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The Proportional, Integral and Derivative –PID– controller is the most widely used 
controller in industrial applications. Since its first appearance in the late nineteen cen-
tury, it had attracted researchers from all over the world because of its simplicity and 
the ability to provide an excellent control performance. The PID controller now repre-
sents more than ninety percent of the controllers used in the market. 

This book is a result of contributions and inspirations from many researchers world-
wide in the field of control engineering. The book consists of two parts; the first is 
related to the implementation of PID control in various applications whilst the second 
part concentrates on the tuning of PID control to get best performance.

Firstly, I wish to thank the authors, who contributed to the production of this book. 
Also, I wish to convey deepest gratitude to reviewers who devoted their time to review 
the manuscripts and selected the best of them. We hope that this book can give aid to 
new research in the field of PID control, in addition to stimulating research in the area 
of PID control for better utilization in the industrial world. 

Tamer Mansour
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1. Introduction   

In general, wastewater treatment plant (WWTP) consists of several stages before it is 
released to a receiving water body. There are, preliminary and primary treatment 
(mechanical treatment), a secondary treatment (biological treatment) and a tertiary 
treatment (chemical treatment). In this chapter, since the work involve of identification and 
control design of activated sludge process to improve the performance of the system, and 
most of the control priorities are centred on the biological treatment process, only the 
secondary treatment will be highlighted.  
System modelling and identification of the activated sludge process has provided a wider 
understanding and a powerful tool to predict the behaviour of the system under different 
conditions. In control design, system modelling and identification are the most important 
parts which need be taken into account. Often, models developed for controller design have 
to be as simple as possible. The simplicity means models can be obtained directly from 
input-output (or experimental) data and used for control design of WWTP. This type of 
model is called black box or data-driven model, see for example Box Jenkins (El-Din et al., 
2002) and Artificial Neural Network (ANN) proposed by (Cote et al., 1995). It will be shown 
that the identified data-driven control model describes the activated sludge wastewater 
system well, at least around an operating point. One of the popular techniques used in the 
system identification is the subspace identification algorithm and this algorithm is used for 
the design of control in WWTP. Another approach to modelling is to use model reductions 
or simplifications. The reduced order (linear) model can be later used for controller design 
and/or stochastic simulation, see for example (Robertson and Cameron, 1996).  
The biochemical processes involved in the activated sludge wastewater treatment process 
are complex and their understanding was very limited. However, due to the importance of 
providing concise and efficient information in describing a complicated set of activated 
sludge system behaviours, several mathematical models have been developed for gaining a 
better understanding of a real system. In the late 80s, a more scientific perspective of this 
biotechnology process was achieved by the first development of International Association 
for Water Quality (IAWQ) Activated Sludge Model no.1(ASM1) proposed by (Henze et 
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al.,1987), followed by a series of mathematical models known as ASM2 and ASM3. Such 
advanced models of activated sludge processes, i.e. ASM1, have been developed over the 
years but have not been used for control design due to their high complexity.  
As previously mentioned, models developed for controller design have to be as simple as 
possible. This work attempts to identify simple data-driven control model of activated 
sludge system. The multivariable identification is performed into a wastewater system using 
subspace identification technique that provide multivariable model for designing of 
multivariable PID controller. PID controller is one of the popular conventional methods 
used from several decades ago. The implementation of this form of feedback controller have 
been  widely used in any industrial processes. Often, this controller is implemented as a 
local controller, whereby the PID controller is cascaded with the more advanced control 
method such as model predictive control (MPC). In that case, there are two different control 
loops in the system that is outer loop (MPC) and inner loop (PID). The outer loop will 
decide what is the setpoint to be given to the PID control loop.  In such cases, the response 
time of the control variable in the inner loop must be much faster than that given by the 
outer loop. In any process control such as wastewater treatment plant, scalar PID controller 
is extensively used to control the process variables of wastewater system. Unfortunately, 
this type of controller is of no longer sufficient due to the inherently multivariable nature of 
wastewater system.   
For highly multivariable process of wastewater treatment plant, multivariable control 
systems are therefore needed to handle the inevitable changes in the plant and its effluent 
characteristics. In literature, several control strategies of interest have been developed to 
improve effluent quality control of activated sludge wastewater treatment system given by 
(Chotkowski, W et. al, 2005), (Y. Ma et al., 2005), (Piotrowski, R. Et al., 2005), (A. 
Stare et al., 2007) and (E. Mats et al., 2006). (A. Stare et al., 2007) for example, 
reports that the application of advanced control becomes more cost effective despite the 
need for possible investment in purchasing additional sensors and actuators. This motivate 
to the use of data-driven control model for the activated sludge process using MPID 
controller. In multivariable PID control,  the control handles more than one input and 
output in the systems and hence there are usually a number of interacting control loops in 
the system. This process interaction is of importance issues need to be taken into 
consideration to ensure better performance of the closed loop plant as well as to meet the 
current and future demands on effluent water quality. The work of this chapter highlights 
the effectiveness of using multivariable PID (MPID) control design with the application to 
activated sludge wastewater treatment process. The design of  MPID controller is performed 
using data driven models developed from system identification techniques based on 
subspace approach.  

 
2. Activated sludge wastewater treatment systems 

The activated sludge process is a biological process in which an organic matter is oxidised 
and mineralised by microorganisms. Oxygen is used by microorganisms to oxidise organic 
matter. The influent of particulate inert matter and the growth of the microorganisms is 
removed from the plant as excess sludge to maintain a reasonable suspended solids 
concentration. A simple activated sludge is usually comprised of an aerator and a settler. 
The bioreactor  includes a secondary clarifier (or settler) that serves to retain the biomass in 

 

the system while producing a high quality effluent. Part of the settled biomass is recycled to 
allow the right concentration of microorganisms in the aerated tank. In practice, more 
than one reactors are commonly applied in the activated sludge process for 
simultaneous nitrification and denitrification such as one designed in the 
benchmark COST simulation. 
  
2.1 Benchmark COST simulation 
A schematic depicting the COST simulation benchmark model is shown in Fig. 1. There are 
five series biological reactors (or bioreactor) which contain two anoxic and three aerobic 
tanks and a 10-layer non-reactive secondary settling tank. A pre-denitrifying plant structure 
has been applied, whereby anoxic process is located at the beginning of the tank, as seen in 
Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Activated sludge with pre-denitrification 
 
Each unit of the bioreactor is modelled using IAWQ's ASM1 given by (Henze et al., 1987). 
The settler is modelled using a double-exponential settling velocity function by (Takács et 
al., 1991). The bioreactor of ASM1 model describes the removal of organic matter, 
nitrification and denitrification. To allow for consistent experiment evaluation, the model 
provides three dynamic data influent flow conditions (or disturbances) and each is meant to 
be a representative of a different weather condition: dry, rain and storm. For a detailed 
description of the COST simulation benchmark models, see (Copp, 2002). 

 
2.2 Control structures of activated sludge with pre-denitrification 
Two different control structures for the activated sludge process are studied. These 
structures of multivariable control are developed using subspace identification which later 
used for MPID controller design.  
 
Case 1 
The controller maintains the DO levels in the last three aerobic tanks as seen in Fig. 1, by 
manipulation of oxygen transfer coefficients (KLa).  Models are developed at three different 
operating conditions, i.e. constant influent flow, dry influent flow and rain influent flow 
conditions.  
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Case 2 
In this case, the simultaneous control of DO level (DO5) in the last aerobic tank and the 
control of nitrate (SNO2) level in the second anoxic tank are considered by manipulation of 
oxygen transfer coefficient (KLa5) and internal recirculation rate (Qintrn).  Models are 
developed for two different operating conditions, i.e. constant influent flow and dry influent 
flow. 

 
3. Subspace method of System Identification 

Subspace identification techniques have been (more than 10 years old) developed and have 
attracted much attention due to their computational simplicity and effectiveness in 
identifying dynamic state space linear multivariable systems. The subspace identification 
technique was developed by (De Moor et al., 1988), (Moonen et al., 1989) and (Verhaegen, 
1994) and widely known as direct subspace state space system identification (4SID) 
methods. The advantage of a subspace method is that it is based on reliable numerical 
algorithms of the QR decomposition and the singular value decomposition (SVD). 
Moreover, this algorithm can easily be implemented for multi input multi output (MIMO) 
system identification. The subspace identification uses projection methods and SVD to 
obtain the model. The identified models in discrete time describe the activated sludge 
process around an operating point and have been converted to standard continuous linear 
time invariant state space system: 
 

       
   

+                                               (1)

                                                                          (2)
p dx t Ax t B u t B d t

y k Cx t

 




 

 
where x(t) is the state vector, u(t) is the input vector, y(t) is the output vector and 
d(t) is the measurable disturbance vector. A, Bp, Bd and C are matrices of 
appropriate dimensions. Combining the inputs into a single vector gives the 
following: 
 

   ( )
( )

( )p d
u t

x Ax t B B
d t
 

   
 

  (4) 

 ( ) ( )y t Cx t              (5) 
 

The system transfer function is defined as:  
 

  1( ) ( ) p dG s C sI A B B   (6) 

 
The COST simulation benchmark is used as a data generator for multivariable identification 
in the activated sludge process. For a better identification result, the data is pre-processed. 
In this system which is running at steady state operating point different from zero and 
hence introducing some DC offsets, subtraction of the sample mean from the data set is 
done in order to remove these offsets. This is common operation in system identification, as 

 

given by (Söderström and Stoica, 1989). In this work, as the data set is generated from a 
simulation model, no data filtering is necessary. The data set is finally detrended to remove 
linear trends from input-output data before it can be later applied to the identification 
algorithm. The results of model identifications for Case 1 for dry and rain scenarios and for 
Case 2 for dry influent flow are shown in Fig. 2 (a-c). The sampling time were adjusted to 
0.001 days for Case 1 and 0.01 for Case 2. The figure shows only the model responses for 
aerated tank 4 (DO4).  
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Fig. 2. Response comparison of dynamic influent flows for Cases 1 and 2 - (a) Case 1- dry 
weather;  (b) Case 1- rain weather;  (c) Case 2- dry weather 
 
Almost similar results were obtained for the other two outputs (DO3 and DO5). In Case 2, 
the responses are presented for both outputs (SNO2 and DO5). In dry influent flow, the model 
identification uses 3/4 of the generated data and the other 1/4 are used for validation. As it 
can be observed, the identified model for a given operating conditions correctly reproduces 
the main dynamic characteristics of the activated sludge process. In both cases, the 
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Fig. 2. Response comparison of dynamic influent flows for Cases 1 and 2 - (a) Case 1- dry 
weather;  (b) Case 1- rain weather;  (c) Case 2- dry weather 
 
Almost similar results were obtained for the other two outputs (DO3 and DO5). In Case 2, 
the responses are presented for both outputs (SNO2 and DO5). In dry influent flow, the model 
identification uses 3/4 of the generated data and the other 1/4 are used for validation. As it 
can be observed, the identified model for a given operating conditions correctly reproduces 
the main dynamic characteristics of the activated sludge process. In both cases, the 
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simulation started at zero initial conditions. The performance quality of the models are 
performed by measuring percentage Variance Accounted For (VAF) as follows:  
 

 ˆvar( )(%) 1 *100
var( )
y yVAF
y

 
  
 

 (7)  

 
where y and ŷ  are the measured outputs and predicted outputs, respectively. The best-
identified models are demonstrated by smaller deviations obtained between y  and ŷ  as 
shown in Tables 1 and 2.  
 

Model Order DO3 DO4 DO5 
Constant 6 96.65 96.05 91.4 

Dry 4 87.81 88.85 84.84 
Rain 4 87.28 89.41 82.83 

Table 1. Multivariable DO model identification (%VAF) validation results (Case 1) 
 

Model Order DO5 SNO2 
Constant 4 92.23 97.03 

Dry 4 88.42 85.63 
Table 2. Multivariable DO-Nitrate model identification (%VAF) validation results (Case 2) 
 
On average, good models were obtained from a given percentage of VAF at around 85% and 
above. The identified models obtained were controllable and observable. In both cases, the 
best responses were obtained for models of order 4 for dynamic influent (i.e. dry and rain) 
whilst models of order 6 and 4 for constant influent in Case 1 and Case 2, respectively. The 
poles (eigenvalues of A) shows that both cases the models are open-loop stable. The 
interaction measure using the Relative Gain Array (RGA) is studied in the following Section. 

 
3.1 Model analysis 
The interaction analysis is of importance when considering multivariable systems. The RGA 
analysis should not be interpreted as drawing specific conclusions about the control design 
but rather it is an indication of how inputs and outputs are interacting and hence the most 
appropriate control structure can be selected. The most widely used interaction measure for 
multivariable linear systems so far, is the RGA introduced by (Bristol, 1996).  

 
3.1.1 Steady state analysis 
The steady state RGA(0) can be calculated as follows: 
 
 1(0) pG CA B   (8) 

    1 1(0)
T

p pRGA CA B CA B
     (9) 

 

 

where G(0) is the steady state transfer function matrix and   denotes the Schur product (i.e. 
element-wise multiplication). It can be noted that the calculation for RGA is displayed with 
three decimal points.  
 
Case 1 
The steady state RGA, (0) was calculated for different operating points, i.e. constant, dry 
and rain influent data sets as follows: 
 

  
1.042 0.017 0.024

(0) 0.009 1.059 0.049
0.032 0.041 1.073

const

  
     
   

             (10)       

  
1.508 0.104 0.401

(0) 0.560 2.076 1.640
1.068 0.974 3.041

dry

  
    
   

                 (11)  

 
1.588 0.052 0.540

(0) 0.185 1.492 0.675
0.777 0.439 2.217

rain

  
    
   

              (12) 

 
Clearly, most of the off-diagonal elements in the RGA matrix corresponding to the above 
operating points are negative. For both dry and rain data sets, large values on the diagonal 
and some negative values on the off-diagonal means that the system is difficult to control 
using non-interacting control structure since the process exhibit strong and difficult 
interactions. Here, the RGA matrix represents a system with various extents of interactions: 
dry influent indicates the strongest interaction within control loops, following by a 
moderate interaction for rain condition. The lowest interaction is thereby illustrated by 
constant influent flow. 
 
Case 2 
The analysis of interaction for Case 2 is slightly different from Case 1 so as to allow 
investigations into the effect of nonlinearities. In this case, the simultaneous controls of 
nitrate (SNO2 ) level in the second anoxic tank and DO (DO5) level in the last aerobic tank is 
considered using the manipulation of internal recirculation rate and oxygen transfer 
coefficient, respectively. Models are developed for two different operating conditions, i.e. 
constant influent flow and dry influent flow. Under constant influent, three different 
operating points (refered 1 2,u u   and 3u ) are considered to cover a wider range of operating 

points, i.e. i.e.  1 57552 88 Tu  ;  2 58104 210 Tu  and  3 83007 84.84 Tu  . (0)   were 
obtained as follows: 
 

 1

1.031 0.031
(0)

0.031 1.031
const
u

 
    
             (13) 



Multivariable PID control of an Activated Sludge Wastewater Treatment Process 9

 

simulation started at zero initial conditions. The performance quality of the models are 
performed by measuring percentage Variance Accounted For (VAF) as follows:  
 

 ˆvar( )(%) 1 *100
var( )
y yVAF
y

 
  
 

 (7)  

 
where y and ŷ  are the measured outputs and predicted outputs, respectively. The best-
identified models are demonstrated by smaller deviations obtained between y  and ŷ  as 
shown in Tables 1 and 2.  
 

Model Order DO3 DO4 DO5 
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Model Order DO5 SNO2 
Constant 4 92.23 97.03 

Dry 4 88.42 85.63 
Table 2. Multivariable DO-Nitrate model identification (%VAF) validation results (Case 2) 
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     (9) 

 

 

where G(0) is the steady state transfer function matrix and   denotes the Schur product (i.e. 
element-wise multiplication). It can be noted that the calculation for RGA is displayed with 
three decimal points.  
 
Case 1 
The steady state RGA, (0) was calculated for different operating points, i.e. constant, dry 
and rain influent data sets as follows: 
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Clearly, most of the off-diagonal elements in the RGA matrix corresponding to the above 
operating points are negative. For both dry and rain data sets, large values on the diagonal 
and some negative values on the off-diagonal means that the system is difficult to control 
using non-interacting control structure since the process exhibit strong and difficult 
interactions. Here, the RGA matrix represents a system with various extents of interactions: 
dry influent indicates the strongest interaction within control loops, following by a 
moderate interaction for rain condition. The lowest interaction is thereby illustrated by 
constant influent flow. 
 
Case 2 
The analysis of interaction for Case 2 is slightly different from Case 1 so as to allow 
investigations into the effect of nonlinearities. In this case, the simultaneous controls of 
nitrate (SNO2 ) level in the second anoxic tank and DO (DO5) level in the last aerobic tank is 
considered using the manipulation of internal recirculation rate and oxygen transfer 
coefficient, respectively. Models are developed for two different operating conditions, i.e. 
constant influent flow and dry influent flow. Under constant influent, three different 
operating points (refered 1 2,u u   and 3u ) are considered to cover a wider range of operating 

points, i.e. i.e.  1 57552 88 Tu  ;  2 58104 210 Tu  and  3 83007 84.84 Tu  . (0)   were 
obtained as follows: 
 

 1

1.031 0.031
(0)

0.031 1.031
const
u

 
    
             (13) 
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 2

0.682 0.318
(0)

0.318 0.682
const
u

 
   

 
              (14) 

 3

0.948 0.052
(0)

0.052 0.948
const
u

 
   

 
             (15) 

 
The off-diagonal elements in the RGA matrix corresponding to the first operating point are 
negative and the diagonal elements are close to one, the RGA in this case suggests a 
diagonal controller; that is, Qintrn should control nitrate concentration and, KLa5 should be 
used to control DO concentration. For the second operating point, the diagonal elements are 
quite far from one and a big value in the off-diagonal elements indicates strong interaction 
between the control loops. This indicates that a full multivariable control structure is 
required. The diagonal elements in RGA for the third operating point are also close to one 
with low interaction in control loops. In the following study, the second operating point will 
be considered for control design. In addition to that, (0)  for dry influent flow is as 
follows: 

 
1.558 0.558

(0)
0.558 1.558

dry  
    

            (16) 

 
The analysis for the dry influent flow shows almost identical results to constant flow 
whereby, the anti-diagonal elements in the RGA matrix are negative. 

 
3.1.2 Dynamic RGA analysis 
Effective control at nonzero frequencies can be studied using the dynamic RGA. Since the 
controller design methods investigated in this paper require system decoupling at specific 
frequencies, it is useful to examine dynamic RGA and use the resulting information to 
decouple the system at frequency points with highest interactions. In the dynamic RGA, the 
plant gain, G is allowed to be measured at any frequency, w. This dynamic version is the 
extension of the RGA and was proposed by (Kinnaert, 1995) (see reference for a more 
complete discussion). Not surprisingly, the dynamic version of RGA possesses the same 
properties as the steady state RGA and is defined as: 

 

        1 T
RGA G iw G iw G iw

              (17)  

 
In this case, this RGA version is also denoted by ( )G . It is advisory to study this dynamic 
RGA which can provide useful information about the behaviour of ( )G  in the interesting 
frequency range. The ( )G  has been evaluated in both cases of 1 and 2. 
 
Case 1 
The dynamic study of RGA is evaluated in this case for the three influent flow conditions: 
constant, dry and rain. Fig. 3 (a-b)  shows the behaviour of the real part of ( )G for  dry and 
rain respectively, over different frequency ranges. 
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Fig. 3. DRGA gains for dynamic influent flows- a) Case 1- dry weather and b) Case 1 - rain 
weather 
      
It can be clearly seen that for low and middle frequencies (between 10-1rad/d and 101rad/d) 
even higher frequencies the real part is very close to zero for constant influent flow. Hence, 
the RGA does not suggest a different pairing dynamically than statically. The real part of 
diagonal elements in both scenarios of dry and rain indicate the process exhibits strong and 
difficult interactions. For higher frequencies the two dynamic influent conditions (dry and 
rain) have a real part of ( )G  with a deep valley in some part of the off-diagonals. The 
curve corresponding to the constant influent flow does not have this property. Overall, 
dynamic analysis demonstrates that the interactions occur mainly at frequencies about a 
decade below the open loop bandwidth. Therefore, the low frequency decoupling is most 
likely to decentralise the control system and minimise the effect of interactions. 
 
Case 2 
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Fig. 4. DRGA gains for dynamic influent flow- a) Case 2- dry weather 
 
The dynamic behaviour of the real part is studied under dry influent flow condition as 
shown in Fig. 4. Nothing of interest happens for the relevant low and intermediate 
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The off-diagonal elements in the RGA matrix corresponding to the first operating point are 
negative and the diagonal elements are close to one, the RGA in this case suggests a 
diagonal controller; that is, Qintrn should control nitrate concentration and, KLa5 should be 
used to control DO concentration. For the second operating point, the diagonal elements are 
quite far from one and a big value in the off-diagonal elements indicates strong interaction 
between the control loops. This indicates that a full multivariable control structure is 
required. The diagonal elements in RGA for the third operating point are also close to one 
with low interaction in control loops. In the following study, the second operating point will 
be considered for control design. In addition to that, (0)  for dry influent flow is as 
follows: 

 
1.558 0.558

(0)
0.558 1.558

dry  
    

            (16) 

 
The analysis for the dry influent flow shows almost identical results to constant flow 
whereby, the anti-diagonal elements in the RGA matrix are negative. 

 
3.1.2 Dynamic RGA analysis 
Effective control at nonzero frequencies can be studied using the dynamic RGA. Since the 
controller design methods investigated in this paper require system decoupling at specific 
frequencies, it is useful to examine dynamic RGA and use the resulting information to 
decouple the system at frequency points with highest interactions. In the dynamic RGA, the 
plant gain, G is allowed to be measured at any frequency, w. This dynamic version is the 
extension of the RGA and was proposed by (Kinnaert, 1995) (see reference for a more 
complete discussion). Not surprisingly, the dynamic version of RGA possesses the same 
properties as the steady state RGA and is defined as: 

 

        1 T
RGA G iw G iw G iw

              (17)  

 
In this case, this RGA version is also denoted by ( )G . It is advisory to study this dynamic 
RGA which can provide useful information about the behaviour of ( )G  in the interesting 
frequency range. The ( )G  has been evaluated in both cases of 1 and 2. 
 
Case 1 
The dynamic study of RGA is evaluated in this case for the three influent flow conditions: 
constant, dry and rain. Fig. 3 (a-b)  shows the behaviour of the real part of ( )G for  dry and 
rain respectively, over different frequency ranges. 
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Fig. 3. DRGA gains for dynamic influent flows- a) Case 1- dry weather and b) Case 1 - rain 
weather 
      
It can be clearly seen that for low and middle frequencies (between 10-1rad/d and 101rad/d) 
even higher frequencies the real part is very close to zero for constant influent flow. Hence, 
the RGA does not suggest a different pairing dynamically than statically. The real part of 
diagonal elements in both scenarios of dry and rain indicate the process exhibits strong and 
difficult interactions. For higher frequencies the two dynamic influent conditions (dry and 
rain) have a real part of ( )G  with a deep valley in some part of the off-diagonals. The 
curve corresponding to the constant influent flow does not have this property. Overall, 
dynamic analysis demonstrates that the interactions occur mainly at frequencies about a 
decade below the open loop bandwidth. Therefore, the low frequency decoupling is most 
likely to decentralise the control system and minimise the effect of interactions. 
 
Case 2 
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Fig. 4. DRGA gains for dynamic influent flow- a) Case 2- dry weather 
 
The dynamic behaviour of the real part is studied under dry influent flow condition as 
shown in Fig. 4. Nothing of interest happens for the relevant low and intermediate 
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frequency parts for both conditions in this case and it can be conclude that the plots 
demonstrate the interactions occur mainly at frequencies about a decade below the open 
loop bandwidth. The low frequency decoupling is therefore most likely to decentralize the 
control system and to minimise the effect of interactions. 

 
4. MPID Control Design  

In an attempt to improve the industry acceptance of multivariable control techniques, this 
study investigates three existing multivariable tuning methods and proposes a new one. 
These methods require only simple data-driven model of step or frequency response type. 
Most of the existing controller on WWTPs are not designed or tuned effectively. Hence, a 
systematic control design method is proposed, which reduces the controller commissioning 
time as well as the tuning efforts. The methods considered are those suggested in (Davison, 
1976), (Penttinen and Koivo, 1980) and (Maciejowski, 1989) and these are compared with a 
new proposed method.  
The design of MPID controllers is best carried out using simple linear models which can be 
derived from step or frequency tests. These models are usually valid for a single operating 
point and the procedure should be repeated for other points of interest. Linear models can 
also be derived by linearising the ASM model around a desired operating point but the 
resulting model requires to be reduced in size and validated using real data. Hence, the use 
of data-driven model is preferred. The motivation for using data-driven model is to gain 
additional insight into the dynamic behaviour of the WWTP and to allow for a more precise 
determination of the best tuning parameters for each control technique investigated, where 
the latter will subsequently enable a more objective comparison of the control techniques. 
Disturbances, in the form of variations of the influent flow rate, Qin, influent ammonium 
concentration, SNH and influent substrate SS are considered in this study. The loop 
interactions are taken into account to determine suitable controller structures for a more 
effective decoupling.  

 
4.1 Tuning methods 
This section study tuning of control structures for multivariable systems. For controller 
tuning, simplicity, as well as optimality, is important. Our intention is to present a 
framework for multivariable PID controller design which is simple to understand and 
implement. The control structures and tuning methods investigated in this study are briefly 
described below. 

 
4.1.1 Davison method 
The Davison method uses only integral action. The control law is given by: 

 1( ) ( )iu s K e s
s

           (18)     

where 1(0)iK G   is the integral feedback gain, G(0) is the zero frequency gain of the open 
loop transfer function matrix, G(s), and e(s) denote the output error. The scalar parameter   
is the tuning parameter. Since the integral gain is proportional to the inverse of the plant 

 

dynamics at zero frequency, this method is expected to provide good decoupling 
characteristics at low frequencies.  

 
4.1.2 Penttinen – Koivo method  
The Penttinen- Koivo is slightly more advanced than the Davison method. A proportional 
term has been added to the control law, giving:                  
 
 1( ) ( ) ( )c iu s K e s K e s

s
                      (19) 

 

 where,   1

c pK CB


  and 1 (0)iK G  . The Davison and Penttinen are similar in the sense 

that the integral gains of both controllers are linearly related to the inverse of the plant 
dynamics at zero frequency, and both controllers are therefore expected to provide good 
control-loop decoupling characteristics at low frequencies. Unlike the Davison, the 
Penttinen controller also includes proportional control action, where the feedback gain is 
linearly related to the inverse of the plant dynamics at high frequencies. Therefore, by 
following the same line of reasoning as above, the latter controller is expected to exhibit 
good decoupling characteristics at high frequencies. The term CBp represents the initial slope 
of the step output response, i.e.: 

 
1,1 1,

,1 ,

m

p

m m m

y y
CB

y y

 
 

  
 
 

 
  
 

                              (20) 

 
where m is the system order and ,i jy  is the initial slope of output, i, in response to a step at 

input, j. It can be shown that CGp is the inverse of the plant dynamics at high frequencies by 
writing the Laurent series expansion of the transfer function G(s) as follows: 

 
2

2 3( ) ...p p pCG CFG CF G
G s

s s s
                 (21) 

 

A good approximation of G(s) at high frequencies is ( ) pG s CB s is given by (21). As /iK s  
terms are also negligible at high frequencies compared to Kc, so it can be concluded that 

( ) /cG s K I s , thus giving the following closed-loop transfer function: 
 

 
1

1

( ) 0
( )   for large 

0 ( )n

H s
I GK GK s

H s



 
    
  


  


                    (22) 

The tuning parameters,  and   can be used to tune the proportional and integral gains. 

 
4.1.3 Maciejowski method  
M3 extends M2 to non-zero frequencies and hence the controller gains are linearly related to 
the inverse of the plant dynamics at a particular design frequency, wb, i.e. 
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frequency parts for both conditions in this case and it can be conclude that the plots 
demonstrate the interactions occur mainly at frequencies about a decade below the open 
loop bandwidth. The low frequency decoupling is therefore most likely to decentralize the 
control system and to minimise the effect of interactions. 

 
4. MPID Control Design  

In an attempt to improve the industry acceptance of multivariable control techniques, this 
study investigates three existing multivariable tuning methods and proposes a new one. 
These methods require only simple data-driven model of step or frequency response type. 
Most of the existing controller on WWTPs are not designed or tuned effectively. Hence, a 
systematic control design method is proposed, which reduces the controller commissioning 
time as well as the tuning efforts. The methods considered are those suggested in (Davison, 
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new proposed method.  
The design of MPID controllers is best carried out using simple linear models which can be 
derived from step or frequency tests. These models are usually valid for a single operating 
point and the procedure should be repeated for other points of interest. Linear models can 
also be derived by linearising the ASM model around a desired operating point but the 
resulting model requires to be reduced in size and validated using real data. Hence, the use 
of data-driven model is preferred. The motivation for using data-driven model is to gain 
additional insight into the dynamic behaviour of the WWTP and to allow for a more precise 
determination of the best tuning parameters for each control technique investigated, where 
the latter will subsequently enable a more objective comparison of the control techniques. 
Disturbances, in the form of variations of the influent flow rate, Qin, influent ammonium 
concentration, SNH and influent substrate SS are considered in this study. The loop 
interactions are taken into account to determine suitable controller structures for a more 
effective decoupling.  

 
4.1 Tuning methods 
This section study tuning of control structures for multivariable systems. For controller 
tuning, simplicity, as well as optimality, is important. Our intention is to present a 
framework for multivariable PID controller design which is simple to understand and 
implement. The control structures and tuning methods investigated in this study are briefly 
described below. 

 
4.1.1 Davison method 
The Davison method uses only integral action. The control law is given by: 

 1( ) ( )iu s K e s
s

           (18)     

where 1(0)iK G   is the integral feedback gain, G(0) is the zero frequency gain of the open 
loop transfer function matrix, G(s), and e(s) denote the output error. The scalar parameter   
is the tuning parameter. Since the integral gain is proportional to the inverse of the plant 

 

dynamics at zero frequency, this method is expected to provide good decoupling 
characteristics at low frequencies.  

 
4.1.2 Penttinen – Koivo method  
The Penttinen- Koivo is slightly more advanced than the Davison method. A proportional 
term has been added to the control law, giving:                  
 
 1( ) ( ) ( )c iu s K e s K e s

s
                      (19) 

 

 where,   1

c pK CB


  and 1 (0)iK G  . The Davison and Penttinen are similar in the sense 

that the integral gains of both controllers are linearly related to the inverse of the plant 
dynamics at zero frequency, and both controllers are therefore expected to provide good 
control-loop decoupling characteristics at low frequencies. Unlike the Davison, the 
Penttinen controller also includes proportional control action, where the feedback gain is 
linearly related to the inverse of the plant dynamics at high frequencies. Therefore, by 
following the same line of reasoning as above, the latter controller is expected to exhibit 
good decoupling characteristics at high frequencies. The term CBp represents the initial slope 
of the step output response, i.e.: 
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                              (20) 

 
where m is the system order and ,i jy  is the initial slope of output, i, in response to a step at 

input, j. It can be shown that CGp is the inverse of the plant dynamics at high frequencies by 
writing the Laurent series expansion of the transfer function G(s) as follows: 

 
2

2 3( ) ...p p pCG CFG CF G
G s

s s s
                 (21) 

 

A good approximation of G(s) at high frequencies is ( ) pG s CB s is given by (21). As /iK s  
terms are also negligible at high frequencies compared to Kc, so it can be concluded that 

( ) /cG s K I s , thus giving the following closed-loop transfer function: 
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1

( ) 0
( )   for large 

0 ( )n

H s
I GK GK s

H s



 
    
  


  


                    (22) 

The tuning parameters,  and   can be used to tune the proportional and integral gains. 

 
4.1.3 Maciejowski method  
M3 extends M2 to non-zero frequencies and hence the controller gains are linearly related to 
the inverse of the plant dynamics at a particular design frequency, wb, i.e. 
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1 ( ),c bK G jw  and 1 ( )i bK G jw  . The calculation 1( )bG jw will typically lead to a complex 
matrix, and hence a real approximation of 1( )bG jw  is required. This can be achieved by 
solving the following optimisation problem:  
 

 ( , ) ( ) ( ) ,

( 1,..., )

Tj j
b bJ K G jw K e G jw K e

diag n 

          
 

             (23) 

 
By appropriately selecting the matrix K to minimise J the product of ( )bG jw  and K will be 
close to the identity matrix at the design frequency, and therefore this will provide good 
control-loop decoupling characteristics around this frequency. This method suffers from a 
non-trivial frequency analysis.   

 
4.1.4 A proposed new method  
Before entering the method description, a short remark on the relevance of the problem is 
presented. Nowadays many wastewater treatment plants use very simple control 
technologies such as PID control. To this point, the study presented herein is then an 
attempt to give a quantitative basis, as rigorously as possible, to a practice that is widely 
adopted in industrial process. The initial benchmark result indicates that a multivariable 
PID controller was very effective for the control problem posed by the WWTP benchmark 
problem. The studied control design strategies presented a reasonable performance of 
system. Since the main characteristic of the proposed approach is to improve control 
performance while retaining the simplicity of the multiloop strategy, it will involve 
enhancements to the PID control calculations; such that, we try to combine some 
specification of different existing methods to obtain both a good performance of control as 
well as disturbance rejection, also to minimise the interaction. To devise the proposed 
method, some quantities useful to characterise an existing tuning method is discussed. The 
Davison is of no use where integrators are present in the process. Penttinen-Koivo requires 
the system that have a high frequency motion. The design technique proposed by 
Maciejowski approximates decoupling at a selected frequency. It has many tractable 
properties and an intuitive control structure. Initial results also indicated that the controller 
was effective only for the control problem where all the loops have similar bandwidth 
frequencies and it also requires a rigorous frequency analysis. This work therefore proposes 
a new control design technique that retains some of the properties that makes the 
Maciejowski controller tractable, but eliminates the need for frequency analysis and it is 
more effective for systems which have control loops of different bandwidths. The proposed 
control design technique assumes the following control structure: 
 

 1( ) ( )u s e s K K
s

    
 

                          (24) 

where,  

 1
(0) (1 ) pK G CG 


                   (25) 

 

The proportional and integral feedback gain of the proposed controller is a blend between 
the inverse of the plant dynamics at zero frequency and the inverse of the plant dynamics at 
high frequency. Thus, provided the plant have low-pass frequency characteristics, a good 
approximation of 1( )bG jw  can be obtained by appropriately selecting the additional 
controller tuning parameter, 0 1    . 

 
4.2 Optimal tuning of MPID controller 
To allow for an objective comparison of the performance achieved by the MPID controllers, 
the tuning parameters for each controller has been adjusted such that the following penalty 
function, J is minimised:  

    
0

( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t


                (26) 

 
where (26) minimises the energy corresponds in some sense to keep the state and the control 

close to zero.  ( ) ( ) ( ) Tx k x k v k  denotes the controller integrator states. The weighting 
matrices, Q and R, are non-negative definite symmetric matrices; tuned in such a way that a 
satisfactory closed loop performance is obtained. In this case, we obtain Q = diag (106, 106, 
106) and R = 0.001I that produces good performance. It was assumed that the process 
dynamics and controller states could be described using: 
 
  ( ) ( ) ( )x t Ax t Bu t             (27) 
 ( ) ( )y t Cx t       (28)   
 
Under these assumptions the MPID control laws could be expressed as:     
 
 ( ) ( )u t Kx t             (29) 

  ( ) ( ) ( ) ( )u t Kx t K Ax t Bu t                  (30) 
 
where K = [Kc Ki]. The penalty function may be expressed in terms of K as: 

  
0

( ) ( ) ( ) ( )T T TJ x t Q K RK x t x t Px t


                  (31) 

 
By assuming that the closed loop system is asymtotically stable so that J becomes: 

 (0) (0)TJ x Px            (32) 
 
 where P denotes the solution to the following steady state Lyapunov equation: 

 0T T
c cA P PA Q K RK              (33)  
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1 ( ),c bK G jw  and 1 ( )i bK G jw  . The calculation 1( )bG jw will typically lead to a complex 
matrix, and hence a real approximation of 1( )bG jw  is required. This can be achieved by 
solving the following optimisation problem:  
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By appropriately selecting the matrix K to minimise J the product of ( )bG jw  and K will be 
close to the identity matrix at the design frequency, and therefore this will provide good 
control-loop decoupling characteristics around this frequency. This method suffers from a 
non-trivial frequency analysis.   

 
4.1.4 A proposed new method  
Before entering the method description, a short remark on the relevance of the problem is 
presented. Nowadays many wastewater treatment plants use very simple control 
technologies such as PID control. To this point, the study presented herein is then an 
attempt to give a quantitative basis, as rigorously as possible, to a practice that is widely 
adopted in industrial process. The initial benchmark result indicates that a multivariable 
PID controller was very effective for the control problem posed by the WWTP benchmark 
problem. The studied control design strategies presented a reasonable performance of 
system. Since the main characteristic of the proposed approach is to improve control 
performance while retaining the simplicity of the multiloop strategy, it will involve 
enhancements to the PID control calculations; such that, we try to combine some 
specification of different existing methods to obtain both a good performance of control as 
well as disturbance rejection, also to minimise the interaction. To devise the proposed 
method, some quantities useful to characterise an existing tuning method is discussed. The 
Davison is of no use where integrators are present in the process. Penttinen-Koivo requires 
the system that have a high frequency motion. The design technique proposed by 
Maciejowski approximates decoupling at a selected frequency. It has many tractable 
properties and an intuitive control structure. Initial results also indicated that the controller 
was effective only for the control problem where all the loops have similar bandwidth 
frequencies and it also requires a rigorous frequency analysis. This work therefore proposes 
a new control design technique that retains some of the properties that makes the 
Maciejowski controller tractable, but eliminates the need for frequency analysis and it is 
more effective for systems which have control loops of different bandwidths. The proposed 
control design technique assumes the following control structure: 
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The proportional and integral feedback gain of the proposed controller is a blend between 
the inverse of the plant dynamics at zero frequency and the inverse of the plant dynamics at 
high frequency. Thus, provided the plant have low-pass frequency characteristics, a good 
approximation of 1( )bG jw  can be obtained by appropriately selecting the additional 
controller tuning parameter, 0 1    . 

 
4.2 Optimal tuning of MPID controller 
To allow for an objective comparison of the performance achieved by the MPID controllers, 
the tuning parameters for each controller has been adjusted such that the following penalty 
function, J is minimised:  
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where (26) minimises the energy corresponds in some sense to keep the state and the control 

close to zero.  ( ) ( ) ( ) Tx k x k v k  denotes the controller integrator states. The weighting 
matrices, Q and R, are non-negative definite symmetric matrices; tuned in such a way that a 
satisfactory closed loop performance is obtained. In this case, we obtain Q = diag (106, 106, 
106) and R = 0.001I that produces good performance. It was assumed that the process 
dynamics and controller states could be described using: 
 
  ( ) ( ) ( )x t Ax t Bu t             (27) 
 ( ) ( )y t Cx t       (28)   
 
Under these assumptions the MPID control laws could be expressed as:     
 
 ( ) ( )u t Kx t             (29) 

  ( ) ( ) ( ) ( )u t Kx t K Ax t Bu t                  (30) 
 
where K = [Kc Ki]. The penalty function may be expressed in terms of K as: 
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By assuming that the closed loop system is asymtotically stable so that J becomes: 

 (0) (0)TJ x Px            (32) 
 
 where P denotes the solution to the following steady state Lyapunov equation: 

 0T T
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where cA A BK  . Thus, for each MPID control scheme, the controller parameters,   is 
selected such that the matrix norm of P is minimised, i.e.: 

 min P


,             (34) 

 

where   is given in Table 3 and Table 4 for both Cases 1 and 2, respectively.  
                       

 Constant Dry Rain 

M1 68.11 0.238 6.30
18.7 64.95 16.63
5.09 11.7 62.33

iK
 

    
   

 

126   

59.14 26.06 40.77
37.30 124.33 65.83
9.23 23.39 28.20

iK
 

    
   

 

195   

75.294 13.37 41.365
18.162 80.695 39.243
20.946 19.925 38.292

iK
 

    
   

 

239   

M2 0.164 0.004 0.01
0.0 0.183 0.003
0.003 0.002 0.144

cK
 
   
  

 

68.11 0.238 6.30
18.7 64.95 16.63
5.09 11.7 62.33

iK
 

    
   

 

283     545   

0.201 0.04 0.02
0.009 0.127 0.232
0.019 0.014 0.297

cK
  

   
   

 

59.14 26.06 40.77
37.30 124.33 65.83
9.23 23.39 28.20

iK
 

    
   

 

166    510   

0.159 0.088 0.185
0.063 0.113 0.002
0.041 0.043 0.131

cK
 

   
   

 

75.294 13.37 41.365
18.162 80.695 39.243
20.946 19.925 38.292

iK
 

    
   

 

500  784   

M3 0.013 0.0 0.001
0.001 0.013 0.0
0.0 0.001 0.011

K
  

   
  

 

4800  2581800  53   

0.014 0.0 0.0
0.003 0.015 0.002
0.001 0.002 0.014

K
 
   
  

 

4000  1326700  50   

0.013 0.002 0.004
0.001 0.016 0.0
0.003 0.011 0.031

K
 
    
  

 

9300  1733700  100   

M4 37.029 0.165 0.860
6.271 37.464 0.004
1.665 3.497 32.878

K
 

   
   

 

2  1250  0.98   

25.530 2.595 8.371
0.097 21.744 17.936
5.620 2.438 12.232

K
  

   
   

 

2  8669  0.95   

25.849 4.399 1.839
9.249 21.571 5.454
6.849 5.581 14.655

K
 

    
   

 

13.8  4914  0.96   

Table 3. Parameters for MPID controllers for different Methods (Case 1) 
 

 Constant Dry 
M2 181.673 29.368

1.627 0.511
Kc

 
  
 
3427 5302
3.5 36.9iK

 
  
 

 

63.266  170.561   

        283.386 494.794
0.058 0.635cK

 
  
 

 

5642.8 6996
2.2 7.5iK

 
  
 

 

31.038  117.231   

M3 0.002 0.013
0.0 0.008

K  
   

 

4800  2581800  0.027   

0.001 0.03
0.0 0.025

K
 

  
 

 

4000  1326700  0.002   
M4 1694.5 564.1

11.3 8.7
K

 
 
 

 

3.798  518.408  , 0.988   

4483.1 4624.4
1.7 6.2

K  
  
 

 

25  3183  , 0.985   

Table 4. Parameters for MPID controllers for different Methods (Case 2) 
 

 

Therefore, the controller parameters   are optimal in the sense of minimising the cost 
function J for specific Q and R. For each method, the above problem was solved using the 
Matlab numerical optimisation function. This approach is justified when the process 
interaction is strong and the trial-and-error tuning approach would be time consuming. The 
optimal tuning matrices for all MPID controllers for Cases of 1 and 2 at various operating 
points are evaluated. The input and output weights in the cost function may be tuned in 
such a way that satisfactory closed loop performance, as well as effluent quality 
performance e.g. nitrogen removal improvement could be achieved. 

 
4.3 Evaluation criteria 
The MPID control strategies are tested using the nonlinear ASM1 model and the controller 
performance is evaluated using an index of the Aeration Energy (AE) as described in (Copp,  
2002): 

 
514 2

7
1

24 0.4032 ( ) 7.8408 ( )
t d

Lai Lait d
i

AE K t K t dt
T






                             (35) 

 
where iLaK  is the oxygen transfer coefficient (d-1) in each reactor. d is the unit of time (a 
day). The average AE (kWh/d) is calculated for the last 7 days of the dynamic data (T).  

 
5. Simulation Results  

The MPID controller was evaluated in a simulation study where the full ASM1 was used to 
model the process. The nonlinear ASM1 was used for simulating the process. The constant 
influent flow has been utilised first to assess the controllers' ability to respond to set point 
changes, whilst the varying influent flow (dry and rain weather conditions) are used to 
provide a statistical evaluation of the controllers' performance with respect to disturbance 
rejection. Note that the time constants for DO and SNO are of the order of minutes (DO) and 
hours (SNO), respectively. The aim of the controller in Case 1 is to maintain the DO levels in 
the last three aerobic tanks at DO3=1.5mg/l, DO4=3mg/l and DO5=2mg/l. In Case 2, the set 
points for DO and the nitrate were set at 2mg/l and 1mg/l, respectively. Notice that, for 
simplification, each method of tuning is denoted as M1, M2, M3 and M4 methods for 
Davison, Penttinen-Koivo, Maciejowski and proposed new method, respectively. For the 
first operating condition (constant influent flow), for both cases of 1 and 2, M4 clearly gives 
a promising result for compensating the changes in setpoints and better performance for 
disturbance rejection. This can be first revealed from Table 5 that summarise the results 
obtained for each control strategy for Case 1. The simulation result for Case 2 is plotted in 
Fig. 5(a-b). 
The result demonstrates that M4 gives a better performance compared to the others for both 
setpoint tracking and disturbance rejection. M4 exhibits somewhat faster responses than the 
other controllers. The overshoots to setpoint changes are small and the settling time is about 
10-15 minutes as shown in Table 5. The closed loop response for a setpoint change in M2 is 
satisfactory. The average settling time for DOs given by all control strategies is about 20 
minutes which seems reasonable, except for DO5 given by M1 which takes much longer to 
settle. M3 needs to be fairly tuned in order to obtain a good tracking and disturbance 
rejection performance. M2 tends to make the system unstable as the controller gain is 



Multivariable PID control of an Activated Sludge Wastewater Treatment Process 17

 

where cA A BK  . Thus, for each MPID control scheme, the controller parameters,   is 
selected such that the matrix norm of P is minimised, i.e.: 

 min P


,             (34) 

 

where   is given in Table 3 and Table 4 for both Cases 1 and 2, respectively.  
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cK
 

   
   

 

75.294 13.37 41.365
18.162 80.695 39.243
20.946 19.925 38.292

iK
 

    
   

 

500  784   

M3 0.013 0.0 0.001
0.001 0.013 0.0
0.0 0.001 0.011

K
  

   
  

 

4800  2581800  53   

0.014 0.0 0.0
0.003 0.015 0.002
0.001 0.002 0.014

K
 
   
  

 

4000  1326700  50   

0.013 0.002 0.004
0.001 0.016 0.0
0.003 0.011 0.031

K
 
    
  

 

9300  1733700  100   

M4 37.029 0.165 0.860
6.271 37.464 0.004
1.665 3.497 32.878

K
 

   
   

 

2  1250  0.98   

25.530 2.595 8.371
0.097 21.744 17.936
5.620 2.438 12.232

K
  

   
   

 

2  8669  0.95   

25.849 4.399 1.839
9.249 21.571 5.454
6.849 5.581 14.655

K
 

    
   

 

13.8  4914  0.96   

Table 3. Parameters for MPID controllers for different Methods (Case 1) 
 

 Constant Dry 
M2 181.673 29.368

1.627 0.511
Kc

 
  
 
3427 5302
3.5 36.9iK

 
  
 

 

63.266  170.561   

        283.386 494.794
0.058 0.635cK

 
  
 

 

5642.8 6996
2.2 7.5iK

 
  
 

 

31.038  117.231   

M3 0.002 0.013
0.0 0.008

K  
   

 

4800  2581800  0.027   

0.001 0.03
0.0 0.025

K
 

  
 

 

4000  1326700  0.002   
M4 1694.5 564.1

11.3 8.7
K

 
 
 

 

3.798  518.408  , 0.988   

4483.1 4624.4
1.7 6.2

K  
  
 

 

25  3183  , 0.985   

Table 4. Parameters for MPID controllers for different Methods (Case 2) 
 

 

Therefore, the controller parameters   are optimal in the sense of minimising the cost 
function J for specific Q and R. For each method, the above problem was solved using the 
Matlab numerical optimisation function. This approach is justified when the process 
interaction is strong and the trial-and-error tuning approach would be time consuming. The 
optimal tuning matrices for all MPID controllers for Cases of 1 and 2 at various operating 
points are evaluated. The input and output weights in the cost function may be tuned in 
such a way that satisfactory closed loop performance, as well as effluent quality 
performance e.g. nitrogen removal improvement could be achieved. 

 
4.3 Evaluation criteria 
The MPID control strategies are tested using the nonlinear ASM1 model and the controller 
performance is evaluated using an index of the Aeration Energy (AE) as described in (Copp,  
2002): 

 
514 2

7
1

24 0.4032 ( ) 7.8408 ( )
t d

Lai Lait d
i

AE K t K t dt
T






                             (35) 

 
where iLaK  is the oxygen transfer coefficient (d-1) in each reactor. d is the unit of time (a 
day). The average AE (kWh/d) is calculated for the last 7 days of the dynamic data (T).  

 
5. Simulation Results  

The MPID controller was evaluated in a simulation study where the full ASM1 was used to 
model the process. The nonlinear ASM1 was used for simulating the process. The constant 
influent flow has been utilised first to assess the controllers' ability to respond to set point 
changes, whilst the varying influent flow (dry and rain weather conditions) are used to 
provide a statistical evaluation of the controllers' performance with respect to disturbance 
rejection. Note that the time constants for DO and SNO are of the order of minutes (DO) and 
hours (SNO), respectively. The aim of the controller in Case 1 is to maintain the DO levels in 
the last three aerobic tanks at DO3=1.5mg/l, DO4=3mg/l and DO5=2mg/l. In Case 2, the set 
points for DO and the nitrate were set at 2mg/l and 1mg/l, respectively. Notice that, for 
simplification, each method of tuning is denoted as M1, M2, M3 and M4 methods for 
Davison, Penttinen-Koivo, Maciejowski and proposed new method, respectively. For the 
first operating condition (constant influent flow), for both cases of 1 and 2, M4 clearly gives 
a promising result for compensating the changes in setpoints and better performance for 
disturbance rejection. This can be first revealed from Table 5 that summarise the results 
obtained for each control strategy for Case 1. The simulation result for Case 2 is plotted in 
Fig. 5(a-b). 
The result demonstrates that M4 gives a better performance compared to the others for both 
setpoint tracking and disturbance rejection. M4 exhibits somewhat faster responses than the 
other controllers. The overshoots to setpoint changes are small and the settling time is about 
10-15 minutes as shown in Table 5. The closed loop response for a setpoint change in M2 is 
satisfactory. The average settling time for DOs given by all control strategies is about 20 
minutes which seems reasonable, except for DO5 given by M1 which takes much longer to 
settle. M3 needs to be fairly tuned in order to obtain a good tracking and disturbance 
rejection performance. M2 tends to make the system unstable as the controller gain is 
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increased. M3 has better performance than M1 or M2, but it has slightly bigger overshoot 
than M4. Although the performance of M3 is satisfactory in some outputs, it uses the more 
time-consuming “sequential” identification procedure for obtaining the tuning constant. The 
performance of M1 is worst with the slowest response and large overshoot, as seen in Table 
5. This method is not applicable in Case 2. 
 

 OS(%) Ts (min) SSQ 

DO3M1 6.7 28 4.18e-5 
DO4 M1 8.3 43.2 3.08e-4 
DO5 M1 25 57.6 9.8e-4 
DO3 M2 0.7 7.2 3.28e-5 
DO4 M2 2 8.64 2.19e-4 
DO5 M2 15 5.76 9.76e-4 
DO3 M3 0.2 8.64 3.28e-5 
DO4 M3 1.8 8.65 1.65e-4 
DO5 M3 10 8.64 9.59e-4 
DO3 M4 0.3 2.85 9.97e-6 
DO4 M4 2 2.88 7.10e-5 
DO5 M4 6 2.80 4.26e-4 

Table 5. Dynamic performance comparison of MPID controllers (Case 1)- (OS: Overshoot, Ts: 
Settling time, SSQ: the residual sum of squares) 
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Fig. 5. Dynamic performance comparison of MPID controllers (Case 2)- a) set point tracking; 
b) disturbance rejection 
 
It is also of great interest to study how the controllers perform under different operating 
conditions (dynamic influent flows). The statistical evaluation of the performance for Case 1 
for each control strategy under dry and rain condition is depicted in Fig. 6, whilst Fig. 7 
reveals the performance (Case 2) of disturbance rejection under dry condition.  
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Fig. 6. Dynamic influent statistics (Case 1)- a) Dry weather; b) Rain weather 
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Fig. 7. Disturbance rejection under dry influent flow (Case 2) 
 
Due to high nonlinearities in Case 2, only dry influent flow has been investigated and an 
adaptive controller is required to design the controller for rain condition. In all cases the 
result from the statistical evaluation of the performance (Fig. 6) shows lower output error 
for M4. The result of simulation from the 8th to the 10th day of influent data is shown in Fig. 
7. These results will also confirm that M4 has the best performance. M3 shows good tracking 
properties and compensates the disturbances for DO5, but it has no control on SNO2 as it is 
evident from the low value of Qintrn. M4 is also more flexible and the tuning parameter, α 
makes the plant frequency analysis easier to handle. In addition, M2 performs better than 
M3, but not as good as the M4. 

 
5.1 Robustness performance analysis 
The control design strategy is also analysed in term of robustness performance requirement 
and in this case, constant influent condition is applied. Fig. 8 shows the open loop singular 
values for Cases 1 and 2 
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increased. M3 has better performance than M1 or M2, but it has slightly bigger overshoot 
than M4. Although the performance of M3 is satisfactory in some outputs, it uses the more 
time-consuming “sequential” identification procedure for obtaining the tuning constant. The 
performance of M1 is worst with the slowest response and large overshoot, as seen in Table 
5. This method is not applicable in Case 2. 
 

 OS(%) Ts (min) SSQ 

DO3M1 6.7 28 4.18e-5 
DO4 M1 8.3 43.2 3.08e-4 
DO5 M1 25 57.6 9.8e-4 
DO3 M2 0.7 7.2 3.28e-5 
DO4 M2 2 8.64 2.19e-4 
DO5 M2 15 5.76 9.76e-4 
DO3 M3 0.2 8.64 3.28e-5 
DO4 M3 1.8 8.65 1.65e-4 
DO5 M3 10 8.64 9.59e-4 
DO3 M4 0.3 2.85 9.97e-6 
DO4 M4 2 2.88 7.10e-5 
DO5 M4 6 2.80 4.26e-4 

Table 5. Dynamic performance comparison of MPID controllers (Case 1)- (OS: Overshoot, Ts: 
Settling time, SSQ: the residual sum of squares) 
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Fig. 5. Dynamic performance comparison of MPID controllers (Case 2)- a) set point tracking; 
b) disturbance rejection 
 
It is also of great interest to study how the controllers perform under different operating 
conditions (dynamic influent flows). The statistical evaluation of the performance for Case 1 
for each control strategy under dry and rain condition is depicted in Fig. 6, whilst Fig. 7 
reveals the performance (Case 2) of disturbance rejection under dry condition.  
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Fig. 7. Disturbance rejection under dry influent flow (Case 2) 
 
Due to high nonlinearities in Case 2, only dry influent flow has been investigated and an 
adaptive controller is required to design the controller for rain condition. In all cases the 
result from the statistical evaluation of the performance (Fig. 6) shows lower output error 
for M4. The result of simulation from the 8th to the 10th day of influent data is shown in Fig. 
7. These results will also confirm that M4 has the best performance. M3 shows good tracking 
properties and compensates the disturbances for DO5, but it has no control on SNO2 as it is 
evident from the low value of Qintrn. M4 is also more flexible and the tuning parameter, α 
makes the plant frequency analysis easier to handle. In addition, M2 performs better than 
M3, but not as good as the M4. 

 
5.1 Robustness performance analysis 
The control design strategy is also analysed in term of robustness performance requirement 
and in this case, constant influent condition is applied. Fig. 8 shows the open loop singular 
values for Cases 1 and 2 
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                                    a)                                                                                 (b) 

  
Fig. 8. Open loop singular values - a) Case 1; b) Case 2 
 
The singular values are relatively small at low frequencies in both cases indicating that 
controlling the variables of interest are not an easy task. Moreover, there is a significant 
difference in magnitude in each loop for design case 2 indicating that controlling the 
variables are therefore more difficult. The ability of multivariable PID controller to deal with 
this difficulty is especially of importance since its closed loop performance is dictacted by 
low frequency gains of the variable of interest. The open loop bandwidth of 0.02rad/min is 
given by Case 1 whilst Case 2 shows a significant difference of bandwidth frequency in each 
control loop. 
Fig. 9  compares  the results of sensitivity, (I + GK)-1 and complementary sensitivity, GK (I + 
GK)-1 plots of different control strategies in Case 1. It can be seen that the magnitudes of 
sensitivity for the three variables (DOs) at low frequency are higher for M1 compared to 
other control strategies. This implies that performance of M1 in rejecting disturbance is 
worst. The magnitude of (I + GK)-1 for M2 is lowest followed by M4 and M3. This means 
that M2 is less susceptible to disturbances. Note that although the closed loop sensitivity 
resulting from M2 is superior to that with the other three control strategies (M1, M3 and 
M4), the worst-case gain behaviour is much worse as can be seen in Fig. 9. This is also leads 
to a lower stability margin provided by M2 controller design. For robustness, we also need 
to keep GK (I + GK)-1 small. Although M1 gives the best result in terms of noise immunity, it 
is however the lowest performance in terms of closed loop bandwidth and in rejecting 
disturbance. The methods of M3 and M4 give satisfactory results, being particularly 
effective for a given frequency range. However, M4 gives slightly better results compared to 
M3 especially the closed loop bandwidth and disturbance rejection. Considering the overall 
performance characteristics given by all different control strategies, the method M4 is the 
most reliable. 
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Fig. 9. Performance robustness analysis of Case 1 - sensitivity-  a) Davison method; b) 
Penttinen method; c) Maciejowski method; d) Proposed new method 
 
Fig. 10 compares the results of sensitivity, (I + GK)-1 and complementary sensitivity, GK (I + 
GK)-1 plots of different control strategies in Case 2. Method M1 is not applicable, therefore it 
is not applied in this case. In this case, we have two different frequency bandwidth in the 
control loops. This leads to challenges in control tuning to obtain simulataneously a good 
performance in both of loops. It can be seen that the measurement noise is being amplified 
over a smaller range of frequencies in method M2. However, M2 considers the worst 
performance in term of disturbance rejection, i.e. highest magnitude of (I + GK)-1 at low 
frequency. As previously discussed in Case 1, M3 and M4 also give better performance in 
disturbance rejection in Case 2. Fig. 10 shows that, although M3 gives the best result in 
rejecting disturbance of loop 2 (DO5), i.e. lowest magnitude of (I + GK)-1 at low frequency, it 
is however the worst in noise suppression, i.e. highest magnitude of GK (I + GK)-1 for loop 1 
(SNO;2) at high frequency. Moreover, M3 has lower stability margin compared to M4 and 
M2. Overall, M4 provides satisfactory results in the simultaneous multiloop control tuning. 
It shows good performance in both loops in terms of closed loop bandwidth and can 
suppress noise better. 
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                                    a)                                                                                 (b) 

  
Fig. 8. Open loop singular values - a) Case 1; b) Case 2 
 
The singular values are relatively small at low frequencies in both cases indicating that 
controlling the variables of interest are not an easy task. Moreover, there is a significant 
difference in magnitude in each loop for design case 2 indicating that controlling the 
variables are therefore more difficult. The ability of multivariable PID controller to deal with 
this difficulty is especially of importance since its closed loop performance is dictacted by 
low frequency gains of the variable of interest. The open loop bandwidth of 0.02rad/min is 
given by Case 1 whilst Case 2 shows a significant difference of bandwidth frequency in each 
control loop. 
Fig. 9  compares  the results of sensitivity, (I + GK)-1 and complementary sensitivity, GK (I + 
GK)-1 plots of different control strategies in Case 1. It can be seen that the magnitudes of 
sensitivity for the three variables (DOs) at low frequency are higher for M1 compared to 
other control strategies. This implies that performance of M1 in rejecting disturbance is 
worst. The magnitude of (I + GK)-1 for M2 is lowest followed by M4 and M3. This means 
that M2 is less susceptible to disturbances. Note that although the closed loop sensitivity 
resulting from M2 is superior to that with the other three control strategies (M1, M3 and 
M4), the worst-case gain behaviour is much worse as can be seen in Fig. 9. This is also leads 
to a lower stability margin provided by M2 controller design. For robustness, we also need 
to keep GK (I + GK)-1 small. Although M1 gives the best result in terms of noise immunity, it 
is however the lowest performance in terms of closed loop bandwidth and in rejecting 
disturbance. The methods of M3 and M4 give satisfactory results, being particularly 
effective for a given frequency range. However, M4 gives slightly better results compared to 
M3 especially the closed loop bandwidth and disturbance rejection. Considering the overall 
performance characteristics given by all different control strategies, the method M4 is the 
most reliable. 
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Fig. 9. Performance robustness analysis of Case 1 - sensitivity-  a) Davison method; b) 
Penttinen method; c) Maciejowski method; d) Proposed new method 
 
Fig. 10 compares the results of sensitivity, (I + GK)-1 and complementary sensitivity, GK (I + 
GK)-1 plots of different control strategies in Case 2. Method M1 is not applicable, therefore it 
is not applied in this case. In this case, we have two different frequency bandwidth in the 
control loops. This leads to challenges in control tuning to obtain simulataneously a good 
performance in both of loops. It can be seen that the measurement noise is being amplified 
over a smaller range of frequencies in method M2. However, M2 considers the worst 
performance in term of disturbance rejection, i.e. highest magnitude of (I + GK)-1 at low 
frequency. As previously discussed in Case 1, M3 and M4 also give better performance in 
disturbance rejection in Case 2. Fig. 10 shows that, although M3 gives the best result in 
rejecting disturbance of loop 2 (DO5), i.e. lowest magnitude of (I + GK)-1 at low frequency, it 
is however the worst in noise suppression, i.e. highest magnitude of GK (I + GK)-1 for loop 1 
(SNO;2) at high frequency. Moreover, M3 has lower stability margin compared to M4 and 
M2. Overall, M4 provides satisfactory results in the simultaneous multiloop control tuning. 
It shows good performance in both loops in terms of closed loop bandwidth and can 
suppress noise better. 
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(a)                                                                                     (b) 

 
(c) 

 
Fig. 10. Performance robustness analysis of Case 2 - sensitivity-  a) Penttinen method; b) 
Maciejowski method; c) Proposed new method 
 
Fig. 11 shows the plots of input disturbance,   1I GK G 

  for both cases of 1 and 2. In this 
case, the variables of control should prevail in zero steady state errors subject to input 
disturbances and/or changes in setpoint, i.e. changes in the oxygen transfer coefficients or 
internal recirculation flow. This can be clearly observed from the positive gradients at low 
frequency regions of the plots given by all control strategies. It can also be seen from Fig. 11 
that the magnitude of   1I GK G 

  is relatively higher for M2 (50-55 dB at 10-2 rad/min) 
compared with M4 (40-45 dB at 10-2 rad/min), M3 (30-35 dB at 10-2 rad/min rad/min) and 
M1 (15-20 dB at 10-2 rad/min rad/min). Though M2 shows a good performance to input 
disturbance in Case 1, it appears to be the worst performance due to input disturbance in 
Case 2. Since the performance measure given by M4 is satisfactory in both cases, the method 
is proven to be useful for different frequency bandwidth. 
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5.2 Performance evaluation 
Here, the performance of the plant is presented for Cases 1 and 2. In Case 1, the effect of 
controlling three dissolved oxygen in the last three aerated tanks is shown in Fig. 12. As 
seen in Fig. 12, the DO in reactor 1 and reactor 2 are not controlled. Clearly, the same output 
of DO, both in the effluent and under flow are demonstrated, as the ones given by the DO in 
the last aerated tank (reactor), both for dry and rain flow conditions. Control strategies were 
also evaluated against the criteria described in (35) for Case 2 as shown in Table 6. 
 

 Aeration energy 
(kWh/d) 

Average NH4-
Neff(mg/l) 

Average NO3-
Neff(mg/l) 

Benchmark 7241.27 2.528 12.439 
M2     6532.14 (-9.8%) 3.029 (+19.8%) 12.489 (+0.4%) 
M3 6387.12 (-11.7%) 2.267 (-10.3%) 14.53 (+16.8%) 
M4 6376.11(-11.9%) 2.411 (-4.6%) 12.045 (-3.2%) 

Table 6.  Evaluation criteria for different control tuning strategies for dry influent case. 
 
The basic control strategy in benchmark simulation study, proposed by (Copp, 2002) is used 
as a reference case for comparison. The evaluation criteria considered are aeration energy, 
effluent ammonia nitrogen and effluent nitrate nitrogen. The MPID control strategies were 
evaluated for DO-Nitrate dry weather model against single loop PI controllers used in the 
COST benchmark. A lower aeration cost (AE) is achieved with MPID. These are about 9.8%, 
11.7% and 11.9%, for M2, M3 and M4, respectively. The average effluent ammonia (NH4-
Neff) was reduced by 10.3% and 4.6%, for M3 and M4, respectively. M2 gave slightly higher 
average effluent ammonia but still below the discharge limit (4mg/l). Better total nitrogen 
removal is achieved using M4 for both ammonia and nitrate in the effluent. 
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The basic control strategy in benchmark simulation study, proposed by (Copp, 2002) is used 
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effluent ammonia nitrogen and effluent nitrate nitrogen. The MPID control strategies were 
evaluated for DO-Nitrate dry weather model against single loop PI controllers used in the 
COST benchmark. A lower aeration cost (AE) is achieved with MPID. These are about 9.8%, 
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Fig. 12. Plant performance of DO for Case 1, (a) dry influent condition; (b) rain influent 
condition 

 
6. Conclusion 

The objective of the study was to use MPID controllers to improve closed loop performance 
and reduce loop interactions. Three tuning strategies were compared and a new one was 
introduced. All methods require information only from simple step or frequency tests. The 
methods are based on decoupling the system at different frequency points. To identify the 
most effective control strategy, RGA analysis were performed. It was proposed to use 
DRGA to find the best frequency point for decoupling. A procedure was also developed to 
fine-tune the controllers using an optimisation procedure. Extensive simulation studies on a 
nonlinear ASM1 model demonstrated that the proposed method performed significantly 
better in setpoint tracking properties and disturbance rejection and gave the best 
performance with respect to decoupling capabilities. The results suggest considerable 
improvement can be achieved in terms of energy savings and nitrogen removal with a 
properly tuned MPID controller. The methods demonstrate that the controller tuning 
influences multiloop system performance. 
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This chapter presents an image-based Proportional Integral Derivative (PID) controller for a 
redundant overactuated planar parallel robot; the control objective is to drive the robot end 
effector to a desired constant reference position. The main feature of the proposed approach 
is the use of a vision system for obtaining the end effector position. This approach precludes 
the use of the robot forward kinematics. The Lyapunov method and the LaSalle invariance 
principle allow assessing asymptotic closed-loop stability. Experiments in a laboratory 
prototype permit evaluating the performance of the closed-loop system. 

 
1. Introduction 

Most of today industrial robots are controlled using joint-level PID controllers (Arimoto & 
Miyazaki, 1984; Wen & Murphy, 1990; Kelly, 1995; Spong, et al., 2005). In the case of parallel 
robots, their forward kinematics allows computing the end-effector position and orientation 
(Kock & Schumacher, 1998; Cheng et al., 2003); using the forward kinematics in real time 
may be computational demanding for some robot designs and sometimes it does not have 
an analytical solution; besides, a prior calibration procedure estimate the forward 
kinematics parameters. Any error in this estimation procedure would translate into 
positioning errors. An approach explored in this chapter is to use a vision system for 
measuring the end-effector coordinates; this methodology avoids solving in real time the 
forward kinematics and any calibration procedure. The chapter focuses on redundant planar 
parallel robots of the RRR-type studied in (Cheng et al., 2003) and shown in Fig. 1. This type 
of robot is well suited for laser and water cutting systems and in tasks requiring positioning 
in a plane. It is also worth remarking that over actuation reduces or even eliminates some 
kinds of singularities and improves Cartesian stiffness in the robot workspace. 
Visual Servoing represents an attractive solution to position and motion control problems of 
autonomous robot manipulators evolving in unstructured environments (Corke, 1996; 
Hutchinson et al., 1996; Kelly, 1996; Papanikolopoulos & Khosla, 1993; Weiss et al., 1987; 
Wilson et al., 1996; Chaumette & Hutchinson, 2006 & 2007; Kragic & Christensen, 2005). 
There exist two approaches for this robot control strategy: camera-in-hand and fixed-
camera. In the camera-in-hand configuration, the robot end-effector carries on the camera; 
the objective of this approach is to move the manipulator in such a way that the projection 
of a moving or static object is always at a desired location in the image given by the camera. 
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In contrast, in fixed-camera robotic systems, one or several cameras, fixed with respect to a 
global coordinate frame, capture images of the robot and its environment; the objective is to 
move the robot in such a way that its end-effector reaches a desired target. The proposed 
control law uses this later approach.  
 

 
Fig. 1. Redundant planar parallel robot 
 
Visual Servoing of parallel robots is an emerging field and until recently, some papers report 
interesting research in this area. Using a vision system in parallel robots allows calibrating 
their Forward Kinematics; moreover, in some instances it permits obtaining the position and 
orientation of some part of the robot mechanical structure thus dispensing the use of the 
Forward Kinematic for closed-loop control. Visual information of the robot legs allows 
controlling a Gough-Stewart parallel robot in (Andreff & Martinet, 2006) and (Andreff et al., 
2007). Another interesting approach in (Dallej et al., 2007) shows how to control an I4R parallel 
robot using only visual feedback. Simulation results using a realistic robot model show 
satisfactory closed-loop performance. A visual control scheme, applied to the delta robot 
RoboTenis, is a key feature in (Angel et al., 2008) and (Sebastian et al., 2007). This approach 
uses the robot native joint controller as an inner loop, and a camera, which rests on the robot 
end-effector and closes an outer control loop; moreover, the authors show uniform ultimate 
boundedness of the tracking error. Experiments validate the proposed approach.  
This Chapter proposes a control law that solves the position control problem for a 
redundant overactuated planar parallel robot by using direct vision feedback into the 
control loop; in this way, the proposed approach does not stem on solving the robot 
Forward Kinematics. The proposed algorithm exploits a PID-like control structure, similar 
to those proposed previously for open-loop kinematic chain robot manipulators (Kelly, 
1998; Santibañez & Kelly, 1998). Moreover, compared with previous approaches on visual 
control of parallel robots, the stability analysis presented here, based on the Lyapunov 
method and the LaSalle principle, takes into account the robot dynamics. Experiments in a 
laboratory prototype permit assesing the performance of the closed-loop system. 

2. Parallel robot modeling 

A parallel manipulator is a closed-loop kinematic chain mechanism whose end-effector is 
linked to its base by several independent kinematic chains. References (Merlet, 2000; Tsai, 
1999) describe a rather exhaustive enumeration of parallel robots mechanical architectures 
and their diverse applications are described in Singularities, which also appear in open 
chain robots, are abundant in parallel robots; when a manipulator is in a singular 
configuration, it loses stiffness and becomes uncontrollable. Singularities make the limited 
workspace of parallel manipulators even smaller. Redundant actuation is a method for 
removing singularities over the workspace; in this case, the number of actuators is greater 
than the number of end-effector coordinates. Besides removing singularities over the 
workspace, redundant actuation also has the advantages of making the robot structure 
lighter and faster, optimizing force distribution and improving Cartesian stiffness. The 
following paragraphs describe the modeling issues concerning the kinematics and dynamics 
of redundant planar parallel robots of the RRR-type. 

 
2.1 Kinematics of parallel manipulators 
The kinematic analysis of parallel robots comprises two parts: The Inverse Kinematics and the 
Forward Kinematics. In the Inverse Kinematics, given an end-effector position and orientation, 
the problem is to find the robot active joint values leading to these position and orientation. In 
the case of the Forward Kinematics, the robot active joint values are given and the problem is 
to find the position and orientation of the end-effector. As a rule, as the number of closed 
cinematic chains in the mechanism increases, the difficulty of the Forward Kinematics solution 
also increases, whereas the difficulty for the Inverse Kinematics solution diminishes.  
 

 
Fig. 2. Parallel Robot coordinate frame. 
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Figure 2 depicts a sketch of the redundant planar parallel robot. The robot kinematics 
assumes that all chain links have equal lengths, i.e.  and , 1,2,3i iL a L b i= = = . Typically, a 
parallel robot has both active and passive joints; the robot actuators drive only the active 
joints. Symbol iA represents the ith active joint with coordinates [ ]=

i i i

Tx yA A AX  with respect 
to the global Cartesian reference frame. Symbol iP stands for the ith passive joint with 

coordinates [ ]=
i i i

Tx yP P PX . Variable [ ]= Tx yX defines the end-effector position, variable 
qi denotes the angle of the ith active joint, and variable i  is the angle of the ith passive 
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It is worth remarking that the end-effector position [ ]= Tx yX does not depend on all the 
robot joint angles but only on the active joints angles qi . Therefore, it is possible to write 
down the robot Forward Kinematics as 
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Workspace 
The set W defines the robot workspace; therefore, the end effector position must belong to 
this set, i.e. ÎWÌ2X . Fig. 3 shows workspace plots for i ia b L= = and the general 
case i ia b¹ ; variable d corresponds to the distance between the centers of two consecutive 
active joints. The robot under control has the configuration i ia b L= = , and i ia b d+ < . 

 
Fig. 3. Parallel Robot workspace for different link lengths. 
 
Inverse kinematics 
In this case the active joint angles depends only on the robot end-effector coordinatesX , i.e.  
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Subsequently, the active joint angles allows computing the passive joint angles as follows 
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These solutions represent two different configurations for each leg that produce to 32 8  
solutions for the manipulator, as depicted in Fig. 4. 
Configurations a, and e are preferable because they have shown more symmetric and 
isotropic force transmission throughout the workspace. 
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Fig. 4. All the solutions of the Parallel Robot inverse kinematics. 
 
Differential kinematics 
The following equations describe the relationship between the velocities at the joints and at 
the end effector 
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Concatenating (11) and (12) yields  
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2.2 Dynamics of redundant planar parallel robot 
In accordance with (Cheng et al., 2003), the Lagrange-D’Alembert formulation yields a 
simple scheme for computing the dynamics of redundantly actuated parallel manipulators; 
this approach uses the equivalent open-chain mechanism of the robot shown in Fig. 5. In 

order to apply this scheme, the first step is to obtain a relationship between the joint torques 
associated to all the robot joints and the robot active joint torques. The following Proposition 
gives a method for obtaining this relationship 

 

 
Fig. 5. Equivalent open-chain representation for the Parallel Robot. 

 
Proposition 1: Let the joint torque Înτ of the equivalent open-chain system and the joint 
torque aτ of the redundantly actuated closed-chain system required to generate the same 
motion; then, both torques are related as follows 
 
 .T T=aS τ W τ  (15) 
 
Proof of Proposition 1: We denote by eq the vector of independent generalized coordinates of 
the mechanism. In the case of redundant actuation, the virtual displacement ¶ aq of the 
actuated joints is constrained. Using the kinematic constrains allows expressing aq  and pq  as 
 
 ( ) ( )= =and .a a e p p eq q q q q q  (16) 
 
 



Stable Visual PID Control of Redundant Planar Parallel Robots 33

 
Fig. 4. All the solutions of the Parallel Robot inverse kinematics. 
 
Differential kinematics 
The following equations describe the relationship between the velocities at the joints and at 
the end effector 

 

 

( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1 1
1

2 2 2 2
2

2 2
3

3 3 3 3

3 3

cos sin
sin sin

cos sin ,
sin sin

cos sin
sin sin

L L
x
yL L

L L

q a q a
a aq q a q a

q
a aq q a q a
a a

é ù+ +
ê ú
ê úé ù ê úê ú + + é ùê úê ú= = =ê úê úê ú ë ûê úê úë û + +ê ú
ê úê úë û

aq SX


  
 (11) 

 

11
2 2

1 1
1 22
2 2 2

2 23
33

2 2
3 3

sin sin

.
sin sin

sin sin

yx

yx

yx

dd
L L

dd x
yL L

dd
L L

a a
a
a

a aa

a a

é ù
ê ú- -ê ú
ê úé ù é ùê úê ú= =- - =ê úê úê ú ë ûê úê úë û ê ú
ê ú- -
ê úë û

pq HX
    

 (12) 

 
( )

( )

cos cos , 1,2,3.

sin sin , 1,2,3.
x

y

i i i i

i i i i

d L i

d L i

q q a

q q a

é ù= + + =ë û
é ù= + + =ë û

 (13) 

 
Concatenating (11) and (12) yields  
 

 é ù é ù= = =ê ú ê úê úê ú ë ûë û
   
a
p

q Sq X WXq H  (14) 

 
2.2 Dynamics of redundant planar parallel robot 
In accordance with (Cheng et al., 2003), the Lagrange-D’Alembert formulation yields a 
simple scheme for computing the dynamics of redundantly actuated parallel manipulators; 
this approach uses the equivalent open-chain mechanism of the robot shown in Fig. 5. In 

order to apply this scheme, the first step is to obtain a relationship between the joint torques 
associated to all the robot joints and the robot active joint torques. The following Proposition 
gives a method for obtaining this relationship 

 

 
Fig. 5. Equivalent open-chain representation for the Parallel Robot. 

 
Proposition 1: Let the joint torque Înτ of the equivalent open-chain system and the joint 
torque aτ of the redundantly actuated closed-chain system required to generate the same 
motion; then, both torques are related as follows 
 
 .T T=aS τ W τ  (15) 
 
Proof of Proposition 1: We denote by eq the vector of independent generalized coordinates of 
the mechanism. In the case of redundant actuation, the virtual displacement ¶ aq of the 
actuated joints is constrained. Using the kinematic constrains allows expressing aq  and pq  as 
 
 ( ) ( )= =and .a a e p p eq q q q q q  (16) 
 
 



PID Control, Implementation and Tuning34

Differentiating the above equations gives 
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Applying the above results to the Lagrange-D’Alembert equations yields 
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Variable pτ  is the actuating torque on the passive joints. Since d eq is now free to vary, the 
following expression follows from (18)  
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Ignoring friction at the passive joints allows setting 0=pτ . Note also that d L L
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The Euler-Lagrange's well-known formalism (Spong et al., 2005) allows modeling each of 
the legs of the open-chain mechanism in Fig. 5. Assuming that the robot moves in the 
horizontal plane, the following equations model the equivalent open chain mechanism 
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Parameters ijI , ijm and ijr , , :1,2,3i j , correspond to the inertia, mass, and center of mass of 
each link. Combining the equations described above gives the dynamics of the open-chain 
system in the form 
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The term M  is the inertial matrix, C  the Coriolis and centrifugal force terms, andN is a 
constant disturbance vector. The number of active and passive joints is ,n  
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correspond to the torques in the active and passive joints respectively.  It is worth noting 
that in most parallel robots the angles of the active joints cannot play the role of generalized 
coordinates because their Forward Kinematics do not have a closed form solution.,  
Therefore, it is not possible to write down the dynamic equations in terms of the active 
joints. For that reason, the development of the parallel robot dynamic model will consider 
the robot end-effector coordinates as a set of generalized coordinates, i.e. =eq X . 
Substituting τ  in (25) into(21), we have 
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Differentiating the above equations gives 
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Variable pτ  is the actuating torque on the passive joints. Since d eq is now free to vary, the 
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correspond to the torques in the active and passive joints respectively.  It is worth noting 
that in most parallel robots the angles of the active joints cannot play the role of generalized 
coordinates because their Forward Kinematics do not have a closed form solution.,  
Therefore, it is not possible to write down the dynamic equations in terms of the active 
joints. For that reason, the development of the parallel robot dynamic model will consider 
the robot end-effector coordinates as a set of generalized coordinates, i.e. =eq X . 
Substituting τ  in (25) into(21), we have 
 
 ( )+ + =  .T T

aW Mq Cq N S τ  (26) 
 
Taking the time derivative of (14) leads to 
 
 = +q WX WX   (27) 
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Substituting q andq given in(14) and (27) into (26) produces the following dynamic model 
 

 ,T+ + = aMX CX N S τ   (28) 
where 

 
,

,
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T T

T

=
= +
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M W MW
C W MW W CW
N W N
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Note that the above model relates the active joint torques aτ  and the end–effector 
coordinates X . The inertia matrix M and the Coriolis matrix C  satisfy the following 
structural properties as long as matrix W has full rank 
 
 Property 1. MatrixM is a symmetric and positive definite. 
 Property 2. Matrix 2-M C is skew-symmetric. 
 Property 3. There exists a positive constant 1Ck  such that 
 
 £ 

1 .kCC X  (29) 

 
3. Model of the vision system 

Consider the redundant planar parallel robot described previously together with its 
Cartesian coordinate frame x y-R R  (see Fig. 6). This coordinate frame defines a plane where 
the motion of the robot end-effector takes place. A camera providing an image of the whole 
robot workspace, including the robot end-effector, is perpendicular to the plane where the 
robot evolves. The optical center is located at a distance z  with respect to the -x yR R  plane, 
and the intersection [ ]Tx yO OO  between the optical axis and the robot workspace is 
located anywhere in the robot workspace. Variable  denotes the orientation of the camera 
around the optical axis with respect to the negative side of axis xR of the robot coordinate 
frame, measured clockwise.  
The camera sensor has associated a coordinate frame called the image coordinate frame with 
axes ix  and iy ; they are parallel to the robot coordinate frame. The camera sensor captures 
the image that is later stored in the computer frame buffer and displayed in the computer 
screen. The visual feature of interest is the robot end-effector position =[ ]Ti ix yiX defined in 
the image coordinate frame; the units for iX are pixels. Image-processing algorithms, allow 
the estimation of the coordinate iX . Thus, this estimate feeds the control algorithm without 
further processing. This later feature is common to all image-based Visual Servoing 
algorithms and permits avoiding camera calibration procedures. 
 

 
Fig. 6. Fixed-camera robotic system, robot and camera coordinate frames. 
 
Let assume a perspective transformation as an ideal pinhole camera model (Kelly, 1996), the 
next relationship describes the position of the end-effector given in the image coordinate 
frame in terms of its position in the robot workspace 
 
 ( )h b= - +( )hi iX R X O C  (30) 
 
Parameter [ ]= T

x yC Ci i iC  is the image center, h  is a scale factor in pixels/m, which is assumed 
negative, h is the magnification factor defined as 
 

 l
l

= <
-

0h z  (31) 

 
where l  is the camera focal distance. ( ) (2)SOR    is the rotation matrix generated by 
clockwise rotating the camera about its optical axis by   radians 
 

 cos sin( ) .sin cosR    
    

 (32) 

 
The time derivative of (30) gives the end-effector linear velocity in terms of the image 
coordinate frame 
 
 h b= ( ) .hiX R X  (33) 
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Substituting q andq given in(14) and (27) into (26) produces the following dynamic model 
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where l  is the camera focal distance. ( ) (2)SOR    is the rotation matrix generated by 
clockwise rotating the camera about its optical axis by   radians 
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The time derivative of (30) gives the end-effector linear velocity in terms of the image 
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The following equation gives the desired end-effector position [ ]= * * Tx y*X expressed in 
terms of the image coordinate frame 
 
 ( )h b= - +( )h* *

i iX R X O C  (34) 
 
where [ ]= * * Tx y*X denotes the desired end-effector position expressed in the robot 
coordinate frame and located strictly inside the robot workspace, so there exists at least one 
(unknown) constant joint position vector, say 6Îdq   for which the robot end-effector 
reaches the desired position, in other words, there exists a nonempty set ÌnQ  such that 

( )f= ÎW*
daX q  for QÎdaq . At this point, it is convenient to introduce the definition of the 

image position error  iX  as the visual distance between the measured and desired end-
effector positions, see Fig. 7, i.e. 
 

 é ù é ù= - = -ê ú ê úê ú ë ûë û
 .x x

yy
*

* i i*i i i
ii

X X X  (35) 

 
Therefore, expressions (30),(34), and (35) allow defining the image error vector  iX  as 
 
 [ ]( ) ( ) ( ) .hh b j j= -i da aX R q q  (36) 
 
Assuming a fixed desired position, taking the time derivative of the image position error 
yields 
 

 ( ) .d h
dt

h b=- =-i
i

X X R X
    (37) 

  
4. Visual PID control algorithm 

4.1 Preliminaries 
A standard linear PID control law has the following form  

 

 
0

( )
t

P I Du K e K e d K es s= + +ò   (38) 

 
Here, variable e r y= - defines the error with r the set point and y the output variable; 
therefore, the error e as well as its time-integral and time-derivative feed this algorithm. In 
some cases, the time derivative y-  replaces e  leading to the controller 
 

 
0

( )
t

P I Du K e K e d K ys s= + -ò   (39) 

 

 
Fig. 7. Image position error in the image coordinate frame. 
  
This last controller attenuates overshoots in face of abrupt changes in the set point value. 
When applied to joint control of robot manipulators, the linear PID controller leads to local 
stability or semi-global stability results. Applying a saturating function to the error, the 
Authors in references (Kelly, 1998) and (Santibañez & Kelly, 1998) were able to obtain global 
stability results. The next expression is an example of a PID controller using saturating 
functions 

 
0

( ( )) .
t

P I Du K e K f e d K ys s= + -ò   (40) 

 
In this case, the term ( )f ⋅ corresponds to a saturation function applied to the error. The 
proposed method for the control the redundant parallel robot will resort on a similar 
approach. The following definition states some key properties of the saturating functions 
used in the control law described in subsequent paragraphs.  
  
Definition 1.  e( , , )m x  with 1 0m³ > , 0e>  and Înx  denotes the set of all continuous 

differentiable increasing functions [ ]= 1 2( ) ( ) ( ) ( ) Tnf f x f x f xx  such that 
 
 ( ) , : ;x f x mx x x e³ ³ " Î <  

 ( ) , : ;f x m x xe e e³ ³ " Î ³  
 1 ( / ) ( ) 0;d dx f x³ ³  
 

where ⋅  stands for the absolute value. 
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The following equation gives the desired end-effector position [ ]= * * Tx y*X expressed in 
terms of the image coordinate frame 
 
 ( )h b= - +( )h* *

i iX R X O C  (34) 
 
where [ ]= * * Tx y*X denotes the desired end-effector position expressed in the robot 
coordinate frame and located strictly inside the robot workspace, so there exists at least one 
(unknown) constant joint position vector, say 6Îdq   for which the robot end-effector 
reaches the desired position, in other words, there exists a nonempty set ÌnQ  such that 

( )f= ÎW*
daX q  for QÎdaq . At this point, it is convenient to introduce the definition of the 

image position error  iX  as the visual distance between the measured and desired end-
effector positions, see Fig. 7, i.e. 
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Fig. 7. Image position error in the image coordinate frame. 
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stability results. The next expression is an example of a PID controller using saturating 
functions 
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In this case, the term ( )f ⋅ corresponds to a saturation function applied to the error. The 
proposed method for the control the redundant parallel robot will resort on a similar 
approach. The following definition states some key properties of the saturating functions 
used in the control law described in subsequent paragraphs.  
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Figure 8 depicts the region allowed for functions belonging to the set  e( , , )m x . Two 
important properties of functions ( )f x belonging to  e( , , )m x  are now stated 

 
Property 4. The Euclidean norm of ( ), nf Îx x   satisfies 
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Property 5. The function ( ) ,T nf Îx x x   satisfies 
 

2 ,( )
, .

T m iff
m if

e
e e

ìï <ï³íï ³ïî
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Fig. 8. Saturating functions  e( , , )m x . 

 
4.2 Control problem formulation 
Consider the robotic system described in Fig.6. Assume that the camera together with the 
vision system provide the position [ ]Tx y=i i iX of the robot end-effector expressed in the 
image coordinate frame. Suppose that measurements of joint position q and velocity q  are 
available. However, the magnification factor h  and the position of the intersection of the 
camera axis with the robot workspace [ ]Tx yO O=O  expressed in terms of the robot 
coordinate frame are assumed unknown. The control problem can be stated as that of 
designing a control law for the active joint actuator torques aτ  such that the robot end-

effector reaches, in the image supplied on the screen, the desired position defined in the 
robot workspace, i.e., the control law must ensure that ( )

¥
- =lim

t
*
i iX X 0 for 2ÎWÌ*

iX  . 

In order to solve the problem stated previously, assume that  
 
 .T =aS τ u  (41) 
 
Variable u defines a control signal in terms of the end-effector coordinates, and drives the 
robot dynamics (28). Hence, torques aτ are the solutions of the following equation 
 
 ( )† .T=aτ S u  (42) 
 
The symbol ( ) ( )† 1T T -=S S S S stands for the Moore-Penrose pseudo-inverse of TS , satisfying 

( )†T T I=S S , and ( )[ ]† †
T

T T I= =S S S S . Solution (42) makes sense only if the pseudo-inverse 
( )†TS  is well defined, i.e., if matrix S  has full rank. Matrix S loose rank if the parallel robot 
reaches a singular configuration; in the sequel, matrix S is assumed full rank. Let us propose 
the following PID control law 

 

 ( )
0

( )
t
f ds s= + -òP I Du K Y K Y K X  (43) 

 
Using (41) and (42) allows writing the control law (39) as follows 

 

 ( ) ( )†

0
( )

t
T f ds sé ù= + -ê úë ûòa P I Dτ S K Y K Y K X  (44) 

 
The term b= ( )T iY R X corresponds to the rotated position error, variables PK , IK and DK are 
diagonal positive definite matrices and correspond to the proportional, integral and 
derivative actions. The above control law is composed of a linear Proportional Derivative 
(PD) term plus an integral action of the nonlinear function of the position error ( )f Y . Note 

that the position error  iX feeds the proportional and the integral actions, whereas the active 

joint velocities aq feed the derivative action using the relationship †= aX S q  . Note also that in 
order to implement control law (44) it is not necessary to know the parameters h  and h ; 
hence, camera calibration is not necessary. The Fig. 9 depicts the corresponding block 
diagram.  
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Figure 8 depicts the region allowed for functions belonging to the set  e( , , )m x . Two 
important properties of functions ( )f x belonging to  e( , , )m x  are now stated 
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4.2 Control problem formulation 
Consider the robotic system described in Fig.6. Assume that the camera together with the 
vision system provide the position [ ]Tx y=i i iX of the robot end-effector expressed in the 
image coordinate frame. Suppose that measurements of joint position q and velocity q  are 
available. However, the magnification factor h  and the position of the intersection of the 
camera axis with the robot workspace [ ]Tx yO O=O  expressed in terms of the robot 
coordinate frame are assumed unknown. The control problem can be stated as that of 
designing a control law for the active joint actuator torques aτ  such that the robot end-

effector reaches, in the image supplied on the screen, the desired position defined in the 
robot workspace, i.e., the control law must ensure that ( )

¥
- =lim

t
*
i iX X 0 for 2ÎWÌ*

iX  . 

In order to solve the problem stated previously, assume that  
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Fig. 9. Block diagram of the Visual PID control law. 

 
Substituting control law (44) into the robot dynamics (28) and defining an auxiliary variable 
Z  as  

 ( ) 1
0

( )
t
f ds s -= -ò IZ Y K N  (45) 

 
yield the closed-loop dynamics  
 

 { }1

( )

h
d
dt

f

h
-

é ù-é ù ê úê ú ê úê ú= + - -ê úê ú ê úê ú ê úê úë û ë û

P I D

XY

X M K Y K Z K X CX
Z Y



    (46) 

 
The following proposition provides conditions on the controller gains , ,P DK K and 

IK guaranteeing the asymptotic stability of the equilibrium of the closed-loop dynamics.  
 
Proposition 2. Consider the robot dynamics (28) together with control law (44) where 

Î( )f Y  ( , , )m xe . Assume that the PID controller gains fulfill 
 
 { } { }min max 2 2, 0k kl l> + >D C CK M  (47) 

 { } { } { }min max max
2
hl l l
h

> +P IK K M   (48) 

 

Then, the equilibrium [ ]0 0 0
T Té ù =ë ûY X Z   of (46) is asymptotically stable.   

  
Proof of Proposition 2: The stability analysis employs the following Lyapunov Function 
Candidate 
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The first term is a nonnegative function of Y  and X , while the second is a nonnegative 
function of variables Y andZ . Using the fact that DK  is a diagonal positive definite 
matrix, ( )f =0 0 , and the entries of ( )f Y  are increasing functions, it is not difficult to show 
that the third term satisfies 
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Therefore, this term is positive definite with respect to Y . For the remaining terms, notice 
that using the Rayleigh-Ritz inequality leads to 
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The above result and Property 4 yields 
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The right-hand side of (51) is a positive definite function with respect to Y  because of 
inequality (48); therefore, the Lyapunov function candidate (49) is a positive definite 
function. The following equation gives the time derivative of Lyapunov Function Candidate 
(49) 
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Applying the Leibnitz rule to the time derivative of the integral term produces 
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From the above, the Lyapunov Functions Candidate time derivative becomes 
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Fig. 9. Block diagram of the Visual PID control law. 
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Î( )f Y  ( , , )m xe . Assume that the PID controller gains fulfill 
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T Té ù =ë ûY X Z   of (46) is asymptotically stable.   
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The first term is a nonnegative function of Y  and X , while the second is a nonnegative 
function of variables Y andZ . Using the fact that DK  is a diagonal positive definite 
matrix, ( )f =0 0 , and the entries of ( )f Y  are increasing functions, it is not difficult to show 
that the third term satisfies 
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Therefore, this term is positive definite with respect to Y . For the remaining terms, notice 
that using the Rayleigh-Ritz inequality leads to 
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The above result and Property 4 yields 
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The right-hand side of (51) is a positive definite function with respect to Y  because of 
inequality (48); therefore, the Lyapunov function candidate (49) is a positive definite 
function. The following equation gives the time derivative of Lyapunov Function Candidate 
(49) 
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Applying the Leibnitz rule to the time derivative of the integral term produces 
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From the above, the Lyapunov Functions Candidate time derivative becomes 
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Note that the time derivative of the saturating function ( )f Y  fulfills ( ) ( )f hFh=-Y Y X  . The 
term ( )F Y is a diagonal matrix, and its entries ( )/ ; 1,2j jf j¶ ¶ =Y Y  are nonnegative and 
smaller than or equal to one. Substituting the closed-loop dynamics (46) into (52) yields 
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Some simplifications and the use of Property 2 lead to the following expression for the time 
derivative of the Lyapunov Function Candidate (49) along the trajectories of the closed-loop 
system (46)  
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By using Properties 3 and 4 we have 
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On the other hand, note that 
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The parameter { } { }min max 2kg l l= - -D CK M  is positive because of the selection of DK in (47). 
The fact that PK and IK  are diagonal positive definite matrices and ( ) 0i if ³Y Y allows 
establishing the following upper bound for the second term of (54) 
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Taking into account Property 5 leads to 
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The choice of PK  in (48) ensures { } { }[ ]min max 0m
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Therefore, incorporating (55) into(54) produces the following a negative semi-definite 
function 
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Using the fact that the Lyapunov Function Candidate (49) is a positive definite function and 
its time derivative is a negative semi-definite function, allows concluding that the 
equilibrium of the closed-loop system (46) is stable. Finally, by invoking the LaSalle’s 
invariance principle permits establishing asymptotical stability as follows. Since 

( ), , 0V ºY X Z  if and only if X and Y  are zero. This implies that X , Y , and ( )f Y  are also 

zero; then, from the closed-loop system (46) , it follows that { }1- + - - =P I DM K Y K Z K X CX 0  . 
This result allows concluding 0=IK Z . Therefore, 0=Z  because IK  is a diagonal positive 

definite matrix. Thus, ( ), , 0V ºY X Z in the invariant set{ }, ,= = =Y 0 X 0 Z 0  and asymptotic 
stability follows.  

  
Some comments regarding the proposed control law are worth making. Firstly, note that the 
measurements provided by the vision system feed the integral and proportional actions. The 
Derivative action employs velocity measurements from the active joints; then, using the 
relationship †= aX S q  allows obtaining velocity estimates of the robot end effector. In 
practice, since in most cases, the robot active joints are endowed only with position sensors, 
high-pass filter or backward differences approaches would permit estimating aq from 
position measurements. An advantage of using aq for generating the Derivative action is 
that position measurements at the active joints, supplied in most cases by optical encoders, 
are obtained at higher sampling rates compared with the measurements provided by a 
vision system. The reader will note in the next section that the sampling rate for the 
incremental optical encoders associated to the active joints is five times faster than that 
corresponding to the measurements obtained though the vision system.   

 
5. Experimental Results 

Experiments conducted on a laboratory prototype (Fig. 10) display the performance of the 
proposed controller. The nominal link lengths of the prototype are 15L cm= . Brushed servomotors 
from Moog, model C34L80W40 drive the active joints. Incremental optical encoders attached to the 
motors provide position measurements corresponding to the vector aq . These motors steer the active 
joints through timing belts with a 3.6:1 ratio. Pulse width modulation digital amplifiers from Copley 
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vision system. The reader will note in the next section that the sampling rate for the 
incremental optical encoders associated to the active joints is five times faster than that 
corresponding to the measurements obtained though the vision system.   

 
5. Experimental Results 

Experiments conducted on a laboratory prototype (Fig. 10) display the performance of the 
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Controls, model Junus 90 and working in current mode, drive the motors. Absolute optical encoders 
from US Digital, model A2, with 4096 pulses per turn, supply measurements of the robot active and 
passive joints angles iq and ia that allows computing the Jacobians †S  and( )†TS .  
 

 
Fig. 10. Laboratory prototype. 
 
Two computers compose the control architecture; which is an update of the architecture 
presented in (Soria et al. 2006). The first computer, called the vision computer and endowed 
with an Intel Core2 processor running at 2.4 GHz, executes image acquisition; a Dalsa 
Camera, model CA-1D-128A  is connected to this computer by means of a National 
Instruments card, model NI-1422. Image processing is performed using Visual C++ and the 
DIAS software1. The second computer, called the control computer and endowed with an 
Intel 4 processor running at 3.0 GHz, executes the control algorithm and performs data 
logging. This computer receives data from the vision computer through an RS-232 port at 
115 Kbaud. Data acquisition is carried out through a data card from Quanser consulting, 
model MultiQ 3. This card reads signals from the optical incremental encoders attached to 
the motors and supplies control voltages to the power amplifiers. Optical absolute encoders 
connect to the control computer through an RS-232 using an AD2-B adapter from US 
Digital. 
Algorithms are coded using the Matlab/Simulink 5.2 software under the Wincon 3.02 real-
time environment. A counter in the MultiQ 3 card sets a sampling period of 

0.5 ,ieT ms= which corresponds to the master clock of the closed-loop system; this sampling 
period also sets the sampling time for reading the active joint incremental optical encoders. 
The image sampling period is 5 ;imT ms=  during this time interval, the vision computer 
executes data acquisition and processing; it also includes the time required to send the robot 
end-effector coordinates to the control computer through the RS-232 link. It is worth 
mentioning that imT  corresponds to the time delay introduced in the visual measurements. 
The absolute encoder measurements are sampled every 15abT ms= . The sampling time for 
the visual and absolute encoder, measurements are synchronized with the master clock. The 
choice for the numerical method in Simulink was the ODE 45 Dormand-Price algorithm. 
Gains for the proposed controller were set to { }0.22 0.22 ,diag=PK { }= 0.004 0.004diagDK , 

and { }0.176 0.156diag=IK . The reference *xi  is square wave of 16 pixels of amplitude, with 
a frequency of 0.2 Hz, while the reference *yi is a square wave with a frequency of 0.4 Hz. Fig 
12 depicts the experimental position control results without and with integral action. The 
upper part in Fig. 12 corresponds to the xi  coordinate whereas the bottom part corresponds 
to the yi coordinate. Fig.13 depicts the image position errors; note that when the reference 
changes, the position error settles around 0.5 pixels using the integral action. These results 
indicate that the integral action removes the steady state error without greatly affecting the 
transient response.  

 

  
Fig. 11. Camera with image coordinate frame parallel to the robot coordinate frame. 
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Fig. 12. Desired and measured end effector positions: Left, without integral 
action { }= 0 0diagIK ; right, with integral action { }0.176 0.156diag=IK . 
 

 
Fig. 13. Image position errors: Left, without integral action; right, with integral action. 

 
6. Conclusion 

This chapter has presented some modeling and control issues related to a class of 
overactuated planar parallel robots. After reviewing the kinematic and dynamic modeling 
of this kind of robots, the Authors propose a novel imaged-based Proportional-Integral-
Derivative regulator. A key element in this control law is the measurement of the end-
effector position using a vision system. This feature avoids using the robot Forward 
Kinematics employed traditionally for controlling planar parallel robots, and which requires 
an off-line calibration. Moreover, the proposed control law does not rely on camera 
calibration. A theoretical study provides conditions on the PID gains for obtaining 
asymptotic closed-loop stability.  A practical implementation of the proposed method using 
a laboratory prototype shows a good performance of the closed-loop system. The 
experiments indicate that, as expected in a PID controller, the integral action removes the 
steady state error without a noticeable degradation in the transient response. 
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Fig. 12. Desired and measured end effector positions: Left, without integral 
action { }= 0 0diagIK ; right, with integral action { }0.176 0.156diag=IK . 
 

 
Fig. 13. Image position errors: Left, without integral action; right, with integral action. 

 
6. Conclusion 

This chapter has presented some modeling and control issues related to a class of 
overactuated planar parallel robots. After reviewing the kinematic and dynamic modeling 
of this kind of robots, the Authors propose a novel imaged-based Proportional-Integral-
Derivative regulator. A key element in this control law is the measurement of the end-
effector position using a vision system. This feature avoids using the robot Forward 
Kinematics employed traditionally for controlling planar parallel robots, and which requires 
an off-line calibration. Moreover, the proposed control law does not rely on camera 
calibration. A theoretical study provides conditions on the PID gains for obtaining 
asymptotic closed-loop stability.  A practical implementation of the proposed method using 
a laboratory prototype shows a good performance of the closed-loop system. The 
experiments indicate that, as expected in a PID controller, the integral action removes the 
steady state error without a noticeable degradation in the transient response. 
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Abstract 

This chapter presents a successful implementation of PID controller for a pneumatically 
actuated active roll control suspension system in both simulation and experimental studies. 
For the simulation model, a full vehicle model which consists of ride, handling and tire 
subsystems to study vehicle dynamics behavior in lateral direction is derived. The full 
vehicle model is then validated experimentally using an instrumented experimental vehicle 
based on the driver input from the steering wheel. Two types of vehicle dynamics test are 
performed for the purpose of model validation namely step steer test and double lane 
change test. The results of model validation show that the behaviors of the model closely 
follow the behavior of a real vehicle with acceptable error. An active roll control (ARC) 
suspension system is then developed on the validated full vehicle model to reduce 
unwanted vehicle motions during cornering maneuvers such as body roll angle, body roll 
rate, vertical acceleration of the body and body heave. The proposed controller structure for 
the ARC system is PID control with roll moment rejection loop. The ARC system is then 
implemented on an instrumented experimental vehicle in which four units of pneumatic 
actuators are installed in parallel arrangement with the passive suspension system. The 
results of the study shows that the proposed control structure is able to significantly 
improve the dynamics performance of the vehicle during step steer and double lane change 
maneuvers compared to a passive vehicle system. It can also be noted that the additional 

3
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roll moment rejection loop is able to further improve the performance of the PID controller 
for the ARC system. 

 
1. Introduction 

PID controller is the most popular feedback controller used in the process industries. The 
algorithm is simple but it can provide excellent control performance despite variation in the 
dynamic characteristics of a process plant. PID controller is a controller that includes three 
elements namely proportional, integral and derivative actions. The PID controller was first 
placed on the market in 1939 and has remained the most widely used controller in process 
control until today (Araki, 2006). A survey performed in 1989 in Japan indicated that more 
than 90% of the controllers used in process industries are PID controllers and advanced 
versions of the PID controller (Takatsu et al., 1998). 
 
The use of electronic control systems in modern vehicles has increased rapidly and in recent 
years, electronic ontrol systems can be easily found inside vehicles, where they are 
responsible for smooth ride, cruise control, traction control, anti-lock braking, fuel delivery 
and ignition timing. The successful implementation of PID controller for automotive 
systems have been widely reported in the literatures such as for engine control (Ying et al., 
1999; Yuanyuan et al., 2008; Bustamante et al., 2000), vehicle air conditioning control (Zhang 
et al., 2010), clutch control (Wu et al., 2008; Wang et al., 2001 ), brake control (Sugisaka et al., 
2006; Hashemi-Dehkordi et al., 2009; Zhang et al., 1999), active steering control (Marino et al., 
2009; Yan et al., 2008), power steering control (Morita et al., 2008), drive train control 
(Mingzhu et al., 2008; Wei et al., 2010; Xu, et al., 2007), throttle control (Shoubo et al., 2009; 
Tan et al., 1999; Corno et al., 2008) and suspension control ( Ahmad et al., 2008; Ahmad et al., 
2009a; Ahmad et al., 2009b; Hanafi, 2010; Ayat et al., 2002a ).  
 
Over the last two decades, various active chassis control systems for automotive vehicles 
have been developed and put to commercial utilization. In particular, Vehicle Dynamics 
Control (VDC) and Electronic Stability Program (ESP) systems have become very active and 
attracting research efforts from both academic community and automotive industries 
(Mammar and Koenig, 2002; McCann, 2000; Mokhiamar and Abe, 2002; Wang and Longoria, 
2006). The main goals of active chassis control include improvement in vehicle stability, 
maneuverability and passenger comfort especially in adverse driving conditions. 
 
Ignited by advanced electronic technology, many different active chassis control systems 
have been developed, such as traction control system (Borrelli et al., 2006), active steering 
control (Falcone et al., 2007), antilock braking system (Cabrera et al., 2005), active roll control 
suspension system and others. This study is part of the continuous efforts in the prototype 
development of a pneumatically actuated active roll control suspension system for 
passenger vehicles. The proposed ARC system is used to minimize the effects of unwanted 
roll and vertical body motions of the vehicle in the presence of steering wheel input from the 
driver. 
 
ARC system is a class of electronically controlled active suspension system. Although active 
suspension has been widely studied for decades, most of the research are focused on vehicle 

ride comfort, with only few papers (Williams and Haddad, 1995; Ayat et al., 2002a; Wang et 
al., 2005, Ayat et al., 2002b) studying how an active suspension system can improve vehicle 
handling. It is well-known that a vehicle tends to roll on its longitudinal axis if the vehicle is 
subjected to steering wheel input due to the weight transfer from the inside to the outside 
wheels. Some control strategies for ARC systems have been proposed to cancel out lateral 
weight transfer using active force control strategy (Hudha et al. 2003), hybrid fuzzy-PID 
(Xinpeng and Duan, 2007), speed dependent gain scheduling control (Darling and Ross-
Martin, 1997), roll angle and roll moment control (Miege and Cebon, 2002), state feedback 
controller optimized with genetic algorithm (Du and Dong, 2007) and the combination of 
yaw rate and side slip angle feedback control (Sorniotti and D’Alfio, 2007). 
 
In this study, ARC system is developed using four units of pneumatic system installed 
between lower arms and vehicle body. The proposed control strategy for the ARC system is 
the combination of PID based feedback control and roll moment rejection based feed 
forward control. Feedback control is used to minimize unwanted body heave and body roll 
motions, while the feed forward control is intended to reduce the unwanted weight transfer 
during steering input maneuvers. The forces produced by the proposed control structure are 
used as the target forces by the four unit of pneumatic system. 
 
The use of pneumatic actuator for an active roll control suspension system is a relatively 
new concept and has not been thoroughly explored. The use of pneumatic system is rare in 
active suspension application although they have several advantages compared with other 
actuation systems such as hydraulic system. The main advantage of pneumatic system is 
their power-to-weight ratio which is better than hydraulic system. They are also clean, 
simple system and comparatively low cost (Smaoui et al., 2006). The disadvantage of 
pneumatic system is the unwanted nonlinearity because of the compressibility and 
springing effects of air (Situm et al., 2005; Richer and Hurmuzlu, 2000). Due to these 
difficulties, early use of pneumatic actuators was limited to simple applications that 
required only positioning at the two ends of the stroke. But, during the past decade, many 
researchers have proposed various approaches to continuously control the pneumatic 
actuators (Ben-Dov and Salcudean, 1995; Wang et al., 1999; Messina et al., 2005). It is shown 
that the comparative advantages and difficulties of pneumatic system are still interesting 
and also a challenging problems in controller design in order to achieve reasonable 
performance in terms of position and force controls. 
 
The proposed control strategy is optimized for a 14 degrees of freedom (DOF) full vehicle 
model. The full vehicle model consists of 7-DOF vehicle ride model and 7-DOF vehicle 
handling model coupled with Calspan tyre model. The full vehicle model can be used to 
study the behavior of vehicle in lateral, longitudinal and vertical directions due to both road 
and driver inputs. Calspan tire model is employed due to its capability to predict the 
behavior of a real tire better than Dugoff and Magic formula tire model (Kadir et al., 2008). 
 
Beside the proposed control structure, another consideration of this chapter is that the 
proposed control structure for the ARC system is implemented on a validated full vehicle 
model as well as on a real vehicle. It is common that the controllers, developed on the 
validated model, are ready to be implemented in practice with high level of confidence and 
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need less fine tuning works. For the purpose of vehicle model validation, an instrumented 
experimental vehicle has been developed using a Malaysia National Car. Two types of road 
test namely step steer and double lane change test were performed using the instrumented 
experimental vehicle. The data obtained from the road tests are used as the validation 
benchmarks of the 14-DOF full vehicle model. 
 
This chapter is organized as follows: The first section contains introduction and the review 
of some related works, followed by mathematical derivations of the 14-DOF full vehicle 
model with Calspan tyre model in the second section. The third section introduces the 
proposed controller structure for the ARC system. The fourth section presents the results of 
validation of the full vehicle model. Furthermore, improvements of vehicle dynamics 
performance on simulation studies and experimental tests using the proposed ARC system 
are presented in the fifth and the sixth section, respectively. The last section contains some 
conclusions. 

 
2. Full Vehicle Modeling with Calspan Tire Model 

The full-vehicle model of the passenger vehicle considered in this study consists of a single 
sprung mass (vehicle body) connected to four unsprung masses and is represented as a 14-
DOF system as shown in Figure 1. The sprung mass is represented as a plane and is allowed 
to pitch, roll and yaw as well as to displace in vertical, lateral and longitudinal directions. 
The unsprung masses are allowed to bounce vertically with respect to the sprung mass. 
Each wheel is also allowed to rotate along its axis and only the two front wheels are free to 
steer.   

 
2.1 Modeling Assumptions 
Some of the modeling assumptions considered in this study are as follows: the vehicle body 
is lumped into a single mass which is referred to as the sprung mass, aerodynamic drag 
force is ignored, and the roll centre is coincident with the pitch centre and located just below 
the body center of gravity. The suspensions between the sprung mass and unsprung masses 
are modeled as passive viscous dampers and spring elements. Rolling resistance due to 
passive stabilizer bar and body flexibility are neglected. The vehicle remains grounded at all 
times and the four tires never lost contact with the ground during maneuvering. A 4 degrees 
tilt angle of the suspension system toward vertical axis is neglected ( 4cos = 0.998  1). Tire 
vertical behavior is represented as a linear spring without damping, while the lateral and 
longitudinal behaviors are represented with Calspan model. Steering system is modeled as a 
constant ratio and the effect of steering inertia is neglected.  

 
2.2 Vehicle Ride Model 
The vehicle ride model is represented as a 7-DOF system. It consists of a single sprung mass 
(car body) connected to four unsprung masses (front-left, front-right, rear-left and rear-right 
wheels) at each corner of the vehicle body. The sprung mass is free to heave, pitch and roll 
while the unsprung masses are free to bounce vertically with respect to the sprung mass. 
The suspensions between the sprung mass and unsprung masses are modeled as passive 
viscous dampers and spring elements. While, the tires are modeled as simple linear springs 

without damping. For simplicity, all pitch and roll angles are assumed to be small. A similar 
model was used by Ikenaga (2000). 
 

 
Fig. 1. A 14-DOF full vehicle ride and handling model  
 
Referring to Figure 1, the force balance on sprung mass is given as 
 

 ssprrprlpfrpflrrrlfrfl ZmFFFFFFFF 
        (1)  

 

where, 
 

 Ffl  = suspension force at front left corner 
 Ffr  = suspension force at front right corner 
 Frl  = suspension force at rear left corner 
 Frr  = suspension force at rear right corner 
 ms   = sprung mass weight 

sZ   = sprung mass acceleration at body centre of gravity 

prrprlpfrpfl FFFF ;;;  = pneumatic actuator forces at front left, front right, rear left and 

rear right corners, respectively. 
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The suspension force at each corner of the vehicle is defined as the sum of the forces 
produced by suspension components namely spring force and damper force as the 
followings 
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where, 
 

Ks,fl  = front left suspension spring stiffness  
Ks,fr  = front right suspension spring stiffness  
Ks,rr  = rear right suspension spring stiffness  
Ks,rl  = rear left suspension spring stiffness  
Cs,fr  = front right suspension damping  
Cs,fl  = front left suspension damping  
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  = front right unsprung mass velocity 

fluZ ,
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The sprung mass position at each corner can be expressed in terms of bounce, pitch and roll 
given by 
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It is assumed that all angles are small, therefore Eq. (3) becomes 
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where, 
 

lf  = distance between front of vehicle and center of gravity of sprung mass  
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w = track width 
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By substituting Eq. (4) and its derivative (sprung mass velocity at each corner) into Eq. (2) 
and the resulting equations are then substituted into Eq. (1), the following equation is 
obtained 
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where,  
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where, 
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w = track width 
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flsZ ,  = front left sprung mass displacement 

frsZ ,  = front right sprung mass displacement 
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By substituting Eq. (4) and its derivative (sprung mass velocity at each corner) into Eq. (2) 
and the resulting equations are then substituted into Eq. (1), the following equation is 
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   = pitch rate at body centre of gravity  
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Ks,f  = spring stiffness of front suspension (Ks,fl = Ks,fr) 

 Ks,r = spring stiffness of rear suspension (Ks,rl = Ks,rr) 
 Cs,f  = Cs,fl = Cs,fr  = damping constant of front suspension 
 Cs,r = Cs,rl = Cs,rr = damping constant of rear suspension 
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Similarly, moment balance equations are derived for pitch  and roll  , and are given as   
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where, 
 

  = pitch acceleration at body centre of gravity   
  = roll acceleration at body centre of gravity  
Ixx = roll axis moment of inertia   
Iyy  = pitch axis moment of inertia   

  
By performing force balance analysis at the four wheels, the following equations are 
obtained 
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where, 
 

fruZ ,
  = front right unsprung mass acceleration 

fluZ ,
  = front left unsprung mass acceleration 

rruZ ,
  = rear right unsprung mass acceleration 

rluZ ,
  = rear left unsprung mass acceleration 

rlrrrrflrfrr ZZZZ ,,,,  = road profiles at front left, front right, rear right  

                                          and  rear left tyres respectively 

 
2.3 Vehicle Handling Model 
The handling model employed in this paper is a 7-DOF system as shown in Figure 2. It takes 
into account three degrees of freedom for the vehicle body in lateral and longitudinal 
motions as well as yaw motion (r) and one degree of freedom due to the rotational motion of 
each tire. In vehicle handling model, it is assumed that the vehicle is moving on a flat road. 
The vehicle experiences motion along the longitudinal x-axis and the lateral y-axis, and the 
angular motions of yaw around the vertical z-axis. The motion in the horizontal plane can be 
characterized by the longitudinal and lateral accelerations, denoted by ax and ay respectively, 
and the velocities in longitudinal and lateral direction, denoted by xv and yv , respectively. 

 

 
Fig. 2. A 7-DOF vehicle handling model 
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Fig. 2. A 7-DOF vehicle handling model 
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Acceleration in longitudinal x-axis is defined as 
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By summing all the forces in x-axis, longitudinal acceleration can be defined as  
 

 t

xrrxrlyfrxfryflxfl
x m

FFFFFF
a




 sincossincos

      (13) 
 

Similarly, acceleration in lateral y-axis is defined as 
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By summing all the forces in lateral direction, lateral acceleration can be defined as 
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where xijF and yijF denote the tire forces in the longitudinal and lateral directions, 

respectively, with the index (i) indicating front (f) or rear (r) tires and index (j) indicating left 

(l) or right (r) tires. The steering angle is denoted by δ, the yaw rate by
.
r and tm denotes the 

total vehicle mass. The longitudinal and lateral vehicle velocities xv and yv can be obtained 

by integrating of yv
.

and xv
.

. They can be used to obtain the side slip angle, denoted by α. 
Thus, the slip angle of front and rear tires are found as 
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where, f and r are the side slip angles at front and rear tires respectively. While lf  and lr 

are the distance between front and rear tire to the body center of gravity respectively. 
 
 
 

To calculate the longitudinal slip, longitudinal component of the tire velocity should be 
derived. The front and rear longitudinal velocity component is given by: 
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where, the speed of the rear tire is, 
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Then, the longitudinal slip ratio of front tire, 
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The longitudinal slip ratio of rear tire is, 
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where, ωr and ωf are angular velocities of rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as 

on the self-aligning moments, denoted by zijM acting on each tire: 
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Acceleration in longitudinal x-axis is defined as 
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Similarly, acceleration in lateral y-axis is defined as 
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By summing all the forces in lateral direction, lateral acceleration can be defined as 
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where, f and r are the side slip angles at front and rear tires respectively. While lf  and lr 

are the distance between front and rear tire to the body center of gravity respectively. 
 
 
 

To calculate the longitudinal slip, longitudinal component of the tire velocity should be 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle body undergoes 

roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, c is the height of the sprung mass center of gravity from the ground, g is the 

gravitational acceleration and k ,  , k and   are the damping and stiffness constant for 

roll and pitch, respectively. The moments of inertia of the sprung mass around x-axis and y-
axis are denoted by sxJ and syJ respectively. 

 
2.4 Simplified Calspan Tire Model  
Tire model considered in this study is Calspan model as described in Szostak et al. (1988). 
Calspan model is able to describe the behavior of a vehicle in any driving scenario including 
inclement driving conditions which may require severe steering, braking, acceleration, and 
other driving related operations (Kadir et al., 2008). The longitudinal and lateral forces 
generated by a tire are a function of the slip angle and longitudinal slip of the tire relative to 
the road. The previous theoretical developments in Szostak et al. (1988) lead to a complex, 
highly non-linear composite force as a function of composite slip. It is convenient to define a 
saturation function, f(σ), to obtain a composite force with any normal load and coefficient of 
friction values (Singh et al., 2000). The polynomial expression of the saturation function is 
presented by: 
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire contact 
patch lengths are calculated using the following two equations: 
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where ap is the tire contact patch, Fz is a normal force, Tw is a tread width, and Tp is a tire 
pressure. While FZT and Kα are tire contact patch constants. The lateral and longitudinal 
stiffness coefficients (Ks and Kc, respectively) are a function of tire contact patch length and 
normal load of the tire as expressed as follows: 
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where the values of A0, A1, A2 and CS/FZ are stiffness constants. Then, the composite slip 
calculation becomes: 
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Where S is a tire longitudinal slip,   is a tire slip angle, and µo is a nominal coefficient of 
friction and has a value of 0.85 for normal road conditions, 0.3 for wet road conditions, and 
0.1 for icy road conditions. Given the polynomial saturation function, lateral and 
longitudinal stiffness, the normalized lateral and longitudinal forces are derived by 
resolving the composite force into the side slip angle and longitudinal slip ratio components: 
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Lateral force has an additional component due to the tire camber angle, γ, which is modeled 
as a linear effect. Under significant maneuvering conditions with large lateral and 
longitudinal slip, the force converges to a common sliding friction value. In order to meet 
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where, c is the height of the sprung mass center of gravity from the ground, g is the 
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire contact 
patch lengths are calculated using the following two equations: 
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where ap is the tire contact patch, Fz is a normal force, Tw is a tread width, and Tp is a tire 
pressure. While FZT and Kα are tire contact patch constants. The lateral and longitudinal 
stiffness coefficients (Ks and Kc, respectively) are a function of tire contact patch length and 
normal load of the tire as expressed as follows: 
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where the values of A0, A1, A2 and CS/FZ are stiffness constants. Then, the composite slip 
calculation becomes: 
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Where S is a tire longitudinal slip,   is a tire slip angle, and µo is a nominal coefficient of 
friction and has a value of 0.85 for normal road conditions, 0.3 for wet road conditions, and 
0.1 for icy road conditions. Given the polynomial saturation function, lateral and 
longitudinal stiffness, the normalized lateral and longitudinal forces are derived by 
resolving the composite force into the side slip angle and longitudinal slip ratio components: 
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Lateral force has an additional component due to the tire camber angle, γ, which is modeled 
as a linear effect. Under significant maneuvering conditions with large lateral and 
longitudinal slip, the force converges to a common sliding friction value. In order to meet 
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this criterion, the longitudinal stiffness coefficient is modified at high slips to transition to 
lateral stiffness coefficient as well as the coefficient of friction defined by the parameter Kµ. 
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3. Controller Structure of Pneumatically Actuated  
Active Roll Control Suspension System 

The proposed controller structure consists of inner loop controller to reject the unwanted 
weight transfer and outer loop controller to stabilize heave and roll responses due to 
steering wheel input from the driver. An input decoupling transformation is placed between 
inner and outer loop controllers that blend the inner loop and outer loop controller. The 
outer loop controller provides the ride control that isolates the vehicle body from vertical 
and rotational vibrations induced by steering wheel input and the inner loop controller 
provides the weight transfer rejection control that maintains load-leveling and load 
distribution during vehicle maneuvers. The proposed control structure is shown in Figure 3.  
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The outputs of the outer loop controller are vertical forces to stabilize body bounce  zM  

and moment to stabilize roll  M . These forces and moments are then distributed into 
target forces of the four pneumatic actuators produced by the outer loop controller. 
Distribution of the forces and moments into target forces of the four pneumatic actuators is 
performed using decoupling transformation subsystem. The outputs of the decoupling 
transformation subsystem namely the target forces of the four pneumatic actuators are then 
subtracted with the relevant outputs from the inner loop controller to produce the ideal 

target forces of the four pneumatic actuators. Decoupling transformation subsystem 
requires an understanding of the system dynamics in the previous section. The equivalent 
force and moment for heave, pitch and roll can be defined by 
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where """" ,, prrprlpfrpfl FFFF  are the pneumatic forces produced by outer loop controller 

in front left, front right, rear left and rear right corners, respectively. In the case of the 
vehicle input comes from steering wheel, the pitch moment can be neglected. Equations (37), 
(38) and (39) can be rearranged in matrix format as the following 
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For a linear system of equations y=Cx, if C mxn  has full row rank, then there exists a 
right inverse C-1 such that C-1 C= 1mxm. The right inverse can be computed using C-

1=CT(CCT)-1.  Thus, the inverse relationship of equation (40) can be expressed as: 
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In the outer loop controller, PID control is applied for suppressing both body vertical 
displacement and body roll angle. The inner loop controller of roll moment rejection control 
is described as follows: during cornering, a vehicle will produce a sideway force namely 
cornering force at the body center of gravity. The cornering force generates roll moment to 



this criterion, the longitudinal stiffness coefficient is modified at high slips to transition to 
lateral stiffness coefficient as well as the coefficient of friction defined by the parameter Kµ. 
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In the outer loop controller, PID control is applied for suppressing both body vertical 
displacement and body roll angle. The inner loop controller of roll moment rejection control 
is described as follows: during cornering, a vehicle will produce a sideway force namely 
cornering force at the body center of gravity. The cornering force generates roll moment to 
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the roll center causing the body center of gravity to shift outward as shown in Figure 4. 
Shifting the body center of gravity causes a weight transfer from the inside toward the 
outside wheels. By defining b as the distance between body center of gravity and the roll 
center, roll moment is defined by 
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The two pneumatic actuators installed in outside wheels have to produce the necessary 
forces to cancel out the unwanted roll moments, whereas the forces of the two pneumatic 
actuators in inside wheels are set to zero. Pneumatic force to cancel out roll moment in each 
corner for counter clockwise steering wheel input is defined as: 
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where,  
 
'
pflF = target force of pneumatic system at front left corner produced by inner loop controller 

'
pfrF = target force of pneumatic system at front right corner produced by inner loop 
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'
prlF = target force of pneumatic system at rear left corner produced by inner loop controller 

'
prrF = target force of pneumatic system at rear right corner produced by inner loop 
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The ideal target forces for each pneumatic actuator are defined as the target forces produced 
by outer loop controller subtracted with the respective target forces produced by inner loop 
controller as the following:  
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Fig. 4. Roll Moment Generated by Lateral Force 

 
4. Validation of 14-DOF Ride and Handling Model 

To verify the full vehicle ride and handling model, experimental works were performed 
using an instrumented experimental vehicle. This section provides the verification of ride 
and handling model using visual technique by simply comparing the trend of simulation 
results with experimental data using the same input conditions. Validation or verification is 
defined as the comparison of model’s performance with a real system. Therefore, the 
validation is not meant as fitting the simulated data exactly to the measured data, but as 
gaining confidence that the vehicle handling simulation is giving insight into the behavior of 
the simulated vehicle. The test data are also used to check whether the input parameters for 
the vehicle model are reasonable. In general, model validation can be defined as 
determining the acceptability of a model using some statistical tests for deviance measures 
or subjectively using visual techniques. 

 
4.1 Instrumented Experimental Vehicle 
The data acquisition system (DAS) is installed into the experimental vehicle to obtain the 
experimental data from the real vehicle reaction to evaluate the vehicle performance in 
terms of lateral acceleration, body vertical acceleration, yaw rate and roll rate. The DAS uses 
several types of transducers such as single axis accelerometer to measure the sprung mass 
and unsprung mass accelerations for each corner, tri-axial accelerometer to measure lateral, 
vertical and longitudinal accelerations at the body center of gravity, steering wheel sensor 
and tri-axial gyroscopes for the yaw rate, pitch rate and roll rate. The multi-channel µ-
MUSYCS system Integrated Measurement and Control (IMC) is used as the DAS system. 
Online FAMOS software as the real time data processing and display function is used to 
ease the data collection. The installation of the DAS and sensors to the experimental vehicle 
can be seen in Figure 5. 
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MUSYCS system Integrated Measurement and Control (IMC) is used as the DAS system. 
Online FAMOS software as the real time data processing and display function is used to 
ease the data collection. The installation of the DAS and sensors to the experimental vehicle 
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Fig. 5. Instrumented experimental vehicle 

 
4.2 Validation Procedures  
The dynamic response characteristics of a vehicle model that include yaw response, lateral 
acceleration, slip angle in each tire and roll rate can be validated using experimental test 
through several handling test procedures namely step steer test and double lane change 
(DLC) test. Step steer test is intended to study transient response of the vehicle under 
steering wheel input. In this study, step steer tests were performedwith 180 degrees clock 
wise at 50 km/h. On the other hand, double-lane change test is used to evaluate road 
holding of the vehicle during crash avoidance. In this study, the speed of 80 km/h was set 
for the double-lane change test. 

 
4.3 Model Validation Results 
In experimental works, all the experimental data were filtered using 5th order Butterworth 
low pass filter with the cut-off frequency of 5 Hz. It is necessary to note that the measured 
steering angle from the steering wheel sensorwas used as the input of simulation model. For 
the simulation model, tire parameters are obtained from Szostak et al. (1988) and Singh et al. 
(2000). The results of model verification for 180 degrees step steer test at 50 km/h is shown 
in Figure 6 to 13.  
Figure 6 shows the steering wheel input applied for the step steer test. It can be seen that the 
trends between simulation results and experimental data are almost similar with acceptable 
error. The small difference in magnitude between simulation and experimental results is 
due to the simplification in vehicle dynamics modeling where the effects of anti roll bar 
were completely ignored. In fact, the anti roll bar plays an important role in reducing the 
vertical and roll responses of vehicle body. In simulation model, vehicle body is assumed to 
be rigid. It can be another source of deviation since the body flexibility can influence the roll 
effects of the vehicle body. 

In terms of yaw rate, lateral acceleration and body roll angle, it can be seen that there are 
quite good comparisons during the initial transient phase as well as during the subsequent 
steady state phase as shown in Figures 7 to 9. Slip angle responses of the front tires also 
show satisfying comparison with only small deviation in the transition area between 
transient and steady state phases as shown in Figures 10 and 11.  
It can also be noted that the slip angle responses of all tires in the experimental data are 
slightly higher than the slip angle data obtained from the simulation particularly for the rear 
tires as can be seen in Figures 12 and 13. This is due to the fact that it is difficult for the 
driver to maintain a constant speed during maneuvering. In simulation, it is also assumed 
that the vehicle is moving on a flat road during step steer maneuver. In fact, it is observed 
that the road profiles of test field consist of irregular surface. This can be another source of 
deviation on slip angle response of the tires.  
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Fig. 8. Lateral acceleration response for 180 deg step steer at 50 km/h 
 

 
Fig. 9. Roll angle response for 180 deg step steer at 50 km/h 
 

 
Fig. 10. Slip angle at the front left tire for 180 deg step steer at 50 km/h 
 

 
Fig. 11. Slip angle response at front right tire  for 180 deg step steer at 50 km/h 

 

 
Fig. 12. Slip angle at the rear right tire   for 180 deg step steer at 50 km/h 
 

 
Fig. 13. Slip angle at the rear left tire for 180 deg step steer at 50 km/h 

 
The results of double lane change test indicate that measurement data and the simulation 
results agree with a relatively good accuracy as shown in Figures 14 to 21. Figure 14 shows 
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the measured steering wheel input from double lane change test maneuver which is also 
used as the input for the simulation model. In terms of yaw rate, lateral acceleration and 
body roll angle, it is clear that the simulation results closely follow the measured data with 
minor difference in magnitude as shown in Figures 15 to 17. The minor difference in 
magnitude and small fluctuation occurred on the measured data is due to the body 
flexibility which was ignored in the simulation model. The minor difference in magnitude 
between measured and simulated data can also be caused by one of the modeling 
assumptions namely the effects of anti roll bar which is completely ignored in simulation 
model.      
In terms of tire side slip angles, the trends of simulation results have a good correlation with 
experimental data as can be seen in Figures 18 to 21. Almost similar to the validation results 
obtained from step steer test, the slip angle responses of all tires in experimental data are 
higher than the slip angle data obtained from the simulation particularly for the rear tires. 
Again, this is due to the difficulty of the driver to maintain a constant speed during double 
lane change maneuver. Assumption in simulation model that the vehicle is moving on a flat 
road during double lane change maneuver is also very difficult to realize in practice. In fact, 
road irregularities of the test field may cause the change in tire properties during vehicle 
handling test. Assumption of neglecting the steering inertia have the possibility in lowering 
down the magnitude of tire side slip angle in simulation results compared to the measured 
data.  
Overall, it can be concluded that the trends between simulation results and experimental 
data are having good agreement with acceptable error. The error could be significantly 
reduced by fine tuning of both vehicle and tire parameters. However, excessive fine tuning 
works can be avoided since in control oriented model, the most important characteristic is 
the trend of the model response. As long as the trend of the model response is closely 
similar with the measured response with acceptable deviation in magnitude, it can be said 
that the model is valid. The validated model will be used in conjunction with the proposed 
controller structure of the ARC system in the next section. 
 

 
Fig. 14. Steer angle input for 80 km/h double lane change maneuver 
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Fig. 18. Slip angle at the front left tire for 80 km/h double lane change maneuver 
 

 
Fig. 19. Slip angle at the front right tire for 80 km/h double lane change maneuver 
 

 
Fig. 20. Slip angle at the rear right tire for 80 km/h double lane change maneuver 
 

 
Fig. 21. Slip angle at the rear left tire for 80 km/h double lane change maneuver 

 
5. Performance Assessment of the Proposed Control Structure for ARC System 

This section describes the results of performance study of the proposed control structure for 
the pneumatically actuated ARC system namely PID with roll moment rejection control. 
Performance of the vehicle with passive system is used as a basic benchmark. To investigate 
the advantage of additional roll moment rejection loop, the performance of the proposed 
controller is also compared with PID without roll moment rejection loop. This section begins 
with introducing all the parameters used in this simulation study, followed by the 
presentation of the controller performance in step steer and double lane change tests. The 
PID with roll moment rejection control for ARC system is evaluated for its performance at 
controlling the lateral dynamics of the vehicle according to the following performance 
criteria namely body vertical acceleration, body heave, body roll rate and body roll angle. 

 
5.1 Simulation Parameters 
The simulation study was performed for a period of 10 seconds using Heun solver with a 
fixed step size of 0.01 second. The controller parameters are obtained using trial and error 
technique with some sensitivity studies. The numerical values of the 14-DOF full vehicle 
model parameters and Calspan tire model parameters as well as the controller parameters 
are given in the Appendix.  

 
5.2 Performance of ARC System During Step Steer Test 
The simulation results of body roll angle and body roll rate at the body centre of gravity on 
180 degrees step steer test at 50 km/h are shown in Figures 22 and 23 respectively. It can be 
seen that the performance of PID control with roll moment rejection loop can outperform its 
counterpart namely passive system and PID control without roll moment rejection loop. In 
terms of the roll angle response, it is clear that the additional roll moment rejection loop can 
effectively reduce the magnitude of the roll angle response. Improvement in roll motion 
during maneuvering can enhance the stability of the vehicle in lateral direction.  
In terms of the roll rate response, PID control with roll moment rejection loop shows 
significant improvement over passive and PID control without roll moment rejection loop 
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particularly in the transient response phase area. At steady state response, PID control with 
roll moment rejection loop shows slight improvement in terms of settling time over PID 
control without roll moment rejection loop and significant improvement over passive 
system. Again, the advantage of the additional roll moment rejection loop is shown by 
reducing the magnitude of the roll rate response. Improvement in both roll rate response 
and the settling time during maneuvering can increase the stability level of the vehicle in the 
presence of steering wheel input from the driver.  
Body vertical acceleration and body heave responses of the vehicle at the body center of 
gravity are presented in Figures 24 and 25 respectively. From the body vertical acceleration 
response, both PID control with and without roll moment rejection loops are able to 
drastically reduce unwanted vertical acceleration compared to the passive system. It can be 
seen, the capability of the controller in lowering down the magnitude of body acceleration 
and in speeding up the settling time. Improvement in vertical acceleration at the body center 
of gravity will enhance the comfort level of the vehicle as well as avoiding the driver from 
losing control of the vehicle during maneuvering. 
The main goal of ARC system is to keep the vehicle body remain flat in any driving 
maneuvers. From the body heave response, it is clear that the performance of PID control 
with roll moment rejection loop is significantly better than that of passive system and PID 
control without roll moment rejection loop. It means that PID control with roll moment 
rejection loop shows less vertical displacement during step steer maneuver. This will also 
enhance the comfort level of the vehicle as well as avoiding the driver from losing control of 
the vehicle.  

 

 
Fig. 22. Roll angle response of ARC System for 180 degrees Step Steer Test at 50 km/h 
 

 
Fig. 23. Roll rate response of ARC System for 180 degrees Step Steer Test at 50 km/h 
 

 
Fig. 24. Vertical acceleration response of ARC System for 180 degrees Step Steer Test at 50 
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5.3 Performance of ARC System During Double Lane Change Test 
The simulation results of body roll angle and body roll rate at the body centre of gravity 
during double lane change test at 80 km/h are shown in Figures 26 and 27 respectively. 
Double lane-change is know as a test that measures the maneuverability of the vehicle. In 
real life, a double lane change often occurs when the driver is trying to avoid an accident. 
This sudden maneuver can easily cause the vehicle to tip on two wheels, resulting in a 
rollover. From Figures 26 and 27, it can be observed that the maneuverability of the vehicle 
increases by implementing ARC system. In the case of the driver makes an abrupt swerve 
like double lane change maneuver,  improvement in both roll rate and roll angle responses 
indicate that the possibility of roll over can be significantly reduced using ARC system. 
From the figures, the performance benefit of additional roll moment rejection loop is also 
observed. 
 

 
Fig. 26. Roll angle response of ARC System for 80 km/h double lane change  
 

 
Fig. 27.  Roll rate response of ARC System for 80 km/h double lane change  
 

 
Fig. 28. Vertical acceleration of ARC System for 80 km/h double lane change  
 

 
Fig. 29. Vertical displacement response of ARC System for 80 km/h double lane change  
 
Body vertical acceleration and body heave response are presented in Figures 28 and 29. It can 
be concluded that PID controller with and without roll moment rejection loop for ARC system 
are able to improvement significantly the ride performance compared to the passive system. 
Again, the performance benefit of additional roll moment rejection loop is also observed from 
the figures. Enhancement in ride performance may trim down the rate of driver fatigue and 
reduce the risk of the driver losing control of the vehicle. It can also be observed from the 
figures that the performance benefit of additional roll moment rejection loop is minor. 

 
6. Experimental Evaluation of the Proposed Control Structure for ARC System 

This section describes the experimental results of ARC system implemented on the 
instrumented experimental vehicle. Performance of the vehicle equipped with ARC system 
is compared with passive system in several maneuvers namely step steer and double lane 
change tests. The response of the passive vehicle is used as a basic benchmark for 
performance of ARC system. The ARC system is evaluated for its performance at controlling 
the lateral dynamics of the vehicle according to the following performance criteria namely 
body vertical acceleration, body vertical displacement, body roll rate and body roll angle. 
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6.1 Installation of ARC System into the Instrumented Experimental Vehicle 
The instrumented experimental vehicle consists of two groups of transducers namely 
vehicle states sensors and actuator sensors. The vehicle states sensors consist of one unit of 
K-Beam® Capacitive Triaxial Accelerometer 8393B10 manufactured by Kistler and three 
units of CRS03 gyro by Silicon Sensing that are installed in the body centre of gravity of the 
experimental vehicle. The triaxial accelerometer is used to provide measurement data of 
body vertical, lateral, and longitudinal accelerations while the gyros is used to measure 
pitch, yaw and roll motions. The vehicle states sensors also consist of one unit of DRS1000 
Doppler Radar Speed Sensor manufactured by GMH Engineering to record the real-time 
vehicle speed during experiment and one unit of Linear Encoder to record the real time steer 
angle. The actuator sensors consist of four units of LCF451 Load Cells manufactured by 
Futek to measure the actuator forces. The multi-channel µ-MUSYCS system Integrated 
Measurement and Control (IMC) is used as the data acquisition system. It is installed into 
experimental vehicle to collect the experimental data from the transducers to control the 
vehicle performance in terms of body lateral acceleration, body vertical acceleration, and 
body roll rate. Online FAMOS software as the real time data processing and display 
function is used to ease the data collection. More detail specifications of the transducers and 
the data acquisition system are listed in the appendix. 
 
The pneumatic actuator as the main component of the ARC system consists of 4 unit of 
pneumatic compact cylinders which are installed in parallel arrangement with passive 
suspension system. A double acting pneumatic compact cylinder of SDA80x75 is used in 
this experimental test which has bore size of 80 mm and 75 mm in stroke length. Another 
components are 5/3 way solenoid valve (center exhaust), 2.5 HP air compressor and the 
current driver. The 5/3 way solenoid valves of SY7420-5LZD with double coil specification 
of 24V and 300 mA are installed with the cylinders. The installation of the data acquisition 
system, sensors and pneumatic system to the experimental vehicle can be seen in Figure 30. 
 

 
Fig. 30. Four units of pneumatic system installed in instrumented experimental vehicle 

 

6.2 Experimental Parameters 
The ARC system is performed in experimental test with two types of maneuver tests namely 
step steer test and double lane change test. In step steer test, the vehicle begins moving in a 
straight line with the constant speed of 50 km/h and then the steering suddenly turned 160 
degrees clockwise. The double lane change and slalom tests were performed with the 
constant speed of 50 km/h based on the test track as illustrated in Figure 31. 
 

 
Fig. 31. The track for double lane change test 

 
6.3 Experimental Performance of ARC System during Step Steer Test 
Figure 32 shows the visual comparison of experimental results between passive system and 
vehicle equipped with ARC system during steep steer test. It can be seen that the roll angle 
of vehicle is reduced for vehicle equipped with ARC system compared to the passive system 
and able to reduce the possibility of vehicle rollover. 
 

  
Fig. 32. Visual comparison of passive system and vehicle equipped with ARC system during 
step steer test 
 
The experimental result of body roll angle at body centre of gravity during step steer test is 
shown in Figure 33(a). It can be seen that the performance of vehicle equipped with ARC 
system is better than passive system by reducing the magnitude of body roll angle. The 
vehicle equipped with ARC system also showing a significant reduction of roll rate at body 
centre of gravity as compared with passive system as shown in Figure 33(b). The vehicle 
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degrees clockwise. The double lane change and slalom tests were performed with the 
constant speed of 50 km/h based on the test track as illustrated in Figure 31. 
 

 
Fig. 31. The track for double lane change test 

 
6.3 Experimental Performance of ARC System during Step Steer Test 
Figure 32 shows the visual comparison of experimental results between passive system and 
vehicle equipped with ARC system during steep steer test. It can be seen that the roll angle 
of vehicle is reduced for vehicle equipped with ARC system compared to the passive system 
and able to reduce the possibility of vehicle rollover. 
 

  
Fig. 32. Visual comparison of passive system and vehicle equipped with ARC system during 
step steer test 
 
The experimental result of body roll angle at body centre of gravity during step steer test is 
shown in Figure 33(a). It can be seen that the performance of vehicle equipped with ARC 
system is better than passive system by reducing the magnitude of body roll angle. The 
vehicle equipped with ARC system also showing a significant reduction of roll rate at body 
centre of gravity as compared with passive system as shown in Figure 33(b). The vehicle 
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equipped with ARC system shows an improvement response with respect to passive system 
by reducing the magnitude of body roll rate. 
 

 
    a) Roll angle response at the body center         b) Roll rate response at the body center 
        of gravity                                                                 of gravity 
 

 
       c) Vertical acceleration response at the            d) Vertical displacement response at the  
            body center of gravity                                         at the body center of gravity 
 

Fig. 33. Experimental results of passive system and vehicle equipped with ARC system for 
160 degrees step steer test at 50 km/h 
 
The body vertical displacement performance at body centre of gravity obtained from the 
experimental result is shown in Figure 33(c). It can be seen that there is an improvement on 
vertical displacement of vehicle equipped with ARC system over passive system. The 
experimental result of vehicle equipped with ARC system is having smaller magnitude of 
vertical displacement than that of passive system. Vehicle equipped with ARC system also 
offer significant improvement on body vertical acceleration as shown in Figure 33(d). It can 
be seen that the ARC system is more capable in lowering down the magnitude of body 
vertical acceleration compared to passive system. 

 
6.4 Experimental Performance of ARC System during Double Lane Change Test 
Figure 34 shows the visual comparison of experimental results between passive system and 
vehicle equipped with ARC system during double lane change test. It can be seen that the 
stability of the vehicle equipped with ARC system is improved compare to passive system. 
 
 

 
Fig. 34. Visual comparison of experimental results between passive system and vehicle 
equipped with ARC system during double lane change test 
 

 
    a) Roll angle response at the body center             b) Roll rate response at the body center 
       of gravity                                                                    of gravity 
 

 
       c) Vertical acceleration response at the          d) Vertical displacement response at the 
           body center of gravity                                        body center of gravity 
 

Fig. 35. Experimental results of passive system and vehicle equipped with ARC system for  
DLC test at 50 km/h 
 
From Figure 35(a) it can be seen that the body roll angle response of the passive system is 
higher than the body roll angle response of the vehicle equipped with ARC system. 
Therefore, it can be said that the vehicle equipped with ARC system is more stable and 
easier to avoid an obstacle during driving than passive system. The vehicle equipped with 
ARC system also show more reduction in magnitude in terms of roll rate response at body 
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centre of gravity compared to passive system. The experimental result of roll rate is 
presented in Figure 35(b). It indicates that the overall vehicle roll rate behavior is improved 
with the vehicle equipped with ARC system to passive system 
 
The experimental result of body vertical displacement at the body centre of gravity is shown 
in Figure 35(c). From the result it can be said that in terms of body vertical displacement at 
the body centre of gravity, the performance of the vehicle equipped with ARC system is 
better than the passive system. The vertical acceleration at body centre of gravity obtained 
from the experiment is shown in Figure 35(d). It can be seen that there is an improvement on 
vertical acceleration of vehicle equipped with ARC system compared to passive system. It 
can be seen clearly that the ARC system is effective in improving the performance of vehicle 
body from unwanted body motions namely vertical acceleration. Overall, It can be 
concluded that the ARC system is able to reduce the unwanted body motion in vertical 
direction.  

 
7. Conclusions 

A 14-DOF full vehicle model for passenger vehicle which consists of ride, handling and 
Calspan tire subsystems has been developed. An instrumented experimental vehicle has 
been developed to validate the 14-DOF model with the necessary sensors and data 
acquisition system installed inside the vehicle. Two types of road tests namely step steer test 
and double lane change test have been performed and data gathered from the tests were 
used as the benchmark of the model validation. The wheel steer angle data measured from 
the test in both step steer and double lane change tests were used as the inputs of the 
simulation model. Some of the vehicle behaviors to be validated in this works were yaw 
rate, lateral acceleration, body roll angle and tire slip angle responses. The results of model 
validation show that the trends between simulation results and experimental data are 
almost similar with acceptable error. The small difference in magnitude between simulation 
and experimental results is mainly due to the simplification/idealization in vehicle 
dynamics modeling and the difficulty of the driver to maintain a constant speed during 
maneuvering.    
From the simulation results, it is clear that the performance of the proposed control 
structure is proven to outperform the performance of passive system in all the selected 
performance criteria. The need of additional roll moment rejection loop to the PID controller 
is also strongly justified. In general, it can be concluded that the proposed PID control with 
roll moment rejection loop for ARC system significantly enhances the maneuverability of 
the vehicle by reducing both roll rate and roll angle in the presence of the steering angle 
input from the driver. Improvement in body acceleration and body heave response indicate 
that the comfort level of the vehicle can also be improved drastically using the proposed 
control structure. Improvement in comfort level will avoid the driver from fatigue as well as 
reduce the possibility of the driver from losing control of the vehicle during maneuvering. 
Four units of pneumatic actuators have been installed in parallel with the existing passive 
suspensions into the instrumented experimental vehicle for the ARC system. A PC-based 
controller for ARC system using the proposed control structure was then implemented 
through experimental test on real vehicle situations namely step steer and double lane 
change tests to investigate the effectiveness of the controller in attenuating the effect of 

steering input from the driver. The experimental results show that the ARC system is able to 
reduce the unwanted motions of vehicle body namely body roll angle, body roll rate, body 
vertical acceleration and body vertical displacement significantly. It can also be concluded 
that better improvement on vehicle stability was obtained using the ARC system.  
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Vehicle Model Parameters: 
M 

(kg) 
lf 

(m) 
lr 

(m) 
w 

(m) 
hcg 
(m) 

920 1.34 1.04 1.34 0.5 
Iz 

(kg/m2) 
Jw 

(kg/m2) 
Ir 

(kg/m2) 
Csfl, Csfr, 
Csrl, Csrr 

(N/msecֿ¹) 

Ksfl, Ksfr, 
Ksrl, Ksrr 

 (N/m) 
3190 1.2825 400 750 30000 

 
Tire Parameters: 

Parameter RWD radial 
Tire Type 

Tw 
Tp 

FZT 
C1 
C2 
C3 
C4 
A0 
A1 
A2 
Kα 

CS/FZ 
µo 

155SR13 
6 

24 
810 
1.0 

0.34 
0.57 
0.32 

914.02 
12.9 

2028.24 
0.05 
18.7 
0.85 

 
Controller Parameters: 

PID Kp Ki Kd 
Body Heave Control 30000 0.00033 22500 
Body Roll Control 7500 0.00003 3000 
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1. Introduction 

PID (proportional-integral-derivative) controller has being widely used in motor drive 
system. More than 90% of industrial controllers are implemented based on PID algorithms 
(Ang et al., 2005). The structure of PID controller is very simple and its control principle is 
very clear. It is practical and is very easy to be implemented. What’s more, because the 
functionalities of the three factors in PID controller are very clear, they can be tuned 
efficiently to obtain desired transient and steady-state responses. 
Motor drive systems can be found in many applications, their behaviours can influence the 
performances of the whole system tremendously. The motor drive system has many distinct 
features, such as multivariable, strong nonlinearity and strong coupling (Li et al., 2010). 
Many parameters in the system are time-variant. What’s more, in many cases, it’s very 
difficult to get the accurate mathematical model of the motor drive system. All these 
features make the control of the motor drive system difficult.  
PID controller is very popular in the control of the motor drive system. However, since the 
controller parameters are fixed during control after they have been chosen through a certain 
optimal method, the conventional PID controller can’t always keep satisfying performances. 
To cope with this problem, the parameters of the controller need to be adjusted dynamically 
according to the running status of the system. Many on-line tuning algorithms, such as 
fuzzy logic, neural network and genetic algorithm, have been introduced into PID controller 
to achieve desired control performances for the entire operating envelope of the motor drive 
system (Tang et al., 2001; Yu et al., 2009; Lin et al., 2003). 
In this chapter, two improved self-tuning PID controllers are given and studied in detail. To 
verify their validity, two typical motor drive systems, namely switched reluctance motor 
(SRM) drive system (Chen & Gu, 2010) and brushless DC motor (BLDCM) drive system (Wu 
et al., 2005), are introduced as examples. Based on the models of these two drive systems, 
the performances of the improved PID controllers are analyzed in detail. 

 
2. Conventional PID Controller 

In analog control system, PID controller is used commonly. The conventional PID (C-PID) 
controller is a linear control method. It compounds the outputs of proportional, integral and 
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derivative parts linearly to control the system. Fig. 1 shows the block diagram of the C-PID 
controller. 
 

Proportion

Integration

Differentiation

+

++

-

r(t) Controlled 
object

y(t)e(t) u(t)

 
Fig. 1. Block diagram of the C-PID controller 
 
The algorithm of C-PID controller can be given as follows: 
 
      tytrte   (1) 
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where y(t) is the output of the system, r(t) is the reference input of the system, e(t) is the 
error signal between y(t) and r(t), u(t) is the output of the C-PID controller, Kp is proportional 
gain, Ti is integral time constant and Td is derivative time constant. 
Equation (2) also can be rewritten as (3): 
 

        
dt
tdeKdtteKteKtu dip    (3) 

 
where Ki is integral gain, Kd is derivative gain, and Ki=Kp/Ti, Kd=KpTd. 
In C-PID controller, the relation between PID parameters and the system response 
specifications is clear. Each part has its certain function as follows (Shi & Hao, 2008): 
(1) Proportion can increase the response speed and control accuracy of the system. Bigger 

Kp can lead to faster response speed and higher control accuracy. But if Kp is too big, the 
overshoot will be large and the system will tend to be instable. Meanwhile, if Kp is too 
small, the control accuracy will be decreased and the regulating time will be prolonged. 
The static and dynamic performance will be deteriorated. 

(2) Integration is used to eliminate the steady-state error of the system. With bigger Ki, the 
steady-state error can be eliminated faster. But if Ki is too big, there will be integral 
saturation at the beginning of the control process and the overshoot will be large. On 
the other hand, if Ki is too small, the steady-state error will be very difficult to be 
eliminated and the control accuracy will be bad. 

(3) Differentiation can improve the dynamic performance of the system. It can inhibit and 
predict the change of the error in any direction. But if Kd is too big, the response process 
will brake early, the regulating time will be prolonged and the anti-interference 
capability of the system will be bad. 

 

The three gains of C-PID controller, Kp, Ki and Kd, can be determined conveniently according 
to the above mentioned function of each part. There are many methods such as NCD (Wei, 
2004; Qin et al., 2005) and genetic algorithm can be used to determine the gains effectively. 
(1) NCD is a toolbox in Matlab. It is developed for the design of nonlinear system 

controller. On the basis of graphical interfaces, it integrates the functions of 
optimization and simulation for nonlinear system controller in Simulink mode.  

(2) Genetic algorithm (GA) is a stochastic optimization algorithm modeled on the 
principles and concepts of natural selection and evolution. It has outstanding abilities 
for solving multi-objective optimization problems and finding global optimal solutions. 
GA can readily handle discontinuous and nondifferentiable functions. In addition, it is 
easily programmed and conveniently implemented (Naayagi & Kamaraj, 2005; 
Vasconcelos et al., 2001). 

In many conventional applications, the gains of C-PID controller are determined offline by 
one of the methods mentioned above and then fixed during the whole control process. This 
control scheme has two obvious shortcomings as follows: 
(1) All the methods that can be used to determine the gains of C-PID controller offline are 

based on the precise mathematical model of the controlled system. However, in many 
applications, such as motor drive system, it is very difficult to build the precise 
mathematical model due to the multivariable, time-variant, strong nonlinearity and 
strong coupling of the real plant. 

(2) In many applications, some parameters of the controlled system are not constant. They 
will be changed according to different operation conditions. For example, in motor 
drive system, the winding resistance of the motor will be changed nonlinearly along 
with the temperature. If the gains of C-PID controller are still fixed, the performance of 
the system will deteriorate. 

To overcome these disadvantages, C-PID should be improved. The gains of PID controller 
should be adjusted dynamically during the control process.  

 
3. Improved PID Controller 

There are many techniques such as fuzzy logic control, neural network and expert control 
(Xu et al., 2004) can be adopted to adjust the gains online according to different conditions. 
In this chapter, two kinds of Improved PID (I-PID) controller based on fuzzy logic control 
and neural network are studied in detail. 

 
3.1 Fuzzy Self-tuning PID Controller 
Fuzzy logic control (FLC) is a typical intelligent control method which has been widely used 
in many fields, such as steelmaking, chemical industry, household appliances and social 
sciences. The biggest feature of FLC is it can express empirical knowledge of the experts by 
inference rules. It does not need the mathematical model of the controlled object. What’s 
more, it is not sensitive to parameters changing and it has strong robustness. In summary, 
FLC is very suitable for the controlled object with characteristics of large delay, large inertia, 
non-linear and time-variant (Liu & Li, 2010; Liu & Song, 2006; Shi & Hao, 2008). 
The structure of a SISO (single input single output) FLC is shown in Fig. 2. It can be found 
that the typical FLC consists of there main parts as follows: 
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where y(t) is the output of the system, r(t) is the reference input of the system, e(t) is the 
error signal between y(t) and r(t), u(t) is the output of the C-PID controller, Kp is proportional 
gain, Ti is integral time constant and Td is derivative time constant. 
Equation (2) also can be rewritten as (3): 
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where Ki is integral gain, Kd is derivative gain, and Ki=Kp/Ti, Kd=KpTd. 
In C-PID controller, the relation between PID parameters and the system response 
specifications is clear. Each part has its certain function as follows (Shi & Hao, 2008): 
(1) Proportion can increase the response speed and control accuracy of the system. Bigger 

Kp can lead to faster response speed and higher control accuracy. But if Kp is too big, the 
overshoot will be large and the system will tend to be instable. Meanwhile, if Kp is too 
small, the control accuracy will be decreased and the regulating time will be prolonged. 
The static and dynamic performance will be deteriorated. 

(2) Integration is used to eliminate the steady-state error of the system. With bigger Ki, the 
steady-state error can be eliminated faster. But if Ki is too big, there will be integral 
saturation at the beginning of the control process and the overshoot will be large. On 
the other hand, if Ki is too small, the steady-state error will be very difficult to be 
eliminated and the control accuracy will be bad. 

(3) Differentiation can improve the dynamic performance of the system. It can inhibit and 
predict the change of the error in any direction. But if Kd is too big, the response process 
will brake early, the regulating time will be prolonged and the anti-interference 
capability of the system will be bad. 

 

The three gains of C-PID controller, Kp, Ki and Kd, can be determined conveniently according 
to the above mentioned function of each part. There are many methods such as NCD (Wei, 
2004; Qin et al., 2005) and genetic algorithm can be used to determine the gains effectively. 
(1) NCD is a toolbox in Matlab. It is developed for the design of nonlinear system 

controller. On the basis of graphical interfaces, it integrates the functions of 
optimization and simulation for nonlinear system controller in Simulink mode.  

(2) Genetic algorithm (GA) is a stochastic optimization algorithm modeled on the 
principles and concepts of natural selection and evolution. It has outstanding abilities 
for solving multi-objective optimization problems and finding global optimal solutions. 
GA can readily handle discontinuous and nondifferentiable functions. In addition, it is 
easily programmed and conveniently implemented (Naayagi & Kamaraj, 2005; 
Vasconcelos et al., 2001). 

In many conventional applications, the gains of C-PID controller are determined offline by 
one of the methods mentioned above and then fixed during the whole control process. This 
control scheme has two obvious shortcomings as follows: 
(1) All the methods that can be used to determine the gains of C-PID controller offline are 

based on the precise mathematical model of the controlled system. However, in many 
applications, such as motor drive system, it is very difficult to build the precise 
mathematical model due to the multivariable, time-variant, strong nonlinearity and 
strong coupling of the real plant. 

(2) In many applications, some parameters of the controlled system are not constant. They 
will be changed according to different operation conditions. For example, in motor 
drive system, the winding resistance of the motor will be changed nonlinearly along 
with the temperature. If the gains of C-PID controller are still fixed, the performance of 
the system will deteriorate. 

To overcome these disadvantages, C-PID should be improved. The gains of PID controller 
should be adjusted dynamically during the control process.  

 
3. Improved PID Controller 

There are many techniques such as fuzzy logic control, neural network and expert control 
(Xu et al., 2004) can be adopted to adjust the gains online according to different conditions. 
In this chapter, two kinds of Improved PID (I-PID) controller based on fuzzy logic control 
and neural network are studied in detail. 

 
3.1 Fuzzy Self-tuning PID Controller 
Fuzzy logic control (FLC) is a typical intelligent control method which has been widely used 
in many fields, such as steelmaking, chemical industry, household appliances and social 
sciences. The biggest feature of FLC is it can express empirical knowledge of the experts by 
inference rules. It does not need the mathematical model of the controlled object. What’s 
more, it is not sensitive to parameters changing and it has strong robustness. In summary, 
FLC is very suitable for the controlled object with characteristics of large delay, large inertia, 
non-linear and time-variant (Liu & Li, 2010; Liu & Song, 2006; Shi & Hao, 2008). 
The structure of a SISO (single input single output) FLC is shown in Fig. 2. It can be found 
that the typical FLC consists of there main parts as follows: 
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Fig. 2. The structure of SISO FLC 
 
(1) Fuzzification comprises the process of transforming crisp inputs into grades of 

membership for linguistic terms of fuzzy sets. The input values of a FLC consist of 
measured values from the plant that are either plant output values or plant states, or 
control errors derived from the set-point values and the controlled variables. 

(2) Fuzzy Inference Machine is the core of a fuzzy control system. It combines the facts 
obtained from the fuzzification with the rule base and conducts the fuzzy reasoning 
process. A proper rule base can be found either by asking experts or by evaluation of 
measurement data using data mining methods. 

(3) Defuzzification transforms an output fuzzy set back to a crisp value. Many methods 
can be used for defuzzification, such as centre of gravity method (COG), centre of 
singleton method (COS) and maximum methods. 

Detailed analyses show that FLC is a nonlinear PD controller. It cannot eliminate steady-
state error when the controlled object does not have integral element, so it is a ragged 
controller. To overcome this disadvantage, FLC is often used together with other controllers. 
Fig. 3 shows the structure of a controller called Fuzzy_PID compound controller. When the 
error is big, FLC is used to accelerate the dynamic response, and when the error is small, 
PID controller is used to enhance the steady-state accuracy of the system (Liu & Song, 2006). 
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Fig. 3. The structure of Fuzzy_PID compound controller 
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Fig. 4. The structure of FPID controller 
 

 

In this chapter, an I-PID controller called fuzzy self-tuning PID (FPID) controller is 
introduced. In this controller, FLC is used to tune the parameters of C-PID controller online 
according to different conditions. Fig. 4 shows the structure of FPID controller (Liu & Li, 
2010). 
In FPID controller, the error signal and the rate of change of error are inputted into FLC 
firstly. After fuzzy inference based on the rule base, the increments of PID control 
parameters, ∆Kp, ∆Ki and ∆Kd, are obtained, add these increments to initial values of PID 
control parameters, the actual PID control parameters can be achieved finally. The initial 
values of PID control parameters, Kp0, Ki0 and Kd0, can be obtained by the methods 
mentioned in the last section. 

 
3.2 Neural Network PID Controller 
Neural network (NN) is a mathematical model or computational model inspired by the 
structure and functional aspects of biological neural systems, such as the brain. It is 
composed of a large number of highly interconnected processing elements (neurones) 
working in unison to solve specific problems. Fig. 5 shows the typical structure of a NN. It 
has one input layer, one output layer and several hidden layers. In each layer, there are a 
certain number of nodes (neurons). The neurons in adjacent layers are connected together, 
while there are no connections between neurons in the same layer. Just like the biological 
neural systems, the NN also can learn by itself. During the learning phase, the connection 
strength (weights) between neurons can be adjusted by certain algorithms automatically 
based on external or internal information that flows through the network. (Tao, 2002; Liu, 
2003; Wang et al., 2007) 
 

Input layer
Hidden layers

Output layer

 
Fig. 5. The structure of a typical NN 
 
The greatest advantage of NN is its ability to be used as an arbitrary function approximation 
mechanism which 'learns' from observed data. There are many other remarkable advantages 
of NN as follows: 
(1) Adaptive learning: An ability to learn how to do tasks based on the data given for 

training or initial experience. 
(2) Real time operation: NN can process massive data and information in parallel. Special 

hardware devices are being designed and manufactured which take advantage of this 
capability. 

(3) Fault tolerance: Some capabilities of NN can be retained even with major network 
damage. 
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(1) Fuzzification comprises the process of transforming crisp inputs into grades of 

membership for linguistic terms of fuzzy sets. The input values of a FLC consist of 
measured values from the plant that are either plant output values or plant states, or 
control errors derived from the set-point values and the controlled variables. 

(2) Fuzzy Inference Machine is the core of a fuzzy control system. It combines the facts 
obtained from the fuzzification with the rule base and conducts the fuzzy reasoning 
process. A proper rule base can be found either by asking experts or by evaluation of 
measurement data using data mining methods. 

(3) Defuzzification transforms an output fuzzy set back to a crisp value. Many methods 
can be used for defuzzification, such as centre of gravity method (COG), centre of 
singleton method (COS) and maximum methods. 
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state error when the controlled object does not have integral element, so it is a ragged 
controller. To overcome this disadvantage, FLC is often used together with other controllers. 
Fig. 3 shows the structure of a controller called Fuzzy_PID compound controller. When the 
error is big, FLC is used to accelerate the dynamic response, and when the error is small, 
PID controller is used to enhance the steady-state accuracy of the system (Liu & Song, 2006). 
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Fig. 3. The structure of Fuzzy_PID compound controller 
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Fig. 4. The structure of FPID controller 
 

 

In this chapter, an I-PID controller called fuzzy self-tuning PID (FPID) controller is 
introduced. In this controller, FLC is used to tune the parameters of C-PID controller online 
according to different conditions. Fig. 4 shows the structure of FPID controller (Liu & Li, 
2010). 
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values of PID control parameters, Kp0, Ki0 and Kd0, can be obtained by the methods 
mentioned in the last section. 

 
3.2 Neural Network PID Controller 
Neural network (NN) is a mathematical model or computational model inspired by the 
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neural systems, the NN also can learn by itself. During the learning phase, the connection 
strength (weights) between neurons can be adjusted by certain algorithms automatically 
based on external or internal information that flows through the network. (Tao, 2002; Liu, 
2003; Wang et al., 2007) 
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Fig. 5. The structure of a typical NN 
 
The greatest advantage of NN is its ability to be used as an arbitrary function approximation 
mechanism which 'learns' from observed data. There are many other remarkable advantages 
of NN as follows: 
(1) Adaptive learning: An ability to learn how to do tasks based on the data given for 

training or initial experience. 
(2) Real time operation: NN can process massive data and information in parallel. Special 

hardware devices are being designed and manufactured which take advantage of this 
capability. 

(3) Fault tolerance: Some capabilities of NN can be retained even with major network 
damage. 
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BP (backpropagation) neural network (BPNN) is the most popular neural network for 
practical applications. It adopts the backpropagation learning algorithm which can be 
divided into two phases: data feedforward and error backpropagation. 
(1) Data feedforward: In this phase, the data, such as the error of the controlled system, 

inputted into the input layer is fed into the hidden layer and then into the output layer. 
Finally, the output of the BPNN can be obtained from the output layer. It is the function 
of the connection weights between neurons. 

(2) Error backpropagation: In this phase, the actual output value of the network obtained 
in the last phase is compared with a desired value. The error between them is 
propagated backward. The connection weights between neurons are adjusted by some 
means, such as gradient descent algorithm, based on the error. 

These two phases are repeated continuously until the performance of the network is good 
enough. 
In this chapter, BPNN is used to tune the parameters of C-PID controller online. Fig. 6 shows 
the structure of this I-PID controller named NNPID controller. 
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Fig. 6. The structure of NNPID controller 
 
It can be seen that NNPID controller consists of C-PID controller and BPNN. C-PID 
controller is used to control the plant directly. Its output, u(t), can be obtained by (3). In 
order to optimize the performance of the system, BPNN is used to adjust the three 
parameters of C-PID controller online based on some state variables of the system. 

 
4. Motor Drive System 

Motor is the main controlled object in motor drive system. In practical applications, there 
are many kinds of motors. In this chapter, the brushless DC motor (BLDCM) and switched 
reluctance motor (SRM) are studied as examples. Their mathematical models are built to 
simulate the performance of different control methods. 

 
4.1 Brushless DC Motor 
In BLDCM, electronic commutating device is used instead of the mechanical commutating 
device. Because BLDCM has many remarkable advantages, such as high efficiency, silent 
operation, high power density, low maintenance, high reliability and so on, it has been 
widely used in many industrial and domestic applications. 
 
 

 

The voltage equation for one phase in BLDCM can be written as: 
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where u, ia, Ra and La are the voltage, current, resistance and inductance of one phase, 
respectively. e is the back EMF (electromotive force) which can be calculated by 
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where ω is the angular speed of the rotor, kv is a constant which can be calculated by 
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where Ce is the EMF constant and Ф is the flux per pole.  
The torque equation can be given as 
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where Tem is electromagnetic torque, TL is load torque, B is damping coefficient and J is 
rotary inertia. 
Tem also can be obtained by 
 
 ataTem ikiCT   (8) 
 
where kt is a constant which can be calculated by 
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where CT is the torque constant. 
Based on all above equations, the state space equation of BLDCM can be obtained as 
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The Laplace transform of (10) can be written as two equations as follows: 
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According to (11), the simulation model of BLDCM can be built in Matlab/simulink as 
shown in Fig. 7. 
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Fig. 7. The simulation model of BLDCM 

 
4.2 Switched Reluctance Motor 
The SRM is a brushless synchronous machine with salient rotor and stator teeth. There are 
concentrated phase windings in the stator, and no magnets and windings in the rotor. It has 
many remarkable advantages such as simple magnetless and rugged construction, simple 
control, ability of extremely high speed operation, relatively wide constant power capability, 
minimal effects of temperature variations offset, low manufacturing cost and ability of 
hazard-free operation. These advantages make the SRM very suitable for applications in 
more/all electric aircraft (M/A EA), electric vehicle (EV) and wind power generation. 
Because the nonlinear model of SRM is very complex, people generally use its quasi-linear 
model to design and analyze control methods. 
According to the quasi-linear model of SRM, the average torque equation can be obtained as 
(12) when the phase current is flat topped (Wang, 1999). 
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where Tav is the average torque, m is the number of motor phase, Nr is the number of rotor 
tooth, Us is the power supply voltage, ωr is angular speed of the rotor, θon is the angle of 
starting the excitation, θoff is the angle of switching off the excitation, θ1 is the starting angle 
of the phase inductance increasing, Lmax and Lmin are the maximum and minimum value of 
phase inductance, respectively. 
Based on (12), the total differential equation of Tav can be written as (He et al., 2004) 
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According to the linearization theory, the differential of each variable in (13) can be replaced 
by corresponding increment. If voltage PWM control is adopted, θon and θoff are fixed. The 
simplified small-signal torque equation can be obtained as 
 
 rsuav kUkT   (14) 
 

 

The increment of the average torque also can be indicated as 
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where J is rotary inertia, B is damping coefficient,  TL is load torque. 
The voltage chopping can be treated as a sampling process of the controller’s output ∆UASR, 
and the amplification factor is Kc. The small-signal model of power inverter can be given as 
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The feedback of angular speed can be treated as a small inertial element. 
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where Kn is feedback coefficient and Tω is time constant of the measurement system. 
Based on above analysis, the simplified small-signal model of SRM can be got as shown in 
Fig. 8.  
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Fig. 8. The simulation model of SRM 

 
5. Design of I-PID Controller 

5.1 FPID Controller for SRM 
Based on Fig.1, Fig. 4 and Fig. 8, the simulation model of C-PID and FPID for SRM can be 
obtained as shown in Fig. 9 and Fig. 10. The internal structure of the module marked “SRM” 
is the part that enclosed by dashed box in Fig. 8. 
It can be found that the three parameters of the PID controller in FPID control can be 
obtained by 
 

 













ddd

iii

ppp

KKK
KKK

KKK

0

0

0

 (18) 

 



Application of Improved PID Controller in Motor Drive System 99

 

According to (11), the simulation model of BLDCM can be built in Matlab/simulink as 
shown in Fig. 7. 
 

1/(Las+Ra) kt 1/(Js+B)

kv

U

TL

-+ +
-Ia ω

Load
SpeedControl

 
Fig. 7. The simulation model of BLDCM 

 
4.2 Switched Reluctance Motor 
The SRM is a brushless synchronous machine with salient rotor and stator teeth. There are 
concentrated phase windings in the stator, and no magnets and windings in the rotor. It has 
many remarkable advantages such as simple magnetless and rugged construction, simple 
control, ability of extremely high speed operation, relatively wide constant power capability, 
minimal effects of temperature variations offset, low manufacturing cost and ability of 
hazard-free operation. These advantages make the SRM very suitable for applications in 
more/all electric aircraft (M/A EA), electric vehicle (EV) and wind power generation. 
Because the nonlinear model of SRM is very complex, people generally use its quasi-linear 
model to design and analyze control methods. 
According to the quasi-linear model of SRM, the average torque equation can be obtained as 
(12) when the phase current is flat topped (Wang, 1999). 
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where Tav is the average torque, m is the number of motor phase, Nr is the number of rotor 
tooth, Us is the power supply voltage, ωr is angular speed of the rotor, θon is the angle of 
starting the excitation, θoff is the angle of switching off the excitation, θ1 is the starting angle 
of the phase inductance increasing, Lmax and Lmin are the maximum and minimum value of 
phase inductance, respectively. 
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The feedback of angular speed can be treated as a small inertial element. 
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5. Design of I-PID Controller 

5.1 FPID Controller for SRM 
Based on Fig.1, Fig. 4 and Fig. 8, the simulation model of C-PID and FPID for SRM can be 
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Where Kp0, Ki0 and Kd0 are the initial PID parameters obtained by NCD or GA. ∆Kp, ∆Ki and 
∆Kd are provided by FLC. They are used to adjust the three parameters online. In other 
words, the parameters of C-PID can be dynamically tuned by FLC according to different 
operation conditions. Fig. 11 shows the structure of the FLC used in FPID controller. It has 
two input variables and three output variables. 
 

 
Fig. 9. The simulation model of C-PID controlled SRM system 
 

 
Fig. 10. The simulation model of FPID controlled SRM system 
 

 
Fig. 11. Structure of the designed FLC used in FPID controller 

 

The most important thing for the design of FPID controller is the determination of the fuzzy 
rule base. According to the functions of each PID parameter mentioned in section 2, the 
principles for their adjustment can be summarized as follows (Shi & Hao, 2008): 
(1) When the absolute value of the system error,│e(t)│, is relatively big: Kp is increased to 

get faster tracking speed, Ki is reduced to avoid overshoot. 
(2) When │e(t)│ is relatively small: Kp and Ki are increased to enhance the tracking 

precision, Kd should be proper to avoid steady-state oscillation. 
(3) When │e(t)│ is medium: Kp is reduced to avoid overshoot, Ki is increased slightly to 

enhance the steady-state precision, and Kd should be proper to guarantee the stability of 
the system. 

Based on above principles and consider the change rate of the system error, ec(t), the fuzzy 
rule base of the three parameters can be obtained. As an example, Table.1 shows the fuzzy 
rule base for ∆Kp. 
 

 ∆Kp ec 

e 
NB NM NS ZO PS PM PB 

NB NB NB NM PB PB PB ZO 

NM NB NB NM PM PB ZO PS 

NS NB NM NS PS ZO NM NS 

ZO NB NM NS ZO NS NM NB 

PS NS NM ZO PS NS NM NB 

PM PS ZO PB PM NM NB NB 

PB ZO PB PB PB NM NB NB 
Table 1. Fuzzy rule base of ∆Kp 
 
It can be seen that there are totally 49 fuzzy rules and they are represented by fuzzy 
linguistic terms, such as if e=NB and ec=NB then ∆Kp=NB, ∆Ki=NB, ∆Kd=PB. 
In this chapter, all the variables are described by seven linguistic terms. They are negative 
big (NB), negative middle (NM), negative small (NS), zero (ZO), positive small (PS), positive 
middle (PM) and positive big (PB). The universe of input variables, e and ec, is {-3 -2 -1 0 1 2 
3}. The universe of output variables, ∆Kp, ∆Ki and ∆Kd, is {-0.6 -0.4 -0.2 0 0.2 0.4 0.6}. 
Fig. 12 and 13 show the membership function of each variable. 
 

 
Fig. 12. Membership function of e and ec 
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linguistic terms, such as if e=NB and ec=NB then ∆Kp=NB, ∆Ki=NB, ∆Kd=PB. 
In this chapter, all the variables are described by seven linguistic terms. They are negative 
big (NB), negative middle (NM), negative small (NS), zero (ZO), positive small (PS), positive 
middle (PM) and positive big (PB). The universe of input variables, e and ec, is {-3 -2 -1 0 1 2 
3}. The universe of output variables, ∆Kp, ∆Ki and ∆Kd, is {-0.6 -0.4 -0.2 0 0.2 0.4 0.6}. 
Fig. 12 and 13 show the membership function of each variable. 
 

 
Fig. 12. Membership function of e and ec 
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In this chapter, the MAX-MIN method is used for fuzzy inference and centroid is used for 
defuzzification. 

 
5.2 NNPID Controller for BLDCM 
Based on Fig.1 and Fig. 7, the simulation model of C-PID for BLDCM can be obtained as 
shown in Fig. 14. The internal structure of the module marked “BLDCM” is the part that 
enclosed by dashed box in Fig. 7. 
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Based on Fig.5 and Fig. 6, the structure of the BPNN used in the NNPID controller is shown 
in Fig.15.  
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Fig. 15. The structure of the BPNN used in NNPID controller 
 
It can be seen that the adopted BPNN has three layers: one input layer, one hidden layer and 
one output layer. There are three input variables and three output variables. r(k) is the 

 

reference input of the system, y(k) is the real output of the system and e(k) is the error 
between them. Kp, Ki and Kd are the three parameters of the C-PID controller. There are five 
nodes (neurones) in the hidden layer. 
During operation, the connection strength (weights) between neurons can be adjusted 
automatically through learning based on the input information. The three output variables 
of NN, Kp, Ki and Kd, will be changed along with the adjustment of the connection weights. 
Finally, the performance of the system can be improved. 
The output of nodes in input layer equals to their input. The input and output of nodes in 
hidden layer and output layer can be represented as (Liu, 2003) 
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where  2

ijw  is connection weight between input and hidden layer,  3
liw  is connection weight 

between hidden and output layer, f[·] and g[·] are activation functions. In this chapter, the 
activation function of hidden layer is sigmoid function. Because the output variables of NN, 
Kp, Ki and Kd, can’t be negative, the activation function of output layer is nonnegative 
sigmoid function, that is 
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In this chapter, the output variables of NN are the three parameters of C-PID controller, that is 
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With (19) ~ (22), NN completes the feedforward of the information. The output of the C-PID 
controller can be got easily based on the three updated parameters, and then the output of 
the system, y(k), can be obtained. The next step is the backpropagation of the error.  
To minimize the error between y(k) and r(k), a performance index function is introduced as 
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In this chapter, the output variables of NN are the three parameters of C-PID controller, that is 
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With (19) ~ (22), NN completes the feedforward of the information. The output of the C-PID 
controller can be got easily based on the three updated parameters, and then the output of 
the system, y(k), can be obtained. The next step is the backpropagation of the error.  
To minimize the error between y(k) and r(k), a performance index function is introduced as 
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Typically, the connection weights are adjusted by steepest descent method. To increase the 
convergence speed, an inertia term is added. 
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where η is learning rate, is inertia coefficient. In this chapter, η=0.001 and α=0.05. 
Based on (19) ~ (24), the connection weights can be tuned dynamically. In this chapter, the 
NNPID controller for BLDCM is implemented by M-File in Matlab. 

 
6. Performance Verification 

6.1 FPID Controller for SRM 
In this chapter, the parameter values of the SRM (see Fig. 8) are as follows: 
kc=45, T=0.5ms, ku=22.45, J=1kg·m2, B=1, kn=1, Tω=1.5ms, kω=0.05. 
The initial values of the three parameters in C-PID are 
Kp=5, Ki=7, Kd=2. 
Fig. 16 shows the step response of the SRM with C-PID and FPID controller, respectively. 
The reference angular speed is 100rad/s. The motor is started without load, and at 10s a 
50Nm load is added. 
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Fig. 16. The step response of the SRM 
 
It can be seen that compared with C-PID controller, the FPID controller can improve the 
performance of the system significantly. It has advantages of no overshoot, shorter adjusting 
time. Moreover, when add load torque suddenly at 10s, the drop of the angular speed is 
smaller and the transition time is shorter. 
 

 

Fig. 17 shows the adjustment of the three parameters, Kp, Ki and Kd, in FPID controller. 
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Fig. 17. The adjustment of Kp, Ki and Kd in FPID controller 
 
It can be found that during the adjustment process of the angular speed, the three 
parameters are tuned dynamically as well. When the system reaches its steady-state, the 
angular speed is constant and the three parameters are also changed into their initial values. 

 
6.2 NNPID Controller for BLDCM 
The discrete form of the BLDCM used in this chapter is 
 
 u(k-1).y(k-2).y(k-1).y(k)  058310204170  (25) 
 
where u is the output of the C-PID controller. 
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Fig. 18. The step response of the BLDCM 
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parameters are tuned dynamically as well. When the system reaches its steady-state, the 
angular speed is constant and the three parameters are also changed into their initial values. 
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Fig. 19. The adjustment of Kp, Ki and Kd in NNPID controller 
 
Fig. 18 shows the step response of the BLDCM with C-PID and NNPID controller, 
respectively. The reference angular speed is 10rad/s. The motor is started without load. 
It can be seen that compared with C-PID controller, the NNPID controller can improve the 
performance of the system significantly. The overshoot of the system is nearly eliminated. 
However, because NNPID controller needs time to train NN, the adjusting times of the 
system with two controllers are almost the same. 
Fig. 19 shows the adjustment of the three parameters, Kp, Ki and Kd, in NNPID controller. 
It can be found that during the adjustment process of the angular speed, the three 
parameters are tuned dynamically. When the system reaches its steady-state, the angular 
speed is constant and the three parameters are constant as well. 

 
7. Conclusion 

In this chapter, the structure and operation principle of C-PID controller are introduced 
firstly. According to the shortcomings of C-PID controller, two improved PID controllers, 
namely FPID and NNPID controller, are studied. The structure and operation principle of 
them are analyzed. Then, the BLDCM and SRM drive system are introduced and their 
mathematical models are built. Based on the models, FPID and NNPID controller are 
designed in detail. Finally, the performances of the designed controllers are tested by 
simulation. The simulation results show that compared with C-PID controller, both FPID 
and NNPID controller can improve the performance of the system significantly. 
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Fig. 18 shows the step response of the BLDCM with C-PID and NNPID controller, 
respectively. The reference angular speed is 10rad/s. The motor is started without load. 
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However, because NNPID controller needs time to train NN, the adjusting times of the 
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Abstract 

A novel model-based controller for 6 degree-of-freedom (DOF) hydraulic driven parallel 
manipulator considering the nonlinear characteristic of hydraulic systems-proportional plus 
derivative with dynamic gravity compensation controller is presented, in order to improve 
control performance and eliminate steady state errors. In this paper, 6-DOF parallel 
manipulator is described as multi-rigid-body systems, the dynamic models including 
mechanical system and hydraulic driven system are built using Kane method and 
hydromechanics methodology, the numerical forward kinematics and inverse kinematics is 
solved with Newton-Raphson method and close-form solutions. The model-based controller 
is developed with feedback of actuator length, desired trajectories and system states 
acquired by forward kinematics solution as the input and servovalve current as its output. 
The hydraulic system is decoupled by local velocity compensation in inner control loop 
prerequisite for the controller. The performance revolving stability, accuracy and robustness 
of the proposed control scheme for 6-DOF parallel manipulator is analyzed in theory and 
simulation. The theoretical analysis and simulation results indicate the controller can 
improve the control performance and eliminate the steady state errors of 6-DOF hydraulic 
driven parallel manipulator. 
Keywords: Parallel manipulator; Proportional-derivative control; Hydraulic servo-systems; 
Dynamic compensation 
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1. Introduction 

Hydraulic driven 6-DOF parallel manipulator with long stroke actuators and heavy load is 
applied in most of the current high fidelity simulators, which is used to simulate various 
motions in different environments by exporting varying position and orientation. There are 
several advantages in the application of hydraulic driven parallel manipulator which 
includes large output force and torque, higher rigidity and accuracy due to the parallel path 
and averaged link to end effectors error, compared with serial manipulator [1-2]. A classical 
proportional plus integral plus derivative controller is applied in hydraulic driven 6-DOF 
parallel manipulator continually due to easy to implementation [3], nevertheless the 
existence of large steady state errors and dynamic errors in virtue of the influence of system 
gravity taken no account of hydraulic and mechanical systems in classical proportional plus 
integral plus derivative control system may degrade the control performance. Well-known 
facts, it is very difficult for the classical PID control to satisfy the requirements, less steady 
state error and superior dynamic performance simultaneously.  With respect to hydraulic 6-
DOF parallel manipulator with heavy payload, the system gravity, the uppermost 
turbulence to control system for slow motion, results in large steady and dynamic errors in 
gravitational direction. Therefore, the design and realization of proportional plus derivative 
controller with dynamic gravity compensation in hydraulic 6-DOF parallel manipulator is of 
critical importance for improving system control performance of hydraulic driven 6-DOF 
parallel manipulator especially for the parallel manipulator with heavy payload. 
Parallel manipulator has been extensively studied due to its high force-to-weight ratio and 
widespread application [4]. 6-DOF parallel manipulator is named Stewart platform after 
Stewart illustrated the use of such parallel structure [5], it is also referred to as Gough-
platform who presented the practical use of such a system [6]. Hunt [7] researched the 
kinematics of parallel manipulators based on screw theory and enumerated promising 
kinematics structures. Do and Yang [8] used the Newton-Euler approach to solve the 
inverse dynamics for Stewart platform assuming the joints as frictionless and legs 
asymmetrical. The control strategies for parallel manipulator may be largely divided into 
two schemes, joint-space control developed in joint space coordinates [9-11], and workspace 
control designed based on the workspace coordinates [12-14]. The joint space control 
scheme can be readily implemented as a collection of multiple, independent single-input 
single-output control system using data on each actuator length only. A classical 
proportional plus integral plus derivative control in joint space has been employed in 
industry, but it does not always guarantee a high performance for parallel robots [15]. This 
novel joint space control approaches have been proposed to improve control performance 
by rejecting the uncertainty and nonlinear effects in motion equations. Kim proposed a 
robust nonlinear control scheme in joint space for a hydraulic parallel system based on 
Lyapunov redesign method [10], yet the pressure closed loop control is hard to 
implemented for real hydraulic system due to the effect of pipeline pressure transient and 
frication force. Nguyen et al [11] developed a joint-space adaptive control scheme applied to 
an electromechanically driven Stewart platform using Lyapunov direct method. Su 
presented a robust auto-disturbance rejection controller in joint space for 6-DOF parallel 
manipulator [16]. Kim et al [12] discussed robust nonlinear task space control with a friction 
estimator for dynamoelectric Gough-Stewart platform. Burdet et al [17] investigated a 
nonlinear controller with dynamic compensation which depended on system state and 
velocity of 6-DOF parallel manipulator. Noriega et al [18] presented a neural network 

 

control scheme and showed its superiority over a kinematics control. Kim et al [19] 
researched and applied a high speed tracking control for 6-DOF electric driven Stewart 
platform using an enhanced sliding mode control approach. Cervantes et al [20] studied 
tracking problem of robot manipulator based on multi-rigid body models with revolute 
joints via PID control. Although the above advanced model-based control strategies are 
effective for 6-DOF parallel manipulator, the characteristics of hydraulic driven system is 
not taken into account. Davliakos et al [21] developed operational error joint feedback 
control scheme embedding the forward kinematics in the feedback control loop for 6-DOF 
electrohydraulic Parallel manipulator platforms. However, only simulation is investigated 
for the model-based control scheme. Besides, the influences of dynamical gravity to system 
control performance are not analyzed and attracted attention for the proposed controller.  
In this paper, a proportional plus derivative controller with dynamic gravity compensation 
(PDGC) is developed to improve the control performance including steady and dynamic 
precision via compensating steady state errors and reducing dynamic errors for a 6-DOF 
hydraulic driven parallel manipulator with symmetric joint locations. This paper begins 
with a practical strategy to obtain 6-DOF hydraulic driven Gough-Stewart platform essential 
to the developed controller. The dynamics models of the 6-DOF platform system are built 
using Kane method, considering the Gough-Stewart platform as 13 rigid bodies, and the 
hydraulic driven system are established in terms of hydromechanics theory. The desired 
actuator length is calculated by a closed-solution inverse kinematics, and the system states 
of 6-DOF Gough-Stewart platform are obtained by a numerical forward kinematics, the 
forward kinematics and inverse kinematics models are described with Newton-Raphson 
method and closed-form solution, respectively. The proportional plus derivative with 
dynamics compensation control scheme is gained, combing the kinematics control and 
inverse dynamics method, the proposed controller employs rigid body and actuation 
dynamic and yields the input current vector of the servovalve, the dynamic gravity term 
including the gravity of platform, load and hydraulic cylinders is used to compensate the 
influence of gravity of 6-DOF Gough-Stewart platform, and the decoupling of hydraulic 
system is implemented by local velocity compensation in inner control loop. The 
performance including stability, precision and robustness of the proposed controller is 
analyzed in theory and simulation.  The proportional plus derivative with dynamic 
compensation control scheme is studied to improve the performance of control system for 6-
DOF hydraulic driven Gough-Stewart platform. 

 
2. System model 

 The kinematics of 6-DOF Gough-Stewart platform has been studied extensively [22, 23]. 
Therefore, the kinematics models of 6-DOF Gough-Stewart are briefly described in the 
paper. Fig.1 depicts the configuration of the 6-DOF Gough-Stewart; Fig.2 explains the two 
Cartesian coordinate systems; the {B} coordinate system is the body coordinate system fixed 
to the movement platform, while the {L} coordinate system is the base coordinate system for 
the inertial frame. The linear motions denotes as surge (q1), sway (q2), and heave (q3) are 
along the XL-YL-ZL axis for base coordinate system, and the angular motions labeled as roll 
(q4), pitch (q5), and yaw (q6) are Euler angles of platform at XL, YL, ZL axis. The body 
coordinate system {B} and the base coordinate system {L} are superposition in the initial 
state qi=0, i=1,…,6.  
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Fig. 1. Configuration of 6-DOF Gough-Stewart platform 
 

 
Fig. 2. Definition of the Cartesian coordination systems and vectors in dynamics and 
kinematics equations of  
 
6-DOF Gough-Stewart platform 

 
For the movement including the linear and angular motions of Gough-Stewart platform, the 
inverse kinematics model is derived using closed-form solution [22]. 
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transformation from body coordinates to base coordinates, A~  is a 3×6 matrix of upper 
gimbal points, B~  is a 3×6 matrix of lower gimbal points, and c~  is position 3×1 vector of 
platform, T

321 ),,(~ qqqc . The rotation matrix under Z-Y-X order is given by 
 























45455

464564564656

456464645665

coscossincossin
sincoscossinsinsinsinsincoscoscossin
cossincossinsincossinsinsincoscoscos

qqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq

R  

                                     (2) 
The forward kinematics is used to solve the output state of platform for a measured length 
vector of actuators; it is formulated with Newton-Raphson method [23]. 
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 is the 6×1 solving actuator vector during the iterative 

calculation, 
~,lJ is a Jacobian 6×6 matrix, which is one of the most important variables in 

the Gough-Stewart platform, relating the body coordinates to be controlled and used as 
basic model coordinates, and the actuator lengths, which can be measured.  
The dynamic model for motion platform as a rigid body can be derived using Newton-Euler 
and Kane method [24, 25]. 
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where Fa is a 6×1 vector representing actuator forces, T
6a2a1aa )( fff F , fai 

(i=1,…,6) is actuator output force. 
The rotation of actuator around itself is ignored, thus the dynamic model for each hydraulic 
actuator (piston rod and cylinder) using Newton-Euler and Kane method is described as 
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where ,aitc,aiuc ,JJ  are 3×3 Jacobian matrix, Θ~ai,,J  is 3×6 Jacobian matrix, mu is the mass of 

piston rod of a actuator, mt is the mass of cylinder of a actuator, iω  is the angular velocity 
of actuator relative to relevant lower gimbal point, ucv , tcv  are the linear velocity of the 
mass center of piston rod and cylinder, respectively, aI , bI  are the inertia of piston rod and 
cylinder, respectively, g is acceleration vector of gravity, g=(0 0 g)T. 
Combining Eqs.(4), (5),(6) and (7), the dynamics model of 6-DOF Gough-Stewart platform as 
thirteen rigid body is obtained with Kane method, given by 
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The hydraulic systems are studied in depth for symmetrical servovalve and actuator [26], it 

is assumed that Coulomb frictions are zero (Coulomb friction Fci<< iclB  , not zero, 
practically) the hydraulic system mathematical models of symmetric and matched 
servovalve and symmetrical actuator are given as 
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where iqL  is load flow of the ith hydraulic actuator, w is area grads, ixv  is position of the ith 
servovalve,  is fluid density, sp is supply pressure of servosystem,  Lip  is load pressure 
of the ith actuator, A is effective acting area of piston, teC  is the leakage coefficient, tV  is 

actuator cubage,  E  is bulk modulus of fluid, il  is the length of the ith actuator, Cd is flow 

 

coefficient, ffi is joint space friction force in the ith  actuator. A number of methods can be 
used to model the friction Ff [21, 27]. A widely method for modeling friction as 
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where Bc is viscous damping coefficient, fc0,i is the element of Coulomb friction, fext,i is the 
external force element, fs0,i is the breakaway force element.  

 
3. Control design 

In this section, the inverse dynamic methodology [20] is adopted to derive a proportional 
plus derivative controller with dynamic gravity compensation for 6-DOF hydraulic driven 
Gough-Stewart platform in the case in which the system parameters are known, the PDGC 
control scheme are described in Fig.3. 
 

 
Fig. 3. Control block diagram for PDGC  
 
The PDGC controller considered the dynamic characteristic of parallel manipulator 
embedded the forward kinematics, dynamic gravity terms and inverse of transfer function 
from the input position of servovalve to the output force of actuator and Jacobian 

matrix 1T )( 
lJ  in inverse of transpose form in inner control loop. It is should be noted that 
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where Fa is a 6×1 vector representing actuator forces, T
6a2a1aa )( fff F , fai 

(i=1,…,6) is actuator output force. 
The rotation of actuator around itself is ignored, thus the dynamic model for each hydraulic 
actuator (piston rod and cylinder) using Newton-Euler and Kane method is described as 
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where ,aitc,aiuc ,JJ  are 3×3 Jacobian matrix, Θ~ai,,J  is 3×6 Jacobian matrix, mu is the mass of 

piston rod of a actuator, mt is the mass of cylinder of a actuator, iω  is the angular velocity 
of actuator relative to relevant lower gimbal point, ucv , tcv  are the linear velocity of the 
mass center of piston rod and cylinder, respectively, aI , bI  are the inertia of piston rod and 
cylinder, respectively, g is acceleration vector of gravity, g=(0 0 g)T. 
Combining Eqs.(4), (5),(6) and (7), the dynamics model of 6-DOF Gough-Stewart platform as 
thirteen rigid body is obtained with Kane method, given by 
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where, )~(* ΘM  is a mass matrix, ),~(* ΘΘV   is a matrix of centrifugal and Coriolis terms, 

)~(* ΘG  is a vector of gravity terms, see Appendix B. 
The hydraulic systems are studied in depth for symmetrical servovalve and actuator [26], it 

is assumed that Coulomb frictions are zero (Coulomb friction Fci<< iclB  , not zero, 
practically) the hydraulic system mathematical models of symmetric and matched 
servovalve and symmetrical actuator are given as 
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where iqL  is load flow of the ith hydraulic actuator, w is area grads, ixv  is position of the ith 
servovalve,  is fluid density, sp is supply pressure of servosystem,  Lip  is load pressure 
of the ith actuator, A is effective acting area of piston, teC  is the leakage coefficient, tV  is 

actuator cubage,  E  is bulk modulus of fluid, il  is the length of the ith actuator, Cd is flow 

 

coefficient, ffi is joint space friction force in the ith  actuator. A number of methods can be 
used to model the friction Ff [21, 27]. A widely method for modeling friction as 
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where Bc is viscous damping coefficient, fc0,i is the element of Coulomb friction, fext,i is the 
external force element, fs0,i is the breakaway force element.  

 
3. Control design 

In this section, the inverse dynamic methodology [20] is adopted to derive a proportional 
plus derivative controller with dynamic gravity compensation for 6-DOF hydraulic driven 
Gough-Stewart platform in the case in which the system parameters are known, the PDGC 
control scheme are described in Fig.3. 
 

 
Fig. 3. Control block diagram for PDGC  
 
The PDGC controller considered the dynamic characteristic of parallel manipulator 
embedded the forward kinematics, dynamic gravity terms and inverse of transfer function 
from the input position of servovalve to the output force of actuator and Jacobian 

matrix 1T )( 
lJ  in inverse of transpose form in inner control loop. It is should be noted that 
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the friction force, zero bias and dead zone of servovalve also affect the steady and dynamic 
precision as well as system gravity. However, the valve with high performance index may 
be chosen to avoid the effect of dead zone of control valve. In fact, the dead zone of 
servovalve in hydraulic system is very small, which can achieve 0.01mm even a general 
servovalve. The zero bias of servovalve may be measured and compensated for control 
system. For large hydraulic parallel manipulator with heavy payload, the system gravity is 
much more that the maximal friction even that no payload exist in hydraulic 6-DOF parallel 
manipulator. Therefore, the dynamical gravity, the most chief influencing factor of steady 
precision, and viscous friction is taken into account for designing of the developed control 
scheme without considering Column and static friction in this paper. Besides, the classical 
PID is widely applied in hydraulic 6-DOF parallel manipulator in practice, then the 
considered system gravity is associated with PID control to improve the steady and 
dynamic precision without destroy the steadily of the original control system. 
The nature frequency of servovalve is higher than the mechanical and hydraulic commix 
system, so Eqs.(9) can be linearized using Taylor formulation, rewritten by 
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With Eqs.(10)-(13), (10) and (11) are rewritten in the form of La-transformation. 
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The input current of servovalve is direct proportion to position of servovalve, so 
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where, K0 is a constant. 
 
Substituting the Eqs.(16),(17) and (19) in Eqs.(17), the output of inverse servosystem, given 
by 
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The developed controller is extended to model-based control scheme allowing tracking of 
the reference inputs for platform. Desired position vector of hydraulic cylinders and actual 
position vector of hydraulic cylinders are used as input commands of the controller, and the 
controller provides the current sent to the servovale, the closed-loop control law can be 
shown as 
 GiekKekKfu iidipii  )~( 00                   (21) 

 

where ui is the output of actuator, kp and kd are control gain of system, G is the transfer 
function of the output current of servovalve to the actuator output forces, e is actuator 
length error of the platform, ei=lides-li, lides is the desired hydraulic cylinders length,  li is the 
feedback hydraulic cylinder length. 
Using Eqs.(20), the Eqs.(21) can be rewritten by 
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Combining Eqs.(8), (22), an system equation of the 6-DOF parallel manipulator with PDGC 
controller can be obtained, which can be shown as 
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According to Eqs.(23), the system error dynamics for pointing control can be written as 
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The Lyapunov function is chosen for PDGC control scheme, and the rest of stability proof is 
identical to the one in [28]. 
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The error term ),( ee   and the generalized coordinates term ),( ΘΘ   in Eqs.(24) are zero in 
steady state,  so the steady state error vector e  converge to zero, the actual actuator length l  
can converge asymptotical to the desired actuator length  desl without errors.  

 
4. Experiment results 

The control performance including steady state precision, stability and robustness of the 
proposed PDGC is evaluated on a hydraulic 6-DOF parallel manipulator in Fig.4 via 
experiment, which features (1) six hydraulic cylinders, (2) six MOOG-G792 servo-valves, (3) 
hydraulic pressure power source, (4) signal converter and amplifier, (5) D/A ACL-6126 
board, (6) A/D PCL-816/818 board, (7) position and pressure transducer, (8) a real-time 
industrial computer for real-time control, and (9) a supervisory control computer. The 
control program of the parallel manipulator is programmed with Matlab/Simulink and 
compiled to gcc code executed on target real-time computer with QNX operation system 
using RT-Lab. The sampling time for the control system is set to 1 ms, and the parameters of 
the hydraulic 6-DOF parallel manipulator are summarized in Table 1.  
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the friction force, zero bias and dead zone of servovalve also affect the steady and dynamic 
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precision, and viscous friction is taken into account for designing of the developed control 
scheme without considering Column and static friction in this paper. Besides, the classical 
PID is widely applied in hydraulic 6-DOF parallel manipulator in practice, then the 
considered system gravity is associated with PID control to improve the steady and 
dynamic precision without destroy the steadily of the original control system. 
The nature frequency of servovalve is higher than the mechanical and hydraulic commix 
system, so Eqs.(9) can be linearized using Taylor formulation, rewritten by 
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The developed controller is extended to model-based control scheme allowing tracking of 
the reference inputs for platform. Desired position vector of hydraulic cylinders and actual 
position vector of hydraulic cylinders are used as input commands of the controller, and the 
controller provides the current sent to the servovale, the closed-loop control law can be 
shown as 
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4. Experiment results 

The control performance including steady state precision, stability and robustness of the 
proposed PDGC is evaluated on a hydraulic 6-DOF parallel manipulator in Fig.4 via 
experiment, which features (1) six hydraulic cylinders, (2) six MOOG-G792 servo-valves, (3) 
hydraulic pressure power source, (4) signal converter and amplifier, (5) D/A ACL-6126 
board, (6) A/D PCL-816/818 board, (7) position and pressure transducer, (8) a real-time 
industrial computer for real-time control, and (9) a supervisory control computer. The 
control program of the parallel manipulator is programmed with Matlab/Simulink and 
compiled to gcc code executed on target real-time computer with QNX operation system 
using RT-Lab. The sampling time for the control system is set to 1 ms, and the parameters of 
the hydraulic 6-DOF parallel manipulator are summarized in Table 1.  
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Parameters Value 

Maximal/Maximal stroke of cylinder, lmin/lmax 
(m) -0.37/0.37 

Initial length of cylinder, l0 (m) 1.830 
Upper joint spacing, du (m) 0.260 
Lower joint spacing, dd (m) 0.450 
Upper joint radius, Ru (m) 0.560 
Lower joint radius, Rd (m) 1.200 
Mass of upper platform and payload, mp (Kg) 2940 
Moment of inertia of upper platform and 
payload,  
Ixx, Iyy, Izz (Kg·m2) 

217.37, 217.37, 266.75 

Table 1. Parameters of hydraulic 6-DOF parallel manipulator 
 

 
Fig. 4. Experimental hydraulic 6-DOF parallel manipulator 
 
The spatial states of parallel manipulator are critical to determine the control input for 
compensating system gravity, turbulence for the control system of hydraulic 6-DOF parallel 
manipulator. Fortunately, the real-time forward kinematics for estimating system states has 
been investigated and implemented with high accuracy (less than 10-7m) and sample 1-2ms 
[29]. It is should be noted that the steady state error in principle of control system mainly 
results from system gravity of the 6-DOF parallel manipulator especially for hydraulic 
parallel manipulator with heavy payload, even though the friction always exists in the 
system under position control, since the gravity of the payload and upper platform is much 
more than friction.  
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Fig. 5. Responses to desired step trajectories of classical PID and PDGC controller 
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[29]. It is should be noted that the steady state error in principle of control system mainly 
results from system gravity of the 6-DOF parallel manipulator especially for hydraulic 
parallel manipulator with heavy payload, even though the friction always exists in the 
system under position control, since the gravity of the payload and upper platform is much 
more than friction.  

 

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

Time /s

S
ur

ge
 d

is
pl

ac
em

en
t 

q1
/m

 

 

Desired
Actual under classical PID
Actual under PDGC

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

Time /s

S
w

ay
 d

is
pl

ac
em

en
t 

q2
/m

 

 

Desired
Actual under classical PID
Actual under PDGC

 

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

Time /s

H
ea

ve
 d

is
pl

ac
em

en
t q

3/
m

 

 

Desired
Actual under classical PID
Actual under PDGC

0 2 4 6 8 10
0

0.5

1

1.5

2

Time /s

R
ol

l d
is

pl
ac

em
en

t q
4/

de
g

 

 

Desired
Actual under classical PID
Actual under PDGC

 

0 2 4 6 8 10
0

0.5

1

1.5

2

Time /s

P
itc

h 
di

sp
la

ce
m

en
t 

q5
/d

eg

 

 

Desired
Actual under classcial PID
Actual under PDGC

0 2 4 6 8 10
0

0.5

1

1.5

2

Time /s

Y
aw

 d
is

pl
ac

em
en

t q
6/

de
g

 

 

Desired
Actual under classcial PID
Actual under PDGC

 
Fig. 5. Responses to desired step trajectories of classical PID and PDGC controller 
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With online forward kinematics available, the proposed PDGC strategy is implemented in a 
real 6-DOF hydraulic parallel manipulator. The classical PID control scheme is also applied 
to the parallel manipulator as benchmarking for that the classical PID control is a typical 
control strategy in theory and practice, particularly in industrial hydraulic 6-DOF parallel 
manipulator with heavy payload. It is should be noted that the proposed PDGC control is 
an improved PID control with dynamical gravity compensation to improve the control 
performance involving both steady and dynamic precision of hydraulic 6-DOF parallel 
manipulator, the control strategy with gravity compensation also may be incorporated with 
other advanced control scheme to derive better control performance. The classical PID gain 
Kp is experimental tuned to 40, which is identical with the proposed PDGC gains. All six 
DOFs step signals (Surge: 0.02m, Sway: 0.02m, Heave: 0.02m, roll: 2deg, Pitch: 2deg, Yaw: 
2deg) are applied to the actual control system, respectively. Fig.5 shows the responses to the 
desired step trajectory of experimental hydraulic parallel manipulator.  
As shown in Fig.5, the PDGC control scheme can respond to the desired step trajectories 
promptly and steadily in all DOFs. Moreover, the proposed PDGC shows superior control 
performance in steady precision to those of the classical PID control along all six DOFs 
directions. The maximal steady state error is 0.41mm in linear motions and 0.04deg in 
angular motions under the PDGC, 1.01mm in linear motions and 0.052deg in angular 
motions under the classical PID. The maximal steady state error chiefly influenced by 
system gravity appeared in heave direction motion for all 6 DOFs motions under the 
classical PID control, which was compensated via the proposed PDGC control, depicted in 
Fig.6. Compared with the PDGC controller, the maximal steady state error in angular 
motions presented in yaw direction under classical PID control is also shown in Fig.6. The 
steady state error is 0.1mm in heave and 0.03deg in yaw with PDGC, 1.01mm in heave and 
0.052deg in yaw with classical PID. Additionally, the responses to the step trajectories also 
illustrate that the control system, both PDGC and classical PID control, is steady.  
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Fig. 6. The maximal errors of PDGC and classical PID controller in position and orientation 
 
With a view of evaluating the dynamic control performance of the PDGC, the desired 
sinusoidal signals are inputted to the hydraulic parallel manipulator. Under sinusoidal 
inputs along six directions: surge (0.01m/1Hz), sway (0.01m/2Hz), heave (0.01m/1Hz), roll 
(1deg/1Hz), pitch (1deg/2Hz), and yaw (1deg/1Hz), the trajectory tracking for the PDGC 
control and the classical PID control scheme are shown in Fig. 7. 
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Fig. 7. Responses to desired sinusoidal trajectories of classical PID and PDGC controller 
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With online forward kinematics available, the proposed PDGC strategy is implemented in a 
real 6-DOF hydraulic parallel manipulator. The classical PID control scheme is also applied 
to the parallel manipulator as benchmarking for that the classical PID control is a typical 
control strategy in theory and practice, particularly in industrial hydraulic 6-DOF parallel 
manipulator with heavy payload. It is should be noted that the proposed PDGC control is 
an improved PID control with dynamical gravity compensation to improve the control 
performance involving both steady and dynamic precision of hydraulic 6-DOF parallel 
manipulator, the control strategy with gravity compensation also may be incorporated with 
other advanced control scheme to derive better control performance. The classical PID gain 
Kp is experimental tuned to 40, which is identical with the proposed PDGC gains. All six 
DOFs step signals (Surge: 0.02m, Sway: 0.02m, Heave: 0.02m, roll: 2deg, Pitch: 2deg, Yaw: 
2deg) are applied to the actual control system, respectively. Fig.5 shows the responses to the 
desired step trajectory of experimental hydraulic parallel manipulator.  
As shown in Fig.5, the PDGC control scheme can respond to the desired step trajectories 
promptly and steadily in all DOFs. Moreover, the proposed PDGC shows superior control 
performance in steady precision to those of the classical PID control along all six DOFs 
directions. The maximal steady state error is 0.41mm in linear motions and 0.04deg in 
angular motions under the PDGC, 1.01mm in linear motions and 0.052deg in angular 
motions under the classical PID. The maximal steady state error chiefly influenced by 
system gravity appeared in heave direction motion for all 6 DOFs motions under the 
classical PID control, which was compensated via the proposed PDGC control, depicted in 
Fig.6. Compared with the PDGC controller, the maximal steady state error in angular 
motions presented in yaw direction under classical PID control is also shown in Fig.6. The 
steady state error is 0.1mm in heave and 0.03deg in yaw with PDGC, 1.01mm in heave and 
0.052deg in yaw with classical PID. Additionally, the responses to the step trajectories also 
illustrate that the control system, both PDGC and classical PID control, is steady.  
 

0 2 4 6 8 10
-0.005

0

0.005

0.01

0.015

0.02

0.025

Time /s

M
ax

im
al

 e
rro

r i
n 

lin
ea

r m
ot

io
ns

 /m

 

 

Classical PID
PDGC

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

Time /s

M
ax

im
al

 e
rro

rs
 in

 a
ng

ul
ar

 m
ot

io
ns

 /
de

g

 

 

Classcial PID
PDGC

 
Fig. 6. The maximal errors of PDGC and classical PID controller in position and orientation 
 
With a view of evaluating the dynamic control performance of the PDGC, the desired 
sinusoidal signals are inputted to the hydraulic parallel manipulator. Under sinusoidal 
inputs along six directions: surge (0.01m/1Hz), sway (0.01m/2Hz), heave (0.01m/1Hz), roll 
(1deg/1Hz), pitch (1deg/2Hz), and yaw (1deg/1Hz), the trajectory tracking for the PDGC 
control and the classical PID control scheme are shown in Fig. 7. 
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Fig. 8. Experimental results for different mass of payload 

 

As can be deduced form Fig. 5-7, the hydraulic 6-DOF Gough-Stewart platform with PDGC, 
lead the systems to the desired location with smaller steady state error neglected in large 
hydraulic 6-DOF parallel manipulator, while the classical proportional plus integral plus 
derivative control scheme exist large steady state errors in the system, and the PDGC 
control system can implement trajectory tracking of sine wave with excellent performance in 
all DOFs motions, which is better than classical proportional plus integral plus derivative 
controller especially in heave direction motion.  
The influence of platform load variable during the motion of 6-DOF parallel manipulator 
and the robustness of the controller can be illustrated by applied the controller to the system 
in the case of the platform load increase by 12%, the experimental results are shown in the 
Fig.8. 
 
Comparison of results demonstrate that the maximal amplitude fading with increased mass 
of payload is 0.644dB in linear motions (q1, q2, q3), 0.154dB in angular motions (q4, q5, q6), 
and it is 0.661dB in linear motions and 0.153dB in angular motions for initial mass of 
payload, the maximal phase delay of PDGC controller with 112% of initial mass is 0.14rad 
relative to initial mass in linear motions, while it is 0.023rad phase delay than it was with 
initial mass in angular motions. Consequently, the proposed control still has excellent 
performance (robustness) with incorrect mass of payload which is 112% of initial mass. 
Moreover, the experimental results display that the proposed PDGC control scheme can 
improve the steady precision and reduce system dynamic errors of hydraulic 6-DOF parallel 
manipulator even 12% uncertainty exists in gravity, especially for 6-DOF parallel 
manipulator with heavy payload. 

 
5. Conclusions 

In this paper, a proportional plus derivative control with dynamic gravity compensation is 
studied for 6-DOF parallel manipulator. The system models are derived, including the 
dynamics model of 6-DOF Gough-Stewart platform and actuators using Kane method and 
the forward kinematics with Newton-Raphson method and the inverse kinematics in 
closed-form solution, and the hydraulic systems based on hydromechanics theory. The 
control law of proportional plus derivative control with dynamic gravity compensation is 
developed in the paper, the inner loop feedback controller employed dynamic gravity term, 
forward kinematics and Jacobian matrix and yield servovalve currents, and the dynamics of 
hydraulic systems are decoupled by local velocity compensation in inverse servosystem, the 
outer loop implement the position control of actuator length. The direct estimation method 
for the system states required in the proposed control based on the forward kinematics are 
employed in order to realize the control scheme in the base coordinate systems instead of 
the state observer with the actuator length output.  The performances with respect to 
stability, precision and robustness are analyzed. The theoretical analysis and simulation 
results demonstrate that the proposed controller represent excellent performance for the 6-
DOF hydraulic driven Gough-Stewart platform, it is stable, the steady state errors of the 
system due to gravity of the systems are converge asymptotically to zero, and the controller 
reveal superexcellent robustness. Furthermore, the effective PDGC control for the hydraulic 
6-DOF parallel manipulator with heavy payload is obtained in this paper; it can not only be 
used in hydraulic driven 6-DOF parallel manipulator for improving classical PID control 
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Fig. 8. Experimental results for different mass of payload 

 

As can be deduced form Fig. 5-7, the hydraulic 6-DOF Gough-Stewart platform with PDGC, 
lead the systems to the desired location with smaller steady state error neglected in large 
hydraulic 6-DOF parallel manipulator, while the classical proportional plus integral plus 
derivative control scheme exist large steady state errors in the system, and the PDGC 
control system can implement trajectory tracking of sine wave with excellent performance in 
all DOFs motions, which is better than classical proportional plus integral plus derivative 
controller especially in heave direction motion.  
The influence of platform load variable during the motion of 6-DOF parallel manipulator 
and the robustness of the controller can be illustrated by applied the controller to the system 
in the case of the platform load increase by 12%, the experimental results are shown in the 
Fig.8. 
 
Comparison of results demonstrate that the maximal amplitude fading with increased mass 
of payload is 0.644dB in linear motions (q1, q2, q3), 0.154dB in angular motions (q4, q5, q6), 
and it is 0.661dB in linear motions and 0.153dB in angular motions for initial mass of 
payload, the maximal phase delay of PDGC controller with 112% of initial mass is 0.14rad 
relative to initial mass in linear motions, while it is 0.023rad phase delay than it was with 
initial mass in angular motions. Consequently, the proposed control still has excellent 
performance (robustness) with incorrect mass of payload which is 112% of initial mass. 
Moreover, the experimental results display that the proposed PDGC control scheme can 
improve the steady precision and reduce system dynamic errors of hydraulic 6-DOF parallel 
manipulator even 12% uncertainty exists in gravity, especially for 6-DOF parallel 
manipulator with heavy payload. 

 
5. Conclusions 

In this paper, a proportional plus derivative control with dynamic gravity compensation is 
studied for 6-DOF parallel manipulator. The system models are derived, including the 
dynamics model of 6-DOF Gough-Stewart platform and actuators using Kane method and 
the forward kinematics with Newton-Raphson method and the inverse kinematics in 
closed-form solution, and the hydraulic systems based on hydromechanics theory. The 
control law of proportional plus derivative control with dynamic gravity compensation is 
developed in the paper, the inner loop feedback controller employed dynamic gravity term, 
forward kinematics and Jacobian matrix and yield servovalve currents, and the dynamics of 
hydraulic systems are decoupled by local velocity compensation in inverse servosystem, the 
outer loop implement the position control of actuator length. The direct estimation method 
for the system states required in the proposed control based on the forward kinematics are 
employed in order to realize the control scheme in the base coordinate systems instead of 
the state observer with the actuator length output.  The performances with respect to 
stability, precision and robustness are analyzed. The theoretical analysis and simulation 
results demonstrate that the proposed controller represent excellent performance for the 6-
DOF hydraulic driven Gough-Stewart platform, it is stable, the steady state errors of the 
system due to gravity of the systems are converge asymptotically to zero, and the controller 
reveal superexcellent robustness. Furthermore, the effective PDGC control for the hydraulic 
6-DOF parallel manipulator with heavy payload is obtained in this paper; it can not only be 
used in hydraulic driven 6-DOF parallel manipulator for improving classical PID control 
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performance, but also can be associated with other advanced control scheme to get better 
control performance and applied in other systems. 
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Appendix A. 

The 6×6 mass matrix )~(~ ΘM , 6×6 centrifugal and Coriolis matrix ),~(~ ΘΘV  , and 6×1 vector of 

gravity terms )~(~ ΘG  in Eqs.(4) are given by 
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where Ie is unit 3×3 matrix, IL is a 3×3 inertia matrix of upper platform in base coordinates 
system, mp is the mass of upper platform. 
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where Ip is 3×3 inertia matrix relative to its symmetrical axis system, },,{diagp zzyyxx IIII . 
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performance, but also can be associated with other advanced control scheme to get better 
control performance and applied in other systems. 
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1. Introduction

Consider a typical configuration of the sampled-data control system. It consists of the plant
to be controlled, a sampler, a discrete-time controller and a zero-order hold. Disturbance can
be seen as an integral part of the plant so that the plant is characterized by the control path re-
sponsible for control signal influence on the output and the disturbance. The system output is
usually sensed by sensors whose output signal can be corrupted by noise. Sometimes analog
filters are put between the analog sensor output signal and sampler. In the control literature
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Fig. 1. General control system diagram

(Åström and Wittenmark, 1997; Feuer and Goodwin, 1996) strong belief is expressed, that fil-
ters are necessary prior to sampling to guarantee correct digital signal processing and control.
This belief is usually supported by heuristic speculations based on Shannon-Kotelnikov Re-
construction Theorem, e.g. (Jerri, 1977), which states that in order to reconstruct the signal
s(t) from its samples s(ih),−∞ < i < ∞, the sampling frequency should be at least twice the
highest frequency component in the signal. Since the spectra of physical signals often stretch
on infinite frequency range, this gives rise to the idea of so called anti-aliasing filters that cut
off the portion of frequency spectrum lying outside the region determined by that theorem.

*This work has been granted by the Polish Ministry of Science and Higher Education from funds for
years 2008-2011
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It should, however, be stressed that no proofs are available concerning the necessity of anti-
aliasing filters in sampled-data systems, and no statements can be found with regard to the
consequences of the lack of such filters.
Anti-aliasing filters usually take the form of Butterworth filters whose cutoff frequency equals
to the so called Nyquist frequency ωN = π/h, which is depending solely on sampling period
h. As an alternative, so called integrating or averaging samplers are considered (Blachuta &
Grygiel, 2008a;b; Feuer and Goodwin, 1996; Goodwin et al., 2001; Steinway and Melsa, 1971;
Shats and Shaked, 1989).
In (Blachuta & Grygiel, 2008a;b) we studied the impact of antialiasing filters for pure signal
processing, while in (Blachuta & Grygiel, 2009b) the context of discrete-time LQG control was
discussed. The statement was made, that there is no reason for using them in the noiseless
case, and practically they find no use in the case of noisy measurements. The best results in
the latter case are obtained when the continuous-time output is passed through a continuous-
time Kalman filter, which depends rather on disturbance and noise characteristics than the
sampling period, before being sampled. Similar results were observed in PID control systems
(Blachuta & Grygiel, 2009a;b;c)and (Blachuta & Grygiel, 2010)
In this chapter we summarize these results and compare them with LQG minimum-variance
benchmark control using simple, but representative examples.

2. Analog part of the system

2.1 Plant, disturbance and noise model
The model of system displayed in Fig. 1 is presented in Fig. 2, where Kc(s) is the transfer
function of control path of the plant, while Kd(s) and Kn(s) represent filters forming stochastic
disturbance and noise, respectively. K f (s) stands for a continuous-time filter.
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Fig. 2. Control system

The entire continuous-time system can be modeled in state-space as follows:

ẋ(t) = Ax(t) + bu(t) +Cξ̇(t), (1)

y(t) = d′
yx(t), (2)

s(t) = d′
sx(t), (3)

z(t) = d′x(t), (4)

where:
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ẋn(t)
ẋ f (t)


 , ξ̇(t) =

[
ξ̇d(t)
ξ̇n(t)

]
.

Processes ξ̇d(t) and ξ̇n(t) are independent continuous-time white noises with zero means and
covariance functions defined as unit Dirac pulse functions, i.e.:

E [ξ̇d(t)] = 0, E [ξ̇d(t)ξ̇d(τ)] = δ(t − τ); (5)

E [ξ̇n(t)] = 0, E [ξ̇n(t)ξ̇n(τ)] = δ(t − τ). (6)

2.2 Analog Filters
In the paper two types of filters are considered: Butterworth filter as the anti-aliasing filter, as
well as a continuous-time Kalman filter as a filter based on signals spectra.

2.2.1 Butterworth Filter
Transfer function of the Butterworth filter has the form:

K f (s) =
1

Bn

(
s

ωo

) , (7)

where Bn (∗) is the nth-degree Butterworth’s polynomial and ωo is called the cutoff frequency.
In this paper ωo will be assumed as Nyquist frequency ωo = ωN = π

h . The first Butterworth’s
polynomials are definded as follows:

B1 (x) = x + 1; B2 (x) = x2 +
√

2 · x + 1. (8)
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processing, while in (Blachuta & Grygiel, 2009b) the context of discrete-time LQG control was
discussed. The statement was made, that there is no reason for using them in the noiseless
case, and practically they find no use in the case of noisy measurements. The best results in
the latter case are obtained when the continuous-time output is passed through a continuous-
time Kalman filter, which depends rather on disturbance and noise characteristics than the
sampling period, before being sampled. Similar results were observed in PID control systems
(Blachuta & Grygiel, 2009a;b;c)and (Blachuta & Grygiel, 2010)
In this chapter we summarize these results and compare them with LQG minimum-variance
benchmark control using simple, but representative examples.

2. Analog part of the system

2.1 Plant, disturbance and noise model
The model of system displayed in Fig. 1 is presented in Fig. 2, where Kc(s) is the transfer
function of control path of the plant, while Kd(s) and Kn(s) represent filters forming stochastic
disturbance and noise, respectively. K f (s) stands for a continuous-time filter.

 d t

 u t  cy t
 d t

 cK s

 dK s

 n t  n t nK s

h

LQG / PID

ZOH

 s t

 y t

iu iz

 fK s

Fig. 2. Control system

The entire continuous-time system can be modeled in state-space as follows:
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Processes ξ̇d(t) and ξ̇n(t) are independent continuous-time white noises with zero means and
covariance functions defined as unit Dirac pulse functions, i.e.:

E [ξ̇d(t)] = 0, E [ξ̇d(t)ξ̇d(τ)] = δ(t − τ); (5)

E [ξ̇n(t)] = 0, E [ξ̇n(t)ξ̇n(τ)] = δ(t − τ). (6)

2.2 Analog Filters
In the paper two types of filters are considered: Butterworth filter as the anti-aliasing filter, as
well as a continuous-time Kalman filter as a filter based on signals spectra.

2.2.1 Butterworth Filter
Transfer function of the Butterworth filter has the form:

K f (s) =
1

Bn

(
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) , (7)

where Bn (∗) is the nth-degree Butterworth’s polynomial and ωo is called the cutoff frequency.
In this paper ωo will be assumed as Nyquist frequency ωo = ωN = π
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√
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2.2.2 Kalman Filter
Kalman filter is the one that provides the best noise filtering under assumptions of our model.
Since the noise added to the measured output is not white, the classical Kalman filter for
a system consisting of disturbance and noise becomes singular. One way to overcome the
problem is to replace the continuous-time filter with a discrete-time one working at a high
enough sampling frequency 1/h f . The output of such filter could be re-sampled at lower
frequency if necessary.
Very often the power spectrum Sn(ω) of noise n(t), defined by transfer function Kn(s), is
much wider than that of the signal of interest y(t). In such case it can be modeled as white
noise n(t)

E [n(t)] = 0, E [n(t)n(τ)] = η2δ(t − τ); (9)

with constant spectral density η2 independent of frequency ω. The model of disturbances is
then simplified to

ẋd(t) = Adxd(t) + cd ξ̇d(t), (10)

ydn(t) = d′
dxd(t) + ηξ̇n(t), (11)

with
η = |Kn(0)| = |d′

nA
−1
n cn| (12)

The continuous-time Kalman filter is then defined by:

ẋ f (t) = Adx f (t) + k
f
c

[
ydn(t)− d′

dx f (t)
]

(13)

where:

k
f
c =

Pdd
η2 ; AdP +PA′

d −
Pddd

′
dP

η2 + cdc
′
d = 0. (14)

We use this filter in the system to pass the signal y2(t) through it, i.e. we substitute ydn(t) =
y2(t) and receive z(t) = d′

dx f (t)
Since only a rough characterization of noise is required and filter equations are of lower order
equal to the order of disturbance model, analog filtering is greatly simplified.

3. Control algorithms

The aim of the control system is to keep the output of the system close to the reference value
yr(t) = 0, i.e. to make the error e(t) = yr(t) − y(t) small. Since standard deviation is a
good measure of the expected magnitude, the quality of the control systems will be assessed
based on standard deviation of output and control signals. To this end, appropriate variations
should be calculated.

3.1 PID controller
Discrete-time PID controller defined by transfer function:

Kreg(z) =
U(z)
E(z)

= kP

(
1 +

h
TI

z
z − 1

+
TD
h

z − 1
z

)
(15)

can be presented in the state-space form, assuming ei = −zi, as follows:

xr
i+1 = Frx

r
i − grzi, (16)

ui = d′
rx

r
i − erzi, (17)

P kP = T
k·L – –

PI kP = 0.9 T
k·L TI = 3.33 · L –

PID kP = 1.2 T
k·L TI = 2 · L TD = 0.5 · L

Table 1. QDR PID controller settings

where:

Fr =

[
1 0
0 0

]
, gr =

[
1
1

]
, dr =

[
kP

h
TI

−kP
TD
h

]
, er = kp

[
1 +

h
TI

+
TD
h

]
(18)

3.1.1 QDR controller settings
There are several methods to find continuous-time PID controller settings. Perhaps the
simplest one is the so called QDR (Quarter Decay Ratio) method, which is based on lag-
delay approximation of the plant. We adapt this method to sampled-data controller using
a continuous-time approximation of the discrete-time system consisting of ZOH, plant, fil-
ter and sampler. Moreover, a lag-delay approximation GOL(s) of the control path including
respective filter, KOL(s) = Kc(s)K f (s), is used.

GOL(s) =
k

Ts + 1
e−sτ . (19)

The parameters of GOL(s) can be determined by several methods based on the step response
of KOL(s). One of them, called "two points method", relies on two time instants, t1 and t2, at
which the step response reaches the values 63.2% and 28.3% of the steady state, respectively.
We then have:

T = 1.5 (t1 − t2) , τ = t1 − T. (20)

Then the QDR settings (Goodwin et al., 2001) are taken from Table 1 where L accounts for
ZOH and sampler as follows:

L = τ +
h
2

, (21)

which corresponds to the h/2 delay approximation of ZOH.

3.1.2 Optimal PID controller
QDR controller settings do not depend on disturbance and noise characteristics. Therefore

optimal controllers settings p̂ =
[
k̂P T̂j

I T̂j
D

]′
will be chosen as the ones minimizing the

output variance of the controlled system:

p̂ = arg min
p

var {yi} (22)

where the variance var {yi} is determined by the formuale in (24) - (28) that take disturbance

and noise characteristics into account. Denoting p̂j =
[
k̂j

P T̂j
I T̂j

D

]′
at j-th stage of the

minimization procedure, the computation stops when:

‖p̂j − p̂j−1‖ < ε where ε = 0.01 (23)
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2.2.2 Kalman Filter
Kalman filter is the one that provides the best noise filtering under assumptions of our model.
Since the noise added to the measured output is not white, the classical Kalman filter for
a system consisting of disturbance and noise becomes singular. One way to overcome the
problem is to replace the continuous-time filter with a discrete-time one working at a high
enough sampling frequency 1/h f . The output of such filter could be re-sampled at lower
frequency if necessary.
Very often the power spectrum Sn(ω) of noise n(t), defined by transfer function Kn(s), is
much wider than that of the signal of interest y(t). In such case it can be modeled as white
noise n(t)

E [n(t)] = 0, E [n(t)n(τ)] = η2δ(t − τ); (9)

with constant spectral density η2 independent of frequency ω. The model of disturbances is
then simplified to
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y2(t) and receive z(t) = d′
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Since only a rough characterization of noise is required and filter equations are of lower order
equal to the order of disturbance model, analog filtering is greatly simplified.

3. Control algorithms

The aim of the control system is to keep the output of the system close to the reference value
yr(t) = 0, i.e. to make the error e(t) = yr(t) − y(t) small. Since standard deviation is a
good measure of the expected magnitude, the quality of the control systems will be assessed
based on standard deviation of output and control signals. To this end, appropriate variations
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3.1.1 QDR controller settings
There are several methods to find continuous-time PID controller settings. Perhaps the
simplest one is the so called QDR (Quarter Decay Ratio) method, which is based on lag-
delay approximation of the plant. We adapt this method to sampled-data controller using
a continuous-time approximation of the discrete-time system consisting of ZOH, plant, fil-
ter and sampler. Moreover, a lag-delay approximation GOL(s) of the control path including
respective filter, KOL(s) = Kc(s)K f (s), is used.

GOL(s) =
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Ts + 1
e−sτ . (19)

The parameters of GOL(s) can be determined by several methods based on the step response
of KOL(s). One of them, called "two points method", relies on two time instants, t1 and t2, at
which the step response reaches the values 63.2% and 28.3% of the steady state, respectively.
We then have:

T = 1.5 (t1 − t2) , τ = t1 − T. (20)

Then the QDR settings (Goodwin et al., 2001) are taken from Table 1 where L accounts for
ZOH and sampler as follows:

L = τ +
h
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, (21)

which corresponds to the h/2 delay approximation of ZOH.

3.1.2 Optimal PID controller
QDR controller settings do not depend on disturbance and noise characteristics. Therefore

optimal controllers settings p̂ =
[
k̂P T̂j

I T̂j
D

]′
will be chosen as the ones minimizing the

output variance of the controlled system:

p̂ = arg min
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var {yi} (22)

where the variance var {yi} is determined by the formuale in (24) - (28) that take disturbance

and noise characteristics into account. Denoting p̂j =
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D
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at j-th stage of the

minimization procedure, the computation stops when:
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In the above, Powell method of extremum seeking, amended with a procedure determining
the range of stable values of parameters at each direction, can be used. The parameters result-
ing from QDR tuning can then be chosen as an initial guess.

3.1.3 PID Control System Assessment
The output and control variances are as follows:

σ2
y = var {yi} = d′

yV
pdy, (24)

σ2
u = var {ui} = d′

rV
rdr + erd

′V pder − d′
rV

rpder − erd
′V prdr, (25)

where the covariance matrix V

V = E
{[

xi
xr

i

] [
x′

i xr′
i
]}

=

[
V

p
i V

pr
i

V
rp

i V r
i

]
(26)

is a solution of
V = ΦV Φ′ + ΛWΛ′ (27)

with

Φ =

[
(F − gerd

′) gd′
r

−grd
′ Fr

]
, Λ =

[
I
0

]
(28)

3.2 MV LQG control law
The best control accuracy is achieved when using the optimal Minimum-Variance sampled-
data LQG controller which will be used as a benchmark to assess PID control quality.

3.2.1 Controller
LQG control problem with a continuous performance index J is formulated, where

J = lim
N→∞

E
1

Nh

Nh∫

0

{
y2(t) + λu2(t)

}
dt. (29)

Setting λ = 0 defines a MV sampled-data LQG problem. Since noise influences only state
estimate x̂i|i and not the control law, being itself a linear function of x̂i|i the above sampled
data control problem can be reformulated as follows.
The problem defined by modulation equation

u(t) = ui, for t ∈ (ih, ih + h], i = 0, 1, . . . , (30)

state equation

ẋp(t) = Apxp(t) + bpu(t) + cp ξ̇(t), (31)

y(t) = d′
pxp(t), (32)

where:

Ap =

[
Ac 0
0 Ad

]
, bp =

[
bc
0

]
, cp =

[
0
cd

]
,

dp =

[
dc
dd

]
, xp(t) =

[
xc(t)
xd(t)

]
, ξ̇(t) = ξ̇d(t),

and feedback signal zi, is equivalent with the following discrete-time problem

x
p
i+1 = Fpx

p
i + gpui +w

p
i , (33)

zi = d′
px

p
i , (34)

J = lim
N→∞

E
1
N

N−1

∑
i=0

{
x

p′
i Q1x

p
i + 2xp′

i q12ui + q2u2
i + qw

}
, (35)

where

Q1 =
1
h

h∫

0

F ′
p(τ)MFp(τ)dτ, M = dpd

′
p,

q12 =
1
h

h∫

0

F ′
p(τ)Mgp(τ)dτ,

q2 =
1
h

h∫

0

g′p(τ)Mgp(τ)dτ + λ,

qw = d′
p




h∫

0

τ∫

0

Fp(τ − s)cpc
′
pF

′
p(τ − s)dsdτ


dp,

Fp(τ) = eAAApτ , Fp = Fp(h), (36)

gp(τ) =

τ∫

0

eAAApνbpdν, gp = gp(h) (37)

and w
p
i is a zero mean vector Gaussian noise with E {wp

i w
p′
i } = Wp, and

Wp =

h∫

0

eAAApscpc
′
peAAA′

psds. (38)

Vectors x
p
0 and w

p
i are independent for all i ≥ 0. The optimal control law minimizing the

performance index (35) for the discrete stochastic system (33)-(34) is a linear function

ui = −k′
xx̂

p
i|i, (39)

where x̂
p
i|i denotes the Kalman filter estimate of xp

i based on available information up to and
including i from (47)-(48).The feedback gain kx,

k′
x =

q12 +F ′
pKgp

q2 + g′pKgp
(40)

depends on the positive definite solution K of the following algebraic Riccati equation:

K = Q1 +F ′
pKFp −

(q12 +F ′
pKgp)(q12 +F ′

pKgp)′

q2 + g′pKgp
.
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In the above, Powell method of extremum seeking, amended with a procedure determining
the range of stable values of parameters at each direction, can be used. The parameters result-
ing from QDR tuning can then be chosen as an initial guess.

3.1.3 PID Control System Assessment
The output and control variances are as follows:

σ2
y = var {yi} = d′

yV
pdy, (24)

σ2
u = var {ui} = d′

rV
rdr + erd

′V pder − d′
rV

rpder − erd
′V prdr, (25)

where the covariance matrix V

V = E
{[

xi
xr

i

] [
x′

i xr′
i
]}

=

[
V

p
i V

pr
i

V
rp

i V r
i

]
(26)

is a solution of
V = ΦV Φ′ + ΛWΛ′ (27)

with

Φ =

[
(F − gerd

′) gd′
r

−grd
′ Fr

]
, Λ =

[
I
0

]
(28)

3.2 MV LQG control law
The best control accuracy is achieved when using the optimal Minimum-Variance sampled-
data LQG controller which will be used as a benchmark to assess PID control quality.

3.2.1 Controller
LQG control problem with a continuous performance index J is formulated, where

J = lim
N→∞

E
1

Nh

Nh∫

0

{
y2(t) + λu2(t)

}
dt. (29)

Setting λ = 0 defines a MV sampled-data LQG problem. Since noise influences only state
estimate x̂i|i and not the control law, being itself a linear function of x̂i|i the above sampled
data control problem can be reformulated as follows.
The problem defined by modulation equation

u(t) = ui, for t ∈ (ih, ih + h], i = 0, 1, . . . , (30)

state equation

ẋp(t) = Apxp(t) + bpu(t) + cp ξ̇(t), (31)

y(t) = d′
pxp(t), (32)

where:

Ap =

[
Ac 0
0 Ad

]
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[
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0

]
, cp =

[
0
cd

]
,

dp =

[
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dd

]
, xp(t) =

[
xc(t)
xd(t)

]
, ξ̇(t) = ξ̇d(t),

and feedback signal zi, is equivalent with the following discrete-time problem

x
p
i+1 = Fpx

p
i + gpui +w

p
i , (33)

zi = d′
px

p
i , (34)
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N→∞

E
1
N
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x

p′
i Q1x

p
i + 2xp′

i q12ui + q2u2
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}
, (35)
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qw = d′
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0
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0

Fp(τ − s)cpc
′
pF

′
p(τ − s)dsdτ
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dp,

Fp(τ) = eAAApτ , Fp = Fp(h), (36)

gp(τ) =

τ∫

0

eAAApνbpdν, gp = gp(h) (37)

and w
p
i is a zero mean vector Gaussian noise with E {wp

i w
p′
i } = Wp, and

Wp =

h∫

0

eAAApscpc
′
peAAA′

psds. (38)

Vectors x
p
0 and w

p
i are independent for all i ≥ 0. The optimal control law minimizing the

performance index (35) for the discrete stochastic system (33)-(34) is a linear function

ui = −k′
xx̂

p
i|i, (39)

where x̂
p
i|i denotes the Kalman filter estimate of xp

i based on available information up to and
including i from (47)-(48).The feedback gain kx,

k′
x =

q12 +F ′
pKgp

q2 + g′pKgp
(40)

depends on the positive definite solution K of the following algebraic Riccati equation:

K = Q1 +F ′
pKFp −

(q12 +F ′
pKgp)(q12 +F ′

pKgp)′

q2 + g′pKgp
.
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3.2.2 Discrete-time Kalman filter
Simple instantaneous sampling with sampling period h consists in taking the values of the
sampled signal at discrete time instants ti = ih, i = 0, 1, . . .. Available measurements zi are
expressed as

zi = y2(ti). (41)

The problem defined by measurement equation zi = z(ih) and state equation (1) is equivalent
to the following discrete-time system:

xi+1 = Fxi + gui +wi, (42)

zi = d′xi, (43)

where:

F (τ) = eAAAτ , F = F (h), (44)

g(τ) =

τ∫

0

eAAAνbdν, g = g(h) (45)

and wi is a zero mean vector Gaussian noise with E {wiw
′
i} = W , and

W =

h∫

0

eAAAsCC ′eAAA′sds. (46)

Vectors x0 and wi are independent for all i ≥ 0.
The limiting Kalman filter, (Anderson & Moore, 1979), that provides (x̂i|i = E [xi|�zi]) for the
discrete-time system in (42)-(43) as i → ∞ has the form:

x̂i+1|i+1 = x̂i+1|i + k f (zi+1 − d′x̂i+1|i), (47)

x̂i+1|i = F x̂i|i + gui, x0|−1 = 0, (48)

where

k f =
Σd

d′Σd
, Σ = W +F

(
Σ − Σdd′Σ′

d′Σd

)
F ′. (49)

3.2.3 MV LQG Control System Assessment
Output and control variances for systems with continuous-time filters can be expressed by
following formulae:

σ2
y = var {yi} = d′

0V
od0, (50)

σ2
u = var {ui} = k′

xV
fkx, (51)

where V o, V f , endV f o are submatrices of matrix V

V = E
{[

xi
x̂i|i

] [
x′

i x̂′
i|i

]}
=

[
V o V o f

V f o V f

]
(52)

which is a solution of the following matrix Lyapunov equation:

V = ΦV Φ′ + ΩWΩ′, (53)

with:

Λ = (I − k fd′)(F + gk′
x), Ψ = (Λ + k fd′gk′

x),

Φ =

[
F gk′

x
k fd′F Ψ

]
, Ω =

[
I

k fd′

]
.

4. Examples

We will study the properties of control systems for a plant having control path

Kc(s) =
1

(1 + 0.5s)2 , (54)

with disturbance modeled by:

Kd(s) =
kd

(1 + Tds)2 , (55)

with Td = 2 and kd chosen such, that var d(t) = 1. For the noise model in Fig.2 we use three
different transfer functions

K1
n(s) =

k1
n

T2
n s2 + 2ζnTns + 1

, Tn = 0.05, ζn = 1 (56)

K2
n(s) =

k2
n

T2
n s2 + 2ζnTns + 1

, Tn = 0.05, ζn = 0.05 (57)

K3
n(s) = k3

n · (K1
n(s) + K2

n(s)) (58)

with ki
n, i = 1, 2, 3 chosen such that var n(t) = σ2

n . The model in eq. (56) produces a wide-band
noise, the one in eq. (57) a narrow band, while the model in eq. (58) a mixed character one.
Spectral density characteristics of Kn(s) and Kd(s)) are presented in Fig. 3.
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Fig. 3. Spectral density for std {n(t)} = 1.0

4.1 Open-loop results
The effect of Butterworth filter compared with continuous-time Kalman filter in the pure sig-
nal processing context is presented in Fig. 4a - b for a wide-band noise. In Fig. 4a it is clearly
seen, that for small level of noise the only result is that filtration error increases with increas-
ing sampling period h. This is due to the signal deformation caused by filtering. At high noise
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3.2.2 Discrete-time Kalman filter
Simple instantaneous sampling with sampling period h consists in taking the values of the
sampled signal at discrete time instants ti = ih, i = 0, 1, . . .. Available measurements zi are
expressed as

zi = y2(ti). (41)

The problem defined by measurement equation zi = z(ih) and state equation (1) is equivalent
to the following discrete-time system:

xi+1 = Fxi + gui +wi, (42)

zi = d′xi, (43)

where:

F (τ) = eAAAτ , F = F (h), (44)

g(τ) =

τ∫

0

eAAAνbdν, g = g(h) (45)

and wi is a zero mean vector Gaussian noise with E {wiw
′
i} = W , and

W =

h∫

0

eAAAsCC ′eAAA′sds. (46)

Vectors x0 and wi are independent for all i ≥ 0.
The limiting Kalman filter, (Anderson & Moore, 1979), that provides (x̂i|i = E [xi|�zi]) for the
discrete-time system in (42)-(43) as i → ∞ has the form:

x̂i+1|i+1 = x̂i+1|i + k f (zi+1 − d′x̂i+1|i), (47)

x̂i+1|i = F x̂i|i + gui, x0|−1 = 0, (48)

where

k f =
Σd

d′Σd
, Σ = W +F

(
Σ − Σdd′Σ′

d′Σd

)
F ′. (49)

3.2.3 MV LQG Control System Assessment
Output and control variances for systems with continuous-time filters can be expressed by
following formulae:

σ2
y = var {yi} = d′

0V
od0, (50)

σ2
u = var {ui} = k′

xV
fkx, (51)

where V o, V f , endV f o are submatrices of matrix V

V = E
{[

xi
x̂i|i

] [
x′

i x̂′
i|i

]}
=

[
V o V o f

V f o V f

]
(52)

which is a solution of the following matrix Lyapunov equation:

V = ΦV Φ′ + ΩWΩ′, (53)

with:

Λ = (I − k fd′)(F + gk′
x), Ψ = (Λ + k fd′gk′

x),

Φ =

[
F gk′

x
k fd′F Ψ

]
, Ω =

[
I

k fd′

]
.

4. Examples

We will study the properties of control systems for a plant having control path

Kc(s) =
1

(1 + 0.5s)2 , (54)

with disturbance modeled by:

Kd(s) =
kd

(1 + Tds)2 , (55)

with Td = 2 and kd chosen such, that var d(t) = 1. For the noise model in Fig.2 we use three
different transfer functions

K1
n(s) =

k1
n

T2
n s2 + 2ζnTns + 1

, Tn = 0.05, ζn = 1 (56)

K2
n(s) =

k2
n

T2
n s2 + 2ζnTns + 1

, Tn = 0.05, ζn = 0.05 (57)

K3
n(s) = k3

n · (K1
n(s) + K2

n(s)) (58)

with ki
n, i = 1, 2, 3 chosen such that var n(t) = σ2

n . The model in eq. (56) produces a wide-band
noise, the one in eq. (57) a narrow band, while the model in eq. (58) a mixed character one.
Spectral density characteristics of Kn(s) and Kd(s)) are presented in Fig. 3.
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Fig. 3. Spectral density for std {n(t)} = 1.0

4.1 Open-loop results
The effect of Butterworth filter compared with continuous-time Kalman filter in the pure sig-
nal processing context is presented in Fig. 4a - b for a wide-band noise. In Fig. 4a it is clearly
seen, that for small level of noise the only result is that filtration error increases with increas-
ing sampling period h. This is due to the signal deformation caused by filtering. At high noise
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levels there are two effects: decreasing influence of noise with increasing sampling period
accompanied by increasing deformation of the useful signal. This situation becomes greatly
improved when Butterworth filter is followed by a discrete-time Kalman filter of (47)-(48), see
Fig. 4b. In this figure we have std (∆d∗) = lim

i→∞
std {∆d∗(i)}, where ∆d∗(i) is the difference be-

tween actual value di and a sample si, and std (∆s) = lim
i→∞

std {∆s(i)}, where ∆d(i) = di − d̂i|i

is the difference between di and its estimate d̂i|i produced by the discrete-time Kalman filter
These phenomena will play important role in the control context in closed loop.

Butterworth Butterworth with DT Kalman
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Fig. 4. Wide-band noise filtering results: CT Butterworth filter and CT Butterworth with DT
Kalman compared with CT Kalman filter
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Fig. 5. Narrow-band noise filtering results: CT Butterworth filter and CT Butterworth with
DT Kalman compared with CT Kalman filter

4.2 Closed-loop results
The results for PID QDR, optimal PID and LQG controlled systems are presented in figure
Fig. 6 as functions of the sampling period h. The main conclusion is that all control systems
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Fig. 6. Control errors and control efforts as functions of h for various noise magnitudes

behave worse when the anti-aliasing filter is used in the noiseless case. This is also true in the
case of small noise level and PID controllers.
In contrast to the LQG control, the continuous-time Kalman filter does not help either. Very
small improvement is attained in MV LQG system at very high noise level and longer sam-
pling periods. The characteristic feature of MV LQG is that the control magnitudes do not
depend on the type of filter used.
The improvement in terms of output variance is better visible in the case of PID controllers.
Systems with Kalman filter behave then better in wide range of sampling instants.
Rather large improvement is seen, however, in terms of control signal magnitudes. It does not
depend practically on sampling period in the case of CT Kalman filter, and tends to it with
increasing sampling period in the case of Butterworth filter.
Selected results for PID and LQG controllers with parameters collected in Table 2 are illus-
trated in Fig.7 on the plane std{u}–std{y} for h = 0.2. It is readily seen that analog filtering
makes restricted sense only for PID controllers with QDR tuning and high noise level. Un-
fortunately the quality of control remains then very poor, even if the continuous-time Kalman
filter is applied as analog filter. Application of optimally tuned PID controllers leads to an
even more surprising result: from figure Fig.7 it is seen that even at large noise level very
good results close to the LQG benchmark can be obtained without any analog filter.
In Fig.7the results are plotted on the plane std{u}–std{y} for various values of h, showing
again that the use of anti-aliasing filter makes no sense, and that the quality of disturbance
attenuation of optimally tuned PID controllers is very similar to that of MV LQG controller.
Unfortunately, Nyquist plots of a series connection of the plant and the controller depicted in
Fig.8 show that PID systems are less robust than the MV LQG ones. Moreover, the usage of
anti-aliasing filters makes this even worse.
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levels there are two effects: decreasing influence of noise with increasing sampling period
accompanied by increasing deformation of the useful signal. This situation becomes greatly
improved when Butterworth filter is followed by a discrete-time Kalman filter of (47)-(48), see
Fig. 4b. In this figure we have std (∆d∗) = lim

i→∞
std {∆d∗(i)}, where ∆d∗(i) is the difference be-

tween actual value di and a sample si, and std (∆s) = lim
i→∞

std {∆s(i)}, where ∆d(i) = di − d̂i|i

is the difference between di and its estimate d̂i|i produced by the discrete-time Kalman filter
These phenomena will play important role in the control context in closed loop.
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Fig. 4. Wide-band noise filtering results: CT Butterworth filter and CT Butterworth with DT
Kalman compared with CT Kalman filter

Butterworth Butterworth with DT Kalman

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h

st
d{

∆d
*}

std{n(t)}=0.01; CT(K,η)
std{n(t)}=0.01; CT(B)
std{n(t)}=0.1; CT(K,η)
std{n(t)}=0.1; CT(B)
std{n(t)}=0.5; CT(K,η)
std{n(t)}=0.5; CT(B)
std{n(t)}=1; CT(K,η)
std{n(t)}=1; CT(B)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h

st
d{

∆d
*}

,s
td

{∆
d}

std{n(t)}=0.01; CT(K,η)
std{n(t)}=0.01; CT(B)+DT(η)
std{n(t)}=0.1; CT(K,η)
std{n(t)}=0.1; CT(B)+DT(η)
std{n(t)}=0.5; CT(K,η)
std{n(t)}=0.5; CT(B)+DT(η)
std{n(t)}=1; CT(K,η)
std{n(t)}=1; CT(B)+DT(η)

Fig. 5. Narrow-band noise filtering results: CT Butterworth filter and CT Butterworth with
DT Kalman compared with CT Kalman filter

4.2 Closed-loop results
The results for PID QDR, optimal PID and LQG controlled systems are presented in figure
Fig. 6 as functions of the sampling period h. The main conclusion is that all control systems
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Fig. 6. Control errors and control efforts as functions of h for various noise magnitudes

behave worse when the anti-aliasing filter is used in the noiseless case. This is also true in the
case of small noise level and PID controllers.
In contrast to the LQG control, the continuous-time Kalman filter does not help either. Very
small improvement is attained in MV LQG system at very high noise level and longer sam-
pling periods. The characteristic feature of MV LQG is that the control magnitudes do not
depend on the type of filter used.
The improvement in terms of output variance is better visible in the case of PID controllers.
Systems with Kalman filter behave then better in wide range of sampling instants.
Rather large improvement is seen, however, in terms of control signal magnitudes. It does not
depend practically on sampling period in the case of CT Kalman filter, and tends to it with
increasing sampling period in the case of Butterworth filter.
Selected results for PID and LQG controllers with parameters collected in Table 2 are illus-
trated in Fig.7 on the plane std{u}–std{y} for h = 0.2. It is readily seen that analog filtering
makes restricted sense only for PID controllers with QDR tuning and high noise level. Un-
fortunately the quality of control remains then very poor, even if the continuous-time Kalman
filter is applied as analog filter. Application of optimally tuned PID controllers leads to an
even more surprising result: from figure Fig.7 it is seen that even at large noise level very
good results close to the LQG benchmark can be obtained without any analog filter.
In Fig.7the results are plotted on the plane std{u}–std{y} for various values of h, showing
again that the use of anti-aliasing filter makes no sense, and that the quality of disturbance
attenuation of optimally tuned PID controllers is very similar to that of MV LQG controller.
Unfortunately, Nyquist plots of a series connection of the plant and the controller depicted in
Fig.8 show that PID systems are less robust than the MV LQG ones. Moreover, the usage of
anti-aliasing filters makes this even worse.
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QDR std {yi} OPTIMAL std {yi}

PID
kP = 2.8146
TI = 0.7045
TD = 0.1761

0.78
kP = 0.9383
TI = 0.9647
TD = 0.2199

0.50

PID;B
kP = 2.2328
TI = 0.8843
TD = 0.2211

0.71
kP = 0.9293
TI = 0.9486
TD = 0.2427

0.50

PID;K
kP = 1.8621
TI = 1.6319
TD = 0.4080

0.55
kP = 1.4118
TI = 1.5648
TD = 0.6619

0.53

Table 2. QDR PID & Optimal PID controller settings for std {n} = 1 and h = 0.2
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Fig. 7. PID QDR & optimal PID controller results, for h = 0.2 with std {n(t)} = 0 and
std {n(t)} = 1

−1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(−1,0j)
PID

PID;CT(B)

PID;CT(K)−η

PID(QDR); std{n(t)}=1; h=0.5

Frequency (rad/sec)

M
ag

ni
tu

de
 (a

bs
)

−1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(−1,0j)
PID

PID;CT(B)

PID;CT(K)−η

PID(opt); std{n(t)}=1; h=0.5

Frequency (rad/sec)

M
ag

ni
tu

de
 (a

bs
)

−1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(−1,0j)
LQG

LQG;CT(B)

LQG;CT(K)−η

LQG; std{n(t)}=1; h=0.5

Frequency (rad/sec)

M
ag

ni
tu

de
 (a

bs
)

Fig. 8. Nyquist plots and robustness of various control systems

Influence of sampling period and noise character is further studied in figures Fig.9 - Fig.14
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Fig. 9. Negligible noise level results as functions of h, std {ni} = 0.01
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Fig. 10. Wide-band noise results for various controllers and filters as functions of h
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Fig. 11. Mixed-band noise results for various controllers and filters as functions of h

no filter Kalman Butterworth

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

std{ui}

st
d{

y i}

PID(QDR),PID(opt),LQG&LQG(λ=0.001); σn=0.5
PID(QDR)
PID(opt)
LQG λ=0
LQG λ=0.001

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

std{ui}

st
d{

y i}

PID(QDR),PID(opt)&LQG ; σn=0.5; CT(K)−η
PID(QDR)
PID(opt)
LQG λ=0

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

std{ui}

st
d{

y i}

PID(QDR),PID(opt)&LQG ; σn=0.5; CT(B)
PID(QDR)
PID(opt)
LQG λ=0

Fig. 12. Narrow-band noise results for various controllers and filters as functions of h
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Fig. 7. PID QDR & optimal PID controller results, for h = 0.2 with std {n(t)} = 0 and
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Fig. 8. Nyquist plots and robustness of various control systems

Influence of sampling period and noise character is further studied in figures Fig.9 - Fig.14
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Fig. 10. Wide-band noise results for various controllers and filters as functions of h
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Fig. 12. Narrow-band noise results for various controllers and filters as functions of h
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Fig. 13. Wide-band noise: realizations of output and control signals

5. Conclusion

It has been shown that the use of anti-aliasing filters is not justified in sampled-data MV LQG
and PID control systems with noiseless measurements, or when the level of noise is small.
Certain improvement can be made in the case of PID control systems with QDR and optimal
settings in terms of both, output signal and control signal variance, in the case of large level of
noise. However, continuous-time Kalman filter is then much better in the wide range of sam-
pling periods, while the effect of Butterworth filter becomes better with increasing sampling
period. Unfortunately the usage of any analog filters deteriorates the robustness of control
systems. This makes the claim of uselessness of anti-aliasing filters even stronger.
Optimal tuning of PID controllers that takes the disturbance and noise parameters into ac-
count leads to the results comparable with those of LQG controllers without any analog pre-
filters. (Goodwin et al., 2001)

no filter Kalman Butterworth

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(QDR); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(QDR), CTR(K); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(QDR), CTR(B); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(opt); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(opt), CTR(K); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(opt), CTR(B); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

LQG, h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

LQG, CTR(K); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

LQG, CTR(B); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

Fig. 14. Narrow-band noise: realizations of output and control signals

6. References

Anderson, B.D.O. and Moore, J.B. (1979). Optimal Filtering, Prentice Hall, Inc., Englewood
Cliffs, New Jersey, .

Åström, K. and Wittenmark, B. (1997). Computer–Controlled Systems, Prentice Hall, 1997.
Blachuta, M. J., Grygiel, R. T. (2008a). Averaging sampling: models and properties. Proc. of the

2008 American Control Conference, pp. 3554-3559, Seattle USA, June 2008.
Blachuta, M. J., Grygiel, R. T. (2008b). Sampling of noisy signals: spectral vs anti-aliasing

filters, Proc. of the 2008 IFAC World Congress, pp. 7576-7581, Seul Korea, July 2008.
Blachuta, M. J., Grygiel, R. T. (2009a). On the Effect of Antialiasing Filters on Sampled-Data

PID Control, Proc. of 21th Chinese Conference on Decision and Control, Guilin China,
June 2009.

Blachuta, M. J., Grygiel, R. T. (2009b). Are anti-aliasing filters really necessary for sampled-
data control? Proc. of the 2009 American Control Coference, pp. 3200-3205, St Louis
USA, June 2009.



Sampled-Data PID Control and Anti-aliasing Filters 141

no filter Kalman Butterworth

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(QDR); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(QDR), CTR(K); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(QDR), CTR(B); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(opt); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(opt), CTR(K); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

PID(opt), CTR(B); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

LQG, h=0.05; std{n}=0.5
y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

LQG, CTR(K); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

0 5 10 15 20 25 30
−2
−1

0
1
2

LQG, CTR(B); h=0.05; std{n}=0.5

y2(t)

yf(t)
y(t)
2σy

0 5 10 15 20 25 30
−10

−5

0

5

10

t[s]

ui
2σu

Fig. 13. Wide-band noise: realizations of output and control signals

5. Conclusion

It has been shown that the use of anti-aliasing filters is not justified in sampled-data MV LQG
and PID control systems with noiseless measurements, or when the level of noise is small.
Certain improvement can be made in the case of PID control systems with QDR and optimal
settings in terms of both, output signal and control signal variance, in the case of large level of
noise. However, continuous-time Kalman filter is then much better in the wide range of sam-
pling periods, while the effect of Butterworth filter becomes better with increasing sampling
period. Unfortunately the usage of any analog filters deteriorates the robustness of control
systems. This makes the claim of uselessness of anti-aliasing filters even stronger.
Optimal tuning of PID controllers that takes the disturbance and noise parameters into ac-
count leads to the results comparable with those of LQG controllers without any analog pre-
filters. (Goodwin et al., 2001)
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1. Introduction

In the analysis and synthesis of control systems, model-based design methods are standard
and powerful. However, the plant property is wide-ranging, and the identification of the
mathematical model requires much effort and expert knowledge. Since the purpose of control
design is to find a controller that optimizes a performance index using plant responses and
other preliminary knowledge, a mathematical model is not necessarily required for design
though it is very useful. We consider that essential merit of this data-driven design approach
lies in the fact that the controller structure is known completely, whereas it is impossible to
identify the plant structure without uncertainties.
Design methods that satisfy the following conditions are considered to be more user friendly.
a) Plant responses used for design can be obtained in the normal plant operation. b) Not
so many plant responses are required for design. For example, a few step responses may
be desirable, preferably in the closed-loop operation. c) The design method is applicable to
various plants by tuning one or two design parameters. d) The parameter value of the design
specification has absolute meaning for control performance. Namely, it is desirable to be plant
independent.
Recently, there have been two major data-driven approaches proposed. One is the iterative
feedback tuning (IFT) (Hjalmarsson et al. (1999); Lequin et al. (2003)). Since IFT requires spe-
cial experiments to get the plant responses iteratively, it does not satisfy the requirements
a) and b). The other is the virtual reference feedback tuning (VRFT) ( Campi et al. (2002)).
VRFT is based on model matching, and the controller that gives a desired closed-loop trans-
fer function is sought. We consider that VRFT almost satisfies a), b), c). Since preliminary
knowledge is necessary to give an adequate and realizable target closed-loop transfer func-
tion, the requirement d) is not satisfied. VRFT is suitable for those problems where the target
closed-loop transfer function can be given or easily found from some preliminary knowledge.
In the classical control and robust control, loop-shaping is recognized as a very practical and
useful design specification (Skogestad & Postlethwaite (2007)). PID controller is widely used
for the industrial plants and the tuning of the PID gains is easier compared with other con-
trollers (Åström & Hägglund (1995)). Therefore, we have developed a data driven method for
the mixed sensitivity control problem of PID control (Saeki (2004a), Saeki et al. (2006)) based
on unfalsified control (Safonov & Tsao (1997)). After this, we found a simpler problem setting
for PI control in the reference (Åström et al. (1998)), where the integral gain of PI controller is

7
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maximized subject to the maximum sensitivity condition and this problem is treated on the
frequency domain. Since this problem setting and the solutions satisfy c) and d), we have
studied a data-driven method for this problem in order to develop a method that satisfies all
the requirements. This problem can be considered as a loop shaping problem, which will be
explained in Section 2.
The basic idea of unfalsified control is to remove the controllers from the candidate controllers
if they do not satisfy the design specification for given plant responses, and to apply an un-
falsified controller to the plant. We have examined application of this idea to robust control
design. Since we found by simulation that the falsification condition of an L2 gain perfor-
mance index cannot efficiently falsifies the controllers by a single plant response, we pro-
posed a method of generating many virtual responses by filtering the measured data with
many bandpass filters (Saeki et al. (2006)). We have obtained a data-driven method that al-
most satisfies a) and b) for a single-input single-output plant (Saeki (2008)). We refer to this
method as the data driven loop shaping method (DDLS).
In this paper, we will study an extension of DDLS to multi-loop PID control, and we will
examine the possibility of this approach because the design of multi-loop PID control systems
is much harder than that of single-input single-output plants (Johnson & Moradi (2005)). A
design problem is formulated in Section 2, the constraints on PID gains are derived in Section
3, and a method of generating plant response data and the design procedure are explained
in Section 4. A numerical example for a two-input two-output time-delay plant is shown in
Section 5, and an experimental result for a two-rotor hovering system is shown in Section 6.
For signals w(t) ∈ Rn, v(t) ∈ Rn, t ∈ [0, ∞), we use the following notations. ‖w‖2 =√∫ ∞

0 w(τ)Tw(τ)dτ, ‖w‖2T =
√∫ T

0 w(τ)Tw(τ)dτ, 〈w, v〉 =
∫ ∞

0 w(τ)Tv(τ)dτ, 〈w, v〉T =
∫ T

0 w(τ)Tv(τ)dτ. Denote the (i, j)-element of a matrix A as [A]ij and the ith-element of a
vector b as [b]i.

2. Problem setting

Let us consider the feedback system described by

y = Pe (1)

e = w − u (2)

u = Ky (3)

where y, e, u, w ∈ Rm. The plant P is linear time-invariant and m-input and m-output. K is a
multi-loop PID controller given by

K(s) = KP + KI
1
s
+ KDs (4)

where KP, KI , KD are constant diagonal matrices. We will use the notation K̂ = [KP, KI , KD].
Since we are considering a data-driven method, we assume that a few input-output responses
of the plant, e(t), y(t), are given in the finite interval t ∈ [0, T], where the plant is at the steady
state at t = 0, i.e., e(t) = 0, y(t) = 0, t < 0. If e(t) = e(0) �= 0, y(t) = y(0) �= 0 for t < 0, the
bias must be eliminated by e(t)− e(0), y(t)− y(0). These data will be used for design.
The sensitivity and complementary sensitivity functions at the plant input are denoted by

SI = (I + KP)−1 (5)

TI = (I + KP)−1KP (6)

For this system, following properties are known.

a) The maximum sensitivity defined by

Ms = max
0≤ω<∞

σmax {SI(jω)} (7)

is a useful measure for stability margin, and the typical values of Ms are in the range of
1.2 to 2. This condition is represented by

σmax {SI(jω)} < γ1, ω ∈ R, γ1 ∈ [1.2, 2] (8)

In the time domain, this is equivalent to the L2-gain condition;

‖e‖2 < γ1‖w‖2 (9)

for all w ∈ L2 and e = SIw.

b) A robust stability condition is given by

σmax {TI(jω)} < γ2, ω ∈ R (10)

, which is equivalent to the L2-gain condition;

‖u‖2 < γ2‖w‖2 (11)

for all w ∈ L2 and u = TIw.

c) Let yi(t) be the response for a step disturbance wi(t) = 1 and wj(t) = 0, j �= i. Then the
intergal of yi(t) satisfies

∫ ∞

0
yi(τ)dτ =

1
[KI ]ii

(12)

From this property, disturbance attenuation is attained by making |[KI ]ii| larger for i =
1, 2, · · · , m. We formulate the plant description so that [KI ]ii > 0, i = 1, 2, · · · , m can
be a necessary condition for the closed-loop stability, and, for this system, we adopt the
next performance index to measure the largeness of KI .

J =
m

∑
i=1

[KI ]ii (13)

d) When σmin {KI P(0)} �= 0, the next approximation is satisfied at low frequencies.

SI(jω) ≈ jω(KI P(0))−1 (14)

In this paper, we will study a maximization problem of the integral gain of the PID con-
troller under the maximum sensitivity condition and, if necessary, the robust stability condi-
tion. From the above properties a), b), and c), this problem is considered as a disturbance
attenuation problem with adequate stability margin. This is also considered as a loop shaping
problem. Namely, from the properties a) and d), if σmin {KI P(0)} �= 0, the system has a loop
shape illustrated in Fig. 1. By substituting (14) into σmax {SI(jω)} < 1, ω < σmin {KI P(0)}.
Therefore, the control bandwidth is estimated by σmin {KI P(0)}, which can be made larger by
making KI larger.
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maximized subject to the maximum sensitivity condition and this problem is treated on the
frequency domain. Since this problem setting and the solutions satisfy c) and d), we have
studied a data-driven method for this problem in order to develop a method that satisfies all
the requirements. This problem can be considered as a loop shaping problem, which will be
explained in Section 2.
The basic idea of unfalsified control is to remove the controllers from the candidate controllers
if they do not satisfy the design specification for given plant responses, and to apply an un-
falsified controller to the plant. We have examined application of this idea to robust control
design. Since we found by simulation that the falsification condition of an L2 gain perfor-
mance index cannot efficiently falsifies the controllers by a single plant response, we pro-
posed a method of generating many virtual responses by filtering the measured data with
many bandpass filters (Saeki et al. (2006)). We have obtained a data-driven method that al-
most satisfies a) and b) for a single-input single-output plant (Saeki (2008)). We refer to this
method as the data driven loop shaping method (DDLS).
In this paper, we will study an extension of DDLS to multi-loop PID control, and we will
examine the possibility of this approach because the design of multi-loop PID control systems
is much harder than that of single-input single-output plants (Johnson & Moradi (2005)). A
design problem is formulated in Section 2, the constraints on PID gains are derived in Section
3, and a method of generating plant response data and the design procedure are explained
in Section 4. A numerical example for a two-input two-output time-delay plant is shown in
Section 5, and an experimental result for a two-rotor hovering system is shown in Section 6.
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2. Problem setting

Let us consider the feedback system described by

y = Pe (1)

e = w − u (2)

u = Ky (3)

where y, e, u, w ∈ Rm. The plant P is linear time-invariant and m-input and m-output. K is a
multi-loop PID controller given by

K(s) = KP + KI
1
s
+ KDs (4)

where KP, KI , KD are constant diagonal matrices. We will use the notation K̂ = [KP, KI , KD].
Since we are considering a data-driven method, we assume that a few input-output responses
of the plant, e(t), y(t), are given in the finite interval t ∈ [0, T], where the plant is at the steady
state at t = 0, i.e., e(t) = 0, y(t) = 0, t < 0. If e(t) = e(0) �= 0, y(t) = y(0) �= 0 for t < 0, the
bias must be eliminated by e(t)− e(0), y(t)− y(0). These data will be used for design.
The sensitivity and complementary sensitivity functions at the plant input are denoted by

SI = (I + KP)−1 (5)

TI = (I + KP)−1KP (6)

For this system, following properties are known.

a) The maximum sensitivity defined by

Ms = max
0≤ω<∞

σmax {SI(jω)} (7)

is a useful measure for stability margin, and the typical values of Ms are in the range of
1.2 to 2. This condition is represented by

σmax {SI(jω)} < γ1, ω ∈ R, γ1 ∈ [1.2, 2] (8)

In the time domain, this is equivalent to the L2-gain condition;

‖e‖2 < γ1‖w‖2 (9)

for all w ∈ L2 and e = SIw.

b) A robust stability condition is given by

σmax {TI(jω)} < γ2, ω ∈ R (10)

, which is equivalent to the L2-gain condition;

‖u‖2 < γ2‖w‖2 (11)

for all w ∈ L2 and u = TIw.

c) Let yi(t) be the response for a step disturbance wi(t) = 1 and wj(t) = 0, j �= i. Then the
intergal of yi(t) satisfies

∫ ∞

0
yi(τ)dτ =

1
[KI ]ii

(12)

From this property, disturbance attenuation is attained by making |[KI ]ii| larger for i =
1, 2, · · · , m. We formulate the plant description so that [KI ]ii > 0, i = 1, 2, · · · , m can
be a necessary condition for the closed-loop stability, and, for this system, we adopt the
next performance index to measure the largeness of KI .

J =
m

∑
i=1

[KI ]ii (13)

d) When σmin {KI P(0)} �= 0, the next approximation is satisfied at low frequencies.

SI(jω) ≈ jω(KI P(0))−1 (14)

In this paper, we will study a maximization problem of the integral gain of the PID con-
troller under the maximum sensitivity condition and, if necessary, the robust stability condi-
tion. From the above properties a), b), and c), this problem is considered as a disturbance
attenuation problem with adequate stability margin. This is also considered as a loop shaping
problem. Namely, from the properties a) and d), if σmin {KI P(0)} �= 0, the system has a loop
shape illustrated in Fig. 1. By substituting (14) into σmax {SI(jω)} < 1, ω < σmin {KI P(0)}.
Therefore, the control bandwidth is estimated by σmin {KI P(0)}, which can be made larger by
making KI larger.
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Lemma 1(Vidyasagar (1993)) Suppose that the system satisfies causality and it is in the steady
state at t = 0. Then, if (9) is satisfied,

‖ e ‖2T< γ1 ‖ w ‖2T (15)

for T > 0. Similarly, if (11) is satisfied,

‖ u ‖2T< γ2 ‖ w ‖2T (16)

for T > 0.
Compared with (9), the merit of the condition (15) is that it can be calculated for the finite
length data e(t), y(t), t ∈ [0, T], and the demerit is that (15) is only a necessary condition for
(9). Since we can only use the finite length data, we will use the condition (15) instead of
(9). The same idea is applied to (11) and (16). In this paper, we will examine the next design
problem.
Loop-shaping problem: For the feedback system (1)-(3), find a PID controller that maximizes
J defined by (13) subject to

‖e‖2T < γ1‖w‖2T (17)

‖u‖2T < γ2‖w‖2T (18)

for sufficiently many disturbances w = wi ∈ L2e, i = 1, 2, · · · , N.
In this problem setting, it is ideal to test the constraints for all w ∈ L2e, but practically we
can only generate a finite number of disturbances from the measured data e(t), y(t) in the
following discussion. Therefore, the number of w is finite in the above problem setting.

3. Derivation of convex constraints on PID gains

3.1 Derivation of a constraint from (17)
From (17),

〈w, w〉T >
1

γ2
1
〈e, e〉T (19)

The disturbance w that gives the plant response e, y is given by

w(t) = e(t) + u(t) (20)

u(t) = KPy(t) + KIyI(t) + KDyD(t) (21)

where yI(t) =
∫ t

0 y(τ)dτ and yD(t) =
dy
dt (t). Substitution of (20) into (19) gives

〈e + u, e + u〉T >
1

γ2
1
〈e, e〉T (22)

This is a concave constraint on the PID gains. Next, we will derive a linear constraint from
(22) as a sufficient condition. From

〈u − u0, u − u0〉T ≥ 0 (23)

for any u0(t), a sufficient condition for (22) is given by

〈e + u, e + u〉T >
1

γ2
1
〈e, e〉T + 〈u − u0, u − u0〉T (24)

By expanding this,

〈e + u0, u〉T > b (25)

where

b =
1
2

{(
1

γ2
1
− 1

)
〈e, e〉T + 〈u0, u0〉T

}
(26)

This is a linear constraint on the PID gains. Thus, we have the next lemma by substituting (21)
into (25).
Lemma 2 If the next linear constraint on the PID gains is satisfied for a data e(t), y(t), (17) is
also satisfied for the same data.

m

∑
i=1

{aPi[KP]ii + aIi[KI ]ii + aDi[KD]ii} > b (27)

where aPi = 〈[e + u0]i, [y]i〉T , aIi = 〈[e + u0]i, [yI ]i〉T , and aDi = 〈[e + u0]i, [yD]i〉T .
The linear constraint (27) is satisfied for any u0, but u0 should be chosen so that the gain
set defined by the constraint may contain the set of stabilizing PID gains. We assume that a
stabilizing PID gain K̂ = K̂a is given. Denote u(t) of (21) as ua(t) for K̂a and further assume
that (22), which is equivalent to (17), is satisfied for u(t) = ua(t).
The set of u that satisfies (22) corresponds to the outside region of the sphere with center −e
and radius ‖e‖2/γ1 as illustrated in Fig. 2. This set is concave and ua lies outside the sphere
by assumption. Let u0 be the intersection of the segment that connects −e and ua and the
sphere. We consider that the sphere is approximated by the plane which touches the sphere at
the point u0 as illustrated shown in Fig. 2. Note that this convex set determined by the plane
is described by (27) with this u0.
Let us calculate u0. The segment is described by

u = qua + (1 − q)(−e), 0 ≤ q ≤ 1. (28)
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Lemma 1(Vidyasagar (1993)) Suppose that the system satisfies causality and it is in the steady
state at t = 0. Then, if (9) is satisfied,

‖ e ‖2T< γ1 ‖ w ‖2T (15)

for T > 0. Similarly, if (11) is satisfied,

‖ u ‖2T< γ2 ‖ w ‖2T (16)

for T > 0.
Compared with (9), the merit of the condition (15) is that it can be calculated for the finite
length data e(t), y(t), t ∈ [0, T], and the demerit is that (15) is only a necessary condition for
(9). Since we can only use the finite length data, we will use the condition (15) instead of
(9). The same idea is applied to (11) and (16). In this paper, we will examine the next design
problem.
Loop-shaping problem: For the feedback system (1)-(3), find a PID controller that maximizes
J defined by (13) subject to

‖e‖2T < γ1‖w‖2T (17)

‖u‖2T < γ2‖w‖2T (18)

for sufficiently many disturbances w = wi ∈ L2e, i = 1, 2, · · · , N.
In this problem setting, it is ideal to test the constraints for all w ∈ L2e, but practically we
can only generate a finite number of disturbances from the measured data e(t), y(t) in the
following discussion. Therefore, the number of w is finite in the above problem setting.

3. Derivation of convex constraints on PID gains

3.1 Derivation of a constraint from (17)
From (17),

〈w, w〉T >
1

γ2
1
〈e, e〉T (19)

The disturbance w that gives the plant response e, y is given by

w(t) = e(t) + u(t) (20)

u(t) = KPy(t) + KIyI(t) + KDyD(t) (21)

where yI(t) =
∫ t

0 y(τ)dτ and yD(t) =
dy
dt (t). Substitution of (20) into (19) gives

〈e + u, e + u〉T >
1

γ2
1
〈e, e〉T (22)

This is a concave constraint on the PID gains. Next, we will derive a linear constraint from
(22) as a sufficient condition. From

〈u − u0, u − u0〉T ≥ 0 (23)

for any u0(t), a sufficient condition for (22) is given by

〈e + u, e + u〉T >
1

γ2
1
〈e, e〉T + 〈u − u0, u − u0〉T (24)

By expanding this,

〈e + u0, u〉T > b (25)

where

b =
1
2

{(
1

γ2
1
− 1

)
〈e, e〉T + 〈u0, u0〉T

}
(26)

This is a linear constraint on the PID gains. Thus, we have the next lemma by substituting (21)
into (25).
Lemma 2 If the next linear constraint on the PID gains is satisfied for a data e(t), y(t), (17) is
also satisfied for the same data.

m

∑
i=1

{aPi[KP]ii + aIi[KI ]ii + aDi[KD]ii} > b (27)

where aPi = 〈[e + u0]i, [y]i〉T , aIi = 〈[e + u0]i, [yI ]i〉T , and aDi = 〈[e + u0]i, [yD]i〉T .
The linear constraint (27) is satisfied for any u0, but u0 should be chosen so that the gain
set defined by the constraint may contain the set of stabilizing PID gains. We assume that a
stabilizing PID gain K̂ = K̂a is given. Denote u(t) of (21) as ua(t) for K̂a and further assume
that (22), which is equivalent to (17), is satisfied for u(t) = ua(t).
The set of u that satisfies (22) corresponds to the outside region of the sphere with center −e
and radius ‖e‖2/γ1 as illustrated in Fig. 2. This set is concave and ua lies outside the sphere
by assumption. Let u0 be the intersection of the segment that connects −e and ua and the
sphere. We consider that the sphere is approximated by the plane which touches the sphere at
the point u0 as illustrated shown in Fig. 2. Note that this convex set determined by the plane
is described by (27) with this u0.
Let us calculate u0. The segment is described by

u = qua + (1 − q)(−e), 0 ≤ q ≤ 1. (28)
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By substituting this into (22),

q2 〈e + ua, e + ua〉T >
1

γ2
1
〈e, e〉T . (29)

From this, the minimum value of q is found to be

q0 =
1

γ1

‖e‖2T
‖ua + e‖2T

, (30)

and

u0 = q0ua − (1 − q0)e. (31)

From the above derivation, we have the next lemma.
Lemma 3 The stabilizing gain Ka satisfies the linear constraint (27) for u0 that is given by (30)
and (31).
The above discussions are summarized as the next theorem.
Theorem 1 Suppose that a data e(t), y(t), t ∈ [0, T] and a stabilizing PID gain Ka that satisfies
(17) are given. The linear constraint (27) with u0 given by (30) and (31) is a sufficient condition
for (17), and the linear constraint is satisfied for the stabilizing PID gain.

3.2 Derivation of a constraint from (18)
By substituting (20) into (18),

1
γ2

2
〈u, u〉T > 〈e + u, e + u〉T (32)

By expanding this,

(1 − 1
γ2

2
)〈u, u〉T + 2〈e, u〉T + 〈e, e〉T > 0 (33)

We will derive convex constraints from (33), where three cases are considered depending on
the value of γ2.
If γ2 = 1, (33) becomes

2〈e, u〉T + 〈e, e〉T > 0 (34)

From this inequality, a linear constrains on PID gains can be derived immediately. Namely,

2
m

∑
i=1

Pixi + c > 0 (35)

where

xi =
[
[KP]ii [KI ]ii [KD]ii

]T ,

Pi = [〈[e]i, [y]i〉T , 〈[e]i, [yI ]i〉T , 〈[e]i, [yD]i〉T ] ,

c = 〈e, e〉T

If γ2 > 1, 1 − 1/γ2
2 > 0 and (33) can be represented as

〈u, u〉T + (
2γ2

2
γ2

2 − 1
)〈e, u〉T + (

γ2
2

γ2
2 − 1

)〈e, e〉T > 0 (36)

Further, by denoting ẽ = (γ2
2/(γ2

2 − 1))e, this inequality can be represented as

〈u, u〉T + 2〈ẽ, u〉T + 〈ẽ, ẽ〉T >
1

γ2
2
〈ẽ, ẽ〉T (37)

Since this condition has the same form as (22), Theorem 1 with e replaced with ẽ is satisfied.
If γ2 < 1, (33) is a convex constraint and represented as

(
1 − 1

γ2
2

)
m

∑
i=1

xT
i Qixi + 2

m

∑
i=1

Pixi + c > 0 (38)

where Qi = QT
i and

Qi =




〈[y]i, [y]i〉T 〈[y]i, [yI ]i〉T 〈[y]i, [yD]i〉T
〈[yI ]i, [yI ]i〉T 〈[yI ]i, [yD]i〉T

∗ 〈[yD]i, [yD]i〉T




By representing Qi by the singular value decomposition form Qi = UT
i1ΣiUi1 where Σi > 0

and applying Schur complement, the next LMI (linear matrix inequality) with respect to xi’s
is obtained.

m

∑
i=1

[
Pixi + xT

i PT
i + 1

m c xT
i UT

i1

Ui1xi
γ2

2
1−γ2

2
Σ−1

i

]
> 0 (39)

The above discussions are summarized as the following two theorems.
Theorem 2 Suppose that a data e(t), y(t), t ∈ [0, T] is given. If γ2 = 1, (18) is equivalent to the
linear constraint (36). If γ2 < 1, (18) is equivalent to the LMI constraint (39).
Theorem 3 Suppose that a data e(t), y(t), t ∈ [0, T] and a stabilizing PID gain that satisfies
(18) are given. If γ2 > 1, the linear constraint (27) with u0 given by (30) and (31), where e is
replaced with ẽ, is a sufficient condition for (18), and the linear constraint is satisfied for the
stabilizing PID gain.



Multi-Loop PID Control Design by Data-Driven Loop-Shaping Method 151

a
u

0
u

e−

Fig. 2. Approximation of the concave region by plane
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, (30)

and

u0 = q0ua − (1 − q0)e. (31)

From the above derivation, we have the next lemma.
Lemma 3 The stabilizing gain Ka satisfies the linear constraint (27) for u0 that is given by (30)
and (31).
The above discussions are summarized as the next theorem.
Theorem 1 Suppose that a data e(t), y(t), t ∈ [0, T] and a stabilizing PID gain Ka that satisfies
(17) are given. The linear constraint (27) with u0 given by (30) and (31) is a sufficient condition
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We will derive convex constraints from (33), where three cases are considered depending on
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If γ2 = 1, (33) becomes

2〈e, u〉T + 〈e, e〉T > 0 (34)

From this inequality, a linear constrains on PID gains can be derived immediately. Namely,
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∑
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Pixi + c > 0 (35)

where
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〈u, u〉T + 2〈ẽ, u〉T + 〈ẽ, ẽ〉T >
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〈ẽ, ẽ〉T (37)

Since this condition has the same form as (22), Theorem 1 with e replaced with ẽ is satisfied.
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The above discussions are summarized as the following two theorems.
Theorem 2 Suppose that a data e(t), y(t), t ∈ [0, T] is given. If γ2 = 1, (18) is equivalent to the
linear constraint (36). If γ2 < 1, (18) is equivalent to the LMI constraint (39).
Theorem 3 Suppose that a data e(t), y(t), t ∈ [0, T] and a stabilizing PID gain that satisfies
(18) are given. If γ2 > 1, the linear constraint (27) with u0 given by (30) and (31), where e is
replaced with ẽ, is a sufficient condition for (18), and the linear constraint is satisfied for the
stabilizing PID gain.
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4. Data generation and design procedure

4.1 Data generation by filtering
Since the multi-loop PID controller contains many variables to be determined, many linear
constraints are necessary for the determination. Since one linear constraint (27) is derived
from one input-output response e(t), y(t), t ∈ [0, T], many input output responses would be
necessary.
In order to obtain the plant response e(t) and y(t), we may give the test input to w(t) of the
system (1)-(3) at the steady state, or to the reference r(t) of the system described by

y = Pe (40)

e = K(r − y). (41)

Since the plant is m-input and m-output, m sets of responses e(t) and y(t) may be necessary at
least. Therefore, we give a test input for the j th input [w]j or [r]j and measure the input-output
response {e(t), y(t)}, which are denoted by ej, yj. By iterating this experiment m times, m sets
of data ej, yj, j = 1, 2, . . . , m are obtained.
Next, we will generate many fictitious data eij(t), yij(t), i = 1, 2, . . . , nF, j = 1, 2, . . . , m by

eij(t) = Fi(s)ej(t) (42)

yij(t) = Fi(s)yj(t), t ∈ [0, T] (43)

where the filter Fi(s) is a stable transfer function. Note that the notation Fi(s)ej(t) means that
Fi(s) filters each element of the m-dimensional vector ej(t).
From the assumptions that P is linear time-invariant and that the system is in the steady state
at t = 0,

yij(t) = P(s)eij(t) (44)

is satisfied. Namely, the data eij(t), yij(t) can be considered as the input-output response of
the plant.
Remark 1 Even if the condition that P is linear time-invariant is not assumed, the above loop
shaping problem can be interpreted for a nonlinear plant as a problem with the weighted L2
gain criterion given by

‖Fi(s)e‖2 < γ1‖Fi(s)w‖2, i = 1, 2, . . . , nF. (45)

Namely, if a controller is falsified by the condition (17) for the filtered responses of a nonlinear
plant, we can say that the controller is falsified by the criterion (45).
Remark 2 From the previous discussions, the L2 gain constraint (17) is evaluated for the fic-
titious disturbances w(t) given by (20), i.e. w(t) = e(t) + Ky(t) for the data e(t) = eij(t),
y(t) = yij(t), i = 1, 2, . . . , nF, j = 1, 2, . . . , m and the number of disturbances is N = nFm.

4.2 Filter selection
We use the next bandpass filters Fi(s) for the sample frequencies ωi, i = 1, 2, · · · , nF.

Fi(s) = ψ̂(s/ωi) (46)

ψ̂(s) =

(
s

(s + α)2 + 1

)4
(47)

The gain plot of ψ̂(s) is shown in Fig. 3. Since the peak gain is taken at ω = ωi(1 + α2)0.5, this
filter can be used for extracting this frequency component.
Let us consider the filtering from the viewpoint of the wavelet transform (Addison (2002)).
In the last decade, wavelet transform has become popular as a time-frequency analysis tool.
Wavelet transform is useful to get important information regarding the frequency properties
lies locally in the time-domain from the non-stationary signals e, y .
If we denote the impulse response of Fi(s) = ψ̂(s/ωi) as L−1{Fi(s)} = ωiψ(ωi t) , then the
correspondence

a ↔ 1
ωi

, b ↔ t, −φ(−t) ↔ ψ(t). (48)

is satisfied between the filtering;

yi(t) = Fi(s)y(t) (49)

= ωi

∫ t

0
ψ(ωi(t − τ))y(τ)dτ. (50)

and the integral wavelet transform;

(
Wφy

)
(b, a) = |a|−1

∫ ∞

−∞
φ

(
τ − b

a

)
y(τ)dτ. (51)

The impulse response ψ(t) of ψ̂(s) with α = 0.5 is shown in Fig. 4, and the graph of −φdb10(−t)
is shown in Fig. 5 for the Daubechies wavelet "db10"φdb10(t). From the uncertainty principle in
the wavelet analysis, there is a trade-off between the time window and the frequency window.
The time-frequency window can be tuned by the parameter α. α = 0.5 is the value with which
ψ(t) can be close to −φdb10(−t).
By the way, since Fi(s) has four zeros at s = 0, Fi(s)e(t) = 0 for e(t) = a0 + a1t + a2t2 + a3t3.
Namely, the output becomes zero for this class of smooth inputs. For step or ramp inputs,
their time-derivatives have discontinuity and so we have nonzero outputs. For the response
e(t), y(t) shown in Fig. 6, the responses filtered by Fi(s) are shown in Fig. 7.

4.3 Design procedure
Step 1 Measure the input output responses ej(t), yj(t), t ∈ [0, T], j = 1, 2, . . . , m by exciting

the system at the steady state. If the response has bias, eliminate it.

Step 2 Set ωi, i = 1, 2, . . . , nF as logarithmically equally spaced nF points in the important
frequency range for control. Generate the fictitious responses

eij(t), yij(t), t ∈ [0, T], i = 1, 2, . . . , nF. (52)

from ej(t), yj(t), t ∈ [0, T], j = 1, 2, . . . , m by (42) and (43). Set the value of γ1. Set the
value of γ2 if necessary.

Step 3 Give a stabilizing PID gain K̂a that satisfies (17) and (18) for γ1 and γ2. Then, com-
pute the constraints on the PID gains for the nF set of responses eij(t), yij(t) following
Theorems 1, 2, 3.

Step 4 If (17) is only considered as the constraints, solve a linear programming problem of
maximizing J subject to (13) and the linear constrains on the PID gains. Otherwise, if
both (17) and (18) are considered, solve an LMI problem of maximizing J defined by
(13) and the linear constrains on the PID gains.
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4. Data generation and design procedure

4.1 Data generation by filtering
Since the multi-loop PID controller contains many variables to be determined, many linear
constraints are necessary for the determination. Since one linear constraint (27) is derived
from one input-output response e(t), y(t), t ∈ [0, T], many input output responses would be
necessary.
In order to obtain the plant response e(t) and y(t), we may give the test input to w(t) of the
system (1)-(3) at the steady state, or to the reference r(t) of the system described by

y = Pe (40)

e = K(r − y). (41)

Since the plant is m-input and m-output, m sets of responses e(t) and y(t) may be necessary at
least. Therefore, we give a test input for the j th input [w]j or [r]j and measure the input-output
response {e(t), y(t)}, which are denoted by ej, yj. By iterating this experiment m times, m sets
of data ej, yj, j = 1, 2, . . . , m are obtained.
Next, we will generate many fictitious data eij(t), yij(t), i = 1, 2, . . . , nF, j = 1, 2, . . . , m by

eij(t) = Fi(s)ej(t) (42)

yij(t) = Fi(s)yj(t), t ∈ [0, T] (43)

where the filter Fi(s) is a stable transfer function. Note that the notation Fi(s)ej(t) means that
Fi(s) filters each element of the m-dimensional vector ej(t).
From the assumptions that P is linear time-invariant and that the system is in the steady state
at t = 0,

yij(t) = P(s)eij(t) (44)

is satisfied. Namely, the data eij(t), yij(t) can be considered as the input-output response of
the plant.
Remark 1 Even if the condition that P is linear time-invariant is not assumed, the above loop
shaping problem can be interpreted for a nonlinear plant as a problem with the weighted L2
gain criterion given by

‖Fi(s)e‖2 < γ1‖Fi(s)w‖2, i = 1, 2, . . . , nF. (45)

Namely, if a controller is falsified by the condition (17) for the filtered responses of a nonlinear
plant, we can say that the controller is falsified by the criterion (45).
Remark 2 From the previous discussions, the L2 gain constraint (17) is evaluated for the fic-
titious disturbances w(t) given by (20), i.e. w(t) = e(t) + Ky(t) for the data e(t) = eij(t),
y(t) = yij(t), i = 1, 2, . . . , nF, j = 1, 2, . . . , m and the number of disturbances is N = nFm.

4.2 Filter selection
We use the next bandpass filters Fi(s) for the sample frequencies ωi, i = 1, 2, · · · , nF.

Fi(s) = ψ̂(s/ωi) (46)

ψ̂(s) =

(
s

(s + α)2 + 1

)4
(47)

The gain plot of ψ̂(s) is shown in Fig. 3. Since the peak gain is taken at ω = ωi(1 + α2)0.5, this
filter can be used for extracting this frequency component.
Let us consider the filtering from the viewpoint of the wavelet transform (Addison (2002)).
In the last decade, wavelet transform has become popular as a time-frequency analysis tool.
Wavelet transform is useful to get important information regarding the frequency properties
lies locally in the time-domain from the non-stationary signals e, y .
If we denote the impulse response of Fi(s) = ψ̂(s/ωi) as L−1{Fi(s)} = ωiψ(ωi t) , then the
correspondence

a ↔ 1
ωi

, b ↔ t, −φ(−t) ↔ ψ(t). (48)

is satisfied between the filtering;

yi(t) = Fi(s)y(t) (49)

= ωi

∫ t

0
ψ(ωi(t − τ))y(τ)dτ. (50)

and the integral wavelet transform;

(
Wφy

)
(b, a) = |a|−1

∫ ∞

−∞
φ

(
τ − b

a

)
y(τ)dτ. (51)

The impulse response ψ(t) of ψ̂(s) with α = 0.5 is shown in Fig. 4, and the graph of −φdb10(−t)
is shown in Fig. 5 for the Daubechies wavelet "db10"φdb10(t). From the uncertainty principle in
the wavelet analysis, there is a trade-off between the time window and the frequency window.
The time-frequency window can be tuned by the parameter α. α = 0.5 is the value with which
ψ(t) can be close to −φdb10(−t).
By the way, since Fi(s) has four zeros at s = 0, Fi(s)e(t) = 0 for e(t) = a0 + a1t + a2t2 + a3t3.
Namely, the output becomes zero for this class of smooth inputs. For step or ramp inputs,
their time-derivatives have discontinuity and so we have nonzero outputs. For the response
e(t), y(t) shown in Fig. 6, the responses filtered by Fi(s) are shown in Fig. 7.

4.3 Design procedure
Step 1 Measure the input output responses ej(t), yj(t), t ∈ [0, T], j = 1, 2, . . . , m by exciting

the system at the steady state. If the response has bias, eliminate it.

Step 2 Set ωi, i = 1, 2, . . . , nF as logarithmically equally spaced nF points in the important
frequency range for control. Generate the fictitious responses

eij(t), yij(t), t ∈ [0, T], i = 1, 2, . . . , nF. (52)

from ej(t), yj(t), t ∈ [0, T], j = 1, 2, . . . , m by (42) and (43). Set the value of γ1. Set the
value of γ2 if necessary.

Step 3 Give a stabilizing PID gain K̂a that satisfies (17) and (18) for γ1 and γ2. Then, com-
pute the constraints on the PID gains for the nF set of responses eij(t), yij(t) following
Theorems 1, 2, 3.

Step 4 If (17) is only considered as the constraints, solve a linear programming problem of
maximizing J subject to (13) and the linear constrains on the PID gains. Otherwise, if
both (17) and (18) are considered, solve an LMI problem of maximizing J defined by
(13) and the linear constrains on the PID gains.
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Step 5 Implement the PID controller.

If the plant is stable, a low gain P or PD controller is usually a stabilizing PID gain K̂a that
satisfies (17) and (18) in Step 3. However, if the plant is marginally stable or unstable, it may
be not so easy to find such a stabilizing gain.

5. A numerical examples for a plant with time-delay

Let us consider the feedback system described by (40)(41), where the plant transfer function
is given by

P(s) =

[
12.8

1+16.7s e−s 18.9
1+21s e−3s

6.6
1+10.9s e−7s 19.4

1+14.4s e−3s

]
. (53)

This transfer function is obtained from that of the Wood and Berry’s binary distillation column
process (Wood & Berry (1973)) by changing the sign of the (1, 2) and (2, 2) elements so that
the plant may be stabilized by positive KI(1) and KI(2). Therefore, a solution for the Wood
and Berry’s binary distillation column process can be obtained by changing the sign of the
second PI controller designed by our method.
First, we will get the plant responses with a stabilizing controller K(s) = 0.1I2. Measurement
noises with zero mean values and variances 0.0001 are given at the output y1 and y2 in the
closed-loop operation, respectively. Fig. 8 shows the response e(t) and y(t) for the reference
input r1(t) = 1, r2(t) = 0, and Fig. 9 for r1(t) = 0, r2(t) = 1.
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Now, design a diagonal PI controller using these step response data. We will only consider the
main constraint (17), and hence a solution can be obtained by applying linear programming.
We set γ1 = 1.5 and ωi, i = 1, 2, . . . , 40 logarithmically equally spaced frequencies between
0.1[rad/s] and 10[rad/s], and give the bandpass filters by (46). The derivative and integral
calculations in the continuous time are executed approximately in the discrete time, where
the sampling interval is ∆T = 0.05[s]. A solution that maximizes J = [KI ]11 + [KI ]22 is given
by

K(s) =
[

0.279 + 0.0368
s 0

0 0.0698 + 0.00834
s

]
. (54)

Fig. 10 shows the singular value plots of SI(s) and TI(s). In this figure, the horizontal line
shows the bound γ1 = 1.5. Note that since the condition (17) is a necessary condition for
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Step 5 Implement the PID controller.

If the plant is stable, a low gain P or PD controller is usually a stabilizing PID gain K̂a that
satisfies (17) and (18) in Step 3. However, if the plant is marginally stable or unstable, it may
be not so easy to find such a stabilizing gain.

5. A numerical examples for a plant with time-delay

Let us consider the feedback system described by (40)(41), where the plant transfer function
is given by

P(s) =

[
12.8

1+16.7s e−s 18.9
1+21s e−3s

6.6
1+10.9s e−7s 19.4

1+14.4s e−3s

]
. (53)

This transfer function is obtained from that of the Wood and Berry’s binary distillation column
process (Wood & Berry (1973)) by changing the sign of the (1, 2) and (2, 2) elements so that
the plant may be stabilized by positive KI(1) and KI(2). Therefore, a solution for the Wood
and Berry’s binary distillation column process can be obtained by changing the sign of the
second PI controller designed by our method.
First, we will get the plant responses with a stabilizing controller K(s) = 0.1I2. Measurement
noises with zero mean values and variances 0.0001 are given at the output y1 and y2 in the
closed-loop operation, respectively. Fig. 8 shows the response e(t) and y(t) for the reference
input r1(t) = 1, r2(t) = 0, and Fig. 9 for r1(t) = 0, r2(t) = 1.
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Now, design a diagonal PI controller using these step response data. We will only consider the
main constraint (17), and hence a solution can be obtained by applying linear programming.
We set γ1 = 1.5 and ωi, i = 1, 2, . . . , 40 logarithmically equally spaced frequencies between
0.1[rad/s] and 10[rad/s], and give the bandpass filters by (46). The derivative and integral
calculations in the continuous time are executed approximately in the discrete time, where
the sampling interval is ∆T = 0.05[s]. A solution that maximizes J = [KI ]11 + [KI ]22 is given
by

K(s) =
[

0.279 + 0.0368
s 0

0 0.0698 + 0.00834
s

]
. (54)

Fig. 10 shows the singular value plots of SI(s) and TI(s). In this figure, the horizontal line
shows the bound γ1 = 1.5. Note that since the condition (17) is a necessary condition for
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the L2 gain constraint (9), the maximum singular value tends to become larger than γ1. Fig.
11 shows the step response y(t) for the reference input r1(t) = 1, r2(t) = 0, and Fig. 12 for
r1(t) = 0, r2(t) = 1.
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Next, design a diagonal PID controller with a first order lowpass filter of the next form using
the above plant responses. Note that our method can be directly applied to this design prob-
lem by considering the plant as P(s)/(0.1s + 1). This filter is used for the attenuation of the
loop gain at high frequencies.

K(s) =
1

0.1s + 1

(
KP + KI

1
s
+ KDs

)
(55)

Then, we obtain the next controller.

K(s) =




0.383s+0.0798s+0.477s2

(0.1s+1)s 0

0 0.118s+0.0246+0.247s2

(0.1s+1)s


 .

Fig. 13 shows the singular value plots, and Fig. 14 and Fig. 15 show the responses of the
closed-loop system for the reference inputs.

10−2 10−1 100 101 10210−3

10−2

10−1

100

101

frequency[rad/s]

si
gm

a(
S)

, s
ig

m
a(

T)

Sigma plots

S
T

gam=1.5

Fig. 13. Singular value plots of SI and TI with PID control

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

time

y1
, y

2

Step response for r1=1

y1

y2

Fig. 14. Output response of the plant for
r1(t) = 1 with PID control

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

time

y1
,y

2

Step response for r2=1

y1

y2

Fig. 15. Output response of the plant
for r2(t) = 1 with PID control

6. Experiment using a two-rotor hovering system

We will design a multi-loop PID controller for a two-rotor hovering system. The general view
of our experimental apparatus is shown in Fig.16. The arm AB can rotate around the center
O freely, and y1 and y2 are the yaw and the roll angles, respectively. The airframe CD can
also rotate freely on the axis AB, and θ is the pitch angle. Thus, this system has three degrees
of freedom. The rotors are driven separately by two DC motors. The rotary encoders are
mounted on the joint O to measure the angles y1 and y2[rad], respectively. The encoder for θ
is mounted on the position A. The actuator part is illustrated in Fig. 17. The control inputs u1
and u2 are the thrust and the rolling moment, and f̃1 and f̃2 are the lift forces of the two rotors,
respectively. In our previous study , we designed a nonlinear controller for a mathematical
model (Saeki & Sakaue (2001)). Those who are interested in the plant property, please see the
reference.
The feedback control system is illustrated in Fig. 18. PID controller K will be designed to track
the references r1, r2 [rad]. We use a PD controller 0.4 + 0.2s/(1 + 0.01s) in order to control θ,
and this gain is determined by trail and error. Then, we treat the plant as a two-input two-
output system. The element denoted by Kuv is a constant matrix that transforms the control
inputs u to the input voltages uv to the motors. The input voltages are limited to be less than
±5[V]. We consider the subsystem shown by the dotted line as the plant P to be controlled.
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Next, design a diagonal PID controller with a first order lowpass filter of the next form using
the above plant responses. Note that our method can be directly applied to this design prob-
lem by considering the plant as P(s)/(0.1s + 1). This filter is used for the attenuation of the
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6. Experiment using a two-rotor hovering system

We will design a multi-loop PID controller for a two-rotor hovering system. The general view
of our experimental apparatus is shown in Fig.16. The arm AB can rotate around the center
O freely, and y1 and y2 are the yaw and the roll angles, respectively. The airframe CD can
also rotate freely on the axis AB, and θ is the pitch angle. Thus, this system has three degrees
of freedom. The rotors are driven separately by two DC motors. The rotary encoders are
mounted on the joint O to measure the angles y1 and y2[rad], respectively. The encoder for θ
is mounted on the position A. The actuator part is illustrated in Fig. 17. The control inputs u1
and u2 are the thrust and the rolling moment, and f̃1 and f̃2 are the lift forces of the two rotors,
respectively. In our previous study , we designed a nonlinear controller for a mathematical
model (Saeki & Sakaue (2001)). Those who are interested in the plant property, please see the
reference.
The feedback control system is illustrated in Fig. 18. PID controller K will be designed to track
the references r1, r2 [rad]. We use a PD controller 0.4 + 0.2s/(1 + 0.01s) in order to control θ,
and this gain is determined by trail and error. Then, we treat the plant as a two-input two-
output system. The element denoted by Kuv is a constant matrix that transforms the control
inputs u to the input voltages uv to the motors. The input voltages are limited to be less than
±5[V]. We consider the subsystem shown by the dotted line as the plant P to be controlled.
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Thus, the feedback system is described by

y = P(s)e (56)

e = K(s)(r − y) (57)

The plant responses shown in Fig. 19 - Fig. 22 are obtained by experiment in the closed-loop
operation for the controller

K(s) =
[

0.5 0
0 0.1

]
+

[
1 0
0 0

]
1
s
+

[
1 0
0 0.5

]
s

0.01s + 1
(58)

Now, let us design a PID controller by using the responses. Since this plant is marginally
stable, it is not so easy to give a stabilizing PID controller compared with stable plants. It is
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Thus, the feedback system is described by

y = P(s)e (56)

e = K(s)(r − y) (57)

The plant responses shown in Fig. 19 - Fig. 22 are obtained by experiment in the closed-loop
operation for the controller
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Now, let us design a PID controller by using the responses. Since this plant is marginally
stable, it is not so easy to give a stabilizing PID controller compared with stable plants. It is
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easier to find a stabilizing PD controller than PID controller. Therefore, we give the next PD
controller, which is found by trial and error.

Ka =

[
0.4 0
0 0.4

]
+

[
1 0
0 0.5

]
s (59)

Sample frequencies ωi are logarithmically equally spaced 100 points between 10−2 and 102.
By solving an LMI once, we obtain the next controller.

K(s) =
[

1.4549 0
0 1.0624

]
+

[
0.0980 0

0 0.1309

]
1
s
+

[
1.4914 0

0 1.2581

]
s

0.01s + 1
(60)

The step responses are shown in Fig. 23 - Fig. 26. It is necessary to develop an efficient method
of finding a stabilizing controller that satisfies (17)(18) for marginally stable or unstable plants.
This is our future work.
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7. Conclusion

DDLS (data driven loop shaping method) has been developed for the multi-loop PID control
tuning. The constraints on the PID gains are directly derived from a few input-output re-
sponses based on falsification conditions without explicitly identifying the plant model. The
design problem is reduced to a linear programming or a linear matrix inequality problem, and
the solution is obtained by solving it only once.
We have applied our method to the Wood and Berry’s binary distillation column process, and
our method gives good loop shapes where only two step responses of the closed-loop system
are used for design. However, it is difficult to specify the transient response property such as
overshoot by our method, because our method treats the optimization problem of disturbance
attenuation. Two-degree of freedom control systems may be suitable for the improvement of
the transient response. Further, we have applied our method to the control problem of a two-
rotor hovering system. From our experience including these examples, our method seems
considerably robust against noises of the plant input output signals obtained in the closed-
loop operation. Our design method can be extended to the PID controllers whose gains are
full square matrices.
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of finding a stabilizing controller that satisfies (17)(18) for marginally stable or unstable plants.
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40 60 80 100

0

1

2

3

time[s]

e1
,e

2

e1

e2

Fig. 23. Input response(r1=0.2,r2=0)

40 60 80 100

-1

0

1

2

3

4

time[s]

e1
,e

2

e1

e2

Fig. 24. Input response(r1=0,r2=0.5)

40 60 80 100

-0.1

0

0.1

0.2

0.3

0.4

time[s]

y
1
,
y
2
[
r
a
d
]

y1

y2

Fig. 25. Output response 1 (r1=0.2,r2=0)

40 60 80 100
-0.2

0

0.2

0.4

0.6

0.8

time[s]

y
1
,
y
2
[
r
a
d
]

y2

y1

Fig. 26. Output response 2 (r1=0,r2=0.5)

7. Conclusion

DDLS (data driven loop shaping method) has been developed for the multi-loop PID control
tuning. The constraints on the PID gains are directly derived from a few input-output re-
sponses based on falsification conditions without explicitly identifying the plant model. The
design problem is reduced to a linear programming or a linear matrix inequality problem, and
the solution is obtained by solving it only once.
We have applied our method to the Wood and Berry’s binary distillation column process, and
our method gives good loop shapes where only two step responses of the closed-loop system
are used for design. However, it is difficult to specify the transient response property such as
overshoot by our method, because our method treats the optimization problem of disturbance
attenuation. Two-degree of freedom control systems may be suitable for the improvement of
the transient response. Further, we have applied our method to the control problem of a two-
rotor hovering system. From our experience including these examples, our method seems
considerably robust against noises of the plant input output signals obtained in the closed-
loop operation. Our design method can be extended to the PID controllers whose gains are
full square matrices.
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1. Introduction

One of the biggest problems for space manipulators are to cope with flexibility. If manipula-
tor links undergo deflection during the course of operation, it may prove difficult to reach a
desired position or to avoid obstacles. Furthermore, once the manipulator has reached a set
point, the residual vibration may degrade positioning accuracy and may cause a delay in task
execution. At the same time the flexible manipulators has the advantages of high payload to
weight ratio, which make them superior in the space exploration and orbital operation. The
high payload to weight ration is not the only merits of using flexible manipulators in space
application. Lower power consumption, smaller actuators and speedy operation make the
flexible manipulators the optimum choice for space manipulators. Since Cannon et al. (Can-
non & Schmitz, 1984) started initial experiments using the linear quadratic approach methods
to control flexible link manipulators, much researches on the usage of flexible manipulator
had been developed.
Using the approach of enhancement the measurements of the vibration variables was studied
by (Ge et al., 1999; Sun et al., 2005) while Etxebarria et al. (Etxebarria et al., 2005) gives attention
to the algorithms used in controlling the flexible manipulators. The enhancement of the tra-
ditional PD controller by adding a vibration control term is one of the most effective methods
for the flexible manipulators. Lee et al. proposed PDS (proportional-derivative strain) control
for vibration suppression of multi-flexible-link manipulators and analysed the Liapunov sta-
bility of the PDS control (Lee et al., 1988). Maruyama et al. (Maruyama et al., 2006) developed
a golf robot whose swing simulates human motion. They presented model accounting for golf
club flexibility with all parameters identified in experiments and generated and implemented
trajectories for different criterion such as minimizing total consumed work, minimizing sum-
mation of the squared derivative of active torque and maximizing impact speed. Matsuno and
Hayashi applied the PDS control to a cooperative task of two one-link flexible arms (Matsuno
& Hayashi, 2000). They aimed to accomplish the desired grasping force for a common rigid
object and the vibration absorption of the flexible arms.
A neural network is a data modelling tool that is able to capture and represent complex in-
put/output relationships. The motivation for the development of neural network technology
stemmed from the desire to develop an artificial system that could perform “intelligent" tasks
similar to those performed by the human brain. Neural Networks resemble the human brain
in the following two ways:

8
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• A neural network acquires knowledge through learning.

• A neural network knowledge is stored within inter neuron connection strengths known
as weights.

The true power and advantages of neural networks lies in their ability to represent both linear
and non-linear relationships and in their ability to learn these relationships directly from the
data being modelled. Traditional linear models are simply inadequate when it comes to mod-
elling data that contains non-linear characteristics. Some researchers tried to use the neural
network (herein after abbreviated as NN) as a main controller like (Talebi et al., 1998). In their
research the controllers are designed by utilizing the modified output re-definition approach.
The modified output re-definition approach requires only a priori knowledge about the lin-
ear model of the system but does not require a priori knowledge about the payload mass.
Various NN schemes have been proposed so far such as a modified version of the “feedback
error-learning" approach to learn the inverse dynamics of the flexible manipulator (Kawato et
al., 1987). On the other proposed NN structure the controller is designed based on tracking
the reference joint angle while controlling the elastic deflection at the tip. Isogai et al. (Isogi
et al., 1999) proposed a fault-tolerant system using inverse dynamics constructed by NN for
sensor fault detection and NN adaptive control for the actuator fault to reconfigure control to
compensate for parameter changes due to actuator faults.
Other researches like Lianfang (Lianfang et al., 2004) use the neural network as a correction
for the main control signal coming from the main feed-back controller. In his research the neu-
ral network approach is presented for the motion control of constrained flexible manipulators
where both the contact forces exerted by the flexible manipulator and the position of the end-
effectors contacting with a surface are controlled. Cheng and Patel in (Cheng & Patel, 2003)
tried to made stable tracking control of a flexible macro-micro manipulator utilizing two layer
neural network to approximate the non-linear robot dynamic behavior. A learning algorithm
for the neural network using Lyapunov stability is derived. Yazdizadeh et al. proposed two
neuro-dynamic identifiers to identify the input-output relationship of two-link flexible manip-
ulator. They provided in (Yazdizadeh et al., 2000) a selection criterion for specifying the fixed
structural parameters as well as the adaptation laws for updating the adjustable parameters
of the networks.
A Modified PID control (MPID) is proposed to control a single-link flexible manipulator by
Mansour et al. (Mansour et al., 2008). The MPID control depends mainly on vibration feed-
back to improve the response of the flexible arm without the massive need of measurements.
The advantage of the MPID is that it is not affected by residual strain due to material defect
and/or static deformation. The residual strain and material defect may lead to inaccurate
movement. The difficulty with the MPID is that it includes nonlinear terms and so the stan-
dard gain tuning method can not be used for the controller. The motivation for this research is
to find a fast and simple way to tune the MPID controller, which is able to achieve final accu-
rate tip position for the flexible arm and at the same time reduce resulting vibration. The NN
is used to solve this problem. In this research a NN is used to find an optimum vibration gain
of MPID controller. The main advantage of the NN approach to tune the vibration control
gain of the MPID control is the considerable low computational cost to find an optimal tuned
gain with different tip payload.
The neural network is used to estimate a result of the dynamic simulation when the simulation
condition is given. As a result of the dynamic simulation, integral of the squared tip deflection

weighted by exponential function

Criterion function =
∫ ts

0
δ2etdt, ts : settling time (1)

is considered in this work. Therefore, the input to the neural network is the simulation con-
dition, while the output is the criterion function defined in 1. The mapping from the input
to the output is many-to-one. In order to train the neural network, the results of a dynamic
simulator for a given condition are used as teacher signals. In this shadow the feed-forward
neural network can be used as a mapping between the simulation conditions and the output
response all over the time span which is represented by

∫ ts

0 δ2etdt.
The powerful ability of the neural network to model nonlinear model is utilized to map the
relation between the vibration control gain of the MPID and the output response represented
by the criterion function. Once this relation is drawn, the optimum value of the vibration
control gain is corresponding to the minimum value of the criterion function.
The sequence of finding the optimum value for the vibration control gain for the single link
flexible manipulator is summarized in Fig. 1. This chapter is organized as follows: An intro-
duction to the control of flexible manipulator and using NN in the control process is high-
lighted in section 1. The mathematical model of the flexible manipulator is shown in section
2. The detailed of the controller structure and the simulatiom model are presented in sections
3 and 4. In section 5 the NN algorithm used in this research is explained, the structure of the
NN is also shown and the optimal vibration control gain finding procedure are highlighted.
The learning and training process of the NN is shown in section 6. The response results for the
flexible manipulator with the tuned gain using the NN is shown in section 7. Finally, section
8 concludes this chapter with some remarks.

2. Mathematical Model

Before discussing the NN based gain tuning method, the MPID controller (Mansour et al.,
2008) is briefly introduced in sections 2 and 3. From the analysis of the single-link flexible arm
shown in Fig. 2, the flexible link is approximated by a continuous clamped-free beam. The
flexible arm is rotating in the horizontal plane with a rotational angle θ(t) and the effect of
gravity is not taken into consideration. Frame O-XY is the fixed base frame and frame O-xy is
the local frame rotating with the hub. The tip deflection δ(L, t) is the difference between the
actual tip position and the rotating frame O-xy. The deflection δ(x, t) is assumed to be small
compared to the length of the arm. Let p(x, t) represents the tangential position of a point
on the flexible arm with respect to frame O-xy. From the assumption of the deflection of the
flexible arm, the tangential position is expressed as:

p(x, t) = xθ(t) + δ(x, t). (2)

The flexible arm is treated as Euler-Bernoulli beam with uniform cross-sectional area and con-
stant characteristics. Then, the Euler-Bernoulli equation for the link is given as follows :

EI
∂4 p(x, t)

∂x4 + ρ
∂2 p(x, t)

∂t2 = 0, (3)

where ρ is the sectional density, E is the Young (elastic) modulus, and I is the second moment
of area. Substituting (2) into (3) the following equation is obtained :
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• A neural network acquires knowledge through learning.

• A neural network knowledge is stored within inter neuron connection strengths known
as weights.

The true power and advantages of neural networks lies in their ability to represent both linear
and non-linear relationships and in their ability to learn these relationships directly from the
data being modelled. Traditional linear models are simply inadequate when it comes to mod-
elling data that contains non-linear characteristics. Some researchers tried to use the neural
network (herein after abbreviated as NN) as a main controller like (Talebi et al., 1998). In their
research the controllers are designed by utilizing the modified output re-definition approach.
The modified output re-definition approach requires only a priori knowledge about the lin-
ear model of the system but does not require a priori knowledge about the payload mass.
Various NN schemes have been proposed so far such as a modified version of the “feedback
error-learning" approach to learn the inverse dynamics of the flexible manipulator (Kawato et
al., 1987). On the other proposed NN structure the controller is designed based on tracking
the reference joint angle while controlling the elastic deflection at the tip. Isogai et al. (Isogi
et al., 1999) proposed a fault-tolerant system using inverse dynamics constructed by NN for
sensor fault detection and NN adaptive control for the actuator fault to reconfigure control to
compensate for parameter changes due to actuator faults.
Other researches like Lianfang (Lianfang et al., 2004) use the neural network as a correction
for the main control signal coming from the main feed-back controller. In his research the neu-
ral network approach is presented for the motion control of constrained flexible manipulators
where both the contact forces exerted by the flexible manipulator and the position of the end-
effectors contacting with a surface are controlled. Cheng and Patel in (Cheng & Patel, 2003)
tried to made stable tracking control of a flexible macro-micro manipulator utilizing two layer
neural network to approximate the non-linear robot dynamic behavior. A learning algorithm
for the neural network using Lyapunov stability is derived. Yazdizadeh et al. proposed two
neuro-dynamic identifiers to identify the input-output relationship of two-link flexible manip-
ulator. They provided in (Yazdizadeh et al., 2000) a selection criterion for specifying the fixed
structural parameters as well as the adaptation laws for updating the adjustable parameters
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A Modified PID control (MPID) is proposed to control a single-link flexible manipulator by
Mansour et al. (Mansour et al., 2008). The MPID control depends mainly on vibration feed-
back to improve the response of the flexible arm without the massive need of measurements.
The advantage of the MPID is that it is not affected by residual strain due to material defect
and/or static deformation. The residual strain and material defect may lead to inaccurate
movement. The difficulty with the MPID is that it includes nonlinear terms and so the stan-
dard gain tuning method can not be used for the controller. The motivation for this research is
to find a fast and simple way to tune the MPID controller, which is able to achieve final accu-
rate tip position for the flexible arm and at the same time reduce resulting vibration. The NN
is used to solve this problem. In this research a NN is used to find an optimum vibration gain
of MPID controller. The main advantage of the NN approach to tune the vibration control
gain of the MPID control is the considerable low computational cost to find an optimal tuned
gain with different tip payload.
The neural network is used to estimate a result of the dynamic simulation when the simulation
condition is given. As a result of the dynamic simulation, integral of the squared tip deflection
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Criterion function =
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δ2etdt, ts : settling time (1)

is considered in this work. Therefore, the input to the neural network is the simulation con-
dition, while the output is the criterion function defined in 1. The mapping from the input
to the output is many-to-one. In order to train the neural network, the results of a dynamic
simulator for a given condition are used as teacher signals. In this shadow the feed-forward
neural network can be used as a mapping between the simulation conditions and the output
response all over the time span which is represented by

∫ ts

0 δ2etdt.
The powerful ability of the neural network to model nonlinear model is utilized to map the
relation between the vibration control gain of the MPID and the output response represented
by the criterion function. Once this relation is drawn, the optimum value of the vibration
control gain is corresponding to the minimum value of the criterion function.
The sequence of finding the optimum value for the vibration control gain for the single link
flexible manipulator is summarized in Fig. 1. This chapter is organized as follows: An intro-
duction to the control of flexible manipulator and using NN in the control process is high-
lighted in section 1. The mathematical model of the flexible manipulator is shown in section
2. The detailed of the controller structure and the simulatiom model are presented in sections
3 and 4. In section 5 the NN algorithm used in this research is explained, the structure of the
NN is also shown and the optimal vibration control gain finding procedure are highlighted.
The learning and training process of the NN is shown in section 6. The response results for the
flexible manipulator with the tuned gain using the NN is shown in section 7. Finally, section
8 concludes this chapter with some remarks.

2. Mathematical Model

Before discussing the NN based gain tuning method, the MPID controller (Mansour et al.,
2008) is briefly introduced in sections 2 and 3. From the analysis of the single-link flexible arm
shown in Fig. 2, the flexible link is approximated by a continuous clamped-free beam. The
flexible arm is rotating in the horizontal plane with a rotational angle θ(t) and the effect of
gravity is not taken into consideration. Frame O-XY is the fixed base frame and frame O-xy is
the local frame rotating with the hub. The tip deflection δ(L, t) is the difference between the
actual tip position and the rotating frame O-xy. The deflection δ(x, t) is assumed to be small
compared to the length of the arm. Let p(x, t) represents the tangential position of a point
on the flexible arm with respect to frame O-xy. From the assumption of the deflection of the
flexible arm, the tangential position is expressed as:

p(x, t) = xθ(t) + δ(x, t). (2)

The flexible arm is treated as Euler-Bernoulli beam with uniform cross-sectional area and con-
stant characteristics. Then, the Euler-Bernoulli equation for the link is given as follows :

EI
∂4 p(x, t)

∂x4 + ρ
∂2 p(x, t)

∂t2 = 0, (3)

where ρ is the sectional density, E is the Young (elastic) modulus, and I is the second moment
of area. Substituting (2) into (3) the following equation is obtained :
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Collect experimental or simulation results

Specify the output and input of the neural network

Select criteria function to represent output response

Train the neural network to get minimum value of the criteria function

Input the actual working data and get the optimal value for the output parameter 

Specify the network structure (number of layers, training algorithm, ...)

Collect experimental or simulation results

Specify the output and input of the neural network

Train the neural network to get minimum value of the criteria function

Input the actual working data and get the optimal value for the output parameter 

Specify the network structure (number of layers, training algorithm, 

Fig. 1. Neural network using sequence.

EI
∂4δ(x, t)

∂x4 + ρ
∂2δ(x, t)

∂t2 = −ρxθ̈(t). (4)

The flexible arm is clamped at its base, so both the deflection and slope of the deflection curve
must be zero at the clamped end. Bending moment at the free end also equals zero. Making
force balance at the tip obtains the following boundary conditions:

δ(x, t)|x=0 = 0, (5)

∂δ(x, t)

∂x

∣∣∣∣
x=0

= 0, (6)

EI
∂2δ(x, t)

∂x2

∣∣∣∣
x=L

= 0, (7)

EI
∂3δ(x, t)

∂x3
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where L is the arm length. The dynamic equation describing the system presented in (?) is
written as follows:

T(t) =

(
Ih +

1
3

ρL3
)

θ̈(t) + ρ
∫ L

0
xδ̈(x, t)dx

+mtL
(

Lθ̈(t) + δ̈(L, t)
)

. (9)
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A flexible manipulator simulator is built in MATLAB Simulink software using the mathemat-
ical model shown before to study the performance of the MPID control with different loading
and gains conditions.

3. Controller

A Modified PID controller (MPID) is proposed for controlling the tip position of the single-
link flexible manipulator (Mansour et al., 2008). This controller used three measurements to
generate the control signal, the hub rotational angle θ(t), the tip deflection δ(L, t) , and the
velocity of the hub θ̇(t). If we choose the tip position as the output from the system then the
error includes two components. The first component ej(t) is a result of the joint motion and is
equal to L(θre f − θ(t)) which is identical with the rigid arm error where θre f is the reference
joint angle. The second one is much more important and is due to the flexibility of the arm
and equals δ(L, t). These two error components are coupled to each other. The Modified
PID (MPID) controller replaces the classical integral term of a PID controller with a vibration
feedback term to affect the flexible modes of the beam in the generated control signal. The
MPID controller is formed as follows (Mansour et al., 2008):

u(t) = Kpej(t) + Kdėj(t)

+Kvcg(t) sgn(ėj(t))
∫ t

0
g(t)dt, (10)

where u(t) is the control signal, Kp, Kd are the proportional and derivative gains for the joint
control,respectively, Kvc is the vibration control feedback gain, ej(t) is the tangential position
error and g(t) is a vibration variable such as strain, deflection, shear force or acceleration
under a single condition that the vibration variable value equal zero when the flexible manip-
ulator is static and under goes no deformation. The stability of the proposed controller had
been studied previously in (Mansour et al., 2008). It was proved that the system is stable as
long as Kd ≥ 0. The flexible manipulator simulator is used to validate the MPID controller
given by (10) and the results are shown in Figs. 3 and 4. We found from the simulation results
that the response of the flexible manipulator is sensitive to the change of the controller gains.
In addition to that, the change in the tip payload have a noticeable influence on the response
of the flexible manipulator end effector. If the controller gain is not tuned well, the response
with the new loading condition will suffer a performance degradation. As shown in Fig. 3, a
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Fig. 1. Neural network using sequence.
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The flexible arm is clamped at its base, so both the deflection and slope of the deflection curve
must be zero at the clamped end. Bending moment at the free end also equals zero. Making
force balance at the tip obtains the following boundary conditions:
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where L is the arm length. The dynamic equation describing the system presented in (?) is
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A flexible manipulator simulator is built in MATLAB Simulink software using the mathemat-
ical model shown before to study the performance of the MPID control with different loading
and gains conditions.

3. Controller

A Modified PID controller (MPID) is proposed for controlling the tip position of the single-
link flexible manipulator (Mansour et al., 2008). This controller used three measurements to
generate the control signal, the hub rotational angle θ(t), the tip deflection δ(L, t) , and the
velocity of the hub θ̇(t). If we choose the tip position as the output from the system then the
error includes two components. The first component ej(t) is a result of the joint motion and is
equal to L(θre f − θ(t)) which is identical with the rigid arm error where θre f is the reference
joint angle. The second one is much more important and is due to the flexibility of the arm
and equals δ(L, t). These two error components are coupled to each other. The Modified
PID (MPID) controller replaces the classical integral term of a PID controller with a vibration
feedback term to affect the flexible modes of the beam in the generated control signal. The
MPID controller is formed as follows (Mansour et al., 2008):

u(t) = Kpej(t) + Kdėj(t)

+Kvcg(t) sgn(ėj(t))
∫ t

0
g(t)dt, (10)

where u(t) is the control signal, Kp, Kd are the proportional and derivative gains for the joint
control,respectively, Kvc is the vibration control feedback gain, ej(t) is the tangential position
error and g(t) is a vibration variable such as strain, deflection, shear force or acceleration
under a single condition that the vibration variable value equal zero when the flexible manip-
ulator is static and under goes no deformation. The stability of the proposed controller had
been studied previously in (Mansour et al., 2008). It was proved that the system is stable as
long as Kd ≥ 0. The flexible manipulator simulator is used to validate the MPID controller
given by (10) and the results are shown in Figs. 3 and 4. We found from the simulation results
that the response of the flexible manipulator is sensitive to the change of the controller gains.
In addition to that, the change in the tip payload have a noticeable influence on the response
of the flexible manipulator end effector. If the controller gain is not tuned well, the response
with the new loading condition will suffer a performance degradation. As shown in Fig. 3, a
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Fig. 3. Effect of changing tip load.

change in the tip load of the flexible manipulator has an undesirable effect for the vibration of
the end effector.
Not only the change of the environment parameters like the tip payload causes an undesirable
effect on the response as shown in Fig. 3, but also changing the system configuration like joint
angle causes the same effect. Unlike industrial manipulators, both the environment parameter
(i.e. tip payload) and the system configuration (i.e. joint angle) are always changeable in the
case of space manipulators. This highlights the importance of optimization the gain used with
this controller.
Another important point is that the change of the vibration control gain Kvc has seriously
affects on the response of the single-link flexible manipulator. This is completely noticeable
from the results in Fig. 4. This fact is the main motivation to find out a good way for tuning Kvc

that brings the minimum vibration for the tip as well as a fast response for the joint position.
It is predicted from Fig. 4 that the damping effect becomes stronger as the vibration control
gain Kvc increases to a certain limit. However if the gain Kvc exceeds the limits it start to create
an overshoot in the joint response.
The most difficulty of using the MPID controller is the adjustment of the vibration control
gain. Ge et al. tried to use the genetic algorithm optimization process to find the suitable gain
for the controller (Ge et al., 1996). In their research they consider the fixed tip payload of
the flexible manipulator and generate a set of gains for this configuration using the genetic
algorithm. However in general, the tip payloads and the joint angle are not the same in each
operation but it varies from one task to another. Hence the tuning of the vibration control
gain Kvc becomes the most importance issue to achieve the required position with a minimum
vibration. To overcome the lake of consideration with the changing of tip payload and joint
angle in the tuning of the MPID we proposed to use the NN in the tuning of the MPID.
In this research the vibration control gain Kvc for the MPID controller given by equation (10) is
tuned using the NN for the environment parameter (i.e. tip payload), the system configuration
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Fig. 4. Effect of changing vibration control gain.

(i.e. joint angle) and for both the other controller gains (i.e. Kp, Kd). By this way the controller
gives the best response with respect to all the parameters related to the flexible manipulator.

4. Simulation Model

In this section, a highlight to the simulation which is used to simulate the flexible manipu-
lator is given. A model of the flexible robot control system is simulated in Matlab-Simulink
software. The development of the Matlab-Simulink model allows control algorithms to be
evaluated before we use the neural network. Also, the simulation program is used to provide
information about the behave of the system. The result we get from the simulation will be
used in selecting the criterion function, which we will train the neural network on it. In this
simulation, we used the mathematical equation derived on section (2) for the flexible manip-
ulator. The block of the simulation model which had been used is shown in Fig. 5. We wish
to give attention to some point we consider in make the simulation and important simula-
tion parameters. In the simulation, we use the variable step solvers not the fixed step solvers.
The Variable step solvers vary the step size during the simulation, reducing the step size to
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change in the tip load of the flexible manipulator has an undesirable effect for the vibration of
the end effector.
Not only the change of the environment parameters like the tip payload causes an undesirable
effect on the response as shown in Fig. 3, but also changing the system configuration like joint
angle causes the same effect. Unlike industrial manipulators, both the environment parameter
(i.e. tip payload) and the system configuration (i.e. joint angle) are always changeable in the
case of space manipulators. This highlights the importance of optimization the gain used with
this controller.
Another important point is that the change of the vibration control gain Kvc has seriously
affects on the response of the single-link flexible manipulator. This is completely noticeable
from the results in Fig. 4. This fact is the main motivation to find out a good way for tuning Kvc

that brings the minimum vibration for the tip as well as a fast response for the joint position.
It is predicted from Fig. 4 that the damping effect becomes stronger as the vibration control
gain Kvc increases to a certain limit. However if the gain Kvc exceeds the limits it start to create
an overshoot in the joint response.
The most difficulty of using the MPID controller is the adjustment of the vibration control
gain. Ge et al. tried to use the genetic algorithm optimization process to find the suitable gain
for the controller (Ge et al., 1996). In their research they consider the fixed tip payload of
the flexible manipulator and generate a set of gains for this configuration using the genetic
algorithm. However in general, the tip payloads and the joint angle are not the same in each
operation but it varies from one task to another. Hence the tuning of the vibration control
gain Kvc becomes the most importance issue to achieve the required position with a minimum
vibration. To overcome the lake of consideration with the changing of tip payload and joint
angle in the tuning of the MPID we proposed to use the NN in the tuning of the MPID.
In this research the vibration control gain Kvc for the MPID controller given by equation (10) is
tuned using the NN for the environment parameter (i.e. tip payload), the system configuration
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(i.e. joint angle) and for both the other controller gains (i.e. Kp, Kd). By this way the controller
gives the best response with respect to all the parameters related to the flexible manipulator.

4. Simulation Model

In this section, a highlight to the simulation which is used to simulate the flexible manipu-
lator is given. A model of the flexible robot control system is simulated in Matlab-Simulink
software. The development of the Matlab-Simulink model allows control algorithms to be
evaluated before we use the neural network. Also, the simulation program is used to provide
information about the behave of the system. The result we get from the simulation will be
used in selecting the criterion function, which we will train the neural network on it. In this
simulation, we used the mathematical equation derived on section (2) for the flexible manip-
ulator. The block of the simulation model which had been used is shown in Fig. 5. We wish
to give attention to some point we consider in make the simulation and important simula-
tion parameters. In the simulation, we use the variable step solvers not the fixed step solvers.
The Variable step solvers vary the step size during the simulation, reducing the step size to
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Fig. 5. Simulation model for the flexible manipulator.

increase accuracy when a model’s states are changing rapidly and increasing the step size to
avoid taking unnecessary steps when the model’s states are changing slowly. Computing the
step size adds to the computational overhead at each step but can reduce the total number of
steps, and hence simulation time, required to maintain a specified level of accuracy for models
with rapidly changing or piecewise continuous states. Also for the numerical integration tech-
niques for solving the ordinary differential equations (ODEŠs) that represent the continuous
states of dynamic systems. Simulink provides an extensive set of fixed-step and variable-
step continuous solvers, each implementing a specific ODE solution method. There are many
solver types in the solution methods. First we identifying the optimal solver for the model,
optimal means acceptable accuracy with the shortest simulation. We use in the solution of
the numerical integration for the ordinary differential equations the ode45 (Dormand-Prince).
ODE45 is based on an explicit Runge-Kutta (4,5) formula. It is a one-step solver; that is, in
computing y(tn), it needs only the solution at the immediately preceding time point, y(tn−1).
In general, ode45 is the best solver to apply if the problem is not stiff. It is also the default
solver used by Simulink for models with continuous states.

5. Neural Network

There is no precise agreed definition among researchers as to what a neural network is, but
most would agree that it involves a network of simple processing elements (neurons), which
can exhibit complex global behavior, determined by the connections between the process-
ing elements and element parameters. The original inspiration for the technique was from
examination of the central nervous system and the neurons (and their axons, dendrites and
synapses) which constitute one of its most significant information processing elements. In a
neural network model, simple nodes (called variously “neurons," “neurodes," or “PEs- pro-
cessing elements") are connected together to form a network of nodes Ů hence the term “neu-
ral network." While a neural network does not have to be adaptive itself, its practical use
comes with algorithms designed to alter the strength (weights) of the connections in the net-
work to produce a desired signal flow. These networks are also similar to the biological neural
networks in the sense that functions are performed collectively and in parallel by the units,
rather than there being a clear delineation of subtasks to which various units are assigned.
Currently, the term Artificial Neural Network (ANN) tends to refer mostly to neural network
models employed in statistics, cognitive psychology and artificial intelligence.
In modern software implementations of artificial neural networks, the approach inspired by
biology has more or less been abandoned for a more practical approach based on statistics and
signal processing. In some of these systems, neural networks or parts of neural networks (such
as artificial neurons) are used as components in larger systems that combine both adaptive
and non-adaptive elements. While the more general approach of such adaptive systems is
more suitable for real-world problem solving, it has far less to do with the traditional artificial
intelligence connection models. What they do however have in common is the principle of
non-linear, distributed, parallel and local processing and adaptation. Neural networks, with
their remarkable ability to derive meaning from complicated or imprecise data, can be used
to extract patterns and detect trends that are too complex to be noticed by either humans or
other computer techniques. A trained neural network can be thought of as an “expert" in the
category of information it has been given to analyse. This expert can then be used to provide
projections given new situations of interest and answer “what if" questions. Other advantages
include:
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Fig. 5. Simulation model for the flexible manipulator.

increase accuracy when a model’s states are changing rapidly and increasing the step size to
avoid taking unnecessary steps when the model’s states are changing slowly. Computing the
step size adds to the computational overhead at each step but can reduce the total number of
steps, and hence simulation time, required to maintain a specified level of accuracy for models
with rapidly changing or piecewise continuous states. Also for the numerical integration tech-
niques for solving the ordinary differential equations (ODEŠs) that represent the continuous
states of dynamic systems. Simulink provides an extensive set of fixed-step and variable-
step continuous solvers, each implementing a specific ODE solution method. There are many
solver types in the solution methods. First we identifying the optimal solver for the model,
optimal means acceptable accuracy with the shortest simulation. We use in the solution of
the numerical integration for the ordinary differential equations the ode45 (Dormand-Prince).
ODE45 is based on an explicit Runge-Kutta (4,5) formula. It is a one-step solver; that is, in
computing y(tn), it needs only the solution at the immediately preceding time point, y(tn−1).
In general, ode45 is the best solver to apply if the problem is not stiff. It is also the default
solver used by Simulink for models with continuous states.

5. Neural Network

There is no precise agreed definition among researchers as to what a neural network is, but
most would agree that it involves a network of simple processing elements (neurons), which
can exhibit complex global behavior, determined by the connections between the process-
ing elements and element parameters. The original inspiration for the technique was from
examination of the central nervous system and the neurons (and their axons, dendrites and
synapses) which constitute one of its most significant information processing elements. In a
neural network model, simple nodes (called variously “neurons," “neurodes," or “PEs- pro-
cessing elements") are connected together to form a network of nodes Ů hence the term “neu-
ral network." While a neural network does not have to be adaptive itself, its practical use
comes with algorithms designed to alter the strength (weights) of the connections in the net-
work to produce a desired signal flow. These networks are also similar to the biological neural
networks in the sense that functions are performed collectively and in parallel by the units,
rather than there being a clear delineation of subtasks to which various units are assigned.
Currently, the term Artificial Neural Network (ANN) tends to refer mostly to neural network
models employed in statistics, cognitive psychology and artificial intelligence.
In modern software implementations of artificial neural networks, the approach inspired by
biology has more or less been abandoned for a more practical approach based on statistics and
signal processing. In some of these systems, neural networks or parts of neural networks (such
as artificial neurons) are used as components in larger systems that combine both adaptive
and non-adaptive elements. While the more general approach of such adaptive systems is
more suitable for real-world problem solving, it has far less to do with the traditional artificial
intelligence connection models. What they do however have in common is the principle of
non-linear, distributed, parallel and local processing and adaptation. Neural networks, with
their remarkable ability to derive meaning from complicated or imprecise data, can be used
to extract patterns and detect trends that are too complex to be noticed by either humans or
other computer techniques. A trained neural network can be thought of as an “expert" in the
category of information it has been given to analyse. This expert can then be used to provide
projections given new situations of interest and answer “what if" questions. Other advantages
include:
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• Adaptive learning: An ability to learn how to do tasks based on the data given for
training or initial experience.

• Self-Organization: An ANN can create its own organization or representation of the
information it receives during learning time.

• Real Time Operation: ANN computations may be carried out in parallel, and special
hardware devices are being designed and manufactured which take advantage of this
capability.

• Fault Tolerance via Redundant Information Coding: Partial destruction of a network
leads to the corresponding degradation of performance. However, some network capa-
bilities may be retained even with major network damage.

A simple representation of neural network is shown in Fig. 6. The Input to the neural net-
work is presented by X1, X2, ....., XR where R is the number of inputs in the input layer, S is
the number of neuron in the hidden layer and w is the weight. The output from the neural
network Y is given by
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Fig. 6. Simple presentation of neural network.

Y = f2(
j=S

∑
j=1

f1(nj) + b) (11)

nj =
j=S

∑
j=1

i=R

∑
i=1

Xiwij + bj (12)

where i = 1, 2, . . . , R , j = 1, 2, . . . , S,
f1 and f2 represents transfer functions.

To overcome the problem of tuning the vibration control gain Kvc due to the changing in the
manipulator configuration, environment parameter or the other controller gains the neural
network is proposed. The main task of the neural network is to get the optimum vibration
control gain which can achieve the vibration suppression while reaching the desired position
for the flexible manipulator.

So the function of the neural network is to receive the desired position θre f and the manipula-
tor tip payload Mt with the classical PD controller gains Kp, Kd. The neural network will give
out the relation between the vibration control gain Kvc and the criterion function at a certain
inputs θre f , Mt, Kp, Kd. From this relation the value of the value of optimum vibration control
gain Kvc is corresponding to the minimum criterion function.
A flow chart for the training process of the neural network with the parameters of the manip-
ulator and gains of the controller is shown in Fig. 7. The details of the learning algorithm and
how is the weight in changed will be discussed later in the training of the neural network.
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Fig. 8. Relation between vibration control gain and criterion function.

By trying many criterion function to select one of them as a measurement for the output re-
sponse from the simulation. We put in mind when selecting the criterion function to include
two parameters. The first one is the amplitude of the defection of the end effector and the
second one is the corresponding time. A set of criterion function like

∫ ts

0 tδ2dt,
∫ ts

0 10tδ2dt,∫ ts

0 δ2etdt is tried and a comparison between the behave for all of them and the vibration con-
trol gain Kvc is done. The value of ts here represent the time for simulation and on this research
we take it as 10 seconds. The criterion function

∫ ts

0 δ2etdt is selected as its value is always min-
imal when the optimum vibration control gain is used. The term optimum vibration control
gain Kvc pointed here to the value of Kvc which give a minimum criterion function

∫ ts

0 δ2etdt
and on the same time keep stability of the system.
The neural network is trained on the results from the simulation with different
θre f , Mt, Kp, Kd, Kvc. The neural network is trying to find how the error in the response from

the system (represented by the criterion function
∫ ts

0 δ2etdt is changed with the manipulator
parameter (tip payload, joint angle) i.e. Mt, θre f and also how it changes with the other con-
troller parameters Kp, Kd, Kvc. The relation between the vibration control gain of the controller,

Kvc which will be optimized using the neural network and the criterion function,
∫ ts

0 δ2etdt
which represent a measurement for the output response from the simulation is shown in Fig.
8. After the input and output of the neural network is specified, the structure of the neural
network have to been built. In the next section the structure of the neural network used to
optimize the vibration control gain Kvc will be explained.

5.1 Design
The neural network structure mainly consists of input layer, output layer and it also may
contain a hidden layer or layers. Depending on the application whether it is a classification,
prediction or modelling and the complexity of the problem the number of hidden layer is
decided. One of the most important characteristics of the neural network is the number of
neurons in the hidden layer(s). If an inadequate number of neurons are used, the network
will be unable to model complex data, and the resulting fit will be poor. If too many neurons
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Fig. 9. NN structure.

are used, the training time may become excessively long, and, worse, the network may over fit
the data. When over fitting occurs, the network will begin to model random noise in the data.
The result is that the model fits the training data extremely well, but it generalizes poorly to
new, unseen data.
Validation must be used to test for this. There are no reliable guidelines for deciding the
number of neurons in a hidden layer or how many hidden layers to use. As a result, the
number of hidden neurons and hidden layers were decided by a trial and error method based
on the system itself (Principe et al., 2000). Networks with more than two hidden layers are
rare, mainly due to the difficulty and time of training them. The best architecture to be used
is problem specific.
A proposed neural network structure is shown in Fig. 9. A neural network with one input
layer and one output layer and two hidden layers is proposed. In the proposed neural net-
work the input layer contains five inputs, θre f , Mt, Kp, Kd, Kvc. Those inputs represent the
manipulator configuration, environment variable and controller gains. The output layer is
consists of one output which is the criterion function and a bias transfer function on the neu-
ron of this layer. The first one of the two hidden layers is consists of 5 neuron and the second
one is consists of 7 neurons. For the transfer function used in the neuron of the two hidden
layer first we use the sigmoid function described by 13 to train the neural network.

f (xi, wi) =
1

1 + exp(−xbias
i )

, (13)

where xbias
i = xi + wi.

The progress of the training of the neural network is shown when using sigmoid transfer
function in Fig. 10. As we notice that no good progress in the training we propose to use the
tanh as a transfer function for the neuron for both of the two layers. Tanh applies a biased
tanh function to each neuron/processing element in the layer. This will squash the range of
each neuron in the layer to between -1 and 1. Such non-linear elements provide a network
with the ability to make soft decisions. The mathematical equation of the tanh function is give
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are used, the training time may become excessively long, and, worse, the network may over fit
the data. When over fitting occurs, the network will begin to model random noise in the data.
The result is that the model fits the training data extremely well, but it generalizes poorly to
new, unseen data.
Validation must be used to test for this. There are no reliable guidelines for deciding the
number of neurons in a hidden layer or how many hidden layers to use. As a result, the
number of hidden neurons and hidden layers were decided by a trial and error method based
on the system itself (Principe et al., 2000). Networks with more than two hidden layers are
rare, mainly due to the difficulty and time of training them. The best architecture to be used
is problem specific.
A proposed neural network structure is shown in Fig. 9. A neural network with one input
layer and one output layer and two hidden layers is proposed. In the proposed neural net-
work the input layer contains five inputs, θre f , Mt, Kp, Kd, Kvc. Those inputs represent the
manipulator configuration, environment variable and controller gains. The output layer is
consists of one output which is the criterion function and a bias transfer function on the neu-
ron of this layer. The first one of the two hidden layers is consists of 5 neuron and the second
one is consists of 7 neurons. For the transfer function used in the neuron of the two hidden
layer first we use the sigmoid function described by 13 to train the neural network.

f (xi, wi) =
1

1 + exp(−xbias
i )

, (13)

where xbias
i = xi + wi.

The progress of the training of the neural network is shown when using sigmoid transfer
function in Fig. 10. As we notice that no good progress in the training we propose to use the
tanh as a transfer function for the neuron for both of the two layers. Tanh applies a biased
tanh function to each neuron/processing element in the layer. This will squash the range of
each neuron in the layer to between -1 and 1. Such non-linear elements provide a network
with the ability to make soft decisions. The mathematical equation of the tanh function is give
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by 14.

f (xi, wi) =
2

1 + exp(−2xbias
i )

− 1, (14)

where xbias
i = xi + wi. Also the progress in the training of the neural network using the tanh

function is shown in Fig. 11.

5.2 Optimal Vibration Control Gain Finding Procedure
The MPID controller includes non-linear terms such as sgn(ėj(t)), therefore standard gain
tuning method like Ziegler-Nichols method can not be used for the controller. For the optimal
control methods like pole placement, it involves specifying closed loop performance in terms
of the closed-loop poles positions.
However such theory assumes a linear model and a controller. Therefore it can not be directly
applied to the MPID controller.
In this research we propose a NN based gain tuning method for the MPID controller to control
flexible manipulators. The true power and advantages of NN lies in its ability to represent
both linear and non-linear relationships and in their ability to learn these relationships directly
from the data being modelled. Traditional linear models are simply inadequate when it comes
to modelling data that contains non-linear characteristics. The basic idea to find the optimal
gain Kvc is illustrated in Fig. 12 (a). The procedure is summarized as follows.

1. A task, i.e. the tip payload Mt and reference angle θre f , is given.

2. The joint angle control gains Kp and Kd are appropriately tuned without considering
the flexibility of the manipulator.

3. Initial Kvc is given.

Fig. 11. Progress in training using tanh function.

4. The control input u(t) is calculated with given Kp, Kd, Kvc, θre f and θt using (10).

5. Dynamic simulation is performed with given tip payload Mt and the control input u(t)

6. 4 and 5 are iterated when t ≤ ts (ts: given settling time).

7. Criterion function is calculated using (15).

8. 4 ∼ 7 are iterated for another Kvc.

9. Based on the obtained criterion function for various Kvc, an optimal gain Kvc is found

As the criterion function C(Mt, θre f , Kp, Kd, Kvc), the integral of the squared tip deflection
weighted by exponential function is considered as:

C(Mt, θre f , Kp, Kd, Kvc) =
∫ ts

0
δ2(t)etdt, (15)

where ts is a given settling time and δ(t) is one of the output of the dynamic simulator (see
Fig. 12 (a)).
The NN replaces the MPID control and dynamic simulator and bring out the relation between
the input to the simulator, control gains and the criterion function. Based on this relation we
can get the optimal vibration gain Kvc for any combination of simulator input and PD joint
gains Kp, Kd.
However the procedure 5 (dynamic simulation) requires high computational cost and pro-
cedure 5 is iterated plenty of times. Consequently it is difficult to find an optimal gain Kvc

on-line.
Therefore we propose to replace the blocks enclosed by a dashed rectangle in Fig. 12 (a) by
a NN model illustrated in Fig. 12 (b). By this way the input to the NN is the simulation
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condition, θre f , Mt, Kp, Kd, Kvc while the output is the criterion function defined in (15). The
mapping from the input to the output is many-to-one.

5.3 A NN Model to Simulate Dynamic of A Flexible Manipulator
The NN structure generally consists of input layer, output layer and hidden layer(s). The
number of hidden layer is depending on the application such as classification, prediction or
modelling and on the complexity of the problem. One of the most important problems of the
NN is the determination of the number of neurons in the hidden layer(s). If an inadequate
number of neurons are used, the network will be unable to model complex function, and the
resulting fit will not be satisfactory. If too many neurons are used, the training time may
become excessively long, and, if the worst comes, the network may over fit the data. When
over fitting occurs, the network will begin to model random noise in the data. The result of the
over fitting is that the model fits the training data well, but it is failed to be generalized for new
and untrained data. The over fitting should be examined (Principe et al., 2000). The proposed
NN structure is shown in Fig. 9. The NN includes one input layer, one output layer and two
hidden layers. In the designed NN the input layer contains five inputs: θre f , Mt, Kp, Kd, Kvc

(see also Fig. 12). Those inputs represent the manipulator configuration, environment variable
and controller gains. The output layer consists of one output which is the criterion function,
Σδ2et and a bias transfer function on the neuron of this layer. The first hidden layer consists of
five neurons and the second hidden layer consists of seven neurons. For the transfer function
used in the neurons of the two hidden layers a tanh function is used.
The mathematical equation of the tanh function is give by:

f (xi, wi) =
2

1 + exp(−2xbias
i )

− 1, (16)

where xi is the ith input to the neuron, wi is the weight for the input xi and xbias
i = xi +

wi. After the NN is structured, it is trained using a various examples to generate the correct
weights to be used in producing the data in the operating stage.
The main task of the NN is to represent the relation between the input parameters to the
simulator, MPID gains and the criterion function.

6. Learning and Training

The training for the NN is analogous to the learning process of the human. As human starts
in the learning process to find the relationship between the input and outputs. The NN does
the same activity in the training phase.
The block diagram which represents the system during the training process is shown in Fig.
13.
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Fig. 13. Block diagram for the training the NN.

After the NN is constructed by choosing the number of layers, the number of neurons in each
layer and the shape of transfer function in each neuron, the actual learning of NN starts by
giving the NN teacher signals. In order to train the NN, the results of the dynamic simulator
for given conditions are used as teacher signals. In this shadow the feed-forward NN can
be used as a mapping between θre f , Mt, Kp, Kd, Kvc and the output response all over the time
span which is calculated by (15).
For the NN illustrated in Fig. 9, the output can be written as

Output = CNN(Mt, θre f , Kp, Kd, Kvc, wI
ij, wL1

jk , wL2
k1 , bO

1 ), (17)

where wI
ij is the weight from element i (i = 1 ∼ 5) in input layer (I) to element j (j = 1 ∼ 5)in

next layer (L1). wL1
jk is the weight from element j (j = 1 ∼ 5) in first hidden layer (L1) to

element k (k = 1 ∼ 7) in next layer (L2). wL2
k1 is the weight from element k (k = 1 ∼ 7) in

second hidden layer (L2) to element n in output layer (O). bO
1 is the bias of the output layer.

The NN begins to adjust the weights is each layer to achieve the desired output.
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over fitting occurs, the network will begin to model random noise in the data. The result of the
over fitting is that the model fits the training data well, but it is failed to be generalized for new
and untrained data. The over fitting should be examined (Principe et al., 2000). The proposed
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and controller gains. The output layer consists of one output which is the criterion function,
Σδ2et and a bias transfer function on the neuron of this layer. The first hidden layer consists of
five neurons and the second hidden layer consists of seven neurons. For the transfer function
used in the neurons of the two hidden layers a tanh function is used.
The mathematical equation of the tanh function is give by:

f (xi, wi) =
2

1 + exp(−2xbias
i )

− 1, (16)

where xi is the ith input to the neuron, wi is the weight for the input xi and xbias
i = xi +

wi. After the NN is structured, it is trained using a various examples to generate the correct
weights to be used in producing the data in the operating stage.
The main task of the NN is to represent the relation between the input parameters to the
simulator, MPID gains and the criterion function.

6. Learning and Training

The training for the NN is analogous to the learning process of the human. As human starts
in the learning process to find the relationship between the input and outputs. The NN does
the same activity in the training phase.
The block diagram which represents the system during the training process is shown in Fig.
13.
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Fig. 13. Block diagram for the training the NN.

After the NN is constructed by choosing the number of layers, the number of neurons in each
layer and the shape of transfer function in each neuron, the actual learning of NN starts by
giving the NN teacher signals. In order to train the NN, the results of the dynamic simulator
for given conditions are used as teacher signals. In this shadow the feed-forward NN can
be used as a mapping between θre f , Mt, Kp, Kd, Kvc and the output response all over the time
span which is calculated by (15).
For the NN illustrated in Fig. 9, the output can be written as

Output = CNN(Mt, θre f , Kp, Kd, Kvc, wI
ij, wL1

jk , wL2
k1 , bO

1 ), (17)

where wI
ij is the weight from element i (i = 1 ∼ 5) in input layer (I) to element j (j = 1 ∼ 5)in

next layer (L1). wL1
jk is the weight from element j (j = 1 ∼ 5) in first hidden layer (L1) to

element k (k = 1 ∼ 7) in next layer (L2). wL2
k1 is the weight from element k (k = 1 ∼ 7) in

second hidden layer (L2) to element n in output layer (O). bO
1 is the bias of the output layer.

The NN begins to adjust the weights is each layer to achieve the desired output.
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Herein, the performance surface E(w) is defined as follows:

E(w) = (C(Mt, θre f , Kp, Kd, Kvc)− CNN(Mt, θre f , Kp, Kd, Kvc))
2. (18)

The conjugate gradient method is applied to readjustment of the weights in NN. The principle
of the conjugate gradient method is shown in Fig. 14.
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Gradient

w

w0w2
w1

w3

Optimal w
 0=

dw

dE

Gradient direction 
 at w0  ,w1, w3

Fig. 14. Conjugate gradient for minimizing error.

By always updating the weights in a direction that is conjugate to all past movements in the
gradient, all of the zigzagging of 1st order gradient descent methods can be avoided. At each
step, a new conjugate direction is determined and then move to the minimum error along
this direction. Then a new conjugate direction is computed and so on. If the performance
surface is quadratic, information from the Hessian can determine the exact position of the
minimum along each direction, but for non quadratic surfaces, a line search is typically used.
The equations which represent the conjugate gradient method are:

∆w = α(n)p(n), (19)

p(n + 1) = −G(n + 1) + β(n)p(n), (20)

β(n) =
GT(n + 1)G(n + 1)

GT(n)G(n)
, (21)

where w is a weight, p is the current direction of weight movement, α is the step size, G is the
gradient (back propagation information) and β is a parameter that determines how much of
the past direction is mixed with the gradient to form the new conjugate direction. And as a
start for the searching we put p(0) = −G(0). The equation for α in case of line search to find
the minimum mean squared error (MSE) along the direction p is given by:

α =
−GT(n)p(n)

pT(n)H(n)p(n)
, (22)

where H is the Hessian matrix. The line search in the conjugate gradient method is critical
for finding the right direction to move next. If the line search is inaccurate, then the algorithm

may become brittle. This means that we may have to spend up to 30 iterations to find the
appropriate step size.
The scaled conjugate is more appropriate for NN implementations. One of the main advan-
tages of the scaled conjugate gradient (SCG) algorithm is that it has no real parameters. The
algorithm is based on computing Hd where d is a vector. It uses equation (22) and avoids the
problem of non-quadratic surfaces by manipulating the Hessian so as to guarantee positive
definiteness, which is accomplished by H + λI , where I is the identity matrix. In this case α
is computed by:

α =
−GT(n)p(n)

pT(n)H(n)p(n) + λ | p(n) |2
, (23)

instead of using (22). The optimization function in the NN learning process is used in the
mapping between the input to the simulator and the output criterion function not in the opti-
mization of the vibration gain.

6.1 Training result
The SCG is chosen as the learning algorithm for the NN. Once the algorithm for the learning
process is selected, the NN is trained on the patterns. The result of the learning process is
shown in this subsection. The teacher signals (training data set) are generated by the simula-
tion system illustrated in Fig. 12 (a). The examples of the training data set are listed in Table 1.
220 data sets are used for the training. The data is put in a scattered order to allow the NN to
get the relation in a correct manner.

Pattern θre f Mt Kp Kd Kvc Σδ2et

1 5 0.5 300 100 20000 0.0129

2 15 0.25 800 300 80000 7.242

3 10 0.25 600 200 0 1.21

4 25 0.5 600 200 10000 0.1825

5 25 0.5 600 200 10000 0.1825

6 15 0.25 600 150 70000 4.56

... ... ... ... ... ... ...

Table 1. Sample of NN training patterns.

As shown in Fig. 15, two curves are drawn relating the value of the normalized cri-
terion for each example used in the training. The normalized the criterion function
C(Mt, θre f , Kp, Kd, Kvc obtained from the simulation is plotted in circles while the normalized
criterion function CNN(Mt, θre f , Kp, Kd, Kvc) generated by the NN in the training process is
plotted in cross marks. The results of Fig. 15 show that training of the NN enhance its abil-
ity to follow up the output from the simulation. A performance measure is used to evaluate
whether the training of the NN is completed. In this measurement, the normalized mean
squared error (NMSE) between the two datasets (i. e. the dataset the NN trained on and the
dataset the NN generate) is calculated. For this case NMSE is 0.0054. Another performance
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mapping between the input to the simulator and the output criterion function not in the opti-
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6.1 Training result
The SCG is chosen as the learning algorithm for the NN. Once the algorithm for the learning
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C(Mt, θre f , Kp, Kd, Kvc obtained from the simulation is plotted in circles while the normalized
criterion function CNN(Mt, θre f , Kp, Kd, Kvc) generated by the NN in the training process is
plotted in cross marks. The results of Fig. 15 show that training of the NN enhance its abil-
ity to follow up the output from the simulation. A performance measure is used to evaluate
whether the training of the NN is completed. In this measurement, the normalized mean
squared error (NMSE) between the two datasets (i. e. the dataset the NN trained on and the
dataset the NN generate) is calculated. For this case NMSE is 0.0054. Another performance
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index is also used which is the correlation coefficient r between the two datasets. The correla-
tion coefficient r is 0.9973. When a test is done for the trained NN upon a complete new set of
data the NMSE is 0.0956 and r is 0.9664.

0

Fig. 15. NN training.

7. Optimization result

In this section, the results obtained using the simulation are compared with the results ob-
tained using the NN. The criterion function C computed by (15) and the output of NN, CNN ,
for the vibration control gain Kvc are plotted in Fig. 16. Comparing the results obtaind using
the NN for the criterion function with the results obtained using dynamic simulator in Fig. 16.
shows good coincidence. This means that the NN network can successfully replace the dy-
namic simulator to find how the criterion function changes with the changing of the system
parameters.
Form Fig. 16 the optimum gain Kvc can be easily found. One of the main advantages of using
the NN to find the optimal gain for the MPID control is the computional speed. To generate
the data of the simulation curve, which is indicated by the triangles in Fig. 16, 1738 seconds is
needed while only 6 seconds are needed to generate the data using the NN, which is indicated
by the circles. The minimum values of the criterion function occurs when the value of the
vibration control gain Kvc equals 22500 V s/m2.

Vibration control gain

Fig. 16. Vibration control gain vs. criterion function.
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Fig. 17. Response using optimum gain.
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Fig. 19. Response using optimum gain.

The response of the flexible manipulator using the optimal gain Kvc is shown in Fig. 17, Fig. 18
and Fig. 19. 0.5 kg is used as a tip payload Mt with 24 degree for the joint reference angle θre f .
For the controller described by equation (10), the values of Kp and Kd are set at 600 V rad/m
and 400 V s rad/m respectively. The response with different vibration gains Kvc is plotted. In
the beginning the response with PD control only (i.e. Kvc = 0) is plotted in dash line while
the response with the maximum Kvc which is 80000 V s/m2 is plotted in a dash-dot line. The
response with the optimum Kvc -which was tuned using NN- appears in a continous line. The
value of the optimum vibration control gain Kvc is 17600 V s/m2. Increasing the vibration
control gain Kvc leads the system to have fast response for the joint position as shown in
Fig. 17 but more increasing in the value of the vibration control gain leads to an undesirable
overshoot as shown in Fig. 18 with a dash-dot line. To focus on the effect of the vibration gain
on the end-effector vibration Fig. 19 is plotted. It is clear from the figure that the optimum
vibration control gain for the MPID succeed to suppress the vibration at the end of the flexible
manipulator.

8. Conclusions

This chapter discusses a NN based gain tuning method for the vibration control PID (MPID)
controller of a single-link flexible manipulator. The NN is trained to simulate the dynamics
of the single-link flexible manipulator and to produce the integral of the squared tip deflec-
tion weighted by exponential function. A dynamic simulator is used to produce the teacher
signals.
The main advantage of using NN to find an optimal gain is the computational speed. The NN
based method is approximately 290 times faster than the dynamic simulation based method.
Simulation results with the obtained optimal gain validate the proposed method.
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1. Introduction

PID control, which is usually known as a classical output feedback control for SISO systems,
has been widely used in the industrial world(Åström & Hägglund, 1995; Suda, 1992). The
tuning methods of PID control are adjusting the proportional, the integral and the derivative
gains to make an output of a controlled system track a target value properly. There exist much
more researches on tuning methods of PID control for SISO systems than MIMO systems
although more MIMO systems actually exist than SISO systems. The tuning methods for SISO
systems are difficult to apply to PID control for MIMO systems since the gains usually become
matrices in such case.
MIMO systems usually tend to have more complexities and uncertainties than SISO systems.
Several tuning methods of PID control for such MIMO system are investigated as follows.
From off-line approach, there are progressed classical loop shaping based methods (Ho
et al., 2000; Hara et al., 2006) and H∞ control theory based methods (Mattei, 2001; Saeki,
2006; Zheng et al., 2002). From on-line approach, there are methods from self-tuning control
such as the generalized predictive control based method (Gomma, 2004), the generalized
minimum variance control based method (Yusof et al., 1994), the model matching based
method (Yamamoto et al., 1992) and the method using neural network (Chang et al., 2003).
These conventional methods often require that the MIMO system is stable and are usually
used for a regulator problem for a constant target value but a tracking problem for
a time-varying target value, which restrictions narrow their application. So trying these
problems is significant from a scientific standpoint how there is possibility of PID control and
from a practical standpoint of expanding applications. In MIMO case, there is possibility to
solve these problems because PID control has more freedoms in tuning of PID gain matrices.
On the other hand, adaptive servo control is known for a problem of the asymptotic output
tracking and/or disturbances rejection to unknown systems under guaranteeing stability.
There are researches for SISO systems (Hu & Tomizuka, 1993; Miyasato, 1998; Ortega & Kelly,
1985) and for MIMO systems (Chang & Davison, 1995; Dang & Owens, 2006; Johansson, 1987).
Their controllers generally depend on structures of the controlled system and the reference
system, which features are undesirable from standpoint of utility (Saeki, 2006; Miyamoto,
1999). So it is important to develop the fixed controller like PID controller to solve the servo
problem and to show that conditions. But they are difficult to apply to the tuning of PID
controller because of differences of their construction.
In this paper, we consider adaptive PID control for the asymptotic output tracking problem of
MIMO systems with unknown system parameters under existence of unknown disturbances.
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The proposed PID controller has constant gain matrices and adjustable gain matrices. The
proposed adaptive tuning laws of the gain matrices are derived by using Lyapunov theorem.
That is a Lyapunov function based on characteristics of the proposed PID controller is
constructed. This method guarantees the asymptotic output tracking even if the controlled
MIMO system is unstable and has uncertainties and unknown constant disturbances. Finally,
the effectiveness of the proposed method is confirmed with simulation results for the 8-state,
2-input and 2-output missile control system and the 4-state, 2-input and 2-output unstable
system.

2. Problem statement

Consider the MIMO system:

ẋ(t) = Ax(t) + Bu(t) + di, (1)
y(t) = Cx(t) + do, (2)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rm are the state vector, the input vector and the output
vector respectively, di ∈ Rn, do ∈ Rm are unknown constant disturbances, and A, B, C are
unknown system matrices.
The target signal of the output is yM(t) ∈ Rm generated by the reference system:

ẋM(t) = AMxM(t) + BMuM, (3)
yM(t) = CMxM(t), (4)

where xM(t) ∈ RnM and uM ∈ RrM are the state vector and the constant input vector,
respectively. Note that AM, BM, CM are allowed to be unknown matrices.
In this article, we propose the new adaptive PID controller:

u(t) = KI0

∫ t

0
ey(τ)dτ + (KP0 + KP1(t))ey(t) + KD1(t)ėy(t) + KP2(t)yM(t) + KD2(t)ẏM(t) (5)

which has the adjustable gain matrices KP1(t), KP2(t), KD1(t), KD2(t) ∈ Rm×m and the
constant gain matrices KI0, KP0 ∈ Rm×m, and

ey(t) = yM(t) − y(t) (6)

denotes the error of the output from the target signal yM(t). The diagram of the proposed PID
controller is shown in Fig. 1.
The objective is to design the constant gain matrices KI0, KP0 and the adaptive tuning laws
of the adjustable gain matrices KP1(t), KP2(t), KD1(t), KD2(t) to solve the asymptotic output
tracking, i.e. ey(t) → 0 as t → ∞.
Here we assume the following conditions:

Assumption 1: rank
[

A B
C 0

]
= n + m, and λi(M11)λj(AM) �= 1, i = 1, 2, · · · , n, j = 1, 2, · · · , nM,

where
[

M11 M12
M21 M22

]
:=

[
A B
C 0

]−1
, M11 ∈ Rn×n and λ(·) denotes eigenvalues of a matrix.

Assumption 2: rank
[

CM

CM AM

]
= nM.

Assumption 3: The zero-dynamics of {A, B, C} is asymptotically stable.
Assumption 4: (a) CB = 0, CAB > 0 or (b) CB > 0.

Let us explain these assumptions. Assumption 1 is well known condition for a servo problem.
Assumption 2 means the output of the reference system and its derivative contain the
information of its state. Assumption 3 equals to the minimum phase property of the controlled
system. Assumption 4 contains the condition that the relative degrees are ≤ 2. It is inevitable
that these conditions seem a little severe because these are conditions for the PID controller
that has the structural constraint. But also there is an advantage that the controlled system’s
stability property, which is often assumed in other PID control’s methods, is not assumed.

Fig. 1. Proposed Adaptive PID Controller

3. Error system with proposed adaptive PID controller

In this section, we derive the error system with the adaptive PID controller. When the perfect
output tracking occurs (i.e. y(t) = yM(t), ∀t ≥ 0), we can define the corresponding state and
input trajectories as x∗(t), u∗(t), respectively. That is x∗(t), u∗(t) are trajectories satisfying the
following relation:

ẋ∗(t) = Ax∗(t) + Bu∗(t) + di, (7)
yM(t) = Cx∗(t) + do, ∀t ≥ 0. (8)

From Appendix A inspired by (Kaufman et al., 1994), there exist matrices Mij, Tij, i, j = 1, 2
under Assumption 1, and the ideal trajectories x∗(t), u∗(t) satisfying relations (7), (8) can be
expressed as

x∗(t) = T11xM(t) + T12uM − M11di − M12do, (9)
u∗(t) = T21xM(t) + T22uM − M21di − M22do. (10)

Introducing these ideal trajectories, we can define the following state error

ex(t) = x∗(t) − x(t). (11)

Then, the output tracking error (6) can be described as

ey(t) = yM(t) − y(t) = (Cx∗(t) + do) − (Cx(t) + do) = Cex(t), (12)

which means that if the error system obtained by differentiating (11):

ėx(t) = Aex(t) + B(u∗(t) − u(t)) (13)

can be asymptotically stabilized i.e. ex(t) → 0, then the asymptotic output tracking can be
achieved i.e. ey(t) → 0.
Now, substituting (5) and (10) into (13), we get the following closed loop error system:

ėx(t) = Aex(t) − B
[
− T21xM(t) − T22uM + M21di + M22do + KI0

∫ t

0
ey(τ)dτ

+ KP0ey(t) + KP1(t)ey(t) + KD1(t)ėy(t) + KP2(t)yM(t) + KD2(t)ẏM(t)
]
. (14)
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ẋ∗(t) = Ax∗(t) + Bu∗(t) + di, (7)
yM(t) = Cx∗(t) + do, ∀t ≥ 0. (8)

From Appendix A inspired by (Kaufman et al., 1994), there exist matrices Mij, Tij, i, j = 1, 2
under Assumption 1, and the ideal trajectories x∗(t), u∗(t) satisfying relations (7), (8) can be
expressed as

x∗(t) = T11xM(t) + T12uM − M11di − M12do, (9)
u∗(t) = T21xM(t) + T22uM − M21di − M22do. (10)

Introducing these ideal trajectories, we can define the following state error

ex(t) = x∗(t) − x(t). (11)

Then, the output tracking error (6) can be described as

ey(t) = yM(t) − y(t) = (Cx∗(t) + do) − (Cx(t) + do) = Cex(t), (12)

which means that if the error system obtained by differentiating (11):
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From Appendix B, there exist matrices S1, S2 ∈ Rm×m under Assumption 2, and T21xM(t) in
(14) can be decomposed as

T21xM(t) = S1yM(t) + S2(ẏM(t) − CMBMuM). (15)

Hence, (14) can be expressed as

ėx(t) = Aex(t) − B
[
(S2CMBM − T22)uM + M21di + M22do + KI0

∫ t

0
ey(τ)dτ + KP0ey(t)

+ KP1(t)ey(t) + KD1(t)ėy(t) + (KP2(t) − S1)yM(t) + (KD2(t) − S2)ẏM(t)
]
. (16)

Here put the constant term of the above equation as

d̃ := (S2CMBM − T22)uM + M21di + M22do

to represent (16) simply as

ėx(t) = Aex(t) − B
[
d̃ + KI0

∫ t

0
ey(τ)dτ + KP0ey(t) + KP1(t)ey(t) + KD1(t)ėy(t)

+ (KP2(t) − S1)yM(t) + (KD2(t) − S2)ẏM(t)
]
. (17)

Therefore, if the origin of this close-loop error system is asymptotically stabilized i.e. ex(t) →
0, the asymptotic output tracking i.e. ey(t) → 0 is achieved. We derive the constant gain
matrices and the adaptive tuning laws of adjustable gain matrices to accomplish ex(t) → 0
in the next section.

4. Adaptive tuning laws of PID gain matrices

In this section, we show the constant gain matrices KI0, KP0 and the adaptive tuning law of
the adjustable gain matrices KP1(t), KP2(t), KD1(t), KD2(t) to asymptotically stabilize the error
dynamics (17) (i.e. ex → 0 as t → ∞) at Case A when Assumption 4(a) is hold or at Case B when
Assumption 4(b) is hold.

4.1 Case A
Theorem 1: Suppose Assumption 3 and Assumption 4(a). Give the constant gain matrices
KI0, KP0 as

KI0 = γI H1, KP0 = γI H2, (18)

and the adaptive tuning laws of the adjustable gain matrices KPi(t), KDi(t), i = 1, 2 as

K̇P1(t) = ΓP1
(

H1ey(t) + H2 ėy(t)
)
ey(t)T, (19a)

K̇D1(t) = ΓD1
(

H1ey(t) + H2 ėy(t)
)
ėy(t)T, (19b)

K̇P2(t) = ΓP2
(

H1ey(t) + H2 ėy(t)
)
yM(t)T, (19c)

K̇D2(t) = ΓD2
(

H1ey(t) + H2 ėy(t)
)
ẏM(t)T (19d)

where

H1 = diag{h11, · · · , h1m}, H2 = diag{h21, · · · , h2m}, h1j, h2j > 0, j = 1, · · · , m, (20)

then the origin of (17) is asymptotically stable (ex(t) → 0 as t → ∞) and the adjustable gain
matrices are bounded. Here ΓP1, ΓP2, ΓD1, ΓD2 ∈ Rm×m are arbitrary positive definite matrices

and γI is arbitrary positive scalar.

Proof: From Assumption 4(a), the error dynamics (17) is transformed into the normal form
(see e.g. (Isidori, 1995)):




ξ̇1(t)
ξ̇2(t)
η̇(t)


 =




0 Im 0
Q21 Q22 Q23
Q31 Q32 Aη







ξ1(t)
ξ2(t)
η(t)


 −




0
CAB

0


 [

KI0

∫ t

0
ξ1(τ)dτ + KP0ξ1(t) + d̃

+ KP1(t)ξ1(t) + KD1(t)ξ2(t) + (KP2(t) − S1)yM(t) + (KD2(t) − S2)ẏM(t)
]
, (21)

which Qij are unknown matrices, by transformation



ξ1(t)
ξ2(t)
η(t)


 =




C
CA
T


 ex(t) (22)

where TB = 0, T ∈ R(n−2m)×n and

ξ1(t) = Cex(t) = ey(t), ξ2(t) = CAex(t) = ėy(t). (23)

Note that when ξ1(t), ξ2(t) ≡ 0,

η̇(t) = Aηη(t), (24)

which is called zero-dynamics, is asymptotic stable from Assumption 3.
Thus (21) is can be rewritten as




ξ̇1(t)
ξ̇2(t)
η̇(t)


 =




0 Im 0
−Kξ1 −Kξ2 Q23
Q31 Q32 Aη







ξ1(t)
ξ2(t)
η(t)


 −




0
Im
0


 [

CAB(KI0

∫ t

0
ξ1(τ)dτ + KP0ξ1(t) + d̃)

+ (CABKP1(t) − Q21 − Kξ1)ξ1(t) + (CABKD1(t) − Q22 − Kξ2)ξ2(t)

+ CAB(KP2(t) − S1)yM(t) + CAB(KD2(t) − S2)ẏM(t)
]

(25)

where Kξ1, Kξ2 ∈ Rm×m are the constant matrices only used in the proof.

For simplicity, put

ξ(t) :=
[

ξ1(t)
ξ2(t)

]
, Aξ :=

[
0 Im
0 0

]
, Bξ :=

[
0
Im

]
, (26)

Kξ :=
[
Kξ1 Kξ2

]
, Q1 :=

[
0

Q23

]
, Q2 := [Q31 Q32] , (27)

ψI(t) := CAB(KI0

∫ t

0
ξ1(τ)dτ + KP0ξ1(t) + d̃), (28)

ΨP1(t) := CABKP1(t) − Q21 − Kξ1, (29a)

ΨD1(t) := CABKD1(t) − Q22 − Kξ2, (29b)

ΨP2(t) := CAB(KP2(t) − S1), (29c)
ΨD2(t) := CAB(KD2(t) − S2) (29d)
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Hence, (14) can be expressed as
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]
. (17)

Therefore, if the origin of this close-loop error system is asymptotically stabilized i.e. ex(t) →
0, the asymptotic output tracking i.e. ey(t) → 0 is achieved. We derive the constant gain
matrices and the adaptive tuning laws of adjustable gain matrices to accomplish ex(t) → 0
in the next section.

4. Adaptive tuning laws of PID gain matrices

In this section, we show the constant gain matrices KI0, KP0 and the adaptive tuning law of
the adjustable gain matrices KP1(t), KP2(t), KD1(t), KD2(t) to asymptotically stabilize the error
dynamics (17) (i.e. ex → 0 as t → ∞) at Case A when Assumption 4(a) is hold or at Case B when
Assumption 4(b) is hold.

4.1 Case A
Theorem 1: Suppose Assumption 3 and Assumption 4(a). Give the constant gain matrices
KI0, KP0 as

KI0 = γI H1, KP0 = γI H2, (18)

and the adaptive tuning laws of the adjustable gain matrices KPi(t), KDi(t), i = 1, 2 as

K̇P1(t) = ΓP1
(

H1ey(t) + H2 ėy(t)
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PID Control, Implementation and Tuning192

to describe (25) as
[

ξ̇(t)
η̇(t)

]
=

[
Aξ − Bξ Kξ Q1

Q2 Aη

] [
ξ(t)
η(t)

]
−

[
Bξ
0

] [
ψI(t) + ΨP1(t)ξ1(t)

+ ΨD1(t)ξ2(t) + ΨP2(t)yM(t) + ΨD2(t)ẏM(t)
]
, (30)

where

ψ̇I(t) = CAB(KI0ξ1(t) + KP0ξ2(t)), (31)
Ψ̇P1(t) = CABK̇P1(t), (32a)

Ψ̇D1(t) = CABK̇D1(t), (32b)

Ψ̇P2(t) = CABK̇P2(t), (32c)

Ψ̇D2(t) = CABK̇D2(t). (32d)

Meanwhile because {Aξ , Bξ} is controllable pair from (26), there exist Kξ such that Lyapunov
equation

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ = −Q, Q > 0

has an unique positive solution Pξ > 0. So here we set Q = 2εI2m, ε > 0 and select Kξ as

Kξ1 = εH−1
1 , Kξ2 = εH−1

2 (Im + (1/ε)H1), (33)

Hi = diag{hi1, · · · , him}, hij > 0, i = 1, 2, j = 1, · · · , m,

such that

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ = −2εI2m, ε > 0, (34)

has the unique positive solution

Pξ =

[
Pξ1 P
PT Pξ2

]
∈ R2m×2m, (35)

P = H1, Pξ2 = H2, Pξ1 = ε(H1H−1
2 + H−1

1 H2) + H1H−1
2 H1.

It is clear Pξ of (35) is a positive matrix on ε > 0 from Schur complement (see e.g. (Iwasaki,

1997)) because Pξ2 = H2 > 0, Pξ1 − PP−1
ξ2 PT = ε(H1H−1

2 + H−1
1 H2) > 0.

Furthermore since Aη of (24) is asymptotic stable matrix from Assumption 3, there exists an
unique solution Pη ∈ R(n−2m)×(n−2m) > 0 satisfying

Pη Aη + AT
η Pη = −In−2m. (36)

Now, by using Pξ of (35) and Pη of (36), we consider the following Lyapunov function
candidate:

V(ξ(t), η(t), ψI(t), ΨP1(t), ΨP2(t), ΨD1(t), ΨD2(t))

=
[

ξ(t)
η(t)

]T [
Pξ 0
0 Pη

] [
ξ(t)
η(t)

]
+ ψI(t)Tγ−1

I (CAB)−1ψI(t)

+ Tr
[
ΨP1(t)TΓ−1

P1 (CAB)−1ΨP1(t)
]
+ Tr

[
ΨD1(t)TΓ−1

D1 (CAB)−1ΨD1(t)
]

+ Tr
[
ΨP2(t)TΓ−1

P2 (CAB)−1ΨP2(t)
]
+ Tr

[
ΨD2(t)TΓ−1

D2 (CAB)−1ΨD2(t)
]

(37)

where ΓP1, ΓD1, ΓP2, ΓD2 ∈ Rm×m are arbitrary positive definite matrices, γI is positive scalar.
Tr[·] denotes trace of a square matrix. Here put V(t) := V(ξ(t), η(t), ψI(t), ΨP1(t), ΨP2(t),
ΨD1(t), ΨD2(t)) for simplicity. The derivative of (37) along the trajectories of the error system
(30) ∼ (32d) can be calculated as

V̇(t) = 2
[

ξ̇(t)
η̇(t)

]T [
Pξ 0
0 Pη

] [
ξ(t)
η(t)

]
+ 2ψI(t)Tγ−1

I (CAB)−1ψ̇I(t)

+ 2Tr
[
ΨP1(t)TΓ−1

P1 (CAB)−1Ψ̇P1(t)
]
+ 2Tr

[
ΨD1(t)TΓ−1

D1 (CAB)−1Ψ̇D1(t)
]

+ 2Tr
[
ΨP2(t)TΓ−1

P2 (CAB)−1Ψ̇P2(t)
]
+ 2Tr

[
ΨD2(t)TΓ−1

D2 (CAB)−1Ψ̇D2(t)
]

=
[

ξ(t)
η(t)

]T
[

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ

(Pξ Q1 + QT
2 Pη)T

Pξ Q1 + QT
2 Pη

Pη Aη + AT
η Pη

] [
ξ(t)
η(t)

]

+ 2ψI(t)T
[
− BT

ξ Pξ ξ(t) + γ−1
I (CAB)−1ψ̇I(t)

]

+ 2Tr
[

ΨP1(t)T
(
− BT

ξ Pξ ξ(t)ξ1(t)T + Γ−1
P1 (CAB)−1Ψ̇P1(t)

) ]

+ 2Tr
[

ΨD1(t)T
(
− BT

ξ Pξ ξ(t)ξ2(t)T + Γ−1
D1 (CAB)−1Ψ̇D1(t)

) ]

+ 2Tr
[

ΨP2(t)T
(
− BT

ξ Pξ ξ(t)yM(t)T + Γ−1
P2 (CAB)−1Ψ̇P2(t)

) ]

+ 2Tr
[

ΨD2(t)T
(
− BT

ξ Pξ ξ(t)ẏM(t)T + Γ−1
D2 (CAB)−1Ψ̇D2(t)

) ]

=
[

ξ(t)
η(t)

]T
[

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ

(Pξ Q1 + QT
2 Pη)T

Pξ Q1 + QT
2 Pη

Pη Aη + AT
η Pη

] [
ξ(t)
η(t)

]

+ 2ψI(t)T
[
− BT

ξ Pξ ξ(t) + γ−1
I

(
KI0ξ1(t) + KP0ξ2(t)

)]

+ 2Tr
[

ΨP1(t)T
(
− BT

ξ Pξ ξ(t)ξ1(t)T + Γ−1
P1 K̇P1(t)

) ]

+ 2Tr
[

ΨD1(t)T
(
− BT

ξ Pξ ξ(t)ξ2(t)T + Γ−1
D1 K̇D1(t)

) ]

+ 2Tr
[

ΨP2(t)T
(
− BT

ξ Pξ ξ(t)yM(t)T + Γ−1
P2 K̇P2(t)

) ]

+ 2Tr
[

ΨD2(t)T
(
− BT

ξ Pξ ξ(t)ẏM(t)T + Γ−1
D2 K̇D2(t)

) ]
. (38)

Therefore from ξ(t) = [ξT
1 , ξT

2 ]T = [eT
y , ėT

y ]T and BT
ξ Pξ =

[
H1 H2

]
, giving the constant gain

matrices KI0, KP0 as (18), (20) and the adaptive tuning laws of KPi(t), KDi(t), i = 1, 2 as (19a)
∼ (19d), (20) , we can get (38) be

V̇(t) =
[

ξ(t)
η(t)

]T
[

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ

(Pξ Q1 + QT
2 Pη)T

Pξ Q1 + QT
2 Pη

Pη Aη + AT
η Pη

] [
ξ(t)
η(t)

]
. (39)

Here the symmetric matrix of (39) can be expressed as
[

−2εI2m Pξ Q1 + QT
2 Pη

(Pξ Q1 + QT
2 Pη)T −In−2m

]
(40)
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to describe (25) as
[

ξ̇(t)
η̇(t)

]
=

[
Aξ − Bξ Kξ Q1

Q2 Aη

] [
ξ(t)
η(t)

]
−

[
Bξ
0

] [
ψI(t) + ΨP1(t)ξ1(t)

+ ΨD1(t)ξ2(t) + ΨP2(t)yM(t) + ΨD2(t)ẏM(t)
]
, (30)

where

ψ̇I(t) = CAB(KI0ξ1(t) + KP0ξ2(t)), (31)
Ψ̇P1(t) = CABK̇P1(t), (32a)

Ψ̇D1(t) = CABK̇D1(t), (32b)

Ψ̇P2(t) = CABK̇P2(t), (32c)

Ψ̇D2(t) = CABK̇D2(t). (32d)

Meanwhile because {Aξ , Bξ} is controllable pair from (26), there exist Kξ such that Lyapunov
equation

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ = −Q, Q > 0

has an unique positive solution Pξ > 0. So here we set Q = 2εI2m, ε > 0 and select Kξ as

Kξ1 = εH−1
1 , Kξ2 = εH−1

2 (Im + (1/ε)H1), (33)

Hi = diag{hi1, · · · , him}, hij > 0, i = 1, 2, j = 1, · · · , m,

such that

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ = −2εI2m, ε > 0, (34)

has the unique positive solution

Pξ =

[
Pξ1 P
PT Pξ2

]
∈ R2m×2m, (35)

P = H1, Pξ2 = H2, Pξ1 = ε(H1H−1
2 + H−1

1 H2) + H1H−1
2 H1.

It is clear Pξ of (35) is a positive matrix on ε > 0 from Schur complement (see e.g. (Iwasaki,

1997)) because Pξ2 = H2 > 0, Pξ1 − PP−1
ξ2 PT = ε(H1H−1

2 + H−1
1 H2) > 0.

Furthermore since Aη of (24) is asymptotic stable matrix from Assumption 3, there exists an
unique solution Pη ∈ R(n−2m)×(n−2m) > 0 satisfying

Pη Aη + AT
η Pη = −In−2m. (36)

Now, by using Pξ of (35) and Pη of (36), we consider the following Lyapunov function
candidate:

V(ξ(t), η(t), ψI(t), ΨP1(t), ΨP2(t), ΨD1(t), ΨD2(t))

=
[

ξ(t)
η(t)

]T [
Pξ 0
0 Pη

] [
ξ(t)
η(t)

]
+ ψI(t)Tγ−1

I (CAB)−1ψI(t)

+ Tr
[
ΨP1(t)TΓ−1

P1 (CAB)−1ΨP1(t)
]
+ Tr

[
ΨD1(t)TΓ−1

D1 (CAB)−1ΨD1(t)
]

+ Tr
[
ΨP2(t)TΓ−1

P2 (CAB)−1ΨP2(t)
]
+ Tr

[
ΨD2(t)TΓ−1

D2 (CAB)−1ΨD2(t)
]

(37)

where ΓP1, ΓD1, ΓP2, ΓD2 ∈ Rm×m are arbitrary positive definite matrices, γI is positive scalar.
Tr[·] denotes trace of a square matrix. Here put V(t) := V(ξ(t), η(t), ψI(t), ΨP1(t), ΨP2(t),
ΨD1(t), ΨD2(t)) for simplicity. The derivative of (37) along the trajectories of the error system
(30) ∼ (32d) can be calculated as

V̇(t) = 2
[

ξ̇(t)
η̇(t)

]T [
Pξ 0
0 Pη

] [
ξ(t)
η(t)

]
+ 2ψI(t)Tγ−1

I (CAB)−1ψ̇I(t)

+ 2Tr
[
ΨP1(t)TΓ−1

P1 (CAB)−1Ψ̇P1(t)
]
+ 2Tr

[
ΨD1(t)TΓ−1

D1 (CAB)−1Ψ̇D1(t)
]

+ 2Tr
[
ΨP2(t)TΓ−1

P2 (CAB)−1Ψ̇P2(t)
]
+ 2Tr

[
ΨD2(t)TΓ−1

D2 (CAB)−1Ψ̇D2(t)
]

=
[

ξ(t)
η(t)

]T
[

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ

(Pξ Q1 + QT
2 Pη)T

Pξ Q1 + QT
2 Pη

Pη Aη + AT
η Pη

] [
ξ(t)
η(t)

]

+ 2ψI(t)T
[
− BT

ξ Pξ ξ(t) + γ−1
I (CAB)−1ψ̇I(t)

]

+ 2Tr
[

ΨP1(t)T
(
− BT

ξ Pξ ξ(t)ξ1(t)T + Γ−1
P1 (CAB)−1Ψ̇P1(t)

) ]

+ 2Tr
[

ΨD1(t)T
(
− BT

ξ Pξ ξ(t)ξ2(t)T + Γ−1
D1 (CAB)−1Ψ̇D1(t)

) ]

+ 2Tr
[

ΨP2(t)T
(
− BT

ξ Pξ ξ(t)yM(t)T + Γ−1
P2 (CAB)−1Ψ̇P2(t)

) ]

+ 2Tr
[

ΨD2(t)T
(
− BT

ξ Pξ ξ(t)ẏM(t)T + Γ−1
D2 (CAB)−1Ψ̇D2(t)

) ]

=
[

ξ(t)
η(t)

]T
[

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ

(Pξ Q1 + QT
2 Pη)T

Pξ Q1 + QT
2 Pη

Pη Aη + AT
η Pη

] [
ξ(t)
η(t)

]

+ 2ψI(t)T
[
− BT

ξ Pξ ξ(t) + γ−1
I

(
KI0ξ1(t) + KP0ξ2(t)

)]

+ 2Tr
[

ΨP1(t)T
(
− BT

ξ Pξ ξ(t)ξ1(t)T + Γ−1
P1 K̇P1(t)

) ]

+ 2Tr
[

ΨD1(t)T
(
− BT

ξ Pξ ξ(t)ξ2(t)T + Γ−1
D1 K̇D1(t)

) ]

+ 2Tr
[

ΨP2(t)T
(
− BT

ξ Pξ ξ(t)yM(t)T + Γ−1
P2 K̇P2(t)

) ]

+ 2Tr
[

ΨD2(t)T
(
− BT

ξ Pξ ξ(t)ẏM(t)T + Γ−1
D2 K̇D2(t)

) ]
. (38)

Therefore from ξ(t) = [ξT
1 , ξT

2 ]T = [eT
y , ėT

y ]T and BT
ξ Pξ =

[
H1 H2

]
, giving the constant gain

matrices KI0, KP0 as (18), (20) and the adaptive tuning laws of KPi(t), KDi(t), i = 1, 2 as (19a)
∼ (19d), (20) , we can get (38) be

V̇(t) =
[

ξ(t)
η(t)

]T
[

Pξ(Aξ − Bξ Kξ) + (Aξ − Bξ Kξ)TPξ

(Pξ Q1 + QT
2 Pη)T

Pξ Q1 + QT
2 Pη

Pη Aη + AT
η Pη

] [
ξ(t)
η(t)

]
. (39)

Here the symmetric matrix of (39) can be expressed as
[

−2εI2m Pξ Q1 + QT
2 Pη

(Pξ Q1 + QT
2 Pη)T −In−2m

]
(40)
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from (36), (34). Using Schur complement, we have the following necessary and sufficient
conditions such that (40) is negative definite:

− 2εI2m < 0, (41)

− In−2m + (Pξ Q1 + QT
2 Pη)T 1

2ε
(Pξ Q1 + QT

2 Pη) < 0 (42)

where

Pξ Q1 =
[

P
Pξ2

]
Q23 =

[
H1
H2

]
Q23 (43)

from (27), (35). Obviously, the first inequality (41) is hold. The second inequality (42) is also

achieved under large ε > 0 (because QT
2 Pη and Pξ Q1 are independent of ε). At this time, (40)

becomes negative definite matrix and (39) is

V̇(t) =
[

ξ(t)
η(t)

]T
[

−2εI2m Pξ Q1 + QT
2 Pη

(Pξ Q1 + QT
2 Pη)T −In−2m

] [
ξ(t)
η(t)

]
≤ 0. (44)

Hence, giving the constant gain matrices KI0,KP0 as (18), (20) and the adaptive law of KPi(t),
KDi(t), i = 1, 2 as (19a) ∼ (19d), (20), we have shown that there exists the Lyapunov function
which derivative is (44). Therefore, all variables in V(·) is bounded, that is ξ(t), η(t), ψI(t),
ΨP1(t), ΨP2(t), ΨD1(t), ΨD2(t) ∈ L∞. Furthermore, ξ̇(t), η̇(t) are bounded from (30) and
ξ(t), η(t) ∈ L2 from (44). Accordingly, since ξ(t), η(t) ∈ L2 ∩ L∞, ξ̇(t), η̇(t) ∈ L∞, the origin
of the error system (ξ, η) = (0, 0), namely ex = 0 is asymptotically stable from Barbalat’s
lemma, and KPi(t), KDi(t), i = 1, 2 are bounded from ΨP1(t), ΨP2(t), ΨD1(t), ΨD2(t) ∈ L∞. �
Remark 1: In proposed method, it is important how to select H1, H2, hij > 0 which always
guarantee the asymptotic stability because they also affect the transient response. Especially,
taking large hij causes the large over shoot of inputs at first time range because of the
proportional gain matrix KP0 with hij. So it seems to be appropriate to adjust hij from small
values slowly such that better response is gotten although it is difficult to show concrete
guide because system’s parameters are unknown. But it is also one of the characteristic
in our proposed method that the designer can adjust transient response manually under
guaranteeing stability.

4.2 Case B
Corollary 1: Suppose Assumption 3 and Assumption 4(b). Give the constant gain matrices
KI0, KP0 as (18) and the adaptive tuning law of the adjustable gain matrices KPi(t), KDi(t), i =
1, 2 as (19a) ∼ (19d) where H1 = diag{h1j, · · · , h1m}, H2 = 0, h1j > 0, j = 1, · · · , m , then
(17) is asymptotically stable and the adjustable gain matrices are bounded. Here ΓP1, ΓP2,
ΓD1, ΓD2 ∈ Rm×m are arbitrary positive definite matrices and γI is arbitrary positive scalar.

Proof : After transforming the error system (17) into the normal form (see e.g. (Isidori, 1995))
based on Assumption 4(b), do the procedure like Theorem 1, it can be proved more easily than
Theorem 1. �

5. Simulations

Example 1
Consider the missile control system (Bar-Kana & Kaufman, 1985):

ẋ(t) =




3.23 12.5 −476 0 228 0
−12.5 −3.23 0 476.0 0 −228
0.39 0 −1.93 −10 −415 0

0 −0.39 10 −1.93 0 −415
0 0 0 0 0 0
0 0 0 0 0 0
0 0 22.4 0 −300 0
0 0 0 −22.4 0 300

0 0
0 0
0 0
0 0

75 0
0 −75

−150 0
0 −150




x(t) +




0 0
0 0
0 0
0 0
0 0
0 0
−1 0
0 −1




u(t) + di.

y(t) =
[−2.99 0 −1.19 1.5375

0 −2.99 1.5375 1.19
−27.64 0 0 0

0 27.64 0 0

]
x(t) + do.

Let the reference system be

ẋM(t) =




0 qM1 0 0
−qM1 0 0 0

0 0 0 qM2
0 0 −qM2 0


 xM(t), yM(t) =

[
0 qM3 0 0
0 0 qM4 0

]
xM(t).

which means yM(t) =
[

qM3 cos qM1t qM4 sin qM2t
]T at xM(0) =

[
0 1 0 1

]T.
Set disturbances di, do and parameters of the reference system qM as follows:

qM1 = 1, qM2 = 2.0, qM3 = 0.5, qM4 = 1, di =
[

0 0 0 0 0 0 1 2
]T, do =

[
0.5 − 1

]T.

Select arbitrary H1, H2 as H1 =
[

0.5 0
0 0.5

]
, H2 =

[
0.5 0
0 0.5

]
based on Remark 1. Set the ΓP1 =

ΓP2 = ΓD1 = ΓD2 = I2 and γI = 1. Put the initial values x(0) = 0, KPi(0) = KDi(0) =
0, i = 1, 2. It is observed from simulation results at Fig. 2 that KP1(t), KP2(t), KD1(t), KD2(t)
are on-line adjusted and the asymptotic output tracking is achieved.

Example 2
Consider the following unstable system:

ẋ(t) =




1 1 4 3
1 4 −3 1
−1 1 −5 −1
1 0 −1 −1


 x(t) +




1 0
0 1
0 0
0 0


 u(t) + di,

y(t) =
[

1 0 0 0
0 1 0 0

]
x(t) + do.

Set the reference system be

ẋM(t) =




0 qM1 0 0
−qM1 0 0 0

0 0 0 qM2
0 0 −qM2 0


 xM(t) +




0 0
0 1
−1 0
0 0


 uM,

yM(t) =
[

0 qM3 0 0
0 0 qM4 0

]
xM(t),

which generates yM(t) =
[

qM3 cos qM1t qM4 sin qM2t
]T at xM(0) =

[
0 1 0 1

]T when uM = 0.
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from (36), (34). Using Schur complement, we have the following necessary and sufficient
conditions such that (40) is negative definite:

− 2εI2m < 0, (41)

− In−2m + (Pξ Q1 + QT
2 Pη)T 1

2ε
(Pξ Q1 + QT

2 Pη) < 0 (42)

where

Pξ Q1 =
[

P
Pξ2

]
Q23 =

[
H1
H2

]
Q23 (43)

from (27), (35). Obviously, the first inequality (41) is hold. The second inequality (42) is also

achieved under large ε > 0 (because QT
2 Pη and Pξ Q1 are independent of ε). At this time, (40)

becomes negative definite matrix and (39) is

V̇(t) =
[

ξ(t)
η(t)

]T
[

−2εI2m Pξ Q1 + QT
2 Pη

(Pξ Q1 + QT
2 Pη)T −In−2m

] [
ξ(t)
η(t)

]
≤ 0. (44)

Hence, giving the constant gain matrices KI0,KP0 as (18), (20) and the adaptive law of KPi(t),
KDi(t), i = 1, 2 as (19a) ∼ (19d), (20), we have shown that there exists the Lyapunov function
which derivative is (44). Therefore, all variables in V(·) is bounded, that is ξ(t), η(t), ψI(t),
ΨP1(t), ΨP2(t), ΨD1(t), ΨD2(t) ∈ L∞. Furthermore, ξ̇(t), η̇(t) are bounded from (30) and
ξ(t), η(t) ∈ L2 from (44). Accordingly, since ξ(t), η(t) ∈ L2 ∩ L∞, ξ̇(t), η̇(t) ∈ L∞, the origin
of the error system (ξ, η) = (0, 0), namely ex = 0 is asymptotically stable from Barbalat’s
lemma, and KPi(t), KDi(t), i = 1, 2 are bounded from ΨP1(t), ΨP2(t), ΨD1(t), ΨD2(t) ∈ L∞. �
Remark 1: In proposed method, it is important how to select H1, H2, hij > 0 which always
guarantee the asymptotic stability because they also affect the transient response. Especially,
taking large hij causes the large over shoot of inputs at first time range because of the
proportional gain matrix KP0 with hij. So it seems to be appropriate to adjust hij from small
values slowly such that better response is gotten although it is difficult to show concrete
guide because system’s parameters are unknown. But it is also one of the characteristic
in our proposed method that the designer can adjust transient response manually under
guaranteeing stability.

4.2 Case B
Corollary 1: Suppose Assumption 3 and Assumption 4(b). Give the constant gain matrices
KI0, KP0 as (18) and the adaptive tuning law of the adjustable gain matrices KPi(t), KDi(t), i =
1, 2 as (19a) ∼ (19d) where H1 = diag{h1j, · · · , h1m}, H2 = 0, h1j > 0, j = 1, · · · , m , then
(17) is asymptotically stable and the adjustable gain matrices are bounded. Here ΓP1, ΓP2,
ΓD1, ΓD2 ∈ Rm×m are arbitrary positive definite matrices and γI is arbitrary positive scalar.

Proof : After transforming the error system (17) into the normal form (see e.g. (Isidori, 1995))
based on Assumption 4(b), do the procedure like Theorem 1, it can be proved more easily than
Theorem 1. �

5. Simulations

Example 1
Consider the missile control system (Bar-Kana & Kaufman, 1985):

ẋ(t) =




3.23 12.5 −476 0 228 0
−12.5 −3.23 0 476.0 0 −228
0.39 0 −1.93 −10 −415 0

0 −0.39 10 −1.93 0 −415
0 0 0 0 0 0
0 0 0 0 0 0
0 0 22.4 0 −300 0
0 0 0 −22.4 0 300

0 0
0 0
0 0
0 0
75 0
0 −75

−150 0
0 −150




x(t) +




0 0
0 0
0 0
0 0
0 0
0 0
−1 0
0 −1




u(t) + di.

y(t) =
[−2.99 0 −1.19 1.5375

0 −2.99 1.5375 1.19
−27.64 0 0 0

0 27.64 0 0

]
x(t) + do.

Let the reference system be

ẋM(t) =




0 qM1 0 0
−qM1 0 0 0

0 0 0 qM2
0 0 −qM2 0


 xM(t), yM(t) =

[
0 qM3 0 0
0 0 qM4 0

]
xM(t).

which means yM(t) =
[

qM3 cos qM1t qM4 sin qM2t
]T at xM(0) =

[
0 1 0 1

]T.
Set disturbances di, do and parameters of the reference system qM as follows:

qM1 = 1, qM2 = 2.0, qM3 = 0.5, qM4 = 1, di =
[

0 0 0 0 0 0 1 2
]T, do =

[
0.5 − 1

]T.

Select arbitrary H1, H2 as H1 =
[

0.5 0
0 0.5

]
, H2 =

[
0.5 0
0 0.5

]
based on Remark 1. Set the ΓP1 =

ΓP2 = ΓD1 = ΓD2 = I2 and γI = 1. Put the initial values x(0) = 0, KPi(0) = KDi(0) =
0, i = 1, 2. It is observed from simulation results at Fig. 2 that KP1(t), KP2(t), KD1(t), KD2(t)
are on-line adjusted and the asymptotic output tracking is achieved.

Example 2
Consider the following unstable system:

ẋ(t) =




1 1 4 3
1 4 −3 1
−1 1 −5 −1
1 0 −1 −1


 x(t) +




1 0
0 1
0 0
0 0


 u(t) + di,

y(t) =
[

1 0 0 0
0 1 0 0

]
x(t) + do.

Set the reference system be

ẋM(t) =




0 qM1 0 0
−qM1 0 0 0

0 0 0 qM2
0 0 −qM2 0


 xM(t) +




0 0
0 1
−1 0
0 0


 uM,

yM(t) =
[

0 qM3 0 0
0 0 qM4 0

]
xM(t),

which generates yM(t) =
[

qM3 cos qM1t qM4 sin qM2t
]T at xM(0) =

[
0 1 0 1

]T when uM = 0.
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(a) y1(t), yM1(t) (b) y2(t), yM2(t)

(c) KP1(t) (d) KD1(t)

(e) KP2(t) (f) KD2(t)

Fig. 2. Simulation Results of Example 1

(a) y1(t), yM1(t) (b) y2(t), yM2(t)

(c) KP1(t) (d) KD1(t)

(e) KP2(t) (f) KD2(t)

Fig. 3. Simulation Results of Example 2
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Disturbances di, do and parameters of the reference system qM are set as follows:

qM1 = 1.0, qM2 = 0.5, qM3 = 0.5, qM4 = 1, uM =
[

1 2
]T,

di =
[

1 − 2 0 0
]T, do =

[
0 1

]T

From Colloraly 1, select arbitrary H1, H2 as H1 =
[

1 0
0 1

]
, H2 =

[
0 0
0 0

]
.

Set the ΓP1 = ΓP2 = ΓD1 = ΓD2 = I2 and γI = 1. Put the initial values x(0) = 0, KPi(0) =
KDi(0) = 0, i = 1, 2. We can observe that KP1(t), KP2(t), KD1(t), KD2(t) are on-line adjusted
and the asymptotic output tracking is achieved from simulation results at Fig. 3 .

6. Conclusions

We have proposed the new adaptive PID control and its parameter tuning method for the
MIMO system. In our method, the asymptotic output tracking can be guaranteed even if
the MIMO system is unstable and has unknown system parameters and unknown constant
disturbances. The effectiveness of the method is confirmed by numerical simulations. Our
future task is extending the controlled system to the nonlinear one.
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A. (Proof)

(7), (8) are rewritten as
[

ẋ∗(t)
yM(t)

]
=

[
A B
C 0

] [
x∗(t)
u∗(t)

]
+

[
di
do

]
. (45)

Now we prove that the above equation is hold under Assumption 1 by substituting (9), (10).
First, we calculate the right side of (45). Since (9), (10) are expressed as

[
x∗(t)
u∗(t)

]
=

[
T11 T12
T21 T22

] [
xM(t)

uM

]
−

[
M11 M12
M21 M22

] [
di
do

]
, (46)

substitute (46) into the right side of (45) to get

The right side of (45) =
[

A B
C 0

] [
T11 T12
T21 T22

] [
xM(t)

uM

]
(47)

by using the relation
[

M11 M12
M21 M22

]
=

[
A B
C 0

]−1
(48)

from Assumption 1.

Then we calculate the left side of (45). Substituting ẋ∗(t) = T11 ẋM(t) which is the time
derivative of (9) and using the relation of (3), (4), we can get

The left side of (45) =
[

T11 AM T11BM

CM 0

] [
xM(t)

uM

]
. (49)
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Disturbances di, do and parameters of the reference system qM are set as follows:

qM1 = 1.0, qM2 = 0.5, qM3 = 0.5, qM4 = 1, uM =
[

1 2
]T,

di =
[

1 − 2 0 0
]T, do =

[
0 1

]T

From Colloraly 1, select arbitrary H1, H2 as H1 =
[

1 0
0 1

]
, H2 =

[
0 0
0 0

]
.

Set the ΓP1 = ΓP2 = ΓD1 = ΓD2 = I2 and γI = 1. Put the initial values x(0) = 0, KPi(0) =
KDi(0) = 0, i = 1, 2. We can observe that KP1(t), KP2(t), KD1(t), KD2(t) are on-line adjusted
and the asymptotic output tracking is achieved from simulation results at Fig. 3 .

6. Conclusions

We have proposed the new adaptive PID control and its parameter tuning method for the
MIMO system. In our method, the asymptotic output tracking can be guaranteed even if
the MIMO system is unstable and has unknown system parameters and unknown constant
disturbances. The effectiveness of the method is confirmed by numerical simulations. Our
future task is extending the controlled system to the nonlinear one.
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A. (Proof)

(7), (8) are rewritten as
[

ẋ∗(t)
yM(t)

]
=

[
A B
C 0

] [
x∗(t)
u∗(t)

]
+

[
di
do

]
. (45)

Now we prove that the above equation is hold under Assumption 1 by substituting (9), (10).
First, we calculate the right side of (45). Since (9), (10) are expressed as

[
x∗(t)
u∗(t)

]
=

[
T11 T12
T21 T22

] [
xM(t)

uM

]
−

[
M11 M12
M21 M22

] [
di
do

]
, (46)

substitute (46) into the right side of (45) to get

The right side of (45) =
[

A B
C 0

] [
T11 T12
T21 T22

] [
xM(t)

uM

]
(47)

by using the relation
[

M11 M12
M21 M22

]
=

[
A B
C 0

]−1
(48)

from Assumption 1.

Then we calculate the left side of (45). Substituting ẋ∗(t) = T11 ẋM(t) which is the time
derivative of (9) and using the relation of (3), (4), we can get

The left side of (45) =
[

T11 AM T11BM

CM 0

] [
xM(t)

uM

]
. (49)
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Therefore from (47), (49), the equation obtained from substituting (9), (10) into (45) is
[

T11 AM T11BM

CM 0

] [
xM(t)

uM

]
=

[
A B
C 0

] [
T11 T12
T21 T22

] [
xM(t)

uM

]
. (50)

This equation is always hold for all xM(t) and uM if
[

T11 AM T11BM

CM 0

]
=

[
A B
C 0

] [
T11 T12
T21 T22

]

is hold. This is the matrix linear equation with variables T11.

Now we will show that this matrix equation is solvable. Multiplying both left side of above
equation by the nonsingular matrix (48), we have

[
M11 M12
M21 M22

] [
T11 AM T11BM

CM 0

]
=

[
T11 T12
T21 T22

]
.

Obviously, T11 is the solution to the linear matrix equation

T11 = M11T11 AM + M12CM, (51)

and there exists unique solution T11 under Assumption 1 (see (Kodama & Suda, 1995)).
Therefore rests of Tij exist uniquely as

T12 = M11T11BM, T22 = M21T11BM,
T21 = M21T11 AM + M22CM.

We have proved that (9), (10) satisfy the relation (7), (8) for all do, di, uM under Assumption 1.
�

B. (Proof)

Using (4), we can calculate (15) as

(T21 − S1CM − S2CM AM)xM(t) = 0.

This equation is always hold for all xM(t) if

T21 − S1CM − S2CM AM = 0

is satisfied, that is if

[S1 S2]
[

CM

CM AM

]
= T21

is solvable on S1, S2. In fact this equation is solvable from Assumption 2 (see (Kodama & Suda,
1995)), so there exist S1, S2 satisfying (15). �
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1. Introduction      

Fluid power is a term which was created to include the generation, control, and application 
of smooth, effective power of pumped or compressed fluids when this power is used 
to provide force and motion to mechanisms. Fluid power includes hydraulic, which 
involves liquids, and pneumatic, which involves gases. Hydraulic and pneumatic power 
offer many advantages over electric motors, especially for systems that require high speed 
linear travel, moving or holding heavy loads, or very smooth position or pressure control. 
Compared to other types, hydraulic and pneumatic actuators are smaller and quieter. They 
also produce less heat and electromagnetic interference (EMI) at the machine than do 
electric actuators, and in many cases, in particular with high performance hydraulic or 
pneumatic system, they offer the ability to build machines at considerable savings compared 
to machines employing purely electrical or mechanical motion (Chuang & Shiu, 2004; Knohl 
& Unbehauen, 2000). 
Hydraulic drives, thanks to their high power intensity, are low in weight and require a 
minimum of mounting space. They facilitate fast and accurate control of very high energies 
and forces. The hydraulic actuator (cylinder) represents a cost-effective and simply 
constructed linear drive. The combination of these advantages opens up a wide range of 
applications. The increase in automation makes it ever more necessary for pressure, flow 
rate, and flow direction in hydraulic systems to be controlled by means of an electrical 
control system. The obvious choice for this is hydraulic proportional valves (or servo valves) 
as an interface between controller and hydraulic system (Knohl & Unbehauen, 2000). 
The hydraulic actuator, usually a cylinder, provides the motion of the load attached to the 
hydraulic system. A control valve meters the fluid into the actuator as a spool traverses 
within the valve body. The control valve is either a servo valve or a proportional valve. In 
hydraulic control applications, proportional valves offer various advantages over servo 
valves (Eryilmaz &. Wilson, 2006). Proportional valves are much less expensive. They are 
more suitable for industrial environments because they are less prone to malfunction due to 
fluid contamination. In addition, since proportional valves do not contain sensitive, 
precision components, they are easier to handle and service. However, these advantages are 
offset by their nonlinear response characteristics. Since proportional valves have less precise 
manufacturing tolerances, they suffer from performance degradation. The larger tolerances 
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on spool geometry result in response nonlinearities, especially in the vicinity of neutral 
spool position. Proportional valves lack the smooth flow properties of “critical centre” 
valves, a condition closely approximated by servo valves at the expense of high machining 
cost. Small changes in spool geometry (in terms of lapping) may have large effects on the 
hydraulic system dynamics. Especially, a closed-centre spool (overlapped) of proportional 
valve, which usually provides the motion of the actuator in a proportional hydraulic system 
(PHS), may result in the steady state error because of its dead zone characteristics in flow 
gain [(Eryilmaz &. Wilson, 2006). Figure 1 illustrates the characteristics of proportional 
valve.  
 
 
 
 
 
 
 
 

 
 

Fig. 1. Characteristics of a closed-centre spool (overlapped) of proportional valve. 

Valve lap, or valve overlap, refers to the amount of spool travel from the center position 
required to start opening between the powered input port and the work (output) port or the 
tank port. A zero lapped valve is one in which any tiny, differentially small amount of spool 
shift, either way, starts the opening. However, there is no contact between the OD of the 
spool and ID of the bore. And even zero lapped valves have some slight amount of overlap. 
Nonetheless, the zero lapped term persists. 
The  characteristics of the proportional valve with dead zone D (from figure 1) is described 
by the function 
 
 
  
 
  
where d, m  0. The parameter 2d specifies the width of  the deadzone, while m represents 
the slope of the response outside the dead zone. 
The proportional hydraulic system shown in figure 2 is comprised of a double acting 
cylinder, a 4/3 way proportional valve, and load. The supply pressure P is assumed to be 
constant, and the control objective is the positioning of the pay load. The proportional valve 
used in this plant is a low cost, which can be characterized by a relative large and symmetric 
dead zone. A complete mathematic model of such an electro-hydraulic system, for example, 
has been given by (Knohl & Unbehauen, 2000). However, these equations are highly 
complex and difficult to utilize in control design. A more practical model may be obtained 
through the linearization of the non-linear function. 
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Fig. 2. Schematic diagram of the PHS.  
 
A mathematical model of the plant can be derived from the flow equation of valve, the 
continuity equation and balance of forces at the piston. The valve flow rate equation is 
highly non-linear and dependent on the valve displacement from neutral, which is 
proportional to input voltage u and the pressure drop across the load PL. A Taylor series 
linearization leads to 
 
 
where, Kq = flow gain coefficient and Kc = flow pressure coefficient 
 
The movement of the piston, the change of the oil volume due to compressibility and the 
leakage oil flow determine the total oil flow QL as 
 
 
 
where, Vt is the total compressed oil volume, AP the surface area of the piston, y the velocity 
of the piston, e the effective bulk modulus (compressibility) and f(PL) the non linear 
influence of the internal and external oil leakage. Here, it is assumed that the rod and the 
head side areas of the piston are equal. If the leakage function is approximated by a linear 
relation, equation (3) can be rewritten as 
 
 
 
where Ctp is the total leakage coefficient of the piston. The balance of forces at the sliding 
carriage leads to 
 
 
where FG is the force generated by the piston, Mt the total mass of the piston and the load, 
and Bp the damping coefficient of the piston and the load. Neglect the non linear effects of 
dry and adhesive friction, combining equations (2), (4), and (5) and applying the Laplace 
transformation to the resulting third order differential equation results in the transfer 
function 

)P(fPβ4
VyAQ LL

e
t

PL   (3) 

yyByMPAF ptLpG   (5) 

LcqL PKuKQ  (2) 

yAPCQ(V
β4P pLtpL

t
e

L   (4) 

Double Acting 
Cylinder 

Proportional 
Valve 

Power Unit 

Load 



Pre-compensation for a Hybrid Fuzzy PID Control of a Proportional Hydraulic System 203

 

on spool geometry result in response nonlinearities, especially in the vicinity of neutral 
spool position. Proportional valves lack the smooth flow properties of “critical centre” 
valves, a condition closely approximated by servo valves at the expense of high machining 
cost. Small changes in spool geometry (in terms of lapping) may have large effects on the 
hydraulic system dynamics. Especially, a closed-centre spool (overlapped) of proportional 
valve, which usually provides the motion of the actuator in a proportional hydraulic system 
(PHS), may result in the steady state error because of its dead zone characteristics in flow 
gain [(Eryilmaz &. Wilson, 2006). Figure 1 illustrates the characteristics of proportional 
valve.  
 
 
 
 
 
 
 
 

 
 

Fig. 1. Characteristics of a closed-centre spool (overlapped) of proportional valve. 
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Fig. 2. Schematic diagram of the PHS.  
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where the abbreviations 
 
 
 
 
 
 
 
 
 
 
The parameters of the linear model of the hydraulic system given by equation (7), which 
depend on the constants derived by linearization, are all of varying nature. Variation of the 
load mass and the damping coefficient can also be interpreted as parameter changes of the 
linear model. To take the dead zone of the actuating valve into account, a static non linear 
dead zone that is portrayed in figure 1. 

 
2. Preliminary of Controller Designs 

A closed loop system, whither the reference signal is set manually or automatically, can 
perform control of cylinder position, speed and force. Figure 3 represents typical of an 
“Automatic Closed Loop” control system. As shown in the figure, the position of a 
hydraulic cylinder is controlled by a proportional valve. The proportional valve solenoid is 
receiving driving electrical current from an amplifier card, which is generating the driving 
current based on a control signal supplied by a controller. The controller responsibility is to 
continuously compare the reference signal and the actual cylinder position fed back by the 
position sensor, after consequently generate the adequate control signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Conceptual controls of the PHS.  
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2.1 PID controller 
Classical PID controllers are very popular in industries because they can improve both the 
transient response and steady state error of the system at the same time (Kim et al., 1994). 
Although great efforts have been devoted to develop PID controller,  PID controllers are not 
robust to the parameter variation to the plants being controlled. Figure 4 shows the use of 
PID controller controls the PHS. 
 
 
 
 
 
 
 
 
 
Fig. 4. Block diagram of a PID controller. 
 
The PID control method has been widely used in industry during last several decades 
because of its simplicity. The implementation of PID control logic, as shown in equation (8), 
requires finding suitable values for the gain parameters KP, KI, and KD. To tune these 
parameters, the model is linearized around different equilibrium points, 

 
 

 
where e(k) is the error  signal. However, the PID method is not suitable for controlling a 
system with a large amount of lag, parameter variations, and uncertainty in the model. 
Thus, PID control logic cannot accurately control position in a hydraulic system. 

 
2.2 Fuzzy logic controller 
Fuzzy logic control (FLC) has found many applications in a variety of fields since Prof. 
Zadeh introduced fuzzy set theory in 1965 (Zadah, 1965). Among the most successful 
applications of this theory has been the area of FLC initiated by the work of (Mamdani & 
Assilian, 1975). FLC has the advantage that it does not require an accurate mathematical 
model of the process. It uses a set of artificial rules in a decision-making table and calculates 
an output based on the table. Figure 5 shows specific components characteristic of a FLC. 
Input variables go through the fuzzification interface and are converted to linguistic 
variables. Then, a database and rule base holding the decision-making logic are used to infer 
the fuzzy output. Finally, a defuzzification method converts the fuzzy output into a signal to 
be sent out. 
Fuzzy control is robust to the system with variation of system dynamics and the system of 
model free or the system which precise information is not required. It has been successfully 
used in the complex ill-defined process with better performance than that of a PID 
controller. Another important advance of fuzzy controller is a short rise time and   small 
overshoot (Li et al., 2006; Rahbari & Silva, 2000). 
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FLC has the advantage that it does not require an accurate mathematical model of the 
process. It uses a set of artificial rules in a decision-making table and calculates an output 
based on the table (Li et al., 2006; Rahbari & Silva, 2000). 
 
 
 
 
 
 
 
 
 
Fig. 5. Structure of FLC.  
 
Figure 6 shows a fuzzy control of the  PHS. Input variables go through the fuzzification 
interface and are converted to linguistic variables. Then, a database and rule base holding 
the decision-making logic are used to infer the fuzzy output. Finally, a defuzzification 
method converts the fuzzy output into a signal to be sent out. 
 
 
 
 
 
 
Fig. 6. Block digram of  a FLC. 
 
When used in a control system, FLC is robust since it provides a fast rise time and a small 
amount of overshoot. The control parameters and set of terms that describe each linguistic 
variable must be determined when designing a FLC. Obviously, the position in the electro-
hydraulic is the parameter to be controlled in the system. A two-dimension structure will be 
used to produce fast calculations. The two input linguistic variables are the error of the 
position (e) and the error change of the position (e). The output is the voltage signal to 
control the amplifier and proportional valve. Thus, the FLC has two antecedences and one 
consequence. 
The controller structure of a FLC, which the fuzzy states of the inputs and the output, all are 
chosen to be equal in number and use the same linguistic descriptors:  NB = negative big, N 
= negative, Z = zero, P = positive, and PB = positive big. The fuzzy sets and its memberships 
function is shown in figure 7. A set of fuzzy rules is shown in the Table 1. 
Since the dynamics of each cylinder is not symmetric, due to the difference in the effective 
area of the rod side and the head side of the piston. The designed fuzzy set of the fuzzy 
controller accounts for this asymmetry as well (Rahbari & Silva, 2000; Pratumsuwan & 
Thongchai, 2009). 
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Fig. 7. Fuzzy sets of a FLC. 

           e 
    e NB N Z P PB 
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Table 1. Fuzzy Rules of a FLC. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Input-output mapping of a FLC. 
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While conventional PID controllers are sensitive to variations in the system parameters, 
fuzzy controllers do not need precise information about the system variables in order to be 
effective. However, PID controllers are better able to control and minimize the steady state 
error of the system. Hence, a hybrid system, as shown in figure 9, was developed to utilize 
the advantages of both PID controller and fuzzy controller (Parnichkul & Ngaecharoenkul, 
2000; Erenoglu et al., 2006; Pratumsuwan et al., 2009;). 
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Fig. 9. Block diagram of a hybrid fuzzy PID controller. 
 
Figure 9 shows a switch between the fuzzy controller and the PID controller, where the 
position of the switch depends on the error between the actual value and set point value. If 
the error in position reaches a value higher than that of the threshold e0, the hybrid system 
applies the fuzzy controller, which has a fast rise time and a small amount of overshoot, to 
the system in order to correct the position with respect to the set point. When the position is 
below the threshold e0 or close to the set point, the hybrid system shifts control to the PID, 
which has better accuracy near the set position (Parnichkul & Ngaecharoenkul, 2000; 
Erenoglu et al., 2006; Pratumsuwan et al., 2009;). 

 
2.4 Fuzzy pre-compensated PID controller  
Since classical PID controllers are widely used in industrial applications, they exhibit poor 
performance when applied to the PHS containing unknown nonlinearities, such as dead 
zones, saturation, and hysteresis. In this section, we will describe a fuzzy logic-based pre-
compensation design for PID controllers (Kim et al., 1994) 
 
 
 
 
 
 
 
 
Fig. 10. Block diagram of fuzzy pre-compensated PID controller. 
 
Figure 10 illustrates the basic control structure. The scheme consists of a classical PID 
control structure together with fuzzy pre-compensator. The fuzzy pre-compensator uses the 
command input ym and the PHS output yp to generate a pre-compensated command signal 
ym , described by the following equations (Kim et al., 1994). 
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In the above, e(k) is the position error between the command input ym(k) and the PHS output 
yp(k) and e(k) is the change in position error. The term F[e(k), e(k)] is a nonlinear mapping 
of e(k) and e(k) based on fuzzy logic. The term (k) = [e(k), e(k)] represents a compensation 
or correction term, so that the compensated command signal ym(k) is simply the sum of the 
external command signal ym(k) and (k). The correction term is based on the error e(k) and 
the change of error e(k). The compensated command signal ym(k) is applied to a classical 
PID scheme, as shown in figure 10.  
The equations governing the PID controller are as follows 
 

 
 
 
The quantity e(k) is the pre-compensated position error between the pre-compensated 
command input ym(k) and PHS output yp(k), and e(k) is the change in the pre-compensated 
position error. The control u(k) is applied to the input of the PHS. The purpose of the fuzzy 
pre-compensator is to modify the command signal to compensate for the overshoots and 
undershoots present in the output response when the PHS has unknown nonlinearities.  
For PID tuning in this paper, we set PID gains with Ziegler-Nichols and trial-error method. 
The purpose of the fuzzy pre-compensator is to modify the command signal to compensate 
for the overshoots and undershoots present in the output response when the PHS has 
unknown nonlinearities. An expert’s experience and knowledge method is used to build a 
rule base and membership functions (Rahbari & Silva, 2000). 
In our description, we think of e(k) and e(k) as inputs, and (k) as the output. The fuzzy 
states of the inputs and the output, all are chosen to be equal in number and use the same 
linguistic descriptors : NB = negative big, NM = negative medium, NS = negative small, ZO 
= zero, PS = positive small, PM = positive medium, and PB = positive big. (The fuzzy sets is 
shown in figure 11.) The decision-making output can be obtained using a max-min fuzzy 
inference where the crisp output is calculated by the center of gravity (COG) method. 
Using these fuzzy sets, the fuzzy rules can be designed. The designed rules are presented in 
table 2. To explain how these rules were obtained, consider for example the rules in table 2. 
Suppose that the command signal is a constant ym, the error e(k) is zero, and the change of 
error e(k) is a negative number. This mean that the output yp(k) = ym–e(k) is increasing, i.e., 
heading in the direction of an overshoot. To compensate for this, we decrease the command 
signal. This corresponds to applying a correction term (k) that is negative. Hence, we get 
the rule “if error is zero and change of error is negative medium, then output a negative big 
correction term”.  
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In the above, e(k) is the position error between the command input ym(k) and the PHS output 
yp(k) and e(k) is the change in position error. The term F[e(k), e(k)] is a nonlinear mapping 
of e(k) and e(k) based on fuzzy logic. The term (k) = [e(k), e(k)] represents a compensation 
or correction term, so that the compensated command signal ym(k) is simply the sum of the 
external command signal ym(k) and (k). The correction term is based on the error e(k) and 
the change of error e(k). The compensated command signal ym(k) is applied to a classical 
PID scheme, as shown in figure 10.  
The equations governing the PID controller are as follows 
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Fig. 11. The fuzzy sets of a pre-compensator. 

 
          
     NB NM NS ZO PS PM PB 

NB  NB NB NB NM   
NM    NM NM   
NS    NS PS  PM 
ZO NB NB NM ZO PS PM PM 
PS NB NB NM PS PM PB PB 
PM   NM PM  PB  
PB   PM PB    

Table 2. Fuzzy rules of a pre-compensator. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Input-output mapping of a pre-compensator. 

 
2.5 Two-layered fuzzy logic controller 
In this section we describe a fuzzy pre-compensated fuzzy controller or a two-layered fuzzy 
logic controller (Kim et al., 1994; Pratumsuwan & Thongchai, 2009). The aim is to eliminate 
the steady state error and improve the performance of the output response for control 
systems with dead zones. 
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Fig. 13. Block diagram of a two-layered fuzzy logic controller. 
 
We now proceed to describe the proposed controller. First, define the variables ym(k) and 
e(k) as follows : 
 
 
 
where (k) is a compensating term which is generated using a fuzzy logic scheme, which we 
will describe below. The proposed control scheme is shown in figure 13. The controller 
consists of two “layers” : a fuzzy pre-compensator, and a usual fuzzy PD controller. Hence 
we refer to the scheme as a two-layered fuzzy logic controller. The error e(k), and change of 
error e(k), are inputs to the pre-compensator. The output of the pre-compensator is (k). 
The dynamics of overall system is then described by the following equations: 
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lower the threshold e0 or close to the set point, the control system shift switch to the PID 
controller, which has better accuracy near the set point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Block diagram of pre-compensation of a hybrid Fuzzy PID controller. 

 
4. Experimental Description 

The specifications of a PHS are depicted in figures. 15, 16 and table 3  respectively. Figure 15  
shows a diagram of the tested system. The position control of a PHS procedure is described 
as follows: upon the intended initial and ending position of the piston (stroke) are given, the 
computer receives the feedback signal through  DAQ card (A/D) from linear potentiometer, 
realizes various control algorithm and transmits a control signal through DAQ card (D/A) 
and amplifier card to proportional valve. The spool displacement of proportional valve is 
proportional to the input signal. 
 

 

 

 

 
Fig. 15. PC-Based position control of a PHS. 
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Fig. 16. The experimental setup. 
 

Elements Descriptions 
Cylinder piston diameter 16 mm, piston rod diameter 10 mm, 

stroke 200 mm 
Proportional valve 
(4/3 closed-center 
spool, overlapped) 

directly actuated spool valve, grade of filtration 10 m, 
nominal flow rate 1.5l/min       (at pN = 5 bar/control 
edge), leakage oil flow < 0.01 l/min (at 60 bar), nominal 
current 680 mA, resolution < 1 mA, setting time of signal 
jump 0…100% = 60 ms, repetition accuracy < 1% 

Pump 
(supply pressure) 

60 bar 

Linear potentiometer output voltage 0…10V, measuring stroke 200 mm, 
linearity tolerance 0.5% 

Amplifier card set point values  10 VDC, solenoid outputs (PWM signal) 
24 V, dither frequency 200 Hz, max current  800 mA, 

DAQ Card 
(NI 6221 PCI) 

analog input resolutions 16 bits (input range 10V), 
output resolutions 16 bits (output range 10V), 833 kS/s (6 
s full-scale settling) 

Operating systems & 
Program 

Windows XP, and LabVIEW 8.6 

Table 3.  Specifications of a PHS. 
 
5. The Experimental Results 

The control algorithms described in section 2.3, 2.4, and 2.5 were hybridized and applied to 
the PHS using by LabVIEW, Nation Instruments as the development platform and shown in 
figure 17.  
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Fig. 17. The control algorithm are used and developed by LabVIEW program. 
 
In our experiments we compare the performance of conventional hybrid fuzzy PID  
controller to the proposed pre-compensation of a hybrid fuzzy PID controller. A testing of 
response of the system was performed using a square wave input. The parameter values of 
the pre-compensation of a hybrid fuzzy PID controller were experimentally determined to 
be: K1 = 0.93, KP = 5.6, e0 = 0.92. Figures. 18 and 19 shows the output response of a 
conventional hybrid fuzzy PID system compared to the  pre-compensation of a hybrid fuzzy 
PID system. It is found that the pre-compensation of a hybrid fuzzy PID controller gives the 
most satisfying results of rise time, overshoot, and steady state error.  
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 18. Output response of conventional (hybrid fuzzy PID) controller. 
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Fig. 19. Output response of a proposed controller. 

 
6. Conclusions 

The objective of this study, we proposed the pre-compensation of a hybrid fuzzy PID 
controller for a PHS with deadzones. The controller consists of a fuzzy pre-compensator 
followed by fuzzy controller and PID controller. The proposed scheme was tested 
experimentally and the results have superior transient and steady state performance, 
compared to a conventional hybrid fuzzy PID controller. An advantage of the present 
approach is that an existing hybrid fuzzy PID controller can be easily modified into the 
control structure by adding a fuzzy pre-compensator, without having to retune the internal 
variables of the existing hybrid fuzzy PID controller.  
In this study, an experimental research, so we do not address the problem of analyzing the 
stability of the control scheme in this paper. This difficult but important problem is a topic 
of ongoing research. 
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Abstract 

This chapter presents the design, development and implementation of a novel proposed 
online-tuning Gain Scheduling Dynamic Neural PID (DNN-PID) Controller using neural 
network suitable for real-time manipulator control applications. The unique feature of the 
novel DNN-PID controller is that it has highly simple and dynamic self-organizing 
structure, fast online-tuning speed, good generalization and flexibility in online-updating. 
The proposed adaptive algorithm focuses on fast and efficiently optimizing Gain Scheduling 
and PID weighting parameters of Neural MLPNN model used in DNN-PID controller. This 
approach is employed to implement the DNN-PID controller with a view of controlling the 
joint angle position of the highly nonlinear pneumatic artificial muscle (PAM) manipulator 
in real-time through Real-Time Windows Target run in MATLAB SIMULINK® 
environment. The performance of this novel proposed controller was found to be 
outperforming in comparison with conventional PID controller. These results can be applied 
to control other highly nonlinear SISO and MIMO systems. 
 
Keywords: highly nonlinear PAM manipulator, proposed online tuning Gain Scheduling 
Dynamic Nonlinear PID controller (DNN-PID), real-time joint angle position control, fast 
online tuning back propagation (BP) algorithm, pneumatic artificial muscle (PAM) actuator. 
 
1. Introduction 

The compliant manipulator was used to replace monotonous and dangerous tasks, which 
has enhanced lots of researchers to develop more and more intelligent controllers for 
human-friendly industrial manipulators. Due to uncertainties, it is difficult to obtain a 
precise mathematical model for robot manipulators. Hence conventional control 
methodologies find it difficult or impossible to handle un-modeled dynamics of a robot 
manipulator. Furthermore, most of conventional control methods, for example PID 
controllers, are based on mathematical and statistical procedures for modeling the system 
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and estimation of optimal controller parameters. In practice, such manipulator is often 
highly non-linear and a mathematical model may be difficult to derive. Thus, as to 
accommodate system uncertainties and variations, learning methods and adaptive 
intelligent techniques must be incorporated. 
Due to their highly nonlinear nature and time-varying parameters, PAM robot arms present 
a challenging nonlinear model problem. Approaches to PAM control have included PID 
control, adaptive control (Lilly, 2003), nonlinear optimal predictive control (Reynolds et al., 
2003), variable structure control (Repperger et al., 1998; Medrano-Cerda et al.,1995), gain 
scheduling (Repperger et al.,1999), and various soft computing approaches including neural 
network Kohonen training algorithm control (Hesselroth et al.,1994), neural network + 
nonlinear PID controller (Ahn and Thanh, 2005), and neuro-fuzzy/genetic control (Chan et 
al., 2003; Lilly et al., 2003). Balasubramanian et al., (2003a) applied the fuzzy model to 
identify the dynamic characteristics of PAM and later applied the nonlinear fuzzy model to 
model and to control of the PAM system. Lilly (2003) presented a direct continuous-time 
adaptive control technique and applied it to control joint angle in a single-joint arm. 
Tsagarakis et al. (2000) developed an improved model for PAM. Hesselroth et al. (1994) 
presented a neural network that controlled a five-link robot using back propagation to learn 
the correct control over a period of time. Repperger et al. (1999) applied a gain scheduling 
model-based controller to a single vertically hanging PAM. Chan et al., (2003) and Lilly et al., 
(2003) introduced a fuzzy P+ID controller and an evolutionary fuzzy controller, 
respectively, for the PAM system. The novel feature is a new method of identifying fuzzy 
models from experimental data using evolutionary techniques. Unfortunately, these fuzzy 
models are clumsy and have only been tested in simulation studies. (Ahn and Anh, 2006) 
applied a modified genetic algorithm (MGA) for optimizing the parameters of a linear ARX 
model of the PAM manipulator which can be modified online with an adaptive self-tuning 
control algorithm, and then (Ahn and Anh, 2007b) successfully applied recurrent neural 
networks (RNN) for optimizing the parameters of neural NARX model of the PAM robot 
arm. Recently, we (Ahn and Anh, 2009) successfully applied the modified genetic algorithm 
(MGA) for optimizing the parameters of the NARX fuzzy model of the PAM robot arm.  
Although these control systems were partially successful in obtaining smooth actuator motion 
in response to input signals, the manipulator must be controlled slowly in order to get stable 
and accurate position control. Furthermore the external inertia load was also assumed to be 
constant or slowly varying. It is because PAM manipulators are multivariable non-linear 
coupled systems and frequently subjected to structured and/or unstructured uncertainties 
even in a well-structured setting for industrial use or human-friendly applications as well.  
To overcome these drawbacks, the proposed online tuning DNN-PID algorithm in this chapter 
is a newly developed algorithm that has the following good features such as highly simple and 
dynamic self-organizing structure, fast learning speed, good generalization and flexibility in 
learning. The proposed online tuning DNN-PID controller is employed to compensate for 
environmental variations such as payload mass and time-varying parameters during the 
operation process. By virtue of on-line training by back propagation (BP) learning algorithm 
and then auto-tuned gain scheduling K and PID weighting values Kp, Ki and Kd, it learns well 
the nonlinear robot arm dynamics and simultaneously makes control decisions to both of 
joints of the robot arm. In effect, it offers an exciting on-line estimation scheme.  
This chapter composes of the section 1 for introducing related works in PAM robot arm 
control. The section 2 presents procedure of design an online tuning gain scheduling DNN-

PID controller for the 2-axes PAM robot arm. The section 3 presents and analyses 
experiment studies and results. Finally, the conclusion belongs to the section 4. 

 
2. Control System 

2.1. Experimental apparatus 
The PAM manipulator used in this paper is a two-axis, closed-loop activated with 2 
antagonistic PAM pairs which are pneumatic driven controlled through 2 proportional 
valves. Each of the 2-axes provides a different motion and contributes to 1 degree of 
freedom of the PAM manipulator (Fig. 1). In this paper, the 1st joint of the PAM manipulator 
is fixed and proposed online tuning Gain Scheduling neural DNN-PID control algorithm is 
applied to control the joint angle position of the 2nd joint of the PAM manipulator. A general 
configuration of the investigated 2-axes PAM manipulator shown through the schematic 
diagram of the 2-axes PAM robot arm and the experimental apparatus presented in Fig.1 
and Fig.2, respectively. 
 

 
Fig. 1. Working principle of the 2-axes PAM robot arm. 
 
The experiment system is illustrated in Fig.2. The air pressure proportional valve 
manufactured by FESTO Corporation is used. The angle encoder sensor is used to measure 
the output angle of the joint. The entire system is a closed loop system through computer. 
First, initial control voltage value u0(t)=5[V] is sent to proportional valve as to inflate the 
artificial muscles with air pressure at P0 (initial pressure) to render the joint initial status. 
Second, by changing the control output u(t) from the D/A converter, we could set the air 
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pressures of the two artificial muscles at (P 0 + P) and (P 0 - P), respectively. As a result, the 
joint is forced to rotate for a certain angle. Then we can measure the joint angle rotation 
through the rotary encoder and the counter board and send it back to PC to have a closed 
loop control system. 
 

 
Fig. 2. Experimental Set-up Configuration of the PAM robot arm. 
 

 
Fig. 3. Schematic diagram of the experimental apparatus. 
 
 

The experimental apparatus is shown in Fig.3. The hardware includes an IBM compatible 
PC (Pentium 1.7 GHz) which sends the control voltage signal u(t) to control the proportional 
valve (FESTO, MPYE-5-1/8HF-710B), through a D/A board (ADVANTECH, PCI 1720 card) 
which change digital signal from PC to analog voltage u(t). The rotating torque is generated 
by the pneumatic pressure difference supplied from air-compressor between the 
antagonistic artificial muscles. Consequently, the 2nd joint of PAM manipulator will be 
rotated. The joint angle,  [deg], is detected by a rotary encoder (METRONIX, H40-8-
3600ZO) with a resolution of 0.1[deg] and fed back to the computer through an 32-bit 
counter board (COMPUTING MEASUREMENT, PCI QUAD-4 card) which changes digital 
pulse signals to joint angle value y(t). The external inertia load could be changed from 
0.5[kg] to 2[kg], which is a 400 (%) change with respect to the minimum inertia load 
condition. The experiments are conducted under the pressure of 4[bar] and all control 
software is coded in MATLAB-SIMULINK with C-mex S-function.  
Table 1 presents the configuration of the hardware set-up installed from Fig.2 and Fig.3 as to 
control of the 2nd joint of the PAM manipulator using the novel proposed online tuning Gain 
Scheduling DNN-PID control algorithm. 
 

 
Table 1. Lists of the experimental hardware set-up. 

 
2.2. Controller design 
The structure of the newly proposed online tuning Gain Scheduling DNN-PID control 
algorithm using neural network is shown in Fig. 4. This control algorithm is a new one and 
has the characteristics such as simple structure and little computation time, compared with 
the previous neural network controller using auto-tuning method (Ahn K.K., Thanh T.D.C., 
2005). This system with the set point filter and controller using neural network can solve the 
problems, which were mentioned in the introduction and is also useful for the PAM 
manipulator with nonlinearity properties. 
 

 
Fig. 4. Block diagram of proposed online tuning gain scheduling DNN-PID position control system. 
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The block diagram of proposed online tuning Gain Scheduling DNN-PID control based on 
Multi-Layer Feed-Forward Neural Network (MLFNN) composed of three layers is shown in 
Figure 5. 
  

 
Fig. 5. Structure of MLFNN network system used in proposed online tuning DNN-PID 
controller. 
 
The structure of the newly proposed online tuning Gain Scheduling DNN-PID control 
algorithm using Multi-Layer Feed-forward Neural Network (MLFNN) is shown in Fig.5. 
This control algorithm is a new one and has the characteristics such as simple structure, little 
computation time and more robust control, compared with the previous neural network 
controller using auto-tuning method (Ahn K.K., Thanh T.D.C., 2005). 
From Figures 4 and 5, a control input u applied to the 2nd  joints of the 2-axes PAM 
manipulator can be obtained from the following equation. 
 
 u = K f(x) + Bh  (1) 
 
with x is input of Hyperbolic Tangent function f(.) which is presented in Equation (2), K and 
Bh are the bias weighting values of input layer and hidden layer respectively. The 
Hyperbolic Tangent function f(.) has a nonlinear relationship as explained in the following 
equation. 
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The block diagram of proposed online tuning Gain Scheduling DNN-PID control based on 
Multi-Layer Feed-Forward Neural Network (MLFNN) composed of three layers is shown in 
Figure 5. In this figure, K, Kp, Ki and Kd, are scheduling, proportional, integral and derivative 
gain while ep, ei and ed are system error between desired set-point output and output of joint 
of the PAM manipulator, integral of the system error and the difference of the system error, 
respectively. 
MLFNN network is trained online by the fast learning back propagation (FLBP) algorithm 
as to minimize the system error between desired set-point output and output of joint of the 
PAM manipulator. 
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T  is the sampling time, z is the operator of Z-Transform, k is the discrete sequence, yREF(k) 
and y(k) are the desired set-point output and output of joint of the PAM manipulator. 
Furthermore, Bi, Kp, Ki and Kd are weighting values of Input layer and Bh and K are weighting 
values of Hidden layer. These weighting values will be tuned online by fast learning back 
propagation (FLBP) algorithm. 
As to online tuning the gain scheduling K and PID parameters Kp, Ki and Kd, the gradient 
descent method used in FLBP learning algorithm using the following equations were 
applied. 
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and the Bias weighting values Bi(k) and Bh(k) are updated as follows: 
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where η, ηp, ηi, ηd, ηBi and ηBh are learning rate values determining the convergence speed of 
updated weighting values; E(k) is the error defined by the gradient descent method as 
follows 
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where η, ηp, ηi, ηd, ηBi and ηBh are learning rate values determining the convergence speed of 
updated weighting values; E(k) is the error defined by the gradient descent method as 
follows 
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Apply the chain rule with equation 5 and 6, it leads to 
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From equations 1, 3 and 6, the following equations can be derived 
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From equations 8, 9 and 10, the following resulting equations can be derived 
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From equation 5 and 6, the final equations for online tuning gain scheduling K and PID 
parameters Kp, Ki and Kd are expressed as follows: 
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From equations 1, 3 and 6, the following equations can be derived 
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and the Bias weighting values Bi(k) and Bh(k) are updated as follows: 
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3. Experimental Results 

The performance of proposed online tuning gain scheduling DNN-PID control scheme is 
verified on joint angle position control of the 2nd  joint of the 2-axes PAM robot arm. Fig.3 
and Fig.4 describes the working diagram of this control scheme.  
Fig.6 presents the experiment SIMULINK diagram of proposed online tuning DNN-PID 
control algorithm run in Real-time Windows Target with DYNAMIC_NEURAL_PID being 
subsystems written in C then compiled and run in real-time C-mex file. Three initial PID 
parameters KP, KI, KD and gain scheduling G value are chosen by trial and error method and 
determined as G=0.8; KP=0.09; KI=0.089 and KD=0.07. 
 

ramp1

Upid

z

1

Unit Delay2

Ucontrol

U

Y

To Workspace8

Wpid

To Workspace6

Yref

To Workspace5

Ucontrol

To Workspace4
error

To Workspace3

Upid

To Workspace1

TRAPEZOID2

Sine Wave2

Saturation

STEP1

Resutls

DYNAMIC_NEURAL_PID

Neural PID

1/s

Integrator

[Ucontrol]

Goto6

[Wpid]

Goto4

[error]

Goto3

[Yref]

Goto2

[Upid]

Goto1

[Y]

Goto

0.025

Gain3

[Upid]

From5

[Wpid]

From4

[Y]

From3

[Ucontrol]

From2

[error]

From1

[Yref]

From

Encoder
Input

Encoder Input1
Measurement Computing

PCI-QUAD04 [auto]

du/dt

Derivative

5

Constant1

Analog
Output

Analog Output1
Adv antech

PCI-1720 [auto]

 
Fig. 6. Experiment SIMULINK Model of PAM robot arm control using online tuning DNN-
PID control. 
 
The experiment SIMULINK diagram of the 2nd  joint of the 2-axes PAM robot arm position 
control using conventional PID controller in order to compare as to demonstrate the 
superiority of proposed control system. Three PID parameters KP, KI, KD and gain 
scheduling K value of conventional PID controller are chosen by trial and error method. 
 

 
Fig. 7. Parameter configuration of DNN_PID subsystem used in proposed online tuning 
DNN-PID control 
 
Fig. 7 shows that the parameter configuration of DYNAMIC_NEURAL_PID subsystem 
composes of seven parameters. The 1st vector parameter contains number of inputs and 
outputs of neural DYNAMIC_NEURAL_PID subsystem; the 2nd relates to the number of 
neurons of Hidden Layer used; the 3rd declares the step size used in real-time operation of 
PAM system; the 4th declares the learning rate value used in real-time operation of PAM 
manipulator; the 5th parameter contains logic value as to choose the sigmoid function (1) or 
the hyperbolic tangent function (0); the 6th parameter contains logic value as to choose the 
linear function (0) or the sigmoid/hyperbolic tangent function (1) of Output layer; and the 
7th vector parameter contains the initial K, KP, KI, KD  weighting values and two initial bias 
weighting values Bi and Bh. 
The final purpose of the PAM manipulator is to be used as an elbow and wrist rehabilitation 
robot device. Thus, the experiments were carried out with respect to 3 different waveforms 
as reference input (Triangular, Trapezoidal and Sinusoidal reference) with 2 different end-
point Payloads (Load 0.5[kg] and Load 2[kg]) as to demonstrate the performance of novel 
proposed online tuning DNN-PID controller. Furthermore, the comparisons of control 
performance between the conventional PID and two different methods of the proposed 
online tuning DNN-PID controller were performed.  
These two novel proposed methods compose of proposed online tuning DNN-PID-SIG and 
proposed online tuning DNN-PID-HYP. The 1st method possesses the activation function of 
hidden layer of DYNAMIC_NEURAL_PID subsystem being Sigmoid function and the 2nd 
method corresponds to the Hyperbolic Tangent function respectively. 
The initial gain scheduling value G and PID controller parameters Kp, Ki and Kd were set to 
be G = 0.8, Kp = 0.089, Ki = 0.09, Kd = 0.07. These parameters of PID controller were obtained 
by trial-and-error through experiment. Forwardly, the two initial bias weighting values Bi 
and Bh are chosen equal 0. 
 
First, the experiments were carried out to verify the effectiveness of the proposed online 
tuning DNN-PID controller using neural network with triangular reference input. Fig.8a 
shows the experimental results between the conventional PID controller and the proposed 
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nonlinear DNN-PID controller in 2 cases of Load 0.5[kg] and Load 2[kg] respectively. The 
online updating of each control parameter (G, Kp, Ki and Kd) in 2 cases of Load 0.5[kg] and 
Load 2[kg] was shown in Fig. 8b. In the experiment of the proposed online tuning DNN-PID 
controller, the initial values of G, Kp, Ki and Kd are set to be the same as that of conventional 
PID controller.  
These figures show that thanks to the sophisticated online tuning of G, Kp, Ki and Kd, the 
error between desired reference yREF and actual joint angle response y of the PAM 
manipulator continually optimized. Consequently, the minimized error decreases only in 
the range  0.5[deg] with both of proposed DNN-PID-SIG and DNN-PID-HYP in case of 
Load 0.5[kg]. The same good result is obtained with both of proposed DNN-PID-SIG and 
DNN-PID-HYP in case of Load 2[kg]. These results are really impressive in comparison with 
the bad and unchanged error of conventional PID controller ( 1.5[deg] in case of Load 
0.5[kg] and up to  2[deg] in case of Load 2[kg]). Furthermore, in case of Load 2[kg], Figure 
8a shows that PID controller caused the PAM manipulator response being oscillatory and 
unstable. Otherwise, proposed online tuning DNN-PID controller continues to assert robust 
control to keep PAM manipulator response stable and accurate tracking. 
In comparison between proposed DNN-PID-SIG and DNN-PID-HYP, both of proposed 
control algorithms obtain the excellent robustness and accuracy as well and thus are 
considered the performance equivalent. However in initial stage, proposed DNN-PID-SIG 
possesses significant overshoot which may cause unstable to PAM manipulator in its initial 
operation. 
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Fig. 8a.Triangular response of the PAM robot arm – Load 0.5[kg] and Load 2[kg]. 
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Fig. 8b. The online tuning convergence of proposed DNN-PID controller parameters with 
triangular reference. 
 
Figure 8c shows the resulted shape of control voltage U applied to the joint of PAM 
manipulator, which is generated by the proposed online tuning DNN-PID controller as to 
assure the performance and the accuracy of the PAM manipulator response. This figure 
shows that PID controller generates an oscillatory and unstable control voltage in case of 
Load 2[kg]. On the contrary, proposed online tuning DNN-PID controller continues to 
robustly control with refined control voltage as to keep PAM manipulator response stable 
and accurate tracking. 
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Fig. 8c.The voltage control applied to the PAM robot arm with triangular reference. 
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nonlinear DNN-PID controller in 2 cases of Load 0.5[kg] and Load 2[kg] respectively. The 
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controller, the initial values of G, Kp, Ki and Kd are set to be the same as that of conventional 
PID controller.  
These figures show that thanks to the sophisticated online tuning of G, Kp, Ki and Kd, the 
error between desired reference yREF and actual joint angle response y of the PAM 
manipulator continually optimized. Consequently, the minimized error decreases only in 
the range  0.5[deg] with both of proposed DNN-PID-SIG and DNN-PID-HYP in case of 
Load 0.5[kg]. The same good result is obtained with both of proposed DNN-PID-SIG and 
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unstable. Otherwise, proposed online tuning DNN-PID controller continues to assert robust 
control to keep PAM manipulator response stable and accurate tracking. 
In comparison between proposed DNN-PID-SIG and DNN-PID-HYP, both of proposed 
control algorithms obtain the excellent robustness and accuracy as well and thus are 
considered the performance equivalent. However in initial stage, proposed DNN-PID-SIG 
possesses significant overshoot which may cause unstable to PAM manipulator in its initial 
operation. 
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Fig. 8a.Triangular response of the PAM robot arm – Load 0.5[kg] and Load 2[kg]. 
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Fig. 8b. The online tuning convergence of proposed DNN-PID controller parameters with 
triangular reference. 
 
Figure 8c shows the resulted shape of control voltage U applied to the joint of PAM 
manipulator, which is generated by the proposed online tuning DNN-PID controller as to 
assure the performance and the accuracy of the PAM manipulator response. This figure 
shows that PID controller generates an oscillatory and unstable control voltage in case of 
Load 2[kg]. On the contrary, proposed online tuning DNN-PID controller continues to 
robustly control with refined control voltage as to keep PAM manipulator response stable 
and accurate tracking. 
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Fig. 8c.The voltage control applied to the PAM robot arm with triangular reference. 
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Forwardly, the experiments were carried out to verify the effectiveness of the proposed 
DNN-PID controller using neural network with trapezoidal reference input. Fig.9a shows 
the experimental results in comparison between the conventional PID controller and the two 
proposed nonlinear DNN-PID-SIG and DNN-PID-HYP controllers in 2 cases of Load 0.5[kg] 
and Load 2[kg] respectively. The online updating of each control parameter (G, Kp, Ki and 
Kd) in 2 cases of Load 0.5[kg] and Load 2[kg] was shown in Fig. 9b. In the experiment of the 
proposed online tuning DNN-PID controller, the initial values of G, Kp, Ki and Kd are set to 
be the same as that of conventional PID controller. 
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Fig. 9a.Trapezoidal response of both joints of the 2-axes PAM robot arm – Load 0.5[kg] and 
Load 2[kg]. 
 
These figures show that thanks to the refined online tuning of G, Kp, Ki and Kd, the error 
between desired reference yREF and actual joint angle response y of the PAM manipulator 
continually optimized. Consequently, the minimized error decreases only in the range 
 0.5[deg] with both of proposed DNN-PID-SIG and DNN-PID-HYP in case of Load 0.5[kg]. 
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On the contrary, proposed online tuning DNN-PID controller continues to assert robust 
control to keep PAM manipulator response stable and accurate tracking. 
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Fig. 9b.The online tuning convergence of proposed DNN-PID controller parameters with 
triangular reference. 
 
Figure 9c presents the refined shape of control voltage U applied to the joint of PAM 
manipulator, which is generated by the proposed online tuning DNN-PID controller as to 
assure the performance and the accuracy of the PAM manipulator response. This figure 
proves that PID controller generates an oscillatory and unstable control voltage in case of 
Load 2[kg]. On the contrary, proposed online tuning DNN-PID controller continues to 
robustly control with refined control voltage as to keep PAM manipulator response stable 
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Fig. 9c.The voltage control applied to both joints of the 2-axes PAM robot arm with 
triangular reference. 
 
Next, the experiments were carried out to verify the effectiveness of the proposed DNN-PID 
controller using neural network with sinusoidal reference 0.05[Hz]. Fig.10a shows the 
experimental results in comparison between the conventional PID controller and the two 
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Forwardly, the experiments were carried out to verify the effectiveness of the proposed 
DNN-PID controller using neural network with trapezoidal reference input. Fig.9a shows 
the experimental results in comparison between the conventional PID controller and the two 
proposed nonlinear DNN-PID-SIG and DNN-PID-HYP controllers in 2 cases of Load 0.5[kg] 
and Load 2[kg] respectively. The online updating of each control parameter (G, Kp, Ki and 
Kd) in 2 cases of Load 0.5[kg] and Load 2[kg] was shown in Fig. 9b. In the experiment of the 
proposed online tuning DNN-PID controller, the initial values of G, Kp, Ki and Kd are set to 
be the same as that of conventional PID controller. 
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Fig. 9a.Trapezoidal response of both joints of the 2-axes PAM robot arm – Load 0.5[kg] and 
Load 2[kg]. 
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Fig. 9b.The online tuning convergence of proposed DNN-PID controller parameters with 
triangular reference. 
 
Figure 9c presents the refined shape of control voltage U applied to the joint of PAM 
manipulator, which is generated by the proposed online tuning DNN-PID controller as to 
assure the performance and the accuracy of the PAM manipulator response. This figure 
proves that PID controller generates an oscillatory and unstable control voltage in case of 
Load 2[kg]. On the contrary, proposed online tuning DNN-PID controller continues to 
robustly control with refined control voltage as to keep PAM manipulator response stable 
and accurate tracking. 
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Fig. 9c.The voltage control applied to both joints of the 2-axes PAM robot arm with 
triangular reference. 
 
Next, the experiments were carried out to verify the effectiveness of the proposed DNN-PID 
controller using neural network with sinusoidal reference 0.05[Hz]. Fig.10a shows the 
experimental results in comparison between the conventional PID controller and the two 
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proposed DNN-PID-SIG and DNN-PID-HYP controllers in 2 cases of Load 0.5[kg] and Load 
2[kg] respectively. The online tuning of each control parameter (G, Kp, Ki and Kd) in 2 cases 
of Load 0.5[kg] and Load 2[kg] was shown in Fig. 10b.  
These figures show that thanks to the refined online tuning of G, Kp, Ki and Kd, the error 
between desired reference yREF and actual joint angle response y of the PAM manipulator 
continually optimized. Consequently, the minimized error decreases excellently in the range 
 1[deg] with proposed DNN-PID-HYP and in the range  1.5[deg] with proposed DNN-
PID-SIG in case of Load 0.5[kg]. The same good result is also obtained with proposed DNN-
PID-SIG and DNN-PID-HYP in case of Load 2[kg]. These results are really superior in 
comparison with the passive and unchanged error of conventional PID controller ( 3[deg] 
in case of Load 0.5[kg] and up to  4[deg] in case of Load 2[kg]). Furthermore, in case of 
Load 2[kg], Figure 10a shows that PID controller caused the PAM manipulator response 
oscillatory and unstable. Otherwise, proposed online tuning DNN-PID controller continues 
to keep robust control as to maintain PAM manipulator response stable and accurate 
tracking. 
In comparison between proposed DNN-PID-SIG and DNN-PID-HYP, proposed DNN-PID-
HYP obtains the excellent robustness and accuracy in comparison with proposed DNN-PID-
SIG and thus the proposed DNN-PID-HYP controller is considered to possess the best 
performance. Furthermore, in initial stage, proposed DNN-PID-SIG possesses again 
significant overshoot which may cause unstable to PAM manipulator in its initial operation. 
Figure 10c depicts the refined control voltage U applied to the joint of PAM manipulator, 
which is generated by the proposed online tuning DNN-PID controller as to assure the 
performance and the accuracy of the PAM manipulator response. 
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Fig. 10a.Sinusoidal response of the PAM robot arm - Load 0.5[kg] and Load 2[kg]. 
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Fig. 10b.The online tuning convergence of DNN-PID controller parameters with sinusoidal 
reference. 
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Fig. 10c.The voltage control applied to the 2nd  joint of the 2-axes PAM robot arm with 
sinusoidal reference. 
 
Finally, the experiments were carried out with critical sinusoidal reference input 0.2[Hz]. 
Fig.11a shows the experimental results in comparison between the two proposed DNN-PID-
SIG and DNN-PID-HYP controllers in 2 cases of Load 0.5[kg] and Load 2[kg] respectively. 
The online tuning of each control parameter (G, Kp, Ki and Kd) in 2 cases of Load 0.5[kg] and 
Load 2[kg] was shown in Fig. 11b. It’s important to note that PID controller is impossible to 



A New Approach of the Online Tuning Gain  
Scheduling Nonlinear PID Controller Using Neural Network 233

proposed DNN-PID-SIG and DNN-PID-HYP controllers in 2 cases of Load 0.5[kg] and Load 
2[kg] respectively. The online tuning of each control parameter (G, Kp, Ki and Kd) in 2 cases 
of Load 0.5[kg] and Load 2[kg] was shown in Fig. 10b.  
These figures show that thanks to the refined online tuning of G, Kp, Ki and Kd, the error 
between desired reference yREF and actual joint angle response y of the PAM manipulator 
continually optimized. Consequently, the minimized error decreases excellently in the range 
 1[deg] with proposed DNN-PID-HYP and in the range  1.5[deg] with proposed DNN-
PID-SIG in case of Load 0.5[kg]. The same good result is also obtained with proposed DNN-
PID-SIG and DNN-PID-HYP in case of Load 2[kg]. These results are really superior in 
comparison with the passive and unchanged error of conventional PID controller ( 3[deg] 
in case of Load 0.5[kg] and up to  4[deg] in case of Load 2[kg]). Furthermore, in case of 
Load 2[kg], Figure 10a shows that PID controller caused the PAM manipulator response 
oscillatory and unstable. Otherwise, proposed online tuning DNN-PID controller continues 
to keep robust control as to maintain PAM manipulator response stable and accurate 
tracking. 
In comparison between proposed DNN-PID-SIG and DNN-PID-HYP, proposed DNN-PID-
HYP obtains the excellent robustness and accuracy in comparison with proposed DNN-PID-
SIG and thus the proposed DNN-PID-HYP controller is considered to possess the best 
performance. Furthermore, in initial stage, proposed DNN-PID-SIG possesses again 
significant overshoot which may cause unstable to PAM manipulator in its initial operation. 
Figure 10c depicts the refined control voltage U applied to the joint of PAM manipulator, 
which is generated by the proposed online tuning DNN-PID controller as to assure the 
performance and the accuracy of the PAM manipulator response. 
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Fig. 10a.Sinusoidal response of the PAM robot arm - Load 0.5[kg] and Load 2[kg]. 
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Fig. 10b.The online tuning convergence of DNN-PID controller parameters with sinusoidal 
reference. 
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Fig. 10c.The voltage control applied to the 2nd  joint of the 2-axes PAM robot arm with 
sinusoidal reference. 
 
Finally, the experiments were carried out with critical sinusoidal reference input 0.2[Hz]. 
Fig.11a shows the experimental results in comparison between the two proposed DNN-PID-
SIG and DNN-PID-HYP controllers in 2 cases of Load 0.5[kg] and Load 2[kg] respectively. 
The online tuning of each control parameter (G, Kp, Ki and Kd) in 2 cases of Load 0.5[kg] and 
Load 2[kg] was shown in Fig. 11b. It’s important to note that PID controller is impossible to 



PID Control, Implementation and Tuning234

apply with critical sinusoidal reference input 0.2[Hz] because it caused uncontrollable and 
unstable as well to the operation of PAM manipulator. 
These figures show that thanks to the refined online tuning of G, Kp, Ki and Kd, the error 
between desired reference yREF and actual joint angle response y of the PAM manipulator 
continually optimized. Consequently, the minimized error decreases spectacularly in the 
range  1[deg] with proposed DNN-PID-HYP in case of Load 2[kg] and in the range 
 1.5[deg] with proposed DNN-PID-SIG in case of Load 0.5[kg]. In critical sinusoidal 
reference input 0.2[Hz], proposed online tuning DNN-PID controller continues to keep 
robust control as to maintain PAM manipulator response stable and accurate tracking. 
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Fig. 11a Sinusoidal 0.2[Hz] response of the PAM manipulator - Load 0.5[kg] and Load 2[kg]. 
 
In comparison between proposed DNN-PID-SIG and DNN-PID-HYP, in this case of critical 
sinusoidal reference input 0.2[Hz], proposed DNN-PID-HYP once more obtains the 
excellent robustness and accuracy in comparison with proposed DNN-PID-SIG and thus the 
proposed DNN-PID-HYP controller is considered to possess the best performance between 
them. Furthermore, in initial stage, proposed DNN-PID-SIG possesses again significant 
overshoot which may cause unstable to PAM manipulator in its initial operation. 
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Fig. 11b. The online tuning convergence of proposed DNN-PID controller parameters in 
case of sinusoidal reference. 
 
In summary, novel DNN-PID controller using neural network was investigated in this paper. 
It has shown that the proposed method had a good control performance for the highly 
nonlinear system, such as the PAM manipulator. The controller had an adaptive control 
capability and the control parameters were optimized via the back propagation algorithm. 
The controller designed by this method does not need any training procedure in advance, 
but it uses only the input and output of the plant for the adaptation of proposed control 
parameters and can tune these parameters online iteratively. From the experiments of the 
position control of the PAM manipulator, it was verified that the proposed control 
algorithm presented in this paper was online control with simple structure and had better 
dynamic property, strong robustness and it was suitable for the control of various plants, 
including linear and nonlinear process, compared to the conventional PID controller. In 
comparison between 2 proposed DNN-PID-SIG and DNN-PID-HYP control algorithms, 
based on experiment results, proposed DNN-PID-HYP control obtains the excellent 
robustness and accuracy in comparison with proposed DNN-PID-SIG and thus the 
proposed DNN-PID-HYP controller is considered to possess the better performance than the 
proposed DNN-PID-SIG one. 

 
4. Conclusions 

An innovative online tuning gain scheduling neural DNN-PID Controller suitable for real-
time human-friendly industrial applications has been designed, developed and 
implemented for position control the joint angle of the experimental PAM manipulator in 
this paper. Experiment results show that the proposed online tuning Gain Scheduling DNN-
PID controller is able to learn the nonlinear and dynamic characteristics of the PAM 
manipulator quickly and thus reduce the tracking error to nearly zero in its operation. The 
performance of the online tuning gain scheduling DNN-PID controller was found to be very 
good and robust in the presence of external disturbances. Furthermore, with this proposed 
online tuning DNN-PID control algorithm, gain scheduling value G and PID parameters Kp, 
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apply with critical sinusoidal reference input 0.2[Hz] because it caused uncontrollable and 
unstable as well to the operation of PAM manipulator. 
These figures show that thanks to the refined online tuning of G, Kp, Ki and Kd, the error 
between desired reference yREF and actual joint angle response y of the PAM manipulator 
continually optimized. Consequently, the minimized error decreases spectacularly in the 
range  1[deg] with proposed DNN-PID-HYP in case of Load 2[kg] and in the range 
 1.5[deg] with proposed DNN-PID-SIG in case of Load 0.5[kg]. In critical sinusoidal 
reference input 0.2[Hz], proposed online tuning DNN-PID controller continues to keep 
robust control as to maintain PAM manipulator response stable and accurate tracking. 
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Fig. 11a Sinusoidal 0.2[Hz] response of the PAM manipulator - Load 0.5[kg] and Load 2[kg]. 
 
In comparison between proposed DNN-PID-SIG and DNN-PID-HYP, in this case of critical 
sinusoidal reference input 0.2[Hz], proposed DNN-PID-HYP once more obtains the 
excellent robustness and accuracy in comparison with proposed DNN-PID-SIG and thus the 
proposed DNN-PID-HYP controller is considered to possess the best performance between 
them. Furthermore, in initial stage, proposed DNN-PID-SIG possesses again significant 
overshoot which may cause unstable to PAM manipulator in its initial operation. 
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Fig. 11b. The online tuning convergence of proposed DNN-PID controller parameters in 
case of sinusoidal reference. 
 
In summary, novel DNN-PID controller using neural network was investigated in this paper. 
It has shown that the proposed method had a good control performance for the highly 
nonlinear system, such as the PAM manipulator. The controller had an adaptive control 
capability and the control parameters were optimized via the back propagation algorithm. 
The controller designed by this method does not need any training procedure in advance, 
but it uses only the input and output of the plant for the adaptation of proposed control 
parameters and can tune these parameters online iteratively. From the experiments of the 
position control of the PAM manipulator, it was verified that the proposed control 
algorithm presented in this paper was online control with simple structure and had better 
dynamic property, strong robustness and it was suitable for the control of various plants, 
including linear and nonlinear process, compared to the conventional PID controller. In 
comparison between 2 proposed DNN-PID-SIG and DNN-PID-HYP control algorithms, 
based on experiment results, proposed DNN-PID-HYP control obtains the excellent 
robustness and accuracy in comparison with proposed DNN-PID-SIG and thus the 
proposed DNN-PID-HYP controller is considered to possess the better performance than the 
proposed DNN-PID-SIG one. 

 
4. Conclusions 

An innovative online tuning gain scheduling neural DNN-PID Controller suitable for real-
time human-friendly industrial applications has been designed, developed and 
implemented for position control the joint angle of the experimental PAM manipulator in 
this paper. Experiment results show that the proposed online tuning Gain Scheduling DNN-
PID controller is able to learn the nonlinear and dynamic characteristics of the PAM 
manipulator quickly and thus reduce the tracking error to nearly zero in its operation. The 
performance of the online tuning gain scheduling DNN-PID controller was found to be very 
good and robust in the presence of external disturbances. Furthermore, with this proposed 
online tuning DNN-PID control algorithm, gain scheduling value G and PID parameters Kp, 
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Ki and Kd can be modified in real time and actual trajectories can be monitored as well. This 
facilitates testing under different input conditions and ensures future applications of the 
PAM manipulator as a rehabilitation device for stroke patients. It determines confidently 
that the proposed online tuning Gain Scheduling DNN-PID controller not only proves its 
superb performance in control the highly nonlinear PAM manipulator but also would be 
very efficient in control of other real-time industrial and human-friendly applications. 
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