'blond' then we must determine its value of "eyes" before classifying it. 
We never need to determine the value of the "height" attribute. 
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hair 

dark blond 

short, dark,blue: -
tall, dark, blue: -
tall, dark, brown: -

{tall, red, blue: + } short, blond, blue: + 
tall, blond, brown: -
tall, blond, blue: + 
short, blond, brown: ■ 

Figure 15-1: One-level decision tree. 

short, dark, blue: -
tall, dark, blue: -
tall, dark, brown: -

{tall, red, blue: + \ eyes 

( short, blond, blue: + 1 
tall, blond, blue: + J 

brown 

tall, blond, brown: -
short, blond, brown: · 

Figure 15-2: Two-level decision tree. 

This rule-forming procedure will always work provided that there are not 
two objects belonging to different classes but having identical values for each 
attribute; in such cases the attributes are inadequate for the classification task. 
However, it is generally desirable that the tree be able to classify objects which 
were not used in its construction, and so the leaves corresponding to an empty 
set of examples (where a class is chosen randomly) should be kept to a min-
imum. If we adopted the simple-minded algorithm: 

"Select the first attribute for the root of the tree, the 
second attribute for the next level, and so on." 

the result would tend towards the complete tree with a leaf for each point in the 
attribute space—clearly an unsatisfactory situation. The whole skill in this style 
of induction lies in selecting a useful attribute to test for a given collection of 
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hair 

Figure 15-3: Decision tree with class names. 

objects so that the final tree is in some sense minimal. Hunt's work used a 
lookahead scheme driven by a system of measurement and misclassification costs 
in an attempt to get minimal-cost trees. ID3 uses an information-theoretic ap-
proach aimed at minimizing the expected number of tests to classify an object 

A decision tree may be regarded as an information source that, given an 
object, generates a message which is the class of that object ("plus" or "minus", 
say). The attribute selection part of ID3 is based on the plausible assumption that 
the complexity of the decision tree is strongly related to the amount of infor-
mation conveyed by this message. If the probability of these messages is p + 
and p~ respectively, the expected information content of the message is 

" P + log2P+ - P" !<>g2P" 
With a known set C of objects we can approximate these probabilities by relative 
frequencies, so that p + becomes the proportion of objects in C with class "plus". 
So we will write M(C) to denote this calculation of the expected information 
content of a message from a decision tree for a set C of objects, and define M( 
{} ) = 0. Now consider as before the possible choice of A as the attribute to 
test next. The partial decision tree is shown in Figure 15-4. The values Aj of 
attribute A are mutually exclusive (even though different attributes may not be), 
so the new expected information content will be: 

B(C,A) = (probability that value of A is Aj) x M(Q) 

where again we can replace the probabilities by relative frequencies. The sug-
gested choice of attribute to test next is that which gains the most information, in 
other words, for which 

M(C) - B(C,A) 

is maximal. 
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attribute 
A 

Figure 15-4: Partial decision tree. 

To illustrate the idea, consider the choice of the first attribute to test from 
the example given earlier. The collection C of objects contains 3 in class ' + ' 
and 5 in ' - ', so 

M(C) = - 3/8 log2 3/8 - 5/8 log2 5/8 
= 0.954 bits 

Testing the first attribute gives the results shown in Figure 15-5. The infor-
mation still needed for a rule for the "tall" branch is: 

- 2/5 log2 2/5 - 3/5 log2 3/5 = 0.971 bits 
and for the "short" branch: 

- 1/3 log2 1/3 - 2/3 log2 2/3 = 0.918 bits 
Thus the expected information content: 

B(C,"height") = 5/8 * 0.971 + 3/8 * 0.918 
= 0.951 bits 

The information gained by testing this attribute is: 
0.954 - 0.951 = 0.003 bits 

which is negligible. The tree arising from testing the second attribute was given 
previously. The branches for "dark" (with 3 objects) and "red" (1 object) require 
no further information, while the branch for "blond" contained 2 "plus" and 2 
"minus" objects and so requires 1 bit. We have: 

B(C,"hair")= 3 / 8 * 0 + 1/8*0 + 4/8 * 1 
= 0.5 bits 

and the information gained by testing "hair" is 0.954 — 0.5 = 0.454 bits. In a 
similar way the information gained by testing "eyes" comes to 0.347 bits. Thus 
the principle of maximizing expected information gain would lead ID3 to select 
"hair" as the attribute to form the root of the decision tree. 

The procedure described above for constructing decision trees assumes that 
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height 

tall, blond, brown: - Ί [ short, blond, blue: + 
tall, red, blue: + | short, dark, blue: 
tall, dark, blue: - \ | short, blond, brown: 
tall, blond, blue: + 
tall, dark, brown: -

Figure 15-5: Binary attribute discrimination. 

counting operations on the set of objects C (such as determining the number of 
"plus" objects with value Aj of attribute A) can be performed efficiently, which 
means in practice that C has to be kept in fast memory. What happens if the 
size of C precludes this? One way around the difficulty is given by the version 
space strategy [Mitchell, 1979] in which C is digested one object at a time. 
Such an approach depends on maintaining two sets S and G of maximally 
specific and maximally general rules that could account for all objects seen so 
far; these sets delimit all possible correct rules. However, when the rule is a 
decision tree over a large attribute space, the sizes of S and G will also become 
unmanageable. The line taken in ID3 is an iterative one which forms a succes-
sion of decision trees of (hopefully) increasing accuracy, until one is found that 
is entirely accurate. The method can be summarized as: 

• select at random a subset of the given instances (called the window) 

• repeat 

o form a rule to explain the current window 
o find the exceptions to this rule in the remaining instances 
o form a new window from the current window and the exceptions to 

the rule generated from it 
until there are no exceptions to the rule 

The process ends when a rule is formed that has no exceptions and so is correct 
for all of C. Two different ways of forming a new window have been tried. In 
the first, the current window is enlarged by the addition of up to some specified 
number of exceptions, and so the window grows. The second method attempts 
to identify "key" objects in the current window and replace the rest with excep-
tions, thus keeping the window size constant. Both methods were explored in 
trials with a non-trivial classification problem involving 14 attributes and nearly 
2,000 objects for which a correct decision tree contained 48 nodes [Quinlan, 
1979a]. The main findings were: 
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• The methods converge rapidly; typically only 4 iterations were required to 
find a correct decision tree. 

• It was possible to develop a correct tree from a final window containing 
only a small fraction of the 2,000 objects. 

• The process was not very sensitive to parameters such as the initial win-
dow size. 

• The time to obtain a correct decision tree for a classification problem in-
creases linearly with the difficulty of the problem as defined by the simple 
model given in the introduction. 

These features, particularly the last, have enabled ID3 to discover correct decision 
trees for some very large classification problems. 

15.3 THE LOST N-PLY EXPERIMENTS 

One application of ID3 has been to discover classification rules for part of 
the end game (white) king-rook versus (black) king-knight. The relations com-
pleted are "knight's side is lost (in at most) n-ply" for n = 2 and n = 3; the 4-ply 
case is currently being tackled. The formal definition of "lost n-ply" is: 

1. A black-to-move position is lost 0-ply if and only if 
a. the king is in checkmate, or 
b. the knight has been captured, the position is not stalemate, the white 

rook has not been captured and the black king cannot retaliate by 
capturing it. 

2. A white-to-move position is lost n-ply (n odd) iff there is a white move 
giving a position that is lost n—1 ply. 

3. A black-to-move position is lost n-ply (n even) iff all possible black moves 
give positions that are lost n—1 ply. 

These definitions ignore the repetition and 50-move rules of chess, but are quite 
accurate for small values of n. 

The obvious question is, why bother looking for classification rules when 
simple algorithms such as minimax will decide whether a position is lost n-ply? 
The answer is that a decision tree will classify a position in terms of its 
properties rather than by exploring the game tree. If attributes can be found that 
are adequate for this classification task and that are also relatively cheap to com-
pute, then the classification of a position in terms of these attributes might well 
be faster than the minimax search of the game tree. 

There are more than 11 million ways of placing the four pieces to form a 
legal black-to-move position; the corresponding figure for white-to-move is more 
than 9 million. (The difference arises because, for instance, the white king can-
not be in check in a black-to-move position.) These counts include many sym-
metric variants of essentially the same position, and when these are removed the 
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numbers become approximately 1.8 million and 1.4 million, respectively. About 
69,000 of the 1.8 million black-to-move positions are lost 2-ply, while roughly 
474,000 of the 1.4 million white-to-move positions are lost 3-ply. 

The first attempt at the lost 2-ply relation was made with a set of 25 at-
tributes. 18 of these were low-level geometric properties of a position, such as: 

the distance from the black king to the knight 
with values " 1 " , "2" and ">2" king-moves, and: 

the two kings are on opposite sides of and next to a row or column 
occupied by the rook 

with values "true" and "false". The remaining 7 attributes were somewhat 
higher-level and involved more computation, for example: 

the only move the black king can make creates a mating square for 
the rook 

The attribute space with 36 x 219 points was much larger than the number of 
black-to-move positions. However, many different positions led to the same 
vector of attribute values; and, in fact, the 1.8 million positions dwindled to just 
under 30,000 distinct vectors. An implementation of ID3 coded in Pascal for a 
DEC KL-10 found a correct decision tree of 334 nodes in 144 seconds. 

A second attempt was made on this problem in order to try out a different 
style of attribute, and to remove a minor inadequacy of the first set of attributes 
affecting a handful of positions. Instead of being for the most part low-level and 
geometric, the new attributes were all high-level, truth-valued features signaling 
key patterns of pieces on the board. Each of the 23 attributes was meant to 
capture some important mechanism of the lost 2-ply classification task. For ex-
ample, one of the attributes took the value "true" if the position was of one of 
the forms shown in Figure 15-6. This attribute was intended to detect some 
situations in which the black king cannot move safely. As expected, these new 
attributes were more directly pertinent to the classification problem than were 
their geometric predecessors. They had the effect of compressing all possible 
positions into a smaller set of 428 distinct vectors. The same implementation of 
ID3 found a decision tree containing 83 nodes in less than 3 seconds. 

These trials resulted in two decision trees for classifying an arbitrary black-
to-move position as lost 2-ply or not. Their performance was then compared to 
two other means of arriving at the same classification. The first of these was the 
minimax search mentioned previously, which simply mirrors the definition of 
lost n-ply. The second was a "smarter" classification method called specialized 
search which examines only part of the game tree. For instance, to determine 
whether a position is lost 1-ply we only have to consider white moves that cap-
ture the knight or white rook moves to the edge of the board (for a possible 
mate). Specialized search thus employs domain knowledge; it is harder to write 
and debug than minimax, but is much faster. 

For the purposes of comparison, all methods were implemented in Pascal. 
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Figure 15-6: Chess board patterns used exemplifying classification attributes. 

One thousand black-to-move positions were generated at random and each posi-
tion classified by each method. Table 15-1 shows the average time required by 
each of them to classify a position on the DEC KL-10. Minimax was by far the 
slowest method, followed by specialized search. Both decision trees gave faster 
classifications, and the second significantly so—about 8 times faster than min-
imax. Given the relative sizes of the decision trees and the different styles of 
attribute, their performance was quite similar. 

Table 15-1: Comparison of classification methods for lost 2-ply. 

Classification Method CPU Time (msec) 

Minimax search 
Specialized search 
Using first decision tree 
Using second decision tree 

7.67 
1.42 
1.37 
0.96 

With these experiments complete, attention turned to the lost 3-ply rela-
tion. This was (as expected) harder than 2-ply because the patterns on the board 
that are used as attributes are further removed from the final outcome, and, 
whereas positions lost 2-ply make up less than 4% of all black-to-move posi-
tions, the 3-ply classes are more evenly balanced with 34% of all white-to-move 
positions lost. 

The 49 attributes developed for 3-ply included both the types used for 
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Figure 15-7: Instance of relevant classification pattern 

2-ply. The majority of 35 were once more features signaling patterns on the 
board of special relevance to the classification task. An example is shown in 
Figure 15-7, where the white king could occupy either position shown, and the 
rook can move to some square in the same row as the black king, other than 
those marked X; this detects some cases in which the black king can be forced to 
move away from its knight. Four more attributes were geometric, such as flag-
ging positions in which the white king is in check. The ten remaining attributes 
were predicates that, although complex, were based on simplified sequences of 
moves. For example, one of these predicates was: 

white rook is safe from reprisal 2-ply by the black king if white king 
takes the knight or threatens to do so 

which was given by the approximation: 

• the rook is more than two squares from the black king, or 
• one blank square separates the rook from the black king, but the rook is 

either next to or threatens the knight, or 
• the rook is next to the black king, but either the knight is also next to it or 

there is a square that is next to the white king, knight and rook. 

The attributes were found to be adequate for the 3-ply classification task; in fact, 
it was subsequently noticed that a subset of 39 of them was adequate. They 
gave good compression, the 1.4 million white-to-move positions boiling down to 
715 different vectors of attribute values. ID3 was run on a CDC Cyber 72 and 
found a correct decision tree of 177 nodes in 34 seconds. 

Again, a variety of classification technique's for lost 3-ply was tried. The 
minimax search was similar to the previous one, and the specialized search was 
built on the 2-ply specialized search using additional rules such as: 

• To decide whether a position is lost (not more than) 3-ply it is advisable to 
check first if it is lost 1-ply. 

• In establishing whether a position is lost exactly 3-ply, white moves that 
capture the knight need not be considered. 
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One thousand white-to-move positions were generated randomly, and the average 
Cyber CPU time taken to classify them by the different methods appears in Table 
15-2. Minimax search is now right out of contention, while the induction-
generated tree is five times faster than specialized search. 

For the lost n-ply task, it seems clear that, as n increases, the advantage of 
attribute-based classification over methods that search the game tree becomes 
more pronounced. When an adequate set of attributes has been found for the 
4-ply case, this approach should give a classification method that is 15-20 times 
faster than specialized search. 

Table 15-2: Comparison of classification methods for lost 3-ply. 

Classification Method CPU Time (msec) 

Minimax search 285.0 
Specialized search 17.5 
Using decision tree 3.4 

15.4 APPROXIMATE CLASSIFICATION RULES 

The experiments reported in the previous section were aimed at producing 
decision trees covering the entire universe of possible positions. These decision 
trees were exact since they will classify correctly each object used in forming 
them, that is, each object in the universe. But what if size or the cost of ex-
amining it precludes the use of the entire universe in this way? This section 
looks at the accuracy of rules formed from partial information. It develops a 
model of the best performance that can be expected from any inductive inference 
scheme, and compares the predictions of this model to some experimental obser-
vations. 

For a classification problem over some universe U of objects we will 
define "the" correct decision tree T to be one that classifies all objects in U with-
out error and which contains fewest nodes of all such correct trees. Recall that 
an object x is classified by directing it to one of the leaves of the decision tree, 
where this leaf is labeled with the class to which x belongs. Any object will be 
directed to one and only one leaf, so we can denote by Bj the set of objects from 
U that will be mapped to the ith leaf of the correct tree T. The set of blocks Bj 
corresponding to the different leaves of T is then a partition of U. 

Let us turn now to the problem of constructing an approximate decision 
tree by examining only some subset of U (commonly referred to as the training 
set). How much can we expect of whatever inductive inference system we use 
to form the approximate tree? Each block Bj can be thought of as delineating 
some subconcept in the classification. Clearly, no induction system can possibly 
identify this subconcept unless it sees at least one instance of it, or in other 
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words, unless at least one element of Bj is included in the training set. We say, 
then, that an inductive inference system is perfect if, whenever the training set 
contains at least one object from Bj, the approximate decision tree that the induc-
tion system arrives at will classify correctly all objects from Bj. As defined in 
this way, perfection is indeed difficult to achieve. 

Let a training set S containing N objects be selected at random (with 
replacement) from the universe U. When this training set is fed to such a perfect 
induction system, the output will be an approximate decision tree T*. We now 
derive the probability P that an object x selected at random from U will be cor-
rectly classified by T*. This will occur under either of the following conditions: 

1. The training set S contains at least one object from the block Bj to which x 
belongs. By the perfection assumption T* will be correct for all Bj and 
thus in particular for x. 

2. The training set contains no such object. But each object will be assigned 
to some class, and it may happen that T* fortuitously assigns x to its cor-
rect class, albeit for the wrong reason. 

Let p(Bj) denote the probability that a randomly-chosen object belongs to block 
Bj. The probability that S contains no object from the same block as x can be 
written as: 

?{ = X p(Bj) X (1 - p(Bj))N 

where the summation is over all blocks. Again, let p(c;) denote the probability 
that an object chosen at random will be assigned by T* to class Cj. We will 
assume that T* is somehow representative of the universe U, in that the prob-
ability that an object chosen at random from U will belong to class Cj will also 
be p(Cj). The probability that T* will "guess" the correct classification for object 
x is then: 

P2 = S p(Cj)2 

Putting these together, the probability that an arbitrary object will be classified 
correctly by T* is given by: 

P = 1 - P{ + Px x P2 

Unfortunately this expression uses information which depends on knowing the 
correct decision tree T. The values of p(Cj) can be estimated from the training set 
or by sampling, but the value of Pj depends on the distribution of p(Bj) over the 
leaves of T. However, if we examine a term of Pf. 

p(Bj) x (1 - p(Bj))N 

we see that its value is small no matter what the value of p(Bj). In fact it 
reaches its maximum value when: 

- j ^ P W x (1 - P W = 0 
which occurs when: 
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p(Bi) = 1 / (N+1) 
So we can set an upper bound on Pj by replacing each term in the summation 
with its- maximum possible value of: 

N N / ( N + 1 ) N + 1 

For all but small N the value of: 

N N / (N+1)N 

approaches \/e, and so each term is approximately: 
1 / (2.72 N) 

The result is that 
Pj = IBI / (2.72 N) - d 

where IBI is the number of blocks Bj and d is a positive error term. Substituting 
in the above expression for P gives: 

P = 1 - ( IBI / 2.72 N ) x ( 1 - X p(Cj)2) + d' 

where again d' is positive. Ignoring d' we have a lower bound on the prob-
ability that an arbitrary object will be classified by the approximate tree T*. 
This expression still involves the number of blocks IBI, but this is the number of 
leaves of T and can be estimated, for example, from the number of leaves on 
rp* 

The purpose of the preceding analysis is to establish a relationship between 
the size of the training set and the accuracy of the approximate tree derived from 
it, in a form that sidesteps the underlying structure of the universe—that is, the 
way objects are organized into blocks. For small values of N the results are 
unremarkable. The interest centers on cases where N is very large, even though 
it may be only a small fraction of the size of the universe. Consider an example 
of one million objects belonging to two equiprobable classes where the correct 
tree contains 100 leaves. If 10,000 objects (only 1% of the universe) is given as 
a training set to a perfect induction system, the analysis predicts that the result-
ing approximate tree will correctly classify more than 99% of all objects, no 
matter how awkward the distribution of objects among the blocks B,. Moreover, 
the model predicts that the error rate of the approximate tree is independent of 
how many objects are in the universe! 

A number of experiments was conducted to test the above results. These 
consisted of forming approximate decision trees for the knight's side lost 3-ply 
relation from training sets of various sizes. The universe was the set of canoni-
cal white-to-move positions numbering 1.4 million of which 474,000 belong to 
the class "lost". The earlier experiments had produced an exact decision tree for 
this problem which contained 88 leaves, so the number of leaves on "the" correct 
tree was known to be at most 88. The constants relevant to the analysis were 
thus: 
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IBI < 88 
and 

X p(Cj)2 = 0.55 
For each experiment, a training set of predetermined size was selected at random 
from all possible white-to-move positions. The set of attribute vectors cor-
responding to these positions was then passed to ID3 which formed a decision 
tree from them alone. This approximate tree was tested on a different set of 
10,000 positions also selected at random. Each test position was classified by 
both the correct and approximate decision trees and differences noted. The num-
ber of such errors detected was compared with the expected maximum number of 
errors predicted by the model, i.e., (1— P) * 10,000. The figures appear in 
Table 15-3. For example, the middle line concerns the case in which the train-
ing set contained 5,000 positions or 0.36% of the universe. The approximate 
tree derived from these positions proved accurate for all but 8 of the 10,000 test 
positions. The model predicts that the probability of a correct classification in 
this case exceeds 0.9971 which would give an expected maximum of 29 errors 
over the 10,000 trials. In each case in Table 15-3, the observed number of er-
rors was compatible with the predicted bound, although the bound is conser-
vative for smaller values of N. (For very large values of N, all distributions of 
p(Bj) give a value of Pj which is near zero; the differences between the actual 
distribution and the maximally unhelpful one used for the model result in smaller 
variations of P, so the predicted bound might be expected to become tighter.) 

As an aside, the fact that the observed error rates for approximate trees 
found by ID3 are close to the bounds of the hypothetical perfect induction system 
is indirect evidence that ID3 is not performing too badly! 

Table 15-3: Comparison of observed and predicted error rates with different training set sizes. 

Size of 
training 

set 

Percentage 
of whole 
universe 

Errors in 
10,000 
trials 

Predicted 
maximum 

errors 

200 
1,000 
5,000 
25,000 
125,000 

0.01% 
0.07% 
0.36% 
1.79% 
8.93% 

199 
33 
8 
7 
2 

728 
146 
29 
6 
1 

15.5 SOME THOUGHTS ON DISCOVERING ATTRIBUTES 

The work on lost n-ply relations supports the view that almost all the effort 
(for a non chess-player, at least) must be devoted to finding attributes that are 



478 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES 

adequate for the classification problem being tackled. The second set for lost 
2-ply required three weeks to define, while the 3-ply attributes consumed nearly 
2 man-months. In either case, once the attributes had been specified and the 
description of the positions in terms of them had been computed, ID3 made short 
work of finding a correct decision tree. 

An attempt is currently under way as part of the 4-ply work to find some 
attributes automatically. In particular, a search is being made for attributes 
based on patterns of pieces on the board, as two-thirds of the attributes used for 
lost 3-ply are of this type. The hypothesis is that such patterns can be dis-
covered by generalizing on individual positions known to be lost 4-ply. The 
method has been to select a single such seed position that is lost exactly 4-ply 
and subject it to three forms of generalization. 

* 

Φ 

rib jd 
Figure 15-8: Exemplary winning position. 

The first and most powerful form is to decide that one or more of the 
pieces in the seed position are probably irrelevant to what is going on in that 
position, and to discard them from the pattern. Consider, for example, the posi-
tion shown in Figure 15-8. There, the black king must move out of check, and 
the rook can then skewer the king and knight, capturing the latter at its next 
move. The whereabouts of the white king has no bearing on this outcome and 
so that piece can be dropped from the pattern. The effect is to make this pattern 
match any position with the rook, black king and knight as shown, no matter 
where the white king happens to be. The method for deciding that this sort of 
generalization is appropriate starts by looking in a file of positions lost exactly 
4-ply for those that have three of the four pieces in the same places as they oc-
cupy in the seed position. For each such position F that has all pieces except p 
occupying the same places, a set of places L(p) for p is augmented by adding the 
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place occupied by p in F. After a complete scan of the file, L(knight) for ex-
ample contains a set of places the knight can occupy such that, if the other 
pieces are unchanged the position will still be lost 4-ply. Now consider the 
hypothesis that piece p is truly irrelevant to the fact that the seed position is lost. 
From the piece p, the seed position, and the makeup of the file, it is possible to 
estimate the number of positions that should have been found in the file under 
this hypothesis. If the size of L(p) is sufficiently close to this number, then the 
hypothesis is judged to have been confirmed and piece p is discarded from the 
pattern. One very significant feature found in this way is shown in Figure 15-9, 
where the rook and black king have been deemed irrelevant. This does not mean 
that all such positions are lost 4-ply, but rather that the presence of this pattern is 
a relevant indicator when classifying a position. In fact, more than 10% of all 
positions lost exactly 4-ply are of this form, so it is a useful feature indeed! 

\ * 

« 

Figure 15-9: Highly useful partial pattern. 

The second form of generalization is to allow pieces to occupy one of a 
number of places on the board. We know already that any one piece p can be at 
any of the places in L(p) without affecting the lost status of the seed position. 
The idea here is to check whether more than one piece can simultaneously be 
treated in the same way, and is again determined by counting. Suppose for ex-
ample we find the number of positions in the file which have the two kings in 
the same places as in the seed, but where the knight is anywhere in L(knight) 
and the rook occupies any place in L(rook). If this number is close to the ex-
pected proportion of the product of the sizes of L(knight) and L(rook), the places 
occupied by these pieces may both be generalized. One pattern found this way 
is shown in Figure 15-10, where the white king has been dropped as before, and 
the rook and black king may occupy any of the indicated places. This feature 
accounts for nearly 4% of all positions lost exactly 4-ply. 

The final generalization form is to allow patterns of pieces to be shifted 
over the board, preserving their interrelationship rather than their actual places. 
The shifting may or may not require that the pattern of pieces maintain some 
constant distance from one edge of the board. We start with the seed position 
from which the pieces thought to be irrelevant have been excluded, and see how 
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S 

Figure 15-10: Feature indicating 4% of 4-ply losses by black. 

often a similar configuration obtainable by a row or column shift occurs in the 
file of positions. If the number of row-shifted alternatives found is comparable 
with the number expected under the hypothesis that all such alternatives are also 
lost 4-ply, the hypothesis is accepted; the case for columns is handled in the 
same way. One attribute discovered by this means is the one shown in Figure 
15-11, which can be slid along the edge, and accounts for about 1% of all lost 
4-ply positions. 

[¥ 
s 

cSfo 

Figure 15-11: Attribute accounting for 1% of 4-ply losses by black. 

The major weaknesses of this approach to attribute generation come from 
the way patterns are represented. There seems to be no easy method of combin-
ing the second and third forms of generalization, to allow for situations where 
one or more pieces may occupy more than one place and where the whole pat-
tern can then be moved around the board. Nor is it possible yet to specify pat-
terns containing two separate interactions that can be shifted independently of 
each other. An example would be those positions that contain both of the at-
tributes shown in Figure 15-12. 
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ft 
and 

Figure 15-12: Possible disjunctive generalization. 

Finally, the attributes of this pattern-based kind used in the 2-ply and 3-ply 
work were each built up of a number of alternative patterns of the above kind. 
No way has yet been devised of deciding that a set of discovered patterns are all 
relevant to the same mechanism and thus ought to be amalgamated into a single 
attribute. 

15.6 CONCLUSION 

The long-term goal for all this work is the discovery, with as little human 
intervention as possible, of a very high-performance rule for a complex relation. 
This process will commence with the derivation of powerful and relevant at-
tributes from an inspection of examples, and proceed to the development of an 
exact decision tree couched in terms of these attributes. If the resulting tree can 
be shown to provide a classification method that is orders of magnitude faster 
than any alternative mechanism, these experiments will have established the 
feasibility of a machine learning approach to at least some aspects of automatic 
programming. 
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ABSTRACT 

The ability to formulate students' models automatically is a critical com-
ponent of intelligent teaching systems. This chapter reports current progress on 
inducing models of simple algebraic skills from observed student performance in 
the context of the Leeds Modeling System (LMS). A model consists of an or-
dered production system with potentially incorrect variants of some rules (called 
mal-rules). Constraining the number of plausible models that account for the 
observed student problem-solving behavior has proved to be a major undertaking. 
First, the current rule-based formulation is presented. Its shortcomings are in-
dicated and a revised analysis is given which is demonstrated to create a com-
plete and non-redundant set of models. Second, the related issue of generating a 
minimal problem template is discussed. Such a template represents the simplest 
type of problem that insures all rules in a model are exercised. Finally, the sig-
nificance of this type of analysis for other areas of AI is indicated. 

16.1 INTRODUCTION 

The area of Intelligent Teaching Systems (ITS) has two major aims; the 
practical aim of producing teaching systems that are truly responsive to the needs 
of the student, and the theoretical (AI) interest involved in using algorithms to 
formulate this activity. Hartley and Sleeman [1973] have argued that an intel-
ligent teaching system requires access to the following information: 

• knowledge of the problem domain 
• a student model 

483 
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• a list of teaching operations 
• means-ends guidance rules that relate teaching decisions to conditions in 

the student model 
In this chapter, I outline the issues involved in inferring a model which describes 
a student's performance on a set of tasks, and then I discuss some of the 
problems which have to be faced if the number of models generated is not to be 
an exponential function of the number of rules in the model. 

During the last decade a number of systems have been implemented that 
include some or all of the above databases. In particular, during the last five 
years a primary focus of ITS has been to provide supportive learning environ-
ments intended to facilitate learning-by-doing. These systems, which include 
SOPHIE [Brown et al, 1982], GUIDON [Clancey, 1982], WEST [Burton & Brown, 
1982], WUMPUS [Goldstein, 1982] PSM-NMR [Sleeman & Hendley, 1982], 
provide problem-solving and tutoring capabilities. The above systems have been 
developed and tested in the following areas: debugging electronic circuits; medi-
cal diagnosis; a game that draws upon the student's knowledge of arithmetic; a 
game that similarly draws upon his power of logical inference; and a system that 
gives practice with a non-deterministic (backtracking) algorithm. Each of these 
systems has tended to emphasize some aspects of the whole design and to 
neglect others. Thus it is not surprising that the designers have never been fully 
satisfied with the performance of their systems; the following are some of the 
acknowledged shortcomings: 

• The instructional material produced in response to a student's query or mis-
take is often at the wrong level of detail, as the system assumes too much 
or too little knowledge. 

• Most tutoring systems are capable of solving problems in only one or two 
prescribed ways. For instance GUIDON has to use the backchaining control 
structure of MYCIN, rather than following other equally valid medical diag-
nosis procedures. As a result of this constraint, the system coerces a 
user's performance into its own conceptual framework. 

• The tutoring and critiquing strategies used by these systems are excessively 
ad hoc, reflecting unprincipled intuitions about the role of a tutor. > 

• User interaction remains too restrictive, thereby limiting the student's 
ability to express himself (and thereby limiting the tutor's diagnostic 
mechanisms). 
In an attempt to design more powerful systems, researchers in the area of 

intelligent teaching systems are now addressing the following issues:1 

•For a more detailed discussion of these issues please see the introductory essay to Intelligent 
Tutoring Systems [Sleeman & Brown, 1982]. Also note that many of the papers in that volume 
address various aspects of the student modeling problem. 
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• Performing detailed protocol analysis of learning and mislearning. 
• Developing representations of knowledge for use with ITS's which may 

also provide psychological insights. 
• Developing and evolving AI techniques, in particular: 

o implementing friendly interfaces, 
o handling incomplete/inconsistent databases, and 
o inferring student models by "observing" the student's responses to 

sets of problems. 

In common with the BUGGY system [Brown & Burton, 1978], the Leeds 
Modeling System, LMS, addresses the issue of inferring student models and uses 
a generative mechanism to create hypotheses/models from primitives. Without a 
generative facility, the ability of a system to model complex, and possibly error-
prone, behavior is severely limited; this point is well argued by Carbonell 
[1970]. However, the use of such a mechanism also causes difficulties as such 
an algorithm can readily lead to a combinatorial explosion, where given N primi-
tives, N! models are produced.2 BUGGY uses a collection of primitive bugs from 
which to generate models; LMS uses domain rules and corresponding mal-rules, 
(incorrect) rules, which have been observed in the analysis of earlier protocols. 
On the other hand, whereas BUGGY uses a series of heuristics to limit the size of 
its search space, a major feature of the LMS work has been the formulation of a 
systematic search so as to focus on particular rule(s). As will be demonstrated, 
this technique drastically reduces the number of models that must be considered 
at each stage.3 

LMS has been implemented as two subsystems. The first, the offline 
phase, generates a complete set of models (using the algorithms discussed 
below), and retains those models which give unique results with the predefined 
problem sets. The second phase is the online modeling system which uses the 
data generated by the offline phase to determine whether the student's behavior 
falls within the space defined by the rules and mal-rules. (Students who display 
inconsistent behavior or unanticipated "bugs", are not matched by this algorithm, 
and are reported as exhibiting inconsistent behavior.) Usually students start at 
the first level, and modeling continues until the problem sets are exhausted or the 
number of correct solutions on a particular problem set falls below some 
predefined threshold. (The "results" would be, respectively, a consistent model, 
or a statement that the student's behavior was inconsistent. See [Sleeman, 1982] 
for more details of the interactive phase and the results of an experiment.) 

2This assumes that each model must contain N primitives; the number is much greater if all models 
are generated. 

initially, we made the assumption that the domain was hierarchical and so we have referred to the 
stages as levels; and thus modeling proceeds by first considering level 1, then 2, and so on. Further, 
the model at level N contains all the rules in the level N—1 model and the newly introduced rule. 
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LMS provides extensive data for the human teacher/tutor. Note that, in-
itially I was concerned with implementing a diagnostic system, namely a system 
which provided diagnostic models, and only more recently have I asked whether 
these models can provide insights into the cognitive processes used by the stu-
dent [Sleeman, unpublished, 1982]. 

In this paper I review the initial formulation of LMS-I [Sleeman & Smith, 
1981], together with the results of an experiment which led to the discovery of 
some inadequacies [Sleeman, 1982]; the body of the paper is taken up with the 
reformulation of the search to accommodate these points. Before considering 
details of these formulations, we briefly review the production system, PS, 
representation which LMS uses for student models, and explain the main features 
of the PS interpreter used to "execute" these models. 

16.1.1 A Production System Representation for Domain Knowledge 

Table 16-la gives a set of production rules which are sufficient to solve 
linear algebraic equations. Table 16-lb gives a set of mal-rules for this domain 
which have been observed in protocols analyzed earlier and Table 16-lc shows 
pairs of correct and "buggy" models executing typical tasks. 

In this work a model is an ordered list of rules. Order is significant be-
cause the interpreter executes the action of the first rule in the model whose con-
ditions are satisfied by the problem state. Moreover, the PS interpreter being 
used searches from left to right; this search is terminated and the associated ac-
tion is carried out when a rule's conditions are satisfied. (Thus, if a problem 
state was such that ADDSUB could fire twice, the interpreter always fires on the 
left-hand pattern first.) In this way we are able to capture algebraic precedence. 
The cycle of matching patterns and executing actions continues until no further 
rules fire. 
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Table 16-1: Rules and mal-rules in student models. 

RULE NAME 

FIN2 
SOLVE 
ADDSUB 
MULT 
XADDSUB 
NTORHS 
REARRANGE 
XTOLHS 
BRA1 
BRA2 

LEVEL 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

CONDITION-SET 

(SHD X = M/N) 
(SHD M * X = N) 
(lhs M + 1 - N rhs) 
(Ihs M * N rhs) 
(lhs M*X + 1 - N*X rhs) 
(lhs + 1 - M = rhs) 
(lhs + 1 - M + 1 - N*Xrhs) 
(lhs = + 1 - M*X rhs) 
(lhs < N > rhs) 
(lhs M * <N*X + 1 - P> rhs) 

ACTION 

(SHD (M N)) or (SHD evaluated) 
(SHD X = N/M) or (SHD INFINITY) 
(lhs [evaluated] rhs) 
(lhs [evaluated] rhs) 
(lhs (M + 1 - N) * X rhs) 
(lhs = rhs - 1 + M) 
(lhs + 1 - N*X + 1 - M rhs) 
(lhs - 1 + M*X = rhs) 
(lhs N rhs) 
(lhs M*N*X + 1 - M*Prhs) 

M, N and P are integers, lhs, rhs, etc., are general patterns (which may be null), + 1 - means either + 
indicates the String Head, and < and > represent standard "algebraic brackets". 

or - may occur, SHD 

a) Rules for the algebra domain (evaluative form and slightly stylized). 

RULE NAME 

MSOLVE 
MNTORHS 
M2NTORHS 
M3NTORHS 
MXTOLHS 
M1BRA2 
M2BRA2 

LEVEL 

2 
6 
6 
6 
8 

10 
10 

CONDITION-SET 

(SHD M*X = N) 
(lhs +1 - M = rhs) 
(Ihsl + 1 - M lhs2 = rhs) 
(lhsl + 1 - M lhs2 = rhs) 
(lhs = + 1 - M*Xrhs) 
(lhs M * <N*X + 1 - P> rhs) 
(lhs M * <N*X + 1 - P> rhs) 

ACTION 

(SHD X = M/N) or (SHD INFINITY) 
(lhs = rhs + 1 - M) 
(lhsl + 1 - lhs2 = rhs + 1 - M) 
(lhsl + 1 - Ihs2 = rhs + 1 - M) 
(lhs + 1 - M*X = rhs) 
(lhs M*N*X + 1 - Prhs) 
(lhs M*N*X + 1 - M + 1 - Prhs) 

b) Some mal-rules for the domain (using the same conventions as above). 

MULT 
ADDSUB 
SOLVE 
FIN2 

2X = 3 * 4 + 5 
2X = 12 + 5 
2X = 17 
X = 17/2 
(17/2) 

ADDSUB 
MULT 
SOLVE 
FIN2 

2X = 3 * 4 + 5 
2X = 3 * 9 
2X = 27 
X = 27/2 
(27/2) 

i) Shows (MULT ADDSUB SOLVE FIN2) and (ADDSUB MULT SOLVE FIN2) solving 2X 

NTORHS 
ADDSUB 
SOLVE 
FIN2 

2X + 5 = 9 
2X = 9 - 5 
2X = 4 
X = 2/1 
(2) 

MNTORHS 
ADDSUB 
SOLVE 
FIN2 

2X + 5 = 9 
2X = 9 + 5 
2X = 14 
X = 7/1 
(7) 

ii) Shows (NTORHS ADDSUB SOLVE FIN2) and (MNTORHS ADDSUB SOLVE FIN2) solving 2X + 5 = 9. 

c) Pairs of correct and "buggy" models executing typical tasks. 
(The first line gives the initial state and all subsequent lines give the rule which fires, and the resulting state.) 
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16.2 GENERATING A COMPLETE AND NON-REDUNDANT SET OF MODELS 

In order to generate a concise set of student models, Sleeman and Smith 
[1981] developed the SELECTIVE algorithm. In this algorithm only one new 
rule was added to a model at each stage, and further, it was assumed that if the 
student used the "new" rule correctly when it was first introduced, then the stu-
dent would use it correctly with all subsequent problem types. In a recent field 
trial using LMS [Sleeman, 1982], this assumption was often violated. Removing 
this assumption involves only a minor change to LMS's code but means that the 
search space of potential models increases substantially. Hence, I was forced to 
reconsider the algorithm used to generate models at each level. I refer to the 
revised modeler as LMS-ii. 

The appendix presents several examples of the SELECTIVE algorithm; al-
though several heuristics were used, many of the models gave the same results 
with many of their problem set. A more detailed analysis of the rules indicated 
that it is possible to predict that different models will yield the same behavior, 
and hence, in many instances, reduce the number of redundant models generated. 
The following classification of the condition part of rules has been evolved. 

Subsume. Rule Rl is said to subsume R2, if Rl 's condition set is an or-
dered subset of R2's conditions. The effect of Rl being placed before R2 is that 
the production system would act as if R2 did not occur. Throughout this 
analysis, the order of the conditions within the condition set is significant. For 
example, whereas condition set [Cl C2] would subsume [Cl C2 C3], [C2 Cl] 
would not.4 Condition sets for such a pair of rules from the arithmetic domain 
are as follows: 

ADD NUM + NUM 
PADD < NUM + NUM 

(where < is the usual left-hand "algebraic" bracket, used to change the order of 
the evaluation of an algebraic expression). Similarly, in this domain ADDSUB 
subsumes REARRANGE (see Table 16-1 and Table 16-5). 

In practice, we need more complex conditions, like: 
NUMBER BUT NOT 1 
Such conditions further reduce the number of models generated, and so this 

analysis gives an upper bound on the number of models to be considered.5 

Potential Interaction Between Rules. Suppose the condition set of Rule 

4Note carefully this use of "subsume". We are using "subsume" only to discuss static rule con-
ditions, not traces of the model. 

5These redundancies and those caused by numerical degeneracy are picked up by the off-line phase 
which evaluates all the generated models against the tasks for the various levels. 
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3, R3, is [C2 C3 C4 STR1], and the condition set of Rule 4, R4, is [STR2 C3 
C4 C5] where the STRi are arbitrary strings of conditions, including null, then 
both rules would be able to fire if the problem presented contained a pattern of 
the form: 

C2 C3 C4 C5 
As I am dealing with production rules in which the order of the conditions is 
significant, the order of the rules within the model determines which rule fires 
first. Hence such a pattern would potentially discriminate between the models 

(...R3...R4...) and (...R4...R3...). Whether or not the example problem dis-
criminates depends on the actions of the two rules. An example of such a pair 
of rules is: 

ADDSUB NUM + I - NUM 
MULT NUM * NUM 

The discriminatory patterns, which I shall also refer to as overlap patterns, in 
this case are: 

NUM + 1 - NUM* NUM 
NUM* NUM 4-1- NUM 

(As explained in Table 16-1, +1— matches either the literal ' + ' or the literal 
' —', and NUM matches any integer.) A subalgorithm, called 
INTERACT/SUBSUME applies the previous definitions to determine indepen-
dence, interaction or subsumption between ordered sets of rules. 

Non-interacting, or Order-independent, Rules. Rules do not interact if 
their ordered condition sets do not overlap. For example, if the conditions of R5 
are Cl C2 C3 and of R6 are Cl C2 C4, then these would nbt fire on the same 
input. 

Note that subsumption, and failure to interact, can be determined by in-
spection of the condition parts of the rules. However, potential interaction or 
conflict depends critically on the problem considered, and so must be decided 
with respect to each problem type. I will now consider the algorithm based on 
the above analysis. 

16.2.1 An Algorithm for Generating Complete and Non-Redundant Models 

The task of creating a complete and non-redundant set of models from 
primitives is analogous to that performed by the DENDRAL algorithm that creates 
a comprehensive and non-redundant set of isomers given a molecular formula 
[Buchanan et al., 1971]. The algorithm for generating models has three parts. 

1. Start with the set of rules that solve algebra problems correctly at a given 
level, that is, the ideal student model for that level. Then add the 
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mal-rule6 variants to each rule in the model. For example, the ideal stu-
dent for level 4 is: 

(MULT ADDSUB SOLVE FIN2) 
When all the rules are retrieved this gives: 

((MULT) (ADDSUB) (SOLVE MSOLVE) (FIN2)) 
2. Generate all configurations from this data structure: 

(MULT ADDSUB SOLVE FIN2) 
(MULT ADDSUB MSOLVE FIN2) 

3. Apply the INTERACTION/SUBSUME subalgorithm to the configurations 
generated in the previous step. The subalgorithm separates the rules in the 
configuration into those which may interact and those which cannot. Next, 
the subalgorithm returns a complete set of all relevant (interactive) rule or-
derings, to each of which is added the rules that do not interact. Finally, 
the models are scanned to remove subsumed rules. For the configuration 
we are considering, this algorithm returns four models:7 

(MULT ADDSUB SOLVE FIN2) 
(ADDSUB MULT SOLVE FIN2) 
(MULT ADDSUB MSOLVE FIN2) 
(ADDSUB MULT MSOLVE FIN2) 

Table 16-2 demonstrates the enhanced modeler's ability to detect errors in rules 
first introduced at "earlier" levels. (This table is purely illustrative and so there 
is only a single problem per level.) 

One of the major concerns in generating student models has been the size 
of the search space. As Sleeman and Smith [1981] pointed out, the number of 
potential combinations of rules is vast. In that paper we analyzed the size of the 
search space in some detail; I provide a summary here, before discussing the 
extensions. This original analysis considered all models containing from 1 to R 
domain rules, and assumed that each rule had M erroneous alternatives, or mal-
rules. This is the basis for the EXHAUSTIVE algorithm that enumerates all pos-
sible models composed of R rules or mal-rule variants. The EXHAUSTIVE-
GROUPED algorithm assumes that one knows the grouping between the rules 
and associated mal-rules, and hence this algorithm selects a rule, or one of the 
associated mal-rules, and then creates all possible orderings. In the SELECTIVE 
algorithm the models for the L+ 1th level are based on the model that is deemed 
to explain the student's behavior at level L. (Recall that this formulation as-

6A mal-rule is an incorrect variant of a rule which has been noted in an earlier protocol. MSOLVE 
is a mal-rule of SOLVE. 

7 A rule set whose order does not have any significance is referred to as a configuration; whereas a 
rule set whose order is significant is referred to as an ordered configuration, or model. 
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Table 16-2: A section of a student protocol with LMS-II where the mal-rules are "in scope" at 
subsequent levels. (Explanatory comments are preceded by a semicolon.) 

THIS IS THE ALGEBRA SYSTEM. 

THE LEVEL IS 1 
**ModeIing OK-AT THIS LEVEL 

THE LEVEL IS 2 
SOLVE (3 * X = 9) 
> X = 3/9 
IS THAT WHAT YOU INTENDED (Yes/No)> Yes 
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT 
**THE STUDENT BEHAVES AS MODEL ((MSOLVE FIN2)) 
;The student "inverted" the answer and hence behaved as predicted by MSOLVE. 

THE LEVEL IS 3 
SOLVE (5 * X = 8 + 2) 
> X = 5/10 
IS THAT WHAT YOU INTENDED (Yes/No)> Yes 
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT 
**THE STUDENT BEHAVES AS MODEL ((ADDSUB MSOLVE FIN2)) 
;The student "inverted" the answer and hence behaved as predicted by MSOLVE. 

THE LEVEL IS 4 
SOLVE (5 * X = 3 * 3 + 1) 
> X = 5/12 
IS THAT WHAT YOU INTENDED (Yes/No)> Yes 
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT 
**THE STUDENT BEHAVES AS MODEL ((ADDSUB MULT MSOLVE FIN2)) 
;The student appears to have both an error in his precedence rules and "inverted" the answer. 

THE LEVEL IS 5 
SOLVE (2 * X + 4 * X = 12) 
> X = 6/12 
IS THAT WHAT YOU INTENDED (Yes/No)> Yes 
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT 
**THE STUDENT BEHAVES AS MODEL ((MULT 
;The student "inverted" the answer and hence behaved 

THE LEVEL IS 6 
SOLVE (2 * X + 4 * X + 4 = 16) 
> X = 6/20 
IS THAT WHAT YOU INTENDED (Yes/No)> Yes 
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT 
**THE STUDENT BEHAVES AS MODEL ((MULT ADDSUB MNTORHS XADDSUB MSOLVE FIN2)) 
;The student appears to have taken a number across to the RHS without changing the sign and "inverted" the answer. 

THE LEVEL IS 7 
SOLVE (4 + 2 * X + 2 * X = 16) 
> X -2 
IS THAT WHAT YOU INTENDED (Yes/No)> Yes 
THANK YOU.. YOU GOT 0 OUT OF 1 RIGHT 
**THE STUDENT BEHAVES AS MODEL ((ADDSUB MULT REARRANGE NTORHS 
XADDSUB SOLVE FIN2)) 
;This answer can be explained if one assumes the student has processed 4 + 2 * X to give 6 * X. 
;A naive explanation is that he accords ADDSUB too high a precedence. 

ADDSUB XADDSUB MSOLVE FIN2)) 
as predicted by MSOLVE. 
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sûmes that if a student does not make an error with rule L at the level at which it 
is introduced, then this rule will be used correctly at all subsequent levels.) In 
[Sleeman & Smith, 1981] we compared the number of configurations generated 

by the EXHAUSTIVE, the EXHAUSTIVE-GROUPED, and the SELECTIVE al-
gorithms. The number of configurations are not directly comparable, however, 
for the following reasons: 

1. The EXHAUSTIVE and EXHAUSTIVE-GROUPED algorithms allow mal-
rules to be in "scope"—that is, accessible at all subsequent levels, but the 
SELECTIVE algorithm does not. 

2. In all cases the number of mal-rules for each level is assumed to be con-
stant, that is, we quoted the number of configurations which arise when 
M = 0, M= 1, M = 2, and so on, at all levels; but in practice, the value of 
M varies at each level. 

Taking these points into consideration for the EXHAUSTIVE algorithm at level 
L gives: 

(L + 2 Ms) ! : S Ms ! (1) 

1 < s < L I < s < L 

models, where Ms is the number of mal-rules at level s. For the 
EXHAUSTIVE-GROUPED algorithm at level L there are 

P ( l+Ms)xL! (2) 
models. (Note that in Equation (2) the first term gives the number of configura-
tions, whereas the whole expression gives the number of ordered configurations, 
or models.) For the SELECTIVE algorithm at level L there are 

Lx( l+M/) (3) 
models. 

The ANALYSIS-OF-CONDITIONS (global mal-rule) algorithm considers 
all configurations in which rule order is significant and further allows mal-rules 
to be in "scope" at the level at which the rule is first introduced and all sub-
sequent levels; the ANALYSIS-OF-CONDITIONS (local mal-rule) algorithm 
again considers all possible interactions of the rules, but allows the mal-rules to 
occur only at the level the rule is introduced. This latter variant is only really 
included for completeness, since it has the disadvantage of having localized mal-
rules. Both the global and local ANALYSIS-OF-CONDITIONS algorithms use 
the complete and non-redundant model-generation algorithm; indeed the latter 
merely provide the appropriate data (the ideal student models, and the data on 
rule interaction and subsumption) for the complete algorithm. 

The analysis for the global ANALYSIS-OF-CONDITIONS algorithm is 
somewhat more complex. From Equation (2), above we know there are: 

, P a L (1 + M s ) (4a) 
or NM, configurations. To determine the number of models, the 



SLEEMAN 493 

INTERACTION/SUBSUME subalgorithm is applied to each of these configura-
tions. The number of models generated from a configuration is a function of the 
number of interacting rule pairs, IP, and the number of rules involved in the 
interacting pairs, IR; an algebraic expression for this function can be formulated 
in some cases, but its value is always in the range 1 to IR!. (This formulation is 
very general and allows both rules and their associated mal-rules to interact with 
other rules or mal-rules.) The total number of models generated is thus: 

1 <NM f(IPc, IRc) 
1 < c ^ NM 

Section 16.2.2 discusses the worst and best values for the function, f. 
Equation (4a) corresponds to the second stage of the complete and non-redundant 
model generation algorithm, and Equation (4b) to the third. Table 16-3 gives the 
number of configurations which arise with the various algorithms. 

As we can correlate the mal-rules together with the rules from which they 
were derived, it is unlikely that the EXHAUSTIVE algorithm would ever be re-
quired. So far, the number of configurations for the SELECTIVE algorithm is 
consistently the lowest at each level, but it should be remembered that this algo-
rithm allows mal-rules only to be available at the level they are first introduced. 
On the other hand the global ANALYSIS-OF-CONDITIONS algorithm gives all 
the non-redundant rules for a particular level and so a comparison between the 
number of models created by the EXHAUSTIVE-GROUPED and ANALYSIS-
OF-CONDITIONS algorithms is pertinent. The large difference between the 
number of models created by the EXHAUSTIVE-GROUPED and the global 
ANALYSIS-OF-CONDITIONS algorithms results from the fact that the 
EXHAUSTIVE-GROUPED algorithm generates many equivalent models. Two 
models are said to be equivalent if they predict identical behavior. Applying the 
INTERACTION/SUBSUME subalgorithm, we conclude that the ADDSUB and 
the SOLVE rule are non-interacting, and so it is quite unnecessary to consider 
both orderings of the rules. Such a simple observation reduces the size of the 
search space in half. A similar observation for the MULT and SOLVE rules 
reduces the search space yet again in half. At level 9, for example, the number 
of models is reduced by a factor of 20160. Further, we note that the second and 
third models for the 

(MULT ADDSUB SOLVE FIN2) 
configuration generated by the SELECTIVE algorithm (see the appendix) are 
equivalent, whereas this same algorithm does not generate any of the models 
containing the MSOLVE variant. On the other hand, the global ANALYSIS-
OF-CONDITIONS algorithm returns a complete and non-redundant set of four 
models as discussed earlier in this section. 

However, the number of configurations to be considered with the global 
ANALYSIS-OF-CONDITIONS algorithm at and after level 6 begins to be siz-
able, and is likely to cause difficulty in a practical online modeling system. In 
order to reduce the number of models further, the following approaches are sug-
gested: 

(4b) 
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Table 16-3: Comparative size of the search space. 

T2 

FIN2 

SOLVE 

ADDSUB 

MULT 

XADDSUB 

NTORHS 

REARRANGE 

XTOLHS 

BRA1 

BRA2 

(FIN2) 

(SOLVE FIN2) 

(ADDSUB SOLVE FIN2) 

(MULT ADDSUB SOLVE FIN2) 

(MULT XADDSUB ADDSUB SOLVE FIN2) 

(MULT XADDSUB ADDSUB NTORHS SOLVE FIN2) 

(MULT REARRANGE XADDSUB ADDSUB NTORHS SOLVE FIN2) 

(MULT REARRANGE XADDSUB ADDSUB NTORHS XTOLHS SOLVE FIN2) 

(MULT REARRANGE BRA1 XADDSUB ADDSUB NTORHS XTOLHS SOLVE 

FIN2) 

(MULT REARRANGE BRA1 BRA2 XADDSUB ADDSUB NTORHS XTOLHS 
SOLVE FIN2) 

T7 T9 T10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

1 

0 

0 

0 

3 

0 

1 

0 

2 

1 

6 

24 

120 

720 

151200 

1663200 

51891840 

726485760 

70572902300 

1 

4 

12 

48 

240 

5760 

40320 

645120 

5806080 

174182400 

1 

4 

3 

4 

5 

24 

7 

16 

9 

30 

1 

2 

2 

4 

12 

72 

144 

188 

288 

10368 

1 

2 

1 

2 

6 

36 

12 

24 

12 

432 

1 
2 
6 

12 
20 
80 

280 
2240 

20160 
16800 

Captions for the column headings 

Tl Rule concentrated on at this level 
T2 Ideal model for this level 
T3 Level number 
T4 Number of mal-rules observed for that level 
T5 Number of configurations generated by the EXHAUSTIVE algorithm 
T6 Number of configurations generated by the EXHAUSTIVE-GROUPED algorithm 
T7 Number of configurations generated by the SELECTIVE algorithm8 

T8 Number of configurations generated by the global ANALYSIS-OF-CONDITIONS algorithm 
T9 Number of configurations generated by the local ANALYSIS-OF-CONDITIONS algorithm 
T10 Reduction factor for the EXHAUSTIVE-GROUPED/global ANALYSIS-OF-CONDITIONS algorithms 

8Assumes for ease of calculation that all the rules are in different priority classes; so in practice it is 
likely that these figures would be somewhat reduced. 
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1. Ensure that the problem set is discriminatory and hence stop the com-
parison between the student's answer and those obtained by executing the 
potential models set as soon as a single model matches. (This would speed 
up the matching process in the online modeling phase but would not 
prevent the system from generating a large number of models.) 

2. Introduce domain-specific heuristics such as those in the DEBUGGY system 
[Burton, 1982]. For instance, if two rules are known not to coexist, en-

sure that no model incorporates both. So far it has not been necessary to 
explore this possibility, but we accept that it might become necessary in 
domains where there are substantially more rules. 

3. Investigate whether or not it is possible to prevent the generation of further 
models; this is discussed in the next section. 

16.2.2 Further Reducing the Number of Irrelevant Models Generated 

This section describes two situations where redundancy in models may be 
reduced further. Some of the rules that were included in the models on the as-
sumption that algebra is a hierarchical domain are simply never used when the 
models are run on the problems for the particular level, but they nevertheless 
affect the size of the search space; this is discussed further in Section 16.2.2.1. 
Furthermore, because of the nature of the problems presented, rules which can 
potentially interact are unable to do so; yet, these rules must be present so that 
the problems can be evaluated. This is discussed further in Section 16.2.2.2. 

The issue of irrelevant models can also be considered from the viewpoint 
of the analysis of the ANALYSIS-OF-CONDITIONS algorithm presented earlier. 
Equation (4a) gives the number of configurations and (4b) gives the number of 
models. From (4a) we know that the number of configurations generated can be 
reduced if we eliminate rules with mal-rules. (Eliminating rules without mal-
rules does not affect the number of configurations generated, but it does reduce 
the size of the models.) On the other hand, reducing the number of interacting 
rules can have a major effect because the value of the function, f, is at worst IR! 
and at best 1. That is, in the worst case all the rules interact and so the formula 
reduces to that for the EXHAUSTIVE-GROUPED algorithm (Equation (2)); 
whereas in the best case the number of models equals the number of configura-
tions and is given by Equation (4a). 
16.2.2.1 Algebra: A Non-hierarchical Domain 

A principal objective for the SELECTIVE algorithm [Sleeman & Smith, 
1981] was that it should concentrate on a single rule at each stage of the model-
ing. However, we assumed that the domain was hierarchical in that at level 
L + 1 when we are concentrating on the new rule, the original L rules are present 
and completely unchanged in both form and order. (The significance of rule 
interaction is considered in Section 16.2.3.) An inspection of Table 16-2, for 
instance, shows that at many levels a number of rules are not activated due to 
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the nature of the problems presented. For example, the sequence of rules that 
solves the level-6 problem in Table 16-2 is: 

MNTORHS, ADDSUB, XADDSUB, MSOLVE, FIN2, 

that is, MULT is redundant. Similar redundancies are found in many other 
levels. In Table 16-4 we give the minimal, non-redundant (and hence non-
hierarchical) rule sets and the corresponding number of models generated with 
this data.9 

16.2.2.2 Section Rules That Interact in a Predefined Problem Set 

In Section 16.2, I outlined the enhanced algorithm for generating models, 
but I have not indicated how to determine which domain rules interact. This can 
be done by determining whether their conditions overlap. Interaction and other 
information about the domain rules are given in Table 16-5. The number of 
models quoted for the revised generation algorithm in Table 16-3 assumes that 
all potentially significant interactions take place. However, a further inspection 
of the problems presented in Table 16-2 shows that this is not true. For ex-
ample, at level 6 the ADDSUB, MULT and XADDSUB rules are unable to in-
teract because the problems do not contain the overlap patterns for these rule 
pairs. In the next paragraph, we demonstrate the effects of these newly intro-
duced constraints. 

In Table 16-4, rules not necessary for solving the particular set of problems 
have been deleted from the rule sets. At level 6, for example, NTORHS is 
being tested but as at level 8 and beyond, it is no longer necessary to solve the 
problems, so it has been deleted. At level 6, the non-hierarchical ideal student 
model is: 

(NTORHS ADDSUB SOLVE FIN2) 

If the problems presented permit interaction between all the rules that could 
potentially interact, then there would be twelve models, as NTORHS has three 
mal-rules, MNTORHS, M2NTORHS and M3NTORHS and the last two can in-
teract with ADDSUB, thus giving 6 (1 + 1 + 2 + 2) models. Further, SOLVE has 
an associated mal-rule, MSOLVE, thus making twelve models in all. If the 
problems were such that they did not allow the interaction between 
M2NTORHS/M3NTORHS and ADDSUB to take place, then the number of 
models would be eight. A second example in which the restricted interaction 
can reduce the number of models occurs at level 9 where the reduced rule set is: 

9I refer to this as being the non-hierarchical algorithm, but as noted above this would be more 
accurately described as the COMPLETE and NON-REDUNDANT algorithm activated with non-
hierarchical data (namely, the reduced rule sets given in Table 16-4), whereas in ANALYSIS-OF-
CONDITIONS the same algorithm is applied to the hierarchical student models given in Table 16-3. 
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Table 16-4: The templates and size of the search space for the non-hierarchical algebra domain. 

T l T2 T3 T7 T8 T9 T10 

FIN2 
SOLVE 
ADDSUB 
MULT 
XADDSUB 
NTORHS 
REARRANGE 
XTOLHS 
BRA1 
BRA2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
1 
0 
0 
0 
3 
0 
1 
0 
2 

1 
4 

12 
48 

240 
5760 

40320 
645120 

5806080 
174182400 

1 
2 
2 
4 

12 
72 

144 
288 
288 

10368 

1 
2 
2 
2 
2 

12 
32 
4 
4 

12 

1 
2 
2 
2 
2 

12 
32 
4 
2 

12 

1 
4 
3 
4 
5 

24 
7 

16 
9 

30 

1 
2 
6 

12 
20 
80 

280 
2240 

20160 
16800 

1 
2 
6 

24 
120 
480 

1260 
161280 

2903040 
14515200 

Til 

(FIN2) 
(SOLVE FIN2) 
(ADDSUB SOLVE FIN2) 
(MULT SOLVE FIN2) 
(XADDSUB SOLVE FIN2) 
(NTORHS ADDSUB SOLVE FIN2) 
(REARRANGE ADDSUB NTORHS SOLVE FIN2) 
(XADDSUB XTOLHS SOLVE FIN2) 
(MULT ADDSUB BRA1 SOLVE FIN2) 
(BRA2 XADDSUB XTOLHS SOLVE FIN2) 

Captions for Column Headers 

Tl Rule focused on 
T2 Level number 
T3 Number of mal-rules associated with the rule 
T4 Number of models with the EXHAUSTIVE-GROUPED algorithm 
T5 Number of models with the global ANALYSIS-OF-CONDITIONS algorithm 
T6 Number of non-hierarchical models 
T7 Number of non-hierarchical models when the interaction is reduced 
T8 Number of models with the SELECTIVE algorithm 
T9 Reduction ratio for EXHAUSTIVE-GROUPED/GLOBAL ANALYSIS-OF-CONDITIONS algorithms. 
T10 Reduction ratio for EXHAUSTIVE-GROUPED/NON-HIERARCHICAL and REDUCED INTERACTION algorithms 
Tl 1 The reduced rule sets 

Note that at level 7 it is not possible to further reduce the number of models 
because ADDSUB subsumes REARRANGE and because this problem template 
allows M2NTORHS and M3NTORHS to interact with both ADDSUB and 
REARRANGE. 
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Table 16-5: 

This is a sample of the output from the program which reports the rules 
which interact, subsume and are satisfied by other problem templates, together 
with a summary of all the results from this analysis. Semantically meaningful 
interactions are signaled by an asterisk. 

* ADDSUB and MULT interact; the overlap is: ((NUM + 1 - NUM * NUM) (NUM * NUM + 1 - NUM)) 
* ADDSUB and XADDSUB interact; the overlap is: ((NUM + 1 - NUM * X + I - NUM * X)) 

ADDSUB and NTORHS interact; the overlap is: ((NUM + 1 - NUM =)) 
ADDSUB and MNTORHS interact; the overlap is: ((NUM + 1 - NUM =)) 

* ADDSUB and M2NTORHS interact; the overlap is: ((NUM + 1 - NUM !LN =)) 
* ADDSUB and M3NTORHS interact; the overlap is: ((NUM + 1 - NUM !LN =)) 

ADDSUB subsumes REARRANGE 

* ADDSUB and REARRANGE interact; the overlap is: ((NUM + 1 - NUM * X)) 

* WARNING-RULE ADDSUB IS SATISFIED BY REARRANGE'S PT ** 

* ADDSUB and BRA2 interact; the overlap is: ((NUM + 1 - NUM * < NUM * X + 1 - NUM >)) 
* ADDSUB and MIBRA2 interact; the overlap is: ((NUM + i - NUM * < NUM * X + 1 - NUM >)) 
* ADDSUB and M2BRA2 interact; the overlap is: ((NUM + 1 - NUM * < NUM * X + 1 - NUM >)) 

Rephrased Summary of Complete Output 

ADDSUB suDsumes REARRANGE. 
ADDSUB and the following rules can interact significantly: 

MULT, REARRANGE, XADDSUB, BRA2, M1BRA2, M2BRA2, M2NTORHS and M3NTORHS. 
MULT and the following rules can interact significantly: XADDSUB, BRA2, M1BRA2 and M2BRA2. 
REARRANGE and the following rules can interact significantly: 

XADDSUB, M2NTORHS and M3NTORHS. 
XADDSUB and the following rules can interact significantly: M2NTORHS and M3NTORHS. 
M2NTORHS and M3NTORHS are satisfied by XADDSUBs and REARRANGE's problem templates. 

(MULT ADDSUB BRA1 SOLVE FIN2) 
Since MULT and ADDSUB can potentially interact and SOLVE has a mal-rule 
alternative MSOLVE, the reduced rule set gives rise to four models. The 
problem template for this level (see Table 16-9) is: 

NUM * X = NUM * < NUM 4- NUM > 
Since given this template MULT and ADDSUB cannot interact, it is only 

necessary to consider two models. Table 16-4 also gives the number of models 
generated when rule interactions are reduced to those possible for the problem 
set.10 

It can be seen that these additional constraints significantly reduce the 
number of models to be considered. Several points should be made about the 
reduced interaction results in Table 16-4. 

10This algorithm is referred to as the non-hierarchical and reduced-interaction algorithm. That is, the 
complete and non-redundant algorithm is activated with ideal student models that are non-
hierarchical, and where the interaction is reduced to that appropriate for the problem set. 
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1. Because ADDSUB subsumes REARRANGE it is never possible to create 
problem sets requiring both rules where these rules do not interact. 

2. Several of the problem templates,11 including those for level 7, also con-
tain the overlap pattern for ADDSUB and REARRANGE with 
M2NTORHS/M3NTORHS, and this overlap pattern increases the number 
of models to be considered. 

3. As BRA2 partially evaluates its expressions, it is not necessary to include 
MULT in the rule set. For example, given the expression: 

2 * <3X - 4> 

BRA2 returns: 

6X - 8 

Similarly, the mal-rule M2BRA2 evaluates its expressions, making 
ADDSUB also redundant.12 

16.2.3 The Significance of Rules Which Interact 

Tasks, in which more than one rule can be applied, frequently cause dif-
ficulties for the student. (See the protocols reported in the earlier experiment 
[Sleeman, 1982], and Matz's [1982] and Davis' [Davis et al, 1978] illustrations 

for more examples.) In Table 16-5, the potential interactions between all the 
domain's rules and mal-rules are given. In Table 16-6 we have gone one step 
further and created a problem template that may be used to determine whether 
the student has the correct precedence for particular interacting rules, such as 
ADDSUB and MULT. However, because of the nature of the rule actions, 
changing the relative order of the rules does not always produce a task which can 
discriminate (for example, ADDSUB and NTORHS). Those pairs of rules in 
Table 16-6 that are significant have been starred. The algorithm for generating 
problem templates for interacting rules is given in Section 16.3.2. It should be 
noted that in the early stages of teaching algebra, teachers frequently avoid un-
wanted interactions by introducing brackets. However, there are problem types 
which are not normally disambiguated in this way, for example: 

2 + 3X = 6 

11 By this we mean an entity in which the variables are replaced by values in order to formulate a 
problem. Table 16-6 gives a problem template for the ADDSUB/MULT rules as: 

NUM * X = NUM -HI- NUM * NUM 

One instantiation of this problem template is: 

2 * X = 3 + 4 * 5 

12Without this, the number of models generated for level 10 for both the non-hierarchical and the 
reduced interaction rule sets would be much greater as BRA2 and its two mal-rules potentially 
interact with both ADDSUB and MULT. 
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where in our notation it is possible for both ADDSUB and REARRANGE to 
apply. In such examples the source of the error could be attributed to the student 
having a non-standard representation for the task; for obvious reasons this has 
been referred to as misparsing. 

Rule interactions also influence the order in which topics should be 
presented. For example, in this domain, examples that use the XADDSUB rule 
should be seen before those that require the NTORHS rule, as such an order may 
prevent the formation of the M2NTORHS and M3NTORHS rules. That is, by 
presenting problems such as: 

2X + 3X = 10 
which is simplified by the teacher to: 

5X = 10 
It is hoped that the student would realize that the integer 3 cannot be detached 
from the X. (Such an error is captured by the mal-rules M2NTORHS and 
M3NTORHS.) This also means that at the stage of testing the NTORHS rules, 
one must give examples for the XADDSUB rule, in order to determine whether 
M2NTORHS or M3NTORHS is used by the student. These inferences are based 
on the information provided in Table 16-5 that the problem template for XAD-
DSUB is satisfied by both M2NTORHS and M3NTORHS. 

It should also be noted that the system has pointed out a problem template 
for the MULT/BRA2 rules that violates the commonly-taught precedence rule for 
arithmetic expressions. 

Further, by an extension of these algorithms, it would be possible to 
generate problem types that discriminate between three, four, and more rules. 

In Section 16.3 we outline the algorithm that determines which rule inter-
actions are possible. In Table 16-7 we give the (non-hierarchical) rule sets 
necessary to embody the interacting rule pairs reported in Table 16-5; the number 
of models generated, assuming all the rules that can interact do so; and the num-
ber of models generated when interactions are restricted to those that can occur 
with the actual templates. 

16.2.4 Determining the Size of the Search Space 

The type of production rules we have been considering here are very 
reminiscent of formal grammars.13 Hence, the question about the size of the 
production system search space could be said to be equivalent to asking whether 
in a regular BNF grammar it is possible to calculate the number of terminal 
strings. Hopcroft and Ullman [1969] show how to determine whether a grammar 
is finite or infinite, but do not give a method for enumerating all terminal 

13BNF rules that overlap partially are assigned to the "interactive" subgroup; all the remaining rules 
are scanned and those that have identical condition parts are recorded as alternatives. 
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Table 16-6: The rules that can interact and the problem templates that the algorithm returns. 
(Those that are discriminatory are starred, hence the problem template for 
ADDSUB/MULT is significant, whereas that for ADDSUB/NTORHS is not.) 

Now looking at ADDSUB and MULT overlap patterns exist: 
((NUM + 1 - NUM * NUM) (NUM * NUM + 1 - NUM)) 

** The resulting templates are: 
((NUM * X = NUM + 1 - NUM * NUM) (NUM * X = NUM * NUM + 1 - NUM)) 

Now looking at ADDSUB and XADDSUB overlap patterns exist: 
((NUM + 1 - NUM * X + 1 - NUM * X)) 

** The resulting templates are: ((NUM + 1 - NUM * X + 1 - NUM * X = + 1 - NUM)) 

Now looking at ADDSUB and NTORHS overlap patterns exist: ((NUM +1 - NUM = )) 
The resulting templates are: (( +1 - NUM * X +1 - NUM +1 - NUM = +1 - NUM)) 

ADDSUB subsumes REARRANGE 

Now looking at ADDSUB and REARRANGE overlap patterns exist: ((NUM + 1 - NUM * X)) 
** The resulting templates are: ((NUM + 1 - NUM * X = NUM)) 

Now looking at ADDSUB and BRA2 overlap patterns exist: 
((NUM + 1 - NUM * < NUM * X + 1 - NUM >)) 

** The resulting templates are: ((NUM * X = NUM + 1 - NUM * < NUM * X + 1 - NUM>)) 

Now looking at MULT and XADDSUB overlap patterns exist: ((NUM * NUM * X + 1 - NUM * X)) 
** The resulting templates are: ((NUM * NUM * X + 1 - NUM * X = + 1 - NUM)) 

Now looking at MULT and REARRANGE overlap patterns exist: ((NUM * NUM + 1 - NUM * X)) 
The resulting templates are: ((NUM * NUM + 1 - NUM * X = NUM)) 

Now looking at MULT and BRA2 overlap patterns exist: ((NUM * NUM * <NUM * X + 1 - NUM >)) 
** The resulting templates are: ((NUM * X = NUM * NUM * < NUM * X + 1 - NUM >)) 

Now looking at XADDSUB and XTOLHS overlap patterns exist: ((= - I + NUM * X + I - NUM * X)) 
The resulting templates are: (NUM * X = - 1 + NUM * X + 1 - NUM * X + 1 - NUM) 

Now looking at XADDSUB and REARRANGE overlap patterns exist: 
((NUM + 1 - NUM * X + 1 - NUM * X)) 

The resulting templates are: ((NUM + 1 - NUM * X + 1 - NUM * X = NUM)) 

Now looking at NTORHS and XTOLHS overlap patterns exist: (( + 1- NUM = + 1 - NUM * X)) 
The resulting templates are: ((NUM * X + 1 - NUM = + 1 - NUM * X)) 



502 CHAPTER 16: INFERRING STUDENT MODELS 

strings. However, it is possible to calculate the maximum possible branching 
factor for such a grammar or set of production rules, but only when parsing a 
specific string can one calculate the actual branching factors and enumerate the 
total number of leaves. (An upper bound on the number of terminal strings is 
the maximal branching factor times the path length. Various evaluation al-
gorithms are possible, including a depth-first search which uses only N stack 
cells, where N is the depth of the search tree.) 

Table 16-7: These are all the significant interacting rule pairs reported in Table 16-6. The 
non-hierarchical rule set is used for model generation. 

Rules focused on 
reduced rule set 

ADDSUB/MULT 

ADDSUB/XADDSUB 

ADDSUB/REARRANGE 

ADDSUB/BRA2 

MULT/XADDSUB 

MULT/BRA2 

# of models 
assuming all 
possible 
interactions 

4 

72 

32 

96 

4 

48 

# of models 
assuming only 
interactions 
in PT 

4 

72 

32 

48 

4 

24 

Corresponding Rule Set 

(MULT ADDSUB SOLVE FIN2) 

(REARRANGE XADDSUB ADDSUB NTORHS SOLVE FIN2) 

(REARRANGE ADDSUB NTORHS SOLVE FIN2) 

(BRA2 REARRANGE ADDSUB XTOLHS XADDSUB SOLVE 
FIN2) 

(MULT XADDSUB SOLVE FIN2) 

(MULT BRA2 XADDSUB XTOLHS SOLVE FIN2) 

16.2.5 Nature of the Rules and the Type of Tasks Encoded 

The task captured by such grammars is essentially that of transforming an 
initial state by means of several transformations into a final state that is either 
specified in detail or whose characteristics are predefined. In the analysis above 
we have also assumed that a rule that fires modifies the state and hence is not 
able to fire again on exactly the same data. Further, it is assumed that the model 
is sufficient to evaluate all the intermediary states. (Section 16.3.1 discusses 
how minimal models can be generated.) Finally, we have also assumed that the 
matcher is deterministic and not influenced by the nature of a perceived goal. 
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16.3 PROCESSING DOMAIN KNOWLEDGE 

We have implemented a separate program which performs the following 
analysis on a domain's rules and mal-rules. 

1. Checks that rules and mal-rules are distinct. 
2. Creates problem templates for each rule (see Section 16.3.1) and then 

checks that they are distinct.14 

3. Reports subsumed and subsuming rule pairs. 
4. Decides which pairs of domain rules are able to interact (see Section 

16.3.2) and grows a template which discriminates between them (see Table 
16-6). 

5. Checks whether any of the rules and mal-rules are satisfied by templates 
for any of the other rules or for any of the interacting rule pairs. If so, 
report this; see Table 16-5 and Section 16.2.3. (Also note that if it is 
found that a rule which is not contained in the minimal rule set is satisfied 
by a problem template, then it is necessary to add the rule to the rule set 
since the student might (incorrectly) use it. The interaction data for that 
level must then be enhanced and the models regenerated.) 

16.3.1 Generating a Minimal Problem Template 

Generating a problem template is equivalent to specifying a problem type 
in which each of the rules will be activated at least once. (Note that this problem 
is closely related to that of generating a problem to discriminate between two 
models; see [Sleeman, 1981].) Here I outline a rule-based problem generator, 
specifically for use in this domain, but as indicated in Section 16.2.5 the ap-
proach has considerable generality. 

In order to generate a type of problem that would allow a rule to fire, the 
rules must be used in the opposite direction to which they are used to solve a 
problem. For example, a slightly stylized "generative" form of the MULT rule 
is: 

(STRI NUM STR2) φ (STRI NUM * NUM STR2) 

When using this form, the algorithm checks if NUM is contained in the input 
string, and, if so, it returns separate lists for each occurrence of NUM, in which 
NUM is replaced by the string NUM * NUM. (STRi are strings which can be 
null.) To initiate the generation algorithm it is necessary to specify an initial 
string corresponding to the problem solution, a set of rules which can be used in 
generation mode and terminating conditions (number of iterations, rules which 
the final pattern must contain, and so on). Table 16-8a shows the performance 

14By definition, a mal-rule has the same template as its "parent" rule. 
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of the system when given the initial state (SHD NUM),15 rule set (MULT 
SOLVE FIN2), and the criterion that MULT, SOLVE and FIN2 must be ac-
tivated in that order. In contrast, Table 16-8b and c illustrate the creation of the 
same problem type in two stages; this approach greatly reduces the number of 
redundant configurations generated. All the remaining templates have been 
created from the result of the first stage rather than the basic form (SHD NUM) 
for this reason. Table 16-8d shows the creation of a problem template to satisfy: 

(MULT BRA1 SOLVE FIN2) 

Several redundant configurations could have been avoided if this template had 
been created from its immediate predecessor, namely: 

(MULT SOLVE FIN2) 

Hence, a sensible enhancement of this algorithm would be to use the problem 
template of the immediate predecessor as the initial state. 

Presently, several redundant templates must be discarded manually. This 
process could be automated by applying the following rejection criteria: 

1. If the problem template also satisfies a rule that is not in the model. For 
example, the problem templates generated for (ADDSUB SOLVE FIN2) 
are: 

NUM +1- NUM * X = NUM and NUM * X = NUM +1- NUM 

The first template also satisfies REARRANGE and hence should be 
rejected. 

2. If the problem template contains the overlap pattern for two rules that 
should not interact, it can be discarded. On these grounds, too, the first 
model above should be rejected, as it contains the overlap pattern for 
ADDSUB and REARRANGE. 

3. If the problems specified by the problem template cannot be solved by 
using only the rules in the model. 

Indeed, each template generated by the algorithm should be executed symboli-
cally and the above tests applied at each stage. Note that the algorithm produces 
a problem template with the least number of rules, as it terminates as soon as the 
criteria are satisfied. 

Table 16-9 gives the problem templates for this domain that have been 
selected by the experimenter from those generated by the algorithm. Two 
qualifications must be made about the present implementation. First, we have 
not so far implemented a template instantiator for this domain. This is not a 
very demanding task, but neither is it a very rewarding one, as similar im-

15SHD is an abbreviation for String Head and is appended to the tasks to be executed in order to 
reduce the complexity of the domain rules. 
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Table 16-8: Generating problem templates 
— — — (SHD NUM) . 

[MULT] 

(SHD NUM.* NUM) 

[MULT] 

(SHD NUM.* NUM * NUM) 

[MULT] 

(SHD NUM * NUM * NUM * NUM) 

(1) 

(SHD 1 

(SHD 1 

[FIN2] 

* X - NHM) ■ — — — — 

[MULT] [SOLVE] 

* X = NUM * NUM) (1) 

[MULT] 

(SHD 1 * X = NUM * NUM * NUM) 

(SHD NUM * X = NUM)-

[MULT] 

(SHD NUM * X = NUM * NUM)* 

[MULT] 

(SHD NUM * NUM * X = NUM)* 

The names on the arcs show the rules used to create the next string. The starred configurations are returned by the system as ones 
which meet the criterion specified. (NB: a slightly simplified version of FIN2 has been used.) 

a) Generation of a problem for (MULT SOLVE FIN2) starting from the basic form (SHD NUM). 

(SHD, 

(SHD 1 

.NUM) 

[FIN2] 

.X = NUM) 

[SOLVE] 

(SHD NUM * X = NUM)* 

.(SHD NUM * X = NUM) 

[MULT] [MULT] 

(SHD NUM * NUM * X = NUM)* (SHD NUM * X = NUM * NUM)* 
~ 1 

b) Generation of a problem for (SOLVE FIN2) 
starting from the basic form (SHD NUM). 

i) Initial configuration 
(SHD NUM * X = NUM) 

ii) Level 1 configurations 
(SHD NUM * X = < NUM >) 
(SHD < NUM > * X = NUM) 
(SHD NUM * X = NUM * NUM) 
(SHD NUM * NUM * X = NUM) 

iii) Level 2 configurations 
(SHD NUM * X = < < NUM > >) 
(SHD < NUM > * X = < NUM >) 
(SHD NUM * X = < NUM * NUM >) 
(SHD NUM * NUM * X = < NUM >) 
(SHD < < NUM > > * X = NUM) 
(SHD < NUM > * X = NUM * NUM) 
(SHD < NUM * NUM > * X = NUM) 

c) Generation of a problem for 
(MULT SOLVE FIN2) starting from the 
intermediary form (SHD NUM * X = NUM). 

(SHD NUM * X = NUM * < NUM >) 
(SHD NUM * X = < NUM > * NUM) 
(SHD NUM * X = NUM * NUM * NUM) 
(SHD NUM * NUM * X = NUM * NUM) 
(SHD NUM * < NUM > * X = NUM) 
(SHD < NUM > * NUM * X = NUM) 
(SHD NUM * NUM * NUM * X = NUM) 

iv) Level 2 configurations which satisfy 
the specified criterion 

(SHD NUM * NUM * X = < NUM >) 
(SHD < NUM > * X = NUM * NUM) 
(SHD NUM * X = NUM * < NUM >) 
(SHD NUM * X = < NUM > * NUM) 
(SHD NUM * < NUM > * X = NUM) 
(SHD < NUM > * NUM * X = NUM) 

d) Generation of a problem for (MULT BRAl SOLVE FIN2) starting from the intermediary form (SHD NUM * X = NUM) 
given the criterion that the MULT, BRAl, SOLVE and FIN2 rules should be activated in that sequence. " < " and " > " are 
the usual algebraic brackets. 
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Table 16-9: Stylized version of problem templates for the domain rules (the mal-rules using the 
problem template of the "parent" rule). 

FIN2 (1 * X = NUM//NUM) 
SOLVE (NUM * X = NUM) 
ADDSUB (NUM * X = NUM + 1 - NUM) 
MULT (NUM * X = NUM * NUM) 
XADDSUE (NUM * X + 1 - NUM * X = + 1 - NUM) 
NTORHS ( + 1- NUM * X + 1 - NUM = + 1 - NUM) 
XTOLHS (NUM * X = -NUM - NUM * X) 
REARRANGE (NUM +1- NUM * X = NUM) 
BRA1 (NUM * X = NUM * < NUM + NUM >) 
BRA2 (NUM * X = NUM * < NUM * X +1- NUM >) 

plementations have been done many times before. However, such an implemen-
tation is needed to take full advantage of LMS's online modeling capabilities. 
Second, the experimenter currently decides which rules need to be included in 
the reduced rule sets in order to activate the rules that are being focused on. 
However, given the analysis above, it is possible to create the reduced rule sets 
by growing the structure until the relevant rules have been activated. Such a 
search would be broad and undirected (see Table 16-8d), and it is for this reason 
that the algorithm has not been implemented. On the other hand, such an algo-
rithm would sometimes generate a number of significantly different rule sets. 
For instance, for BRA2 there are essentially two rule sets, and hence problem 
templates—namely, one where the bracket is on the left-hand side and one where 
it is on the right-hand side of the expression. The minimal rule sets which 
would both be generated by such an algorithm are: 

(BRA2 ADDSUB NTORHS SOLVE FIN2) 
(BRA2 XADDSUB XTOLHS SOLVE FIN2). 

In this case the experimenter selected the latter, but it could be important 
to present the student with problems based on the left-hand side form. 

16.3.2 Problem Templates to Test Rule Ordering 

Given rules Rj and Rj, and their associated problem templates PTj and PTj, 
the following algorithm generates a template to discriminate between the two 
rules. 

1. Calculate the overlap OPy between the two rules Rj and Rj. If OPy is null, 
then the problem templates should already discriminate. 16 

2. If rule Rj is satisfied by PTj go to 6; else, set RESULT to PTj . 

16If rule Rj has conditions Cl C2 C3 C4, and Rj has conditions Cl C3 C4, then PTj will already 
discriminate between the two rules as Rj is activated by PTj, but R: is not. 
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3. Apply generate rule j to top-level elements of RESULT, store result in 
RESULT. 

4. If at least one item in RESULT satisfies Rj and Rj independently and con-
tains OPy, then go to 6. 

5. If MAX-DEPTH is not reached, go to 3. 
6. Repeat steps 2 to 5 of the above algorithm with i and j interchanged. 

Table 16-6 shows the interactions that the algorithm has noted for this 
domain and the templates that have been generated. Not all these templates are 
capable of producing problems that discriminate between the order of two rules 
in a model because of the semantics of their actions. In Table 16-6 we have 
starred those templates that are discriminatory. Subsequently, we plan to use a 
symbolic evaluator to automate the discrimination process. At present, it is done 
manually. 

16.4 SUMMARY 

The student models generated by the revised algorithms are consistently 
fewer in number than the redundant and incomplete set of models generated by 
our earlier SELECTIVE algorithm (see Table 16-4). Moreover, the COMPLETE 
and NON-REDUNDANT algorithm overcomes the difficulties arising from the 
limitation noted in the earlier experiment by allowing mal-rules to be in "scope" 
at all subsequent levels. The analysis carried out in Section 16.2.3 illustrates a 
further assumption of the first formulation of LMS: namely, if the student accords 
the correct precedence to two rules Rj and R; at level L, then the student con-
tinues to do so at all subsequent levels. More specifically, LMS-I assumes that if 
Rj interacts with Rj and Rj with Rk, and if the student has the correct precedence 
for both rule pairs, then he would be able to correctly work problems in which 
all three rules interact. Such an assumption is not inherent in LMS-II. Given the 
reduced size of the search space and the greater power of the revised algorithm, 
it seems reasonable to conclude that the SELECTIVE algorithm has been super-
seded by the newer algorithms. 

In addition, this paper formulates an algorithm that reports several types of 
interaction that can occur between pairs of rules. A systematic investigation of 
the domain rules is necessary to catalogue all the interactions. Without such an 
investigation, one is merely considering interactions that one has happened to 
notice. Burton [1982] has reported another systematic approach to determining 
which subskills interact, but this is much more complex than the rule-based sys-
tem reported here. 

We expect that this analysis, and the architecture of LMS-II described in 
Section 16.3, could be used with any subject area in which it is possible to 
represent domain knowledge as an ordered set of rules and to encode errors ob-
served in protocols as mal-rules. Indeed, this approach might also be applied to 
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other classes of problems. For instance, if a plan is conceived of as an ordered 
set of rules, these algorithms can determine how many significant orderings there 
are. (There are analogues in the planning domain to subsumption, interaction, 
non-interaction and to alternatives.) 

16.4.1 LMS and Related Work in Induction 

LMS has been implemented as a two-stage system: first, the offline phase, 
in which the models are generated and evaluated against the problem set; and 
second, the online phase in which the student's performance is compared against 
those models. This separation makes it clear that the inference problem has been 
formulated as a search through a space predefined by rules and mal-rules, and as 
such conforms to Buchanan's inference paradigm [Buchanan, 1974]. Michalski 
[1980] has suggested that systems which perform data-driven inference may be 
said to perform constructive inference and has reported several examples in 
which his "enhanced" algorithm has produced composite descriptors. I wish to 
point out that LMS carries out another form of constructive inference, namely rule 
permutations based upon the domain's rules and mal-rules. 
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APPENDIX: AN EXAMPLE OF THE SELECTIVE ALGORITHM: LMS-I'S MODEL 
GENERATION ALGORITHM 

The SELECTIVE algorithm added the new rule or one of its associated 
mal-rules in all possible places. Thus, if the student model for level 3 was: 

(ADDSUB SOLVE FIN2) 

and if the ideal model at level 4 also contains MULT, then this algorithm would 
create the following models: 

(MULT ADDSUB SOLVE FIN2) 
(ADDSUB MULT SOLVE F1N2) 
(ADDSUB SOLVE MULT FIN2) 

Note that no rule is added after the terminating FIN2 rule. 
Similarly, if the ideal model for level 5 also contains NTORHS, 

MNTORHS, M2NTORHS, or M3NTORHS, and assuming that the student be-
haved "correctly" at level 4, the algorithm would generate: 

(NTORHS MULT ADDSUB SOLVE ΠΝ2) 
(MULT NTORHS ADDSUB SOLVE FIN2) 
(MULT ADDSUB NTORHS SOLVE FIN2) 
(MULT ADDSUB SOLVE NTORHS FIN2) 
(MNTORHS MULT ADDSUB SOLVE FIN2) 
(MULT MNTORHS ADDSUB SOLVE FTN2) 
(MULT ADDSUB MNTORHS SOLVE FIN2) 
(MULT ADDSUB SOLVE MNTORHS FIN2) 

and an additional eight models for the M2NTORHS and M3NTORHS rules. 
With this algorithm, we used the following heuristics to reduce the number of 
redundant models: 

1. No rule should follow the terminating rule (quoted and used above). 
2. If R2 is subsumed by Rl then it is possible to delete R2 in all models in 

which Rl precedes R2 without altering the effect of the model. 
3. "New" rules can only occur before or after members of a particular class. 

The various domain rules were given an arbitrary priority number which 
determined the class; an example of such a class in the arithmetic domain 
is the add and subtract rules [Sleeman & Smith, 1981], and the two rules 
in the algebra domain which process bracketed expressions, BRA1 and 
BRA2. (That is, models in which the additional rule occurs between rules 
in the same priority class are functionally equivalent to models in which 
the rule occurs either before or after the class.) 
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This chapter consists of a bibliography of the field of machine learning. The 
sources of the references include bibliographies compiled by Saul Amarel, Dana 
Angluin, Ryszard S. Michalski, Tom M. Mitchell, Carl Smith, and Bruce 
G. Buchanan, as well as our own additions. 

We define fourteen categories to classify the machine learning literature. For 
each category, there is a list of reference numbers indicating which references 
belong within that category. In addition, to the left of each reference is a list of 
category code letters indicating the categories to which the reference belongs. 

CATEGORIES 

Category a. Analogy: Investigation of analogical reasoning in problem solving, 
and the use of analogy as a learning method. 

{92, 93, 94, 97, 100, 157, 274, 332, 333, 374, 472, 533, 563, 564, 565} 

Category b. Background material: General background reading in areas of artifi-
cial intelligence, cognitive science, and related disciplines that lay the framework 
for many of the machine learning methods. For overviews of work on machine 
learning in particular, see category o. 

{3, 4, 5, 16, 24, 29, 35, 38, 40, 51, 60, 61, 71, 75, 84, 90, 107, 111, 119, 
129, 131, 132, 142, 148, 149, 153, 158, 160, 161, 166, 170, 171, 175, 
176, 179, 180, 185, 205, 234, 237, 239, 252, 261, 270, 289, 292, 294, 
320, 329, 330, 331, 334, 355, 358, 359, 362, 363, 369, 374, 391, 392, 
393, 396, 397, 398, 400, 403, 413, 416, 429, 430, 441, 447, 448, 450, 
463, 464, 467, 473, 486, 513, 523, 524, 525, 526, 544, 545, 546, 547, 
559, 568} 
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Category c. Concept acquisition: Inductive inference of structural descriptions 
from training examples. 

{11, 13, 19, 28, 30, 31, 34, 36, 37, 38, 41, 66, 69, 70, 75, 77, 78, 80, 83, 
96, 97, 106, 114, 115, 116, 117, 118, 135, 140, 141, 142, 143, 144, 145, 
146, 150, 152, 172, 174, 189, 207, 209, 215, 216, 217, 218, 219, 220, 
221, 222, 223, 226, 242, 247, 248, 249, 250, 251, 253, 263, 264, 273, 
276, 277, 278, 283, 284, 285, 303, 304, 305, 306, 307, 322, 323, 335, 
340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 
354, 356, 357, 364, 365, 366, 367, 368, 373, 375, 376, 377, 394, 406, 
412, 414, 415, 416, 420, 421, 426, 432, 439, 440, 455, 456, 457, 458, 
469, 475, 476, 483, 503, 504, 506, 511, 515, 516, 517, 531, 534, 536, 
537, 538, 539, 543, 562, 566, 567, 569, 571, 572} 

Category d. Discovery and theory formation: Methods and systems that suggest 
new concepts and explore relationships among them. 

{68, 106, 187, 210, 211, 240, 288, 296, 297, 298, 300, 301, 302, 310, 312, 
313, 316, 336, 338, 428, 526, 531, 570} 

Category e. Education and Teaching: Intelligent Computer Aided Instruction. 

{72, 73, 74, 87, 88, 112, 113, 214, 327, 457, 469, 492, 493, 494, 495, 496, 
497, 498, 502, 533} 

Category g. Grammatical Inference: Inferring grammars, formal languages, 
finite state machines, and Turing machines from examples. 

{1, 18, 20, 42, 43, 50, 52, 53, 54, 63, 89, 103, 107, 120, 121, 123, 125, 
126, 127, 138, 147, 162, 163, 165, 181, 183, 185, 186, 188, 190, 191, 
192, 232, 245, 246, 250, 271, 275, 326, 328, 410, 411, 479, 505, 532, 
535, 550, 551, 557} 

Category h. Learning in problem-solving and game playing: Includes self-
improving problem solvers, learning of heuristics and production rules, and shifts 
in problem representation. 

{5, 6, 14, 15, 21, 22, 23, 32, 34, 35, 49, 51, 64, 67, 69, 76, 77, 78, 79, 
80, 82, 83, 84, 88, 92, 97, 104, 111, 130, 134, 151, 154, 156, 167, 169, 
193, 194, 195, 201, 220, 223, 224, 226, 227, 228, 229, 254, 274, 282, 
286, 287, 299, 314, 315, 316, 319, 323, 324, 332, 370, 371, 372, 378, 
379, 380, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 
395, 399, 401, 404, 405, 409, 417, 437, 443, 451, 458, 459, 460, 461, 
474, 475, 481, 485, 488, 497, 498, 499, 502, 510, 518, 519, 522, 537, 
538, 539, 542, 543, 544, 548, 549} 
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Category k. Knowledge acquisition for Expert Systems: Acquiring knowledge to 
improve performance of Expert Systems. 

{69, 78, 79, 80, 82, 83, 133, 136, 194, 196, 203, 204, 223, 224, 225, 226, 
371, 372, 378, 379, 380, 427, 437, 438, 451, 452, 453, 489, 560} 

Category 1. Language learning: Acquiring grammars, vocabularies, and other 
aspects of natural language. 

{9, 10, 12, 85, 89, 91, 93, 94, 107, 123, 129, 138, 159, 213, 219, 271, 
284, 308, 407, 445, 465, 466, 471, 472, 479, 552} 

Category m. Modeling of cognitive processes: Work in modeling human learn-
ing and inference processes. 

{8, 9, 10, 11, 12, 13, 14, 15, 21, 23, 26, 61, 67, 72, 73, 74, 75, 93, 97, 
102, 104, 128, 134, 159, 171, 227, 241, 242, 249, 250, 308, 309, 321, 
331, 384, 385, 386, 387, 388, 389, 390, 399, 443, 447, 448, 449, 450, 
465, 466, 470, 471, 473, 483, 497, 498, 553} 

Category o. Overview: Summaries and surveys of work on machine learning. 

{1, 11, 15, 17, 18, 27, 37, 38, 39, 46, 52, 60, 62, 63, 70, 71, 75, 81, 84, 
95, 98, 99, 100, 101, 105, 109, 110, 118, 119, 122, 137, 142, 144, 146, 
150, 168, 173, 177, 179, 181, 182, 183, 184, 189, 198, 201, 205, 206, 
208, 230, 231, 234, 235, 236, 238, 239, 243, 244, 251, 252, 258, 259, 
260, 266, 267, 268, 279, 290, 291, 292, 293, 294, 295, 311, 314, 315, 
317, 318, 320, 325, 329, 335, 336, 337, 351, 355, 356, 360, 361, 362, 
363, 366, 367, 368, 373, 376, 377, 381, 382, 394, 395, 402, 406, 408, 
413, 415, 422, 425, 428, 429, 431, 433, 434, 435, 436, 442, 444, 453, 
454, 467, 484, 485, 487, 490, 491, 500, 506, 507, 508, 509, 512, 514, 
520, 525, 527, 529, 530, 540, 541, 558, 561} 

Category p. Procedure learning and automatic programming: Inferring programs, 
functions, or procedures from input-output pairs, traces, or high-level specifica-
tions. 

{2, 4, 33, 43, 44, 45, 47, 48, 49, 55, 56, 57, 58, 59, 62, 86, 130, 155, 164, 
200, 202, 212, 255, 256, 257, 262, 269, 272, 280, 281, 314, 389, 418, 
419, 422, 423, 424, 425, 462, 475, 477, 480, 482, 501, 521, 548, 554, 
555, 556} 

Category q. Clustering: Learning from observation, unsupervised learning, 
cluster analysis, and acquiring taxonomic classifications. 

{7, 139, 150, 199, 353, 354, 446, 517} 
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Category r. Recognition of patterns: Inferring statistical or syntactic descriptions 
of classes of objects from examples. 

{25, 36, 65, 66, 85, 105, 108, 124, 139, 150, 177, 178, 179, 182, 183, 184, 
197, 233, 258, 259, 260, 261, 265, 282, 338, 339, 343, 363, 402, 447 
449, 460, 461, 463, 468, 470, 478, 503, 504, 528, 529, 530, 541, 569} 
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GLOSSARY OF SELECTED TERMS 

IN MACHINE LEARNING 

This glossary was prepared by the editors as an attempt to systematize the 
meaning of some basic terms used in machine learning and closely related areas. 
The angle brackets "< > " indicate that a given term used in a definition is itself 
an entry in the glossary. 

Adaptive Control Systems: Feedback control systems that adjust parameters to 
maintain desired performance despite external or internal disturbances. 

Advice Taking: A form of learning in which the learner modifies its behavior to 
satisfy the advice given by an instructor. An example of <Learning from 
Instruction > . 

Analogical Means-ends Analysis: A problem-solving process operating in the 
<Analogical Problem Space> akin to <Means-ends Analysis>. A new 
problem is solved by transforming the solution of a similar old problem into 
a solution for the new problem using operators that reduce differences be-
tween corresponding solution descriptions. 

Analogical Inference: Mapping information from a known object or process 
description into a less-known, but similar one. 

Analogical Problem Space: A problem space whose states are descriptions of 
problem solutions, and whose operators transform one problem solution into 
a closely-related one. 

Attribute: A variable or one-argument <Descriptor> used in asserting a 
property of an object or situation. 

Caching (Memo Functions): Storing the answer to frequently-occurring ques-
tions (problems) in order to avoid a replication of past efforts. An example 
of <Rote Learning>. 
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Causal Analysis: Tracing the probable causes of observed events, occasionally 
used in <Credit (Blame) Assignments 

Composition: Grouping a sequence of <Production Rules> or <Operators> 
into a single rule or operator. 

Computer Assisted Instruction (CAI): The study of computer-based teaching 
and testing. 

Concept Acquisition: See <Learning from Examples>. 

Concept Attainment: See <Learning from Examples>. 

Concept Description (also Description, Generalization): A symbolic data struc-
ture used to describe a concept (that is, to describe a class of instances in the 
domain under consideration). 

Concept Formation: See <Learning from Examples>. 

Conceptual Clustering: Arranging objects (observations, facts, and so on) into 
classes corresponding to certain descriptive concepts rather than classes of 
objects that are similar according to some mathematical measure. 

Constraint: A fact that restricts the possible solutions to a problem. 

Credit (Blame) Assignment: Identifying the steps (decisions, operators, and so 
on) chiefly responsible for a success (failure) in the overall process of achiev-
ing a goal. 

Decision Tree: A <Discrimination Network> having a tree structure. 

Deductive Inference: In formal logic—the derivation of a logical consequence 
from a given set of premises. Informally, a mode of reasoning using 
<Deductive Inference Rules>, to derive new facts that contain no more in-
formation than those from which they are derived. 

Deductive Inference Rule: An <Inference Rule> that, given one or more asser-
tions, concludes a logically equivalent or more specific assertion. A deduc-
tive inference is a truth-preserving transformation of assertions. 

Descriptor: A variable, function, or predicate used as an elementary concept for 
describing objects or situations. 

Discrimination: See <Specialization> 

Discrimination Network: A network encoding a set of tests to classify a collec-
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tion of objects (situations, events, and so on) into fixed categories according 
to predetermined features of the objects. 

Domain of a descriptor (also value set of a descriptor): The set of possible 
values that a <Descriptor> may take as part of a <Concept Description^ 

Expert System: A computer program that achieves performance comparable to a 
human expert at solving problems in some task domain by utilizing a large 
amount of domain-specific knowledge. Because of the substantial amounts 
of knowledge required, the <Knowledge Acquisition> task assumes major 
proportions. 

Expertise Acquisition: See <Knowledge Acquisition^ 

Feature: See <Attribute>. 

Generalization: Extending the scope of a concept description to include more 
instances (the opposite of <Specialization^. This term is sometimes also 
used as a noun, synonymous with <Concept Description^ 

Generalization Rule: An <Inference Rule> that transforms one or more 
premise assertions into an assertion logically implying them. 

Grammatical Inference: Inferring the grammar of a language, given a set of 
sentences labeled "grammatically correct", and a second (optional) set labeled 
"grammatically incorrect". 

Heuristics: Imperfect but useful knowledge employed in many reasoning tasks, 
such as <Plausible Inference>, discovery, and so on, where precise 
knowledge is lacking. 

Heuristic Search: A problem-solving method for finding a sequence of operators 
that transforms an initial state into a desired goal state. <Heuristics> are 
used to generate, test and prune operator sequences. 

Incremental Learning: Multistage learning, in which information learned at one 
stage is modified to accommodate new facts provided in subsequent stages. 

Inductive Inference: A mode of reasoning that starts with specific facts and 
concludes general hypotheses or theories (from which the initial facts can be 
rederived via <Deductive Inference>). 

Inductive Learning: Learning by generalizing facts and observations obtained 
from a teacher or environment (that is, learning by <Inductive Inference>). 

Inference Rule: A rule that concludes new facts from old, either by the applica-
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tion of strict logical principles or by more imperfect, plausible methods. (See 
also <Inductive Inference> and <Deductive Inference>.) 

Intelligent CAI (ICAI): Refers to the application of AI techniques in building 
<Computer Assisted Instruction> systems. 

Knowledge Acquisition (also expertise acquisition): A form of machine learning 
concerned with transferring knowledge from humans or a task environment 
into computers. Often associated with constructing or augmenting the 
knowledge-base of an <Expert System>. 

Knowledge Compilation (also operationalization of knowledge): Translating 
knowledge from a declarative form which cannot be used directly into an ef-
fective procedural form. For example, converting the advice "Don't get wet" 
into specific instructions that recommend how to avoid getting wet in a given 
situation. (See also <Skill Acquisition>.) 

Learning by Being Told: See <Learning from Instruction^ 

Learning from Examples: Inferring a general <Concept Description> from ex-
amples and (optionally) counter-examples of that concept. This is a form of 
<Inductive Learning>. 

Learning from Instruction (also advice taking, and learning by being told): The 
process of transforming and integrating instructions from an external source 
(such as a teacher) into an internally usable form. 

Learning from Observation (also learning without a teacher, and unsupervised 
learning): Constructing descriptions, hypotheses or theories about a given col-
lection of facts or observations. In this form of learning there is no a priori 
classification of observations into sets exemplifying desired concepts. 

Macrooperator: An operator composed of a sequence of more primitive 
operators. Appropriate macrooperators can simplify problem-solving by al-
lowing a more "coarse grain" problem-solving search. 

Means-ends Analysis: A problem-solving method which at each step searches 
for operators that maximally reduce the difference between the current state 
and a known goal state. 

Near-miss: A counter-example of a concept that is quite similar to positive ex-
amples of this concept. Near-misses are very useful in isolating significant 
features in <Learning from Examples>. 

Near-miss Analysis: The process of exploiting <Near-misses> to bound the 
scope of <Generalization> in learning from examples. 
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Negative example: In <Learning from Examples>, a counter-example of a 
concept that may bound the scope of <Generalization>. 

Operationatization: See <Knowledge Compilation^ 

Parameter Adjustment: Changing the relative weight of different terms in a 
mathematical expression, as a function of credit (blame) for past successes 
(failures). A kind of incremental curve fitting. 

Partially Learned Concept: In concept learning, an underdetermined concept; 
that is, a concept whose precise description cannot be inferred based on the 
learner's current data, knowledge, and assumptions. (See also incremental 
Learning> and <Version Space>.) 

Partial Matching: A technique for comparing structural descriptions by identify-
ing their corresponding components. Useful in various kinds of inference, 
such as <Analogical Inference>. 

Path constraint: In problem solving, a <Predicate> on partial solution se-
quences. A type of <Constraint>. 

Plausible Inference: A derivation of likely conclusions from incomplete, imper-
fect or indirectly relevant premises. This includes <Inductive>, ap-
proximate, default, and <Analogical Inference>. 

Positive Example: In <Learning from Examples>, a correct instance of a con-
cept that may result in <Generalization>. 

Predicate: A statement that is either true or false; a basic building block of 
predicate logic. 

Problem Reformulation: Translating a problem statement into an alternative 
statement so that an appropriate solution method can be applied. This may 
include reformulating data representations and restating problem constraints. 

Production Rule: A condition-action pair, where the action is performed if the 
condition is matched. 

Production System: An inference system comprised of a large set of 
<Production Rules>, a working memory against which productions are 
matched, and the control structure to apply the productions to working 
memory. 

Proceduralization: Converting declarative knowledge into procedural form (see 
also <Knowledge Compilation>). 
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Rote Learning: Learning by direct memorization of facts, without generalization 
(see also <Caching>). 

Schema: A symbolic structure that can be filled in by specific information 
("instantiated") to denote an instance of the generic concept represented by 
the structure. 

Similarity Metric: Either' (i) a context-free mathematical measure on properties 
of object descriptions used in clustering—minimized for objects within a 
cluster and maximized for objects spanning clusters, or (ii) a context-sensitive 
symbolic expression capturing relevant similarities between two object or 
process descriptions—used to establish mappings in <Analogical Inference>. 

Skill Acquisition (and refinement): Acquiring or improving a procedural skill 
(such as touch typing) by <Knowledge Compilation> and repeated practice. 

Specialization: Narrowing the scope of a <Concept Description>, thus reducing 
the sets of instances it describes (opposite of <Generalization>). 

Structural Description: A symbolic representation for objects and concepts, 
based on descriptions of their parts and the relationships among them. 

Unsupervised Learning: See <Learning from Observations 

Version Space (of a concept): The set of alternative plausible <Concept 
Descriptions> that are consistent with the training data, knowledge, and as-
sumptions of the concept learner. This set defines a <Partially Learned 
Concept>, and can be represented in terms of its maximally general and 
maximally specific members. 

Weak Methods: General methods useful for problem solving in the absence of 
specific knowledge required for more direct or efficient algorithmic solutions. 
For example, see <Means-ends Analysis> and <Heuristic Search>. 
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